

Lecture Notes in Computer Science 7203
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Roman Wyrzykowski Jack Dongarra
Konrad Karczewski Jerzy Waśniewski (Eds.)

Parallel Processing
and Applied Mathematics

9th International Conference, PPAM 2011
Torun, Poland, September 11-14, 2011
Revised Selected Papers, Part I

13

Volume Editors

Roman Wyrzykowski
Czestochowa University of Technology, Poland
E-mail: roman@icis.pcz.pl

Jack Dongarra
University of Tennessee, Knoxville, TN, USA
E-mail: dongarra@cs.utk.edu

Konrad Karczewski
Czestochowa University of Technology, Poland
E-mail: xeno@icis.pcz.pl

Jerzy Waśniewski
Technical University, Kongens Lyngby, Denmark
E-mail: jw@imm.dtu.dk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-31463-6 e-ISBN 978-3-642-31464-3
DOI 10.1007/978-3-642-31464-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012941360

CR Subject Classification (1998): D.2, H.4, D.4, C.2.4, D.1.3, H.3, F.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume comprises the proceedings of the 9th International Conference on
Parallel Processing and Applied Mathematics – PPAM 2011, which was held in
Toruń, Poland, September 11–14, 2011. It was organized by the Department of
Computer and Information Science of the Cz ↪estochowa University of Technology,
with the help of the Nicolaus Copernicus University in Toruń, Faculty of Math-
ematics and Computer Science. The main organizer was Roman Wyrzykowski.

PPAM is a biennial conference. Eight previous events have been held in dif-
ferent places in Poland since 1994. The proceedings of the last five conferences
have been published by Springer in the Lecture Notes in Computer Science se-
ries (Na�l ↪eczów, 2001, vol. 2328; Cz ↪estochowa, 2003, vol. 3019; Poznań, 2005, vol.
3911; Gdańsk, 2007, vol. 4967; Wroc�law, 2009, vols. 6067 and 6068).

The PPAM conferences have become an international forum for exchanging
ideas between researchers involved in scientific and parallel computing, includ-
ing theory and applications, as well as applied and computational mathematics.
The focus of PPAM 2011 was on models, algorithms, and software tools which
facilitate efficient and convenient utilization of modern parallel and distributed
computing architectures, as well as on large-scale applications, and cloud com-
puting.

This meeting gathered more than 200 participants from 33 countries. A strict
refereeing process resulted in acceptance of 130 contributed presentations, while
approximately 45% of the submissions were rejected. Regular tracks of the con-
ference covered such important fields of parallel/distributed/grid computing and
applied mathematics as:

– Parallel/distributed architectures and mobile computing
– Numerical algorithms and parallel numerics
– Parallel non-numerical algorithms
– Tools and environments for parallel/distributed/grid computing
– Applications of parallel/distributed computing
– Applied mathematics, neural networks and evolutionary computing
– History of computing

The plenary and invited talks were presented by:

– David A. Bader from the Georgia Institute of Technology (USA)
– Paolo Bientinesi from the RWTH Aachen (Germany)
– Christopher Carothers from the Rensselaer Polytechnic Institute (USA)
– Ewa Deelman from the University of Southern California (USA)
– Jack Dongarra from the University of Tennessee and Oak Ridge National

Laboratory (USA)
– Geoffrey Ch. Fox from the Indiana University (USA)
– Fred Gustavson from the Ume̊a University (Sweden) and emeritus from the

IBM T.J. Watson Research Center (USA)

VI Preface

– Tony Hey from the Microsoft Research
– Bo K̊agström from the Ume̊a University (Sweden)
– Jakub Kurzak from the University of Tennessee (USA)
– Jarek Nabrzyski from the University of Notre Dame (USA)
– Raymond Namyst from the University of Bordeaux & INRIA (France)
– Victor Pankratius from the University of Karlsruhe (Germany)
– Markus Pueschel from the ETH Zurich (Switzerland)
– Eugen Schenfeld from the IBM T.J. Watson Research Center (USA)
– Robert Strzodka from the Max Planck Institut für Informatik (Germany)
– Boles�law Szymański from the Rensselaer Polytechnic Institute (USA)
– Richard W. Vuduc from the Georgia Institute of Technology (USA)
– Jerzy Waśniewski from the Technical University of Denmark (Denmark)

Important and integral parts of the PPAM 2011 conference were the workshops:

– Minisymposium on GPU Computing organized by José R. Herrero from the
Universitat Politecnica de Catalunya (Spain), Enrique S. Quintana-Ort́ı from
the Universitat Jaime I (Spain), and Robert Strzodka from the Max Planck
Institut für Informatik (Germany)

– Minisymposium on Autotuning organized by Richard W. Vuduc from the
Georgia Institute of Technology (USA) and Roman Wyrzykowski from the
Cz ↪estochowa University of Technology (Poland)

– Workshop on Memory and Data Parallelism on Multi- and Manycore Plat-
forms organized by Michael Bader from the University of Stuttgart (Ger-
many), Carsten Trinitis, and Josef Weidendorfer from the TU München
(Germany)

– Workshop on Models, Algorithms and Methodologies for Hierarchical Par-
allelism in New HPC Systems organized by Giulliano Laccetti and Marco
Lapegna from the University of Naples Federico II (Italy) and Raffaele Mon-
tella from the University of Naples “Parthenope” (Italy)

– Workshop on Scheduling for Parallel Computing—SPC 2011—organized by
Maciej Drozdowski from the Poznań University of Technology (Poland)

– The 4th Workshop on Language-Based Parallel Programming Models—WLPP
2011—organized by Ami Marowka from the Bar-Ilan University (Israel)

– The Second Workshop on Scalable Computing in Distributed Systems and
the 7th Workshop on Large-Scale Computations on Grids—ScoDiS-LaSCoG
2011—organized by Dana Petcu from the West University of Timisoara (Ro-
mania) and Marcin Paprzycki from WSM and the Systems Research Institute
of the Polish Academy of Sciences (Poland)

– The Third Workshop on Performance Evaluation of Parallel Applications
on Large-Scale Systems organized by Jan Kwiatkowski from the Wroc�law
University of Technology (Poland)

– Workshop on Parallel Computational Biology—PBC 2011—organized by
David A. Bader from the Georgia Institute of Technology (USA), Jaros�law
Żola from the Iowa State University (USA), and Scott Emrich from the Uni-
versity of Notre Dame (USA)

Preface VII

– Minisymposium on Applications of Parallel Computations in Industry and
Engineering organized by Raimondas Čiegis from the Vilnius Gediminas
Technical University (Lithuania) and Julius Žilinskas from the Vilnius Uni-
versity (Lithuania)

– Minisymposium on High-Performance Computing Interval Methods orga-
nized by Bart�lomiej J. Kubica from the Warsaw University of Technology
(Poland)

– Workshop on Complex Colective Systems organized by Pawe�l Topa and
Jaros�law W ↪as from the AGH University of Science and Technology in Cracow
(Poland)

– The First Workshop on Service-Oriented Architecture in Distributed
Systems—SOADS 2011—organized by Jan Kwiatkowski from the Wroc�law
University of Technology (Poland) and Dariusz Wawrzyniak from the Poznań
University of Technology (Poland)

The PPAM 2011 meeting began with five tutorials:

– Scientific Computing with GPUs, by Dominik Göddeke from the University
of Dortmund (Germany), Jakub Kurzak from the University of Tennessee
(USA), Jan-Philipp Weiss from the Karlsruhe Institute of Technology (Ger-
many), as well as André Heidekrüger from AMD, and Tim Schröder from
NVIDIA

– StarPU System for Heterogeneous Multicore Architectures, by Raymond
Namyst from the University of Bordeaux and INRIA (France)

– Tutorial on the 100th Anniversary of Cholesky’s Algorithm, by Fred Gus-
tavson from the Ume̊a University (Sweden) and emeritus from the IBM T.J.
Watson Research Center (USA) and Jerzy Waśniewski from the Technical
University of Denmark (Denmark)

– FutureGrid, by Geoffrey Ch. Fox from the Indiana University (USA)
– Best Practices to Run Applications in HPC Environments, by the POWIEW

Project team (Poland)

The PPAM Best Poster Award is granted to the best poster on display at the
PPAM conferences, and was established at PPAM 2009. This Award is bestowed
by the Program Committee members to the presenting author(s) of the best
poster. The selection criteria are based on the scientific content and on the
quality of the poster presentation.

The PPAM 2011 winners were Damian Wóicik, Marcin Kurowski, Bogdan
Rosa, and Micha�l Ziemiański from the Institute of Meteorology and Water Man-
agement in Warsaw, who presented the poster “A Study on Parallel Performance
of the EULAG F90/95 Code.”

The Special Award was bestowed to Andrzej Jarynowski from the Jagiellonian
University and Przemys�law Gawroński, Krzysztof Ku�lakowski from the AGH
University of Science and Technology in Kraków, who presented the poster “How
the Competitive Altruism Leads to Bistable Homogeneous States of Cooperation
or Defection.”

VIII Preface

Automated Performance Tuning (“Autotuning”) of Software: The complexity of
modern machines makes performance tuning a tedious and time-consuming task.
The goal of autotuning techniques is to automate the process of selecting the
highest-performing program implementation from among a space of candidates,
guided by experiments. An experiment is the execution of a benchmark and ob-
servation of its performance; such experiments may be used directly to test a
candidate implementation, or may be used to calibrate a model that is then used
to select such an implementation. Roughly speaking, autotuning research con-
siders questions of how to identify and generate the space of candidate program
implementations as well as how to find (or search for) the best implementation
given such a space. A system that implements an autotuning process is an au-
totuner. An autotuner may be a stand-alone code generation system or may be
part of a compiler.

The Minisymposium on Autotuning featured a number of invited and con-
tributed talks covering recent and diverse advances, including:

– A new high-level rewrite system for linear algebra computations, with appli-
cations to computational physics and biology (by P. Bientinesi)

– Novel uses of machine learning to facilitate searching (M. Püschel)
– The extension of autotuning ideas into general software engineering pro-

cesses, such as tuning the software architecture (V. Pankratius)
– New code generation and search space pruning techniques for dense linear

algebra targeted at GPU architectures (J. Kurzak and H.H.B. Sørensen)
– Reducing tuning time for high-performance LINPACK using novel perfor-

mance models (P. �Luszczek)

The organizers are indebted to the PPAM 2011 sponsors, whose support was
vital to the success of the conference. The main sponsor was the Intel Corpo-
ration. The other sponsors were: IBM Corporation, Hewlett-Packard Company,
Microsoft Corporation, and AMD. We thank all members of the International
Program Committee and additional reviewers for their diligent work in refer-
eeing the submitted papers. Finally, we thank all of the local organizers from
the Cz ↪estochowa University of Technology, and the Nicolaus Copernicus Univer-
sity in Toruń, who helped us to run the event very smoothly. We are especially
indebted to Grażyna Ko�lakowska, Urszula Kroczewska, �Lukasz Kuczyński, and
Marcin Woźniak from the Cz ↪estochowa University of Technology; and to Andrzej
Rozkosz, and Piotr Ba�la from the Nicolaus Copernicus University.

We hope that this volume will be useful to you. We would like everyone who
reads it to feel invited to the next conference, PPAM 2013, which will be held
during September 8–11, 2013, in Warsaw, the capital of Poland.

February 2012 Roman Wyrzykowski
Jack Dongarra

Konrad Karczewski
Jerzy Waśniewski

Organization

Program Committee

W ↪eglarz, Jan Poznań University of Technology, Poland
Honorary Chair

Wyrzykowski, Roman Cz ↪estochowa University of Technology, Poland
Program Committee Chair

Szymański, Boles�law Rensselaer Polytechnic Institute, USA Program
Committee Vice-chair

Arbenz, Peter ETH, Zurich, Switzerland
Ba�la, Piotr Nicolaus Copernicus University, Poland
Bader, David A. Georgia Institute of Technology, USA
Bader, Michael University of Stuttgart, Germany
Blaheta, Radim Institute of Geonics, Czech Academy of

Sciences
B�lażewicz, Jacek Poznań University of Technology, Poland
Bokota, Adam Cz ↪estochowa University of Technology, Poland
Bouvry, Pascal University of Luxembourg
Burczyński, Tadeusz Silesia University of Technology, Poland
Brzeziński, Jerzy Poznań University of Technology, Poland
Bubak, Marian Institute of Computer Science, AGH, Poland
Čiegis, Raimondas Vilnius Gediminas Technical University,

Lithuania
Clematis, Andrea IMATI-CNR, Italy
Cunha, Jose University New of Lisbon, Portugal
Czech, Zbigniew Silesia University of Technology, Poland
Deelman, Ewa University of Southern California, USA
Dongarra, Jack University of Tennessee and ORNL, USA
Drozdowski, Maciej Poznań University of Technology, Poland
Elmroth, Erik Umea University, Sweden
Flasiński, Mariusz Jagiellonian University, Poland
Ganzha, Maria IBS PAN, Warsaw, Poland
Gepner, Pawel Intel Corporation
Gondzio, Jacek University of Edinburgh, Scotland, UK
Gościński, Andrzej Deakin University, Australia
Grigori, Laura INRIA, France
Grzech, Adam Wroclaw University of Technology, Poland
Guinand, Frederic Université du Havre, France
Herrero, José R. Universitat Politècnica de Catalunya,

Barcelona, Spain
Hluchy, Ladislav Slovak Academy of Sciences, Bratislava

X Organization

Jakl, Ondrej Institute of Geonics, Czech Academy of
Sciences

Janciak, Ivan University of Vienna, Austria
Jeannot, Emmanuel INRIA, France
Kalinov, Alexey Cadence Design System, Russia
Kamieniarz, Grzegorz A. Mickiewicz University, Poznań, Poland
Kiper, Ayse Middle East Technical University, Turkey
Kitowski, Jacek Institute of Computer Science, AGH, Poland
Korbicz, Józef University of Zielona Góra, Poland
Kozielski, Stanislaw Silesia University of Technology, Poland
Kranzlmueller, Dieter Ludwig Maximilian University, Munich,

and Leibniz Supercomputing Centre,
Germany

Krawczyk, Henryk Gdańsk University of Technology, Poland
Krzyżanowski, Piotr University of Warsaw, Poland
Kwiatkowski, Jan Wroc�law University of Technology, Poland
Laccetti, Giulliano University of Naples Federico II, Italy
Lapegna, Marco University of Naples Federico II, Italy
Lastovetsky, Alexey University College Dublin, Ireland
Maksimov, Vyacheslav I. Ural Branch, Russian Academy of Sciences
Malyshkin, Victor E. Siberian Branch, Russian Academy of Sciences
Margalef, Tomas Universitat Autonoma de Barcelona, Spain
Margenov, Svetozar Bulgarian Academy of Sciences, Sofia
Marowka, Ami Bar-Ilan University, Israel
Meyer, Norbert PSNC, Poznań, Poland
Nabrzyski, Jarek University of Notre Dame, USA
Oksa, Gabriel Slovak Academy of Sciences, Bratislava
Olas, Tomasz Czestochowa University of Technology, Poland
Paprzycki, Marcin WSM & IBS PAN, Warsaw, Poland
Petcu, Dana West University of Timisoara, Romania
Quintana-Ort́ı, Enrique S. Universitat Jaime I, Spain
Robert, Yves Ecole Normale Superieure de Lyon, France
Rokicki, Jacek Warsaw University of Technology, Poland
Rutkowski, Leszek Cz ↪estochowa University of Technology, Poland
Seredyński, Franciszek Polish Academy of Sciences and

Polish-Japanese Institute of Information
Technology, Warsaw, Poland

Schaefer, Robert Institute of Computer Science, AGH, Poland
Silc, Jurij Jozef Stefan Institute, Slovenia
Sloot, Peter M.A. University of Amsterdam, The Netherlands
Sosonkina, Masha Ames Laboratory and Iowa State University,

USA
Sousa, Leonel Technical University of Lisbon, Portugal
Stroiński, Maciej PSNC, Poznań, Poland
Talia, Domenico University of Calabria, Italy
Tchernykh, Andrei CICESE, Ensenada, Mexico

Organization XI

Trinitis, Carsten TU München, Germany
Trobec, Roman Jozef Stefan Institute, Slovenia
Trystram, Denis ID-IMAG, Grenoble, France
Tudruj, Marek Polish Academy of Sciences and

Polish-Japanese Institute of Information
Technology, Warsaw, Poland

Tvrdik, Pavel Czech Technical University, Prague
Vajtersic, Marian Salzburg University, Austria
Volkert, Jens Johannes Kepler University, Linz, Austria
Waśniewski, Jerzy Technical University of Denmark
Wiszniewski, Bogdan Gdańsk University of Technology, Poland
Yahyapour, Ramin University of Dortmund, Germany
Zhu, Jianping University of Texas at Arlington, USA

Table of Contents – Part I

A Look Back: 57 Years of Scientific Computing . 1
Jerzy Waśniewski

Parallel/Distributed Architectures and Mobile
Computing

Modeling a Leadership-Scale Storage System . 10
Ning Liu, Christopher Carothers, Jason Cope, Philip Carns,
Robert Ross, Adam Crume, and Carlos Maltzahn

Combining Optimistic and Pessimistic Replication 20
Marcin Bazyd�lo, Szymon Francuzik, Cezary Sobaniec, and
Dariusz Wawrzyniak

K-Resilient Session Guarantees Synchronization Protocol for Mobile
Ad-Hoc Networks . 30

Jerzy Brzeziński, Dariusz Dwornikowski, �Lukasz Pi ↪atkowski, and
Grzegorz Sobański

On Time Constraints of Reliable Broadcast Protocols for Ad Hoc
Networks with the Liveness Property . 40

Jerzy Brzeziński, Micha�l Kalewski, and Dariusz Wawrzyniak

Data Transfers on the Fly for Hierarchical Systems of Chip
Multi-Processors . 50

Marek Tudruj and �Lukasz Maśko

Numerical Algorithms

New Level-3 BLAS Kernels for Cholesky Factorization 60
Fred G. Gustavson, Jerzy Waśniewski, and José R. Herrero

Parallel Preconditioner for Nonconforming Adini Discretization of a
Plate Problem on Nonconforming Meshes . 70

Leszek Marcinkowski

Incomplete Cyclic Reduction of Banded and Strictly Diagonally
Dominant Linear Systems . 80

Carl Christian Kjelgaard Mikkelsen and Bo K̊agström

XIV Table of Contents – Part I

Fast and Small Nonlinear Pseudorandom Number Generators for
Computer Simulation . 92

Samuel Neves and Filipe Araujo

Parallel Quantum Algorithm for Finding the Consistency of Saaty’s
Matrices . 102

Henryk Piech and Olga Siedlecka-Lamch

A Numerical Approach to the Determination of 3D Stokes Flow in
Polygonal Domains Using PIES . 112

Eugeniusz Zieniuk, Krzysztof Szerszen, and Marta Kapturczak

Parallel Numerics

Cache Blocking for Linear Algebra Algorithms . 122
Fred G. Gustavson

Reducing the Amount of Pivoting in Symmetric Indefinite Systems 133
Dulceneia Becker, Marc Baboulin, and Jack Dongarra

A High Performance Dual Revised Simplex Solver . 143
Julian Hall and Qi Huangfu

TFETI Coarse Space Projectors Parallelization Strategies 152
Vaclav Hapla and David Horak

FFTs and Multiple Collective Communication on Multiprocessor-Node
Architectures . 163

Andreas Jocksch

Performance Analysis of Parallel Alternating Directions Algorithm for
Time Dependent Problems . 173

Ivan Lirkov, Marcin Paprzycki, and Maria Ganzha

A Novel Parallel Algorithm for Gaussian Elimination of Sparse
Unsymmetric Matrices . 183

Riccardo Murri

Parallel FEM Adaptation on Hierarchical Architectures 194
Tomasz Olas, Roman Wyrzykowski, and Pawel Gepner

Solving Systems of Interval Linear Equations in Parallel Using
Multithreaded Model and “Interval Extended Zero” Method 206

Mariusz Pilarek and Roman Wyrzykowski

GPU-Based Parallel Algorithms for Transformations of Quantum
States Expressed as Vectors and Density Matrices . 215

Marek Sawerwain

Table of Contents – Part I XV

Generalizing Matrix Multiplication for Efficient Computations on
Modern Computers . 225

Stanislav G. Sedukhin and Marcin Paprzycki

Distributed QR Factorization Based on Randomized Algorithms 235
Hana Straková, Wilfried N. Gansterer, and Thomas Zemen

Static Load Balancing for Multi-level Monte Carlo Finite Volume
Solvers . 245

Jonas Šukys, Siddhartha Mishra, and Christoph Schwab

Parallel Non-numerical Algorithms

A Parallel Algorithm for Minimizing the Number of Routes in the
Vehicle Routing Problem with Time Windows . 255

Miros�law B�locho and Zbigniew J. Czech

Towards Parallel Direct SAT-Based Cryptanalysis . 266
Pawe�l Dudek, Miros�law Kurkowski, and Marian Srebrny

Parallel Version of Image Segmentation Algorithm Using Polygonal
Markov Fields . 276

Rafa�l Kluszczyński and Piotr Ba�la

Parallel Community Detection for Massive Graphs 286
E. Jason Riedy, Henning Meyerhenke, David Ediger, and
David A. Bader

Is Your Permutation Algorithm Unbiased for n �= 2m? 297
Michael Waechter, Kay Hamacher, Franziska Hoffgaard,
Sven Widmer, and Michael Goesele

Tools and Environments for
Parallel/Distributed/Grid Computing

Extracting Coarse–Grained Parallelism for Affine Perfectly Nested
Quasi–uniform Loops . 307

W�lodzimierz Bielecki and Krzysztof Kraska

Polish Computational Research Space for International Scientific
Collaborations . 317

Jacek Kitowski, Micha�l Tura�la, Kazimierz Wiatr, �Lukasz Dutka,
Marian Bubak, Tomasz Szepieniec, Marcin Radecki, Mariusz Sterzel,
Zofia Mosurska, Robert Paj ↪ak, Renata S�lota, Krzysztof Kurowski,
Bartek Palak, Bart�lomiej Balcerek, Piotr Ba�la, Maciej Filocha, and
Rafa�l Tylman

XVI Table of Contents – Part I

Request Distribution Toolkit for Virtual Resources Allocation 327
Jan Kwiatkowski and Mariusz Fras

Vitrall: Web-Based Distributed Visualization System for Creation of
Collaborative Working Environments . 337

Piotr Śniegowski, Marek B�lażewicz, Grzegorz Grzelachowski,
Tomasz Kuczyński, Krzysztof Kurowski, and Bogdan Ludwiczak

Applications of Parallel/Distributed Computing

CUDA Accelerated Blobby Molecular Surface Generation 347
Daniele D’Agostino, Sergio Decherchi, Antonella Galizia,
José Colmenares, Alfonso Quarati, Walter Rocchia, and
Andrea Clematis

GPU Accelerated Image Processing for Lip Segmentation 357
Lukasz Adrjanowicz, Mariusz Kubanek, and Adam Tomas

Material Parameter Identification with Parallel Processing and
Geo-applications . 366

Radim Blaheta, Rostislav Hrtus, Roman Kohut, Owe Axelsson, and
Ondřej Jakl

Hierarchical Parallel Approach in Vascular Network Modeling – Hybrid
MPI+OpenMP Implementation . 376

Krzysztof Jurczuk, Marek Kretowski, and Johanne Bezy-Wendling

Runtime Optimisation Approaches for a Real-Time Evacuation
Assistant . 386

Armel Ulrich Kemloh Wagoum, Bernhard Steffen, and
Armin Seyfried

A Parallel Genetic Algorithm Based on Global Program State
Monitoring . 396

Adam Smyk and Marek Tudruj

Applied Mathematics, Neural Networks and
Evolutionary Computing

Parallel Approach to the Functional Decomposition of Logical Functions
Using Developmental Genetic Programming . 406

Stanislaw Deniziak and Karol Wieczorek

The Nine Neighbor Extrapolated Diffusion Method for Weighted Torus
Graphs . 416

Katerina A. Dimitrakopoulou and Michail N. Misyrlis

Table of Contents – Part I XVII

On the Weak Convergence of the Recursive Orthogonal
Series-Type Kernel Probabilistic Neural Networks in a Time-Varying
Environment . 427

Piotr Duda and Yoichi Hayashi

On the Cesaro Orthogonal Series-Type Kernel Probabilistic Neural
Networks Handling Non-stationary Noise . 435

Piotr Duda and Jacek M. Zurada

On the Weak Convergence of the Orthogonal Series-Type Kernel
Regresion Neural Networks in a Non-stationary Environment 443

Meng Joo Er and Piotr Duda

A Graph-Based Generation of Virtual Grids . 451
Ewa Grabska, Wojciech Palacz, Barbara Strug, and
Grażyna Ślusarczyk

On General Regression Neural Network in a Nonstationary
Environment . 461

Yoichi Hayashi and Lena Pietruczuk

Determination of the Heat Transfer Coefficient by Using the Ant
Colony Optimization Algorithm . 470

Edyta Hetmaniok, Damian S�lota, and Adam Zielonka

Learning in a Non-stationary Environment Using the Recursive Least
Squares Method and Orthogonal-Series Type Regression Neural
Network . 480

Maciej Jaworski and Meng Joo Er

On the Application of the Parzen-Type Kernel Probabilistic Neural
Network and Recursive Least Squares Method for Learning in a
Time-Varying Environment . 490

Maciej Jaworski and Yoichi Hayashi

Learning in Rough-Neuro-Fuzzy System for Data with Missing
Values . 501

Bartosz A. Nowak and Robert K. Nowicki

Diameter of the Spike-Flow Graphs of Geometrical Neural Networks 511
Jaroslaw Piersa

Weak Convergence of the Recursive Parzen-Type Probabilistic Neural
Network in a Non-stationary Environment . 521

Lena Pietruczuk and Jacek M. Zurada

Strong Convergence of the Parzen-Type Probabilistic Neural Network
in a Time-Varying Environment . 530

Lena Pietruczuk and Meng Joo Er

XVIII Table of Contents – Part I

Learning in a Time-Varying Environment by Making Use of the
Stochastic Approximation and Orthogonal Series-Type Kernel
Probabilistic Neural Network . 539

Jacek M. Zurada and Maciej Jaworski

Minisymposium on GPU Computing

Accelerating BST Methods for Model Reduction with Graphics
Processors . 549

Peter Benner, Pablo Ezzatti, Enrique S. Quintana-Ort́ı, and
Alfredo Remón

Reducing Thread Divergence in GPU-Based B&B Applied to the
Flow-Shop Problem . 559

Imen Chakroun, Ahcène Bendjoudi, and Nouredine Melab

A GPU-Based Approximate SVD Algorithm . 569
Blake Foster, Sridhar Mahadevan, and Rui Wang

Automatic CUDA Code Synthesis Framework for Multicore CPU and
GPU Architectures . 579

Hanwoong Jung, Youngmin Yi, and Soonhoi Ha

Accelerating the Red/Black SOR Method Using GPUs with CUDA 589
Elias Konstantinidis and Yiannis Cotronis

Dense Affinity Propagation on Clusters of GPUs . 599
Marcin Kurdziel and Krzysztof Boryczko

High-Performance Pseudo-Random Number Generation on Graphics
Processing Units . 609

Nimalan Nandapalan, Richard P. Brent, Lawrence M. Murray, and
Alistair P. Rendell

Auto-tuning Dense Vector and Matrix-Vector Operations for Fermi
GPUs . 619

Hans Henrik Brandenborg Sørensen

GPGPU Implementation of Cellular Automata Model of Water Flow . . . 630
Pawe�l Topa and Pawe�l M�locek

Workshop on Memory and Data Parallelism on
Multi- and Manycore Platforms

A Multi-GPU Implementation of a D2Q37 Lattice Boltzmann Code 640
Luca Biferale, Filippo Mantovani, Marcello Pivanti, Fabio Pozzati,
Mauro Sbragaglia, Andrea Scagliarini, Sebastiano Fabio Schifano,
Federico Toschi, and Raffaele Tripiccione

Table of Contents – Part I XIX

Combining Smoother and Residual Calculation in v-cycle AMG for
Symmetric Problems . 651

Maximilian Emans

Enhancing Parallelism of Tile Bidiagonal Transformation on Multicore
Architectures Using Tree Reduction . 661

Hatem Ltaief, Piotr Luszczek, and Jack Dongarra

Autotuning of Adaptive Mesh Refinement PDE Solvers on Shared
Memory Architectures . 671

Svetlana Nogina, Kristof Unterweger, and Tobias Weinzierl

GPU Acceleration of the Matrix-Free Interior Point Method 681
Edmund Smith, Jacek Gondzio, and Julian Hall

Workshop on Models, Algorithms and Methodologies
for Hierarchical Parallelism in New HPC Systems

Deconvolution of 3D Fluorescence Microscopy Images Using Graphics
Processing Units . 690

Luisa D’Amore, Livia Marcellino, Valeria Mele, and Diego Romano

HADAB: Enabling Fault Tolerance in Parallel Applications Running in
Distributed Environments . 700

Vania Boccia, Luisa Carracciuolo, Giuliano Laccetti,
Marco Lapegna, and Valeria Mele

Increasing the Efficiency of the DaCS Programming Model for
Heterogeneous Systems . 710

Maciej Cytowski and Marek Niezgódka

A Software Architecture for Parallel List Processing on Grids 720
Apolo H. Hernández, Graciela Román-Alonso,
Miguel A. Castro-Garćıa, Manuel Aguilar-Cornejo,
Santiago Domı́nguez-Domı́nguez, and Jorge Buenabad-Chávez

Reducing the Time to Tune Parallel Dense Linear Algebra Routines
with Partial Execution and Performance Modeling 730

Piotr Luszczek and Jack Dongarra

A General-Purpose Virtualization Service for HPC on Cloud
Computing: An Application to GPUs . 740

Raffaele Montella, Giuseppe Coviello, Giulio Giunta,
Giuliano Laccetti, Florin Isaila, and Javier Garcia Blas

A Simulated Annealing Algorithm for GPU Clusters 750
Maciej Zbierski

Author Index . 761

Table of Contents – Part II

Workshop on Scheduling for Parallel Computing
(SPC 2011)

Parallel Cost Function Determination on GPU for the Job Shop
Scheduling Problem . 1

Wojciech Bożejko, Mariusz Uchroński, and Mieczys�law Wodecki

Partitioning and Scheduling Workflows across Multiple Sites with
Storage Constraints . 11

Weiwei Chen and Ewa Deelman

Grid Branch-and-Bound for Permutation Flowshop 21
Maciej Drozdowski, Pawe�l Marciniak, Grzegorz Pawlak, and
Maciej P�laza

An Experimental Comparison of Load Balancing Strategies in a Web
Computing Environment . 31

Joachim Gehweiler, Peter Kling, and Friedhelm Meyer auf der Heide

A Grid Scheduling Based on Generalized Extremal Optimization for
Parallel Job Model . 41

Piotr Switalski and Franciszek Seredynski

Scheduling Parallel Programs Based on Architecture–Supported
Regions . 51

Marek Tudruj and �Lukasz Maśko

Genetic Algorithm Calibration for Two Objective Scheduling Parallel
Jobs on Hierarchical Grids . 61

Victor Hugo Yaurima-Basaldua, Andrei Tchernykh,
Yair Castro-Garcia, Victor Manuel Villagomez-Ramos, and
Larisa Burtseva

The 4th Workshop on Language-Based Parallel
Programming Models (WLPP 2011)

Expression Templates and OpenCL . 71
Uwe Bawidamann and Marco Nehmeier

Portable Explicit Threading and Concurrent Programming for MPI
Applications . 81

Tobias Berka, Helge Hagenauer, and Marian Vajteršic

XXII Table of Contents – Part II

Verification of a Heat Diffusion Simulation Written with Orléans
Skeleton Library . 91

Noman Javed and Frédéric Loulergue

Parallelization of an XML Data Compressor on Multi-cores 101
Tomasz Müldner, Christopher Fry, Tyler Corbin, and
Jan Krzysztof Mizio�lek

Comparing CUDA, OpenCL and OpenGL Implementations of the
Cardiac Monodomain Equations . 111

Rafael Sachetto Oliveira, Bernardo Martins Rocha,
Ronan Mendonça Amorim, Fernando Otaviano Campos,
Wagner Meira Jr., Elson Magalhães Toledo, and
Rodrigo Weber dos Santos

Fine Grained Parallelism in Recursive Function Calls 121
Dimitris Saougkos, Aristeidis Mastoras, and George Manis

The Second Workshop on Scalable Computing in
Distributed Systems and the 7th Workshop on Large
Scale Computations on Grids (ScoDiS-LaSCoG 2011)

On-Line Grid Monitoring Based on Distributed Query Processing 131
Bartosz Balis, Grzegorz Dyk, and Marian Bubak

Distributed Memory Virtualization with the Use of SDDSfL 141
Arkadiusz Chrobot, Maciej Lasota, Grzegorz �Lukawski, and
Krzysztof Sapiecha

Dynamic Compatibility Matching of Services for Distributed Workflow
Execution . 151

Pawe�l Czarnul and Micha�l Wójcik

Cyberinfrastructure Support for Engineering Virtual Organization for
CyberDesign . 161

Tomasz Haupt, Nitin Sukhija, and Mark F. Horstemeyer

Dynamic Business Metrics-driven Resource Provisioning in Cloud
Environments . 171

Pawe�l Koperek and W�lodzimierz Funika

Stochastic Control of the Scalable High Performance Distributed
Computations . 181

Zdzislaw Onderka

Distributed Collaborative Visualization on Mobile Devices Using
Interactive Video Streaming Techniques . 191

Maciej Panka, Michal Chlebiej, Krzysztof Benedyczak, and
Piotr Ba�la

Table of Contents – Part II XXIII

P2P Approach to Knowledge-Based Dynamic Virtual Organizations
Inception and Management . 201

Marcin Stelmach, Bartosz Kryza, and Jacek Kitowski

The Third Workshop on Performance Evaluation of
Parallel Applications on Large-Scale Systems

Balancing the Communications and Computations in Parallel FEM
Simulations on Unstructured Grids . 211

Nikola Kosturski, Svetozar Margenov, and Yavor Vutov

Scalable Quasineutral Solver for Gyrokinetic Simulation 221
Guillaume Latu, Virginie Grandgirard, Nicolas Crouseilles, and
Guilhem Dif-Pradalier

Semantic-Based SLA Monitoring of Storage Resources 232
Renata S�lota, Darin Nikolow, Pawe�l M�locek, and Jacek Kitowski

The Generalization of AQM Algorithms for Queueing Systems with
Bounded Capacity . 242

Oleg Tikhonenko and Wojciech M. Kempa

Parallel Implementation and Scalability of Cloud Resolving EULAG
Model . 252

Andrzej A. Wyszogrodzki, Zbigniew P. Piotrowski, and
Wojciech W. Grabowski

Workshop on Parallel Computational Biology
(PBC 2011)

Highly Efficient Parallel Approach to the Next-Generation DNA
Sequencing . 262

Jacek Blazewicz, Bartosz Bosak, Piotr Gawron, Marta Kasprzak,
Krzysztof Kurowski, Tomasz Piontek, and Aleksandra Swiercz

Parallel and Memory-Efficient Reads Indexing for Genome Assembly . . . 272
Guillaume Chapuis, Rayan Chikhi, and Dominique Lavenier

Parallel Software Architecture for Experimental Workflows in
Computational Biology on Clouds . 281

Luqman Hodgkinson, Javier Rosa, and Eric A. Brewer

Bit-Parallel Multiple Pattern Matching . 292
Tuan Tu Tran, Mathieu Giraud, and Jean-Stéphane Varré

XXIV Table of Contents – Part II

Minisymposium on Applications of Parallel
Computation in Industry and Engineering

A Parallel Space-Time Finite Difference Solver for Periodic Solutions of
the Shallow-Water Equation . 302

Peter Arbenz, Andreas Hiltebrand, and Dominik Obrist

A Parallel 3D Unstructured Implicit RANS Solver for Compressible
and Incompressible CFD Simulations . 313

Aldo Bonfiglioli, Sergio Campobasso, Bruno Carpentieri, and
Matthias Bollhöfer

Parallelization of the Discrete Chaotic Block Encryption Algorithm 323
Dariusz Burak and Micha�l Chudzik

Parallel Algorithms for Parabolic Problems on Graphs 333
Raimondas Čiegis and Natalija Tumanova

Efficient Isosurface Extraction Using Marching Tetrahedra and
Histogram Pyramids on Multiple GPUs . 343

Mi�losz Ciżnicki, Micha�l Kierzynka, Krzysztof Kurowski,
Bogdan Ludwiczak, Krystyna Napiera�la, and Jaros�law Palczyński

Parallel Implementation of Stochastic Inversion of Seismic Tomography
Data . 353

Maciej Dwornik and Anna Pi ↪eta

Parallel Coarse-Grid Treatment in AMG for Coupled Systems 361
Maximilian Emans

Approaches to Parallelize Pareto Ranking in NSGA-II Algorithm 371
Algirdas Lančinskas and Julius Žilinskas

OpenCL Implementation of Cellular Automata Finite Element (CAFE)
Method . 381

Lukasz Rauch, Krzysztof Bzowski, and Artur Rodzaj

Parallelization of EULAG Model on Multicore Architectures with GPU
Accelerators . 391

Krzysztof Rojek and Lukasz Szustak

High-Resolution Simulation of Turbulent Collision of Cloud Droplets . . . 401
Bogdan Rosa, Hossein Parishani, Orlando Ayala,
Lian-Ping Wang, and Wojciech W. Grabowski

Parallelization of the Seismic Ray Trace Algorithm 411
Kamil Szostek and Andrzej Leśniak

Table of Contents – Part II XXV

A Study on Parallel Performance of the EULAG F90/95 Code 419
Damian K. Wójcik, Marcin J. Kurowski, Bogdan Rosa, and
Micha�l Z. Ziemiański

Minisymposium on High Performance Computing
Interval Methods

Parallel Execution in Metaheuristics for the Problem of Solving
Parametric Interval Linear Systems . 429

Jerzy Duda and Iwona Skalna

Organizing Calculations in Algorithms for Solving Systems of Interval
Linear Equations Using the “Interval Extended Zero” Method 439

Ludmila Dymova and Mariusz Pilarek

An Interval Backward Finite Difference Method for Solving the
Diffusion Equation with the Position Dependent Diffusion Coefficient . . . 447

Malgorzata A. Jankowska

Arbitrary Precision Complex Interval Computations in C-XSC 457
Walter Krämer and Frithjof Blomquist

Tuning the Multithreaded Interval Method for Solving Underdetermined
Systems of Nonlinear Equations . 467

Bart�lomiej Jacek Kubica

Applying an Interval Method for a Four Agent Economy Analysis 477
Bart�lomiej Jacek Kubica and Adam Woźniak

An Axiomatic Approach to Computer Arithmetic with an Appendix on
Interval Hardware . 484

Ulrich Kulisch

A Method for Comparing Intervals with Interval Bounds 496
Pavel Sevastjanov, Pavel Bartosiewicz, and Kamil Tkacz

Direct Interval Extension of TOPSIS Method . 504
Pavel Sevastjanov and Anna Tikhonenko

Enclosure for the Solution Set of Parametric Linear Systems with
Non-affine Dependencies . 513

Iwona Skalna

The Central Difference Interval Method for Solving the Wave
Equation . 523

Barbara Szyszka

XXVI Table of Contents – Part II

Workshop on Complex Collective Systems

Meta-model Assisted Evolutionary Optimization of Cellular Automata:
An Application to the SCIARA Model . 533

Donato D’Ambrosio, Rocco Rongo, William Spataro, and
Giuseppe A. Trunfio

How the Competitive Altruism Leads to Bistable Homogeneous States
of Cooperation or Defection . 543

Andrzej Jarynowski, Przemys�law Gawroński, and
Krzysztof Ku�lakowski

Towards Multi-Agent Simulation of the Dynamic Vehicle Routing
Problem in MATSim . 551

Micha�l Maciejewski and Kai Nagel

The Application of Cellular Automata to Simulate Drug Release from
Heterogeneous Systems . 561

Agnieszka Miet�la, Iwona Wanat, and Jaros�law W ↪as

Model of Skyscraper Evacuation with the Use of Space Symmetry and
Fluid Dynamic Approximation . 570

Wies�lawa Sikora, Janusz Malinowski, and Arkadiusz Kupczak

Graph of Cellular Automata as a Metaphor of Fusarium Graminearum
Growth Implemented in GPGPU CUDA Computational
Environment . 578

Pawe�l Topa, Maciej Kuźniar, and Witold Dzwinel

DPD Model of Foraminiferal Chamber Formation: Simulation of Actin
Meshwork – Plasma Membrane Interactions . 588

Pawe�l Topa, Jaros�law Tyszka, Samuel S. Bowser, and
Jeffrey L. Travis

A Discrete Simulation Model for Traffic Including Bicycles on Urban
Networks, Applied to Intersection of Two One-Way Streets 598

Jelena Vasic and Heather J. Ruskin

The FirstWorkshop on Service Oriented Architecture
in Distributed Systems (SOADS 2011)

Lightweight Information Flow Control for Web Services 608
Bartosz Brodecki, Micha�l Kalewski, Piotr Sasak, and
Micha�l Szychowiak

Failure Detection in a RESTful Way . 618
Dariusz Dwornikowski, Anna Kobusińska, and Jacek Kobusiński

Table of Contents – Part II XXVII

Compensability of Business Processes . 628
Hubert G ↪ezikiewicz, Krzysztof Jankiewicz, and Tadeusz Morzy

A Developer’s View of Application Servers Interoperability 638
Pawe�l Lech Kaczmarek and Micha�l Nowakowski

Traffic Pattern Analysis for Distributed Anomaly Detection 648
Grzegorz Kolaczek and Krzysztof Juszczyszyn

Author Index . 659

A Look Back:

57 Years of Scientific Computing

Jerzy Waśniewski1,2

1 Department of Informatics & Mathematical Modeling,
Technical University of Denmark,

DTU, Bldg. 305,
DK-2800 Lyngby, Denmark

jw@imm.dtu.dk
2 UNI•C Danish IT Centre for Research and Education

Abstract. This document outlines my 57-year career in computational
mathematics, a career that took me from Poland to Canada and finally
to Denmark. It of course spans a period in which both hardware and
software developed enormously. Along the way I was fortunate to be
faced with fascinating technical challenges and privileged to be able to
share them with inspiring colleagues. From the beginning, my work to
a great extent was concerned, directly or indirectly, with computational
linear algebra, an interest I maintain even today.

Professional Curriculum Vitae

1950 - 1952: My original plan was to study astronomy at the University of
Wroclaw. One could do this after two years of either mathematics or physics,
and I chose mathematics.

1952 - 1955: As a continuation of my first two years, I decided to give up
astronomy for applied mathematics in technical problems. This line of study was
not available at the University of Wroclaw, but it was available at the University
of Warsaw. I transferred to the University of Warsaw and graduated there after
three years, having specialized in computational mathematics.

1956 - 1958: I was employed by the Department of Mechanical Engineering at
the Technical University of Warsaw (TUW) as an Assistant Professor of Math-
ematics. My initial duties were teaching and collaboration with engineers.

1956: I collaborated with the Institute of Geodesy, which had to solve symmetric
positive definite linear systems of equations of orders ranging from 50 to several
hundred. They solved these systems using desk calculators, the larger systems
requiring several weeks.

While awaiting the completion of a new electronic digital computer being
constructed by the Institute of Mathematics at the Polish Academy of Sciences,
Gerard Kudelski at the Institute of Geodesy decided to exploit temporarily the
equipment at that time in use in many statistics and large bookkeeping offices.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 1–9, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 J. Waśniewski

I was active in this effort. We adapted the LDL algorithm to a computing envi-
ronment based on the following:

– Paper cards for storing data
– A tabulator for additions
– A multiplier for multiplications
– A card sorter
– A device for duplicating cards with changing columns of indexes.
– An electrical calculator for division.

See: L.J. Comrie et al., The application of Hollerith equipment to an agricultural
investigation, J. Roy. Statist. Soc. Suppl. 4(2), 210-224 (1937).

Even though this equipment was available only at night, we could solve in
several nights systems that had required several weeks with desk calculators.

1957: The new computer, designated XYZ, began operations in the autumn of
this year. It had the following features:

– 512 36-bit words
– 100 operations per second
– The binary number system
– Fixed-point arithmetic
– Input / output on paper cards
– Machine language programming

I was asked to organize a computing center in connection with this computer.

1957 - 1959: I established three groups:

– A group to solve symmetric positive definite linear systems on the XYZ.
The first program was made by Krzysztof Moszyński and Jerzy Świaniewicz.
Krzysztof was my deputy.

– A group to calculate on desk calculators.
– A group to develop a numerical library for the XYZ. A collection of basic

routines had already been provided by the machine constructors.

1959 - 1961: I moved to the Institute of Mathematics at TUW. I had to put
together a new computing group and organize lectures and seminars for TUW
personnel and industrial engineers. My close collaborators were A. Wakulicz,
J. Hallay, M. �La̧cka, and T. Kornatowski.

Z. Pawlak and A. Wakulicz at the Department of Electronics at TUW de-
veloped a digital computer, designated EMC-1, with a negative-base number
system! See: Donald E. Knuth, The Art of Computer Programming, Vol. 2, p.
171. N. Metropolis, J. Howlett and Gian-Carlo Rota (eds.), ”A History of Com-
puting in the Twentieth Century”, Academic Press, 1980.

Jerzy Po�loński at the Department of Electronics continued the development
of the EMC-1 and produced a new computer, the UMC-1 (on tubes) and later
UMC-10 (on transistors). My group developed the program library for the UMC-1

A Look Back: 57 Years of Scientific Computing 3

and assisted some of the users with their applications in such areas as hydraulics,
meteorology and ship construction. Some calculations required 96 continuous
hours of machine time.

1961 - 1965: I was inducted into the army and later promoted to the rank
of captain. I was responsible for organizing a computing center based on the
Russian Computer URAL-2 at the Military Technical University. As far as I
recall, the machine parameters were the following:

– 2048 words of core memory
– 2 drums of 8192 words each
– Hardware floating-point arithmetic
– The octal number system
– Machine language programming
– Input was punched film tape and the output device was a primitive printer.

Initially there was no software at all. Since there was a strong need for mak-
ing calculations without excessive delay, we supplemented the URAL-2 with a
UMC-1. The UMC-1 was slower than the URAL-2 but we were familiar with it!

At the same time that the UMC-1 was being used for daily computing, we
developed software for basic numerical operations on the URAL-2 and provided
for input with paper tape and output with both paper tape and a teleprinter.
In addition, Jerzy Hallay developed a compiler for the URAL-2 based on Polish
notation. Jacek Moszczynski developed a compiler for assembly-language pro-
grams. Jerzy Hallay, Jerzy Wilczkowski, and Frania Jarosinska wrote programs
for the numerical libraries.

Next, we started to run applications in the areas of hydraulics, meteorology,
operations research and military science. Software was developed for solving
ordinary and partial differential equations.

1965: I was moved by the Minister of War to the Ministry of Computers and
Informatics and appointed Deputy Director General of Computing in Poland.
My group organized a series of provincial computing centers based on the Pol-
ish Computers ZAM-2, ZAM-41, UMC-1 and UMC-10, the Russian computers
URAL-2 and MINSK, and various Western computers produced by ELLIOTT,
GIER, ICT and IBM. It also organized a computer factory in Wroclaw, desig-
nated ELWRO. The first computer made by ELWRO was based on the computer
made by Z. Pawlak at the Technical University of Wroclaw. It was designated
ODRA.

1966 - 1968: I returned to the Institute of Mathematics at TUW. Actually, I
had had a close relationship with TUW during my time at the Military Technical
University and the Ministry of Computers and Informatics. I taught Algol 60 (in
particular GIER Algol 60) and numerical methods. I used the Danish computer
GIER at the University of Warsaw and worked on linear programming models
of transportation problems.

4 J. Waśniewski

1968: I left Poland for Toronto, where I had a cousin, and didn’t return to
Poland until 1997, when I made the first of several visits. Through a friend
at the University of Waterloo, I obtained employment for five months in the
Department of Computer Science. I simulated some formulas from mathematical
logic using Fortran, WatFor and APL, all of which were new to me. My supervisor
was Tomasz Pietrzykowski.

The University had a ”fast terminal” based on an IBM 360. Input was punched
cards and output was usually printed. For smaller jobs, the output was often
waiting for the user by the time he had walked the short distance from the card
reader to the printer! For longer jobs, the user left his card deck in the machine
room and the results were available either a few hours later or the next day.
There was also an online terminal to the IBM 360 for the use of APL. The
contract ended at the end of 1968. However, by then I had found another job.

1969: On January 1 I began work at Computel Systems Ltd. in Ottawa, where I
was assigned to the Users’ Support Group. The company sold computing time by
telephone. We served as consultants to the users and I was concerned with linear
programming algorithms and transportation problems. The company had two
computers, a UNIVAC 1108 (Exec 2) and an IBM 360. Three linear programming
packages were available: ILONA & FMPS on the 1108 and MPS on the 360. I
was mostly busy with an oil company.

1970 - 1971: A friend of mine, Dr. Józef Lityński worked at the Trois Riviers
branch of the University of Quebec. He introduced me to the head of the Com-
puting Center there, Dr. Jean Lapointe, who offered me a position as consultant
and researcher. One of the conditions for the job was that I should speak French.
The University paid me to study French at the local Berlitz school full time the
first six months. At the end of this period I gave a lecture in French for scientific
personnel on Algol 60 .

In addition to the Trois Riviers branch, the University of Quebec had nine
other provincial branches, each with its own computing center. The University
also had a main computing center in Quebec City with a CDC 6600. The comput-
ing center of each branch had a CDC 3075, or a Terminal-200 connected to the
CDC 6600. (The CDC 3075 could also function as a terminal to the CDC 6600.)
In addition, some branches had teletype terminals connected to an IBM 360 at
Laval University in Quebec City for APL jobs.

My duties were to teach programming and assist various departments with
their computational problems. In particular, I gave support in the use of Fortran,
Algol 60 and assembly language.

1971 - 1986: I left Canada for Denmark in June 1971. In August I began
employment at the Regional Computing Center at the University of Copenhagen
(RECKU). My duties were consulting and research. RECKU, which was new at
that time, had a UNIVAC 1106, a computer I knew well.

RECKU was temporarily placed in the same building as the Niels Bohr Insti-
tute (the University’s department of theoretical physics), which became one of
RECKU’s most important users. The Niels Bohr Institute had used the IBM 360

A Look Back: 57 Years of Scientific Computing 5

computer at the Danish Technical University (DTU) via an IBM 1130 Terminal.
The Niels Bohr Institute also had offices at the Research Center at Risoe and used
a Burroughs computer there. Now the Institute was to use the UNIVAC 1106 at
RECKU.

Theoretically, a Fortran program should be able to run on any machine with
a Fortran compiler, and a similar statement could be made about an Algol 60
program. In practice, however, differences exist, and that was the case here.
One of my tasks was to make a program to convert IBM 360 Fortran code to
UNIVAC Fortran code. I also made a program to convert Burroughs Algol 60
code to UNIVAC Algol 60 code.

1971 - 1973: Numerical software was needed for computing special functions
and for solving eigenproblems, linear and nonlinear systems, and optimization
problems. RECKU had only the standard UNIVAC packages UNIVAC MATH-
PACK and UNIVAC STAT-PACK. Unfortunately, these were of poor quality
and unpopular with the users. I therefore installed a number of new libraries,
including the IBM SSP Library, the CERN Library and the Harwell Library,
the latter being obtained from Lund University. A number of routines were
obtained by copying program code from the Communications of the ACM and
the Computer Journal. In addition, some users contributed their own software.
I developed software for computing the Bessel, Gamma, and error functions and
for solving eigenproblems.

We collaborated with Axel Hunding of the Department of Chemistry, Univer-
sity of Copenhagen on a few optimization routines, and with Kaj Madsen of the
Department of Numerical Analysis, DTU on software for interval arithmetic.

1973: I attended for the first time the biennial Dundee Conference on Numer-
ical Analysis in Dundee, Scotland. I met there two prominent members of the
Department of Numerical Analysis at DTU, Hans Bruun Nielsen and Per Grove
Thomsen. I discussed with them the status of numerical software at RECKU,
and they introduced me to some of the Harwell Library staff attending the con-
ference. Hans and Per also invited me to the numerical seminars organized by
their department in Denmark. Some of the staff of the Department of Numerical
Analysis were very knowledgeable about the Harwell Library. In particular, Kaj
Madsen spent a year at Harwell, where he worked with Mike Powell on opti-
mization problems. He contributed a few optimization routines to the Harwell
Library.

Kaj Madsen was going to spend a leave of absence from DTU at the University
of Copenhagen and wanted to collaborate with RECKU because of our UNIVAC
computer. Together we installed a newer version of the Harwell Library, this
time obtained directly from Harwell, where we had access to contributors to the
Library.

1973 - 1975: I collaborated with: Per Grove Thomsen of the Department of
Numerical Analysis, DTU on ordinary differential equations and graphics; Axel
Hunding on optimization algorithms in medicine; Kjeld Schaumburg of the De-
partment of Chemistry, University of Copenhagen on spectroscopic problems

6 J. Waśniewski

and ordinary differential equations; Erik Kirsbo of RECKU on map-making in
oil exploration; Christian de Polignac of the University of Grenoble on multi-
ple precision software for UNIVAC computers; and with Zahari Zlatev and Kjeld
Schaumburg on a book about the routine Y12M for solving sparse linear systems
of equations and ordinary differential equations for spectroscopic problems. In
connection with some of these projects I was co-author of several publications a
year on sparse matrix techniques and the numerical solution of ordinary differ-
ential equations.

In this period I also became familiar with the new versions of the linear
programming packages ILONA and FMPS, and I implemented MATLAB on
our UNIVAC.

1975: I attended the 1975 Conference on Numerical Analysis in Dundee and
gave a talk on computerized map-drawing. While there, I discussed numerical
libraries with people from Harwell and the Numerical Algorithms Group (NAG).
On the way back to Copenhagen, I visited the NAG office at Oxford University.
RECKU wanted the NAG library for its UNIVAC users, but NAG didn’t have a
UNIVAC version. I agreed with NAG to make a UNIVAC implementation. This
was the beginning of a NAG Library Project, which became an important part
of my work.

1975 - 1986: The NAG Library Project involved me in the NAG Fortran Li-
brary, the NAG Algol 60 Library, the NAG SIMULA Library, NAG Graphics,
NAG GENSTAT, and NAG GLIM. It was agreed that RECKU would obtain
free licenses for all implemented NAG Software and that RECKU would be a
distributor of NAG-UNIVAC software. We had about 500 customers worldwide.

I collaborated closely with a number of NAG people, including Jeremy Du
Croz, Steve Hague, Sven Hammarling, Ian Houman, Mick W. Point, and David
Sayers. I was invited to many places in Europe and the USA and gave a number
of talks.

1982: I was invited by Jack Dongarra to visit the Argonne National Labora-
tory in Argonne, Illinois, and when Jack moved to the University of Tennessee
in Knoxville and Oak Ridge National Laboratory in Oak Ridge, Tennessee he
invited me to visit that institutions. I was invited by Fred Gustavson to visit the
IBM Research Center at Yorktown Heights, New York, and by Susanne Balle to
gave a talk at HP Research Center in Boston. I also visited the National Bureau
of Standards in Washington, D.C. and other institutions, usually giving a talk
wherever I went.

1982 - 1986: I was much involved with the UNIVAC 1100 series computers.
I was invited to collaborate on the new UNIVAC Virtual system. Jeremy Du
Croz and I tested the UNIVAC Integrated Scientific Processor (ISP), a vector
processor.

1986: The Northern Europe Computing Center (NEUCC) at DTU and the
Regional EDP Center at Aarhus University (RECAU) combined with RECKU
to form The Danish IT Centre for Research and Education (UNI•C). UNI•C

A Look Back: 57 Years of Scientific Computing 7

acquired an Amdahl 1100 (Fujitsu 100) and an Alliant vector computer. My
office was moved to DTU. I implemented the NAG Library on the Amdahl. The
University of Manchester had got the Amdahl Computer, exactly the same as
UNI•C. They used our implementation. I visited the department and gave talks
a few times.

1988: I was invited to the Amdahl headquarters in Sunnyvale, California to
assist in improving the level-2 BLAS. We improved these by a factor of 2 or
more and the new BLAS were incorporated into the Amdahl compilers. This
project was a collaboration with Jeremy Du Croz.

1989 - 1990: I moved to New Haven, Connecticut, USA, where I took an em-
ployment with Multiflow Computer Corporation as a Senior Numerical Analyst.
Multiflow was a manufacturer and seller of minisupercomputer hardware and
software based on VLIW (Very Long Instruction Word) technology. My duties
were to implement numerical software for Multiflow computers and assist users.
I worked on the BLAS, the NAG Library, and the routines Y12M for solving
sparse linear systems of equations. I invited Kaj Madsen, Zahari Zlatev and
Steve Hague (NAG) to Multiflow to give a talk.

1990 - 1994: I returned to UNI•C in Denmark, which had acquired supercom-
puters of the Connection Machine, MasPar and KSR types. I assisted Zahari
Zlatev of the National Environmental Research Institute of Ministry of Environ-
ment in implementing a large-scale program for air pollution analysis. I made
several visits to Thinking Machine Corporation (the manufacturer of the Con-
nection Machine) and KSR Computer Corporation, both in Boston, and had
several papers published.

1994 - 1996: Jack Dongarra and I initiated a series of conferences on ap-
plied parallel computing with the generic name PARA. The first three of these,
PARA’94, PARA’95 and PARA’96 were held at UNI•C and the Department of
Mathematical Modelling (IMM) at DTU. (IMM was the result of the fusion of
the Department of Numerical Analysis with a number of other departments at
DTU.) Kaj Madsen, the head of IMM, was a co-organizer of these conferences.

I became involved in a project to create an interface between the linear algebra
package LAPACK, written in Fortran 77, and Fortran 95. The purpose was to
enable the Fortran 95 user to call an LAPACK routine in his Fortran 95 program
code. V. Allan Barker of IMM participated in this effort, as did a number of
others. The new package was entitled LAPACK95.

I also became involved in the NetSolve project, an ambitious scheme to im-
plement the solution of large-scale computational problems by finding and ex-
ploiting diverse computational resources connected by computer networks. The
project was later abandoned.

1997 - 2000: It was decided that the PARA conferences should henceforth be
held in various Scandinavian cities. Thus PARA’96 was followed by PARA’98 in
Ume̊a, Sweden and PARA 2000 in Bergen, Norway.

8 J. Waśniewski

Starting in 1997, I was an invited speaker at the Polish Computing Science
conferences, ”Parallel Processing and Applied Mathematics (PPAM)”. The con-
ferences were held in odd-numbered years.

This period saw the start of the LAWRA project (Linear Algebra with Recur-
sive Algorithms), a collaboration between UNI•C and the IBM Research Center
in Yorktown Heights.

1997: I was active in a workshop on scientific computing, where the LAWRA
project was discussed.

The LAWRA team:

– Bjarne Stig Andersen (UNI•C)
– Fred Gustavson, co-coordinator (IBM)
– Alexander Karaivanov (University of Rousse, Bulgaria)
– Ivan Lirkov (Academy of Sciences, Bulgaria)
– Minka Marinova (University of Rousse, Bulgaria)
– Jerzy Waśniewski, co-coordinator (UNI•C)
– Plamen Yalamov (University of Rousse, Bulgaria)

Some Results:

– The case of symmetric matrices and full storage: The recursive algorithms
were about 1/3 faster.

– The case of symmetric matrices and packed storage: The recursive algorithms
were several times faster then the old packed algorithms. They were also
faster than some algorithms based on full storage.

A one-day LAWRA workshop was organized at the end of 1999. It ended with
a reception sponsored by IBM. The Workshop and reception were attended by
some prominent numerical analysts, including Jack Dongarra, Petter Bjorstad,
Bo Kågström, Fred Gustavson, and Zahari Zlatev.

LAPACK95 was updated to use LAPACK version 3. Further, test problems
for the various routines in LAPACK95 were made a part of LAPACK95. The
LAPACK95 Users’ Guide was published by SIAM in 2001.

2001 - 2012: I retired on January 16, 2001.
Yes, I retired, but I haven’t stopped working! I have, however, limited my

work to: LAPACK95 support, the PARA and PPAM conferences (in addition to
participating in these conferences I have done much organizational work), and
the LAWRA project.

The following PARA conferences have been held during my ”retirement”:
PARA 2002 in Espoo, Finland; PARA 2004 at DTU; PARA 2006 in Ume̊a,
Sweden; PARA 2008 in Trondheim, Norway; PARA 2010 in Reykjavik, Iceland;
PARA 2012 in Espoo, Finland. PARA 2014 will be held in Denmark.

I still have a desk at DTU. However, I work mostly from home.
The LAWRA project is documented by the following papers:

– J. Waśniewski, B.S. Andersen, and F. Gustavson. Recursive Formulation of
Cholesky Algorithm in Fortran 90. In Proceedings of the 4-th

A Look Back: 57 Years of Scientific Computing 9

International Workshop, Applied Parallel Computing, Large Scale Scientific
and Industrial Problems, PARA’96, B. Kågström, J. Dongarra, E. Elmroth,
and J. Waśniewski (Eds.). Ume̊a, Sweden, June 1996. Springer, LNCS Num-
ber 1541, pp. 574-578.

– F. Gustavson, A. Karaivanov, J. Waśniewski, and P. Yalamov. A column-
wise recursive perturbation based algorithm for symmetric indefinite linear
systems. In Proc. PDPTA’99, Las Vegas, 1999.

– B.S. Andersen, F. Gustavson, A. Karaivanov, J. Waśniewski,and P. Yalamov.
”LAWRA, Linear Algebra With Recursive Algorithms”. In Proceedings of
the Third International Conference on Parallel Processing and Applied Math-
ematics. Editors: R. Wyrzykowski, B. Mochnacki, H. Piech, and J. Szopa.
Kazimierz Dolny, Poland, 14-17.09.1999.

– Bjarne S. Andersen, Fred G. Gustavson, and Jerzy Waśniewski. ”A recursive
formulation of Cholesky factorization of a matrix in packed storage”. ACM
Transactions on Mathematical Software, 27(2):214-244, June 2001

– B.S. Andersen, J.A. Gunnels, F. Gustavson, J.K. Reid, and J. Waśniewski.
”A Fully Portable High Performance Minimal Storage Hybrid
Format Cholesky Algorithm”. ACM Transactions on Mathematical Software,
31 (2005), 201-227.

– Gustavson, F.G., Reid, J. K., and Waśniewski, J., (2007). ”Algorithm 865:
Fortran 95 Subroutines for Cholesky Factorization in Blocked Hybrid For-
mat”. ACM Transactions on Mathematical Software, 33, 1 (March), 5.

– Fred G. Gustavson, Jerzy Waśniewski, Julien Langou and Jack J. Don-
garra: LAPACK Working Note Nr 199 ”Rectangular Full Packed Format for
Cholesky’s Algorithm: Factorization, Solution and Inversion”, ACM Trans-
actions on Mathematical Software, Vol. 37, No. 2, Article 18, Publication
date: April 2010.

– Fred G. Gustavson, Jerzy Waśniewski, Jack J. Dongarra, Jose R. Herrero
and Julien Langou: LAPACK Working Note No. 249, Level 3 Cholesky Fac-
torization Routines as Part of Many Cholesky Algorithms. (Accepted for
publication by the ACM Transactions on Mathematical Software.)
”http://www.netlib.org/lapack/lawns/index.html”

2008: I was invited to join the Numerical Analysis Group of the organization
European Cooperation in Science and Technology (COST), the mission of which
is to promote the coordination of nationally-funded research on a European
level. (See: www.cost.esf.org .) We meet twice a year to give talks on scientific
computing and we organize a biennial summer school on this subject.

Acknowledgments. First I would like to thank V. Allan Barker, who suggested
this professional memoir and helped me with a number of details. Thanks are
also due to Roman Wyrzykowski for giving me the opportunity to present this
material as a plenary lecture of the PPAM 2011 Conference and to contribute it
to the Conference Proceedings. Finally, and most importantly, I must extend my
heart-felt thanks to all my colleagues through the years, too numerous to men-
tion, whose inspiration and support were the brightest part of a long professional
journey.

Modeling a Leadership-Scale Storage System

Ning Liu1, Christopher Carothers1, Jason Cope2, Philip Carns2, Robert Ross2,
Adam Crume3, and Carlos Maltzahn3

1 Rensselaer Polytechnic Institute, Troy, NY 12180, USA
{liun2,chrisc}@cs.rpi.edu

2 Argonne National Laboratory, Argonne, IL 60439, USA
{copej,pcarns,rross}@mcs.anl.gov

3 University of California at Santa Cruz, Santa Cruz, CA 95064, USA
{adamcrume,carlosm}@soe.ucsc.edu

Abstract. Exascale supercomputers will have the potential for billion-
way parallelism. While physical implementations of these systems are
currently not available, HPC system designers can develop models of
exascale systems to evaluate system design points. Modeling these sys-
tems and associated subsystems is a significant challenge. In this paper,
we present the Co-design of Exascale Storage System (CODES) frame-
work for evaluating exascale storage system design points. As part of our
early work with CODES, we discuss the use of the CODES framework to
simulate leadership-scale storage systems in a tractable amount of time
using parallel discrete-event simulation. We describe the current stor-
age system models and protocols included with the CODES framework
and demonstrate the use of CODES through simulations of an existing
petascale storage system.

Keywords: exascale computing, storage system design, parallel
discrete-event simulation.

1 Introduction

Several challenges arise in developing reliable, high-performance exascale storage
systems. In particular, the availability of hardware and system software compo-
nents for these systems is still years away. System designers therefore must model
and simulate these systems in order to understand potential exascale storage sys-
tem designs and use cases. Simulation results can then be used to influence the
design of future exascale system components. Most of the recent studies [14,13,7,9]
of this type are based on massively parallel discrete-event models.

In this paper, we present our recent work developing an end-to-end storage
system model of the Argonne Leadership Computing Facility’s (ALCF) comput-
ing and data storage environment. This work is a prerequisite to modeling and
simulating exascale storage systems because it verifies that we can accurately
and quickly model an existing storage system. CODES framework leverages the
Rensselaer Optimistic Simulation System (ROSS) [19,18,4]. ROSS is a parallel

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 10–19, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Modeling a Leadership-Scale Storage System 11

discrete-event simulation framework that allows simulations to be run in paral-
lel, decreasing the run time of massive simulations. Using CODES and ROSS,
we validate the storage system models against data collected from the ALCF’s
storage system for a variety of synthetic I/O workloads and scales. we present a
model of the PVFS storage system and the I/O subsystem of the Intrepid IBM
Blue Gene/P (BG/P) system in the ALCF. As an early study of the CODES
project, our simulators can quickly and accurately simulate a petascale storage
system using medium-fidelity hardware models and an accurate representation
of the storage system software protocols.

In this paper, we describe the ALCF computing environment, present the
CODES models developed for this environment, and analyze simulation results
produced by these models. Section 2 of this paper describes the ALCF’s Intrepid
storage system architecture. Section 3 describes the CODES models that compose
the end-to-end storage system. Section 4 focuses on the experimental simulation
results on the standard I/O models. We discuss related work in Section 5. We con-
clude this paper in Section 6 with a brief discussion of future work.

2 The ALCF Computing Environment

Leadership-computing systems are on the cutting edge of computing hardware
and system software. Many of the I/O hardware and software components have
unique features needed by such systems. This section provides an overview of
the ALCF’s PVFS [5] storage system and I/O subsystem on the Intrepid IBM
BG/P [1].

Figure 1 illustrates the architecture of Intrepid’s storage subsystem. Like other
other large HPC centers [3,17], the ALCF provides a large, parallel storage

BG/P Tree
3 x 6.8 Gbit/sec

Ethernet
10 Gbit/sec

InfiniBand
16 Gbit/sec

Serial ATA
3.0 Gbit/sec

BG/P 3D Torus
6 x 3.4 Gbit/sec

IO nodes
run PVFS parallel file
system client software
and forward I/O
operations from
compute nodes.

640 Quad core PowerPC
450 nodes with 2 Gbytes
of RAM each

40,960 Quad core PowerPC
450 nodes with 2 Gbytes
of RAM each

Compute nodes
run HPC applications and
forward I/O operations to
IO nodes using CIOD.

File servers
run PVFS parallel file
system software and
manage incoming FS
traffic from gateway
nodes.

128 two dual core
Opteron servers with
8 Gbytes of RAM each

Enterprise storage
controllers and large racks
of disks are connected via
InfiniBand or Fibre
Channel and are accessed by
file servers using UNIX IO.

16 DataDirect S2A9900
controller pairs with 480
1 Tbyte drives and 8
InfiniBand ports per pair

Fig. 1. Overview of ALCF Blue Gene/P compute and storage systems

12 N. Liu et al.

system shared between multiple HPC resources. Intrepid is composed of several
networks and several layers of computation and storage devices. The BG/P plat-
form provides several networks that are tightly coupled with the BG/P compute
nodes, so that the BG/P system can satisfy the high-performance requirements
of leadership-class applications. The three-dimensional torus network is used for
point-to-point communication among compute nodes (CNs), while the collective
network (also known as the tree network) allow CNs to perform file I/O op-
erations to the I/O forwarding nodes (IONs) and supports some inter-process
collective operations. In the BG/P system, IONs are distinct from the storage
server nodes and compute nodes. The IONs host file system clients and delegate
file I/O requests on behalf of a group of compute nodes. For each group of 64
CNs on Intrepid, a single ION receives I/O requests from the CNs in that group
and forwards those requests over its 10-Gigabit Ethernet network interface to
PVFS and GPFS [15] storage systems. Myricom Myri-10G network infrastruc-
ture is used to translate the ION Ethernet traffic to Myrinet for the Myri-10G
connected file servers. For the research described in this paper, we limited our
analysis to Intrepid’s PVFS storage system because a component-level study of
the storage system was available [6] and the open-source nature of PVFS made it
easier for us to validate our models. The PVFS file system stores data on logical
units (LUNs) exported by 16 DataDirect Network (DDN) 9900 storage devices.

Intrepid provides several layers of storage software and services. The top most
layer of the stack is comprised of high level I/O (HL-IO) libraries such as HDF5
or PnetCDF. These high level libraries map application data models onto con-
ventional files and directories. The I/O middleware layer is provided by MPI-
IO, which leverages both the BG/P tree network and the 3D-torus network to
provide aggregate file optimizations such as two-phase I/O. Eventually, all the
application I/O requests are translated into POSIX I/O requests at each CN.
IBM’s CIOD [10] client is used to forward the POSIX I/O requests across the
BG/P tree network to the IONs. At the IONs, the CIOD server replays the
forwarded I/O requests by directly issuing the POSIX file I/O requests. Each
of Intrepid’s IONs mounts PVFS and GPFS file system shared by all ALCF re-
sources. PVFS file system clients on each ION communicate with PVFS servers
running on the 128 storage system servers. The PVFS storage servers store file
system data in LUNs exported by the DDN storage devices.

3 Modeling the ALCF Computing Environment

In this section, we describe how hardware and software components of the ALCF
computing environment are modeled in CODES. The end-to-end storage system
model is composed of several component models that capture the interactions
of the system software and hardware interactions for I/O operations. Figure 2
illustrates the networks, hardware components, and software protocols modeled
in our simulations. The storage system model also provides several configuration
parameters that dictate the execution behavior of application I/O requests.

We abstracted the common features of each Blue Gene/P hardware compo-
nent into CN, ION, file server, and DDN models. These models are the logical

Modeling a Leadership-Scale Storage System 13

HL-IO + CIOD PVFS UNIX IO

BG/P Tree Commodity
Network

Fig. 2. CODES models for the ALCF computing environment. The models include
networks (top labels), hardware components (middle labels), and software protocols
(bottom labels).

processes (LPs) in our end-to-end storage system model, which are the most
basic physical units of our parallel discrete-event model. The various BG/P net-
works are modeled as the links connecting each LP. Each LP is composed of
three buffers. The incoming buffer is used to model the queuing effects from
multiple LPs trying to send messages to the same LP. The outgoing buffer is
used to model queuing effects when an LP tries to send multiple messages to
different LPs. The processing buffer is used to model queuing effects caused by
a processing unit, such as CPU, DMA engine, storage controller, or router pro-
cessors. The units process incoming messages in FIFO order. Each LP also has a
local hash table for recording the connections between LPs. The hash table can
be viewed as a routing table from the perspective of network modeling.

The BG/P tree network is modeled by the network links that connect each CN
LP with its parent and child network nodes. The root CN LP in the tree network
connects to the ION LP. Network connection between two LPs are modeled as
messages transmitted between the two LPs, where each LP’s incoming buffer
is connected to the other LP’s outgoing buffer. Furthermore, the commodity
networks (Ethernet and Myrinet networks) are modeled by the links connecting
the IONs with the storage servers. If we increase the fidelity of our models in
the future, additional network components, such as routers and switches, can be
modeled as LPs.

The hardware models consist of several configurations parameters. We model
the throughput and latency of the network links interconnecting distributed
hardware models using Equation 1.

T = TL
DP

DP +DO
(1)

Equation 1 computes the perceived throughput of a network operation (T) based
on the size of the data payload (DP), the maximum link throughput (TL),
and the size of non-payload data associated with the transfer (DO). The data
throughput and access latency of the DDN storage devices are modeled as a

14 N. Liu et al.

simple, constant function. Parameters for both models were obtained by using
micro-benchmarks that measured the observed throughput between the various
devices in the ALCF computing environment.

Multiple software layers are involved in Intrepid’s I/O path. Our software
models approximate the interfaces, protocols, and interactions of the software
components deployed in the ALCF computing environment. The software models
and interfaces sit on top of the hardware LPs and trigger hardware events for
I/O operations. At the application layer, our models provide a POSIX-like I/O
interface. Our application-level models translate application I/O requests into
CIOD client requests using a series of CN and ION events. These CN and ION
events reflect the interaction between the CIOD clients and servers. The CIOD
server receives the CIOD client requests and generates a series of ION and storage
server hardware requests that approximate the interaction of the CIOD server
and the PVFS file system. The PVFS file system then generates a series of
storage server and DDN events that approximate the interactions between the
storage server and the DDN storage devices. The number and types of events
generated by our models depend upon the complexity of the I/O system software
protocol for a specific I/O layer.

Several parameters are associated with the software models. The most im-
portant parameters are the CIOD transfer size and the PVFS stripe size. CIOD
limits the amount of data that can be transferred in a single I/O operation (4
MiB default value on Intrepid). CIOD requires multiple operations to transfer
requests larger than 4 MiB. The PVFS stripe size dictates the block size dis-
tributed to the PVFS file servers (4 MiB default value on Intrepid) and file
alignment. Requests that are not aligned on a 4 MiB boundary or exceed a 4
MiB capacity require access to multiple PVFS servers per I/O operation.

The CODES storage system simulator implements the necessary protocols to
provide application-level file open, close, read, and write using the ALCF hard-
ware and software models. Figure 3 depicts the PDES model used for application
write operations. Application open, close, and read operation models have dif-
ferent implementation details from that of the write; they are not covered in this
paper because of limited space.

handshake
send

handshake
arrive

handshake
process

handshake
ack

handshake
end

data arrive data
process

CN ION FS DDN

data send handshake
send

handshake
arrive

handshake
process

handshake
ack

handshake
end

data send data arrive data
process

handshake
send

handshake
arrive

handshake
process

handshake
ack

handshake
end

data send data arrive data
process

data ackdata ackdata ackdata ack

write
request

write ack

Fig. 3. CODES file write request model for Intrepid

Modeling a Leadership-Scale Storage System 15

4 Model Validation and Discussion

The goal of our initial investigation using this storage system model was to
validate the model’s performance against data collected from Intrepid and the
ALCF’s PVFS storage system. Our validation of these models focused on repli-
cating the behavior of the IOR [2] benchmark. IOR is a flexible, robust, and
well-understood I/O benchmark. Validating our model against IOR gives confi-
dence that our model is operating correctly for common I/O patterns and can
be used as a springboard for future investigations into application-specific I/O
patterns.

In prior work [6], we presented a thorough evaluation of the ALCF’s PVFS
storage system for a variety of I/O workloads and application scales. We lever-
aged the data generated from that past investigation to validate our simulator.
We configured our simulator to be as similar as possible to the PVFS storage
system described in our prior work. The experiments documented in our prior
work were performed during Intrepid’s acceptance testing period before the ma-
chine and file system were available for production users. During the previous
investigation, the experiments used PVFS 2.8.0 with a file system configura-
tion that consisted of 123 file servers. Each PVFS server handled both data and
metadata operations. The PVFS file servers were configured with a stripe unit
of 4 MiB and the CIOD maximum buffer size was set to 4 MiB.

We evaluated the model using a variety of IOR workloads, including shared
file, file-per-process, stripe-aligned, stripe-unaligned, read, and write file access
patterns. The shared file experiments forced each process to concurrently store
data into a single file. The file-per-process experiments allowed each process to
store its data into a unique file that was inaccessible by other processes. The
file-per-process tests required the file system to perform additional metadata
operations, such as file creations, that are not required in the shared file tests.
The stripe-aligned tests used 4 MiB (4×220 bytes) accesses for a total of 64 MiB
per process. Stripe-aligned accesses caused each processes file requests to align
with the stripe of the file. This allowed 4 MiB accesses to be made directly to
the DDN LUN. The stripe-unaligned tests used 4 MB (4 × 106 bytes) accesses
for a total of 64 MB per process. The stripe-unaligned accesses spanned multiple
file stripes and required most requests to processed by more than one file server.

The results of our IOR write validation experiments closely follows the results
observed during our previous study. The results for these experiments are illus-
trated in Figure 4a. The overall file system performance trend for write requests
is correctly captured by our simulator. Like the results reported in our previous
study, the simulator performance for write requests levels off at 64K processes
and remains constant at larger scales. Our simulated results capture the perfor-
mance variations from 2K to 128K client processes at roughly a 10% error rate.
Specifically, the model is able to capture the extra overhead for both the stripe-
unaligned experiments and file-per-process experiments. In the prior study, we
observed network contention within the storage system network has caused file
system performance degradation. We believe that we can capture this behavior
within our models through increasing model and simulation fidelity. Specifically,

16 N. Liu et al.

0

5

10

15

20

25

30

35

1024 2048 4096 8192 16384 32768 65536 131072

Ba
nd

w
id

th
 (G

iB
/s

ec
)

Client Processes

unaligned observed
aligned simulated
aligned observed
unique simulated
unique observed

0

5

10

15

20

25

30

35

40

45

1024 2048 4096 8192 16384 32768 65536 131072

B
an

dw
id

th
 (

G
iB

/s
ec

)

Client Processes

Shared file, unaligned, simulated
Shared file, unaligned, observed
Shared file, aligned, simulated
Shared file, aligned, observed
File-per-process, simulated
File-per-process, observed

(a) write

0

10

20

30

40

50

60

1024 2048 4096 8192 16384 32768 65536 131072

B
an

dw
id

th
 (

G
iB

/s
ec

)

Client Processes

Shared file, unaligned, simulated
Shared file, unaligned, observed
Shared file, aligned, simulated
Shared file, aligned, observed
File-per-process, simulated
File-per-process, observed

(b) read

Fig. 4. Comparison of simulated and observed IOR performance. Figure 4a illustrates
results using IOR write workloads. Figure 4b illustrates results using IOR read work-
loads.

we can increase network fidelity by developing and integrating commodity net-
work hardware components, such as routers or switches, and commodity network
protocols, such as Myrinet, into our storage system simulator. With these addi-
tions, we expect the total number of LPs to grow less than 100% compared to
the current models size. The overall simulation runtime will stay at same level.
We believe this adjustment will improve the error rate of the stripe-unaligned
tests.

Figure 4b illustrates the IOR benchmark throughput for observed and simu-
lated read operations. Like the write experiments, the stripe-aligned and stripe-
unaligned accesses were investigated using 4 MiB and 4 MB PVFS stripe sizes.
Our results show that the stripe-aligned read throughput closely follows the ob-
served performance of Intrepid’s PVFS storage systems. Our model is able to
capture most of the performance variations for stripe-aligned read and file-per-
process read experiments. It yields more error in stripe-unaligned read tests. The
discrepancy is attributed to the low fidelity of our network model. We believe
that the previously mentioned network contention modifications will correct this
behavior as well.

All the experimental studies ran on an SMP system with a configuration of 8
cores (Intel Xeon x5430, 2.67 GHz) and 32 GiB memory. The largest test case
with 128K client processes (represented as LPs in the simulation) finished within
a couple of minutes, showing that our tools are capable of simulating interesting
storage system designs while using modest resources. In prior work [19], we
demonstrated ROSS’s high efficiency attributes when modeling large-scale TCP
networks. With the aid of a supercomputer resource, such as Intrepid, and by
exploiting the efficiency of ROSS, we believe the simulator will be able to run
an exascale storage system model in a reasonable amount of time, achieving our
project goal of simulating one week worth of exascale storage system activity
in O(days) runtime. On Intrepid, we are currently preparing our simulator for
evaluating larger scale storage system and network models. Evaluation of these
large scale simulations will be a focus of our future work with CODES.

Modeling a Leadership-Scale Storage System 17

5 Related Work

As part of the exascale co-design process, there is significant interest in under-
standing how parallel system software such as MPI/MPI-IO and the associated
supercomputing applications will scale on future architectures. For example,
Perumalla’s μπ system [13] will allow MPI programs to be transparently ex-
ecuted on top of the MPI modeling layer and simulate the MPI messages. In
particular, μπ has executed an MPI job that contained over 27 million tasks
and was executed on 216,000 Cray XT5 cores. A number of universities and
national labs have joined together to create the Structural Simulation Toolkit
(SST) [14]. SST includes a collection of hardware component models including
processors, memorys and networks at different accuracy. These models use par-
allel component-based discrete event simulation based on MPI. The users are
able to leverage multi-scale nature of SST by trading off between accuracy, com-
plexity, and time to solution. BigSim [20] focused on the model and prediction
of sequential execution blocks of large scale parallel applications. The model is
based on trace-driven and it uses the scalable trace gained from machine learn-
ing for predicting overall performance. While our simulator accurately captures
the large-scale storage system characteristics, these systems are more focused on
providing accurate, large-scale computational performance models.

Researchers have also developed a number of parallel file system simulators.
The IMPIOUS simulator [9] was developed for fast evaluation of parallel file
system designs. It simulates PVFS, PanFS, and Ceph file systems based on
user-provided file system specifications, including data placement strategies,
replication strategies, locking disciplines, and caching strategies. The HECIOS
simulator [16] is an OMNeT++ simulator for PVFS. HECIOS was used to eval-
uate scalable metadata operations and file data caching strategies for PVFS.
PFSsim [8] is an OMNeT++ PVFS simulator that allows researchers to ex-
plore I/O scheduling algorithm design. PVFS and ext3 file systems have been
simulated using colored Petri nets [12,11]. This simulation method yielded low
simulation error, with less than 10% error reported for some simulations. The fo-
cus of CODES sets it apart from these related simulation tools. One of the goals
of CODES is to accurately and quickly simulate large-scale storage systems. To
date, CODES has been used to simulate up to 131,072 application processes,
512 PVFS file system clients, and 123 PVFS file servers. The existing simulators
limited their simulations to smaller parallel systems (up to 10,000 application
processes and up to 100 file servers).

6 Conclusions and Future Work

In this paper we presented an early work using our storage system framework
to simulate an existing leadership-class storage system. The presented parallel
discrete-event model is able to capture most tests cases of an existing, large-scale
storage system with less than 10% error rate. The tests are experimented on an
eight-core workstation in O(minutes) runtime. Our initial simulation results are
encouraging.

18 N. Liu et al.

There are several areas of future work for this storage system simulator. We
will develop standard, application-level I/O interfaces. Using these I/O inter-
faces, we will develop and evaluate application I/O workloads. Our plan also
includes the construction of a burst buffer model and different parallel file sys-
tem models. Moreover, we will construct a platform where application users can
study the I/O effects and system designers can evaluate the best design points
for exascale storage systems. We plan to incorporate our packet-level-accurate
torus network model [7] into the current simulator and investigate its impact on
storage system behaviors.

Acknowledgments. We thank Kevin Harms (ALCF) for his insight on In-
trepid’s PVFS storage system and helping us better understand its production
configuration. This work was supported by the Office of Advanced Scientific
Computer Research, Office of Science, U.S. Dept. of Energy, under Contract
DE-AC02-06CH11357. This research used resources of the Argonne Leadership
Computing Facility at Argonne National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy under contract DE-AC02-
06CH11357.

References

1. Overview of the IBM Blue Gene/P project. IBM Journal of Research and Devel-
opment, 52(1.2), 199–220 (January 2008)

2. IOR benchmark (October 2011)
3. Ang, J., Doerfler, D., Dosanjh, S., Koch, K., Morrison, J., Vigil, M.: The alliance for

computing at the extreme scale. In: Proceedings of the Cray Users Group Meeting
(2010)

4. Bauer, D.W., Carothers, C.D., Holder, A.: Scalable time warp on Blue Gene su-
percomputers. In: Proc. ACM/IEEE Workshop on Principles of Advanced and
Distributed Simulation (PADS 2009), Lake Placid, NY (2009)

5. Carns, P.H., Ligon III, W.B., Ross, R.B., Thakur, R.: PVFS: A Parallel File Sys-
tem for Linux Clusters. In: Proceedings of the 4th Annual Linux Showcase and
Conference, pp. 317–327 (2000)

6. Lang, S., Carns, P., Latham, R., Ross, R., Harms, K., Allcock, W.: I/O perfor-
mance challenges at leadership scale. In: Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, p. 40. ACM (2009)

7. Liu, N., Carothers, C.D.: Modeling billion-node torus networks using massively
parallel discrete-event simulation. In: Proceedings of the Workshop on Principles
of Advanced and Distributed Simulation (PADS), pp. 1–8. IEEE, France (2011)

8. Liu, Y., Figueiredo, R., Clavijo, D., Xu, Y., Zhao, M.: Towards simulation of paral-
lel file system scheduling algorithms with PFSsim. In: Proceedings of the 7th IEEE
International Workshop on Storage Network Architectures and Parallel I/O (May
2011)

9. Molina-Estolano, E., Maltzahn, C., Bent, J., Brandt, S.A.: Building a parallel file
system simulator. Journal of Physics: Conference Series 180, 012050 (2009)

Modeling a Leadership-Scale Storage System 19

10. Moreira, J., Brutman, M., Castaños, J., Engelsiepen, T., Giampapa, M.,
Gooding, T., Haskin, R., Inglett, T., Lieber, D., McCarthy, P., Mundy, M., Parker,
J., Wallenfelt, B.: Designing a highly-scalable operating system: the blue gene/l
story. In: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC
2006. ACM, New York (2006)

11. Nguyen, H.Q.: File system simulation: Hierachical performance measurement and
modeling. PhD thesis, University of Arkansas (2011)

12. Nguyen, H.Q., Apon, A.W.: Hierarchical performance measurement and modeling
of the linux file system. In: ICPE, pp. 73–84 (2011)

13. Perumalla, K.S.: μπ: a scalable and transparent system for simulating MPI pro-
grams. In: Proceedings of the 3rd International ICST Conference on Simulation
Tools and Techniques, SIMUTools 2010, pp. 62:1–62:6. ICST, Brussels (2010)

14. Rodrigues, A.F., Hemmert, K.S., Barrett, B.W., Kersey, C., Oldfield, R., Weston,
M., Risen, R., Cook, J., Rosenfeld, P., CooperBalls, E., Jacob, B.: The structural
simulation toolkit. SIGMETRICS Perform. Eval. Rev. 38, 37–42 (2011)

15. Schmuck, F., Haskin, R.: Gpfs: A shared-disk file system for large computing clus-
ters. In: Proceedings of the 1st USENIX Conference on File and Storage Technolo-
gies (2002)

16. Settlemyer, B.W.: A Study of Client-side Caching in Parallel File Systems. PhD
thesis, Clemson University, Clemson, South Carolina, USA (2009)

17. Shipman, G., Dillow, D., Oral, S., Wang, F.: The spider center wide file system:
From concept to reality. In: Proceedings, Cray User Group (CUG) Conference,
Atlanta, GA (2009)

18. Yaun, G., Carothers, C.D., Kalyanaraman, S.: Large-scale TCP models using opti-
mistic parallel simulation. In: Proceedings of the SeventeenthWorkshop on Parallel
and Distributed Simulation (PADS 2003), San Diego, CA (June 2003)

19. Yaun, G.R., Bauer, D.W., Bhutada, H.L., Carothers, C.D., Yuksel, M., Kalyanara-
man, S.: Largescale network simulation techniques: Examples of TCP and OSPF
models. SIGCOMM Computer Comunications Review Special Issue on Tools and
Technologies for Research and Eduction 33(5), 27–41 (2004)

20. Zheng, G., Gupta, G., Bohm, E., Dooley, I., Kale, L.V.: Simulating Large Scale
Parallel Applications using Statistical Models for Sequential Execution Blocks.
In: Proceedings of the 16th International Conference on Parallel and Distributed
Systems (ICPADS 2010), Shanghai, China, pp. 10–15 (December 2010)

Combining Optimistic and Pessimistic
Replication�

Marcin Bazydło, Szymon Francuzik, Cezary Sobaniec, and Dariusz Wawrzyniak

Institute of Computing Science, Poznań University of Technology, Poland

Abstract. This paper presents a concept of combining pessimistic and
optimistic approach to replication. Optimistic replication allows for ten-
tative system states, which increases availability and efficiency, but makes
behaviour of the system less predictable, even if some operations seem
completed. To enable more stable results, pessimistic and optimistic
modes of operations are distinguished. Operations issued in the opti-
mistic mode accept or produce tentative states, while operations issued
in the pessimistic mode appear as completed in a stable state, termed
committed. Orthogonally, to refine expectations of the results, modifica-
tions are specified as either synchronous or asynchronous, and reads as
either synchronised or immediate.

Keywords: optimistic replication, availability, consistency.

1 Introduction

Replication is commonly used to improve performance, reliability and availabil-
ity of data or services [9]. However, it causes the problem of consistency when
the state of some replicas changes. A number of techniques has been proposed to
hide the difference between replicas until they reach the same state. Nevertheless,
consistency maintenance generates some overheads. Moreover, in a distributed
environment a network breakdown may occur, which ceases communication be-
tween nodes, thereby compromises either availability or consistency [4]. These
problems expose the distinction between optimistic and pessimistic approaches
to replication.

Pessimistic approaches strive to mask any divergence between replicas, which
leads to strict consistency, and in effect makes replication transparent to the
users. This requires careful operation handling usually based on temporary block-
ing access to replicas. Crucial to the consistency is update processing, i.e. a
proper order of applying modifications to individual replicas. To preserve strict
consistency, the same or equivalent order of updates on each replica is necessary.
On the one hand, strict consistency in some cases is hardly achievable, on the
other hand, it is not always necessary. In other words, consistency requirements
� The research presented in this paper has been partially supported by the Eu-

ropean Union within the European Regional Development Fund program no.
POIG.01.03.01-00-008/08.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 20–29, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Combining Optimistic and Pessimistic Replication 21

for some applications or services are less restrictive, and allow for access without
constant synchronisation. This enables optimistic replication, which is based on
the (optimistic) assumption that temporary difference between replicas remains
invisible to users or will not impair correctness of applications. The expectation
in this respect is the convergence of replicas formulated as eventual consistency.

However, there can be still some operations that cause too much risk when
executed in optimistic manner. This is especially the case of operations whose
results significantly influence subsequent behaviour of the users. Optimistic ex-
ecution produces tentative system states (thereby the results), so may lead to
confusion if some important operations are missed. To make the system states
more predictable, we have introduced the distinction between optimistic and
pessimistic mode of execution. This, in turn, entails appropriate indication of
operations.

In view of these facts, the aim of this paper is to present a concept of com-
bining pessimistic and optimistic approach to replication. To this end, when
an operation is issued, it is defined as either optimistic or pessimistic. Besides
the distinction between optimistic and pessimistic mode, some additional ex-
pectations are specified. For modifications, they concern the information on the
completion, and for read-only operations — the scope of modifications to provide
the result. So in effect two orthogonal classifications of operations are proposed:
optimistic vs. pessimistic, and synchronous vs. asynchronous for modifications
or synchronised vs. immediate for reads.

The coexistence of different classes of operations raises the question of mu-
tual influence of their execution on the results and on the final system state.
Optimistic replication distinguishes between committed and tentative states of
replicas [6]. Operations issued in the optimistic mode accept or even produce
tentative states, while operations issued in the pessimistic mode endeavour to
transition to a committed state (at least as such must appear to the users). Ac-
tually, because of other, optimistic operations, they can also be executed in a
tentative state.

2 Assumptions and System Model

In this paper we consider a system consisting of m autonomous replicas (denoted
by R1, R2, . . . , Rm) which are accessed by n processes (denoted by P1, P2, . . . , Pn).
The autonomy of replicas means that they may process requests to some extent
independently of each other. The replicas are geographically distributed to allow
for network partitioning while preserving availability.

Modifications issued by a process must be propagated to all replicas in order
to keep their states consistent. Replication system can use either state transfer
or operation transfer for that purpose [6]. State transfer consists in tracking
changes caused by operations and propagating state updates to other replicas.
Operation transfer consists in propagation of operations and their re-execution
on every replica. Depending on the architecture of the system, state transfer
may be more efficient because of: its ability to pack effects of many operations

22 M. Bazydło et al.

into one update message, and avoidance of their re-execution. However, change
tracking highly depends on the system implementation, and may be inefficient or
simply unfeasible. On the other hand, a system using operation transfer requires
that all operations are deterministic in order to ensure consistency of replicas.
The operation may come in arbitrary moments, which effectively means that the
system must be piecewise deterministic. It ensures that all replicas on which the
same operations have been executed in the same order remain consistent.

We have chosen operation transfer because of its wider applicability. There
is a couple of reasons. First, it is usually feasible to intercept and subsequently
disseminate operations. Second, replication system can work independently of
the mechanism of state modification. This permits clean separation of responsi-
bilities where the replication mechanism is not aware of implementation details
of the base system.

Replication system intercepts and propagates modifications issued by the
processes to all other replicas. Piecewise determinism and global ordering of
modifications assure eventual consistency [1,7]. Eventual consistency allows for
temporary divergence between replicas, but it ensures that eventually all replicas
would achieve the same state if there were no new modifications.

Two main types of operations are distinguished: non-modifying operations
(reads for short) and modifying operations (modifications). Reads are issued by
a process in order to observe a partial state of a replica, they do not change
state of the replica. Only modifications need to be propagated in order to pre-
serve consistency. This distinction leads to improved overall efficiency due to load
balancing of read operations between replicas. It should be noted that modifica-
tions are not simple state overwrites but rather general procedures causing state
transitions and returning some results. Modifications will be denoted by m(a),
where m is an identifier of the operation and a is an argument. Read operations
will be denoted by r(a), where argument a represents the results of the read.

Our replication schema assumes the use of optimistic replication for provid-
ing improved availability. Optimistic replication allows concurrent modifications
to be performed on different replicas, because they can be performed without
coordination. This may lead to conflicts, i.e. concurrent execution of conflicting
modifications. In general, two operations are conflicting if the result of their ex-
ecution depends on the execution order. However, the system must decide on a
global ordering of conflicting modifications in order to achieve eventual consis-
tency. The only general way of coping with operations executed in wrong order
is to retract these operations and re-execute them in the proper order. In this
paper we assume that the system provides some means of retracting operations.

3 The Concept
States of Operation Processing. Essential for optimistic replication is the as-
sumption that operations are processed independently on each replica. It is not
known in advance whether the current state of the replica is appropriate for a given
operation to be applied. There may be conflicting operations in the system not yet
known to the replica. This uncertainty leads to the distinction between tentative

Combining Optimistic and Pessimistic Replication 23

and committed states [6]. An operation in tentative state can be either postponed
or (optimistically) performed. Therefore, accepted and applied states are distin-
guished. If there is no demand for execution of an operation, it gets accepted state.
Fig. 1 presents possible transitions between states of modifications. In case of read
operations there are no transitions from applied state. It is worth noting that an
applied modification can become accepted againwhen itmust be retractedbecause
of a conflict. An accepted operation becomes scheduled after establishing a global
ordering of preceding operations. Finally the operation will be executed changing
its state to completed. In case of lack of conflicts amodification executed tentatively
(in applied state) can be finally committed changing its state to completed. The
handling of the modifications end up in the completed state. Processing of read
operations may end either in completed or in applied state. Only read operations
issued in optimistic mode can be finished in applied state.

Contrary to synchronised mode, pessimistic immediate mode does not enforce
execution of accepted modifications which may lead to delays. Instead the mode
refers to the current state of the objects, and, in case there are uncommitted
operations applied optimistically, they will be retracted. The key difference be-
tween synchronised and immediate pessimistic modes consists in handling of
tentative operations. The synchronised mode waits for the current tentative op-
erations to become committed and executed, while the immediate mode returns
the last stable state, effectively ignoring new, tentative operations. Pessimistic
immediate mode will be denoted by pi upper index.

Fig. 1. States of modification processing

Table 1. Classification of read operations

pessimistic optimistic

synchronised modifications accepted before
the read must be committed

modifications accepted before
the read must be applied

immediate uncommitted operations
must be retracted

the current state

24 M. Bazydło et al.

Optimistic synchronised reads should be used for getting the best approxi-
mation of the replicated data based on the state of the replica being accesses
without communicating with other replicas. It means that all accepted modifi-
cations will be applied even if they are not scheduled. This optimistic approach
assumes that there are no other concurrent modifications that may interfere with
the ones being executed without consulting other replicas. If this assumption is
not fulfilled, the operations performed out of order will have to be retracted.
The application must take into account that the data returned by the replica
may be inconsistent. However, the replica will be able to generate a response
even in case of communication failures which is the most important motivation
for introducing this mode. Optimistic synchronised mode will be denoted by os
upper index.

The last mode for read operations is optimistic immediate mode. In this case
time plays the most important role: the application needs the data and needs
it now. Therefore no new operations are applied, no operations are retracted:
the replica returns the current state as it is. The difference between immediate
and synchronised optimistic modes consists in the treatment of new accepted
operations which are taken into account in synchronised mode and ignored in
immediate mode. Optimistic immediate mode will be denoted by oi upper index.

Tab. 2 presents briefly execution modes of modifications. A pessimistic syn-
chronous operation waits for the results of the execution, and after returning re-
sults it cannot be retracted. Therefore the operation must be committed, which
means that it must be performed in cooperation with other replicas. Similarly to
pessimistic synchronised reads, execution of the modification requires prior exe-
cution of all previously accepted modifications, which results from the assump-
tion of globally consistent ordering of all modifications. Pessimistic synchronous
mode will be denoted by ps upper index, e.g. mps(a).

Table 2. Classification of modifications

pessimistic optimistic

synchronous the modification must be
committed

modifications accepted before
the modification must be applied

asynchronous modification is submitted and acknowledged

Optimistic synchronous modifications enable applying updates even in case of
communication problems between replicas. The operation will be executed on the
local replica, without communicating with other replicas, but after executing all
other previously accepted modifications. If there were no other conflicting modi-
fications on other replicas the locally applied updates would become committed.
However, the results will be available to the application before contacting other
replicas. Optimistic synchronous mode will be denoted by os upper index.

Finally we have identified asynchronous mode for issuing modifications. As
the name stands, such modifications are asynchronously submitted and queued
for execution. The interaction with application ends before the modification

Combining Optimistic and Pessimistic Replication 25

completes. The system should try to optimise execution of this modifications by
postponing it till it become scheduled after communication with other replicas in
order to avoid execution of unordered updates. However, the modification may
be executed before establishing final global ordering of updates if followed by an
optimistic synchronised read or an optimistic synchronous modification. There
are no differences between pessimistic asynchronous and optimistic asynchronous
modes. Asynchronous mode will be denoted by a upper index.

It is worth noting that the execution of optimistic operations is not blocked by
pessimistic ones. Preceding pessimistic operations may be executed tentatively
without returning results to the issuing process (see Fig. 3). In fact the modes
of operations focus on the view of states observed by processes rather than the
states of replicas themselves.

Examples. This section covers examples of processing which illustrate differ-
ences and interactions between described operation modes. The differences result
in various kinds of trade-offs between data consistency and availability, which
is mostly visible when network partitions occur [4]. The following examples as-
sume transient communication problems between replicas, which is indicated by
a zigzag on the time-space diagrams between axes of replicas R1 and R2.

Let us consider two processes P1 and P2 accessing replicas R1 and R2

respectively as depicted in Fig. 2. At the beginning process P1 issues an optimistic
synchronous modification m(1). This modification can be executed without com-
munication with other replicas. After execution of the modification, a result is re-
turned to the process. Then the process issues an optimistic synchronised read.
Since all modifications known to the replica have already been applied, the read is
executed immediately and a result is returned. Concurrently to process P1 another
process P2 issues a pessimistic synchronous modification m(2). Execution of this
modification is blocked until the modification is committed. In order to commit the
operation the replica must learn about all other preceding modifications, so it has
to communicate with other replicas. In this and following examples it is assumed
that m(1) should precede m(2), thus m(2) is applied after execution of m(1) at
R2, and then results are returned to process P2. As can be seen optimistic oper-
ation completes quite quickly, without communicating with other replicas, while
the pessimistic operation is blocked until communication is resumed.

Fig. 3 presents a slightly more complex case with additional process P3 ac-
cessing replica R2 concurrently with process P2. As in the previous example
process P2 issues a pessimistic synchronous modification m(2), and then process
P3 requests an optimistic synchronised read. The read forces execution of mod-
ification m(2), but results of this modification are not returned to process P2;
the modification is applied tentatively and has not been committed yet. Next,
replica R2 — after resumption of communication — learns about modification
m(1) preceding m(2), which causes withdrawal of m(2). The modifications are
applied in the final order, thus m(2) becomes committed, and results of m(2)
are returned to process P2. In this case we can see that a pessimistic operation
does not observe a tentative state but at the same time an optimistic operation
may reveal such state.

26 M. Bazydło et al.

P1

R1

R2

P2

m(1)

m
os(1)

r(1)

r
os(1)

m(1)

m(1)

m(2)

m
ps(2)

Fig. 2. Pessimistic and optimistic modifications in case of network partitioning

P1

R1

R2

P2

P3

m(1)

m
os(1)

m(2)

r(2)

r
os(2)

m(1)

rollback

m(2)

m(1)

m(2)

m
ps(2)

Fig. 3. Interleaving of optimistic synchronised read with pessimistic modification

P1

R1

R2

P2

P3

m(1)

m
os(1)

m(2)

r(2)

r
os(2)

rollback

m(2)

r(0)

r
pi(0)

m(1)
m(1)

m(2)

m
ps(2)

Fig. 4. Interfering of pessimistic immediate read and optimistic synchronised read

Combining Optimistic and Pessimistic Replication 27

The last example depicted in Fig. 4 illustrates how operations may be executed
tentatively and then reverted in order to satisfy contradicting requirements. As
in the previous example process P2 issues a pessimistic synchronous modification
m(2), and process P3 issues an optimistic synchronised read after that, which
causes tentative execution of modification m(2) at R2. Process P3 gets a response
to its read operation, and then it requests a pessimistic immediate read. This
read operation forces withdrawal of applied and uncommitted modification m(2).
As a result the read operation returns the state prior to execution of m(2). Later,
modification m(2) becomes committed after executing m(1), and finally results
are returned to process P2.

4 Related Work

An overview of different optimistic replication approaches is presented in [6].
The main problems of optimistic replication are conflict resolution and ensuring
eventual consistency of all replicas. We have suggested using rollback recovery as
a mechanism of achieving eventual consistency. This approach is widely applied
in many systems using optimistic replication, e.g.: [8], [5]. The approach proposed
in [2] provides a client with multiple versions of data in response to read requests,
and expects the client to reconcile them.

Conflict resolution usually requires additional information to be provided.
Let us consider Bayou system which was designed for similar environment and
therefore in many ways resembles the model considered in this paper. Bayou
requires application developer to provide dependency checks in order to detect
conflicts. If conflict is detected then merge procedure is started to resolve it. This
approach requires application developer to consider possible conflicts and find
proper solutions. Prerequisites for operation execution, similar to Bayou depen-
dency checks, are also proposed in [5]: when conflict is detected transaction is
omitted and issuing process is informed. We do not consider solving of conflicts.
Inasmuch as there is no restriction on single modification complexity, we assume
that all actions needed to resolve conflict are part of modification. Besides, we in-
troduce pessimistic mode for critical operations in order to hide tentative states.
In effect, our approach allows combining optimistic and pessimistic operations.

The idea of issuing operations in different modes appeared in hybrid con-
sistency for distributed shared memory [3]. Essential to that approach is the
distinction between strong and weak operations that apparently resemble pes-
simistic and optimistic ones. However, the dissimilarity between hybrid consis-
tency and our model lies in the effect of operations on the system state. In our
model, the effect is local — it concerns de facto the view of system state for the
issuing process. The specification of operations in hybrid consistency determines
the order of their execution on every replica, thereby influences the view for
other processes.

28 M. Bazydło et al.

5 Conclusions

In this paper, we have presented a concept of combining optimistic and pes-
simistic approaches to replication in a distributed system. Our solution provides
simple way of expressing expected trade-offs between consistency and availabil-
ity. We have introduced a classification of operations based on two orthogo-
nal criteria. Generally we have distinguished between optimistic and pessimitic
modes of operations. Additionally, in the case of reads we have distinguished syn-
chronised and immediate mode, and in the case of modifications — synchronous
and asynchronous mode. The modes of operations focus on the view of states
observed by processes rather than the states of replicas themselves (the actual
state of a replica results from the order of modifications execution). Thus the
execution of optimistic operations is not blocked by pessimistic ones.

The proposed model best suits applications which accept tentative states still
providing meaningful results for the users. Tangible benefits depend on the con-
flicts ratio and the requirements for pessimistic results. There are numerous
systems that can be optimistically replicated where conflicts are rare and do not
result in excessive rollback recovery. In such cases optimistic mode of operations
provides improved availability, and does not introduce additional cost related to
consistency management. The epitome of the application of optimistic replica-
tion is directory service. Since individual entries are rather independent of one
another, their update can be usually performed optimistically. This is not the
case of all modifications (e.g. new entry creation), however, in our model the
problem can be avoided by means of pessimistic mode.

The concept presented in this paper has been materialised in a form of a
replication protocol combining optimistic and pessimistic replication. This pro-
tocol is currently being implemented in the context of web services replication.
Further investigation will be focused on evaluation of real applications using the
presented model.

References

1. Birrell, A.D., Levin, R., Schroeder, M.D., Needham, R.M.: Grapevine: an exercise
in distributed computing. Communications of the ACM 25(4), 260–274 (1982)

2. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly avail-
able key-value store. SIGOPS Oper. Syst. Rev. 41, 205–220 (2007)

3. Friedman, R.: Consistency Conditions for Distributed Shared Memories. Ph.D.
thesis, Computer Science Department, Technion–Israel Institute of Technol-
ogy (June 1994), ftp://ftp.technion.ac.il/pub/supported/cs/thesis/roy_
friedman.ps.Z

4. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. SIGACT News 33(2), 51–59 (2002)

5. Gray, J., Helland, P., O’Neil, P., Shasha, D.: The dangers of replication and a solu-
tion. In: SIGMOD 1996: Proc. of the 1996 ACM SIGMOD Int. Conf. on Management
of Data, pp. 173–182. ACM Press, New York (1996)

ftp://ftp.technion.ac.il/pub/supported/cs/thesis/roy_friedman.ps.Z
ftp://ftp.technion.ac.il/pub/supported/cs/thesis/roy_friedman.ps.Z

Combining Optimistic and Pessimistic Replication 29

6. Saito, Y., Shapiro, M.: Optimistic replication. ACM Computing Surveys 37(1), 42–
81 (2005)

7. Shapiro, M., Bhargavan, K.: The Actions-Constraints approach to replication:
Definitions and proofs. Tech. Rep. MSR-TR-2004-14, Microsoft Research (March
2004)

8. Terry, D.B., Theimer, M.M., Petersen, K., Demers, A.J., Spreitzer, M.J., Hauser,
C.H.: Managing update conflicts in Bayou, a weakly connected replicated storage
system. In: Proc. of the 15th ACM Symp. on Operating Systems Principles (SOSP),
pp. 172–182. ACM Press (1995)

9. Wiesmann, M., Pedone, F., Schiper, A., Kemme, B., Alonso, G.: Understanding
replication in databases and distributed systems. In: Proc. of the 20th Int. Conf. on
Distributed Computing Systems (ICDCS 2000), Taipei, Taiwan, R.O.C, pp. 464–474
(April 2000)

K-Resilient Session Guarantees Synchronization
Protocol for Mobile Ad-Hoc Networks�

Jerzy Brzeziński, Dariusz Dwornikowski,
Łukasz Piątkowski, and Grzegorz Sobański

Institute of Computing Science,
Poznań University of Technology, Poland

{Jerzy.Brzezinski,Dariusz.Dwornikowski,
Lukasz.Piatkowski,Grzegorz.Sobanski}@cs.put.poznan.pl

Abstract. Session guarantees define data consistency in a distributed
system as required by a single, mobile client. Consistency protocols of
session guarantees are built from two components: one is aimed at provid-
ing safety (the guarantees) and the other at providing liveness (data syn-
chronization). This paper presents a new k-resilient data synchronization
protocol designed for mobile ad-hoc networks and other systems, where
crash-stop failures occur. The application of the protocol is targeted at,
but not limited to, various rescue and emergency operations.

1 Introduction

Nowadays, mobile wireless systems are rapidly gaining momentum, and every
day new services are being delivered to clients. An important class of these
systems are sensor and mobile ad-hoc networks (MANETs), where network nodes
communicate by means of hop-by-hop packet forwarding. In some scenarios,
mobile ad-hoc networks are often the only possible solution. This is the case,
for example, in dynamic search, rescue or evacuation missions, where there is no
time to deploy network infrastructure or the existing one may be damaged.

In such an application, services deployed in MANETs must be efficient but
also available for mobile users. To meet these requirements, replication of services
and their data on many nodes can be used. However, this approach leads to the
replica consistency problem, among others [14,6].

This paper deals with a replica consistency model called session guarantees
or client centric consistency [15], because it is especially suited for mobile sys-
tems and MANETs. In this approach, replica consistency is considered from
a point of view of a single mobile and roaming client instead of a single replica,
as in data centric models. In other words, the order of operations performed on
replicas in the system is not important as long as the single client perceives its
own operations in a required order. The system consists of servers, holding data
� This work has been partially supported by the Polish Ministry of Science and

Higher Education within the European Regional Development Fund, Grant No.
POIG.01.03.01-00-008/08 IT-SOA https://www.soa.edu.pl/

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 30–39, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

https://www.soa.edu.pl/

Synchronization Protocol for Mobile Ad-Hoc Networks 31

object replicas, and clients, accessing those replicas. To keep data replicas con-
sistent, two protocols are needed: a coherence protocol, defined between clients
and servers, and a synchronization protocol, defined between servers in order to
propagate operations performed at one replica to the others.

This work focuses on synchronization protocols. According to our best knowl-
edge, the solutions proposed so far have not been well suited for mobile environ-
ments. One of the first papers describing session guarantees and synchronization
protocol are [15] and [13], but the problem of the synchronization protocol was
considered orthogonal to the main task there. Full solution to the problem of
server synchronization was introduced in [10]. Unfortunately, none of these syn-
chronization protocols is suitable for mobile ad-hoc networks, as they assume a
reliable environment. In MANETs there exist problems like unreliable message
passing and network partitioning causing servers unavailability, thus requiring
a dedicated solution. Some work considering unreliable environment was intro-
duced in [7], but it still does not fit mobile systems, as it focuses only on server’s
recovery.

The aim of this work is to present a new synchronization protocol called
SGASP – Session Guarantees Ad-hoc Synchronization Protocol. This protocol
is suited for MANETs as it allows for errors like message retransmissions and
failures. However, what is most important, it is k-resilient. SGASP assures that
every client operation is known to at least k servers before the operation is re-
turned to the client as successfully executed. This way SGASP is better suited
for wireless systems, because it increases the overall availability of operations and
services. What is important to note, those additional properties were achieved
without using any communication primitives other than ordinary unicast and
broadcast transmissions. According to our best knowledge, no k-resilient syn-
chronization protocol was proposed earlier.

Protocols aimed at MANETs must cope with a whole set of problems, includ-
ing temporary lack of communication, network partitioning and other MANET–
related problems. These problems result in important consequences. Particularly,
one server can accept a write operation from a client and then, immediately split
into a one-node partition. The client then, can switch to another one and request
replica state including the last write operation. Since the only server with that
operation is gone, there is no way the new server or the client can get the re-
quired operation. In MANETs some kind of a routing protocol [12] is often run
by the nodes. Since SGASP does not make any assumptions about other nodes’
reachability, routing protocol is not required, although its presence may have an
impact on performance of the protocol.

Despite these problems, real-life examples of application of session guarantees
in MANETs exist. Let us imagine a rescue operation led by firefighters. On a flood
site, the whole network infrastructure was destroyed, yet computer network can
be used to coordinate and support rescue operation. Each of the fire engines on
the site can form an ad-hoc network node with medium to large wireless network
range. Highly mobile forces, like human squads or manned and unmanned robots,
can be equipped with short to medium range wireless interfaces, extending the

32 J. Brzeziński et al.

ad-hoc network’s reach. In such a network a distributed access to remote data
objects is crucial. Commanding officers need to have one log file to enable post-
action analysis, all units should have best knowledge of a global state of other
units’ positions and sensors readings. Such a case is a real world scenario, one
of many a system like Proteus project [11] is designed for. Currently, many
operations, like the one mentioned above, are led and coordinated using only
personal radios for direct voice communication.

2 The Session Guarantees Environment

The model of the system with session guarantees consists of two major types of
participants: clients and servers. Every server S holds a full copy of the set of all
objects O in the system. Clients C interact with the objects by requesting read
or write operation on element O from one of servers S. Client’s requirements
regarding data consistency are sent to a server using a coherence protocol. This
way client C can enforce the execution of locally known operations on server
S. Consistency protocols use vector clocks [9,1], also called version vectors, to
keep track of write operations required by a client. Those version vectors are
a representation of theoretically unbounded write sets [13], which consist of all
operations required by a client since the start of the consistency protocol.

Using the concept of version vectors, four types of session guarantees have
been defined [15,13]. A client can request a server to fulfill one or more of them.
The four guarantees are: Read Your Writes (RYW), Monotonic Writes (MW),
Monotonic Reads (MR) and Writes Follow Reads (WFR) [15]. To provide par-
ticular guarantees, a server needs to know which operations are known to a
client and in what order. These operations are represented as version vectors
and sent to the server. A detailed description and complete formal definitions
of version vector representation of required write sets, session guarantees and
client protocol can be found in [15,13].

It is important to note that differences between data centric and session guar-
antees approaches are essential and clearly seen when we compare them. The
dissimilarity is caused by a very different client cooperation and consistency
models properties. Thus, trying to achieve strong data-centric consistency us-
ing session guarantees is hard or even impossible [2,3]. Also trying to achieve
client centric consistency using data centric approach essentially requires usage
of atomic consistency, which is very inefficient [10].

3 The SGASP Protocol

3.1 Environment Assumptions

SGASP assumes that no other communication primitives except for standard
IP-like unicast and broadcast transmission, are needed. Both of them may fail
to deliver a message at any time. The only additional condition is that every
response message sent from a server will eventually reach the client that sent the
request. The justification for this assumption is described in Section 3.3.

Synchronization Protocol for Mobile Ad-Hoc Networks 33

3.2 Data Structures

In earlier work, server version vectors [8] were used to effectively represent sets
of required operations. Every element i in a version vector denoted a local view of
a number of write operations performed by a server Si. In SGASP the concept of
version vectors is enhanced by a Label which consists of two version vectors of the
same length. The first is called timestamp and it possesses the same semantics as
in earlier protocols, except that now every position of that vector denotes a local
view of a number of times a given server has tried to persist an operation (see
3.3). The second vector is called minstate. It describes a minimal server version
vector required to execute the operation or proposition described by a label. A

sample label has a form [1 0 0]
[0 0 0] , where [1 0 0] corresponds to a timestamp and

[0 0 0] to a minstate.

3.3 General Idea

The general idea of SGASP is to replicate write operations requested by clients
on more than one server before executing them. Replicated operations are stored
in a Cache set. However, they are not executed on these additional servers until
they are needed by some server, especially the local one. Every operation is
replicated on n server nodes, therefore even after failure of k = n − 1 nodes, it
is still possible to find every operation. This way SGASP can counteract against
network partitioning and node failures in MANETs.

SGASP is based on ODSAP protocol [10] which behavior upon receiving
client’s request can be loosely described by the following steps:

1. Check if the client’s requirements from the request are met. If yes, go to 4.
2. Broadcast synchronization request to other servers asking for operations re-

quired to satisfy the request; wait for answers.
3. If step 2 fails, return an error message to the client and end processing.
4. Perform the operation and return a success message to the client.

The SGASP protocol works on every server in the following steps for each client
request:

1. Check if the client’s requirements included in the request are met or can be
satisfied using operations from Cache set. If yes, go to 4.

2. Broadcast synchronization request to other servers asking for operations re-
quired to satisfy the request; wait for the answers.

3. If step 2 fails, return the error message to the client and end processing.
4. Try to persist (place a copy of the request) operation on at least n other

servers by broadcasting it; wait for acknowledgements.
5. If step 4 fails, return the error message to the client and end processing.
6. Perform the operation and return a success message to the client.

34 J. Brzeziński et al.

3.4 Protocol Description and Examples

Every SGASP server, after receiving a request, first tries to execute all operations
needed to satisfy client’s requirements. Then, it tries to replicate the client write
operation on at least n nodes, including itself. Only if the operation is successfully
persisted, is it executed and a successful response is sent back to the client.
Otherwise, the client is informed about the failure of its request. If needed,
the replication step can be retried by the server after a timeout. The incoming
replicated write operations are stored by every server in a Cache set.

If a server receives a synchronization request from another server, it replies
with all locally known operations which are unknown to the requester. This
synchronization step works as in ODSAP protocol [10]. If a persistence message
is received, the attached operation is placed in the Cache set and an acknowledge
message is sent in reply.

SGASP uses fairly weak communication mechanisms. As such it needs to ex-
tensively exploit labels’ properties to assure correctness of the synchronization
protocol. Every server S that needs to replicate (persist) a client’s write request
broadcasts it in a Propose message. Servers that receive the message cannot
consider the write request a valid operation, as they don’t know if the sender
of the Propose message will get at least n acknowledgment messages from other
servers. Thus, the data received in the Propose message is considered a proposi-
tion, which may or may not become a valid operation. Therefore, propositions
cannot be safely executed by servers. If server S receives at least n Ack mes-
sages, it knows that the proposition has reached at least n servers and it is safe
to execute it and respond to the client. Only then the proposition becomes an
operation. On the other hand, if server S does not receive n Acks, the client’s
request remains forever a proposition. The important property is that labels
provide sufficient information to distinguish valid operations and propositions.

In earlier protocols labels were not needed, as the relation of vector domination
[10] was sufficient to achieve client centric consistency. In SGASP timestamp
vector in a label is incremented every time a proposition is sent, therefore, some
of its values may represent only propositions, not actual operations. Thus, the
introduction of the minstate vector was necessary. Minstate shows what the last
value of a version vector of the server trying to persist a client request was. This
value is always assigned to the last valid (successfully persisted) operation. The
difference between values of the timestamp and the minstate vector is used to
distinguish between operations and propositions.

Labels are attached to every proposition and operation but they are used
only in a synchronization protocol, not in a coherence protocol which remains
the same as in the earlier work. Nevertheless, client’s requests analysis is re-
quired to further exploit labels. A client never gets to know a version vector of
a proposition. If the client receives a successful response to its request, it im-
plies that an operation is already persisted and thus, it is not a proposition.
Clients are the only source of requests received by servers. Therefore, version
vectors received from clients always describe an operation, not a proposition.
Using this property, a server can invalidate some propositions in it’s Cache set

Synchronization Protocol for Mobile Ad-Hoc Networks 35

and find other valid operations needed to fulfill client’s requirements. Examples
exploiting labels properties are shown below.

Example 1. Simple usage of labels
Let’s assume we have two clients C1 and C2, three servers S1 . . . S3 , the

resilience factor k = 1 (n = 2) and all initial vector values are zero. Now, client
C1 sends a write request w1 with vector [0 0 0] to server S1. S1 has a version
vector state [0 0 0] that dominates client’s request vector, so it tries to persist

w1. It attaches a label [1 0 0]
[0 0 0] to the request and broadcasts it in a Propose

message p1 to all servers. The label can be read as follows:

– the proposition is sent by server S1, as the vectors differ on index 1,
– it is the first proposition sent by S1, as the timestamp vector on index 1 is

1,
– this is the first proposition sent by server S1 for a given client’s request, as

the two vectors differ by 1 on index 1,
– if this proposition becomes an operation, it will be sufficient that other

servers perform the state [0 0 0].

If the Propose message is received by other servers, the operation w1 is added
to their Cache sets. If S1 receives at least k Ack messages, it knows that the
write replication was successful, it executes w1 and sends a reply to the client.
Otherwise, it retries to persist w1 and sends a new proposition p2 with a new label
[2 0 0]
[0 0 0] . As the minstate did not change, that label means it is a second trial of

S1 to persist the same client operation. If w1 was persisted earlier, its timestamp
would become a new S1’s state, so a proposition for some new operation would
have updated minstate. Because that is not the case, SGASP knows it is a new
proposition sent for the same operation w1. What’s more, all servers that receive
both p1 and p2 can remove p1 from their Cache sets, as it has been outdated
by p2. Now if S1 receives Ack message for p2 from the other server, it knows
that there are at least n = 2 copies of w1 and can successfully complete client’s
request. The new state of S1 is [2 0 0], what represents a valid operation and
can be safely sent in response to the client. It is also not a problem, if p2 does
not reach a server that received p1. In this case, p1 can be removed from Cache
under one of the following conditions:

– A client, in our example C1, will send a new request to that server with vector
[2 0 0]. The new server has the state [2 0 0] but does not have operation with
timestamp [2 0 0] in its Cache, so it has to search for the missing operation
on other servers. After finding the missing operation, it sees that operation’s

label is [2 0 0]
[0 0 0] , and thus, p1 can be removed.

– Server reaches a state that dominates p1 — if it was possible without exe-
cuting p1, would be only a proposition, not an operation. ��

36 J. Brzeziński et al.

Example 2. A complete use case of SGASP

The situation in Figure 1 shows a more complicated scenario. Each server consists
of Cache and History sets which contain requests with attached labels, the State
column, which shows changes in server version vector value, and the Log column,
which shows algorithm steps performed by the server. The letter “E” means local
execution of an operation with the given label, “S” sending a new proposition with
label, and “Y/N” right of the label value shows whether the persistence attempt
was successful. The “SyncReq” entry shows that a server sent a synchronization
request for missing operations. Arcs above servers show operations the server
received in response. In this scenario, Client 1 with vector [2 0 0 0] and Client
2 with [0 0 2 3] have already executed some operations on Server 1, 3 and 4.
The situation gets complicated when both clients meet on Server 2. Request

of Client 1 is served first, gets a label [2 2 0 0]
[2 0 0 0] and sets server state to [2 2 0 0].

Now the request from Client 2 arrives, which forces synchronization of Server
2 with others. After executing required operations Server 2 has version vector
state [2 2 2 3] and is ready to persist client’s request. The persistence step is

successful at the first attempt, giving the request a label [2 3 2 3]
[2 2 2 3] and setting

server’s vector to [2 3 2 3]. That version vector is also sent in response to Client
2 and it represents results of two operations originating at different servers. ��
The situation presented in Figure 1 can be further extended, resulting in a di-
rected acyclic graph of operation dependencies. One of the major tasks of SGASP
is to construct that graph using operations from Cache and History sets and the
knowledge derived from client’s requests, which always represents a composition
of timestamps of valid operations. We can find these operations by taking into
account the following facts:

Fig. 1. Sample execution of SGASP

Synchronization Protocol for Mobile Ad-Hoc Networks 37

– client’s version vector always results from a timestamp of a valid operation,
or a composition of two operations,

– for each operation the originating server is known from its label,
– every position in a client’s vector must come from an operation’s timestamp.

In MANET it is assumed that every message transmitted on the network may
be lost. The fact has been taken into consideration in SGASP but it has been
assumed that server’s response is never lost while being transmitted to the client.
This limitation needs to be addressed as a separate problem in future work.

4 Simulation Evaluation of SGASP

The SGASP protocol was implemented and evaluated using OMNeT++ [5] sim-
ulation framework with inet–manet extension. The simulation model used was
very exact. The whole environment consisting of servers and clients moving on
a rectangular playground was modeled. Every network node in the simulation
consisted of a mobility model and an exact full TCP/IP stack implementation.
The stack includes all lower network layers, simulated with hardware radio de-
vice compatible with 802.11g, signal loss model, full MAC, IP and UDP layers.
On the top of the UDP layers, the SGASP service was implemented. In order
to allow a comparison of SGASP with other solutions, an ODSAP protocol was
implemented and evaluated using the same parameters and environment.

While constructing the simulation, some additional assumptions were made:
1. If there is more than one server in the communication range of a client, the

client uses a separate procedure to select a server. Every client keeps a list of
servers, which did not reply last time to its request and chooses the closest
not listed server.

2. Every server was modified to limit the length of incoming messages and
requests awaiting processing. Because clients need to implement a timeout
mechanism, it is useless to keep all awaiting requests and messages, as they
will be processed too late, after a timeout occurs on the sender.

4.1 Simulation Parameters

In order to carry out simulation experiments, simulation parameters had to be
chosen. Their values were based on typical hardware parameters as measured on
real system, and in some cases, on test runs of simulation. The more important
values used in the simulation were set as below:
– simulation time: 12h of virtual time,
– mobility model: mass mobility [4] with change interval randomized from nor-

mal distribution from range (1s, 10s), angle change from normal distribution
(0◦, 30◦) and speed between 5 km/h and 25 km/h,

– size of the playground: 500 m x 500 m,
– wireless interface type: IEEE 802.11b with radio bit-rate 21 Mb/s and range

of approximately 140 m,
– no dedicated MANET routing protocol used, broadcasts are implemented as

delivering the message to all other nodes directly in range.

38 J. Brzeziński et al.

4.2 Basic Simulation Results

To compare the performance of protocols a measure of write success ratio was
introduced. That measure is computed for every client at the end of a simulation
run as a ratio of successfully completed requests to all issued requests.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80

su
cc

es
s

ra
tio

number of clients

number of servers

4 servers
8 servers

12 servers
16 servers
20 servers

Fig. 2. Write success ratio of SGASP
protocol

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 10 20 30 40 50 60 70 80

di
ffe

re
nc

e
of

 s
uc

ce
ss

 r
at

io

number of clients

number of servers

4 servers
8 servers

12 servers
16 servers
20 servers

Fig. 3. Difference between write success
ratio of SGASP and ODSAP protocols

Figure 2 presents how the write success ratio changes for the SGASP protocol.
The chart shows that the number of servers is a critical parameter in the system
and must be carefully adjusted to the number of clients. Then, a write success
ratio of ∼ 80% can be expected.

The comparison of SGASP and ODSAP protocols is depicted in Figure 3. The
figure shows the difference between write success ratio of SGASP and ODSAP
protocols in the same scenarios. Positive values show that SGASP performs
better than ODSAP. It is important to note that there are only a few cases
where SGASP is slightly less effective than ODSAP, while its advantage in some
scenarios is up to 60 percentage. This shows that SGASP protocol is not only
k-resilient but also increases performance of the system.

5 Conclusions

In this paper, a new k-resilient server synchronization protocol for session guar-
antees has been introduced. The protocol is dedicated to work in a mobile ad-hoc
network environment. Both general idea and basic mechanisms of the protocol
have been provided. The main advantage of the new protocol is a new write
operation replication scheme and label based operation handling. In order to
evaluate SGASP’s performance and compare it with the older ODSAP protocol,
both of the protocols were simulated and compared using write request suc-
cess ratio measure. As it came out, SGASP does not only provide better crash
resilience than ODSAP but also performs better in majority of scenarios.

Synchronization Protocol for Mobile Ad-Hoc Networks 39

Of course, there are still some important problems to address. The first one is
the requirement for a client to stay in a radio range of the server until complet-
ing a request. The other is throughout performance evaluation and comparison,
especially using MANET routing protocols and simulated server crashes.

References

1. Baldoni, R., Raynal, M.: Fundamentals of distributed computing: A practical tour
of vector clock systems. IEEE Distributed Systems Online 3(2) (February 2002),
http://dsonline.computer.org/0202/features/bal.htm

2. Brzeziński, J., Sobaniec, C., Wawrzyniak, D.: Session Guarantees to Achieve
PRAM Consistency of Replicated Shared Objects. In: Wyrzykowski, R., Dongarra,
J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2004. LNCS, vol. 3019, pp. 1–8.
Springer, Heidelberg (2004)

3. Brzeziński, J., Sobaniec, C., Wawrzyniak, D.: From session causality to causal
consistency. In: Proc. of the 12th Euromicro Conf. on Parallel, Distributed and
Network-Based Processing (PDP 2004), A Coruña, Spain, pp. 152–158 (February
2004)

4. Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network
research. Wireless Communication & Mobile Computing (WCMC): Special issue
on Mobile Ad Hoc Networking: Research, Trends and Applications 2(5), 488–502
(2002)

5. Community, O.: http://www.omnetpp.org/
6. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus

with one faulty process. Journal of the ACM 32(2), 374–382 (1985)
7. Kobusińska, A.: Rollback-Recovery Protocols for Distributed Mobile Systems Pro-

viding Session Guarantees. Ph.D. thesis, Institute of Computing Science, Poznan
University of Technology (September 2006)

8. Kobusińska, A., Libuda, M., Sobaniec, C., Wawrzyniak, D.: Version vector proto-
cols implementing session guarantees. In: Proc. of Int. Symp. on Cluster Computing
and the Grid (CCGrid 2005), Cardiff, UK, pp. 929–936 (May 2005)

9. Mattern, F.: Virtual time and global states of distributed systems. In: Cosnard,
Quinton, Raynal, Robert (eds.) Proc. of the Int. Conf. on Parallel and Distributed
Algorithms, pp. 215–226. Elsevier Science Publishers B. V. (October 1988)

10. Piątkowski, L., Sobaniec, C., Sobański, G.: On-demand server synchronization
protocols of session guarantees. Foundations of Computing and Decision Sci-
ences 35(4), 307–324 (2010)

11. Proteus, http://www.projektproteus.pl/
12. Royer, E.M., Toh, C.K.: A review of current routing protocols for ad hoc mobile

wireless networks. IEEE Personal Communications (April 1999)
13. Sobaniec, C.: Consistency Protocols of Session Guarantees in Distributed Mobile

Systems. Ph.D. thesis, Poznań University of Technology, Poznań (September 2005)
14. Tanenbaum, A.S., van Steen, M.: Distributed Systems — Principles and Paradigms.

Prentice Hall, New Jersey (2002)
15. Terry, D.B., Demers, A.J., Petersen, K., Spreitzer, M., Theimer, M., Welch, B.W.:

Session guarantees for weakly consistent replicated data. In: Proc. of the 3rd Int.
Conf. on Parallel and Distributed Information Systems (PDIS 1994), pp. 140–149.
IEEE Computer Society, Austin (1994)

http://dsonline.computer.org/0202/features/bal.htm
http://www.omnetpp.org/
http://www.projektproteus.pl/

On Time Constraints of Reliable Broadcast

Protocols for Ad Hoc Networks
with the Liveness Property�

Jerzy Brzeziński, Micha�l Kalewski, and Dariusz Wawrzyniak

Institute of Computing Science,
Poznań University of Technology,
Piotrowo 2, 60–965 Poznań, Poland
Jerzy.Brzezinski@put.poznan.pl,

{Michal.Kalewski,Dariusz.Wawrzyniak}@cs.put.poznan.pl

Abstract. In this paper we consider a formal model of ad hoc systems
and its liveness property, defined with the use of the concept of dynamic
sets. In this context we analyse reliable broadcast protocols dedicated for
use in this kind of networks. In solutions proposed till now it is assumed
that the minimum time of direct connectivity between any neighbouring
nodes is much longer than maximum message transmission time. This
assumption covers, however, dependence of the required minimum time
of direct communication on some system parameters. Therefore, in this
paper we show precisely how the minimum time of direct connectivity
depends on the total number of hosts in a network and on the total
number of messages that can be disseminated by each node concurrently.

1 Introduction

Mobile ad hoc networks (MANETs) [1] are composed of autonomous and mobile
hosts (or communications devices) which communicate through wireless links.
Each pair of such devices, whose distance is less than their transmission range,
can communicate directly with each other—a message sent by any host may be
received by all the hosts in its vicinity. If hosts in MANET function as both
a computing host and a router, they form a multiple hop ad hoc network. Hosts
can come and go or appear in new places, so with an ad hoc network, the
topology may be changing all the time and can get partitioned and reconnected
in a highly unpredictable manner.

One of the fundamental communication operation in ad hoc networks is
broadcast—the process of sending a message from one host to all hosts in a net-
work. It is important for any broadcast protocol to provide some delivery guar-
antee beyond “best-effort”, but in case of dynamic environments this can be
hard or even impossible to achieve [3]. The highly dynamic network topologies

� The research presented in this paper has been partially supported by the Eu-
ropean Union within the European Regional Development Fund program no.
POIG.01.03.01–00–008/08.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 40–49, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Time Constraints of Reliable Broadcast Protocols for Ad Hoc Networks 41

with partitioning and limited resources are the reasons why heuristic broadcast
protocols with only probabilistic guarantees have been mainly proposed for use
in MANETs. On the other hand, if it can be assumed that a group of collabo-
rating nodes in an ad hoc network can be partitioned and that partitions heal
eventually, it is possible to develop reliable dissemination (broadcast) protocols.
The assumption, that any partition is not allowed to be permanently isolated,
is called MANET Liveness Property [6–8].

In this paper we strictly define a formal model of ad hoc systems and the
liveness property with the use of the concept of dynamic sets. In this context we
analyse reliable broadcast protocols dedicated for use in this kind of networks.
In solutions proposed till now it is assumed that the minimum time of direct
connectivity between any neighbouring nodes is much longer than maximum
message transmission time. This assumption covers, however, dependence of the
required minimum time of direct communication on some system parameters.
Therefore, in this paper we show precisely how the minimum time of direct
connectivity depends on the total number of hosts in a network and on the total
number of messages that can be disseminated by each node concurrently.

The paper is organised as follows. First, following [7, 8], the formal model of
ad hoc systems with the liveness property is defined in Section 2. The broadcast
protocols proposed in [7, 8] are presented in Section 3. Section 4 contains the
analysis of time constraints of the broadcast protocols with respect to the liveness
property. Finally the paper is shortly concluded in Section 5.

2 System Model

In this paper a distributed ad hoc system is considered. The units that are able to
perform computation in the system are abstracted through the notion of a node,
and a link abstraction is used to represent the communication facilities of the
system. It is presumed that each link always connects two nodes in a bidirectional
manner. Thereby, the topology of the distributed ad hoc system is modelled by
an undirected connectivity graph G = (V , E), where V is the set of all nodes,
p1, p2, . . . , pn, and E ⊆ V ×V is the set of links between neighbouring nodes. If
a node pi is able to communicate directly with a node pj, then there exists a link
(pi, pj) in the set E . (Note that (pi, pj) and (pj , pi) denote the same link, since
links are always bidirectional.) The set E changes with time, and thus the graph
G can get disconnected and reconnected. Disconnection fragments the graph into
isolated sub-graphs called components (or partitions of the network), such that
there is a path in E for any two nodes in the same component, but there is not
a path in E for any two nodes in different components.

2.1 Nodes and Communication

It is presumed that the system is composed of N = |V| uniquely identified nodes
and each node is aware of the number of all nodes in the V set (that is of N).
A node is either correct or faulty: a faulty node can crash (stops its processing) at
any moment without any warning (silent crash failure model, [2]), while a correct

42 J. Brzeziński, M. Kalewski, and D. Wawrzyniak

node does not crash until processing ends. It is not assumed that a crash can
be detectable with certainty. Moreover, it is also presumed that the number of
faulty nodes is bound to some known value f , such that: 0 � f < 1

2N . Thus, the
V set contains at least N − f > 1

2N correct nodes. A node that has not crashed
is said to be operative.

The nodes communicate with each other only by sending messages (message
passing). Any node, at any time can initiate the dissemination of a message m,
and all nodes that are neighbours of the sender at least for the duration of
a message transmission, can receive the message. More formally, the links can
be described using the concept of a dynamic set function [5]. Let E ′ be the
product set of V : E ′ = V × V , and Γ (E ′) be the set of all subsets (power set) of
E ′: Γ (E ′) = {A | A ⊆ E ′}. Then, the dynamic set Ei of a node pi is defined as
follows:

Definition 1 (Dynamic Set). The dynamic set Ei of a node pi of elements
from E ′ on some time interval T = [t1, t2] is a function:

Ei : T → Γ (E ′)
such that: ∀t ∈ T (Ei(t) is a set of all links of pi at time t).

Let δ be the maximum message transmission time between neighbouring nodes.
Then, we introduce the abstraction of a reliable channel, as presented by Mod-
ule 1. The interface of this module consists of two events: a request event, used
to send a message, and an indication event, used to deliver the message. Reli-
able channels do not alter and lose (property RC1), duplicate (RC2), or create
(RC3) messages.

Events:

Request: 〈 rc.Send, m 〉: Used to send a message m.

Indication: 〈 rc.Deliver, ps, m 〉: Used to deliver the message m sent by the
process ps.

Properties:

RC1 (Reliable Delivery): Let ps and pd be any two nodes that are in wireless
range of each other, and let ps sends a message m at time t. If the two nodes
remain operative at least until t+ δ, then the message m is delivered by
pd within δ.

RC2 (No duplication): No message is delivered by any node more than once.

RC3 (No creation): If a message m is delivered by some node pd, then m was
previously sent by ps.

Module 1. Interface and properties of reliable channels

Finally, we can define direct connectivity as follows ([8, 7]):

Definition 2 (Direct Connectivity). Let T = [t, t+B], where B � δ is an
application-specified parameter. Then, two operative nodes pi and pj are said to
be directly connected iff:

∀t ∈ T ((pi, pj) ∈ Ei(t)).

Time Constraints of Reliable Broadcast Protocols for Ad Hoc Networks 43

It is assumed that channels between directly connected hosts are reliable
channels.

2.2 Network Liveness Requirement

Let O be the set of all operative nodes of V at some time t (O ⊆ V). Let P be
a non-empty subset of O, and P be its complementary set in O (P contains
all operative nodes at time t that are not in P). Then, the network liveness
requirement is specified as follows ([8, 7]):

Definition 3 (Network Liveness Requirement). A distributed ad hoc sys-
tem that was initiated at t0 satisfies the network liveness requirement, iff:

∀t � t0 ∀P ∃I � B (I �= ∞ ∧ ∃{pi, pj} (pi ∈ P ∧ pj ∈ P ∧
(nodes pi and pj are directly connected within T = [t, t+ I]))).

In other words:

∀t � t0 ∀P ∃I � B (I �= ∞ ∧ ∃{pi, pj} (pi ∈ P ∧ pj ∈ P ∧
(∃{t1, t2} ((t � t1 < t2 � t+ I) ∧ (t2 − t1 � B) ∧

(∀tc ∈ [t1, t2] ((pi, pj) ∈ Ei(tc))))))).

Informally, the network liveness requirement disallows permanent partitioning to
occur by requiring that reliable direct connectivity must emerge between some
nodes of P and P within some arbitrary, but unknown, amount of time I after
each t.

3 Crash-Tolerant Broadcast Protocols

Broadcast protocols enable us to send a message from one host to all hosts in
a network, and are a basis of communication in ad hoc networks. It is important
for any broadcast protocol to provide some delivery guarantee, especially if host
failures are taken into account. The properties of broadcast operations considered
in this paper are described by Module 2. The interface of this module consists of
two events: a request event, used to broadcast a message, and an indication event,
used to deliver the broadcast message. The BCAST1 property ensures that at
least N − f − 1 hosts will receive each disseminating message, and BCAST2
ensures that every node eventually discards every disseminating message and,
as a result, the broadcast of every message can be eventually terminated. The
BCAST2 property is called Storage Subsidence Property and defined as follows
([8, 7]):

Definition 4 (Storage Subsidence Property). A broadcast protocol satisfies
the storage subsidence property if there is a finite time after which nodes
permanently stop retaining the broadcast message.

44 J. Brzeziński, M. Kalewski, and D. Wawrzyniak

Events:

Request: 〈 bcast.Broadcast, m 〉: Used to broadcast a message m.

Indication: 〈 bcast.Deliver, ps, m 〉: Used to deliver the message m broadcast
by the process ps.

Properties:

BCAST1 (Reliable Delivery): For a broadcast of a message m initiated at time
tb, at least N − f − 1 nodes (or N − f including originator) receive the message
within some bounded time, if the sender does not crash, or if the sender crashes
and a correct node receives m.

BCAST2 (Transmission Termination): Each node that receives m and remains
operative, including originator, discards m and stops transmitting any packets
concerning the broadcast of m at some time after tb.

Module 2. Interface and properties of the broadcast protocols

Finally, the value N − f − 1 in the BCAST1 property is a consequence
of the following impossibility result (the theorem is defined and proven in [7],
page 14): it is impossible for any crash-tolerant reliable dissemination protocol
that satisfies the storage subsidence property to guarantee that more that N−f
nodes (including the originator) receive a message originated by a correct node
even if less than f nodes crash before the termination of the message.

We also observe that the properties BCAST1 and BCAST2 differ from the
properties of best-effort, regular reliable and uniform reliable broadcasts [4], since
BCAST1 property only guarantees that at least a subset of any N−f operative
nodes receive every message. So, in the worst case scenario if there are f faulty
nodes among the N−f nodes that have received m, and if each of them crashes,
eventually only N − 2f operative nodes have m.

The protocols presented in [8, 7], which implement Module 2, contain four
solutions: (i) Proactive Dissemination Protocol (PDP), (ii) Reactive Dissemina-
tion Protocol (RDP), (iii) Proactive Knowledge and Reactive Message (PKRM)
and (iv) Optimised PKRM (PKRMO).

The simplest protocol of the four, Proactive Dissemination Protocol (PDP),
requires that each node, which has a message m, transmits it once every β sec-
onds. The PDP protocol operates in the following manner. The originator pi of
a messagem initialises a vectorKi(m), as a boolean vector ofN bits, to all zeros,
and sets its own bit (Ki(m)[i]) to 1. The vector indicates the knowledge of the
node on the propagation of m, i.e. Ki(m)[j] = 1 means the node pi knows that
the message m has been received by the node pj . The message is transmitted
along with the Ki(m) vector. When some node pj receives m for the first time,
it initialises its Kj(m) vector to be equal to the received Ki(m) and sets its own
bit Kj(m)[j] to 1. The message is also added to the Unrealised set. Then, when-
ever the host receives the message, it merges the received vector with its own.
If the node pi has N − f or more 1-bits in its Ki(m) vector, it realises m, i.e. it
cancels the periodic transmission of m and moves the message to the Realised
set. If a node receives a message which has been realised, then within β seconds
it transmits a special realisation packet realisei(m), and a node which receives
a realisation packet, realises m.

Time Constraints of Reliable Broadcast Protocols for Ad Hoc Networks 45

The β parameter is originally defined as a configurable parameter such that
B � 2(β + δ), to ensure that a node both: receives a message and responds to
that message during direct connectivity. This is illustrated in Figure 1, where
β = 4δ and B = 10δ. Two nodes, pi and pj , experience direct connectivity, but
just after pi has started sending a message (first arrow in the figure). Thus, the
message cannot be received by pj at this time. The message is sent again after
next β seconds and received by pj after δ (second arrow). Finally, the message is
transmitted by pj after next β seconds (counted by pj), and received by pi after δ.

Fig. 1. An example of direct connectivity between two nodes (β = 4δ, B = 10δ and
∀i>1 : βi = βi−1 + β) with the use of the PDP protocol

Let us also note that the original specification of the protocol states only that
a node that transmitted m once, will thereafter send it once every β seconds
(until its realisation). However, no particular order of message sending is imposed
when a host has more that one message to send every β seconds, except that the
messages that have been received for the first time during last β seconds must
be sent within β seconds.

The Reactive Dissemination Protocol (RDP) assumes that nodes have infor-
mation about their direct neighbours, e.g. each host knows its dynamic set Ei(t)
for all t. In this case, a node pi propagatesm only if: ∃{pi, pj} ∈ Ei(t) (Ki(m)[j]
= 0), which is evaluated once every β seconds (β is as in the PDP).

The Proactive Knowledge and Reactive Message (PKRM) combines the fea-
tures of PDP and RDP, without requiring information about direct neighbours.
In the PKRM protocol, each pi that transmitted m once as an originator, then
sends every β seconds only K ptri(m) (without KKi(m)) packets, and if a re-
ceiver pj of the packets does not have m, it sends within β seconds requestj(m)
packet requesting m to be transmitted. Thus, if the node pi that has m, has re-
ceived requestj(m) packet in the past β seconds, it sends m. As in the first two
protocols, β is fixed but this time: B � 3β + 2δ (to ensure that nodes exchange
three times all messages during direct connectivity).

Finally, the PKRMO protocol is optimised towards bandwidth reduction in
the following way. First, hosts check the messages received in the past not every
β seconds but every β̂ seconds, where β̂ is random duration distributed uni-
formly in (0, β). Second, the transmission of a message can be suppressed, if the
node has received at least α equivalent transmission of that message in the past
β̂ seconds (the parameter α is configurable suppression threshold).

46 J. Brzeziński, M. Kalewski, and D. Wawrzyniak

4 Analysis of Time Constraints of the Broadcast
Protocols

The time constraints of the broadcast protocols discussed in Section 3 and men-
tioned by the authors in [8, 7] are as follows: B � 2(β + δ) in case of the PDP
and RDP protocols, B � 3β + 2δ in the case of the PKRM and PKRMO proto-
cols, and B � δ in both cases; where δ is the maximum message transmission
time between neighbouring nodes, B is the minimum time of direct connectivity
(remarked by the authors as an application-specified parameter), and β is a con-
figurable parameter. The above constraints have been set to ensure that a node
both receives a message and responds to that message during direct connectivity.
Let us observe, that the β parameter cannot be arbitrary, since the protocols
require that during every β period, every node must be able to send all its unre-
alised messages. We denote by s the maximum number of messages that a node
can disseminate concurrently, i.e. without being realised. Let us assume without
a lost of generality that s � 1. In the simplest case when s = 1, the protocols
work in a blocking manner, that is a host will start disseminating a new message
providing the previous one originated by it is realised. Moreover, let S = N · s
be the total number of messages that can be disseminated in the system by all
nodes. Then, the following theorem can be proved:

Theorem 1. If a network is composed of N nodes and if each node can dis-
seminate concurrently at most s messages, then the PDP, RDP, PKRM and
PKRMO protocols require that β � N · s · δ.

In other words, Theorem 1 states that the minimum value of the β parameter
cannot be shorter than the total time of transmission of all messages that can be
disseminated in the system by all nodes. To prove Theorem 1 it is necessary to
show that a node can be required to send S = N · s messages during a β seconds
period.

Proof. Let us consider a system of N hosts, denoted by p1, . . . , pN , and let each
node disseminate s messages. If all the nodes remain operative and connected
with each other (complete graph), then within first β seconds each node sends
its own s messages. So, at the end of this period, every other node receives S− s
messages, to have in total (including its own) S unrealised messages, and the
following conditions are fulfilled:

– ∀i∈{1, ..., N} (|Unrealisedi| = S),

– ∀i∈{1, ..., N} (∀m ∈ Unrealisedi (
∑N

j=1Ki(m)[j] = 1) iff pi is an originator
of m),

– ∀i∈{1, ..., N} (∀m ∈ Unrealisedi (
∑N

j=1Ki(m)[j] = 2) iff pi has received
m from other node).

Thus, if N − f > 2, then after another β seconds every node is required to send
S messages. Precisely, in the case of the PDP protocol, within next β seconds
period every node simply sends all S unrealised messages. The same occurs in

Time Constraints of Reliable Broadcast Protocols for Ad Hoc Networks 47

the case of the RDP protocol, because if N−f > 2 and nodes remain connected,
then:

∀i∈{1, ..., N} (∀m ∈ Unrealisedi (∀t ∈ 〈β, 2β〉 (∃{pi, pj} ∈ Ei(t) (Ki(m)[j] = 0)))).

In the case of the PKRM and PKRMO protocols, within next β seconds period
each node is required to send K ptri(m) packets for all S unrealised messages
(we observe that so far no two Ki(m) vectors are equal, so the suppression
parameter of the PKRMO protocol will remain equal to 0).

If N − f = 2, then all the received messages can be realised. In this case,
within next β seconds period the nodes send S − s realisei(m) packets and
s still unrealised messages originated by them, or K ptri(m) packets with the
use of the PKRM and PKRMO protocols. ��
We also observe that the scenario when all nodes are directly connected (as
in the proof above) is not the only case when the need to send S messages
during a β seconds period may occur. For example, let us assume that at the
beginning N nodes in a network, each disseminating s messages, are divided
into two partitions: first contains all the nodes with even numbers, and second
contains all the nodes with odd numbers. Let the nodes in the two partitions
exchange their messages in such a way, that every node in each partition re-
ceives all other messages in its partition. If f � 12N� − 2, then so far no
message can be realised. Moreover, if any two nodes, one with an odd num-
ber (say p1) and one with an even number (say p2) directly connect (which
must occur in accordance with the network liveness requirement), they exchange
their messages, and each of them has now all S messages: |Unrealised1| =

|Unrealised2| = S, ∀m ∈ Unrealised1 (
∑N

j=1Ki(m)[j] = � 12N� + 1), ∀m ∈
Unrealised2 (

∑N
j=1Ki(m)[j] = 12N� + 1). As it can be seen, no message has

so far been received by at least N − f � N − 12N� − 2 nodes, and thus the two
nodes are required now to broadcast all S messages once every β seconds (until
its realisation).

To illustrate the possibility in the scenario above, the succeeding example
with the use of the simplest PDP protocol is presented.

Example 1. Assuming f = 0, let us consider a system of four hosts (N = 4),
denoted by p1, . . . , p4, and let each node sends a message mi (i = 1, . . . , 4), i.e.
s = 1 and thus S = 4. According to Theorem 1, let β = 4δ and B = 2(β + δ) =
10δ, so that the nodes with direct connectivity would be able to exchange (send
and respond to) four messages. For the sake of presentation simplicity we assume
that direct connections always occur at the beginning of successive β seconds
periods.

Let us consider the following scenario. During the period from t0 to t1 (t1− t0 =
B), the nodes p1 and p2 exchange their messages: p1 receivesm2, and p2 receivesm1.
Simultaneously, the nodes p3 and p4 exchange their messages:m3 andm4. Next, if
during the period from t2 to t3 (t3 − t2 = B) the nodes p2
and p3 experience direct connectivity, they exchange their messages. After β4 p2 re-
ceives for the first time m3 and m4 from p3, while p3 receives for the first time

48 J. Brzeziński, M. Kalewski, and D. Wawrzyniak

m1 andm2 from p2—as shown in Figure 2. Both nodes have now allS = 4 messages,
but no message has so far been received by allN − f = 4 nodes.

Thus, since β5 the nodes p2 and p3 broadcast all S messages, until its realisa-
tion (m1 and m2 must also be received by p4, m3 and m4 must also be received
by p1). At the same time p1 and p4 nodes are required to periodically (once
every β seconds) broadcast their two messages. ��

Fig. 2. Space-time diagrams illustrating the exchange of messages between nodes in
Example 1 (β = 4δ, B = 2(β + δ) = 10δ and βi = βi−1 + β)

One can observe that all the proactive protocols require that every node broad-
casts all its unrealised messages periodically (once every β seconds), even if
no other node is able to receive it—consider p1 and p4 nodes in Figure 2(b).
The PKRM and PKRMO protocols make some optimisation to broadcast only
K ptri(m) packets instead of whole messages, though this requires longer time
of direct connections (at least 3β + 2δ comparing to 2(β + δ)). The PKRMO

protocol uses also the suppression threshold to reduce the number of transmis-
sions, but it only works by observing transmissions of equivalent messages, so on
probability basis (and it may require some tests to set proper α parameter value
in an actual environment). On the other hand, the reactive RDP protocol do not
require constant broadcast of messages, since it depends on the neighbourhood
of a node, but to gain information about node’s neighbours it is necessary to
use some mechanism of constant signalling or beacon messaging e.g. at the MAC
layer, or similar solution. Finally, as we have shown, the minimum time of direct
connectivity between nodes, in case of all four protocols, depends on the total
number of messages that can be disseminated in a network simultaneously, and
thus indirectly on the total number of nodes in a network. This in turn may re-
quire in practise to adjust β configurable parameter when the number of nodes
changes, and in extreme cases can lead to a difficulty in obtaining direct connec-
tions that ensure the liveness property, making the correctness of the protocols
dependent on its parameters.

Time Constraints of Reliable Broadcast Protocols for Ad Hoc Networks 49

5 Conclusions

In this paper we have defined exact model of ad hoc systems and the MANET
liveness property with the use of dynamic sets, analysed the crash-tolerant pro-
tocols presented in [7, 8]. Moreover, we proved that the minimum time of direct
connectivity between nodes and correctness of the protocols depend on the total
number of hosts in a network and on the total number of messages that can be
disseminated by each node concurrently. Thus, further investigation is required
to find improved versions of the proactive protocols, which fulfil BCAST1 and
BCAST2 properties and work correctly when the minimum time of direct con-
nections between nodes allow them to exchange (send and respond to) at least
only two messages, making the correctness of the protocols independent on sys-
tem parameters.

References

1. Barbeau, M., Kranakis, E.: Principles of Ad-hoc Networking, 1st edn. John Wiley
& Sons (April 2007)

2. Gärtner, F.C.: Fundamentals of fault-tolerant distributed computing in asyn-
chronous environments. ACM Computing Surveys 31(1), 1–26 (1999)

3. Gilbert, S., Lynch, N.A.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. SIGACT News 33(2), 51–59 (2002)

4. Guerraoui, R., Rodrigues, L.: Introduction to Reliable Distributed Programming,
1st edn. Springer-Verlag New York, Inc. (April 2006)

5. Liu, S., McDermid, J.A.: Dynamic sets and their application in VDM. In: Proceed-
ings of the 1993 ACM/SIGAPP Symposium on Applied Computing (SAC 1993),
pp. 187–192. ACM (February 1993)

6. Pagani, E., Rossi, G.P.: Providing reliable and fault tolerant broadcast delivery in
mobile ad-hoc networks. Mobile Networks and Applications 4(3), 175–192 (1999)

7. Vollset, E.W.: Design and Evaluation of Crash Tolerant Protocols for Mobile Ad-hoc
Networks. Ph.D. thesis, University of Newcastle Upon Tyne (September 2005)

8. Vollset, E.W., Ezhilchelvan, P.D.: Design and performance-study of crash-tolerant
protocols for broadcasting and supporting consensus in MANETs. In: Proceedings
of the 24th IEEE Symposium on Reliable Distributed Systems (SRDS 2005), pp.
166–178. IEEE Computer Society (October 2005)

Data Transfers on the Fly for Hierarchical
Systems of Chip Multi-Processors

Marek Tudruj1,2 and Łukasz Maśko1

1 Institute of Computer Science of the Polish Academy of Sciences,
ul. Ordona 21, 01–237 Warsaw, Poland

2 Polish–Japanese Institute of Information Technology,
ul. Koszykowa 86, 02–008 Warsaw, Poland

{tudruj,masko}@ipipan.waw.pl

Abstract. Local and global communication between computing cores
is an essential problem of efficient parallel computations in many–core
massively parallel systems based on many Chip Multi–Processor (CMP)
modules interconnected by global networks. The paper presents new
methods for data communication inside and between CMP modules. At
the level of data communication between CMP modules a special net-
work implements communication between CMP module external shared
memories with simultaneous reads on the fly to L2 data caches and main
memories of CMP modules. Similar mechanism improves local commu-
nication between shared memory modules and data caches inside CMPs.

1 Introduction

The interconnect-centric CMP modules design style [1, 2] is now establishing
rules for industrial CMP data communication architecture. In larger CMP pro-
cessors multi-hop on-chip networks [3] are embedded. Hierachical systems of
CMPs where many CMP modules are interconnected by a global data network
constitute interesting architectural solutions which can provide advantages for
parallel computing at the functional and technology levels. At the functional
level CMP module clustering can offer improvements in program parallelization
efficiency and scalability. At the technology levels CMP module clustering can
be a remedy for current VLSI technology limitations existing in large monolithic
multicore processor chips, such as power dissipation, wire delays, signal cross
talks and silicon area space limits [4]. The architectural model of CMP clus-
ters of CMPs can be noticed in current architectural research, which however, is
limited to standard SMP multicore processor architecture [5, 6].

In this paper, we discuss a hierarchical modular structure of many CMP mod-
ules with extensive architectural support for internal CMP core clustering and
and external inter-CMP data communication. Inside CMP modules we propose
dynamic creation of temporary core clusters to provide means for efficient trans-
mission of highly shared data. It is done with the use of special group communi-
cation called reads on the fly, similar to cache injection [8], which was discussed
in the context of CMPs in our earlier papers [9–11]. Reads on the fly reduce

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 50–59, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Data Transfers on the Fly for Hierarchical Systems of CMPs 51

traffic on memory busses and provides direct cache to cache transfers, thus elim-
inating standard use of shared memory. The CMP-based architecture proposed
in this paper offers several novel features comparing current CMP dynamic in-
terconnect technology [7] and our previous works. At the level of internal CMP
data communication, we propose reads on the fly implemented by snooping the
L1-L2 data cache bus, which are much faster than those on the main memory
bus. Reads on the fly are also organized on the L2–main memory busses, which
offers very preloading of L2 data caches. At the level of inter–CMP data com-
munication, we propose data reads on the fly implemented for CMP modules
shared memories. We also propose to use redundant inter-CMP global networks
to support multiple dynamic CMP clusters with data reads on the fly.

The paper is composed of 4 main parts. In the first part, the general system
architecture and reads on the fly on local CMP networks are described. In the
second part, reads on the fly on busses connecting L2 data banks with the CMP
main memory are explained. In the third part, inter–CMP module reads on the
fly are proposed. In the fourth part experimental results are presented.

2 System Architecture and Reads on the Fly in Local
CMP Networks

The proposed parallel multi–CMP system consists of CMP modules intercon-
nected by a global data network, Fig. 1a. A CMP module consists of a number
of processor cores supplied with L1 caches (separate for data and instructions).
All cores can share L2 data cache banks. L1 data caches can be connected to L2
banks through a local data communication network. The block diagram of the
proposed CMP is shown in Fig. 1b. The local data communication network is
a set of L2 bank busses. It allows creation of dynamic core clusters by runtime
connecting/switching of L1 banks to/between the L2 busses. L1 switching and

a) b)

Fig. 1. General system structure (a) and the structure of a CMP module (b)

52 M. Tudruj and Ł. Maśko

L1 to L2 accesses are done under control of bus arbiters. Dynamic core clus-
ters enable advanced group data communication, involving a cluster of cores,
especially useful for shared data transfers. Each core cooperates with several L1
banks (two in the presented experiments) which can be connected to separate
L2 busses, thus enabling a core to belong to more than one dynamic cluster.

Data present on a L2 bus may be simultaneously captured to many L1 core
data caches (reads on the fly) as a result of program requests issued to the L1
cache Bus Request Controller (BRC). Information about data to be captured
contains the starting address, the length (measured in L1 cache blocks) of the
data and the indication of the L1 bank to which data are to be read on the fly. The
BRC snoops the address lines of the L1–L2 busses to which the corresponding
L1 bank is connected and compares the addresses to those stored in the snooping
tables. When a match of the address is discovered, the BRC captures the data
from the bus to the indicated L1 bank. This operation requires synchronization of
the writer with all the readers using a barrier instruction placed in the program.
All L2 cache banks of a CMP module are connected through the L2-M bus
to the local fragment of the distributed memory, shared by all CMP modules
in the system. Programs for the proposed architecture are divided into tasks
for processor cores defined according to the macro data flow graph (MDFG)
representation. The tasks follow a cache-controlled macro data-flow execution
paradigm. It assumes that all data have to be pre-fetched to core’s L1 data
cache before a task begins execution, L1 cache reloading is disabled and results
may be sent from L1 to L2 caches only after a task completes.

3 Reads on the Fly on L2–Memory Busses

Data transfers between shared memory fragments attached to CMP modules
can be done with the use of the global interconnection network. The global
network can be any of dynamic data exchange networks such as a bus or a
crossbar switch. Data transmissions are performed on requests deposed by cores
in the Network Interface Controllers (NIC) of CMP modules. For a global data
transfer, a connection between both CMP modules in the global network must
be organized and the L2-M bus on the destination CMP must be reserved. On
the source CMP the dedicated Memory-to-NIC (M-NIC) bus is used. When the
complete data transfer path is prepared, the data are transmitted from a source
memory to the destination with the intermediate use of NICs of both involved
CMP modules. Such global data communication can be implemented as split–
phase transactions with buffering of data packages in NIC controllers or it can
be done using the wormhole routing without data buffering in NIC units.

When data brought over the global network are written to a CMP module
shared memory, the data can be captured to many L2 banks inside this module
in a single transaction using reads on the fly. This feature extends the read on the
fly concept towards the level of global communication. Such elimination of many
separate data transfers strongly improves pre-fetching of data for computations
performed by a given core or core clusters.

Data Transfers on the Fly for Hierarchical Systems of CMPs 53

Fig. 2. Global communication infrastructure between CMP modules

To implement reads on the fly during CMPs memory to memory global data
transfers, a Bus Request Controller (BRC) is provided in each L2 bank. An L2
bank BRC task is to store read on the fly requests sent by cores and then to
snoop the L2 bus to capture data to L2 if the match of addresses occurs. A
distant memory transaction requested for a CMP can be a read or write. The
write has to be synchronized with read on the fly requests deposed in BRCs of all
involved L2 banks by barriers executted using a Global Synchronization Path.
If the distant memory transaction is a read, then the read on the fly to L2 takes
place in the CMP of the transmission initializing core and the barrier activates
the distant CMP write. If the transaction is a distant write then the read on the
fly to L2 takes place in the distant CMP, which implies, that the global barrier
must activate a read in the CMP memory of the initializing core.

To enable automatic design of programs for the proposed architecture with op-
timized data communication control an extended macro data flow graph
(EMDFG) representation is proposed. Compared to the standard macro data
flow graph program representation, some additional nodes have been introduced:

a) b) c)

Fig. 3. Simple EMDF representation of the graph (a), EMDFG for reads on the fly:
to L1 in CMP1and L2 in CMP2 (b) and to L1 in CMP1 and to L2, L1 in CMP2 (c)

54 M. Tudruj and Ł. Maśko

W2 – write of data from core’s data cache L1 to L2, WM – write of some data
from the L2 to the shared memory of the CMP module, MMW – write from
the shared memory of a CMP to the memory of another CMP, RqL1 – deposing
read on the fly request in a BRC of a L1 bank, RL1 – read on the fly from the
L1 bus, RqL2 – deposing a read on the fly request to a BRC of a L2 bank, RL2
– read on the fly from the L2-memory bus to L2, B – a barrier, SW – switching
a core’s data cache bank between clusters – i.e. between L2 buses.

The EMDFG will be illustrated on an example in which a macro node T0
assigned to core C2 in CMP1 module distributes data to tasks T1-T4 assigned
to cores C1-C4 in modules CMP1 and CMP2 (Fig. 3). Fig. 3a represents the
respective EMDFG without reads on the fly. Fig. 3b represents the respective
EMDFG with reads on the fly to L1 in CMP1 and to L2 in CMP2. L1 caches
of C1 and C2 get connected to the same L2 bank bus in CMP1 (SW1, SW2).
Task T0 writes its results from L1 to the L2 bank in CMP1 after fulfillment of
the barrier B1 by read on the fly request (RqL1) issued by task T1. T1 reads
data on the fly while they are written by T0 to L2. T0 passes data to T2 in L1.
These data are next sent from L2 to memory (WM). Next, some of the data are
sent to the CMP2 memory via the global network (MMW) after the barrier B2
is fulfilled by read on the fly requests to L2 (RqL2) in CMP2. When the data are
written to the CMP2 memory (via NIC buffer) over the "L2-M" bus in CMP2,
they are read on the fly to two CMP2 L2 cache banks (RL2). After the data are
read to L2 they are pre-fetched (RL1) to L1 caches of cores C3, C4 in CMP2.

A similar CMP1 to CMP2 data transfer but with data pre-fetching to L1
banks of cores C3 and C4 in CMP2 is shown in Fig 3c. When the data are
written to the CMP2 memory by the "L2-M" bus, they are read on the fly to
one CMP2 L2 cache bank (RL2). Next, a read on the fly to L1 of core C4 is
organized. The L1 caches of C3 and C4 were earier connected to the same L2
bank bus in CMP2 (SW3, SW4). Barrier B3 conditions pre-fetching of data from
L2 to L1 of core C4. When the data are read from L2 to L1 bank of core C3
they are read on the fly to L1 of core C4.

4 Data Reads on the Fly during Global Inter–CMP
Transfers

Efficient data prefetching for parts of programs executed by many CMPs working
in parallel is crucial for the overall performance of parallel applications. Reads on
the fly applied at the level of main memory fragments of CMPs can significantly
reduce application program execution time. The global network used to intercon-
nect CMP modules (we assume – a special crossbar switch) has to be designed
to enable a data posting operation for sets of CMP modules in the system, see
Fig. 4. The data posting is done as a result of the memory to memory multicast
or broadcast on the global network (MMM or MMB nodes in EMDFG) placed
in the application program. The data are exposed by the NIC unit of a sender
CMP as a series of L2 data blocks accompanied by block starting addresses.
The posting has to be synchronized with all receiver CMPs before the sender

Data Transfers on the Fly for Hierarchical Systems of CMPs 55

Fig. 4. System architecture for reads on the fly for many CMP modules

NIC reads data from memory and sends to the global nework. It is done by a
barrier, which is fulfilled by respective read on the fly requests deposed in the
BRC blocks of the NIC units. BRCs in all participating NICs snoop the address
parts of packets coming from the global network and selectively capture the data
for NICs to send them next to the CMPs main memories.

The EMDFG for reads on the fly to memories of a set of CMPs is shown in
Fig. 5. In this figure task T1 on core C1 in CMP1 transfers data with the use
of reads on the fly for tasks T2-T5 in CMP2 and CMP3. First, T1 writes its
L1 contents to L2 (W2) and then to the main memory (WM). In Fig 5a, the
C1 thread is synchronized (barrier B1) with the deposals to NIC BRCs of data
read on the fly to memory requests (MMRq) in CMP2 and CMP3. When B1
is fulfilled, the NIC of CMP1 exposes the data on the global network (MMM –
Memory to Memory Multicast). When the data reach the NICs of CMP2 and
CMP3, they are read to their data memories. Next, the data are pre-fetched to
L2 (RL2) and then to L1 (RL1) by separate pre-fetch operations. Fig. 5b presents
the EMDFG for reads on the fly to memories of CMP2 and CMP3 combined
with reads on the fly to L2 in CMP2 and CMP3, and also with a read on the fly
to L1 cache for core C5 in CMP3. In this graph, data read on the fly requests
to CMP2 and CMP3 data memories (MMRq) are synchronized by a common
barrier B1 with the read on the fly requests to two L2 banks in CMP2 (RqL2)
and one L2 bank in CMP3 (RqL2). In CMP2, some data are pre-fetched from
the L2 banks to L1s in C2 and C3 cores in the standard way (RL1). In CMP3,
the data are read from a bank of L2 to L1 of C4 in the standard way with a
simultaneous read on the fly to L1 of C5. The L1 caches of C4 and C5 in CMP3
have been earlier connected to the source L2 bank bus (SW1, SW2).

Global data communication in the proposed multi-CMP system requires set-
ing of link connections between many pairs of CMPs. The inter-CMP connection
setting is a multi-phase operation performed under control of NIC controllers
at both sides of the global network. To eliminate the connection setting time,
the look-ahead reconfiguration principle can be applied with the use of redun-
dant global networks [12]. With the look-ahead reconfiguration, it is possible to

56 M. Tudruj and Ł. Maśko

a) b)

Fig. 5. EMDFG for reads on the fly to many CMPs (a) and combined reads on the fly
to CMP2 and CMP3 with simultaneous reads on the fly to L2 and L1 caches (b)

preserve and use some inter-CMP connections for a longer time than that of
a single global data transfer. A possible fsystem structure for organizing the
look-ahead configured inter-CMP connections is shown in Fig. 6. In this struc-
ture, two global networks are used to house connections between different pairs
of CMPs. A CMP Link Switch is introduced to switch each CMP between the
global networks to the look-ahead prepared connections. Connections inside the
global networks and the control of the CMP Link Switch are organized by a
Switch Controller on requests coming to CMP NIC units from application pro-
grams. The Switch Controller performs the necessary synchronization of CMP
switching with execution of programs. This architecture seems to be especially
interesting for CMP-level data reads on the fly organized in dynamically created
clusters of CMP modules. By increasing the number of used global switches,
we can organize a number of dynamic CMP clusters in which many global data
transfer transations on the fly can be performed in parallel.

Fig. 6. Multiple global network architecture for global communication with look–ahead
reconfiguration

Data Transfers on the Fly for Hierarchical Systems of CMPs 57

5 Experimental Results

The influence of reads on the fly on execution time of numerical applications was
verfied by simulation of square matrix parallel multiplication based on matrix
decomposition into stripes. We have measured execution time of the initial phase
of the algorithm, where data are distributed between SoC modules and further
delivered to cores’ data caches, and the whole execution time. We have compared
it to execution of the same program graph in a system without any reads on
the fly. We have analyzed reads on the fly (OTF) for: data transfers from L2
to L1 banks, transfers from shared memory to L2 banks and global transfers
between CMP memory modules. 6 configurations were tested in total: OTF
only between L2 and L1 (denoted as L1), OTF only between shared memory
and L2 banks (denoted as L2), OTF only between CMP memories (denoted as
Global) and their 3 combinations: L1+L2, L2+Global and L1+L2+Global. The
simulations were done using a simulator written in C/C++. It was cycle-accurate
for communication operations in the assumed system architecture. Matrix sizes
from 16 to 1024 were considered.

Figure 7a shows minimal, maximal and average value (over all examined ma-
trix sizes) of the obtained improvement for the data distribution phase, which
consists of data transfer to shared memory of a CMP module, then from this
memory to L2 cache and finally from L2 to L1 cache. We assume, that L1 cache
memory is large enough to hold both parts of matrices and space for results.
We can see, that data transfers on the fly on internal busses inside a CMP
have marginal influence on program execution time, compared to the influence
on global data transfers. It is caused by large data volumes transferred via the
global network comparing to transfers on local CMP networks. In a standard
system, the same parts of matrices must be transferred many times to CMPs.

a)

b)

Fig. 7. Reduction factor of initial data transfer time for different versions of reads on
the fly, compared to standard communication

58 M. Tudruj and Ł. Maśko

a)

b)

Fig. 8. Parallel speedup and efficiency with global reads on the fly for different numbers
of cores and matrix sizes

With reads on the fly, it needs a single network transmission. A big discrepancy
between minimal and maximal improvement, when reads on the fly were used
for global communication, is shown in Fig. 7b. Larger improvement for small
matrix sizes results from reduction of constant transmission overheads such as
startup time and confirmation after each packet, which have bigger impact on
small transfers. For bigger matrix sizes the impact of these overheads for both
standard and OTF transmissions decreases, therefore the speedup is smaller.

We have also compared parallel execution of the whole program graph with
reads on the fly to serial execution. Three different system configurations were
used, which implied the grain of computations: 8, 64 and 512 cores. The system
contained 4, 16 and 64 CMPs with 2, 4 and 8 cores, respectively. The obtained
parallel speedup and efficiency are presented in Fig. 8. Execution speedup de-
pends on computation grain. For small matrix sizes, smaller configurations be-
have better. Increasing the number of cores decreases transferred data grain,
therefore the impact of data transfer overhead increases, reducing computation
efficiency. For bigger matrices we can better exploit parallelism of computations
by employing a higher number of parallel cores keeping data grain at reasonable
level, thus obtaining better overall speedup.

6 Conclusions

New architectural solutions for efficient data communication for a system of
globally interconnected CMP modules has been presented. Communication is
based on reads on the fly, applied both for local data transfers inside CMP
modules between hierarchical data caches and for global data transfers between
distributed shared memory modules. The proposed mechanisms allow parallel
data reads on the fly to L2 memory banks during transfers to main memory.
They also enable multiple parallel transfers to main memories of many CMPs and

Data Transfers on the Fly for Hierarchical Systems of CMPs 59

eliminate transfers of the same data. It requires a special but viable design of the
global network. The simulation results show that the proposed solutions are very
efficient for pre-fetching data to memories and data caches. They are especially
profitable for global communication, when the volume of shared data is big
and the data must be transmitted to many CMPs at the same time, for instance
during initial data loading. Programs for the proposed system are built following
an extended macro data flow graph representation and cache controlled execution
paradigm. An automatic scheduler which transforms program standard macro
data flow graphs into optimized extended versions is under construction.

References

1. Owens, J.D., et al.: Research Challenges for On-Chip Interconnection Networks.
IEEE MICRO, 96–108 (September-October 2007)

2. Kundu, S., Peh, L.S.: On-Chip Interconnects for Multicores. IEEE MICRO, 3–5
(September-October 2007)

3. Ye, T.T., et al.: Packetization and routing analysis of on-chip multiprocessor net-
works. Journal of Systems Architecture 50, 81–104 (2004)

4. Kumar, R., Zyuban, V., Tullsen, D.M.: Interconnections in Multi–Core Architec-
tures: Understanding Mechanisms, Overheads and Scaling. SIGARCH Computer
Architecture News 33(2) (May 2005)

5. Wu, X., Taylor, V., Lively, C., Sharkawi, S.: Performance Analysis and Optimiza-
tion of Parallel Scientific Applications on CMP Cluster Systems. Scalable Com-
puting: Practice and Experience 10(1) (2009)

6. Chi, Z., Xin, Y., Srinivasan, A.: Processor affinity and MPI performance on
SMP-CMP clusters. In: Parallel and Distributed Processing, Workshops and Phd
Forum, IPDPSW 2010, April 19-23, pp. 1–8. IEEE CS Press (2010)

7. Shen, J.-S., Hsiung, P.-A. (eds.): Dynamic Reconfigurable Network-on-Chip De-
sign, Innovations for Computational Processing and Communication. IGI Global
(2010)

8. Milenkovic, A., Milutinovic, V.: Cache Injection: A Novel Technique for Tolerat-
ing Memory Latency in Bus-Based SMPs. In: Bode, A., Ludwig, T., Karl, W.C.,
Wismüller, R. (eds.) Euro-Par 2000. LNCS, vol. 1900, pp. 558–566. Springer, Hei-
delberg (2000)

9. Tudruj, M., Maśko, Ł.: Dynamic SMP Clusters with Communication on the Fly
in NoC Technology for Very Fine Grain Computations. In: ISPDC 2004, Cork, pp.
97–104. IEEE CS Press (July 2004)

10. Tudruj, M., Maśko, Ł.: Towards Massively Parallel Computations Based on Dy-
namic SMP Clusters wih Communication on the Fly. In: ISPDC 2005, Lille, France,
pp. 155–162. IEEE CS Press (July 2005)

11. Tudruj, M., Maśko, Ł.: Dynamic SMP Clusters with Communication on the Fly
in SoC Technology Applied for Medium-Grain Parallel Matrix Multiplication. In:
PDP 2007, Naples, Italy, pp. 270–277. IEEE CS Press (February 2007)

12. Laskowski, E., Maśko, Ł., Tudruj, M., Thor, M.: Program Execution Control in a
Multi CMP Module System with a Look-Ahead Configured Global Network. In:
ISPDC 2009, Lisbon, pp. 193–204. IEEE CS Press (July 2009)

New Level-3 BLAS Kernels

for Cholesky Factorization

Fred G. Gustavson1, Jerzy Waśniewski2, and José R. Herrero3

1 IBM Research, Emeritus, Ume̊a University
2 Technical University of Denmark

3 Universitat Politècnica de Catalunya, BarcelonaTech
fg2935@hotmail.com, jw@imm.dtu.dk, josepr@ac.upc.edu

Abstract. Some Linear Algebra Libraries use Level-2 routines during
the factorization part of any Level-3 block factorization algorithm. We
discuss four Level-3 routines called DPOTF3, a new type of BLAS, for
the factorization part of a block Cholesky factorization algorithm for use
by LAPACK routine DPOTRF or for BPF (Blocked Packed Format)
Cholesky factorization. The four routines DPOTF3 are Fortran routines.
Our main result is that performance of routines DPOTF3 is still increas-
ing when the performance of Level-2 routine DPOTF2 of LAPACK starts
to decrease. This means that the performance of DGEMM, DSYRK, and
DTRSM will increase due to their use of larger block sizes and also to
making less passes over the matrix elements. We present corroborating
performance results for DPOTF3 versus DPOTF2 on a variety of com-
mon platforms. The four DPOTF3 routines are based on simple register
blocking; different platforms have different numbers of registers and so
our four routines have different register blockings. Blocked Packed For-
mat (BPF) is discussed. LAPACK routines for POTRF and PPTRF
using BPF instead of full and packed format are shown to be trivial
modifications of LAPACK POTRF source codes. Upper BPF is shown
to be identical to square block packed format. Performance results for
DBPTRF and DPOTRF for large n show that routines DPOTF3 does
increase performance for large n.

1 Introduction

We consider Cholesky block factorizations of a symmetric positive definite matrix
where the data has been stored using Block Packed Format (BPF) [10, 11, 2], [13],
[Algorithm 865]. We will especially examine the case where the matrix A is block
factored into UTU , where U is an upper triangular matrix. Upper BPF is also
Square Block (SB) packed format; see Section 1.1 for details. We will also show
in Section 1.1 that the implementation of BPF is a restructured form of the
LAPACK factorization routines PPTRF or POTRF. For PPTRF we will need
slightly more storage [4]. Hence matrix-matrix operations that take advantage
of Level-3 BLAS can be used and thereby higher performance [5, 11] is achieved.
This paper focuses on the replacement of LAPACK routines PPTF2 or POTF2
routines, which is based on using Level-2 BLAS operations, by routines POTF3.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 60–69, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

New Level-3 BLAS Kernels for Cholesky Factorization 61

POTF3 are Level-3 Fortran routines that use forms of register blocking [12]
based on machine characteristics.

The performance numbers presented in Section 3 bear out that the Level-
3 based factorization Fortran routines POTF3 for the factorization part of
Cholesky factorization gives improved performance over the traditional Level-2
POTF2 routines used by LAPACK. The gains come from the use of square

block (SB) format and the use of Level-3 register blocking. Besides the gains
one obtains by use of the POTF3 routines one gets gains from using Level-3
BLAS routines GEMM, SYRK, TRSM. In Fig. 1 we compare a right looking
version of DPOTRF with a right looking SBPF implementation of Cholesky fac-
torization [11]. These gains, especially for packed routines, suggests a change of
direction for traditional LAPACK packed software.

10
1

10
2

10
3

0

100

200

300

400

500

600

700

800

matrix order N

MF
lop

s

[Square Blocked Packed Cholesky , DPOTRF] vs.N

Fig. 1. Performance of Right Looking SBPF (plot symbol ◦) and DPOTRF (plot
symbol �) Cholesky factorization algorithms on an IBM POWER3 of peak rate 800
MFlops. DPOTRF calls DPOTF2 and ESSL BLAS. SBPF Cholesky calls DPOTF3
and BLAS kernel routines.

A main point of our paper is that the Level-3 Fortran routines POTF3 allow
one to increase the block size nb used by a traditional LAPACK routine such
as POTRF. Our performance numbers show that performance starts degrading
at block size 64 for POTF2. However performance continues to increase past
block size 64 to 100 for our new Level-3 Fortran routines POTF3. Such an
increase in nb will have a good effect on the overall performance of POTRF
as the Level-3 BLAS TRSM, SYRK and GEMM will perform better for two
reasons. The first reason is that Level-3 BLAS perform better when the k = nb
dimension of GEMM is larger. The second reason is that Level-3 BLAS are
called less frequently by a ratio of increased block size of the Level-3 Fortran
routines POTF3 over the block size used by Level-2 routine POTF2. Calling
Level-3 BLAS less frequently does not mean less data copying will be done.
The data copying amount remains the same. However, less overhead occurs by
calling less frequently and also, the data copying can perhaps be done more

62 F.G. Gustavson, J. Waśniewski, and J.R. Herrero

efficiently. It is beyond the scope of this short paper to conclusively demonstrate
this assertion. However, experimental verifications of this assertion are given by
our performance results and also by the performance results in [2]. The recent
paper by [20] also demonstrates that our assertions are correct; he gives both
experimental and qualitative results.

One variant of our BPF, lower BPF, is not new. It was used by [4] as the basis
for packed distributed storage used by ScaLAPACK. This storage layout consist
of a collection of block columns; each of these has column size nb. Each block
column is stored in standard column major (CM) format. In this variant one does
a LLT Cholesky factorization, where L is a lower triangular block matrix. Note
that lower BPF is not a preferred format as it does not give rise to contiguous SB.
Another main point of our paper is that we can transpose each block column to
obtain our upper triangular formulation which is then a SB format data layout.
These layouts use about the same storage as LAPACK PPTRF routines. These
layouts can also use Level-3 BLAS routines: their performance is about the same
as LAPACK POTRF routines and hence they do not have the performance of
LAPACK PPTRF routines. The field of new data structures dates back at least
to 1997. Space does not allow a detailed listing of this large area of research. We
offer a survey paper which partially covers the field up to 2004 [6]. After that
there are more papers. We give two [16, 17].

1.1 Introduction to BPF

The purpose of packed storage for a matrix is to conserve storage when that
matrix has a special property. Symmetric and triangular matrices are two exam-
ples. In designing the Level-3 BLAS, [5] did not specify packed storage schemes
for symmetric, Hermitian or triangular matrices. The reason given at the time
was “such storage schemes do not seem to lend themselves to partitioning into
blocks ... Also packed storage is required much less with large memory machines
available today”. The BPF algorithms demonstrates that packing and Level-3
BLAS are compatible resulting in no performance loss. As memories continue
to get larger, the problems that are solved get larger: there will always be an
advantage in saving storage.

We pack a symmetric matrix by using BPF where each block is held contigu-
ously in memory [11, 2]. This usually avoids the data copies, see [12], that are
inevitable when Level-3 BLAS are applied to matrices held in standard column
major (CM) or row major (RM) format in rectangular arrays. Note, too, that
many data copies may be needed for the same submatrix in the course of a
Cholesky factorization [10–12].

We show an example of lower and upper BPF in Fig. 2 with blocks of size
2 superimposed. Fig. 2 shows where each matrix element is stored within the
array that holds it. The rectangles of Fig. 2 are suitable for passing to the BLAS
since the stride between elements of each rectangle is uniform. In Fig. 2a we
do not further divide each rectangle into SB as these SB are not contiguous as
they are in Fig. 2b. BPF consists of a collection of N = �n/nb� rectangular
matrices concatenated together. The size of the ith rectangle is n− i · nb by nb

New Level-3 BLAS Kernels for Cholesky Factorization 63

for i = 0, . . . , N − 1. Consider the ith rectangle. Its LDA is either i · nb or nb. In
Figs. 2ab the LDA’s are n−i ·nb, nb. The rectangles in Fig. 2a are the transposes
of the rectangles in Fig. 2b and vice versa. The rectangles of Fig. 2b have a major
advantage over the rectangles of Fig. 2a: the ith rectangle consists of N−i square
blocks, SB. This gives two dimensional granularity to GEMM for upper BPF
which lower BPF cannot possess. We therefore need a way to get from a lower
layout to an upper layout in-place. If the matrix order is n and the block size is
nb, and n = N · nb then this rearrangement may be performed very efficiently
in-place by a “vector transpose” routine [14, 15]. Otherwise, the rearrangement,
if done directly, becomes very costly. Therefore, this condition becomes a crucial
condition. So, when the order is not an integer multiple of the block size, we
pad the rectangles so the ith LDA is (N − i) · nb and hence a multiple of nb. We
further assume that nb is chosen so that a block fits comfortably into a Level-1
or Level-2 cache. The LAPACK ILAENV routine may be called to set nb.

2a. Lower Blocked Packed Format
0
1 7
2 8
3 9

∣∣∣∣1213 17
4 10
5 11

∣∣∣∣14 18
15 19

∣∣∣∣2021 23

2b. Upper Blocked Packed Format
0 2

3

∣∣∣∣ 4 6
5 7

∣∣∣∣ 8 10
9 11

12 14
15

∣∣∣∣16 18
17 19

20 22
23

Fig. 2. Lower Blocked Column Packed and Upper Square Blocked Packed Formats

l = �n/nb	
do i = 1, l

Call of Level-3 BLAS SYRK i− 1 times
Call of LAPACK subroutine POTF2

Call of Level-3 BLAS GEMM i− 1 times
Call of Level-3 BLAS TRSM

end do

Fig. 3. LAPACK POTRF algorithms for BPF of Fig. 2

We factorize the matrix A as laid out in Figs. 2 using LAPACK’s POTRF
routines trivially modified to handle the BPF of Figs. 2; see Fig. 3. This trivial
modification is shown in Fig 3 where one needs to call SYRK and GEMM
i − 1 times at factor stage i because the block rectangles representations do
not have uniform stride across rectangles. Additionally, for upper BPF only,
one can call GEMM (n − i − 1)(i − 1) times, as described above, where each
call is a SB GEMM update. This approach was used by a LAPACK multicore
implementation [19].

64 F.G. Gustavson, J. Waśniewski, and J.R. Herrero

2 The POTF3 Routines

POTF3 uses a modified version of LAPACK POTRF. Hence it is very different
from POTF2. POTF3 only works well on a contiguous SB that fits into a L1 or
L2 cache. It needs to use a tiny block size kb. We chose kb = 2. Blocks of this size
are called register blocks. This block contains four elements of A; we load them
into four scalar variables t11, t12, t21, t22. This alerts most compilers to
put and hold the small register block in registers. For a diagonal block ai:i+1,i:i+1

we load it into four registers t11, t12, t21, t22, we update it with SYRK,
we factor it, and we store it back into ai:i+1,i:i+1 as ui:i+1,i:i+1. This combined
operation is called fusion by the compiler community. For an off diagonal block
ai:i+1,j:j+1 we load it, we update it with GEMM, we scale it with TRSM, and
we store it. This again is an example of fusion. In the scaling operation we replace
divisions by ui,i, ui+1,i+1 by reciprocal multiplies. The two reciprocals are saved
in two registers during the SYRK factor fusion computation. Fusion, as used
here, avoids procedure call overheads for very small computations; in effect, we
replace all calls to BLAS by in-line code. See [8, 9, 7] for related remarks on this
point. The key loop in the GEMM TRSM fusion computation is the GEMM
loop.

Note that POTRF cannot use fusion because it must explicitly call Level-3
BLAS. However, these calls are at the nb block size level or larger area level; the
calling overhead is therefore negligible.

In another POTF3 version we accumulate into a vector block of size 1×4
in the inner GEMM loop. Each execution of the vector loop involves the same
number of floating-point operations (8) as for the 2×2 case; it requires 5 reals
to be loaded from cache instead of 4.

On most of our processors, faster execution was possible by having an inner
GEMM loop that updated both Ai,j and Ai,j+1. The scalar variables aki and
aki1 need only be loaded once, so we now have 6 memory accesses and 16
floating-point operations. This loop uses 14 local variables, and all 14 of them
should be assigned to registers.

We found that this algorithm gave very good performance, see Section 3. The
implementation of this version of POTF3 is available in the TOMS Algorithm
paper [13],[Algorithm 865].

2.1 POTF3 Routines Can Use a Larger Block Size nb

The domain of A for Cholesky factorization is an upper triangle for POTF3.
This means that only half of the cache block of size nb2 is accessed by POTF3.
Furthermore, in the outer loop of POTF3 at stage j only locations L(j) =
j(nb − j) of the triangle are accessed where 0 ≤ j < nb. The function L has a
maximum value of nb2/4 at j = nb/2. Hence, during execution of POTF3, only
half of the cache is used and the maximum cache usage at any time instance is
one quarter of the cache size. This means that POTF3 can use a larger block
size before its performance will start to degrade. This fact is true for all four
POTF3 computations and this is what our experiments showed: As nb increased

New Level-3 BLAS Kernels for Cholesky Factorization 65

from 64 to 100 the performance of POTF3 increased. POTF2 performance, on
the other hand, started degrading as nb increased beyond 64.

Furthermore, and this is our main result, as nb increases so does the k dimen-
sion of GEMM increase as k = nb. It therefore follows that overall performance
of POTRF increases: GEMM performance is the key performance component
of POTRF. See the papers of [2, 20] where performance evidence of this asser-
tion is given.

3 Experimental Results

We consider matrix orders of 40, 64, and 100 since these orders will typically
allow the computation to fit comfortably in Level-1 or Level-2 caches.

We do our calculations in DOUBLE PRECISION. The DOUBLE PRECI-
SION names of the subroutines used in this section are DPOTRF and DPOTF2
from the LAPACK library and four simple Fortran Level-3 DPOTF3 routines de-
scribed below. LAPACK DPOTF2 is a Fortran routine that calls Level-2 BLAS
routine DGEMV and it is called by DPOTRF. DPOTRF also calls Level-3
BLAS routines DTRSM, DSYRK, and DGEMM as well as LAPACK subroutine

Table 1. Performance in Mflop/s of the Kernel Cholesky Algorithm. Comparison
between different computers and different versions of subroutines.

Mat Ven Recur dpotf2 2x2 w. fma 1x4 2x4 2x2
ord dor sive 8 flops 8 flops 16 flops 8 flops

lap lap lap fac lap fac lap fac lap fac lap fac

1 2 3 4 5 6 7 8 9 10 11 12 13

Newton: SUN UltraSPARC IV+, 1800 MHz, dual-core, Sunperf BLAS
40 759 547 490 437 1239 1257 1004 1012 1515 1518 1299 1317
64 1101 1086 738 739 1563 1562 1291 1295 1940 1952 1646 1650

100 1264 1317 1228 1094 1610 1838 1505 1541 1729 2291 1641 1954

Freke: SGI-Intel Itanium2, 1.5 GHz/6, SGI BLAS
40 396 652 399 408 1493 1612 1613 1769 2045 2298 1511 1629
64 623 1206 624 631 2044 2097 1974 2027 2723 2824 2065 2116

100 1341 1906 1317 840 2790 2648 2985 3491 3238 4051 2796 2668

Battle: 2×Intel Xeon, CPU @ 1.6 GHz, Atlas BLAS
40 333 355 455 461 818 840 781 799 806 815 824 846
64 489 483 614 620 1015 1022 996 1005 1003 1002 1071 1077

100 883 904 883 801 1093 1191 1080 1248 1081 1210 1110 1284

Nala: 2×AMD Dual Core Opteron 265 @ 1.8 GHz, Atlas BLAS
40 350 370 409 397 731 696 812 784 773 741 783 736
64 552 539 552 544 925 909 1075 1064 968 959 944 987

100 710 686 759 651 942 1037 972 1231 949 1093 950 1114

Zoot: 4×Intel Xeon Quad Core E7340 @ 2.4 GHz, Atlas BLAS
40 497 515 842 844 1380 1451 1279 1294 1487 1502 1416 1412
64 713 710 1143 1146 1675 1674 1565 1565 1837 1841 1674 1674

100 1232 1234 1327 1696 1533 2294 1503 2160 1563 2625 1530 2285

66 F.G. Gustavson, J. Waśniewski, and J.R. Herrero

ILAENV. The purpose of ILAENV is to set the block size used by DPOTRF. As
described above the four Fortran routines DPOTF3 are a new type of Level-3
BLAS called FACTOR BLAS.

Table 1 contain comparison numbers in Mflop/s. There are results for five
computers inside the table: SUN UltraSPARC IV+, SGI - Intel Itanium2, Intel
Xeon, AMD Dual Core Opteron, and Intel Xeon Quad Core.

The table has thirteen columns. The first column shows the matrix order.
The second column contains results for the vendor optimized Cholesky routine
DPOTRF and the third column has results for the Recursive Algorithm [1].

The columns from four to thirteen contain results when DPOTF2 and the four
Fortran routines DPOTF3 are used within DPOTRF and are used by themselves.
In column 4, DPOTF2 is called by DPOTRF, and in columns 6, 8, 10, 12 the four
DPOTF3 routines are called by DPOTRF. We now denote these four routines
by suffixes a,b,c,d. In column 5 DPOTF2 is used alone. In columns 7, 9, 11, 13
routines DPOTF3(a,b,c,d) are used alone.

There are five Fortran routines used in this study besides DPOTRF:

1. The LAPACK routine DPOTF2: The fourth and fifth columns have results
of using routine DPOTRF to call DPOTF2 and routine DPOTF2 directly:
these results are tabulated in the fourth and fifth columns respectively.

2. The 2×2 blocking routine DPOTF3a specialized for the operation FMA
(a×b+ c) using seven floating point (fp) registers (this 2×2 blocking
DPOTF3a routine replaces routine DPOTF2): these results are tabulated
in the sixth and seventh columns respectively.

3. The 1×4 blocking routine DPOTF3b is optimized for the case mod(n, 4) =
0 where n is the matrix order. It uses eight fp registers. This 1×4 blocking
routine DPOTF3b replaces routine DPOTF2: these results are tabulated in
the eighth and ninth columns respectively.

4. The 2×4 blocking routine DPOTF3c uses fourteen fp registers. This 2×4
blocking routine DPOTF3c replaces routine DPOTF2: these results are tab-
ulated in the tenth and eleventh columns respectively.

5. The 2×2 blocking routine DPOTF3d . It is not specialized for the FMA
operation and uses six fp registers. This 2×2 blocking routine DPOTF3d
replaces DPOTF2: these performance results are tabulated in the twelfth
and thirteenth columns respectively.

Before continuing, we note that Level-3 BLAS will only be called in columns 4,
6, 8, 10, 12 for block size 100. This is because ILAENV has set the block size to
be 64 in our study. Hence, Level-3 BLAS only have effect on our performance
study in these five columns.

It can be seen that the DPOTF3c code with submatrix blocks of size 2×4,
see column eleven, is remarkably successful for the Sun (Newton), SGI (Freke),
and Quad Core Xeon (Zoot) computers. For all these three platforms, it signifi-
cantly outperforms the compiled LAPACK code and the recursive algorithm. It
outperforms the vendor’s optimized codes. The 2×2 DPOTF3d code in column
thirteen, not prepared for the FMA operation, is superior on the Intel Xeon

New Level-3 BLAS Kernels for Cholesky Factorization 67

(Battle) computer. The 1×4 DPOTF3b in column nine is superior on the Dual
Core AMD (Nala) platform. All the superior results are colored in red.

These performance numbers reveal a significant innovation about the use of
Level-3 Fortran DPOTF3a,b,c,d codes over use of Level-2 LAPACK DPOTF2
code. We demonstrate why in the next two paragraphs.

The results of columns 10 and 11 are about the same for n = 40 and n = 64.
For column 10 some additional work is done. DPOTRF calls ILAENV which
sets nb = 64. It then calls DPOTF3c and returns after DPOTF3c completes.
For column 11 only DPOTF3c is called. Hence column 10 takes slightly more
time than column 11. However, in column 10, for n = 100 DPOTRF via calling
ILAENV still sets nb = 64 and then DPOTRF does a Level-3 blocked computa-
tion. For example, take nb = 100. With nb = 64 DPOTRF does a sub blocking of
nb sizes equal to 64 and 36. Thus, DPOTRF calls Factor(64), DTRSM(64,36),
DSYRK(36,64), and Factor(36) before it returns. The two Factor calls are to
the DPOTF3c routine. However, in column 11, DPOTF3c is called only once
with nb = 100. In columns ten and eleven performance is always increasing over
doing the Level-3 blocked computation of DPOTRF. This means the DPOTF3c
routine is outperforming DTRSM and DSYRK.

Now, take columns four and five. For n = 40 and n = 64 the results are again
about equal for the reasons cited above. For n = 100 the results favor DPOTRF
with Level-3 blocking except for the Zoot platform. The DPOTF2 performance
is decreasing relative to the blocked computation as n increases from 64 to 100.
The opposite result is true for most of the columns six to thirteen, namely
DPOTF3a,b,c,d performance is increasing relative to the blocked computation
as n increases from 64 to 100. For Zoot in column 5 DPOTF2 is 4 way parallel.
This is the reason why it is outperforming LAPACK blocked at n=100.

An essential conclusion is that the faster four Level-3 DPOTF3 Fortran rou-
tines really help to increase performance. Here is why. Take any n for DPOTRF.
DPOTRF can choose a larger block size nb and it will do a blocked computation
with this block size. All four subroutines of DPOTRF will perform better over
calling DPOTRF with a smaller block size which must be the case if DPOTF2
is used instead. The paper [2] gives large n performance results for BPHF where
nb was set larger than 64. The results for nb = 100 were much better. The above
explanation explains why this had to be the case.

These results emphasize that LAPACK users should use ILAENV to set nb
based on the speeds of Factorization, DTRSM, DSYRK and DGEMM. This
information is part of the LAPACK User’s guide but many users do not do this
finer tuning. The code for the 1×4 DPOTF3b subroutine is available from the
companion paper [13],[Algorithm 865]. The code for POTRF and its subroutines
is available from the LAPACK package [3].

4 Conclusions

We have shown that four simple Fortran codes DPOTF3i produce Level-3
Cholesky factorization routines that perform better than the Level-2 LAPACK

68 F.G. Gustavson, J. Waśniewski, and J.R. Herrero

DPOTF2 routine. We have also shown that their use enables LAPACK rou-
tine DPOTRF to increase its block size nb. Since nb is the k dimension of the
GEMM, SYRK and TRSM Level-3 BLAS, their SMP performance will im-

prove and hence the overall performance of SMP POTRF will improve. We have
provided explanations and verified them with performance studies. Our results
corroborate results that were observed by [2, 20]. It was seen that DBPTRF
performance was less sensitive to the choice of one nb for an entire range of n
values. For DPOTRF using DPOTF2 one needed to increase nb as n increased
for optimal performance whereas for DBPTRF using DPOTF3i usually a single
nb value gave uniformly good performance.

We used BPF format in this paper. It is a generalization of standard packed
format. We discussed lower BPF format which consisted ofN = n/nb rectangular
blocks whose LDA’s were n = j ·nb for 0 ≤ j < N . We showed that upper packed
format had the additional property that its rectangular blocks were really a
multiple number of i = N − j square blocks for rectangle j. In all there are
N(N + 1)/2 SB. We gave LAPACK POTRF and PPTRF algorithms using
BPF and showed that these codes were trivial modifications of current POTRF
algorithms. In the multicore era it appears that SB format will be the data
layout of choice. Thus, we think that for upper BPF format the current Cell
implementations of [19] will carry over with trivial modifications.

Another purpose of our paper is to promote the new Block Packed Data
Format storage or variants thereof; see Section 1.1. BPF algorithms are vari-
ants of the BPHF algorithm and they use slightly more computer memory than
n×(n + 1)/2 matrix elements. They usually perform better or equal to the full
format storage algorithms. The full format algorithms require additional storage
of (n − 1)×n/2 matrix elements in the computer memory but never reference
these elements. Finally, full format algorithms and their related Level-3 BLAS
are no longer being used on multi-core processors. For symmetric and triangular
matrices the format of choice is SBPF which is the same as upper BPF.

Acknowledgments. We would like to thank Bernd Dammann, Niels Carl W.
Hansen, Paul Peltz and Barry Britt for consulting help on the systems used in
our experiments. Thanks also go to the Ministerio de Educación y Ciencia of
Spain for funding project grant TIN2007-60625.

References

1. Andersen, B.S., Gustavson, F.G., Waśniewski, J.: A Recursive Formulation of
Cholesky Factorization of a Matrix in Packed Storage. ACM TOMS 27(2), 214–244
(2001)

2. Andersen, B.S., Gunnels, J.A., Gustavson, F.G., Reid, J.K., Waśniewski, J.: A
Fully Portable High Performance Minimal Storage Hybrid Cholesky Algorithm.
ACM TOMS 31(2), 201–227 (2005)

3. Anderson, E., et al.: LAPACK Users’ Guide Release 3.0. SIAM, Philadelphia (1999)
4. D’Azevedo, E., Dongarra, J.J.: Packed storage extension of ScaLAPACK. ORNL

Report 6190, Oak Ridge National Laboratory, 13 pages (May 1998)

New Level-3 BLAS Kernels for Cholesky Factorization 69

5. Dongarra, J.J., Du Croz, J., Hammarling, S., Duff, I.: Set of Level 3 Basic Linear
Algebra Subprograms. TOMS 16(1), 1–17 (1990)

6. Elmroth, E., Gustavson, F.G., Jonsson, I., K̊agström, B.: Recursive Blocked Al-
gorithms and Hybrid Data Structures for Dense Matrix Library Software. SIAM
Review 46(1), 3–45 (2004)

7. Gunnels, J.A., Gustavson, F.G., Pingali, K.K., Yotov, K.: Is Cache-Oblivious
DGEMM Viable? In: K̊agström, B., Elmroth, E., Dongarra, J., Waśniewski, J.
(eds.) PARA 2006. LNCS, vol. 4699, pp. 919–928. Springer, Heidelberg (2007)

8. Gustavson, F.G.: Recursion Leads to Automatic Variable Blocking for Dense
Linear-Algebra Algorithms. IBM J. R. & D 41(6), 737–755 (1997)

9. Gustavson, F.G., Jonsson, I.: Minimal Storage High Performance Cholesky via
Blocking and Recursion. IBM J. R. & D 44(6), 823–849 (2000)

10. Gustavson, F.G.: New Generalized Data Structures for Matrices Lead to a Variety
of High-Performance Algorithms. In: Boisvert, R.F., Tang, P.T.P. (eds.) Proceed-
ings of the IFIPWG 2.5 Working Group on The Architecture of Scientific Software,
Ottawa, Canada, October 2-4, pp. 211–234. Kluwer Academic Pub. (2000)

11. Gustavson, F.G.: High Performance Linear Algebra Algorithms using New Gener-
alized Data Structures for Matrices. IBM J. R. & D 47(1), 31–55 (2003)

12. Gustavson, F.G., Gunnels, J., Sexton, J.: Minimal Data Copy For Dense Linear
Algebra Factorization. In: K̊agström, B., Elmroth, E., Dongarra, J., Waśniewski,
J. (eds.) PARA 2006. LNCS, vol. 4699, pp. 540–549. Springer, Heidelberg (2007)

13. Gustavson, F.G., Reid, J.K., Waśniewski, J.: Algorithm 865: Fortran 95 Subrou-
tines for Cholesky Factorization in Blocked Hybrid Format. ACM TOMS 33(1), 5
pages (2007)

14. Gustavson, F.G.: Cache Blocking. In: Jónasson, K. (ed.) PARA 2010, Part I. LNCS,
vol. 7133, pp. 22–32. Springer, Heidelberg (2012)

15. Gustavson, F.G., Karlsson, L., K̊agström, B.: Parallel and Cache-Efficient In-Place
Matrix Storage Format Conversion. ACM TOMS, 34 pages (to appear, 2012)

16. Herrero, J.R., Navarro, J.J.: Compiler-Optimized Kernels: An Efficient Alternative
to Hand-Coded Inner Kernels. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan,
C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS,
vol. 3984, pp. 762–771. Springer, Heidelberg (2006)

17. Herrero, J.R.: New Data Structures for Matrices and Specialized Inner Kernels:
Low Overhead for High Performance. In: Wyrzykowski, R., Dongarra, J., Kar-
czewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 659–667.
Springer, Heidelberg (2008)

18. Knuth, D.: The Art of Computer Programming, 3rd edn., vol. 1&2. Addison-Wesley
19. Kurzak, J., Buttari, A., Dongarra, J.: Solving systems of Linear Equations on

the Cell Processor using Cholesky Factorization. IEEE Trans. Parallel Distrib.
Syst. 19(9), 1175–1186 (2008)

20. Whaley, C.: Empirically tuning LAPACK’s blocking factor for increased perfor-
mance. In: Proc. of the Conf. on Computer Aspects of Numerical Algs., 8 pages
(2008)

Parallel Preconditioner for Nonconforming Adini

Discretization of a Plate Problem
on Nonconforming Meshes

Leszek Marcinkowski�

Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw,
Banacha 2, 02-097 Warszawa, Poland

L.Marcinkowski@mimuw.edu.pl

Abstract. In this paper we present a domain decomposition parallel
preconditioner for a discretization of a plate problem on nonconforming
meshes in 2D. The local discretizations are Adini nonconforming plate
finite elements. On the interfaces between adjacent subdomains two mor-
tar conditions are imposed. The condition number of the preconditioned
problem is almost optimal i.e. it is bounded poly-logarithmically with
respect to the mesh parameters.

1 Introduction

Many physical phenomena or technical problems are modeled by differential
equations. Usually while constructing a discrete problem approximating the orig-
inal differential equation a uniform global mesh is utilized. However quite often
it is required to construct an approximation which locally in subdomains uses
different types of independent methods, or meshes. A mortar method enables us
to use independent meshes or discretization methods in nonoverlapping subdo-
mains. For general presentation of a mortar method we refer to [1], [2], and [3].
We should mention that an alternative discretization method on nonconforming
meshes is C0 interior penalty method, cf. [4–6].

In this paper we focus on a parallel domain decomposition preconditioner
for solving the system of equations arising from the mortar finite element dis-
cretization of a model plate problem which in subdomains uses a rectangular
nonconforming Adini element, cf. [7]. Our method is based on an abstract Addi-
tive Schwarz (ASM) framework, e.g. cf. [8], i.e. we first introduce decomposition
of the discrete space into a coarse space and subspaces related to interfaces. Then
an application of our parallel preconditioner to a vector is based on solving local
independent problems associated with this decomposition.

There are many effective domain decomposition algorithms for solving mortar
discretization of second order problems, cf. e.g. [9], [10], [11], [12], [13], [14] [15],
[16] and references therein. There are much smaller number of investigations
devoted to effective solvers for mortar approximation of fourth order problems,

� This work was partially supported by Polish Scientific Grant: N N201 0069 33.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 70–79, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

DDM Method for Adini Element 71

cf. e.g. [17], [18], [19], [20] and [21]. However to our knowledge there are no results
concerning domain decomposition parallel preconditioners for mortar Adini finite
element discretizations in the literature.

The remainder of this paper is organized as follows: in Section 2 we discuss the
mortar discretization with local Adini finite element spaces in subdomains, Sec-
tion 3 is devoted to construction of our parallel preconditioner, and in Section 4
we present condition estimates for the preconditioned problem.

2 Discrete Problem

In this section we introduce our model plate problem and its discretization on
nonmatching meshes by the mortar method with the nonconforming Adini finite
element, e.g. cf. [7]. Let Ω be a polygonal domain on the plane which is a sum

Ω
1

Ω
2

Fig. 1. L-shape domain. Nonconforming meshes in two subdomains.

of rectangles with the edges parallel to the axes. Our model differential clamped
plate problem is to find u∗ ∈ H2

0 (Ω) such that

a(u∗, v) =

∫
Ω

fv dx ∀v ∈ H2
0 (Ω), (1)

where u∗ can be interpreted as the displacement and f ∈ L2(Ω) as the body
force, and

a(u, v) :=
∫
Ω

[�u�v+
+(1− ν)

(
2 ∂2u
∂x1∂x2

∂2v
∂x1∂x2

− ∂2u
∂x1∂x1

∂2v
∂x2∂x2

− ∂2u
∂x2∂x2

∂2v
∂x1∂x1

)]
dx.

Here H2
0 (Ω) := {v ∈ H2(Ω) : v = ∂nv = 0 on ∂Ω}, and ∂n is the normal unit

derivative outward to ∂Ω. The Poisson ratio ν satisfies 0 < ν < 1/2.
We assume that we have the following decomposition of Ω into disjoint sub-

domains that are either rectangles or are a sum of rectangles with edges parallel
to the axes, e.g. L-shaped subdomains, cf. Figure 1:

Ω =
N⋃

k=1

Ωk

72 L. Marcinkowski

Ω k

τ

Fig. 2. Rectangular triangulation Th(Ωk)

with

∂Ωk ∩ ∂Ωl =

⎧⎪⎨⎪⎩
∅,
Γ kl a common edge,
v a common vertex.

The decomposition forms the coarse triangulation of Ω and we assume the shape
regularity of it in the sense of Section 2, p.5 in [22]. An important role is played

by the global interface: Γ :=
⋃N

k=1(∂Ωk \ ∂Ω) being the sum of all edges which
are not on the boundary of Ω. Let Hk := diam(Ωk).

Fig. 3. Adini element

In each subdomainΩk we introduce an independent rectangular quasi-uniform
triangulation Th(Ωk), cf. Figure 2, with hk := maxτ∈Th(Ωk) diam τ , e.g. cf. [23].

For Ωk, Ωk, ∂Ωk, Γkl let us define Ωk,h, Ωk,h, ∂Ωk,h, Γ
k
kl,h as the sets of all nodal

points (nodes), i.e. of all vertices of elements of Th(Ωk) which are in the respective
set, e.g. ∂Ωk,h is the set of all nodal points from Th(Ωk) which are on ∂Ωk.

The local Adini finite element space Xh(Ωk) is defined as follows, cf. Ch. 7,
§49 in [7]:

Xh(Ωk) := {v ∈ L2(Ωk) : v|τ ∈ P3(τ)⊕ span{x31x2, x1x32} for τ ∈ Th(Ωk),
v, vx1 , vx2 continuous at the nodal points of Ωk,h,

and v(p) = ∂v
∂x1

(p) = ∂v
∂x2

(p) = 0 for p ∈ ∂Ωk ∩ ∂Ω},

where τ ∈ Th(Ωk) is an rectangular element and P3(τ) is the space of cubic
polynomials on τ , cf. Figures 2 and 3.

Note that Xh(Ωk) �⊂ H2(Ωk) and in that sense it is a nonconforming finite
element space, but Xh(Ωk) ⊂ H1(Ωk), cf. [7].

DDM Method for Adini Element 73

There are three degrees of freedom of the Adini finite element function v ∈
Xh(Ωk) at a vertex q of an element τ , cf. Figure 3:{

v(q),
∂v

∂x1
(q),

∂v

∂x2
(q)

}
.

We also introduce an auxiliary global space:

Xh(Ω) := ΠN
k=1Xh(Ωk),

local bilinear forms for u, v ∈ Xk(Ωk) :

ah,k(u, v) :=
∑

τ∈Th(Ωk)

∫
τ
[�u�v+

+(1− ν)
(

2 ∂2u
∂x1∂x2

∂2v
∂x1∂x2

− ∂2u
∂x1∂x1

∂2v
∂x2∂x2

− ∂2u
∂x2∂x2

∂2v
∂x1∂x1

)]
dx

and a global form for u = (uk)Nk=1, v = (vk)Nk=1 ∈ Xh(Ω) being a sum of local

forms:

aH(u, v) :=

N∑
k=1

ah,k(uk, vk).

Note that each interface Γkl ⊂ Γ which is the open common edge of two neighbor-
ing subdomains Ωk and Ωl inherits two independent one-dimensional triangula-
tions from respective two dimensional triangulations of these subdomains, i.e. the
hk-one denoted further as T k

h (Γkl) from Th(Ωk) and the hl triangulation T l
h(Γlk)

obtained from Th(Ωl), cf. Figure 1. Thus for each interface Γkl = ∂Ωk ∩ ∂Ωl, we
distinguish between two sides of this edge. We introduce one side as a master
(mortar) denoted by γkl ⊂ ∂Ωk and the second one as a slave (non-mortar)
δlk ⊂ ∂Ωl if hk ≤ hl. Naturally, both γkl and δlk geometrically share the same
position, but have different meshes T k

h (γkl) := T k
h (Γkl) and T l

h(δlk) := T l
h(Γlk),

respectively. Finally, we introduce γkl,h := Γ k
kl,h, i.e. the set of all nodal points

(nodes) of T k
h (Γkl) which are on γkl and δlk,h := Γ l

lk,h as the set of all nodes of

T l
h(Γlk) which are on δlk.
We introduce additional test spaces on each slave (nonmortar) δlk. Let the

first one denoted by Mhl
t (δlk) be the space formed by C1 smooth functions that

are piecewise cubic on T l
h(δlk) except for two elements, that touch the ends of

slave, where they are piecewise linear and let Mhl
n (δlk) be the space formed by

continuous piecewise linear functions on the hl triangulation of δlk, which are
piecewise constant on two elements which touch the ends of this slave.

We say that uk ∈ Xh(Ωk) and ul ∈ Xh(Ωl) for ∂Ωl ∩ ∂Ωk = Γkl, satisfy the
mortar conditions if ∫

δlk

(uk − ul)ψ ds = 0 ∀ψ ∈Mhl
t (δlk), (2)∫

δlk

(Ihk
∂nuk − Ihl

∂nul)φ ds = 0 ∀φ ∈Mhl
n (δlk), (3)

where Ihs∂nus is the continuous piecewise linear function interpolating ∂nus at
nodal points of Γ s

kl,h for s = k, l.

74 L. Marcinkowski

The discrete space V h is defined as the subspace ofXh(Ω) formed by functions
which satisfy the mortar conditions (2) and (3) and are continuous at all cross-
points. Continuity of u = (uj)

N
j=1 ∈ V h at crosspoints means that uk(cr) = ul(cr)

if cr is a crosspoint which is a common vertex of Ωk and Ωl. Note that the gra-
dient ∇u is not continuous at crosspoints for u ∈ V h in general.

We can now introduce a discrete problem: Find u∗h ∈ V h such that

aH(u∗h, v) =

∫
Ω

fv dx ∀v ∈ V h. (4)

We see that aH(u, u) = 0 implies that u is a linear polynomial in all elements
of Th(Ωk), then from the continuity of u, ux1, ux2 at all vertices of Ωk,h follows
that u linear in Ωk and from the mortar condition follows that u linear in Ω.
Finally, the boundary conditions yield u = 0. Hence the form aH(·, ·) is positive
definite over V h and we have

Proposition 1. The problem (4) has a unique solution.

We introduce a standard nodal basis of Adini finite element space, i.e. with each
degree of freedom at all nodal points which are not in ∂Ω or in any slave δji, we
associate one nodal basis function which has this degree of freedom equal to one,
and all remaining degrees of freedom are equal to zero. Then we can rewrite the
discrete problem (4) into a system of linear equations. If we additionally assume
that hi � hj , for an interface Γ ij = ∂Ωi ∩ ∂Ωj , we can see that the condition
number of the resulting matrix is bounded by Ch−4, where h = infk hk and C
is a positive constant independent of any hk and the number of subdomains.

3 Additive Schwarz Method Preconditioner

In this section, we present a preconditioner for solving the system of equations
arising from the discrete problem (4) in the abstract terms of the Additive
Schwarz Method (ASM), e.g. see Ch. 2 in [8].

We first decompose locally each function u ∈ Xh(Ωi) into two parts orthogonal
in terms of ai,h(·, ·) as follows

u = Piu+Hiu,

where the orthogonal projection Piu ∈ X0,h(Ωi) is defined by

ah,i(Piu, v) = ah,i(u, v) ∀v ∈ X0,h(Ωi),

where

X0,h(Ωi) = {u ∈ Xh(Ωi) : u(p) = ∇u(p) = 0 ∀p ∈ ∂Ωi,h}.

The discrete biharmonic part Hiu := u− Piu ∈ Xh(Ωi) satisfies⎧⎨⎩
ai,h(Hiu, v) = 0 ∀v ∈ X0,h(Ωi),

Hiu(q) = u(q) ∀q ∈ ∂Ωi,h,
∇Hiu(p) = ∇u(p) ∀p ∈ ∂Ωi,h,

DDM Method for Adini Element 75

We also introduce the global decomposition of u ∈ V h into u = Pu+Hu with

Pu := (P1u, . . . ,Piu, . . . ,PNu), Hu := (H1u, . . . ,Hiu, . . . ,HNu).

We next define W = {Hu : u ∈ V h}, i.e. the subspace of discrete biharmonic
functions of V h. Note that u ∈ W is uniquely defined by the values of three
degrees of freedom associated with all vertices of subdomains and with all nodes
on mortars. We can decompose u∗h, the solution of (4), into u∗h = Pu∗h +Hu∗h.
Pu∗h can be computed by solving N independent local problems. The discrete
biharmonic part of u∗h further denoted by ũ∗h := Hu∗h is the solution of the
following variational discrete problem

aH(ũ∗h, v) = f(v) ∀v ∈ W. (5)

Rewriting this problem into matrix form in the standard nodal basis we get a
Schur complement problem, e.g. cf. [8]:

Sũ∗ = f̃ , (6)

where ũ∗ is a vector with all degrees of freedom of ũ∗h associated with vertices
of subdomains and all nodal points on mortars.

We describe ASM for solving this problem in terms of decomposition of the
space W into several subspaces. Let us define a coarse space:

W0 := {u ∈W : vk|γkl
= vl|δlk ∈ P3(Γkl),

Ihk
∂nvk|γkl

= Ihl
∂nvl|δlk ∈ P1(Γkl) and

v,∇v are continuous at all crosspoints}.

Here P1(Γkl) is the space of linear polynomials over Γkl and Ihk
, Ihl

are piecewise
linear interpolants defined over hk and hl meshes of master γkl = Γkl and slave
δlk, respectively. Note that u ∈ W0 is uniquely defined by the value of u and
∇u at all crosspoints. Thus dimension of W0 is equal to three times number of
crosspoints. We next define Wx,s, a one-dimensional space associated with and
a vertex x ∈ V(Ωk) and s ∈ {1, 2}. Here V(Ωk) is the set of the vertices of ∂Ωk

which are not on ∂Ω. We distinguish between vertices of different substructures
even if they occupies geometrically the position of the same crosspoint as two of
three degrees of freedom of u ∈ W at a crosspoint may be discontinuous, namely,
the ones related to derivatives. Let us also introduce

V :=

N⋃
k=1

V(Ωk).

We define Wx,s = span{φx,s} for s = 1, 2, where φx,s ∈ W is the locally discrete
biharmonic vertex function associated with degree of freedom corresponding to
xs derivative, and a vertex x ∈ V , i.e. it satisfies:

∂φx,s
∂xr

(y) =

{
1 r = s, y = x,
0 otherwise,

∀ y ∈
⋃

γij⊂Γ

γij,h ∪ V , r = 1, 2.

76 L. Marcinkowski

We next define subspaces associated with masters. Let γkl be a master and δlk
its associated slave. Then let Wkl be a space formed by all functions v ∈ W
which has all degrees of freedom which are not associated with a nodal point in
γkl,h equal to zero, i.e.

Wkl = {v ∈W : v(x) =
∂v

∂x1
(x) =

∂v

∂x2
(x) = 0 for x ∈

⎧⎨⎩ ⋃
γij⊂Γ

γij,h ∪ V

⎫⎬⎭\γkl,h}.
Note that Wkl contains functions which have nonzero degrees of freedom only
at nodes of γkl,h and by the mortar conditions at ones of δlk,h, and in Ωk,h and
Ωl,h.

We have the following decomposition of W :

W = W0 +
∑

γkl⊂Γ

Wkl +
∑
x∈V

∑
s=1,2

Wx,s.

Let T0 : W → W0, Tkl : W → Wkl and Tx,s : W → Wx,s be orthogonal
projections in terms of aH(·, ·) onto W0, Wkl, and Wx,s, respectively.

Then the operator T : W →W is defined as:

T := T0 +
∑

γij⊂Γ

Tij +
∑
x∈V

∑
s=1,2

Tx,s.

Next we replace problem (5) by a new one:

T (ũ∗h) = g, (7)

where

g := g0 +
∑

γkl⊂Γ

gkl +
∑
x∈V

∑
s=1,2

gx,s

and g0 = T0ũ
∗
h, gkl = Tklũ

∗
h and gx,s = Tx,sũ

∗
h.

Note that if we rewrite (7) into matrix form, then (7) takes the form of the
preconditioned system (6), e.g. cf. [8]:

M−1Sũ∗ = M−1f̃ , (8)

where S is the Schur complement matrix from (6) and M−1 is a parallel precon-
ditioner of ASM type.

3.1 Implementation

We briefly discuss implementation some issues. In practice to solve (7) the CG
iterative method is used, but for the simplicity of presentation we describe the

DDM Method for Adini Element 77

ideas of implementation on the basis of the Richardson iterative method with a
positive parameter τ : take any u(0) and iterate until convergence:

u(n+1) := u(n) − τ (T (u(n))− g) = u(n) − τ T (u(n) − ũ∗h) = u(n) − τ r(n) n ≥ 0.

To compute r(n) = T (u(n))− g we have to solve the following problems:

– compute r0 ∈ W0 such that

aH(r0, v) = aH(T0(u(n) − ũ∗h), v) = aH(u(n), v)− f(v) ∀v ∈W0,

– compute rkl ∈ Wkl for all γkl ⊂ Γ such that

aH(rkl, v) = aH(Tkl(u
(n) − ũ∗h), v) = aH(u(n), v)− f(v) ∀v ∈Wkl,

– compute rx,s ∈Wx,s for all x ∈ V and s = 1, 2 such that

aH(rx,s, v) = aH(Tx,s(u
(n) − ũ∗h), v) = aH(u(n), v)− f(v) ∀v ∈ Wx,s.

Then r(n) = r0 +
∑

γkl⊂Γ rkl +
∑

x∈V
∑

s=1,2 rx,s. Note that all these problems
are independent so they can be solved in parallel.

4 Condition Number Estimates

We now state the main theoretical result of this paper.

Theorem 1. It holds that

C1 (1 + log(H/h))−2aH(u, u) ≤ aH(Tu, u) ≤ C2 aH(u, u) ∀w ∈W,

where C1, C2 are positive constants independent of mesh parameters and the
number of subdomains, h = mink hk and H = maxkHk.

From this theorem we get a corollary:

Corollary 1. The condition number of M−1S from (8) is bounded by C (1 +
log(H/h))2, where C is positive constants independent of mesh parameters and
the number of subdomains.

Sketch of the Proof of Theorem 1
The proof is based on the abstract theory of ASM. We have to check three main
assumptions, e.g. cf. § 2.3 in [8].

Here the assumption II (Local Stability, cf. Ass. 2.4 in [8]) is satisfied with
a constant equal to one as T0, Tkl, Tx,s are orthogonal projection in terms of
the form aH(·, ·) and assumption III (Strengthened Cauchy-Schwarz inequalities
cf. Ass. 2.3 in [8]) is satisfied with a constant independent of hk and H by a
standard coloring argument.

The assumption I (Stable decomposition, cf. Ass. 2.1 in [8]) requires that there
exists a constant C such that for any u ∈W there is a decomposition:

u = u0 +
∑

γkl⊂Γ

ukl +
∑
x∈V

∑
s=1,2

ux,s (9)

78 L. Marcinkowski

with u0 ∈W0, ukl ∈Wkl, and ux,s ∈ Wx,s such that

aH(u0, u0) +
∑

γkl⊂Γ

aH(ukl, ukl) +
∑
x∈V

∑
s=1,2

aH(ux,s, ux,s) ≤ C2
0aH(u, u). (10)

with C2
0 = C(1 + log(H/h)2.

We first define u0 as a unique function in W0 such that u0(cr) = u(cr) and
∇u0(cr) =

∑
{k:cr∈∂Ωk}(1/Ncr)∇uk(x) for any crosspoint cr, where subscripts

k in the last sum are taken over all substructures Ωk which has cr as its vertex
and Ncr is the number of such substructures. Then introducing w = u − u0 we
define ux,s := ∂w

∂xs
(x)φx,s for s = 1, 2 of length and x ∈ V and ukl ∈ Wkl for

γkl ⊂ Γ such that ukl(p) = w(p), ∂ukl

∂xs
(p) = ∂w

∂xs
(p) for s = 1, 2 and p ∈ γkl,h.

We see that (9) is satisfied and we skip the technical proof of (10). Finally,
utilizing Theorem 2.7 in [8] we end the proof of Theorem 1.

Summary

In this paper we present an efficient parallel preconditioner for Adini discretiza-
tion of a model clamped plate problem. The condition estimates for the precon-
ditioned problem are almost optimal.

References

1. Bernardi, C., Maday, Y., Patera, A.T.: A new nonconforming approach to do-
main decomposition: the mortar element method. In: Nonlinear Partial Differen-
tial Equations and their Applications. Collège de France Seminar, vol. XI (Paris,
1989–1991). Pitman Res. Notes Math. Ser., vol. 299, pp. 13–51. Longman Sci.
Tech., Harlow (1994)

2. Ben Belgacem, F.: The mortar finite element method with Lagrange multipliers.
Numer. Math. 84(2), 173–197 (1999); First published as a technical report in 1994

3. Ben Belgacem, F., Maday, Y.: The mortar element method for three-dimensional
finite elements. RAIRO Modél. Math. Anal. Numér. 31(2), 289–302 (1997)

4. Brenner, S.C., Sung, L.Y.: C0 interior penalty methods for fourth order elliptic
boundary value problems on polygonal domains. J. Sci. Comput. 22/23, 83–118
(2005)

5. Brenner, S.C., Wang, K.: Two-level additive Schwarz preconditioners for C0 inte-
rior penalty methods. Numer. Math. 102(2), 231–255 (2005)

6. Brenner, S.C., Sung, L.Y.: Multigrid algorithms for C0 interior penalty methods.
SIAM J. Numer. Anal. 44(1), 199–223 (2006)

7. Ciarlet, P.G.: Basic error estimates for elliptic problems. In: Handbook of Numer-
ical Analysis, vol. II, pp. 17–351. North-Holland, Amsterdam (1991)

8. Toselli, A., Widlund, O.: Domain decomposition methods—algorithms and theory.
Springer Series in Computational Mathematics, vol. 34. Springer, Berlin (2005)

9. Achdou, Y., Kuznetsov, Y.A.: Substructuring preconditioners for finite element
methods on nonmatching grids. East-West J. Numer. Math. 3(1), 1–28 (1995)

10. Achdou, Y., Maday, Y., Widlund, O.B.: Iterative substructuring preconditioners
for mortar element methods in two dimensions. SIAM J. Numer. Anal. 36(2), 551–
580 (1999)

DDM Method for Adini Element 79

11. Bjørstad, P.E., Dryja, M., Rahman, T.: Additive Schwarz methods for elliptic
mortar finite element problems. Numer. Math. 95(3), 427–457 (2003)

12. Braess, D., Dahmen, W., Wieners, C.: A multigrid algorithm for the mortar finite
element method. SIAM J. Numer. Anal. 37(1), 48–69 (1999)

13. Marcinkowski, L.: The mortar element method with locally nonconforming ele-
ments. BIT 39(4), 716–739 (1999)

14. Dryja, M.: A Neumann-Neumann algorithm for a mortar discetization of elliptic
problems with discontinuous coefficients. Numer. Math. 99, 645–656 (2005)

15. Kim, H.H., Lee, C.O.: A preconditioner for the FETI-DP formulation with mortar
methods in two dimensions. SIAM J. Numer. Anal. 42(5), 2159–2175 (2005)

16. Marcinkowski, L., Rahman, T.: Neumann-Neumann algorithms for a mortar
Crouzeix-Raviart element for 2nd order elliptic problems. BIT 48(3), 607–626
(2008)

17. Xu, X., Li, L., Chen, W.: A multigrid method for the mortar-type Morley element
approximation of a plate bending problem. SIAM J. Numer. Anal. 39(5), 1712–1731
(2001/2002)

18. Marcinkowski, L.: Domain decomposition methods for mortar finite element dis-
cretizations of plate problems. SIAM J. Numer. Anal. 39(4), 1097–1114 (2001)

19. Marcinkowski, L.: A Neumann-Neumann algorithm for a mortar finite element dis-
cretization of fourth-order elliptic problems in 2d. Numer. Methods Partial Differ-
ential Equations 25(6), 1425–1442 (2009), http://www.interscience.wiley.com,
doi:10.1002/num.20406 Published online in Wiley InterScience on December 11,
2008

20. Marcinkowski, L.: A balancing Neumann-Neumann method for a mortar finite
element discretization of a fourth order elliptic problem. J. Numer. Math. 18(3),
219–234 (2010)

21. Marcinkowski, L.: A preconditioner for a FETI-DP method for mortar element
discretization of a 4th order problem in 2d. Electron. Trans. Numer. Anal. 38,
1–16 (2011)

22. Brenner, S.C.: The condition number of the Schur complement in domain decom-
position. Numer. Math. 83(2), 187–203 (1999)

23. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods,
3rd edn. Texts in Applied Mathematics, vol. 15. Springer, New York (2008)

http://www.interscience.wiley.com

Incomplete Cyclic Reduction of Banded

and Strictly Diagonally Dominant Linear
Systems

Carl Christian Kjelgaard Mikkelsen and Bo Kågström

Department of Computing Science and HPC2N,
Ume̊a University, Sweden
{spock,bokg}@cs.umu.se

Abstract. The ScaLAPACK library contains a pair of routines for solv-
ing banded linear systems which are strictly diagonally dominant by
rows. Mathematically, the algorithm is complete block cyclic reduction
corresponding to a particular block partitioning of the system. In this
paper we extend Heller’s analysis of incomplete cyclic reduction for block
tridiagonal systems to the ScaLAPACK case. We obtain a tight estimate
on the significance of the off diagonal blocks of the tridiagonal linear
systems generated by the cyclic reduction algorithm. Numerical exper-
iments illustrate the advantage of omitting all but the first reduction
step for a class of matrices related to high order approximations of the
Laplace operator.

Keywords: Banded or block tridiagonal linear systems, strict diagonal
dominance, incomplete cyclic reduction, ScaLAPACK.

1 Introduction

Let A be a nonsingular N by N block tridiagonal matrix, i.e.

A =

⎡⎢⎢⎢⎢⎣
D1 F1

E2
. . .

. . .

. . .
. . . FN−1

EN DN

⎤⎥⎥⎥⎥⎦ (1)

and consider the solution of the linear system

Ax = f (2)

on a parallel machine. If A = [aij] is strictly diagonally dominant by rows, i.e

∀ i :
∑
j �=i

|aij | < |aii|,

then we can use cyclic reduction to solve the linear system (2). The basic al-
gorithm is due to R.W. Hockney [4] who worked closely with G. H. Golub on

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 80–91, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Analysis of Incomplete Cyclic Reduction 81

the solution of certain tridiagonal linear systems. Heller [3] showed that if A is
strictly diagonally dominant, then the cyclic reduction algorithm runs to com-
pletion. Moreover, Heller introduced the incomplete cyclic reduction algorithm
and estimated the truncation error.

Every banded matrix A can be partitioned as a block tridiagonal matrix (1)
only the dimension of the diagonal blocks Di may not be too small. Specifically,
if A has k superdiagonals and k subdiagonals, then the dimension of each Di

must be at least k.
ScaLAPACK [2] contains a pair of routines (PDDBTRF/PDDBTRS) which

can be used to solve narrow banded linear systems which are strictly diagonally
dominant by rows. The algorithm is complete block cyclic reduction correspond-
ing to a particular partitioning of the system. The odd numbered diagonal blocks
are as large as possible, while the even numbered diagonal blocks are k by k.

In this paper we extend Heller’s analysis to the ScaLAPACK case. Central to
the analysis is the dominance factor ε given by

ε = max
i

⎧⎨⎩ 1

|aii|
∑
j �=i

|aij |

⎫⎬⎭ ≥ 0.

The strict diagonal dominance of A implies that ε < 1.
We review the incomplete cyclic reduction algorithm and some related results

in Section 2. The new results are derived in Section 3. We have already proved
Theorem 1 for tridiagonal matrices (k = 1) in a previous paper [7]. In this paper,
we derive Theorem 2 and use it to prove Theorem 1 in the general case. In Section
4 we demonstrate the existence of a class of physically relevant linear systems
for which it is numerically sound to neglect all but the first reduction step, an
observation which greatly improves the strong scalability of the algorithm.

This presentation owes much to Heller’s original paper [3] which we highly
recommend. The ScaLAPACK implementation of block cyclic reduction of nar-
row banded linear systems is described in detail in the paper by Arbenz, Cleary,
Dongarra and Hegland [1].

2 The Algorithm

Complete block cyclic reduction of the linear system (2) is equivalent to Gaussian
elimination with no pivoting on a permuted system

(PAPT)Px = Pf,

where P is a block permutation matrix, which reorders the vector (1, 2, . . . , N),
so the odd multiples of 20 come first, followed by odd multiples of 21, etc.

The incomplete block cyclic reduction algorithm is stated as Algorithm 1.
Given an integer m we obtain an approximation y of the true solution as fol-
lows. First, we execute m steps of cyclic reduction (lines 1 through 3) in order
to eliminate the variables which correspond to blocks numbered with an odd

82 C.C.K. Mikkelsen and B. K̊agström

Algorithm 1. The incomplete block cyclic reduction algorithm.

Input: An N by N block tridiagonal linear system

A(0)x(0) = v(0)

where A(0) is strictly diagonally dominant by rows and an integer m ≥ 0.
Output: An approximation y of the exact solution.
1: for j = 1 : 1 : m do
2: Assemble the block tridiagonal linear system

A(j)x(j) = v(j)

where

A(j) :=
(
E

(j)
i , D

(j)
i , F

(j)
i

)
{i∈N : 1≤i·2j≤N}

, and
(
v
(j)
i

)
{i∈N : 1≤i·2j≤N}

are given by

D
(j)
i := D

(j−1)
2i − E

(j−1)
2i

(
D

(j−1)
2i−1

−1
F

(j−1)
2i−1

)
− F

(j−1)
2i

(
D

(j−1)
2i+1

−1
E

(j−1)
2i+1

)
E

(j)
i := −E

(j−1)
2i

(
D

(j−1)
2i−1

−1
E

(j−1)
2i−1

)
F

(j)
i := −F

(j−1)
2i

(
D

(j−1)
2i+1

−1
F

(j−1)
2i+1

)
v
(j)
i := v

(j−1)
2i −E

(j−1)
2i

(
D

(j−1)
2i−1

−1
v
(j−1)
2i−1

)
− F

(j−1)
2i

(
D

(j−1)
2i+1

−1
v
(j−1)
2i+1

)
3: end for
4: Define the block diagonal matrix

D(m) := diag(D
(m)
i){i∈N : 1≤i·2m≤N}

and solve the system
D(m)y(m) = v(m)

with respect to y(m).
5: for j = m : −1 : 1 do
6: Set y

(j−1)
2i = y

(j)
i

7: Solve
D

(j−1)
2i−1 y

(j−1)
2i−1 = v

(j−1)
2i−1 − E

(j−1)
2i−1 y

(j−1)
2i−2 − F

(j−1)
2i−1 y

(j−1)
2i+2

with respect to y
(j−1)
2i−1 .

8: end for
9: Return y given by

y = (y
(0)
1

T
, y

(0)
2

T
, . . . , y

(0)
N

T
)T .

multiple of 20, 21, . . . , 2m−1. The remaining components can be found by solving
the block tridiagonal linear system

A(m)x(m) = v(m). (3)

Analysis of Incomplete Cyclic Reduction 83

We approximate the solution of (3) by dropping the off diagonal blocks (line 4).
The remaining components of y are obtained by backward substitution (lines 5
through 8).

Heller [3] measured the significance of the off diagonal blocks using the aux-
iliary matrices B(j) given by

B(j) = D(j)−1
(A(j) −D(j)).

Heller [3] showed that

‖x− y‖∞ ≤ ‖B(m)‖∞‖x‖∞,

and derived the central estimate

‖B(j+1)‖∞ ≤ ‖B(j)2‖∞ ≤ ‖B(j)‖2∞ < 1, j = 0, 1, 2, . . . ,

which shows that the error decays quadratically. Recently, we have shown that

‖B(j)‖∞ ≤ ε2
j

and this estimate is tight [7]. This general estimate carries to the ScaLAPACK
case, but it does not reflect the banded structure of the odd numbered diagonal
blocks. Theorem 1 shows how to integrate this information into the analysis.

3 The Main Result

Theorem 1. If the odd numbered diagonal blocks can be partitioned as block
tridiagonal matrices with q diagonal blocks, then

‖B(1)‖∞ ≤ ε1+q. (4)

Moreover, this estimate is tight.

It is straight forward to verify that equality is achieved for block tridiagonal
matrices for which Ei = 0, Di = Ik and Fi = εIk, where Ik denotes the k by k
identity matrix.

We now reduce the proof of the central inequality (4) to a single application
of Theorem 2. Normally, we would illustrate the cyclic reduction algorithm using
explicit block permutations, but here we use “in-place” computations in order
to estimate B(1). Now, let

G =

⎡⎣E−1 D−1 F−1

E0 D0 F0

E1 D1 F1

⎤⎦
be a compressed representation of three consecutive block rows drawn for a block
tridiagonal linear system. Similarly, let

A
(1)
0 =

(
E

(1)
0 D

(1)
0 F

(1)
0

)
be a representation of the corresponding block row of the Schur complement.
Specifically, we have

84 C.C.K. Mikkelsen and B. K̊agström

D
(1)
0 = D0 − E0D

−1
−1F−1 − F0D

−1
1 F1

and
E

(1)
0 = −E0D

−1
−1E−1, F

(1)
0 = −F0D

−1
1 F1.

Our goal is to estimate the infinity norm of the matrix B
(1)
0 given by

B
(1)
0 =

[
U

(1)
0 V

(1)
0

]
,

where
D

(1)
0

[
U

(1)
0 V

(1)
0

]
=

[
E

(1)
0 F

(1)
0

]
.

To this end we identify B
(1)
0 with a certain submatrix of a matrix G′ which is

row equivalent to G. Let
[
Ui, Vi

]
be the solution of the linear system

Di

[
Ui, Vi

]
=

[
Ei, Fi

]
, i ∈ {−1, 0, 1}.

Then

G ∼

⎡⎣U−1 I V−1

U0 I V0
U1 I V1

⎤⎦
∼

⎡⎣ U−1 I V−1

−U0U−1 (I − U0V−1 − V0U1) −V0V1
U1 I V1

⎤⎦ .
Moreover, it is straight forward to verify that

G ∼

⎡⎣U−1 I V−1

U
(1)
0 I V

(1)
0

U1 I V1

⎤⎦

∼

⎡⎢⎣U−1 − V−1U
(1)
0 I −V−1V

(1)
0

U
(1)
0 I V

(1)
0

−U1U
(1)
0 I V1 − U1V

(1)
0

⎤⎥⎦ =: G′.

Theorem 2 details the structure of the matrix G′ and Theorem 1 is an imme-
diate consequence.

Theorem 2. Let q ∈ N and let Gq be a representation of 2q + 1 consecutive
block rows of a block tridiagonal matrix A which is strictly diagonally dominant
by rows with dominance factor ε, i.e.

Analysis of Incomplete Cyclic Reduction 85

Gq =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E−q D−q F−q

. . .
. . .

. . .

. . .
. . .

. . .

E−1 D−1 F−1

E0 D0 F0

E1 D1 F1

. . .
. . .

. . .

. . .
. . .

. . .

Eq Dq Fq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then Gq is row equivalent to a unique matrix Kq of the form

Kq =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U (q)
−q I V(q)

−q
...

. . .
...

...
. . .

...

U (q)
−1 I V(q)

−1

U (q)
0 I V(q)

0

U (q)
1 I V(q)

1
...

. . .
...

...
. . .

...

U (q)
q I V(q)

q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

where the spikes decay exponentially as we move towards the main block row.
Specifically, if we define

Z
(q)
i =

[
U (q)
−i V

(q)
−i

U (q)
i V(q)

i

]
, 0 < i ≤ q,

and
Z

(q)
0 =

[
U (q)
0 V(q)

0

]
,

then
‖Z(q)

i ‖∞ ≤ ε1+q−i, 0 ≤ i ≤ q.

Proof. The existence and uniqueness of the matrix Kq is immediate. Moreover,
Corollary 3.2 [6] implies that

‖Z(q)
i ‖∞ ≤ ε < 1, 0 ≤ i ≤ q.

In particular, we already know that

‖Z(q)
q ‖ ≤ ε = ε(1+q)−q

86 C.C.K. Mikkelsen and B. K̊agström

and we can focus on the “interior” case of 0 ≤ i < q.
We prove the decay of the spikes using the principle of mathematical induc-

tion. Let Ω be given by

Ω = {q ∈ N | ∀i ≤ q : ‖Z(q)
i ‖∞ ≤ ε1+q−i}.

Our goal is to show that Ω = N. We begin by showing that 1 ∈ Ω. We have

G1 =

⎡⎣E−1 D−1 F−1

E0 D0 F0

E1 D1 F1

⎤⎦ ∼
⎡⎣U−1 I V−1

U0 I V0
U1 I V1

⎤⎦
∼

⎡⎣U−1 I V−1

U (1)
0 I V(1)

0

U1 I V1

⎤⎦ ∼
⎡⎢⎣U

(1)
−1 I V(1)

−1

U (1)
0 I V(1)

0

U (1)
1 I V(1)

0

⎤⎥⎦ ,
where

Di

[
Ui Vi

]
=
[
Ei Fi

]
and

Z
(1)
0 =

[
U (1)
0 V(1)

0

]
= −(I − U0V−1 − V0U1)−1

[
U0U−1 V0V1

]
.

The exact formula for [
U (1)
i V(1)

i

]
, i = ±1

is irrelevant, because we already know that∥∥∥[U (1)
i V(1)

i

]∥∥∥
∞
≤ ε, i = −1, 0, 1.

It remains to be seen that ‖Z(1)
0 ‖∞ ≤ ε2. By definition

Z
(1)
0 =

[
U0 V0

] [V−1

U1

]
Z

(1)
0 −

[
U0U−1 V0V1

]
=

[
U0 V0

]{[V−1

U1

] [
U (1)
0 V(1)

0

]
−
[
U−1 0

0 V1

]}

=
[
U0 V0

] [V−1 U−1 0
U1 0 V1

]⎡⎣U (1)
0 V(1)

0

−I 0
0 −I

⎤⎦
and since we already know that ‖Z(1)

0 ‖∞ < 1 we can conclude

‖Z(1)
0 ‖∞ ≤ ε2 max{‖Z(1)

0 ‖∞, 1} = ε2,

and we have shown that 1 ∈ Ω. Now assume that 1 < q and q− 1 ∈ Ω. We must
show that q ∈ Ω. By assumption

Analysis of Incomplete Cyclic Reduction 87

Gq ∼

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U−q I V−q

U (q−1)
1−q I V(q−1)

1−q
...

. . .
...

U (q−1)
−1 I V(q−1)

−1

U (q−1)
0 I V(q−1)

0

U (q−1)
1 I V(q−1)

1
...

. . .
...

U (q−1)
q−1

. . . V(q−1)
q−1

Uq I Vq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=:

⎡⎣U−q I V ′
−q

U (q−1) I V(q−1)

U ′
q I Vq

⎤⎦ ,
where we have made the last definition to emphasize the similarity between our
current situation and the problem of showing that 1 ∈ Ω.

We continue to reduce Gq using elementary block row operations. We have

Gq ∼

⎡⎣U1−q I V ′
1−q

ξ(q) I ν(q)

U ′
q−1 I Vq−1

⎤⎦
∼

⎡⎣U1−q − V ′
1−qξ

(q) I −V ′
1−qν

(q)

ξ(q) I ν(q)

−U ′
q−1ξ

(q) I Vq−1 − U ′
q−1ν

(q)

⎤⎦ = Kq,

where the last equality is critical, but follows immediately from the uniqueness
of the matrix Kq. Now, it is straightforward to verify that[
ξ(q) ν(q)

]
= −

(
I − U (q−1)V ′

1−q − V(q−1)U ′
q−1

)−1 [
U (q−1)U1−q V(q−1)Vq−1

]
,

or equivalently

[
ξ(q) ν(q)

]
=

[
U (q−1) V(q−1)

]{[
V ′
1−q

U ′
q−1

] [
ξ(q) ν(q)

]
−
[
U1−q 0

0 Vq−1

]}

=
[
U (q−1) V(q−1)

] [V ′
1−q −U1−q 0

U ′
q−1 0 − Vq−1

]⎡⎣ ξ(q) ν(q)I 0
0 I

⎤⎦ . (6)

It follows that equation (6) is just a compact way of expressing the fact that

Z
(q)
i = Z

(q−1)
i

[
V ′
1−q −U1−q 0

U ′
q−1 0 −Vq−1

]⎡⎣ ξ(q) ν(q)I 0
0 I

⎤⎦ , i < q,

88 C.C.K. Mikkelsen and B. K̊agström

and this relation will allow us to estimate ‖Z(q)
i ‖∞. By assumption, q − 1 ∈ Ω,

or equivalently

‖Z(q−1)
i ‖∞ ≤ εq−i, i ≤ q − 1.

It follows that

‖Z(q)
i ‖∞ ≤ εq−iεmax{‖

[
ξ(q) ν(q)

]
‖∞, 1} = ε1+q−i, i < q,

because ‖
[
ξ(q) ν(q)

]
‖∞ < 1. The extreme case of i = q was settled at the

beginning of the proof. This shows that q ∈ Ω and the proof is complete. ��

4 Numerical Experiments

An incomplete cyclic reduction algorithm was implemented in Fortran 90 using
MPI. We inherited the communication pattern from the ScaLAPACK implemen-
tation, but choose the memory layout of the Arbenz-Hegland implementation [1].
In reality we rewrote the ScaLAPACK implementation from scratch inserting a
parameter controlling the number of reduction steps and replacing the blocking
receive instructions from BLACS with nonblocking ones. As in the ScaLAPACK
implementation [1] we split the algorithm into two phases: a factorization phase
which exclusively references the matrix and a solve phase which references the
right hand side in order to compute the solution.

Here we report on our findings for a very specific class of matrices, namely
the pentadiagonal Toeplitz matrices A ∈ R

n×n given by

A = diag(β, α, 1, α, β), α =
334

899
, β =

43

1798
.

These matrices occur naturally in connection with the construction of highly
accurate approximations of the Laplace operator [5]. We have ε = 2(α + β) ≈
0.7909. The worst case estimate given by Theorem 1 is pessimistic. Specifically,
in the case of q = 25, a direct calculation establishes that

‖B(1)‖∞ ≈ 8.5652× 10−24 � ε26 ≈ 2.2431× 10−3.

It follows that we can safely discard all but the first reduction step even if the
banded segment assigned to each core contains as little as μ = 50 rows.

We measured the performance of our implementation on the supercomputer
AKKA at HPC2N. Briefly, AKKA consists of 672 nodes using an Infiniband
interconnect. Each node contains two Intel Xeon quad-core L5420 CPU with a
total of 16 GB RAM per node.

We used p ∈ {1, 2, 4, . . . , 512} cores, drawn from a fixed set of 64 nodes con-
taining 512 cores. We used n ∈ {26622, 52222, 103422}. The dimensions were cho-
sen so that each core would always receive a banded segment of exactly the same
size regardless of the number of cores. For example n = 26622 corresponds to
having μ = 50 when using p = 512 cores, because n = μp+k(p−1), where k = 2

Analysis of Incomplete Cyclic Reduction 89

is the number of super/subdiagonals. Finally, we used r ∈ {1, 10, 20, 30, 40, 50}.
Every column of every solution was obtained with a forward normwise relative
error no greater than 12u, where u = 2−53 is the double precision round-off er-
ror. Every experiment was programmed into a single job and submitted to the
queue.

The strong scalability efficiency ξstrong is defined as

ξstrong =
T1/p

Tp
,

where p is the number of cores, T1 is the execution time on a single core and
Tp is the execution time on p cores. When p = 1 the parallel overhead vanishes
and our implementation reduces to LAPACKs banded solver save for a few con-
ditional statements and system calls. The measured efficiencies are displayed in
Figures 1 through 3. For the sake of visual clarity we only display the solve
efficiencies for r ∈ {1, 10, 50}. We shall now discuss the graphs in some detail.

Gaussian elimination has a very low arithmetic intensity for narrow banded
linear systems. Spreading the same system across an increasing number of cores
will eventually create a situation where a significant fraction of the system resides
in the cache memory allowing for efficiencies greater than unity which is exactly
what we have experienced.

The graphs are not monotone and are a bit erratic. By applying the law of
large numbers we conclude that it is likely that the oscillations can be reduced
by a factor of, say, 100 by repeating each experiment 1002 = 104 times and

0 3 6 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4
factorization phase

log
2
(p)

ef
fic

ie
nc

y
(s

tr
on

g
sc

al
ab

ili
ty

)

incomplete
complete

0 3 6 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4
solve phase (incomplete)

log
2
(p)

r = 1
r = 10
r = 50

0 3 6 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4
solve phase (complete)

log
2
(p)

r = 1
r = 10
r = 50

Fig. 1. Strong scalability efficiency curves for n = 26622. Notice the difference in the
solve efficiencies between the two algorithms for large values of p.

90 C.C.K. Mikkelsen and B. K̊agström

0 3 6 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4
factorization phase

log
2
(p)

ef
fic

ie
nc

y
(s

tr
on

g
sc

al
ab

ili
ty

)

incomplete
complete

0 3 6 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4
solve phase (incomplete)

log
2
(p)

r = 1
r = 10
r = 50

0 3 6 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4
solve phase (complete)

log
2
(p)

r = 1
r = 10
r = 50

Fig. 2. Strong scalability efficiency curves for n = 52222

0 3 6 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
factorization phase

log
2
(p)

ef
fic

ie
nc

y
(s

tr
on

g
sc

al
ab

ili
ty

)

incomplete
complete

0 3 6 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
solve phase (incomplete)

log
2
(p)

r = 1
r = 10
r = 50

0 3 6 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
solve phase (complete)

log
2
(p)

r = 1
r = 10
r = 50

Fig. 3. Strong scalability efficiency curves for n = 103422. Notice that the solve ef-
ficiency for the incomplete algorithm is greater than unity for all values of r and
log2(p) ≥ 6.

Analysis of Incomplete Cyclic Reduction 91

computing the average run-time. However, even 25 repetitions required more
than 250 machine hours, so 104 repetitions was not feasible for this paper.

For the factorization phase we were surprised to see that the experiments
are inconclusive as the efficiencies are very similar. However, for the solve phase
we see that the efficiency is improved considerably by neglecting all but the
first reduction step. This effect is present regardless of n and r, but it most
pronounced for n = 26666 and r = 1, where the ratio of the parallel work to the
communication cost is minimal.

For both algorithms we see the efficiency of the solve phase increase with the
number of right hand sides. This effect is present for all n and is due to the fact
that the number of messages is independent of r, while the parallel work is a
monotone increasing function of r.

Acknowledgments. The work is supported by eSSENCE, a collaborative e-
Science programme funded by the Swedish Research Council within the frame-
work of the strategic research areas designated by the Swedish Government. In
addition, support has been provided by the Swedish Foundation for Strategic
Research under the frame program A3 02:128 and the EU Mål 2 project UMIT.
This research was conducted using the resources of High Performance Computing
Center North (HPC2N).

References

1. Arbenz, P., Cleary, A., Dongarra, J., Hegland, M.: A Comparison of Parallel
Solvers for Diagonally Dominant and General Narrow-Banded Linear Systems II.
In: Amestoy, P., Berger, P., Daydé, M., Ruiz, D., Duff, I., Frayssé, V., Giraud, L.
(eds.) Euro-Par 1999. LNCS, vol. 1685, pp. 1078–1087. Springer, Heidelberg (1999)

2. Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Don-
garra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley,
R.C.: ScaLAPACK User’s Guide. SIAM, USA (1997)

3. Heller, D.: Some aspects of the cyclic reduction algorithm for block tridiagonal linear
systems. SIAM J. Numer. Anal. 13, 484–496 (1976)

4. Hockney, R.W.: A fast direct solution of Poisson’s equation using Fourier analysis.
J. Assoc. Comput. Mach. 12, 95–113 (1965)

5. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J.
Comput. Phys. 103, 16–42 (1992)

6. Mikkelsen, C.C.K., Manguoglu, M.: Analysis of the truncated SPIKE algorithm.
SIAM J. Matrix Anal. Appl. 30, 1500–1519 (2008)

7. Mikkelsen, C.C.K., K̊agström, B.: Parallel Solution of Narrow Banded Diagonally
Dominant Linear Systems. In: Jónasson, K. (ed.) PARA 2010. LNCS, vol. 7134, pp.
280–290. Springer, Heidelberg (2012)

Fast and Small Nonlinear Pseudorandom

Number Generators for Computer Simulation

Samuel Neves and Filipe Araujo

CISUC, Dept. of Informatics Engineering
University of Coimbra, Portugal
{sneves,filipius}@dei.uc.pt

Abstract. In this paper we present Tyche, a nonlinear pseudorandom
number generator designed for computer simulation. Tyche has a small
128-bit state and an expected period length of 2127. Unlike most non-
linear generators, Tyche is consistently fast across architectures, due to
its very simple iteration function derived from ChaCha, one of today’s
fastest stream ciphers.

Tyche is especially amenable for the highly parallel environments we
find today, in particular for Graphics Processing Units (GPUs), where it
enables a very large number of uncorrelated parallel streams running in-
dependently. For example, 216 parallel independent streams are expected
to generate about 296 pseudorandom numbers each, without overlaps.

Additionally, we determine bounds for the period length and paral-
lelism of our generators, and evaluate their statistical quality and per-
formance. We compare Tyche and the variant Tyche-i to the XORWOW
and TEA8 generators in CPUs and GPUs. Our comparisons show that
Tyche and Tyche-i simultaneously achieve high performance and excel-
lent statistical properties, particularly when compared to other nonlinear
generators.

Keywords: ChaCha, GPU, PRNG, random number generation, SIMD,
Tyche, Tyche-i.

1 Introduction

Pseudorandom numbers are often used for testing, simulation and even aesthetic
purposes. They are an integral part of Monte Carlo methods, genetic and evo-
lutionary algorithms, and are extensively used in noise generation for computer
graphics.

Monte Carlo methods were first used for computing purposes by Ulam and
von Neumann, while attempting to solve hard problems in particle physics [1].
Monte Carlo methods consist of iterated random sampling of many inputs in
some probability distribution, followed by later processing. Given enough inputs,
it is possible to obtain an approximate solution with a reasonable degree of
certainty. This is particularly useful for problems with many degrees of freedom,
where analytical or exact methods would be far too inefficient. Monte Carlo

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 92–101, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Fast and Small Nonlinear Pseudorandom Number Generators for Simulation 93

methods are not, however, very computationally efficient — typically, to reduce
the error margin by half, one has to quadruple the amount of sampled inputs [2].
Today, Monte Carlo methods are used in the most various fields, such as particle
physics, weather forecasting, financial analysis, operations research, etc.

Current general-purpose processors typically have 2 or 4 cores. Graphics pro-
cessing units have tens to hundreds [3]; future architectures are slated to scale
up to hundreds and thousands of cores [4]. This development entails some con-
sequences: silicon real estate is limited, and the increase in processing units
decreases the total fast memory available on-chip. Thus, it becomes an interest-
ing problem to design a random number generator that can take advantage of
massively parallel architectures and still remain small, fast and of high quality.
With these goals in mind, we introduce Tyche, a fast and small-state pseudoran-
dom number generator especially suited for current parallel architectures. The
iteration function of Tyche, derived from the stream cipher ChaCha’s quarter-
round function [5], is nonlinear and fast; it uses a very small amount of state (4
32-bit registers) and, yet, it has a very large average period.

In Section 2 we review the state of the art in theory and practice of random
number generation. In Section 3 we describe the Tyche function. In Section 4 we
provide an analysis of several important features of the algorithm, such as the
expected period, statistical quality and parallelism. We then introduce a variant
of Tyche with higher instruction-level parallelism in Section 5. In Section 6, we
experimentally evaluate and compare Tyche. Section 7 concludes the paper.

2 Related Work

There is an enormous body of work in the literature regarding pseudorandom
number generation. One of the first and most popular methods to generate
pseudorandom numbers in digital computers was Lehmer’s linear congruential
method, consisting of a linear recurrence modulo some integer m. Since then, re-
searchers have proposed numerous other linear algorithms, most notably lagged
Fibonacci generators, linear feedback shift registers, Xorshift generators and the
Mersenne Twister [6,7,8]. The statistical properties of linear generators are well
known and widely studied; several empirical tests are described in [6, Chapter 3].
One of the drawbacks of such linear generators, in particular linear congruential
generators, is their very regular lattice structure [6, Section 3.3.4]. This causes
the usable amount of numbers in a simulation to be far less than the full period
of the generator [9].

Nonlinear pseudorandom generators, like the Inversive congruential generator
and Blum Blum Shub [10,11], avoid the drawbacks of linearity. However, nonlin-
ear generators often require more complex arithmetic than linear ones and have
smaller periods, rendering them impractical for simulations.

The generation of pseudorandom numbers in parallel environments is also a
well studied subject [12,13,14]. The main problem is to enable multiple concur-
rent threads of execution to get random numbers in parallel. Two main solutions
exist for this problem: parametrization and cycle splitting. Parametrization con-
sists in creating a slightly different full period generator for each instance; this

94 S. Neves and F. Araujo

can be done by, e.g., changing the iteration function itself. Cycle splitting takes
a full period sequence and splits it into a number of subsequences, each used
within an instance. Cycle splitting is often used in linear congruential genera-
tors, since it is possible to leap to any arbitrary position in the stream quite
easily. Other generators, such as the Mersenne Twister, rely on different initial
parameters (i.e., parametrization) to differentiate between threads.

In the case of GPUs and other vector processors, we face additional restric-
tions, because the amount of fast memory per core is quite limited, thus re-
stricting the internal state we can use. Furthermore, GPUs lack some important
instructions, such as native integer multiplication and/or division, leading to a
large slowdown for some popular random number generators. Still, linear con-
gruential generators have been studied in GPUs [15].

There have been some initial attempts to adapt cryptographic functions for
fast GPU random number generation. Tzeng and Wei [16] used the MD5 hash
function and reduced-round versions thereof to generate high-quality random
numbers. Zafar and Olano [17] used the smaller and faster 8-round TEA block
cipher to generate high-quality random numbers for Perlin noise generation.

3 Tyche

This section will present Tyche. In the following sections, all values are assumed
to be 32 bits long, unless otherwise noted. + represents addition modulo 232; ⊕
denotes the exclusive-or (xor) operation; ≪ means bitwise rotation towards the
most significant bits.

3.1 Initialization

The state of Tyche is composed of 4 32-bit words, which we will call a, b, c and
d. Tyche, when initialized, takes a 64-bit integer seed and a 32-bit integer idx.
Algorithm 3.1 describes the operations performed during initialization.

Algorithm 3.1: Tyche Init(a, b, c, d, seed, idx)

a← seed/232�
b← seed mod 232

c← 2654435769
d← 1367130551⊕ idx
for i← 0 to 20
do MIX(a, b, c, d)

return (a, b, c, d)

The MIX function called in Algorithm 3.1 is used here to derive the initial state;
it is described further in Section 3.3. The constants used in the initialization,
2654435769 and 1367130551, were chosen to be 232/ϕ� and 232/π�, where ϕ is
the golden ratio and π is the well-known constant. Their purpose is to prevent
a starting internal state of (0, 0, 0, 0).

Fast and Small Nonlinear Pseudorandom Number Generators for Simulation 95

3.2 The Algorithm

Once its internal state is initialized, Tyche is quite simple. It calls the MIX
function once and returns the second word of the internal state, as shown in
Algorithm 3.2.

Algorithm 3.2: Tyche (a, b, c, d)

(a, b, c, d) = MIX(a, b, c, d)
return (b)

3.3 The MIX Function

The MIX function, used both in initialization and state update, is derived di-
rectly from the quarter-round function of the ChaCha stream cipher [5]. As
described in Algorithm 3.3, it works on 4 32-bit words and uses only addition
modulo 232, XOR and bitwise rotations.

Algorithm 3.3: MIX(a, b, c, d)

a← a+ b
d← (d⊕ a) ≪ 16
c← c+ d
b← (b ⊕ c) ≪ 12
a← a+ b
d← (d⊕ a) ≪ 8
c← c+ d
b← (b ⊕ c) ≪ 7
return (a, b, c, d)

4 Analysis of Tyche

4.1 Design

We can find many different designs for random number generators. The design
we propose here attempts to achieve high period, speed, and very low memory
consumption. One of the ways in which it achieves this is by using a very simple
recursion:

xi+1 = f(xi) (1)

This requires no extra space other than the state’s size and perhaps some over-
head to execute f . One could use, e.g., a counter to ensure certain minimum pe-
riod — this would evidently require more registers per state, which goes against
our main objectives. A similar approach to ours has been used in the LEX [18]
stream cipher, using the AES block cipher in Output Feedback mode (OFB) and
extracting 4 bytes of the state per iteration.

96 S. Neves and F. Araujo

Another crucial design choice concerns function f . Should it be linear? Most
current random number generators are indeed linear: LCG, Xorshift, LFSR con-
structions, etc. These functions have the advantage of being very simple and
easily analyzed. However, linear random number generators tend to have highly
regular outputs: their outputs lie on simple lattice structures of some dimen-
sion. This makes such generators unsuitable for some types of simulations and
considerably reduces their useful period [19]. Nonlinear generators generally do
not have this problem [2]. Moreover, despite being very simple, linear genera-
tors may not be very fast. Linear congruential generators and their derivatives
require multiplications and modular reductions. Unfortunately, these operations
are not present in every instruction set and can be hard to implement otherwise.

One could then simply search for a good nonlinear random number generator.
However, nonlinear generators for simulation purposes are hard to find, and
generally much slower than their linear counterparts. Indeed, one could simply
use a cryptographic stream cipher as a random number generator. That would,
however, be several times slower and would require a much larger state. Indeed,
even TEA8 as described in [17] requires 136 instructions per 64 bits of random
output, while MIX only requires 12 instructions per 32 bits of random output.

In light of these reasons, we chose our function to be nonlinear and to use
exclusively instructions available in almost every chip — addition, xor, bit ro-
tations1. The overlap of 32-bit addition and xor creates a high amount of non-
linearity and simultaneously allows for very fast implementations, owing to the
simplicity of such instructions.

4.2 Period

The MIX function, used to update the internal state, is trivially reversible. Thus
it is a permutation, with only one possible state before each other state. How
does this affect the expected period? Were the MIX function irreversible, it would
behave like a random mapping—in that case, the period would be about 2n/2 for
an n-bit state [20]. In our case, the expected period is the average cycle length
of a random element in a random permutation: (2n + 1)/2 ≈ 2n−1 for an n-bit
state [21, Section 1.3.3].

It is also known that random permutations do have small-length cycles. In
fact, we can trivially find one cycle of length 1 in the MIX function: MIX(0,0,0,0)
= (0,0,0,0) — this is in fact its only fixed point [22]. However, if using the
initialization described in Section 3.1, this state will never be reached. It is also
extremely unlikely to reach a very short cycle—the probability of reaching a
cycle of length m is 1/2n; the probability of reaching a cycle of length m or less
is
∑m

i 1/2n = m/2n [23]. In our case, the chance of reaching a state with period
less than or equal to 232 is roughly 2−96.

1 While many chips do not have bit rotations natively, they are trivially achievable
with simple logical instructions such as shifts and xor.

Fast and Small Nonlinear Pseudorandom Number Generators for Simulation 97

4.3 Parallelization

Our algorithm is trivial to use in parallel environments. When initializing a state
(using Algorithm 3.1 or 5.1), each computing unit (e.g., thread, vector element,
core) uses the same 64-bit seed, but its own index in the computation (the idx

argument of Algorithm 3.1). We chose a 64-bit seed to avoid collisions; since
seeds are often chosen at random, it would only require about 216 initializations
for a better than 50% chance to rerun a simulation using the same seed if one
used 32-bit seeds. This would be unacceptable.

What about overlaps? Parallel streams will surely overlap eventually, given
that the function is cyclic and reversible. This is as bad as a small period in
a random number generator. To find out how fast streams overlap, consider a
simple case: s streams outputting a single value each. Given that each stream
begins at an arbitrary state out of n possible states, the probability of an overlap
(i.e., a collision) would be given by the birthday paradox:

1− n!

(n− s)!ns (2)

This is, however, a simplified example; what we want to know is the likelihood

that, given s streams and a function f that is a random permutation, no stream
will meet the starting point of any other in less than d calls to f . This can be seen
as a generalization of the birthday problem, and was first solved by Naus [24].
The probability that at least one out of s streams overlaps in less than d steps
in a cycle of length m is given by

1− (m− sd+ s− 1)!

(m− sd)!ms−1
(3)

In our particular case, m is in average 2127; s should be no more than 216; d
should be a large enough distance to make the generator useful — we choose 264

here as an example minimum requirement. Thus, 216 parallel streams producing
264 numbers will overlap with a probability of roughly 2−32. Conversely, when
running 216 parallel streams, an overlap is not expected until about 264/2−32 =
296 iterations have passed.

5 A Faster Variant

One issue with the construction described in the previous section is that it is
completely sequential. Each instruction of the MIX function directly depends
on the immediately preceding one. This does not take any advantage of modern
superscalar CPU machinery. Thus, we propose a variant of Tyche, which we call
Tyche-i, able to take advantage of pipelined processors. Tyche-i is presented in
Algorithms 5.1, 5.2, and 5.3.

98 S. Neves and F. Araujo

Algorithm 5.1: Tyche-i Init(a, b, c, d, seed, idx)

a← seed/232�
b← seed mod 232

c← 2654435769
d← 1367130551⊕ idx
for i← 0 to 20
do MIX-i(a, b, c, d)

return (a, b, c, d)

Algorithm 5.2: Tyche-i(a, b, c, d)

(a, b, c, d) = MIX-i(a, b, c, d)
return (a)

Algorithm 5.3: MIX-i(a, b, c, d)

b← (b≫ 7)⊕ c; c← c− d
d← (d≫ 8)⊕ a; a← a− b
b← (b≫ 12)⊕ c; c← c− d
d← (d≫ 16)⊕ a; a← a− b
return (a, b, c, d)

The main difference between Tyche and Tyche-i is the MIX-i function. The
MIX-i function is simply the inverse function of Tyche’s MIX. Unlike MIX,
MIX-i allows for 2 simultaneous executing operations at any given time, which
is a better suit to superscalar processors than MIX is. The downside, however,
is that MIX-i diffuses bits slower than MIX does: for 1-bit differences in the
internal state, 1 MIX call averages 26 bit flipped bits, while MIX-i averages 8.

6 Experimental Evaluation

6.1 Performance

We implemented and compared the performance of Tyche and Tyche-i against
the XORWOW generator found in the CURAND library [25]. XORWOW is a
combination of a Xorshift [8] and an additive generator, with a combined period
of 2192 − 232. The test setup was the Intel Core 2 E8400 processor for the CPU
benchmarks, and the NVIDIA GTX580 GPU for the GPU benchmarks. Table 1
summarizes our performance results in both architectures; note that GPU figures
do not take into account kernel and memory transfer overheads, as those are
essentially equal for every option.

As expected (cf. Section 5), Tyche-i is roughly twice as fast as Tyche on the
Core 2, a processor with high instruction-level parallelism. In the GPU, Tyche-i
is still quite faster, but by a lower (roughly 1.5) ratio.

Fast and Small Nonlinear Pseudorandom Number Generators for Simulation 99

Table 1. Period, state size, results of TestU01’s “BigCrush”, and performances, in
cycles per 32-bit word, of various pseudorandom number generators in the CPU and
GPU

Algorithm Period State BigCrush CPU GPU

Tyche ≈ 2127 128 160/160 12.327321 1.156616

Tyche-i ≈ 2127 128 160/160 6.073590 0.763572

XORWOW [25] 2192 − 232 192 157/160 7.095927 0.578620

TEA8 [26] 264 64 160/160 49.119271 5.641948

The XORWOW algorithm only requires bit shifts, not bit rotations. Unfortu-
nately, the Fermi GPU architecture does not support native bit rotations, which
are replaced by two shifts and a logical operation. This explains the slight speed
advantage of XORWOW. Note that we are able to improve 2 out of the 4 ro-
tations by using the Fermi PRMT instruction, which allows one to permute bytes
of a word arbitrarily. On the CPU, native rotations are as fast as shifts, and
Tyche-i actually beats XORWOW in speed.

We also include a comparison with TEA8, which reveals to be markedly slower
than any of the other choices for GPU (and CPU) random generation. As we
already pointed out in Section 4.1, TEA8 requires at least 136 instructions per
64-bit word, which is much higher than either Tyche, Tyche-i or XORWOW.

6.2 Statistical Quality Tests

In order to assess the statistical quality of Tyche and Tyche-i, we performed a
rather exhaustive battery of tests. We employed the ENT and DIEHARD suites
and the TestU01 “BigCrush” battery of tests [27,28,29]. Every test performed
in both variants showed no statistical weaknesses (cf. Table 1).

Another aspect of Tyche is that it is based on the ChaCha stream cipher.
ChaCha’s “quarter-round” function is also employed, albeit slightly modified,
in the BLAKE SHA-3 candidate[22]. The “quarter-round” has been extensively
analyzed for flaws, but both functions are still regarded as secure [30,31]. This
increases our confidence in the quality of Tyche as a generator.

Finally, note that the XORWOW algorithm fails 3 tests in the “BigCrush”
battery: CollisionOver (t = 7), SimpPoker (r = 27), and LinearComp (r = 29),
the latter being a testament of its linear nature.

7 Conclusion

In this paper we presented and analyzed Tyche and Tyche-i, fast and small
nonlinear pseudorandom generators based on the ChaCha stream cipher building
blocks.

Tyche and Tyche-i use a very small amount of state that fits entirely into 4 32-
bit registers. Our experiments show that Tyche and Tyche-i are much faster than
the also nonlinear and cryptographic function-derived TEA8, while exhibiting a

100 S. Neves and F. Araujo

large enough period for serious simulations with many parallel threads. On the
other hand, when we compare Tyche and Tyche-i to the slightly faster (but
linear) XORWOW algorithm, statistical tests (i.e., BigCrush) suggest that both
Tyche and Tyche-i have better statistical properties.

Acknowledgments. This work has been supported by the project CMU-PT/
RNQ/0015/2009, TRONE — Trustworthy and Resilient Operations in a
Network Environment.

References

1. Metropolis, N., Ulam, S.: The Monte Carlo Method. Journal of the American
Statistical Association 44(247), 335–341 (1949)

2. Gentle, J.E.: Random Number Generation and Monte Carlo Methods, 2nd edn.
Springer (2003)

3. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: NVIDIA Tesla: A Unified
Graphics and Computing Architecture. IEEE Micro. 28(2), 39–55 (2008)

4. Vangal, S.R., Howard, J., Ruhl, G., Dighe, S., Wilson, H., Tschanz, J., Finan, D.,
Singh, A., Jacob, T., Jain, S., Erraguntla, V., Roberts, C., Hoskote, Y., Borkar, N.,
Borkar, S.: An 80-Tile Sub-100-W TeraFLOPS Processor in 65-nm CMOS. IEEE
Journal of Solid-State Circuits 43(1), 29–41 (2008)

5. Bernstein, D.J.: ChaCha, a variant of Salsa20 (January 2008),
http://cr.yp.to/papers.html#chacha

6. Knuth, D.E.: Art of Computer Programming, 3rd edn. Seminumerical Algorithms,
vol. 2. Addison-Wesley Professional (November 1997)

7. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Trans. Model. Comput.
Simul. 8(1), 3–30 (1998)

8. Marsaglia, G.: Xorshift RNGs. Journal of Statistical Software 8(14) (July 2003)
9. Pawlikowski, K., Jeong, H.D., Lee, J.S.R.: On Credibility of Simulation Studies of

Telecommunication Networks. IEEE Communications Magazine, 132–139 (January
2002)

10. Hellekalek, P.: Inversive Pseudorandom Number Generators: Concepts, Results,
and Links. In: Alexopoulos, C., Kang, K., Lilegdon, W.R., Goldsman, D. (eds.)
Proceedings of the 1995 Winter Simulation Conference, pp. 255–262. IEEE Press
(1995)

11. Blum, L., Blum, M., Shub, M.: A Simple Unpredictable Pseudo-Random Number
Generator. SIAM J. Comput. 15(2), 364–383 (1986)

12. Eddy, W.F.: Random Number Generators for Parallel Processors. Journal of Com-
putational and Applied Mathematics 31, 63–71 (1990)

13. Brent, R.: Uniform random number generators for supercomputers. In: Proc. Fifth
Australian Supercomputer Conference, Melbourne, pp. 95–104 (December 1992)

14. Schoo, M., Pawlikowski, K., McNickle, D.: A Survey and Empirical Comparison
of Modern Pseudo-Random Number Generators for Distributed Stochastic Simu-
lations. Technical report, Department of Computer Science and Software Develop-
ment, University of Canterbury (2005)

15. Langdon, W.B.: A fast high quality pseudo random number generator for nvidia
cuda. In: GECCO 2009: Proceedings of the 11th Annual Conference Companion
on Genetic and Evolutionary Computation Conference, pp. 2511–2514. ACM, New
York (2009)

http://cr.yp.to/papers.html#chacha

Fast and Small Nonlinear Pseudorandom Number Generators for Simulation 101

16. Tzeng, S., Wei, L.Y.: Parallel white noise generation on a GPU via cryptographic
hash. In: Proceedings of the 2008 Symposium on Interactive 3D Graphics and
Games, I3D 2008, pp. 79–87. ACM, New York (2008)

17. Zafar, F., Olano, M., Curtis, A.: GPU random numbers via the tiny encryption
algorithm. In: Proceedings of the Conference on High Performance Graphics. HPG
2010, pp. 133–141. Eurographics Association, Aire-la-Ville (2010)

18. Biryukov, A.: The Design of a Stream Cipher LEX. In: Biham, E., Youssef, A.M.
(eds.) SAC 2006. LNCS, vol. 4356, pp. 67–75. Springer, Heidelberg (2007)

19. L’Ecuyer, P., Simard, R.: On the performance of birthday spacings tests with
certain families of random number generators. Math. Comput. Simul. 55(1-3), 131–
137 (2001)

20. Flajolet, P., Odlyzko, A.M.: Random Mapping Statistics. In: Quisquater, J.-J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 329–354. Springer,
Heidelberg (1990)

21. Knuth, D.E.: Art of Computer Programming. Fundamental Algorithms, vol. 1.
Addison-Wesley (July 2002)

22. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal BLAKE.
In: Submission to NIST, Round 3 (2010)

23. Chambers, W.G.: On Random Mappings and Random Permutations. In: Preneel,
B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 22–28. Springer, Heidelberg (1995)

24. Naus, J.I.: An extension of the birthday problem. The American Statistician 22(1),
27–29 (1968), http://www.jstor.org/stable/2681879

25. NVIDIA: CUDA Toolkit 4.0 CURAND Guide (January 2011)
26. Zafar, F., Curtis, A., Olano, M.: GPU Random Numbers via the Tiny Encryption

Algorithm. In: HPG 2010: Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on High Performance Graphics, Saarbrucken, Germany (June 2010)

27. Walker, J.: A Pseudorandom Number Sequence Test Program (January 2008),
http://www.fourmilab.ch/random/

28. Marsaglia, G.: The Marsaglia random number CDROM including the DIEHARD
battery of tests of randomness (1996), http://stat.fsu.edu/pub/diehard

29. L’Ecuyer, P., Simard, R.: TestU01: A C library for empirical testing of random
number generators. ACM Trans. Math. Softw. 33(4), 22 (2007)

30. Aumasson, J.P., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New Features
of Latin Dances: Analysis of Salsa, ChaCha, and Rumba, 470–488 (2008)

31. Aumasson, J.-P., Guo, J., Knellwolf, S., Matusiewicz, K., Meier, W.: Differential
and Invertibility Properties of BLAKE. In: Hong, S., Iwata, T. (eds.) FSE 2010.
LNCS, vol. 6147, pp. 318–332. Springer, Heidelberg (2010)

http://www.jstor.org/stable/2681879
http://www.fourmilab.ch/random/
http://stat.fsu.edu/pub/diehard

Parallel Quantum Algorithm for Finding

the Consistency of Saaty’s Matrices

Henryk Piech and Olga Siedlecka-Lamch

Institute of Computer and Information Sciences,
Czestochowa University of Technology,

Dabrowskiego 73, Czestochowa 42-201, Poland
{henryk.piech,olga.siedlecka}@icis.pcz.pl

Abstract. Features of the quantum systems enable simple calculation
of the eigenvalues in uniquely - parallel way. We propose the use of quan-
tum algorithms for the implementation of an iterative method to search
for consistency in the Saaty’s matrix of relative judgments, by step by
step closing up to the consistent matrix structure. Typically, the matrix
of relative judgments is prepared on the basis of the opinion of an ex-
pert or group of experts. In practice if is necessary to obtain consistent
form of opinions set, but when we want to get the desired level of their
consistency we must even in the minimal scope correct them. Criteria of
correction are: the minimum number of seats of correcting (the fastest
convergence to the consistency) or minimum summary value of alter-
ations. In our proposition we can choose several variants of the iterative
corrections as a way of consolidation. The method most often chosen
by experts is based on the minimal correction in every iteration. Some-
times we want to make minimal iteration steps. Details of this classical
approach are presented in [9].

In this paper we want to support the classical algorithm by the quan-
tum convention and parameters. The measurement realization will be
connected with the state transition and reading of the eigenvalue. The su-
perposition procedure will be activated after the transition, what causes
the change of the probability of the choice of location of next correc-
tion(s). In the aspect of quantum calculations we use quantum vectors,
qubits, inner and tensor vectors, linear operators, projectors, gates etc.
The resulting effect (for simulation of quantum calculations) concern-
ing the complexity of the calculations is comparable to the classical
algorithm.

Keywords: quantum algorithms, consistency, Saaty’s matrices.

1 Introduction

Quantum computers perform calculations by using physical systems that are
subject to laws and the limitations of quantum mechanics [4][7]. Quantum the-
ory introduces the concept of quantum state of the system. Quantum state is
a full description of the quantum system. Often the actual state of the basis

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 102–111, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Parallel Quantum Algorithm for Finding the Consistency of Saaty’s Matrices 103

system is presented as a superposition of basis states (achievable) [1][3][8][12].
The basic concept is the measurement.
In the quantum model we should not analyze the intermediate state of the sys-
tem, because each observation, in generally, destroys the superposition. However,
computer simulations are allowed to read some of the parameters specific to a
given state for example eigenvector described by actual state [2][6][11]. At the
same time there is a danger that the systems which are exactly in the same state
before measurement, after the measurement will be in different states. Quantum
algorithms work on quantum registers. The most widely used way of describing
a quantum algorithm is to present the quantum gates that implement it. Quan-
tum gate is a transformation acting on the registry and changing the state of the
system. In the quantum theory it exists the requirement placed on the reversibil-
ity of such a transformation. Measurement is not reversible, that means that we
cannot return to previous state. Often exists the ability to simultaneously per-
form calculations, or implement them in parallel for different states of the base,
since any measurement in any way changes the states of the same basis system
[5][13][15]. Therefore designing a quantum algorithm consists in using quantum
strategies and adjust the probabilities to obtain the desired state of the system.
In some algorithms, based on a combination of several quantum systems, a en-
tanglement is used, but in our solution, or popular Grover and Shor algorithms,
this phenomenon does not occur.

2 Vector Variants for Saaty’s Matrices

In the structures of relative judgments, we can extract the estimators of various
objects, attributes, experts and criteria. Applications of Saaty’s matrix struc-
tures are extensive and extract the most important (from the viewpoint of the
prospective use) groups (sets), according to representatives of the characteris-
tics of estimation. According toclassical assumption for Saaty’s matrix, the size
of the judgement structure should be not more than 10. Relative judgment is
represented by the relation of absolute estimators: w(i, j) = v(i)/v(j), where i, j
are codes of objects. An important assumption is the independence of the rep-
resentatives (objects, attributes, experts, etc.). In this case we can easily exploit
the vector space. However estimators are scalars and have the real (not complex)
representation, but their ordered sets can be treated as vector elements.
Let us start with the construction of the relative judgments matrix structure.
We can describe this structure with help of the Hermitian transformation that
means - with using tensor product: MS = V ⊗ RV+, where RV+ is Hermit’s
adjoint (generated by the complex adjoint and the transposition) of vector of
the absolute judgment invertion:

RV+ = {rv(1) = 1/v(1), rv(2) = 1/v(2), ..., rv(n) = 1/v(n)}.

104 H. Piech and O. Siedlecka-Lamch

The judgments matrix structure is created in the following way:⎛
⎜⎜⎜⎝

v(1)
v(2)
...

v(n)

⎞
⎟⎟⎟⎠⊗ (

1/v(1), 1/v(2), · · · , 1/v(n)) =

⎛
⎜⎜⎜⎝

v(1)/v(1) v(1)/v(2) · · · v(1)/v(n)
v(2)/v(1) v(2)/v(2) · · · v(2)/v(n)

...
...

. . .
...

v(n)/v(1) v(n)/v(2) · · · v(n)/v(n)

⎞
⎟⎟⎟⎠ .

The matrix of relative judgments take a form of a linear operator described in
the quantum convention:

U ≡
n∑

i=1

|v(i)〉〈rv(j)|.

The nature of the Saaty’s matrix let us to confirm the permanent value of the
scalar product. It is independ of the relative consistency of judgments:

n∑
i=1

〈rv(i)|v(i)〉 = n or
n∑

j=1

n∑
i=1

〈v(j)rv(i)|v(i)rv(j)〉 = n2

In practice, experts present relative judgments w(i, j) as:

MS′ =

⎛⎜⎜⎜⎝
w(1, 1) w(1, 2) · · · w(1, n)
w(2, 1) w(2, 2) · · · w(2, n)

...
...

. . .
...

w(n, 1) w(n, 1) · · · w(n, n)

⎞⎟⎟⎟⎠ . (1)

MS′ matrix structure may be inconsistent [5]. The scale of the inconsistency can
be evaluated by selecting the corrective row (or column) number and calculating
the relative correction (relating to amending the structure of the element) [2]:

d(i, j) = w(i, j) − w(k, j)/w(k, i) if we choose correction row k,

d(i, j) = w(i, j)− w(i, k)/w(k, j) if we choose correction column k.

Using these correcting increments we can build consistent Saaty’s matrixMS′′ =
MSk = MS′ − D, where MS′′ is the matrix of relative judgments after the
correction procedure, MSk is the matrix consistent with respect to the element
k,D is the matrix of corrections. If we choose the first row as a correcting element
k = 1 then we can write:

MS′′ =

⎛⎜⎜⎜⎝
w(k, 1) w(k, 2) · · · w(k, n)

w(k, 1)/w(k, 2) w(k, 2)/w(k, 2) · · · w(k, n)/w(k, 2)
...

...
. . .

...
w(k, 1)/w(k, n) w(k, 2)/w(k, n) · · · w(k, n)/w(k, n)

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
w(1, 1) w(1, 2) · · · w(1, n)

w(2, 1)− d(2, 1) w(2, 2)− d(2, 2) · · · w(2, n)− d(2, n)
...

...
. . .

...
w(n, 1)− d(n, 1) w(n, 2)− d(n, 2) · · · w(n, n) − d(n, n)

⎞⎟⎟⎟⎠ . (2)

Parallel Quantum Algorithm for Finding the Consistency of Saaty’s Matrices 105

Of course, w(i, i) = 1 and d(i, i) = 0. The description of correction column will
be only a little different. The matrix is a set of data needed to determine the
amplitudes of transitions to the next state [8]. Generally new states are pre-
sented as matrices structures MS(k) = (MS(k−1), w(k)(i, j) = w(k−1)(i, j) −
d(k−1)(i, j), w(k)(j, i) == 1/w(k)(i, j)), where k is number of the transition.
State’s transitions are realized with probability: p(i, j) = d(i, j)2/||D||2, where
||D|| =

√∑n
i=1

∑n
i=1 d(i, j)

2.
Let us introduce the base vectors and matrices that represent them:

|00 · · ·0〉 = |bin{0}〉 =

⎛⎜⎜⎜⎝
0
0
...
0

⎞⎟⎟⎟⎠ |00 · · · 1〉 = |bin{1}〉 =

⎛⎜⎜⎜⎝
1
0
...
0

⎞⎟⎟⎟⎠ · · ·

· · · |11 · · ·1〉 = |bin{n}〉 =

⎛⎜⎜⎜⎝
0
0
...
1

⎞⎟⎟⎟⎠ .
Let us introduce linear operator Ue ≡ |i〉〈j|, where |i〉〈j| are base vectors. Assum-
ing that the element “1” in the matrices are in positions i and j corresponding
to the value of d(i, j) selected with probability p(i, j). Then we obtain a matrix
with only one element “1”:

Ue =

⎛⎜⎜⎜⎜⎜⎜⎝

0
...
1
...
0

⎞⎟⎟⎟⎟⎟⎟⎠
(

0 0, · · · 1 · · · 0
)

=

⎛⎜⎜⎜⎜⎝
0 0 · · · 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 · · · 1(pos(i, j)) 0 0
· · · · · · · · · · · · · · · · · ·
0 0 · · · 0 · · · 0

⎞⎟⎟⎟⎟⎠ . (3)

Transition to the new state is realised with help of the linear, unitary operator
Ue (in every step the location of element ”1” changes). The Saaty’s matrix after
correction:

MS(k) = MS(k−1) − UeD
(k−1) − UT

e D
(k−1).

Action of linear operator Ue requires the use of gate corresponding to the oper-
ation Ue + UT

e . This gate is represented by the matrix:

|i〉〈j|+ |j〉〈i| =

⎛⎜⎜⎜⎜⎝
0 0 · · · 0 · 0
0 0 · · · 1(pos(i, j)) 0 0
· · · · · · · · · · · · · · · · · ·
0 1(pos(j, i)) · · · 0 0
0 0 · · · 0 · · · 0

⎞⎟⎟⎟⎟⎠ .

106 H. Piech and O. Siedlecka-Lamch

3 Eigenvalues of Relative Judgements Operator
and Assumption for Correction of Consistency

A complex number λ is called an eigenvalue of the operator U if there exists a
vector v �= 0 such that Uv = λv. Vector v is a eigenvector of U associated with the
eigenvalue λ. Eigenvalues of self-adjoint operator [6] are real numbers. Operator
U in space Hn corresponds to the Hermitian matrix MS′. Eigenvector v has a
corresponding description: v(1), v(2), ..., v(n). Eigenvalue equation becomes:⎛⎜⎜⎜⎝

w(1, 1) w(1, 2) · · · w(1, n)
w(2, 1) w(2, 2) · · · w(2, n)

...
...

. . .
...

w(n, 1) w(n, 1) · · · w(n, n)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
v(1)
v(2)

...
v(n)

⎞⎟⎟⎟⎠ = λ

⎛⎜⎜⎜⎝
v(1)
v(2)

...
v(n)

⎞⎟⎟⎟⎠
and after the transformation we obtain⎛⎜⎜⎜⎝

w(1, 1)− λ w(1, 2) · · · w(1, n)
w(2, 1) w(2, 2)− λ · · · w(2, n)

...
...

. . .
...

w(n, 1) w(n, 1) · · · w(n, n)− λ

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
v(1)
v(2)

...
v(n)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0
0
...
0

⎞⎟⎟⎟⎠ .
Necessary and sufficient condition for the existence of solution to the system of
equations is a linear relationship MS′ − λI, where I is the unit matrix. Simple
sum of bases of subspaces H(λi) is the base of the whole Hilbert space H, where
λi, i = 1, 2, ..., k are all eigenvalues of the self-adjoint linear operator. Projection
operators in the corrected subspace are defined as follows:

Piv = 〈w|vi〉w, i = 1, 2, ..., n(correction elements - selected row, column) (4)

Vectors that corresponds to projection are described as:

w′(j, k) = w(i, j)v(i)w(j, k) for i �= j, k = 1, 2, ..., n (5)

or

w′(j, k) = 1/(n− 1)

n∑
i=1,i�=j

w(i, j)v(i)w(j, k). (6)

4 The Physical Interpretation of Quantum Conversion

Hilbert space is a mathematical apparatus, by means of which reality for quan-
tum systems may be described. Quantum circuit is described by quantum states.
In our case the code of the state is represented by the matrix (3). Track-
ing changes in the system is made by a quantum measurement. The result of
a measurement is the transition to one of the possible states of the system.
The parameters of the state which will be used for measurement are described

Parallel Quantum Algorithm for Finding the Consistency of Saaty’s Matrices 107

by the matrix (1). The conversion process is connected with eigenvalue measure-
ments and the transition to the new state. In our example we have n2, which
reflects the random chooice of the correction location. The time evolution of
quantum system is realized by a universal operator. Linear Hermitian operator
corresponds to each measurement, which takes place in the state space. The
eigenvalue in classical computation is calculated with help of characteristics of
corrections and states matrices. The new state can be also an equivalent to
changes of row and column according to equations (4),(5),(6). The probability
of the transition to the new state equals: p(i, j) = ||Piv||2 = 〈Piv|Piv〉 = 1/n or

p(i) = ||Piv − w||2 = 〈Piv − w|Piv − w〉 =

n∑
k=1

{w(k, i)v(i)w(j, k) − w(j, k)}2/
n∑

j=1

n∑
k=1

{w(k, i)v(i)w(j, k) − w(j, k)}2,

according to 4. The linear operator in our variant equals Ue = |i〉〈2n− 1|, where
〈2n − 1| will be represented by the vector (1, 1, ..., 1) with length n. The sum
of probabilities of transition to all possible states obviously equals 1. Expected
value of system’s measurement resulted in state v for the Hermitian operator U
has the following form:

〈v|Uv〉 = 〈
n∑

i=1

Piv|U
n∑

j=1

Pjv〉 =

n∑
i=1

n∑
j=1

λj〈v|PiPjv〉 =

n∑
i=1

λi〈v|PiPiv〉 =

=

n∑
i=1

λi〈Piv|Piv〉 =

n∑
i=1

λipi, (7)

and the variance of measurement result in state v becomes:

Δ2U(v) =

n∑
i=1

pi(λi −
n∑

i=1

λipiv)
2 =

n∑
i=1

piλ
2
i − (

n∑
i=1

λipiv)
2 =

= 〈v|U2|v〉 − 〈v|U |v〉2. (8)

We can assume, that the operator in the space of system states depends on the
time in a continuous manner, thus, if the system at time 0 was in state v, so at the
moment t will be in the state U(t)v. Operators transform the system state, but if
we want to get a specific value of the parameter we have to make a measurement.
After the measurement the system will be in the new state and information about
the previous state cannot be recovered. The measurement is in fact an irreversible
operation. To follow the state changes makes sense until we reach zero or a given
level of inconsistency ((λ = n) or |λ − n| < ε). But according to the quantum
theory the system will realize the infinite number of iterations. In these cases we
get either independence from the time (stationary states [10]) or the expected
value of the measurement result can stay on constant level: d

dt〈v(t)|Uv(t)〉 = 0.
After every transition also the probabilities of transition will change. Every state
is determined by discrete part of the operator U . The characteristics of these

108 H. Piech and O. Siedlecka-Lamch

states and relative judgements of selected items change. They are components of
the operator. We can therefore conclude that the spectrum of the operator may
consist of:

– discrete spectrum consisting of a finite number of states,
– continuous spectrum of probabilities of state transitions,
– continuous spectrum of correction values,
– continuous spectrum of relative judgments of objects,
– continuous spectrum corresponding to judgments and operator values of the

eigenvector (Uv = λv).

Although quantum theory forbids the cloning of state of the system [2][11] but
it is possible to create an operator to copy any given basis state [3]. We can also
transpose a state of quantum register to another.

5 Parallel Superposition of Quantum Matrix
Characteristics in Simulation Variant

One of the important assumptions in quantum approach is the exploitation of
superposition algorithm for transition of states and the change of amplitudes.
In our problem we have the matrix of states and the matrix of corrections. The
second one is used to determine the first: D → P → MS → Ue. The correction
process consists of independent operations in every iteration and implements the
superposition strategy. As a result we obtain the following corrections matrix:

Dk =

⎛⎜⎜⎜⎝
dk(1, 1) dk(1, 2) · · · dk(1, n)
dk(2, 1) dk(2, 1) · · · dk(1, 1)

...
...

. . .
...

dk(n, 1) dk(n, 2) · · · dk(n, n)

⎞⎟⎟⎟⎠ , (9)

or accumulated corrections matrix:

SDk =

⎛⎜⎜⎜⎜⎝
∑k

l=1 dl(1, 1)
∑k

l=1 dl(1, 2) · · ·
∑k

l=1 dl(1, n)∑k
l=1 dl(2, 1)

∑k
l=1 dl(2, 1) · · ·

∑k
l=1 dl(1, 1)

...
...

. . .
...∑k

l=1 dl(n, 1)
∑k

l=1 dl(n, 2) · · ·
∑k

l=1 dl(n, n)

⎞⎟⎟⎟⎟⎠ , (10)

where SDk is the accumulated correction matrix after k iterations, dl(i, j) is a
value of correction on position (i, j) after l iterations, n is a number of judgment
objects (n2 - maximal number of used processors in simulation process). Super-
position strategy is implemented on the set of processors because all operations
in particular iterations are treated as independent. The corrections matrix D
will be used to define the matrix:

Pk =

⎛⎜⎜⎜⎝
d2k(1, 1)/mw d2k(1, 2)/mw · · · d2k(1, n)/mw
d2k(2, 1)/mw d2k(2, 1)/mw · · · d2k(1, 1)/mw

...
...

. . .
...

d2k(n, 1)/mw d2k(n, 2)/mw · · · d2k(n, n)/mw

⎞⎟⎟⎟⎠ , (11)

Parallel Quantum Algorithm for Finding the Consistency of Saaty’s Matrices 109

where mw = maxi,j=1,...,n{w(i, j)}2 is correction rank.
Subsequent iterations come down the system of judgments to a consistent

state |w0〉. If we rely solely on one correction element, then the amplitude will
decrease monotonically. If a different correction element is exploited, then the
system will converge monotonically to consistency. The variance of eigenvector
components tends to zero. Starting from the premise that a system of judg-
ments is in superposition of base states with equal amplitudes, the initial state
is described by formula:

|v1〉 =
1

n

n∑
j=1

|w(0)〉∑n
i=1 w

(0)(i, j)

and the following iterations are implemented according to convention:

MS(k) = MS(k−1) − UeD
(k−1) − UTD(k−1) (12)

|vk〉 =
1

n

n∑
j=1

|w(k−1)〉∑n
i=1 w

(k−1)(i, j)

Elements of the eigenvector can be calculated in the simulation in another way,
for example by the method in [9].
Parallel quantum algorithm was realised with use of C++ language and imple-
mented in the following steps:

Step 1: The measurement of the relative judgments eigenvector. One processor
is engaged in simulation [5],[9],
Step 2: Values of corrections are calculated with help of correction element (ma-
trix D or SD (10)). n2 processors are engaged in simulation,
Step 3: Probability distribution for state transitions is built on the base of cor-
rections matrix (12). n2 processors are engaged in simulation,
Step 4: Generation of the new state according to the probability distribution.
n2 processors are engaged in simulation [9],
Step 5: Procedure of judgments correction, engaging n2 processors,
and return to Step1.

In theory, the acceleration of parallel simulation of quantum algorithm should
achieve 0.8n2 speedup, but in practice, due to processor communication the
acceleration achieves value not greater then 0.1n2.

We present the results of statistical analysis which takes into account the
different levels of inconsistency, the size of the Saaty’s matrix while one can
observe the convergence of the system consistency for: - classic calculations,
- simulation of quantum calculations,
- quantum calculations.
These results are presented using a normalized parameter of time, for maximum
conversion time for a classical variant. We show diagrams comparing the results
of statistical analysis (fig.1-3).

110 H. Piech and O. Siedlecka-Lamch

Fig. 1. Diagram of the convergence to consistency for classic calculations and parallel
realization of simulation of quantum algorithm

Fig. 2. Time of realization classical calculations and parallel simulation of quantum
algorithm

Fig. 3. Time of realization classical and quantum calculations in dependency of level
of inconsistence

Parallel Quantum Algorithm for Finding the Consistency of Saaty’s Matrices 111

6 Conclusions

Parallel quantum algorithm, as in the classical version, allow to accelerate the
search of consistency, but the complexity remains the same. The limitation, typ-
ical for a quantum variant inferring from the superposition convention, do not
increases complexity at all. Additional acceleration of the calculations (fig.3) is
the result of the characteristics of quantum systems based on the physical nature
of quantum machines (use of spin of electron or ions trapping). Results based
on statistical analysis can give a little better effect (about 7%) when the correc-
tions matrix (but not accumulated) is used to create a matrix of probabilities
(10). Simulation takes into account the limitations and requirements of quantum
theory of computation [12]. These requirements can not improve the efficiency
of the calculations in terms of algorithm structure.

References

1. Berman, G.D., Doolen, G.D., Mainieri, R., Tsifrinovich, V.I.: Introduction to Quan-
tum Computers. World Scientific, Singapore (1998)

2. Berthiaume, A., Brassard, G.: The quantum challenge to structural complexity
theory. In: Proc. 7th IEEE Conf. Structure in Complexity Theory (1992)

3. Broadsky, A., Pippenger, N.: Characterizations of 1-way quantum finite automata.
SIAM J.Comput. 31, 1456–1478 (2002)

4. Cohen, D.W.: An Introduction to Hilbert Space and Quantum Logic. Springer,
New York (1989)

5. Gruska, J.: Quantum Computing. McGraw-Hill, London (1999)
6. Gudder, S.: Basic properties of quantum automata. Found. Phys. 30, 301–319

(2000)
7. Kozen, D.C.: Automata and Computability. Springer, New York (1997)
8. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.

Cambridge University Press, Cambridge (2000)
9. Piech, H., Bednarska, U.: Iterative Method for Improving Consistency of Multi-

attribute Object Judgments Performed by Teams of Decision Makers. In:
J ↪edrzejowicz, P., Nguyen, N.T., Howlet, R.J., Jain, L.C. (eds.) KES-AMSTA 2010.
LNCS (LNAI), vol. 6071, pp. 150–159. Springer, Heidelberg (2010)

10. Paz, A.: Introduction to Probabilistic Automata. Academic Press, New York (1971)
11. Shor, P.W.: Polynomial-time algorithm for prime factorization and discrete loga-

rithms on quantum computer. In: Proc. 35th Ann.Symp.on Foundations of Com-
puter Science, Santa Fe. IEEE Computer Society Press, Silver Spring (1994)

12. Siedlecka, O.: A Brief Overview of Quantum Computing Theory. Computing, Mul-
timedia and Intelligent Techniques 2(1), 35–44 (2006)

13. Townsend, J.S.: A Modern Approach to Quantum Mechanics. McGraw-Hill, New
York (1992)

14. Williams, P., Clearwater, S.H.: Explorations in Quantum Computing. Springer,
New York (1998)

15. Yao, A.: Quantum circuit complexity. In: Proc. 34th IEEE Symp. on Foundations
of Computer Science (1993)

A Numerical Approach to the Determination

of 3D Stokes Flow in Polygonal Domains
Using PIES

Eugeniusz Zieniuk, Krzysztof Szerszen, and Marta Kapturczak

Faculty of Mathematics and Computer Science,
University of Bialystok,

Sosnowa 64, 15-887 Bialystok, Poland
{ezieniuk,kszerszen,mkapturczak}@ii.uwb.edu.pl

Abstract. This paper discusses a generalization of intensively devel-
oped parametric integral equation system (PIES) to solve 3D steady
Stokes flow. Given the preliminary nature of this research, the effective-
ness of the generalized PIES has been verified for the solutions of the
Stokes problems defined on polygonal domains. The boundary of such
domains has been modeled directly in PIES by joining rectangular Coons
parametric patches of the first degree. With them it is possible to model
relatively large linear segments of the boundary by small number of cor-
ner points of the considered polygonal domain. Two numerical examples
were used to validate the solutions of PIES with analytical and numerical
results available in the literature.

Keywords: Stokes flow, boundary integral equations (BIE), parametric
integral equation system (PIES), Coons parametric surface patches.

1 Introduction

For many years the authors of this paper have been used parametric integral
equation system (PIES) to solve boundary value problems. So far, however, PIES
has been mainly used to solve 2D potential boundary value problems modeled by
partial differential equations such as: Laplace [7], Poisson [8], Helmholtz [9] and
Navier-Lame [10]. These equations have been written in the alternative form,
with the help of PIES, which take into account in its mathematical formalism
the shape of the boundary modeled by curves known from computer graphics.
The shape of the boundary could be defined by such curves as: Bezier, B-spline,
Hermite, and its definition is practically reduced to giving a small set of control
points. The complexity of modeling the shape of the boundary in PIES depends
on the complexity of the shape of the concerned boundary problem. However,
this eliminates the need for definition of traditional boundary or finite elements.
Traditional approaches based on finite or boundary element geometry are inef-
fective in many cases, for example in synthesis problems, that require an iterative
process. This inefficiency, especially even more increases in the case of boundary
problems defined in 3D domains.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 112–121, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Numerical Approach to the Determination of 3D Stokes Using PIES 113

The results obtained in PIES for problems modeled by mentioned equations
were compared with the results obtained by FEM and BEM. High accuracy and
effectiveness of PIES for those problems has been encouraging its generalization
to the 3D boundary problems. So far, in the case of 3D problems, we have only
dealt with the problems for Laplace and Helmholtz [12] equations. In order to
illustrate the numerical solution of the Laplace equation in PIES we consider the
distribution of temperature fields [11] as well as potential flow of a perfect fluid
[13]. Our numerical results confirm the effectiveness of the proposed strategy
from the point of view of simplifying the geometry modeling process as well as
improving the accuracy of obtained solutions compared with element methods.

The aim of this paper is to explore the potential of using PIES for solving
3D Stokes flows. PIES for the Stokes equation is obtained similarly as for the
previously mentioned partial differential equations.

2 PIES for the Stokes Equation on Polygonal Domains

A three dimensional steady-state Stokes differential equation is a linearized ap-
proximation of Navier-Stokes equation for low Reynolds numbers and formulated
in velocity-pressure form as [6]

μ∇2u −∇p = 0, (1)

∇u = 0,

where are u is fluid velocity vector, p is the pressure of viscous incompressible
fluid flow and μ is the dynamic viscosity of the fluid.

PIES for Stokes equations in 3D was obtained as a result of the analytical
modification of the traditional BIE. Methodology of this modification for poten-
tial problems on 2D polygonal domains is presented in [10] and on 2D curved
domains in [7]. Generalizing this modification for Stokes equations in 3D, we
obtain the following formula of PIES

0.5u l(v1, w1) =
n∑

j=1

∫ vj

vj−1

∫ wj

wj−1

{Ū lj
∗
(v1, w1, v, w)pj(v, w)

−P̄ lj
∗
(v1, w1, v, w)u j(v, w)}Jj(v, w)dvdw, (2)

where

vl−1 < v1 < vl, wl−1 < w1 < wl, vj−1 < v < vj , wj−1 < w < wj , l = 1, 2, 3, ..., n,

and n is the number of parametric patches that create the domain boundary in
3D.

The integrands Ū lj
∗
(v1, w1, v, w), P̄ lj

∗
(v1, w1, v, w) in equation (2) are rep-

resented in the following matrix form

Ū lj
∗
(v1, w1, v, w) = − 1

8πμη

⎡⎣U11 U12 U13

U21 U22 U23

U31 U32 U33

⎤⎦ , (3)

114 E. Zieniuk, K. Szerszen, and M. Kapturczak

P̄ lj
∗
(v1, w1, v, w) =

6

8πη5

⎡⎣P11 P12 P13

P21 P22 P23

P31 P32 P33

⎤⎦ . (4)

The individual elements in matrix (3) can be expressed in an explicit form as

U11 = 1 + η21/η
2, U12 = η1η2/η

2, U13 = η1η3/η
2,

U21 = η2η1/η
2, U22 = 1 + η22/η

2 , U23 = η2η3/η
2,

U31 = η3η1/η
2, U32 = η3η2/η

2, U33 = 1 + η23/η
2,

while in matrix (4) by

P11 = η31n1 + η21η2n2 + η21η3n3, P12 = η21η2n1 + η1η
2
2n2 + η1η2η3n3,

P13 = η21η3n1 + η1η2η3n2 + η1η
2
3n3, P21 = η21η2n1 + η1η

2
2n2 + η1η2η3n3,

P22 = η1η
2
2n1 + η32n2 + η22η3n3, P23 = η1η2η3n1 + η22η3n2 + η2η

2
3n3,

P31 = η21η3n1 + η1η2η3n2 + η1η
2
3n3, P32 = η1η2η3n1 + η22η3n2 + η2η

2
3n3,

P33 = η1η
2
3n1 + η2η

2
3n2 + η33n3.

Function Jj(v, w) is the Jacobian, while n1, n2, n3 are the components of the
normal vector to the surface patch designated by index j. Kernels (3) and (4)
include in its mathematical formalism the shape of a closed boundary, created by
means of appropriate relationships between surfaces (l, j = 1, 2, 3, ..., n), which
are defined in Cartesian coordinates using the following relations

η1 = P
(1)
j (v, w) − P (1)

l (v1, w1), η2 = P
(2)
j (v, w) − P (2)

l (v1, w1), (5)

η3 = P
(3)
j (v, w) − P (3)

l (v1, w1), η = [η21 + η22 + η22]0.5,

where Pj(v, w) = [P
(1)
j (v, w), P

(2)
j (v, w), P

(3)
j (v, w)] are the scalar components

of the surface patch, which depends on the parameters v, w . This notation is
also valid for the patch labeled by index l with parameters v1, w1, ie. for j = l
and for parameters v = v1 and w = w1.

In our previous papers we have considered functions Pj(v, w) in the form
of known from computer graphics parametric surface patches. The possibility
of analytical description of the boundary directly in the formula of PIES is the
main advantage of the presented approach in comparison with traditional BIE. In
classical BIE, a description of the boundary is not included in the mathematical
formalism of the equation, but very generally defined by the integral boundary.
This necessitates the discretization of the domain boundary into elements, as is
the case in classical BEM. Advantages of the proposed approach of modelling
the boundary, so on directly in the mathematical equations of PIES, was shown
in the case 2D [7-10] as well as 3D [11-13] problems. Taking into account the
obtained efficiency of the method it seems natural to consider the same way of
modelling for Stokes problems.

The preliminary nature of the presented research for the Stokes equation
led the authors to focus on only polygonal domains. To model such domains,
rectangular Coons surface patches of the first degree was used. Coons surface

A Numerical Approach to the Determination of 3D Stokes Using PIES 115

Fig. 1. Coons surface patch with 4 corner points

patch of degree 1 takes the form of a quadrangular plate defined by four points
P1,P2,P3,P4 placed at the corners of defined rectangle as shown in Fig. 1.
The location of any point of the Coons patch is dependent on two parameter
v, w in accordance with the following formula [1]

P(v, w) =
[

1− v v
] [P1 P4

P2 P3

] [
1− w
w

]
, 0 ≤ v, w ≤ 1. (6)

2.1 Approximation of the Boundary Functions over the Surface
Patches

The use of PIES for solving 2D and 3D boundary problems made it possible
to eliminate the need for discretization of both the mentioned above boundary
geometry, and the boundary functions. In previous research works, the bound-
ary functions both defined as the boundary conditions, as well as obtained af-
ter solving PIES are approximated by Chebyshev series. Unlike in 2D problem
(modeled by Laplace’s equation), boundary conditions for 3D Stokes problems
are expressed in vector notation. Therefore, we have generalized previously-used
approximation series to vector notation so as to represent the scalar components
of the velocity vector u j(v, w) and the viscous stresses pj(v, w). These boundary
functions uj(v, w), pj(v, w), are defined on each Coons patch j by means of the
following series

uj(v, w) =

N∑
p=0

M∑
r=0

u
(pr)
j T

(p)
j (v) T

(r)
j (w), (7)

pj(v, w) =

N∑
p=0

M∑
r=0

p
(pr)
j T

(p)
j (v) T

(r)
j (w),

where u
(pr)
j , p

(pr)
j are requested coefficients and T

(p)
j (v), T

(r)
j (w) are Chebyshev

polynomials and n̄ = N ∗ M number of terms in the Chebyshev series. One

116 E. Zieniuk, K. Szerszen, and M. Kapturczak

of these functions, either uj(v, w) or pj(v, w), depending on the type of the
resolved boundary problem, is posed in the form of boundary conditions, whereas
the other is the searched function resulting from the solution of PIES. After
substituting series (6) to PIES (1) we obtain the following formula

0.5u l(v1, w1) =

n∑
j=1

N∑
p=0

M∑
r=0

{p(pr)
j

∫ vj

vj−1

∫ wj

wj−1

Ū lj
∗
(v1, w1, v, w)

−u(pr)
j

∫ vj

uj−1

∫ wj

wj−1

P̄ lj
∗
(v1, w1, v, w)} T (p)

j (v) T
(r)
j (w)Jj(v, w)dvdw. (8)

Next writing down expression (8) at the collocation points on individual Coons
patches we obtain an algebraic equation system with respect to the unknown

coefficients u
(pr)
j or p

(pr)
j .

2.2 Solutions in the Domain

After solving PIES we obtain the solution of the boundary problem only on its
boundary, represented by series (7). To find solution in the domain we need to
obtain an integral identity known for BIE that makes use of the solution on the
boundary obtained by PIES. After using similar modifications as in the case of
2D problems [7,10] we have had an integral identity which used solutions (7)
at the boundary, previously obtained by PIES. The modified identity takes the
following form

u(x) =

n∑
j=1

∫ vj

vj−1

∫ wj

wj−1

{
ˆ̄U

∗
j (x , v, w)pj(v, w)− ˆ̄P

∗
j (x , v, w)uj(v, w)

}
Jj(v, w)dvdw.

(9)

The integrands appearing in the identity (9) are expressed in the following form

ˆ̄U
∗
lj(x , v, w) = − 1

8πμr̂

⎡⎣ Û11 Û12 Û13

Û21 Û22 Û23

Û31 Û32 Û33

⎤⎦ , (10)

ˆ̄P
∗
lj(x , v, w) =

6

8πr̂5

⎡⎣ P̂11 P̂12 P̂13

P̂21 P̂22 P̂23

P̂31 P̂32 P̂33

⎤⎦ . (11)

The individual items in matrix (10) can be represented in explicit form as follows

Û11 = 1 + r̂21/r̂
2, Û12 = r̂1r̂2/r̂

2, Û13 = r̂1r̂3/r̂
2,

Û21 = r̂2r̂1/r̂
2, Û22 = 1 + r̂22/r̂

2, Û23 = r̂2r̂3/r̂
2,

Û31 = r̂3r̂1/r̂
2, Û32 = r̂3r̂2/r̂

2, Û33 = 1 + r̂23/r̂
2,

while in matrix (11) are introduced through

A Numerical Approach to the Determination of 3D Stokes Using PIES 117

P̂11 = r̂31n1 + r̂21 r̂2n2 + r̂21 r̂3n3, P̂12 = r̂21 r̂2n1 + r̂1r̂
2
2n2 + r̂1r̂2r̂3n3,

P̂13 = r̂21 r̂3n1 + r̂1r̂2r̂3n2 + r̂1r̂
2
3n3, P̂21 = r̂21 r̂2n1 + r̂1r̂

2
2n2 + r̂1r̂3r̂3n3,

P̂22 = r̂1r̂
2
2n1 + r̂32n2 + r̂22 r̂3n3, P̂23 = r̂1r̂2r̂3n1 + r̂22 r̂3n2 + r̂2r̂

2
3n3,

P̂31 = r̂21 r̂3n1 + r̂1r̂2r̂3n2 + r̂1r̂
2
3n3, P̂32 = r̂1r̂2r̂3n1 + r̂22 r̂3n2 + r̂2r̂

2
3n3,

P̂33 = r̂1r̂
2
3n1 + r̂2r̂

2
3n2 + r̂33n3,

where

r̂1 = P
(1)
j (v, w) − x1, r̂2 = P

(2)
j (v, w)− x2, r̂3 = P

(3)
j (v, w) − x3,

r̂ = [r̂21 + r̂22 + r̂22]0.5. (12)

Both integrands in the identity (9) are visually very similar to kernels (3,4). The
main difference, however, lies in the fact that in kernels (10,11), apart from Coons
patches defining boundary geometry, we have the coordinates of the points in
domain x ≡ {x1, x2, x3} . Using these coordinates we can pose any point in the
domain in which we look for the solutions.

3 Numerical Examples

In order to validate our approach, we have implemented it as a computer pro-
gram. The newly developed program have been used to perform some numerical
tests which are presented below. In presented examples, the accuracy of results
in PIES have been compared with analytical and numerical solutions available
in the literature. We consider internal problems with applied Dirichlet boundary
conditions without additional source terms.

3.1 Example 1

A first example is illustrated in Fig. 2a. We consider steady state Stokes flow in
a cubic cavity induced by the motion on its upper face with a constant velocity
u1 [5]. In the absence of analytical solutions for such problem, the PIES results
have been compared with the available literature results. Table 1 contains the
numerical results obtained for the above problem using FEM with different mesh
densities: published in [3,4] and computed with open-source software package
FreeFem++.

The fourth rows contain minimum values for velocity profile u1 along x3 at
x1 = x2 = 0.5, while the fifth and sixth rows show minimum and maximum
values for u3 along x2 at x1 = x3 = 0.5. These values slightly vary with respect
to the number of used finite elements and degrees of freedom presented in the
second and third rows.

In Table 2, we summarize the corresponding values of components u1 and
u3 for the same flow problem obtained in PIES. In the absence of discretiza-
tion in PIES all computations have been performed for the model of the domain

118 E. Zieniuk, K. Szerszen, and M. Kapturczak

Fig. 2. Stokes flow in a cubic cavity induced (a), modeling of the cubic domain in PIES
by 6 Coons patches (b)

Table 1. Comparison of results for cubic cavity obtained in FEM

Method FEM [3,4] FreeFem++

Number of elements 1000 27000 8000 1250000 3072
Number of nodes 1331 29791 9261 132651 4713
min u1 -0.21316 -0.21958 -0.21884 -0.22235 -0.2276
min u3 -0.17071 -0.18026 -0.18036 -0.18063 -0.18210
max u3 0.17071 0.18026 0.18036 0.18063 0.18195

described by Coons patches shown in Fig. 2b. This domain has been practically
defined by only eight corner points P i(i = 1, ..., 8). Declared corner points, in
turn, define six rectangular Coons surface patches.

Comparing the results from Tables 1,2 it is possible to notice that we obtain
comparative values of u1 and u3 to FEM results with smaller input data needed
to model the computational domain in PIES, which is model by only 8 corner
points. Moreover, there is a important difference in the convergence investigation
of solutions between PIES and FEM. In FEM, it is necessary to physically in-
crease the number of boundary elements into which the boundary is discretized,
whereas in PIES, we only need to increase the number n̄ in the Chebyshev series.
Table 2 present the results in PIES obtained for 36, 49 and 64 components of
Chebyshev series (row 3) posed on each of 6 Coons patches. From the program-
ming point of view the operation simply involves changing this number n̄ in the
program, which makes it possible to quickly verify the convergence and thus add
another advantage to the proposed method. It is a considerable advantage over
element methods in which the increase of accuracy involves the increase of the
number of elements.

A Numerical Approach to the Determination of 3D Stokes Using PIES 119

Table 2. Comparison of results for cubic cavity obtained in PIES

Method PIES

Number of Coons patches 6 6 6
Number n̄ in the Chebyshev series 36 49 64
Number of equations 1944 2646 3456
min u1 -0.22373 -0.21378 -0.21180
min u3 -0.17894 -0.17558 -0.17435
max u3 0.17894 0.17558 0.17435

3.2 Example 2

In the second example the modification of the computational domain modeled
by Coons patches is demonstrated. Fig. 3b shows the modification of the initial
cube by moving 4 corner points. The effectiveness of this modification consists
in changing only the coordinates of corner points to modify the domain.

Fig. 3. Modification of the cubic domain after moving corner points

In order to evaluate proposed PIES for such modified domain, a numerical
verification was performed with Dirichlet boundary conditions for the Stokes
equation obtained from the following exact solutions [2]

u1(x1, x2, x3) = x1 + x21 + x1x2 + x31x2,

u2(x1, x2, x3) = x2 + x1x2 + x22 + x21x
2
2, (13)

u3(x1, x2, x3) = −2x3 − 3x1x3 − 3x2x3 − 5x21x
2
2x3.

The impact of the number of terms n̄ = N ∗M in the Chebyshev series (7) on the
accuracy of the results on the boundary, and then in the domain was examined.
In Table 3, we summarize the L2 relative error norms for u1, u2, u3 components

120 E. Zieniuk, K. Szerszen, and M. Kapturczak

Table 3. L2 relative error norms of solutions in PIES for two domains from Fig. 3

Number n̄ in the Chebyshev series 4 9 16 25
Number of equations 216 486 864 1350

u1 0.509215 0.056526 0.052355 0.052159
u2 Fig. 3a 0.686895 0.292041 0.272546 0.271387
u3 0.285673 0.089854 0.083754 0.083446

u1 0.327237 0.041312 0.039998 0.038791
u2 Fig. 3b 0.540369 0.175733 0.170385 0.171071
u3 0.590327 0.077786 0.075169 0.071174

of solutions obtained inside two domains from Fig. 3. As expected, the accuracy
of obtained solutions improves as number n̄ of terms in series (7) is increased.

4 Conclusions

This paper generalizes the existing and intensively developed PIES scheme to
solve steady-state 3D Stokes flow problems. In order to model boundary shape
parametric Coons rectangular patches are used. The patches are applied in an-
alytic modification of traditional BIE and to obtain the PIES formula for 3D
Stokes problems. The explicit form of PIES for Stokes equation has been pre-
sented. In addition, it has presented the identity for solutions in the domain.
Obtained PIES formula has been tested on elementary examples, but with an-
alytical and numerical solutions. The analysis showed the previously existing
advantages of PIES also in relation to the Stokes flow. These advantages are
related to the simplicity of defining and modifying the shape of the edge of the
declaration corner points. Discussed numerical examples show good accuracy of
obtained solutions

Acknowledgements. The scientific work is founded by resources for sciences
in the years 2010-2013 as a research project NN 519579538.

References

1. Farin, G.: Curves and Surfaces for CAGD: A Practical Guide. Morgan Kaufmann
Publishers, San Francisco (2002)

2. Olshanskii, M.A.: Analysis of semi-staggered Finite-difference method with appli-
cation to Bingham flows. Computer Methods in Applied Mechanics and Engineer-
ing 198, 975–985 (2009)

3. Murugesan, K., Lo, D.C., Young, D.L.: An effcient global matrix free finite ele-
ment algorithm for 3D flow problems. Communications in Numerical Methods in
Engineering 21, 107–118 (2005)

4. Shu, C., Wang, L., Chew, Y.T.: Numerical computation of three-dimensional in-
compressible Navier-Stokes equations in primitive variable form by DQ method.
International Journal for Numerical Methods in Fluids 43, 345–368 (2003)

A Numerical Approach to the Determination of 3D Stokes Using PIES 121

5. Young, D.L., Jane, S.J., Lin, C.Y., Chiu, C.L., Chen, K.C.: Solution of 2D and 3D
Stokes Laws using Multiquadrics Method. Engineering Analysis with Boundary
Elements 28, 1233–1243 (2004)

6. Youngren, G.K., Acrivos, A.: Stokes flow past a particle of arbitrary shape: a
numerical method of solution. Journal of Fluid Mechanics 69(2), 377–403 (1975)

7. Zieniuk, E.: Bezier curves in the modification of boundary integral equations (BIE)
for potential boundary-values problems. International Journal of Solids and Struc-
tures 9(40), 2301–2320 (2003)

8. Zieniuk, E., Szerszen, K., Boltuc, A.: Globalne obliczanie calek po obszarze w
PURC dla dwuwymiarowych zagadnien brzegowych modelowanych ronwnaniem
Naviera-Lamego i Poissona. Modelowanie Inzynierskie 33, 181–186 (2007) (in Pol-
ish)

9. Zieniuk, E., Boltuc, A.: Bezier curves in the modeling of boundary geometries for
2D boundary problems defined by Helmholtz equation. Journal of Computational
Acoustics 3(14), 1–15 (2006)

10. Zieniuk, E., Boltuc, A.: Non-element method of solving 2D boundary problems
defined on polygonal domains modeled by Navier equation. International Journal
of Solids and Structures 43, 7939–7958 (2006)

11. Zieniuk, E., Szerszen, K.: Liniowe platy powierzchniowe Coonsa w modelowa-
niu wielokatnych obszarow w trojwymiarowych zagadnieniach brzegowych defin-
iowanych rownaniem Laplace’a. Archiwum Informatyki Teoretycznej i Stosowanej,
Instytut Informatyki Teoretycznej i Stosowanej Polskiej Akademii Nauk 17, 127–
142 (2005) (in Polish)

12. Zieniuk, E., Szerszen, K.: Triangular Bezier patches in modelling smooth boundary
surface in exterior Helmholtz problems solved by PIES. Archives of Acoustics 1(34),
1–11 (2009)

13. Zieniuk, E., Szerszen, K.: Trojkatne platy powierzchniowe w modelowaniu gladkiej
powierzchni brzegu w PURC dla zagadnien ustalonego przepywu cieczy doskonalej.
Modelowanie Inynierskie 37, 289–296 (2009) (in Polish)

Cache Blocking for Linear Algebra Algorithms

Fred G. Gustavson1,2

1 IBM T.J. Watson Research Center, Emeritus
2 Ume̊a University
fg2935@hotmail.com

Abstract. We briefly describe Cache Blocking for Dense Linear Alge-
bra Algorithms on computer architectures since about 1985. Before that
one had uniform memory architectures. The Cray I machine was the last
holdout. We cover the where, when, what, how and why of Cache Block-
ing. Almost all computer manufacturers have recently (about seven years
ago) dramatically changed their computer architectures to produce Mul-
ticore (MC) processors. It will be seen that the arrangement in memory
of the submatrices Aij of A is a critical factor for obtaining high perfor-
mance. From a practical point of view, this work is very important as
it will allow existing codes using LAPACK and ScaLAPACK to remain
usable by new versions of LAPACK and ScaLAPACK.

1 Introduction

During my last 25 years at IBM research I devoted a lot of time to library devel-
opment; this library is called ESSL standing for the IBM Engineering Scientific
Subroutine Library and PESSL for parallel ESSL. In 2011, ESSL celebrated its
25th birthday. A large part of ESSL and PESSL is devoted to Dense Linear Al-
gebra, DLA. Myself and others at IBM chose to make ESSL compatible with
LAPACK [6] and ScaLAPACK [7] libraries. DLA researchers, myself included,
have contributed heavily to the development and understanding of cache block-
ing. This paper focuses on cache blocking as it relates to DLA.

The main questions for any broad area are where, when, what, how and why.
For DLA the where is everywhere as the data for DLA are matrices. These
matrices should be laid out in memory properly as almost all processors use
a design that incorporates cache blocking; i.e., their memory hierarchies are
designed in a tiered fashion called caches. The processing of matrix data only
occurs in the lowest level caches; today these data processing areas are called
cores.

In the mid 1980’s the when occurred; this was when caches appeared for the
first time. Cache blocking was “invented first” by my group at IBM in 1984 [23]
and by the Cedar project at the University of Illinois [13]. We are not claiming
that DLA researchers did not previously have and use the concept of partitioned
matrices; they certainly did. We are claiming that we recognized the partitioning
fact and proposed that submatrices be reformatted, if necessary, when they are
moved back and forth from memory to caches to take advantage of the principles

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 122–132, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Cache Blocking for Linear Algebra Algorithms 123

underlying cache blocking. Long ago, before the mid 1980’s, processor design
could afford a uniform or single memory design and thus all data could be ready
for processing in a single CPU operation. A prime example was the Cray I vector
machines. However, later on, the Cray II machines found it necessary to become
cache based machines. That is when DLA researchers first introduced the Level-3
BLAS [11] for improving new DLA libraries that were later to be produced. The
LAPACK and ScaLAPACK libraries were two examples. At IBM research, my
group was fortunate to get a head start into cache blocking research as IBM had
earlier just introduced cache based machines. “Moore’s law” had just started
to apply; this law accurately predicted processor cycle time decreases (machine
speed increases) for the next twenty years in a compound manner. Those cycle
time decreases ultimately had to end as the law of physics that governed the
speed of light and energy started to adversely affect all processor design. This
time was around 2005. To increase processing power further chip manufactures
introduced Multi-Core, MC, chips as a way to continue “Moore’s law”.

An application of the Algorithms and Architecture Approach [17] describes
the how or what part. From the algorithms side we use a “fundamental principle”
of Linear Algebra called the “Principle of Linear Superposition”. We use it to
describe the factorization algorithms of DLA of a matrix A in terms of its sub
matrices Aij instead of its elements aij . These submatrices were to be laid out
optimally on a given platform to ensure automatic cache blocking! The LAPACK
and ScaLAPACK libraries are also based on this fundamental principle. However,
both of these libraries use standard data layout for matrices and the Level-3
BLAS to gain their performance on all platforms. The decision worked until the
introduction of MC.

Last we describe the why of Cache Blocking. The “why” deals with the speed
of data processing. Peak performance for DLA factorization only occurs if all
matrix operands are used multiple times when they enter an L1 cache or core.
This ensures that the initial cost of bringing an operand into cache is then amor-
tized by the ratio of O(n3) arithmetic to O(n2) elements or nb1 flops per matrix
element aij . Multiple reuse of all operands only occurs if all matrix operands
map well into the L1 caches. For MC processors, an “L1 cache” is the data area
of a core. For MC it is critical to get submatrices to the cores as fast as possible.
The standard programming interface, called API, that hold matrices A that the
BLAS and DLA libraries use is the 2-D array of the Fortran and C programming
languages. For this API, submatrices Aij of A are not stored contiguously. Thus
it is impossible to move Aij to and from the memory hierarchy from and to the
various cores in a fast or optimal manner! This problem is corrected by using
New Data Structures, acronym NDS, to hold these submatrices Aij . By using
dimension theory [29] we shall “prove” why this is true.

Multicore/Manycore (MC) has been called a revolution in Computing. How-
ever, MC is only a radical change in Architectures. Several times in the past
we have talked about a “fundamental triangle” that relates Algorithms, Archi-
tectures and Compilers [3,17,12]. The fundamental triangle concept simply says

1 nb is the order of a square submatrix Aij of A that enters a core.

124 F.G. Gustavson

that these three research areas are inter-related and it means that Compilers and
Algorithms should change, if possible, in significant ways when there is a signif-
icant change in computer architectures. Over the last seven years the codes of
LAPACK library have been carefully examined. The LAPACK team has made
basic structural changes to several of their basic codes to gain better perfor-
mance on MC including a major change to adopt NDS. Other research teams
and vendors have done the same thing and for the most part they are adopting
NDS. Time and space does not allow us to cite this large research activity. Their
combined findings indicate that “cache blocking” is still very important.

For MC the disproportion between multiple CPU processing and memory
speed has become much higher. On a negative side, the API for BLAS-3 hurts
performance; it requires repeated matrix data reformatting from its API to NDS.
A new “BLAS-3” concept has emerged; it is to use NDS in concert with “BLAS-
3” kernels [17,27,26,9]. For MC, the broad idea of “cache blocking” is mandatory
as matrix elements must be fed to SPE’s or GPU’s as fast as possible. Also
important is the arrangement in memory of the submatrices Aij of A that are
to be processed. This then defines “cache blocking” on MC processors for DLA.

We only use two matrix layouts in this paper. First, we assume that the
matrices are stored in Rectangular Block (RB) format. RB format stores a M by
N matrix A as contiguous rectangular submatrices Aij of size MB by NB. Square
Block (SB) format is a special case of RB format when the rectangle is a square.
It was first introduced in 1997, see [15], and has been described in five recent
mini-symposiums at PARA06, PPAM07, PARA08, PPAM09, and PARA10. It
turns out that our results on NDS [15,17,12,5,19] are very relevant to MC: of
all 2-D data layouts for common matrix operations that treat rows and columns
equally, SB format minimizes L1 and L2 cache misses as well as TLB misses[28].
The essential reason is that a SB of order NB is also a contiguous 1-D array of size
NB2 and for most cache designs a contiguous array whose size fits into the cache
is mapped from its place in memory into the cache by the identity mapping.

RB format has a number of other advantages. A major one is that it naturally
partitions a matrix to be a matrix of sub-matrices. This allows one to view matrix
transposition of a M by N matrix A where M = mMB and N = nNB as a block
transposition of a much smaller m by n block matrix A. However, usually M
and N are not multiples of MB and NB. So, RB format as we define it here, would
pad the rows and columns of A so that M and N become multiples of some
blocking factors MB and NB. We add that padding appears to be an essential
condition for this type of “cache blocking”. The second format for storing
matrices is the standard 2-D array format of the Fortran and C programming
languages. For the in-place algorithms we consider, using only these standard
formats makes it impossible to achieve highly performing algorithms. In other
words, “cache blocking” for DLAFA is not possible when one uses the standard
API of 2-D arrays to hold a global matrix A.

Section 2 gives a discussion of Dimension Theory. It shows why Fortran and C
arrays cannot be truly multi-dimensional. In Section 3, we describe the features
of In-Place Transformations between standard full layouts of matrices and the

Cache Blocking for Linear Algebra Algorithms 125

RB or square block SB formats of NDS. These algorithms demonstrate a novel
form of “cache blocking” in that memory is reorganized to be very efficient for
DLA algorithms. We briefly describe the “random nature” of the memory layout
of the standard API. Some early history of my involvement with Cache Blocking
is given in Section 4. A short Summary and Conclusion is given in Section 5.

2 Dimension Theory and Its Relation to Standard CM
and RM Arrays of Fortran and C

Fortran and C use 1-D layouts for their multi-dimensional arrays. Most library
software for DLA use the Fortran and C API for their matrices which are clearly
2-D. The Fundamental Theorem of Dimension Theory states that it is impossible
to preserve closeness of all points p in a neighborhood N of a D dimensional
object when one uses a d < D dimensional coordinate system to describe the
object; see pages 106 to 120 of [29]. We are concerned with a submatrix Aij

representing N of a matrix A representing a 2-D object. This result says that it
is impossible to lay out a matrix in 1-D fashion and maintain closeness of all of
the elements of Aij . This result warns us about moving Aij to and from cache
which represent N . Computer scientists use the phrase “preserve data locality”
when data is mapped from memory into a cache. We also note that when data
is contiguous in computer memory then its mapping into cache is the identity
mapping. Clearly, this is the fastest way to move data and also to preserve its
data locality in cache.

2.1 Submatrices Aij of A in Fortran and C

Let A have m rows and n columns with LDA ≥ m. In Fortran the columns of A
are stored stride one and the row elements are stored LDA elements apart. This
is a 1-D layout whereas A is conceptually 2-D. AT has n rows and m columns
with LDAT ≥ n. Its rows are stored stride one and its columns are laid out LDAT
elements apart. Again, this is a 1-D layout whereas AT is conceptually 2-D.
Actually A and AT are the same object; this is how we “view” A or AT or
conceive of them. Clearly both A and AT contain the same information. Now,
everything we just said about A and AT applies equally well to every submatrix
Aij of A and its transpose AT

ij . However, copies of submatrices are usually made
during the processing of DLA algorithms when A is in standard layout. Here is
the reason why: one cannot transpose a submatrix Ar:s,u:v in-place as its image
AT

r:s,u:v does not map onto Ar:s,u:v. We use colon notation [14]. This is why
the transposition of submatrices in Fortran and C has to be an out-of-place
operation. However, one can transpose any submatrix of A in-place if it is stored
contiguously. NDS possess this property.

2.2 Generalization of Standard Format to RB format

In RB format each scalar ai,j element of standard format becomes a
rectangular or square submatrix A(I : I + MB− 1, J : J + NB− 1) of size MB rows

126 F.G. Gustavson

and NB columns. All submatrices are contiguous, meaning LDA = MB. Simple and
non-simple layouts of A(I : I + MB− 1, J : J + NB− 1) are used; see Section 2.1
of [18] and [19] for the meaning of non-simple format. Today, these non-simple
formats are called rb formats standing for register block formats. The last block
rows and columns of RB A are called left-over blocks. These AIJ blocks reside in
MB*NB locations of array storage even though they require less storage to store.
It is very important to pad these left-over blocks; otherwise the theory behind
in-place fast data movement of RB A breaks down. With these changes one can
transpose or transform RB A submatrices both in-place and out-of-place.

2.3 Changes to RB Format Have Happened

The advent of Multi-core (MC) in 2005 is forcing this change in DLA library
codes. The new codes are using “2-D” layouts which are stored in conventional
“4-D” Fortran and C arrays. Other names given to these layouts are tiling [27,26],
hierarchical tiling, super matrix [10] or block data layout [28] (There are too
many papers to cite here). The codes that access these “2-D” layouts have been
proven to allow better scaling; this better scaling is called strong scaling. Some
of the benefits that these NDS give are:

– BLAS Coding Changes. There is no data copying. The new codes are now
kernel BLAS which are tailored to a MC architecture or a GPU.

– Overlapping communication and computation can be fully exploited.
– The principle of “Lookahead” is used to expose parallelism to a very great

extent.
– A programming price is being paid by algorithm designers by “forcing” them

to innovate.

2.4 Tutorial on the Essence of Dimension

We now return to our description of Dimension Theory. This is a deep math-
ematical subject and we think it sheds light on the subject of cache blocking.
Before going further let us study 2-D domains; e.g. a matrix or a City Map.
The concept to emerge is “closeness of points in a neighborhood” of an arbitrary
domain point p. How does one describe an arbitrary neighborhood?, e.g. of a city
map? Users of maps need to be able to identify their location on a city map (this
is their point p). A rectangle of squares labeled like a Chess board is commonly
used to label city maps. Why is this so? Well, for example, tourists living in a
hotel in Torun, Poland will locate the square that holds their hotel and then
they can easily walk to neighboring squares. The key concept is closeness for all
points in any neighborhood of a point. In the example, the point p denotes the
hotel and the activity is to walk to nearby places which is the neighborhood N .
Here is the key question: when does a labeling of a domain satisfy the neigh-
borhood property of closeness? This notion can be made mathematically precise
and correct. So, we can define dimension in a satisfactory manner.

Cache Blocking for Linear Algebra Algorithms 127

Before answering we back up and try other labelings of domain points. Let
us try natural Numbers: 1, 2, 3, . . ., Fortran and C use this labeling to lay out
matrices A; e.g., in Fortran scalar element aij is located in computer memory
at word location i + (j - 1)*LDA past the beginning word of A. Notice that
some neighboring aij elements are widely separated with this single labeling;
e.g., in Fortran CM format row elements are widely separated in memory by
LDA elements. The same thing occurs for city maps. Is this true for all single
labelings? The answer is yes. Now we need to measure distance. We give a
metric for a neighborhood that uses two coordinates. We use a one norm2: let
p = (u, v) and q = (x, y) be two points. Then norm(p, q) = |u− x|+ |v − y|.

We are now ready to give the mathematical essence of dimension. Indexing
with single numbers, or simple enumeration is applicable only to those cases
where the objects have the character of a sequence. Simple, single indexing must
obey the neighborhood property. These objects are labeled to be one dimen-
sional. Now consider two dimensions. Maps, matrices, etc. cannot be labeled by
a simple sequential ordering. Here is the reason why: “the neighborhood prop-
erty will be violated” (we have said this was so above). However, two simple
sequences suffice. The use of the one norm shows us why visually. Now we gen-
eralize this idea and give the dimension number of any domain: dimension is
the amount of numbers (symbols) to suitably characterize the elements of the
domain; i.e., closeness of all points must hold when this number of coordinates
is used to fully describe all the points in any neighborhood of the domain. It is
the amount of the numbers (symbols) that give the dimension of the domain;
e.g. a line is 1-D, a circle is 2-D and a solid sphere is 3-D. Now we discuss some
prior history about dimension and its resolution. There was an “Erroneous Prior
Notion” that a rectangle had more points than a line; and that a solid had more
points than a rectangle! However, Cantor’s theory of infinities asserted that “All
domains have the same number of points”! Thus this “erroneous prior notion”
needed to be corrected. However, a difficult problem remained: “is it possible
to label a domain with two different labelings that both obey the neighborhood
principle of a higher to lower labeling”? For cache blocking, the relevance of a
yes answer to this question is important as countless papers have been written
on “effective ways” to perform cache blocking. However, the Fundamental The-
orem of Dimension Theory stated at the beginning of Section 2 says the answer
is no! In 1913 L. E. J. Brouwer stated and proved this theorem which we now
phrase in a slightly different manner. “It is not possible to label a domain with
two different labelings that both obey the neighborhood principle”.

3 Converting Standard Format to RB Format In-Place
via Vector Transposition

In [20] we demonstrated fast in-place transposition for matrices stored in CM
format. In terms of speed they improved the existing state-of-the-art slightly.

2 The familiar Euclidean norm
√

(u− x)2 + (v − y)2 is not used as the one norm is
more easily understood for the matrix and city map examples.

128 F.G. Gustavson

However, they were very slow compared to out-of-place transpose algorithms.
Here is an explanation. Let M × N matrix A be laid out CM format. In Fortran
we have A(0:M-1,0:N-1). The element aij is stored at offset k = i+ jM or A[k].
The algorithms of [20] implement an in-place permutation P of the entries of A
so that aij = A[k] ends up at offset k̄ = iN+j or A[k̄]. Note that P (k) also equals
kN mod q where q = MN− 1. Thus P (k) is governed by modular arithmetic. Now
modular arithmetic with parameters N and q also define different pseudo-random
number generators; see [25, Section 3.2.1.3]. It follows that in-place transpose
algorithms in Fortran and C must exhibit a random memory access pattern and
thus have very poor performance: each memory access will likely miss in each
level of the cache hierarchy. Cache miss penalties are huge (in the hundreds of
cycles) for MC processors.

Today’s processors lay out memories in chunks of size LS called lines and when
an element is accessed the entire line containing the element is brought into the
L1 cache. To obtain high performance it is therefore imperative to utilize or pro-
cess all elements in a line when the line enters the L1 and L0 caches3. Section 2.1
gave the reason why it was impossible to transpose a standard format submatrix
Aij of A in-place. However, we just showed here that A can be transposed in-
place. However, this algorithm was very slow. Instead, out-of-place transposition
algorithms are almost universally used.

3.1 Dense Linear Algebra Algorithms for MC Use RB or SB Format

We need a fast way to transform A, in a standard CM or RM format, to be in
RB format [21,24,22]. The idea is to move contiguous lines of data; see Section 3.
Fortunately, standard CM Fortran format consists of M columns stored as con-
tiguous lines. This can be done by using a vector version of the point or scalar
algorithms of [20]. The VIPX algorithm of [21] maps in-place a column swath of
A to become m RB’s. A column swath is an M = mMB by NB submatrix of A,
in standard CM format, where LDA = mMB. We assume A is laid out in Fortran
array as A(0:M-1,0:N-1). Under the vector mapping it will become m size MB

by NB RB’s. Repeating algorithm VIPX n times on the n concatenated column
swaths that make up CM A converts CM A to become A in RB format.

Now we can describe the VIPX algorithm. It assumes CM A has a certain layout
space in terms of standard 2-D layout terminology. CM A and RB format A will
occupy M ≤ mMB by N ≤ nNB arrays with LDA = mMB where m = �M/MB�;
see section 2.2 where this layout was mentioned as crucial. Algorithm VIPX is
embarrassingly parallel: it is applied n times on the n column swaths of A to
produce RB A. The VIPX algorithm will be very efficient compared algorithm
MIPT or IPT of [20] applied directly to A stored in standard CM or RM format;
see the start of Section 3 where the reason why is given. In [22] we have improved
in the VIPX algorithm by discovering the exact nature of the vector P mapping
a priori using an algorithm based on number theory. This number theory is
conjectured to be related to the dimension theory explanations of Section 2.

3 The L0 cache is the register file of a core.

Cache Blocking for Linear Algebra Algorithms 129

3.2 The VIPX Vector Transpose Algorithm

We overview how one gets from standard CM format to RB format. Let A be a
CM Fortran array having M = mMB rows and N = nNB columns with its LDA =
M. Thus, A consists of n column swaths that are concatenated together. Denote
any such swath as a subarray B of A and note that B consists of NB contiguous
columns of CM array A. So, array B has M rows and NB columns. Think of array
B as holding an m by NB matrix C whose elements are column vectors of length
MB. Now apply algorithm MIPT or IPT of [20] to this m by NB matrix C of vectors
of length MB. Now C has been replaced (over-written) by CT which is a size NB

by m matrix of vectors of length MB. To see this, we give a small example. Let
m = 4, MB=2 and NB=3. Then C is a scalar matrix of size 8 by 3 and at the same
time is a 4 by 3 matrix of vectors of length 2 residing in array B. Originally, the 12
vectors of C are stored in CM format in array B. After in-place transposition the
12 vectors of C are stored in RM format in array B. This means the original 12
vectors now occupy array B in the permuted order 0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11.
This permuted order of the 12 vectors is identical to m = 4 RB of size MB by NB

concatenated together. For array A holding matrix A we do n parallel B → BT

operations for each of the n concatenated subarrays B that make up the array
A. After completion of these n parallel computation steps we have transformed
CM matrix A in array A in-place to become the same matrix A but now A is
represented in RB format in array A. Now A consists of m block rows by n block
columns where each size MB by NB contiguous block matrix is stored in standard
CM block order. Thus, after vector in-place transpose we have “cache blocked”
matrix A! The VIPX algorithm is algorithm MIPT or IPT of [20] modified to move
contiguous vectors of length MB instead of scalars of length one. A more efficient
VIPX parallel algorithm, based in number theory, is given in [22].

3.3 Interpretation of Vector Transposition as a Form of Cache
Blocking for MC

We hope the reader now clearly sees at a deeper level why NDS significantly
improves MC DLA algorithm performance. The transformation of A in standard
format to RB format by in-place vector transposition was orders of magnitude
faster than ordinary scalar in-place methods. Finally, we conclude this short
section by restating that NDS are a form of cache blocking matrices A that are
originally stored in standard format for MC.

4 Some Early IBM History on Cache Blocking

I became manager of a small research group and project called Algorithms and
Architectures in the early 1980’s. IBM decided to introduce a Vector Processor
into its new cache based 3080 series of mainframe lines in order to gain more
scientific market share. My group initially consisted of researchers Ramesh Ar-
gawal, James Cooley and Bryant Tuckerman. Our first project was to supply

130 F.G. Gustavson

elementary functions for new compilers that were to support the IBM program-
ming languages that would accompany the new mainframes. We produced novel
scalar and vector elementary functions that were nearly perfectly rounded and
very fast. This work became state-of-the-art [1]; today this design remains state-
of-the-art. Our next project involved research and development. It had to do
with the formation of the ESSL IBM product. This effort became a joint venture
with IBM Development in Poughkeepsie and Kingston, NY headed by Stanley
Schmidt and Joan McComb. ESSL was conceived during 1982. For linear alge-
bra, our team decided to make ESSL subroutines compatible with Linpack and
later with the BLAS and LAPACK. In May to June of 1984 my group produced
successful designs of matrix multiply, GEFA and POFA4. Our internal report
said “a conceptual design has been identified in which data is brought into cache
(and completely used) only once. This approach allows full use of the multiply
add instruction”. This is when “cache blocking” was born at IBM. The ESSL
Programming Product was formally announced and released for the first time in
February 1986 [23]. In 1987 ESSL release II added a practical high performing
Strassen matrix multiply algorithm. Before that Strassen’s algorithm only pos-
sessed academic or theoretical value. In 1988, my group showed how “algorith-
mic lookahead” could be used to obtain perfect parallel speed-up for the Linpack
benchmark [2]. This achievement was part of a very early TOP 500 result. This
key idea is heavily used today to get high performance on MC processors. In the
late 1980’s ESSL and my group was presented a new challenge. IBM decided to
introduce RISC computers called the POWER (RS6000) line of workstations.
ESSL had grown substantially and had put out four mainframe releases. A huge
programming effort began and 497,000 lines of Fortran code was produced by my
small group of four regular people assisted by a small group of talented young
programmers. We called our effort EFL standing for ESSL Fortran Library; the
whole library was written in Fortran! After POWER1, there came a remarkable
machine called POWER2 [3]. It possessed very high bandwidth. I wrote an in-
ternal memo that POWER2 could have been a GFlop machine; POWER2 had
a peak MFlop rate of 268 MFlops. Our ESSL Level-2 BLAS ran at nearly 200
MFlops with matrix data in memory. In 1992 my group published a report [4]
on how to use overlapped communication to produce peak performing matrix
multiplication on distributed memory computers. Today, this algorithm remains
the algorithm of choice for MC. Sometime later Jim Demmel and his gradu-
ate students at UC Berkeley started a project with a grant from IBM to try
to automatically produce DGEMM code which would obtain performance equal
to or better than EFL DGEMM code. They produced PHIPAC [8]; later Jack
Dongarra’s group followed suit and produced ATLAS [30]. Automatic tuning of
kernel routines by a computer is now (its new name is Autotuning) a main stay
research tool of MC researchers. A lot happened to ESSL during the next eigh-
teen years or so. Space does not allow the reporting of these accomplishments.

4 At that time the Level-3 BLAS and LAPACK had not been conceived.

Cache Blocking for Linear Algebra Algorithms 131

5 Conclusions and Summary

We indicated [16,17] that DLAFA (Factorization Algorithms) are mainly MM
(Matrix Multiply) algorithms. The standard API for matrices and Level-3 BLAS
use arrays; see page 739 of [15]. All standard array layouts are one dimensional. It
is impossible to maintain locality of reference in a matrix or any higher than 1-D
object using a 1-D layout; see [29]. MM requires row and column operations and
thus requires MT (Matrix Transformation) to NDS. Our results on in-place MT
show that performance suffers greatly when one uses a 1-D layout. Using NDS
for matrices “approximates” a 2-D layout; thus, one can dramatically improve
in-place MT performance as well as DLAFA performance. Our message is that
DLAFA are mostly MM. MM requires MT and both require NDS. Thus, DLAFA
can and do perform well on multicore but only if one uses NDS.

References

1. Agarwal, R.C., Cooley, J.W., Gustavson, F.G., Shearer, J.B., Slishman, G.,
Tuckerman, B.: New scalar and vector elementary functions for the IBM Sys-
tem/370. IBM Journal of Research and Development 30(2), 126–144 (1986)

2. Agarwal, R.C., Gustavson, F.G.: A Parallel Implementation of Matrix Multiplica-
tion and LU factorization on the IBM 3090. In: Wright, M. (ed.) Proceedings of
the IFIP WG 2.5 on Aspects of Computation on Asynchronous Parallel Processors,
Stanford CA, pp. 217–221. North Holland (August 1988)

3. Agarwal, R.C., Gustavson, F.G., Zubair, M.: Exploiting functional parallelism of
POWER2 to design high-performance numerical algorithms. IBM Journal of Re-
search and Development 38(5), 563–576 (1994)

4. Agarwal, R.C., Gustavson, F.G., Zubair, M.: A high-performance matrix-
multiplication algorithm on a distributed-memory parallel computer, using over-
lapped communication. IBM J. R. & D. 38(6), 673–681 (1994); See also IBM RC
18694 with dates 8/5/92 & 8/10/92 & 2/8/93

5. Andersen, B.S., Gunnels, J.A., Gustavson, F.G., Reid, J.K., Waśniewski, J.: A
Fully Portable High Performance Minimal Storage Hybrid Cholesky Algorithm.
ACM TOMS 31(2), 201–227 (2005)

6. Anderson, E., et al.: LAPACK Users’ Guide Release 3.0. SIAM, Philadelphia (1999)
7. Blackford, L.S., et al.: ScaLAPACK Users’ Guide. SIAM, Philadelphia (1997)
8. Bilmes, J., Asanovic, K., Whye Chin, C., Demmel, J.: Optimizing Matrix Multi-

ply Using PHiPAC: A Portable, High-Performance, ANSI C Coding Methodology.
In: Proceedings of International Conference on Supercomputing, Vienna, Austria
(1997)

9. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of parallel tiled linear
algorithms for MC architectures. Parallel Comput. 35(1), 38–53 (2009)

10. Chan, E., Quintana-orti, E.S., Quintana-orti, G., Van De Geijn, R.: Super-Matrix
Out-of-Core Scheduling of Matrix Operations for SMP and Multi-Core Architec-
tures. In: SPAA 2007, June 9-11, pp. 116–125 (2007)

11. Dongarra, J.J., Du Croz, J., Hammarling, S., Duff, I.: A Set of Level 3 Basic Linear
Algebra Subprograms. TOMS 16(1), 1–17 (1990)

12. Elmroth, E., Gustavson, F.G., Jonsson, I., K̊agström, B.: Recursive Blocked Al-
gorithms and Hybrid Data Structures for Dense Matrix Library Software. SIAM
Review 46(1), 3–45 (2004)

132 F.G. Gustavson

13. Gallivan, K., Jalby, W., Meier, U., Sameh, A.: The Impact of Hierarchical Memory
Systems on Linear Algebra Algorithm Design. International Journal of Supercom-
puter Applications 2(1), 12–48 (1988)

14. Golub, G., VanLoan, C.: Matrix Computations, 3rd edn. John Hopkins Press,
Baltimore and London (1996)

15. Gustavson, F.G.: Recursion Leads to Automatic Variable Blocking for Dense
Linear-Algebra Algorithms. IBM J. R. & D. 41(6), 737–755 (1997)

16. Gustavson, F.G.: New Generalized Data Structures for Matrices Lead to a Va-
riety of High-Performance Algorithms. In: Boisvert, R.F., Tang, P.T.P. (eds.)
Proceedings of the IFIP WG 2.5 Working Group on The Architecture of Scientific
Software, Ottawa, Canada, October 2-4, pp. 211–234. Kluwer Academic Publishers
(2000)

17. Gustavson, F.G.: High Performance Linear Algebra Algs. using New Generalized
Data Structures for Matrices. IBM J. R. & D. 47(1), 31–55 (2003)

18. Gustavson, F.G.: New Generalized Data Structures for Matrices Lead to a Va-
riety of High Performance Dense Linear Algebra Algorithms. In: Dongarra, J.,
Madsen, K., Waśniewski, J. (eds.) PARA 2004. LNCS, vol. 3732, pp. 11–20.
Springer, Heidelberg (2006)

19. Gustavson, F.G., Gunnels, J., Sexton, J.: Minimal Data Copy For Dense Linear
Algebra Factorization. In: K̊agström, B., Elmroth, E., Dongarra, J., Waśniewski,
J. (eds.) PARA 2006. LNCS, vol. 4699, pp. 540–549. Springer, Heidelberg (2007)

20. Gustavson, F.G., Swirszcz, T.: In-Place Transposition of Rectangular Matrices. In:
K̊agström, B., Elmroth, E., Dongarra, J., Waśniewski, J. (eds.) PARA 2006. LNCS,
vol. 4699, pp. 560–569. Springer, Heidelberg (2007)

21. Gustavson, F.G.: The Relevance of New Data Structure Approaches for Dense Lin-
ear Algebra in the New Multicore/Manycore Environments. IBM Research report
RC24599, also, to appear in PARA 2008 Proceeding, 10 pages (2008)

22. Gustavson, F.G., Karlsson, L., K̊agström, B.: Parallel and Cache-Efficient In-Place
Matrix Storage Format Conversion. ACM TOMS, 34 pages (to appear, 2012)

23. IBM. IBM Engineering and Scientific Subroutine Library. IBM Pub. No. SA22-
7272-00 (February 1986); Also, Release II, 1987 & AIX Version 3, Release 3

24. Karlsson, L.: Blocked in-place transposition with application to storage format
conversion. Tech. Rep. UMINF 09.01. ISSN 0348-0542, Department of Computing
Science, Ume̊a University, Ume̊a, Sweden (January 2009)

25. Knuth, D.: The Art of Computer Programming, 3rd edn., vol. 1, 2 & 3. Addison-
Wesley (1998)

26. Kurzak, J., Buttari, A., Dongarra, J.: Solving systems of Linear Equations on
the Cell Processor using Cholesky Factorization. IEEE Trans. Parallel Distrib.
Syst. 19(9), 1175–1186 (2008)

27. Kurzak, J., Dongarra, J.: Implementation of mixed precision in solving mixed preci-
sion of linear equations on the Cell processor: Research Articles. Concurr. Comput.:
Pract. Exper. 19(10), 1371–1385 (2007)

28. Park, N., Hong, B., Prasanna, V.: Tiling, Block Data Layout, and Memory Hier-
archy Performance. IEEE Trans. Parallel and Distributed Systems 14(7), 640–654
(2003)

29. Tietze, H.: Three Dimensions–Higher Dimensions. In: Famous Problems of Math-
ematics, pp. 106–120. Graylock Press (1965)

30. Whaley, R.C., Petitet, A., Dongarra, J.J.: Automated Empirical Optimization of
Software and the ATLAS Project. Parallel Computing (1-2), 3–35 (2001)

Reducing the Amount of Pivoting in Symmetric

Indefinite Systems

Dulceneia Becker1, Marc Baboulin4, and Jack Dongarra1,2,3

1 University of Tennessee, USA
{dbecker7,dongarra}@eecs.utk.edu

2 Oak Ridge National Laboratory, USA
3 University of Manchester, United Kingdom

4 INRIA / Université Paris-Sud, France
marc.baboulin@inria.fr

Abstract. This paper illustrates how the communication due to pivot-
ing in the solution of symmetric indefinite linear systems can be reduced
by considering innovative approaches that are different from pivoting
strategies implemented in current linear algebra libraries. First a tiled
algorithm where pivoting is performed within a tile is described and then
an alternative to pivoting is proposed. The latter considers a symmetric
randomization of the original matrix using the so-called recursive butter-
fly matrices. In numerical experiments, the accuracy of tile-wise pivoting
and of the randomization approach is compared with the accuracy of the
Bunch-Kaufman algorithm.

Keywords: dense linear algebra, symmetric indefinite systems, LDLT

factorization, pivoting, tiled algorithms, randomization.

1 Introduction

A symmetric matrix A is called indefinite when the quadratic form xTAx can
take on both positive and negative values. By extension, a linear system Ax = b
is called symmetric indefinite when A is symmetric indefinite. These types of
linear systems are commonly encountered in optimization problems coming from
physics of structures, acoustics, and electromagnetism, among others. Symmetric
indefinite systems also result from linear least squares problems when they are
solved via the augmented system method [7, p. 77].

To ensure stability in solving such linear systems, the classical method used
is called the diagonal pivoting method [9] where a block-LDLT factorization1 is
obtained such as

PAPT = LDLT (1)

where P is a permutation matrix, A is a symmetric square matrix, L is unit
lower triangular and D is block-diagonal, with blocks of size 1 × 1 or 2 × 2;

1 Another factorization method is for example the Aasen’s method [13, p.163]:
PAP T = LTLT where L is unit lower triangular and T is tridiagonal.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 133–142, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

134 D. Becker, M. Baboulin, and J. Dongarra

all matrices are of size n × n. If no pivoting is applied, i.e. P = I, D becomes
diagonal. The solution x can be computed by successively solving the triangular
or block-diagonal systems Lz = Pb, Dw = z, LT y = w, and ultimately we have
x = PT y.

There are several pivoting techniques that can be applied to determine P .
These methods involve different numbers of comparisons to find the pivot and
have various stability properties. As for the LU factorization, the complete pivot-
ing method (also called Bunch-Parlett algorithm [9]) is the most stable pivoting
strategy. It guarantees a satisfying growth factor bound [14, p. 216] but also re-
quires up to O(n3) comparisons. The well-known partial pivoting method, based
on the Bunch-Kaufman algorithm [8], is implemented in LAPACK [1] and re-
quires at each step of the factorization the exploration of two columns, resulting
in a total of O(n2) comparisons. This algorithm has good stability properties [14,
p. 219] but in certain cases ‖L‖ may be unbounded, which is a cause for possi-
ble instability [3], leading to a modified algorithm referred to as rook pivoting or
bounded Bunch-Kaufman pivoting. The latter involves between O(n2) and O(n3)
comparisons depending on the number of 2 × 2 pivots. Another pivoting strat-
egy, called Fast Bunch-Parlett strategy (see [3, p. 525] for a description of the
algorithm), searches for a local maximum in the current lower triangular part.
It is as stable as the rook pivoting but it also requires between O(n2) and O(n3)
comparisons.

With the advent of architectures such as multicore processors [19] and
Graphics Processing Units (GPU), the growing gap between communication and
computation efficiency made the communication overhead due to pivoting more
critical. These new architectures prompted the need for developing algorithms that
lend themselves to parallel execution. A class of such algorithms for shared mem-
ory architectures, called Tiled Algorithms, has been developed for one-sided dense
factorizations2 [10,11] and made available as part of the PLASMA library [12].

Tiled algorithms are based on decomposing the computation into small tasks
in order to overcome the sequential nature of the algorithms implemented in
LAPACK. These tasks can be executed out of order, as long as dependencies
are observed, rendering parallelism. Furthermore, tiled algorithms make use of a
tile data-layout where data is stored in contiguous blocks, which differs from the
column-wise layout used by LAPACK, for instance. The tile data-layout allows
the computation to be performed on small blocks of data that fit into cache,
and hence exploits cache locality and re-use. However, it does not lend itself
straightforwardly for pivoting, as this requires a search for pivots and permuta-
tions over full columns/rows. For symmetric matrices, the difficulties are even
greater since symmetric pivoting requires interchange of both rows and columns.
The search for pivots outside a given tile curtails memory locality and increases
data dependence between tiles (or tasks). The former has a direct impact on the
performance of serial kernels and the latter on parallel performance [18].

In this paper, the possibility of eliminating the overhead due to pivoting by con-
sidering randomization techniques is investigated. These techniques were

2 LDLT is still under development and shall be available in the future [6].

Reducing the Amount of Pivoting in Symmetric Indefinite Systems 135

initially proposed in [16] and modified approaches were studied in [4,5] for the LU
factorization. In this context, they are applied to the case of symmetric indefinite
systems. According to this random transformation, the original matrixA is trans-
formed into a matrix that would be sufficiently “random” so that, with a probability
close to 1, pivoting is not needed. This transformation is a multiplicative precondi-
tioning by means of random matrices called recursive butterflymatrices. The LDLT

factorization without pivoting is then applied to the preconditioned matrix. One
observes that two levels of recursion for butterfly matrices are enough to obtain
an accuracy close to that of LDLT with either partial (Bunch-Kaufman) or rook
pivoting on a collection of matrices. The overhead is reduced to ∼ 8n2 operations,
which is negligible when compared to the cost of pivoting.

2 Tile-Wise Pivoting

Given Equation (1), the tiled algorithm starts by decomposing A in nt×nt tiles3

(blocks), where each Aij is a tile of size nb × nb. The same decomposition can
be applied to L and D. For instance, for nt = 3:⎡⎣A11 A

T
21 A

T
31

A21 A22 A
T
32

A31 A32 A33

⎤⎦ =

⎡⎣L11

L21 L22

L31 L32 L33

⎤⎦ ⎡⎣D11

D22

D33

⎤⎦ ⎡⎣LT
11 L

T
21 L

T
31

LT
22 L

T
32

LT
33

⎤⎦ (2)

Upon this decomposition and using the same principle as the Schur complement,
a series of tasks can be set to calculate each Lij and Dii:

[L11, D11] = LDL(A11) (3)

L21 = AT
21(D11L

T
11)−1 (4)

L31 = AT
31(D11L

T
11)−1 (5)

Ã22 = A22 − L21D11L
T
21 (6)

Ã32 = A32 − L31D11L
T
21 (7)

[L22, D22] = LDL(Ã22) (8)

L32 = Ã32(D22L
T
22)−1 (9)

Ã33 = A33 − L31D11L
T
31 − L32D22L

T
32 (10)

[L33, D33] = LDL(Ã33) (11)

LDL(Xkk) at Equations (3), (8) and (11) means the actual LDLT factorization
of tile Xkk. These tasks can be executed out of order, as long as dependencies
are observed, rendering parallelism (see [6] for more details).

Following the same approach, for PAPT = LDLT , and given

P =

⎡⎣P11
. . .
Pnt,nt

⎤⎦ (12)

3 For rectangular matrices, A is decomposed into mt× nt tiles.

136 D. Becker, M. Baboulin, and J. Dongarra

the tasks for nt = 3 may be described as:

[L11, D11, P11] = LDL(A11) (13)

L21 = P22A21P
T
11(D11L

T
11)−1 (14)

L31 = P33A31P
T
11(D11L

T
11)−1 (15)

Ã22 = A22 − (PT
22L21)D11(PT

22L21)T (16)

Ã32 = A32 − (PT
33L31)D11(PT

33L21)T (17)

[L22, D22, P22] = LDL(Ã22) (18)

L32 = P33Ã32P
T
22(D22L

T
22)−1 (19)

Ã33 = A33 − (PT
33L31)D11(PT

33L31)T − (PT
33L32)D22(PT

33L32)T (20)

[L33, D33, P33] = LDL(Ã33) (21)

Equations (13) to (21) are similar to Equations (3) to (11), except that the
permutation matrix Pkk has been added. This permutation matrix Pkk generates
a circular dependence between equations, which is not an issue when pivoting is
not used. For instance, in order to calculate

L21 = P22A21P
T
11

(
D11L

T
11

)−1
(22)

P22 is required. However, to calculate

[L22, D22, P22] = LDL
(
A22 − (PT

22L21)D11(PT
22L21)T

)
(23)

L21 is required. To overcome this circular dependence, instead of actually calcu-
lating L21, PT

22L21 is calculated, since the equations can be rearranged such as
PT
22L21 is always used and therefore L21 is not needed. Hence, Equations (14),

(15) and (19) become, in a general form,

PT
ii Lij = AijP

T
jj

(
DjjL

T
jj

)−1
(24)

After Pii is known, Lij , for 1 ≥ j ≥ i− 1, can be calculated such as

Lij = PiiLij (25)

This procedure may be described as in Algorithm 1, where A is a symmetric
matrix of size n× n split in nt× nt tiles Aij , each of size nb× nb.

The permutation matrices Pkk of Algorithm 1 are computed during the fac-
torization of tile Akk. If pivots were searched only inside tile Aii, the factor-
ization would depend only and exclusively on Akk. However, for most pivoting
techniques, pivots are searched throughout columns, which make the design of
efficient parallel algorithm very difficult [18].

The tile-wise pivoting restricts the search of pivots to the tile Akk when fac-
torizing it, i.e. if LAPACK [1] routine xSYTRF was chosen to perform the fac-
torization, it could be used as it is. In other words, the same procedure used to

Reducing the Amount of Pivoting in Symmetric Indefinite Systems 137

Algorithm 1. Tiled LDLT Factorization with Tile-wise Pivoting

1: for k = 1 to nt do
2: [Lkk , Dkk , Pkk] = LDL(Akk)
3: for j = k + 1 to nt do
4: Ljk = AjkP

T
jj(DkkL

T
kk)

−1

5: end for
6: for i = k + 1 to nt do
7: Aii = Aii − LikDkkL

T
ik

8: for j = k + 1 to i− 1 do
9: Aij = Aij − LikDkkL

T
jk

10: end for
11: end for
12: for i = 1 to j − 1 do
13: Lki = PkkLki

14: end for
15: end for

factorize an entire matrix A is used to factorize the tile Akk. This approach does
not guarantee the accuracy of the solution; it strongly depends on the matrix
to be factorized and how the pivots are distributed. However, it guarantees nu-
merical stability of the factorization of each tile Akk, as long as an appropriate
pivoting technique is applied. For instance, LDLT without pivoting fails as soon
as a zero is found on the diagonal, while the tile-wise pivoted LDLT does not, as
shown in Section 4. Note that pivoting is applied as part of a sequential kernel,
which means that the pivot search and hence the permutations are also serial.

3 An Alternative to Pivoting in Symmetric Systems

A randomization technique that allows pivoting to be avoided in the LDLT

factorization is described. This technique was initially proposed in [16] in the
context of general linear systems where the randomization is referred to as Ran-
dom Butterfly Transformation (RBT). It is shown in [16] that, with probability
1, Gaussian Elimination can operate without pivoting on the randomized matrix.
Then a modified approach has been described in [5] for the LU factorization of
general dense matrices and we propose here to adapt this technique specifically
to symmetric indefinite systems. It consists of a multiplicative precondition-
ing UTAU where the matrix U is chosen among a particular class of random
matrices called recursive butterfly matrices. Then LDLT factorization without
pivoting is performed on the symmetric matrix UTAU and, to solve Ax = b,
(UTAU)y = UT b is solved instead, followed by x = Uy. We study the random
transformation with recursive butterfly matrices, and minimize the number of re-
cursion steps required to get a satisfying accuracy. The resulting transformation
will be called Symmetric Random Butterfly Transformation (SRBT). We define
two types of matrices that will be used in the symmetric random transforma-
tion. These definitions are inspired from [16] in the particular case of real-valued
matrices.

138 D. Becker, M. Baboulin, and J. Dongarra

Definition 1. A butterfly matrix is defined as any n× n matrix of the form:

B =
1√
2

(
R0 R1

R0 −R1

)
where n ≥ 2 and R0 and R1 are random diagonal and nonsingular n

2×
n
2 matrices.

Definition 2. A recursive butterfly matrix of size n and depth d is a product of
the form

W<n,d> =

⎛⎜⎜⎝
B

<n/2d−1>
1 · · · 0

...
. . .

...

0 · · · B<n/2d−1>

2d−1

⎞⎟⎟⎠× · · · ×
(
B

<n/2>
1 0

0 B
<n/2>
2

)
×B<n>

1

where B
<n/2k−1>
i are butterfly matrices of size n/2k−1 with 1 ≤ k ≤ d.

Note that this definition requires n to be a multiple of 2d−1 which can always
be obtained by “augmenting” the matrix A with additional 1’s on the diagonal.
Note also that Definition 2 differs from the definition of a recursive butterfly
matrix given in [16], which corresponds to the special case where d = log2 n+ 1,
i.e. the first term of the product expressing W<n,d> is a diagonal matrix of size
n. For instance, if n = 4 and d = 2, the recursive butterfly matrix W<4,2> is
defined by

W<4,2> =

(
B<2>

1 0
0 B<2>

2

)
×B<4>

=
1

2

⎛⎜⎜⎝
r<2>
1 r<2>

2 0 0
r<2>
1 −r<2>

2 0 0
0 0 r<2>

3 r<2>
4

0 0 r<2>
3 −r<2>

4

⎞⎟⎟⎠
⎛⎜⎜⎝
r<4>
1 0 r<4>

3 0
0 r<4>

2 0 r<4>
4

r<4>
1 0 −r<4>

3 0
0 r<4>

2 0 −r<4>
4

⎞⎟⎟⎠

=
1

2

⎛⎜⎜⎝
r<2>
1 r<4>

1 r<2>
2 r<4>

2 r<2>
1 r<4>

3 r<2>
2 r<4>

4

r<2>
1 r<4>

1 −r<2>
2 r<4>

2 r<2>
1 r<4>

3 −r<2>
2 r<4>

4

r<2>
3 r<4>

1 r<2>
4 r<4>

2 −r<2>
3 r<4>

3 −r<2>
4 r<4>

4

r<2>
3 r<4>

1 −r<2>
4 r<4>

2 −r<2>
3 r<4>

3 r<2>
4 r<4>

4

⎞⎟⎟⎠ ,
where r<j>

i are real random entries.
The objective here is to minimize the computational cost of the RBT defined

in [16] by considering a number of recursions d such that d < log2n� n, resulting
in the transformation defined as follows.

Definition 3. A symmetric random butterfly transformation (SRBT) of depth
d of a square matrix A is the product:

Ar = UTAU

where U is a recursive butterfly matrix of depth d.

Reducing the Amount of Pivoting in Symmetric Indefinite Systems 139

Remark 1. Let A be a square matrix of size n, the computational cost of a
multiplication BTAB with B butterfly of size n isM(n) = 4n2. Then the number
of operations involved in the computation of Ar by an SRBT of depth d is

C(n, d) =

d∑
k=1

(
(2k−1)2 ×M(n/2k−1)

)
=

d∑
k=1

(
(2k−1)2 × 4(n/2k−1)2

)
=

d∑
k=1

(
4n2

)
= 4dn2

Note that the maximum cost in the case of an RBT as described in [16] is

C(n, log2 n+ 1) & 4n2 log2 n.

We can find in [16] details on how RBT might affect the growth factor, and in [5]
we can find more information concerning the practical computation of Ar as well
as a packed storage description and a condition number analysis. Note that, since
we know that we do not pivot when using SRBT, the LDLT factorization without
pivoting can be performed with a very efficient tiled algorithm [6].

4 Numerical Experiments

Experiments to measure the accuracy of each procedure described in the previ-
ous sections were carried out using Matlab version 7.12 (R2011a) on a machine
with a precision of 2.22 · 10−16. Table 1 presents accuracy comparisons of lin-
ear systems solved using the factors of A calculated by LDLT with: no pivoting
(NP), partial pivoting (PP), tile-wise pivoting (TP), and the Symmetric Ran-
dom Butterfly Transformation followed by no pivoting (SRBT NP) and tile-wise
pivoting (SRBT TP). For tile-wise pivoting (TP), the matrices have 64 tiles
(8 × 8). The partial pivoting corresponds to the Bunch-Kaufman algorithm as
it is implemented in LAPACK. Note that for all experiments the rook pivoting
achieves the same accuracy as the partial pivoting and therefore is not listed.

All matrices are of size 1024 × 1024, either belonging to the Matlab gallery
or the Higham’s Matrix Computation Toolbox [14] or generated using Matlab
function rand. Matrices |i − j|, max(i, j) and Hadamard are defined in the ex-
periments performed in [16]. Matrices rand1 and rand2 correspond to random
matrices with entries uniformly distributed in [0, 1] with all and 1/4 of the diag-
onal elements set to 0, respectively. Matrices rand0 and rand3 are also random
matrices, where the latter has its diagonal elements scaled by 1/1000.

For all test matrices, we suppose that the exact solution is x = [1 1 . . . 1]T

and we set the right-hand side b = Ax. In Table 1, the 2-norm condition number
of each matrix is listed. Note that we also computed the condition number of
the randomized matrix which, similarly to [5], is of same order of magnitude as
cond A and therefore is not listed. For each LDLT solver, the component-wise
backward error is reported. The latter is defined in [15] and expressed as

ω = max
i

|Ax̂− b|i
(|A| · |x̂|+ |b|)i

,

140 D. Becker, M. Baboulin, and J. Dongarra

Table 1. Component-wise backward error for LDLT solvers on a set of test matrices
of size 1024× 1024 and 64 tiles (8× 8) when applicable

Matrix Cond A NP PP TP
SRBT

NP (IR) TP (IR)

condex 1 · 102 5 · 10−15 6 · 10−15 7 · 10−15 6 · 10−15 (0) 4 · 10−15 (0)

fiedler 7 · 105 Fail 2 · 10−15 7 · 10−15 9 · 10−15 (0) 1 · 10−15 (0)

orthog 1 · 100 8 · 10−1 1 · 10−14 5 · 10−1 3 · 10−16 (1) 4 · 10−16 (1)

randcorr 3 · 103 4 · 10−16 3 · 10−16 4 · 10−16 5 · 10−16 (0) 3 · 10−16 (0)

augment 5 · 104 7 · 10−15 4 · 10−15 8 · 10−15 2 · 10−16 (1) 5 · 10−15 (0)

prolate 6 · 1018 8 · 10−15 8 · 10−16 2 · 10−15 2 · 10−15 (0) 1 · 10−15 (0)

toeppd 1 · 107 5 · 10−16 7 · 10−16 6 · 10−16 2 · 10−16 (0) 1 · 10−16 (0)

ris 4 · 100 Fail 3 · 10−15 8 · 10−1 6 · 10−1 (10) 6 · 10−1 (10)

|i− j| 7 · 105 2 · 10−15 2 · 10−15 7 · 10−15 1 · 10−14 (0) 1 · 10−15 (0)

max(i,j) 3 · 106 2 · 10−14 2 · 10−15 5 · 10−15 1 · 10−14 (0) 1 · 10−15 (0)

Hadamard 1 · 100 0 0 0 7 · 10−15 (0) 4 · 10−15 (0)

rand0 2 · 105 1 · 10−12 7 · 10−14 1 · 10−13 1 · 10−15 (1) 1 · 10−15 (0)

rand1 2 · 105 Fail 1 · 10−13 2 · 10−11 1 · 10−15 (1) 1 · 10−15 (0)

rand2 1 · 105 Fail 5 · 10−14 6 · 10−13 1 · 10−15 (1) 2 · 10−15 (0)

rand3 8 · 104 4 · 10−13 7 · 10−14 4 · 10−13 1 · 10−15 (1) 1 · 10−15 (0)
NP: LDLT with No Pivoting SRBT: Symmetric Random Butterfly Transformation

PP: LDLT with Partial Pivoting followed by LDLT without pivoting

TP: LDLT with Tile-wise Pivoting IR: Iterative refinement number of iterations

where x̂ is the computed solution.
Similarly to [16], the random diagonal matrices used to generate the butterfly

matrices described in Definition 1 have diagonal values exp(r
10) where r is ran-

domly chosen in [− 1
2 ,

1
2] (matlab instruction rand). The number of recursions

used in the SRBT algorithm (parameter d in Definition 3) has been set to 2.
Hence, the resulting cost of SRBT is ∼ 8n2 operations (see Remark 1). To im-
prove the stability, iterative refinement (in the working precision) is added when
SRBT is used. Similarly to [2,17], the iterative refinement algorithm is called
while ω > (n+ 1)u, where u is the machine precision. The number of iterations
(IR) in the iterative refinement process is also reported in Table 1.

For all matrices, except orthog and ris with TP and ris with SRBT, the
factorization with both tile-wise pivoting and randomization achieves satisfac-
tory results. Iterative refinement turns out to be necessary in a few cases when
using SRBT but with never more than one iteration (except for ris for which
neither TP nor SRBT have achieved accurate results). SBRT TP shows slightly
better results than SRBT NP. The former only requires iterative refinement for
one of the test cases while the latter for a few. For matrix prolate, all methods
result in a small backward error. However, the solution cannot be accurate at
all due to the large condition number. Note that when matrices are orthogo-
nal (orthog) or proportional to an orthogonal matrix (Hadamard), LDLT must

Reducing the Amount of Pivoting in Symmetric Indefinite Systems 141

not be used. Also, toeppd is positive definite and would normally be solved by
Cholesky and not LDLT. These three test cases have been used only for testing
purposes. In the case of the integer-valued matrix Hadamard , SRBT destroys
the integer structure and transforms the initial matrix into a real-valued one.
For the four random matrices, TP achieves results slightly less accurate than
SRBT. However, in these cases iterative refinement added to TP would enable
us to achieve an accuracy similar to SRBT.

TP and SRBT are always more accurate than NP but they both failed to pro-
duce results as accurate as PP for at least one of the test matrices. Nevertheless,
despite the reduced number of test cases, they cover a reasonable range of ma-
trices, including those with zeros on the diagonal. Test case rand1 has only zeros
on the diagonal and was accurately solved by both techniques. This case fails at
the very first step of the LDLT method without pivoting. Test case orthog has
been solved accurately with SRBT but not with TP. For this particular case,
when the pivot search is applied on the full matrix, rows/columns 1 and n are
permuted, then rows/columns 2 and n−1 are permuted, and so forth. In others,
the pivots are spread far apart and the tile-wise pivoting cannot reach them, i.e.
there are not good enough pivots within each tile.

5 Conclusion and Future Work

A tiled LDLT factorization with tile-wise pivoting and a randomization tech-
nique to avoid pivoting in the LDLT factorization have been presented. The tile-
wise pivoting consists of choosing a pivoting strategy and restraining the pivot
search to the tile being factored. The randomization technique, called Symmetric
Random Butterfly Transformation (SRBT), involves a multiplicative precondi-
tioning which is computationally very affordable and negligible compared to the
communication overhead due to classical pivoting algorithms.

Both techniques give accurate results on most test cases considered in this
paper, including pathological ones. However, further development of the tile-wise
pivoting is required in order to increase its robustness. In particular, techniques
such as search by pairs of tiles, also called incremental pivoting, have to be
investigated for symmetric indefinite factorizations. Also, to improve stability,
the solution obtained after randomization should be systematically followed by
iterative refinement in fixed precision (one iteration is sufficient in general). The
algorithms presented in this paper shall be integrated into PLASMA, which will
allow performance comparisons of the LDLT solvers and more extensive testing
using the matrices available as part of LAPACK.

References

1. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz,
J.D., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK
User’s Guide, 3rd edn. SIAM (1999)

142 D. Becker, M. Baboulin, and J. Dongarra

2. Arioli, M., Demmel, J.W., Duff, I.S.: Solving sparse linear systems with sparse
backward error. SIAM J. Matrix Anal. and Appl. 10(2), 165–190 (1989)

3. Ashcraft, C., Grimes, R.G., Lewis, J.G.: Accurate symmetric indefinite linear equa-
tion solvers. SIAM J. Matrix Anal. and Appl. 20(2), 513–561 (1998)

4. Baboulin, M., Dongarra, J., Tomov, S.: Some issues in dense linear algebra for mul-
ticore and special purpose architectures. In: Proceedings of the 9th International
Workshop on State-of-the-Art in Scientific and Parallel Computing, PARA 2008
(2008)

5. Baboulin, M., Dongarra, J., Herrmann, J., Tomov, S.: Accelerating linear system
solutions using randomization techniques. Lapack Working Note 246 and INRIA
Research Report 7616 (May 2011)

6. Becker, D., Faverge, M., Dongarra, J.: Towards a Parallel Tile LDL Factorization
for Multicore Architectures. Technical Report ICL-UT-11-03, Innovative Comput-
ing Laboratory, University of Tennessee, Knoxville, TN, USA (April 2011)

7. Björck, Å.: Numerical Methods for Least Squares Problems. Society for Industrial
and Applied Mathematics (1996)

8. Bunch, J.R., Kaufman, L.: Some stable methods for calculating inertia and solving
symmetric linear systems. Math. Comput. 31, 163–179 (1977)

9. Bunch, J.R., Parlett, B.N.: Direct methods for solving symmetric indefinite systems
of linear equations. SIAM J. Numerical Analysis 8, 639–655 (1971)

10. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: Parallel tiled QR factorization for
multicore architectures. Concurrency Computat.: Pract. Exper. 20(13), 1573–1590
(2008)

11. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of parallel tiled linear
algebra algorithms for multicore architectures. Parallel Comput. Syst. Appl. 35,
38–53 (2009)

12. Dongarra, J., Kurzak, J., Langou, J., Langou, J., Ltaief, H., Luszczek, P., YarKhan,
A., Alvaro, W., Faverge, M., Haidar, A., Hoffman, J., Agullo, E., Buttari, A.,
Hadri, B.: PLASMA Users’ Guide, Version 2.3. Technical Report, Electrical Engi-
neering and Computer Science Department, Univesity of Tennessee, Knoxville, TN
(September 2010)

13. Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins
University Press (1996)

14. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM
(2002)

15. Oettli, W., Prager, W.: Compatibility of approximate solution of linear equations
with given error bounds for coefficients and right-hand sides. Numerische Mathe-
matik 6, 405–409 (1964)

16. Parker, D.S.: Random butterfly transformations with applications in computa-
tional linear algebra. Technical Report CSD-950023, Computer Science Depart-
ment, UCLA (1995)

17. Skeel, R.D.: Iterative refinement implies numerical stability for Gaussian elimina-
tion. Math. Comput. 35, 817–832 (1980)

18. Strazdins, P.E.: Issues in the Design of Scalable Out-of-Core Dense Symmetric
Indefinite Factorization Algorithms. In: Sloot, P.M.A., Abramson, D., Bogdanov,
A.V., Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS 2003, Part III.
LNCS, vol. 2659, pp. 715–724. Springer, Heidelberg (2003)

19. Sutter, H.: The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in
Software. Dr. Dobb’s Journal 30(3) (2005)

A High Performance Dual Revised

Simplex Solver

Julian Hall and Qi Huangfu

School of Mathematics and Maxwell Institute for Mathematical Sciences,
University of Edinburgh, JCMB, King’s Buildings, Edinburgh, EH9 3JZ,

United Kingdom
J.A.J.Hall@ed.ac.uk

Abstract. When solving families of related linear programming (LP)
problems and many classes of single LP problems, the simplex method
is the preferred computational technique. Hitherto there has been no ef-
ficient parallel implementation of the simplex method that gives good
speed-up on general, large sparse LP problems. This paper presents
a variant of the dual simplex method and a prototype parallelisation
scheme. The resulting implementation, ParISS, is efficient when run in
serial and offers modest speed-up for a range of LP test problems.

Keywords: Linear programming, Dual revised simplex method,
Parallel algorithms.

1 Introduction

When solving families of related linear programming (LP) problems and many
classes of single LP problems, the simplex method is the preferred computational
technique in the academic and commercial worlds. There is, therefore, consid-
erable motivation for exploring how the simplex method may exploit modern
high performance computing (HPC) desktop architectures. This paper describes
a variant of the dual simplex method that offers scope for exploiting such ar-
chitectures. The relevant background is set out in Section 2 and a dual simplex
variant, prototype parallelisation scheme and implementation as ParISS are de-
scribed in Section 3. Computational results using ParISS are given in Section 4
and conclusions in Section 5.

2 Background

A general bounded linear programming (LP) problem in standard form is

minimize cTx
subject to Ax = b

x ≥ 0,
(1)

where x ∈ IRn and b ∈ IRm. It may be assumed that the matrix A is of full
rank.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 143–151, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

144 J. Hall and Q. Huangfu

In the simplex method, the indices of variables are partitioned into sets B
corresponding to m basic variables xB, and N corresponding to n −m nonba-
sic variables xN , such that the basis matrix B formed from the columns of A
corresponding to B is nonsingular. The set B itself is conventionally referred to
as the basis. The columns of A corresponding to N form the matrix N . The
components of c corresponding to B and N are referred to as, respectively, the
basic costs cB and non-basic costs cN .

When each nonbasic variable is set zero, the basic variables take the values b̂ =
B−1b and if they are non-negative then the partition {B,N} is primal feasible.
The reduced costs are ĉT

N
= cT

N
− cT

B
B−1N and if they are non-negative then the

partition is dual feasible. Primal and dual feasibility is a necessary and sufficient
condition for {B,N} to be optimal. The primal simplex method modifies primal
feasible partitions until dual feasibility is achieved. Conversely, the dual simplex
method modifies dual feasible partitions until primal feasibility is achieved.

A full discussion of the dual simplex method and modern techniques for its ef-
ficient implementation are given by Koberstein [11]. At the start of any iteration
it is assumed that there is an invertible representation of B, that xN = 0, that
values of b̂ = B−1b are known and not feasible, and that the values of ĉT

N
are

feasible. An outline of the computational components of a dual simplex iteration
is given in Figure 1, where ep is column p of the identity matrix. Although dual
feasibility is assumed, the algorithm is readily adapted to state-of-the-art tech-
niques for achieving dual feasibility, as presented by Koberstein and Suhl [12].

In CHUZR, the immediate quality of a candidate to leave the basis is the
amount by which it is negative. Efficient dual simplex implementations weight
this quality by (a measure of) the magnitude of the corresponding row of B−1,
the most popular being the steepest edge weight of Forrest and Goldfarb [4]
which, for row p, is sp = ‖B−1ep‖2. To update these weights requires the pivotal
column âq and τ = B−1âq. Although calculating τ adds significantly to the cost
of an iteration, the investment usually more than pays off due to the steepest
edge strategy reducing the number of iterations.

For the efficient implementation of the revised simplex method, the means
by which B−1 is represented is of fundamental importance. It is based on an

CHUZR: Scan b̂ for the row p of a good candidate to leave the basis.
BTRAN: Form πT

p = eT
p B

−1.
PRICE: Form the pivotal row âT

p = πT
p N .

CHUZC: Scan the ratios ĉj/âpj for a good candidate q to enter the basis.
Update ĉTN := ĉTN − βâT

p , where β = ĉq/âpq.
FTRAN: Form the pivotal column âq = B−1aq, where aq is column q of A.

Update b̂ := b̂− αâq , where α = b̂p/âpq .
If {growth in representation of B} then

INVERT: Form a new representation of B−1.
else

UPDATE: Update the representation of B−1 corresponding to the basis change.
end if

Fig. 1. Operations in an iteration of the dual revised simplex method

A High Performance Dual Revised Simplex Solver 145

LU decomposition of some basis matrix B0, determined by a sparsity-exploiting
variant of Gaussian elimination as discussed, for example, by Tomlin [18] and
Suhl and Suhl [17]. Invertible representations of subsequent basis matrices are
obtained by updates until it is preferable on grounds of efficiency or numerical
stability to form a new representation via Gaussian elimination. There are many
approaches to updating the invertible representation of the basis matrix, the
simplest of which is the product form update of Dantzig and Orchard-Hays [3].

2.1 Suboptimization

When in-core memory was severely restricted, a popular variant of the primal
revised simplex method incorporated minor iterations of the standard (tableau)
primal simplex method restricted to a small subset of the variables. This is de-
scribed by Orchard-Hays [14] and is referred to as multiple pricing. Rosander [15]
applied the concept to the dual simplex method, using the term suboptimization,
performing minor iterations of the standard dual simplex method restricted to a
small subset of the constraints. An outline of the computational components of
a dual simplex iteration with suboptimization and steepest edge pricing is given
in Figure 2.

The disadvantages of using suboptimization for the dual simplex method are
that, after the first minor iteration, P may not contain the row of the best

CHUZR: Scan b̂p/sp for p = 1, . . . ,m to identify a set P of rows of good candidates to
leave the basis.

BTRAN: Form πT
p = eT

p B
−1, ∀ p ∈ P .

PRICE: Form the pivotal row âT
p = πT

p N , ∀ p ∈ P .
Loop {minor iterations}

CHUZR_MI: Scan b̂ for the row p ∈ P of a good candidate to leave the basis.
If p is not defined End loop {minor iterations}.

CHUZC: Scan the ratios ĉj/âpj for a good candidate q to enter the basis.
Update ĉTN := ĉTN − βâT

p , where β = ĉq/âpq .
UPDATE_MI: Update P := P\{p} and ĉTN := ĉTN − βâT

p , where β = ĉq/âpq .

Update the rows âT
P and b̂P .

End loop {minor iterations}
For {each basis change} do

FTRAN1: Form âq = B−1aq, where aq is column q of A.
Update b̂ := b̂− αâq , where α = b̂p/âpq .

FTRAN2: Form τ = B−1âq .
Update sp for p = 1, . . . ,m.

If {growth in representation of B} then

INVERT: Form a new representation of B−1.
else

UPDATE: Update the representation of B−1 corresponding to the basis change.
end if

End do

Fig. 2. Operations in an iteration of the dual revised simplex method with subopti-
mization and steepest edge pricing

146 J. Hall and Q. Huangfu

(global) candidate to leave the basis, and for some of the rows in P the candidate
may no longer be attractive. Thus the number of iterations required to solve the
LP problem may increase, and the work of computing some of the pivotal rows
may be wasted.

To the knowledge of the authors of this paper, there has been no serial im-
plementation of the dual simplex method with suboptimization beyond the very
limited experiments of Rosander. Indeed, there appears to be no meaningful
reference to his paper [15]. Thus, in Figure 2, this paper introduces the incorpo-
ration of algorithmically efficient techniques into Rosander’s framework of the
dual simplex method with suboptimization.

2.2 Parallelising the Simplex Method

Previous attempts to develop simplex implementations with the aim of exploiting
HPC architectures are reviewed by Hall [7]. Work on exploiting parallelism in
the revised simplex method has mainly been restricted to the primal simplex
method, notably Forrest and Tomlin [5], Shu [16], Hall and McKinnon [8,9]
and Wunderling [19,20]. Only Bixby and Martin [1] considered the dual simplex
method, parallelising little more than the matrix-vector product πT

pN . This focus
on the primal simplex method is understandable since it is the more natural
variant to study and only since most of the work on parallel simplex was done
has the dual simplex method become the preferred variant.

No parallel implementation of the simplex method has yet offered significantly
better performance relative to an efficient serial simplex solver for general large
scale sparse LP problems [7]. In two of the more successful implementations [8,9],
the limited speed-up came at the cost of unreliability due to numerical instability.
Thus any performance improvement in the revised simplex method resulting
from an efficient and reliable parallel implementation would be a significant
achievement.

Several parallel implementations [8,9,19,20] exploited multiple pricing within
the primal revised simplex method. This had the attractive properties of
independent computational components that could be overlapped on multiple
processors, and minor iterations of the standard simplex method that offered
immediate data parallelism. This paper considers the scope for parallelising the
dual simplex method with suboptimization.

Historically, revised simplex schemes for HPC architectures have been im-
plemented on relatively small numbers of single-core processors with shared or
distributed memory. The widespread availability of desktop HPC systems con-
taining small numbers of multi-core CPUs and a single GPU represents, for
optimization practitioners, an environment whose exploitation by existing effi-
cient simplex solvers is limited in the extreme. Thus the development of efficient
simplex schemes for such systems is a largely open field of research in which any
developments can be expected to have considerable practical value. Considera-
tion of issues relating to massive HPC systems and scalability are of secondary
importance to the authors.

A High Performance Dual Revised Simplex Solver 147

3 A Parallel Scheme and Its Implementation

This section introduces a prototype parallelisation scheme for the dual revised
simplex method with suboptimization and steepest edge pricing, together with
the computational techniques underlying its implementation as the solver ParISS.
The inherent strengths and weaknesses of both the parallel scheme and its im-
plementation are discussed.

A Parallelisation Scheme. The following scheme exploits some, but by no
means all, of the available task and data parallelism in the dual revised simplex
method with suboptimization. It is discussed in detail below, taking the opera-
tions in Figure 2 in order. Its implementation, ParISS, assigns one tableau row
to each available core and Figure 3 illustrates an example of the distribution of
operations in the case of four cores.

INVERT

3

2

1

0

CHUZC

FTRAN1

FTRAN1

BTRAN PRICE

BTRAN

BTRAN

BTRAN

PRICE

PRICE

PRICE FTRAN1

CHUZR

FTRAN2

FTRAN2

FTRAN2

UPDATE_MI

Fig. 3. ParISS: a prototype parallel implementation of the dual revised simplex with
suboptimization

Firstly, the relatively cheap CHUZR operation of selecting a set P of good
candidates to leave the basis is executed on just one core. Following this, the
multiple BTRAN (πT

p = eTpB
−1), and PRICE (âT

p = πT
pN) operations for p ∈ P

are distributed over all cores. Since minor iterations are performed with only a
very small subset of rows, the CHUZR MI operation is trivial so is performed by
one core and not illustrated. The selection of the entering column performed by
CHUZC is relatively cheap so is also performed on one core. The minor iteration is
completed by UPDATE MI, in which the data parallel update of the dual simplex
tableau rows (that remain candidates) and the reduced costs ĉT

N
is distributed

over all cores. The trivial update of b̂P is performed by the core that will perform
CHUZR MI. Following the minor iterations, FTRAN operations âq = B−1aq and
τ = B−1âq for each basis change are distributed over all cores. If INVERT is
performed, it is executed serially, without overlapping any other computation.

148 J. Hall and Q. Huangfu

Serial Efficiency. In many earlier parallel implementations of the revised sim-
plex method [7], the serial inefficiency of the computational components yielded
greater scope for parallel efficiency but the resulting implementation was wholly
inferior to a good serial solver. For a parallel simplex solver to be of greatest
practical value, it is important that its components are computationally efficient.
Not only must they exploit the sparsity of the constraint matrix, but they should
consider the more advanced techniques for exploiting hyper-sparsity identified
by Hall and McKinnon [10] that have led to huge performance improvements for
important classes of LP problems.

Implementation of the Scheme and Its Parallel Efficiency. The aim of
the prototype implementation, ParISS, is to identify the immediate scope for
parallelism when using efficient serial components. Like the underlying scheme,
ParISS is not fully parallel efficient. In particular, for convenience, it identifies a
“master” core that is used for computation when an alternative core might be
preferable on grounds of data locality.

Figure 3 clearly illustrates the major parallel inefficiency in the scheme, that of
INVERT being performed serially with no other overlapping computation. There
is a similar, but less serious, source of parallel inefficiency when performing
the very much cheaper operations CHUZR and CHUZC. Both of these perform
comparison operations on each component of a full-length vector, so it may
be significantly more efficient to distribute the data over multiple cores and
accumulate the results from each. In ParISS, CHUZC is performed on the master
core rather than the core where the pivotal row is likely to be available in cache.

Another source of parallel inefficiency in the scheme occurs if not all the can-
didates in P yield a basis change, in which case the number of FTRAN operations
may not be a multiple of the number of available cores. In ParISS, a core performs
both FTRAN operations if and only if its (single) tableau row is pivotal. Thus, if
the candidate variable in this row does not leave the basis, the core performs no
FTRAN operations. Figure 3 illustrates this in the case where the last candidate
in P does not leave the basis. With hindsight, this tableau row is computed and
updated unnecessarily but this is a serial consequence of suboptimization.

The idealised Gantt chart assumes that all BTRAN, PRICE and FTRAN op-
erations have the same computational cost but this is not so in practice when
they are performed efficiently. Immediate variance results from the fact that for
FTRAN1 (âq = B−1aq) vector aq is a column of the (sparse) constraint matrix
whereas, for FTRAN2 (τ = B−1âq), âq may be a full vector. When exploiting
hyper-sparsity, the variance increases further. In ParISS, hyper-sparsity is ex-
ploited partially during BTRAN and FTRAN, and fully during PRICE, with A
being held row-wise and combined according to the nonzeros in πp. Thus ParISS

can also be expected to suffer from parallel inefficiency due to load imbalance.

4 Results

ParISS, a prototype implementation of the dual revised simplex with
suboptimization has been developed in C++ with OpenMP using the techniques

A High Performance Dual Revised Simplex Solver 149

Table 1. Speed-up of ParISS on up to 8 cores and performance relative to Clp

Speed-up
Relative to 1 core Relative to Clp

Problem Rows Columns Entries 2 cores 4 cores 8 cores 1 cores 8 cores

25fv47 822 1571 11127 1.18 1.07 0.53 0.51 0.27
80bau3b 2263 9799 29063 0.94 1.03 0.85 0.21 0.18
cre-b 9649 72447 328542 0.86 1.27 1.07 1.13 1.21
cre-d 8927 69980 312626 1.16 1.33 1.68 0.90 1.51
degen3 1504 1818 26230 1.28 1.19 1.12 0.31 0.35
fit2p 3001 13525 60784 0.96 0.92 0.94 0.44 0.41
osa-14 2338 52460 367220 0.93 0.84 1.01 0.17 0.17
osa-30 4351 100024 700160 1.06 1.00 0.90 0.20 0.18
pds-06 9882 28655 82269 1.62 2.19 3.06 0.47 1.43
pds-10 16559 48763 140063 1.27 1.83 1.97 0.51 1.00
qap8 913 1632 8304 1.37 1.24 1.72 0.31 0.54
stocfor3 16676 15695 74004 1.80 2.57 3.39 0.13 0.46
truss 1001 8806 36642 0.98 1.08 1.10 0.46 0.50

Mean 1.16 1.28 1.30 0.37 0.48

discussed in Section 3. Using the Intel C++ compiler, the code was tested on a
dual quad-core AMD Opteron 2378 system.

Experiments were performed using problems from the standard Netlib [6] and
Kennington [2] test sets of LP problems. Results are given in Table 1 for a subset of
problems chosen as follows. Of the original 114 problems, many are unrealistically
small so the 84 that ParISS solved in less than one second were discounted. Of the
remaining 30, ParISS failed to solve 14 in one or more of the runs using 1, 2, 4 and
8 cores. To ensure that results are given for problems that ParISS solves efficiently,
observe that when a single core is used only one tableau row is computed so ParISS

executes the standard serial revised dual simplex algorithm. Thus its efficiency was
assessed by comparing ParISS on one core with version 1.06 of the COIN-OR [13]
(serial) dual simplex solver Clp. For the remaining 16 problems ParISS was more
than ten times slower than CLP on three, so these problems were also discounted.
Thus the results in Table 1are for the 13 LP test problems for whichParISSrequired
at least one second of CPU on one core but were solved efficiently on one core and
successfully on 2, 4 and 8 cores.

As the results in columns 5–7 of Table 1 show, some speed-up was obtained for
all but two of the problems and the (geometric) mean speed-up was about 30%
on 4 and 8 cores. Column 8 indicates the speed of ParISS on one core relative
to Clp: ParISS was faster for only one problem and was slower by a factor of 2.7
on average. However, using 8 cores, ParISS was at least as fast as Clp for four
problems, and 2.1 times slower on average.

5 Conclusions

For a prototype solver with the limited parallel efficiency recognised in Sec-
tion 3, the results in Table 1 are very encouraging, both in terms of speed-up

150 J. Hall and Q. Huangfu

and performance relative to Clp. This is particularly so when considering the
limited success of previous attempts to exploit HPC architectures when solving
general sparse LP problems with efficient implementations of the revised simplex
method. The results demonstrate that it is possible to get a worthwhile perfor-
mance improvement in an efficient implementation of the dual revised simplex
method by exploiting the scope for parallelism offered by suboptimization when
solving a range of sparse LP problems. Enhancements to the parallel efficiency of
the scheme and its implementation, together with improved serial performance
of its components are all the subject of current research.

References

1. Bixby, R.E., Martin, A.: Parallelizing the dual simplex method. INFORMS Journal
on Computing 12, 45–56 (2000)

2. Carolan, W.J., Hill, J.E., Kennington, J.L., Niemi, S., Wichmann, S.J.: An empir-
ical evaluation of the KORBX algorithms for military airlift applications. Opera-
tions Research 38, 240–248 (1990)

3. Dantzig, G.B., Orchard-Hays, W.: The product form for the inverse in the simplex
method. Math. Comp. 8, 64–67 (1954)

4. Forrest, J.J.H., Goldfarb, D.: Steepest-edge simplex algorithms for linear program-
ming. Mathematical Programming 57, 341–374 (1992)

5. Forrest, J.J.H., Tomlin, J.A.: Vector processing in the simplex and interior methods
for linear programming. Annals of Operations Research 22, 71–100 (1990)

6. Gay, D.M.: Electronic mail distribution of linear programming test problems.
Mathematical Programming Society COAL Newsletter 13, 10–12 (1985)

7. Hall, J.A.J.: Towards a practical parallelisation of the simplex method. Computa-
tional Management Science 7, 139–170 (2010)

8. Hall, J.A.J., McKinnon, K.I.M.: PARSMI, a Parallel Revised Simplex Algorithm
Incorporating Minor Iterations and Devex Pricing, in Applied Parallel Computing.
In: Madsen, K., Olesen, D., Waśniewski, J., Dongarra, J. (eds.) PARA 1996. LNCS,
vol. 1184, pp. 67–76. Springer, Heidelberg (1996)

9. Hall, J.A.J., McKinnon, K.I.M.: ASYNPLEX, an asynchronous parallel revised
simplex method algorithm. Annals of Operations Research 81, 27–49 (1998)

10. Hall, J.A.J., McKinnon, K.I.M.: Hyper-sparsity in the revised simplex method
and how to exploit it. Computational Optimization and Applications 32, 259–283
(2005)

11. Koberstein, A.: Progress in the dual simplex algorithm for solving large scale LP
problems: techniques for a fast and stable implementation. Computational Opti-
mization and Applications 41, 185–204 (2008)

12. Koberstein, A., Suhl, U.H.: Progress in the dual simplex method for large scale
LP problems: practical dual phase 1 algorithms. Computational Optimization and
Applications 37, 49–65 (2007)

13. Lougee-Heimer, R., et al.: The COIN-OR initiative: Open source accelerates oper-
ations research progress. ORMS Today 28, 20–22 (2001)

14. Orchard-Hays, W.: Advanced Linear programming computing techniques.
McGraw-Hill, New York (1968)

15. Rosander, R.R.: Multiple pricing and suboptimization in dual linear programming
algorithms. Mathematical Programming Study 4, 108–117 (1975)

A High Performance Dual Revised Simplex Solver 151

16. Shu, W.: Parallel implementation of a sparse simplex algorithm on MIMD dis-
tributed memory computers. Journal of Parallel and Distributed Computing 31,
25–40 (1995)

17. Suhl, U.H., Suhl, L.M.: Computing sparse LU factorizations for large-scale linear
programming bases. ORSA Journal on Computing 2, 325–335 (1990)

18. Tomlin, J.A.: Pivoting for size and sparsity in linear programming inversion rou-
tines. J. Inst. Maths. Applics. 10, 289–295 (1972)

19. Wunderling, R.: Paralleler und objektorientierter simplex, Tech. Report TR-96-09,
Konrad-Zuse-Zentrum für Informationstechnik Berlin (1996)

20. Wunderling, R.: Parallelizing the simplex algorithm. ILAY Workshop on Linear
Algebra in Optimzation, Albi (April 1996)

TFETI Coarse Space Projectors

Parallelization Strategies

Vaclav Hapla and David Horak

Department of Applied Mathematics,
VSB-Technical University of Ostrava,

17. listopadu 15,
CZ 708 33 Ostrava-Poruba,

Czech Republic
vaclav.hapla@vsb.cz

Abstract. This paper deals with an analysis of various parallelization
strategies for the TFETI algorithm. The data distributions and the
most relevant actions are discussed, especially those concerning coarse
problem. Being a part of the coarse space projector, it couples all the
subdomains computations and accelerates convergence. Its direct solu-
tion is more robust but complicates the massively parallel implementa-
tion. Presented numerical results confirm high parallel scalability of the
coarse problem solution if the dual constraint matrix is distributed and
then orthonormalized in parallel. Benchmarks were implemented using
PETSc parallelization library and run on HECToR service at EPCC in
Edinburgh.

Keywords: domain decomposition, FETI, Total FETI, TFETI, PETSc,
natural coarse space, coarse problem.

1 Introduction

The spread of parallel computers became the main impulse for development of
new numerical methods to respond to brand new criterion of efficiency - parallel
scalability. It means that the time of solution should be nearly inversely pro-
portional to the number of processors used. It is often impaired with decreasing
discretization parameter resulting in rapid increase of number of iterations. This
is motivation for developing algorithms which are also numerically scalable, num-
ber of iterations is nearly independent of the number of nodal variables.

Domain decomposition methods form a class of methods for parallel solution
of elliptic partial differential equations arising from many technical problems.
These methods are based on the “divide and conquer” strategy. The FETI (Finite
Element Tearing and Interconnecting) method proposed by Farhat and Roux [5]
turned out to be one of the most successful. The FETI-1 method is based on the
decomposition of the spatial domain into the non-overlapping subdomains that
are “glued” by Lagrange multipliers.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 152–162, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

TFETI Coarse Space Projectors Parallelization Strategies 153

Efficiency of the FETI-1 method was further improved by introducing special
orthogonal projectors and preconditioners. By projecting the Lagrange multipli-
ers in each iteration onto an auxiliary space to enforce continuity of the primal
solutions at the crosspoints, Farhat, Mandel and Tezaur obtained a faster con-
verging FETI method for plate and shell problems - FETI-2.

Total-FETI (TFETI) by Dostal et al. [1] simplified the implementation of a
stiffness matrices pseudoinverse using Lagrange multipliers not only for gluing
the subdomains along the auxiliary interfaces, but also to enforce the Dirichlet
boundary conditions.

FETI methods are also very suitable for the solution of variational inequalities
[5,2]. The reason is that the application of the duality principle not only reduces
the problem size and condition number; it also transforms the affine inequality
constraints into the bound constraints so that efficient algorithms that exploit
cheap projections and other tools may be exploited.

The stiffness matrix has a perfect block-diagonal layout with subblocks cor-
responding to subdomains. So the most difficult part – the application of the
stiffness matrix – may be carried out in parallel without any communication so
that high parallel scalability is enjoyed. The increasing number of subdomains
decreases the block size resulting in shorter time for subdomain stiffness ma-
trices factorization and subsequently forward and backward substitution during
the pseudoinverse application.

On the other hand, assuming fixed discretization parameter, the dual dimen-
sion and the coarse problem size increase with increasing number of subdomains
resulting in longer time for all dual vector operations and orthogonal projectors
application.

The coarse problem couples all the subdomains computations and accelerates
convergence. Direct solution of the coarse problem improves the robustness but
complicates the massively parallel implementation. In this paper, coarse prob-
lem parallelization strategies and their impact on the parallel scalability will be
discussed.

2 FETI-1 and TFETI

Let us consider linear elasticity problem in 2D or 3D. It is assumed that the
boundary Γ is decomposed into disjoint parts Γu, Γf and that there are imposed
Dirichlet boundary conditions on Γu and Neumann boundary conditions on Γf .
The Dirichlet boundary conditions represent the prescribed displacements and
the Neumann conditions represent the surface tractions.

To apply the FETI-1 based domain decomposition let us partition the do-
main Ω into Ns subdomains Ωs and denote by Ks, f s, and us the subdomain
stiffness matrix, the subdomain load vector and the subdomain displacement
vector. The matrix B enforces the continuity of the displacements across the

154 V. Hapla and D. Horak

subdomain interfaces (gluing conditions). The continuity between i-th and j-th
DOF means that ui = uj and can be enforced by appending the row b with entries
bi = 1, bj = −1, bk = 0, k �= i, j, to B.

The finite element discretization with appropriate nodes numbering results in
the quadratic programming problem

min
1

2
uTKu− uTf s.t. Bu = 0 (1)

with

K =

⎡⎢⎣K
1

. . .

KNs

⎤⎥⎦ , f =

⎡⎢⎣ f1

...
fNs

⎤⎥⎦ , u =

⎡⎢⎣ u1

...
uNs

⎤⎥⎦ , B = [B1, . . . , BNs].

(2)

The original FETI-1 method assumes that the boundary subdomains inherit the
Dirichlet conditions from the original problem, so that the defect of the stiffness
matricesKs may vary from zero corresponding to the boundary subdomains with
sufficient Dirichlet data to fix rigid body modes to the maximum corresponding
to the floating subdomains.

The basic idea of TFETI [1] is to keep all the subdomains floating and to
incorporate the imposed displacements into the matrix of constraints B. To
implement the boundary conditions like ui = 0, the row b with bi = 1, bk =
0, k �= i, is appended to B. The prescribed displacements will be then enforced
by the Lagrange multipliers which may be interpreted as reaction forces. The
remaining procedure is exactly the same as described for FETI-1. The key point
is that the kernels of local stiffness matrices Ks are known a priori, have the
same dimension and can be formed directly. Matrix R whose columns form a
basis of the kernel of K has a block-diagonal structure

R =

⎡⎢⎣R
1

. . .

RNs

⎤⎥⎦ . (3)

Let us apply the duality theory to (1) and let us establish the following notation

F = BK†BT , G = RTBT , d = BK†f, e = RT f,

where K† denotes a generalized inverse matrix satisfying KK†K = K. Our
minimization problem reads

min
1

2
λTFλ− λT d s.t. Gλ = e. (4)

Equality constraints Gλ = e can be homogenized to Gλ = 0 by choosing arbi-
trary λ̃ which satisfies Gλ̃ = e and replacing d by d− Fλ̃. Then the solution of
original problem can be obtained as λ+ λ̃.

TFETI Coarse Space Projectors Parallelization Strategies 155

Further significant improvement is based on the observation, that the La-
grangian for problem (4) can be decomposed by orthogonal projectors

Q = GT (GGT)−1G and P = I −Q

onto the image space of GT and onto the kernel of G, respectively (ImQ =
ImGT and ImP = KerG), so that the final problem reads

min
1

2
λTPFPλ− λTPd s.t. Gλ = 0. (5)

Alternatively, we can reformulate problems (4)-(5) using Ḡ = TG and ē = Te
instead ofG and e, respectively, where T denotes a nonsingular matrix that defines
the orthonormalization of the rows of G so that ḠḠT = I. In this case Q can be
simplified

Q = GT (GGT)−1G = ḠT Ḡ

and λ̃ can be chosen as the least square solution λ̃ = GT (GGT)−1e = ḠT ē.
Problem (5) may be solved effectively by a scalable algorithm PCGP (Precon-

ditioned Conjugate Gradient method with Projectors). The proof of the classical
estimate κ(PFP |ImP) ≤ C H

h of the spectral condition number κ of PFP
on the range of P by the ratio of the decomposition parameter H and the
discretization parameter h which was published by Farhat, Mandel and Roux
remains valid for TFETI.

3 Coarse Problem Parallelization Strategies

3.1 Data Distribution

The parallelization of the TFETI algorithm can be achieved mostly by SPMD
technique – distributed matrices. This allows algorithms to be almost the same
for both sequential and parallel cases; only implementations of data structures
(mainly matrix and vector) differ. Most computations (subdomains problems)
are purely local and therefore parallelizable without any data transfers. However,
if we want to accelerate also dual actions, some communication is needed due to
primal-dual transition – TFETI solver is then not “embarassingly parallel”.

Let us firstly describe distributions of primal data K, B, R, f . Let Np denote
the global primal dimension (number of DOFs); Nd the dual dimension (num-
ber of constraints); Nn the null space dimension (defect) of K; Nc, Nc ≤ Ns,
the number of computational cores. For sufficiently finely discretized problems,
it holds that Nn � Nd � Np. For the special case of 2D elasticity it holds
that Nn = Ns × 3. Sizes of the primal objects are as follows: size(K) =
[Np, Np], size(B) = [Nd, Np], size(R) = [Np, Nn], size(f) = [Np, 1].

Distribution of primal matrices K, B, R is quite straightforward as every
subblock corrresponds to a subdomain; see Figure 1. They can be stored us-
ing general distributed column-block or row-block matrix type (e.g. MPIAIJ in
PETSc, codistributed arrays in MATLAB). However, K and R possess nice

156 V. Hapla and D. Horak

B
TR

primal dimension dual dimensiondefect

fK, K
+

Fig. 1. Natural distributions of primal
data. (Filled part means local portion
owned by single core).

G =λ =

G (GG) G
T T -1

λ = =

=(GG) G =
T -1

λ

?

?

?

Fig. 2. Application of Q projector

block-diagonal layout with nonzeros only in the diagonal subblocks and can be
implemented more sophisticatedly using block-diagonal composite type where
subblocks are ordinary sequential matrices and every process holds one or array
of them.

There is no doubt about perfect parallel scalability of factorization of the stiff-
ness matrix K and its pseudoinverse K† action because of their block-diagonal
layout; for the fixed decomposition and discretization parameters the time is
reduced proportionally to Nc. Natural effort is to maximize Nc so that sizes of
subblocks are reduced which accelerates their factorization and pseudoinverse
application, which belong to the most time consuming actions. On the other
hand, the negative effect of that is increasing Nd and Nn. It is a kind of “seesaw
effect”.

The critical point and potential bottleneck of the TFETI method is the ap-
plication of projector Q (and therefore P) as depicted in Figure 2. We should
consider following aspects affecting action time and the level of communication:

– whether and how G should be distributed,
– how the action of (GGT)−1 and hence Q and P applications should be im-

plemented,
– whether G should be orthonormalized obtaining Ḡ so that (ḠḠT)−1 = I.

3.2 Implementation of the Dual Actions

We suggest seven main ways (A1-A3, B1-B4) of handling the matrix G and
subsequent realizations of coarse problem GGTx = b solution. These strategies
of the projector application can be viewed from two points:

I. how G is distributed and its action carried out (see figures 3a, 3c):
A) horizonatal blocks,
B) vertical blocks.

II. how the coarse problem is solved which implies the level of preprocessing of
G and GGT (see figures 3b, 3d):

TFETI Coarse Space Projectors Parallelization Strategies 157

1) iteratively using CG by the master process,
2) directly using Cholesky factorization by the master process,
3) applying explicit inverse of GGT in parallel,
4) the coarse problem is eliminated, provided that the rows of G are or-

thonormalized.

Let us analyze necessary actions in detail. MatricesR andB are naturally divided
into sparse sequential blocks R[rank] and B[rank] as told in previous section and
depicted in Figure 3a.

Firstly, focus on the viewpoint I. In both A and B cases, local blocks of
rows of the natural coarse space matrix G are computed in parallel without any
communication: G[rank] = RT

[rank]B
T
[rank].

In B case, an additional redistribution is performed so that G is divided
horizontally into column blocks. In fact, due to the row-major storage of parallel
sparse matrices in PETSc, G is tranposed and horizontal blocks GT

[rank] are
stored. This approach has two big advantages:

1. smaller amount of communication because collective operations (global sums)
are performed on Nn-sized vectors instead of Nd-sized (see Figure 3c),

2. all Nd-sized vectors and operations on them like AXPY and DOT can be
parallelized.

Taking into account decomposition of huge problems into large number of sub-
domains resulting in large dual dimension and dimension of kernel R, this can
significantly reduce the computational time.

Now let us consider the viewpoint II. In the pictures 3d, 3b, we can see the
four ways of coarse problem solution and corresponding levels of preprocessing.
In cases 1, 2 it is necessary to transfer whole G matrix to the zeroth core or in
case 3 to all cores. Master core or each of the cores then computes the sequential
product GGT using matrix-matrix multiplication.

In case 1 we employ iterative (KSP) solver for the coarse problem solution.
In cases 2, 3 the Cholesky factorization of GGT is performed. In case 2,

a finite solver is employed for the coarse problem solution on the zeroth core.
In case 3, an explicit inverse (GGT)−1 is carried out, which can be efficiently
computed and applied in parallel. Coarse problem is then solved by means of
ordinary matrix-vector multiplication by the distributed (GGT)−1 matrix.

In case B4 rows of G are orthonormalized and matrix Ḡ is obtained. This way
has a big advantage - we eliminate the coarse problem (ḠḠT = (ḠḠT)−1 = I)
completely. Like for every B case, we have to redistribute G into the parallel
dense matrix GT . Then we perform orthonormalization of its columns, i.e. rows
of G. This action can be virtually described by the nonsingular matrix T and
the result is Ḡ = TG. For this purpose the classical Gram-Schmidt algorithm
was chosen, that appears more suitable for parallelization of this problem than
the modified or iterated classical Gram-Schmidt (the classical Gram-Schmidt
requires half the number of floating-point operations, on parallel computers it
can be much faster than the modified Gram-Schmidt, and its parallel efficiency
equals that of the iterated classical Gram-Schmidt [4]). The columns of matrix

158 V. Hapla and D. Horak

R
T

B
T

= =
gt.

=
sc.

G

A
B

(a) parallelization of G

2

chol

=

LG

T
LG

1
3

=

GG
T (

T
)

-1
GGLG

(\ \
LG

T

(
I

)) =

(directly) (directly)

orthonormalization of rows
(parallely)

4

(b) preprocessing of G and GGT

A

B

= = =
Σ

= =
Σ

= =
gt.

=
sc.

=
gt.

(c) action of G depending on (a)

1 \ =

(iteratively)

sc.

=

=

2

3

(
T
)

-1
GG

GG
T

\ \()
(directly) (directly)

=
sc.

=

LG

T
LG

(d) action of (GGT)−1 de-
pending on (b)

Fig. 3. Various ways of realization of the Q action

GT are copied into the array of parallel vectors g[] (local size Nd/Nc, global size
Nd) and process of orthonormalization is performed in parallel according to

g[i] = g[i]−
i−1∑
j=0

(g[i]T g[j])g[j], g[i] =
g[i]

‖g[i]‖ , i = 0, ..., Nn − 1,

TFETI Coarse Space Projectors Parallelization Strategies 159

using standard PETSc functions. The obtained vectors form columns of required
parallel dense matrix ḠT . Considering this type of distribution, this process
requires only transfers of dot products and can be very efficient [4]. Alternatively,
Ḡ can be carried out by the forward substitution of the factorized GGT applied
to Nd/Nc columns of original G matrix as RHS.

4 Numerical Experiments

Described strategies were tested on matrices B and R obtained from decomposi-
tion and discretization of 2D elastostatic problem of the steel traverse represented
by a domain Ω = (0, 600) × (0, 200) with the sizes given in [mm] (see Fig. 4).
The material constants are defined by the Young modulus E = 2.1 · 105 [MPa],
the Poisson ratio ν = 0.3, and the density ρ = 7.85 · 10−9 [ton/mm3]. The body
is fixed in all directions along the left side ΓU = {0} × [0, 200] and loaded by
gravitational forces with the gravity acceleration g = 9800mm/s2.

To illustrate both the efficiency of the different strategies of the coarse prob-
lem solution and the scalability of the TFETI we decomposed the body Ω into
identical square subdomains with the side length H (see Fig. 5). We gradually
chose decompositions into 8× 24, 16× 48, 24× 72, 32× 96, and 40× 120 boxes.
All subdomains were further discretized by the same uniform triangular meshes
characterized by the discretization parameter h and the ratio H/h = 180. An
example of the deformed body together with the traces of decomposition for the
choice of parameters h = 16.7mm and H = 66.7mm is depicted in Fig. 5.

The implementation was built on PETSc 3.0.0.10. Regarding parallel machine,
HECToR service at EPCC in Edinburgh [8] was used. It consists of the phase
2a (Cray XT5h) machine, the phase 2b (Cray XT6) machine, and an archiving
facility. The current main HECToR facility is the phase 2b. This was used for
our experiments. Phase 2b is a Cray XE6 system offering a total of 1856 XE6
computing nodes. Each compute node contains two AMD 2.1 GHz 12-core pro-
cessors giving a total of 44,544 cores. Theoretical peak performance is around
373 Tflops. There is presently 32 GB of main memory available per node, which
is shared between its twenty-four cores, the total memory is 58 TB. The pro-
cessors are connected with a high-bandwidth interconnect using Cray Gemini
communication chips. The Gemini chips are arranged on a 3 dimensional torus.

Distribution into horizontal blocks in A cases leads to enormous increase of
communication because sequential dual vectors have to be scattered to zeroth
core and added together. On the other hand, the reduction of computation times
is not so significant. So the only way to run huge jobs on massively parallel
computers is to distribute the G matrix into vertical blocks and distribute all
dual vectors as well – B cases. A big advantage is that the AXPY action and
the dot product is faster in parallel compared to sequential case – see Table 1.

Regarding communication, the B variants behave almost identically. There-
fore, the best strategy should be chosen according to the computational time.
While for the finitely and iteratively solved coarse problem, these times stay
constant with increasing number of processors, for the variants with paral-
lelized coarse problem the speedup is nearly optimal up to thousands of cores.

160 V. Hapla and D. Horak

Additional advantage of orthonormalized approach is less than 50% cost of
preprocessing.

In some cases the experiments done in parallel are not faster than sequential
ones. This can be caused by the fact, that the example was not large enough
- for larger dual dimensions and dimension of null space the situation should
change and expected profit from the parallelization will be more significant.
We should also take into account the reduction of memory requirements if many
computational nodes are used. The importance of this parallelization will be
magnified with more complicated problems as 3D elasticity or shell problems.
This is a topic of our current work.

In Table 1, we report the computational times for preprocessing and Q action
for the coarse problem solution. Obviously the best strategy is B4, where G is
distributed in vertical blocks and orthonormalized.

Fig. 4. Benchmark geometry

0 100 200 300 400 500 600

0

50

100

150

200

Fig. 5. Displacements with traces of
decomposition (scaled 6000x)

Table 1. Performance of the coarse problem solution for varying strategy, decomposi-
tion and discretization

Primal variables 12,580,224 50,320,896 114,476,544 201,283,584
Dual variables 129,984 537,216 1,228,464 2,183,424
Kernel dimension 576 2,304 5,184 9,216
Number of subdom. 192 768 1,728 3,072
Number of cores 192 768 1,728 3,072

G[rank] 1.001e-02 1.152e-02 1.489e-02 1.527e-02
broadcast of G to all cores 9.102e-02 3.710e-01 8.353e-01 1.389e+00
B1,2,3: GGT assembling 6.710e-02 2.469e-01 7.155e-01 1.203e+00
B2,3: GGT Chol. fact. 8.090e-03 1.042e-01 8.108e-01 2.004e+00
B3: inverse 1.767e-01 1.149e+00 6.401e+00 9.264e+00
B4: orthonormalization 9.669e-02 5.983e-01 3.262e+00 4.629e+00

B1: Q action 1.070e-02 6.934e-02 3.204e-01 6.424e-01
B2: Q action 8.046e-03 5.404e-02 2.321e-01 4.576e-01
B3: Q action 5.822e-03 3.742e-02 1.760e-01 3.621e-01
B4: Q action 6.096e-03 2.694e-02 6.424e-02 9.874e-02

AXPY seq. dual. 1.452e-03 6.622e-03 1.503e-02 3.018e-02
AXPY par. dual. 2.766e-06 3.195e-06 3.386e-06 3.833e-06
DOTS seq. dual. 1.073e-03 4.549e-03 1.031e-02 2.482e-02
DOTS par. dual. 2.384e-04 5.014e-04 5.044e-03 1.081e-02

TFETI Coarse Space Projectors Parallelization Strategies 161

5 Conclusion and Further Work

This paper analyzes seven parallelization strategies for coarse problem of FETI-
1 and TFETI algorithm and projector application. The data distributions and
the most relevant actions are discussed with the conclusion that all B variants
behave much better in parallel up to thousands cores reducing significantly times
of all dual actions (AXPY, DOT).

Further work should involve fine tuning and optimization of presented ac-
tions, theoretical performance analysis, more holistic analyses of FETI-based al-
gorithms extending this paper, comparison of times presented in this paper (pure
MPI approach) with hybrid parallelization approaches, testing coarse problem
solved by parallel direct solver such as MUMPS, experiments with parallelization
frameworks other than PETSc.

Acknowledgments. This research has been supported by the grants: GA CR
101/09/P601, Ministry of Education of the CR (No. MSM 6198910027), HPC-
Europa programme funded under the European Commission Research Infras-
tructures activity of the Structuring the European Research Area programme
(contract No. RII3-CT-2003-506079) and PRACE 1IP project receiving funding
from the EU’s Seventh Framework Programme (FP7/2007-2013) under grant
agreement No. RI-261557.

References

1. Dostal, Z., Horak, D., Kucera, R.: Total FETI – an easier implementable variant of
the FETI method for numerical solution of elliptic PDE. Commun. in Numerical
Methods in Engineering 22, 1155–1162 (2006)

2. Dostal, Z., Horak, D.: Theoretically supported scalable FETI for numerical solution
of variational inequalities. SIAM Journal on Num. Anal. 45, 500–513 (2007)

3. Balay, S., Gropp, W., McInnes, L.C., Smith, B.: PETSc 3.0.0 Users Manual, Ar-
gonne National Laboratory, http://www.mcs.anl.gov/petsc/

4. Lingen, F.J.: Efficient Gram-Schmidt orthonormalization on parallel computers.
Research report, Department of Aerospace Engineering, Delft University of Tech-
nology (1999)

5. Farhat, C., Roux, F.-X.: An unconventional domain decomposition method for an
efficient parallel solution of large-scale finite element systems. SIAM Journal on
Scientific Computing 13, 379–396 (1992)

6. Farhat, C., Mandel, J., Roux, F.-X.: Optimal convergence properties of the FETI
domain decomposition method. Comput. Methods Appl. Mech. Eng. 115, 365–385
(1994)

7. Roux, F.-X., Farhat, C.: Parallel implementation of direct solution strategies for
the coarse grid solvers in 2-level FETI method. Contemporary Math. 218, 158–173
(1998)

http://www.mcs.anl.gov/petsc/

162 V. Hapla and D. Horak

8. HECToR Home Page, http://www.hector.ac.uk/
9. Vondrak, V., Kozubek, T., Markopoulos, A., Dostal, Z.: Parallel solution of contact

shape optimization problems based on Total FETI domain decomposition method.
Structural and Multidisciplinary Optimization 42(6), 955–964 (2010)

10. Kozubek, T., Dostal, Z., Vondrak, V., Markopoulos, A., Brzobohaty, T.: Scalable
TFETI algorithm for the solution of multibody contact problems of elasticity.
International Journal for Numerical Methods in Engineering 82(11), 1384–1405
(2010)

http://www.hector.ac.uk/

FFTs and Multiple Collective Communication

on Multiprocessor-Node Architectures

Andreas Jocksch

CSCS, Swiss National Supercomputing Centre,
Galleria 2, Via Cantonale, 6928 Manno, Switzerland

jocksch@cscs.ch

Abstract. We consider FFTs for networks with multiprocessor nodes
using 2D data decomposition. In this application, processors perform
collective all-to-all communication in different groups independently at
the same time. Thus the individual processors of the nodes might be
involved in independent collective communication. The underlying com-
munication algorithm should account for that fact. For short messages,
we propose a sparse version of Bruck’s algorithm which handles such
multiple collectives. The distribution of the FFT data to the nodes is
discussed for the local and global application of Bruck’s original algo-
rithm, as well as the suggested sparse version. The performance of the
different approaches is compared.

Keywords: FFT, all-to-all personalized communication, multiprocessor
nodes.

1 Introduction

The parallelization of one and multi-dimensional Fast Fourier Transforms (FFTs)
[12,7] is a key aspect in scientific computing, and methods for different archi-
tectures have been developed [15,2,5] and analyzed [9,4,16]. We follow the row-
column approach for parallel 3D FFTs here using a 2D decomposition. In this
method 1D FFT algorithms are applied separately in each dimension. Between
those, the method performs all-to-all personalized communication (index oper-
ation) within independent groups of processors, see Sec. 4.

An extensive amount of effort has been put into optimizing collective all-to-all
communication and other particular types of collectives by developing various
algorithms for different specific topologies and communication models of the net-
work [11,6,17]. We focus here on Bruck’s algorithm [3] for all-to-all personalized
communication. The more general communication problem — where every node
sends messages of different size, including zero, to every node and receives the
corresponding messages — is hard to solve, a fact which is apparent from its
underlying communication graph. In general heuristic approaches are applied
[8,10,1].

Recently computer architectures with processors sharing nodes of a network
have become prevalent, and work has been done on the extension of the collective

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 163–172, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

164 A. Jocksch

communication algorithms to these systems. The hierarchy of fast connection
between processors sharing nodes, and slow connection between the nodes using
the network has been considered, e. g., for the all-to-all communication algorithm
[14] and for the broadcast and reduce [18].

In this contribution, we consider a communication model in which the nodes
are assumed to be fully connected, meaning all the nodes communicate directly
and with the same cost. The nodes have k ports, which is the number of partners
a node can communicate with independently at the same time. Furthermore,
we assume linearity for the communication costs between the nodes. Thus the
communication time t is determined by the latency tlat plus the packet size s
divided by the bandwidth b, t = tlat + s/b. Bruck’s algorithm [3] for all-to-all
communication provides a minimum of communication cost as a tradeoff between
latency-optimal and bandwidth-optimal communication for this model. As part
of our communication model, we neglect any communication costs within a single
node.

If, for multiprocessor nodes, every single collective operation incorporates a
certain number of nodes and all processors of those nodes, the extension of a
single processor node communication algorithm is straightforward. For such all-
to-all communication on the source nodes, the messages from the individual
processors are collected on single master processors. Then, between the master
processors, the messages are communicated with the algorithm for single pro-
cessor nodes. On the target nodes the messages are distributed from the master
processors to the individual processors. However, here messages are exchanged
for the FFTs within independent groups of processors. It is called multiple col-
lective communication here. Those all-to-all collectives in general share nodes.
Thus, between the nodes a special message exchange problem is present. An effi-
cient way of handling this communication by an adaptation of Bruck’s algorithm
will be discussed here.

In the following we will present Bruck’s algorithm and its adaptation, show
how to integrate it into FFTs, and provide an evaluation of the performance.

2 Bruck’s Algorithm

In this contribution, we focus on Bruck’s algorithm [3] for all-to-all communi-
cation, since it is optimal with respect to communication steps, for the single
communication with equal message size. The algorithm is illustrated in Fig. 1,
where for the nodes A-D the messages sent are ordered in columns. The data
are arranged such that every line displayed needs to be shifted a certain number
of times in order to transfer the data from the source node to the target node.
Starting from zero, the line number is the number of shifts for the data to be
communicated to the right. The algorithm transfers the data not necessarily di-
rectly but in steps according to the following scheme. For every line, the number
of shifts is described on a radix of r0. Every digit of the number represents a
single step, where different values of the digit are different substeps. Thus, in
every step x, 1 ≤ x, substeps z, 1 ≤ z < r0, with step size z ·rx−1

0 are performed,

FFTs and Multiple Collective Communication on Multiprocessor-Node 165

lines are jointly communicated. In Fig. 1, r0 = 2 is chosen where every step has
only one substep. A first step with one shift and a second step with two shifts
are performed. Multiple substeps within a step are performed by the k ports
in parallel. Complexity measures — the number of communications C1 and the
amount of data C2 — are estimated to be

C1 ≤ (r0 − 1) logr0 n and (1a)

C2 ≤ b(r0 − 1)
n

r0
logr0 n , (1b)

respectively [3], where n is the number of nodes and b the size of the data.
The overall communication time then becomes t = tlatC1 + C2/b. Thus, for
pure latency-dominated communication, r0 = 2 is chosen, and for bandwidth-
dominated communication r0 = n. For the special case r0 = 2 the number of
communications becomes

C1 = log2 n (2)

[3] (for the special case r0 = n see [3]). For brevity, the arrangement of the data
on the nodes before and after the communication — considered as separate steps
of so called local rotation in the original description [3] — is not discussed here.

3

2

1

0

A B C D

AA BB CC DD

AB BC CD DA

AC BD CA DB

AD BA CB DC

Step 1

A B C D

AA BB CC DD

AB BC CDDA

AC BD CA DB

AD BA CBDC

Step 2

A B C D

AA BB CC DD

AB BC CDDA

AC BDCA DB

ADBA CB DC

Fig. 1. All-to-all communication using Bruck’s algorithm; Nodes A-D contain columns
of messages, which are labeled with two letters: the first indicates the sending node
and the second one the receiving node. The line number on the left is the number of
shifts to the right. Shaded lines participate in the following step.

For multiple collectives the participating processes are mapped on the nodes
such that as many nodes as possible are used in only one particular collective;
furthermore, no more than two collectives should share one node (plus collectives
involving only one node, which according to our communication model have zero
communication cost). As an example, the top of Fig. 2 illustrates nodes in differ-
ent groups communicating, where adjacent empty circles are nodes involved in
one particular collective, and filled circles are nodes involved in two collectives,
one on the left and one on the right. We assume the case r0 = 2 of Bruck’s algo-
rithm. The individual (local) application of Bruck’s algorithm to the collectives
with three or four nodes requires two steps with one and two shifts. Taking into
account that nodes are shared between two collectives, the total number of steps
required is four. An alternative is the application of a global all-to-all operation

166 A. Jocksch

with message sizes of zero between the different groups. The arrangement of
data for Bruck’s algorithm is also shown in Fig. 2. The number of lines in which
the data are communicated is smaller than the number of nodes. The global
application of the algorithm for the 21 nodes requires 5 steps with 1, 2, 4, 8 and
16 shifts. Due to the communication pattern, not all of the steps or substeps of
Bruck’s algorithm are necessary. Only the steps with 1, 2, 4 and 16 shifts are
required (8 can be omitted). This is the same number of steps as for the local
application of the algorithm.

A

AD

AC

AB

AA

B

BA

BD

BC

BB

C

CB

CA

CD

CC

D

DC

DB

DA

DG

DF

DE

DD

E

ED

EG

EF

EE

F

FE

FD

FG

FF

G

GF

GE

GD

GJ

G I

GH

GG

H

HG

HJ

H I

HH

I

I H

I G

I J

I I

J

J I

JH

JG

JM

J L

JK

J J

K

KJ

KM

KL

KK

L

LK

L J

LM

LL

M

ML

MK

MJ

MP

MO

MN

MM

N

NM

NP

NO

NN

O

ON

OM

OP

OO

P

PO

PN

PM

PS

PR

PQ

PP

Q

QP

QS

QR

QQ

R

RQ

RP

RS

RR

S

SR

SQ

SP

SU

ST

S S

T

TS

TU

TT

U

UT

US

UU

20

19

18

3

2

1

0

Fig. 2.Multiple all-to-all communication; The top letters and circles indicate the nodes
A-U in groups of collectives. Adjacent empty circles are part of one collective, filled cir-
cles are shared between neighbors. The bottom shows the setup for Bruck’s algorithm.
In the columns the first and second letter indicate the sending and receiving nodes,
respectively. The number of shifts to the right is indicated on the left.

3 Sparse Bruck Algorithm

The concept of omitting particular communication steps in order to realize only
the numbers of shifts necessary can be generalized as follows. At the different
steps the same number of substeps are still made, but the radix rx might be
larger than r0 (the number of substeps plus one). In those steps, the substeps do
not cover all numbers of shifts required for a communication between all nodes
but certain numbers of shifts are omitted. Thus the number of shifts at substep
z of step x is z ·

∏
1≤i≤x

ri shifts to the right. We call this procedure the sparse

version of Bruck’s algorithm.
It should be noted that as soon as messages with different sizes, including

zero, are sent, the order of the steps, which is essentially arbitrary, influences
the communication costs. We do not attempt to find the best solution for the
general communication problem using the sparse Bruck algorithm, but we exploit
the characteristic communication pattern present in a heuristic approach.

Pairs of nodes that do exchange data are indicated in the so-called communi-
cation matrix. Figure 3 shows the matrix for the example of all-to-all collectives
executed simultaneously. It has a banded structure. While in the original algo-
rithm the data of the n nodes are shifted for all steps within the interval from
zero to the matrix size minus one [0..n−1] (in the example [0..20]), the necessary

FFTs and Multiple Collective Communication on Multiprocessor-Node 167

numbers of shifts for our problem are two sub-intervals visible in the matrix. One
interval starts from zero, representing the diagonal, to the number of upper sub-
diagonals u [0..u] ([0..3]) and the other interval from size of the matrix minus the
number of lower side diagonals l to the size of the matrix minus one [n− l..n−1]
([18..20]). The two subintervals also allow entries in the lower left and upper
right corner of the communication matrix. In our case, the first node would also
communicate with the last three ones. Rotations for two intervals are realized
by a larger radix in the last step of the communication without increasing the
number of substeps r0−1. The step sizes of the substeps is such that they match
the subintervals. One part of the substeps points to the right interval and the
other one to the left interval. Thus for the example (Fig. 2) the communication
can be realized with 1, 2 and 18 shifts.

In the communication procedure several messages of single collectives are
delivered by incorporating nodes for message forwarding which are not involved
in the particular collective, for nodes used for forwarding only see also [13].

A

F

K

P

U

A F K P U

Fig. 3. Communication matrix of multiple collectives, pairs of nodes A-U which ex-
change data are ticked

For the complexity measure of the sparse Bruck algorithm, the estimate
Eq. (1) still holds for all r0, n, b and becomes more conservative. Considering
a banded communication matrix, a more precise bound is estimated as follows.
The original estimate is valid for one interval of shifts; the absolute distance does
not play any role. For the adaptation to two intervals and r0 even — r0 odd is
not discussed for brevity here — we assume that in the last step r0/2 substeps
are made to the left interval and r0/2− 1 to the right one. If the intervals [0..u]
and [n−l..n−1] had equal size, the original measure would apply, for the number
of nodes being twice the interval size. Considering the larger interval size, the
number of communications and the amount of data can be estimated to be

168 A. Jocksch

C1 ≤ (r0 − 1) logr0 [2 max(l, u+ 1)] and (3a)

C2 ≤ b(r0 − 1)
2 max(l, u+ 1)

r0
logr0 [2 max(l, u+ 1)] , (3b)

respectively. For r0 = 2 the number of substeps becomes

C1 = log2[2 max(l, u+ 1)] . (4)

The choice of r0 = 2 in the example (Fig. 2) leads to a communication within
three steps with one substep each.

4 FFTs Using 2D Decomposition

In the so-called split and transposition approach the 1D FFT is shared between
processors such that between the computations, communication phases for data
transposition are introduced. For optimal communication on the specific fully
connected network (bandwidth, latency, see Sec. 1) the number of communica-
tion phases or r0 of Bruck’s algorithm can be adjusted [9,3]. If the resolution
permits, one communication phase is preferred, otherwise multiple collective
communications are present.

For two communication phases, this approach is equivalent to a 3D FFT which
uses the row-column algorithm with a 2D decomposition. We focus on such 3D
FFTs. Figure 4 illustrates the data, a (N1,N2,N3) array which is split to P1 × P2

processors. We restrict ourselves to the case N = N1 = N2 = N3 and P = P1 =
P2. The FFT consists of five phases, three of them are one-dimensional computa-
tions performed sequentially in the coordinate directionsx, y and z labeled a, b and
c for any of the dimensions, respectively, while between them the data is rearranged
from a to b and also from b to c in two communication phases. A communication
back to arrangement a is not considered as part of the FFT here.

For the two communication phases, P groups of collectives are applied inde-
pendently in the different planes. Considering the y − z plane of arrangement a
as nomenclature, these are rows and columns of data exchange.

Since the processors are involved in two different collectives, the assignment
of the data to the nodes is not straightforward and is done in the following

1
2
3

4
5
6

7
8
9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6
7 8 9

a) b) c)

�
�
�

z

x

y

Fig. 4. Data distribution to the processors (1-9)

FFTs and Multiple Collective Communication on Multiprocessor-Node 169

heuristic way. Rectangles with the dimensions p = ax × az — representing the
processors of the nodes — are placed into the plane. If the rectangles are ex-
clusively filling the plane, all collectives are still independent. If the dimensions
of the rectangle are not a fraction of the size of the cube surface, the situation
is the following (see Fig. 5): the rectangles are placed in a mesh pattern from
the left to the right, where az is the greatest common divisor (gcd) of p and P ,
az = gcd(p, P) (ax = p/az). In the example these are rectangles of size 4 × 3
(Fig. 5a). The communication is decoupled for the different columns of rectan-
gles and the band on the right (Fig. 5a), i. e., the original Bruck algorithm can
be applied independently for groups of processors. A further decoupling applies
for packets of rows of rectangles where the size of the rows is p/gcd(ax, P). In
Fig. 5a these are rows of width 12, 12 and 3 processors. Alternatively, az can be
chosen smaller az = gcd(p, gcd(P, p/gcd(p, P))), thus the vertical decoupling is
provided for a size of rows p/gcd(p, P). The differences in the results are rather
small, so we do not consider this alternative.

a) b1) b2)�
�z

y

Fig. 5. Processor arrangement a) P = 27 b1) P = 29 b2) P = 29, processors are
represented by bullets for nodes within a single frame or by identical stripes for nodes
distributed to two frames

In order to ensure that nodes do not belong to more than two rows of rect-
angles (four rows in Fig. 5b1), the width of the band on the right is chosen
larger or equal to the rectangle size minus one (Fig. 5b2). This is advantageous
if Bruck’s algorithm is applied locally to single rows of rectangles: not more than
two collectives share one node. For the a-to-b rearrangement, the nodes can then
be ordered such that the communication matrix is of the type discussed in the
previous section and the sparse Bruck algorithm can be applied.

Figure 6 shows the cost for the FFT in terms of the number of steps required
for the communication a to b plus b to c (Fig. 4) for r0 = 2, k = 1 and p = 12.
The local application of Bruck’s algorithm to the all-to-all collectives, the appli-
cation of the original algorithm to the complete problem, and the sparse version
for banded communication matrices have been compared. If nodes are shared
by multiple collectives, their steps for the local application are summed up.

170 A. Jocksch

The global application of Bruck’s algorithm without counting zero-size messages
we refer to as global Bruck, and with counting those messages as full Bruck. It is
apparent that for groups comprising complete nodes only, there is no difference
between the algorithms. Which algorithm is otherwise the most advantageous
one depends on the configuration. In many cases the sparse version of Bruck’s
algorithm is the most efficient one.

Sparse Bruck
Bruck global

Bruck full
Bruck local

P; square root of number of processors

co
m
m
u
n
ic
a
ti
o
n
st
ep

s

14012010080604020

20

18

16

14

12

10

8

6

Fig. 6. Number of communication steps for the different algorithms, r0 = 2, k = 1 and
p = 12

5 Experimental Results

The various versions of the algorithm discussed have been tested on a 12 pro-
cessor (core) per node Cray XT5 system. The network of the machine is a 3D
torus. For the typical operation of the machine, programs use an unstructured
and not necessarily coherent partition of the torus. Thus the algorithm which
does not consider the specific network topology comes into play. We consider an
average of 20 samples using a random node placement.

For the 1D FFTs the FFTW3 implementation [7] is used. The communica-
tion between the nodes is implemented using point-to-point communication MPI
calls. Within the node, data is exchanged by a shared memory segment.

Table 1 indicates the total number of steps and substeps, and the actual
time required, for one complex to complex FFT of single precision where N =
P , furthermore r0 = 6, (for step count Bruck local k = 5 is assumed) and
p = 12. The sparse version performs generally more efficiently than the local
and global application of Bruck’s algorithm. There are differences between the
real network and the modeling assumptions: the bandwidth of the network and
node internal communication become apparent. The computational effort for the
FFT is always less than 1%. Processor arrangements less structured than the
suggested ones increase the communication costs significantly.

FFTs and Multiple Collective Communication on Multiprocessor-Node 171

Table 1. Communication costs for the different algorithms, r0 = 6, (k = 5) and p = 12

P; square root of number of steps, substeps; execution time ·104s
number of processors Bruck local Bruck global sparse Bruck

19 6, 24; 1.9 4, 16; 1.8 3, 15; 1.9
23 6, 20; 1.8 4, 16; 2.1 3, 13; 1.8
25 6, 22; 1.9 4, 18; 2.1 3, 14; 1.9
39 8, 26; 2.7 5, 18; 2.7 4, 15; 2.4
40 8, 28; 2.9 5, 17; 2.7 4, 17; 2.4
44 8, 26; 2.9 5, 17; 2.8 4, 16; 2.5
45 8, 28; 3.0 5, 18; 2.9 4, 16; 2.6
51 8, 28; 3.2 5, 18; 3.2 4, 17; 2.8
52 8, 28; 3.1 5, 18; 3.1 4, 17; 2.7

6 Conclusions

We have investigated 3D FFTs based on the row-column approach and 2D data
decomposition. These FFTs perform simultaneously multiple all-to-all collective
communications which may share nodes. In this case, a communication pattern
with a banded communication matrix is present. A sparse version of Bruck’s
algorithm has been introduced, which exploits this banded structure. On a fully
connected network (Sec. 1) the original algorithm provides the optimal number
of steps for all-to-all communication, the sparse version reduces the number of
steps for our specific communication pattern.

The assignment of the processors to the decomposed data for the local and
global application of Bruck’s algorithm and for the sparse version has been sug-
gested. The sparse version requires fewer communication steps compared to the
local and global application of the original algorithm for many configurations.
Experimental results confirm the advantage of the processor assignment and the
sparse version of Bruck’s algorithm.

The modification to Bruck’s all-to-all personalized communication algorithm
can be analogously applied to Bruck’s all-to-all broadcast. An application is
matrix multiplication, where all-to-all broadcasts are performed independently
for all rows and all columns.

Acknowledgments. The authors wish to thank T. Hoefler (Univ. of Illinois
UC), W. Sawyer and T.W. Robinson for helpful discussions.

References

1. Adler, M., Byers, J.W., Karp, R.M.: Scheduling Parallel Communication: The
h-Relation Problem. In: Wiedermann, J., Hájek, P. (eds.) MFCS 1995. LNCS,
vol. 969, pp. 1–20. Springer, Heidelberg (1995)

2. Brass, A., Pawley, G.S.: Two and three dimensional FFTs on highly parallel com-
puters. Parallel Comput. 3, 167–184 (1986)

3. Bruck, J., Ho, C.T., Kipnis, S., Upfal, E., Weathersby, D.: Efficient algorithms for
all-to-all communications in multiport message-passing systems. IEEE T. Parall.
Distr. 8(11), 1143–1156 (1997)

172 A. Jocksch

4. Chan, A., Balaji, P., Gropp, W., Thakur, R.: Communication Analysis of Par-
allel 3D FFT for Flat Cartesian Meshes on Large Blue Gene Systems. In:
Sadayappan, P., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.) HiPC 2008.
LNCS, vol. 5374, pp. 350–364. Springer, Heidelberg (2008)

5. Fang, B., Deng, Y., Martyna, G.: Performance of the 3D FFT on the 6D network
torus QCDOC parallel supercomputer. Comput. Phys. Commun. 176, 531–538
(2007)

6. Fraigniaud, P., Lazard, E.: Methods and problems of communication in usual net-
works. Discrete Appl. Math. 53, 79–133 (1994)

7. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. P
IEEE 93(2), 216–231 (2005)

8. Goldman, A., Peters, J.G., Trystram, D.: Exchanging messages of different size. J.
Parallel Distr. Com. 66, 1–18 (2006)

9. Gupta, A., Kumar, V.: The scalability of FFT on parallel computers. IEEE T.
Parall. Distr. 4(8), 922–932 (1993)

10. Helman, D.R., Bader, D.A., JáJá, J.: Parallel algorithms for personalized commu-
nication and sorting with an experimental study (extended abstract). In: SPAA
1996: Proceedings of the Eighth Annual ACM Symposium on Parallel Algorithms
and Architectures, pp. 211–222. ACM, New York (1996)

11. Johnsson, S.L., Ho, C.T.: Optimum broadcasting and personalized communication
in hypercubes. IEEE T. Comput. 38(9), 1249–1268 (1989)

12. van Loan, C.: Computational Frameworks for the Fast Fourier Transfrom. SIAM,
Philadelphia (1992)

13. Sanders, P., Solis-Oba, R.: How helpers hasten h-relations. J. Algorithm. 41, 86–98
(2001)

14. Sanders, P., Träff, J.L.: The Hierarchical Factor Algorithm for All-to-All Commu-
nication. In: Monien, B., Feldmann, R. (eds.) Euro-Par 2002. LNCS, vol. 2400, pp.
799–803. Springer, Heidelberg (2002)

15. Swarztrauber, P.N.: Multiprocessor FFTs. Parallel Comput. 5, 197–210 (1987)
16. Takahashi, D.: An Implementation of Parallel 3-D FFT with 2-D Decomposition

on a Massively Parallel Cluster of Multi-core Processors. In: Wyrzykowski, R.,
Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2009. LNCS, vol. 6067,
pp. 606–614. Springer, Heidelberg (2010)

17. Thakur, R., Rabenseifner, R., Gropp, W.: Optimization of collective communica-
tion operations in MPICH. Int. J. High Perform. C. 19(1), 49–66 (2005)

18. Tipparaju, V., Nieplocha, J., Panda, D.: Fast collective operations using shared and
remote memory access protocols on clusters. In: Proceedings of the International
Parallel and Distributed Processing Symposium (IPDPS 2003), Nice, France (April
2003)

Performance Analysis of Parallel Alternating

Directions Algorithm for Time Dependent
Problems

Ivan Lirkov1, Marcin Paprzycki2, and Maria Ganzha2

1 Institute of Information and Communication Technologies,
Bulgarian Academy of Sciences, Acad. G. Bonchev, Bl. 25A, 1113 Sofia, Bulgaria

ivan@parallel.bas.bg

http://parallel.bas.bg/~ivan/
2 Systems Research Institute, Polish Academy of Sciences,

ul. Newelska 6, 01-447 Warsaw, Poland
{paprzyck,maria.ganzha}@ibspan.waw.pl
http://www.ibspan.waw.pl/~paprzyck/

http://inf.ug.edu.pl/~mganzha/

Abstract. We consider the time dependent Stokes equation on a finite
time interval and on a uniform rectangular mesh, written in terms of
velocity and pressure. In a parallel algorithm, based on a new direction
splitting approach, the pressure equation is derived from a perturbed
form of the continuity equation, in which the incompressibility constraint
is penalized in a negative norm induced by the direction splitting. The
scheme used in the algorithm is composed of: pressure prediction, velocity
update, penalty step, and pressure correction. In order to achieve good
parallel performance, the solution of the Poison problem for the pressure
correction is replaced by solving a sequence of one-dimensional second
order elliptic boundary value problems in each spatial direction. The
parallel code was developed using MPI and tested on modern computer
systems. The performed numerical tests illustrate the parallel efficiency,
and the scalability, of the direction-splitting based algorithm.

1 Introduction

The objective of this paper is to analyze the parallel performance of a novel frac-
tional time stepping technique, based on a direction splitting strategy, developed
to solve the incompressible Navier-Stokes equations.

Projection schemes were introduced in [2,9] and they have been used in Com-
putational Fluid Dynamics (CFD) since. During these years, such techniques
went through some evolution, but the main paradigm, consisting of decompos-
ing vector fields into a divergence-free part and a gradient, has been preserved;
see [4] for a review. In terms of computational efficiency, projection algorithms
are far superior to the methods that solve the coupled velocity-pressure system,
making them the most popular techniques for solving unsteady Navier-Stokes
equations.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 173–182, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://parallel.bas.bg/~ivan/
http://www.ibspan.waw.pl/~paprzyck/
http://inf.ug.edu.pl/~ mganzha/

174 I. Lirkov, M. Paprzycki, and M. Ganzha

The alternating directions algorithm proposed in [3] reduces the computa-
tional complexity of the enforcement of the incompressibility constraint. The
key idea consists of abandoning the projection paradigm in which vector fields
are decomposed into a divergence-free part plus a gradient part. Departure from
the projection paradigm has been proved to be very efficient for solving vari-
able density flows [5,6]. In the new method, the pressure equation is derived
from a perturbed form of the continuity equation, in which the incompressibility
constraint is penalized in a negative norm induced by the direction splitting.
The standard Poisson problem for the pressure correction is replaced by the se-
ries of one-dimensional second-order boundary value problems. This technique
is proved to be stable and convergent (see [3]). Furthermore, a very brief initial
assessment, found in [3], indicates that the new approach should be efficiently
parallelizable. The aim of this paper is to experimentally investigate this claim
on three distinct parallel systems, for two dimensional problems.

2 Stokes Equation

We consider the time-dependent Navier-Stokes equations on a finite time interval
[0, T], and in a rectangular domain Ω. Since the nonlinear term in the Navier-
Stokes equations does not interfere with the incompressibility constraint, we
henceforth mainly focus our attention on the time-dependent Stokes equations
written in terms of velocity with components (u, v) and pressure p:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ut − ν (uxx + uyy) + px = f
vt − ν (vxx + vyy) + py = g in Ω × (0, T)
ux + vy = 0
u|∂Ω = v|∂Ω = 0, ∂np|∂Ω = 0 in (0, T)
u|t=0 = u0, v|t=0 = v0, p|t=0 = p0 in Ω

, (1)

where a smooth source term has components (f, g), ν is the kinematic viscosity,
and (u0, v0) is a solenoidal initial velocity field with a zero normal trace. The
time interval [0, T] was discretized on a uniform mesh and τ was the time step.

3 Parallel Alternating Directions Algorithm

Guermond and Minev introduced (in [3]) a novel fractional time stepping tech-
nique for solving the incompressible Navier-Stokes equations, based on a direc-
tion splitting strategy. They used a singular perturbation of Stokes equation
with a perturbation parameter τ . The standard Poisson problem was replaced
by series of one-dimensional second-order boundary value problems.

3.1 Formulation of the Scheme

The scheme used in the algorithm is composed of the following parts: pres-
sure prediction, velocity update, penalty step, and pressure correction. We now
describe an algorithm that uses the direction splitting operator

Performance Analysis of Parallel Alternating Directions Algorithm 175

A :=

(
1− ∂2

∂x2

)(
1− ∂2

∂y2

)
.

– Pressure predictor.
Denoting p0 the pressure field at t = 0, the algorithm is initialized by setting
p−

1
2 = p−

3
2 = p0. Then for all n ≥ 0 a pressure predictor is computed:

p∗,n+
1
2 = 2pn−

1
2 − pn− 3

2 . (2)

– Velocity update.

The velocity field is initialized by setting u0 =

(
u0
v0

)
, and for all n ≥

0 the velocity update is computed by solving the following series of one-
dimensional problems

ξn+1 − un

τ
− νΔun +∇p∗,n+ 1

2 = fn+
1
2 , ξn+1|∂Ω = 0, (3)

ηn+1 − ξn+1

τ
− ν

2

∂2(ηn+1 − un)

∂x2
= 0, ηn+1|∂Ω = 0, (4)

un+1 − ηn+1

τ
− ν

2

∂2(un+1 − un)

∂y2
= 0, un+1|∂Ω = 0, (5)

where fn+
1
2 =

(
f |t=(n+ 1

2)τ
g|t=(n+ 1

2)τ

)
.

– Penalty step
The intermediate parameter φ is approximated by solving Aφ = − 1

τ∇·un+1.
Owing to the definition of the direction splitting operator A, this is done by
solving the following series of one-dimensional problems:

ψ − ψxx = − 1
τ∇ · un+1, ψx|∂Ω = 0,

φ− φyy = ψ, φy|∂Ω = 0,
(6)

– Pressure update
The last sub-step of the algorithm consists of updating the pressure:

pn+
1
2 = pn−

1
2 + φ− χν∇ · u

n+1 + un

2
(7)

The algorithm is in a standard incremental form when the parameter χ = 0;
while the algorithm is in a rotational incremental form when χ ∈ (0, 12].

3.2 Parallel Algorithm

We use a rectangular uniform mesh combined with a central difference scheme for
the second derivatives for solving equations (4–5), and (6). Thus the algorithm
requires only the solution of tridiagonal linear systems. The parallelization is
based on a decomposition of the domain into rectangular sub-domains. Let us

176 I. Lirkov, M. Paprzycki, and M. Ganzha

associate with each such sub-domain a set of coordinates (ix, iy), and identify
it with a given processor. The linear systems, generated by one-dimensional
problems that need to be solved in each direction, are divided into systems for
sets of unknowns corresponding to the internal nodes for each block that can be
solved independently by a direct method. The corresponding Schur complement
for the interface unknowns between the blocks that have an equal coordinate
ix or iy is also tridiagonal and can be inverted directly. The overall algorithm
requires only exchange of the interface data, which allows for a very efficient
parallelization with an efficiency comparable to that of explicit schemes.

4 Experimental Results

The problem (1) is solved in Ω = (0, 1)2, for t ∈ [0, 2] with Dirichlet boundary
conditions. The discretization in time is done with time step 10−2, the parameter
χ = 1

2 , the kinematic viscosity ν = 10−3. The discretization in space uses mesh
sizes hx = 1

nx−1 and hy = 1
ny−1 . Thus, (4) leads to linear systems of size nx

and (5) leads to linear systems of size ny. The total number of unknowns in the
discrete problem is 600nx ny.

To solve the problem, a portable parallel code was designed and implemented
in C, while the parallelization has been facilitated using the MPI library [8,10].
We use the LAPACK subroutines DPTTRF and DPTTS2 (see [1]) for solving
tridiagonal systems in equations (4), (5), and (6) for the unknowns corresponding
to the internal nodes of each sub-domain. The same subroutines are used to solve
the tridiagonal systems with the Schur complement.

The parallel code has been tested on three computer systems: Galera, lo-
cated in the Centrum Informatyczne TASK; Sooner, located in the Oklahoma
Supercomputing Center (OSCER); and the IBM Blue Gene/P machine at the
Bulgarian Supercomputing Center. In our experiments, times have been collected
using the MPI provided timer and we report the best results from multiple runs.
We report the elapsed time Tc in seconds using c cores, the parallel speed-up
Sc = T1/Tc, and the parallel efficiency Ec = Sc/c.

Table 1 shows the results collected on the Galera. It is a Linux cluster with
336 nodes, and two Intel Xeon quad core processors per node. Each processor
runs at 2.33 GHz. Processors within each node share 8, 16, or 32 GB of mem-
ory, while nodes are interconnected with a high-speed InfiniBand network (see
also http://www.task.gda.pl/kdm/sprzet/Galera). Here, we used an Intel C
compiler, and compiled the code with the option “-O3”.

Table 2 shows the results collected on the Sooner, a quad core Linux cluster (see
http://www.oscer.ou.edu/resources.php). It has 486 Dell PowerEdge1950 III
nodes, and two quad core processors (Dell Pentium4 Xeon E5405; runningat 2GHz,
sharing 16 GB of memory) per node. Nodes are interconnected with a high-speed
InfiniBand network. We have used an Intel C compiler, and compiled the code with
the following options: “-O3 -march=core2 -mtune=core2”.

The results in each column of Tables 1 and 2 are obtained for an equal number
of unknowns per core. For large discrete problems the execution time is much

http://www.task.gda.pl/kdm/sprzet/Galera
http://www.oscer.ou.edu/resources.php

Performance Analysis of Parallel Alternating Directions Algorithm 177

Table 1. Execution time on Galera

c nxny/c
104 2 104 4 104 8 104 1.6 105 3.2 105 6.4 105 1.28 106 2.56 106 5.12 106 1.024 107

1 0.38 0.67 1.55 3.59 9.16 24.06 53.32 109.73 228.37 508.85 1204.13
2 0.38 0.67 1.51 3.97 10.73 26.67 57.74 120.03 245.60 572.72 1399.29
4 0.35 0.73 1.77 5.17 14.22 34.93 77.91 160.31 331.14 772.65 2171.64
8 0.36 0.84 3.29 9.56 24.05 54.78 113.65 232.26 517.02 1416.69 3606.02

16 0.40 0.93 3.44 9.61 24.18 54.13 114.15 237.16 526.47 1408.33 3680.95
32 0.48 1.03 3.48 9.90 24.48 55.41 114.57 233.91 530.87 1452.24 3664.30
64 0.74 1.22 3.91 10.19 25.26 55.88 117.21 243.30 550.54 1454.70 3826.07

Table 2. Execution time on Sooner

c nxny/c
104 2 104 4 104 8 104 1.6 105 3.2 105 6.4 105 1.28 106 2.56 106 5.12 106 1.024 107

1 0.58 1.38 2.78 5.72 12.52 27.56 59.60 120.33 248.72 511.40 1196.21
2 0.59 1.37 2.76 5.83 12.55 28.73 61.20 126.34 255.50 543.37 1268.61
4 0.58 1.38 2.77 5.88 13.57 32.42 72.43 147.28 301.04 628.10 1636.03
8 0.61 1.42 3.32 9.02 23.02 53.37 109.13 220.54 455.72 1226.75 3308.30

16 0.63 1.44 3.35 9.02 23.01 52.26 109.56 219.52 456.44 1213.96 3352.22
32 0.67 1.51 3.45 9.21 23.21 54.49 110.22 222.13 457.92 1235.84 3454.01
64 0.73 1.57 3.61 9.34 23.55 53.28 111.74 222.56 463.14 1256.47 3499.66
128 0.85 1.85 3.96 10.21 24.52 56.61 114.53 235.95 471.35 1283.83 3507.78
256 0.98 1.88 4.13 10.01 25.07 55.00 116.02 227.57 476.61 1288.46 3580.68
512 1.36 2.39 5.15 12.99 27.61 63.71 126.36 250.11

larger on two processors (8 cores) than on one processor, but on more processors
the time is approximately constant. The obtained execution times confirm that
the communication time between processors is larger than the communication
time between cores of one processor. Furthermore, the execution time for solving
one and the same discrete problem decrease when increasing the number of cores,
which shows that the communication in our parallel algorithm is mainly local.

The somehow slower performance using 8 cores is clearly visible. The same
effect was observed during our previous work, see [7]. There are some factors
which could play role for the slower performance using all processors of a single
node. Generally, they are a consequence of limitations of memory subsystems
and their hierarchical organization in modern computers. One such factor might
be the limited bandwidth of the main memory bus. This causes the processors
literally to “starve” for data, thus decreasing the overall performance. Since the
L2 cache memory is shared among each pair of cores within the processors,
this boost the performance of programs utilizing only a single core within such
pair (this core can monopolize use of the L2 cache). Conversely, this leads to a
somehow decreased speedups when all cores are used. For the memory intensive
programs, these factors can play a crucial role for the performance.

Comparing the performance of the Galera and the Sooner we can observe that
times on Sooner are shorter across the board. This is somewhat surprising, as

178 I. Lirkov, M. Paprzycki, and M. Ganzha

Table 3. Execution time on IBM Blue Gene/P

c nxny/c
104 2 104 4 104 8 104 1.6 105 3.2 105 6.4 105 1.28 106 2.56 106 5.12 106 1.024 107

1 5.79 12.33 24.51 49.02 103.58 210.81 431.43 877.01 1764.68 3586.12 7416.03
2 5.96 11.84 24.93 49.89 105.23 214.55 437.71 880.14 1793.94 3604.56 7526.88
4 6.16 13.01 25.68 51.34 108.00 219.95 450.15 913.40 1839.21 3742.63 7706.22
8 6.34 12.48 26.21 52.59 109.85 223.77 455.95 917.29 1865.41 3764.16 7813.90

16 6.61 13.80 27.31 54.38 113.83 230.67 471.25 959.19 1930.85 3908.36 8049.69
32 6.71 13.24 27.45 54.92 114.41 232.50 473.96 952.89 1931.31 3882.43 8059.08
64 6.84 14.19 27.71 55.15 115.56 233.56 476.84 964.14 1935.43 3925.14 8070.35

128 7.04 13.72 28.15 56.20 116.68 236.12 478.39 962.12 1944.61 3915.91 8117.98
256 7.17 14.69 28.34 56.44 117.87 237.57 482.76 978.74 1959.50 3980.72 8183.79
512 7.55 14.59 29.10 58.08 119.14 241.37 486.01 972.81 1971.07 3958.97 8205.10

1024 7.91 15.70 29.78 58.66 120.68 242.69 488.99 987.21 1980.31 4003.01 8216.88
2048 8.81 16.71 31.35 62.83 124.67 251.24 501.47 1027.31 2028.63 4200.09
4096 9.86 18.31 33.81 65.22 130.91 268.78 559.89 1163.18 2443.63

Galera is much newer and has more powerful processors. We plan to investigate
this peculiarity in the near future.

Table 3 presents execution time on the IBM Blue Gene/P machine at the Bul-
garian Supercomputing Center (see also http://www.scc.acad.bg/). It consists
of 2048 compute nodes with quad core PowerPC 450 processors (running at 850
MHz). Each node has 2 GB of RAM. For the point-to-point communications a
3.4 Gb 3D mesh network is used. Reduction operations are performed on a 6.8
Gb tree network. We have used the IBM XL C compiler and compiled the code
with the following options: “-O5 -qstrict -qarch=450d -qtune=450”.

We observed that using 2 or 4 cores per processor leads to slower execution
time, e.g. the execution time for nx = ny = 6400, c = 512 is 58.08 seconds
using 512 nodes, 58.83 seconds using 256 nodes, and 60.34 seconds using 128
nodes. This fact shows that using the MPI communication functions, the com-
munication between processors is faster than the communication between cores
of one processor. In order to get better parallel performance we plan to develop a
mixed MPI/OpenMP code and to use the nodes of the Blue Gene supercomputer
in the SMP mode with 4 OpenMP processes per node. This code will also al-
low us to run efficiently on the upcoming machines with 16-core AMD processors
(and future computers with ever increasing number of cores per processor). Note
that, for the time being, in our work we omit all issues concerning GPU-based
parallelization.

To round up the performance analysis, the speed-up obtained on Galera is
reported in Table 4 and the parallel efficiency is shown in Table 5, while the
speed-up on Sooner — in Table 6 and the parallel efficiency — in Table 7. Finally,
the speed-up on the IBM Blue Gene/P — in Table 8, and the parallel efficiency —
in Table 9. In each case, when increasing the number of cores of the two clusters,
the parallel efficiency decreases on 8 cores and after that it increases to 100%.
Moreover, a super-linear speed-up is observed in multiple cases. The main reasons

http://www.scc.acad.bg/

Performance Analysis of Parallel Alternating Directions Algorithm 179

Table 4. Speed-up on Galera

nx ny c
2 4 8 16 32 64

800 800 2.00 3.75 5.58 15.49 51.64 71.86
800 1600 1.90 3.14 4.56 11.42 31.49 90.07

1600 1600 1.90 2.93 4.17 9.45 23.08 58.40
1600 3200 2.07 3.17 4.48 9.40 20.78 49.95
3200 3200 2.10 3.64 5.18 10.55 21.73 47.66
3200 6400 2.05 3.72 5.56 12.12 25.09 51.44
6400 6400 1.90 3.84 5.88 15.82 35.61 71.06
6400 12800 1.60 2.49 3.76 9.63 25.55 55.74

12800 12800 2.12 2.90 3.98 10.08 25.55 67.39

Table 5. Parallel efficiency on Galera

nx ny c
2 4 8 16 32 64

800 800 1.000 0.938 0.697 0.968 1.614 1.123
800 1600 0.950 0.785 0.570 0.714 0.984 1.407

1600 1600 0.951 0.733 0.521 0.590 0.721 0.913
1600 3200 1.036 0.794 0.560 0.588 0.649 0.780
3200 3200 1.051 0.909 0.648 0.659 0.679 0.745
3200 6400 1.027 0.930 0.695 0.758 0.784 0.804
6400 6400 0.949 0.959 0.735 0.989 1.113 1.110
6400 12800 0.800 0.622 0.470 0.602 0.798 0.871

12800 12800 1.060 0.726 0.498 0.630 0.798 1.053

for this fact can be related to splitting the entire problem into subproblems which
helps the memory management. In particular, it allows for better usage of cache
memories of individual parallel processors. As expected, the parallel efficiency
on the IBM Blue Gene/P improves with the size of the discrete problems. The
efficiency on 1024 cores increases from 57% for the smallest problems to 94% for
the largest problems.

Execution time on the Blue Gene/P is substantially larger than that on the
Sooner and the Galera, but in some cases the parallel efficiency obtained on
the supercomputer is better. For example, the execution time on single core on
Sooner is seven times faster than on the Blue Gene/P, in comparison with four
times faster performance on 256 cores.

The decomposition of the computational domain in sub-domains is important
for the parallel performance of the studied algorithm. Table 10 shows the exe-
cution time for the problem with nx = ny = 3200 on 128 cores using different
number of sub-domains in each space direction.

Finally, computing time on both parallel systems is shown in Fig. 1 and the
obtained speed-up is shown in Fig. 2.

180 I. Lirkov, M. Paprzycki, and M. Ganzha

Table 6. Speed-up on Sooner

nx ny c
2 4 8 16 32 64 128 256 512

800 800 2.07 4.39 6.61 17.79 39.57 81.17 110.21 188.19 134.30
800 1600 1.97 3.71 5.23 13.34 34.93 76.64 142.35 228.36 237.10

1600 1600 1.97 3.43 4.66 10.81 27.00 68.89 134.56 254.61 328.64
1600 3200 2.00 3.47 4.69 9.79 22.04 54.74 129.16 272.71 375.11
3200 3200 2.20 3.97 5.42 10.92 21.95 50.79 117.21 289.73 500.82
3200 6400 2.15 4.35 6.00 12.45 24.80 51.31 111.49 273.13 530.73
6400 6400 1.98 4.01 5.35 14.38 29.55 58.93 115.96 261.83 505.35
6400 12800 1.88 3.21 4.30 11.71 31.03 63.84 124.07 258.34 514.72

Table 7. Parallel efficiency on Sooner

nx ny c
2 4 8 16 32 64 128 256 512

800 800 1.037 1.098 0.826 1.112 1.237 1.268 0.861 0.735 0.262
800 1600 0.983 0.928 0.653 0.834 1.091 1.198 1.112 0.892 0.463

1600 1600 0.984 0.858 0.583 0.676 0.844 1.076 1.051 0.995 0.642
1600 3200 1.001 0.868 0.586 0.612 0.689 0.855 1.009 1.065 0.733
3200 3200 1.101 0.993 0.678 0.682 0.686 0.794 0.916 1.132 0.978
3200 6400 1.077 1.088 0.750 0.778 0.775 0.802 0.871 1.067 1.037
6400 6400 0.988 1.003 0.669 0.899 0.924 0.921 0.906 1.023 0.987
6400 12800 0.938 0.802 0.537 0.732 0.970 0.998 0.969 1.009 1.005

Table 8. Speed-up on IBM Blue Gene/P

nx ny c
2 4 8 16 32 64 128 256 512 1024 2048 4096

800 800 2.01 3.99 8.20 15.80 32.59 63.08 114.74 216.58 330.83 585.7 631.5 782.5
800 1600 2.00 3.99 7.98 16.13 31.95 61.81 124.52 226.79 401.70 655.0 944.8 1177.6

1600 1600 2.00 3.92 7.89 15.50 32.13 63.68 128.66 246.03 424.30 745.3 1002.3 1541.7
1600 3200 2.00 3.93 7.87 15.55 31.34 65.02 127.38 244.20 474.86 812.0 1290.0 1902.5
3200 3200 2.06 4.03 8.08 15.74 31.90 64.17 131.95 261.66 508.46 937.1 1411.7 2274.2

Table 9. Parallel efficiency on IBM Blue Gene/P

nx ny c
2 4 8 16 32 64 128 256 512 1024 2048 4096

800 800 1.005 0.999 1.025 0.987 1.018 0.986 0.896 0.846 0.646 0.572 0.308 0.191
800 1600 1.002 0.997 0.998 1.008 0.998 0.966 0.973 0.886 0.785 0.640 0.461 0.287

1600 1600 1.002 0.980 0.986 0.969 1.004 0.995 1.005 0.961 0.829 0.728 0.489 0.376
1600 3200 1.000 0.982 0.983 0.972 0.979 1.016 0.995 0.954 0.927 0.793 0.630 0.464
3200 3200 1.029 1.008 1.011 0.984 0.997 1.003 1.031 1.022 0.993 0.915 0.689 0.555

Performance Analysis of Parallel Alternating Directions Algorithm 181

Table 10. Execution time on 128 cores

machine sub-domains
8× 16 4× 32 2× 64 1× 128

Sooner 10.30 13.14 16.80 84.90
IBM Blue Gene/P 56.20 60.17 74.12 170.46

Fig. 1. Execution time for nx = ny = 800, 6400

Fig. 2. Speed-up for nx = ny = 800, 3200, 6400

5 Conclusions and Future Work

We have studied the parallel performance of the recently developed parallel
algorithm based on a new direction splitting approach for solving of the time
dependent Stokes equation on a finite time interval and on a uniform

182 I. Lirkov, M. Paprzycki, and M. Ganzha

rectangular mesh. The performance was evaluated on three different parallel
architectures. Satisfactory parallel efficiency is obtained on all three parallel sys-
tems, on up to 1024 processors. The faster CPUs on Sooner lead to shorter
runtime, on the same number of processors.

In order to get better parallel performance using four cores per processor on
the IBM Blue Gene/P (and future multi-core computers) we plan to develop
mixed MPI/OpenMP code.

Acknowledgments. Computer time grants from the Oklahoma Supercomput-
ing Center (OSCER) and the Bulgarian Supercomputing Center (BGSC) are
kindly acknowledged. This research was partially supported by grants DCVP
02/1 and DO02-147 from the Bulgarian NSF. Work presented here is a part
of the Poland-Bulgaria collaborative grant “Parallel and distributed computing
practices”.

References

1. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz,
J.D., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK
Users’ Guide, 3rd edn. SIAM, Philadelphia (1999)

2. Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Comp. 22,
745–762 (1968)

3. Guermond, J.L., Minev, P.: A new class of fractional step techniques for the in-
compressible Navier-Stokes equations using direction splitting. Comptes Rendus
Mathematique 348(9-10), 581–585 (2010)

4. Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for in-
compressible flows. Comput. Methods Appl. Mech. Engrg. 195, 6011–6054 (2006)

5. Guermond, J.L., Salgado, A.: A fractional step method based on a pressure poisson
equation for incompressible flows with variable density. Comptes Rendus Mathe-
matique 346(15-16), 913–918 (2008)

6. Guermond, J.L., Salgado, A.: A splitting method for incompressible flows with
variable density based on a pressure Poisson equation. Journal of Computational
Physics 228(8), 2834–2846 (2009)

7. Lirkov, I., Vutov, Y., Paprzycki, M., Ganzha, M.: Parallel Performance Evaluation
of MIC(0) Preconditioning Algorithm for Voxel μFE Simulation. In: Wyrzykowski,
R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2009, Part II. LNCS,
vol. 6068, pp. 135–144. Springer, Heidelberg (2010)

8. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: The Com-
plete Reference. Scientific and engineering computation series. The MIT Press,
Cambridge (1997); second printing

9. Temam, R.: Sur l’approximation de la solution des équations de Navier-Stokes par
la méthode des pas fractionnaires. Arch. Rat. Mech. Anal. 33, 377–385 (1969)

10. Walker, D., Dongarra, J.: MPI: a standard Message Passing Interface. Supercom-
puter 63, 56–68 (1996)

A Novel Parallel Algorithm for Gaussian

Elimination of Sparse Unsymmetric Matrices

Riccardo Murri

Grid Computing Competence Centre,
Organisch-Chemisch Institut, University of Zürich,

Winterthurerstrasse 190, CH-8006 Zürich,
Switzerland

riccardo.murri@gmail.com

Abstract. We describe a new algorithm for Gaussian Elimination suit-
able for general (unsymmetric and possibly singular) sparse matrices of
any entry type, which has a natural parallel and distributed-memory
formulation but degrades gracefully to sequential execution.

We present a sample MPI implementation of a program computing
the rank of a sparse integer matrix using the proposed algorithm. Some
preliminary performance measurements are presented and discussed, and
the performance of the algorithm is compared to corresponding state-of-
the-art algorithms for floating-point and integer matrices.

Keywords: Gaussian Elimination, unsymmetric sparse matrices, exact
arithmetic.

1 Introduction

This paper presents a new algorithm for Gaussian Elimination, initially devel-
oped for computing the rank of some homology matrices with entries in the inte-
ger ring Z. It has a natural parallel formulation in the message-passing paradigm
and does not make use of collective and blocking communication, but degrades
gracefully to sequential execution when run on a single compute node.

Gaussian Elimination algorithms with exact computations have been ana-
lyzed in [3]; the authors however concluded that there was —to that date— no
practical parallel algorithm for computing the rank of sparse matrices, when
exact computations are wanted (e.g., over finite fields or integer arithmetic):
well-known Gaussian Elimination algorithms fail to be effective, since, during
elimination, entries in pivot position may become zero.

The “Rheinfall” algorithm presented here is based on the observation that
a sparse matrix can be put in a “block echelon form” with minimal computa-
tional effort. One can then run elimination on each block of rows of the same
length independently (i.e., in parallel); the modified rows are then sent to other
processors, which keeps the matrix arranged in block echelon form at all times.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 183–193, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

184 R. Murri

The procedure terminates when all blocks have been reduced to a single row,
i.e., the matrix has been put in row echelon form.

The “Rheinfall” algorithm is independent of matrix entry type, and can be
used for integer and floating-point matrices alike: numerical stability is compa-
rable with Gaussian Elimination with partial pivoting (GEPP). However, some
issues related to the computations with inexact arithmetic have been identified in
the experimental evaluation, which suggest that “Rheinfall” is not a convenient
alternative to existing algorithms for floating-point matrices; see Section 4.2 for
details.

Any Gaussian Elimination algorithm can be applied equally well to a matrix
column- or row-wise; here we take the row-oriented approach.

2 Description of the “Rheinfall” Algorithm

We shall first discuss the Gaussian Elimination algorithm for reducing a matrix
to row echelon form; practical applications like computing matrix rank or linear
system solving follow by simple modifications.

Let A = (aij |i = 0, . . . , n − 1; j = 0, . . . ,m − 1) be a n × m matrix with
entries in a “sufficiently good” ring k (a field, a unique factorization domain or
a principal ideal domain).

Definition 1. Given a matrix A, let zi := min{j|aij �= 0} be the column index
of the first non-zero entry in the i-th row of A; for a null row, define zi := m.
We say that the i-th row of A starts at column zi.

The matrix A is in block echelon form iff zi ≥ zi−1 for all i = 1, . . . , n− 1.
The matrix A is in row echelon form iff either zi > zi−1 or zi = m.

Every matrix can be put into block echelon form by a permutation of the rows.
For reducing the n×m matrix A to row echelon form, a “master” process starts
m Processing Units P [0], . . . , P [m−1], one for each matrix column: P [c] handles
rows starting at column c. Each Processing Unit (PU for short) runs the code
in procedure ProcessingUnit from Algorithm 1 concurrently with other PUs;
upon reaching the done state, it returns its final output to the “master” process,
which assembles the global result.

A Processing Unit can send messages to every other PU. Messages can be of
two sorts: Row messages and End messages. The payload of a Row message
received by P [c] is a matrix row r, extending from column c to m − 1; End

messages carry no payload and just signal the PU to finalize computations and
then stop execution. In order to guarantee that the End message is the last
message that a running PU can receive, we make two assumptions on the message
exchange system: (1) that messages sent from one PU to another arrive in the
same order they were sent, and (2) that it is possible for a PU to wait until all
the messages it has sent have been delivered. Both conditions are satisfied by
MPI-compliant message passing systems.

The eliminate function at line 16 in Algorithm 1 returns a row r′ = αr+βu
choosing α, β ∈ k so that r′ has a 0 entry in all columns j ≤ c. The actual

A Novel Parallel Algorithm for Gaussian Elimination 185

Algorithm 1. Reduce a matrix to row echelon form by Gaussian Elimination.
Left and top right: Algorithm run by processing unit P [c]. Bottom right: Sketch of
the “master” procedure. Input to the algorithm is an n×mmatrix A, represented
as a list of rows ri. Row and column indices are 0-based.

1 def ProcessingUnit(c):

2 u ← nil

3 Q ← empty list

4 output ← nil

5 state ← running

6 while state is running:

7 wait for messages to arrive

8 append Row messages to Q

9 select best pivot row t from Q

10 if u is nil:

11 u ← t

12 else:

13 if t has a better pivot than u:

14 exchange u and t

15 for each row r in Q:

16 r′ ← eliminate(r,u)

17 c′ ← first nonzero col. of r′

18 send r′ to P [c′]

19 delete r from Q

20 if received message End:

21 wait for all sent messages to arrive

22 output ← u

23 send End to P [c + 1]

24 state ← done

25 return output

1 def Master(A):

2 start a PU P [c] for each column c of A

3 for i in {0, . . . , n − 1}:
4 c ← first nonzero column of ri
5 send ri to P [c]

6 send End message to P [0]

7 wait until P [m−1] recv. a End message

8 result ← collect output from all PUs

9 return result

definition of eliminate depends on the coefficient ring of A. Note that u[c] �= 0
by construction.

The “master” process runs the Master procedure in Algorithm 1. It is re-
sponsible for starting the m independent Processing Units P [0], . . . , P [m − 1];
feeding the matrix data to the processing units at the beginning of the compu-
tation; and sending the initial End message to PU P [0]. When the End message
reaches the last Processing Unit, the computation is done and the master collects
the results.

Lines 3–5 in Master are responsible for initially putting the input matrix A
into block echelon form; there is no separate reordering step. This is an invariant
of the algorithm: by exchanging rows among PUs after every round of elimination
is done, the working matrix is kept in block echelon form at all times.

Theorem 1. Algorithm 1 reduces any given input matrix A to row echelon form
in finite time.

The simple proof is omitted for brevity.

2.1 Variant: Computation of Matrix Rank

The Gaussian Elimination algorithm can be easily adapted to compute the rank
of a general (unsymmetric and possibly rectangular) sparse matrix: one just
needs to count the number of non-null rows of the row echelon form.

Function ProcessingUnit in Algorithm 1 is modified to return an integer
number: the result shall be 1 if at least one row has been assigned to this PU

(u �= nil) and 0 otherwise.

186 R. Murri

Procedure Master performs a sum-reduce when collecting results: replace
line 8 with result← sum-reduce of output from P [c], for c = 1, . . . ,m.

2.2 Variant: LUP Factorization

We shall outline how Algorithm 1 can be modified to produce a variant of the
familiar LUP factorization. For the rest of this section we assume that A has
coefficients in a field and is square and full-rank.

It is useful to recast the Rheinfall algorithm in matrix multiplication language,
to highlight the small differences with the usual LU factorization by Gaussian
Elimination. Let Π0 be the permutation matrix that reorders rows of A so that
Π0A is in block echelon form; this is where Rheinfall’s PUs start their work. If we
further assume that PUs perform elimination and only after that they all perform
communication at the same time,1then we can write the k-th elimination step
as multiplication by a matrix Ek (which is itself a product of elementary row
operations matrices), and the ensuing communication step as multiplication by
a permutation matrix Πk+1 which rearranges the rows again into block echelon
form (with the proviso that the u row to be used for elimination of other rows
in the block comes first). In other words, after step k the matrix A has been
transformed to EkΠk−1 · · ·E0Π0A.

Theorem 2. Given a square full-rank matrix A, the Rheinfall algorithm outputs
a factorization ΠA = LU , where:

– U = En−1Πn−1 · · ·E0Π0A is upper triangular;
– Π = Πn−1 · · ·Π0 is a permutation matrix;

– L = Πn−1 · · ·Π1 ·E−1
0 Π−1

1 E−1
1 · · ·Π−1

n−1E
−1
n−1 is lower unitriangular.

The proof is omitted for brevity.
The modified algorithm works by exchanging triplets (r, h, s) among PUs;

every PU stores one such triple (u, i, l), and uses u as pivot row. Each processing
unit P [c] receives a triple (r, h, s) and sends out (r′, h, s′), where:

– The r rows are initially the rows of Π0A; they are modified by successive
elimination steps as in Algorithm 1: r′ = r − αu with α = r[c]/u[c].

– h is the row index at which r originally appeared inΠ0A; it is never modified.
– The s rows start out as rows of the identity matrix: s = eh initially. Each

time an elimination step is performed on r, the corresponding operation is
performed on the s row: s′ = s+ αl.

When the End message reaches the last PU, the Master procedure collects
triplets (uc, ic, lc) from PUs and constructs:

– the upper triangular matrix U = (uc)c=1,...,n;

1 As if using a BSP model [7] for computation/communication. This assumption is not
needed by “Rheinfall” (and is actually not the way it has been implemented) but
does not affect correctness.

A Novel Parallel Algorithm for Gaussian Elimination 187

– a permutation π of the indices, mapping the initial row index ic into the
final index c (this corresponds to the Π permutation matrix);

– the lower triangular matrix L by assembling the rows lc after having per-
muted columns according to π.

2.3 Pivoting

A key observation in Rheinfall is that all rows assigned to a PU start at the same
column. This implies that pivoting is restricted to the rows in a block, but also
that each PU may independently choose the row it shall use for elimination.

A form of threshold pivoting can easily be implemented within these con-
straints: assume that A has floating-point entries and let Q+ = Q ∪ {u} be the
block of rows worked on by Processing Unit P [c] at a certain point in time (in-
cluding the current pivot row u). Let b = max {|r[c]| : r ∈ Q+}; choose as pivot
the sparsest row r in Q+ such that |r[c]| ≥ γ · b, where γ ∈ [0, 1] is the chosen
threshold. This guarantees that elements of L are bounded by γ−1.

When γ = 1, threshold pivoting reduces to partial pivoting (albeit restricted
to block-scope), and one can repeat the error analysis done in [4, Section 3.4.6]
almost verbatim. The main difference with the usual column-scope partial piv-
oting is that different pivot rows may be used at different times: when a new
row with a better pivoting entry arrives, it replaces the old one. This could re-
sult in the matrix growth factor being larger than with GEPP; only numerical
experiments can tell how much larger and whether this is an issue in actual
practice. However, no such numerical experiments have been carried out in this
preliminary exploration of the Rheinfall algorithm.

Still, the major source of instability when using the Rheinfall algorithm on
matrices with floating-point entries is its sensitivity to “compare to zero”: after
elimination has been performed on a row, the eliminating PU must determine
the new starting column. This requires scanning the initial segment of the (mod-
ified) row to determine the column where the first nonzero lies. Changes in the
threshold ε > 0 under which a floating-point number is considered zero can
significantly alter the final outcome of Rheinfall processing.

Stability is not a concern with exact arithmetic (e.g., integer coefficients or
finite fields): in this cases, leeway in choosing the pivoting strategy is better
exploited to reduce fill-in or avoid entries growing too fast. Experiments on
which pivoting strategy yields generally better results with exact arithmetic are
still underway.

3 Sample Implementation

A sample program has been written that implements matrix rank computation
and LU factorization with the variants of Algorithm 1 described before. Source
code is publicly available from http://code.google.com/p/rheinfall.

http://code.google.com/p/rheinfall

188 R. Murri

Since there is only a limited degree of parallelism available on a single com-
puting node, processing units are not implemented as separate continuously-
running threads; rather, the ProcessingUnit class provides a step() method,
which implements a single pass of the main loop in procedure ProcessingUnit

(cf. lines 15–24 in Algorithm 1). The main computation function consists of an
inner loop that calls each PU’s step() in turn, until all PUs have performed one
round of elimination. Incoming messages from other MPI processes are then re-
ceived and dispatched to the destination PU. This outer loop repeats until there
are no more PUs in Running state.

When a PU starts its step() procedure, it performs elimination on all rows
in its “inbox” Q and immediately sends the modified rows to other PUs for
processing. Incoming messages are only received at the end of the main inner
loop, and dispatched to the appropriate PU. Communication among PUs residing
in the same MPI process has virtually no cost: it is implemented by simply adding
a row to another PU’s “inbox”. When PUs reside in different execution units,
MPI Issend is used: each PU maintains a list of sent messages and checks at the
end of an elimination cycle which ones have been delivered and can be removed.

4 Sequential Performance

The “Rheinfall” algorithm can of course be run on just one processor: processing
units execute a single step() pass (corresponding to lines 15–24 in Algorithm 1),
one after another; this continues until the last PU has switched to Done state.

4.1 Integer Performance

In order to get a broad picture of “Rheinfall” sequential performance, the rank-
computation program is being tested an all the integer matrices in the SIMC

collection [2]. A selection of the results are shown in Table 1, comparing the
performance of the sample Rheinfall implementation to the integer GEPP im-
plementation provided by the free software library LinBox [1,6].

Results in Table 1 show great variability: the speed of “Rheinfall” relative to
LinBox changes by orders of magnitude in one or the other direction. The per-
formance of both algorithms varies significantly depending on the actual arrange-
ment of nonzeroes in the matrix being processed, with no apparent correlation
to simple matrix features like size, number of nonzeroes or fill percentage.

Table 2 shows the running time on the transposes of the test matrices. Both
in LinBox’s GEPP and in “Rheinfall”, the computation times for a matrix
and its transpose could be as different as a few seconds versus several hours!
However, the variability in Rheinfall is greater, and looks like it cannot be ex-
plained by additional arithmetic work alone. More investigation is needed to bet-
ter understand how “Rheinfall” workload is determined by the matrix nonzero
pattern.

A Novel Parallel Algorithm for Gaussian Elimination 189

Table 1. CPU times (in seconds) for computing the matrix rank of selected integer
matrices; boldface font marks the best result in each row. The “Rheinfall” column
reports times for the sample C++ implementation. The “LinBox” column reports times
for the GEPP implementation in LinBox version 1.1.7. The programs were run on the
UZH “Schroedinger” cluster, equipped with Intel Xeon X5560 CPUs @ 2.8GHz and
running 64-bit SLES 11.1 Linux; codes were compiled with GCC 4.5.0 with options
-O3 -march=native.

Matrix rows columns nonzero fill% Rheinfall LinBox

M0,6-D8 862290 1395840 8498160 0.0007 23.81 36180.55
M0,6-D10 616320 1274688 5201280 0.0007 23378.86 13879.62
olivermatrix.2 78661 737004 1494559 0.0026 2.68 115.76
Trec14 3159 15905 2872265 5.7166 116.86 136.56
GL7d24 21074 105054 593892 0.0268 95.42 61.14
IG5-18 47894 41550 1790490 0.0900 1322.63 45.95

Table 2. CPU times (in seconds) for computing the matrix rank of selected integer
matrices and their transposes; boldface font marks the best result in each row. The
table compares running times of the Rheinfall/C++ and GEPP LinBox 1.1.7 codes. The
columns marked with (T) report CPU times used for the transposed matrix. Compu-
tation of the transposes of matrices “M0,6-D8” and “Trec14” exceeded the available
24GB of RAM. Hardware, compilation flags and running conditions are as in Table 1,
which see also for matrix size and other characteristics.

Matrix Rheinfall (T) Rheinfall LinBox (T) LinBox

M0,6-D8 No mem. 23.81 50479.54 36180.55
M0,6-D10 37.61 23378.86 26191.36 13879.62
olivermatrix.2 0.72 2.68 833.49 115.76
Trec14 No mem. 116.86 43.85 136.56
GL7d24 4.81 95.42 108.63 61.14
IG5-18 12303.41 1322.63 787.05 45.95

Table 3. Average Mflop/s attained in running LU factorization of square N × N
matrices; boldface font marks the best result in each row. The table compares the
performance of the sample Rheinfall/C++ LU factorization with SuperLU 4.2. The
test matrices are a subset of those used in [5]. See Table 1 for hardware characteristics.

Matrix N nonzero fill% Rheinfall SuperLU

bbmat 38744 1771722 0.118 83.37 1756.84
g7jac200sc 59310 837936 0.023 87.69 1722.28
lhr71c 70304 1528092 0.030 No mem. 926.34
mark3jac140sc 64089 399735 0.009 92.67 1459.39
torso1 116158 8516500 0.063 97.01 1894.19
twotone 120750 1224224 0.008 91.62 1155.53

190 R. Murri

4.2 Floating-Point Performance

In order to assess the “Rheinfall” performance in floating-point uses cases, the
LU factorization program has been tested on a subset of the test matrices used
in [5]. Results are shown in Table 3, comparing the Mflop/s attained by the
“Rheinfall” sample implementation with the performance of SuperLU 4.2 on
the same platform.

The most likely cause for the huge gap in performance between “Rheinfall”
and SuperLU lies in the strict row-orientation of “Rheinfall”: SuperLU uses
block-level operations, whereas Rheinfall only operates on rows one by one. How-
ever, row orientation is a defining characteristics of the “Rheinfall” algorithm
(as opposed to a feature of its implementation) and cannot be circumvented.
Counting also the “compare to zero” issue outlined in Section 2.3, one must
conclude that “Rheinfall” is generally not suited for inexact computation.

5 Parallel Performance and Scalability

The “Rheinfall” algorithm does not impose any particular scheme for mapping
PUs to execution units. A column-cyclic scheme has been currently implemented.

Let p be the number of MPI processes (ranks) available, and m be the total
number of columns in the input matrix A. The input matrix is divided into
vertical stripes, each comprised of w adjacent columns. Stripes are assigned
to MPI ranks in a cyclic fashion: MPI process k (with 0 ≤ k < p) hosts the
k-th, (k+ p)-th, (k+ 2p)-th, etc. stripe; in other words, it owns processing units
P [w · (k + a · p) + b] where a = 0, 1, . . . and 0 ≤ b < w.

5.1 Experimental Results

In order to assess the parallel performance and scalability of the sample “Rhein-
fall” implementation, the rank-computation program has been run on the matrix
M0,6-D10 (from the Mgn group of SIMC [2]; see Table 1 for details). The pro-
gram has been run with a varying number of MPI ranks and different values of
the stripe width parameter w: see Figure 1.

The plots in Figure 1 show that running time generally decreases with higher
w and larger number p of MPI ranks allocated to the computation, albeit not
regularly. This is particularly evident in the plot of running time versus stripe
width (Figure 1, right), which shows an alternation of performance increases and
decreases. A more detailed investigation is needed to explain this behavior; we
can only present here some working hypotheses.

The w parameter influences communication in two different ways. On the one
hand, there is a lower bound O(m/w) on the time required to pass the End

message from P [0] to P [m]. Indeed, since the End message is always sent from
one PU to the next one, then we only need to send one End message per stripe
over the network. This could explain why running time is almost the same for
p = 128 and p = 256 when w = 1: it is dominated by the time taken to pass the
End message along.

A Novel Parallel Algorithm for Gaussian Elimination 191

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 32 64 128 256

T
im

e
(s

)

No. of MPI ranks

w=1
w=4

w=16
w=64

w=256
w=1024
w=4096

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 1 4 16 64 256 1024 4096

T
im

e
(s

)

Stripe width

p=32
p=64

p=128
p=256

Fig. 1. Left: Plot of the running time (in seconds, y-axis) of the sample Rheinfall imple-
mentation on the matrix M0,6-D10, versus the number p of MPI ranks (x-axis). Right:
Plot of the running time (in seconds, y-axis) of the sample Rheinfall implementation
on the matrix M0,6-D10, versus stripe width w (x-axis).

Table 4. Percentage of running time spent in MPI communication for the sample
Rheinfall/C implementation on the matrix M0,6-D10, with varying number of MPI

ranks and stripe width parameter w. Columns MPI Recv, MPI Iprobe and MPI Barrier

report on the percentage of MPI time spent spent servicing these calls; in these cases,
the minimum is always very close to zero hence it is omitted from the table. Tests were
executed on the UZH cluster “Schroedinger”; see Table 1 for hardware details. The MPI

layer was provided by OpenMPI version 1.4.3, using the TCP/IP transport.

p w
MPI Total% MPI Recv% MPI Iprobe% MPI Barrier%

Avg.±σ Max. Min. Avg. Max. Avg. Max. Avg. Max.

16 16 18.79 ± 0.32 19.61 18.37 79.96 81.51 3.13 3.29 0.00 0.00
32 16 11.54 ± 0.53 12.87 10.93 4.41 71.97 14.19 14.97 0.00 0.00
64 16 12.25 ± 0.20 12.78 11.77 1.12 55.94 34.57 36.13 0.00 0.00
128 16 20.51 ± 0.55 23.87 19.33 31.62 35.06 61.08 64.17 0.00 0.00

16 256 26.77 ± 1.79 29.50 23.29 89.69 92.31 1.27 1.50 0.00 0.20
32 256 10.17 ± 1.34 13.57 7.83 78.51 85.33 13.10 18.08 0.00 0.01
64 256 16.55 ± 2.16 22.15 11.74 61.46 73.13 27.20 43.73 0.00 0.67
128 256 15.43 ± 0.64 18.65 14.35 6.15 10.97 90.98 95.27 0.00 0.02
256 256 38.92 ± 1.94 43.24 32.99 6.12 14.20 89.38 97.41 0.00 0.60

16 4096 9.08 ± 1.62 13.81 7.22 50.57 66.97 7.52 10.35 0.00 0.19
32 4096 6.53 ± 1.97 12.33 3.71 36.80 58.48 28.30 51.23 1.51 3.71
64 4096 6.81 ± 1.52 12.01 4.53 8.73 30.15 72.13 93.92 10.88 26.93
128 4096 16.73 ± 7.80 44.72 8.59 5.12 21.82 46.82 92.24 43.69 86.65
256 4096 45.78 ± 28.32 88.22 9.91 0.00 9.18 11.94 96.68 86.09 98.63

192 R. Murri

On the other hand, MPI messages are collected after each processing unit
residing on a MPI rank has performed a round of elimination; this means that
a single PU can slow down the entire MPI rank if it gets many elimination
operations to perform. The percentage of running time spent executing MPI

calls has been collected using the mpiP tool [8]; a selection of relevant data is
available in Table 4. The three call sites for which data is presented measure
three different aspects of communication and workload balance:

– The MPI Recv figures measure the time spent in actual row data communi-
cation (the sending part uses MPI Issend which returns immediately).

– The MPI Iprobe calls are all done after all PUs have performed one round
of elimination: thus they measure the time a given MPI rank has to wait for
data to arrive.

– The MPI Barrier is only entered after all PUs residing on a given MPI rank
have finished their job; it is thus a measure of workload imbalance.

Now, processing units corresponding to higher column indices naturally have
more work to do, since they get the rows at the end of the elimination chain,
which have accumulated fill-in. Because of the way PUs are distributed to MPI

ranks, a larger w means that the last MPI rank gets more PUs of the final
segment: the elimination work is thus more imbalanced. This is indeed reflected
in the profile data of Table 4: one can see that the maximum time spent in the
final MPI Barrier increases with w and the number p of MPI ranks, and can
even become 99% of the time for some ranks when p = 256 and w = 4096.

However, a larger w speeds up delivery of Row messages from P [c] to P [c′]
iff (c′ − c)/w ≡ 0(mod p). Whether this is beneficial is highly dependent on the
structure of the input matrix: internal regularities of the input data may result on
elimination work being concentrated on the same MPI rank, thus slowing down
the whole program. Indeed, the large percentages of time spent in MPI Iprobe

for some values of p and w show that the matrix nonzero pattern plays a big role
in determining computation and communication in Rheinfall. Static analysis of
the entry distribution could help determine an assignment of PUs to MPI ranks
that keeps the work more balanced.

6 Conclusions and Future Work

The “Rheinfall” algorithm is basically a different way of arranging the opera-
tions of classical Gaussian Elimination, with a naturally parallel and distributed-
memory formulation. It retains some important features from the sequential
Gaussian Elimination; namely, it can be applied to general sparse matrices, and
is independent of matrix entry type. Pivoting can be done in Rheinfall with
strategies similar to those used for GEPP; however, Rheinfall is not equally
suited for exact and inexact arithmetic.

Poor performance when compared to state-of-the-art algorithms and some
inherent instability due to the dependency on detection of nonzero entries suggest
that “Rheinfall” is not a convenient alternative for floating-point computations.

A Novel Parallel Algorithm for Gaussian Elimination 193

For exact arithmetic (e.g., integers), the situation is quite the opposite: up to
our knowledge, “Rheinfall” is the first practical distributed-memory Gaussian
Elimination algorithm capable of exact computations. In addition, it is compet-
itive with existing implementations also when running sequentially.

The distributed-memory formulation of “Rheinfall” can easily be mapped
on the MPI model for parallel computations. An issue arises on how to map
Rheinfall’s Processing Units to actual MPI execution units; the simple column-
cyclic distribution discussed in this paper was found experimentally to have
poor workload balance. Since the workload distribution and the communication
graph are both determined by the matrix nonzero pattern, a promising future
direction could be to investigate the use of graph-based partitioning to determine
the distribution of PUs to MPI ranks.

Acknowledgments. The author gratefully acknowledges support from the
University of Zurich and especially from Prof. K. K. Baldridge, for the use of the
computational resources that were used in developing and testing the implemen-
tation of the Rheinfall algorithm. Special thanks go to Professors J. Hall and
O. Schenk, and Dr. D. Fiorenza for fruitful discussions and suggestions. Correc-
tions and remarks from the PPAM reviewers greatly helped the enhancement of
this paper from its initial state.

References

1. Dumas, J.G., Gautier, T., Giesbrecht, M., Giorgi, P., Hovinen, B., Kaltofen, E.,
Saunders, B.D., Turner, W.J., Villard, G.: LinBox: A Generic Library for Exact
Linear Algebra. In: Cohen, A., Gao, X.S., Takayama, N. (eds.) Mathematical Soft-
ware: ICMS 2002, Proceedings of the First International Congress of Mathematical
Software, pp. 40–50. World Scientific (2002)

2. Dumas, J.G.: The Sparse Integer Matrices Collection,
http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/simc.html

3. Dumas, J.G., Villard, G.: Computing the rank of large sparse matrices over fi-
nite fields. In: CASC 2002 Computer Algebra in Scientific Computing, pp. 22–27.
Springer, Heidelberg (2002)

4. Golub, G., Van Loan, C.: Matrix Computation, 2nd edn. Johns Hopkins University
Press (1989)

5. Grigori, L., Demmel, J.W., Li, X.S.: Parallel symbolic factorization for sparse LU
with static pivoting. SIAM J. Scientific Computing 29(3), 1289–1314 (2007)

6. LinBox website, http://linalg.org/
7. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33,

103–111 (1990), http://doi.acm.org/10.1145/79173.79181
8. Vetter, J., Chambreau, C.: mpiP: Lightweight, Scalable MPI profiling (2004),

http://www.llnl.gov/CASC/mpiP

http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/simc.html
http://linalg.org/
http://doi.acm.org/10.1145/79173.79181
http://www.llnl.gov/CASC/mpiP

Parallel FEM Adaptation

on Hierarchical Architectures

Tomasz Olas1, Roman Wyrzykowski1, and Pawel Gepner2

1 Czestochowa University of Technology,
Dabrowskiego 69, 42-201 Czestochowa, Poland

{olas,roman}@icis.pcz.pl
2 Intel Corporation

pawel.gepner@intel.com

Abstract. The parallel FEM package NuscaS allows us to solve adap-
tive FEM problems with 3D unstructured meshes on distributed-memory
parallel computers such as PC-clusters. In our previous works, a new
method for parallelizing the FEM adaptation was presented, based on
using the 8-tetrahedra longest-edge partition. This method relies on a
decentralized approach, and is more scalable in comparison to previous
implementations requiring a centralized synchronizing node.

At present nodes of clusters contain more and more processing cores.
Their efficient utilization is crucial for providing high performance of
numerical codes. In this paper, different schemes of mapping the mesh
adaptation algorithm on such hierchical architectures are presented and
compared. These schemes use either the pure message-passing model,
or the hybrid approach which combines shared-memory and message-
passing models. Also, we investigate an approach for adapting the pure
MPI model to hierarchical topology of clusters with multi-core nodes.

1 Introduction

The finite element method (FEM) is a powerful tool for studying different phe-
nomena in various areas. Parallel computing allows FEM users to overcome
computational and/or memory bottlenecks of sequential applications [8]. In par-
ticular, an object-oriented environment for the parallel FEM modeling, called
NuscaS, was developed at the Czestochowa University of Technology [16]. This
package allows for solving adaptive FEM problems with 3D unstructured meshes
on distributed-memory parallel computers such as PC-clusters [10].

Adaptive techniques [12] are powerful tools to perform efficiently the FEM
analysis of complex and time-consuming 3D problems described by time-depen-
dent PDEs. However, during the adaptation computational workloads change
unpredictably at the runtime, and a dynamic load balancing is required. In our
previous work [10], we focused on the problem how to implement the dynamic
load balancing efficiently on distributed-memory parallel computers such as PC
clusters. At the same time, a serious performance bottleneck of this numerical
code was the sequential implementation of the mesh adaptation step. So in the

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 194–205, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Parallel FEM Adaptation on Hierarchical Architectures 195

next paper [11], a method which eliminates this drawback by implementing the
mesh adaptation in parallel was proposed. The new solution relies on a decentral-
ized approach, and is more scalable in comparison to previous implementations
[2,13,14], requiring a centralized synchronizing node. The method was developed
for the message-passing model, and implemented using the MPI standard.

Multiple computing cores become ubiquitous in commodity microprocessor
chips used to build modern HPC systems [6]. The basic building block of such
systems consists of multiple multi-core chips sharing memory in a single node.
As a result, currently the dominant HPC architectures comprise clusters of such
nodes interconnected via a high-speed network supporting a heterogeneous mem-
ory model – shared memory with non-uniform memory access within a single
node and distributed memory across the nodes.

From the user’s perspective, the easiest way of programming these systems
is to ignore the hybrid memory architecture and use a pure message-passing
programming model. This is a reasonable approach since most MPI libraries
take advantage of the shared memory within a node and optimize intra-node
communications. At the same time, MPI based implementations of many algo-
rithms that are scalable to a large number of uni-core processors suffer efficiency
loses when implemented on such architectures [15]. This loss of scalability is
in part because of the limited memory bandwidth available to multiple cores
within the processor, and in part because traditional message-passing paral-
lelization strategies do not account for the memory and communication hier-
archy of clusters. One way of overcoming these limitations is to use a hybrid
message-passing/shared-memory parallelization approach, which exploit the hi-
erarchy of multi-core clusters via nested parallelization schemes that use MPI for
inter-node communications and OpenMP for inter-node data exchange. However,
even though hybrid parallelization methods offer various advantages in theory
[1], pure MPI implementations frequently outperform hybrid ones in practice as
overheads in shared memory threading can outweigh performance benefits [15,3].

This paper is devoted to investigating different schemes of mapping the FEM
adaptation algorithm on hierarchical architectures of PC-clusters with multi-
core nodes. Our previous works [8,9], related to mapping FEM computations on
hierarchical architectures of clusters with SMP nodes, confirmed the usability
of the hybrid approach for increasing performance of FEM computations. For
implementing this approach, we used the combination of MPI for interproces-
sor communications, and POSIX threads for multithreading inside SMP nodes.
For the hybrid approach, two methods for mapping FEM algorithms were con-
sidered: (i) method of global data inside the node, and (ii) two-level domain
decomposition. In the first method, a single, global subsystem of equations is
build and solved by multiple threads inside each node. For the second method,
each subdomain obtained after coarse-grain partitioning is further decomposed
into pn fine-grain subdomains, where pn is the number of processors in a node.
Then each thread is responsible for building and solving a separate subsystem
of equations.

196 T. Olas, R. Wyrzykowski, and P. Gepner

The material of this paper is organized as follows. In Section 2, the parallel
FEM adaptation algorithm is recalled concisely. Section 3 is devoted to investi-
gation of schemes for mapping this algorithm using the hybrid approach, while
Section 4 deals with adapting the pure MPI approach to hardware topology of
clusters. Conclusions and feature work are presented in Section 5.

2 Parallel FEM Adaptation

2.1 Mesh Decomposition in NuscaS

The parallel version of the library is based on the geometric decomposition ap-
plied for nodes of a parallel system. In this case, a FEM mesh is divided into
p submeshes (domains), which are assigned to separate processors (cores) of a
parallel architecture. Every processor (or process) keeps the assigned part of the
mesh. As a result, the j-th domain will own a set of Nj nodes selected from all
the N nodes of the mesh. For an arbitrary domain with index j, we have three
types of nodes [11]: (i) N i

j of internal nodes; (ii) N b
j of boundary nodes; (iii)

Ne
j of external nodes. Internal and boundary nodes are called local ones, so the

number of local nodes is N l
j = N i

j +N b
j ;

When implementing computations in parallel, information about domains are
exchanged between them. Hence at the preprocessing stage, it is necessary to
generate data structures for each domain, to provide an efficient implementation
of communication. Furthermore, values computed in boundary nodes must be
agreed between neighbor domains. For this aim, in each domain (process) j for
every neighbor process k the following sets are stored:

– Sk
j - set of those indexes of boundary nodes in process j that are external

nodes for process k;
– Rk

j - set of those indexes of external nodes in process j that are assigned to
process k.

2.2 Parallel Algorithm for Mesh Adaptation

The first step in a mesh adaptation procedure using the h-method [13] is selection
of elements which should be partitioned, based on estimating a discretization er-
ror [10]. The next step divides elements using the longest-edge bisection method.
To implement the mesh adaptation in parallel, we utilized [11] the Longest-Edge
Propagation Path method (LEPP in short) [13]. The partitioning of tetrahe-
dral elements is then performed based on the iterative algorithm of 8-tetrahedra
longest edge partition.

When implementing the mesh adaptation in parallel, we base on the available
mesh decomposition and coupling between neighbor domains (processes). Every
process stores information about the domain assigned to it, sequence and number
of internal, boundary and external nodes, as well as information necessary to
organize communication with the neighbor processes. Additionally, the global
enumeration of nodes is used, including the external nodes. Each process holds

Parallel FEM Adaptation on Hierarchical Architectures 197

1. for each edge e of every element belonging to the set Eselected , perform the
procedure SelectEdge(e)

2. perform locally the algorithm LEPP : for each selected edge e belonging to the set
eselected
– for each element E which uses the edge e

• add the element E to the set Eselected of already selected elements (unless
this element was added before)

• for the longest edge el belonging to faces of the element which uses the
selected edge e, perform SelectEdge(el)

3. provide coherency of local propagation paths between neighbor processes
4. derive the global enumeration of nodes taking into account newly created nodes,

together with assigning newly created nodes to separate processes
5. perform partitioning of elements which belong to Eselected

6. modify enumeration of nodes in such a way that internal nodes are located in the
first place, then boundary, and finally external; then upgrade data structures used
for communication between neighbor processes

Fig. 1. Parallel algorithm for mesh adaptation

– add the edge e to the list eselected of already selected edges
– check if the edge e is located on the boundary with a neighbor domain (process);

if so, add this edge to the list eisend of edges which are sent to this neighbor
– divide the edge e

Fig. 2. Procedure SelectEdge(e)

data structures which make possible transition from the global enumeration to
the local one, and vice versa.

The proposed parallel algorithm of mesh adaptation is presented in Fig. 1.
Communication between neighbor processes takes place in steps 3 and 4, based
on information about edges which are exchanged between processes. This infor-
mation is stored in sets eisend (i = 0, . . . , p− 1), after performing the procedure
SelectEdge (Fig. 2). As a result, in step 3 which is responsible for providing co-
herency of local propagation paths between neighbor processes, pairs of global
indexes (n1g, n

2
g) describing edges are sent, using the non-blocking MPI routine

MPI_Isend. After receiving this information, the mapping from the global enu-
meration to local one is performed, to allow for placing edges in local data
structures.

When performing FEM computation in parallel, elements which are located
on boundaries of domains are duplicated in neighbor processes. This solution
allows for avoiding communications at the cost of additional computations. We
follow this concept of patches when performing the mesh adaptation. In this
case, the partitioning of elements must be realized in the same way in neighbor

198 T. Olas, R. Wyrzykowski, and P. Gepner

Table 1. Parameters of FEM meshes before and after adaptation

mesh before adaptation after adaptation
number of nodes number of elements number of nodes number of elements

14K 14313 77824 109009 622592

100K 109009 622592 850849 4980736

270K 272697 1540096 2116977 12320768

400K 402017 2293760 3136705 18350080

850K 850849 4980736 6723393 39845888

processes. The only difficulty emerges when during the element partitioning there
are two or more selected edges with the same length. To avoid this difficulty, we
propose a solution based on the global indexes of nodes. So, when determining
the longest edge in case of edges with the equal length, we compare additionally
the global indexes of edges to choose an edge with the highest value of global
indexes. This solution allows us to avoid communication between processes. It
is sufficient to derive the global enumeration of nodes.

The implementation of step 4 starts with the parallel procedure of deriving a
new global enumeration of nodes, taking into account newly created nodes. This
procedure includes the following three stages:

4.1 Determine interval of global indexes for each process, as well as assign
global indexes to the local nodes of processes:
For this aim, the information about the number nil of local nodes in each
process is spread among all the processes, using the MPI_Allgather routine.
The global index nig of a node i in process j is determined by adding the local

index ni of this node to the sum of numbers of nodes in all the processes
from 0 do j − 1:

nig = ni +

j−1∑
k=0

N l
k. (1)

4.2 Exchange global indexes of nodes located on boundaries of domains
4.3 Exchange global indexes of newly created nodes

2.3 Performance Results

Parameters of FEM meshes which were used in our experiments are presented
in Table 1. These meshes were generated for the geometry shown in Fig. 4 from
paper [11]. Since the main purpose of these experiments was to investigate the
scalability of the proposed algorithm and its implementation, the adaptation was
performed for all the elements of FEM meshes. The experiments were executed
on two clusters:

– Westmere cluster with 16 nodes connected by the Infiniband interconnect;
each node contains two Westmere EP 2.93GHz processors (totally 12 cores
in each node) with 48GB RAM;

Parallel FEM Adaptation on Hierarchical Architectures 199

a) b)

 0

 20

 40

 60

 80

 100

 120

 0 24 48 72 96 120 144 168 192

s
p
e
e
d
u
p

number of cores

mesh - 14K
mesh - 100K
mesh - 270K
mesh - 400K
mesh - 850K

 0

 10

 20

 30

 40

 0 8 16 24 32 40 48 56 64

s
p
e
e
d
u
p

number of cores

mesh - 100K
mesh - 270K
mesh - 400K

Fig. 3. Speedups versus number of cores, for different FEM meshes: (a) Westmere and
(b) Xeon clusters

– Xeon cluster which contains nodes with two Dual Core Xeon 64-bit proces-
sors operating at a core frequency of 2.66 GHz, with 4 GB RAM and the
Gigabit Ethernet network.

All test were performed using the g++ compiler and OpenMPI as an implemen-
tation of MPI standard.

Figure 3 presents speedups achieved in our experiments for different num-
bers of cores. The presented results take into account only the process of mesh
adaptation, without auxiliary operations on data structures, as well as without
adjustment to object geometry and load balancing. The achieved performance
results show quite good scalability of the proposed parallel algorithm of mesh
adaptation both for the Infiniband and Gigabit Ethernet interconnects. The
achieved speedup increases with increase in the problem size. The maximum
speedup value of 1̃03 was obtained for the 850K mesh processed on 192 cores.

3 Hybrid Approach

One of advantages of applying the hybrid approach to parallelizing the mesh
adaptation algorithm is reducing overheads being results of using patches when
processing neighboring domains. In these patches, the partitioning of FEM ele-
ments is performed in all the neighboring domains, which increases the algorithm
execution time. As a result, the less number of domains, the less overheads are
introduced.

In the hybrid approach, the load distribution across cores of a node is per-
formed in parallel sections, according to the fork-and-join model of OpenMP
standard. In the developed version of the mesh adaptation algorithm, the com-
munication across nodes is implemented by the main thread, outside parallel
sections. Figure 4 presents a snippet of the mesh adaptation algorithm, responsi-
ble for the local execution of the LEPP algorithm (step 2 in Fig. 1), parallelized
using OpenMP. In this snippet, we use omp for pragma to parallelize a loop

200 T. Olas, R. Wyrzykowski, and P. Gepner

int nEdges = static_cast< int >(E_selected.size());

#pragma omp parallel for

for (int i = 0; i < nEdges; ++i) {

Edge* edge = E_selected[i];

list<Element*>::iterator ib = edge->elements.begin();

list<Element*>::iterator ie = edge->elements.end();

for (; ib != ie; ++ib) {

if (!(*ib)->isSelected()) {

#pragma omp critical

E_selected.push_back(*ib);

(*ib)->status = 1;

}

(*ib)->SelectEdge(edge, E_selected, edges, nodes, adaptationComm);

}

}

Fig. 4. Snippet of the mesh adaptation algorithm: parallelization inside processes is
performed using OpenMP

which corresponds to processing all the selected elements. Adding a new element
to already selected ones (Eselected) requires to apply a suitable synchronization
(omp critical pragma). The synchronization mechanisms are also applied in-
side SelectEdge method.

Figure 5 presents the comparison of speedups achieved for the pure MPI and
hybrid approaches. It can be seen that the usage of the hybrid model does not
increase the performance. On the contrary, it leads to the performance degrada-
tion. The more threads are executed on a node, the worse speedup is achieved.
In particular, in case of the Westmere cluster with 12 threads executed on each
node, the performance is significantly lower than in case of the Xeon cluster with
4 threads per node.

a) b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 24 48 72 96 120 144 168 192

s
p
e
e
d
u
p

number of cores

pure MPI
Hybrid MPI+OpenMP

 0

 5

 10

 15

 20

 25

 30

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

s
p
e
e
d
u
p

number of cores

pure MPI
Hybrid MPI+OpenMP

Fig. 5. Comparison of speedups for pure MPI and hybrid models in case of 850K mesh
processed on (a) Westmere cluster (12 threads per node), and (b) Xeon cluster (4
threads per node)

Parallel FEM Adaptation on Hierarchical Architectures 201

The main reason for the above-observed performance degradation are fre-
quent references made by all the threads, executed inside a node, to common
data structures storing mesh elements and edges, as well as the necessity to syn-
chronize these references. In fact, in case of the standard implementation of STL
containers, there is necessary to synchronize access of all the threads operating
on a common container when a certain thread is modifying this container. In ad-
dition, the utilization by threads such a common data structures as lists leads to
a frequent usage of cache coherence mechanisms, which also reduces the overall
performance.

4 Adapting Pure MPI Approach to Hardware Topology
of Clusters

For the pure MPI approach, the number of processes executed on each node is
equal the number of cores per node. The idea of adapting this parallel program-
ming model to the hierarchical (multi-level) topology (architecture) of a cluster
with multi-core nodes is based on such distribution of data among particular
MPI processes that minimizes inter-node communications. Because of the lack
of tools that perform the graph partitioning with taking into account the hier-
archical cluster architecture, we decide to use such standard graph partitioners
as METIS [4]. However, this solution requires to develop methods which allow
for the graph partitioning which takes into consideration the hierarchical archi-
tecture with the use of a tool which performs partitioning only on one level. For
this aim, we develop and investigate two methods of this kind:

– method of two-level decomposition (Fig. 6),
– method of grouping (Fig. 7).

In the first stage of the two-level decomposition method, the FEM problem is
divided into domains according to the number of nodes in a cluster. Then each
domain is further split into smaller parts assigned directly to separate cores of
a corresponding node. However, in practice the disadvantage of this method are
difficulties in achieving the even load balancing among cores. These difficulties
are mainly linked to external nodes that appear after performing the first stage.
These nodes of FEM mesh belong to other processes, assigned to other cluster
nodes, but are connected (through FEM elements) with mesh nodes assigned
to a given process. When assigning to a core mesh nodes connected with such
external nodes, it can be seen that some additional FEM elements are assigned
to this core, which are connected with these external nodes and local mesh nodes
of the core. Appearing these additional nodes increases the process load, which
was not taken into account in the first stage.

Because of load balancing problems in this method, we propose an alter-
native method for the minimization of communication with preserving a good
load balancing. In the method of grouping (Fig. 7), the FEM problem is divided

202 T. Olas, R. Wyrzykowski, and P. Gepner

�������	
��	��

��
������	��	����	�
�����

���	�����	��	����	�
�����

�������	
��	�� �������	
��	��

Fig. 6. Using two-level decomposition to adapt pure MPI model to topology of clusters
with multi-core nodes

�������	
��	��

���	��	����	������

�
	����������

�������	
��	�� �������	
��	��

Fig. 7. Using grouping domains to adapt pure MPI model to topology of clusters with
multi-core nodes

into domains according to the number of cores in a cluster. These domains are
then distributed (grouped) among cluster nodes in such a way that allow for
minimizing inter-node communications.

The grouping algorithm, responsible for assigning domains to cluster nodes,
is implemented using the METIS package [4]. For the graph partitioning, we
utilize the internal routine MlevelKWayPartitioning. Unlike standard METIS

Parallel FEM Adaptation on Hierarchical Architectures 203

routines, this routine provides the possibility to control unbalance across graph
partitions. By setting the value of unbalance factor on 1.0, we can guarantee that
partitioning is performed on equal parts, and their number is equal the number
of processor cores in cluster nodes. When implementing the graph partitioning,
the graph nodes are previously determined domains, which have to be processed
in cores. The graph edges correspond to inter-domain connections, which are
results of communication between the domains. In order to guarantee that some
domains are assigned to cores of the i− th cluster node, it is enough to renumber
them in such a way that they are enumerated using the consecutive integers
beginning with i ·C, where C is the number of processor cores in cluster nodes.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 4 8 12 16 20 24 28 32 36 40

s
p
e
e
d
u
p

number of cores

pure MPI without adapting

pure MPI with adapting

Fig. 8. Comparison of speedups achieved for the pure MPI model and approach with
adapting MPI to hardware topology of clusters based on grouping domains: mesh 850K
is processed on Xeon cluster (4 threads per node)

Figure 8 shows speedups achieved when adapting MPI to hardware topology
of clusters based on grouping domains, as compared with the pure MPI model;
the Xeon cluster and 850K mesh are assumed. Unfortunately, it can be seen that
the approach discussed in this section does not give any noticeable performance
advantages. The same conclusion is true for other FEM meshes and the Westmere
cluster.

204 T. Olas, R. Wyrzykowski, and P. Gepner

5 Conclusion and Future Work

This work is devoted to investigation of different approaches for mapping the
FEM mesh adaptation algorithm on hierarchical architectures of clusters with
multi-core nodes. The performance results of numerical experiments are pre-
sented as well.

The basic approach assumes the usage of pure MPI model with one MPI
process per processor core. The utilization of the hybrid model (MPI + OpenMP)
does not increase the performance. On the contrary, it leads to the performance
degradation caused by frequent references made by all the threads, executed
inside a node, to common data structures. Also, the presented approach for
adapting the pure MPI model to hierarchical topology of clusters does no allow
us to improve the performance. The reasons for this effect are difficulties in
providing suitable partitionings of FEM problems.

Therefore, it becomes necessary to develop a new tool (or adapt an existing
one) which will allow for graph partitioning taking into account the hierarchical
architecture of clusters [7,5]. An alternative, promising approach to increasing
the performance seems to be the development of mechanisms in the mesh adap-
tation algorithm allowing for partitioning of a element located on boundaries of
domains only by a single process. At present, this partitioning is performed in all
the processes which possess mesh modes linked to this element. Such a modifica-
tion in the algorithm will reduce the amount of inter-process communications. At
the same time, this modification will increase the time of computations because
of introducing some redundant operations. Consequently, it will be indispens-
able to perform exhaustive tests on different cluster platforms using different
MPI implementations.

Acknowledgments. This work was supported in part by the Polish Ministry
of Science and Higher Education under Grant Nos. 648/N-COST/2010/0 COST
IC0805 and BS/PB-1-112-3030/2011/S.

We gratefully acknowledge the help and support provided by Jamie Wilcox
from Intel EMEA Technical Marketing HPC Lab.

References

1. Avera, R., Martino, B., Rak, M., Venticinque, S., Vilano, U.: Performance predic-
tion through simulation of a hybrid MPI/OpenMP application. Parallel Comput-
ing 31, 1013–1033 (2005)

2. Balman, M.: Tetrahedral Mesh Refinement in Distributed Environments. In: 2006
Int. Conf. Parallel Processing Workshops (ICPPW 2006), pp. 497–504. IEEE Com-
puter Soc. (2006)

3. Chorley, M.J., Walker, D.W.: Performance analysis of a hybrod MPI/OpenMP
application on multi-core clusters. J. Comput. Sci. 1, 168–174 (2010)

4. Family of Graph and Hypergraph Partitioning Software,
http://glaros.dtc.umn.edu/gkhome/views/metis

http://glaros.dtc.umn.edu/gkhome/views/metis

Parallel FEM Adaptation on Hierarchical Architectures 205

5. Jeannot, E., Mercier, G.: Improving MPI Applications Performance on Multicore
Clusters with Optimized Process Placement. In: 2ndWorkshop of COST 0805 Open
Network for High-Performance Computing on Complex Environments, Timisoara,
January 25-27 (2012)

6. Jin, H., Jespersen, D., Mehrotra, P., Biswas, R., Huang, L., Chapman, B.: High
performance computing using MPI and OpenMP on multi-core parallel systems.
Parallel Computing 37, 562–575 (2011)

7. Mercier, G., Clet-Ortega, J.: Towards an Efficient Process Placement Policy for
MPI Applications in Multicore Environments. In: Ropo, M., Westerholm, J.,
Dongarra, J. (eds.) PVM/MPI 2009. LNCS, vol. 5759, pp. 104–115. Springer,
Heidelberg (2009)

8. Olas, T., Karczewski, K., Tomas, A., Wyrzykowski, R.: FEM Computations on
Clusters Using Different Models of Parallel Programming. In: Wyrzykowski, R.,
Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2001. LNCS, vol. 2328,
pp. 170–182. Springer, Heidelberg (2002)

9. Olas, T., Lacinski, L., Karczewski, K., Tomas, A., Wyrzykowski, R.: Performance of
different communication mechanisms for FEM computations on PC-based cluster
with SMP nodes. In: Proc. Int. Conf. Parallel Computing in Electrical Engineering,
PARELEC 2002, pp. 305–311 (2002)

10. Olas, T., Leśniak,R.,Wyrzykowski, R.,Gepner, P.: Parallel AdaptiveFinite Element
Package with Dynamic Load Balancing for 3D Thermo-Mechanical Problems. In:
Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2009.
LNCS, vol. 6067, pp. 299–311. Springer, Heidelberg (2010)

11. Olas, T., Wyrzykowski, R.: Adaptive FEM Package with Decentralized Parallel
Adaptation of Tetrahedral Meshes. In: Lirkov, I. (ed.) LSSC 2011. LNCS, vol. 7116,
pp. 622–629. Springer, Heidelberg (in press, 2012)

12. Patzak, B., Rypl, D.: A Framework for Parallel Adaptive Finite Element Computa-
tions with Dynamic Load Balancing. In: Proc. First Int. Conf. Parallel, Distributed
and Grid Computing for Engineering, Paper 31. Civil-Comp Press (2009)

13. Plaza, A., Rivara, M.: Mesh Refinement Based on the 8-Tetrahedra Longest-Edge
Partition. In: Proc. 12th Int. Meshing Roundtable, Sandia National Laboratories,
pp. 67–78 (2003)

14. Rivara, M., Pizarro, D., Chrisochoides, N.: Parallel Refinement of Tetrahedral
Meshes using Terminal-Edge Bisection Algorithm. In: Proc. 13th Int. Meshing
Roundtable, Sandia National Labs, pp. 427–436 (2004)

15. Wei, F., Yilmaz, A.E.: A hybrid message passing/shared memory parallelization
of the adaptive integral method for multi-core clusters. Parallel Computing 37,
279–301 (2011)

16. Wyrzykowski, R., Olas, T., Sczygiol, N.: Object-Oriented Approach to Finite El-
ement Modeling on Clusters. In: Sørevik, T., Manne, F., Moe, R., Gebremedhin,
A.H. (eds.) PARA 2000. LNCS, vol. 1947, pp. 250–257. Springer, Heidelberg (2001)

Solving Systems of Interval Linear Equations

in Parallel Using Multithreaded Model
and “Interval Extended Zero” Method

Mariusz Pilarek and Roman Wyrzykowski

Institute of Computer and Information Sciences,
Czestochowa University of Technology,

Dabrowskiego 73, 42-200 Czestochowa, Poland
{mariusz.pilarek,roman}@icis.pcz.pl

Abstract. In this paper, an approach to the solution of systems of
interval linear equations with the use of the parallel machines is pre-
sented, based on parallel multithreaded model and “interval extended
zero” method. This approach not only allows us to decrease the unde-
sirable excess width effect, but makes it possible to avoid the inverted
interval solutions too. The efficiency of this method has been already
proved for non-parallel systems. Here it is shown that it can be also used
to perform efficient calculations on parallel machines using the multi-
threaded model.

1 Introduction

Most of todays problems concerned with the solution of systems of linear equa-
tions are based on the real-number coefficients. However, when dealing with
real-world problems we often meet different kinds of uncertainty and impreci-
sion that should be taken into account in the problem formulation [8,7,10]. The
known Leontief’s input-output model [18] can be considered as an example of
such a situation [21] since it is difficult to build the technical coefficient matrix
with real numbers as the parameters of this economic model are usually charged
by sufficient uncertainty. In many cases, this problem can be solved using meth-
ods of applied interval analysis. Since the publication of seminal Moore’s work
[19] a rapid development of interval arithmetic is observed.

The system of linear interval equations can be presented as follows:

[A][x] = [b], (1)

where [A] is an interval matrix, [b] is an interval vector and [x] is an interval
solution vector. Generally such a system has no exact solutions. However, there
are some methods for approximate solution of Eq. (1) presented in the literature.
The undesirable feature of known approaches to the solution of Eq. (1) is the so-
called excess width effect, i.e., the fast increasing the width of resulting intervals
in calculations with the use of conventional interval arithmetic. The so-called

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 206–214, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Solving the Systems of Interval Linear Equations in Parallel 207

“interval extended zero” method developed in [13,14] makes it possible to reduce
this effect. In [12], it was proved that this method can be treated as the modified
interval division (MID) and used to solve interval linear systems.

In the current paper, it is shown that this method can be used to provide effec-
tive computations on parallel machines using multithreaded model. The libraries
OpenMP [9] and PThreads [4] are often used to perform parallel computations
on parallel machines with shared memory. For example, the PLASMA package
[1] uses the PThreads library to perform linear numerical algebra computations
(including the solution of systems of linear equations) in parallel on real-valued
vectors and matrices. However, we did not find implementations of solving in-
terval linear systems using parallel libraries presented in the literature.

The aim of this work is to present the solution of interval linear systems
implemented with the use of “interval extended zero” method and parallel mul-
tithreaded model on parallel architectures with shared memory.

The rest of paper is set out as follows. Section 2 presents how to increase the
efficiency of interval calculations. In section 3, the parallel implementation of
interval block Gaussian elimination algorithm is presented. Section 4 concludes
with some remarks.

2 Efficient Implementation of Interval Arithmetic

One of the important issues concerning with the implementation of interval arith-
metic operations is the need of instantly switching the rounding mode to per-
form computations on interval bounds. Normally, when calculating left bounds
we have to use rounding to minus infinity and when calculating the right bounds
- rounding to plus infinity:

[x] ◦ [y] =
[
(

(
min

(
x ◦ y, x ◦ y, x ◦ y, x ◦ y

))
, (2)

�
(
max

(
x ◦ y, x ◦ y, x ◦ y, x ◦ y

))]
,

where (corresponds to the rounding down operation (to minus infinity), � -
to the rounding up operation (to plus infinity) and ◦ ∈ {+,−, ·, /}. Switching
the rounding mode is a very costly operation as it flushes the pipeline and is
effectively slowing down the calculations.

Goualard [15] proposed to keep intervals in the memory with the left bound
having negative sign: 〈a : −a〉, and use only one rounding mode (to plus infinity)
to perform all calculations on intervals. For example, the addition operation is
defined as follows:

[x] + [y] = 〈x : −x〉+ 〈y : −y〉 = 〈− �
(
(−x) +

(
−y

))
,� (x+ y)〉. (3)

The results obtained by Goualard [15] proved the efficiency of this approach.
Therefore it is used in the current work to implement all operations on intervals.

208 M. Pilarek and R. Wyrzykowski

Fig. 1. Block Gaussian elimination algorithm scheme

3 Solving Interval Linear Systems Using “Interval
Extended Zero” Method

The Block Gaussian elimination algorithm [11] was chosen to solve the system
of interval linear equations presented on Eq. (1). This algorithm contains two
stages - forward elimination and backward substitution. Let us assume (Fig. 1)
that we have a square interval matrix divided into 9 blocks (3× 3). The forward
elimination stage is splitted out into three steps:

1. factorization [
L22

A32

]
=

[
L22

A32

]
·U22, (4)

using:

[s] =
[aik](k)

[akk](k)
, (5)

[aij]
(k+1) = [aij]

(k) − [s] · [akj](k) , (6)

2. solving a triangular linear system of equations with many right-hand sides:

A23 = L−1
22 ·A23, (7)

3. calculating a matrix-matrix multiplication:

A33 = A33 −A32 ·A23. (8)

Here L22 and U22 are respectively the lower and the upper triangular sub-

matrices of block A22, [akk]
(k) �= 0, (k = 1, 2, . . . , n− 1; i, j = k+ 1, k+ 2, . . . , n);

Solving the Systems of Interval Linear Equations in Parallel 209

[aij] are the elements of the interval matrix [A]. This algorithm forms the up-
per triangular matrix. The system with such a matrix can be solved using the
backward substitution:

[s] =

j=n∑
j=i

[aij] · [xj], (9)

[xi] =
([bi]− [s])

[aii]
, (10)

where i = n− 1, n− 2, . . . , 0, j = i, i+ 1, . . . , n, [aii] �= 0, bi are the elements of
the vector [b], and [xi] are the elements of interval result vector [x].

The block Gaussian elimination algorithm is used to solve linear systems of
equations in numerical algebra packages like LAPACK [2], ScaLAPACK [5] or
PLASMA [1]. Its efficiency is very high due to the effective use of the processors
cache memory. Blocks of the matrix can be placed in the cache which reduces
the data movement between processor and the memory.

In work [13], the interval division operations in Eqs. (5) and (10) were replaced
with the modified interval division (MID) based on the “interval extension zero”
method. This method allows us to obtain much narrower interval results than
those obtained using classic interval division [19]. It was proved in [12] that this
method may be used to solve the systems of interval linear equations.

Two implementations of the interval block Gaussian elimination algorithm
were developed and tested - usual block Gaussian elimination algorithm
(UBGEA), using classic interval division in Eqs. (5) and (10), and modified
one (MBGEA) using MID in Eqs. (5) and (10).

The developed implementations were analyzed with the use of three examples
of interval linear systems. As an illustrative example, the Leontief’s input-output
model of economy [18] was used. This model can be presented as follows:

(I−A′)x = b, (11)

where I is the identity matrix, A′ is the technical coefficient matrix, x is the
global production vector, and b is the final product vector. This model is used
mostly in economics for the production prognosis. Denoting (I −A′) as A, the
linear system (11) can be solved using the block Gaussian elimination algorithm.
The problem is that usually the elements of A′ and b may be presented only
approximately as intervals or fuzzy values.

Three examples of economic system having 2000, 4000 and 6000 sectors, re-
spectively, were build using randomly generated interval data. The sum of the
elements in columns of the coefficient matrix could not be greater than 1, there-
fore they were generated in the range 0÷ 1/n, where n is the number of rows in
the matrix. The elements of final production vector b were randomly generated
in the range 0÷ 2500000. Finally, the interval bounds were obtained as follows:
a′ij = a′ij − 0.1 · a′ij , a′ij = a′ij + 0.1 · a′ij .

To estimate the quality of obtained results, we propose the special relative
index of uncertainty, RIUout . It may serve as a quantitative measure of the
excess width effect. It was calculated on resulting vectors as a maximal value

210 M. Pilarek and R. Wyrzykowski

from all elements:RIUout = max((xm−x), (x−xm))/xm·100%, where xm = x+x
2 .

The RIUin index calculated for the input data (coefficient matrix and final
production vector) is equal to 10%.

The tests were carried out for three block sizes: 32 × 32 (bl = 32), 64 × 64
(bl = 64) and 128 × 128 (bl = 128) on a machine with 4 AMD Dual-Core
Opteron 2.2GHz processors. Three interval libraries were used for comparison -
RealLib [17], Boost [6] and Profil/BIAS [16]. Both the Boost and Profil/BIAS
libraries switches the rounding mode during computations of interval bounds (to
minus infinity for the left bounds and plus infinity for the right bounds). The
RealLib library uses the so-called multiplicative rounding, where interval bounds
are multiplied by pred(1) = min{y|y ∈ R, y < 1} or succ(1) = min{y|y ∈ R, y >
1} accordingly to their signs, and the rounding mode is set to the nearest for all
calculations. All these libraries use the classic interval division method. The block
Guassian elimination algorithm was implemented using all of these libraries.

The UBGEA implementation uses the classic interval division, as well as
the tested libraries (RealLib, Profil/BIAS and Boost - which are presented in
Table 1 in columns RL, BIAS and Boost respectively). The values of RIUout for
these implementations (calculated on resulting interval vectors) are the same for
respective systems, and are greater than the values obtained for the MBGEA
implementation using MID (Table 1). In all cases, the average width of the
resulting intervals calculated with the use of classic interval division is practically
two times greater than that obtained using MID. The size of block does not
affect the width of the resulting intervals.

Table 1. RIUout values [%] and calculation times [s] for interval block Gaussian elim-
ination algorithm

n bl
UBGEA MBGEA RL BIAS Boost

RIUout time RIUout time RIUout time RIUout time RIUout time

2000
32 29.234 20.948 14.475 20.938 29.234 77.367 29.234 335.228 29.234 342.997
64 29.234 20.790 14.475 20.529 29.234 75.342 29.234 327.979 29.234 342.300
128 29.234 28.089 14.475 26.783 29.234 85.344 29.234 318.886 29.234 331.889

4000
32 29.237 169.237 14.218 167.905 29.237 620.735 29.237 2637.313 29.237 2741.115
64 29.237 164.872 14.218 163.648 29.237 600.465 29.237 2690.532 29.237 2719.020
128 29.237 220.659 14.218 213.484 29.237 679.521 29.237 2593.070 29.237 2693.917

6000
32 29.248 570.022 14.287 567.828 29.248 2097.512 29.248 9564.101 29.248 9449.121
64 29.248 554.119 14.287 550.384 29.248 871.954 29.248 2023.964 29.248 9065.829
128 29.248 734.700 14.287 714.476 29.248 2281.642 29.248 8771.265 29.248 8990.122

Among the tested implementations the UBGEA and MBGEA variants were
fastest. The RealLib library was 3 times slower while BIAS and Boost libraries
were more than 10 times slower for the biggest matrix. The low efficiency of the
Profil/BIAS and Boost libraries is caused mostly by the need for instantly switch-
ing the rounding mode during calculations of interval bounds. It is worth noting
that both UBGEA and MBGEA implementations are practically evenly effec-
tive. Hence, the use ofMID method does not affect the speed of the calculations

Solving the Systems of Interval Linear Equations in Parallel 211

in the block Gaussian elimination algorithm. The best results were obtained for
the block size bl = 64, although the Profil/BIAS and Boost libraries performed
fastest computations for the block size bl = 128 in all cases.

4 Parallel Implementation of the Interval Block Gaussian
Elimination Algorithm

The block Gaussian elimination algorithm can be effectively parallelized using
the parallel multithreaded model, with the assignment of blocks of matrix to
different cores or processors. Operations performed inside blocks may be rep-
resented as tasks executed by threads. The tasks that have no dependencies
between them can be executed in parallel, which effectively speeds up the com-
putations. An example of tasks assignment on a four-core machine is presented
in Fig. 2.

Fig. 2. Exemplary tasks assignment for the interval block Gaussian elimination algo-
rithm on a four-core machine (for the first iteration of the algorithm)

Tasks are performed on different cores. Dark grey boxes correspond to the
first step of the algorithm, light grey boxes - to the second step, and white boxes
- to the third step. Steps need to be executed sequentially, however, operations
performed within the steps of the algorithm can be parallelized as there are no
data dependencies between the blocks. We can note that the third step (matrix-
matrix multiplication) takes most of the time, more than 90% of all calculations.

For the implementation of the presented algorithm two parallel environments
have been used - OpenMP [9] and SMP Superscalar [20].

4.1 OpenMP and SMP Superscalar Parallel Environments

OpenMP [9] is currently the most popular environment for parallel program-
ming on machines with shared memory. It uses the fork-join scheme [9]. When a

212 M. Pilarek and R. Wyrzykowski

sequential program reaches its parallel section (specified by the programmer), an
appropriate number of threads are created, and this section is executed by each
thread. At the end of the parallel section threads are joined. The programmer
must take care of all the dependencies between data that threads work on, so that
they will not block each other, or use the same resource at the same time. The
most common use of the OpenMP is the loops parallelization. Loops are splitted
out into chunks that are assigned alternatingly to threads. The programmer can
specify the size of chunks and the way they are assigned to threads.

SMP Superscalar [20] is a fairly new environment, based on the function par-
allelism. It uses tasks to perform calculations in parallel. The biggest difference
between OpenMP and SMP Superscalar is that here, the runtime environment
takes care of all data dependencies and synchronizations.

At runtime, a dependency graph is created, where tasks are represented by
nodes and arcs corresponding to data dependencies between them [3]. If a task
needs some data from another task, a thread that executes it waits for that
data to be ready. If another task is ready to be executed at the same time
(all dependencies are calculated), the scheduler will assign this task to a free
thread. The main advantage of this model in comparison to OpenMP is that in
OpenMP threads are synchronized at the end of every parallel section, which
slows down the computations. In the SMP Superscalar, synchronizations are
done only when needed (data dependencies). Moreover, programmers can syn-
chronize the threads that operate only on a particular data.

4.2 Interval Block Gaussian Elimination Algorithm Implementation
Using OpenMP and SMP Superscalar

The interval block Gaussian elimination algorithm based on MID method (de-
noted as MBGEA) was implemented and tested using both the OpenMP and
SMP Superscalar environments on the same machine as in the previous examples.
The input matrix was splitted out into blocks as shown in Fig. 2. Three steps
of the algorithm were calculated in different loops. These loops have been par-
allelized in OpenMP using #pragma omp parallel for construction. Threads
execute their chunks of the loops in parallel. For the SMP Superscalar environ-
ment, appropriate tasks performing block operations have been created using
#pragma smp task construction. These tasks are assigned by the scheduler to
threads, with the consideration of all data dependencies between the blocks.

The tests have been performed using data from previous example on the same
machine containing 4 AMD Dual-Core Opteron 2.2GHz processors. The obtained
results are presented in Table 2 for different numbers p of cores/processors (equal
to the number of created threads). Since our machine have four double-core
processors, maximum eight threads could be created. In the table, the speedup
Sp is calculated as T1/Tp, where T1 - execution time of the algorithm on a single
processor, Tp - execution time of the algorithm on p processors, whereas the
efficiency Ep is calculated as Sp/p. The ideal value of Ep = 1 means that an
algorithm has been perfectly parallelized.

Solving the Systems of Interval Linear Equations in Parallel 213

Table 2. Results obtained using OpenMP and SMP Superscalar environments

OpenMP SMP Superscalar

n p RIUout [%] time [s] Sp Ep RIUout [%] time [s] Sp Ep

2000

1 14.475 20.348 - - 14.475 20.131 - -
2 14.475 10.279 1.980 0.990 14.475 10.103 1.993 0.996
4 14.475 5.181 3.928 0.982 14.475 5.100 3.947 0.987
8 14.475 2.706 7.519 0.940 14.475 2.582 7.796 0.975

4000

1 14.218 162.557 - - 14.218 160.757 - -
2 14.218 81.773 1.988 0.994 14.218 80.573 1.995 0.998
4 14.218 41.033 3.962 0.990 14.218 40.566 3.963 0.991
8 14.218 20.767 7.828 0.978 14.218 20.380 7.888 0.986

6000

1 14.287 549.060 - - 14.287 542.287 - -
2 14.287 275.707 1.991 0.996 14.287 272.076 1.993 0.997
4 14.287 138.189 3.973 0.993 14.287 136.705 3.967 0.992
8 14.287 69.575 7.892 0.986 14.287 68.758 7.887 0.986

The tests were performed for 1, 2, 4 and 8 threads. Since the best sequential
results were obtained for the block size bl = 64, it have been used here. The
obtained values of RIUout are exactly the same as in the case of sequential
algorithms. We can note, that the SMP Superscalar environment was slightly
faster than the OpenMP. As mentioned before, the SMP Superscalar scheduler
manages the threads better, and this enhances the efficiency of calculations.

5 Conclusions

A method to solve systems of interval linear equations based on the concepts of
“interval extended zero” method on parallel machines was developed, using the
parallel multithreaded model. It was shown that this method not only allows us
to reduce the undesirable excess width effect, but can also be used to perform ef-
ficient calculations in parallel. The modifications of interval arithmetic proposed
by Goualard were used here to improve the efficiency of calculations on interval
bounds. The block Gaussian elimination algorithm was utilized to implement the
method for solving the Leontief’s input-output model of economy. Three libraries
were applied for the comparison - RealLib, Profil/BIAS and Boost. It was proved
that the developed implementations give not only better (narrower) interval re-
sults, but also perform all calculations faster. Moreover, the “interval extended
zero” method did not affect the speed of calculations in the block Gaussian elim-
ination algorithm in comparison with the classic interval division method. The
interval block Gaussian elimination algorithm was parallelized with the use of
two parallel environments - OpenMP and SMP Superscalar, and tested on a
machine with four dual-core processors. The obtained values of efficiency Ep, no
less than 0.94, prove that the developed method can be efficiently parallelized
using the multithreaded programming model.

214 M. Pilarek and R. Wyrzykowski

References

1. Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief, H.,
Luszczek, P., Tomov, S.: Numerical Linear Algebra on Emerging Architectures: The
PLASMA and MAGMA Projects. Journal of Physics: Conference Series 180 (2009)

2. Anderson, E., Bai, Z., Bischof, C., Blackford, L.S., Demmel, J.W., Dongarra, J., Du
Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK
Users’ Guide. SIAM (1992)

3. Badia, R.M., Labarta, J., Perez, J.M.: A Flexible and Portable Programming Model
for SMP and Multi-cores. Tech. Report, Barcelona Supercomputing Center (2007),
http://www.bsc.es/media/994.pdf

4. Berg, D., Lewis, B.: PThreads Primer A Guide to Multithreaded Programming.
Prentice Hall PTR (1996)

5. Blackford, L., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, J., Don-
garra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley,
R.C.: ScaLAPACK Users’ Guide. SIAM (1997)

6. Boost Interval Arithmetic Library, http://www.boost.org/doc/libs/1 43 0/libs/

numeric/interval/doc/interval.htm
7. Buckley, J.J.: The fuzzy mathematics of finance. Fuzzy Sets & Systems 21, 257–273

(1987)
8. Buckley, J.J.: Solving fuzzy equations in economics and finance. Fuzzy Sets &

Systems 48 (1992)
9. Chapman, B., Jost, G., van der Pas, R.: Using OpenMP: Portable Shared Memory

Parallel Programming. MIT Press (2007)
10. Chen, S.H., Yang, X.W.: Interval finite element method for beam structures. Finite

Elements in Analysis and Design 34, 75–88 (2000)
11. Demmel, J.W.: Applied Numerical Linear Algebra. SIAM (1997)
12. Dymova, L., Pilarek, M., Wyrzykowski, R.: Solving Systems of Interval Linear

Equations with Use of Modified Interval Division Procedure. In: Wyrzykowski, R.,
Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2009. LNCS, vol. 6068,
pp. 427–435. Springer, Heidelberg (2010)

13. Sevastjanov, P.V., Dymova, L.: Fuzzy Solution of Interval Linear Equations. In:
Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007.
LNCS, vol. 4967, pp. 1392–1399. Springer, Heidelberg (2008)

14. Dymova, L., Sevastjanov, P.: A new method for solving interval and fuzzy equa-
tions: linear case. Information Sciences 17, 925–937 (2009)

15. Goualard, F.: Fast and Correct SIMD Algorithms for Interval Arithmetic. INRIA
(2008), http://hal.archives-ouvertes.fr/docs/00/28/84/56/PDF/intervals-

sse2-long-paper.pdf
16. Knuppel, O.: Profil/BIAS v2.0,

http://www.ti3.tu-harburg.de/keil/profil/Profil2.ps.gz
17. Lambov, B.: RealLib 3 Manual,

http://www.brics.dk/~barnie/RealLib/RealLib.pdf
18. Leontief, W.: Quantitative input-output relations in the economic system of the

United States. Review of Economics and Statistics 18, 100–125 (1936)
19. Moore, R.E.: Interval Arithmetic and Automatic Error Analysis in Digital

Computing. PhD thesis, Stanford University (1962)
20. SMP Superscalar (SMPSs) User’s Manual. Barcelona Supercomputing Center

(2009), http://www.bsc.es/media/3576.pdf
21. Wu, C.C., Chang, N.B.: Grey input-output analysis and its application for envi-

ronmental cost allocation. European Journal of Operational Research 145, 175–201
(2003)

http://www.bsc.es/media/994.pdf
http://www.boost.org/doc/libs/1_43_0/libs/numeric/interval/doc/interval.htm
http://www.boost.org/doc/libs/1_43_0/libs/numeric/interval/doc/interval.htm
http://hal.archives-ouvertes.fr/docs/00/28/84/56/PDF/intervals-sse2-long-paper.pdf
http://hal.archives-ouvertes.fr/docs/00/28/84/56/PDF/intervals-sse2-long-paper.pdf
http://www.ti3.tu-harburg.de/keil/profil/Profil2.ps.gz
http://www.brics.dk/~barnie/RealLib/RealLib.pdf
http://www.bsc.es/media/3576.pdf

GPU-Based Parallel Algorithms

for Transformations of Quantum States
Expressed as Vectors and Density Matrices

Marek Sawerwain

Institute of Control & Computation Engineering,
University of Zielona Góra, ul. Podgórna 50, Zielona Góra 65-246, Poland

M.Sawerwain@issi.uz.zgora.pl

Abstract. In this paper the parallel algorithms to simulate measure-
ments and unitary operations in the quantum computing model are
presented. The proposed solutions are implemented using the CUDA
technology. Moreover, a more effective routine for processing density ma-
trices is presented. The main advantages of this approach are the reduced
memory requirement and a good use of the computing power of the GPU
hardware. Additionally, the proposed solution can be used to simulate
circuits build from qubits or qudits.

Keywords: GPGPU, CUDA, parallel computations, quantum compu-
tations.

1 Introduction

In spite of a ceaseless development of the quantum information science
(fundamental information about the quantum computations can be found in
books [7], and in the paper [2]) and a significant effort of researchers, the hard-
ware to perform a quantum computations still exists only in a form of laboratory
experiments. Unfortunately, the size of quantum data is exponential and gener-
ally the computational complexity to perform simulations is denoted as O(2n).

Currently, in most cases simulations of a quantum computation model are
done by direct application of mathematical definitions e.g. [11]. The main ad-
vantage of such an approach is easier access to wide set of mathematical tools
which are necessary to examine the simulated quantum system (and many par-
allel programming techniques can be directly applied to simulations of the quan-
tum computation models e.g. [8], [10]). The most used ones are fidelity measure
or complete positive maps [1] which are used to model the quantum noise. The
direct approach allows also to use e.g. advanced methods of detection of entangle-
ment (this notion does not appear in the classical theory of computer science).
The main drawback is exponential computational complexity. Therefore, any
additional solution (especially parallel, and for a wide review of numerical com-
putations, see e.g. [6], [4]) which reduces the computational complexity is very
useful.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 215–224, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

216 M. Sawerwain

This paper shows the methods which can be regarded as a special case of the
approaches presented in works [9], [3] and [5]. This contribution concentrates
on the simulation of quantum systems with and without the noise presence.
This article is organised as follows. In section 2 the basic information about
the quantum computation model directly connected with discussed methods is
given. In section 3 the proposed parallel algorithms of processing of state vector
and density matrix are discussed. The performance results are given in section
4. Finally, section 5 summarises this contribution and points out some ideas for
future research.

2 Basic Information about Quantum Computing Model

The definitions of a qubit (and it generalisation called qudit) as an unit of
quantum information and a notion of quantum register (a sequence of such
units) are key elements of the quantum computations model. The state of any
unknown pure qubit (using the Dirac’s notation) can be depicted in the following
way:

|ψ〉 = α|0〉+ β|1〉 =

[
α
β

]
α, β ∈ C and |α|2 + |β|2 = 1, (1)

where C is a set of a complex numbers and vectors |0〉, |1〉 are defined as:

|0〉 =

[
1
0

]
, |1〉 =

[
0
1

]
, (2)

It must be stressed that vectors given in the equation (2) forms the standard
computational base for the qubit.

A quantum register is a system formed form n qubits/qudits. Such a system
is called a state vector:

|Ψ〉 = |ψ0〉 ⊗ |ψ1〉 ⊗ . . .⊗ |ψn−1〉. (3)

Individual elements of a state vector |Ψ〉 are called the probability amplitudes.

Remark 1. It must be emphasised that there exist cases where the state vector
can not be expressed by a tensor product of sequence of qubits or qudits. In such
situations a state is called an entangled state.

The dimension of a state vector for a qubit case (d = 2) is equal to 2n, whereas
for a more general qudit case (d > 2) it equals dn.

The representation of a density matrix of an unknown pure state of qubit |ψ〉
is denoted by formula (A) in the equation given below. The representation of a
quantum register composed from density matrices is given by formula (B):

(A) : ρ = |ψ〉〈ψ| =

[
α2 αβ
αβ β2

]
, (B) : ρ =

∑
i

λi|ψi〉〈ψi|. (4)

GPU-Based Parallel Algorithms for Transformations of Quantum States 217

Additionally, the vector 〈ψ| represents the transposed vector |ψ〉 and the prob-
ability for state |ψi〉 is denoted by λi (obviously,

∑
i λi = 1). In quantum me-

chanics such states are called mixed states.
The unitary operators (denoted by U) are one of the basic operations which

can act on the quantum registers. Each unitary operation U always has a reverse
operation U †, what is a direct consequence of unitarity of U . The application
of U for state expressed as the state vector (equation (A) below) and density
matrix (equation (B)) are governed by simple formulas:

(A) : U |ψ0〉 = |ψ1〉, (B) : Uρ0U
† = ρ1. (5)

These operations are very computationally expensive. The density matrices re-
quire two additional multiplications of matrices with size 2n × 2n.

The essential problem is the process of building the operation matrix U from
the set of smaller unitary matrices acting only on a given qubits/qudits of the
quantum register. If we want to apply two different unitary operations u1 and
u2 to the first and third qudit of the quantum register |ψ〉, one approach is to
act on |ψ〉 with the following tensor product:

U = u1 ⊗ I ⊗ u2 (6)

where I represents the identity matrix. The operation (6) is however very com-
putationally expensive. A much better option is to utilise the algorithm given in
section 3, which avoids the necessity of calculating U altogether.

The second type of operation which can be applied to the quantum register
is the measurement procedure. Here we only concentrate on the most commonly
used one, termed the von Neumann measurement.

The realisation of von Neumann measurement begins with the preparation of
an observable M , calculated using formula (A) of equation (7):

(A) : M =
∑
i

λiPi, (B) : p(λi) = 〈ψ|Pi|ψ〉, (C) :
Pi|ψ〉√
λi

(7)

where Pi is the projector of eigenspace of an operator M . The results of the
measurement are represented by eigenvalues λi. The results are given only with
some probability function P — see formula (B) of equation (7). The obtained
result λi means that the register |ψ〉 is collapsed to the state given by the formula
(C) of the before mentioned equation.

3 Algorithms for Parallel Processing of Quantum States

The algorithms for parallel processing of quantum states outlined in this work
are based on executing a special algorithm (which are discussed in detail in
section 3.2) on a number of sub-marices, cut out of a unitary operation matrix
U . First, the following invariants for an algorithm of selection of the before
mentioned sub-matrices must be given:

218 M. Sawerwain

Proposition 1. Let n denote the size of a quantum register, t — the number of
modifying qudits and d — the level of a qudit, then:

(I) the number of sub matrices is given by m = dn−1,
(II) the value of step between elements of small matrices is as follows step =

dn−t−1,
(III) the number of blocks equals to p = dt−1,
(IV) the distance or the size of a single block is denoted as vstep = dn

p .

3.1 The Measurement of Quantum States as Parallel Reduction
Primitive

The von Neumann measurement can be implemented by reduction operation if
the measurement is performed in the standard base (in many currently known
quantum algorithms the measurements are performed in the standard base).
Figure (1) shows the situation where information about probability is collected
using the reduction operation. The fast realisation of this operation is possible,
as each element of the state vector can be processed independently.

α000

p0

p1

p0

p1

p0

probability for state zero

probability for state one

p1

α001

p1

α010 α011 α100 α101 α110 α111

Fig. 1. Gathering information about probability for a three qubits quantum register.
It is assumed that the second qubit is measured.

Algorithm 1 shows the pseudo-code for realisation of the quantum measure-
ment. The implementation of this algorithm on the GPU can be realised directly
using a reduction parallel primitive. This can be accomplished using several well-
known approaches.

In section 4 the timing for the computational kernel where the sequential
addressing is used is presented. Additionally, the results when the kernel loops
are unrolled and threads process multiple elements (using the coalesced access
to the memory) to improve the final performance are also shown. It must be
stressed that the improvement of performance is achieved (at least partially)
due to the proper use of the shared memory.

GPU-Based Parallel Algorithms for Transformations of Quantum States 219

Algorithm 1. The computation routine for von Neumann measurement, parameter qReg repre-
sents the quantum register, fd denotes the level of qudit, n denotes number of qudits, mi represents
mask of qudits which will be measured, the expression i |= mj means that index i fulfils the mea-
surement mask mj

1: procedure QMI(qReg, fd, n, m0, ..., mfd)
2: size ← fdn

3: for i ← 0; i < size; i++ do in parallel
4: f ← |qReg[i]|2
5: if (i |= m0) = true then pi

0 ← pi
0 + f

6: if (i |= m1) = true then pi
1 ← pi

1 + f
7: . . .
8: if (i |= mfd) = true then pi

fd ← pi
fd + f

9: end for
10: r,m ← randomly select from (pi

0, m0), (p
i
1,m1), . . . , (p

i
fd,mfd)

11: for i ← 0; i < size; i++ do in parallel
12: zero qReg[i] if not i |= m
13: if (|qReg[i]|! = 0) qReg[i] ← 1

r qReg[i]

14: end for
15: end procedure

3.2 Unitary Transformations for States Vectors and Density
Matrices

The algorithm 2 shows how the values obtained using proposition 1 are used for
addressing the elements in the space of a state vector. The two for-like loops
are a key ingredients of the presented solution. Indices generated by these loops
are used to select the independently-processed elements of a state vector. For
the implementation using the CUDA technology, the before mentioned for-like
loops are substituted by the computation grid. Obviously, the configuration of
the grid (the number of blocks and threads in the blocks) is critical for obtaining
a good performance results.

Algorithm 2. The processing of the state vector for a one-qudit gate case. Parameter qReg
denoted the quantum register, fd represents the level of qudit, n denotes the number of qudits, t is
an index of the modified qudit and u represents an unitary matrix

1: procedure VST(qReg, fd, n, t, u)

2: m ← fdn−1 ; step ← fdn−t − 1 ; p ← fdt−1 ; vstep ← (fdn)/p ; irow ← 0
3: for ip ← 0; ip < p; ip++ do
4: for i ← 0; i < step + 1; i++ do in parallel
5: r1 ← irow + 1 ∗ (step + 1) + i
6: r2 ← irow + 2 ∗ (step + 1) + i
7: ...
8: rk ← irow + fd ∗ (step + 1) + i
9: OperOnRows(qReg, [r1, r2, ..., rk], u)
10: end for
11: irow ← irow + vstep
12: end for
13: end procedure

Nevertheless, after computing the indices, the transformation of probabilities
is performed using a user defined function called OperOnRows. The idea of
OperOnRows is easily depicted by the following equation:

220 M. Sawerwain

⎡
⎢⎢⎢⎣

qReg[r1]
qReg[r2]

.

.

.
qReg[rd]

⎤
⎥⎥⎥⎦ ←

⎡
⎢⎢⎢⎢⎢⎣

u11 u1d

.

.

.
.
.
.

.

.

.
.
.
.

ud1 udd

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

qReg[r1]
qReg[r2]

.

.

.
qReg[rd]

⎤
⎥⎥⎥⎦ (8)

where parameter qReg represents the quantum register, r is a set of indices
generated by the algorithm 2 and u is a suitable unitary matrix with the di-
mensions d× d, where d represents the level of qudit. The OperOnRows routine
is executed in parallel, as the elements from the state vector can be processed
independently. This is shown on figure 2. Similar to the case of a state vector

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α . . . β . . .
. α . . . β . .
. . α . . . β .
. . . α . . . β
γ . . . δ . . .
. γ . . . δ . .
. . γ . . . δ .
. . . γ . . . δ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α0|000
α1|001
α2|010
α3|011
α4|100
α5|101
α6|110
α7|111

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αα0 + βα4

αα1 + βα5

αα2 + βα6

αα3 + βα7

γα0 + δα4

γα1 + δα5

γα2 + δα6

γα3 + δα7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A

B

C

D

A: α0 = αα0 + βα4

A: α4 = γα0 + δα4

B: α1 = αα1 + βα5

B: α5 = γα1 + δα5

C: α2 = αα2 + βα6

C: α6 = γα2 + δα6

D: α3 = αα3 + βα7

D: α7 = γα3 + δα7

OperOnRows

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A00|0000
B01|0001
C02|0010
D03|0011
E04|0100
F05|0101
G06|0110
H07|0111
A08|1000
B09|1001
C10|1010
D11|1011
E12|1100
F13|1101
G14|1110
H15|1111

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The three qubit register The four qubit register

Fig. 2. The example of independent operations (A, B, C, D – for three qubit register
and A, B, . . . , H – for four qubit register) for the task of the state vector processing

using the values from proposition 1, the algorithm 3 for processing density matri-
ces can be formulated. The transformation is performed in-place, without using
any additional matrices. The processing of density matrices is also divided into
independent operations which are depicted on figure 3.

The idea of OperOnMatrix routine is very similar to the routine OperOnRows:

[
dmx,y dmx+s+1,y

dmx,y+s+1 dmx+s+1,y+s+1

]
←

[
u1 u2

u3 u4

] [
dmx,y dmx+s+1,y

dmx,y+s+1 dmx+s+1,y+s+1

] [
u†
1 u†

2

u†
3 u†

4

]
(9)

where the x, y values determines the row and column of the first element and
s represents the step (distance) between elements (see figure 3).

4 Performance of Proposed Methods

The methods proposed in the previous sections belong to a family of methods
which perform simulation of a quantum circuit on a gate-by-gate basis (simi-
lar to the ones described in [3], [9] and [5]). In every computational kernel the
complex number is represented by the user-defined type. The implementation of

GPU-Based Parallel Algorithms for Transformations of Quantum States 221

⎛⎜⎝ e (au11 + bu31) + g (au13 + bu33) e (au12 + bu32) + g (au14 + bu34) f (au11 + bu31) + h (au13 + bu33) f (au12 + bu32) + h (au14 + bu34)
e (au21 + bu41) + g (au23 + bu43) e (au22 + bu42) + g (au24 + bu44) f (au21 + bu41) + h (au23 + bu43) f (au22 + bu42) + h (au24 + bu44)
e (cu11 + du31) + g (cu13 + du33) e (cu12 + du32) + g (cu14 + du34) f (cu11 + du31) + h (cu13 + du33) f (cu12 + du32) + h (cu14 + du34)
e (cu21 + du41) + g (cu23 + du43) e (cu22 + du42) + g (cu24 + du44) f (cu21 + du41) + h (cu23 + du43) f (cu22 + du42) + h (cu24 + du44)

⎞⎟⎠
A: {u11, u31, u13, u33}

B: {u21, u41, u23, u43}

C: {u22, u42, u24, u44}
D: {u12, u32, u14, u34}

The two qubit quantum register

The three qubit quantum register

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A B C D A B C D

E F G H E F G H

I J K L I J K L

M N O P M N O P

A B C D A B C D

E F G H E F G H
I J K L I J K L

M N O P M N O P

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

d
is

ta
n

ce
b

et
w

ee
n

el
em

en
ts

d
is

ta
n

ce
b

et
w

ee
n

el
em

en
ts

distance between elements

distance between elements

Fig. 3. The example of independent operations (four operations for two qubit denisty
matrix, and sixteen operations for three qubit density matrix) in the processing task
of the quantum state represented by the density matrix

complex numbers available in the CUDA SDK (types cuFloatComplex and cuD-
oubleComplex) reduces the performance due to a more complex implementation
to preserve the numerical stability.

The performance results shown in Tables 1 and 2 refer to the simulation of the
measurement of a single qubit. Two kernels are used in these benchmarks. The
first kernel (columns name ending with V1) uses only a sequential addressing
whereas the second kernel (columns name ending with V2) uses both the un-
roll loops optimisation technique and sequential addressing to processes several
elements with each thread which increasing the final performance. The men-
tioned computational routines were also implemented and executed on a system
with two Intel Xeon E5420 2.5 Ghz processor using eight computational threads
(column CPU MT).

Algorithm 3. The processing of a density matrix for a one-qubit gate. The first parameter dm
represents the density matrix and remaining parameters have the same meaning as in the algorithm 2

1: procedure DMT(dm, n, t, u)

2: step = 2n−t − 1 ; p = 2t−1

3: vstep = (2n)/p ; sizeReg = 2n

4: for i = 0; i < sizeReg; i+ = vstep do
5: for j = 0; j < sizeReg; j+ = vstep do
6: for x = 0; x < step + 1; x + + do
7: for y = 0; y < step + 1; y + + do
8: OperOnMatrix((dm, t, i+ x, j + y, step, u, u†));
9: end for
10: end for
11: end for
12: end for
13: end procedure

222 M. Sawerwain

Table 1. The time and throughput for the measurement operation of the first qubit
of a quantum register

No. CPU MT G280 V1 G470 V1 G280 V2 G470 V2

qubits Time in s GB/s Time in s GB/s Time in s GB/s Time in s GB/s Time in s GB/s

17 0,005 0,21 0,0001 7,65 0,0002 5,09 0,0001 21,97 0,0001 11,00
18 0,005 0,44 0,0002 9,40 0,0002 8,86 0,0001 31,87 0,0001 20,30
19 0,005 0,83 0,0004 10,59 0,0003 11,73 0,0001 39,83 0,0001 33,66
20 0,008 1,04 0,0007 11,51 0,0005 16,27 0,0002 48,00 0,0002 48,32
21 0,012 1,40 0,0014 12,02 0,0009 19,77 0,0003 53,61 0,0003 64,97
22 0,022 1,42 0,0027 12,27 0,0015 22,36 0,0006 58,02 0,0004 80,63
23 0,046 1,45 0,0054 12,42 0,0028 23,63 0,0011 59,98 0,0007 90,49
24 0,085 1,57 0,0108 13,83 0,0055 24,54 0.0022 61,11 0,0014 96,51

The best results were obtained for the kernel V2, but the size of the compu-
tational grid and the number of threads per block are very important. In case
of Geforce 280GT the number of threads per block is equal to 256 and for the
Geforce 470GT it equals 512. However, the higher performance was obtained only
for the quantum register containing 22, 23, 24 qubits which is a simple conse-
quence of the configuration of computational grid optimised for a larger quantum
register. The larger number of threads reduces the performance in case of newer
GPUs, because these threads do not have enough data to process and the whole
computational grid is always kept fully synchronised. A good performance was
also obtained in case of density matrices. Table (3) shows the results of a test
where the Hadamard operation was applied on each of the 13 qubits of a given
quantum register. This test also shows the advantage of a newer GPUs called
Fermi, with its improvement memory transfer. A slower sequential addressing
algorithm run on the Fermi is faster than the optimised version of kernel V2
running on the Geforce 280GT card. The figure (4) shows the performance of
a more practical example where the simulation of the Grover’s algorithm (de-
scribed in [7] and many others) is performed. The best speedup was obtained
for the system containing twenty qubits. In this case the circuit contains exactly
485 gates, mainly single qubit gates and a few control gates. The configuration
of the computational grid for the GPU computation kernels was the same as in
previously discussed benchmarks.

Table 2. The time and throughput for a benchmark where the Hadamard gate is
applied on each qubit of a quantum register

No. CPU MT G280 v1 G470 v1 G280 v2 G470 v2

qubits Time GB/s Time GB/s Time GB/s Time GB/s Time in s GB/s

17 0,022 0,047 0,0012 16,03 0,0014 12,66 0,0006 33,90 0,0012 14,07
18 0,047 0,044 0,0021 17,80 0,0020 19,27 0,0010 37,69 0,0015 24,63
19 0,084 0,049 0,0040 19,57 0,0029 27,94 0,0021 39,87 0,0021 39,05
20 0,158 0,053 0,0081 21,72 0,0046 37,81 0,0041 42,98 0,0031 54,41
21 0,302 0,055 0,0165 22,42 0,0082 44,23 0,0096 44,56 0,0053 68,19
22 0,516 0,065 0,0339 22,79 0,0158 48,06 0,0169 45,12 0,0099 76,69
23 0,911 0,073 0,0763 22,91 0,0314 50,60 0,0382 45,78 0,0188 84,34
24 1,659 0,080 0,1734 23,34 0,0639 51,99 0,0955 46,16 0,0375 88,26

GPU-Based Parallel Algorithms for Transformations of Quantum States 223

Table 3. The processing time of a density matrix (for a quantum register containing
13 qubits) on the Intel 86x64 architecture processors compared to the computational
kernels V1 and V2 on a GPU. The speedup is calculated taking into account the best
CPU result

CPU 1th CPU 2th CPU 4th CPU 8th

Device Time GB/s Time GB/s Time GB/s Time GB/s

Intel Core 2 Duo E8400 3.0 Ghz 125.67 0,0043 74.68 0,0072 — — — —
2 x Xeon E5420 2.5 Ghz 87,14 0,0062 46,83 0,011 14,57 0,0368 7,17 0,0748

Kernel V1 Kernel V2 Speedup

Time GB/s Time GB/s V1 V2

G280 36,3021 0,20 2,90 2,159 0.19 2,47
G470 0,4978 14,42 0,14 49,064 14,41 51,21

150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

Number of gates in Grover’s Algorithm

S
pe

ed
up

 v
al

ue

Geforce 280, 256 threads/block
Geforce 460, 512 threads/block
Geforce 470, 512 threads/block

150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

110

Number of gates in Grover’s Algorithm

S
pe

ed
up

 v
al

ue

Geforce 280, 256 threads/block
Geforce 460, 512 threads/block
Geforce 470, 512 threads/block

Fig. 4. The values of a speedup obtained for the simulation of Grover’s algorithm. The
speedup was calculated for the serial implementation executed on a single computa-
tional core of Intel Core i7 950 3.0 Ghz processor.

5 Conclusions and Further Work

The proposed methods show the significant speedup of the quantum data pro-
cessing. The operation on the quantum register can be simulated on the GPU up
to one hundred times faster than on a traditional single-core processor or fifty
times faster than on a modern eight core CPU.

The presented methods are very flexible, as they can be used not only for
systems built from qubits but also from qudits. Moreover, they can be used for
transforming the density matrices.

Currently, development concentrates on adaptation of the binary diagrams
(BD) techniques for simulating quantum systems (see [12]) on the GPU.

Acknowledgments. I would like to take this opportunity to thank �Lukasz
H�ladowski and Roman Gielerak for useful comments and endless discussions.
I would like to thank to anonymous referees for useful comments on the prelim-
inary version of this paper. The numerical results and benchmarks were done
using the hardware and software available at the ”GPU Mini-Lab” located at
the Institute of Control and Computation Engineering (ISSI) of the University
of Zielona Góra, Poland.

224 M. Sawerwain

References

1. Bengtsson, I., Życzkowski, K.: Geometry of Quantum States: An Introduction to
Quantum Entanglement. Cambridge University Press (2006)

2. Feynman, R.P.: Simulating physics with computers. Int. J. Theoretical
Physics 21(6/7), 467–488 (1982)

3. Glendinning, I., Ömer, B.: Parallelization of the QC-Lib Quantum Computer Sim-
ulator Library. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J.
(eds.) PPAM 2004. LNCS, vol. 3019, pp. 461–468. Springer, Heidelberg (2004)

4. Guarracino, M.R., Perla, F., Zanetti, P.: A parallel block Lanczos algorithm and its
implementation for the evaluation of some eigenvalues of large sparse symmetric
matrices on multicomputers. Int. J. App. Math. and Comp. Sci. 16(2), 241–249
(2006)

5. Gutierrez, E., Romero, S., Trenas, M.A., Zapata, E.L.: Quantum computer sim-
ulation using the CUDA programming model. Computer Physics Communica-
tions 181(2), 283–300 (2010)

6. Hwu, W.W. (ed.): GPU Computing Gems Emerald Edition. Morgan Kaufmann
Publishers (2011)

7. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information.
Cambridge University Press, New York (2000)

8. Niwa, J., Matsumoto, K., Imai, H.: General-purpose parallel simulator for quantum
computing. Phys. Rev. A 66, 062317 (2002)

9. Sawerwain, M.: Parallel Algorithm for Simulation of Circuit and One-Way Quan-
tum Computation Models. In: Wyrzykowski, R., Dongarra, J., Karczewski, K.,
Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 530–539. Springer,
Heidelberg (2008)

10. Tabakin, F., Juliá-Dı́az, B.: QCMPI: A Parallel Enviroment for Quantum Com-
puting. Computer Physics Communications 180(6), 948–964 (2009)

11. Tóth, G.: QUBIT4MATLAB V3.0: A program package for quantum informa-
tion science and quantum optics for MATLAB. Computer Physics Communica-
tions 179(6), 430–437 (2008)

12. Viamontes, G.F., Markov, I.L., Hayes, J.P.: Quantum Circuit Simulation. Springer,
Heidelberg (2009)

Generalizing Matrix Multiplication for Efficient

Computations on Modern Computers

Stanislav G. Sedukhin1 and Marcin Paprzycki2

1 The University of Aizu, Aizuwakamatsu City, Fukushima 965-8580, Japan
sedukhin@u-aizu.ac.jp

2 Systems Research Institute Polish Academy of Sciences, Warsaw, Poland
marcin.paprzycki@ibspan.waw.pl

Abstract. Recent advances in computing allow taking new look at ma-
trix multiplication, where the key ideas are: decreasing interest in re-
cursion, development of processors with thousands (potentially millions)
of processing units, and influences from the Algebraic Path Problems.
In this context, we propose a generalized matrix-matrix multiply-add
(MMA) operation and illustrate its usability. Furthermore, we elaborate
the interrelation between this generalization and the BLAS standard.

Keywords: matrix matrix multiplication, algebraic semiring, path
problem, fused multiply add, BLAS, matrix data manipulation.

1 Introduction

Dense matrix multiplication is widely used in solution of computational problems.
Despite its simplicity, the arithmetic complexity and data dependencies make it
difficult to reduce its run-time complexity. The two basic approaches to decrease
the run-time of matrix multiplication are: (1) reducing the number of scalar multi-
plications, while increasing the number of scalar additions/subtractions
(and introducing irregularity of data access, as well as need for extra memory; see,
discussion in [1]), and (2) parallel implementation of matrix multiplication (see,
for example [2] and references found there). Of course, a combination of these two
approaches is also possible (see discussion and references in [3–5]).

The (recursive) matrix multiplication “worked well” in theoretical analysis of
arithmetical complexity, and when implemented on early computers. However,
its implementation started to became a problem on computers with hierarchical
memory (e.g. to reach optimal performance of a Strassen-type algorithm, recur-
sion had to be stopped when the size of divided submatrices approximated the
size of cache memory—differing between machines; see, [6, 7]), which contradicts
the very idea of recursion. Furthermore, practical implementation of Strassen-
type algorithms requires extra memory (e.g. Cray’s implementation Strassen’s
algorithm required extra space of order 2.34 · n2). The situation became even
more complex when parallel Strassen-type algorithms have been implemented [5].
Interestingly, the research in recursive matrix multiplication seems to be dimin-
ishing, with the last paper known to the authors’ published in 2006.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 225–234, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

226 S.G. Sedukhin and M. Paprzycki

In addition to the standard (linear-algebraic) matrix multiplication, a more
general matrix multiplication appears as a kernel of algorithms solving the Alge-
braic Path Problem (APP). Here, the examples are: finding the all-pairs shortest
paths, finding the most reliable paths, etc. In most of them, a generalized form
of a C ← C ⊕ A ⊗ B matrix operation plays a crucial role in finding the solu-
tion. This, generalized, matrix multiplication is based on the algebraic theory
of semirings (for an overview of computational issues in the APP, and their re-
lation to the theory of semirings, see [8], and references collected there). Note
that standard linear algebra (with its matrix multiplication) is just one of the
examples of algebraic (matrix) semirings.

While algebraic semirings can be seen as a simple “unification through general-
ization” of a large class of computational problems, they should be viewed in the
context of ongoing changes in computer (processor) architectures. Specifically,
the success of fused multiply-and-add (FMA) units, which take three scalar (in)
operands and produce a single (out) result within a single clock cycle. Further-
more, GPU processors from Nvidia and AMD combine multiple FMA units (e.g.
the Nvidia’s Fermi chip allows 512 single-precision FMA operations completed
in a single cycle; here, we omit issues concerning the data-feed bottleneck).

Our aim is to combine: (a) fast matrix multiplication, (b) mathematics of
semirings, and (c) trends in computer hardware, to propose a generalized matrix
multiplication, which can be used to develop efficient APP solvers.

2 Algebraic Semirings in Scientific Calculations

Since 1970’s, a large number of problems has been combined under a single
umbrella, named the Algebraic Path Problem (APP ; see [9]). Furthermore, it
was established that the matrix multiply-and-add (MMA) operations, in different
algebraic semirings, are used as a centerpiece of various APP solvers.

A closed semiring (S,⊕,⊗, ∗, 0̄, 1̄) is an algebraic structure defined for a set
S, with two binary operations: addition ⊕ : S × S → S and multiplication
⊗ : S×S → S, a unary operation called closure � : S → S, and two constants 0̄
and 1̄ in S. Here, we are particularly interested in the set S consisting of matrices.
Thus, following [9], we introduce a matrix semiring (Sn×n,

⊕
,
⊗
,�, Ō, Ī) as a

set of n × n matrices Sn×n over a closed scalar semiring (S,⊕,⊗, ∗, 0̄, 1̄) with
two binary operations, matrix addition

⊕
: Sn×n × Sn×n → Sn×n and matrix

multiplication
⊗

: Sn×n × Sn×n → Sn×n, a unary operation called closure of a
matrix � : Sn×n → Sn×n, the zero n× n matrix Ō whose all elements equal to
0̄, and the n× n identity matrix Ī whose all main diagonal elements equal to 1̄
and 0̄ otherwise. Here, matrix addition and multiplication are defined as usually
in linear algebra. Note that the case of rectangular matrices can be dealt with
satisfactorily, and is omitted for clarity of presentation.

As stated, large number of matrix semirings appear in well-studied APP’s.
We summarize some of them in a table (similar to that presented in [10]). For
simplicity of notation, in the Table 1, we represent them in the scalar form.
Note that the Minimum reliability path problem has not been encountered by

Matrix Multiplication for Efficient Computations on Modern Computers 227

Table 1. Semirings for various APP problems

S ⊕ ⊗ � 0̄ 1̄ Application

(0, 1) ∨ ∧ 1 0 1 Transitive and reflexive closure of binary relations
R ∪+∞ + × 1/(1−r) 0 1 Matrix inversion
R+∪+∞ min + 0 ∞ 0 All-pairs shortest paths problem
R+∪−∞ max + 0 -∞ 0 Maximum cost (critical path)
[0, 1] max × 1 0 1 Maximum reliability paths
[0, 1] min × 1 0 1 Minimum reliability paths
R+∪+∞ min max 0 ∞ 0 Minimum spanning tree
R+∪−∞ max min 0 -∞ 0 Maximum capacity paths

the authors before. It was defined on the basis of systematically representing
possible semirings—as a natural counterpart to the Maximum reliability problem
(the only difference is the ⊕ operation:min instead ofmax). Since the maximum
reliability path defines the best way to travel between two vertices of a graph; the
Minimum reliability problem could be interpreted as: finding the worst pathway,
one that should not be “stepped into”).

While Table 1 summarizes the scalar semirings, and scalar operations, kernels
of blocked algorithms for solving the APP, are based on (block) MMA opera-
tions [11]. Therefore, let us present the relation between the scalar multiply-
and-add operation (ω), and the corresponding MMA kernel (α), for semirings in
Table 1 (here, Nb is the size of a matrix block; see, also [12]):

– Matrix Inversion Problem:
(α) a(i, j) = a(i, j) +

∑Nb−1
k=0 a(i, k)× a(k, j);

(ω) c = a× b+ c;
– All-Pairs Shortest Paths Problem:

(α) a(i, j) = min
{
a(i, j),minNb−1

k=0 [a(i, k) + a(k, j)]
}

;
(ω) c = min(c, a+ b);

– All-Pairs Longest (Critical) Paths Problem:
(α) a(i, j) = max

{
a(i, j),maxNb−1

k=0 [a(i, k) + a(k, j)]
}

;
(ω) c = max(c, a+ b);

– Maximum Capacity Paths Problem:
(α) a(i, j) = max

{
a(i, j),maxNb−1

k=0 min[a(i, k), a(k, j)]
}

;
(ω) c = max[c,min(a, b)];

– Maximum Reliability Paths Problem:
(α) a(i, j) = max

{
a(i, j),maxNb−1

k=0 [a(i, k)× a(k, j)]
}

;
(ω) c = max(c, a× b);

– Minimum Reliability Paths Problem:
(α) a(i, j) = min

{
a(i, j),minNb−1

k=0 [a(i, k)× a(k, j)]
}

;
(ω) c = min(c, a× b);

– Minimum Spanning Tree Problem:
(α) a(i, j) = min

{
a(i, j),minNb−1

k=0 [max
(
a(i, k), a(k, j)]

}
;

(ω) c = min[c,max(a, b)].

228 S.G. Sedukhin and M. Paprzycki

Summarizing, the generalized MMA is one of the key operations for solving APP
problems, and a large class of standard MMA-based numerical linear algebraic
algorithms. Note that, this latter class includes most of block-oriented formula-
tions of standard problems involving the level 3 BLAS operations [13].

3 Matrix Operations and Computer Hardware:
Today and in the Near Future

In the late 1970’s it was realized that many algorithms for matrix computations
consist of similar building blocks (e.g. a vector update, or a dot-product). As a
result, first, during the design of the Cray-1 supercomputer, vector operations of
type y ← y+α ·x (where x and y are n-element vectors, while α is a scalar) have
been efficiently implemented in the hardware. Specifically, vector processors have
been designed with chaining of multiply-and-add operations [14]. Here, results
of the multiply operations have been forwarded directly from the multiplication
unit to the addition unit. Second, in 1979, the (level 1) BLAS standard was pro-
posed [15], which defined, a set of vector operations. Here, it was assumed that
computer vendors would provide their efficient hardware (and software) realiza-
tions. In this spirit, Cray Inc. built computers with efficient vector updates, and
developed the scilib library; while the IBM build the ES/9000 vector comput-
ers with efficient dot-product operation, and developed the ESSL library. This
library was later ported to the IBM RS/6000 workstations; the first commercial
computer to implement the fused multiply-add (FMA) operation [16]). Following
this path, most of today advanced processors from IBM, Intel, AMD, Nvidia,
and others include scalar floating-point fused multiply-add (FMA) instruction.

The FMA operation combines two basic floating-point operations (flops) into
one (three-read-one-write) operation with only one rounding error, throughput
of two flops per cycle, and a few cycles latency – depending on the depth of the
FMA pipeline. Besides the increased accuracy, the FMA minimizes operation
latency, reduces hardware cost, and chip busing [16]. The standard floating-point
add, or multiply, are performed by taking a = 1.0 (or b = 1.0) for addition, or
c = 0.0 for multiplication. Therefore, the two floating-point constants, 0.0 and
1.0, are needed (and made available within the processor).

FMA-based kernels speed-up (∼ 2×) solution of many scientific, engineer-
ing, and multimedia problems, which are based on the linear algebra (matrix)
transforms [17]. However, other APP problems suffer from lack of hardware sup-
port for the needed scalar FMA operations (see, Table 1). The need for min
or/and max operations in the generalized MMA operations introduces one or
two conditional branches or comparison/selection instructions, which are highly
undesirable for deeply pipelined processors. Recall that each of these operations
is repeated Nb-times in the corresponding kernel (see, Section 2), while the ker-
nel itself is called multiple times in the blocked APP algorithm. Here, note the
recent results (see, [12]), concerning evaluation of the MMA operation in differ-
ent semirings, on the Cell/B.E. processor. They showed that the “penalty” for
lack of the generalized FMA unit may be up to 400%. This can be also viewed

Matrix Multiplication for Efficient Computations on Modern Computers 229

as: having an FMA unit, capable of supporting operations and special elements
from Table 1 could speed-up solution of APP problems by up to 4 times.

Interestingly, we have just found that the AMD Cypress GPU processor sup-
ports the (min,max)-operation through a single call with 2 clock cycles per
result. In this case, the Minimum Spanning Tree (MSP) problem (see, Table 1)
could be solved more efficiently than previously realized. Furthermore, this could
mean that the AMD hardware has −∞ and ∞ constants already build-in. This,
in turn, could constitute an important step towards hardware support of gener-
alized FMA operations, needed to realize all kernels listed in Table 1.

Let us now look into the recent trends in parallel hardware. In the 1990’s three
main designs for parallel computers were: (1) array processors, (2) shared mem-
ory parallel computers, and (3) distributed memory parallel computers. After
a period of dormancy, currently we observe a resurgence of array-processor-like
hardware, placed within a single processor. In particular, the Nvidia promises
processors consisting of thousands of computational (FMA) units. This perspec-
tive has already started to influence the way we write codes. For instance, one of
the key issues is likely to become (again) the simplicity and uniformity of data
manipulation, while accepting the price of performing seemingly unnecessary op-
erations. As an example, for sparse matrix operations, the guideline can be the
statement made recently by John Gustafson, who said: “Go Ahead, Multiply by
Zero!” [18]. His assumption, like ours, is that in the hardware of the future, cost
of an FMA will be so low, in comparison with data movement (and indexing),
that computational sparse linear algebra will have to be re-evaluated.

4 Proposed Generalized Multiply-Add Operation

Let us now summarize the main points made thus far. First, the future of effi-
cient parallel MMA is not likely to involve recursion, focused on reduction the
total number of scalar multiplications, while not paying attention to the cost
of data movement (and extra memory). Second, without realizing this, scien-
tists solving large number of computational problems, have been working with
algebraic semirings. Algebra of semirings involves not only standard linear al-
gebra, but also a large class of APP’s. Solutions to these problems involve gen-
eralized MMA (which, in turn, calls for hardware-supported generalized FMA
operations). Third, benefits of development of generalized FMA units, capable
of dealing with operations listed in Table 1 have been illustrated. Finally, we
have recalled that current trends of development of computer hardware point
to existence of processors with thousands of FMA units (possibly generalized),
similar to SIMD computers on the chip. Based on these considerations, we can
define the needed generic matrix multiply-and-add (MMA) operation

C← MMA[⊗,⊕](A, B, C) : C← A⊗ B⊕ C,

where the [⊗,⊕] operations originate from different matrix semirings. Note that,
like in the scalar FMA operations, generalized matrix addition or multiplication,
can be implemented by making an n × n matrix A (or B) = Ō for addition,

230 S.G. Sedukhin and M. Paprzycki

or a matrix C = Ī for multiplication (where the appropriate zero and identity
matrices have been defined in Section 2).

Observe that the proposed generalization allows a new approach to the de-
velopment of efficient codes solving a number of problems. On the one hand, it
places in the right context (and subsumes) the level 3 BLAS matrix multiplica-
tion (more in Section 5). On the other, the same concepts and representations
of operations can be used in solvers for the APP problems.

Let us stress that the idea is not only to generalize matrix multiplication via
application of algebraic semirings, but also to “step-up” use of the MMA as the
main operation for matrix algorithms. In this way, we should be able (among
others) to support processors with thousands of FMA cores. To illustrate the
point, let us show how generalized matrix multiplication can be used to perform
selected auxiliary matrix operations.

4.1 Data Manipulation by Matrix Multiplication

Observe that the MMA operation, which represents a linear transformation of a
vector space, can be used not only for computing but also for data manipulations,
such as: reordering of matrix rows/columns, matrix rotation, transposition, etc.
This technique is well established and widely used in the algebraic theory (see, for
example, [19]). Obviously, data manipulation is an integral part of a large class
of matrix algorithms, regardless of parallelism. Due to the space limitation, let us
show only how the MMA operation can be used for classical matrix data manip-
ulations, like the row/column interchange, and how it can be extended for more
complex data transforms, like th global reduction and replication (broadcast).

Row/Column Interchange. If zeros(n,n) is an n×n zero matrix and P(n,n)

is an n × n permutation matrix obtained by permuting the i-th and j-th rows
of the identity matrix In×n = eye(n, n) with i < j, then multiplication

D(n, n) = MMA[×,+]
(
P(n, n), A(n, n), zeros(n, n))

gives a matrix D(n,n) with the i-th and j-th rows of A(n,n) interchanged, and

D(n, n) = MMA[×,+]
(
A(n, n), P(n, n), zeros(n, n))

gives D(n,n) with the i-th and j-th columns of A(n,n) interchanged.

Global Reduction and Broadcast. A combination of the global reduction and
broadcast, also known in the MPI library as the MPI ALLREDUCE [20], is a very
important operation in parallel processing. It is so important that, for example,
in the IBM BlueGene/L, a special collective network is used, in addition to the
other available communication networks, including a 3D toroidal network [21].
However, this operation can be also represented as three matrix multiplications
in different semirings,

B(n, n) = ones(n, n)⊗ A(n, n)⊗ ones(n, n),

Matrix Multiplication for Efficient Computations on Modern Computers 231

where ones(n, n) is the n× n matrix of ones. For example, the reduction (sum-
mation) of all elements of a matrix A to the single scalar element and its repli-
cation (broadcast) to the matrix B can be completed by two consecutive MMA
operations in the (×,+)-semiring:

C(n, n) = MMA[×,+]
(
ones(n, n), A(n, n), zeros(n, n)

)
,

for summation of elements along columns of a matrix A(n, n), and then,

B(n, n) = MMA[×,+]
(
C(n, n), ones(n, n), zeros(n, n)

)
,

for summation of elements along the rows of an intermediate matrix C. For a
sample 4×4 matrix A, it will be completed as follows⎛⎜⎜⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞⎟⎟⎠×
⎛⎜⎜⎝

1 2 3 4
5 6 7 8
4 3 2 1
8 7 6 5

⎞⎟⎟⎠×
⎛⎜⎜⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
72 72 72 72
72 72 72 72
72 72 72 72
72 72 72 72

⎞⎟⎟⎠ .
If the (×,max)-semiring is used in these operations, i.e. the scalar multiply-and-
add operation would be c = max(a × b, c), then the maximal element selection
and its broadcast can be implemented as

C(n, n) = MMA[×,max]
(
ones(n, n), A(n, n),−inf(n, n)

)
,

B(n, n) = MMA[×,max]
(
C(n, n), ones(n, n),−inf(n, n)

)
,

where −inf(n, n) is an n× n matrix of negative infinity. Thus, we have⎛⎜⎜⎝
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞⎟⎟⎠×
⎛⎜⎜⎝

1 2 3 4
5 6 7 8
4 3 2 1
8 7 6 5

⎞⎟⎟⎠×
⎛⎜⎜⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8

⎞⎟⎟⎠ .
It is clear that the implementation of this operation in the (×,min)-semiring
with a matrix inf(n, n) will select the minimal element in the matrix A(n, n) and
its replication, or broadcast.

Interestingly, all these (and other possible) operations for a matrix data ma-
nipulation can be realized on an n×n torus array processor by using a single, or
multiple, MMA operation(s), without any additional interconnection networks
(see, [22]). For implementation of each n×n MMA operation on the torus array
processor, n time-steps are needed and, therefore, only 2n steps are required to
realize the global reduction and broadcast.

Note that basic elementary matrices, like eye(n, n), zeros(n, n), ones(n, n),
and ±inf(n, n), can be hardwired within an array processor, where each of their
elements is stored in the corresponding processing element. The other required
transform matrices can be formed within an array processor by using these
elementary matrices, and the corresponding MMA operations. In fact, as stated
above, todays’ advanced microprocessors already contain special registers for
storing the fundamental constants like floating-point 0.0, 1.0, or the ±∞. An
array of such microprocessors will, therefore, automatically include some of the
needed elementary matrices.

232 S.G. Sedukhin and M. Paprzycki

5 Relating BLAS to the Generalized MMA

In the final part of this paper, let us briefly look into the interrelation between the
proposed generalized MMA and the BLAS standard [15, 23, 13]. Due to the lack
of space we focus our attention on the level 3 BLAS [13] (the remaining two levels
require addressing some subtle points, and will be discussed separately). For
similar reasons, we also restrict our attention to square non-symmetric matrices.
However, these simplifications do not diminish generality of our conclusions.

In our work we are concerned with the generalized MMA in the form: C ←
C⊕A⊗B. This matches directly the definition of the level 3 BLAS GEMM routine,
which performs operation: C ← βC + αop(A)× op(B), while its arguments are:

GEMM(transa, transb, m, n, k, α, A, lda, B,ldb, β, C, ldc).

When using GEMM in computations, the “ ” is replaced by one of the letters
S, D, C, Z defining the type of matrices (real, double real, complex, and double
complex, respectively); while the transa and the transb specify if matrices A

and B are in the standard or in the transposed form.
Let us now relate the semiring-based MMA and the GEMM. To use the semir-

ing constructs in computations, we have to distinguish two aspects. First, the
information that is needed to specify the unique semiring and, second, specifica-
tion of operands of operations within that semiring. As discussed in Section 2,
to define a semiring we need to specify: (1) elements (S), (2) operations (⊕,⊗,�),
and (3) special elements (0̄ and 1̄), Obviously, the semiring defined by the BLAS
operations is the linear algebra semiring. Here, the only aspect of the semiring
that is explicitly defined, is the set of elements of the matrices. This definition
comes through the “naming convention” and is realized by the “ ” part of the
subroutine definition; selecting the type of the numbers (real, or complex) and
their computer representation (single, or double precision). The remaining parts
of the definition are implicit. It is assumed that the objects of the semiring
are matrices, while the elements 0̄ and 1̄ are matrices consisting of all zeros,
and the standard identity matrix, respectively. Here, operations are the basic
matrix multiplication, addition and closure. At the same time, the elements
m, n, k, α, A, lda, B, ldb, β, C, ldc define specific operands for the MMA.

An interesting issue concerns the transa and transb parameters. They spec-
ify if matrices A and B (respectively), used in the GEMM operation are in their
standard or transposed forms. From the point of view of the theory of semirings,
it does not matter if a matrix is transposed or not; what matters is if it belongs
to the set S. The difference occurs when the actual MMA is to be performed.
Therefore, the standard BLAS operation set allowed to combine matrix multi-
plication, scaling, and transpose operations into a single, relatively simple, code.
However, as illustrated in Section 4.1, in the case of the approach advocated in
this paper, where “everything is a matrix multiplication,” matrix scaling and
transpose also become matrix multiplications.

It should be noted that all, but three, remaining level 3 BLAS routines
also perform operations of the type C = βC + αop(A)op(B), for a variety

Matrix Multiplication for Efficient Computations on Modern Computers 233

of specific operands. The only exceptions are the HER2K, SYR2K pair, which
perform “double updates” of a matrix. Obviously they can be replaced by two
operations of the type C = βC+αop(A)op(B) performed in a row (two MMA’s).

The only operation that is not easily conceptualized, within the scope of the
proposal outlined thus far, is the TRSM which performs a triangular solve. Here
the matrix inversion operation (defined in Table 1), could be utilized; but the
requires further careful considerations.

6 Concluding Remarks

In this paper we have reflected on the effect that the recent developments in
computer hardware and computational sciences can have on the way that dense
matrix multiplication is approached. First, we have indicated that the arithmeti-
cal operation count (theoretical floating point complexity) looses importance;
becoming overshadowed by the complexity of data manipulations performed by
processors with hundreds of FMA processing units. Second, we have recalled that
the “standard” matrix multiplication is just one of possible operations within
an appropriately defined algebraic semiring. This allowed us to illustrate how
the semiring-based approach covers large class of APP problems. Finally, on the
basis of these considerations, we have proposed a generalized matrix multiply-
and-add operation, which allows to further induce efficient matrix multiplication
as the key operation driving solution methods not only in linear algebra, but also
across a variety of APP problems. Finally, we have outlined the relation of the
proposed matrix generalization to the level 3 BLAS standard.

In the near future we plan to (1) propose an object oriented model for the
generalized MMA (see, [24] for description of initial work in this direction), (2)
proceed with a prototype implementation, and (3) conduce experiments with the,
newly-defined, fused multiply-add operations involvingmin andmax operations.

Acknowledgment. Work of Marcin Paprzycki was concluded while visiting the
University of Aizu as a Research Scientist.

References

1. Robinson, S.: Towards an optimal algorithm for matrix multiplication. SIAM News
38 (2005)

2. Li, J., Skjellum, A., Falgout, R.D.: A poly-algorithm for parallel dense matrix
multiplication on two-dimensional process grid topologies. Concurrency - Practice
and Experience 9, 345–389 (1997)

3. Hunold, S., Rauber, T., Rünger, G.: Combining building blocks for parallel multi-
level matrix multiplication. Parallel Comput. 34, 411–426 (2008)

4. Grayson, B., Van De Geijn, R.: A high performance parallel Strassen implementa-
tion. Parallel Processing Letters 6, 3–12 (1996)

5. Song, F., Moore, S., Dongarra, J.: Experiments with Strassen’s Algorithm: from
Sequential to Parallel. In: International Conference on Parallel and Distributed
Computing and Systems (PDCS 2006). ACTA Press (November 2006)

234 S.G. Sedukhin and M. Paprzycki

6. Bailey, D.H., Lee, K., Simon, H.D.: Using Strassen’s algorithm to accelerate the
solution of linear systems. J. Supercomputer 4, 357–371 (1991)

7. Paprzycki, M., Cyphers, C.: Multiplying matrices on the Cray – practical consid-
erations. CHPC Newsletter 6, 77–82 (1991)

8. Sedukhin, S.G., Miyazaki, T., Kuroda, K.: Orbital systolic algorithms and array
processors for solution of the algebraic path problem. IEICE Trans. on Information
and Systems E93.D, 534–541 (2010)

9. Lehmann, D.J.: Algebraic structures for transitive closure. Theoretical Computer
Science 4, 59–76 (1977)

10. Abdali, S.K., Saunders, B.D.: Transitive closure and related semiring properties
via eliminants. Theoretical Computer Science 40, 257–274 (1985)

11. Matsumoto, K., Sedukhin, S.G.: A solution of the all-pairs shortest paths prob-
lem on the Cell broadband engine processor. IEICE Trans. on Information and
Systems 92-D, 1225–1231 (2009)

12. Sedukhin, S.G., Miyazaki, T.: Rapid*Closure: Algebraic extensions of a scalar
multiply-add operation. In: Philips, T. (ed.) CATA, ISCA, pp. 19–24 (2010)

13. Dongarra, J.J., Croz, J.D., Duff, I., Hammarling, S.: A set of level 3 basic linear
algebra subprograms. ACM Trans. Math. Software 16, 1–17 (1990)

14. Russell, R.M.: The CRAY-1 computer system. Commun. ACM 21, 63–72 (1978)
15. Lawson, C.L., Hanson, R.J., Kincaid, R.J., Krogh, F.T.: Basic linear algebra sub-

programs for FORTRAN usage. ACM Trans. Math. Software 5, 308–323 (1979)
16. Montoye, R.K., Hokenek, E., Runyon, S.L.: Design of the IBM RISC System/6000

floating-point execution unit. IBM J. Res. Dev. 34, 59–70 (1990)
17. Gustavson, F.G., Moreira, J.E., Enenkel, R.F.: The fused multiply-add instruction

leads to algorithms for extended-precision floating point: applications to Java and
high-performance computing. In: CASCON 1999: Proceedings of the 1999 Con-
ference of the Centre for Advanced Studies on Collab. Research, p. 4. IBM Press
(1999)

18. Gustafson, J.L.: Algorithm leadership. HPCwire, April 06 (2007)
19. Birkhoff, G., McLane, S.: A Survey of Modern Algebra. AKP Classics. A K Peters,

Massachusetts (1997)
20. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: The

Complete Reference. The MIT Press, Cambridge (1996)
21. Gara, A., Blumrich, M.A., Chen, D., Chiu, G.L.T., Coteus, P., Giampapa, M., Har-

ing, R.A., Heidelberger, P., Hoenicke, D., Kopcsay, G.V., Liebsch, T.A., Ohmacht,
M., Steinmacher-Burow, B.D., Takken, T., Vranas, P.: Overview of the Blue
Gene/L system architecture. IBM J. Res. and Dev. 49, 195–212 (2005)

22. Sedukhin, S.G., Zekri, A.S., Myiazaki, T.: Orbital algorithms and unified array
processor for computing 2D separable transforms. In: International Conference on
Parallel Processing Workshops, pp. 127–134 (2010)

23. Dongarra, J.J., Croz, J.D., Hammarling, S., Hanson, R.J.: An extended set of
FORTRAN basic linear algebra subprograms. ACM Trans. Math. Software 14,
1–17 (1988)

24. Ganzha, M., Sedukhin, S., Paprzycki, M.: Object oriented model of generalized
matrix multipication. In: Proceedings of the Federated Conference on Computer
Science and Information Systems, pp. 439–442. IEEE Press, Los Alamitos (2011)

Distributed QR Factorization

Based on Randomized Algorithms

Hana Straková1, Wilfried N. Gansterer1,�, and Thomas Zemen2

1 University of Vienna, Austria
Research Group Theory and Applications of Algorithms
{Hana.Strakova,Wilfried.Gansterer}@univie.ac.at

2 Forschungszentrum Telekommunication Wien, Austria
Thomas.Zemen@ftw.at

Abstract. Most parallel algorithms for matrix computations assume a
static network with reliable communication and thus use fixed commu-
nication schedules. However, in situations where computer systems may
change dynamically, in particular, when they have unreliable compo-
nents, algorithms with randomized communication schedule may be an
interesting alternative.

We investigate randomized algorithms based on gossiping for the dis-
tributed computation of the QR factorization. The analyses of numerical
accuracy showed that known numerical properties of classical sequential
and parallel QR decomposition algorithms are preserved. Moreover, we
illustrate that the randomized approaches are well suited for distributed
systems with arbitrary topology and potentially unreliable communica-
tion, where approaches with fixed communication schedules have major
drawbacks. The communication overhead compared to the optimal par-
allel QR decomposition algorithm (CAQR) is analyzed. The randomized
algorithms have a much higher potential for trading off numerical accu-
racy against performance because their accuracy is proportional to the
amount of communication invested.

Keywords: distributed vs. parallel QR factorization, decentralized QR
factorization, evaluation of distributed algorithms, gossip algorithms, push
-sum algorithm, randomized communication schedule, fault-tolerance.

1 Introduction

We consider the distributed computation of the QR factorization over a loosely
coupled distributed system where existing approaches with fixed communica-
tion schedule have major drawbacks. We develop and analyze a randomized dis-
tributed QR decomposition based on the push-sum algorithm. Since the nodes
proceed in an asynchronous and decentralized way, our approach is more flexi-
ble than existing parallel QR decomposition algorithms and capable of handling
unreliable links as well as potential dynamic changes of the network. The main

� Corresponding author.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 235–244, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

236 H. Straková, W.N. Gansterer, and T. Zemen

goal of this paper is a comprehensive comparison of this new randomized QR
decomposition approach with the existing parallel algorithms.

In this paper, we use the term parallel for algorithms developed primarily for
tightly coupled parallel computers (comprising shared-memory systems, multi-
core architectures, tightly coupled distributed memory systems, etc.) which are
characterized by a static topology and reliable, relatively fast, (usually) wired
communication. For such target platforms algorithms with fixed communication
schedules are suitable. In contrast, we use the term distributed for algorithms
designed for loosely coupled decentralized distributed systems. These target plat-
forms are characterized by potentially dynamically changing topology, relatively
slow and costly communication, and/or by unreliable components (e.g., commu-
nication links). This includes, but is not limited to wireless networks, peer to peer
(P2P) networks, mobile ad hoc networks, etc. Most existing parallel algorithms
have major drawbacks on such systems and thus are not applicable.

Motivation and Approach. Motivating problems arise, for example, in de-
centralized network analysis (cf. [12]) or in cooperative transceiver design in
telecommunications (cf. [8]). In the latter case the objective of a method called
distributed sphere decoding is to exploit cooperation of receiving node with other
receivers in the decoding of a signal sent by a group of transmitters [14]. A
distributed QR factorization of a distributed channel matrix, which describes
the quality of communication channels between nodes, is needed for solving a
maximum likelihood problem.

A theoretical alternative to existing parallel algorithms for the context con-
sidered would be a “fusion center” approach. The fusion center first collects the
entire matrix, computes the QR factorization locally, and then returns the re-
sult to the other nodes. However, this leads to an unfair distribution of energy
consumption among the cooperating nodes and may be infeasible due to mem-
ory constraints (if no single node can store the entire matrix). It has also been
shown that in many situations in-network computation leads to considerable
advantages over centralized approach [17,15] (e.g., in terms of energy savings).

Consequently, we pursue a randomized decentralized QR factorization algo-
rithm based on gossiping. Gossip-based (or epidemic) algorithms are character-
ized by asynchronous randomized information exchange, usually only within the
local neighborhood of each node. They do not assume static or reliable networks,
do not require any specialized routing and do not have a single point of failure.
Thus, they can cope with link failures or more general dynamic network changes,
and consequently achieve high fault tolerance. Due to their ideally completely de-
centralized structure, gossip-based algorithms tend to scale well with the number
of nodes. Moreover, gossip-based algorithms allow for trading off time-to-solution
against communication cost (and thus energy consumption) or fault tolerance
by gradually adapting the intensity and regularity of communication with other
nodes. Especially the latter property is very attractive when parallel algorithms
are not applicable and fusion center approaches are too expensive, or where not
only the highest achievable accuracy, but also intermediate approximate results

Distributed QR Factorization Based on Randomized Algorithms 237

are of interest. Existing parallel algorithms produce the full result at the full
accuracy achievable for the input data only when they terminate regularly.

Related Work. Parallel algorithms for computing QR factorizations on shared
memory, distributed memory or on multicore architectures have been stud-
ied extensively. State-of-the-art software libraries such as ScaLapack [3] use
blocked algorithms for implementing parallel QR factorization. The latest devel-
opments are tiled QR factorization [5], communication-avoiding QR factorization
(CAQR) [6], and the combination of the two approaches [16].

Much less work exists in the literature on distributed algorithms. Although
wireless networks are mentioned as target environment in [1], the assumptions
used are those typical for parallel algorithms: all data initially centralized at a
single node, specific roles assigned to individual nodes (distributing node, anni-
hilating node, etc.) and the communication schedule is fixed. Relevant for our
approach are randomized algorithms, such as the push-sum algorithm [11], uti-
lized for matrix computations. Simple gossip-based algorithms are used due to
their attractive properties in many in-network computations (e.g, in distributed
signal processing [7]), but to the best of our knowledge, only a few gossip-
based matrix algorithms have been investigated. A gossip-based decentralized
algorithm for spectral analysis was discussed in [12], and a distributed QR fac-
torization based on push-sum has been used in distributed sphere decoding in [8].
So far, no analysis of numerical behavior or communication cost of a randomized
distributed QR factorization is available. Moreover, no comparison to existing
parallel approaches is available.

Contributions. We extend existing work in the following algorithmic aspects:
We use modified Gram-Schmidt orthogonalization (mGS) as the basis for our new
algorithm, which we call dmGS , whereas the algorithm used in [8] implements
the less stable classical Gram-Schmidt orthogonalization (cGS). Moreover, the
algorithm used in [8] assumes that after each push-sum algorithm one of the local
estimates is broadcasted to all the other nodes, whereas our approach proceeds
with the local estimate in each node (which is more realistic in practice).

We for the first time provide a full quantitative evaluation of a distributed
QR decomposition algorithm in terms of numerical accuracy, reliability, oper-
ation count, memory requirements, and communication cost (partly based on
theoretical analyses and partly based on simulations) as well as a quantitative
comparison with state-of-the-art parallel QR decomposition algorithms. We also
consider more general data distributions over random topologies of the underly-
ing distributed system ([8] considered only square matrices over fully connected
networks), investigate the effects of communication link failures, and we adapted
termination criteria from the literature in order to be able to investigate the
trade-off between numerical accuracy and performance or communication cost.

Synopsis. In Section 2, the QR factorization and the push-sum algorithm are
reviewed. In Section 3, our new algorithm (dmGS) is presented. In Section 4,
numerical simulations and theoretical analyses are summarized. Section 5
concludes the paper.

238 H. Straková, W.N. Gansterer, and T. Zemen

2 Methodology

Algorithms for QR Factorization. We are interested in computing the thin
(reduced) QR factorization A = QR (where A ∈ C

n×m, n ≥ m, Q ∈ C

n×m

has orthogonal columns, R ∈ C

m×m is upper triangular) by classical (cGS) and
modified (mGS) Gram-Schmidt orthogonalization (for mGS see Algorithm 1).

Both Gram-Schmidt orthogonalization processes require 2nm2 flops for com-
puting the QR factorization of an n × m matrix [10]. Denoting the machine
precision with εmach and the condition number of the matrix A with κ2(A), the
matrix Q produced by mGS satisfies ‖I−QHQ‖2 ≈ εmachκ2(A) [10], whereas for
a square matrix A of size n× n cGS produces Q for which only ‖I −QHQ‖2 ≤
c(n)εmach[κ2(A)]n−1 with a modest constant c(n) holds [13].

The Push-Sum Algorithm. As mentioned in Section 1, the information ex-
change in gossiping protocols is randomized and asynchronous, and nodes iter-
atively update their local information according to information received from
other nodes. The network topology can be arbitrary, dynamically changing and
does not need to be known in individual nodes. The push-sum algorithm [11] is a
gossip algorithm for approximating the sum or the average of values distributed
over a network with N nodes. If x(k) denotes a value stored in node k, the
goal of the algorithm is to compute in each node k an estimate sk =

∑
j x(j)

(or ak =
∑

j x(j)/N). The accuracy of the estimates depends on the number of
asynchronous iterations of the push-sum algorithm.

An important question is when to terminate the push-sum algorithm. In [11],
an asymptotic number of iterations needed in the push-sum algorithm for reach-
ing a certain error τ with some probability is derived (the notation is adapted
to our context): For a network with N nodes, there is a number of iterations
i0 = O(logN + log 1

τ + log 1
δ), such that for all numbers of iterations i ≥ i0 with

probability of at least 1− δ the estimate of the average satisfies in every node k

1

|
∑N

j=1 x(j)|

∣∣∣∣∣∣ s
(i)
k

w(i)(k)
− 1

N

N∑
j=1

x(j)

∣∣∣∣∣∣ ≤ τ
∑N

j=1 |x(j)|
|
∑N

j=1 x(j)|
. (1)

where x(k) is a value stored in node k, w(i)(k) is a weight used in node k in

iteration i, and s
(i)
k is an estimate of the sum

∑N
j=1 x(j) in node k in iteration

i. In [8] the push-sum algorithm is terminated after a fixed number of iterations
determined by the authors based on simulations. In [12] a blockwise extension of
the push-sum algorithm is proposed and a stopping criterion with an accuracy
parameter τ is suggested. We adapt this termination criterion to the scalar push-
sum and use it in our simulations.

3 Distributed QR Factorization (dmGS)

In Algorithm 1 the distributed modified Gram-Schmidt orthogonalization dmGS
is presented and compared to mGS. The notation used in the algorithm is
explained in Section 2. We can see, that mGS and dmGS are very similar.

Distributed QR Factorization Based on Randomized Algorithms 239

Algorithm 1. Modified Gram-Schmidt orthogonalization (mGS) and distributed QR
factorization (dmGS)

Input: A ∈ C
n×m, n ≥ m (matrix A distributed row-wise over N nodes;

if n > N , each node k stores rk consecutive rows of A)
Output: Q ∈ C

n×m, R ∈ C
m×m (matrix Q distributed row-wise,

matrix R distributed column-wise over nodes)

1: for i = 1 to m do
2: x(k) = A(k, i)2

3:
4: s =

∑n
k=1x(k)

5: R(i, i) =
√
s

6: Q(:, i) = A(:, i)/R(i, i)
7:
8: for j = i+ 1 to m do
9: x(k) = Q(k, i)A(k, j)
10:
11: R(i, j) =

∑n
k=1x(k)

12: A(:, j) = A(:, j)−Q(:, i)R(i, j)
13:
14: end for
15: end for

1: for i = 1 to m do (in node k)
2: x(k) = A(k, i)2

3: [x(k) =
∑rk

t=1 A(kt, i)
2]

4: sk = push-sum(x)
5: Rk(i, i) =

√
sk

6: Q(k, i) = A(k, i)/Rk(i, i)
7: if k �= i delete Rk(i, i)
8: for j = i+ 1 to m do
9: x(k) = Q(k, i)A(k, j)
10: [x(k) =

∑rk
t=1Q(kt, i)A(kt, j)]

11: Rk(i, j) = push-sum(x)
12: A(k, j)=A(k, j) −Q(k, i)Rk(i, j)
13: if k �= j delete Rk(i, j)
14: end for
15: end for

The only difference is that the sums in the mGS needed for computing a 2-norm
(Line 4) and a dot product (Line 11) are replaced by the push-sum algorithm.
dmGS assumes as input a matrix A ∈ C

n×m, n ≥ m distributed row-wise over N
nodes. In the special case n = N , each node contains one row of the input matrix
A ∈ C

n×m, n ≥ m and the push-sum computes the sum of corresponding column
elements stored in nodes. In the most common case n > N , each node k contains
rk = O(n/N) rows of the input matrix A. In this case, before each push-sum
the corresponding column elements stored in one node are locally preprocessed
(Lines 3 and 10) and then summed up by the push-sum algorithm. Except of the
push-sum algorithms utilized for computing in all nodes k the local estimates Rk

of the elements of the matrix R (Lines 4 and 11), the nodes do not communicate
and can execute the computations locally. dmGS, as described in Algorithm 1,
stores one column of matrix R in corresponding nodes. However, if the lines 7
and 13 are skipped, the nodes keep the computed estimates of the elements of
the matrix R and thus store the full matrix R. This of course results in higher
local memory requirements.

4 Evaluation of dmGS

In this section, we first investigate the numerical accuracy of dmGS and ana-
lyze the influence of the link failures and of the diameter of the network on its

240 H. Straková, W.N. Gansterer, and T. Zemen

dmGS
dcGS

N

‖I
−
Q

H
Q
‖ 2

1009080706050403020100

10−7

10−8

10−9

d=1
d=2
d=3
d=4

iterations per PSA

‖A
−
Q
R
‖ 2

450400350300250200150100500

100

10−2

10−4

10−6

10−8

10−10

10−12

10−14

10−16

Fig. 1. Comparison of the distributed QR factorization (left) based on the classical
(dcGS) resp. modified (dmGS) Gram-Schmidt method in terms of orthogonality mea-
sure and influence of random network topologies (right) with different diameter d on
convergence speed of dmGS

convergence. Then we compare dmGS to state-of-the-art parallel algorithms in
terms of operation count, local memory requirements, and communication cost.

We present simulation results for dmGS applied to a random matrix A ∈
C

n×m distributed over N nodes. Simulations are partly based on Matlab and
partly on ns-3. In the Matlab simulations, the nodes choose their communication
partners uniformly from the entire network, whereas the ns-3 simulations are
based on a predetermined random network topology with a given diameter.

In Fig. 1 (left) distributed QR factorization based on cGS (dcGS) is compared
to our algorithm dmGS in terms of orthogonality of Q measured as ‖I−QHQ‖2
for varying number of nodes N , when applied to A ∈ C

n×n, n = N . We can
observe the expected difference in terms of orthogonality of Q (the factorization
errors were basically identical), which illustrates that the distributed algorithm
preserves the numerical properties of the sequential and parallel cases. In the
experiments the overall factorization error and orthogonality was of the same
order of magnitude as the accuracy parameter τ = 10−9 used for terminating
the algorithm (see Section 2).

4.1 Reliability and Scalability

In this section we investigate the influence of link failures and random topologies
on the behavior of dmGS. In Fig. 1 (right) we can see the behavior of dmGS for
arbitrary networks with different diameters d. Although the increasing diameter
causes slower convergence, all simulations converge to the full accuracy.

Simulations showed that loss of messages due to link failures does not influence
the factorization error. However, it causes loss of orthogonality of the computed
matrix Q. To achieve satisfactory orthogonality of Q we have to either avoid
losing messages or recover from the loss. The simplest strategy is to resend each
message several times to ensure a high probability that it will be delivered. The
exact number how many times was each message sent in our experiments was
chosen such that the combined probability of not delivering the message for all
repeated sending attempts is smaller than 10−12. Fig. 2 (left) shows the influence

Distributed QR Factorization Based on Randomized Algorithms 241

Fig. 2. Comparison of the influence of various failure rates on the orthogonality of Q
for sending each message once and several times (left) and scalability of dmGS with
increasing number of rows n for matrix A ∈ R

n×25 (right)

of the link failures on the orthogonality of the matrix Q for various failure
rates with and without resending each message. In [9] we discuss approaches
for recovering from message and data loss in more detail.

If n > N , nodes have to store more than one row. Consequently, for fixed
N , dmGS scales very well with increasing n. As shown in Fig. 2 (right), storing
several rows in one node even increases the accuracy, since more computation
is done locally in nodes. Note that increasing number of rows per node does
not affect the communication cost. Increasing the number of columns m is more
difficult, because it causes quadratical increase of communication cost. However,
a new version of dmGS which improves the scalability for growingm is currently
under development.

4.2 Theoretical Analyses and Comparison with Parallel Algorithms

In the following, dmGS is compared with state-of-the-art parallel algorithms for
QR factorization when applied to a rectangular matrix n ×m distributed over
N nodes (or P processors). In particular, we compare dmGS with parallel mGS
and with parallel CAQR (which is optimal in terms of communication cost up to
polylogarithmic factors) [6] along the critical path. For dmGS, the terms along
the critical path are equal to the cost per node. We have to emphasize that
this comparison has to be interpreted carefully, since these different types of
algorithms are designed for very different target systems and are based on very
different assumptions on properties of the target hardware and on the initial
data distribution (see Section 1).

To simplify the analysis, we assume that push-sum algorithm proceeds in
synchronous iterations and that in each iteration every node sends exactly one
message. Note that this synchronization is not required in practice and that our
simulations do not rely on this assumption. Push-sum needs O(logN) iterations
to converge to a fixed accuracy τ for networks where each node can communicate
with any other node [11], which we use in our analyses. Similar convergence rate
was also shown for more general topologies [4].

242 H. Straková, W.N. Gansterer, and T. Zemen

Operation Count. dmGS calls m(m + 1)/2 push-sum algorithms and before
each push-sum, a local summation of rk = O(n/N) elements must be performed
in node k. In summary, dmGS performs O(m2 logN +m2n/N) flops. Accord-
ing to [6], parallel mGS performs 2nm2/P flops and parallel CAQR performs
2m3/3 + 2m2n/P flops along the critical path. Consequently, asymptotically
parallel mGS has the lowest flop count of the three methods and the count of
dmGS is a little lower than the one of parallel CAQR (for fixed P = N).

Local Memory Requirements. In dmGS each node k needs to store rk =
O(n/N) rows of matrix A, rk rows of matrixQ and onm of the nodes one column
of matrix R, each of them of length m. This leads to local memory requirements
of Θ(rkm) = Θ(nm/N). During the push-sum algorithm each node needs a
constant number of words of local memory. The local memory requirements for
parallel CAQR are Θ(nm/P) [6]. This shows that asymptotically CAQR and
dmGS have the same local memory requirements.

Communication Cost. We investigate three communication cost metrics: the
number of messages and the number of words sent along the critical path as well
as the average message size. The total number Ct of messages sent during dmGS
is given as Ct = S · I ·M , where S is the number of push-sum algorithms, I is
the number of iterations per push-sum and M is the number of messages sent
during one iteration of the push-sum algorithm. dmGS calls S = m(m + 1)/2
push-sum algorithms (cf. Algorithm 1) and as described above, I = O(logN) for
a fixed final accuracy. As conclusion, the number C of messages sent per node
in dmGS is C = O(m2 log(N)) and that the total number Ct of messages sent is
Ct = O(Nm2 log(N)). The total number of words sent during dmGS equals the
total number of messages Ct multiplied by their size, which in dmGS is constant
(two words). Thus the number of words sent is asymptotically the same as the
number of messages sent. For the special case of a square n×nmatrix distributed
over n = N nodes, we get C = O(N2 log(N)) and Ct = O(N3 log(N)).

Comparison with State-of-the-Art Parallel Algorithms. According to [6], parallel
mGS sends 2m log(P) messages and m2 log(P)/2 words (leading terms) when
factorizing a rectangular n×m matrix over P processors. Consequently, the av-
erage message size m/4 increases linearly with increasing m. Parallel CAQR
sends 1/4 ·

√
mP/n · log2(nP/m) · log(P

√
nP/m) messages and

√
nm3/P ·

logP − 1/4 ·
√
m5/nP · log(mP/n) words along the critical path [6]. For the

special case of a square n × n matrix, CAQR needs 3
√
P log3(P)/8 messages

and 3n2 log(P)/(4
√
P) words. Consequently, the average message size in paral-

lel CAQR for a square matrix is 2n2/(P log2(P)).
For the special case n = m = N = P , which is relevant in the application

problems mentioned in Section 1, we find that dmGS asymptotically sends the
same number of words along the critical path as parallel mGS and a factor

√
N

more than parallel CAQR. When comparing the total number of messages sent
along the critical path, there is a bigger difference. This is due to the fact that in
dmGS the message size is constant, whereas in the parallel algorithms it grows
with N , which reduces the number of messages sent. Asymptotically, parallel

Distributed QR Factorization Based on Randomized Algorithms 243

mGS sends a factor N fewer messages along the critical path than dmGS. The
communication-optimal CAQR algorithm sends even a factor N

√
N/ log2(N)

fewer messages than dmGS. This shows that dmGS would not be competitive
in terms of communication cost when executed on standard target systems for
parallel algorithms, because the communication overhead to be paid for reliable
execution becomes quite large for large N .

5 Conclusions

We introduced dmGS, a gossip-based algorithm for distributed computation of
the QR factorization of a general rectangular matrix distributed over a loosely
coupled decentralized distributed system with unreliable communication. Prob-
lems of this type arise, for example, in distributed sphere decoding in telecom-
munications or in decentralized network analysis.

We evaluated dmGS in terms of the factorization error and orthogonality of
the computed matrixQ. In terms of numerical accuracy, it preserves known prop-
erties of existing sequential and parallel QR factorization algorithms. However,
dmGS is designed for completely different target platforms and its decentralized
structure makes it more flexible and robust. In particular, we illustrated that
although unreliable communication introduces overhead and an increase of the
network diameter slows down convergence, dmGS still produces correct results.

In order to complete the picture, a quantitative comparison of dmGS with
the state-of-the-art parallel algorithms in terms of operation count, local mem-
ory requirements and communication cost has been given. It shows that there is
a communication overhead to be paid in dmGS over existing parallel algorithms
for robust execution on dynamic and decentralized target platforms with unreli-
able communication. However, we currently work on an algorithmic improvement
of dmGS which reduces the communication overhead. Moreover, dmGS has the
additional benefit that its computational and communication cost are propor-
tional to the target accuracy, i. e., it is possible to compute an approximative
QR factorization at proportionally reduced cost.

Ongoing and Future Work. More detailed analyses and simulations of the influ-
ence of the network topology on the behavior of dmGS will be performed. We will
also investigate energy efficiency aspects and the influence of dynamic networks
(for example, mobile nodes) on the behavior of the algorithm. The investigation
of the utilization of broadcast gossiping methods [2] is another important next
task. We are also developing code suitable for runtime performance model with
ScaLAPACK and PLASMA routines. Beyond that, other ideas for further re-
ducing the communication cost in distributed QR factorization algorithms will
be investigated.

Acknowledgments. This work has been supported by the Austrian Science
Fund (FWF) under contracts S10608 and S10607 (NFN SISE). The Telecommu-
nications Research Center Vienna (FTW) is supported by the Austrian Govern-
ment and the City of Vienna within the competence center program COMET.

244 H. Straková, W.N. Gansterer, and T. Zemen

References

1. Abdelhak, S., Chaudhuri, R.S., Gurram, C.S., Ghosh, S., Bayoumi, M.: Energy-
aware distributed QR decomposition on wireless sensor nodes. The Computer Jour-
nal 54(3), 373–391 (2011)

2. Aysal, T., Yildiz, M., Sarwate, A., Scaglione, A.: Broadcast gossip algorithms for
consensus. IEEE Trans. Signal Processing 57(7), 2748–2761 (2009)

3. Blackford, L., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Don-
garra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley,
R.C.: ScaLAPACK Users’ Guide. SIAM, Philadelphia (1997)

4. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms. IEEE
Trans. Information Theory 52(6), 2508–2530 (2006)

5. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: Parallel Tiled QR Factoriza-
tion for Multicore Architectures. In: Wyrzykowski, R., Dongarra, J., Karczewski,
K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 639–648. Springer,
Heidelberg (2008)

6. Demmel, J., Grigori, L., Hoemmen, M.F., Langou, J.: Communication-optimal
parallel and sequential QR and LU factorizations. Tech. rep. no. UCB/EECS-
2008-89, EECS Department, University of California, Berkeley (2008)

7. Dimakis, A., Kar, S., Moura, J., Rabbat, M., Scaglione, A.: Gossip algorithms for
distributed signal processing. Proceedings of the IEEE 98(11), 1847–1864 (2010)

8. Dumard, C., Riegler, E.: Distributed sphere decoding. In: International Conference
on Telecommunications, ICT 2009, pp. 172–177 (2009)

9. Gansterer, W.N., Niederbrucker, G., Strakova, H., Schulze Grotthoff, S.: Scalable
and fault tolerant orthogonalization based on randomized aggregation. To Appear
in Journal of Computational Science

10. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins
University Press (1996)

11. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate infor-
mation. In: FOCS 2003: Proceedings of the 44th Annual IEEE Symposium on
Foundations of Computer Science, pp. 482–491. IEEE Computer Society (2003)

12. Kempe, D., McSherry, F.: A decentralized algorithm for spectral analysis. Journal
of Computer and System Sciences 74(1), 70–83 (2008)

13. Kielbasinski, A., Schwetlick, H.: Numeryczna algebra liniowa, 2nd edn.
Wydawnictwo Naukowo-Techniczne, Warszawa (1994) (in Polish)

14. Ozgur, A., Leveque, O., Tse, D.: Hierarchical cooperation achieves optimal capacity
scaling in ad hoc networks. IEEE Transactions on Information Theory 53(10),
3549–3572 (2007)

15. Rabbat, M., Nowak, R.: Distributed optimization in sensor networks. In: Third In-
ternational Symposium on Information Processing in Sensor Networks, pp. 20–27
(2004)

16. Song, F., Ltaief, H., Hadri, B., Dongarra, J.: Scalable tile communication-avoiding
QR factorization on multicore cluster systems. In: International Conference for
High Performance Computing, Networking, Storage and Analysis, pp. 1–11 (2010)

17. Yu, Y., Krishnamachari, B., Prasanna, V.: Energy-latency tradeoffs for data gath-
ering in wireless sensor networks. In: INFOCOM 2004. Twenty-third Annual Joint
Conference of the IEEE Computer and Communications Societies, vol. 1 (2004)

Static Load Balancing for Multi-level Monte

Carlo Finite Volume Solvers

Jonas Šukys, Siddhartha Mishra, and Christoph Schwab

ETH Zürich, Switzerland
{jonas.sukys,smishra,schwab}@sam.math.ethz.ch

Abstract. The Multi-Level Monte Carlo finite volumes (MLMC-FVM)
algorithm was shown to be a robust and fast solver for uncertainty quan-
tification in the solutions of multi-dimensional systems of stochastic
conservation laws. A novel load balancing procedure is used to ensure
scalability of the MLMC algorithm on massively parallel hardware. We
describe this procedure together with other arising challenges in great de-
tail. Finally, numerical experiments in multi-dimensions showing strong
and weak scaling of our implementation are presented.

Keywords: uncertainty quantification, conservation laws, multi-level
Monte Carlo, finite volumes, static load balancing, linear scaling.

1 Introduction

A number of problems in physics and engineering are modeled in terms of systems
of conservation laws:{

Ut + div(F(U)) = S(x,U),

U(x, 0) = U0(x),
∀(x, t) ∈ R

d × R+. (1)

Here, U : R

d → R

m denotes the vector of conserved variables, F : R

m × R

m →
R

m×d is the collection of directional flux vectors and S : R

d × R

m → R

m is the
source term. The partial differential equation is augmented with initial data U0.

Examples for conservation laws include the shallow water equations of oceanog-
raphy, the Euler equations of gas dynamics, the Magnetohydrodynamics (MHD)
equations of plasma physics and the equations of non-linear elasticity.

As the equations are non-linear, analytical solution formulas are only available
in very special situations. Consequently, numerical schemes such as finite volume
methods [7] are required for the study of systems of conservation laws.

Existing numerical methods for approximating (1) require the initial data U0

and source S as the input. However, in most practical situations, it is not possible
to measure this input precisely. This uncertainty in the inputs for (1) propagates
to the solution, leading to the stochastic system of conservation laws:{

U(x, t, ω)t + div(F(U(x, t, ω))) = S(x, ω),

U(x, 0, ω) = U0(x, ω),
x ∈ R

d, t > 0, ∀ω ∈ Ω. (2)

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 245–254, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

246 J. Šukys, S. Mishra, and Ch. Schwab

where (Ω,F ,P) is a complete probability space; the initial data U0 and the
source term S are random fields [8,10]. The solution is also realized as a random
field; its statistical moments (e.g. expectation and variance) are the quantities of
interest. An estimate of the expectation can be obtained by the so-called Monte
Carlo finite volume method (MC-FVM) consisting of the following three steps:

1. Sample: We draw M independent identically distributed (i.i.d.) initial data
and source samples {Ui

0,S
i
0}Mi=1 from the random fields {U0,S0} and then

compute cell averages Ui,0
K ,S

i,0
K of Ui

0,S
i
0 in each cell K of a given mesh T .

2. Solve: For each sample {Ui,0
T ,S

i,0
T }, the underlying conservation law (1) is

solved numerically by the finite volume method [7,5,4]. We denote the FVM
solutions by Ui,n

T , i.e. by cell averages {Ui,n
K : K ∈ T } at the time level tn.

3. Estimate Statistics: We estimate the expectation of the random solution
field with the sample mean (ensemble average) of the approximate solution:

EM [Un
T] :=

1

M

M∑
i=1

Ui,n
T , M = O(Δx−s/2), (3)

where s denotes the convergence rate of the FVM solver.

The error of MC-FVM asymptotically scales [10] as (Work)−s/(d+1+2s), making
MC-FVM method computationally infeasible when high accuracy is needed.

The multi-level Monte Carlo finite volume method (MLMC-FVM) was re-
cently proposed in [10,8]. The key idea behind MLMC-FVM is to simultaneously
draw MC samples on a hierarchy of nested grids. There are four main steps:

1. Nested Meshes: Consider nested triangulations {T	}∞	=0 of the spatial do-
main with corresponding mesh widths Δx	 that satisfy Δx	 = O(2−	Δx0),
where Δx0 - mesh width of the coarsest resolution at the lowest level � = 0.

2. Sample: For each level of resolution � ∈ N0, we draw M	 independent iden-
tically distributed (i.i.d) samples {Ui

0,	,S
i
0,	} with i = 1, 2, . . . ,M	 from the

random fields {U0,S0} and approximate these by cell averages.
3. Solve: For each resolution level � and each realization {Ui

0,	,S
i
0,	}, the un-

derlying balance law (1) is solved by the finite volume method [7,5,4] with
mesh width Δx	; denote solutions by Ui,n

T�
at the time tn and mesh level �.

4. Estimate Solution Statistics: Fix the highest level L ∈ N0. We estimate
the expectation of the solution (random field) with the following estimator:

EL[U(·, tn)] :=
L∑

	=0

EM�
[Un

T�
−Un

T�−1
], (4)

with EM�
being the MC estimator defined in (3) for the level �. Higher

statistical moments can be approximated analogously (see, e.g., [10]).

In order to equilibrate statistical and spatio-temporal discretization errors in (4),
the following number of samples on each discretization level � is needed [10]:

M	 = O(22(L−)s). (5)

Static Load Balancing for MLMC-FVM 247

Notice that most of MC samples are computed on the coarsest mesh level � = 0,
whereas only a small fixed number of MC samples are needed on the finest mesh
� = L. The error vs. work estimate for MLMC-FVM is given by [8,10],

error � (Work)−s/(d+1) log(Work). (6)

The above estimate shows that MLMC-FVM is superior to MC-FVM. In particu-
lar, at the relative error level of 1%, MLMC-FVM was shown to be approximately
two orders of magnitude faster than MC-FVM [8,10].

2 Highly Scalable Implementation of MLMC-FVM

MLMC-FVM is non-intrusive as any standard FVM solver can be used in step
3. Furthermore, MLMC-FVM is amenable to efficient parallelization as most of
data interacts only in step 4. We describe parallelization of nontrivial steps 2-4.

2.1 Robust Pseudo Random Number Generation

In step 2, we draw samples for {U0,S0} with a given probability distribution.
Here, a robust random number generator (RNG) is needed. Inconsistent seeding
and insufficient period length of the RNG might cause correlations in presumably
i.i.d. draws which might potentially lead to biased solutions, see Figure 6 of [8].

For the numerical simulations reported below, we used WELL512a RNG (with
period 2512 − 1) from the WELL-series [6] of pseudo random number generators.

2.2 A Priori Estimates for Computational Work

In step 3 of the MLMC-FVM algorithm, the conservation law (2) is solved for
each draw of the initial data. This is done by deterministic solver ALSVID [1]. The
key issue in the parallel implementation of the multiple concurrent solve steps is
to distribute computational work evenly among the cores. The FVM algorithm
consists of computing fluxes across all cell interfaces and then updating cell
averages via the explicit stable time stepping routine [7]. The computational
complexity of (explicit) numerical flux approximations is of order equal to the
number of cells N = #T in the mesh T ,

Workstep
T = Workstep(Δx) = O(N) = O(Δx−d), (7)

where Δx denotes the mesh width of triangulation T .
To ensure the stability of the FVM scheme, a CFL condition [7] is imposed

on the time step size Δt := tn+1 − tn, which forces

Δt = O(Δx). (8)

Hence, the computational work Workdet
T for one complete deterministic solve

using the FVM method on the triangulation T with mesh width Δx is given by
multiplying the work for one step (7) by the total number of steps O(Δt−1),

Workdet
T = Workstep

T · O(Δt)
(8)
= O(Δx−d) · O(Δx−1) = O(Δx−(d+1)). (9)

248 J. Šukys, S. Mishra, and Ch. Schwab

In most explicit FVM schemes [7], lower order terms O(Δx−d) in (9) are neg-
ligible, even on a very coarse mesh. Hence, we assume a stricter version of (9),

Workdet
T = KΔx−(d+1), (10)

where constant K depends on FVM that is used and on the time horizon t > 0,
but does not depend on mesh width Δx. Finally, by WorkM (Δx) we denote the
computational work needed for a MC-FVM algorithm performing M solves,

WorkM (Δx) = M ·Workdet(Δx) = M ·KΔx−(d+1). (11)

Next, we describe our load balancing strategy needed for the step 3.

2.3 Static Load Balancing

In what follows, we assume a homogeneous computing environment meaning that
all cores are assumed to have identical CPUs and RAM per node, and equal band-
width and latency to all other cores. There are 3 levels of parallelization: across
mesh resolution levels, across MC samples and inside the deterministic solver
using domain decomposition (see example in Figure 1). Domain decomposition
is used only in the few levels with the finest mesh resolution. On these levels,
the number of MC samples is small. However, these levels require most of the
computational effort. For the finest level � = L we fix the number of cores CL,

CL = DL × PL, (12)

where for every level 0 ≤ � ≤ L, D	 denotes the number of subdomains and
P	 denotes the number of “samplers” - groups of cores, where every such group
computes some portion of required M	 Monte Carlo samples at level �. We
assume that each subdomain is computed on exactly one core and denote the
total number of cores at level 0 ≤ � ≤ L by C	, i.e.

C	 = D	P	, ∀� ∈ {0, . . . , L}. (13)

The total computational work for EM�
[Un

T�
−Un

T�−1
] is then given by (11),

Work	 := WorkM�
(Δx) + WorkM�

(Δx	−1). (14)

Hence the ratio of computational work for the remaining levels � ∈ {L−1, . . . , 1}
can be obtained recursively by inserting (5) into a priori work estimates (11):

Work	

Work	−1
=

ML22(L−)sK
(
Δx

−(d+1)
	 +Δx

−(d+1)
	−1

)
ML22(L−(−1))sK

(
Δx

−(d+1)
	−1 +Δx

−(d+1)
	−2

)
=

2−2	s

2−2(+1)s

Δx
−(d+1)
	

(
1 + 2−(d+1)

)
Δx

−(d+1)
	

(
2−(d+1) + 2−2(d+1)

) = 2d+1−2s.

(15)

Static Load Balancing for MLMC-FVM 249

For level � = 0, the term Un
T−1

in EM0 [Un
T0
−Un

T−1
] is known (≡ 0), hence (15)

provides a lower bound rather than an equality, i.e. Work0 ≤ Work1/(2
d+1−2s).

Consequently, the positive integer parameters DL and PL ≤ ML recursively
determine the number of cores needed for each level � < L via the relation

C	 =

⌈
C	+1

2d+1−2s

⌉
, ∀� < L. (16)

Notice, that the denominator 2d+1−2s in (16) is a positive integer (a power of 2)
provided s ∈ N/2 and s ≤ (d+ 1)/2. However, in case s < (d+ 1)/2, we have

2d+1−2s ≥ 2, (17)

which (when L is large) leads to inefficient load distribution for levels � ≤ �∗,
where each successive level needs less than one core:

�∗ := min{0 ≤ � ≤ L : C	+1 < 2d+1−2s}, i.e. C	∗ ≤ 1/2. (18)

We investigate the amount of total computational work (Work{0,...,	∗}) required
for such “inefficient” levels � ∈ {0, . . . , �∗}:

Work{0,...,	∗} : =

	∗∑
	=0

Work	
(15)
=

	∗∑
	=0

Work	∗

2(d+1−2s)(∗−)
≤

	∗∑
	=−∞

Work	∗

2(d+1−2s)(∗−)

=
Work	∗

1− (2d+1−2s)−1

(17)
≤ Work	∗

1− 1
2

= 2 ·Work	∗ .

(19)
For the sake of simplicity, assume that PL and DL are nonnegative integer pow-
ers of 2. Under this assumption, definition (18) of �∗ together with recurrence
relation (16) without rounding up (�·�) implies that C	∗ ≤ 1/2. Hence, total
work estimate (19) for all levels � ∈ {0, . . . , �∗} translates into an estimate for
sufficient number of cores, which, instead of �∗ + 1, turns out to be only 1:

Work{0,...,	∗} ≤ 2 ·Work	∗ −→ C{0,...,	∗} ≤ 2 · C	∗ ≤ 2 · 1

2
= 1. (20)

The implementation of (20) (i.e. multiple levels per 1 core) is essential to obtain
efficient and highly scalable parallelization of MLMC-FVM when s < d+1

2 .
The example of static load distribution for MLMC-FVM is given in Figure 1.

Next, we describe our implementation of this load balancing using C++ and MPI.

2.4 Implementation Using C++ and MPI

In what follows, we assume that each MPI process is running on its own core.
Simulation is divided into 3 main phases - initialization, simulation and data
collection; key concepts for the implementation of the static load balancing
algorithm for each phase is described below.

250 J. Šukys, S. Mishra, and Ch. Schwab

Fig. 1. Static load distribution structure: L = 5,ML = 4, d = 1, s = 1
2
, DL = 2, PL = 4

Phase 1 - Initialization:

– MPI Groups and Communicators. By default, message passing in MPI

is done via the main communicator MPI COMM WORLD which connects all pro-
cesses. Each process has a prescribed unique non-negative integer called rank.
The process with the rank 0 is called root. Apart from MPI COMM WORLD, we
use MPI Group range incl() and MPI Comm create() to create sub-groups
and corresponding inter-communicators, this way empowering message pass-
ing within particular subgroups of processes. Such communicators ease the
use of collective reduction operations within some particular subgroup of
processes. We implemented 3 types of communicators (see Figure 2):

1. Domain communicators connect processes within each sampler; these
precesses are used for domain decomposition of one physical mesh.

2. Sampler communicators connect processes that work on the MC
samples at the same mesh level.

3. Level communicators connect only the processes (across all levels) that
are roots of both domain and sampler communicators,

where, analogously to MPI COMM WORLD, every process has a unique rank
in each of the communicators 1-3; processes with rank 0 in domain com-
municators are called domain roots, in sampler communicators - sampler
roots, and in level communicators - level roots. MPI COMM WORLD is used
only in MPI Init(), MPI Finalize() and MPI Wtime(). Figure 2 depicts all
non-trivial communicators and roots for the example setup as in Figure 1.

– Seeding RNG. To deal with the seeding issues mentioned in subsection 2.1,
we injectively (i.e. one-to-one) map the unique rank (in MPI COMM WORLD) of
each process that is root in both domain and sampler communicators to an el-
ement in the hardcoded array of prime seeds. Then each core
generates random vectors of real numbers for MC samples {Ui

0,	,S
i
0,	}. Gen-

erating the full sequence of samples on domain and sampler roots and scat-
tering/broadcasting samples via sampler/domain communicators should be
avoided; this introduces unnecessary communication and memory overheads
and makes simulations with large stochastic dimensions infeasible [9].

Static Load Balancing for MLMC-FVM 251

Fig. 2. Structure and root processes of the communicators for setup as in Figure 1

Phase 2 - Simulation:

– FVM solves for 2 mesh levels. FVM solves of each sample are performed
for EM�

[Un
T�

] and for EM�
[Un

T�−1
], and then combined into EM�

[Un
T�
−Un

T�−1
].

– Inter-domain communication. Cell values near interfaces of adjacent sub-
domains are exchanged asynchronously with MPI Isend() and MPI Recv().

Phase 3 - Data Collection and Output:

– MC Estimator. For each level, statistical estimates are collectively reduced
with MPI Reduce() into sampler roots using sampler communicators; then
MC estimators (3) for mean and variance (see subsection 2.5) are obtained.

– MLMC Estimator. MC estimators from different levels are finally com-
bined via level communicators to level roots to obtain MLMC estimator (4).

– Parallel Data Output. Each process that is both sampler root and level
root writes out the final result. Hence, the number of parallel output files is
equal to DL, i.e. the number of subdomains on the finest mesh level.

This concludes the discussion of static load balancing and of step 3 of MLMC-
FVM. In step 4, the results are combined to compute sample mean and variance.

2.5 Variance Computation for Parallel Runs

A numerically stable serial variance computation algorithm (so-called “online”)
is given as follows [11]: set ū0 = 0 and Φ0 = 0; then proceed recursively,

ūi =
i∑

j=1

uj/i, Φi :=
i∑

j=1

(uj − ūi)2 = Φi−1 + (ui − ūi)(ui − ūi−1). (21)

Then, the unbiased mean and variance estimates are given by:

EM [u] = ūM , VarM [u] = ΦM/(M − 1). (22)

252 J. Šukys, S. Mishra, and Ch. Schwab

For parallel architectures, assume we have 2 cores, A and B, each computingMA

and MB (M = MA +MB) number of samples, respectively. Then an unbiased
estimate for mean and variance can be obtained by [3]

EM [u] =
MAEMA [u] +MBEMB [u]

M
, VarM [u] =

ΦM

M − 1
, (23)

where: ΦM = ΦMA + ΦMB + δ2 · MA ·MB

M
, δ = EMB [u]− EMA [u]. (24)

Then, for any finite number of cores formula (23) is applied recursively.
This finishes the discussion of the parallel implementation issues for MLMC-

FVM algorithm. In Figure 3 we provide an example of solution obtained using
MLMC-FVM solver, i.e. the mean and the variance at simulation time t = 0.06
of the cloud shock problem of Euler equations of compressible gas dynamics [8].
Next, we investigate the efficiency of the parallelization.

L ML grid size CFL cores runtime efficiency

9 8 4096x4096 0.4 1023 5:38:17 96.9%

Fig. 3. Uncertain solution to the cloud shock problem of Euler equations of com-
pressible gas dynamics using MLMC-FVM solver. Mean of the random mass density
is plotted on the left and the logarithm of variance is plotted on the right. For the
detailed description of the uncertain initial data U0 and further comments refer to [8].

3 Efficiency and Linear Scaling in Numerical Simulations

The static load balancing algorithm was tested on a series of benchmarks for hy-
perbolic solvers; refer to [8] for Euler equations of gas dynamics, [8,5] for Magne-
tohydrodynamics (MHD) equations of plasma physics, and [9] for shallow water
equations with uncertain bottom topography. The runtime of all aforementioned
simulations was measured by the wall clock time, accessible by MPI Wtime()

routine [12]. Parallel efficiency is defined as a fraction of simulation time (which
excludes time spent for MPI communications and idling) over wall clock time,

efficiency := 1− (total clock time of all MPI routines)

(#cores)× (wall clock time)
. (25)

Static Load Balancing for MLMC-FVM 253

In Figure 4 we verify strong scaling (fixed discretization and sampling parame-
ters while increasing #cores) and in Figure 5 we verify weak scaling (problem size
is proportional to #cores) of our implementation. In both cases, we maintained
scaling up to almost 4000 cores at high efficiency. Simulations were executed on
Cray XE6 (see [13]) with 352 12-core AMD Opteron CPUs (2.1 GHz), 32 GB
DDR3 memory per node, 10.4 GB/s Gemini interconnect. We believe that our
parallelization algorithm will scale linearly for a much larger number of cores.
Labels “MLMC” and “MLMC2” in Figures 4 - 5 indicate that first and second
order accurate FVM solvers were used, i.e. s = 1/2 and s = 1 in (5), respectively.

10
0

10
1

10
2

10
3

10
4

cores

10
0

10
1

10
2

10
3

10
4

w
a
ll
 r

u
n
ti

m
e

 1/1

Strong scaling

MLMC

MLMC2

10
0

10
1

10
2

10
3

10
4

cores

0.0

0.2

0.4

0.6

0.8

1.0

e
ff

ic
ie

n
c
y

MPI efficiency

MLMC

MLMC2

Fig. 4. Strong scaling up to 4000 cores. The inferior scalability of the domain decom-
position method (DDM) due to additional networking between sub-domain boundaries
has no significant influence on the overall scaling.

10
0

10
1

10
2

10
3

10
4

cores

10
0

10
1

10
2

c
u
m

u
la

ti
v
e
 w

a
ll
-t

im
e
 /

 p
ro

b
le

m
 s

iz
e Weak scaling

MLMC

MLMC2

10
0

10
1

10
2

10
3

10
4

cores

0.0

0.2

0.4

0.6

0.8

1.0

e
ff

ic
ie

n
c
y

MPI efficiency

MLMC

MLMC2

Fig. 5. Weak scaling up to 4000 cores. Analogously as in Figure 4, the inferior
scalability of DDM has no significant influence on the overall scaling.

4 Conclusion

MLMC-FVM algorithm is superior to standard MC algorithms for uncertainty
quantification in hyperbolic conservation laws, and yet, as most sampling al-
gorithms, it still scales linearly w.r.t. number of uncertainty sources. Due to its

254 J. Šukys, S. Mishra, and Ch. Schwab

non-intrusiveness, MLMC-FVM was efficiently parallelized for multi-core archi-
tectures. Strong and weak scaling of our implementation ALSVID-UQ [2] of the
proposed static load balancing was verified on the high performance clusters
[14,13] in multiple space dimensions. The suite of benchmarks included Euler
equations of gas dynamics, MHD equations [8], and shallow water equations [9].

Acknowledgments. This work is performed under ETH interdisciplinary re-
search grant CH1-03 10-1. CS acknowledges partial support by the European
Research Council under FP7 grant ERC AdG 247277-STAHDPDE. JŠ is grate-
ful to Stefan Pauli and Peter Arbenz for their contributions. We thank teams of
Brutus [14] and CSCS [13] for their extensive support.

References

1. ALSVID, http://folk.uio.no/mcmurry/amhd
2. ASLVID, http://www.sam.math.ethz.ch/alsvid-uq
3. Chan, T.F., Golub, G.H., LeVeque, R.J.: Updating Formulae and a Pairwise Al-

gorithm for Computing Sample Variances. STAN-CS-79-773 (1979)
4. Fjordholm, U.S., Mishra, S., Tadmor, E.: Well-balanced, energy stable schemes for

the shallow water equations with varying topology. J. Comput. Phys. 230, 5587–
5609 (2011)

5. Fuchs, F., McMurry, A.D., Mishra, S., Risebro, N.H., Waagan, K.: Approximate
Riemann solver based high-order finite volume schemes for the Godunov-Powell
form of ideal MHD equations in multi-dimensions. Comm. Comp. Phys. 9, 324–
362 (2011)

6. L’Ecuyer, P., Panneton, F.: Fast Random Number Generators Based on Linear
Recurrences Modulo 2. ACM Trans. Math. Software 32, 1–16 (2006)

7. LeVeque, R.A.: Numerical Solution of Hyperbolic Conservation Laws. Cambridge
Univ. Press (2005)

8. Mishra, S., Schwab, Ch., Šukys, J.: Multi-level Monte Carlo finite volume meth-
ods for nonlinear systems of conservation laws in multi-dimensions. J. Comp.
Phys. 231(8), 3365–3388 (2011)

9. Mishra, S., Schwab, Ch., Šukys, J.: Multi-level Monte Carlo Finite Volume methods
for shallow water equations with uncertain topography in multi-dimensions. SIAM
Journal of Scientific Computing (2011) (submitted),
http://www.sam.math.ethz.ch/reports/2011/70

10. Mishra, S., Schwab, Ch.: Sparse tensor multi-level Monte Carlo Finite Volume
Methods for hyperbolic conservation laws with random initial data. Math. Comp.
(2011) (to appear), http://www.sam.math.ethz.ch/reports/2010/24

11. Welford, B.P.: Note on a Method for Calculating Corrected Sums of Squares and
Products. Technometrics 4, 419–420 (1962)

12. MPI: A Message-Passing Interface Standard. Version 2.2 (2009),
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf

13. Cray XE6, Swiss National Supercomputing Center (CSCS), Manno, www.cscs.ch
14. Brutus, ETH Zürich, de.wikipedia.org/wiki/Brutus (Cluster)

http://folk.uio.no/mcmurry/amhd
http://www.sam.math.ethz.ch/alsvid-uq
http://www.sam.math.ethz.ch/reports/2011/70
http://www.sam.math.ethz.ch/reports/2010/24
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
www.cscs.ch

A Parallel Algorithm for Minimizing

the Number of Routes in the Vehicle Routing
Problem with Time Windows

Miros�law B�locho1,3 and Zbigniew J. Czech1,2

1 Silesia University of Technology, Gliwice, Poland
Zbigniew.Czech@polsl.pl

2 Silesia University, Sosnowiec, Poland
Zbigniew.Czech@polsl.pl

3 ABB ISDC, Krakow, Poland
blochom@gmail.com

Abstract. A parallel algorithm for minimizing the number of routes in
the vehicle routing problem with time windows (VRPTW) is presented.
The algorithm components cooperate periodically by exchanging their
best solutions with the lowest number of routes found to date. The ob-
jective of the work is to analyze speedup, achieved accuracy of solutions
and scalability of the MPI implementation. For comparisons the selected
VRPTW tests are used. The derived results justify the proposed paral-
lelization concept. By making use of the parallel algorithm the twelve
new best-known solutions for Gehring and Homberger’s benchmarking
tests were found.

Keywords: parallel algorithm,vehicle routing problem with time win-
dows, guided local search, heuristics, approximation algorithms, MPI
library.

1 Introduction

This work presents a parallel algorithm for minimizing the number of routes
in the vehicle routing problem with time windows (VRPTW). It extends our
previous efforts concerning the improved version of the algorithm [2] originated
from the heuristic by Nagata and Bräysy [19]. The sequential version of the
improved algorithm is based on the notion of the ejection pool used in
the heuristic by Lim and Zhang [16], combined with the guided local searches
and the diversification strategy [30]. The components of the parallel algorithm
cooperate periodically by exchanging their best solutions to the VRPTW.

The VRPTW belongs to a large family of the vehicle routing problems (VRP)
which have numerous practical applications such as: the school bus routing,
newspapers and mail delivery, armoured car routing, rail distribution, airline fleet
routing and many others [29]. Apart from the practical significance, the VRPTW
is also NP-hard in the strong sense as it contains several NP-hard optimisation
problems such as TSP and bin packing [15].

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 255–265, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

256 M. B�locho and Z.J. Czech

The current state-of-the-art heuristics for the VRPTW can be divided into
improvement heuristics (local searches), construction heuristics and metaheuris-
tics. The improvement heuristics change the current solution iteratively by exe-
cuting local searches for finding better neighboring solutions. The neighborhood
contains the set of solutions that can be obtained from the base solution by ex-
changing customers or edges. The most successful applications of the improve-
ment heuristics can be found in Bräysy [3], Potvin and Rousseau [20], Thompson
and Psaraftis [28], Caseau and Laburthe [4], and Russell [24].

The construction heuristics generate a feasible solution by inserting customers
iteratively into the partial routes due to specific criteria, such as maximum sav-
ings or minimum additional distance never violating the solution feasibility. The
examples of such heuristics are described in Solomon [26], Potvin and Rousseau
[21], Dullaert and Bräysy [8] and Mester [17].

The metaheuristics are based on exploring the solution space in order to iden-
tify better solutions and they often contain standard route construction as well
as the improvement heuristics. As distinct from the classical approaches, the
metaheuristics allow infeasible intermediate solutions and a solution deteriorat-
ing in the search process to escape a local minima. The best performance for the
VRPTW was obtained by the application of the evolution strategies [22], tabu
searches [11] and genetic algorithms [12]. For example the evolution strategies
were applied by Gehring and Homberger ([9], [10], [13]) and Mester [18] while
the tabu searches with excellent results were applicated by Taillard et al. [27],
Schulze and Fahle [25], Chiang and Russell [5], Rochat and Taillard [23] and
Cordeau et al. [6]. In turn, the genetic algorithms were successfully applied by
Jung and Moon [14] and Berger et al. [1].

The VRPTW is defined on a complete graph G = (V , E) with a set of vertices
V = {v0, v1, ..., vN} and a set of edges E = {(vi, vj): vi, vj ∈ V ,i �= j}. Node v0
represents a depot and the set of nodes {v1, ..., vN} represents the customers
to be serviced. With each node vi ∈ V are associated a non-negative service
time si (s0 = 0), a non-negative load qi (q0 = 0) and a time window [ei, li]. Each
edge (vi, vj) contains a non-negative travel time cij and a travel distance dij .
A solution to the VRPTW is the set of m routes on graph G such that (1) each
route starts and ends at the depot; (2) every customer vi belongs to exactly
one route; (3) the total load of each route does not exceed Q; (4) the service
at each customer vi begins between ei and li; (5) every vehicle leaves the depot
and returns to it between e0 and l0; (6) the number of routes and total travelled
distance are minimized.

The MPI (Message Passing Interface) implementation of the parallel algo-
rithm for minimizing the number of routes in the VRPTW is presented. The
objective of the work is to analyze speedup, achieved accuracy of solutions and
scalability of this parallel heuristic implementation. The remainder of this paper
is arranged as follows. In section 2 the parallel algorithm is presented. Section
3 describes the MPI implementation of the algorithm. Section 4 contains the
discussion of the experimental results. Section 5 concludes the paper.

A Parallel Algorithm for the VRPTW 257

2 Parallel Algorithm

The parallel algorithm for minimizing the number of routes in the VRPTW ex-
tends the improved sequential version of the algorithm by B�locho and Czech [2].
The parallel algorithm contains N components which are executed as processes
P1, P2, . . . , PN (Alg. 1).

1 for Pi ← P1 to PN do in parallel
2 initialize the communication requests
3 create the initial solution σ
4 TC ← false // termination condition

5 while not TC do
6 σ ← RemoveRoute(σ)

// cooperation during RemoveRoute function execution

7 end
8 gather solutions from all processes in process P1 and produce

the best solution σbest
9 free the communication requests

10 end

Algorithm 1. Parallel algorithm (TC- termination condition)

The framework of the heuristic (Alg. 1) consists of the consecutive remove
route steps performed until the total computation time reaches a specified limit
Tmax.

The RemoveRoute function (Alg. 2) is started by choosing and removing
a route randomly from the current solution σ. The customers from this route
are used to initialize the Ejection Pool (EP) that is used to hold the set of cus-
tomers missing from σ. The penalty counters p[vi] initialized at the beginning of
the function indicate how many times the attempts to insert the given customers
failed. The bigger value of the penalty counter for a specified customer, the more
difficult is to reinsert it into the solution [19].

After the random route is removed from the current solution, continuous at-
tempts to include the ejected customers into the rest of the routes are performed
(Alg. 3). These attempts are carried out until all customers from the Ejection
Pool are inserted or the execution time of the algorithm reaches a specified time
limit Tmax [2]. Sfe

insert(vi, σ) is defined as a set of the feasible partial solutions
that are obtained by inserting the customer vi into all insertion positions in σ.
If Sfe

insert(vi, σ) is empty then the function Squeeze (line 7 in Alg. 3) is called in
order to help the insertion of the selected customer into σ. The idea of this func-
tion is to choose the temporarily infeasible insertion with the minimal penalty
function value Fp(σ) defined in [19].

If the Squeeze function fails then it informs that the selected customer vi was
not inserted into the solution σ. The value of the penalty counter for a chosen
customer is then increased (line 10 in Alg. 3) and after that the ejections of the

258 M. B�locho and Z.J. Czech

1 begin
2 σ ← RemoveRouteInitStep(σ)
3 choose and remove a route randomly from the solution σ
4 initialize EP with the customers from the removed route
5 initialize the penalty counters p[vi] ← 1(i = 1, ..., N)
6 if Tcurr < Tmax then
7 while EP �= ∅ do
8 σ ← RouteEliminationStep(σ)
9 if cre mod fc = 0 then

10 TC ← CooperationStep (σ)
11 if TC = true then
12 break

13 end

14 end

15 else
16 TC ← CooperationStep (σ)
17 end
18 if EP �= ∅ then
19 restore σ to the beginning solution
20 end
21 return σ

22 end

Algorithm 2. RemoveRoute(σ) - minimizing the number of routes (cre -
route elimination steps count; fc - frequency of the processes communication)

1 begin
2 cre ← cre + 1 // increase route elimination steps count

3 select and eject the customer vi from EP using LIFO stack

4 if Sfe
insert(vi, σ) �= ∅ then

5 σ ← the new solution σ′ selected randomly from Sfe
insert(vi)

6 else
7 σ ← Squeeze (vi, σ)
8 end
9 if vi is not inserted into σ then

10 p[vi] ← p[vi] + 1

11 select σ′ from Sej(vi) with min. Psum = p[v
(1)
out] + ... + p[v

(km)
out]

12 update σ ← σ′

13 add the ejected customers: v
(1)
out, v

(2)
out, ..., v

(km)
out to the EP

14 σ ← Perturb (σ)

15 end
16 return σ

17 end

Algorithm 3. RouteEliminationStep(σ) - single elimination step

A Parallel Algorithm for the VRPTW 259

customers are tested (up to the limit km [19]). For this reason, the set Sej(vi)
is being constructed, that contains the solutions with various ejected customers
and the customers inserted at different route positions. The Perturb function
(line 14 in Alg. 3) is used to diversify the search and only the feasible partial
solutions are accepted in that step [2].

The parameter fc indicates how often the processes communicate with each
other to exchange the number of routes and the best solutions found to date. This
parameter is compared with the route elimination steps count cre of the current
process (line 6 in Alg. 2). The chain of the route elimination steps of the process
P2 is updated to the better solution between the best solutions (in our algorithm
only with respect to the number of routes) found by processes P1 and P2. Such
a cooperation is continued until the process PN obtains the best solution from all
the processes P1 to PN−1 and after that, the best result is sent back to the first
process P1. This way of the cooperation between the processes guarantees that
after each cooperation step the process P1 holds the best solution found to date
by all the processes used in the communication chain. It also guarantees that
each process Pi holds the best solution found in the previous cooperation step
by all the processes. The scheme of the cooperation of the processes is presented
in Fig. 1.

In order to minimize the cost of the cooperation step during an algorithm
execution, the nonblocking operations for both receive and send functions were
introduced. Because of the asynchronous communication, each time at the end
of a cooperation step the process has to wait for already started operations to be
finished. The successive route elimination steps are performed during that step
to take advantage of a waiting time in the beneficial way. A two-grading system
of sending data from one process to another was introduced. In the first step
only a number of routes is sent to the next process, along with the information
whether a solution will be sent as well or not. The full solution is sent only if the
number of routes of the current solution is lower than in last cooperation step.

σ
(init)
1 ⇒ σ

(init)
2 ⇒ σ

(init)
3 ⇒ • • • ⇒ σ

(init)
N−1 ⇒ σ

(init)
N ⇒ σ

(init)
1

↓ ↓ ↓ ↓ ↓ ↓
σ
(1fc)
1 ⇒ σ

(1fc)
2 ⇒ σ

(1fc)
3 ⇒ • • • ⇒ σ

(1fc)
N−1 ⇒ σ

(1fc)
N ⇒ σ

(1fc)
1

↓ ↓ ↓ ↓ ↓ ↓
σ
(2fc)
1 ⇒ σ

(2fc)
2 ⇒ σ

(2fc)
3 ⇒ • • • ⇒ σ

(2fc)
N−1 ⇒ σ

(2fc)
N ⇒ σ

(2fc)
1

↓ ↓ ↓ ↓ ↓ ↓
• • • • • • • • •
↓ ↓ ↓ ↓ ↓ ↓

σ
(xfc)
1 ⇒ σ

(xfc)
2 ⇒ σ

(xfc)
3 ⇒ • • • ⇒ σ

(xfc)
N−1 ⇒ σ

(xfc)
N ⇒ σ

(xfc)
1

Fig. 1. Scheme of cooperation of the processes (σ
(init)
i - initial solution of the process Pi;

σ
(jfc)
i - j cooperation step of the process Pi; x - cooperation steps count)

260 M. B�locho and Z.J. Czech

1 begin
2 if processID = 0 then
3 TC ← (Tcurr > Tmax)
4 PerformSendStep (σ)
5 PerformReceiveStep (σ)

6 else
7 PerformReceiveStep (σ)
8 PerformSendStep (σ)

9 end
10 WaitForSentRequests (σ)
11 return TC

12 end

Algorithm 4. CooperationStep(σ) - function of cooperation of processes

3 The MPI Implementation

In the MPI implementation of the parallel algorithm all processes Pi, i = 1, 2, . . . ,
N execute the parallel loop shown in Alg. 1. The processes communicate repeat-
edly with the same parameters list and for this reason the persistent communi-
cation requests have been created for all send and receive operations:

– SendNoReq {a persistent request of sending number of routes},
– SendSolReq {a persistent request of sending full solution},
– RecvNoReq {a persistent request of receiving number of routes},
– RecvSolReq {a persistent request of receiving full solution}.

The list of the communication parameters is binded to the persistent requests
only once using MPI Send init or MPI Recv init function (line 2 in Alg. 1).
When the cooperation between the processes is finished the persistent requests
have to be freed (line 9 in Alg. 1) using MPI Request free function.

In the MPI version of the algorithm, MPI Start() function is used to initiate
the communication with a persistent request handle and in the algorithm it is
used for both send and receive operations.

Only after both send and receive operations were invoked, it is necessery to
wait for the sent requests to be finished. By taking advantage of the MPI Test
function it was possible to test if they are already completed. If not, the successive
route elimination steps are executed.

4 Experimental Results

The MPI implementation was run on the Galera (TASK) supercomputer which
nodes consisted of 2 Intel Xeon Quad Core 2.33 GHz processors, each with 12

A Parallel Algorithm for the VRPTW 261

MB level 3 cache. The nodes were connected by the Infiniband DDR fat-free
network (throughput 20 Gbps, delay 5 s). The computer was executing Linux
operating system. The source code was compiled using Intel 10.1 compiler and
MVAPICH1 v. 0.9.9 MPI library.

The selected benchmarking tests proposed by Gehring and Homberger (GH)
were used for testing the MPI implementation of the parallel algorithm. The
investigations reported in [2] indicated that using the sequential version of the
algorithm most of the GH tests can be solved quickly to good accuracy except
of tests from C1, C2, RC1, RC2 groups having 400-1000 customers. In order to
analyze speedup of the parallel version of this algorithm only those of the GH
tests were chosen for which the execution time was one of the longest. The results
of the experiments are gathered in Tab. 1 and illustrated in Fig. 2. Overall 150
experiments for RC tests (RC2 6 2, RC2 8 5, RC2 10 5) and 100 experiments
for C tests (C2 6 2, C2 8 9, C2 10 7) for 1..16 and for 20, 24, 28, ..., 64 proces-
sors were carried out. The results in the table show speedups and the average
execution times only for 1, 16, 32, 48 and 64 processors. It can be noticed that
the algorithm achieves slightly worse speedups for tests from C1/C2 groups than
for tests from RC1/RC2 groups. It may indicate that the additional operations
such as communication, idling and synchronization of processes take the larger
part for the C1/C2 tests than for RC1/RC2 tests.

By running the parallel algorithm on 32/64 processors 12 new best-known
solutions were found and they are reported in Tab. 2.

Table 1. Results for selected GH tests (p – number of processors, τ̄ – average execution
time [s], S – speedup, exp. – number of experiments)

RC2 6 2 RC2 8 5 RC2 10 5

p τ̄ S exp. τ̄ S exp. τ̄ S exp.

1 2573.1 1.00 150 369.7 1.00 150 454.7 1.00 150
16 203.9 12.62 150 30.4 12.16 150 35.6 12.64 150
32 91.1 28.24 150 13.3 27.81 150 16.8 27.02 150
48 62.8 40.99 150 9.5 39.01 150 11.9 38.21 150
64 52.4 49.12 150 7.6 48.97 150 9.5 47.88 150

C2 6 2 C2 8 9 C2 10 7

p τ̄ S exp. τ̄ S exp. τ̄ S exp.

1 492.1 1.00 100 1564.6 1.00 100 852.7 1.00 100
16 49.2 10.01 100 152.5 10.27 100 90.1 9.47 100
32 19.8 24.92 100 64.6 24.21 100 40.6 21.02 100
48 14.3 34.48 100 49.2 31.82 100 26.1 32.70 100
64 11.0 44.66 100 36.5 42.92 100 21.4 39.92 100

262 M. B�locho and Z.J. Czech

1

16

32

48

64

1 16 32 48 64

S

p

C2 6 2

Ideal

◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦

MPI

•• • • • • • • • • • • • • • • ••

1

16

32

48

64

1 16 32 48 64

S

p

RC2 6 2

Ideal

◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦

MPI

•• • • • • • • • • • • • • • • •
•

1

16

32

48

64

1 16 32 48 64

S

p

C2 8 9

Ideal

◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦

MPI

•• • • • • • • • • • • • • • • ••

1

16

32

48

64

1 16 32 48 64

S

p

RC2 8 5

Ideal

◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦

MPI

•• • • • • • • • • • • • • • • ••

1

16

32

48

64

1 16 32 48 64

S

p

C2 10 7

Ideal

◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦

MPI

•• • • • • • • • • • • • • • • ••

1

16

32

48

64

1 16 32 48 64

S

p

RC2 10 5

Ideal

◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦

MPI

•• • • • • • • • • • • • • • • ••

Fig. 2. Speedup S vs. number of processors p for tests C2 6 2, C2 8 9, C2 10 7,
RC2 6 2, RC2 8 5 and RC2 10 5

A Parallel Algorithm for the VRPTW 263

Table 2. New best-known solutions (N – number of customers, p – number of
processors)

Instances N p Best-known New-best Time [s]

C2 6 9 600 64 18 17 113
RC2 6 1 600 64 15 14 192
RC2 6 5 600 32 12 11 378
RC2 8 1 800 32 19 18 360
RC2 8 2 800 64 17 16 80
RC2 8 5 800 32 16 15 232
C1 10 2 1000 32 91 90 61
C2 10 3 1000 64 29 28 9980
C2 10 4 1000 32 29 28 463
C2 10 6 1000 32 30 29 394
C2 10 7 1000 32 30 29 3005
C2 10 10 1000 64 29 28 542

5 Conclusions

The parallel algorithm for minimizing the number of routes in the VRPTW
along with its MPI implementation were presented. The main advantage of the
proposed algorithm is a very short time of obtaining solutions which contain the
number of routes equal to or better than the best known solutions. The parallel
algorithm displays very good performance in terms of the quality of solutions,
robustness and computational effort. The experimental results obtained for the
selected tests by Gehring and Homberger indicated that the algorithm scales
better for the tests from groups RC1/RC2 than for the tests from groups C1/C2.
It may be expected, that the proposed way of parallelization will lead to similar
results also in case of other combinatorial optimization problems.

Acknowledgments. We thank the following computing centers where the com-
putations of our project were carried out: Academic Computer Centre in Gdańsk
TASK, Academic Computer Centre CYFRONET AGH, Kraków (computing
grant 027/2004), Poznań Supercomputing and Networking Center, Interdisci-
plinary Centre for Mathematical and Computational Modeling, Warsaw Univer-
sity (computing grant G27-9), Wroc�law Centre for Networking and Supercom-
puting (computing grant 30).

References

1. Berger, J., Barkaoui, M., Bräysy, O.: A route-directed hybrid genetic approach for
the vehicle routing problem with time windows. INFOR 41, 179–194 (2003)

2. B�locho, M., Czech, Z.J.: An improved route minimization algorithm for the
vehicle routing problem with time windows. Studia Informatica 32, No. 3B(99),
5–19 (2011)

264 M. B�locho and Z.J. Czech

3. Bräysy, O., Hasle, G., Dullaert, W.: A multi-start local search algorithm for the
vehicle routing problem with time windows. European Journal of Operational
Research (2002)

4. Caseau, Y., Laburthe, F.: Heuristics for large constrained vehicle routing problems.
Journal of Heuristics 5, 281–303 (1999)

5. Chiang, W.C., Russell, R.A.: A reactive tabu search metaheuristic for the vehicle
routing problem with time windows. INFORMS Journal on Computing 9, 417–430
(1997)

6. Cordeau, J.-F., Laporte, G., Mercier, A.: A unified tabu search heuristic for ve-
hicle routing problems with time windows. Journal of the Operational Research
Society 52, 928–936 (2001)

7. Czech, Z.J., Mikanik, W., Skinderowicz, R.: Implementing a Parallel Simu-
lated Annealing Algorithm. In: Wyrzykowski, R., Dongarra, J., Karczewski, K.,
Wasniewski, J. (eds.) PPAM 2009. LNCS, vol. 6067, pp. 146–155. Springer,
Heidelberg (2010)

8. Dullaert, W., Bräysy, O.: Routing with relatively few customers per route. Top
(2002)

9. Gehring, H., Homberger, J.: A parallel hybrid evolutionary metaheuristic for the
vehicle routing problem with time windows. In: Miettinen, K., Mkel, M., Toivanen,
J. (eds.) Proceedings of EUROGEN 1999, pp. 57–64. University of Jyvskyl, Jyvskyl
(1999)

10. Gehring, H., Homberger, J.: Parallelization of a two-phase metaheuristic for routing
problems with time windows. Asia-Pacific Journal of Operational Research 18,
35–47 (2001)

11. Glover, F.: Future paths for integer programming and links to artificial intelligence.
Computers and Operations Research 13, 533–549 (1986)

12. Holland, J.: Adaptation in natural and artificial systems. University of Michigan
Press, Ann Arbor (1975)

13. Homberger, J., Gehring, H.: Two evolutionary meta-heuristics for the vehicle rout-
ing problem with time windows. INFOR 37, 297–318 (1999)

14. Jung, S., Moon, B.-R.: A hybrid genetic algorithm for the vehicle routing problem
with time windows. In: Proceedings of Genetic and Evolutionary Computation
Conference, pp. 1309–1316. Morgan Kaufmann, San Francisco (2002)

15. Kohl, N.: Exact Methods for Time Constrained Routing and Related Scheduling
Problems, PhD. Institut for Matematisk Modellering, Danmarks Tekniske Univer-
sitet

16. Lim, A., Zhang, X.: A two-stage heuristic with ejection pools and generalized
ejection chains for the vehicle routing problem with time windows. Informs Journal
on Computing 19, 443–457 (2007)

17. Mester, D.: A parallel dichotomy algorithm for vehicle routing problem with time
windows, Working paper, Minerva Optimization Center, Technion, Israel (1999)

18. Mester, D.: An evolutionary strategies algorithm for large scale vehicle routing
problem with capacitate and time windows restrictions, Working paper, Institute
of Evolution, University of Haifa, Israel (2002)

19. Nagata, Y., Bräysy, O.: A Powerful Route Minimization Heuristic for the Vehicle
Routing Problem with Time Windows. Operations Research Letters 37, 333–338
(2009)

20. Potvin, J.-Y., Rousseau, J.-M.: An exchange heuristic for routeing problems with
time windows. Journal of the Operational Research Society 46, 1433–1446 (1995)

A Parallel Algorithm for the VRPTW 265

21. Potvin, J.-Y., Rousseau, J.-M.: A parallel route building algorithm for the vehicle
routing and scheduling problem with time windows. European Journal of Opera-
tional Research 66, 331–340 (1993)

22. Rechenberg, I.: Evolutionsstrategie. Fromman-Holzboog, Stuttgart (1973)
23. Rochat, Y., Taillard, E.: Probabilistic diversification and intensification in local

search for vehicle routing. Journal of Heuristics 1, 147–167 (1995)
24. Russell, R.A.: Hybrid heuristics for the vehicle routing problem with time windows.

Transportation Science 29, 156–166 (1995)
25. Schulze, J., Fahle, T.: A parallel algorithm for the vehicle routing problem with

time window constraints. Annals of Operations Research 86, 585–607 (1999)
26. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with

time window constraints. Operations Research 35, 254–265 (1987)
27. Taillard, E., Badeau, P., Gendreau, M., Guertin, F., Potvin, J.-Y.: A tabu search

heuristic for the vehicle routing problem with soft time windows. Transportation
Science 31, 170–186 (1997)

28. Thompson, P., Psaraftis, H.: Cyclic transfer algorithms for multivehicle routing
and scheduling problems. Operations Research 41, 935–946 (1993)

29. Toth, P., Vigo, D. (eds.): The vehicle routing problem. SIAM, PA (2002)
30. Voudouris, C., Tsang, E.: Guided local search. In: Glover, F. (ed.) Handbook of

Metaheuristics, pp. 185–218. Kluwer (2003)

Towards Parallel Direct SAT-Based Cryptanalysis

Paweł Dudek1, Mirosław Kurkowski1, and Marian Srebrny2,�

1 Institute of Computer and Information Sciences,
Czestochowa University of Technology,

Dabrowskiego 73, 42-200 Czestochowa, Poland
{mkurkowski,pdudek}@icis.pcz.pl

2 Institute of Computer Science, Polish Academy of Sciences,
Ordona 21, 01-237 Warsaw, Poland

marians@ipipan.waw.pl

Abstract. In this paper we show a new approach of parallelised and
optimised direct SAT-based cryptanalysis for symmetric block ciphers.
It is shown how one can code directly in SAT each bit of the plaintext
together with its ’route’ through the enciphering algorithm steps, code
the round key schedule and S-boxes, and eliminate all simple Boolean
equivalences and redundancies. We show Boolean coding directly from
the analysed cipher’s source code, with no intermediate step of generating
any auxiliary system of multivariate low-degree equations, as it was the
case in SAT-enhanced algebraic cryptanalysis of [4]. This contributes to
the results in much shorter formulae. Another speed-up effect we get
by parallelising the cryptanalytic effort to some 2n available processing
cores. We report some experimental results on two basic well known
symmetric ciphers.

Keywords: cryptanalysis, satisfiability, parallel computation.

1 Introduction

Boolean (or propositional) SATisfiability is a celebrated NP-complete problem.
There is no known algorithm that efficiently solves all instances of SAT. It is
generally believed that no such algorithm can exist. Still a lot of Boolean formula
instances can be solved surprisingly efficiently, even very large formulas emerg-
ing in various industrial scale but naturally-occurring decision and optimisation
contexts (see [2]). There are many competing algorithms searching for a satis-
fying valuation for a given Boolean formula. Most of them are highly optimised
versions of the DPLL procedure of [5] and [6]. Usually SAT-solvers take input
formulas in the conjunctive normal form, CNF. It is a conjunction of clauses,
where a clause is a disjunction of literals, and a literal is a propositional variable
or the complement of a propositional variable. The Boolean conjunctive normal
form is similar to the canonical product of sums form used in circuit theory.
� The third author gratefully acknowledges many useful conversations with Dr. Paweł

Morawiecki and his comments.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 266–275, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Towards Parallel Direct SAT-Based Cryptanalysis 267

In this paper we propose a new approach to SAT-based cryptanalysis of sym-
metric cryptographic algorithms, its optimisation and parallel realization. The
main idea of SAT-based cryptanalysis is translating the problem of recovering a
secret cryptographic key into a satisfiability instance of some Boolean (proposi-
tional) formula which encodes the cipher being analysed. We translate the whole
given enciphering algorithm directly into a Boolean formula without any inter-
mediate algebraic system of equations or extra application of any automatic or
semiautomatic tools. Some of the propositional variables in this formula repre-
sent a plaintext, a cryptographic key and the corresponding ciphertext, respec-
tively. We take an arbitrary plaintext and a key, and compute the corresponding
ciphertext. Now, given a plaintext and its ciphertext, we run a SAT-solver to
search for the secret key. Our optimisation and parallelisation is given in Section
4. As one of our improvements, we propose parallelisation of the cryptanalityc
effort to some available 2n processing cores, with a random choice of n bits, for
some small n, out of those searched for, and assigning them with all the possible
combinations of 0−1 values.

In this work we show the efficiency of our method on two well known symmetric-
key block ciphers: the Feistel Network and the DES algorithm. A block cipher is
an encryption method that processes the input plaintext in blocks of bits that
are fixed in size, typically 64 bits long. The state of a block cipher is reset before
processing each block, with an unvarying transformation. In a symmetric-key ci-
pher the transformation is controlled using a second input – the secret key, and
the same (or trivially-related) key is used for both encryption and decryption.
The key should be a secret known only for two entities maintaining a private
communication channel (see [9]).

Choosing those two ciphers for our experiments reported here (although, at-
tacking some other carefully chosen ciphers is our future research goal) we wanted
to investigate and illustrate how our method works in the case of well known
kind of benchmark ciphers - very often used in practice, with a lot of cryptana-
lytic research that has been devoted to them, what enables a comparison of our
technique and results with related work.

The contribution of this paper is the following: we propose some modifica-
tions to the SAT-based cryptanalysis technique and show they turn out giving
(slightly) better results than the best ones so far in SAT-based approach (due
to [7] and [4]). It has to be emphasised that in general no SAT-based method
has broken DES so far. Besides the brute-force, today also differential and lin-
ear analysis provide attacks with practical complexity; i.e., attacks that can be
experimentally verified (see [3,8]).

The rest of this paper is organised as follows. In section 2, we introduce all
basic information on both ciphers mentioned, to the extent necessary for ex-
plaining our Boolean encoding method. Section 3 gives a process of a direct
Boolean encoding of the ciphers we consider. In section 4, we introduce sev-
eral optimisation and parallelisation ideas used in our method. In section 5, we
present some experimental results we have obtained. Finally, some conclusion
and future directions are indicated in the last section.

268 P. Dudek, M. Kurkowski, and M. Srebrny

2 Feistel Network and DES Cipher

In this section, we introduce all the basic information on the Feistel and the DES
ciphers needed for understanding our methodology of SAT based cryptanalysis
of symmetric cryptographic algorithms.

2.1 Feistel Network

The Feistel cipher is a symmetric-key block algorithm widely used as a design
principle of many symmetric ciphers, including the famous Data Encryption
Standard (DES). This framework is also commonly known as the Feistel Net-
work (FN). Its algorithm has the advantage that its encryption and decryption
procedures are very similar, requiring only a reversal of the key schedule. FN
is an iterated algorithm which is executed many times on the same input. FN
was the first commercial cipher used in IBM’s cipher named Lucifer, designed
by Horst Feistel and Don Coppersmith. FN has gained a lot of attention since
the U.S. Federal Government adopted the DES algorithm as symmetric encryp-
tion standard. Like other parts of the DES, the iterative nature of FN makes
implementing the cipher in hardware easier. Due to a simple structure and easy
hardware implementation, Feistel-like networks are widely used as a component
of various cipher designs. Some examples are these: MISTY1 which is a FN using
a three-round Feistel network in its round function, Skipjack uses FN in its per-
mutation, Threefish (part of Skein) uses a Feistel-like MIX function, Blowfish,
Camellia, CAST-128, FEAL, ICE, LOKI97, Lucifer, MARS, MAGENTA, RC5,
TEA, Twofish, XTEA, GOST 28147-89 (see [9]).

Let F denote the round function and K1, . . . , Kn denote a sequence of keys
obtained in some way from the main key K for the rounds 1, . . . , n, respectively.
We use symbol ⊕ for denoting the exclusive-OR (XOR) operation.

The basic operations of FN are specified as follows:

1. break the plaintext block into two equal length parts denoted by (L0, R0),
2. for each round i = 0, . . . , n, compute Li+1 = Ri and Ri+1 = Li ⊕ F (Ri, Ki).

Then the ciphertext sequence is (Rn+1, Ln+1).
The structure of FN allows easy method of decryption. Lets recall basic prop-

erties of operation ⊕: x ⊕ x = 0, x ⊕ 0 = x, x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z
for all x, y, z ∈ {0, 1}.

A given ciphertext (Rn+1, Ln+1) is decrypted by computing Ri = Li+1 and
Li = Ri+1 ⊕ F (Li+1, Ki), for i = n, . . . , 0. It is easy to observe that (L0, R0) is
the plaintext again. Observe additionally that we have the following equations:

Ri+1 ⊕ F (Li+1, Ki) = (Li ⊕ F (Ri, Ki)) ⊕ F (Li, Ki) =
= Li ⊕ (F (Ri, Ki) ⊕ F (Li, Ki)) = Li ⊕ 0 = Li.

2.2 DES Cipher

The well known Data Encryption Standard (DES) algorithm is a symmetric
block cipher that uses a 56-bit key. In 1976 DES was chosen by the US National

Towards Parallel Direct SAT-Based Cryptanalysis 269

Bureau of Standards as an official Federal Information Processing Standard.
Since 1976 it had been widely used around the whole world until the late ’90s
when it was found insecure. This is due to the fact that the 56-bit key size
has been too small. In 1999 the organisation distributed.net and the Electronic
Frontier Foundation collaborated to break a DES key in about 22 hours.

There are several attacks known that can break the full 16 rounds of DES
with less complexity than a brute-force search: differential cryptanalysis, linear
cryptanalysis. In a few recent years, due to tremendous progress in hardware
design, they are of practical complexity; i.e, they can be verified experimentally.
Differential cryptanalysis, (re)discovered in the late 1990s by Eli Biham and Adi
Shamir [3], requires 247 chosen plaintexts to break the full 16 rounds. Linear
cryptanalysis, discovered by Mitsuru Matsui [8], needs 243 known plaintexts
(see [9]).

Now DES is believed to be strongly secure only in its modified form named
Triple DES. In 2002 DES was definitely superseded by another cipher named
Rijndael that has been approved as the new Encryption Standard (AES). How-
ever, DES and especially its modifications can be still treated as a strong cipher
for private applications.

The algorithm consists of 16 identical stages of processing, named rounds.
Additionally, an initial and final permutation is used in the beginning and at
the end of the algorithm, respectively. Before all the rounds, the block is broken
into two 32-bit portions that are processed alternately using some modification of
FN. FN structure guarantees that the decryption and encryption are very similar
processes from the computation time and practical realization point of view. Like
in the FN case, the only difference between encryption and decryption process
is that the subkeys are given in computation in the reverse order. The rest of
the algorithm is identical, what really simplifies implementation, especially in
hardware, as there is no need for separate different encryption and decryption
units.

The F -function mixes the portions of the main block together with one of
the sub-keys. The output from the F -function is then combined with the second
portion of the main block, and both portions are swapped before the next round.
After the last round, the portions are not swapped.

The F -function works on half a block (32 bits) at a time and consists of the
following four steps:

1. Expansion. The 32-bit half-block is enlarged into 48 bits using some special
function by duplicating half of the bits. The output consists of eight 6-bit (8 ·6 =
48 bits) pieces, each containing a copy of 4 corresponding input bits, plus a copy
of the immediately adjacent bit from each of the input pieces to either side.

2. Key Mixing. The result is combined with a sub-key using operation ⊕.
Sub-keys are obtained from the main initial encryption key using a special key
schedule - one for each round. The schedule used consists of some rotations of
bits. For each round a different subset of key bits is chosen.

270 P. Dudek, M. Kurkowski, and M. Srebrny

3. Substitution. After mixing with the subkey, the block is divided into eight
6-bit portions, before processing using the S-boxes. Each of the eight S-boxes is a
matrix with four rows and six columns. It can be treated as a non-linear function
from {0, 1}6 into {0, 1}4. Each S-box replaces a six-tuple input bits with some
four output bits. The S-boxes provide a high level of security - without them,
the cipher would be linear, and easily susceptible to be broken.

4. Permutation. Finally, the 32 output bits (8 · 4) from the S-boxes are mixed
with a next fixed permutation. Called P -box. This is designed in such a way
that after expansion, each S-box’s output bits go across 6 different S-boxes in
the next round of the algorithm.

The key schedule for decryption procedure is similar. The subkeys are in the
reversed order than in the encryption procedure.

From the Boolean encoding point of view, it is important to note that all
the elementary operations in DES, except the S-boxes can be described as some
equivalences (permutations, expansions, rotations). In the case of S-box, it can
be encoded as proper implication. The full encoding process will be described in
the next section of the paper.

3 Boolean Encoding for Cryptanalysis

This section presents our method of direct Boolean encoding of the two bench-
mark ciphers. As mentioned above FN constitutes the basic structure for many
well respected symmetric ciphers. Hence its Boolean encoding will be helpfull in
SAT-based cryptanalysis we want to pursue in the future. As indicated above,
each of the elementary operations of FN and DES can be presented as a con-
junction of Boolean equivalences and implications. To explain our method of
encoding, we start with encoding FN. After that, we show the encoding of the
main steps of DES, including the permutations and S-box computations.

3.1 Encoding Feistel Network

For our explanation we consider the Feistel Network with a 64-bit block of a
plaintext and a 32-bit key. Let p1, . . . , p64, k1, . . . , k32 and c1, . . . , c64 are the
propositional variables representing a plaintext, a key, and the ciphertext, respec-
tively. Observe that following the Feistel algorithm for the first half of ciphertext
we have:

32∧
i=1

(ci ⇔ pi+32).

As a simple instantiation of function F we use function XOR, denoted by ⊕ as
before. (Clearly this is a simplest possible example of function F , but at this
point we only show our encoding method for the FN structure.) It is easy to
observe that for the second half of ciphertext we have:

64∧
i=33

(ci ⇔ (pi ⊕ ki−32 ⊕ pi+32).

Towards Parallel Direct SAT-Based Cryptanalysis 271

Hence, the encoding formula for one round of FN is this:

Φ1
Feistel :

32∧
i=1

(ci ⇔ pi+32) ∧
64∧

i=33

(ci ⇔ (pi ⊕ ki−32 ⊕ pi+32)

In the case of t rounds of FN we have the following. Let (p1
1, . . . , p

1
64), (k1, . . . , k32)

are a plaintext and a key vectors of variables, respectively. By (pj
1, . . . , p

j
64) and

(ci
1, . . . , c

i
64) we describe vectors of variables representing input of j-th round

for j = 2, . . . , t and output of i-th round for i = 1, . . . , t − 1. We denote by
(ct

1, . . . , c
t
64) the variables of a cipher vector after t-th round, too.

The formula which encodes the whole t-th round of a Feistel Network is as
follows:

Φt
Feistel :

32∧
i=1

t∧
s=1

(cs
i ⇔ ps

i+32) ∧
32∧

i=1

t∧
s=1

[cs
i+32 ⇔ (ps

i ⊕ ps
i+32 ⊕ ki)] ∧

∧
64∧

i=1

t−1∧
s=1

(ps+1
i ⇔ cs

i).

Observe that the last part of Φt
Feistel states that the outputs from s-th rounds

are the inputs of the (s + 1)-th.
As we can see, the formula obtained is a conjunction of ordinary, or rather

simple, equivalences. It is important from the translating into CNF point of view.
The second advantage of this description is that we can automatically generate
the formula for many investigated rounds.

3.2 Encoding DES

In the case of DES, we show an encoding procedure in some detail of the most
important parts only for the cipher. An advantage of our method is a direct
encoding of each bit in the process of a DES execution, with no redundancy
from the size of the encoding formula point of view. For describing each bit in
this procedure we use one propositional variable. We encode directly all parts of
DES.

The whole structure of the encoding formula is similar to FN. We can con-
sider DES as a sequence of permutations, expansions, reductions, XORs, S-box
computations and key bits rotations. Each of these operations can be encoded
as a conjunction of propositional equivalences or implications.

For example, consider P - the initial permutation function of DES. Let
(p1, . . . , p64) be a sequence of variables representing the plaintext bits. Denote
by (q1, . . . , q64) a sequence of variables representing the block bits after per-
mutation P . Easy to observe that we can encode P as the following formula:∧64

i=1(pi ⇔ qP (i)).
In a similar way, we can encode all the permutations, expansions, reductions,

and rotations of DES. In the case of S-box encoding, observe that S-box is the

272 P. Dudek, M. Kurkowski, and M. Srebrny

matrix with four rows and sixteen columns where in each row we have one dif-
ferent permutation of numbers belonging to Z16. These numbers are denoted in
binary form as four-tuples of bits. Following the DES algorithm we can consider
each S-box as a function of type Sbox : {0, 1}6 → {0, 1}4.

For simplicity let us denote a vector (x1, . . . , x6) by x and by Sk
box(x) the k-th

coordinate of value Sbox(x), for k = 1, 2, 3, 4.
We can encode each S-box as the following Boolean formula:

ΦSbox
:

∧
x∈{0,1}6

(
6∧

i=1

(¬)1−xipi ⇒
4∧

j=1

(¬)1−Sj
box(x)qj),

where (p1, . . . , p6) is the input vector of S-box and (q1, . . . , q4) the output one.
Additionally, by (¬)0p and (¬)1p we mean p and ¬p, respectively. Using this
we can encode each of the S-boxes used in all considered rounds of DES as 256
simple implication. This number is equal to the size of S-box matrix. Due to the
strongly irregular and random character of S-boxes, we are sure that this is the
simplest method of Boolean encoding of the S-boxes.

Having these procedures, we can encode any given number of rounds of DES
algorithm as a Boolean formula. Our encoding gave formulas shorter than those
of Massacci [7]. We got 3 times less variables and twice less clauses. Observe
that from the computational point of view, it is important to decrease as far
as possible the number of variables and connectives used in the formula. In the
next section we briefly describe a method of decreasing the parameters of the
formula obtained, preserving its equivalences.

3.3 Cryptanalysis Procedure

The cryptanalysis procedure we propose in this paper is the following:
1. encode a single round of the cipher considered as a Boolean propositional
formula;
2. automatic generation of the formula encoding a desired number of iteration
rounds (or the whole cipher);
3. convert the formula obtained into its CNF;
4. (randomly) choose a plaintext and the key vector as a 0, 1-valuation of the
variables representing them in the formula;
5. insert the chosen valuation into the formula;
6. calculate the corresponding ciphertext using an appropriate key and insert it
into the formula;
7. run your favourite SAT-solver with the plaintext and its ciphertext bits
inserted, to find a satisfying valuation of the key variables.

4 Optimisation and Parallel Computation

In this section we show some optimisation and parallelisation of various stages
the above procedure. The results of these optimisation and parallelisation are

Towards Parallel Direct SAT-Based Cryptanalysis 273

shown in the tables presented below. Our implementation is made in C++.
For the parallelisation process OpenMP library is used. Today, many compilers
already have it by default. For our tests we used the g++ compiler. Our experi-
ments were carried out on an Intel Core 2 Quad CPU Q8200 2.33GHz machine,
Linux operating system, and SAT-solver MiniSat.

The first parallelisation in our work occurs in the process of generation of the
encoding formula. The main loop of this process can work parallely. Independent
operations of each iteration of the formula generation are ideal for dividing them
between the working threads. In this case we obtained an acceleration about 15%
of the time.

The second improvement is optimising the formula obtained by removing all
not necessary equivalences. In the case of a subformula that encode permutations
used in the algorithm that are conjunctions of simple equivalences pn ⇔ pk, we
remove these fragments of the formula and substitute the propositional variables
used in encoding in the following way. Consider the equivalence pn ⇔ pk, if n < k
into the whole formula we put a variable pn in all places where pk occurs. After
all these removing and substitutions we reenumerate all variables in order to get
a new smaller set of variables. After that we have a shorter formula equivalent
with the initial one. In this way, we can decrease the number of variables used
sometimes by 50% and the number of clauses by 10%. A good example of the
quality of our formula optimisation is presented in Table 1. We can see that our
method allows a significant decrease of encoding formula with preservation of
equivalence. The third improvement is parallel realization of translating formula
into a CNF form. The data structure constructed for the generated encoding
formula allows us to modify each of its members separately. This is useful when
converting a formula to CNF. Elimination of the logical operators: equivalence,
implication, XOR, can be divided into multiple threads. Other transformations
such as the use of de Morgan’s laws, or resolution alternative to a conjunction
law, also can be divided in the same way. In the outcome, it decreases speed of
realisation of the whole conversion process. In this case we obtained about 10%
speedup in the translation time.

Table 1. Results of the formula first optimisation

Rounds Variables Variables after Clauses Clauses after
1st optimisation 1st optimisation

4 1024 568 10496 9472
8 1976 1016 20866 18944
16 3768 1912 41601 37888

The next step is some optimisation of the CNF formula after inserting the
plaintext and the ciphertext values. We insert into the formula the valuation
representing a plaintext and its ciphertext, respectively, as a set of one-literal
clauses. After that we can optimise the formula with the following scheme. All
clauses that include a literal considered are removed from CNF form. In the

274 P. Dudek, M. Kurkowski, and M. Srebrny

case of clauses that include a negation of a literal, this negation with a literal is
removed. Table 2 shows this type of optimisation in the case of some formula for
4, 8, and 16 rounds and randomly chosen input and its output computed with
some key. The last step is a parallel realization of the SAT-solver’s work. In our

Table 2. Results of the second optimisation

Rounds Variables Variables after Clauses Clauses after
2nd optimisation 2nd optimisation

4 568 440 9472 6642
8 1016 888 18944 17405
16 1912 1784 37888 36350

first attempt we used the winner of Special Parallel Track of the SAT-Race 2010
Conference called Plingeling (see [1]). Unfortunately it worked about four times
worse than MiniSat we used in our earlier investigations without parallelisation.
We are sure that the problem in this case lies in the very complicated structure
of the formula encoding the cipher considered. Having this we tried to modify
the implementation of MiniSat introducing parallelisation in the proper places
of the solver’s source code. The results for a few rounds were rather average. In
four rounds we obtained about 10% speedup. Unfortunately, in the case of more
rounds, the results were similar to those with the original version of MiniSat.
In what follows below we report another approach to parallelisation. Given a
number of CPUs which is some power of 2, searching for all the key bits values,
we can create different formulas for each unit inserting all possible different
valuations of some chosen set of the key variables. Since we have experimented
on a quad-core machine, we chose some two of the key bits and put in extra
four different with a valuation of the two bits. The results obtained using this
approach are shown in Table 3. In the last row of Table 3, for six rounds of
DES with added valuations of 20 key bits, the whole key was solved in 2.2 secs
with all our optimisation and parallelisation. In the same case but without the
improvements presented above, the whole key was solved in 145 secs. The best
result known so far in SAT-based cryptanalysis for this case was 68 secs reported
in [4].

Table 3. Solving time speed-up

Rounds Sequential time (s.) Parallel time (s.) Speed-up
3 0,052 0,036 31%
4 34,686 6,542 81%
5 12762 2438 81%

6 + 20 key bits 47,539 2,216 95%

Towards Parallel Direct SAT-Based Cryptanalysis 275

5 Conclusion and Future Directions

In this paper we have proposed some optimisation and parallelisation improve-
ments to direct SAT-based cryptanalysis of symmetric block ciphers. We have
reported some experimental results, encouraging as compared with the so far
best ones in the SAT-based approach. For sake of comparison, we have carried
out the experiments reported here on two very famous ciphers that have at-
tracted extensive research over the last 4 decades. Clearly, a success of our new
method depends on finding a cipher which we can break.

Our experiments were carried out on a quad-core device. It seems interesting
to experiment on much more advantageous technology of over some many-core
threshold; e.g., on a hundred-core processor, as manufactured on a single mul-
tiprocessor chip and widely used these days across many application domains
including general-purpose, graphics, et cetera. An interesting question remains
what architecture might fit best to our purpose: the cores may or may not share
caches, they may implement message passing or shared memory, and other inter-
core communication designs. The parallelisation of SAT-solving software is a
significant ongoing topic of research.

References

1. Biere, A.: Lingeling, Plingeling, Picosat and Precosat at SAT Race 2010. Technical
Report FMV Reports Series 10/1, Institute for Formal Models and Verification,
Johannes Kepler University, Altenbergerstr. 69, 4040 Linz, Austria (2010)

2. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability.
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (February
2009)

3. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J.
Cryptology 4(1), 3–72 (1991)

4. Courtois, N.T., Bard, G.V.: Algebraic Cryptanalysis of the Data Encryption Stan-
dard. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887,
pp. 152–169. Springer, Heidelberg (2007)

5. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-proving.
Commun. ACM 5(7), 394–397 (1962)

6. Davis, M., Putnam, H.: A computing procedure for quantification theory. J.
ACM 7(3), 201–215 (1960)

7. Massacci, F.: Using Walk-SAT and Rel-SAT for cryptographic key search. In:
Dean, T. (ed.) IJCAI, pp. 290–295. Morgan Kaufmann (1999)

8. Matsui, M.: The First Experimental Cryptanalysis of the Data Encryption Stan-
dard. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 1–11. Springer,
Heidelberg (1994)

9. Menezes, A., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptogra-
phy. CRC Press (1996)

Parallel Version of Image Segmentation

Algorithm Using Polygonal Markov Fields

Rafa�l Kluszczyński1 and Piotr Ba�la1,2

1 University of Warsaw,
Interdisciplinary Centre for Mathematical and Computational Modelling,

Pawińskiego 5a, 02-106 Warsaw, Poland
2 Nicolaus Copernicus University,

Department of Mathematics and Computer Science,
Chopina 12/18, 87-100 Toruń, Poland
{r.kluszczynski,p.bala}@icm.edu.pl

Abstract. In this paper we present an application of parallel simulated
annealing method to a segmentation algorithm using polygonal Markov
fields. After a brief presentation of the algorithm and a general scheme
of parallelization methods using simulated annealing technique, there is
presented parallel approach to the segmentation algorithm with different
synchronization scenarios.

Authors also present results of the parallelization of the segmentation
algorithm. There is discussed comparison between simulations with dif-
ferent synchronization scenarios applied to the multiple-trial approach of
simulated annealing technique. Some simulations based on the number
of threads are presented as well.

Keywords: Image segmentation, Polygonal Markov field, Parallel sim-
ulated annealing.

1 Introduction

Segmentation is one of the fundamental processes in image processing and anal-
ysis. It partitions the image into relatively homogeneous areas [19] with respect
to some characteristic or computed property, such as color or intensity. This
process is usually used as a one of the first steps during image analysis. Based
on its results further methods of visual data interpretation focused on selected
areas can be applied.

A plenty of applications can serve as an example of importance of the seg-
mentation process. Segmentation is used in medical imaging to locate tumors or
measure tissue volume. It is used for example to fingerprint images, visual face
recognition and in satellite imaging to determine the area of forests for example.
In these scenarios different segmentation methods are usually used. In this paper
authors focused on the algorithm using polygonal Markov fields and present its
parallel version based on multi-trial parallelism of simulated annealing technique.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 276–285, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Parallel Version of Segmentation Algorithm Using Polygonal Markov Fields 277

The goal of this paper is to present efficient parallelization of the segmenta-
tion algorithm. Authors also presents achieved execution time speed up based
on different synchronization scenarios and a number of threads. The paper is
organized as follows. Model of polygonal Markov fields is described in the next
section of the paper. The third section presents the segmentation algorithm us-
ing the model. There is also described energy term used in simulated annealing
(SA) cooling scheme. Next, there are presented parallel implementations of SA
method. The following section describes scenarios used by authors in their sim-
ulations and a comparison of achieved results for different scenarios and number
of threads. The paper is concluded with the summary.

2 Polygonal Markov Fields

Polygonal Markov fields construction was introduced for the first time by Arak
in 1982 [2]. In paper [3] there were presented several equivalent techniques of
construction. One of them, called dynamic representation, occurs to be very well
suited for computer simulations. Based on that description there has been devel-
oped algorithm generating polygonal configurations, which enabled to implement
segmentation algorithm using polygonal Markov fields model [12,13].

In the case of image segmentation we consider polygonal configuration on
rectangular domain D ∈ R2 (in general it can be any convex area). The crucial
idea is to interpret the polygonal segments of configuration as the trace left by a
particle traveling in two-dimensional time-space. Thus, points of domain D are
treated as a set of time-space points (t, y), where t represents time coordinate
and y position in a one-dimensional space, see Figure 1.

In this approach, segment is a trajectory of evolving particle and admissible
configurations [3] are represented by following particle evolution rules:

– every particle moves freely with constant velocity except the critical events
listed below,

– when a particle touches the boundary of domain D, it dies,
– in case of collision of two particles (equal y coordinate at some moment t),

both of them die in this point,
– the time evolution of the particle’s velocity is given by a pure-jump Markov

process (see [13] for details).

The above description is very convenient for simulation and can be easily imple-
mented. Application of sweep method introduced by Bentley and Ottoman [4]
can easily lead to an optimal algorithm generating and modifying configurations.
Moreover, polygonal Markov fields have many numerical characteristics, which
allow evaluation of construction algorithm. Some of them are presented in [7].

3 Segmentation Using Polygonal Markov Fields

The first application of polygonal Markov fields model in image processing
was presented in 1989 [6]. Later, Clifford and Nicholls developed a Metropolis-
Hastings sampler and applied it to an image reconstruction problem within

278 R. Kluszczyński and P. Ba�la

(a) (b)

Fig. 1. Example of polygonal configuration (a) and presentation of evolution events of
dynamic representation (b). Assuming that configuration’s simulation time flows from
left to right.

Bayesian framework. Segmentation algorithm using polygonal configurations [13]
was developed based on the work of Schreiber who introduced a Gibbsian mod-
ification of polygonal random fields [21].

The main concept of the algorithm is a disagreement loop [20]. It enables to
modify polygonal configuration by adding a new birth site, removing existing
one or changing velocity of randomly chosen critical moment of particle’s evolu-
tion (see [12,13] for more details). Disagreement loop is a symmetric difference
between two polygonal random fields: before and after applying one of the mod-
ifications. In other words, it is a single loop (a closed polygonal curve), possibly
self-intersecting and possibly chopped off by the boundary. This observation
allows to describe configuration modifications (a single Monte Carlo move) in
dynamic representation language suitable for implementation. An example of
disagreement loop is presented in Fig. 2.

Another important piece of the segmentation algorithm is an energy function
for Gibbsian modification of polygonal Markov fields. For this purpose we used:

H(γ̂, I) := H1(I, γ̂) +H2(γ), (1)

where I denotes observed image, γ – polygonal configuration and γ̂ colored
version (black and white) of γ interpreted as foreground and background regions.
The first term is responsible for a measure how well configuration γ is suited
for segmentation of image I. It is the sum of absolute differences between the
actual pixel values and those assigned by γ̂. It is later denoted as PMR (pixel
misclassification rate).

The second term of energy function (1) is responsible for geometrical charac-
teristics of polygonal configuration γ. There can be added some regularization

Parallel Version of Segmentation Algorithm Using Polygonal Markov Fields 279

Fig. 2. Example of dissagreement loop (time flows from left to right during the update)

terms like Lennard-Jones potential to penalize short segments. During our
simulations we decided to use penalization term

H2(γ) =
∑
s∈γ

V (length(s)), (2)

where s means a segment of configuration γ and V (r) = R − log(r) if r < rcut
and 0 otherwise. Constant R equals log(rcut) and rcut denotes minimal, not
penalized segment length.

At this point, problem of image segmentation is equivalent to the task of
finding a good approximation of the global minimum. For this purpose simu-
lated annealing (SA) technique is used with energy function (1). By theorems in
[21,13], dynamics based on disagreement loop update mechanism of admissible
configurations converges in distribution to the Gibbsian modification. Figure 3
presents pseudo-code of the segmentation algorithm. More detailed description
can be found in [12,13].

4 Parallel Simulated Annealing Method

Simulated annealing technique has been considered as a good tool for complex
nonlinear optimization problems and is widely applied to a variety of problems
[8,18,5,15]. One of the drawbacks is its slow convergence, which causes that the
method is time-consuming. That is why there were many attempts to develop
parallel versions which could be applied to different kinds of problems. There
were some achievements close to ideal speedup on small processors arrays [18].

There exist two different approaches to parallelization of SA method [8]:

– single-trial parallelism,
– multiple-trial parallelism.

280 R. Kluszczyński and P. Ba�la

1. Generate an initial configuration γ0 and calculate H0;
2. Set i = 1;
3. Generate new configuration γnew based on γi−1 and choose randomly one of the

modifications;
4. Calculate new energy Hnew and δ = Hnew −Hi−1;
5. If δ < 0, then γi = γnew, else

γi =

{
γnew with probability exp(δ),
γi−1 otherwise;

6. Calculate PMR value of configuration γi;
7. If stopping criterion is not satisfied (still too high PMR), back to step 3.

Fig. 3. Pseudo-code of the sequential segmentation algorithm

The first approach involves the use of multiple processes by a single simulated
annealing operation. It is clear that implementation and speedup highly depends
on the problem and its characteristics. On the other hand, multiple-trial paral-
lelism is a strategy that can be applied to all problems using simulated annealing
technique. Increasing availability of multi-core processors ideal for concurrent
computations, is a strong motivation.

Simulated annealing technique has been used in molecular modeling [14,16].
This and many other applications usually make use of multiple-trial parallelism
in distributed environment to speed up calculations (execution time). Its gen-
eral nature makes it easy to apply in the case of an algorithm for segmentation
using polygonal Markov fields. The method consists of concurrent independent
simulations (in threads) under different conditions (temperature). Besides stan-
dard Monte Carlo operations, there is also introduced an additional move which
exchanges configurations between threads. This approach is well known as the
“parallel tempering” method, first introduced by Geyer [9], and later rediscov-
ered through independent work by Hukushima and Nemoto under the name of
“replica exchange” [10].

It can be shown that such operation can be applied to any Markov chain
Monte Carlo simulations [1]. That is why it fits in our segmentation method
very easily. We run independent segmentations, and based on the exchange sce-
nario, we synchronized them to apply exchange between replicas. By running
such simulation on multi-core processor we were able to get results in shorter
execution time than in a sequential approach.

5 Exchange Scenarios and Results

In this section we present some scenarios applied to the exchange move of seg-
mentation algorithm using multiple-trial parallelism. In order to compare dif-
ferent scenarios we decided to measure the number of all performed operations

Parallel Version of Segmentation Algorithm Using Polygonal Markov Fields 281

(Monte Carlo moves) by all threads, denoted later as an overall work of a simu-
lation. In this way we have assumed the same average execution time of a single
move during all simulations, which does not have to be true in general. Seg-
mentations were run on a cluster of machines with six-Core AMD Opteron(tm)
Processor 2.6 GHz and 32 GB memory using the same input image. We have
chosen such measure, because we noticed that execution times depend on the
configuration and a load of machines during simulations.

The algorithm was implemented in C++. For parallelization there have been
used OpenMP directives included in GCC compiler. Figure 4 presents pseudo-code
of parallel version of the segmentation algorithm using polygonal Markov fields.
There can be seen, that only synchronization step depends on the scenario of
exchanging configurations between threads. For all simulations presented in this
section there has been used function (1) with

H1 = (2000 + 0.01× i)× PMRi,

where i denotes iteration number, and H2 defined by equation (2) with
rcut = 0.00001 for polygonal field size 3× 3.

1. Generate all initial configurations in all threads;
2. Set shared variable sync = False;
3. For each thread in parallel do:

(a) Generate new configuration by applying randomly chosen modification and
accepting it or not according to the scheme presented in sequential algorithm;

(b) Check the synchronization criterion and if it is satisfied set sync to True;
(c) If sync equals True, then first thread:

– Waits for other threads and blocks their execution;
– Makes exchange operation between threads according to a specific sce-

nario;
– Sets sync to False and releases all threads.

Fig. 4. Pseudo-code of parallel version of the segmentation algorithm

5.1 Results for Different Synchronization Scenarios

As it was mentioned in the previous section, multiple-trial parallelism introduces
new operation of exchanging partial solutions between two replicas. We decided
to test following different scenarios of exchanging replicas:

– exchange with a probability,
– weighted replication with fixed step,
– weighted replication with increasing step,
– replication of the best partial solution with increasing step.

282 R. Kluszczyński and P. Ba�la

In the case of parallel SA technique the first approach is usually presented in
literature [1]. Based on that experience, authors decided to investigate three
other techniques presented above. All scenarios were run on the same input
image with four threads.

In the case of exchange with a probability scenario, exchange operation can
be used at any time. During our simulation we have used probability p = 0.001.
As presented in the Table 1, this scenario has decreased execution time (running
in parallel environment) and also decreased overall work compare to standard
sequential approach.

Table 1. Comparison of different parallel SA scenarios based on 30 segmentations
(PMR = 2%). Average number of operations per thread as well as an average overall
work are presented.

Strategy Thread 1 Thread 2 Thread 3 Thread 4 Overall work

Single thread run 14776 – – – 14776
Exchange with

probability p = 0.001 3236 3159 3190 3220 12805
Weighted replication

with fixed step 2618 2652 2611 2609 10490
Weighted replication
with increasing step 2495 2521 2517 2533 10066

Best solution replication
with increasing step 2214 2235 2267 2235 8950

This improvement was the inspiration for another scenario to apply. The sec-
ond approach assumed synchronization every fixed number of steps. Then, ran-
domly selected configuration of one thread was replicated among the others. To
promote solutions closer to the optimal one, we used weighted probability. To be
sure, that replicas with higher energy are less probably to be chosen, we applied
following probability formula for choosing thread i to be replicated:

pi =
exp(Ei − Em)∑
k exp(Ei − Em)

, (3)

whereEi is the energy of replica i, while Em = mink(Ek). It can be seen (Table 1)
that solution at PMR = 2% was obtained with a better overall work than the
first approach.

In the third scenario there has been also used synchronization with probability
defined by the formula (3). We noticed that the fixed period of synchronization is
impractical in the case of exponential convergence of SA technique. Therefore, we
modified previous scheme with linear increase of synchronization point at every
time it occurs. In our simulations we used periods of 750 + 250× i (i = 0, 1,. . .)
iterations between consecutive synchronizations. This strategy did not make
much improvements, what can be seen in the Table 1.

Parallel Version of Segmentation Algorithm Using Polygonal Markov Fields 283

Fig. 5. Cherry image used for simulations (on the left) and its best achived result (on
the right) with PMR = 1.66%

The last applied scenario was propagation of the best solution got from all
replicas during synchronization. There has been also used increasing synchro-
nization point which is more suitable for SA technique. It has occurred, that
this approach has been very effective. It reduced the execution time and over-
all work of the previous scenario. Average numbers of threads’ operations are
presented in Table 1.

5.2 Results for Different Number of Threads

In this subsection we present comparison of segmentations using different num-
bers of threads. For this purpose we used the same image as in previous sim-
ulations, which is presented together with its best achieved result in Figure 5.
There was used brute-force scenario (propagation of minimum) with increasing
synchronization point. The first point was set to 750th iteration and after each
synchronization its period was increased by 250. The pixel misclassification rate
to achieve was set to 1.8%.

Table 2 presents average segmentations’ results together with its average over-
all work using threads number from 1 to 6. Results show that increasing number
of threads decreases the time of execution needed to achieve PMR. Of course,
this is not a deterministic method, so one particular simulation can run much
longer or end right after it starts. Nevertheless, average overall work made by
simulations increases with the number of threads, but not proportional to the
threads number. This is acceptable as far as we are using multi-core environ-
ment, where number of threads does not exceed the number of cores and we can
speedup execution time.

284 R. Kluszczyński and P. Ba�la

Table 2. Comparison of average work for different number of threads. Table presents
number of operations and an interval of achieved PMRs based on a run of 100 simu-
lations with PMR = 1.8%.

Number Thread Thread Thread Thread Thread Thread Overall
of threads 1 2 3 4 5 6 work

1 12119 12119
(1.72%
- 1.80%)

2 7159 7173 14332
(1.74% (1.66%
- 2.98%) - 2.49%)

3 5977 5992 5977 17946
(1.77% (1.75% (1.73%
- 2.54%) - 2.99%) - 2.43%)

4 4814 4820 4824 4808 19266
(1.77% (1.75% (1.73% (1.75%
- 2.62%) - 2.67%) - 2.51%) - 2.48%)

5 4530 4527 4523 4522 4522 22625
(1.75% (1.76% (1.77% (1.73% (1.74%
- 2.61%) - 2.47%) - 2.68%) - 2.62%) - 2.54%)

6 4225 4224 4209 4233 4221 4216 25328
(1.77% (1.77% (1.77% (1.79% (1.75% (1.76%
- 2.37%) - 2.36%) - 2.33%) - 2.63%) - 2.46%) - 2.34%)

6 Conclusions

Nowadays, multi-core processors are easily available. That is why parallel com-
puting is more important then couple years ago. Increasing availability of multi-
cores processors encourages us to use algorithms designed for such architecture.
This also includes other methods like simulated annealing technique which can
determine a good approximation of a global minimum. For example, we have
presented the segmentation algorithm using polygonal Markov field model which
we have easily parallelized to take advantage of multi-core computers decreasing
its execution time. We have also shown that in case of using parallel SA tech-
nique, it is important to investigate synchronization scenario which may affect
significantly execution time of simulations.

Acknowledgements. This research was supported in part by PL-Grid
Infrastructure [17].

References

1. Adib, A.B.: The theory behind tempered Monte Carlo methods (2005),
http://arturadib.googlepages.com/tempering.pdf

2. Arak, T.: On Markovian random fields with finite number of values. In: 4th USSR-
Japan Symposium on Probability Theory and Mathematical Statistics, Abstracts
of Communications, Tbilisi (1982)

http://arturadib.googlepages.com/tempering.pdf

Parallel Version of Segmentation Algorithm Using Polygonal Markov Fields 285

3. Arak, T., Surgailis, D.: Markov fields with polygonal realisations. Probabability
Theory and Related Fields, 80 (1989)

4. Bentley, J.L., Ottmann, T.A.: Algorithms for reporting and counting geometric
intersections. IEEE Transactions on Computers C-28(9) (1979)

5. Chu, K.-W., Deng, Y., Reinitz, J.: Parallel Simulated Annealing by Mixing of
States. Journal of Computational Physics 148 (1999)

6. Clifford, P., Middleton, R.D.: Reconstruction of polygonal images. Journal of Ap-
plied Statistics 16 (1989)

7. Clifford, P., Nicholls, G.K.: A Metropolis sampler for polygonal image reconstruc-
tion (1994)

8. Eglese, R.W.: Simulated Annealing: A tool for Operational Research. European
Journal of Operational Research 46 (1994)

9. Geyer, C.J.: Markov chain Monte Carlo maximum likelihood. In: Keramidas, E.M.
(ed.) Computing Science and Statistics: Proceedings of the 23rd Symposium on
the Interface. Interface Foundation, Fairfax Station (1991)

10. Hukushima, K., Nemoto, K.: Exchange Monte Carlo Method and Application to
Spin Glass Simulations. J.Phys. Soc. Japan 65 (1996)

11. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing.
Science, 220 (1983)

12. Kluszczyński, R., van Lieshout, M.-C., Schreiber, T.: An Algorithm for Binary
Image Segmentation Using Polygonal Markov Fields. In: Roli, F., Vitulano, S.
(eds.) ICIAP 2005. LNCS, vol. 3617, pp. 383–390. Springer, Heidelberg (2005)

13. Kluszczyński, R., van Lieshout, M.N.M., Schreiber, T.: Image segmentation by
polygonal Markov fields. Journal Annals of the Institute of Statistical Mathemat-
ics 59(3) (2007)

14. Li, H., Tejero, R., Monleon, D., Bassolino-Klimas, D., Abate-Shen, C.,
Bruccoleri, R.E., Montelione, G.T.: Homology modeling using simulated anneal-
ing of restrained molecular dynamics and conformational search calculations with
CONGEN: Application in predicting the three-dimensional structure of murine
homeodomain Msx-1. Protein Science 6 (1997)

15. Miki, M., Hiroyasu, T., Kasai, M., Ono, K., Jitta, T.: Temperature Parallel Simu-
lated Annealing with Adaptive Neighborhood for Continuous Optimization Prob-
lem. Computational Intelligence and Applications (2002)

16. Moglich, A., Weinfurtner, D., Maurer, T., Gronwald, W., Kalbitzer, H.R.: A re-
straint molecular dynamics and simulated annealing approach for protein homology
modeling utilizing mean angles. BMC Bioinformatics 6, 91 (2005)

17. PL-Grid project home page, http://plgrid.pl
18. Ram, D.J., Sreenivas, T.H., Subramaniam, K.G.: Parallel Simulated Annealing

Algorithms. Journal of Parallel and Distributed Computing 37 (1996)
19. Rosenfeld, A., Kak, A.C.: Digital picture processing, 2nd edn., vol. 2. Academic

Press, Orlando (1982)
20. Schreiber, T.: Mixing properties of polygonal Markov fields in the plane (2003),

http://www.mat.uni.torun.pl/preprints

21. Schreiber, T.: Random dynamics and thermodynamic limits for polygonal Markov
fields in the plane. Advances in Applied Probability 37(4) (2004)

http://plgrid.pl
http://www.mat.uni.torun.pl/preprints

Parallel Community Detection

for Massive Graphs

E. Jason Riedy1, Henning Meyerhenke1,2, David Ediger1, and David A. Bader1

1 Georgia Institute of Technology, 266 Ferst Drive, Atlanta, Georgia, 30332, USA
2 Karlsruhe Institute of Technology, Am Fasanengarten 5, 76131 Karlsruhe, Germany

Abstract. Tackling the current volume of graph-structured data re-
quires parallel tools. We extend our work on analyzing such massive
graph data with the first massively parallel algorithm for community de-
tection that scales to current data sizes, scaling to graphs of over 122
million vertices and nearly 2 billion edges in under 7300 seconds on a
massively multithreaded Cray XMT. Our algorithm achieves moderate
parallel scalability without sacrificing sequential operational complexity.
Community detection partitions a graph into subgraphs more densely
connected within the subgraph than to the rest of the graph. We take
an agglomerative approach similar to Clauset, Newman, and Moore’s se-
quential algorithm, merging pairs of connected intermediate subgraphs
to optimize different graph properties. Working in parallel opens new ap-
proaches to high performance. On smaller data sets, we find the output’s
modularity compares well with the standard sequential algorithms.

Keywords: Community detection, parallel algorithm, graph analysis.

1 Communities in Graphs

Graph-structured data inundates daily electronic life. Its volume outstrips the
capabilities of nearly all analysis tools. The Facebook friendship network has over
800 million users each with an average of 130 connections [9]. Twitter boasts over
140 million new messages each day [24]. The NYSE processes over 300 million
trades each month [20]. Applications of analysis range from database optimiza-
tion to marketing to regulatory monitoring. Global graph analysis kernels at this
scale tax current hardware and software due to the size and structure of typical
inputs.

One such useful analysis kernel finds smaller communities, subgraphs that
locally optimize some connectivity criterion, within these massive graphs. We
extend the boundary of current complex graph analysis by presenting the first
algorithm for detecting communities that scales to graphs of practical size, over
120 million vertices and nearly two billion edges in less than 7300 seconds on a
shared-memory parallel architecture with 1 TiB of memory.

Community detection is a graph clustering problem. There is no single, uni-
versally accepted definition of a community within a social network. One popular

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 286–296, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Parallel Community Detection for Massive Graphs 287

definition is that a community is a collection of vertices more strongly connected
than would occur from random chance, leading to methods based on modular-
ity [17]. Another definition [22] requires vertices to be more connected to others
within the community than those outside, either individually or in aggregate.
This aggregate measure leads to minimizing the communities’ conductance. We
consider disjoint partitioning of a graph into connected communities guided by
a local optimization criterion. Beyond obvious visualization applications, a dis-
joint partitioning applies usefully to classifying related genes by primary use [26]
and also to simplifying large organizational structures [14] and metabolic path-
ways [23]. We report results for maximizing modularity, although our implemen-
tation also supports minimizing conductance.

Contributions. We present the first published parallel agglomerative commu-
nity detection algorithm. Our algorithm scales to practical graph sizes on avail-
able multithreaded hardware but with the same sequential operation complexity
as current state-of-the-art algorithms. Our approach is both natively parallel and
simpler than most current sequential community detection algorithms. Also, our
algorithm is agnostic towards the specific criterion; any criterion expressible as
individual edge scores can be maximized (or minimized) locally with respect to
edge contractions. Our implementation supports four different criteria, and here
we report on two modularity-maximizing criteria. Validation experiments show
that our implementation yields solutions comparable in quality to the state-of-
the-art sequential agglomerative algorithm.

Capability and Performance. On a 128 processor Cray XMT with 1 TiB of
memory, our algorithm extracts communities from a graph of 122 million vertices
and 1.99 billion edges into communities by maximizing modularity in under 7300
seconds. Currently, our method for generating artificial test data rather than our
community detection algorithm limits input sizes. Our edge-list implementation
scales in execution time up to 128 processors on sufficiently large graphs.

2 Agglomerative Community Detection

Agglomerative clustering algorithms start with every vertex in a singleton com-
munity. Edges are scored through some metric, and a local optimization heuristic
chooses the next edge(s) to contract. To increase available parallelism, we choose
multiple contraction edges simultaneously as opposed to Clauset, Newman, and
Moore [8]’s sequential algorithm and the method proposed by Blondel et al. [5].
Chosen edges form a maximal cardinality matching that approximates the max-
imum weight, maximal cardinality matching. We consider maximizing metrics
(without loss of generality) and also target a local maximum rather than a global,
possibly non-approximable, maximum. There are a wide variety of metrics in
use for optimizing and evaluating communities [11]. We focus on the established
measure modularity defined in Section 2.2.

288 E.J. Riedy et al.

2.1 Defining the Algorithm

We take an input graph G0 = (V0, E0) and re-interpret G0 as a community
graph G = (V,E). Each vertex in a community graph is a disjoint subset of
the input graph’s vertices, and we begin with V = {{i}|i ∈ V0}. Each edge i, j
in E corresponds to an edge between communities, E = {{i, j}|∃i0 ∈ i ∃j0 ∈
j such that {i0, j0} ∈ E0}. Assign edge weights w({i, j}) to count the number of
edges between communities i and j. To make expressions simpler, let self-edge
weights w({i, i}) count the volume (sum of degrees) where both end vertices lie in
community i. Our algorithm contracts edges {i, j} in G to form a new community
graph G′ with vertices representing the union of disjoint communities i and j.

We define our agglomerative algorithm with matrix operations. Consider the
typical mapping of an undirected graph G = (V,E) with edge weights w({i, j})
to a sparse, symmetric adjacency matrix A. The matrix A has dimension |V |×|V |,
where |V | is the number of vertices in G. The matrix has two non-zero entries for
each edge {i, j} ∈ E with i �= j, A(i, j) = A(j, i) = w({i, j}). Self edges appear
along the diagonal, A(i, i) = w({i, i}).

All of Section 2.2’s metrics use additive edge weights. Represent a set of edge
contractions with a matching matrix M of dimension |V ′| × |V |, where |V ′| is
the number of vertices of the contracted graph, and entries M(i, j) = 1 when
vertex j ∈ V contracts into vertex i ∈ V ′. A maximal matching should produce a
matrixM with as many degree-two columns as possible, and ideally |V ′| ≈ |V |/2.
With M and additive weights, we represent the graph contraction from A to A′

with A′ = M · A ·MT .
Our agglomerative algorithm is agnostic of local maximization criteria. Given

a metric of interest, our algorithm works abstractly as follows:

1. Construct the symmetric sparse matrix A representing the undirected
multi-graph G and its edge multiplicities.

2. Set the initial trivial community mapping C := I, the |V |2 identity matrix.
3. While the number of communities and the largest community size have not

reached a pre-set limit, repeat:
(a) Compute a sparse matrix of edge scores according to the optimization

metric given A and v.
(b) Compute a matching matrix M on the score matrix to maximize the

metric of interest.
(c) If the matching is empty, quit.
(d) Contract A := M ·A ·MT .
(e) Update the community mapping C := M · C.

When a matching is empty, no edges increase the metric of interest. Section 3’s
parallel implementation works with an edge list data structure rather than typ-
ical compressed formats and implements the sparse operations directly.

Typical sequential agglomerative algorithms like Clauset et al. (CNM) [8]’s
method contract a single edge in each iteration. Our algorithm generalizes
Blondel et al.’s sequential approach [5] by identifying many contraction edges

Parallel Community Detection for Massive Graphs 289

simultaneously. If the matching M contracts most edges of the graph at once,
most edge scores will need recomputation. This differs from CNM [8]’s incremen-
tal edge scoring but does not affect the algorithm’s asymptotic complexity.

Assuming all edges are scored in a total of O(|E|) operations and some heavy
weight maximal matching is computed in O(|E|) [21] where E is the edge set
of the current community graph, each iteration of our algorithm’s inner loop
requires O(|E|) operations. As with other algorithms, the total operation count
depends on the community growth rates. If our algorithm halts after K contrac-
tion phases, our algorithm runs in O(|E| ·K) operations. If the community graph
is halved with each iteration, our algorithm requires O(|E| · log |V |) operations.
If the graph is a star, only two vertices are contracted per step and our algo-
rithm requires O(|E| · |V |) operations. This matches experience with the CNM
algorithm [25].

2.2 Local Optimization Metrics

Here we score edges for contraction by modularity, an estimate of a community’s
deviation from random chance [17,3]. We maximize modularity by choosing the
largest independent changes from the current graph to the new graph by one
of two heuristics. Minimization measures like conductance involve maximizing
changes’ negations.

Modularity. Newman [16]’s modularity metric compares the connectivity within
a collection of vertices to the expected connectivity of a random graph with the
same degree distribution. Let m be the number of edges in an undirected graph
G = G(V,E) with vertex set V and edge set E. Let S ⊂ V induce a graph
GS = G(S,ES) with ES ⊂ E containing only edges where both endpoints are
in S. Let mS be the number of edges |ES |, and let mS be an expected number
of edges in S given some statistical background model. Define the modularity
of the community induced by S as QS = 1

m (mS −mS). Modularity represents
the deviation of connectivity in the community induced by S from an expected
background model. Given a partition V = S1 ∪ S2 ∪ · · · ∪ Sk, the modularity of
that partitioning is Q =

∑k
i=1QSi.

Newman [16] considers the specific background model of a random graph with
the same degree distribution as G where edges are independently and identically
distributed. If xS is the total number of edges in G where either endpoint is in
S, then we have QS = (mS − x2S/4m)/m as in [3]. A subset S is considered a
module when there are more internal edges than expected, QS > 0. ThemS term
encourages forming large modules, while the xS term penalizes modules with ex-
cess external edges. MaximizingQS finds communities with more internal connec-
tions than external ones. Expressed in matrix terms, optimizing modularity is a
quadratic integer program and an NP-hard optimization problem [6]. We compute
only a local maximum, which depends on the operation order.

Section 3’s implementation scores each edge e by the change in modular-
ity contracting e would produce, analogous to the sequential CNM algorithm.

290 E.J. Riedy et al.

Merging the vertex U into a disjoint set of vertices W ∈ C, requires that the
change ΔQ(W,U) = QW∪U − (QW + QU) > 0. Expanding the expression for
modularity,

m ·ΔQ(W,U) = m (QW∪U − (QW +QU))

= (mW∪U − (mW +mU)− (mW∪U − (mW +mU))

= mW↔U − (mW∪U − (mW +mU)),

wheremW↔U is the number of edges between vertices in setsW and U . Assuming
the edges are independent and identically distributed across vertices respecting
their degrees [8],

(mW∪U − (mW +mU)) = m · xW
2m

· xU
2m
, and

ΔQ(W,U) =
mW↔U

m
− xW

2m
· xU

2m
. (1)

We track mW↔U and xW in the contracted graph’s edge and vertex weights,
respectively. The quantity xW equals the volume of W . In Section 2’s matrix
notation, ΔQ is the rank-one update A/m − (v/2m) · (v/2m)T restricted to
non-zero, off-diagonal entries of A. The data necessary for computing the score
of edge {i, j} are A(i, j), v(i), and v(j), similar in spirit to a rank-one sparse
matrix-vector update.

Modularity has known limitations. Fortunato and Barthélemy [10] demon-
strate that global modularity optimization cannot distinguish between a single
community and a group of smaller communities. Berry et al. [4] provide a weight-
ing mechanism that overcomes this resolution limit. Instead of this weighting, we
compare CNM with the modularity-normalization of McCloskey and Bader [3].

McCloskey and Bader’s algorithm (MB) only merges vertices into the commu-
nity when the change is deemed statistically significant against a simple statisti-
cal model assuming independence between edges. The sequential MB algorithm
computes the mean ΔQ(W, :) and standard deviation σ(ΔQ(W, :)) of all changes
adjacent to community W . Rather than requiring only ΔQ(W,U) > 0, MB re-
quires a tunable level of statistical significance with ΔQ(W,U) > ΔQ(W, :) +
k · σ(ΔQ(W, :)). Section 4 sets k = −1.5. Sequentially, MB considers only edges
adjacent to the vertex under consideration and tracks a history for wider per-
spective. Because we evaluate merges adjacent to all communities at once by
matching, we instead filter against the threshold computed across all current
potential merges.

3 Mapping Our Algorithm to the Cray XMT

Our algorithm matches the sequential CNM algorithm’s operation complexity
while avoiding potential bottlenecks in priority queues. Here we outline the map-
ping from our algorithm to a massively multithreaded shared-memory platform,

Parallel Community Detection for Massive Graphs 291

the Cray XMT. The Cray XMT provides a flat, shared-memory execution envi-
ronment; Section 5 discusses other possibilities. The parallel mapping is straight-
forward for this environment and still scales to massive graphs.

The Cray XMT is a supercomputing platform designed to accelerate massive
graph analysis codes. The architecture tolerates high memory latencies using
massive multithreading. There is no cache in the processors; all latency is han-
dled by threading. Each Threadstorm processor within a Cray XMT contains
user-available 100 hardware streams each maintaining a thread context. Context
switches between threads occur every cycle, selecting a new thread from the pool
of streams ready to execute.

A large, globally shared memory enables the analysis of graphs using a simple
shared-memory programming model. Physical address hashing breaks up local-
ity and ensures every node contributes to the aggregate memory bandwidth.
Synchronization occurs at the level of 64-bit words through full/empty bits and
primitives like an atomic fetch-and-add. The cost of synchronization is amor-
tized over the cost of memory access. Combined, these features assist developing
scalable parallel implementations for massive graph analysis.

Within our implementation, the edge scoring heuristics (CNM and MB) par-
allelize evenly across the edges. Evaluating the scores for all |E| edges requires
access to O(|E|) scattered memory locations. Our implementation stores the
graph as a vector of self-edge weights and an array of edges {i, j} with i > j,
equivalent to an unpacked lower-triangular sparse matrix representation. Given
a matching M , we implement the sparse projectionM ·A ·MT in-place. Vertices
are relabeled and duplicate edges eliminated using |V | + |E| workspace. The
implementation forms linked lists of potential duplicates and walks that list; we
will see that this list-walking limits our concurrency and ultimate scalability.

To compute the matchingM , we begin with a greedy, non-maximal algorithm.
We iterate in parallel across the edge array. Each edge {i, j} checks its end points
i and j. If the current edge is the best possible match seen so far for both i and j,
the edge registers itself with both endpoints. The Cray XMT’s full/empty word
synchronization ensures that edge registration occurs without race conditions.
Because there is no ordering enforced between edges, this provides neither a
maximal nor an approximately maximum weight matching but uses only 2|V |
working space and O|E| operations. To compute a maximal matching, we run
the non-maximal passes until they converge. On convergence, we have a maximal
matching where every edge dominates its neighbors, ensuring a 1/2 approxima-
tion to the maximum weight [13,15]. We have not analyzed the convergence rate,
but our test cases converge in fewer than ten iterations.

Our implementation currently does not track the dendogram, or history of
vertex contractions. The dendogram is a tree and can be represented by a |V |-
long vector of parent pointers updated in O(|V |) time per contraction step with
no additional memory use beyond the tree itself.

292 E.J. Riedy et al.

4 Evaluating Parallel Community Detection

4.1 Parallel Performance

We evaluate parallel scalability using artificial R-MAT [7,1] input graphs derived
by sampling from a perturbed Kronecker product. R-MAT graphs are scale-free
and reflect many properties of real social networks. We generate each R-MAT
graph with parameters a = 0.55, b = c = 0.1, and d = 0.25 and extract the
largest component. An R-MAT generator takes a scale s and edge factor f as
input and generates a sequence of 2s ·f edges over 2s vertices, including self-loops
and repeated edges. We accumulate multiple edges within edge weights.

Our implementation scales to massive graphs, but evaluating strong scalability
against a single Cray XMT processor requires using a smaller data set. We
generate R-MAT graphs of scale 18 and 19 and with edge factors 8, 16, and 32.
Table 1 shows the size of the largest component in each case. We use the largest
component to investigate performance of the core algorithm and not heuristics
for filtering the many singleton vertices and tiny components not connected to
the largest component. The Cray XMT used for these experiments is located
at Pacific Northwest National Lab and contains 128 Threadstorm processors
running at 500 MHz. These 128 processors support over 12 000 hardware thread
contexts. The globally addressable shared memory totals 1 TiB.

Table 1. We evaluate performance against multiple graphs generated by R-MAT with
the given scale and edge factor. The graphs are lumped into rough categories by the
number of R-MAT generated edges.

Scale Fact. |V | |E| Avg. degree Edge group

18 8 236 605 2 009 752 8.5 2M
16 252 427 3 936 239 15.6 4M
32 259 372 7 605 572 29.3 8M

19 8 467 993 3 480 977 7.4 4M
16 502 152 7 369 885 14.7 8M
32 517 452 14 853 837 28.7 16M

Figure 1 shows the speed-up against a single Cray XMT processor from three
runs on each of Table 1’s graphs. The speed-up plot shows some performance vari-
ation from the parallel, non-deterministic matching procedure. Unlike sequential
experience, performance for the CNM and MB scoring methods is roughly sim-
ilar. Figure 2 shows that performance plateaus when the matching phase takes
as long as contraction. We are investigating why the phases’ fractions of time
change with more processors. To test scalability to large data sets, applying our
algorithm to a 122 million vertex and 1.99 billion edge graph with scale 27 and
edge factor 16 requires 7258 (CNM) and 7286 (MB) seconds, respectively.

Parallel Community Detection for Massive Graphs 293

Number of processors

S
p

e
e

d
u

p

 1

 2

 4

 8

 16

 32

 64

128

CNM

●●● ●●
●

●●
●

●
●●

●●●

2M: 19.2x at 32P

4M: 33.4x at 48P

8M: 48.6x at 96P

16M: 66.8x at 128P

 1 2 4 8 16 32 64 128

MB

●●●

●●● ●
●● ●●

●

●
●

●
●
●●

2M: 19.4x at 48P

4M: 32.5x at 48P

8M: 48.0x at 96P

16M: 66.7x at 128P

 1 2 4 8 16 32 64 128

Edge group

● 2M

4M

8M

16M

Number of processors

T
im

e
 (

s
)

2
2

2
4

2
6

2
8

2
10

CNM

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●
●●

●●
●

 2.7s

51.4s

 4.3s

144.6s

 9.8s

464.4s

 19.8s

1321.1s

 1 2 4 8 16 32 64 128

MB

●●●

●●●

●●●

●●●

●●●

●●● ●●
● ●●●

●
●
●

●
●●

 2.7s

51.9s

 4.5s

144.7s

 10.0s

460.8s

 19.7s

1316.6s

 1 2 4 8 16 32 64 128

Edge group

● 2M

4M

8M

16M

Fig. 1. Execution time on the largest of Table 1’s graphs scales up to 128 processors.
The left plot shows the best speed-up achieved for each edge group. The right plot
shows both the best overall execution time and the best single-processor execution
time.

Number of processors

P
e
rc

e
n
t
o
f
e
x
e
c
u
ti
o
n
 t
im

e

10%

20%

30%

40%

50%

60%

70%

2M

●●● ●●● ●●● ●●● ●●● ●●●

●●● ●●
● ●

●●

●●●

●●● ●●● ●●● ●●● ●●● ●●
●

●●
●

●●
●

●

●
●

●
●
●

 1 2 4 8 16 32 64 128

4M

●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●●
●●●●●
●

●●●
●●●

●
●
●

●●●

●●

●

●●
●

●●●

●●●

●● ●●●●●● ●●●●●● ●●●●●● ●●●●●●
●
●●

●
●●

●●●●●
●

●
●●●
●●

●●●

●●

●

●●

●

●

●
●

 1 2 4 8 16 32 64 128

8M

●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●●
●●●●●● ●

●●●●●
●●●●●
● ●●●●

●●

●● ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●●
●●

●

●●● ●●●●
●● ●●

●

●

●● ●●●
●

●●

 1 2 4 8 16 32 64 128

16M

● ●●● ●●● ●●● ●●● ●●● ●●● ●●●
●●●

●●●

● ●●● ●●● ●●● ●●● ●●● ●●● ●●●
●●

●

●●●

 1 2 4 8 16 32 64 128

Phase
● Scoring

Matching

Contracting

Scale

18

19

Fig. 2. Execution time fractions show that performance flattens where the matching
phase takes as much execution time as the graph contraction

Scoring method

M
o
d
u
la

ri
ty

0.1

0.2

0.3

0.4

●

●

●

●

●

●

(18,16): 0.125

(18,32): 0.087

(18, 8): 0.187

(18,16): 0.128

(18,32): 0.090

(18, 8): 0.187

(18,16): 0.425

(18,32): 0.418
(18, 8): 0.423

(18,16): 0.013
(18,32): 0.009

(18, 8): 0.023

CNM MB

Implementation

● Parallel

SNAP

Scoring method

N
u
m

b
e
r

o
f
c
o
m

m
u
n
it
ie

s

10
2.5

10
3

10
3.5

10
4

10
4.5

10
5

●

●

●

●

●

●

(18,16): 2291

(18,32): 846

(18, 8): 6603

(18,16): 2297

(18,32): 840

(18, 8): 6559

(18,16): 1436

(18,32): 257

(18, 8): 1372

(18,16): 242584 (18,32): 255619

(18, 8): 216342

CNM MB

Implementation

● Parallel

SNAP

Fig. 3. Comparing modularity values and the number of communities between our par-
allel agglomerative community detection and a separate, sequential implementation in
SNAP shows that ours finds an interesting trade-off between community sizes and mod-
ularity. Graph points are labeled by (scale, edge factor) and show either the modularity
(left) or number of communities (right).

294 E.J. Riedy et al.

4.2 Community Quality

Computing communities quickly is only good if the communities themselves
are useful. We compare the modularity results from Table 1’s scale 18 graphs
between our parallel implementation and the state-of-the-art implementation in
SNAP[2]. Because our parallel matching algorithm is non-deterministic, we use
three runs for each P value. All evaluations are run sequentially through SNAP
using the output community maps.

Figure 3 shows the modularity values from our parallel community detection
implementation against those returned by SNAP. Forcing a more balanced merge
though a maximal matching produces communities not as modular as sequen-
tial CNM optimization, but more modular than sequential MB. The number of
communities also finds a compromise between the different sequential methods.

5 Related Work

Graph partitioning, graph clustering, and community detection are tightly re-
lated topics. A recent survey [11] covers many aspects of community detection
with an emphasis on modularity maximization. Nearly all existing work of which
we know is sequential and targets specific contraction edge scoring mechanisms.

Zhang et al. [27] recently proposed a parallel algorithm that identifies commu-
nities based on a custom metric rather than modularity. Gehweiler and Meyer-
henke [12] proposed a distributed diffusive heuristic for implicit modularity-based
graph clustering. Classic work on parallel modular decompositions [19] finds a
different kind of module, one where any two vertices in a module have identical
neighbors and somewhat are indistinguishable. This could provide a scalable pre-
processing step that collapses vertices that will end up in the same community,
although removing the degree-1 fringe may have the same effect.

Work on sequential multilevel agglomerative algorithms like [18] focuses on
edge scoring and local refinement. Our algorithm is agnostic towards edge scoring
methods and can benefit from any problem-specific methods. The Cray XMT’s
word-level synchronization may help parallelize refinement methods, but we leave
that to future work. Outside of the edge scoring, our algorithm relies on well-
known primitives that exist for many execution models. The matching matrix
M is equivalent to an algebraic multigrid restriction operator; implementations
for applying restriction operators are widely available.

6 Observations

Our algorithm and implementation, the first parallel algorithm for agglomerative
community detection, scales to 128 processors on a Cray XMT and can process
massive graphs in a reasonable length of time. Finding communities in graph
with 122 million vertices and nearly two billion edges requires slightly more
than two hours. Our implementation can optimize with respect to different local
optimization criteria, and its modularity results are comparable to a state-of-the-
art sequential implementation. As a twist to established sequential algorithms

Parallel Community Detection for Massive Graphs 295

for agglomerative community detection, our parallel algorithm takes a novel and
naturally parallel approach to agglomeration with maximum weighted matchings.
That difference appears to reduce differences between the CNM and MB edge
scoring methods. The algorithm is simpler than existing sequential algorithms
and opens new directions for improvement. Separating scoring, choosing, and
merging edges may lead to improved metrics and solutions.

Acknowledgments. This work was supported in part by the Pacific Northwest
National Laboratory (PNNL) CASS-MT Center and NSF Grants CNS-0708307
and IIP-0934114. We also thank PNNL and Cray, Inc. for providing access to
Cray XMT hardware.

References

1. Bader, D., Gilbert, J., Kepner, J., Koester, D., Loh, E., Madduri, K., Mann,
W., Meuse, T.: HPCS SSCA#2 Graph Analysis Benchmark Specifications v1.1
(July 2005)

2. Bader, D., Madduri, K.: SNAP, Small-world Network Analysis and Partitioning: an
open-source parallel graph framework for the exploration of large-scale networks.
In: Proc. Int’l. Parallel and Distributed Processing Symp. (IPDPS 2008), Miami,
FL (April 2008)

3. Bader, D., McCloskey, J.: Modularity and graph algorithms (September 2009),
presented at UMBC

4. Berry, J., Hendrickson, B., LaViolette, R., Phillips, C.: Tolerating the community
detection resolution limit with edge weighting. Phys. Rev. E 83, 056119 (2011)

5. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of com-
munities in large networks. Journal of Statistical Mechanics: Theory and Experi-
ment 2008(10), P10008 (2008)

6. Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., Wagner,
D.: On modularity clustering. IEEE Trans. Knowledge and Data Engineering 20(2),
172–188 (2008)

7. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: A recursive model for graph
mining. In: Proc. 4th SIAM Intl. Conf. on Data Mining (SDM). SIAM, Orlando
(2004)

8. Clauset, A., Newman, M., Moore, C.: Finding community structure in very large
networks. Physical Review E 70(6), 66111 (2004)

9. Facebook, Inc.: User statistics (October 2011),
http://www.facebook.com/press/info.php?statistics

10. Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proc. of
the National Academy of Sciences 104(1), 36–41 (2007)

11. Fortunato, S.: Community detection in graphs. Physics Reports 486(3-5), 75–174
(2010)

12. Gehweiler, J., Meyerhenke, H.: A distributed diffusive heuristic for clustering
a virtual P2P supercomputer. In: Proc. 7th High-Performance Grid Computing
Workshop (HGCW 2010) in Conjunction with 24th Intl. Parallel and Distributed
Processing Symposium (IPDPS 2010). IEEE Computer Society (2010)

13. Hoepman, J.H.: Simple distributed weighted matchings. CoRR cs.DC/0410047
(2004)

http://www.facebook.com/press/info.php?statistics

296 E.J. Riedy et al.

14. Lozano, S., Duch, J., Arenas, A.: Analysis of large social datasets by community
detection. The European Physical Journal - Special Topics 143, 257–259 (2007)

15. Manne, F., Bisseling, R.: A Parallel Approximation Algorithm for the Weighted
Maximum Matching Problem. In: Wyrzykowski, R., Dongarra, J., Karczewski, K.,
Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 708–717. Springer, Heidel-
berg (2008)

16. Newman, M.: Modularity and community structure in networks. Proc. of the Na-
tional Academy of Sciences 103(23), 8577–8582 (2006)

17. Newman, M., Girvan, M.: Finding and evaluating community structure in networks.
Phys. Rev. E 69(2), 026113 (2004)

18. Noack, A., Rotta, R.: Multi-level Algorithms for Modularity Clustering. In: Vahren-
hold, J. (ed.) SEA 2009. LNCS, vol. 5526, pp. 257–268. Springer, Heidelberg (2009)

19. Novick, M.B.: Fast parallel algorithms for the modular decomposition. Tech. rep.,
Cornell University, Ithaca, NY, USA (1989)

20. NYSE Euronext: Consolidated volume in NYSE listed issues, 2010 - current (March
2011), http://www.nyxdata.com/nysedata/asp/factbook/viewer edition.asp?

mode=table&key=3139&category=3

21. Preis, R.: Linear Time 1
2
-Approximation Algorithm for Maximum Weighted Match-

ing in General Graphs. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS,
vol. 1563, pp. 259–269. Springer, Heidelberg (1999)

22. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and iden-
tifying communities in networks. Proc. of the National Academy of Sciences 101(9),
2658 (2004)

23. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabási, A.L.: Hierarchical
organization of modularity in metabolic networks. Science 297(5586), 1551–1555
(2002)

24. Twitter, Inc.: Happy birthday Twitter! (March 2011),
http://blog.twitter.com/2011/03/happy-birthday-twitter.html

25. Wakita, K., Tsurumi, T.: Finding community structure in mega-scale social net-
works. CoRR abs/cs/0702048 (2007)

26. Wilkinson, D.M., Huberman, B.A.: A method for finding communities of related
genes. Proceedings of the National Academy of Sciences of the United States of
America 101(suppl. 1), 5241–5248 (2004)

27. Zhang, Y., Wang, J., Wang, Y., Zhou, L.: Parallel community detection on large
networks with propinquity dynamics. In: Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD 2009,
pp. 997–1006. ACM, New York (2009)

http://www.nyxdata.com/nysedata/asp/factbook/viewer_edition.asp?mode=table\&key=3139\&category=3
http://www.nyxdata.com/nysedata/asp/factbook/viewer_edition.asp?mode=table\&key=3139\&category=3
http://blog.twitter.com/2011/03/happy-birthday-twitter.html

Is Your Permutation Algorithm Unbiased

for n �= 2m?

Michael Waechter1, Kay Hamacher2, Franziska Hoffgaard2,
Sven Widmer1, and Michael Goesele1

1 GRIS, TU Darmstadt, Germany
2 Bioinformatics and Theoretical Biology, TU Darmstadt, Germany

Abstract. Many papers on parallel random permutation algorithms
assume the input size n to be a power of two and imply that these algo-
rithms can be easily generalized to arbitrary n. We show that this simpli-
fying assumption is not necessarily correct since it may result in a bias.
Many of these algorithms are, however, consistent, i.e., iterating them
ultimately converges against an unbiased permutation. We prove this
convergence along with proving exponential convergence speed. Further-
more, we present an analysis of iterating applied to a butterfly
permutation network, which works in-place and is well-suited for imple-
mentation on many-core systems such as GPUs. We also show a method
that improves the convergence speed even further and yields a practical
implementation of the permutation network on current GPUs.

Keywords: parallel random permutation, butterfly network, bias,
consistency, GPU.

1 Introduction

Parallel generation of random permutations is an important building block in
parallel algorithms. It can, e.g., be used to perturb the input of a subsequent
algorithm making worst-case behavior unlikely [3]. It is also useful in statistical
applications where a sufficient number of sample permutations is generated to
draw conclusions about every possible input order. This is, e.g., the most im-
portant step in bootstrapping often applied in statistical science and modeling
[16,17], in particular in bioinformatical phylogenetic reconstruction [14,7].

Using the divide and conquer design paradigm it is convenient to assume that
the input array size n is a power of two. This assumption is frequently used (e.g.,
in [15,5]) to simplify the notation of the algorithm or its proof of unbiasedness,
without pointing out an unbiased method for generalization to arbitrary n. In
this paper we argue that this simplification may be too strong and inadmissible.

We demonstrate a butterfly style [10, Sec. 3.2] permutation network well-
suited for parallelization on many-core machines with lots of processing ele-
ments (i.e., a number close to the problem size). If this algorithm is generalized
to arrays, whose size is not a power of two, it does not generate all possible

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 297–306, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

298 M. Waechter et al.

permutations equally likely. As this algorithm and its generalization to arbitrary
n is not pathological but seems rather natural, this needs to be resolved.

Our main contribution is to demonstrate and resolve this issue by showing
that iterative application of any permutation algorithm, whose corresponding
permutation matrix is positive, converges against an unbiased permutation, i.e.,
the algorithm is consistent. Furthermore we show that with an increasing num-
ber of iterations the bias diminishes exponentially. We present a method for
improving the convergence behavior of the butterfly network even further and
demonstrate a GPU implementation that is competitive to or even faster than
a highly optimized state-of-the-art GPU algorithm.

2 Related Work

Most random permutation algorithms belong to one of five categories listed
below, the first four of which are described and analyzed by Cong and Bader [3].

Rand Sort assigns a random key to every value and sorts the array in par-
allel using these keys. Hagerup [6] gives a sorting based algorithm that runs in
O(log n) with n processing elements and O(n) space. The approach’s general
drawback is, that due to the sorting keys the array is effectively doubled in size.

Rand Dart randomly maps elements into an array of size kn with k > 1 (e.g.,
k = 2 [3]) and compacts the resulting array. There are two obvious drawbacks:
First, space consumption is kn, and second, memory conflicts need to be resolved.
This can be done by using memory locks and either re-throwing “darts” that
had a collision into the same “dart board” until they find an empty cell or by
throwing them onto a new “board” of smaller size.

Rand Shuffle is a parallel version of Knuth’s sequential algorithm [8, Sec.
3.4.2]. Memory conflicts are resolved by sequentializing conflicting accesses. An-
derson [1] analyzes this algorithm for a small number of processing elements. For
an increasing number of processing elements the likelihood of memory conflicts
increases drastically, especially if the number of processing elements is of the
same order as the problem size. Hagerup [6] gives a variant of this algorithm for
n processing elements which runs in O(logn), but requires O(n2) space.

Rand Dist assigns each of the p processing elements n/p elements, each pro-
cessing element sends all of its elements to random processing elements, sequen-
tially permutes its received elements and all subsets are concatenated. For small
numbers of processing elements and with fast random generators this can out-
perform other algorithms [3], but for large p the algorithm’s work is mostly about
redistributing the elements among the processing elements and load-balancing
the work must be traded off against implementing the algorithm in-place.

Permutation Networks: Knuth [9, Sec. 5.3.4] points out that sorting networks
can be turned into permutation networks by replacing comparers with random
exchangers. Waksman [15] gives a network of size O(n logn) and time O(log n).

Most of the above approaches suffer from several shortcomings. If they are
implemented on a system whose number of processing elements is of the same
order as the problem size (e.g., many-core systems like GPUs), they either do

Is Your Permutation Algorithm Unbiased for n �= 2m? 299

Fig. 1. Recursive construction scheme of
the butterfly permutation network

Fig. 2. Network for n = 5. Omitted
permutations are marked dotted red

not work in-place or require too much synchronization or contention resolving
like memory locks. Only permutation networks seem suitable in this setting. In
a permutation network each of the random exchanges, that happen in parallel
in one layer of the network, can be done by one of the processing elements. This
form of parallelization is extremely fine-grained, which makes it very suitable for
GPU implementation. Also, the memory access pattern is determined only by
the network structure and not by the result of previous computations. Therefore,
it is guaranteed that no two processing elements try to access the same memory
address at the same time and no contention resolving mechanism is needed.

3 Critical Analysis of the Butterfly Permutation Network

Our algorithm is based on the butterfly network [10, Sec. 3.2]. Given an input
array with size n = 2m it recursively divides the input into two subarrays until a
single element is left, permutes the subarrays, and combines them by randomly
exchanging element i with element i + n

2 for all i ∈ {1, ..., n2 } (see Fig. 1).
This network has depth log2 n and size n

2 log2 n. It can be executed in parallel
using n

2 processing elements, requires no memory locks and only log2 n thread
synchronizations. Compared to Knuth’s sequential shuffling [8] the speed-up is
in O(p/ logn) and the efficiency is in O(1/ logn). An important property of this
algorithm is, that it works in-place (in contrast to many other algorithms, see
Sec. 2). This simplifies the implementation on modern many-core systems such
as GPUs, which typically have very limited shared memory with fast access.

In the following we will first prove that, if n is a power of two, the butterfly
network permutes unbiased, i.e., the probability for an element from some origin
to be placed at some destination is equal for all origin/destination combinations.
Afterwards we demonstrate that this may not be the case for arbitrary n.

3.1 Unbiasedness for n = 2m

A random permutation algorithm works on an array of size n. pij is the prob-
ability that, after some number of steps, element j of the original array can be
found at position i. The matrix Mn = [pij]1≤i,j≤n contains all such probabilities.

An algorithm is unbiased if pij = 1
n ∀i, j after the algorithm’s termination. We

show that our algorithm is unbiased for all n = 2m using induction over m.

300 M. Waechter et al.

Base case: For m = 0, i.e., n = 1 the algorithm terminates immediately. Since
i = j = 1, Mn = [p1,1] = [1] =

[
1
n

]
holds, which is obviously unbiased.

Induction step: The induction hypothesis is, that after (log2 n) − 1 steps the
array is composed of two equally sized subarrays, both of which are permuted
unbiasedly themselves. Hence, we are concerned with the following matrix:

Mpartial =

⎡⎢⎢⎢⎢⎣
2/n ... 2/n 0 ... 0

...
. . .

...
...

. . .
...

2/n ... 2/n 0 ... 0
0 ... 0 2/n ... 2/n

...
. . .

...
...

. . .
...

0 ... 0 2/n ... 2/n

⎤⎥⎥⎥⎥⎦
In the log2 n-th step, the algorithm exchanges element i and i+n

2 with probability
1
2 . It follows that in the final matrix Mn the rows i and i+ n

2 , for i ∈ {1, . . . , n2 },
are the arithmetic mean of the corresponding rows from Mpartial:

[Mn]i = [Mn]i+n
2

=
1

2

([
2

n
, ...,

2

n
, 0, ..., 0

]
+

[
0, ..., 0,

2

n
, ...,

2

n

])
=

[
1

n
, ...,

1

n

]
	

3.2 Bias for n �= 2m

For generalizing the algorithm to arbitrary n two methods come to mind:
The first is to pad the array to the next larger power of two, do the permuta-

tion, and remove the padding in any way that preserves the relative order of the
non-padding data, e.g., by using parallel prefix-sum [2]. In fact any compaction
algorithm could be used, but in case it does not preserve the order it would
qualify as permutation and would thus need to be analyzed as well.

On close inspection padding proves to be biased. Via simulations with 107

independent runs we obtained the following clearly biased matrices for n ∈ {3, 5}:

MButter.&pad.,3 ≈
[
0.313 0.313 0.375
0.375 0.375 0.250
0.312 0.312 0.375

]
MButter.&pad.,5 ≈

[
0.191 0.191 0.191 0.191 0.235
0.203 0.203 0.203 0.203 0.188
0.211 0.211 0.211 0.211 0.156
0.203 0.203 0.203 0.203 0.188
0.192 0.191 0.191 0.192 0.234

]

One might argue that the butterfly network with padding is pathological, but
this also happens in other algorithms: Performing 107 independent simulations of
Waksman’s permutation network [15] with padding shows the exact same effect:

MWaks.&pad.,3 ≈
[
0.313 0.312 0.375
0.375 0.375 0.250
0.313 0.312 0.375

]
MWaks.&pad.,5 ≈

[
0.191 0.191 0.191 0.191 0.234
0.203 0.203 0.203 0.203 0.188
0.211 0.211 0.211 0.211 0.156
0.203 0.203 0.203 0.203 0.187
0.191 0.191 0.192 0.191 0.234

]

The second method to generalize the butterfly network is to simply use the
network for the next larger power of two and omit the network’s exchanges that
involve non-existing array elements (as can be seen for n = 5 in Fig. 2, where
non-existing elements and omitted exchanges are marked in red). Using this
method some elements in the network do not have a corresponding element they

Is Your Permutation Algorithm Unbiased for n �= 2m? 301

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 10 100 1000

B
(M

nk)

n

k = 1
k = 2
k = 3
k = 4
k = 5
k = 6

Fig. 3. Bias B(Mn
k) for n ≤ 1024 after

k = 1 to 6 rounds of the iterating approach

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 10 100 1000

2(
M

n)

n

Fig. 4. Second largest eigenvalues λ2 of
Mn for n ≤ 1024

could be exchanged with, which in turn leads to a bias. E.g., for n = 5 we can see
that the corresponding matrix is not equal to the unbiased permutation matrix:[

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

]
→

⎡⎣ 1/2 1/2 0 0 0
1/2 1/2 0 0 0
0 0 1/2 1/2 0
0 0 1/2 1/2 0
0 0 0 0 1

⎤⎦→
⎡⎣ 1/4 1/4 1/4 1/4 0

1/4 1/4 1/4 1/4 0
1/4 1/4 1/4 1/4 0
1/4 1/4 1/4 1/4 0
0 0 0 0 1

⎤⎦→
⎡⎢⎣

1/8 1/8 1/8 1/8 1/2
1/4 1/4 1/4 1/4 0
1/4 1/4 1/4 1/4 0
1/4 1/4 1/4 1/4 0
1/8 1/8 1/8 1/8 1/2

⎤⎥⎦=M5

The probability for an element j to end up at position i is not uniformly dis-
tributed. Especially, element 5 can only be exchanged in the last step of the
butterfly network and will thus end up at position 1 or 5.

Throughout the remainder of this paper the second generalization method
will be used, because it is faster than the first and preserves in-placeness.

To quantify bias we define a bias measure, that gives the relative deviation
from a uniform random permutation matrix averaged over all matrix elements:

B(Mn) =
1

n2

∑
i,j

∣∣Mn(i, j)− 1
n

∣∣
1
n

=
1

n

∑
i,j

∣∣∣∣Mn(i, j)− 1

n

∣∣∣∣
The butterfly network’s bias w.r.t. n is shown in the topmost curve of Fig. 3.

4 Consistency

Since many applications deal with array sizes that are not a power of two, biased
permutations may lead to severe problems that are relevant in practice. We
therefore show in this section that a large group of algorithms including the
butterfly network are consistent even though they may be biased. An algorithm
is consistent, if iterative application ad infinitum eliminates its bias.

Formally, the matrices M described in the previous section are stochastic per-
mutation matrices. To obtain the matrix that results from applying an algorithm
k times, we raise its original matrix to the k-th power. Fig. 3 displays the result-
ing bias B(M k

n) for k ∈ {1, . . . , 6} applications of the butterfly algorithm. The
figure suggests, that for k →∞ the bias converges against 0.

In the following we will prove that this is the case for our algorithm as well as
all algorithms whose stochastic permutation matrix M is positive (mij > 0 ∀i, j)

302 M. Waechter et al.

and doubly (column and row) stochastic. Furthermore, we will demonstrate that
the butterfly network’s matrices are positive and doubly stochastic.

4.1 Convergence

To determine the bias for k→∞, we examine the Markov chain associated with
M: If the Markov chain’s distribution converges against a uniform distribution,
the algorithm is consistent. Because M is row-stochastic, a vector describing a
uniform distribution is an eigenvector with corresponding eigenvalue 1:

M ·
(
1
n , ...,

1
n

)T
=
(
1
n

∑
jm1j, ...,

1
n

∑
jmnj

)T
=

(
1
n , ...,

1
n

)T
Hence, the uniform distribution is stable in the Markov chain. Stability does,
however, not imply that the Markov chain converges against this distribution.

Using not only M’s row stochasticity but also column stochasticity and pos-
itiveness, the convergence can be shown using the Perron-Frobenius theorem
[13,11]: It states, that all positive matrices M have an eigenvalue r that satis-
fies the condition mini

∑
jmij ≤ r ≤ maxi

∑
jmij . For row stochastic matrices

we obtain r = 1. This Perron-Frobenius eigenvalue is a simple eigenvalue and
strictly greater than all other eigenvalues’ absolute values. r has a corresponding
right eigenvector v and a left eigenvector w. Because M is row stochastic,

M ·
(

1√
n
, ..., 1√

n

)T
=

(
1√
n

∑
jm1j, ...,

1√
n

∑
jmnj

)T
=
(

1√
n
, ..., 1√

n

)T
holds, where (1√

n
, ..., 1√

n
)T is a solution for v and (with analogous reasoning using

M’s column stochasticity) for w. Then the Perron-Frobenius theorem states:

lim
k→∞

Mk

rk
= lim

k→∞
Mk =

vwT

wT v
=

[
1/n ... 1/n

...
. . .

...
1/n ... 1/n

]
��

The constraint for M to be doubly stochastic is not a real constraint: Every
permutation algorithm’s matrix is doubly stochastic, because in the permuta-
tion process elements must not be lost and no new elements may be inserted
into the list.

Therefore, any random permutation algorithm is consistent, if the probability
for any element i to be moved to position j is positive.

The butterfly network’s matrices are doubly stochastic, but not positive, as
some entries are 0. However, we can show that Mn

2 > 0: The algorithm’s ma-
trices contain entries greater than 0 in at least the first row and the first column
(proof is omitted). It follows that (with A > B meaning aij > bij ∀i, j)

Mn
2>

[m11 m12 ... m1n
m21 0 ... 0
...

...
. . .

...
mn1 0 ... 0

]2

>

[m11 0 ... 0
...

...
. . .

...
mn1 0 ... 0

]
·
[m11 ... m1n

0 ... 0
...

. . .
...

0 ... 0

]
=

[m11·m11 ... m11·m1n

...
. . .

...
mn1·m11 ... mn1·m1n

]
>0

for positive m11, . . . ,m1n,m21, . . . ,mn1. Because Mn
2 is positive, lim

k→∞
(Mn

2)k

is the uniform distribution matrix.

Is Your Permutation Algorithm Unbiased for n �= 2m? 303

4.2 Convergence Speed

For algorithms with positive permutation matrices M the convergence speed can
be shown as well:

Let U be the uniform distribution matrix, u = (1√
n
, ..., 1√

n
)T , V = (v1, ..., vn)

be the matrix of M’s eigenvectors, and V−1 = W = (w1, ..., wn)T be its inverse.
Furthermore we assume the eigenvalues λl to be in decreasing order. For positive,
doubly stochastic matrices the Perron-Frobenius theorem ensures that 1 = r =
λ1 > |λl| ∀l ∈ {2, ..., n} and v1 = wT

1 = u. By eigendecomposing Mk, we obtain

‖Mk −U‖ =
∥∥v1λk1w1 + ...+ vnλ

k
nwn − u · 1 · uT

∥∥
= ‖u · 1k · uT + v2λ

k
2w2 + ...+ vnλ

k
nwn − u · 1 · uT‖

≤
n∑

l=2

|λl|k‖vlwl‖ ≤ |λ2|k
n∑

l=2

‖vlwl‖ ∈ O(|λ2|k)

Note, that ‖vlwl‖ only depends on M but not on k. Using |λ2| < 1, it follows
that ‖Mk −U‖ decreases exponentially with k. 	
Since our only assumptions were positiveness and double stochasticity, exponen-
tial convergence holds for all permutation algorithms with positive M.

Fig. 4 shows all λ2 of the butterfly network’s Mn for n ≤ 1024. The graph
displays a periodical behavior. The maximum values in each (2m, 2m+1)-interval
converge against 0.5. We note, that the local maxima can be found at n = 2m+1.
This is in agreement with the fact that the maxima in every (2m, 2m+1)-interval
in Fig. 3 are further to the left for larger k. Further analysis showed that for
much larger k (e.g., k = 51) the bias maxima are indeed located at n = 2m + 1.

5 Improvement for the Butterfly Permutation Network

The proportionality constant of the butterfly network’s exponential convergence
can be improved using shifting, i.e., the repeated application of the algorithm is
interleaved with circular shifting of the data using some offset l. Circular shifting
moves any element i of an array to position (i+ l) mod n. The underlying idea is
to choose l such that array positions with a big bias are shifted to positions with a
smaller bias. For Mshift,l being a regular, non-stochastic permutation matrix that
circularly shifts by l positions we obtain the combined matrix (Mshift,l ·Mn)k.

Fig. 5 displays the bias for two array sizes and various shifting offsets. The
graph for n = 304 reveals a global minimum for a shifting offset of 229 where
the bias’ magnitude is reduced to 1.8% of the bias without shifting (l = 0). The
graph for n = 400 demonstrates that the bias can even exceed the bias without
shifting. E.g., if we shift with an offset of 112, the bias is 3.4 times larger than
without shifting. Comparing the graphs for the two different choices of n shows
large differences in the bias’ overall behavior. Therefore, l needs to be carefully
selected for each n to achieve optimal results.

304 M. Waechter et al.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 50 100 150 200 250 300 350 400

B
(M

nk)

shifting offset

n = 304
n = 400

Fig. 5. Bias B(Mn
k) for k = 3 iterations

and array sizes of n = 304 (blue) and n =
400 (red) with shifting offsets from 0 to n

 0.001

 0.01

 0.1

 0 50 100 150 200 250 300

shifting offset

2
Bias

Fig. 6. Comparison of the behavior of λ2

and bias for n = 304 and shifting offsets
ranging from 0 to n

 0

 50

 100

 150

 200

 250

 100 200 300 400 500

op
tim

al
 s

hi
fti

ng
 o

ffs
et

n

k = 3
k = 4

Fig. 7. Optimal shifting offsets for n ∈
{1, . . . , 512} and k ∈ {3, 4} iterations

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 10 100

B
(M

n
k
)

n

k = 3 unshifted

k = 3 optimally shifted

Fig. 8. Bias for 3 iterations with optimal
(red) and without shifting (blue)

Optimal Shifting Offset. We empirically determined optimal shifting offsets for
a range of array sizes by analyzing the permutation matrices (Mshift ·Mn)k for
k = 3 and 4 (see Fig. 7). Note, that the optimal shifting offset is slightly different
for different choices of k. The optimal offset can be precomputed at programming
time for any combination of k and n. Using these optimal offsets, we obtained
the bias graph for k = 3 as shown in Fig. 8, which shows a clear improvement
over the basic algorithm without shifting.

Convergence of Shifting. Shifting is still consistent, because the convergence
arguments from Sec. 4 also apply for the shifting extension (since (Mshift·Mn)2 >
0). Furthermore, Fig. 6 shows a strong correlation between the λ2 and the bias of
Mn ·Mshift,l for various shifting offsets. This shows, first, that the theoretically
derived measure is valid in a practical application and second, that the bias (and
thus the optimal shifting offset) can be predicted using the second eigenvalues.

6 Experimental Results

To demonstrate the butterfly network’s speed and suitability for many-core sys-
tems we implemented our algorithm on GPUs using NVIDIA’s CUDA framework

Is Your Permutation Algorithm Unbiased for n �= 2m? 305

 0

 5

 10

 15

 20

 25

 30

 1000 2000 3000 4000 5000 6000

tim
e

in

s

array size

k=5

k=4

k=3

k=2

k=1

permutation using iterating (k=1,...,5) and shifting
permutation using radix sort

Fig. 9. Speed of shuffling arrays of various sizes with our algorithm using iterating
(k = 1, . . . , 5) and shifting, compared to a CUDPP-based radix sort shuffling

[12]. Fig. 9 shows the runtime for performing array permutations with sizes up
to n = 6000 and k = 1, ..., 5 iterations with optimal shifting. Each array was
permuted by a single CUDA thread block and stored in shared memory. All ex-
periments were run on a GeForce GTX 480. The implementation is not limited
to n = 6000 but can permute arrays of up to 12,288 4-byte or 49,152 1-byte
values. 49,152 byte is the maximum shared memory that can be used by one
thread block on current NVIDIA GPUs.

For comparison, we also implemented a second algorithm based on the
Rand Sort approach using radix sort for sorting. Rand Sort is unbiased but
cannot be implemented in-place since random sorting keys need to be stored for
each array element. We used the CUDPP library’s [4] radix sort implementation,
which requires array sizes smaller than 4096. This is not a fundamental limita-
tion but merely an implementation issue. The CUDPP code is highly optimized
and can thus be legitimately regarded as suitable state-of-the-art performance
reference.

Fig. 9 shows that the butterfly network with k = 3 and optimal shifting
is about as fast as the reference approach while requiring less memory due to
being in-place. If a higher bias is acceptable, using k = 2 or 1 yields significant
speedups of roughly 1.5 and 3, respectively.

7 Conclusions and Future Work

We showed that not all random permutation algorithms can be easily general-
ized for n that are not a power of two without introducing some bias. We proved
that any algorithm, whose corresponding stochastic permutation matrix is pos-
itive, is nevertheless consistent, i.e., iterative application reduces the bias at an
exponential rate. We also gave a specific example of a biased algorithm, the but-
terfly network, whose convergence behavior is further improved by shifting with
carefully chosen shifting offsets. Because the butterfly network is well-suited for
implementation on a GPU (due to enabling fine-grained parallelism, needing few
thread synchronizations and no contention resolving scheme), we implemented it
on a current GPU and it proved to be competitive to or even faster than another
highly optimized algorithm well suited for GPUs.

306 M. Waechter et al.

Further analysis on more involved shifting strategies is needed: In this paper
we determined optimal offsets l as a function of n. There is room for further
improvement, e.g., by applying varying shifting offsets after each iteration. This
would require intensive pre-computations of lookup-tables for all n and k, which
is beyond the scope of this work. Also, it would be interesting to analyze whether
or not shifting can improve the convergence of other algorithms as well.

Acknowledgements. We thank Jörg Keller for originally directing our atten-
tion towards the paper by Cong and Bader. KH is grateful for financial support
by the Fonds der Chemischen Industrie and through the Graduiertenkolleg 1657
of the Deutsche Forschungsgemeinschaft. Also, we would like to thank Dominik
Wodniok for implementing the radix sort performance reference for Sec. 6.

References

1. Anderson, R.: Parallel algorithms for generating random permutations on a shared
memory machine. In: Proc. SPAA 1990, pp. 95–102. ACM (1990)

2. Blelloch, G.E.: Prefix sums and their applications. Tech. Rep. CMU-CS-90-190,
School of Computer Science, Carnegie Mellon University (November 1990)

3. Cong, G., Bader, D.A.: An empirical analysis of parallel random permutation al-
gorithms on SMPs. In: Oudshoorn, M.J., Rajasekaran, S. (eds.) ISCA PDCS, pp.
27–34 (2005)

4. CUDPP – CUDA data parallel primitives library,
http://code.google.com/p/cudpp/

5. Czumaj, A., Kanarek, P., Kutylowski, M., Lorys, K.: Fast Generation of Ran-
dom Permutations via Networks Simulation. In: Dı́az, J. (ed.) ESA 1996. LNCS,
vol. 1136, pp. 246–260. Springer, Heidelberg (1996)

6. Hagerup, T.: Fast Parallel Generation of Random Permutations. In: Leach Al-
bert, J., Monien, B., Rodŕıguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510,
pp. 405–416. Springer, Heidelberg (1991)

7. Holmes, S.: Bootstrapping Phylogenetic Trees: Theory and Methods. Statistical
Science 18(2), 241–255 (2003)

8. Knuth, D.E.: The art of computer programming, 3rd edn., vol. 2 (1997)
9. Knuth, D.E.: The art of computer programming, volume 3 (2nd ed.) (1998)

10. Leighton, F.: Introduction to parallel algorithms and architectures: arrays, trees,
hypercubes, vol. (1). M. Kaufmann Publishers (1992)

11. Meyer, C.: Matrix Analysis and Applied Linear Algebra. SIAM (2000)
12. NVIDIA: NVIDIA CUDA C programming guide, version 3.2 (2011)
13. Perron, O.: Zur Theorie der Matrices. Mathematische Annalen 64, 248–263 (1907)
14. Soltis, P.S., Soltis, D.E.: Applying the bootstrap in phylogeny reconstruction.

Statistical Science 18(2), 256–267 (2003)
15. Waksman, A.: A permutation network. J. ACM 15, 159–163 (1968)
16. Wu, C.F.J.: Jackknife, bootstrap and other resampling methods in regression anal-

ysis. Ann. Statist. 14(4), 1261–1295 (1986)
17. Zoubir, A.M.: Model selection: A bootstrap approach. In: Proc. ICASSP (1999)

http://code.google.com/p/cudpp/

Extracting Coarse–Grained Parallelism

for Affine Perfectly Nested Quasi–uniform Loops

W�lodzimierz Bielecki and Krzysztof Kraska

Faculty of Computer Science and Information Technology,
West Pomeranian University of Technology, ul.Żo�lnierska 49, 71-210 Szczecin, Poland

{wbielecki,kkraska}@wi.zut.edu.pl

Abstract. This paper presents a new approach for the extraction of
coarse–grained parallelism available in program loops. The approach
permits for extracting parallelism for both uniform and quasi–uniform
perfectly nested parameterized loops, where the loop bounds and data
accesses are affine functions of loop indices and symbolic parameters.
It extracts a set of synchronization–free code fragments. The procedure
has a polynomial time complexity except for one step of calculations.
The effectiveness and time complexity of the approach are evaluated by
means of loops of the NAS Parallel Benchmark suite.

Keywords: parallelizing compilers, loop transformation, quasi–uniform
dependences, polyhedral model.

1 Introduction

A parallel computer requires adequate software that can take advantage of the
computational power of multiple processors. Manual writing parallel programs
is time and cost consuming. Therefore, we need a compiler that can be able
to produce a parallel program automatically. Moreover, to effectively utilize
the power of contemporary shared memory parallel machines, a compiler have
to find coarse–grained parallelism that does not incur or significantly reduces
synchronization.

In [1] a method is presented for the identification of independent subsets of
operations in loops but it can be applied to uniform loops only. Over a decade
later, the Affine Transformation framework was introduced permitting for ex-
tracting coarse–grained parallelism [2,3]. But it has large computational com-
plexity. Other ones, for example [4], are computationally too complex to be
widely used in commercial compilers. Therefore, solutions characterized by a
polynomial complexity, such as that presented in [1], are desired.

The main purpose of this paper is to present a new approach for the extrac-
tion of coarse–grained parallelism available in program loops and being charac-
terized mainly by a polynomial time complexity. It deals with perfectly nested
static–control loops, where the loop bounds as well as array subscripts are affine
functions of symbolic parameters and surrounding loop indices. The polyhedral
model is adopted in the proposed algorithm.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 307–316, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

308 W. Bielecki and K. Kraska

2 Background

In this section, we briefly introduce necessary preliminaries which are used
throughout this paper.

The following concepts of linear algebra are used in the approach presented
in this paper: a polyhedron, lattice, the Hermite Normal Form of a matrix of
full row rank and its uniqueness, Hermite decomposition, affine lattice canonical
form. Details can be found in papers [5,6,7].

Definition 1 (Congruence relation, modulus matrix). Let y and z be two
d–dimensional integral vectors and D be some integral d × d matrix of full row
rank. We say that y is congruent to z modulo the column image of D, written:

y ≡ z mod D,

if and only if the difference z− y is equal to Dx for some d–dimensional integral
vector x ∈ Z

d. Matrix D is called the modulus matrix [8].

Definition 2 (Equivalence relation). Matrix D yields an equivalence rela-
tion, denoted by
D, which is defined by y
D z if and only if y ≡ z
mod D [8].

Definition 3 (Equivalence class). An equivalence class in a set is the subset
of all elements which are in equivalence relation
D. The number of equivalence
classes of
D is denoted by vol(D), the volume of D, which is the absolute value
of the determinant of D. If the determinant of D is zero, then D does not have
full row rank and thus
D has the infinite number of equivalence classes. An
equivalence class of
D is also called a lattice [8].

Definition 4 (Representatives). The set of all integral vectors in the paral-
lelepiped R(D) defined by the columns of D:

R(D) = {x ∈ Z | x = D · α, α ∈ R

d, 0 ≤ α ≤ 1},

defines a set of representatives for the equivalence classes of
D [8].

In this paper, we deal with the following definitions concerned program loops:
parameterized nested loops, iteration vector, loop domain (index set) whose
explanations are given in papers [3,9].

Definition 5 (Dependence). Two statement instances S1(I) and S2(I) are
dependent if both access the same memory location and if at least one access is
a write. Provided that S1(I) is executed before S2(I), S1(I) and S2(I) are called
the source and destination of the dependence, respectively.

Definition 6 (Dependence distance set, dependence distance vector).
We define a dependence distance set DS,T as a set of all differences of iteration
vectors of T and S for their commonly surrounding loops. Each element of set
DS,T , we call a dependence vector and denote it as dS,T [3].

Extracting Coarse–Grained Parallelism 309

Definition 7 (Uniform dependence, non–uniform dependence). If the
difference of iteration vectors it and is is constant for dependent statement in-
stances T (it) and S(is), we call the dependence uniform, otherwise the depen-
dence is non–uniform [3].

Definition 8 (Uniform loop, quasi–uniform loop). We say that a parame-
terized loop is uniform if it induces dependences represented by the finite
number of uniform dependence distance vectors [3]. A parameterized loop is
quasi–uniform if all its dependence distance vectors can be represented by a linear
combination of the finite number of linearly independent vectors with constant
coordinates.

Let us consider a parameterized dependence distance vector (N, 2). It can be
represented as (0, 2) + a× (1, 0), where a ≥ 1, a ∈ Z (see Fig. 1).

Fig. 1. The parameterized vector (N, 2) represented as the linear combination of the
two linearly independent vectors with constant coordinates

To find constant vectors representing a parameterized vector, we can apply
the algorithm presented in [10] and implemented in [7]. As input it takes a
polyhedron and returns: (1) an affine lattice canonical form for that polyhedron
and (2) the number that determines the space of the polyhedron.

Definition 9 (Dependence Sources Polyhedron). Given a dependence dis-
tance vector dS,T , a dependence sources polyhedron DSP (dS,T) is the set of all
the values of iteration vector iS such that there exist dependences between S(iS)
and T (iS + dS,T).

Definition 10 (Polyhedral Reduced Dependence Graph). A Polyhedral
Reduced Dependence Graph (PRDG) is the graph where a vertex stands for
every statement S and an edge connects statements S and T whose instances
are dependent. The number of edges between vertices S and T is equal to the
number of vectors dS,T ∈ DS,T . Every edge is labeled with a dependence distance
vector dS,T and a dependence sources polyhedron P (dS,T).

3 Approach to Extracting Parallelism

It is well–known [1] that code fragments, representing different equivalence
classes, are independent, hence they can be executed in parallel. The goal of
the algorithm presented below is to extract equivalence classes for both uniform
and quasi–uniform loops.

310 W. Bielecki and K. Kraska

3.1 Algorithm Extracting Equivalence Classes for Both Uniform
and Quasi–uniform Loops

Input: A set of dependence distance vectors for a given loop.
Output: Equivalence classes.

Method:

1. Replace each parameterized dependence distance vector by a combination of
linearly independent vectors. For this purpose apply the algorithm presented
in [10]. Skip this step for uniform loops.

2. Form a dependence distance set. Form matrix D, D ∈ Z

n×m, whose m
columns are all non–parameterized dependence distance vectors dS,T corre-
sponding to the edges of PRDG. Associate row k of Dn×m with a loop index
ik, k = 1, 2, . . . , n where n is the number of loop indices (i.e. surrounding
loops).

3. Form the basis of a lattice from the dependence distance set. Transform ma-
trix D into two sub–matrices D′, D′ ∈ Z

l×m and D′′, D′′ ∈ Z

(n−l)×m, such
that l rows of D′, 1 ≤ l ≤ n, are linearly independent and (n − l) rows of
D′′ are linearly dependent. When interchanging two rows, interchange also
the loop indices associated with these rows.

4. Find lattice canonical form. Transform sub–matrixD′ to the Hermite Normal
Form:

D′ = HU = [B 0]U, B ∈ Z

l×l,

preserving loop indices associated with the rows of D′. Note that the lattice
canonical form represents the equivalence relation.

5. Find representatives for equivalence classes. Using B, calculate a set of repre-
sentatives (one for each equivalence class) depending on the following cases:

(a) l = n: define a set R(B) of representatives for equivalence classes as the
set of all integral vectors in the parallelepiped defined by the columns of
B,

R (B) = {x ∈ Z | x = B · α, α ∈ R

d, 0 ≤ α ≤ 1}.

(b) l < n: find the first l coordinates of representatives for equivalence classes
as follows:

R
(
Bl

)
= {xl ∈ Z

l | xl = Bl · α, α ∈ R

l, 0 ≤ α ≤ 1},

and enlarge matrix Bl to matrix B by inserting the last n− l zero rows.
6. Find equivalence classes. Using representatives x, x ∈ R (B), form the fol-

lowing polyhedra that specifies equivalence classes:

P (x) =

{
y = x+Bz | x ∈ R(B), z ∈ Z

n, y ∈ P (dS,T)∪
∪{J | J = I + dS,T ∧ I ∈ P (dS,T)}, S, T ∈ vertices ofPRDG

}
.

Extracting Coarse–Grained Parallelism 311

Each equivalence class represents an independent subset of statement in-
stances which are represented by an equivalence relation.

Having equivalence classes, we can apply any well-known code generation algo-
rithm to generate parallel outer loops scanning a set of representatives R(B) and
sequential inner loops enumerating in the lexicographical order the elements of
set P (x) for every equivalence class represented by x.

3.2 Degree of Parallelism

The degree of parallelism is characterized by the number of equivalence classes.
Let us remind that an integral l × l matrix B of full row rank defines a set of
representatives R(B). Thus, the number of equivalence classes is the absolute
value of the determinant of B, the volume of B (see Definition 3). In [11] it is

proven that if B ∈ Z

l×l, then the number of equivalence classes is
∏l

i=1 bii.
Now, similarly to [1], we can investigate available parallelism by a simple

inspection of matrix B:

vol(B) =
∏l

i=1 bii, B ∈ Z

l×l.

However, when l < n then a set of representatives is defined by an enlarged
matrix B. To find the degree of parallelism, we need to compute vol(Bl) and
take into consideration the number of iterations for loop indices corresponding
to n− l rows of the enlarged matrix B:

vol(B) = vol(Bl)×
∏n

i=n−l vol(D
S
i) =

∏l
i=1 b

l
ii ×

∏n
i=n−l vol(D

S
i).

3.3 Time Complexity

Except for the first step, all the other steps of the algorithm can be accomplished
in polynomial time. The proof is below.

1. The task of identifying a set of linearly independent rows of a matrix D,
D ∈ Z

n×m with constant coordinates and dependent ones can be done in
polynomial time by the Gaussian elimination. According to [11], this com-
putation can be done in O (ldm) arithmetic operations.

2. The task of transforming a matrix D′, D′ ∈ Z

l×m to its Hermite Nor-
mal Form matrix B,B ∈ Z

l×l can be accomplished, depending on the al-
gorithm used, even in O

(
lθ−1m log(2m/l)B(l log(l ‖D′‖))

)
operations [11],

where θ < 2.376.
3. A set R(B) of representatives for equivalence classes is defined as a set of all

integral vectors in the parallelepiped defined by the columns of B. According
to [8] such a set of representatives can be found by enumerating the equiv-
alence classes with nonnegative integral vectors in the lexicographical order
(y ≺ z if there is some i, 1 ≤ i ≤ l, such that yi < zi and for j = 1, . . . , i− 1
and yj = zj). Enumerating l diagonal coefficients of B requires O (l) opera-
tions and enumerating n− l rows of D′′ requires O (n× (n− l)) operations.

312 W. Bielecki and K. Kraska

3.4 Example

Let us consider the following example:

for(i=2; i<N; i++)

for(j=2; j<N; j++)

for(k=0; k<N; k++)

S: a[i][j][k]=a[i][j-1][k]+a[i-2][j][k]+a[i-2][P][k];

PRDG describing dependences in the loop is represented by the followingDSPs:

DSP (0, 1, 0) = {(i, j, k) | 2 ≤ i < N, 2 ≤ j ≤ N − 2, 0 ≤ k < N},
DSP (2, 0, 0) = {(i, j, k) | 2 ≤ i ≤ N − 3, 2 ≤ j < N, 0 ≤ k < N},
DSP (2,M, 0) = {(i, j, k) | 1 ≤M}.

The algorithm produces the following results.

1. Replace each parameterized distance vector by a linear combination of con-
stant vectors.
The parameterized vector:

P (2,M, 0) =

⎧⎪⎨⎪⎩
1× i+ 0×M + 0× k − 2 = 0

0× i+ 1×M + 0× k − 1 ≥ 0

0× i+ 0×M + 1× k + 0 = 0

,

is replaced by the vectors:

⎛⎝0
1
0

⎞⎠ and

⎛⎝2
0
0

⎞⎠ (see Fig. 2a).

2. Form the dependence distance set.⎛⎝ij
k

⎞⎠ =

⎛⎝⎛⎝0
1
0

⎞⎠⎛⎝2
0
0

⎞⎠⎛⎝0
1
0

⎞⎠⎛⎝2
0
0

⎞⎠⎞⎠ =

⎛⎝0 2 0 2
1 0 1 0
0 0 0 0

⎞⎠ , n = 3.

3. Form the basis of a lattice from the dependence distance set (see Fig. 2b).

D′
(
i
j

)
=

(
0 2 0 2
1 0 1 0

)
, D′′ (k) =

(
0 0 0 0

)
.

4. Find the lattice canonical form.

B

(
i
j

)
=

(
2 0
0 1

)
, l = 2.

5. Find representatives for equivalence classes.
In the case l < n, we find the first l coordinates of representatives for equiv-
alence classes as follows (see Fig. 2c):

Extracting Coarse–Grained Parallelism 313

R
(
Bl

)
=

{(
0
0

)
,

(
1
0

)}
.

The final set of representatives is of the form:

R(B) =

⎧⎨⎩
⎛⎝0

0
k

⎞⎠ ,
⎛⎝1

0
k

⎞⎠ .

The enlarged matrix B ∈ Z

l×l to matrix B ∈ Z

n×l is as follows:

B

⎛⎝ij
k

⎞⎠ =

⎛⎝2 0
0 1
0 0

⎞⎠.

6. Find equivalence classes (see Fig. 2d).

P (x) =

⎧⎪⎪⎨⎪⎪⎩ y = x+

⎛⎝2 0
0 1
0 0

⎞⎠ z | x ∈ R(B),

(2, 2, 0) ≺ y ≺ (N − 1, N − 1, N − 1), z ∈ Z

2

⎫⎪⎪⎬⎪⎪⎭.

a) b) c) d)

Fig. 2. Illustration of some selected steps in the method: a) replacement of the pa-
rameterized dependence distance vector, b) the basis of a lattice, c) representatives for
equivalence classes, d) the equivalence classes for representatives (0, 0, k)

The degree of parallelism is as follows:

vol(B) =
∏l

i=1 b
l
ii ×

∏n
i=n−l vol(D

S
i) = vol

(
2 0
0 1

)
×N = 2N .

Applying CLooG, the well–known code generation tool [12], to scan elements of
P (x) we get the following code:

if(N>=3)

for(REPR_i=0; REPR_i<=1; REPR_i++) /* parallel */

for(k=0; k<=N-1; k++) /* parallel */

for(i=2; i<=N-1; i++)

for(j=2; j<=N-1; j++)

if((-REPR_i+i)%2==0)

S: a[i][j][k]=a[i][j-1][k]+a[i-2][j][k]+a[i-2][P][k];

314 W. Bielecki and K. Kraska

The two outer loops scan the set of representatives and can be executed in
parallel. The inner two loops enumerate (sequentially) elements contained in
the same equivalence class being defined by a representative pointed out by the
indices of the first two outer loops.

4 Experiments

We implemented our algorithm as an ANSI–C++ software module using the
well–known library PolyLib v5.22.5 [7]. Additionally, we used the following
well–known tools: Petit (from Omega Project v2.1 [14]) for dependence anal-
ysis, and CLooG v0.14.1 [12] for code generation, to be able to operate directly
on source codes and generate output ones.

In order to get a feeling of the performance of our approach, we carried out
experiments with the well–known NAS Parallel Benchmark (NPB) suite from
NASA [13]. We found 185 perfectly nested loops for which the proposed algo-
rithm of identifying equivalence classes could be potentially applied. During the
dependence analysis, Petit returns the results presented in Table 1.

Table 1. The quantitative distribution of loops in terms of dependence types

Petit’s dependence analysis results No. loops

1) Error reports during analysis (Petit’s shortcomings) : 28
2) No dependences : 123
3) Uniform dependences, including: : 14

non loop–carried dependences : 9
loop–carried dependences : 5

4) Parameterized distance vectors : 20

The total number of perfectly nested loops : 185

Quasi–uniform loops (contained parameterized distance vectors) were paral-
lelized by means of the algorithm presented in this paper using the following
machine: Intel PentiumM 1.5GHz with Linux openSUSE v11.1 32–bit operating
system. The results of the experiments are included in Table 2 where time is
presented in microseconds.

For loops exposing parallelism, we generated parallel OpenMP code being
compiled by means of the gcc v4.5.1 compiler. To define the speed–up of parallel
code, we have used an Intel Core i7–2630QM 2.00GHz machine with the Linux
openSUSE v11.4 32–bit operating system. It is worth to note that speed–up, s,
for several parallel loops is superlinear, i.e., s > p (see Table 2).

The tool takes the most time to replace parameterized distance vectors by
a linear combination of constant vectors. The other steps of the algorithm
have performed several times faster. Under our experiment, the whole time,
required for extracting equivalence classes, does not exceed 3 milliseconds. This
fact permits us to conclude that the presented approach can be successfully ap-
plied for building optimizing compilers extracting automatically coarse–grained
parallelism available in real–life loops.

Extracting Coarse–Grained Parallelism 315

Table 2. Effectiveness and time complexity of the proposed approach for NPB’s quasi–
uniform loops

Source loop
Degree of
parallelism

Sizes
∀N

Speed-up
t1
tp
, p = 4

No.
param.
vectors

Time taken by each step
of the algorithm [μs]
-1- -2- -3- -4- -5- -6-

1) UA adapt.f2p 2.t N1*N3*N4 99 4.7614 24 2416 2 267 51 1 221
2) FT auxfnct.f2p 1.t 1 - - 1 56 1 6 5 - -
3) UA diffuse.f2p 2.t 1 - - 3 148 1 18 6 - -
4) UA diffuse.f2p 3.t N1*N3*N4 99 2.7457 3 346 1 23 6 2 204
5) UA diffuse.f2p 4.t N1*N3*N4 99 7.4480 3 312 2 21 5 1 225
6) UA diffuse.f2p 5.t N2*N3*N4 99 4.6477 3 348 1 21 5 1 238
7) UA precond.f2p 3.t N1 699 1.0780 3 237 1 15 6 1 202
8) UA setup.f2p 16.t N1*N2 999 2.9474 3 321 1 20 6 1 221
9) UA transfer.f2p 1.t 1 - - 3 197 1 15 6 - -

10) UA transfer.f2p 2.t 1 - - 3 170 1 13 6 - -
11) UA transfer.f2p 3.t 1 - - 3 168 1 13 6 - -
12) UA transfer.f2p 5.t 1 - - 3 170 1 14 5 - -
13) UA transfer.f2p 6.t 1 - - 3 167 1 13 6 - -
14) UA transfer.f2p 7.t N1 699 1.0349 3 269 1 16 7 1 202
15) UA transfer.f2p 8.t 1 - - 3 169 1 16 8 - -
16) UA transfer.f2p 9.t N1 699 1.4263 3 270 1 18 5 1 199
17) UA transfer.f2p 10.t 1 - - 3 173 1 14 6 - -
18) UA transfer.f2p 13.t N1 699 2.1882 3 262 1 15 5 1 203
19) UA transfer.f2p 15.t N1 699 1.4815 3 257 1 15 6 1 202
20) UA transfer.f2p 18.t N1 699 2.2140 3 256 1 15 6 1 196

5 Conclusions

In this paper, we have presented a new approach that permits for the extraction
of coarse–grained parallelism available not only in uniform loops (as the approach
presented in [1]) but also in quasi–uniform perfectly nested parameterized loops.
The experiments conducted on perfectly nested loops from the NAS Parallel
Benchmark suite demonstrate that the presented approach is very fast.

In our next work, we plan to extend the approach to imperfectly nested loops
and investigate its effectiveness and time complexity.

References

1. D’Hollander, E.H.: Partitioning and Labeling of Loops by Unimodular Transfor-
mations. IEEE Transactions on Parallel and Distributed Systems 3(4), 465–476
(1992)

2. Lim, A.W., Lam, M.S.: Maximizing Parallelism and Minimizing Synchronization
with Affine Partitions. Parallel Computing 24(3-4), 445–475 (1998)

3. Griebl, M.: Automatic Parallelization of Loop Programs for Distributed Memory
Achitectures. Habilitation. Fakultät für Mathematik und Informatik Universität
Passau (2004)

316 W. Bielecki and K. Kraska

4. Beletska, A., Bielecki, W., Pietro, P.S.: Extracting Coarse-Grained Parallelism in
Program Loops with the Slicing Framework. In: ISPDC, pp. 203–210 (2007)

5. Schrijver, A.: Theory of Linear and Integer Programming. Series in Discrete
Mathematics (1999)

6. Nookala, P.K.V.V., Risset, T.: A Library for Z–Polyhedral Operations. Publication
interne n.1330, Institut de Recherche en Informatique et Systèmes Aléatoires (2000)

7. Polylib User’s Manual. The Polylib Team (2002)
8. Höfting, F., Wanke, E.: Polynomial-Time Analysis of Toroidal Periodic Graphs.

Journal of Algorithms 34, 14–39 (2000)
9. Bondhugula, U.K.R.: Effective Automatic Parallelization and Locality Optimiza-

tion Using the Polyhedral Model. Dissertation. The Ohio State University (2010)
10. Quinton, P., Rajopadhye, S., Risset, T.: On Manipulating Z–Polyhedra. Publica-

tion interne n.1016, Institut de Recherche en Informatique et Systèmes Aléatoires
(1996)

11. Cohen, E., Megiddo, N.: Recognizing Properties of Periodic Graphs. DIMACS Se-
ries in Discrete Mathematics and Theoretical Computer Science 4, 135–146 (1991)

12. Bastoul, C.: Code Generation in the Polyhedral Model Is Easier Than You Think.
In: PACT’13 IEEE International Conference on Parallel Architecture and Compi-
lation Techniques, pp. 7–16 (2004)

13. NASA Advanced Supercomputing Division, http://www.nas.nasa.gov
14. https://github.com/davewathaverford/the-omega-project

http://www.nas.nasa.gov
https://github.com/davewathaverford/the-omega-project

Polish Computational Research Space
for International Scientific Collaborations

Jacek Kitowski1,2, Michał Turała2, Kazimierz Wiatr2, Łukasz Dutka2,
Marian Bubak1,2, Tomasz Szepieniec2, Marcin Radecki2, Mariusz Sterzel2,
Zofia Mosurska2, Robert Pająk2, Renata Słota1, Krzysztof Kurowski3,

Bartek Palak3, Bartłomiej Balcerek4, Piotr Bała5,
Maciej Filocha5, and Rafał Tylman6

1 AGH University, Department of Computer Science,
al. Mickiewicza 30, 30-059, Krakow, Poland
2 AGH University, ACC Cyfronet AGH,
ul. Nawojki 11, 30-950, Krakow, Poland

3 Poznan Supercomputing and Networking Center,
ul. Noskowskiego 10, 61-704 Poznan, Poland

4 Wroclaw Centre for Networking and Supercomputing,
Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland

5 Interdisciplinary Centre for Mathematical and Computational Modelling,
University of Warsaw, ul. Pawinskiego 5a, 02-106 Warsaw, Poland

6 Gdansk University of Technology, Academic Computer Centre in Gdansk – TASK,
ul. G. Narutowicza 11/12, 80-233 Gdansk, Poland

Abstract. The Polish Grid Initiative commenced in 2009 as part of
the PL-Grid project funded under the framework of the Innovative Eco-
nomy Operational Programme [1]. The main purpose of this Project is
to provide the Polish scientific community with an IT basic platform
making use of Grid computer clusters, enabling e-science research in
various fields. The Project is establishing a country-wide computing
platform, which supports scientific research through integration of ex-
perimental data and results of advanced computer simulations carried
out by geographically-dispersed teams. The solutions applied in setting
up this e-infrastructure will ensure integration with other, similar plat-
forms around the world. In the paper some basic facts concerning the
Project history are given, PL-Grid goals are described and several exam-
ples of innovative grid services and software as well as support procedures
developed to-date are presented.

Keywords: grid, computing clusters, IT platform, e-science, NGI,
Virtual Organization.

1 Introduction

At the end of XX and the beginning of XXI century a number of “grid” projects
developed in USA (Globus, Condor, GriPhiN, PPDG, iVDGL) and in Europe
(DataGrid, NorduGrid, CrossGrid, DataTAG, GridPP, etc.), largely motivated

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 317–326, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

318 J. Kitowski et al.

by the physics communities, which desperately looked for new solutions to the
globalization of computing, to solve very demanding requirements of LHC ex-
periments [2]. The derivative of those projects included Open Science Grid and
TeraGrid in USA, three generations of EGEE projects and two of BalticGrid
in Europe, and ApGrid and Grid@Asia in Asia; in addition many application
projects have been launched and executed. In many countries national Grid
projects were developing.
Poland, especially computing centers of Krakow (Academic Computer Cen-

ter Cyfronet AGH), Poznan (Poznan Supercomputing and Networking Center,
PSNC) and Warsaw (Interdisciplinary Centre for Mathematical and Compu-
tational Modeling, ICM Warsaw) participated in number of European Grid
projects – this way an experience and close links to the Grid communities have
been established. The CrossGrid project [3], coordinated by ACC Cyfronet AGH
Krakow, demonstrated the use of Grid for interactive applications; the GridLab
project [4], coordinated by PSNC Poznan, developed Grid Application Toolkit
to simplify access to Grid resources and services. In 2007 a PL-Grid Consortium
has been formed, which apart of the three institutions listed above included
computing centers of Gdansk (Academic Computer Centre, CI TASK) and Wro-
claw (Wroclaw Centre for Networking and Supercomputing, WCNS), with a goal
“...to provide the Polish scientific community with an IT platform based on Grid
computer clusters, enabling e-science research in various fields”; it was strongly
felt that such infrastructure should be compatible with existing European and
worldwide Grid frameworks.

2 Goals and Platform Overview

Our activity aims at significantly extending the amount of computing resources
provided to the Polish scientific community (by approximately 215 TFlops of
computing power and 2500 TB of storage capacity) and constructing a Grid sys-
tem that will facilitate effective and innovative use of the available resources. In
this aspect, we have been focusing on exploitation of computational and storage
facilities by virtual organization paradigm and on implementing a comprehensive
grid resource management suite, comprising many individual services.
According to the overall layered architecture of the proposed platform (see

Fig. 1) the scientific novelty in the scope of Grid services and Grid Application
Programming Interfaces has been achieved with special interest on efficient re-
sources allocation, experimental workbench, novel grid middleware and tools, as
further outlined in section 3.
The software development is closely related to achievements in the fields of

hardware resources and operational issues, supported by careful coordination of
scientific groups performing the research. Extension of the hardware resources
enabled our computer centres to be highly located at the June 2011 TOP500
list (with ranks: ACC Cyfronet AGH: 81, CI TASK: 163 and WCNS: 194) with
the aggregated ca. 2000 TB of storage, thus offering substantial amount of re-
sources to the users already. To make the usage efficient the Operations Cen-
tre coordinates every-day infrastructure handling, while hardware, software and

Polish Computational Research Space – PL-Grid 319

Fig. 1. Structure of the PL-Grid Computing Platform

tools development, security aspects, training and user support are performed by
cross-organizational groups participating in platform progress.

3 Innovation in International Context

The established Grid system must enable efficient and innovative use of the newly
built hardware infrastructure. This goal has been achieved by elaboration of rules
for efficient infrastructure usage by virtual organizations and deployment of a
set of tools and Grid management services at various levels of the infrastructure.
Below a survey of the example software and services supporting grid users

and administrators is presented.

3.1 Efficient Resource Allocation

Allocation of resources available in the e-infrastructure is a vital process in each
Grid infrastructure. At the same time, this process is directly related with the
way how customers’ needs are fulfilled. The process itself is pretty complex as
users and multiple providers are involved in it. Therefore, PL-Grid implemented
the process of resources allocation as well as a collaborative platform that sup-
ports both users and providers with dealing with complexity of this process. The
result of resource allocation process is a document called Service Level Agree-
ment (SLA), which is a basis for grid services configuration, monitoring and ac-
counting. This makes an SLA the core concept in the whole PL-Grid operation
framework.

320 J. Kitowski et al.

This principle and many details of a design follow the best practices related
to Service Level Managements (SLM), which is a relevant part of ITIL specifica-
tion [5] and ISO2000 standard [6]. The design was verified in the collaboration
with some National Grid Initiatives (NGIs) in the frame of EGI [7] and with
gSLM project [8]. Solutions of this kind are still in a research phase and PL-
Grid is the first NGI that provides such a solution into production environment.
PL-Grid SLAs are mainly aimed at proper resource allocation for users and

at the related issue of usage capacity planning. Additionally, SLAs between a
service provider and an infrastructure operator define the minimal level of service
parameters. This type of SLAs is used both as en entry agreement when joining
the infrastructure, and as a level of service which is guaranteed even if the same
quality parameters are not included in the user-provider SLA.

Fig. 2. Operational Architecture Grid

SLA-aware Architecture. Our proposal of operational architecture, as seen
in Fig. 2, is designed to face SLM principles. Many components, including mo-
nitoring and operational data-bases, are inherited from the existing EGEE/EGI
operational architecture, which – to our knowledge – is the most mature ope-
rational architecture deployed in contemporary production grids. The novelty
of PL-Grid architecture lays in the integrated SLM component. The process of
providing reliable resources to users according to SLAs is recognized as the most
important service of the infrastructure. Therefore, a related component, namely
the SLM, was placed in the center of the architecture. This glues together all
the other components, which are operational data producers and consumers.
The components responsible for SLM are as follows:

– SLA Planning & Negotiation. It enables specification of user require-
ments and negotiation of the SLA properties with resource providers. They
are specified in the form of one- or multi–providers SLA. Both users and
providers have a clear view on how the resources usage is planned, and can
take appropriate actions. This component uses information about user ac-
counts, groups and roles. The information about available services and people
responsible for SLA signing is taken from a related repository.

Polish Computational Research Space – PL-Grid 321

– Service Configuration. Signed SLAs as well as SLA monitoring results
influence the execution process. Firstly, resource configuration can be done
according to signed SLAs. In case of fine-grained SLAs, some automation
needs to be deployed. Secondly, information published in the Grid infor-
mation services should be controlled (filtered) by the SLA Execution com-
ponent. This might prevent from enabling support for a VO on resources
without informing related managers, and gives a possibility to filter out re-
sources violating an SLA.
– SLA Execution Monitoring & Accounting. In this component, raw mo-
nitoring data related to functionality monitoring, quality monitoring (e.g. re-
liability and availability metrics) and usage monitoring (site accounting data)
are analyzed in the light of SLAs that were signed. Additionally, information
about maintenance work is included. The results of this analysis enable to
monitor how an SLA is executed and give the data about possible violations
of SLAs. That data is presented to users and resource providers. Accounting
can be implemented on the base of a full view on SLA execution, according
to the infrastructure business model.

The presented architecture provides full support for SLM in computational
infrastructure. Please note that most of the components built for grid infras-
tructures can be reused. However, enabling a component for SLM, introduces
qualitative change to the operation architecture.

Bazaar – Collaboration Platform. To enable presented solution into produc-
tion infrastructure, we needed a collaboration platform that would support SLM

Fig. 3. Graphical user interface of Grid Resource Bazaar

322 J. Kitowski et al.

process. The work started with creating an SLA negotiation platform named
Grid Resource Bazaar [9]. The main goal of the platform is to cover complex
process of communication between remote SLA parties. There is a lot of com-
munication to define in the process of negotiating and signing an SLA. Our
experience shows that a smooth and well-defined communication process is a
key factor in successful SLM adoption. A collaborative tool, which Bazaar is,
simplifies the communication by implementing communication patterns crafted
according to SLM model. Bazaar graphical interface was designed for easy SLA
management with support of complexity management. As we can see on Fig. 3,
the portal is organized in a form of a dashboard with views of resource alloca-
tion for a given user or VO. An equivalent dashboard is available for a resource
provider as well. The resources are visualized on a chart and SLAs are listed
beneath. The user can manage SLA proposals and examine the influence of a
new SLA on the resources. Similar elements can be found in the infrastructure
provider’s view in Bazaar.

3.2 Experimental Workbench

GridSpace2 Experiment Workbench [10] is a novel virtual laboratory frame-
work, which enables researchers conducting virtual experiments on Grid-based
resources and other HPC infrastructures.
Virtual laboratory is constructed based on a distributed layered architec-

ture. Top layer constitutes a web portal, which is the main access point to
all the mechanisms of the laboratory from each workstation equipped with a
Web browser. The portal covers an Experiment Workbench layer, within which
there are various tools used to create experiments, collaboration, communication
and resource sharing. The following is an executive layer, which is responsible
for interpreting the code introduced via the portal and its implementation in
the context of user’s individual experimental spaces on a special access machine
called the experiments host.

3.3 Overview of Selected Tools and Middleware

Migrating Desktop. The Migrating Desktop (MD) platform [11] is a powerful
and flexible graphical user interface to grid resources that hides the complexity
of the grid middleware and supports advanced methods of applications results’
visualization. The platform allows the user to run applications and tools, ma-
nage data files and store personal settings independently of the location or the
terminal type; it gives a transparent user work environment and easy access
to resources and network file systems independently of the system version and
hardware. MD offers: scalability and portability, a set of tools, a single sign-on
mechanism and support for multiple grid infrastructures. The key feature of MD
is flexible personalized working environment.

Vine Toolkit. Vine Toolkit [12] is a set of the portal tools, which allow to
create web applications enabling remote running and controlling the computer

Polish Computational Research Space – PL-Grid 323

simulations. It also allows to integrate these applications with HPC resources,
grid services and various existing large-scale computing infrastructures managed
by grid middleware.
Vine, together with a set of built-in modular components, is an excellent

solution to establish web gateways for advanced scientific and engineering appli-
cations with grid-enabled resources in the backend. Moreover, the heterogeneity
of grid services and HPC resources can be unified thanks to Vine APIs and built-
in capabilities for remote job submission, monitoring and control as well as data
and workflow management, security and user management. Thus, integrating
existing Vine modules and adding application-specific extensions it is possible
to create a sophisticated Science Gateways to support collaborative scientific
research.

FiVO/QStorMan Toolkit. FiVO/QStorMan [13] is a toolkit developed to
provide requested quality of access to storage resources for data-intensive grid
applications. QStorMan constitutes a part of the Framework for Intelligent Vir-
tual Organization (FiVO).
The driving goal of FiVO/QStorMan toolkit is to provide access to user data

at a certain level of quality (e.g. transfer, availability, security). To achieve the
goal the system uses the Virtual Organizations feature of grid systems. The user
of the system is able to: define non-functional requirements for accessing his data
explicitly, gain a certain level of data access by selecting a grid VO and improve
his grid computations speed.

Novel Grid Middleware (QCG). The QosCosGrid (QCG) [14] middleware
is an integrated e-infrastructure offering advanced job and resource manage-
ment capabilities to deliver to end-users supercomputer-like performance and
structure.
By connecting many computing clusters together, QosCosGrid offers easy-to-

use mapping, execution and monitoring capabilities for variety of applications,
such as parameter sweep, workflows, MPI or hybrid MPI-OpenMP. Thanks to
QosCosGrid, large-scale and complex computing models written in Fortran, C,
C++ or Java can be automatically distributed over a network of computing
resources with guaranteed Quality of Service. Consequently, the applications
can be run at given periods of time, their execution time and waiting times can
be reduced, and thus bigger problem instances can be considered.

4 Users, Software Packages and Their Applications

Attractive computational resources and seamless access to them, described in
previous sections, are not the only important factors attracting users to grid
platform. Another two, which are crucial for utilising the existing resources, are
availability of a set of software packages as well as effective (real time) support
and training for existing and new users. Below we present a short overview of
available software packages, Helpdesk System and training activities. The final
paragraph sums up users’ applications studied on the infrastructure.

324 J. Kitowski et al.

4.1 Software Packages

To fully support various scientific communities, each infrastructure has to pro-
vide variety of scientific software packages for their users. Until now, the most
commonly used scientific software packages have been available only at High
Performance Computers in several of Polish computing centers. Now, with the
high increase of grid users, their expectations have raised and number of avail-
able software packages had to be extended. At present, PL-Grid users can choose
one of two major middlewares to run their computations through. Majority of
newly ported and installed software is provided under gLite middleware. To get
easy access to scientific packages, a tool “Modules” [15] has been introduced on
all sites supporting PL-Grid. Access to specific software package is realized via
“module add <program module>” command. Deployment of “Modules” has had
two main benefits. On the one hand, for system administrators, it allows keeping
the library of the software packages in administrator’s favourite location, while
for users – it provides unified, easy and comfortable way of accessing required
program application. Recently the following list of commercial and freely avail-
able scientific packages is available: ADF, ANSYS FLUENT, AMBER, Abinit,
Blender, CFOUR, CPMD, Dalton, GAMESS, Gaussian, Gromacs, Mathemat-
ica, Maple, Matlab, NAMD, NWCHEM, SIESTA, Quantum Espresso and Tur-
bomole. This is of course a subject to change as new requests are constantly
appearing. To ensure correctness of software functioning, an automated moni-
toring has been deployed, based on NAGIOS tool. Software tests are executed
several times a day in each of the centers supporting PL-Grid infrastructure. Re-
sulting pages of NAGIOS tests are available for any user with a valid certificate.

4.2 Helpdesk System and Training Courses

Constantly growing number of scientists performing computations in PL-Grid
infrastructure requires professional help and support in solving various problems
concerning access and computations on the infrastructure. For users’ satisfaction,
system Helpdesk has been introduced – a novel support system, which involves
technical services and organization of experts. All the (incidental) issues with the
infrastructure, problems, even requests (concerning new software for example)
can be reported via helpdesk@plgrid.pl e-mail address. The registered users
can also benefit from an on-line tool operated via a browser. We have found
Helpdesk system highly valuable tool for users; currently a knowledge base is
built based on analysis of past tickets. In addition to knowledge base (in form
of FAQs), several training courses have been organized to introduce the infras-
tructure for majority of users. Special attention has been devoted to new users
of the PL-Grid platform. For their satisfaction we provide training explaining
both basic and advanced functionality of grid computing. Those come in a form
of both – traditionally organized courses as well as the on-line ones available
via Blackboard e-Learning system. Both ways of training increase overall users’
satisfaction and benefits from grid computing.

Polish Computational Research Space – PL-Grid 325

4.3 Applications

Currently there are over 700 registered users with about two third being the
active ones. They come from several of science domains including both ‘grid-
traditional’ ones like physics – especially HEP, chemistry, astronomy, biology and
medicine and newly adopted like material science, nanotechnology or even lin-
guistics. Number of the scientific topics, for which computations are performed,
reaches almost one thousand (over a period of a year). Biology, chemistry and
High Energy Physics are the most active ones. The most time consuming com-
putations in biology concerned anti-fungus antibiotics (165 CPU years over a
period of a month). Chemical computations concern mainly electronic structure
of molecules while HEP jobs analyse(d) data coming out of ATLAS experiment.
All three above mentioned science domains are responsible for over 90% of the
resource utilisation in PL-Grid infrastructure.

5 PL-Grid Platform as Part of European Infrastructure

After first few years of studies of Grid technology and applications, IT and
Science communities, as well as the EU IST directorate, realized that one cannot
base the future of European computing infrastructure on the projects – as they
have limited life-time, and that a more stable organization is needed. In Europe
a special project, the European Grid Initiative Design Study (EGI DS), has
been launched, with a goal to develop conceptual and logistical frameworks for
a permanent organization, which would oversee the operation and development
of the pan-European Grid infrastructure. About 40 European National Grid
Initiatives (NGI), 3 European Research International Organizations (EIRO) and
several Grid organizations from outside of Europe supported this concept and
in March 2010 a European Grid Initiative [7] consortium has been established,
with its location in Amsterdam. In this context PL-Grid platform is one of NGI
organizations.
Today EGI.eu consortium involves 33 European NGI partners and 2 EIROs.

One of the main goals of EGI.eu is to bring European distributed computing ini-
tiatives into an integrated e-Infrastructure that is able to seamlessly peer with
equivalent e-Infrastructures around the world. EGI.eu collaborates with interna-
tional policy bodies (OGF, e-IRG, EUGridPMA), several EU projects (e.g. EMI,
IGE, SAGA, SIENA, GISELA, StratusLab), and non-European organizations
(e.g. Asia-Pacific Grid, ROC Latin America).
As today EGI.eu integrates and supervises more than 200 thousand logical

CPU’s (cores) and about 100 PB of disk and 80 PB of tape storage; more than
13 thousand users are organized in more than 180 VOs, out of which about 30
are active – about 1 million jobs are performed daily, mainly related to parti-
cle physics but also from archeology, astronomy, astrophysics, civil protection,
computational chemistry, earth sciences, finance, fusion, geophysics, life sciences,
multimedia, material sciences, etc.

326 J. Kitowski et al.

6 Conclusions

Several goals are being achieved during the platform development. These are
computational and storage offerings to the international scientific community,
novel middleware solutions and tools enabling easy usage of the resources and
ability to achieve original scientific results by the users. In the future the platform
is planned to be extended toward fulfilling requirements from specific groups of
scientists.

Acknowledgements. This work was made possible thanks to the PL-Grid
project: contract number: POIG.02.03.00-00-007/08-00,website: www.plgrid.pl.
The Project is co-funded by the European Regional Development Fund as part
of the Innovative Economy program. Acknowledgements are due to the members
of the PL-Grid consortium for assistance during preparation of the paper.

References

1. Innovative Economy Operational Programme, http://www.poig.gov.pl/english/
2. MONARC, http://monarc.web.cern.ch/MONARC/
3. The CrossGrid project, http://www.cyf-kr.edu.pl/crossgrid/
4. The GridLab project, http://www.gridlab.org/about.html
5. Rudd, C.: Service Design. Office of Government Commerce (ITIL). The Stationery
Office Ltd., London (2007)

6. International Organization of Standardization (ISO), Information technology -
Service Management - Part 1: Specification (ISO/IEC 20000-1:2005)

7. EGI, http://www.egi.eu/
8. Szepieniec, T., Kocot, J., Schaaf, T., Appleton, O., Heikkurinen, M.,
Belloum, A.S.Z., Serrat-Fernández, J., Metzker, M.: On Importance of Service Level
Management in Grids. In: Alexander, M., et al. (eds.) Euro-Par 2011 Workshops,
Part II. LNCS, vol. 7156, pp. 64–75. Springer, Heidelberg (2012)

9. Szepieniec, T., Tomanek, M., Twaróg, T.: Grid Resource Bazaar: Efficient SLA
Management. In: Cracow Grid Workshop 2009 Proceedings, pp. 314–319. ACK
Cyfronet AGH, Kraków (2010)

10. GridSpace2 Experiment Workbench, https://gs2.cyfronet.pl/
11. Migrating Desktop Platform, http://desktop.psnc.pl/
12. Vine Toolkit, http://vinetoolkit.org/
13. FiVO, http://fivo.cyf-kr.edu.pl/trac/fivo/wiki/FIVO/
14. QosCosGrid Middleware, http://www.qoscosgrid.org/
15. Modules, http://modules.sourceforge.net

http://www.poig.gov.pl/english/
http://monarc.web.cern.ch/MONARC/
http://www.cyf-kr.edu.pl/crossgrid/
http://www.gridlab.org/about.html
http://www.egi.eu/
https://gs2.cyfronet.pl/
http://desktop.psnc.pl/
http://vinetoolkit.org/
http://fivo.cyf-kr.edu.pl/trac/fivo/wiki/FIVO/
http://www.qoscosgrid.org/
http://modules.sourceforge.net

Request Distribution Toolkit

for Virtual Resources Allocation

Jan Kwiatkowski and Mariusz Fras

Institute of Informatics,
Wroclaw University of Technology,

Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
{jan.kwiatkowski,mariusz.fras}@pwr.wroc.pl

Abstract. The Service Oriented Architecture (SOA) concept facilitates
building flexible services that can be deployed in distributed environ-
ment, and executed on different hardware and software platforms. On the
other hand SOA paradigm rises many challenges in the area of Quality
of Service and resources utilization. In the paper Resources Distribution
Manager (RDM) that manages resources and service delivery in order
to satisfy user requirements and service provider’s needs is presented.
Requests for services are distributed to selected virtualized instances of
services or optionally new instances are created for handling the requests.
The allocation decisions are based on the knowledge about the commu-
nication resources and the current load of computational resources which
are dynamically monitored by special RDM module. The decision on the
resources allocation is then compared with its utilization during service
execution and causes changes in allocation strategy.

Keywords: Service Oriented Architecture, request distribution,
virtualization management.

1 Introduction

In recent years the evolution of software architectures led to the rising promi-
nence of the Service Oriented Architecture (SOA) concept. This architecture
paradigm facilitates building flexible service systems. The services can be de-
ployed in distributed environments, executed on different hardware and software
platforms, reused and composed into complex services. Adopting the concept of
services SOA takes IT to another level, one that’s more suited for interoperabil-
ity and heterogeneous environments. A service is a function that is well-defined,
self-contained, and does not depend on the context or state of other services.

The information systems designed with SOA paradigm are working both in
local and wide area networks, particularly built with Internet resources. For SOA
service client, there is no need to carry about the localization and execution
meanings of the service it want to use. However, the services are well described
in the system and their localizations are known. It can dynamically change,
however this process is not frequent, and usually the set of localizations of given
service is constant for some period of time [5].

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 327–336, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

328 J. Kwiatkowski and M. Fras

The very important issue for contemporary computer network service
providers is quality of network services delivery. Users want to complete re-
quested service without inconvenience and as fast as possible. Thus, the new soft-
ware architectures are driven by quality requirements of designed solutions. The
computer network systems designed with SOA paradigm enable flexible delivery
of new services as new needs come into being. Service sharing, reusability, ser-
vice composition, standardized service description and discovery are only some
features that make SOA solutions so usable in present business. In SOA-based
systems such a quality attributes as interoperability, extensibility and modifiabil-
ity are secured by known solutions based on universally accepted standards. For
such quality attributes as reliability, availability or scalability there are known
solutions which, however, need some work on improving its usefulness. The most
work is needed for two attributes security and performance [8].

On the other hand the Service Oriented Architecture and virtualization come
closer to each other, then the need to combine them in an efficient way becomes
one of the key challenges for designers of systems based on SOA paradigm. Proto-
cols and languages describing the base framework for services have been already
well described, standardise and established. Similarly virtualization which is of-
ten pointed as an SOA enabling technology has been quite matured. Moreover
virtualization improves the overall effectiveness of the use of available resources.
The number of existing solutions is not small and as reported in [12] it is hard
to find one which outstands all the others.

In the paper an architecture of the Request Distribution Manager (RDM) that
supports control of values of non-functional parameters of delivered services and
distribution of service requests guaranteeing services quality, especially efficient
allocating communication and computational resources to services is presented.
The proposed architecture can be applied in the wide range of SOA-based sys-
tems. The paper is organized as follows. Section 2 briefly presents similar tools
as RDM and pointed the main differences between them and RDM. Detailed
description of the RDM is presented in section 3. It covers general structure of
the RDM with short presentation of each module and its role. In section 4 re-
sults of some experiments performed using RDM are presented. Finally, section
5 outlines the work and discusses the further works.

2 Design Issues and Related Works

In distributed environment guaranteeing quality of delivered services is usually
explored in the context of Web services. In [10] the general concept of guaran-
teeing SLA for Web services is presented. The need for monitoring of service
processing at server side and for measurement of an concrete Web Service at
client side is formulated. The work [13] presents a platform for composition of
Web services so that quality criteria are satisfied. Quality of service delivery is
guaranteed by service selection with use of utility functions over QoS attributes
such as price, duration, reputation and availability. It proposes two approaches,
the first one is an individual service selection (without taking into account the

Request Distribution Toolkit for Virtual Resources Allocation 329

other services involved in the complex service), and the second one is service
selection by global planning (taking into account whole complex service). In
general, proposed solutions assume rather static values of parameters of ser-
vices and don’t consider ad hoc change of set of available services. On the other
hand the method that guaranties quality for services which values of parameters
can change very dynamically is proposed in [3]. The base of above approach is
developing and building models of services with use of fuzzy-neural networks,
similarly as in [1].

Apart from commercial software offered by the virtualization solutions ven-
dors such as Microsofts System Center Virtual Machine Manager 2008 R2 or
VMware’s vSphere there is a number of open solutions for virtualization man-
agement which will be described shortly here. These are Nimbus, OpenNebula,
OpenStack and Eucalyptus. Open solutions are in most cases hypervisor agnos-
tic and offer wide range of features to ease the deployment and management of
private, public or hybrid clouds. Their architecture is modular which gives high
customization opportunities. According to [11] each of those open solutions has
slightly different target thus provides different capabilities. That makes them
more suitable either for private, public or scientific purposes.

Nimbus project has a very clear area of interest which is the scientific commu-
nity [6]. It concentrates on capacity allocation and capacity overflow [11]. The
project places a strong emphasis on the research and future cloud technology
development. OpenNebula with centralized management is the solution for pri-
vate clouds [11]. The project was started in 2005 and tries to deliver an efficient
and scalable management of virtual machines on large-scale distributed infras-
tructures [7]. The next interesting proposition is the OpenStack software which
is the result of joint effort of NASA and RackSpace with number of other parties
involved in the cloud development. Currently OpenStack is often pointed as the
best open solution to create public cloud [9].

2.1 The Differences between RDM and Other Approaches

The largest difference between RDM and aforementioned solutions is coming
from another targets standing behind the projects. While most of other so-
lutions are strictly devoted to manage the infrastructure, RDM is devoted to
properly dispatch the requests placing the virtualization management on the
second place. Nonetheless one can point a number of similarities starting from
common modular architecture with possibilities to customize the software eas-
ily. Furthermore just like other solutions libvirt is used to overcome the problem
with communication with various hypervisors.

The role of RDM as a dispatcher means that some of the functionalities are
redundant. Under such situation one may put offering Amazon compatible API,
billing integration, number of control panels and so on. On the other hand the
functionality is extended to understand the SOAP messages, identify which ser-
vices are capable of performing them and finally running those services and
dispatching the requests. Analogical software is found as an addition on top of

330 J. Kwiatkowski and M. Fras

e.g. OpenNebula and offers service orchestration and deployment (SVMSched)
or service management as a whole (Claudia).

3 Request Distribution Manager

Delivery of software services (computational, information, etc.) in the traditional
form is characterized by the fact that applications are not open enough to follow
rapidly changing needs of business. This involves functional requirements as well
as assuring changing needs of quality of processing. The architecture of Request
Distribution Manager (RDM) resolves the problem with traditional software
lack of flexibility. RDM is built taking into account two needs: proper utilization
of processing environment and support for services in accordance with Service
Oriented Architecture paradigm.

3.1 The General Architecture of Request Distribution Manager

The architecture of the RDM is presented in the figure 1. It is composed of a
number of independent modules providing separate functionalities and interact-
ing with each other using specified interfaces. The main components are:

– RDM-Broker - which handles user requests and distribute them to proper
instances of virtualized computational resources. Decision making is based
on specified criteria of request distribution, in turn, based on non-functional
requirements. It also performs internal requests to coordinate the operation
of the system components as well as obtain some necessary information.

– RDM-Facade - which separates the rest of components, supports communi-
cation with them, and collects necessary information for the broker. It also
provides special services for the broker to test current state of processing
environment (e.g. characteristic of communication links).

– RDM-Controller - which manages all components behind the Facade. It is re-
sponsible for control processing according to capabilities of the environment
and current state of it. It can also route the requests to the services (cap-
sules) independently, taking into account computational resource utilization
and performs decision to start/stop another instance of service.

– RDM-Virtualizer - which offers the access to hypervisor commands. Uses
libvirt to execute commands what gives the project independence from par-
ticular hypervisor.

– RDM-Monitor - which collects information about particular physical servers
as well as virtual instances running.

The instances of given atomic service are functionally the same and differ only
in the values of non-functional parameters such as completion time of execution
or availability.

RDM modules interact using two interfaces. Internal communication is XML-
RPC based, for components behind the Facade, and uses SOAP messages for

Request Distribution Toolkit for Virtual Resources Allocation 331

RDM

Broker Faca
de

RDM
Monitor

Service Repository

RDM
Virtalizer

RDM
Controller

start/stop
instance

service request

start/stop
instance

service
request

handle
request

responce

service responce

service
responce

service
request

service
responce

internal request

internal request/
responce

Fig. 1. Request Distribution Manager Architecture

communication between RDM-Broker and RDM-Facade. This allows flexibly
manage distributed computational resources as well. Interaction with external
components is based on RDM-Broker services with SOAP messages.

RDM delivers for clients access to network services hidden behind it. Clients
see network services at Broker localization and don’t know that services may
be multiplied. From the client’s point of view, services are described at Ser-
vice Repository using WSDL standard, and are accessible using standard SOAP
calls. However broker distinguishes individual processing resources, simultane-
ously coordinates activities with RDM-Controller, and passes requests on. Each
and every request is redirected to proper instance based on the values of non-
functional parameters of the requested service. Proper instance of service is either
found from the working and available ones or the new one is started to serve the
request. Such an approach gives the possibility to serve clients requests and man-
age resource virtualization and utilization automatically with minimal manual
interaction.

3.2 Request Distribution Manager Components

The RDM-Broker acts as service delivery component, while in fact distributes re-
quests for services to known service processing resources. It maintains repository
of all known services and components that support them (Fig. 2), i.e. a set of
atomic services AS = {as(1), . . . , as(j), . . . , as(J)} available for clients, a set of
service instances IS = {IS1, . . . , ISj , . . . , ISJ} = {is(1, 1), . . . , is(j, 1), is(j, 2),
. . . , is(j,mj), . . . , is(j,Mj), . . . , is(j,MJ)}, where is(j,m) is m-th instance of j-
th atomic service (localized at given address (server)), and mj ∈ {1,Mj}, where
Mj is a number of existing instances of as(j). The broker controls and main-
tains also information about complex services CS composed from atomic ones. It
also recognizes and supports multiple execution systems (set of service providers
SP). These two issues are not exploited here.

332 J. Kwiatkowski and M. Fras

Atomic Service #m

Atomic Service #2
Atomic Service #1

Description
AS metrics

AS Instance #n

AS Instance #2
AS Instance #1

Address
ASI metrics

Fig. 2. The general structure of Broker Repository

The RDM-Broker collects data about instances of atomic services is(j,m)
based on measured or calculated values of non-functional parameters ψ (is(j,m))
=
{
ψ1
j,m, . . . , ψ

k
j,m, . . . , ψ

K
j,m

}
, where ψk

j,m is k-th non-functional parameter ofm-
th instance of j-th service. To make allocation decision which takes into account
dynamic parameters (i.e. varying in time), values of these parameters must be
obtained using any of estimation methods. The most important dynamic param-
eters, completion time of service execution and data (request/response) transfer
time, RDM-Broker estimates with use of adaptive models of execution systems
and communication links, built as a fuzzy-neural controllers. The input of the
communication link model is the vector of measured values of communication
link parameters, derived from the network monitoring unit. The input of the
execution system model is the vector of system state parameters derived from
the Facade. The more detailed description of used adaptive models of service
instances and communication links is presented in [3].

The Facade supports communication between Broker and components inside
the execution system. The Facade collects and delivers some essential informa-
tion (e.g. load of the system) necessary to control request distribution. It accepts
an interprets defined SOAP messages of internal services used to support request
distribution and service virtualization. For standard service requests the Facade
processes header section of SOAP messages. It completes especially defined sec-
tion with essential data of service execution, currently real completion time of
service execution.

Virtualization management is based on open source libvirt toolkit. It offers
the virtualization API supporting number of the most popular hypervisors. From
the point of view of this paper it is of a less important how technically the
management is performed. It is more important to note what are the capabilities
of the management and how it is understood here.

3.3 Request Handling and Resource Management

Process of request handling starts with SOAP message coming from the client of
the RDM (it can be end user or other component of SOA-based service delivery
system). As mentioned before, the primary address of requested service is the
Broker, which in fact hides all the infrastructure of the execution environment.

Request Distribution Toolkit for Virtual Resources Allocation 333

Next, Broker performs resource allocation decision. The decision making is
based on the actual values of parameters of service instances, distribution strat-
egy and optionally non-functional requirements SLAnf formulated in the service
request. If we consider fulfilling SLAnf for each request separately, the problem
of service request distribution system can be expressed with criterion Q on func-
tion h of parameters ψ(is(j,m)): is(j,m∗) ← arg min Q(h(ψ1

j,m, . . . , ψ
k
j,m, . . . ,

ψK
j,m)) i.e. the task to select such instance (the optimal one) that criterion Q

is minimized. A simple example of distribution criterion is is(j,m∗) ← arg min
(ttj,m+tej,m), where ttj,m is transfer time for instancem of atomic service as(j),
and tej,m is completion time of execution for instance m of atomic service as(j).
It is simply single request response time minimization. For more general cases
the problem is formulated more complex.

The decision of the choice of proper service instance is(j,m∗) is performed
on the basis of estimated values of service instance non-functional parameters.
Dynamic parameters (such as actual completion time of execution, which may
depend on system load) are derived from adaptive models of service instances
and actual execution system states coming from the RDM-Facade.

Next, the readdressed request is passed to the Facade, which acts as the
gateway to the system and hides all of the heavy lifting from outside world (Fig.
3 and Fig. 4). The Facade delivers the values of a number of parameters online
monitored by RDM-Monitor (step A and B in figure 3). The further processing
will be described for different scenarios of request handling. To assure quality of
service delivery several scenarios may be realized.

In the first scenario: there is a running service (capsule) which satisfies re-
quirements of request processing (Fig. 3). The instance is chosen using online
actualized Service Repository. Then, the request is just passed to the Facade
and further to chosen service instance (capsule).

The second scenario is when no running service instance can satisfy requests
(all are overloaded) but there is an image of the service which can be instantiated
and the new instance can perform the request (Fig. 4). In such a case the Broker
sends ”create new instance” internal request. It is passed to the RDM-Controller
which selects localization of the new capsule using matching strategy. The RDM-
Controler sends the request to RDM-Virtualizer and next the address of the new
instance ID returned to the Facade and new instance is registered in the Broker
repository (henceforth visible for it). Finally, the client SOAP request is marked
with address of the new service instance and passed to it.

The third scenario is similar to the second one with the difference that creation
of the new instance is triggered by RDM-Controller automatically, without Bro-
ker request, when value of some monitored parameter will exceed given threshold
value.

The last case is the lack of proper service instance and/or possibility to in-
stantiate service image. In this case the SOAP fault message will be returned to
the client.

334 J. Kwiatkowski and M. Fras

Broker Facade

RDM
Monitor

capsule
(service

instance)3. service request
(SOAP)

monitored
data

1. service request
(SOAP)

Service
Repository

B. system parameters
(SOAP)

2. service
instance

parameters

A. capsule
parameters
(XML-RPC)

4. service request
(SOAP)

Fig. 3. Client request handling - scenario 1

Broker Facade RDM
Controller

9. service request (to instance)
(SOAP) capsule

(service
instance)

4. create service instance
(XML-RPC)

instance
crearion

3. create service instance
(SOAP)

7. instance registration
(SOAP)

6. instance
address

(XML-RPC)
RDM

Virtualizer

Service
Repository2. service

instance
parameters

1. service
request
(SOAP)

8. service request
(SOAP)

5. create
service

instance
(XML-RPC)

Fig. 4. Client request handling - scenario 2

4 Preliminary Tests

The RDM has been implemented for Linux system as a set of Python and Java
modules. The Broker serves the distribution with use of several algorithms,
among the others: Round-Robin (RR) algorithm and Best-Predict (BP) algo-
rithm. The last one accomplishes best effort strategy of requests distribution
according to predicted response time estimated with use of fuzzy-neural con-
troller. The preliminary experiments have concerned with testing behaviour of
the Broker i.e. request distribution with use of selected distribution algorithms.

The aim of the experiment was to compare the effectiveness of Round-Robin
and Best-Predict distribution algorithms. The last one was used to choose the
fastest service for every request separately. During experiments six atomic ser-
vices have been created and installed on four servers at different locations. The
services have the following characteristics:

– each service generated different data transfer: 50kB, 100kB, 200kB, 500kB,
1MB, and 2MB,

Request Distribution Toolkit for Virtual Resources Allocation 335

– each service differed in initial completion time of execution,
– after exceeding the individual threshold, completion time of execution in-

crease exponentially,
– the completion times of execution of instances of the same atomic service on

different servers have been different.

There were defined four different complex services (service CS1, CS2, CS3 and
CS4) aggregated from the atomic ones. The broker and clients were located at
Wroclaw University of Technology campus, in Poland (pwr.wroc.pl), and servers
running instances of test services were located in Spain (ait05.us.es), Finland
(planetlab3.hiit.fi), Germany (onelab-1.fhi-fokus.de) and Italy (onelab6.iet.unipi.
it). Many clients have generated multiple requests for services at the same time
during 2 hours. Every half an hour the number of clients were increased i.e.
the intense (the number) of service requests was increased in four intervals.
The result of the experiment for three intervals (the last one is omitted due to
overload of the servers) is shown in figure 5.

t
[s]

Fig. 5. Service time for five load intervals for RR and BP algorithm

In the figure there are two columns, which show the sum of response times
t of four complex services. The response time of one service is 90th percentile
of all measured response times in given interval. For each interval there is the
column for RR algorithm (left one) and the column for BP algorithm (right one).
Received results show that using Broker and proper distribution algorithm, the
quality of service delivery (the response time in tested case) can be improved sig-
nificantly. The Best-Predict algorithm works clearly better than simple reference
Round-Robin algorithm.

5 Conclusions and Future Work

The project is in current study. The results of first experiments are really promis-
ing. The preliminary experiments concerning service requests distribution, based

336 J. Kwiatkowski and M. Fras

on the real measurements in Internet network show that proposed approach im-
prove delivering of services in SOA-based systems. However the effect of using
proposed methods can be still improved. Prediction of the values of service pa-
rameters is crucial for it. Deeper analysis of the results suggests that this issue
can be decisive. Apart from improving the estimation of measured parameters
the further studies will take into consideration more sophisticated requirements
for service quality, as well as development a strategy for automatic creation of
the new instance of an atomic service.

Acknowledgements. The research presented in this paper has been partially
supported by the European Union within the European Regional Development
Fund program no. POIG.01.03.01-00-008/08.

References

1. Borzemski, L., Zatwarnicka, A., Zatwarnicki, K.: Global Distribution of HTTP
Requests Using the Fuzzy-Neural Decision-Making Mechanism. In: Nguyen, N.T.,
Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS (LNAI), vol. 5796,
pp. 752–763. Springer, Heidelberg (2009)

2. Brawn, P.C.: Implementing SOA. Pearson Education (2008)
3. Fras, M., Zatwarnicka, A., Zatwarnicki, K.: Fuzzy-Neural Controller in Service

Requests Distribution Broker for SOA-Based Systems. In: Kwiecień, A., Gaj, P.,
Stera, P. (eds.) CN 2010. CCIS, vol. 79, pp. 121–130. Springer, Heidelberg (2010)

4. Kwiatkowski, J., Fras, M., Pawlik, M., Konieczny, D.: Request Distribution in
Hybrid Processing Environments. In: Wyrzykowski, R., Dongarra, J., Karczewski,
K., Wasniewski, J. (eds.) PPAM 2009. LNCS, vol. 6067, pp. 246–255. Springer,
Heidelberg (2010)

5. Mabrouk, M.: SOA fundamentals in a nutshell, IBM Corp. (2008)
6. Nimbus Home Page, http://www.nimbusproject.org/
7. OpenNebula Home Page, http://www.opennebula.org//
8. O’vrien, L., Merson, P., Bass, L.: Quality Attributes for Service-Oriented Archi-

tectures. In: Proc. of the Int. Workshop on Systems Development in SOA Environ-
ments. IEEE Computer Society, Washington DC (2007)

9. Sumayan, A.: Behind the scenes of IaaS implementations,
http://salsahpc.indiana.edu/

10. Schmietendorf, A., Dumke, R., Reitz, D.: SLA Management - Challenges in the
Context of Web-Service-Based Infrastructures. In: Proc. of the IEEE International
Conference on Web Services, San Diego, California (2004)

11. Sempolinski, P., Thain, D.: A Comparison and Critique of Eucalyptus, OpenNebula
and Nimbus. In: Proc. of the 2010 IEEE Second International Conference on Cloud
Computing Technology and Science, pp. 417–426 (2010)

12. Venezia, P., Witkowski, M.: The duel of virtualization platforms. In: Networld
(June 2011)

13. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.:
QoS-aware middleware for Web services composition. IEEE Transactions on Soft-
ware Engineering 30(5), 311–327 (2004)

http://www.nimbusproject.org/
http://www.opennebula.org//
http://salsahpc.indiana.edu/

Vitrall: Web-Based Distributed Visualization

System for Creation of Collaborative Working
Environments

Piotr Śniegowski, Marek B�lażewicz, Grzegorz Grzelachowski,
Tomasz Kuczyński, Krzysztof Kurowski, and Bogdan Ludwiczak

Poznan Supercomputer and Networking Center,
Z. Noskowskiego 12/14, 61-704 Poznań, Poland
{psnieg,marqs,ggrzel,tomasz.kuczynski,

krzysztof.kurowski,bogdanl}@man.poznan.pl

Abstract. Advanced parallel computing solutions using GPU for gen-
eral purpose processing are becoming more and more popular. Applica-
tions like CFD or weather modeling take an extensive speed up using
GPU-based clusters. Still, original purpose of graphic processing units –
visualization, is not exploited as much as it could be in such powerful
processing centres. Main reason of that situation is their fundamental
difference from classic desktop configurations: being a structure remote
and hidden from the actual viewer. Already existing GPU-based architec-
tures consisting of many processing units may be used for visualization
of complex issues from many points of view and in resolutions that are
not accessible for single GPUs in real-time. Visualization is a very ef-
ficient way of collaboration, especially when collaborators can interact
with presented content in a natural way, for example using multi-touch
devices. Vitrall embraces these methods by introducing possibility of
linkage between modern interfaces and complex visualizations. This pa-
per will begin with summary of several researches that where conducted
to establish actual concept of the Vitrall system. Next, proposed archi-
tecture of Vitrall will be introduced, following main and secondary usage
scenarios. Finally, some of Vitrall’s specific configurations will be shown,
like real-time stereoscopic visualization.

Keywords: Vitrall, visualization, stereoscopic visualization, collabora-
tive environments, multi-GPU, WebSockets.

1 Introduction

The main goal of the Vitrall system is a real-time remote visualization for scien-
tific communities. To fulfill this purpose, Vitrall is capable of utilizing multi-GPU
architectures, working in a distributed environment, communicating with vari-
ous remote data sources and displaying of the generated content on tiled displays
or publishing it on the Web. Flexibility, extensibility and support for thin clients
are also very important in course of Vitrall system development.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 337–346, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

338 P. Śniegowski et al.

The name was inspired by appearance of the system configurations containing
multiple LCD displays. Frames of the LCD displays resembles lead frames used
in a stained glass – Vitrall in Catalan language.

2 Evolution of the Vitrall System

Vitrall project started over a year ago and is since then under continuous devel-
opment at the Applications Department of PSNC.

2.1 Initial Approach

As a first approach to the problem of remote visualization, a prototype HTTP
based visualization server has been implemented. At that time, Vitrall was ca-
pable of using only a single OpenGL rendering context. Management of scene
parameters (angle of view, etc.) was a responsibility of web browser client, which
generated HTTP requests for subsequent frames. All scene parameters were sent
to the server via query string of the image request (embedded in the src attribute
of an image tag). Upon receiving request, server was setting up the scene (load-
ing additional 3D models when necessary) and rendering to an off-screen buffer.
When rendering was complete, resulting frame buffer was copied from GPU to
the host memory, where JPEG compression was applied (using IJG [7] imple-
mentation). Compressed image was sent back to the web browser.

One of the first issues explored during Vitrall project was utilization of modern
user interfaces. Windows 7 platform exposes an API to multi-touch enabled
devices (e.g. HP TouchSmart tx2), so a dedicated client have been implemented.
At the same time another important feature of Vitrall was introduced: rendering
content for many clients concurrently.

The setup was successfully demonstrated at Supercomputing 2010 [16]. While
content was rendered at PSNC, 4 displaying laptops were located at SC10 venue
in New Orleans. The cross-continental connection was established with the use
and support from GLIF [19] architecture. To the best of our knowledge, it was the
first experiment where both example data and compute demanding applications
used innovative bandwidth on-demand (BoD) lambda networking services to
establish guaranteed trans-Atlantic connections over multiple domains located
in Europe and the United States.

2.2 Second Iteration

The first prototype of Vitrall proved, that real-time remote visualization could
be brought to the user over the Web. Nonetheless, number of drawbacks was
identified in the described approach. Purpose of the next steps in development
of the system was to refine previous solution by increasing its performance and
shifting control logic from client-side to the server-side. Although resulting so-
lution was in a fundamental way different from the initial idea, it was still a
web-centric approach. For the sake of performance, communication was split

Vitrall: Web-Based Distributed Visualization System 339

into two channels, first responsible for the image serving, and the second one
for control (e.g. sending user inputs). Thanks to moving of the control logic to
the server-side, achievement of compatibility with web browsers coming from
different vendors was possible. In addition, concept of the Vitrall session could
be introduced. At the moment, the session consists of the following elements:
state of the communication with clients, state of the rendered scene and running
working sessions.

Vitrall session significantly differs from a conventional server-side session in
that it is capable of taking actions asynchronously and completely independently
of the communication with clients. If configured to do so, a Vitrall session may
run and even render with no clients attached.

Vitrall session typically consists of several working sessions. Each working
session is an independent thread of execution running at the specified Vitrall
server instance. Vitrall working sessions are divided into two main types: man-
agement session (usually one per Vitrall session), rendering session (multiple but
optional).

Another difference is the fact that multiple clients can connect to a single Vi-
trall session (through a management session). As a result, state of the scene may
be shared, thus creating fundamentals for a collaborative environment. Thanks
to specially designed XML-based protocol, each client keeps its own identity and
can supply server with its individual capabilities (maximum screen resolution,
available sensors – for mobile devices, etc.).

The Vitrall session decides when and what to render (if not necessary, there
is no rendering at all, so GPU/CPU time, network bandwidth and energy are
spared), then informs client about results of visualization using WebSockets (see
next section). Information about generated content is pushed to the client at the
same time when render request is submitted to the rendering session – this way,
at the time client’s HTTP request reaches its destination, the generated image
will be potentially ready to download, and latency will be limited.

Introduction of the session concept enabled Vitrall with multi-GPU render-
ing. This fact opened the way for the system to offer new capabilities like e.g.
stereoscopic rendering. New, unique features were demonstrated at the TER-
ENA Networking Conference [18] 2011 in Prague, in a 4K resolution real-time
rendering scenario involving two projectors equipped with polarized filters.

WebSockets. WebSockets is a technology of a crucial importance for the Vitrall
ability to push information to the client. WebSockets is a standard designed to
allow bi-directional full-duplex communication between clients and servers over
the Web. It consists of two parts: WebSocket API available in JavaScript and
WebSocket protocol, which has been recently described in [15]. In contrast to
traditional HTTP, apart from a handshake, WebSockets has almost no protocol
overhead (in a sense of data).

Because WebSockets was an emerging standard during Vitrall development,
support had to be implemented twice, as the final specification is very different
from the initial drafts. Instability of the protocol was the price paid for using
most innovative solutions available in the field of Web communication.

340 P. Śniegowski et al.

Apache HTTP Server. One of key concepts of Vitrall system is distribu-
tion of Vitrall session among several working sessions (both management and
rendering). The first implementation of the idea of working sessions was sep-
arating management and rendering sessions not only in a logical and physical
way: whilst the rendering instance hosting rendering sessions was based on the
first prototype of Vitrall project (C++ server with basic HTTP connectivity),
the part hosting management session and keeping WebSockets connections with
clients has been based on Apache HTTP Server [1].

Motivation behind that decision was possibility of utilization of Apache capa-
bilities related to authentication, access control and DSO (Dynamic Shared Ob-
ject) support. During the project, two Apache modules were developed: generic
module providing WebSockets connectivity and Vitrall management module.

3 Current Approach

Apache based solution proposed above, although successfully demonstrated at
TNC 2011, was rather impractical to configure and maintain. Code duplication
between management part written in C and rendering part written in C++ was
another considerable problem. Still, the most important disadvantage was the
fact, that Apache server typically works only on a direct request from the client.
Apache API does not facilitate any straight-forward mechanisms to create on
the server-side an entity, that will take actions (nor send information to clients)
independently from client input.

Above justifies a decision to abandon Apache based solution and shift all
needed functionality into C++ server. As a side effect, a far more flexible ap-
proach to the idea of session is now possible: currently the notions of management
and rendering sessions derive from a generic working session, so if required for a
specific configuration of Vitrall, another types of session can be easily introduced
– this is one of the most extensible points of Vitrall. In addition, functionalities
can be moved freely between various kinds of sessions.

An important advantage of Apache HTTP Server i.e. its dynamic module
loading capabilities, has been also implemented in Vitrall.

To be fully extensible and flexible, Vitrall defines abstraction layers in key
fields such as scene description, communication interface and user input han-
dling. Current Vitrall architecture is illustrated in the Fig. 1.

3.1 Management and Execution of Rendering

Vitrall adopted a scene graph paradigm for the management of the visualization
process. Scene graph is a common approach for 3D rendering, it is typically
a tree of nodes representing various elements of the scene (primitives, models,
transformations, effects).

OpenSceneGraph (OSG) [10] provides an implementation of the scene graph
idea in C++. Since the second iteration of Vitrall project OSG toolkit serves
as a primary rendering back-end. Because it is built upon the OpenGL, many
OSG classes are only object-oriented proxies to the underlying OpenGL concepts

Vitrall: Web-Based Distributed Visualization System 341

Fig. 1. Architecture of the Vitrall system

(buffers, light sources); other classes allow an easy creation of sophisticated vi-
sualization scenarios. One of key features of OSG is its extensibility: one can
prepare plugins to read or write a specific 3D file formats or implement a class
providing some special visual effect. In scope of the Vitrall project the, ability
to load models from COLLADA [3] file format is especially utilized.

Because of the specific features of Vitrall project, i.e. distributed rendering,
OSG could not be used straight-forward. Although OSG has a built-in support
for rendering a single scene using multi-GPU, it does not support a distributed
configuration, i.e. defining the scene at one host, whereas actual rendering is
taking place at other host (and possibly more than one). Due to this limitation
of OSG and keeping in mind planned utilization of OptiX [9] ray-tracing library
– which also uses an object-oriented scene graph approach to scene definition –
an abstraction layer over the scene graph had to be implemented.

This layer is a relatively simple scene graph representation, that is not capable
of rendering by itself. Prepared nodes include groups, selectors, transformations,
etc. but no node holds any actual data (like 3D meshes). Instead of this, special
proxy nodes representing e.g. 3D models are provided. Such proxy holds only an
URL to the resource – the model is loaded only at the Vitrall instance hosting
rendering session. For a particular usage scenario, one may create his own proxy
nodes representing other 3D resources (like a simulation done in real-time) as
long as interpretation of these nodes at the rendering side is also defined.

All graph nodes of the Vitrall scene are exposed to the programmer in an
object-oriented fashion, just like in OSG or OptiX. Performed operations are
serialized and sent to rendering sessions, where they are being directly mapped to
the operations on an actual scene graph of a given technology (OSG or OptiX) –
abstract Vitrall scene graph structure does not exist in the rendering session.

One of secondary advantages of this solution is lack of necessity of installing li-
braries like OSG (as well as dependencies) on machines running Vitrall instances
hosting management sessions.

342 P. Śniegowski et al.

3.2 Communication Abstraction

Communication abstract layer consists of two parts: resource serving and instant
messaging. Both are generalizations of already prepared approach of sending
images through HTTP and communicating input/orders through WebSockets
connections. HTTP and WebSockets respectively are currently the only imple-
mentations of that layer.

3.3 Vitrall Clients

Vitrall can be currently accessed using two different client applications: Vitrall
Web Interface accessible through an ordinary web browser (no plug-ins required)
and the VitrallRC – a dedicated application designed for Android [6] based de-
vices. Natural user interfaces offered by these clients, enables user with intuitive
interaction with a remote visualization (see section 3.4). By natural interfaces,
we mean here interfaces based on context acquisition process (exploitation of
accelerometers, magnetic field sensors, gyroscopes, multi-touch screens, etc.).

Both clients are fully generic, their functionalities and behavior depend only
on the current Vitrall configuration. They are exchangeable from the Vitrall
server point of view. The only significant computation power needed by Vitrall
clients is for image decompression, so they can be run on almost any device.
Interpretation of user input is done completely server-side and is described in
section 3.4.

An important part of client-server communication is the user forms mech-
anism. Forms provide the access to all Vitrall functionalities that cannot be
manipulated using natural interfaces. The server may provide multiple forms at
the same time and their list is accessible to the user on demand. Elements of the
form include text boxes, seek bars, item lists, etc. in an abstract form, which is
interpreted by client using corresponding HTML5 (Vitrall Web Interface) or UI
controls (VitrallRC). Thanks to the forms mechanism it is possible to modify
menus at runtime, dynamically adjusting the client to the current scenario and
user’s privileges (see section 5 for example).

Vitrall Web Interface. Vitrall Web Interface is a client prepared for desktop
machines. It is a regular web page accessible through any HTML5 enabled web
browser (nowadays nearly any browsers on the market, including browsers for
mobile devices e.g. for Apple iPad [2]). The latest version of Vitrall Web Interface
is based on HTML5 Canvas object, which provides a better performance than
in previous approaches. User input events are based mostly on mouse motion
events and keyboard, although there is a support for multi-touch screens (at
the time of writing of this article only Firefox of version 4+ for Window 7
offers this functionality). Currently JPEG is utilized for image transfers. Though
decompression of screen resolution JPEG images by a web browser is fast enough
for a completely smooth animation effect, support for other formats is foreseen
in the near future.

Vitrall: Web-Based Distributed Visualization System 343

VitrallRC. VitrallRC is a dedicated client developed for Android based (version
2.1 or later) devices (smartphones, tablets, etc.). It is published on Android
Market and is free for download. This client, implemented in Java, is composed
of four main functional parts responsible for: connectivity, context acquisition
(collecting data from sensors), image display and user forms management, QR
code readings.

As in case of the Vitrall server, WebSockets connectivity had to be imple-
mented twice, as the standard was emerging at the time.

The second module of mobile application is responsible for context acquisition.
It is possible to obtain device orientation in world coordinate space, with utiliza-
tion of accelerometer and magnetic field sensor or gyroscope. That information
is sent to the server, where it is interpreted and translated to the appropriate
actions (accordingly to the server state) e.g. rendered model or the whole scene
can be rotated in the 3D space, reflecting orientation of the smartphone. An-
other source of user input events is multi-touch screen. Thanks to moving the
interpretation to the server-side, customization of interpretation of gestures is
very simple. Moreover interpretation of gestures, as well as sensor data, can be
adjusted in runtime. As a result e.g. the pinch zoom gesture can mean an usual
zoom and a few seconds later it can be used for moving two objects indicated
with one finger each independently.

The first VitrallRC prototype consisted only of first two parts. It was used
for conduction of tests checking whether Android can be used to send sensor
data to the server over WebSockets with satisfactory frequency (at least 25 Hz).
Results were much higher (by an order of magnitude) than demanded.

The third component of Android client is designed to display image from
server and manage forms menus. Drawing to the screen is accomplished by a
custom View class, this is due to the fact of gaining unsatisfactory frames per
second (fps) rate when using standard Android components. Depending on image
resolution and quality, our approach allows to reach 15-18 fps (tests were taken
on Samsung Galaxy Tab P1000 running under Android 2.2). The bottleneck
that did not allow to go over 18 fps is CPU, which is responsible for JPEG
image decoding. The solution for this problem may be a hardware acceleration,
however it was not yet available by the time of performing tests.

Vitrall mobile application has been equipped with QR code scanner (using
ZXing library [22]). It may be used not only as a simple way of informing the
client of the server’s URL, but also as a form of authentication. In the second
case, the QR code containing authentication information is generated dynami-
cally by the server and displayed as a part of visualization, allowing at the same
time to associate mobile device with another larger (e.g. tiled) screen.

VitrallRC debuted in September 2011. Demonstration for scientists took place
during the PPAM 2011 conference. Two weeks later, during Researchers’ Night
[14] in Poznań, much broader community was able to test it on their own mobile
devices. Presented 3D puzzle scenario involved mentioned before stereoscopic
features of the Vitrall.

344 P. Śniegowski et al.

To the best of our knowledge, VitrallRC is the first mobile based, interactive,
remote visualization client.

3.4 User Input Processing and Handling

As the interpretation of user inputs, actions or gestures is done completely on
the server-side, abstractions of events and their processors were introduced, to
allow flexibility and extensibility in this field. Typical event processing scenario
is a flow net, of which internal vertices represent processors, net sources are
connections with users and sinks are usually transformation nodes of the scene
graph.

Events may be routed through the net basing on their type, user origin, sce-
nario state or other conditions specific to the usage scenario. Processors are typ-
ically state-full objects, which are responsible of translating one kind of events
into another, e.g. multi-touch processor converts points of contact into trans-
formation events based on how much fingers are currently active and what are
their current and previous positions. Transformation events are not represented
by matrices, but more semantically as translations, rotations, and scaling – this
allows filtering, selective amplification or routing to different nodes of scene.

This way, the designer of a specific usage scenario can freely combine and mix
existing processors and events to deliver a satisfying user experience, tailored
exactly to the user needs. If the already existing processors or events are not
sufficient, one can with ease create his own types of events or processors.

3.5 Data Providers

Capabilities of the Vitrall are not limited to visualization of a static content.
Series of mechanisms allowing for connectivity with external services and appli-
cations have been developed. A good example of scenario involving third-party
service was demonstrated during the Future Internet Week in Poznań [5]. With
the VitrallRC, visitor could enter a SMILES format based query for the molecule.
The query was sent to the Protein Data Bank RESTful Web Service [13]. Re-
sponse was transformed to a list of similar molecules, and then presented in
VitrallRC as a dynamic form (described in Sect. 3.3). In the next step, user
was able to choose a molecule for transformation from the pdb format to the
3D model. Result was presented on a high resolution hexagon prism shaped
tower, consisting of 18 HD displays. Each side of the tower presented view from
a different angle (shifted by 60 degrees around the tower axis).

Exploration of dynamically created semantic graphs out of digital libraries
was another dynamic scenario demonstrated during the FIW. Also in this case,
concurrent observation of the molecule from six different angles, as well as ma-
nipulation powered by smartphone sensors were possible.

4 Competitive Solutions

It must be noted, that Vitrall system doesn’t exist in a vacuum. Several vi-
sualization systems with capabilities partially overlapping with those of Vitrall

Vitrall: Web-Based Distributed Visualization System 345

already exists – two are briefly described below. However, Vitrall manages to
distinguish itself thanks to its Web character and support for mobile devices
and natural user interfaces.

ParaView. ParaView [11] is an open source program for parallel and interactive
scientific visualization. It builds upon VTK [20] libraries to allow visualization
of extremely large data sets using distributed memory computing resources.
ParaView works in a client-server architecture, where data processing and visu-
alization can be done using remote resources.

VTK is the project related to ParaView. It provides a variety of visualization
algorithms including: scalar, vector, tensor, texture, and volumetric methods.

VisIt. VisIt [21] is a free interactive parallel visualization and graphical analysis
tool for viewing scientific data of terascale sizes. VisIt utilizes VTK library and
adds many features like data distribution and advanced plotting. When using
VisIt, rendering is typically done at the local machine, while data processing is
done in parallel using remote resources.

5 Current and Future Work

Vitrall project is or will be in a near future a part of the following projects:

PL-Grid. Analysis made in the scope of the PL-Grid project [12] confirms that
Vitrall can be integrated into modern science gateways. In this case, capability
of rendering of the PDB format proved to be useful for preliminary check of
the molecule, before executing of the time consuming computations, submitted
to the grid by the NAMD application running under the Vine Toolkit [8]. In
addition, not only input, but also output of the mentioned application can be
rendered in order to enable scientists to better analyse results of their work.
Future steps towards integration of Vitrall with the Vine Toolkit are considered
in the scope of the PL-Grid successor named PL-Grid Plus.

TEFIS. As a part of the TEFIS [17] project, an experiment called TEFPOL will
be conducted. The scenario concerns an e-learning lesson in video-conferencing
environment with augmented reality and touch-less interfaces. For this experi-
ment, Vitrall will be prepared to run in a grid environment of PacaGRID; the
interface part will be based on research already conducted at PSNC.

CoolEmAll. Today, energy efficiency is an important issue – CoolEmAll [4] ad-
dresses this problem in scope of data centres. Main goal of this project – which
is coordinated by PSNC – is to provide a simulation, decision and visualization
toolkit to support building and maintain energy efficient data centres environ-
ments. Vitrall will be used as one of visualization platforms; for this task VTK
system is foreseen to be integrated into Vitrall.

346 P. Śniegowski et al.

Acknowledgments. This work has been funded by the PL-Grid project: con-
tract number: POIG.02.03.00-00-007/08-00, website: www.plgrid.pl. The PL-
Grid project is co-funded by the European Regional Development Fund as part
of the Innovative Economy program.

References

1. Apache HTTP Server, http://httpd.apache.org/
2. Apple iPad, http://www.apple.com/ipad/
3. COLLADA – Digital Asset and FX Exchange Schema, http://www.collada.org
4. CoolEmAll, http://www.coolemall.eu/
5. Future Internet Week, Poznań (2011), http://www.fi-poznan.eu/
6. Google Android, http://www.android.com/
7. Independent JPEG Group, http://ijg.org/
8. Kurowski, K., Dziubecki, P., Grabowski, P., Krysinski, M., Kuczynski, T.,

Szejnfeld, D.: Modern Portal Tools And Solutions with Vine Toolkit for Science
Gateways. In: Proceedings of the International Workshop on Science Gateways,
IWSG (2011) (to appear)

9. NVIDIA OptiX ray tracing engine, http://www.nvidia.com/object/optix.html
10. OpenSceneGraph – 3D graphics toolkit, http://www.openscenegraph.org
11. ParaView, http://www.paraview.org/
12. Kitowski, J., Turala, M., Wiatr, K., Dutka, L., Bubak, M., Szepieniec, T., Radecki,

M., Sterzel, M., Mosurska, Z., Pajak, R., Slota, R., Palak, B., Kurowski, K.,
Balcerek, B., Bala, P., Filocha, M.: Polish Computational Research Space for In-
ternational Scientific Collaborations. In: Proceedings of Parallel Processing and
Applied Mathematics Conference (2011) (to appear)

13. Protein Data Bank RESTful Web Service,
http://www.pdb.org/pdb/software/rest.do

14. Researchers’ Night, http://ec.europa.eu/research/researchersnight/
15. RFC6455 – The WebSocket Protocol, http://tools.ietf.org/html/rfc6455
16. Supercomputing, New Orleans (2010), http://sc10.supercomputing.org/
17. TEFIS, http://www.tefisproject.eu/
18. TERENA Networking Conference (2011), https://tnc2011.terena.org/
19. Leigh, J., et al.: The global lambda visualization facility: An international ultra-

high-definition wide-area visualization collaboratory. Future Generation Computer
Systems 22(8), 964–971 (2006)

20. The Visualization Tookit, http://www.vtk.org/
21. VisIt, https://wci.llnl.gov/codes/visit/
22. ZXing barcode library, http://code.google.com/p/zxing/

http://httpd.apache.org/
http://www.apple.com/ipad/
http://www.collada.org
http://www.coolemall.eu/
http://www.fi-poznan.eu/
http://www.android.com/
http://ijg.org/
http://www.nvidia.com/object/optix.html
http://www.openscenegraph.org
http://www.paraview.org/
http://www.pdb.org/pdb/software/rest.do
http://ec.europa.eu/research/researchersnight/
http://tools.ietf.org/html/rfc6455
http://sc10.supercomputing.org/
http://www.tefisproject.eu/
https://tnc2011.terena.org/
http://www.vtk.org/
https://wci.llnl.gov/codes/visit/
http://code.google.com/p/zxing/

CUDA Accelerated

Blobby Molecular Surface Generation

Daniele D’Agostino1, Sergio Decherchi2, Antonella Galizia1, José Colmenares2,
Alfonso Quarati1, Walter Rocchia2, and Andrea Clematis1

1 Institute for Applied Mathematics and Information Technologies,
National Research Council of Italy, Genoa, Italy

2 Department of Drug Discovery and Development,
Italian Institute of Technology Genoa, Italy

Abstract. A proper and efficient representation of molecular surfaces
is an important issue in biophysics from several view points. Molecular
surfaces indeed are used for different aims, in particular for visualization,
as support tools for biologists, computation, in electrostatics problems
involving implicit solvents (e.g. while solving the Poisson-Boltzmann
equation) or for molecular dynamics simulations. This problem has been
recognized in the literature, resulting in a multitude of algorithms that
differ on the basis of the adopted representation and the approach/
technology used. Among several molecular surface definitions, the Blobby
surface is particularly appealing from the computational and the graphics
point of view. In the paper we describe an efficient software component
able to produce high-resolution Blobby surfaces for very large molecules
using the CUDA architecture. Experimental results show a speedup of
35.4 considering a molecule of 90,898 atoms and a resulting mesh of 168
million triangles.

Keywords: Blobby Molecular Surface, GPU Computing, Parallel
Molecular Surface Generation.

1 Introduction

Molecular surface computation is a key issue from at least two perspectives, the
visualization and the biophysical computation. In the first case a user is inter-
ested in the overall rendering quality of the molecular model: classical paradigms
triangulate the surface and then visualize the mesh [1]. Furthermore, the use of
present Graphic Processing Units (GPU) capabilities allows the direct rendering
of quadrics patches by ray tracing [2].

From the biophysical stand point a user is interested in a molecular surface
that is able to capture the physical problem at hand and that is computation-
ally efficient. An example of such use case is the Poisson-Boltzmann equation
(PB), where the electrostatic potential of a molecule (solute) in water (solvent)
is sought. In particular in PB it is usually accepted that the Van Der Waals
surface (VDW) should not be directly used: to solve this problem the Solvent

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 347–356, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

348 D. D’Agostino et al.

Excluded Surface (SES) (or Connolly surface) was introduced [3] (an algorithm
for calculation was given in [4]) which expands the VDW surface by smooth-
ing its concave parts with spherical patches that represent the rolling of a water
molecule (the probe) over the surface. The Connolly model has been largely used
in the solution of PB [5], however it still presents some limits [6]: among them,
the fact that it leads to a non differentiable surface is of particular importance.

This issue calls for alternative surface models that retain a physically sound
definition and overcome SES limitations. Whatever is the final goal, either visu-
alization or biophysical computations, some properties of the molecular surface
are desirable. Among them the computational efficiency, the differentiability ev-
erywhere and a good performance scalability for large molecular models. To this
aim the Blobby surface [7][8] represents an interesting alternative to the SES
surface.

In this paper we describe an efficient algorithm, based on the isosurface ex-
traction, able to produce high-resolution Blobby surfaces for very large molecules
using the CUDA architecture. Our aim was to design the algorithm able to act
as a software component producing an output suitable for both the direct vi-
sualization and the efficient storage of the surface. In fact the possibility of the
direct use of the produced mesh without any preprocessing step is of particular
importance for the performance view points if the surface have to be further
processed in a biophysical workflow.

The following Sections respectively present: related work, the definition of
the Blobby surface, the CUDA accelerated algorithm for the generation of the
Blobby surface and experimental results. At the end some conclusions are drawn.

2 Related Work

Molecular surface computation is a long standing problem. Among the various
proposals, we mention the most used ones: the Connolly surface [4], the Skin
surface [9], and the Blobby surface [7].

From the computational point of view, the recent emerging availability of
relatively inexpensive GPU systems stimulated the research on the usability of
GPU devices to accelerate the molecular surface processing and visualization.

In [2], it is shown how GPU can be used to ray trace the Skin surface [9]. The
Skin surface in fact is composed by a set of quadric patches (i.e. spheres and
hyperboloids), each of them bounded by a solid of the mixed complex [9]. This
allows to use OpenGL shading language for the real time rendering.

In [10] it is shown how both the SES and the Skin surfaces can be built in
parallel on CPU and effectively rendered on the GPU by ray tracing, obtaining
high frame rates; analogous considerations hold for the Connolly [10].

However, these works aim exclusively at improving the rendering phase, while
we are interested in exploiting the GPU computing capabilities also in the gen-
eration of the surface in a format that is able to suit both the visualization and
further processing steps in a biophysical analysis workflow.

A similar approach is followed in [11], where a parallel workflow for the ex-
traction of SES surfaces is described. It is based on the construction of the

CUDA Accelerated Blobby Molecular Surface Generation 349

volumetric dataset starting from the atomic coordinates of the atoms that form
the molecule, which is then processed using the isosurface extraction operation
to produce the SES as a mesh of triangles. The main drawback of this work is
that it do not considers the use of GPU devices.

Such aspect is addressed in [12], where an approach similar to the previous
one is implemented for the CUDA architecture and extended to build smooth
molecular surfaces. In particular this work considers also the creation of the
Blobby surfaces but, as the previous ones, disregards the aspect related to the
effective storing of the produced meshes.

3 Blobby Surface Definition

The Blobby surface S [7] [8] is defined as:

S := {x ∈ R3 : G(x) = 1}, G(x) =

na∑
i=1

e
B

(
‖x−ci‖2

r2
i

−1

)

(1)

where ri are the radii of atoms, na is the number of atoms, x is the query point,
ci is the i−th atom center and B is a negative parameter (the blobbyness) that
plays the role of the probe radius when compared to the Connolly surface [4].

Blobby surface has some salient pros and cons from both the computational
and physically soundness point of view. At first the surface is easy to implement
because the central computation is simply an evaluation of a kernel function.
The surface is also tangent continuous and is self-intersections and singularities
free. From the physical model point of view it is not completely clear if this
surface is superior to the SES when solving, for instance, electrostatics problems.
Indeed it can be argued that the right setting of the blobbyness value B is a key
parameter in order to obtain reliable energy estimations of molecular systems.
Another point is that the surface it is not partitioned in analytical patches
as in the Skin or in the SES. Additionally some values of B can modify the
size of the atoms leading to non physically acceptable surfaces as observed in
[13]. Despite these drawbacks, the implicit models are becoming rather used
[14] when dealing with biophysical problems, because this surface is smooth,
continuous and differentiable everywhere and because Gaussian functions mimic
model electronic density functions.

The high resolution representation of molecules is a key aspect for their sat-
isfactory visualization and also for the effectiveness of analysis operations. How-
ever the computation of this surface for molecules composed by dozen thousands
atoms is a costly process that may require several minutes. This is the reason
why we designed a parallel algorithm for the generation of the Blobby surface.
In particular we made use of the CUDA architecture, that represents a cost-
effective solution for many compute-intensive applications on regular domains
as this one.

350 D. D’Agostino et al.

4 CUDA Accelerated Blobby Surface Generation

Following the CUDA naming convention, we define host the workstation and
device the NVIDIA card providing the GPU of which CUDA is the computing
engine. The algorithm we propose is based on two main operations, the Scalar
Field Generation and the Isosurface Extraction, both performed on the device
with a minimal amount of data transfer with the host.

Usually a molecule is represented through the set of the 3D atomic coordinates
of the atoms that form it. This is for example the format adopted by the Protein
Data Bank (PDB) [15], one of the most important repositories. A PDB file and
a sampling step are the inputs of the algorithm, while the resulting isosurface is
the output.

In particular, a triangle mesh may be represented by its vertex data and by
its connectivity. In its simplest form, a Vertex table contains the coordinates
of all the vertices, while connectivity can be represented by a Triangle-Vertex
incidence table, which associates with each triangle the references to its three
bounding vertices. Such representation suits well both the direct visualization
and the successive processing steps, because these two tables allow to efficiently
reconstruct all the other incidence relations. For this reason we adopted such
format for the output.

4.1 Scalar Field Generation

The first operation of the algorithm is the generation of the three-dimensional
grid containing the volumetric data representing the molecule. The size of the
grid is determined on the basis of the coordinates of the atomic centers and on
the required sampling step. Typical step values are chosen between 0.7 and 0.1
Å, according to the desired level of resolution. Smaller step values correspond to
dense grids and high resolution surfaces, and vice versa. Within the grid, atoms
are modeled as spheres having different radii.

The grid is usually considered as a set of XY planes, called slices. As the
amount of memory of a device is limited, and the isosurface extraction opera-
tion requires to process a pair of slices at a time, we implemented this and the
following operation in an iterative way for increasing values of the Z coordinate.
This means that one slice is created at each iteration (except for the first one,
where the slices for Z=0 and 1 are created) in order to replace the slice having
the lowest Z value. In this way we are able to process very large data sets if the
size of a pair of slices does not exceed the device memory.

The value of a grid point is the result of the influence of all the atoms on it.
For large molecules (e.g. 105 atoms) this translates to considering several million
points. The present CUDA architecture limits the number of threads (i.e. up to
1024 threads for a block and up to a grid of 65535x65535x1blocks), and this means
that is not possible to generate a thread for each pair atom-point. Therefore we
have to group this large number of operations on the points or on the atoms.

We experimented that, even if the partitioning on the number of points allows
a greater scalability and parallelism degree, the achieved performance is lower

CUDA Accelerated Blobby Molecular Surface Generation 351

than with the alternative strategy due to the large number of non-local memory
access. In fact even if we store the coordinates of the atomic centers and the
radii in the constant memory, each of these values has to be accessed a number
of times equal to the number of threads.

Even the association of one thread for each atom has the drawback that it
needs to perform the updates of each point with atomic operations, because in
principle the value of a point is the sum of the influence of all the atoms. This
means that each point update has to be performed without race conditions,
resulting in possible overhead due to the update serialization. However, as noted
in [11] and [12], each atom influences in a significative way only the points within
a limited bounding box surrounding it. This consideration has two important
consequences. The first is to reduce the number of operation to be performed,
since it is useless to consider all the atom-point pairs. Moreover, the concurrent
updates are very limited, in the order of hundreds of atoms for each points, and
therefore the impact of the serializations is negligible.

4.2 Isosurface Extraction

The Marching Cubes algorithm [16] is the most popular method used to extract
triangulated isosurfaces from volumetric datasets. In the Marching Cubes algo-
rithm the triangular mesh representing the isosurface is defined piecewise over
the cells in which the grid is partitioned. A cell is intersected by the isosurface
represented by the isovalue if the isovalue is between the minimum and the max-
imum of the values assumed by the eight points of the grid that defines each cell.
This kind of cells is called active cells. An active cell contributes to approximate
the isosurface for a patch made of triangles, and the union of all the patches
represents the isosurface. The algorithm consists of two main operations, the
Cell Classification and the Active Cell Triangulation.

The Cell Classification determines if a cell is intersected by the isosurface
or not. This is done using a bit vector of 8 fields of one bit, each of them
corresponding to one point of the cell. Points with values greater or equal to the
isovalue are marked with 1, otherwise with 0: therefore a cell is an active cell
if the bit vector has a value different from 0 (all points values lower than the
isovalue) and 255 (all points values greater than or equal to the isovalue).

In these cases the Active Cell Triangulation operation is performed, consisting
in the approximation of the intersection with the isosurface, using a triangular
patch. Considering that a surface may intersect a cell in 254 ways, that is all the
values of the bit vector except 0 and 255, a look-up table is used to enumerate all
the possible connectivity schema. The coordinates of the vertices of the triangles
are computed as a linear interpolation of the values of intersected edges.

The parallelization of the original algorithm for the CUDA architecture is a
quite straightforward task, because it is achieved by assigning one cell for each
thread, and it is provided as a C code example in the NVIDIA CUDA SDK1.

1 http://developer.download.nvidia.com/compute/cuda/sdk/website/

samples.html

http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.html
http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.html

352 D. D’Agostino et al.

Obviously this application is only an example and it has many limitations, as
for instance the small size of the volume that is able to process. Other proposals
were published, with the main aim to speed up the processing of extracting and
visualizing very large isosurfaces (see [17] for a survey). The main issue with
these algorithms is the fact that they are designed for a direct visualization of
the produced isosurfaces, and not for storing them. This means that they do
not consider one major issue of the algorithm, that is the duplications of the
vertices. Each active cell is in fact processed independently, and this means that
a vertex may be recalculated up to four times in adjacent cells (see Figure 1(a)).
The duplicated vertexes are useless and they may have a considerable impact on
the computing time and on the size of the resulting mesh for further processing
operations if these algorithms are used in a workflow. Obviously the vertices can
be merged using a post-processing step, but this limits the achievable speed up.

In [17] we proposed a novel algorithm that is able to produce an isosurface
equivalent to that produced by the sequential algorithm in an efficient way us-
ing the solution proposed in [18], that makes use of five auxiliary array data
structures. The coordinates of a vertex are computed only the first time the cor-
responding edge intersected by the isosurface is considered. These coordinates
are inserted in the Vertex table and the index corresponding to the vertex posi-
tion in the table is stored in the correct position of one of the five auxiliary array
data structures shown in Figure 1(b). As indicated in the Figure, in a generic
cell (i.e., a cell which is not on the border of the volume) nine edges were pre-
viously considered in the processing of adjacent cells, therefore it is possible to
produce at most three new vertices. The values in the auxiliary data structures
are updated during the subsequent processing of all cells. For example, consid-
ering Figure 1(b), the black vertex is computed by the bottom left cell and its
index is inserted in the corresponding position of the Ledge array structure. The
next cell being processed is the bottom right one. This cell uses the stored index
and moves it to the proper position in the Yedge array. When the next pair of
slices is considered, the top left cell uses the index without needing to modify
Yedge. Finally, the top right cell uses the index for the last time.

The CUDA-based version of the algorithm is composed by the following four
kernels: VerticesCalc, where the coordinates of the vertices are computed; Ver-
ticesCompact, where vertices are associated with labels to be used to represent
triangles and they are grouped to reduce transfer time; TrianglesCalc, where the
triangles are computed as three labels of vertices; TrianglesCompact, to group
the resulting triangles. The data transfer operations represent a considerable
part of the time spent in performing the isosurface extraction operation on a
device. Therefore we overlapped the data transfers and the kernel executions.
In particular we overlapped: a) VerticesCalc with the transfer of the triangles
found considering the previous pair of slices; b) TrianglesCalc with the trans-
fer of the vertices; c) TrianglesCompact and the transfer of the next slice. This
last overlap does not apply in this case, because the slice are created by the
previous operation directly in the memory of the device. More details on this
CUDA-based version of the algorithm are provided in [17].

CUDA Accelerated Blobby Molecular Surface Generation 353

(a) (b)

Fig. 1. The original algorithm computes the black vertex four times, one for each cell.
The use of auxiliary data structures allows to avoid it. Thick lines represent edges not
previously considered.

5 Experimental Results

Experimental results were collected considering two implementations of the
Blobby surface generation, one sequential and one parallel, for the CUDA archi-
tecture2. The two programs were executed on a workstation equipped with an
Intel i5-750 CPU and an NVIDIA GTX480 device. In particular the sequential
implementation makes use of one core of the processor to perform the whole
computation.

(a) 1GKI (b) 1AON (c) 3G71

Fig. 2. The Blobby surfaces associated to the three molecules selected for the tests.
We obtained them considering the volume with the resolution of 0.5 Å.

Three molecules of the Protein Data Bank repository, chosen on the basis of
their size, were considered. The smallest one is the Plasmid coupling protein
TrwB, identified as 1GKI and made up by 19,536 atoms, followed by the crystal
structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex, iden-
tified as 1AON and made up by 58,674 atoms, and one of the largest structure

2 Our software is available upon request, and will be made publicly available in case
the paper is accepted.

354 D. D’Agostino et al.

Table 1. This table summarizes the characteristics of the three considered molecules

Molecule Atoms Resolution Grid Triangles

1GKI 19,536
0.5 226x235x237 1,410,816
0.1 1132x1177x1185 36,583,252

1AON 58,674
0.5 312x477x469 4,256,936
0.1 1563x2385x2346 110,392,108

3G71 90,898
0.5 379x474x491 6,485,168
0.1 1894x2367x2458 167,548,496

in the PDB repository, the co-crystal structure of Bruceantin bound to the large
ribosomal subunit, identified as 3G71 and made up by 90,898 atoms. They are
presented in Figure 2.

The B parameter was set to −2.3 and two steps, 0.5 and 0.1 Å ,were considered
for the Scalar Field Generation operation. They represent, respectively, a medium
and a high detailed resolution. The characteristics of the molecules, of the result-
ing volumetric datasets and of the Blobby surfaces are shown in Table 1, while Ta-
ble 2 shows the performance of the sequential and the parallel implementations.

Table 2. This table presents the times, in seconds, for executing the sequential and the
parallel implementations of the Blobby Surface Generation. In brackets the achieved
speedups. It is worth noting that, in the total time for the CUDA version, we do not
considered the initialization time, that is of about 6.5 seconds in all the cases.

Scalar Field Generation Isosurface Extraction Total
Seq CUDA Seq CUDA Seq CUDA

1GKI
0.5 2.78 0.11 (25.3) 1.38 0.07 (19.2) 4.16 0.18 (23.1)
0.1 294.08 7.95 (37.0) 89.76 2.60 (34.5) 383.84 10.55 (36.4)

1AON
0.5 8.53 0.28 (30.9) 6.63 0.20 (32.8) 15.16 0.48 (31.6)
0.1 832.14 20.70 (40.2) 472.03 12.90 (36.6) 1304.17 33.60 (38.8)

3G71
0.5 13.20 0.42 (31.4) 8.68 0.25 (34.7) 21.88 0.67 (32.7)
0.1 1057.10 30.78 (34.3) 625.71 16.73 (37.4) 1682.81 47.51 (35.4)

We can see that, except in the smallest case, the speedups achieved vary
between 30 and 40. This is an encouraging result considering the issues related
to the implementation of both the Scalar Field Generation and the Isosurface
Extraction in CUDA. As regards the Scalar Field Generation we can see that
the fixed parallelism degree do not allow to scale in proportion to the volume
size, but this limit neither involves a degradation. Each CUDA thread in fact
is responsible to assign the value to a few points for each slices, whose number
varies from 2 to 60, therefore we are able to achieve good performance. This is
also due to the fact that no data movement are required: each slice is created on
the device memory, used for the isosurface extraction and then replaced with a
new one without the need to involve the host memory.

CUDA Accelerated Blobby Molecular Surface Generation 355

The data movement instead is the factor that limits the performance of the
Isosurface Extraction operation. We have to consider in fact that it requires the
transfer of the triangular mesh representing the Blobby surface: in the largest
case this mesh is composed by about 168 million triangles and 84 million vertices,
resulting in about 9 GB of data to transfer. However the overlaps between data
transfers and kernel executions permit to achieve high performance figures also
in this case.

A final issue, common to all the CUDA programs, is represented by the time
required to initialize the CUDA device, that it is performed in correspondence
of the first call to a CUDA function within a program. In our case this time is
equal to about 6.5 seconds, therefore the use of the CUDA version is unfeasible
for small datasets as the 1GKI with a step of 0.5. It is however to consider that
the Blobby surface generation is an operation that can be inserted in a workflow
where other CUDA-based operation are executed: in these case the impact of
the initialization time on the whole processing time is limited.

6 Conclusions and Future Works

This work presented a CUDA-based efficient algorithm for the Blobby molecular
surface generation. In particular, the algorithm is able to achieve a speedup of
35.4 considering a molecule of 90,898 atoms and a resulting mesh of 167 million
triangles. We experimented that a parallelization on the atoms, even if involves
a lower degree of parallelism, is able to provide higher performance figures than
a parallelization on the points of the grid containing the scalar field representing
the molecule, due to the lower number of device memory accesses.

Two future works are forecasted. The first one is a further improvement of
the performance of the algorithm, in particular by an in depth analysis of the
role of the B parameter on the performance. The second one is the adoption of
the algorithm in tools for molecular surface construction [5], in order to use the
produced meshes to solve the Poisson-Boltzmann equation and/or visualization
purposes.

Acknowledgments. This work was partially supported by NIGMS, NIH, grant
number, 1R0GM093937-01.

References

1. Yu, Z., Holst, M.J., Cheng, Y., McCammon, J.A.: Feature-preserving adaptive
mesh generation for molecular shape modeling and simulation. Journal of Molecular
Graphics and Modelling 26(8), 1370–1380 (2008)

2. Chavent, M., Levy, B., Maigret, B.: MetaMol: High-quality visualization of molec-
ular skin surface. Journal of Molecular Graphics and Modelling 27(2), 209–216
(2008)

3. Richards, F.M.: Areas, volumes, packing and protein structure. Annu. Rev. Bio-
phys. Bioeng. 6, 151–176 (1977)

356 D. D’Agostino et al.

4. Connolly, M.L.: Analytical molecular surface calculation. J. Appl. Cryst. 16(5),
548–558 (1983)

5. Rocchia, W., Sridharan, S., Nicholls, A., Alexov, E., Chiabrera, A., Honig, B.:
Rapid Grid-Based Construction of the Molecular Surface and the Use of Induced
Surface Charge to Calculate Reaction Field Energies: Applications to the Molec-
ular Systems and Geometric Objects. Journal of Computational Chemistry 23(1),
128–137 (2001)

6. Vorobjev, Y.N., Hermans, J.: SIMS: Computation of a Smooth Invariant Molecular
Surface. Biophysical Journal 73, 722–732 (1997)

7. Blinn, J.: A generalization of algebraic surface drawing. ACM Transactions on
Graphics 1(3), 235–256 (1982)

8. Zhang, Y., Xu, G., Bajaj, C.: Quality meshing of implicit solvation models of
biomolecular structures. Journal Computer Aided Geometric Design - Special Issue:
Applications of Geometric Modeling in the Life Sciences 23(6) (2006)

9. Edelsbrunner, H.: Deformable Smooth Surface Design. Discrete and Computational
Geometry 21(1), 87–115 (1999)

10. Lindow, N., Baum, D., Prohaska, S., Hege, H.C.: Accelerated Visualization of Dy-
namic Molecular Surfaces. In: Eurographics/ IEEE-VGTC Symposium on Visual-
ization, vol. 29(3), pp. 943–952 (2010)

11. D’Agostino, D., Merelli, I., Clematis, A., Milanesi, L., Orro., A.: A parallel workflow
for the reconstruction of molecular surfaces. Parallel Computing: Architectures,
Algorithms and Applications, Advances in Parallel Computing 15, 147–154 (2008)

12. Dias, S., Bora, K., Gomes, A.: CUDA-based triangulations of convolution molecu-
lar surfaces. In: Proceedings of the 19th ACM International Symposium on High
Performance Distributed Computing (HPDC 2010), pp. 531–540 (2010)

13. Lu, Q., Luo, R.: A Poisson Boltzmann dynamics method with nonperiodic bound-
ary condition. J. Chem. Phys. 119, 11035–11047 (2003)

14. Im, W., Beglov, D., Roux, B.: Continuum solvation model: Electrostatic forces from
numerical solutions to the Poisson-Bolztmann equation. Comp. Phys. Comm. 111,
59–75 (1998)

15. Berman, H.M., Bhat, T.N., Bourne, P.E., Feng, Z., Gilliland, G., Weissig, H.,
Westbrook, J.: The Protein Data Bank and the challenge of structural genomics.
Nature Structural Biology 7(11), 957–959 (2000)

16. Lorensen, W.E., Cline, H.E.: Marching Cubes: A High Resolution 3D Surface Con-
struction Algorithm. Computer Graphics (Proceedings of SIGGRAPH 1987) 21(4),
163–169 (1987)

17. D’Agostino, D., Seinstra, F.J.: An Efficient Isosurface Extraction Component for
Visualization Pipelines based on the CUDA Architecture. Technical Report IR-CS-
64-2010, Vrije Universiteit, Amsterdam, The Netherlands. An extended version was
submitted to the Special Issue on Accelerators for High-Performance Computing
of the Journal of Parallel and Distributed Computing

18. Watt, A., Watt, M.: Advanced Animation and Rendering Techniques Theory and
Practice. Addison-Wesley/ACM Press (1992)

GPU Accelerated Image Processing

for Lip Segmentation

Lukasz Adrjanowicz, Mariusz Kubanek, and Adam Tomas

Czestochowa University of Technology,
Dabrowskiego 69, 42-201 Czestochowa, Poland

{lukasz.adrjanowicz,mariusz.kubanek,bkslash}@icis.pcz.pl

Abstract. This paper presents the problem of lip segmentation in par-
allel environment using computational capabilities of GPUs and CUDA.
The presented implementation of lip segmentation is based on image
processing methods using the most popular transformations such as mor-
phological operations and convolution filters. The obtained experimen-
tal results for the parallel implementation on GPU indicate significant
speedup in comparison to its sequential counterpart. Consequently, the
use of popular graphics cards provides a very promising possibility of
quick lips segmentation.

Keywords: image processing, lip segmentation, parallel processing,
CUDA.

1 Introduction

In today’s world image processing plays an important role in everyday life.
Numerous algorithms are used very widely in computer graphic [17,13] and
computer vision [15,5]. They allow us to complete simple tasks like photo en-
hancement, but also more advanced operations such as mobile robot steering
[3] or object recognition [25]. A particularly interesting field is the audio-visual
speech recognition (AVSR), where image processing techniques are used to aid
the speech recognition process [11,2]. In most cases AVSR is applied in environ-
ments with high levels of noise, in which information from the audio channel
is often insufficient [16]. Therefore, the visual observation of lip movement is
applied to reduce the recognition error [14,26].

Before examining the lip area, segmentation techniques are used to extract
the desired region of interest. Various image processing methods are utilized
in this process [24,7,23,12]. Many of them apply different transformations to
reduce noise, expose the lip area, etc. From the segmented lip area, specific
feature points can be designated to determine the position and shape of upper
and lower lip. This operation delivers valuable information to the classification
process, resulting in speech recognition or supporting its operation.

Numerous capturing devices offer a high resolution and high frame rate, that
can provide a better image quality and improve the recognition process. Unfor-
tunately, processing large-size data requires the adequate computational power.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 357–365, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

358 L. Adrjanowicz, M. Kubanek, and A. Tomas

The complexity of some algorithms can often exhaust available system resources
on a PC-based platform, where the lack of sufficient CPU power makes it difficult
to run intensive real time applications. There is no doubt that GPUs provide
better possibilities in fast image processing, since most algorithms in this area
can be easily ported into parallel environment.

This paper proposes a parallel version of lips segmentation based on thresh-
olding and image processing techniques. Furthermore, it shows the benefits of
exploiting computer unified device architecture (CUDA) [1] in accelerated image
processing. In particular, we present the use of CUDA memory model for storing
partial results of different transformations on the device instead of performing
intermediate data transfers. All the calculations are carried out in a single kernel
invocation by reducing memory transfers.

2 Previous Work

Development of GPU has significantly contributed to the emergence of many
parallel computer vision applications. Strzodka et al. [19] presented a motion
estimation algorithm, where the optical flow was used for real-time analysis
of 320x240 images. He also presented a framework for computing generalized
distance transforms and skeletons of two-dimensional objects [20]. A graphical
hardware implementation of generalized Hough transform for fast object recog-
nition was also discussed [21]. Hopf and Ertl described the accelerated 3D con-
volution [8] and morphological analysis [9]. In the problem of object detection,
a faster alternative version of circle Hough transform was described by Ujaldn
et al. [22]. The feature tracking with SIFT feature extraction algorithms was
presented in [18].

Image processing libraries and their applications were also described in lit-
erature. Probably the most popular are OpenVidia [6] and GPUCV [4]. They
provide a wide comprehensive set of tools for image processing and allow users
to use many popular transformations and techniques.

3 Lip Segmentation

Lips can be distinguished from skin area as they have different pixel components
in the RGB color space. In images, the skin mixture contains more green and red
values rather than blue one. On the other hand, the lip area combines green and
blue channels with almost equal ratio. Based on this information, the pseudo-hue
transformation can be computed with the use of the following equation:

h(x, y) =
R(x, y)

G(x, y) +R(x, y)
(1)

This one-point transformation [10] converts a RGB image to the gray scale, where
bright pixels represent the lip area. It facilitates the further processing process,
as only one channel is left, and still delivers valuable information. Sample results
are shown in Fig. 1.

GPU Accelerated Image Processing for Lip Segmentation 359

Fig. 1. Results of pseudo-hue transformation for selected test images

In image processing, digital filters are more comprehensive tools than the one-
point transformation. In most cases, they assume the use of contextual operation.
This means that to designate one pixel of the output image we need to perform
calculations on many pixels from the surrounding of the considerate pixel. From
a mathematical point of view, a digital filter is a certain multi-argument function
transforming one image into another pixel by pixel. The properties of the filter
result from analytical characteristics of the given function. It is convenient to use
the convolution function as it provides a wide amount of useful transformations.
In two-dimensional and discrete domain, it can be written as follows:

Jw(x, y) =
∑

i,j∈K

J(x− i, y − j)w(i, j) (2)

Depending on the weights that are used, different transformations can be achieved.
For reducing noise and softening the image, the Gaussian operator can be applied.
This helps in the further processing of data.

Many segmentation techniques are based on thresholding to achieve a mask of
specified area [12,7]. This operation does not always result in one unified region.
Therefore, morphological transformations need to be applied. They consist of
moving a structuring element on the image and analyzing its overlapping points.
If a match is found, a specific operation is executed that determines the type
of transformation. Basic morphological operations are dilation and erosion. For
the first one, the whole structuring element is reproduced on the image when
the central point is included in the set. This can be expressed mathematically
as a vector addition:

A+B =
{
z : (B̂)z ∩ A �= 0

}
(3)

For the erosion operation, only one pixel is reproduced if the whole central
element is included in the set. Otherwise, the pixel laying under the central
point of the structuring element is removed. This can be written as:

360 L. Adrjanowicz, M. Kubanek, and A. Tomas

A−B = {z : (B)z ⊆ A} (4)

The erosion and dilation are used as a basis for the operation of closing and
opening. In the first one, the erosion is applied after the dilation effecting in
closing small gaps and softening the edges. This leads to linking objects in the
image. By applying the dilation after the erosion the amount of image details
is reduced. Small noise is removed and bigger objects are exposed more. After
applying all of those transformations, the mask image can be achieved similar
to the one presented in Fig. 2.

Fig. 2. Mask of segmented lip area

4 CUDA Implementation

All the operations required in the process of lips segmentation are performed
in a predetermined sequence, one after another, using Eqns. (1-4) described in
Section 3. In order to reduce the data size and speed up future computations,
the pseudo-hue image is converted from the RGB color space into the grayscale
on the CPU host. Next, we transfer the data to the GPU device, where it is
being stored in the texture memory. The process of transferring image data to
and from the GPU device is performed only once, without any intermediate
transfers between consecutive transformations. Such a practice is common, as
communication between the CPU host and the GPU device is a well known
bottleneck. Therefore, by reducing the number of transfers we can observe an
increase in performance.

Before executing the kernel, we calculate the number of blocks and threads
by segmenting the image into numerous sections of rectangular shape. Finally,
individual parts are divided between corresponding threads of the thread block
and stored in the fast on-chip shared memory. Then consecutive image processing
transformations are applied to the pixel block, and the output image is written
back to the shared memory for use in the next step, as illustrated in Fig. 3.
Consequently, all the threads within the thread block can fetch the data faster

GPU Accelerated Image Processing for Lip Segmentation 361

when applying new image processing operations. This way we can reduce the
number of intermediate image transfers. However, this solution produces some
restrictions, as the portions of image data stored in the shared memory can not
be synchronized between the thread blocks without the necessity of accessing the
global memory. Considering this fact we can utilize the available shared memory
space to perform the fixed number of iterations of a filter, set in a given order.

Fig. 3. CUDA implementation flow chart with the fixed number of iterations executed
on a predetermined pattern of transformations

The CUDA implementation of filters used for this lip segmentation algorithm
is fairly straightforward. At first, we assume a constant dimension of both the
convolution matrix and the morphological structuring element, which we defined
as 3 × 3. For a single iteration, we need to allocate two additional rows and
columns to ensure data accuracy, as every output value is calculated by a single
thread by analyzing its neighboring pixels. To illustrate this, let us consider an
example where we calculate a single morphological operation. Each thread has
to load 9 values in order to designate a single output pixel. But when processing
pixels on the boundary of the image block, we need to examine three missing
values, as they have not been mapped into the memory. This can be seen in
Fig. 4. Given this facts, a shared memory block is allocated with the dimension

362 L. Adrjanowicz, M. Kubanek, and A. Tomas

Fig. 4. 3x3 structuring element applied to a 5x5 image block: when processing bound-
ary pixels, we require two additional rows and columns to ensure accuracy of output
values

of (blockDim.x + iterations ∗ 2, blockDim.y + iterations ∗ 2), where the total
amount of allocated memory space can not exceed 16 KB per block.

In our implementation, we focus on the minimal number of fixed iterations that is
required to efficiently create the mask image by means of morphological operation
of closing. Because a single transformation consists of one erosion and two dilations,
three iterations are required to complete a single closing operation. Additionally
the pre-processing and post-processing filters are also applied, which as a result
gives us the total number of 20 iterations. After performing the initial load and
ensuring accuracy of the transformations, a synchronization function is executed.
Then filtering operations are applied to the pixel block, and the output image is
written back to the shared memory for the use in the next iteration. After finishing
all calculations, the final image is offloaded to the host memory.

In the implementation process, three key issues were taken into account. First,
we reduced the number of kernels and their launches. As a result, consecutive im-
age processing transformations in the presented lip segmentation algorithm could
be applied in a single kernel call. Second, the image data was processed in the fast
shared memory when adding new transformations. Consequently, we decreased the
amount of intermediate transfers to the CPU host or the GPU device global mem-
ory, as they provide a much slower memory throughput. Third, we reduced the data
size, because it affects the general transfer time. Furthermore, we do not need to
use high-precision calculations, since in image processing it is not a major factor,
and it will not have any significant impact on the final results.

5 PerformanceResults

For the lip segmentation problem the sequential and parallel implementations were
investigated. Visually the GPU results exhibit no differences in relation to the CPU
implementation. Sample output images of the lip segmentation are presented in
Fig. 5. As testing platforms Tesla C1060 and Intel Core 2 Duo E6550 were chosen.
For various resolutions, the lip segmentation was carried out on pre-selected test
images. The achieved performance results are included in Table 1.

GPU Accelerated Image Processing for Lip Segmentation 363

Fig. 5. Results of lip segmentation for selected test images

Table 1. Processing time for GPU and CPU implementation, with achieved speedup
for various resolutions

Resolution GPU [ms] CPU [ms] Speedup

640x480 15 35 2.3
800x600 16 56 3.5
1024x768 18 92 5.1
1280x1024 24 155 6.5
1600x1200 31 228 7.4
1920x1200 34 274 8.1

It is worth mentioning that the GPU processing times are considerably lower
than results achieved on CPU, without using SSE or MMX instructions. The
maximum speedup attained in relation to the sequential implementation reaches
8 times. For 640x480 resolution a single transformation on GPU, excluding the
transfer time, takes under 0.20 milliseconds. Therefore, by applying more fil-
tering operations the total GPU processing time does not increase significantly.
As shown in Table 1, the speedup increases with every resolution, which indi-
cates that by processing more data on GPU better results can be achieved. It
is worth to note that by applying even higher resolution greater speedups can
be achieved. Unfortunately, in practice most of capturing devices do not provide
higher resolutions than those presented in Table 1.

In real-time image processing, it is necessary to calculate transformation re-
sults faster than the sampling frequency. Assuming standard frame rate of 30
frames per second, the processing time should not be higher than 33 millisec-
onds. In our implementation, such performance requirements were met with
Tesla C1060. It confirms that CUDA-enabled graphic cards can be successfully
used for the advanced image processing in real time.

6 Conclusions

In this paper we discussed the lip segmentation problem with the use of image
processing, which was implemented in a parallel environment using the CUDA

364 L. Adrjanowicz, M. Kubanek, and A. Tomas

architecture. The number of kernels, as well as their launches were reduced, in
order to process consecutive image transformations faster. As a result, a single
kernel function was created, that used a predetermined filter set in a fixed number
of iterations. This approach decreased the amount of intermediate data transfers
to the global memory at the expense of additional space in the shared memory.
In conclusion, partial results could be fetch faster for filtering operations that
used a small structuring element.

Our results have shown a significant speedup of the parallel implementation
in relation to the CPU counterpart. By applying consecutive transformations to
the same image, the total time of calculations increased slightly. Moreover, the
speedup obtained in this way did not decrease. This implies that GPUs can be
successfully used in real-time image processing.

References

1. Parallel programming and computing platform CUDA NVIDIA,
http://www.nvidia.com/object/cuda_home_new.html

2. Aleksic, P.S., Williams, J.J., Wu, Z., Katsaggelos, A.K.: Audio-Visual speech recog-
nition using MPEG-4 compliant visual features. EURASIP Journal on Advances
in Signal Processing 2002, 1213–1227 (2002)

3. Desouza, G.N., Kak, A.C.: Vision for mobile robot navigation: a survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence 24, 237–267 (2002)

4. Farrugia, J.P., Horain, P., Guehenneux, E., Alusse, Y.: GPUCV: a framework for
image processing acceleration with graphics processors. In: 2006 IEEE Interna-
tional Conference on Multimedia and Expo., pp. 585–588 (2006)

5. Forsyth, D.A., Ponce, J.: Computer Vision: A Modern Approach. Prentice Hall
(2002)

6. Fung, J., Mann, S.: OpenVIDIA: parallel GPU computer vision. In: MULTIMEDIA
2005: Proceedings of the 13th Annual ACM International Conference on Multime-
dia, pp. 849–852 (2005)

7. Guan, Y.: Automatic extraction of lips based on multi-scale wavelet edge detection.
IET Computer Vision 2, 23 (2008)

8. Hopf, M., Ertl, T.: Accelerating 3D convolution using graphics hardware. In: Pro-
ceedings of the Visualization 1999, pp. 471–564 (1999)

9. Hopf, M., Ertl, T.: Accelerating morphological analysis with graphics hardware.
In: Workshop on Vision, Modeling, and Visualization, VMV 2000, vol. 337,
pp. 337–345 (2000)

10. Hurlbert, A., Poggio, T.: Synthesizing a color algorithm from examples. Sci-
ence 239, 482–485 (1998)

11. Liew, A.W., Wang, S.: Visual speech recognition: lip segmentation and mapping.
Idea Group Inc. (IGI) (2009)

12. Lucey, S., Sridharan, S., Chandran, V.: Adaptive mouth segmentation using chro-
matic features. Pattern Recognition Letters (2002)

13. McConnell, J.: Computer Graphics: Theory Into Practice. Jones & Bartlett Pub.
(2005)

14. Neti, C., Potamianos, G., Luettin, J., Matthews, I., Glotin, H., Vergyri, D., Sison,
J., Mashari, A., Zhou, J.: Audio-visual speech recognition. In: Final Workshop 2000
Report, vol. 764 (2000)

http://www.nvidia.com/object/cuda_home_new.html

GPU Accelerated Image Processing for Lip Segmentation 365

15. Shapiro, L.G., Stockman, G.C.: Computer Vision. Prentice Hall (2001)
16. Shin, J., Lee, J., Kim, D.: Real-time lip reading system for isolated korean word

recognition. Pattern Recognition 44, 559–571 (2011)
17. Shirley, P.: Fundamentals of Computer Graphics. CRC Press (2002)
18. Sinha, S.N., Frahm, J., Pollefeys, M., Genc, Y.: Feature tracking and matching in

video using programmable graphics hardware. Machine Vision and Applications 22,
207–217 (2007)

19. Strzodka, R., Garbe, C.: Real-time motion estimation and visualization on graphics
cards. In: IEEE Visualization 2004, pp. 545–552 (2004)

20. Strzodka, R., Telea, A.: Generalized distance transforms and skeletons in graph-
ics hardware. In: Proceedings of EG/IEEE TCVG Symposium on Visualization
(VisSym 2004), pp. 221–230 (2004)

21. Strzodka, R., Ihrke, I., Magnor, M.: A graphics hardware implementation of the
generalized hough transform for fast object recognition, scale, and 3D pose de-
tection. In: Proceedings of IEEE International Conference on Image Analysis and
Processing (ICIAP 2003), pp. 188–193 (2003)

22. Ujaldon, M., Ruiz, A., Guil, N.: On the computation of the circle hough transform
by a GPU rasterizer. Pattern Recogn. Lett. 29, 309–318 (2008)

23. Wang, S., Lau, W., Liew, A.W., Leung, S.: Robust lip region segmentation for lip
images with complex background. Pattern Recognition 40, 3481–3491 (2007)

24. Yang, M., You, Z., Shih, Y.: Lip contour extraction for language learning in
VEC3D. Machine Vision and Applications 21, 33–41 (2008)

25. Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: A literature
survey. ACM Comput. Surv. 35, 399–458 (2003)

26. Zhi, Q., Kaynak, M.N.N., Sengupta, K., Cheok, A.D., Ko, C.C.: A study of the
modeling aspects in bimodal speech recognition. In: IEEE International Conference
on Multimedia and Expo., ICME 2001 (2001)

Material Parameter Identification with Parallel

Processing and Geo-applications

Radim Blaheta, Rostislav Hrtus, Roman Kohut,
Owe Axelsson, and Ondřej Jakl

Institute of Geonics AS CR,
Studentska 1768, Ostrava, Czech Republic

owea@it.uu.se, {blaheta,hrtus,kohut,jakl}@ugn.cas.cz

Abstract. The paper describes numerical solution of material param-
eter identification problems, which arise in geo-applications and many
other fields. We describe approach based on nonlinear least squares min-
imization using different optimization techniques (Nelder-Mead, gradient
methods, genetic algorithms) as well as experience with OpenMP+MPI
parallelization of the solution methods.

Keywords: Parameter identification, Nelder-Mead, gradient methods,
genetic algorithms, parallelization.

1 Introduction, Framework for Parameter Identification

Parameter identification problems deserve nowadays increasing interest. We de-
scribe some solution methods with a special interest in their parallelization and
two applications – identification of heat conduction coefficients of rocks for anal-
ysis of in-situ experiment in underground rock laboratory and identification of
local mechanical parameters for modelling of elastic behaviour of geocomposites.

To describe the parameter identification problem, we consider a real process
(heat conduction, elastic deformation, etc.), which state is characterized by a
state variable ureal ∈ Φ (temperature, displacement, etc.) and depends on a
control variable f (heat sources, mechanical loads, etc.).

Let us assume that the real process is simulated by an initial–boundary value
problem for PDE. Then the input involves some material (and/or control) pa-
rameters p ∈ P and the control variable f . The simulated state variable u = u(p)
fulfils the state problem, e.g. the following boundary/initial value problems of
heat flow or elasticity:

c(p)∂u∂t − divφ = f
φ = K(p)δ
δ = ∇u

⎫⎬⎭ in ΩT or
−div σ = f
σ = C(p)ε

ε = 1
2 (∇+∇T)u

⎫⎬⎭ in Ω (1)

+ initial/boundary conditions + boundary conditions

Above, for the parabolic heat flow problem (1 left), ΩT = (0, T) × Ω is the
time-space problem domain and u, δ, φ, c, K, f denote temperature (the state

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 366–375, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Material Parameter Identification with Parallel Processing 367

variable), its gradient, heat flux, heat capacity, heat conductivity (in isotropic
case K = kI, where k is a positive parameter) and density of heat sources,
respectively. For the elliptic elasticity problem (1 right), u, ε, σ, C, f denote
displacement, strain, stress, elasticity tensor and density of volume force, re-
spectively.

Assuming that the solution of the state problem is unique for given p, the
solution can be expressed via the parameter–to-solution operator S : P → Φ,

u(p) = S(p) = S(p, f) . (2)

Further, assume that we are given a vector d of data arising from measurement
of ureal (e.g. values in selected points and time moments, average values over
some subdomains, etc.) and also an observation operator D(u), which provides a
computed counterpart to d. Note thatD(ureal) = d−η, where η is a measurement
error (noise). Then the parameter identification problem can be written in the
nonlinear least squares form

F (p) =‖ DSu(p)− d ‖2→ min
p∈P

, (3)

Note that an implementation of (3) use u as a solution of discretized state
problem. Moreover, the objective function F is frequently extended by adding a
regularization term. The choice of regularization can be very important as it is
discussed e.g. in [15].

In this paper, the solution of the parameter identification problem (3) will
be done by application of some optimization technique as Nelder-Mead or other
direct search methods, gradient type methods or genetic algorithms. All these
methods, briefly described in Section 2, need repeated computations of the state
variable u(p) = S(p), or in other words, need to solve the discretized state PDE
problem. We shall assume that this is done via some finite element discretization
and the parallel iterative solution of the arising FE systems as briefly described
in Section 4. We shall use unconstrained optimization methods, as some possi-
ble constrains, as positivity or box constraints on parameters, can be handled
otherwise, e.g. by a suitable transformation of parameters.

2 Optimization Techniques

In this Section, we briefly describe three types of optimization techniques, which
can be used for the nonlinear least squares optimization (3).

2.1 Nelder–Mead Method

The Nelder–Mead method is a typical representant of direct search methods, cf.
[9], [13], [10]. The algorithm maintains a simplex S(k) in the space of parameter
vectors p. This simplex locally approximates the objective function F and serves
for getting information about its behaviour and getting approximation to the
optimal point. We start with an initial simplex S(0), which is gradually changed.

368 R. Blaheta et al.

The k-th step simplex S(k) is determined by m+ 1 vectors, m = dim(p), of pa-
rameters p(k, 1), . . . , p(k,m+1) ordered according to the objective function values

F (p(k, 1)) ≤ F (p(k, 2)) ≤ . . . ≤ F (p(k,m+1)).

If a stopping criterion (see later) is not fulfilled, then the algorithm continues by
finding new vertex in the form

p(μ) = (1 + μ)p̄− μp(k,m+1),

where p̄ =
(
(p(k, 1) + . . .+ p(k,m+1))/m

)
and μ is typically equal to μr = 1 for

reflection, μe = 2 for extension, μoc = 1/2 for outer contraction and μic = −1/2
for inner contraction.

In the standard sequential algorithm, see [9], the procedure starts with eval-
uation of Fr = F (p(μr). If F (p(k, 1)) ≤ Fr < F (p(k,m)) then we take p(μr) as
a new vertex. Otherwise, we gradually test for the expansion, outside and in-
side contraction and take the case fulfilling prescribed conditions [9]. It means
that forming of a new simplex contains one or more evaluations of the objective
function. We can also decide for shrinking the whole simplex, which costs m
evaluation of the objective function. The details can be found in [9].

The optimization is stopped when both decrease of the objective function F
is small (below εF) and changes of parameters are small (below εp) or if some
limit number of the objective function evaluation is exceeded.

2.2 Gradient Gauss–Newton Type Methods

The objective function F (p) = 1
2F1(p) from (3) has the nonlinear least squares

structure, i.e. without regularization, we have

F (p) =
1

2
R(p)TR(p), (4)

where R(p) is the residual defined by R(p) = DS(p)− d.
We shall consider methods exploiting Jacobian of the mapping p→ R(p),

J(p) = DpR(p) = (Jij(p)) , Jij(p) =
∂Ri(p)

∂pj
,

The knowledge of J enables to express the gradient gradF (p) = J(p)TR(p) and
introduce gradient methods of the type

p0 given ; pi+1 = pi − αiz
i, i ≥ 0, (5)

where
zi = gi or zi = H−1

i gi, gi = J(pi)TR(pi), (6)

Hi = νiI + J(pi)T J(pi). (7)

Note that the choice zi = gi provides the steepest descent method, zi = H−1
i gi

provides the Gauss–Newton method for νi = 0 and Levenberg-Marquardt method

Material Parameter Identification with Parallel Processing 369

for νi > 0. We can use αi = 1, but more robust is to take αi by a line search
or backtracking, see [9], [6], [13]. Positive values of νi guarantee positive defi-
niteness of Hi and regularize the problem but can destroy the local quadratic
convergence. Therefore, a suitable strategy for the choice of νi is needed, as e.g.
νi = min{1; c ‖ J(pi)TR(pi) ‖ }, where c is a positive constant, cf. [6].

2.3 Genetic Algorithms

Another class of methods, which need only evaluation of the objective function
F , is created by genetic methods. These methods use the following framework,

GA with N = NGA sample population

(1) generate N random vectors p(i), i = 1, . . . , N
(2) for a given generation, evaluate Fi = F (p(i)), if Fi is not known yet
(3) select τN parameter vectors p(i) with smallest values Fi, so called parents.

Then create (1− τ)N new vectors (children) by crossing randomly selected
parents and evaluate their objective function

(4) create a new population p
(i)
new by taking the selected parents and created chil-

dren. Mutate all p
(i)
new to p

(i)
mut and evaluate F (p

(i)
mut). If F (p

(i)
mut) < F (p

(i)
new)

then p(i) = p
(i)
mut else p(i) = p

(i)
new

(5) evaluate stopping test and GOTO (3) if results are still not satisfactory.

In our case, the crossing and mutation acts on parameter vectors and can be
described as algebraic (not binary) rule, see e.g. [8], [12] for the details.

3 Geo-applications

This section presents two applications, which motivate our interest. Both exam-
ples are from the field of geoengineering, which comprises also many other inter-
esting applications, e.g. the use of identification procedures in tunnel engineering,
soil mechanics, subsurface water flow and remediation, finding parameters for
description of nonlinear behaviour of rocks etc.

3.1 APSE – Heat Conduction Problem

The in-situ Äspö Pillar Stability Experiment (APSE) was performed with the
aid of investigation of granite mass damage due to mechanical and thermal load-
ing. APSE used electrical heaters to increase temperatures and induce stresses
in a rock pillar between two holes (Fig. 1) until its partial failure. To deter-
mine accurately the temperature changes, a heat flow model is formulated and
monitored temperatures are used for model calibration via obtaining parameters
taking into account water content and water flow in the rock. More details and
another approach to the model calibration can be found in [1].

Monitoring of the temperatures during two month heating phase of APSE
provides a vector d containing 168 data items – temperatures at 14 monitoring

370 R. Blaheta et al.

wet

—

dry

Fig. 1. The APSE model – detail of the FE grid around the pillar (GEM software [4])
and ground view on the pillar, holes, location of heaters and points of temperature
measurement

positions in 12 time moments. The observation operator D picks–up the same
data (temperatures) from the computed solution of the state problem.

The material parameters are variable conductivity k and heat capacity c,
which are assumed to be constant in two subdomains – the dry and wet sides
according to Fig. 1. It gives optimization with 4 parameters. Let us mention that
some variants with more parameters will be tested in a near future.

The state problem is solved by the GEM software [4] and considers a compu-
tational domain of 105×125×118 m and tetrahedral 3D mesh with 99×105×59
nodes. The grid is refined around the pillar, see Fig. 1. The heaters are produc-
ing heat which varies in time. The model assumes original temperature 14.5◦C
on the outer boundaries, zero flux onto the tunnel and nonzero flux given the
convection onto the holes. The initial condition is given again by the original
temperature 14.5◦C. The computational results are discussed in Section 4.3.

3.2 Geocomposites – Local Elastic Properties

The second application concerns coal geocomposites, which arise from polyure-
thane resin grouting to the coal seam for improving its mechanical properties. To
assess the influence of various resins, various levels of fill–in of the fractures etc.,
the properties of smaller 7×7×7 cm cubic samples are tested both experimentally
and analytically. The analytical tests use finite element analysis on dense voxel
grids with information about the material microstructure obtained from CT
scanning and assigning the local material properties. The local properties are
obtained from extra experimental testing in the case of resin with different level
of foaming.

The local properties of coal (parameters) are identified with the aid of effective
elastic moduli Eexp

1 and Poisson ratio νexp obtained from experimental testing on
the cubic samples. In this case, the vector of data d contains values of stress and
strain tensors corresponding to the behaviour of homogeneous sample with given
elastic moduli Eexp

1 and Poisson ratio νexp. Correspondingly, the observation
operator D is taken as

Material Parameter Identification with Parallel Processing 371

Du(p) = D(p)u(p) =

[
〈(C(p)ε(u))ij〉

〈εij(u)〉

]
, i, j = 1, 2, 3.

Note that 〈 · 〉 is the operator of volume averaging over Ωcoal ⊂ Ωsample . Both
stress and strain fields are taken into account because one of them can be fully
independent from the Poisson’s ratio νexp, but generally the dependence on the
Poisson’s ratio ν is weak. The elasticity tensor C(p) is assumed to be either
isotropic or orthotropic.

4 Parallel Processing

We shall distinguish two levels of parallelization of the parameter identification
methods:

1. first level of parallelization concerns the solution of the state (forward) PDE
problems for evaluation of the objective function,

2. second level of parallelization concerns the adopted optimization method.

Note that we decided to use OpenMP for the first and MPI parallelization for
the second level as it seems to be natural for parallelization on different levels
and fitting the structure of the present multiprocessor/multicore computers.

4.1 Parallelization of the Forward Problem Solution

The solution of the (forward) state problem is the most expensive part of the
parameter identification. It assumes discretization of the PDE problems, which
can be done by the finite element (FE) method in space and by the finite dif-
ferences in time. The discretization leads to the solution of large scale linear
algebraic systems, which can be solved iteratively by the preconditioned con-
jugate gradient or some other methods, cf. [2]. Various domain decomposition
techniques can be used for parallelization of both assembling of matrices and
solution of the linear systems, see [14]. Particularly, we are using Schwarz type
domain decomposition methods as described in [3], [4].

Figure 2 outlines our implementation of the solution of time dependent heat
flow problem described in (1) and used in application in Subsection 3.1. It uses
discretization by linear finite elements in space and time discretization by im-
plicit Euler method with constant time step Δt (this assumption is not signifi-
cant, but allows to perform incomplete factorization outside of the time stepping
loop).

The full solution procedure (Fig. 2) has sequential and parallelizable parts. At
present implementation, we skip parallelization of the assembly of FE matrices
and concentrate on parallelization of the preconditioned CG iterations in Step 5.
In Steps 5(a) and 5(b)i, we use decomposition of the matrix by rows for parallel
matrix by vector multiplication, number of processors is equal to number of
subdomains. Note that this decomposition by rows can be a bit better balanced
comparing to the domain decomposition used in Step 5(b)ii. Parallel do loops
are also used at Step 5(b)iii.

372 R. Blaheta et al.

Heat flow evolution - computation of uk
h - vectors of temperatures for time levels.

1. assembly the capacity and conductivity matrices Mh = Mh(p) and Ah = Ah(p),
2. decompose matrices Mh, Ah according to overlapping DD (domain is divided into

subdomains (slices) in one coordinate direction). Let Mδ
h,j , Aδ

h,j are the arising
subdomain matrices, j = 1, . . . , ns, where ns is the number of subdomains.

3. perform incomplete factorization LjL
T
j of the matrices Mδ,L

h,j +ΔtAδ
h,j, where M

δ,L
h,j

is the diagonal matrix having rowsums of Mδ
h,j on the diagonal (lumped matrix).

Lumping ensures that the incomplete factorization is stable even for small Δt.
4. set the initial temperature u0

h

5. perform loop over time steps k = 1, . . . , nts
(a) compute rhs as Δfk = Δ(bk − Ahu

k−1
h),

(b) perform iterative solution of (Mh +ΔtAh)Δuk
h = Δfk by the preconditioned

CG method up to prescribed accuracy ε with Δuk,0
h = 0 as the initial guess.

Each iteration contains of the following parts:
i. matrix by vector multiplication using Mh +ΔtAh,
ii. application of additive Schwarz preconditioner

∑
RT

j (LjL
T
j)

−1Rj , where
Rj is the proper restriction,

iii. two inner product and three vector updates.
(c) uk

h = uk−1
h +Δuk

h

Fig. 2. Solution procedure

4.2 Straightforward Parallelization of the Optimization Techniques

The standard Nelder-Mead method represents a sequential algorithm. But if we
concentrate only on the wall clock time (ignoring the overall computing effort)
then some look ahead strategy can be used. For example, in each iteration, we
can perform simultaneously evaluation of the reflexion, extension and contraction
phases. Then, we select the most suitable case and leave others without use in the
next progress. Some more elaborated parallel variants of the algorithm [7], [11]
use deeper look ahead strategies. This can additionally speed up the iterations
and make the optimization more robust.

The gradient methods can compute the Jacobian J(p) from differences

Jij(p) =
1

δ
[Ri(p+ δej)−Ri(p)] or Jij(p) =

1

2δ
[Ri(p+ δej)−Ri(p− δej)] .

This approach is used especially for smaller dimension m, otherwise a semiana-
lytic differentiation can be used, which reduce the cost and increase accuracy of
gradient computation, see [15]. But for differences, the computer time for m+ 1
or 2m+ 1 evaluations of the residual R(p) can be straightforwardly reduced by
parallelization.

The genetic algorithms are a natural candidate for parallelization, which con-
cerns concurrent evaluation of the objective functions for the whole population.
We can also use either single population or multiple populations, see [5].

Material Parameter Identification with Parallel Processing 373

Table 1. Computing times [sec] and numbers of iterations for steps 4 and 5 of the full
solution procedure (Fig. 2) for 560 timesteps and 613 305 DOF’s. The computing time
for sequential execution of steps 1, 2, 3 is 12 sec.

all time speedup speedup time for mat-vec
proc. CG iter. total time para. part para. part 1 iter. precond. mult. time

1 1008 360.9 357.2 - - 195.5 86.7

2 973 203.4 200.0 1.786 1.723 116.3 48.2

4 981 129.4 125.9 2.837 2.761 71.3 29.3

8 1153 104.8 101.0 3.537 4.045 50.6 28.6

(a) ε = 0.01

all time speedup speedup time for mat-vec
proc. CG iter. total time para. part para. part 1 iter. precond. mult. time

1 3162 774.6 770.7 - - 464.7 207.5

2 3417 515.8 512.3 1.504 1.626 309.7 140.9

4 3464 335.9 332.1 2.321 2.542 206.4 88.9

8 4014 252.2 248.2 3.105 3.942 155.2 64.0

(b) ε = 0.0001

4.3 Numerical Experiments

All numerical experiments are carried out in the GEM code environment [4].
In the framwork of GEM, all three types of optimization techniques have been
realized and we describe test results for solving the heat flow problem described
in Subsection 3.1.

First (see Table 1), we tested the OpenMP parallelization of the forward heat
evolution problems. The test runs are performed at Hubert - a shared-memory
machine with eight four-core AMD Opteron 8380 processors (32 cores in total),
HyperTransport communication technology, 128GB of RAM, SLES 10 operat-
ing system, MPI implementation and Fortran compiler with OpenMP support
through the Intel Cluster Toolkit with Compilers (ICT). From Tables 1(a,b),
we can see that (1) the number of iterations depends weakly on the number of
subdomains (cores) and is about 2 and 6 iterations per time step (depending on
the adopted accuracy ε), (2) the computing time for the parallelized part of the
whole algorithm is dominant - more than 90%, (3) parallel speedup, even if it is
related to one iteration, is reasonable only for 2 and 4 cores, then deteriorates,
(4) within the CG iterations, the application of the preconditioner is about twice
more expensive than matrix by vector multiplication.

Second (see Table 2), we tested the whole parameter identification procedure
for the same application using different optimization methods. All these methods
started the iterative process from the same initial values, generated by random,
and stopped as soon as the objective function value became less than a pre-
scribed constant. Although it is not fair to compare the methods in this way, the
times can provide some idea about their efficiency. The tests were performed on
the Kalkyl cluster at UPPMAX computing centre at Uppsala University, which

374 R. Blaheta et al.

Table 2. Real time of solution of the parameter identification APSE problem with
increasing number of cores employed in the forward solution

threads NM solution [s] GM solution [s]

1 22333 5783
2 17113 4216
4 14912 3620
8 14973 3224

(a) Nelder-Mead (NM) and gradient (GM) methods, only OpenMP parallelization.

population size N #processes x #threads GA solution [s]

1 20 1 x 8 51900
2 20 20 x 8 4478
3 40 40 x 8 2653

(b) Genetic algorithm with OpenMP + MPI parallelization.

has 348 HP SL170h G6 compute nodes (each consisting of two quad-core Intel
Xeon 5520 processors) interconnected with a 4:1 oversubscribed DDR Infiniband
fabric. All computations used OpenMP parallelization of the forward problem
solution.

From Tables 2(a,b), we can see that (1) efficiency of using more cores is
again low, the speedup is below two even for eight cores, (2) straightforward
parallelization of the GA is close to the theoretical speedup (remember that only
one half of the population is changed), which is expected, but not so evident as
some computer resources are still shared.

5 Conclusions

The paper describes some methods suitable for solving parameter identification
problems and their OpenMP+MPI parallelization. We could see that

– gradient methods seem to be most efficient, but other methods can be useful
for solving problems with more parameters and complicated materials,

– our OpenMP parallelization provided a bit low speedup, which deserves at-
tempt for improvement by considering problems of data locality and memory
access. Note that our past experience with MPI parallelization of the forward
problem was considerably better [3],

– the straightforward parallelization of some optimization methods is efficient,
but not scalable,

– further experiments show that gradual increase of accuracy during optimiza-
tion can provide important saving of computational work. In this respect
PDE-constrained optimization approach seems to be promising.

Material Parameter Identification with Parallel Processing 375

Acknowledgment. This paper has been supported by the project GA CR
105/09/1830 of the Grant Agency CR and has been elaborated in the frame-
work of the IT4Innovations Centre of Excellence project, reg. no. CZ.1.05/1.1.00/
02.0070 supported by Operational Programme ’Research and Development for
Innovations’ funded by Structural Funds of the European Union and state bud-
get of the Czech Republic. Some computations were done within UPPMAX
p2011076 project.

References

1. Andersson, J.C., Fälth, B., Kristensson, O.: Äspö pillar stability experiment TM
back calculation. In: Advances on Coupled Thermo-Hydro-Mechanical-Chemical
Processes in Geosystems and Engineering, pp. 675–680. HoHai University, Nanjing,
China (2006)

2. Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge
(1994)

3. Blaheta, R., Kohut, R., Neytcheva, M., Starý, J.: Schwarz methods for discrete
elliptic and parabolic problems with an application to nuclear waste repository
modelling. Mathematics and Computers in Simulation 76, 18–27 (2007)

4. Blaheta, R., Jakl, O., Kohut, R., Starý, J.: GEM – A Platform for Advanced
Mathematical Geosimulations. In: Wyrzykowski, R., Dongarra, J., Karczewski,
K., Wasniewski, J. (eds.) PPAM 2009. LNCS, vol. 6067, pp. 266–275. Springer,
Heidelberg (2010)

5. Cantu-Paz, E.: A Survey of Parallel Genetic Algorithms. Calculateurs Paralleles,
Reseaux et Systems Repartis 10(2), 141–171 (1998)

6. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization
and Nonlinear Equations. SIAM, Philadelphia (1996)

7. Dennis, J.E., Torczon, V.: Direct search methods on parallel machines. SIAM J.
Optimization 1, 448–474 (1991)

8. Haslinger, J., Jedelsky, D., Kozubek, T., Tvrdik, J.: Genetic and Random Search
Methods in Optimal Shape Design Problems. Journal of Global Optimization 16,
109–131 (2000)

9. Kelley, C.T.: Iterative Methods for Optimization. SIAM, Philadelphia (1999)
10. Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by Direct Search: New Per-

spectives on Some Classical and Modern Methods. SIAM Review 45, 385–482
(2003)

11. Lee, D., Wiswall, M.: A Parallel Implementation of the Simplex Function Mini-
mization Routine. Comput. Econ. 30, 171–187 (2007)

12. Mhlenbein, H., Schlierkamp-Voosen, D.: Predictive models for the breeder genetic
algorithm, I. Continuous parameter optimization. Evolutionary Computation 1(1),
25–49 (1993)

13. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer (2006)
14. Toselli, A., Widlund, O.: Domain Decomposition Methods - Algorithms and

Theory. Springer, Berlin (2005)
15. Vogel, C.R.: Computational Methods for Inverse Problems. Frontiers in Applied

Mathematics, vol. (23). SIAM, Philadelphia (2002)

Hierarchical Parallel Approach

in Vascular Network Modeling –
Hybrid MPI+OpenMP Implementation

Krzysztof Jurczuk1, Marek Kretowski1, and Johanne Bezy-Wendling2,3

1 Faculty of Computer Science, Bialystok University of Technology,
Wiejska 45a, 15-351 Bia�lystok, Poland

2 INSERM, U642, Rennes, F-35000, France
3 University of Rennes 1, LTSI, Rennes, F-35000, France

{k.jurczuk,m.kretowski}@pb.edu.pl

Abstract. This paper presents a two-level parallel algorithm of vascu-
lar network development. At the outer level, tasks (newly appeared parts
of tissue) are spread over processing nodes. Each node attempts to con-
nect/disconnect its assigned parts of tissue in all vascular trees. Commu-
nication between nodes is accomplished by a message passing paradigm.
At the inner level, subtasks concerning different vascular trees (e.g. ar-
terial and venous) within each task are parallelized by a shared address
space paradigm. The solution was implemented on a computing cluster
of multi-core nodes with mixed MPI+OpenMP support. The experimen-
tal results show that the algorithm provides a significant improvement in
computational performance compared with a pure MPI implementation.

1 Introduction

The continuously increasing need for computing power and physical and eco-
nomic limitations of processor frequency scaling (i.e. significant increase of costs
and energy usage) caused that parallel machines have become the only known
alternative to improve computing performance [1]. Firstly, the need of high per-
formance arises from the necessity to solve problems of ever-rising size at the
limits of available computing resources. Moreover, parallel computing seems to
be more suitable to mimic natural world processes that may happen in the same
time and are quite often interrelated with each other. Thus, parallel processing
appears to be one of the most relevant issues in modern scientific computing [2].

In our previous studies, we developed a physiological model reflecting both
morphology and functions of vascular networks in clinical images [3]. The solu-
tion consists of a macroscopic model (vascular network and pathological anoma-
lies) and a microvascular model (blood flow simulation in capillaries and contrast
agent diffusion processes [4]). Moreover, we coupled this two-level vascular model
with imaging CT and MR simulators. Such a model-based approach represents a
non-invasive way to control physiological parameters, what would be difficult or
even impossible to do in real experiments. The whole solution constitutes a good

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 376–385, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Hybrid Hierarchical Parallel Approach in Vascular Network Modeling 377

way to improve the interpretation of dynamic medical images by linking image
descriptors with morphological and functional perturbations, thus offering the
potential to reveal early image indicators of pathologies.

In the model, the structure of vascular networks is obtained in the process of
vascular development. Initially, we proposed a sequential algorithm [3]. Although
we applied many algorithm and code optimizations, the simulation was still a
time expensive process. Later, we introduced the distributed memory algorithm
that parallelized the vascular development [5] (message passing interface (MPI)
[6] implementation on computing cluster). Moreover, we proposed an advanced
modeling framework [7] able to efficiently simulate vascular development on a
computing cluster (distributed memory approach) as well as on low-cost multi-
core desktop machines (shared memory approach - OpenMP [8] implementation).

Although in all our previous distributed memory algorithms we were able
to gain substantial speedups on computing clusters of nodes with single-core
chips, nowadays, the multi-core chips in clusters seem to be an industrial trend.
Moreover, a combination of shared memory and message passing paradigms in
one application may provide a better efficiency than e.g. pure MPI version [9].
Therefore, in this paper, we propose a two-level hybrid parallel algorithm of vas-
cular development, that employs both shared address space and message passing
paradigms on a cluster of nodes with multi-core chips (mixed MPI+OpenMP im-
plementation). The main aim of this work is to further accelerate the simulation
process, which will increase the possibility to create more elaborate and pre-
cise vascular models. Furthermore, our intention is to bring the model closer to
reality in which processes of vascular development are performed inherently in
a parallel way [10]. Many other vascular system have been proposed (e.g. [11],
[12]), however, as far as we know, all the previous solutions, published by other
authors, have been using only sequential approaches of vascular development.
On the other hand, one can find at least several other applications of hybrid
parallel modeling in computational biology and medicine, e.g. in PET image
reconstruction algorithms [13] or in cardiac simulations [14].

In the next section, the vascular model and sequential algorithm of vascular
development are recalled. In Sect. 3 the hybrid parallel algorithm of the vascular
development is explained. An experimental validation is performed in Sect. 4.
Conclusion and some plans for future research are sketched in the last section.

2 Vascular Model Description

In this paper, we focus on vascular development algorithms on the macroscopic
level. Therefore, this section describes basic features of the macroscopic model.
Then the sequential algorithm of vascular development is recalled.

In the macroscopic model we can distinguish two main components: the tissue
and the vascular network [3]. The tissue is represented by a set of Macroscopic
Functional Units (MFU) that are distributed inside the specified organ shape. An
MFU is a small, fixed size part of the tissue and is characterized by a class that
determines most of its structural/functional properties (e.g. size, probability of
mitosis and necrosis) and also physiological features (e.g. blood pressures, blood

378 K. Jurczuk, M. Kretowski, and J. Bezy-Wendling

flow rate). Several classes of MFUs can be defined to differentiate functional or
pathological regions of tissue (e.g. normal, tumoral). Moreover, the class of MFU
can be changed over time, which makes it possible to simulate the evolution of
a disease (e.g. from benign nodule to malignant tumor).

2.1 Vascular Network

The model expresses the specificity of the liver, although most of its features are
not linked with any specific organ. The liver stands out from other organs by the
unique organization of its vascular network that consists of three vessel trees.
Hepatic arteries and portal veins deliver blood to tissue, whereas, the hepatic
venous tree is responsible for blood transport back to the heart.

In the model, each vascular tree is composed of vessels that can divide creating
bifurcations. A vessel segment (part of vessel between two consecutive bifurca-
tions) is represented by an ideal, rigid tube with fixed radius, wall thickness and
position. The model distinguishes vessels larger than capillaries, while the capil-
laries themselves are hidden in the MFUs (micromodel [4]). Blood is transferred
from hepatic arteries and portal veins to hepatic veins through MFUs. Vessel
intersections (anastomosis), which occur particularly among vessels with very
small radii or in pathological situations, are not taken into account. As a result,
each vascular tree forms a binary tree.

In the model, the blood is treated as a Newtonian fluid (with constant viscos-
ity) and its flow is governed by Poiseuille’s law. Moreover, the vessels’ parameters
(e.g. radius, blood flow) are calculated according to two following physical laws.
At each bifurcation the law of matter conservation is observed, i.e. the quantity
of blood entering and leaving a bifurcation is the same. Second constraint deals
with the decreasing vessel radii in the vascular tree, creating a morphological
dependency between the radius of a vessel and radii of its two descendants.

2.2 Sequential Algorithm of Vascular Network Development

The algorithm begins with the model initialization [3]. Few vessels are placed in
the 3D shape of an organ whose size is a fraction of the adult one. Afterwards,
in discrete time moments (called cycles), the organ enlarges its size (growth
phase) until it reaches its full, mature form. Additionally, each cycle consists of
subcycles during which each MFU can divide and give birth to a new MFU of the
same class (mitosis process) or die (necrosis process). The processes of mitosis
and necrosis are repeated in consecutive subcycles until spaces appearing during
the growth phase are filled by new MFUs.

The appearance and development of new vessels are induced by new MFUs
that are initially not perfused by the existing vascular system. As a result, for
each new MFU a fixed number of the closest/candidate vessels (in each tree) is
found. Then each candidate vessel creates a new bifurcation that temporarily
perfuses the MFU, i.e. new temporary vessels are sprouted. The spatial position
of the bifurcation point is controlled by local minimization of additional blood
volume needed for the MFU perfusion.

Hybrid Hierarchical Parallel Approach in Vascular Network Modeling 379

Fig. 1. The two-level parallel perfusion process. At the outer level, new MFUs are
spread over nodes and each node is responsible for searching optimal bifurcation points.
At the inner level, within each MFU calculations concerning different vascular trees
are delegated to different cores.

Only one candidate vessel from each tree can finally be designated to perfuse
the new MFU. Therefore, the algorithm tests all possible combinations of can-
didate vessels (a single combination consists of one vessel from each tree). Since
only non-crossing vessels can be accepted, the algorithm firstly detects intersec-
tions between vessels coming from the same tree or from two different trees (e.g.
between arteries and veins) and rejects theses vessels. Finally, the combination
with the lowest sum of volumes is chosen to permanently perfuse the MFU and
a recalculation of vessels’ characteristics in all vascular trees is performed.

In each subcycle, after the reproduction (mitosis and perfusion processes), the
algorithm goes to the degeneration phase. Based on the necrosis probabilities of
individual MFUs, some of them can die (necrosis process). Next, all the ves-
sels supplying these MFUs retract and disappear (retraction process), and the
algorithm goes back to the reproduction phase again.

3 Hybrid Parallel Algorithm of Vascular Development

At the beginning, the general idea of the algorithm is described. Then we present
in more detail parallel perfusion and retraction algorithms. The main attention
is focused on the perfusion phase since it is the most time consuming part of the
algorithm (from 70% to 95% of the total simulation time).

The hybrid algorithm applies a hierarchical (two-level) parallelism. At the
outer level, tasks are carried out by pool of processes running on different pro-
cessing nodes. Interactions between the nodes are accomplished by the message
passing paradigm with the master-slave model [2]. At the inner level, parallel
subtasks are spread over threads running on different cores and the shared mem-
ory space paradigm is exploited. For the sake of explanation clarity, we neglect
the mapping of threads/processes to cores/processing nodes and assume that one
node is identified with one process and one core is identified with one thread.

During the whole simulation, each processing node has its own copy of the or-
gan. Therefore, at the beginning, the master node broadcasts the initial vascular

380 K. Jurczuk, M. Kretowski, and J. Bezy-Wendling

system and tissue providing the same starting information for all slave nodes.
After that, cycle and subcycles are iterated until the adult organ is obtained.

Each subcycle starts from a sequential mitosis performed at the master node.
Next, the two-level parallel perfusion is performed (see Fig. 1). The new MFUs
that are created during the mitosis are spread over slave nodes (outer level
of parallelization). Moreover, calculations within each single MFU are divided
between cores (inner level of parallelization). After the perfusion process, the
degeneration phase follows. At the beginning, at the master node the sequential
necrosis is carried out. Next, the two-level parallel retraction is performed.

3.1 Two-Level Hybrid Parallel Perfusion Algorithm

The outer level parallelization of the perfusion is based on the distributed mem-
ory approach of vascular development [5]. After the sequential mitosis, the master
node spreads new MFUs (tasks) over slave nodes (see Fig. 1) and then this node
is responsible for managing the perfusion process. When it receives a message
with an optimal bifurcation of one of the new MFUs, it takes a decision about
permanent perfusion. Communication latency and independent work of slave
nodes cause that vascular networks at individuals nodes can be slightly different
(tree nonuniformity). Therefore, the master node searches, in its vasculature,
the vessels related with the proposed optimal bifurcation (vessels to form the
optimal bifurcation). If at least one of these vessels cannot be found, then the
MFU is rejected. But in the other case, the new MFU is permanently perfused
and all organ changes related with the new MFU are broadcasted over slaves.

As regards the slave nodes, each of them is responsible for searching optimal
bifurcation points to perfuse the received new MFUs. Each time, when the search
ends successfully, the optimal bifurcation parameters are sent to the master node.
Next, if there are any queued messages with permanent organ changes broad-
casted by the master node, the slave node applies these changes and continues
to perform its remaining tasks. Moreover, when the master node is under-loaded
(e.g. as a result of small number of slave nodes), it can also perform calculations
to find parameters of optimal bifurcation points [7].

The inner level parallelization of the perfusion, both at the master and slave
nodes, introduces a possibility to divide calculations concerning single MFU (see
Fig. 1). Individual cores are responsible for the calculation concerning different
vascular trees (i.e. hepatic arteries, portal veins or hepatic veins in liver).

In the case of the master node, there are two algorithm blocks (i.e. making
decision about permanent perfusion and permanent perfusion) during which in-
dividual cores are responsible for calculations in different vascular trees. When
the master node receives a message with an optimal bifurcation to perfuse a new
MFU, each core tries to find, in its assigned tree, the vessel that may create
the proposed optimal bifurcation. If all cores find such vessels, the new MFU is
permanently perfused in a parallel way in all vascular trees based on the infor-
mation from the optimal bifurcation. However, if at least one of the cores cannot
find the vessel, the other cores abandon their jobs and the MFU is rejected.

Hybrid Hierarchical Parallel Approach in Vascular Network Modeling 381

In the case of the slave nodes, the inner parallelization is applied to spread cal-
culations within each new MFU (see Fig. 1) during following subtasks: searching
of optimal bifurcations, choice of one optimal bifurcation and permanent per-
fusion. At first, each core of a slave node searches the candidate vessels in its
vascular tree, then it creates one optimal temporary bifurcation to each found
candidate vessel and recalculates tree characteristics, taking into account the
new vascular structures for these temporary bifurcations. Afterwards, all pos-
sible combinations of candidate vessels (a single combination consists of one
vessel from each tree) are created, sorted according to increasing volume and
then tested. Each time, to determine the volume of a verified combination, cal-
culations in different vascular trees are divided between cores. Moreover, the
inner parallelization is applied when slave nodes perform permanent perfusions
as a result of organ changes broadcasted by the master node.

3.2 Two-Level Hybrid Parallel Retraction Algorithm

In comparison to our previous solutions [5], [7], in the hybrid one, we decided to
pay more attention to the retraction phase. The profiling results showed that the
time needed for that part of the algorithm is too short to apply a sophisticated
message passing strategy. However, in order to create a possibility to gain higher
performance (especially in the context of Amdahl’s law of a maximum attainable
speedup [15]), we decided to apply here a naive message passing strategy at outer
level and shared address space paradigm at inner level.

After the sequential necrosis, the master node broadcasts to all other nodes
identifiers of the MFUs that have to be removed. Then, the entire algorithm of
retraction is performed at each node. As regards the inner parallelization, both
the master and slave nodes spread calculations concerning different vascular trees
over cores. Hence, the MFUs are disconnected concurrently in all vascular trees.

4 Experimental Results

This section focuses on performance analysis. The presented mean results come
from experiments on the vascular development algorithm starting from small size
configurations (about 1000 MFUs) and ending on large configurations (about
50000 MFUs and consequently 300000 vessel segments). Figure 2 shows a visu-
alization of one of the simulated vascular networks.

The solution was implemented in C++ with support MPI [6] and OpenMP
[8] interfaces. At the outer level of parallelization, the MVAPICH2 version 1.6.1
as MPI2 implementation over infiniband networks was used. The OpenMP was
exploited at the inner level of parallelization. The Intel C++ Compiler 10.1 was
used. For performance measuring we made use of the Multi-Processing Environ-
ment (MPE) library with the graphical visualization tool Jumpshot-4 [6].

Two computing clusters were used. The first one consisted of sixteen SMP
nodes running on Linux and connected by an Infiniband network. Each node
was equipped with two single-core chips (two 64-bit Xeon 3.2GHz CPUs) with

382 K. Jurczuk, M. Kretowski, and J. Bezy-Wendling

a) b) c)

Fig. 2. Visualization of an adult liver (about 50000 MFUs and 300000 vessel segments):
a) hepatic veins with a tumor shape, b) portal veins with a tumor shape, c) main hepatic
arteries, portal veins and hepatic veins with liver and tumor shapes

a) b)

Fig. 3. Speedup of the pure MPI version on the cluster of: a) single-core dual-socket
SMP nodes, b) multi-core dual-socket SMP nodes

2MB L2 cache, 2GB of RAM and an Infiniband 10GB/s HCA connected to a
PCI-Express port. The second cluster was also built with sixteen SMP nodes but
each node was equipped with two multi-core chips (two 64-bit quad-core Xeon
2.66 GHz CPUs) with 2MB L2 cache and 8GB of RAM.

Figure 3a shows the mean speedup of the distributed memory algorithm [5]
(pure MPI implementation) on the computing cluster of single-core nodes. It is
clearly visible that good performance was obtained. Moreover, we were able to
obtain the speedup better than its upper bound value based on Amdahl’s law
[15]. It results from the introduced periodical memory reallocation mechanisms
improving memory cache usage. However, the same algorithm running on the
computing cluster of multi-core nodes tends to decrease its performance if too
many cores inside each node are involved in computations (see Fig. 3b). Profiling
results showed that it is caused by intra-node memory traffic that increases the
mean time of message passing and the time of searching optimal bifurcations.

The performance of the proposed two-level hybrid solution is presented in Fig.
4. The outer level parallelization is accomplished by MPI processes, while the in-
ner level one by OpenMP threads. We verify two cases: i) one MPI process (three

Hybrid Hierarchical Parallel Approach in Vascular Network Modeling 383

a) b)

Fig. 4. Speedup of the two-level hybrid version on a cluster of multi-core SMP nodes:
a) without and b) with two-level parallelization during retraction

a) b)

Fig. 5. Performance comparison of pure MPI, pure OpenMP [7] and hybrid MPI-
OpenMP versions on the cluster of multi-core SMP nodes: a) speedup within one
node, b) speedup across nodes. Different configurations in the hybrid version within
one node: four cores (master process - one thread, slave process - three threads), six
cores (master process - three threads, slave process - three threads), seven cores (master
process - one thread, two slave processes - each three threads)

OpenMP threads) per node and ii) two MPI processes (six OpenMP threads) per
node. Figure 4a shows the mean speedup if the two-level hybrid parallelization is
applied only during the perfusion process. It is clearly visible that the obtained
efficiency is better than in the pure MPI version. If also the retraction process
exploits the two-level hybrid parallelization, the gained speedup still remarkably
increases. Although in the presented results the retraction process takes approx-
imately only 2% of total CPU time during sequential algorithm execution (in
contrast to 95% for the perfusion), it is enough to further accelerate the solution,
especially in terms of Amdahl’s law.

It can be also observed that the number of MPI processes per node has an
influence on the performance (see Fig. 4). When the number of cluster nodes

384 K. Jurczuk, M. Kretowski, and J. Bezy-Wendling

increases (i.e. eight and more), only one MPI process and consequently three
OpenMP threads should be run per node even though each node is equipped
with eight cores. The performance reduction, in the case of two MPI processes
per node, comes from the higher load of a master process having more slaves
to manage. Profiling results indicated that an overloaded master process can
be inefficient in broadcasting permanent changes, i.e. time between sending the
message with an optimal bifurcation by a slave and making a decision about
permanent perfusions till broadcasting related changes by a master is lengthened
excessively. Such a situation increases the tree’s nonuniformity between slave
nodes, which causes more MFUs rejections and finally more algorithm iterations.

In Fig. 5a, the performance of our all parallel solutions running within one
cluster node is summarized. The best speedup can be gained with the two-level
hybrid algorithm, especially in the case of seven cores and three MPI processes
(master process - one thread, two slave processes - each three threads).

On the other hand, Fig. 5b shows the summary comparison between the best
results of pure MPI version and hybrid one across nodes. It is clearly visible
that the proposed hybrid solution provides better speedup than the pure MPI
version. The improvement rises with the increase in the number of cluster nodes.

The hybrid solution was tested on the cluster of nodes with two quad-core
chips. Hence, it may seem a waste of computational power since only three
or six cores in each node can be arranged in computations. However, due to
limited memory bandwidth, it can be even advantageous (e.g. in terms of power
consumption) to use fewer treads than available cores [16]. On the other hand,
there also exist six-cores processors (e.g. AMD Phenom II X6) that could be used
with better efficiency. Moreover, most of internal human organs are supplied by
two vascular trees (i.e. arterial and venous) and then the proposed approach
would be more suitable for the most widespread two and quad-core processors.

5 Conclusion

In the paper a two-level parallel algorithm of vascular development is presented.
The algorithm employs shared memory and message passing paradigms (mixed
MPI+OpenMP implementation). Experimental results on a multi-core cluster
show that a significant improvement in computational efficiency has been ob-
tained. As a result, it helps us to extend the vascular model and to test multiply
sets of parameters in reasonable period of time.

In the future, we will continue to work on the hybrid approach, among oth-
ers, to investigate the influence of communication and calculations overlapping
model, e.g. splitting one OpenMP thread off only to handle communication and
the others to perform useful calculations.

Acknowledgments. This work was supported by the grant W/WI/3/11 from
Bialystok University of Technology.

Hybrid Hierarchical Parallel Approach in Vascular Network Modeling 385

References

1. Gebali, F.: Algorithms and Parallel Computing. Wiley, NJ (2011)
2. Hager, G., Wellein, G.: Introduction to High Performance Computing for Scientists

and Engineers. CRC Press, Boca Raton (2010)
3. Kretowski, M., Rolland, Y., Bezy-Wendling, J., Coatrieux, J.-L.: Physiologically

Based Modeling for Medical Image Analysis: Application to 3D Vascular Networks
and CT Scan Angiography. IEEE Trans. Med. Imaging 22(2), 248–257 (2003)

4. Mescam, M., Kretowski, M., Bezy-Wendling, J.: Multiscale Model of Liver
DCE-MRI Towards a Better Understanding of Tumor Complexity. IEEE Trans.
Med. Imaging 29(3), 699–707 (2010)

5. Jurczuk, K., Krȩtowski, M., Bézy-Wendling, J.: Vascular Network Modeling -
Improved Parallel Implementation on Computing Cluster. In: Wyrzykowski, R.,
Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2009, Part I. LNCS,
vol. 6067, pp. 289–298. Springer, Heidelberg (2010)

6. Pacheco, P.: Parallel Programming with MPI. Morgan Kaufmann Publishers, San
Francisco (1997)

7. Jurczuk, K., Kretowski, M., Bezy-Wendling, J.: Vascular System Modeling in Par-
allel Environment - Distributed and Shared Memory Approaches. IEEE Trans. Inf.
Technol. Biomed. 15(4), 668–672 (2011)

8. Chapman, B., Jost, B.G., van der Pas, R., Kuck, D.J.: Using OpenMP: Portable
Shared Memory Parallel Programming. MIT Press, Cambridge (2007)

9. Rabenseifner, R., Hager, G., Jost, G.: Hybrid MPI/OpenMP Parallel Programming
on Clusters of Multi-Core SMP Nodes. In: 17th Euromicro Int. Conf. on Parallel,
Distributed & Network-based Processing, pp. 427–436. IEEE Press, Weimar (2009)

10. Shima, D.T., Ruhrberg, C.: Angiogenesis. In: Pelengaris, S., Khan, M. (eds.) The
Molecular Biology of Cancer, pp. 411–423. Blackwell, Oxford (2006)

11. Zamir, M.: Arterial Branching Within the Confines of Fractal L-system Formalism.
Journal of General Physiology 118, 267–275 (2001)

12. Schreiner, W., et al.: Optimized Arterial Trees Supplying Hollow Organs. Medical
Engineering & Physics 28(5), 416–429 (2006)

13. Jones, M.D., Yao, R., Bhole, C.P.: Hybrid MPI-OpenMP Programming for Parallel
OSEM PET Reconstruction. IEEE Trans. Nucl. Sci. 53(5), 2752–2758 (2006)

14. Pope, B., et al.: Performance of Hybrid Programming Models for Multiscale Car-
diac Simulations: Preparing for Petascale Computation. IEEE Trans. on Biomed.
Eng. 58(10), 2965–2969 (2011)

15. Amdahl, G.M.: Validity of the Single Processor Approach to Achieving Large Scale
Computing Capabilities. In: Proc. AFIPS, Atlantic City, vol. 30, pp. 483–485 (1967)

16. Curtis-Maury, M., et al.: Prediction Models for Multi-dimensional Power-
Performance Optimization on Many Cores. In: Proc. 17th Int. Conf. on Parallel
Architectures & Compilation Techniques, pp. 250–259. IEEE Press, Toronto (2008)

Runtime Optimisation Approaches

for a Real-Time Evacuation Assistant

Armel Ulrich Kemloh Wagoum, Bernhard Steffen, and Armin Seyfried

Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH,
Leo-Brandt-Strasse, 52428, Jülich, Germany

{u.kemloh,a.seyfried,b.steffen}@fz-juelich.de
http://www.fz-juelich.de/jsc/ped

Abstract. This paper presents runtime optimisation approaches for a
real-time evacuation assistant. The pedestrian model used for the fore-
cast is a modification of the centrifugal force model which operates in
continuous space. It is combined with an event driven route choice algo-
rithm which encompasses the local shortest path, the global shortest path
and a combination with the quickest path. A naive implementation of this
model has the complexity of O(N2), N being the number of pedestrians.
In the first step of the optimisation the complexity is reduced to O(N) us-
ing special neighbourhood lists like Verlet-List or Linked-Cell commonly
used in molecular dynamics. The next step in this optimisation process
is parallelisation on a multicore system. The Message Passing Interface
(MPI) and Open Multi-Processing (OpenMP) application programming
interfaces are used to this extend. The simulation is performed on the Ju-
ropa cluster installed at the Jülich Supercomputing Centre. The speedup
factors obtained are ∼ 10 for the linked-cells, ∼ 4 for 8 threads and ∼ 3
for the parallelisation on 5 nodes using a static domain decomposition.

Keywords: pedestrian dynamics, high performance computing, evacu-
ation, route choice.

1 Introduction

The Hermes project [12] which is funded by the German Federal Ministry of Ed-
ucation and Research, aims at developing an evacuation assistant for complex
facilities to support decision makers and securities services in case of emergency.
The target of the project is to forecast the evacuation of 50,000 pedestrians in
a stadium for the next 15 minutes within 2 minutes of computation, thus by a
factor of 7 faster than real-time. The test venue for the system is the ESPRIT
arena in Düsseldorf, North Rhine-Westphalia, Germany. The layout of the assis-
tant is presented in Fig.1. The input data for the simulation is divided in three
streams. The first stream is the geometry. There are two different configurations
for the geometry for different events: seats only and mostly seats with some
standing areas. The second stream comes from the safety and security manage-
ment system. The information about the states of the escape routes, which is

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 386–395, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.fz-juelich.de/jsc/ped

Runtime Optimisation Approaches for a Real-Time Evacuation Assistant 387

important in an hazardous situation, are made available. This information in-
cludes which doors are still usable (not blocked for instance) and which areas of
the stadium are smoke-filled. The third stream comes from an automatic per-
sons counting system. The output is the number of pedestrians in each block.
Other input for the simulation includes the type of the event, concert or foot-
ball game for instance and the type of the evacuation that should be simulated.
This is important for choosing the appropriate routing strategy and reproducing
the correct behaviour. The practical tests of the system will hopefully only sees
routine clearings, no emergency evacuations. In this case, the route choice is not
necessarily the local shortest path out of the building, but a lengthy way along
the promenade towards the parking lots and the train station. After a real-time
simulation, the results are analysed, visualised and discussed by the decisions
makers. Majors challenges for this assistant include the proper development of
microscopic models to accurately reproduce individual pedestrian motions, the
proper development of a route choice model and the efficient implementation
of these with respect to the runtime. In this paper we focus on the runtime
optimisation.

The second part of this work presents the modelling approaches used at the
strategic and at the operational level of the pedestrian motion. The third part
presents the results of the runtime optimisation approaches with a focus on
the parallelisation. This contribution is thereafter closed with some concluding
remarks and outlooks.

Fig. 1. Layout of the evacuation assistant

2 Modelling

There are mainly three different classes of models for pedestrian dynamic: cel-
lular automata models [4,15], rule based models [26,6] and force based models
[11,28]. Cellular Automata have the advantage of being computationally effi-
cient, but the resolution of the simulated geometry is limited by the size of the
cells. Force based models usually operate on a continuous geometry. They need

388 A.U. Kemloh Wagoum, B. Steffen, and A. Seyfried

more computations. For more about the advantages and disadvantages of the in-
dividual models we refer to [22]. Cellular automaton and force based models are
used in the evacuation assistant but the focus is set on the force based models
in this contribution.

2.1 The Generalized Centrifugal Force Model

The force based model used in the evacuation assistant is the generalized cen-
trifugal force model (GCFM) [5]. In the GCFM at the operational level pedes-
trians are described with ellipses with velocity dependent semi-axes. The motion
is ruled by the social forces [11,16]. At each simulation step the forces between
the pedestrians and the obstacles (e.g. walls) are computed. Given a pedestrian

i with coordinates
−→
Ri, the equation of motion is:

mi
−̈→
Ri =

−→
Fi =

−−→
F drv
i +

∑
j∈Ni

−−→
F rep
ij +

∑
w∈Wi

−−→
F rep
iw , (1)

where
−−→
F rep
ij denotes the repulsive force from pedestrian j acting on pedestrian i,

−−→
F rep
iw is the repulsive force emerging from the obstacle w and

−−→
F drv
i is a driving

force.mi is the mass of pedestrian i.Ni is the set of all pedestrians that influences
pedestrian i and Wi the set of walls or borders that acts on pedestrian i. They
are within a certain cut-off radius rc = 2m. One should note here that it is
not a hart cut-off as the repulsive forces are Hermite interpolated, so that they
smoothly reach the values 0 at the distance rc.

2.2 Event Driven Routing

The routing approach used in the assistant is a quickest path approach which oper-
ates on a graph-based structure. The visibility and the internal state of the pedes-
trians is used to (re)direct the pedestrians. Pedestrians minimise their travel time
by systematically avoiding jams. They also try to escape from an already exist-
ing jam situation whenever possible. The process of systematically optimising the
travel time is shown in Fig. 2. When a pedestrian enters a new location, he/she
senses the environment and chooses the quickest path to reach the final destina-
tion. The same applies if the pedestrian is caught in a jam and there is an escape
possibility, not in the middle of the jam for instance. The approximation is done
by selecting a reference pedestrian in the sight range and evaluation his/her evo-
lution over an observation time. Detailed information is found in [14].

3 Runtime Optimisation

The evacuation assistant should perform a real-time computation. This is a
particular challenge for the force models. For instance a naive implementation of
the GCFM requires for stability issues a time step dt = 0.001s whereas dt = 0.5s
are usually enough for CA. A simulation of 15 minutes therefore corresponds to

Runtime Optimisation Approaches for a Real-Time Evacuation Assistant 389

1x

2x

1n

2n 3n

4n

3x
4x

5x 6x

7x

8x

Fig. 2. Process of selecting a reference pedestrian prior to a route change. Pedestrians
are denoted with their positions. x1 will select x5, x6 and x8. x2 has no clearance
of the current situation and will not select any. x3 selects x6 and x8. x4 will only
select x7.

900000 update steps. Considering the fact that at least 10000 pedestrians are
updated in each simulation step, we end up having 9.109 update steps. Each step
includes arithmetic operations like computing the forces between the pedestrians,
the forces to the walls, the new velocities and positions. Each of which comprises
several trigonometric and square root functions. Detailed information about the
operations and performance are found in [24].

The optimisation is performed at three levels. The serial code is implemented
using the linked-cells neighbourhood list to consider the short range character of
the repulsive forces. The code is executed in a multi-threaded environment using
OpenMP. Finally MPI is used to run the code across many computer nodes.

3.1 Simulation Area

The simulation domain (part of the arena) is presented in Fig. 3a and Fig. 3b.
It is logically subdivided in 15 sections, which are mapped into the detection
areas of the automatic person counting systems. This division will also be used
as domain decomposition technique for the parallelisation as shown in the next
sections.

3.2 Linked-Cells

A naive implementation of the GCFM has the complexity of O(N2), N being the
number of simulated pedestrians. This is due to the fact that at each simulation
step, the neighbourhood of each pedestrian has to be determined. The complex-
ity can be reduced to O(N) using special neighbourhood lists like verlet-list or
linked-cell commonly used in molecular dynamics [2,25]. The performance com-
parison of the two list types and some of the results achieved are presented in
[23]. The linked-cells have provided better results than the verlet-list in terms of
memory requirements. Both perform equally in terms of speedup. The cell size
is 2.2m. Recall that the cell size should be at least equal to the cut-off radius.

390 A.U. Kemloh Wagoum, B. Steffen, and A. Seyfried

(a) Tribune (b) Promenade

Fig. 3. Simulation area subdivided in 15 sections

3.3 Parallelisation

The next step in this optimisation process is the use of parallelisation on a mul-
ticore system. The Message Passing Interface (MPI) and Open Multi-Processing
(OpenMP) application programming interfaces are used to this extend.

The most suitable parallelisation strategy for an application is usually cou-
pled to the underlying hardware architecture. Some techniques on GPUs are
presented in [17], and results on the cell-broadband engine are presented in [21].
More general techniques for particles in molecular dynamics are found in [8] and
especially for pedestrian dynamics in [20,18].

Independently of the underlying hardware architecture, there are several paral-
lelisation techniques with different complexities in the computation, the memory
required and the communication resp. the data exchange between the processors.

One technique is the replicated data approach [13]. Each processor keeps a
copy of all data in its memory, but works only on the portion it is responsible of.
This method has a large communication complexity. At each step, all processors
have to actualize their data. For P processors and N pedestrians this algorithm
achieves a parallel complexity of the order O(N/P) (N thanks to the linked-
cells) for the CPU time, but its communication and memory complexities are of
the order O(N). The replicated data approach does not scale with P and the
total runtime is dominated by the communication.

Another approach is parallelization by data partitioning. Here, each processor
only stores the data of the pedestrians required during the computation. These
are the N/P pedestrians that are assigned to the processors in the parallel
computation, and the other pedestrians that interact with those pedestrians, i.e
the pedestrians in the neighborhood (see Eq. 1). The data partitioning method
scales as O(N/P) for computation and communication as long as P is so small
that latency is negligible.

A similar approach to the data partitioning is achieved by static domain de-
composition [9,19]. The main goal here is to limit the communication between

Runtime Optimisation Approaches for a Real-Time Evacuation Assistant 391

the processors. For that purpose the simulation domain is decomposed into sub-
domains and each processor is assigned a subdomain. The data are partitioned
and distributed to processors in such a way that as little communication as
possible is needed. In each communication step only the pedestrians from neigh-
boring subdomains have to be communicated. Using the linked-cells, this number
of neighboring pedestrians can be further reduced using the so-called ghost ar-
eas. In this way, the number of pedestrians for which data to be received or
sent decreases to O(

√
N/P). The complexity of the entire computation is of the

order O(N/P). One should note that this applied only when the pedestrians
are uniformly distributed. In the case where the pedestrians are not uniformly
distributed, dynamic decompositions [10,3,27] might be required to, ensure an
almost uniform distribution of the N pedestrians on the P processors.

We end up choosing a static decomposition on the geometry presented in
Fig. 3 not only because of its relatively low communication requirements but
also due to the natural partitions given by the persons counting system. This
partitioning was done to achieve as less interactions as possible between the
domains. This is done by choosing the boundaries between the domains, which
are also the counting lines for the system, as small as possible, thus mainly at
doors. We also assume an initial uniform distribution of the pedestrians.

3.4 Load Balancing

Load balancing is important to parallel programs for performance reasons. All
processors should have approximately the same amount of work to do. This
is not always possible in the case of a static partitioned simulation area. One
solution is to use a dynamic partitioning as presented earlier. This is done at
the cost of a higher communication between the processors. In the case of the
evacuation assistant, the initial pedestrians number is received via sensors (see
Fig. 1) of an automatic persons counting system. The received pedestrians are
then homogeneously distributed in their respective areas. The simulation area is
initially partitioned in 15 sections well suited for a load balancing at the start
time. A major difference to general particles simulation in molecular dynamics
or in N-Body systems in general is that the pedestrians stream and direction of
movement is predictable. Predictable in that sense that at a certain time in the
simulation, they will gather at exits. Therefore the idea of ”manually” splitting
the simulation area into static area for the processor is well suited. Another
reason is the production machine dedicated to the application. 15 nodes are
available for the space continuous model in the evacuation assistant. In addition
the results of the simulation, i.e. the trajectories of the pedestrians are written
with respect to those areas, which means that each of the processors can perform
IO operations without any need of synchronisation with others.

3.5 Results

The presented results have been obtained on JUROPA [1], an Intel based clus-
ter installed at the Jülich Supercomputing Centre from the Forschungszentrum

392 A.U. Kemloh Wagoum, B. Steffen, and A. Seyfried

Jülich GmbH. For the results presented here, only the promenade has been sim-
ulated and the pedestrians are always equally and homogeneously distributed
in the 5 sections. Two common values to measure the performance of a par-
allel application are the speedup and the efficiency. The speedup is defined by
S(P) = T/T (P) where T is the time needed by the serial application and T (P)
the time needed by the parallel (optimised) application. The efficiency is the
defined as E(P) = S(P)/P . We only evaluate using the speedup.

0 500 1000 1500 2000 2500 3000 3500 4000

pedestrians

0

10

20

30

40

50

 s
p
e
e
d
u
p

LC + 1 thread

LC + 2 threads

LC + 4 threads

LC + 8 threads

Fig. 4. Speedup of the linked-cells with different number of threads over the brute
force method

Fig. 4 shows a comparison of the brute force method and the linked-cells on a
single node using 1, 2 , 4 and 8 threads. One should note here that the brute force
is only in the neighbourhood detection, not on the force computation between
the pedestrians. The runtime applies to a complete simulation i.e. all pedestrians
have left the facility. The overall speedup obtained for 5 X 800 Pedestrians in
this case is 10.50 for 1 thread and 48.61 for 8 threads.

Fig. 5 shows the results obtained using an hybrid MPI+OpenMP parallelisa-
tion approach on 5 computing nodes. The overall speedup obtained in this case
for 5 X 800 pedestrians is 131.44 over the brute force serial program and 12.52
over the code optimised with the linked cells. The individual runtimes in seconds
are presented in Table 1.

In the real case scenario the awaited initial load for each simulation area is around
1000 pedestrians. A simulation with this configuration is actually performed in ∼
543 seconds. This is still four time higher than the required 2 minutes computa-
tion time. The simulation on the production machine however is by a factor ∼ 5
faster than on JUROPA. The production machine is a 12 cores Nehalem proces-
sors machine, with 15 nodes dedicated to the force GCFM model. Its nodes have a
larger memory and a higher CPU frequency. Under these conditions the real-time
requirement will be met. Still, a closer look at the simulation with appropriate de-
bugging tools of the Scalasca toolset [7], shows that the communication between
the processors offers further possibilities of optimisation.

Runtime Optimisation Approaches for a Real-Time Evacuation Assistant 393

0 500 1000 1500 2000 2500 3000 3500 4000

pedestrians

0

20

40

60

80

100

120

140

 s
p
e
e
d
u
p

1 node, 1 thread

1 node, 8 threads

5 nodes, 1 thread

5 nodes, 8 threads

Fig. 5. Speedup of the hybrid program (MPI + OpenMP) over the serial brute force
method

Table 1. Runtime in seconds using the brute force (BF) the linked cells (LC) and a
hybrid parallel implementation (5 nodes + 8 threads + LC)

#pedestrians BF LC Hybrid

250 186 82 34
500 608 178 40
1000 2427 450 75
2000 11490 1464 167
4000 71422 6803 543

4 Conclusion

The Hermes project has been presented in this paper, together with the new
challenges it is involved with. A special focus has been set on the runtime require-
ments. The goal of performing a real-time simulation has been almost reached
with help of different optimisation techniques including neighbourhood lists and
parallelisation on a super computer. The real-time requirement will be met with
the actual program on the production machine which has a different configura-
tion. Nevertheless other optimisation steps will be undertaken. For instance the
implementation of solvers which allow a larger step size like the Verlet or the
Leapfrog Algorithms.

Acknowledgments. This work has been performed within the program ”Re-
search for Civil Security” in the field Protecting and Saving Human Life” funded by
the German Government, Federal Ministry of Education and Research (BMBF).
The project is granted under the Grant-Nr.: 13N9952. We also thank the John von
Neumann-Institut for Computing (NIC) at the Forschungszentrum Jülich GmbH
for providing the computation time on JUROPA.

394 A.U. Kemloh Wagoum, B. Steffen, and A. Seyfried

References

1. Juropa-JSC - HPC-FF (August 2009), http://www.fz-juelich.de/portal/EN/

Research/InformationTechnology/Supercomputer/JUROPA.html

2. Allen, M.P., Tildesley, D.J.: Computer simulation of liquids, vol. 18. Oxford Uni-
versity Press (1989)

3. Baiardi, F., Bonotti, A., Ferrucci, L., Ricci, L., Mori, P.: Load balancing by do-
main decomposition: the bounded neighbour approach. In: Proc. of 17th European
Simulation Multiconference, pp. 9–11 (2003)

4. Blue, V.J., Adler, J.L.: Cellular automata microsimulation for modeling bidirec-
tional pedestrian walkways. Transportation Research Part B 35, 293–312 (2001)

5. Chraibi, M., Seyfried, A., Schadschneider, A.: Generalized centrifugal force model
for pedestrian dynamics. Physical Review E 82, 046111 (2010)

6. Galea, E.R., Gwynne, S., Lawrence, P., Filippidis, L., Blackspields, D., Cooney,
D.: buildingEXODUS V 4.0 - User Guide and Technical Manual (2004)

7. Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B.: The
scalasca performance toolset architecture. Concurrency and Computation: Practice
and Experience 22(6), 702–719 (2010)

8. Griebel, M., Knapek, S., Zumbusch, G.: Numerical Simulation in Molecular Dy-
namics: Numerics, Algorithms, Parallelization, Applications, 1st edn. Springer
Publishing Company, Incorporated (2007)

9. Hanxleden, R.V., Clark, T.W., Clark, T.W., Hanxleden, R., Mccammon, J.A.,
Scott, L.R.: Parallelizing molecular dynamics using spatial decomposition. In: Scal-
able High Performance Computing Conference, pp. 95–102. IEEE Computer Soci-
ety Press (1993)

10. Hegarty, D., Kechadi, M., Dawson, K.: Dynamic Domain Decomposition and Load
Balancing for Parallel Simulations of Long-Chained Molecules. In: Waśniewski,
J., Madsen, K., Dongarra, J. (eds.) PARA 1995. LNCS, vol. 1041, pp. 303–312.
Springer, Heidelberg (1996)

11. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev.
E 51, 4282–4286 (1995)

12. Holl, S., Seyfried, A.: Hermes - an Evacuation Assistant for Mass Events. in-
SiDe 7(1), 60–61 (2009), http://inside.hlrs.de/pdfs/inSiDE_spring2009.pdf

13. Janak, J., Pattnaik, P.: Protein calculations on parallel processors. ii. parallel al-
gorithm for the forces and molecular dynamics. Journal of Computational Chem-
istry 13(9), 1098–1102 (1992)

14. Kemloh Wagoum, A.U., Seyfried, A., Holl, S.: Modelling dynamic route choice of
pedestrians to assess the criticality of building evacuation. Advances in Complex
Systems 15(3) (2012)

15. Kirchner, A., Schadschneider, A.: Simulation of evacuation processes using a
bionics-inspired cellular automaton model for pedestrian dynamics. Physica A 312,
260–276 (2002)

16. Molnár, P.: Modellierung und Simulation der Dynamik von Fußgängerströmen.
Dissertation, Universität Stuttgart (1995)

17. Richmond, P., Romano, D.: A High Performance Framework For Agent Based
Pedestrian Dynamics On GPU Hardware. In: Proceedings of EUROSIS ESM 2008
(European Simulation and Modelling) (October 2008)

18. Pettré, J., De Heras Ciechomski, P., Mäım, J., Yersin, B., Laumond, J.P., Thal-
mann, D.: Real-time navigating crowds: scalable simulation and rendering: Re-
search articles. Comput. Animat. Virtual Worlds 17, 445–455 (2006)

http://www.fz-juelich.de/portal/EN/Research/InformationTechnology/Supercomputer/JUROPA.html
http://www.fz-juelich.de/portal/EN/Research/InformationTechnology/Supercomputer/JUROPA.html
http://inside.hlrs.de/pdfs/inSiDE_spring2009.pdf

Runtime Optimisation Approaches for a Real-Time Evacuation Assistant 395

19. Plimpton, S., Hendrickson, B.: Parallel molecular dynamics algorithms for simula-
tion of molecular systems. In: Mattson, T.G. (ed.) Parallel Computing in Compu-
tational Chemistry, pp. 114–136 (1995)

20. Quinn, M.J., Metoyer, R.A., Hunter-zaworski, K.: Parallel implementation of the
social forces model. In: Proceedings of the Second International Conference in
Pedestrian and Evacuation Dynamics, pp. 63–74 (2003)

21. Reynolds, C.: Big fast crowds on PS3. In: Proceedings of the 2006 ACM
SIGGRAPH Symposium on Videogames (2006)

22. Schadschneider, A., Klingsch, W., Klüpfel, H., Kretz, T., Rogsch, C., Seyfried,
A.: Evacuation Dynamics: Empirical Results, Modeling and Applications. In: En-
cyclopedia of Complexity and System Science, vol. 5, pp. 3142–3176. Springer,
Heidelberg (2009)

23. Seyfried, A., Chraibi, M., Mehlich, J., Schadschneider, A.: Runtime Optimization
of Force Based Models within the Hermes Project. In: Pedestrian and Evacuation
Dynamics 2010(2010)

24. Steffen, B., Kemloh Wagoum, A.U., Chraibi, M., Seyfried, A.: Parallel real time
computation of large scale pedestrian evacuations. In: Ivanyi, P., Topping, B.H.V.
(eds.) The Second International Conference on Parallel, Distributed, Grid and
Cloud Computing for Engineering, p. 95. Civil-Comp Press, S (2011) 978-1-905088-
44-7

25. Sutmann, G., Stegailov, V.: Optimization of neighbor list techniques in liquid mat-
ter simulations. Journal of Molecular Liquids 125(2-3), 197–203 (2006)

26. Thompson, P.A.: Developing new techniques for modelling crowd movement. Phd
thesis, University of Edinburgh (1994)

27. Wang, S., Armstrong, M.P.: A quadtree approach to domain decomposition
for spatial interpolation in grid computing environments. Parallel Comput. 29,
1481–1504 (2003)

28. Yu, W.J., Chen, R., Dong, L., Dai, S.: Centrifugal force model for pedestrian
dynamics. Phys. Rev. E 72(2), 026112 (2005)

A Parallel Genetic Algorithm
Based on Global Program State Monitoring

Adam Smyk1 and Marek Tudruj1,2

1 Polish-Japanese Institute of Information Technology,
86 Koszykowa Str., 02-008 Warsaw, Poland

2 Institute of Computer Science, Polish Academy of Sciences,
21 Ordona Str., 01-237 Warsaw, Poland

{asmyk,tudruj}@pjwstk.edu.pl

Abstract. A new approach to the design of parallel genetic algorithms
(GA) for execution in distributed systems is presented. It is based on
the use of global parallel program control functions and asynchronous
process/thread internal execution control based on global application
states monitoring. A control design graphical infrastructure is provided
for a programmer based on generalized synchronization processes called
synchronizers. They collect local states of program elements, compute
global control predicates and send control signals to program compu-
tational elements. It enables an easy construction and management of
global program states for the purpose of the program execution control
at both thread and process level. At each level we create a hierarchical
control/synchronization infrastructure which is used to optimize the con-
trol of computations in programs. As an example we present the design
of a parallel genetic algorithm used to partition a macro data flow graph
for FDTD (Finite Difference Time Domain method) computations.

Keywords: distributed program design paradigms, mesh partitioning,
global application states monitoring, graphical program design tools,
FDTD.

1 Introduction

Optimization of many parallel applications which solve numerical simulation
needs global synchronization primitives in programs. It is because program code
decomposition and distribution for such applications in parallel systems is not
simple. The first problem is to ensure a proper processor load balancing, which
can be especially difficult if the application is based on irregular data structures
[9]. A volume of data supplied and processed in each computational element
must correspond to its real computational power. Another problem concerns a
transfer of data between each computational element in a given distributed sys-
tem. A total communication volume should be adjusted to the available network
performance. To obtain such optimal graph partitioning (it is a NP -complete
problem) we can use some direct (based on the cut-min optimization) [8] or

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 396–405, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Parallel Genetic Algorithm Based on Global Program State Monitoring 397

iterative techniques [6–8]. In this paper, we present a solution for heuristical
program partitioning algorithm which is based on a parallel genetic algorithm
[12]. Convergence of genetic algorithms depends on definitions of genetic opera-
tors (selection, crossover and mutation) and also on the evaluation of the fitness
function.

Fig. 1. Synchronizer co-operation with processes or threads

We consider a parallel implementation of the genetic algorithm [5, 12], so the
populations of individuals (solutions) will be distributed among computational
processors. Fitness functions for individuals can be computed independently on
each processor. But, genetic operations in many cases must be done globally.
It means that for genetic operations we can select two or more individuals lo-
cated on different processors. To perform it efficiently, we should answer several
questions. On which processors, the best individuals are located? Which indi-
viduals should be distributed? Will they be distributed to all processors, or only
to some chosen ones? What kind of communication should be used: broadcast,
multicast, point to point? How often it should be done? How to avoid a network
contention? In fact, the answers to these questions are not obvious. Distribution
of the best individuals should be controlled globally [11]. It must depend on
the global state of the application which should be dynamically monitored [16].
To perform such monitoring, a special control synchronization infrastructure
can be created. Such an asynchronous program execution control mechanism is
illustrated in Fig.1 [2, 4].

We have assumed that an application consists of computational processes or
threads that can be executed in parallel in a system with shared-distributed
memory. All these processing elements can send and receive data by using stan-
dard communication mechanisms like sockets, MPI or shared memory. This kind
of communication is usually implemented manually by the programmer. In or-
der to support control communication for synchronization operations, a special
control infrastructure will be delivered.

The core of the control infrastructure is an element called a synchronizer. It
collects local state messages from all computational elements. It determines, if

398 A. Smyk and M. Tudruj

the application has reached a strongly consistent global state SCGS [1]. SCGS
is a set of fully concurrent local states detected without doubt by a synchro-
nizer. The construction of strongly consistent global states is based on project-
ing the local states of processes or threads on a common time axis and finding
time intervals which are covered by local states in all participating processes
or threads [14]. Next, the synchronizer evaluates control predicates on global
states and undertakes predefined control actions. If some predicates are met,
then the synchronizer sends control signals to selected processes or threads, see
Fig.2. The signals must be handled by these processes and some desired ac-
tions should be performed. In the code of a process (thread), we can distinguish
regions sensitive to incoming signals. They are marked by special delimiters.
When a computational process enters a sensitive region, it will start receiving
signals from a synchronizer and performs reactions defined in its code. If not,
the signal is ignored and the reaction will not appear. To increase the control
performance, all control messages are physically separated from messages used
by computational elements for data communication by using separate communi-
cation networks. The use of such dual communication network to support global
application states monitoring was discussed in [3].

The described above control/synchronization environment has currently been
under development as a PEGASUS (Program Execution Governed by Asyn-
chronous Supervision of States) system [15]. It is assumed for the implementation
of the genetic algorithms discussed in this paper.

The paper is composed of 3 parts. In the first part an overview of the FDTD
method is presented. In the second part FDTD computation optimisation is
discussed basd on genetic algorithms. In the last part parallelization of the ge-
netic algorithms with the use of the PEGASUS system infrastructure has been
outlined.

2 FDTD Method Overview

Using the FDTD computational method we can simulate high frequency elec-
tromagnetic wave propagation by solving Maxwell equations (1).

We have assumed that a simulated area is represented by a two dimensional,
irregular shape, see Fig.3. Before the simulation starts, a computational mesh
(CM) must be created. CM structure depends on the FDTD theory and for a
two dimensional problem it is defined according to differential equations (2). CM
consists of a given number of points (mesh density depends on the frequency of
simulation) each of which contains alternately electric component Ez of electro-
magnetic field and one from two magnetic field components Hx or Hy (depending
on coordinates).

Simulation is an iterative process which is divided into a given number of
iterations. Each iteration consists of two steps: computation of the values of
all Ez components in the first step and computation of the values of Hx and
Hy components in the second step. For regular computational areas, FDTD
computations can be easily parallelized (e.g. by stripe partitioning) but when

A Parallel Genetic Algorithm Based on Global Program State Monitoring 399

Fig. 2. Control flow diagram of a synchronizer

an irregular shape of the computational area is considered the decomposition
is much more complicated. It is because a special partitioning algorithm must
be used before parallel computations can be started. This algorithm must take
into consideration both a proper load of all processing nodes and the minimal
number of data transmissions. To solve this problem, a macro data flow graph
for the FDTD computations mapped to executive resources must be created.
It is done in three steps: 1) creation of a data flow graph showing basic data
dependencies between FDTD operations; 2) merging data flow graph nodes into
separate macro data flow nodes; 3) mapping each macro data flow graph node
to an executive processor. All these steps are described in details in [13].

All computations in each sub-area are represented by one macro node. A
macro node can be fired for execution only if all input data have been delivered
to the physical processor on which this macro node has been mapped. The
data dependencies are described by edges between macro nodes. Edges can be
attributed with weights which give the amount of data, sent from one macro node
to another. The weight depends on the length of the boundary line between two
adjacent sub-areas.

3 Computation Partitioning Using a Genetic Algorithm

In this section, we describe main assumptions on a genetic algorithm which
partitions the FDTD data flow graph to find the heuristical partition of a com-
putational mesh, to assure time-balanced simulation execution in processors, see
Fig.4. Before the genetic algorithm will start, we need to create: an computa-
tional area with an initial partitioning (CAIP) and an initial population (IP).

400 A. Smyk and M. Tudruj

Fig. 3. Irregular computational area with FDTD computational mesh

CAIP is obtained from the data flow graph which represents computations and
communication pattern in given computational area. It is done in two steps: 1)
leader data flow nodes identification (each leader node represents a further single
initial macro node) and 2) initial macro nodes creation, by simple assignment of
nodes to the macro node which is determined by the closest leader. This process
is described in details in [13]. The number of leaders is usually much bigger than
the assumed number of processors in a given computational system. To create
an initial population containing an assumed number of individuals we need to
provide a definition of a chromosome. As we have mentioned above, our genetic
algorithm produces a program which performs a sequence of merging operations.
Each merging operation has two parameters: which are the identifiers of macro
data flow nodes to be merged together. These identifiers must be found by the
genetic algorithm GA. To do this, we have introduced a set of rules (see Fig.5)
that indicate objectives of each merging operation. We can design a GA, which
focuses only on e.g. communication optimization and it will define priorities to
“edge cut reduction” rules. In Fig.5 we present a definition of a chromosome.

As we can see, a chromosome is an array of integers. Each integer is an index
to a chosen merging rule which will be executed in each step by our genetic
algorithm. The length L of the array, determines how many merging operations
must be executed to obtain a given number of partitions and it is equal to:

L = InitialNumberOfParttionsInIMDF–GivenNumberOfProcesors

When all (L) merging rules are defined, we have to evaluate the fitness function
for all individuals. The value of the fitness function indicates the best candidates
for reproduction. In our experiments we have used two fitness functions: the
execution time of the partitioned macro data flow graph and the number of

A Parallel Genetic Algorithm Based on Global Program State Monitoring 401

the cut edges in the obtained DFG graph partition. When the fitness function is
evaluated we can select the best candidates for reproduction and we can perform
crossover and mutation operations. This part of the algorithm is presented in
details in [13].

Fig. 4. General overview of the GA partitioning method

Fig. 5. Single chromosome structure

4 Parallelization of a Genetic Algorithm Based on Global
Program State Monitoring

Genetic algorithms, can be easily implemented in parallel way [10]. Theoretically,
all operations shown in dark gray boxes (Fig.4) are data independent and they
can be executed on separated processors. The problem appears, when we want to
perform a crossover operation. One instance of the GA working on one processor,

402 A. Smyk and M. Tudruj

can create an isolated population without any interference of individuals from
populations created on other processors. So, if any GA instance creates some
promising individuals, they should be broadcast among other instances of GA.

Fig. 6. Co-operation between instances of genetic algorithm (processes and threads)
and synchronizers

However, no known GA parallelization examples have not been supported
yet by a convenient control infrastructure provided by the runtime system. In
Fig.6 we show how to parallelize GA based on the infrastructure of PEGASUS
synchronizers which enable convenient monitoring and management of global
application states for proper control purposes. We can assume that each instance
of GA can be executed as a process (e.g. GAp3) or as a thread (e.g. GAth2).

The state of a single individual is described by its chromosome, a total execu-
tion time for current partitioning and by cut min value. The state of the whole
local population is an array containing states for all local individuals. To share
state information during the optimization we have used a hierarchical infrastruc-
ture of synchronizers and GA instances. We distinguish synchronizers for threads
(Sth) and for processes (Sp). Each thread synchronizer is a special thread that
co-operates with group of computational threads created inside one process.
Each process synchronizer is a special process that co-operates with group of
computational process. A process synchronizer doesn’t directly co-operate with
group of computational threads. It is because, there is no technical support for
communication between threads belonging to different processes, so some inter-
mediate level of communication has been introduced. During the execution, all
information concerning states of individuals and of the whole local population is
stored in local structures of the synchronizers (Fig.7 left). Control flow diagram
of a synchronizer for the parallel genetic algorithm implementation is presented
in Fig.7 (right). The synchronizer waits for messages from all computation ele-
ments connected to it, containing reports on their local states. A synchronizer
collects messages on all local states and store them into a global state array. All
local states for all computations, are kept on the synchronizer. When a global

A Parallel Genetic Algorithm Based on Global Program State Monitoring 403

state array, is updated, the synchronizer can start to compute a predicate. In the
case of our parallel GA, we have specified the following predicates: the synchro-
nizer has found definitely the best individual (DTBS), many better solutions
have been found (BS) and there is no improvement observed (NIO).

Fig. 7. (left) Global population state array on a synchronizer and (right) Control flow
diagram of a synchronizer for the parallel genetic algorithm

If the first predicate (DTBS) is met, the best solution will be send imme-
diately to all computational elements. If the second predicate (BS) is met, all
better solutions, will be stored in a public memory. Public memory is a glob-
ally accessed memory pool, available for all remote processes and threads (e.g.
membase) . In this case, there is no communication between any computational
elements. If the third predicate (NIO) is met, it means that no improvement
has been observed for whole global population and local populations must be
supported by local solutions stored in a public memory. The synchronizer decides
which local individuals will be used for global population improvement. After a
given number of NIO actions, the synchronizer can decide to sends a kill signal
to all managed computational elements. It means that for such merging rules
and for such local configurations, no better global solution can be found. In Fig.8
a control flow diagram for the parallel genetic algorithm (PGA) for computa-
tional processes (threads) is shown. The general scheme of PGA is similar to
this presented in Fig.4 for GA. There are some modifications which have been
introduced. First, a computational process must record its local state in a spe-
cial array (see. Fig.7). So in every iteration it sends to the closest synchronizer
a full quality report for the whole local population. The synchronizer, receives
such reports, stores them in its local memory, computes predicates (DTBS,

404 A. Smyk and M. Tudruj

BS, NIO), and sends signals with suggested actions for all computational ele-
ments. Each computational process must receive these messages. In response, it
performs some predefined actions to increase the quality of its local population.

Fig. 8. Control flow diagram of a computational process (thread) in the genetic algo-
rithm with synchronizers

5 Conclusions

In this paper we have presented a parallel implementation of a genetic algorithm
which can be executed in distributed systems. The control of all genetic operators
(selection, crossover and mutation) execution is based on the use of global paral-
lel program control functions and asynchronous process/thread internal execution
control based on global application states monitoring. The control infrastructure
is based on processes (or threads) called synchronizers, which gather local states
from distributed program elements, compute global predicates and send back con-
trol signals to simulate desired reactions in the program elements. We have shown,
that such a control infrastructure provides a convenient support to design a paral-
lel implementation of a genetic algorithm used to partition a computational mesh
of the FDTD problem.

References

1. Babaoglu, O., Marzullo, K.: Consistent global states of distributed systems: funda-
mental concepts and mechanisms. In: Distributed Systems, Consistent Global States
of Distributed Systems: Fundamental Concepts and Mechanisms. Addison-Wesley
(1995)

A Parallel Genetic Algorithm Based on Global Program State Monitoring 405

2. Borkowski, J.: Interrupt and Cancellation as Synchronization Methods. In:
Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2001.
LNCS, vol. 2328, pp. 3–8. Springer, Heidelberg (2002)

3. Borkowski, J., Tudruj, M.: Dual Communication Network in Program Control
Based on Global Application State Monitoring. In: ISPDC 2007, pp. 37–44. IEEE
CS, Hagenberg (2007)

4. Borkowski, J., Tudruj, M., Kopański, D.: Global predicate monitoring applied for
control of parallel irregular computations. In: Euromicro PDP 2007, pp. 105–111.
IEEE CS, Naples (2007)

5. Coley, D.A.: An Introduction to Genetic Algorithms for Scientists and Engineers
(Hardcover), Har/Dsk edn. World Scientific Publishing Company (November 1997)
ISBN-10: 9810236026

6. Dutt, S., Deng, W.: VLSI Circuit Partitioning by Cluster-Removal using Iterative
Im-provement Techniques. In: Proc. IEEE International Conference on Computer-
Aided Design, pp. 350–355 (1997)

7. Karypis, G., Kumar, V.: Unstructured Graph Partitioning and Sparse Matrix Or-
dering. Technical Report, Department of Computer Science, University of Minesota
(1995), http://www.cs.umn.edu/~kumar

8. Khan, M.S., Li, K.F.: Fast Graph Partitioning Algorithms. In: Proceedings of IEEE
Pacific Rim Conference on Communications, Computers, and Signal Processing,
Victoria, B.C., Canada, pp. 337–342 (May 1995)

9. Lin, H.X., van Gemund, A.J.C., Meijdam, J.: Scalability analysis and parallel ex-
ecution of unstructured problems. In: Eurosim 1996 Conference (1996)

10. Nowastowski, M., Poli, R.: Parallel Genetic Algorithm Taxonomy. In: Third In-
ternational Conference on Knowledge-Based Intelligent Information Engineering
Systems, KES 1999, May 13 (1999)

11. Raynal, M., Helart, J.-M.: Synchronization and control of distributed systems and
programs. John Wiley and Sons Ltd. (1990)

12. Smyk, A., Tudruj, M.: Optimization of Parallel FDTD Computations Using a Ge-
netic Algorithm. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski,
J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 559–569. Springer, Heidelberg (2008)

13. Smyk, A., Tudruj, M.: Parallel Implementation of FDTD Computations Based on
Macro Data Flow Paradigm. In: PARELEC 2004, Dresden, Germany, September
7-10 (2004)

14. Stoller, S.D.: Detecting Global Predicates in Distributed Systems with Clocks.
Distributed Computing 13(2), 85–98 (2000)

15. Tudruj, M., Borkowski, J., Smyk, A., Kopański, D., Laskowski, E., Maśko, Ł.:
Program Design Environment for Multicore Processor Systems With Program Ex-
ecution Controlled by Global States Monitoring. In: ISPDC 2011. IEEE CS, Clui-
Napoca (2011)

16. Tudruj, M., Kacsuk, P.: Extending Grade Towards Explicit Process Synchroniza-
tion in Parallel Programs. Computers and Artificial Intelligence 17 (1998)

http://www.cs.umn.edu/~kumar

Parallel Approach to the Functional

Decomposition of Logical Functions
Using Developmental Genetic Programming

Stanislaw Deniziak and Karol Wieczorek

Departament of Computer Science, Kielce University of Technology, Poland
S.Deniziak@computer.org

K.Wieczorek@tu.kielce.pl

Abstract. Functional decomposition is the main step in the FPGA-
oriented logic synthesis, where a function is decomposed into a set of
functions, each of which must be simple enough to be implementable
in one logic cell. This paper presents a method of searching for the best
decomposition strategy for logical functions specified by cubes. The strat-
egy is represented by a decision tree, where each node corresponds to a
single decomposition step. In that way the multistage decomposition of
complex logical functions may be specified. The tree evolves using the
parallel developmental genetic programming. The goal of the evolution is
to find a decomposition strategy for which the cost of FPGA implemen-
tation of a given function is minimal. Experimental results show that our
approach gives significantly better results than other existing methods.

Keywords: developmental genetic programming, parallel processing,
functional decomposition,FPGA devices.

1 Introduction

Genetic algorithms (GAs) [1] are powerful search techniques that are used to
solve complex optimization problems in different domains. But for some kind of
problems GAs are very time-consuming or have large memory requirements. In
such cases the only practical way is to the use of parallel processing. It was ob-
served that parallel GAs (PGAs) often provide better efficiency than sequential
approaches. Therefore, a lot of parallelization models for GAs were proposed.
This paper concerns the parallel approach to the developmental genetic program-
ming (DGP) [2], which is used to find the optimal decompositions of complex
logical functions.

Decomposition is a process of splitting a complex function into a set of smaller
sub-functions. It reduces the complexity of the problem of system analysis and
synthesis by dividing it into smaller subsystems. Decomposition is used in ma-
chine learning, pattern analysis, data mining, knowledge discovery and logic
synthesis of digital systems [3] [4]. In the case of digital circuits, objectives of
optimisation are the minimal cost and the minimal latency of target system
implementation.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 406–415, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Parallel Approach to Functional Decomposition Using Genetic Programming 407

Decomposition is a NP-complete problem, so using exhaustive method is very
time consuming and impractical. There exist a lot of heuristic methods of de-
composition dedicated to Boolean functions [5] [6]. As far as LUT-based FPGA
(Look-Up Table Based Field Programmable Arrays) implementations are con-
sidered, the most effective method is the functional decomposition [6]. It splits
a logical function into two smaller functions using a parallel or serial strategy.
This step should be repeated recursively for each result function which is not
implementable in one logic cell. The type of decompositions performed at the
following stages are defined by the multilevel decomposition strategy. There are
efficient methods of single-step functional decomposition, giving quite good re-
sults [7], but it seems that multilevel decomposition strategies are not studied
enough. The only known method is the balanced decomposition [7], but it was
not proved that this strategy is the optimal one.

This paper presents a new approach to the multilevel functional decomposi-
tion. For each circuit a dedicated strategy of decomposition is evaluated. The
strategy defines the methods of decompositions which are applied during each
step. In our approach the strategy of decomposition is optimized using the ge-
netic programming. We observed that our method gives significantly better re-
sults for the most of the evaluated benchmark circuits. Moreover, using parallel
procesing we obtained significant improvement in efficiency, thus our method
may be applied to decompose large functions.

In the next section the functional decomposition is described. Section 3 presents
the idea of the developmental genetic programming. In the section 4 our method
is presented. Section 5 presents the parallelization model of our approach. Section
6 contains experimental results. The paper ends with conclusions.

2 Functional Decomposition

Let F be a multiple-input/multiple-output function. The function may be de-
composed using parallel or serial strategy. The parallel decomposition expresses
the function F (X) through functions G and H with disjoint sets of output vari-
ables. The serial decomposition expresses the function F (X) through functions
G and H, such that F=H (U,G(V)), where U ∪ V=I. If the number of inputs
and outputs of the result function does not exceed the number of inputs and
outputs in the LUT, then the function is implementable in one LUT cell.

To find the optimal result the following problems of defining the decomposition
strategy should be resolved:

1. which decomposition method should be used;
2. which sets of separated inputs (in serial decomposition) or outputs

(in parallel decomposition) should be chosen.

The only known solution for the first problem is the balanced decomposition [7].
In this strategy the parallel decomposition is chosen if the decomposed function
has more outputs than inputs, otherwise the serial decomposition is applied.
However, it was not proved that this strategy is the best one for the functional

408 S. Deniziak and K. Wieczorek

decomposition. Thus alternative approaches should be studied, and the strategy
giving the best final results should be found.

For the variable partitioning problem a lot of heuristics were proposed [8].
In [9] the best variable partition is determined using the information relation-
ship measures. Separated sets of inputs may be also optimised using evolution-
ary algorithms [10]. An efficient method of finding variable partitions, based on
so called r-admissibility was proposed in [8]. A method, applying ”divide-and-
conquer” paradigm, was presented in [11]. The goal of all above methods is to
find the input partitions providing the best serial decomposition of a given input
function. It should be noticed that a decision giving the best results in a single
step does not guarantee obtaining the optimal solution. Thus the local as well
as the global optimisation methods should be studied, to find the best strategy
of the multilevel decomposition.

3 Developmental Genetic Programming

Genetic programming (GP) [12] evolves a population of computer programs. The
goal is to obtain a program that produce the expected results. This method was
applied with success to optimization and development of computing programs,
game strategies, control algorithms etc. Unlike classical GA, GP uses variable-
length chromosomes which are represented by tree structures.

In the DGP, methods creating solutions evolve, instead of computer programs.
In this approach the genotype and the phenotype are distinguished. The geno-
type is a procedure that constructs the solution of a problem. It is composed
of genes representing elementary functions. Phenotype represents the target
solution. During evolution only genotypes are evolved, while the genotype-to-
phenotype mapping is used to create phenotypes. Next, all genotypes are rated
according to the estimated quality of the corresponding phenotypes. The goal of
the optimisation is to find the procedure constructing the best solution.

DGP is especially helpful in optimizing solutions of hard-constrained prob-
lems. In these cases most of randomly generated solutions are not valid. Thus in
classical GAs some restrictions should be applied to enforce genetic operators to
produce only legal individuals. But these restrictions may also create infeasible
regions in a search space, eliminating sequences of genes which may lead to high
quality solutions. This problem does not appear in the DPG, because genotypes
are evolved without any restrictions and legal only phenotypes are guaranteed by
appropriate genotype to phenotype mapping. DGP proves to be effective in such
problems like synthesis of electronic circuits, synthesis of the control algorithms,
image recognition, game playing and others [13].

The only constraint in the functional decomposition is that the original be-
haviour must be preserved. Since generation of networks of Boolean functions
which are equivalent to the given function is a hard problem, there is no ef-
ficient GA approach for optimising functional decomposition. However, taking
into consideration that DGP evolves a system construction procedure instead of
the system itself, such an approach seems to be very promising for optimisation
of the decomposition strategy for Boolean functions.

Parallel Approach to Functional Decomposition Using Genetic Programming 409

All parallel GP approaches may be classified using three main parallelization
models: the global model, the coarse-grained (island) model and the fine-grained
(grid, cellular) model [14]. Since in the GP the most time consuming step is the
fitness evaluation, in the global model the master process manages the whole
population by assigning subsets of individuals to slave processes. After com-
puting the fitness the results are sent back to the master process. There is no
communication between slave processes. The main problem in this model is a
load imbalance caused by the unpredictable time of fitness computation for indi-
viduals represented with trees of different sizes. In the island model a population
of M individuals is divided into N subpopulations (demes) of M/N individuals.
All demes are evolved separately. The information between demes is exchanged
periodically by migration of some individuals. In the grid model the population
is represented as a network of interconnected individuals. Only neighbours may
interact during evolution. Parallelism is achieved by mapping the grid onto a
multiprocessor architecture.

It was showed that the island and grid models of parallel genetic algorithms
are more efficient than the corresponding sequential implementations. Evolution
of many subpopulations reduces the problem of premature convergence, such
approach finds also the same solution quality in fewer generations. For GP ap-
proaches the cellular model that outperforms both the sequential and the island
models was proposed [15]. But there are no any studies concerning the best
parallel strategy for DGP approaches.

4 Evolution of the Multilevel Decomposition Strategy

In our method genotypes are represented by binary trees specifying the decom-
position strategy. Each node (gene) specifies the decomposition of the function
created by the parent node into 2 functions passed to offspring nodes for further
processing. Functions created by tree leaves constitute the target solution. The
goal of optimisation is to find the solution with minimal cost of implementation
for the target FPGA technology.

4.1 Genotypes and Phenotypes

Each gene specifies a decomposition strategy used in a single step. The strategy
is defined by the type of decomposition and the rules according to which the sets
of separated inputs or outputs are determined. 16 different genes are defined.

The initial generation consists of individuals generated randomly, where all
genes are selected with the same probability. The number of nodes in each geno-
type is calculated according to following formula:

G = Θ(
n ∗m
ILUT

∗A1.2
0.8) (1)

where: n - is the number of inputs, m - is the number of outputs, ILUT – is the
number of LUT’s inputs, A1.2

0.8 is a random value from range [0.8 . . .1.2], Θ – is
a function rounding upward the argument to the nearest natural odd value.

410 S. Deniziak and K. Wieczorek

Fig. 1. Sample genotype

A sample genotype tree is shown in Fig.1. The genotype corresponds to a
function with 8 inputs and 3 outputs. It is assumed, that LUT has 4 inputs and
1 output. Thus possible number of the nodes is equal to 5, 7 or 9. P means the
parallel decomposition, S the serial one, IS3, IS4, IS5 and OS1, OS2, OS8 are
different methods of separation of inputs and outputs, respectively.

Genotype to phenotype mapping is done by traversing the genotype in the
depth-first order, for each node the decomposition is performed according to
rules defined by the corresponding gene. Two exceptions are possible: first, the
node has successors but further decomposition is not necessary, second, the node
is a leaf but the function requires further decompositions. In the first case, the
decomposition of the given subfunction is not continued and useless nodes are
removed from the genotype tree immediately. This process is similar to withering
of unused features in live organisms. In the second case, the decomposition result
is estimated according to the expected cost of implementation (number of LUTs),
defined as follows:

ECI = 2n−k ∗m (2)

where k is the number of inputs of the target LUT cell. Results estimated by
this rule are enough pessimistic to be worse than most of the fully decomposed
solutions. Thus such individuals usually became extinct very fast.

The phenotype is a network of functions which is functionally equivalent to
the original function. According to the sample genotype shown in Fig.1, function
F was decomposed into 5 smaller functions: gg, gh, hg, hhg and hhh (Fig.2).

4.2 Genetic Operators

Each generation contains the same number of individuals. To ensure that the
examined solution space will be proportional to the function complexity, the size
of the generation depends on the number of inputs and outputs of the original
function. Thus the number of individuals is calculated according to the following
formula:

N = (n+m) ∗Ω (3)

where Ω is a DGP parameter.
Genotypes are ranked according to the implementation cost of the correspond-

ing phenotypes. Solutions which require less LUT cells for implementation have

Parallel Approach to Functional Decomposition Using Genetic Programming 411

Fig. 2. The phenotype mapped from the genotype presented in Fig. 1

higher position in the ranking. All genotypes are evolved randomly with the
probability P that depends on the quality of the solution as follows:

P =
N −R
N

(4)

where R is the position in the ranking.
Reproduction copies the best individuals from the current generation to the

next generation. Cross-over selects randomly 2 genotypes with the probability
P. Next, both trees are pruned by removing randomly selected edge. Then sub-
trees are swapped between both parent genotype. In that way 2 new individuals
are created and added to the next generation.

Mutation selects randomly one genotype with the probability P. Next, one of
the following modifications is done for the chosen genotype:

– randomly selected gene is changed to another,
– randomly selected edge is pruned and the subtree is removed,
– two random nodes are created and added to the randomly selected leaf.

Each type of modification is selected with the same probability, but for single-
node genotypes the subtree extraction can not be selected. Implementation of
genetic operators ensures that the correct genotype-tree structure is always kept.

The new generation is created using the above operations in the following
way: r = α ∗ N individuals are reproduced, c = β ∗ N individuals are created
using cross-over, and m = γ ∗ N individuals are created using mutation. N is
calculated according to the formula (3), and α, β and γ are the DGP parameters.
The following requirement must be fulfilled:

α+ β + γ = 1 (5)

If the algorithm does not find any bettter solution in λ succeeding generations,
the evolution stops.

412 S. Deniziak and K. Wieczorek

5 Parallel DGP Model

In our approach we propose the island model of parallelization, where migra-
tion is controlled by additional process called the migration manager (MM).
There is no direct communication between islands, each island communicate
only with the migration manager. The size of each subpopulation may vary, the
best demes grow up while the worst are diminished. This process is also con-
trolled by the MM. Since worse individuals usually require more time to compute
fitness (greater number of subfunctions requires more decomposition steps), thus
variable size of demes leads also to better load balancing.

Migration is an interchange of group of individuals between different islands.
The migration rate and the migration frequency are parameters of the algorithm.
Candidates for migration are chosen using the selection operator (p.4.2). The
migration is asynchronous, the migrated groups are buffered by the MM.

The main principles of the parallel DGP algorithm are the following:

1. For each island the initial population, with the same number of individuals,
is generated.

2. Quality of each deme is evaluated after every 5 generations. The quality of
the deme is the arithmetic mean of fitnesses computed for 20% of the best
individuals. The MM increases the number of individuals in the best deme
by 5%, while the size of the worst deme is decreased by 5%.

3. When the migration should be performed, the group of individuals is selected
and sent to the MM, than the process is suspended waiting for the response.

4. The MM accepts the group of immigrants and stores it in the FIFO (first in
first out) queue.

5. If there is any group of immigrants sent from other deme, the MM sends it.
In other case an empty message is sent.

6. When the process will receive answer from the MM, it resumes computation.
If group of immigrants is got, it will participate in further evolution.

Values of migration parameters have been attuned experimentally.

6 Experimental Results

The described method has been implemented and evaluated with the help of
some MCNC benchmarks [16]. The following values of DGP parameters have
been assumed:Ω=12, α=0.05, β=0.65, γ=0.3, λ=20. The same experiments were
performed using other existing methods of logic synthesis for FPGAs: GUIDek
[17], an automatic, academic tool which decomposes functions using determinis-
tic approach, it also uses the functional decomposition, the ABC system [18], it
is also an academic tool but it uses approach based on cofactoring, and commer-
cially available tool Quartus II v.10.0 from Altera Corp. Experimental results
are shown in Tab. 1. The following columns contain: the name of the benchmark,
results obtained using our (DGP) method(the best results obtained in 20 trials),
and results obtained using GUIDek, ABC and Quartus. The results represent
the cost of the FPGA implementation (number of 4-input LUT cells).

Parallel Approach to Functional Decomposition Using Genetic Programming 413

Table 1. Decompositon results

Benchmark DGP GUIDek ABC Quartus II

5xp1 18 22 34 33

9sym 8 9 92 9

dk17 27 32 34 31

dk27 12 13 11 11

f51m 15 22 39 19

inc 27 35 39 42

m1 20 25 23 20

misex1 16 20 14 22

newcpla2 24 33 26 24

rd53 5 5 14 7

rd73 9 9 43 11

seq 18 23 22 20

sqn 21 24 42 33

sqrt8 11 13 17 14

squar5 13 14 17 16

t4 15 17 14 14

tms 60 73 87 80∑
321 389 568 406

Avg. gain – 18% 44% 21%

Table 2. Computation time results [s]

Benchmark I core II cores III cores IV cores

5xp1 468,5 280,1 202,7 182,3

9sym 15,0 9,8 7,6 6,4

dk17 140,0 71,1 46,5 68,3

dk27 1,2 0,8 0,6 0,5

f51m 163,0 121,3 81,5 57,4

inc 578,0 350,5 241,2 165,6

m1 102,0 50,1 30,5 27,6

misex 63,0 45,7 35,8 19,7

newcpla2 146,0 104,0 75,3 60,4

rd53 0,6 0,43 0,31 0,28

rd73 7,5 5,1 3,7 3,3

seq 272,0 161,4 134,5 100,3

sqn 40,7 20,4 14,5 11,6

sqrt8 12,0 7,2 5,3 4,4

squar5 5,9 3,4 2,3 2,2

t4 249,0 120,0 92,8 58,5∑
2264 1351 975 768

Avg. speed up – 1,68 2,32 2,95

414 S. Deniziak and K. Wieczorek

The efficiency of the proposed DGP parallel model was evaluated using im-
plementation dedicated to multicore architectures, with migration after every
10 generations. CPU runtimes for various number of utilized processor cores are
shown in Tab.2. All experiments were run using AMD64 Phenom x4 2.8 GHz
processor. Tab.2 presents preliminary results, the implementation is not fully
optimized, nevertheless the average speedup is quite good, for some examples
we obtained near linear speedup.

One of the most important factor deciding about the efficiency of the parallel
approach is the CPU load. Table 3 presents the CPU load for each core. The
average load is about 90%, but it may be improved by applying more advanced
load balance methods.

Table 3. CPU cores’ load [%]

Benchmark Ist core IInd core IIIrd core IVth core Avg. CPU load

dk17 97 100 92 88 94

dk27 95 82 100 95 93

f51m 100 93 86 92 92

m1 100 86 86 86 89

rd73 78 100 80 75 83

seq 93 97 100 96 96

Avg. 94 93 91 89 91,2

7 Conclusions

In this paper the parallel developmental genetic programming was applied to
the problem of functional decomposition of Boolean functions. In our approach
the multilevel decomposition strategy for given function evolves, instead of the
solutions itself. In that way we use strategy optimized for the given system
instead of the global decomposition strategy. To our best knowledge this is the
first DGP approach targeting the multilevel decomposition problem and the first
parallel DGP approach.

Preliminary results show, that the method is efficient; it gives significantly
better results than existing methods. Future work will concentrate on analyzing
other implementations of genetic operators. We will work also on optimization
of the parallel DGP model by developing the load balancing and developing the
model dedicated to cluster architectures.

References

1. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

2. Keller, R.E., Banzhaf, W.: The evolution of genetic code in genetic programming.
In: Proc. of the Genetic and Evolutionary Computation Conf., pp. 1077–1082
(1999)

Parallel Approach to Functional Decomposition Using Genetic Programming 415

3. Ashenhurst, R.L.: The Decomposition of Switching Functions. In: Proc. of Inter-
national Symposium on Theory of Switching Functions, pp. 74–116 (1957)

4. Ashar, P., Devadas, S., Newton, A.R.: Sequential Logic Synthesis. Kluwer
Academic Publisher, Norwell (1992)

5. Scholl, C.: Functional Decomposition with Application to FPGA Synthesis. Kluwer
Academic Publishers (2001)

6. Brzozowski, J., Luba, T.: Decomposition of Boolean Functions Specified by Cubes.
Journal of Mult.-Valued Logic & Soft Computing 9, 377–417 (2003)

7. Nowicka, M., Luba, T., Rawski, M.: FPGA-Based Decomposition of Boolean Func-
tions. Algorithms and Implementation. In: Proc. of the 6th International Confer-
ence on Advanced Computer Systems, Szczecin (1999)

8. Muthukumar, V., Bignall, R.J., Selvaraj, H.: An efficient variable partitioning ap-
proach for functional decomposition of circuits. Journal of Systems Architecture 53,
53–67 (2007)

9. Rawski, M., Jóźwiak, L., �Luba, T.: Functional decomposition with an efficient input
support selection for sub-functions based on information relationship measures.
Journal of Systems Architecture 47/2, 137–155 (2001)

10. Rawski, M.: Efficient Variable Partitioning Method for Functional Decomposition.
Electronics and Telecommunications Quarterly 53(1), 63–81 (2007)

11. Morawiecki, P., Rawski, M., Selvaraj, H.: Input variable partitioning method for
functional decomposition of functions specified by large truth tables. In: Proceed-
ings of Int. Conf. on Comp. Intelligence and Multimedia Applications, pp. 164–168
(2007)

12. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

13. Koza, J.R.: Human-competitive results produced by genetic programming. In:
Genetic Programming and Evolvable Machines, pp. 251–284 (2010)

14. Tomassini, M.: Parallel and distributed evolutionary algorithms: A review. In: Neit-
taanmki, P., Miettinen, K., Mkel, M., Periaux, J. (eds.) Evolutionary Algorithms
in Engineering and Computer Science. J. Wiley and Sons, Chichester (1999)

15. Folino, G., Pizzuti, C., Spezzano, G.: A scalable cellular implementation of paral-
lel genetic programming. IEEE Transactions on Evolutionary Computation 7(1),
37–53 (2003)

16. Yang, S.: Logic synthesis and optimization benchmarks. version 3.0. Microelectron-
ics Center of North Carolina, Tech. Rep. (1991)

17. http://rawski.zpt.tele.pw.edu.pl/pl/node/161

18. http://www.eecs.berkeley.edu/~alanmi/abc

http://rawski.zpt.tele.pw.edu.pl/pl/node/161
http://www.eecs.berkeley.edu/~alanmi/abc

The Nine Neighbor Extrapolated Diffusion

Method for Weighted Torus Graphs

Katerina A. Dimitrakopoulou and Michail N. Misyrlis

Department of Informatics and Telecommunications,
University of Athens,

Panepistimiopolis, 157 84, Athens, Greece
{kdim,misyrlee}@di.uoa.gr

Abstract. The convergence analysis of the Extrapolated Diffusion
(EDF) was developed in [7] and [8] for the weighted torus and mesh
graphs, respectively using the set N1(i) of nearest neighbors of a node i
in the graph. In the present work we propose a Diffusion scheme which
employs the set N1(i) ∪ N2(i), where N2(i) denotes the four neighbors
of node i with path length two (see Figure 1) in order to increase the
convergence rate. We study the convergence analysis of the new Diffu-
sion scheme with nine neighbors (NEDF) for weighted torus graphs. In
particular, we find closed form formulae for the optimum values of the
edge weights and the extrapolation parameter. A 60% increase in the
convergence rate of NEDF compared to the conventional EDF method
is shown analytically and numerically.

Keywords: Laplacian matrix, load balancing, weighted torus, iterative
diffusion, Fourier analysis.

1 Introduction

The performance of a balancing algorithm can be measured in terms of number
of iterations it requires to reach a balanced state and in terms of the amount of
load moved over the edges of the underlying processor graph. In the Diffusion
(DF) method [3], [1] a processor simultaneously sends workload to its neighbors
with lighter workload and receives from its neighbors with heavier workload.
More specifically DF is given by the following iterative scheme

u
(n+1)
i = u

(n)
i −

∑
j∈N(i)

cij(u
(n)
i − u(n)j), n = 0, 1, 2, . . . , (1)

where cij > 0 are the edge weights (or diffusion parameters),N(i) is the set of the

nearest neighbors of node i of the graph G = (V,E) and u
(n)
i , i = 0, 1, 2, . . . , |V |

is the load after the nth iteration on node i. The main problem here is the
determination of the parameters cij such that the rate of convergence of DF is
maximized. Various attempts to solve this problem are presented in [3,6,4,5] and
[9]. In [7] the following Extrapolated Diffusion (EDF) method was introduced

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 416–426, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The NEDF Method for Weighted Torus Graphs 417

u
(n+1)
i = u

(n)
i − τ

∑
j∈N1(i)

cij(u
(n)
i − u(n)j), n = 0, 1, 2, . . . , (2)

where τ ∈ R \ {0} and cij > 0 are the extrapolation parameter and the edge
weights, respectively,N1(i) is the set of the nearest neighbors of the node i of the

graph G = (V,E) and u
(n)
i , i = 0, 1, 2, . . . , |V | is the load after the nth iteration

on node i. In fact, we let the extrapolation parameter vary for each node i, so
instead of τ in (2) we introduced a set of parameters τi, i = 0, 1, 2, . . . , |V | and
called (2) the local EDF method [7,8]. Note that if τ = 1, (2) is the classical
Diffusion (DF) method [3,1]. In [9] optimum values for the edge weights cij
were determined under the hypothesis that they are all equal. The generalized
problem of determining optimum values for the edge weights cij and τi was first
solved in [7]. In particular, closed form formulae for the optimum values for τis
and cijs were determined for the nD-torus [7] and nD-mesh [8] by applying local
Fourier analysis [2]. As a result, it was found that for square tori and meshes
EDF coincides with DF whereas for orthogonal tori and meshes it becomes twice
as fast as DF. In addition, it was shown that EDF for orthogonal tori is four
times faster than orthogonal meshes [8].

In the present work we consider the case of increasing the number of neighbors
of node i for the computation of its load. In other words we consider the nine
neighbor weighted Laplacian matrix formed not only by the five nearest neighbor
nodes but also by their four neighbors with path length two from node i in an
attempt to increase the convergence rate of the EDF method. As a consequence,
we show that the rate of convergence of EDF is improved asymptotically by 60%
for torus graphs.

The rest of the paper is organized as follows: In section 2 we introduce the local
NEDF method using nine neighbors of node i. In section 3 we find closed form
formulae for the optimum values of the parameters τi such that the convergence
of the local NEDF method is maximized. The determination of the optimum
values for the edge weights cij is presented in section 4 with a comparison of the
NEDF and EDF methods with five and nine neighbors, respectively for torus
graphs. Section 5 presents our numerical experiments and finally, in section 6 we
state our conclusions.

2 The Nine Neighbor Extrapolated Diffusion (NEDF)
Method

Let G = (V,E) be a connected, weighted undirected graph with |V | nodes and
|E| edges. Let cij ∈ R

+ be the weight of edge (i, j) ∈ E, ui ∈ R be the load
of node vi ∈ V and u ∈ R

|V | be the vector of load values. Let us consider the
iterative scheme that requires communication not only with adjacent nodes but
with their four neighbors also,

u
(n+1)
i = u

(n)
i − τ

∑
j∈N (i)

cij(u
(n)
i − u(n)j), (3)

418 K.A. Dimitrakopoulou and M.N. Misyrlis

where τ ∈ R \ {0} and cij > 0 for i = 1, 2, . . . , |V | and j ∈ N (i) = N1(i)∪N2(i)
are parameters that play an important role in the convergence of the whole
system to the equilibrium state andN2(i) is the set of the cross-shaped neighbors
with path length two (see Figure 1). Then, the overall workload distribution at

step n, denoted by u(n), is the transpose of the vector (u
(n)
1 , u

(n)
2 , . . . , u

(n)
|V |) and

u(0) is the initial workload distribution. The iterative scheme (3) will be referred
to as the Nine neighbor Extrapolated Diffusion (NEDF) method and has the
matrix form

u(n+1) = Mu(n), (4)

where M ∈ R

|V |×|V | is called the diffusion matrix. M can be written as

M = I − τL, L = D −A, (5)

where L is the nine neighbor Laplacian matrix, D = diag(L), A is the nine
neighbor weighted adjacency matrix of G. The elements of A, aij , are

aij =

{
cij if j ∈ N (i),

0 otherwise.
(6)

The diffusion matrix M must have the following properties [3], [1]: nonnegative,
symmetric and stochastic. Before we close this section we consider the following
version of NEDF, which involves a set of parameters τi, i = 1, 2, . . . , |V |

u
(n+1)
i = (1− τi

∑
j∈N (i)

cij)u
(n)
i + τi

∑
j∈N (i)

ciju
(n)
j . (7)

Note that if τi = τ for i = 1, 2, . . . , |V |, then (7) yields the NEDF method. The
iterative scheme (7) will be referred to as the local NEDF method.

3 Quasi Optimum τi

In this section we determine quasi optimum values for the parameters τi in case
of weighted torus graphs. We define Mij as the local NEDF operator for the
N1 ×N2 torus and apply Fourier analysis, in a similar way as in [7], to find its
eigenvalues in terms of the edge weights. The local NEDF scheme at a node (i, j)
can be written as:

u
(n+1)
ij = Miju

(n)
ij , (8)

where
Mij = 1− τijLij. (9)

Next, we define

Lij = dij − (cji,i+1E1 + cji,i−1E
−1
1 + cij,j+1E2 + cij,j−1E

−1
2 +

cji+1,i+2E
2
1 + cji−1,i−2E

−2
1 + cij+1,j+2E

2
2 + cj−1,j−2E

−2
2) (10)

The NEDF Method for Weighted Torus Graphs 419

Fig. 1. © denotes neighbors with path length one, � denotes cross-shape neighbors
with path length two

the local operator of the nine neighbor Laplacian matrix, with dij = cji,i+1 +

cji,i−1 + cji+1,1+2 + cji−1,i−2 + cij,j+1 + cij,j−1 + cij+1,j+2 + cij−1,j−2, where ctrs de-
notes the weight of the edge (r,s), in the t direction of the torus. The operators
E1, E−1

1 , E2, E−1
2 , E2

1 , E−2
1 , E2

2 and E−2
2 are defined as: E1uij=ui+1,j ,

E−1
1 uij=ui−1,j, E2uij=ui,j+1, E−1

2 uij=ui,j−1, E2
1uij=ui+2,j , E−2

1 uij=ui−2,j ,
E2

2uij=ui,j+2, E−2
2 uij=ui,j−2, which are the forward-shift and backward-shift op-

erators in the x1-direction, (x2-direction), respectively with uij = u(ih1, jh2) =
u(x1, x2), where x1 = ih1, x2 = jh2, h1= 1

N1
and h2= 1

N2
.

Since the Laplacian matrix L is symmetric, we impose the conditions cji,i+1=cji,i−1

and cij,j+1=cij,j−1. Next, we use the following notation for the edge weights:

c
(1)
i = cji,i+1 i = 1, 2, . . . , N1, and c

(2)
j = cij,j+1, j = 1, 2, . . . , N2 (11)

for the rows and columns, respectively. From (10) and (11), it follows that

Lij = dij − [c
(1)
i (E1 + E−1

1 + E2
1 + E−2

1) + c
(2)
j (E2 + E−1

2 + E2
2 + E−2

2)] (12)

where dij = 4(c
(1)
i + c

(2)
j). The eigenvalues μij , λij of the local operators Mij ,

Lij , respectively, are related as follows:

μij = 1− τijλij . (13)

Lemma 1. The spectrum of the operator Lij is given by

λij(k1, k2) = 2[c
(1)
i (2−cosk1h1−cos 2k1h1)+c

(2)
j (2−cosk2h2−cos 2k2h2)], (14)

where i = 1, 2, . . . , N1, j = 1, 2, . . . , N2, k1 = 2π�1, �1 = 0, 1, 2, . . . , N1 − 1,
k2 = 2π�2 and �2 = 0, 1, 2, . . . , N2 − 1.

Proof. If the input error function e
(n)
ij is the complex sinusoid ei(k1x1+k2x2) we

have
Lije

i(k1x1+k2x2) = λij(k1, k2)ei(k1x1+k2x2),

which, because of (12), yields

λij(k1, k2) = dij − [c
(1)
i (eik1h1 + e−ik1h1 + e2ik1h1 + e−2ik1h1)+

c
(2)
j (eik2h2 + e−ik2h2 + e2ik2h2 + e−2ik2h2)]. (15)

420 K.A. Dimitrakopoulou and M.N. Misyrlis

So we may view ei(k1x1+k2x2) as an eigenfunction of Lij with eigenvalues
λij(k1, k2) given by (15). It is easily verified that (15) yields (14). ��
In our case γij is a spatially varying function (see (14)) and generally is not
equal to the convergence factor γ(M) of the NEDF method. Nevertheless, if the
edge weights are all equal to a constant value, then Mij and hence γij are space
invariant in which case γij is equal to γ(M) [2]. Note that

γij(Mij) = max
k1,k2

|μij(k1, k2)|, (16)

where not both k1, k2 can take the value zero. From (13) and (16) it follows that
the minimum value of γij with respect to τij is attained at [10]

τoptij =
2

λi,j,2 + λi,j,N
, (17)

where λi,j,2, λi,j,N are the smallest and largest eigenvalues of the operator Lij ,
respectively. Thus, the corresponding minimum value of γij(Mij) is given by

γoptij =
Pij − 1

Pij + 1
, (18)

where

Pij =
λi,j,N
λi,j,2

(19)

is the P-condition number of Lij . The last quantity plays an important role in
the behavior of γoptij . Indeed, from (18) it follows that γoptij is a increasing function
of Pij . Therefore, minimization of Pij has the effect of maximizing R(NEDF),
the rate of convergence of the local NEDF method, defined by [10]

R(NEDF) = − log γoptij & 2

Pij
. (20)

Theorem 1. The convergence factor γij(Mij) of the operator Mij is minimized
at

τoptij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

8

25c
(2)
j + c

(1)
i (41− 8 cos 2π

N1
− 8 cos 4π

N1
)
, σij ≥ σ

8

25c
(1)
i + c

(2)
j (41− 8 cos 2π

N2
− 8 cos 4π

N2
)
, σij ≤ σ,

(21)

and its corresponding minimum is

γoptij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
25c

(2)
j + c

(1)
i (9 + 8 cos 2π

N1
+ 8 cos 4π

N1
)

25c
(2)
j + c

(1)
i (41− 8 cos 2π

N1
− 8 cos 4π

N1
)
, σij ≥ σ

25c
(1)
i + c

(2)
j (9 + 8 cos 2π

N2
+ 8 cos 4π

N2
)

25c
(1)
i + c

(2)
j (41− 8 cos 2π

N2
− 8 cos 4π

N2
)
, σij ≤ σ,

(22)

where σij and σ are given by (24).

The NEDF Method for Weighted Torus Graphs 421

Proof. The optimum value for τij will be determined by (17), while the min-
imum value of γoptij by (18) and (19). It is therefore necessary to determine
λi,j,2 and λi,j,N . For the determination of λi,j,2 we let �1=0 and �2=1, or �1=1

and �2=0 in (14) thus obtaining λi,j,2 = 2c
(2)
j (1 − cos 2π

N2
− cos 4π

N2
) or λi,j,2 =

2c
(1)
i (2 − cos 2π

N1
− cos 4π

N1
), for each of the above choices of �1, �2, respectively,

which lead to the following

λi,j,2 =

⎧⎪⎨⎪⎩
2c

(1)
i (2− cos 2π

N1
− cos 4π

N1
), σij ≥ σ

2c
(2)
j (1− cos 2π

N2
− cos 4π

N2
), σij ≤ σ,

(23)

where: σij =
c
(2)
j

c
(1)
i

and σ =
2− cos 2π

N1
− cos 4π

N1

2− cos 2π
N2
− cos 4π

N2

. (24)

By studying the behavior of (14) with respect to cos k1h1 and cos k2h2 it is readily
verified that its maximum is attained at cos k1h1=cos k2h2=− 1

4 . Therefore, from
(14) the maximum eigenvalue λi,j,N is given by

λi,j,N =
25

4
(c

(1)
i + c

(2)
j). (25)

Using the expressions of λi,j,2 and λi,j,N given by (23) and (25), respectively in
(17), (18) and (19), we easily verify (21) and (22). ��

4 Determination of Optimum c
(1)
i and c

(2)
j

We will determine the c
(1)
i ’s and c

(2)
j ’s such that Pij (and hence γij) is minimized.

Theorem 2. The convergence factor γij(Mij) is minimized when

c
(2)
j = σc

(1)
i (26)

and τoptij = τopt/c
(1)
i , c

(1)
i arbitrary (27)

for any i = 1, 2, . . . , N1, j = 1, 2, . . . , N2, where

τopt =
8

25σ − 8(cos 2π
N1

+ cos 4π
N1

) + 41
(28)

and its corresponding minimum is

γopt =
25σ + 8(cos 2π

N1
+ cos 4π

N1
) + 9

25σ − 8(cos 2π
N1

+ cos 4π
N1

) + 41
. (29)

422 K.A. Dimitrakopoulou and M.N. Misyrlis

Proof. The P-condition number of Lij is, because of (25) and (23), given by

Pij(Lij) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
25(c

(1)
i + c

(2)
j)

8c
(1)
i (1− cos 2π

N1
− cos 4π

N1
)
, σij ≥ σ

25(c
(1)
i + c

(2)
j)

8c
(2)
j (1− cos 2π

N2
− cos 4π

N2
)
, σij ≤ σ.

(30)

Studying the behavior of the above expression with respect to σij we can easily
verify that it is minimized at σ. Therefore, (17), because of (25) and (23), yields
the optimum value of τoptij given by (27). From (30) and (26) it follows that

Pij(Lij) =
25(1 + σ)

8(1− cos 2π
N1
− cos 4π

N1
)
. (31)

Finally, the optimum value for γij(Mij) is obtained from (18) using (31). ��

Similar results hold in case c
(2)
j is arbitrary.

Corollary 1. If the edge weights in one dimension of a 2D-torus are all equal to
the same constant value and (26) holds, then γ(M), the convergence factor of the
diffusion matrix M , is minimized at τoptNEDF , given by (27) and its corresponding
minimum is γopt, where τopt, γopt are given by (28) and (29), respectively.

Corollary 2. Under the hypothesis of corollary 1 and if N=N1=N2, then the
convergence factor γ(M) is minimized at τopt given by (27) with σ = 1,

τopt =
4

33− 4(cos 2π
N + cos 4π

N)
(32)

and its corresponding minimum is given by

γopt =
17 + 4(cos 2π

N + cos 4π
N)

33− 4(cos 2π
N + cos 4π

N)
. (33)

Proof. If N=N1=N2, then σ=1 hence (32) and (33) are direct results of (28)
and (29), respectively. ��

Corollary 3. Under the hypothesis of corollary 2 then

lim
N→∞

R(NEDF)

R(EDF)
= 3.2 (34)

Proof. From (20) we have

R(NEDF) & 80π2h2

25
. (35)

Moreover, it is known (see (35) of [7]) that for EDF

P
(EDF)
ij (Lij) =

4

1− cos 2π
N

. (36)

The NEDF Method for Weighted Torus Graphs 423

From (20) and (36) we have

R(EDF) & π2h2. (37)

Clearly, using (35) and (37) we obtain (34). ��
Letting c

(1)
i = 1 for any i = 1, 2, . . . , N1 in (26) we obtain c

(2)
j = σ for any

j = 1, 2, . . . , N2, which is one of the infinite optimum values one can obtain by
this relation. We will refer to this choice for the edge weights as the normalized
one. From corollary 1 we have the following.

Corollary 4. For the normalized edge weights the convergence factor γ(M) is
minimized at τoptNEDF = τopt and its corresponding minimum is given by γopt,
where τopt, γopt are given by (28) and (29), respectively.

4.1 The Stretched Torus

In order to be able to have a direct comparison of the convergence behavior of
the NEDF and EDF methods we study the case, where one dimension of the
torus is large compared to the other one (stretched torus).

Corollary 5. For stretched torus under the hypothesis of corollary 1 we have

lim
N→∞

R(NEDF)

R(EDF)
= 3.2 (38)

where N =N1 or N2.

Proof. Let N1 � N2 be both even, then from (20) and (31) we have then

R(NEDF) = − log γoptNEDF &
16

(
2− cos 2π

N1
− cos 4π

N1

)
25(1 + σ)

. (39)

From (39) it follows

γoptNEDF =
32π2h21
5(1 + σ)

(40)

since cosx & 1− x2

2 . Similarly, for the EDF method we have

R(EDF) = − log(γoptEDF) & 2π2h21
1 + σ2

. (41)

By dividing (39) by (41) we obtain

R(NEDF)

R(EDF)
& 32(1 + σ2)

10(1 + σ)
(42)

424 K.A. Dimitrakopoulou and M.N. Misyrlis

and noting that σ → 0, σ2 → 0 for N1 →∞ and N2 fixed, (42) yields (38).
If now N1 � N2, then

γoptNEDF =
160π2h22

25
(
1 + 1

σ

) (43)

γoptEDF =
2π2h22
1 + 1

σ2

(44)

hence

R(NEDF)

R(EDF)
&

32
(

1 + 1
σ2

)
10

(
1 + 1

σ

) . (45)

But now σ → ∞, σ2 → ∞ for N2 → ∞ and N1 fixed, hence (45) yields (38).
Following a similar treatment for the other cases (both N1, N2 are odd, orN1(N2)
is even and N2(N1) odd) we can easily verify that (38) holds also in these cases.

5 Numerical Experiments

In order to test our theoretical results obtained so far we applied NEDF for
different sizes of tori. The initial load of the network was placed on a single
node of the graph, while we normalized the balanced load u=1. Hence, the total
number of amount of load was equal to the total number of nodes in the graph.
For purposes of comparison we considered the application of the NEDF and
EDF methods with optimum parameters (normalized edge weights) and kept
iterating until an almost evenly distributing flow was calculated. The iterations
were terminated when the criterion

‖u(n) − u‖2/‖u(0) − u‖2 < ε

with ε = 10−7 was satisfied. A comparison of the number of iterations is pre-
sented in Tables 1 and 2 for both aforementioned methods. The fourth column
shows the ratio of the number of iteration of EDF over NEDF. These results
clearly show that the rate of convergence of NEDF becomes about three times
as fast as the EDF method verifying corollaries 5 and 3.

Table 1. Orthogonal tori

N1 ×N2 nEDF nNEDF
nEDF

nNEDF

6×6 60 22 2.72
6×10 107 37 2.89
6×20 325 105 3.09
6×50 1,812 570 3.17
6×100 6,982 2,196 3.18

Table 2. Square tori

N ×N nEDF nNEDF
nEDF
nNEDF

10×10 153 51 3.00
20×20 569 180 3.16
40×40 2,149 669 3.21
80×80 8,136 2,538 3.20
120×120 17,709 5,551 3.19

The NEDF Method for Weighted Torus Graphs 425

Fig. 2. © denotes neighbors with path length one, � denotes diagonal-shape neighbors
with path length two

6 Conclusions and Future Work

In an attempt to improve the convergence rate of the EDF method, we considered
additional nodes apart from the nearest neighbors of a node for the computation
of its load. More specifically, we considered the four cross-shape nodes of path
length two (see Fig. 1). In this case circulant matrix theory [9] cannot be applied
since the diffusion matrix of the NEDF method is not circulant. To overcome this
difficulty we used local Fourier Analysis to find the eigenvalues of the diffusion
matrix in order to determine the optimum values of the edge weights and the
extrapolation parameter of the NEDF method. Our results are presented by
corollaries 3 and 5 which state that the rate of convergence of NEDF is 3.2
times faster than that of EDF asymptotically for torus graphs. However, since
NEDF requires approximately twice as much computation and communication
compared to EDF the aforementioned improvement is halved, thus it is expected
to obtain in overall a 60% better performance using NEDF over EDF. Finally,
it should be mentioned that instead of selecting the cross-shape neighbors of
a node with path length two, one may select the four nodes lying in the four
corners (see Fig. 2). Alternating paths for communicating the load will produce
diffusion schemes with different convergence rates.

Acknowledgements. This research was partially funded by the University of
Athens Special Account of Research Grants no 10812.

References

1. Boillat, J.E.: Load balancing and poisson equation in a graph. Concurrency: Prac-
tice and Experience 2, 289–313 (1990)

2. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math.
Comput. 31, 333–390 (1977)

3. Cybenko, G.: Dynamic load balancing for distributed memory multi-processors. J.
Parallel and Distr. Comp. 7, 279–301 (1989)

4. Diekmann, R., Muthukrishnan, S., Nayakkankuppam, M.V.: Engineering Diffu-
sive Load Balancing Algorithms Using Experiments. In: Lüling, R., Bilardi, G.,
Ferreira, A., Rolim, J.D.P. (eds.) IRREGULAR 1997. LNCS, vol. 1253,
pp. 111–122. Springer, Heidelberg (1997)

5. Elsässer, R., Monien, B., Preis, R.: Optimal Diffusion schemes and Load Balancing
on Product Graphs. Parallel Proc. Letters 14, 61–73 (2004)

426 K.A. Dimitrakopoulou and M.N. Misyrlis

6. Hong, J., Tau, X., Cheu, M.: From local to global: an analysis of nearest neighbor
balancing on hypercube. In: Proc. ACM Symp. on SIGMETRICS, pp. 73–82 (1988)

7. Karagiorgos, G., Missirlis, N.: Convergence of the diffusion method for weighted
torus graphs using Fourier analysis. J. Theor. Comp. Sc. 401(1-3), 1–16 (2008)

8. Markomanolis, G.S., Missirlis, N.M.: Optimum Diffusion for Load Balancing in
Mesh Networks. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010.
LNCS, vol. 6271, pp. 230–241. Springer, Heidelberg (2010)

9. Xu, C., Lau, F.M.: Load balancing in parallel computers: Theory and Practice
10. Young, D.M.: Iterative Solution of Large Linear Systems. Academic (2003)

On the Weak Convergence

of the Recursive Orthogonal Series-Type Kernel
Probabilistic Neural Networks

in a Time-Varying Environment

Piotr Duda1 and Yoichi Hayashi2

1 Department of Computer Engineering,
Czestochowa University of Technology, Czestochowa, Poland

pduda@kik.pcz.pl
2 Department of Computer Science, Meiji University,

Tama-ku, Kawasaki 214-8571, Japan
hayashiy@cs.meiji.ac.jp

Abstract. In a paper a recursive version of general regression neural
networks, based on the orthogonal series-type kernels, is presented. Suf-
ficient conditions for convergence in probability are given assuming time-
varying noise. Experimental results are provided and discussed.

1 Introduction

In this paper we consider the following model

Yi = φ(Xi) + Zi, i = 1, . . . , n, (1)

where X1, . . . , Xn are independent random variables with a probability density
f(·), Zi are random variables such that

E(Zi) = 0 E(Z2
i) = di i = 1, . . . , n (2)

and the input random variables (X1, . . . , Xn) have the same probability density
function f(·). To estimate function φ(·) we propose the following formula

φ̂n(x) =
R̂n(x)

f̂n(x)
, (3)

where

R̂n(x) =
1

n

n∑
i=1

M(i)∑
j=0

Yigj(Xi)gj(x), (4)

and

f̂n(x) =
1

n

n∑
i=1

N(i)∑
j=0

gj(Xi)gj(x), (5)

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 427–434, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

428 P. Duda and Y. Hayashi

where {gj} is a complete orthonormal system (see e.g. [1]) and

N(n)
n−→∞ M(n)

n−→∞. (6)

One can see that estimators (5) and (4) be expressed as follows

f̂n(x) = f̂n−1(x) +
1

n
[

N(n)∑
j=0

gj(Xn)gj(x)− f̂n−1(x)], (7)

R̂n(x) = R̂n−1(x) +
1

n
[

M(n)∑
j=0

Yngj(Xn)gj(x) − R̂n−1(x)], (8)

where M(n), N(n) are the same as in (6).
The idea of general regression and probabilistic neural networks was proposed

by Specht [35] by making use of the Parzen-type kernels. In this paper we use an
alternative approach based on the orthogonal series. In literatur both approaches
have been applied to solve various stationary (see [3], [5], [6],[8], [10], [12] - [15],
[21] - [23], [26] - [29]) and non-stationary problems ([7], [16] -[20], [24], [25]).
Figure 1 shows probabilistic neural network block diagram.

Fig. 1. General regression neural network

2 Main Result

Let us assume that
max

x
|gj| ≤ Gj , (9)

It should be noted that d = − 1
12 for the Hermite sytem, d = − 1

4 for the Laguerre
system, d = 0 for the Fourier system, d = 1

2 for the Legendre and Haar systems
(see [38]).

On the Weak Convergence of the Recursive Probabilistic Neural Networks 429

Theorem 1. Let si =
∫
A

φ2(u)f(u)du+ di <∞. If the following conditions hold

1

n2

n∑
i=1

(

M(i)∑
j=0

G2
j)2si

n−→ 0, M(n)
n−→∞ (10)

1

n2

n∑
i=1

(

N(i)∑
j=0

G2
j)2

n−→ 0, N(n)
n−→∞ (11)

then
φ̂n(x)

n−→ φ(x) in probability, (12)

at every point x ∈ A at which

N(n)∑
j=0

ajgj(x)
n−→ f(x), (13)

M(n)∑
j=0

bjgj(x)
n−→ R(x) (14)

where

aj =

∫
A

f(x)gj(x)dx = Egj(Xi), (15)

bj =

∫
A

φ(x)f(x)gj(x)dx = E(Yigj(Xi)). (16)

Proof. The proof can be based on the arguments similar to those in [13].

3 Experimental Results

Let us assume that:

M(n) = [c1n
qM], N(n) = [c2n

qN], dn = c3n
α, (17)

where qM , qN and α are positive numbers.
We consider the following regresion function

φ(x) = sin(3x) sin(x + 2). (18)

Distribution of random variables Xi is uniform on the interval [0, π], for i =
1, . . . , n and Zi are realizations of random variables N(0, di), di = iα, α > 0.
Parameters qM and qN in (17) are equal to 0, 4. All constans c1, c2, c3 are equal to
1. The Hermite orthonormal system is chosen to perform calculations. Number
of data set is taken from the interval [500; 10000], and parameter α is tested in
the interval [1

10 ,
12
10].

430 P. Duda and Y. Hayashi

Fig. 2. The MSE as a function of n

Fig. 3. Training set and obtained estimator

Figure 2 shows how the MSE (Mean Square Error) changes with number of
data elements n for different values of parameter α. For parameter α ∈ [0, 1; 0, 6]
we can see that, when n goes to infinity, the MSE goes to 0. For α = 0, 7 this
trend is not maintained. Experimental results show that for higher α the MSE
is growing. For α = 1, 2 and n = 104, the MSE is equal to 6,34.

In Figure 3 input data and the results of estimation for n = 104 and α = 0, 1
are depicted. As we can see estimator found in the appropriate manner center
of data and maintained its trend.

Figure 4 shows the course of the function given by (18), and estimators ob-
tained for n = 104, with parameters α equal to 0, 1 and 0, 8.

On the Weak Convergence of the Recursive Probabilistic Neural Networks 431

Fig. 4. Function φ(·) and its estimators for different values of parameter α

Fig. 5. The accuracy at the point x

In Figure 5 the differences between value of function (18) and estimator in
step n in point x = 0, 75 are depicted. The parameter α is set to 0,1 and n =
1, . . . , 3000. One can see that differences tend to 0.

4 Conclusions

In this paper we studied a recurisive version of general regression neural net-
works, based on the orthogonal series-type kernel. We proved convergence in
probability assuming time-varying noise. In future work it would be interesting

432 P. Duda and Y. Hayashi

to adopt unsupervised and unsupervised training algorithms for neural networks
[2], [4], [11] and neuro-fuzzy systems [9], [30] - [32], [34], [36], [37] for handling
time-varying noise in model (1).

Acknowledgments. The paper was prepared under project operated within the
Foundation for Polish Science Team Programme co-financed by the EU European
Regional Development Fund, Operational Program Innovative Economy 2007-
2013, and also supported by the National Science Center NCN.

References

1. Alexits, G.: Convergence Problems of Orthogonal Series, Budapest, Academia and
Kiado, pp. 261–264 (1961)

2. Bilski, J., Rutkowski, L.: A fast training algorithm for neural networks. IEEE
Transactions on Circuits and Systems II 45, 749–753 (1998)

3. Cacoullos, P.: Estimation of a multivariate density. Annals of the Institute of Sta-
tistical Mathematics 18, 179–190 (1965)

4. Cierniak, R., Rutkowski, L.: On image compression by competitive neural networks
and optimal linear predictors. Signal Processing: Image Communication - a Eurasip
Journal 15(6), 559–565 (2000)

5. Ga�lkowski, T., Rutkowski, L.: Nonparametric recovery of multivariate functions
with applications to system identification. Proceedings of the IEEE 73, 942–943
(1985)

6. Ga�lkowski, T., Rutkowski, L.: Nonparametric fitting of multivariable functions.
IEEE Transactions on Automatic Control AC-31, 785–787 (1986)

7. Greblicki, W., Rutkowska, D., Rutkowski, L.: An orthogonal series estimate of time-
varying regression. Annals of the Institute of Statistical Mathematics 35, Part A,
147–160 (1983)

8. Greblicki, W., Rutkowski, L.: Density-free Bayes risk consistency of nonparametric
pattern recognition procedures. Proceedings of the IEEE 69(4), 482–483 (1981)

9. Nowicki, R.: Nonlinear modelling and classification based on the MICOG defuzzi-
fications. Journal of Nonlinear Analysis, Series A: Theory, Methods and Applica-
tions 7(12), e1033–e1047 (2009)

10. Parzen, E.: On estimation of a probability density function and mode. Analysis of
Mathematical Statistics 33(3), 1065–1076 (1962)

11. Patan, K., Patan, M.: Optimal training strategies for locally recurrent neural net-
works. Journal of Artificial Intelligence and Soft Computing Research 1(2), 103–114
(2011)

12. Rutkowski, L.: Sequential estimates of probability densities by orthogonal series
and their application in pattern classification. IEEE Transactions on Systems, Man,
and Cybernetics SMC-10(12), 918–920 (1980)

13. Rutkowski, L.: Sequential estimates of a regression function by orthogonal series
with applications in discrimination, New York, Heidelberg, Berlin. Lectures Notes
in Statistics, vol. 8, pp. 236–244 (1981)

14. Rutkowski, L.: On system identification by nonparametric function fitting. IEEE
Transactions on Automatic Control AC-27, 225–227 (1982)

On the Weak Convergence of the Recursive Probabilistic Neural Networks 433

15. Rutkowski, L.: Orthogonal series estimates of a regression function with applica-
tions in system identification. In: Probability and Statistical Inference, pp. 343–347.
D. Reidel Publishing Company, Dordrecht (1982)

16. Rutkowski, L.: On Bayes risk consistent pattern recognition procedures in a quasi-
stationary environment. IEEE Transactions on Pattern Analysis and Machine In-
telligence PAMI-4(1), 84–87 (1982)

17. Rutkowski, L.: On-line identification of time-varying systems by nonparametric
techniques. IEEE Transactions on Automatic Control AC-27, 228–230 (1982)

18. Rutkowski, L.: On nonparametric identification with prediction of time-varying
systems. IEEE Transactions on Automatic Control AC-29, 58–60 (1984)

19. Rutkowski, L.: Nonparametric identification of quasi-stationary systems. Systems
and Control Letters 6, 33–35 (1985)

20. Rutkowski, L.: The real-time identification of time-varying systems by nonpara-
metric algorithms based on the Parzen kernels. International Journal of Systems
Science 16, 1123–1130 (1985)

21. Rutkowski, L.: A general approach for nonparametric fitting of functions and their
derivatives with applications to linear circuits identification. IEEE Transactions
Circuits Systems CAS-33, 812–818 (1986)

22. Rutkowski, L.: Sequential pattern recognition procedures derived from multiple
Fourier series. Pattern Recognition Letters 8, 213–216 (1988)

23. Rutkowski, L.: Nonparametric procedures for identification and control of linear
dynamic systems. In: Proceedings of 1988 American Control Conference, June 15-
17, pp. 1325–1326 (1988)

24. Rutkowski, L.: An application of multiple Fourier series to identification of multi-
variable nonstationary systems. International Journal of Systems Science 20(10),
1993–2002 (1989)

25. Rutkowski, L.: Nonparametric learning algorithms in the time-varying environ-
ments. Signal Processing 18, 129–137 (1989)

26. Rutkowski, L., Rafaj�lowicz, E.: On global rate of convergence of some nonparamet-
ric identification procedures. IEEE Transaction on Automatic Control AC-34(10),
1089–1091 (1989)

27. Rutkowski, L.: Identification of MISO nonlinear regressions in the presence of a
wide class of disturbances. IEEE Transactions on Information Theory IT-37, 214–
216 (1991)

28. Rutkowski, L.: Multiple Fourier series procedures for extraction of nonlinear regres-
sions from noisy data. IEEE Transactions on Signal Processing 41(10), 3062–3065
(1993)

29. Rutkowski, L., Ga�lkowski, T.: On pattern classification and system identification
by probabilistic neural networks. Applied Mathematics and Computer Science 4(3),
413–422 (1994)

30. Rutkowski, L.: A New Method for System Modelling and Pattern Classification.
Bulletin of the Polish Academy of Sciences 52(1), 11–24 (2004)

31. Rutkowski, L., Cpa�lka, K.: A general approach to neuro - fuzzy systems. In: Pro-
ceedings of the 10th IEEE International Conference on Fuzzy Systems, Melbourne,
December 2-5, vol. 3, pp. 1428–1431 (2001)

32. Rutkowski, L., Cpa�lka, K.: A neuro-fuzzy controller with a compromise fuzzy rea-
soning. Control and Cybernetics 31(2), 297–308 (2002)

434 P. Duda and Y. Hayashi

33. Sansone, G.: Orthogonal functions, vol. 9. Interscience Publishers In., New York
(1959)

34. Scherer, R.: Boosting Ensemble of Relational Neuro-fuzzy Systems. In: Rutkowski,
L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS
(LNAI), vol. 4029, pp. 306–313. Springer, Heidelberg (2006)

35. Specht, D.F.: Probabilistic neural networks. Neural Networks 3, 109–118 (1990)
36. Starczewski, J., Rutkowski, L.: Interval type 2 neuro-fuzzy systems based on inter-

val consequents. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft
Computing, pp. 570–577. Physica-Verlag, Springer-Verlag Company, Heidelberg,
New York (2003)

37. Starczewski, J., Rutkowski, L.: Connectionist Structures of Type 2 Fuzzy Inference
Systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.)
PPAM 2001. LNCS, vol. 2328, pp. 634–642. Springer, Heidelberg (2002)

38. Szegö, G.: Orthogonal Polynomial, vol. 23. American Mathematical Society Coll.
Publ. (1959)

On the Cesaro Orthogonal Series-Type Kernel

Probabilistic Neural Networks Handling
Non-stationary Noise

Piotr Duda1 and Jacek M. Zurada2

1 Department of Computer Engineering,
Czestochowa University of Technology, Czestochowa, Poland

pduda@kik.pcz.pl
2 Department of Electrical and Computer Engineering,

University of Louisville, Louisville, KY, USA
jacek.zurada@louisville.edu

Abstract. The Cesaro means of orthogonal series are applied to con-
struct general regression neural networks. Sufficient conditions for con-
vergence in probability are given assuming nonstationary noise. An
experiment with syntetic data is described.

1 Introduction

In literature various soft computing techniques (see e.g. [2], [4], [7]) have been
applied to solve problems characterized by stationary noise. In this paper we
consider the following model

Yi = φ(Xi) + Zi, i = 1, . . . , n, (1)

where X1, . . . , Xn are independent random variables with a probability density
f(·), Zi are random variables, such that

E(Zi) = 0 E(Z2
i) = di i = 1, . . . , n (2)

and the input random variables (X1, . . . , Xn) have the same probability density
function f(·). Let gj(·), j = 0, 1, 2, . . . be a complete orthonormal system in
L2(A), A ⊂ R. Let us define the so-called Cesaro kernels

K1
n(x, u) =

N(n)∑
j=1

(1− j

N(n) + 1
)gj(x)gj(u) (3)

K2
n(x, u) =

M(n)∑
j=1

(1 − j

M(n) + 1
)gj(x)gj(u) (4)

where N(n)
n−→∞ and M(n)

n−→∞. Let

R(x) = f(x)φ(x). (5)

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 435–442, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

436 P. Duda and J.M. Zurada

Then as estimator of φ(x) we propose:

φ̂n(x) =
R̂n(x)

f̂n(x)
, (6)

where

R̂n(x) =
1

n

n∑
i=1

YiK
2
n(x,Xi), (7)

and

f̂n(x) =
1

n

n∑
i=1

K1
n(x,Xi). (8)

It should be noted that kernels (3) and (4) are alternatives to Parzen-type kernels
proposed by Spocht to design general regression neural networks. In literature
both type of kernels have been applied to solve stationary ([5], [9], [11] - [14],
[20] - [22], [25] - [28]) and nonstationary ([6], [15] - [19], [23], [24]) problem. The
block diagram of regression neural network is depiced in Fig. 1.

Fig. 1. Regression neural network

2 Main Result

Let us assume that
max

x
|gj| ≤ Gj , (9)

On the Cesaro Orthogonal Series-Type Kernel Probabilistic Neural Networks 437

It should be noted that d = − 1
12 for the Hermite sytem, d = − 1

4 for the Laguerre
system, d = 0 for the Fourier system, d = 1

2 for the Legendre and Haar systems
(see [35]). Let us denote

si = di +

∫
A

φ2(u)f(u)du (10)

Theorem 1. If si <∞, for all i ≥ 1, and the following conditions hold

1

n2
(

M(n)∑
j=0

G2
j)2

n∑
i=1

si
n−→ 0, M(n)

n−→∞ (11)

1

n
(

N(n)∑
j=0

G2
j)2

n−→ 0, N(n)
n−→∞ (12)

then

φ̂n(x)
n−→ φ(x) in probability, (13)

at every point x ∈ A at which

N(n)∑
j=0

(1− j

N(n) + 1
)ajgj(x)

n−→ f(x), (14)

M(n)∑
j=0

(1 − j

M(n) + 1
)bjgj(x)

n−→ R(x) (15)

where

aj =

∫
A

f(x)gj(x)dx = Egj(Xi), (16)

bj =

∫
A

φ(x)f(x)gj(x)dx = E(Yigj(Xi)). (17)

Proof. The proof can be based on the arguments similar to those in [12].

3 Experimental Results

Let us assume that

M(n) = [c1n
qM], N(n) = [c2n

qN], dn = c3n
α, Gj = c4j

d, (18)

where qM , qN and α are positive numbers.

438 P. Duda and J.M. Zurada

We consider the following regresion function

φ(x) = 4 sin(x) cos(x)(x2 − 1). (19)

Distribution of random variables Xi is uniform on the interwal [−π, π], for i =
1, . . . , n and Zi are realizations of random variables N(0, iα), where α > 0.
Parameters qM and qN are both equal to 0, 4. The constans c1 and c2 are equal
to 4 and c3 is equal to 1. The Fourier orthonormal system is chosen to perform
calculations. Number of data set is taken from the interval [500; 10000], and
parameter α is tested in the interval [1

10 ,
12
10].

Fig. 2. MSE as a function of n

Figure 2 shows how the MSE (Mean Square Error) changes with number of
data elements n for different values of parameter α. For parameter α ∈ [0, 1; 0, 2]
we can see that, when n goes to infinity, the MSE goes to 0. For α ≥ 0, 6 value
of the MSE is much bigger than for lowers values of parameter α. For α = 1, 2
and n = 104, the MSE is equal to 281,66.

In Figure 3 input data and the results of estimation for n = 104 and α = 0, 1
are depicted. As we can see estimator found in the appropriate manner center
of data and maintained its trend.

Figure 3 shows the course of the function given by (19) and estimators ob-
tained for n = 104 data, with parameters α equal to 0, 1 and 0, 6. Figure 4 shows
this course on the interval [−1, 1].

On the Cesaro Orthogonal Series-Type Kernel Probabilistic Neural Networks 439

Fig. 3. Training set and obtained estimator

Fig. 4. Function φ(·) and its estimators for different values of parameter α

440 P. Duda and J.M. Zurada

Fig. 5. Function φ(·) and its estimators for different values of parameter α

4 Conclusions

In this paper the Cesaro means of orthogonal series were applied to construct
general regresion neural networks. We established conditions for covergence in
probability assuming nonstationary noise. Our on-going project is devoted to
adapting neurofuzzy structures [8], [29] - [31], [32], [33], [34] and supervised
and unsupervised neural netwoerks [1], [3], [10] for learning in nonstationary
environment.

Acknowledgments. The paper was prepared under project operated within the
Foundation for Polish Science Team Programme co-financed by the EU European
Regional Development Fund, Operational Program Innovative Economy 2007-
2013, and also supported by the National Science Center NCN.

References

1. Bilski, J., Rutkowski, L.: A fast training algorithm for neural networks. IEEE
Transactions on Circuits and Systems II 45, 749–753 (1998)

2. Cacoullos, P.: Estimation of a multivariate density. Annals of the Institute of Sta-
tistical Mathematics 18, 179–190 (1965)

3. Cierniak, R., Rutkowski, L.: On image compression by competitive neural networks
and optimal linear predictors. Signal Processing: Image Communication - a Eurasip
Journal 15(6), 559–565 (2000)

4. Ga�lkowski, T., Rutkowski, L.: Nonparametric recovery of multivariate functions
with applications to system identification. Proceedings of the IEEE 73, 942–943
(1985)

5. Ga�lkowski, T., Rutkowski, L.: Nonparametric fitting of multivariable functions.
IEEE Transactions on Automatic Control AC-31, 785–787 (1986)

On the Cesaro Orthogonal Series-Type Kernel Probabilistic Neural Networks 441

6. Greblicki, W., Rutkowska, D., Rutkowski, L.: An orthogonal series estimate of time-
varying regression. Annals of the Institute of Statistical Mathematics 35, Part A,
147–160 (1983)

7. Greblicki, W., Rutkowski, L.: Density-free Bayes risk consistency of nonparametric
pattern recognition procedures. Proceedings of the IEEE 69(4), 482–483 (1981)

8. Nowicki, R., Pokropińska, A.: Information Criterions Applied to Neuro-Fuzzy Ar-
chitectures Design. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh,
L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 332–337. Springer,
Heidelberg (2004)

9. Parzen, E.: On estimation of a probability density function and mode. Analysis of
Mathematical Statistics 33(3), 1065–1076 (1962)

10. Patan, K., Patan, M.: Optimal training strategies for locally recurrent neural net-
works. Journal of Artificial Intelligence and Soft Computing Research 1(2), 103–114
(2011)

11. Rutkowski, L.: Sequential estimates of probability densities by orthogonal series
and their application in pattern classification. IEEE Transactions on Systems, Man,
and Cybernetics SMC-10(12), 918–920 (1980)

12. Rutkowski, L.: Sequential estimates of a regression function by orthogonal series
with applications in discrimination, New York, Heidelberg, Berlin. Lectures Notes
in Statistics, vol. 8, pp. 236–244 (1981)

13. Rutkowski, L.: On system identification by nonparametric function fitting. IEEE
Transactions on Automatic Control AC-27, 225–227 (1982)

14. Rutkowski, L.: Orthogonal series estimates of a regression function with applica-
tions in system identification. In: Probability and Statistical Inference, pp. 343–347.
D. Reidel Publishing Company, Dordrecht (1982)

15. Rutkowski, L.: On Bayes risk consistent pattern recognition procedures in a quasi-
stationary environment. IEEE Transactions on Pattern Analysis and Machine In-
telligence PAMI-4(1), 84–87 (1982)

16. Rutkowski, L.: On-line identification of time-varying systems by nonparametric
techniques. IEEE Transactions on Automatic Control AC-27, 228–230 (1982)

17. Rutkowski, L.: On nonparametric identification with prediction of time-varying
systems. IEEE Transactions on Automatic Control AC-29, 58–60 (1984)

18. Rutkowski, L.: Nonparametric identification of quasi-stationary systems. Systems
and Control Letters 6, 33–35 (1985)

19. Rutkowski, L.: The real-time identification of time-varying systems by nonpara-
metric algorithms based on the Parzen kernels. International Journal of Systems
Science 16, 1123–1130 (1985)

20. Rutkowski, L.: A general approach for nonparametric fitting of functions and their
derivatives with applications to linear circuits identification. IEEE Transactions
Circuits Systems CAS-33, 812–818 (1986)

21. Rutkowski, L.: Sequential pattern recognition procedures derived from multiple
Fourier series. Pattern Recognition Letters 8, 213–216 (1988)

22. Rutkowski, L.: Nonparametric procedures for identification and control of lin-
ear dynamic systems. In: Proceedings of 1988 American Control Conference,
June 15-17, pp. 1325–1326 (1988)

23. Rutkowski, L.: An application of multiple Fourier series to identification of multi-
variable nonstationary systems. International Journal of Systems Science 20(10),
1993–2002 (1989)

24. Rutkowski, L.: Nonparametric learning algorithms in the time-varying environ-
ments. Signal Processing 18, 129–137 (1989)

442 P. Duda and J.M. Zurada

25. Rutkowski, L., Rafaj�lowicz, E.: On global rate of convergence of some nonparamet-
ric identification procedures. IEEE Transaction on Automatic Control AC-34(10),
1089–1091 (1989)

26. Rutkowski, L.: Identification of MISO nonlinear regressions in the presence of
a wide class of disturbances. IEEE Transactions on Information Theory IT-37,
214–216 (1991)

27. Rutkowski, L.: Multiple Fourier series procedures for extraction of nonlinear regres-
sions from noisy data. IEEE Transactions on Signal Processing 41(10), 3062–3065
(1993)

28. Rutkowski, L., Ga�lkowski, T.: On pattern classification and system identification
by probabilistic neural networks. Applied Mathematics and Computer Science 4(3),
413–422 (1994)

29. Rutkowski, L.: A New Method for System Modelling and Pattern Classification.
Bulletin of the Polish Academy of Sciences 52(1), 11–24 (2004)

30. Rutkowski, L., Cpa�lka, K.: A general approach to neuro - fuzzy systems. In: Pro-
ceedings of the 10th IEEE International Conference on Fuzzy Systems, Melbourne,
December 2-5, vol. 3, pp. 1428–1431 (2001)

31. Rutkowski, L., Cpa�lka, K.: A neuro-fuzzy controller with a compromise fuzzy rea-
soning. Control and Cybernetics 31(2), 297–308 (2002)

32. Scherer, R.: Boosting Ensemble of Relational Neuro-fuzzy Systems. In: Rutkowski,
L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS
(LNAI), vol. 4029, pp. 306–313. Springer, Heidelberg (2006)

33. Starczewski, J., Rutkowski, L.: Interval type 2 neuro-fuzzy systems based on inter-
val consequents. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft
Computing, pp. 570–577. Physica-Verlag, Springer-Verlag Company, Heidelberg,
New York (2003)

34. Starczewski, J., Rutkowski, L.: Connectionist Structures of Type 2 Fuzzy Inference
Systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.)
PPAM 2001. LNCS, vol. 2328, pp. 634–642. Springer, Heidelberg (2002)

35. Szegö, G.: Orthogonal Polynomials, vol. 23. American Mathematical Society Coll.
Publ. (1959)

On the Weak Convergence of the Orthogonal

Series-Type Kernel Regresion Neural Networks
in a Non-stationary Environment

Meng Joo Er1 and Piotr Duda2

1 Nanyang Technological University,
School of Electrical and Electronic Engineering, Singapore

2 Department of Computer Engineering,
Czestochowa University of Technology, Czestochowa, Poland

emjer@ntu.edu.sg, pduda@kik.pcz.pl

Abstract. In the paper general regression neural networks, based on
the orthogonal series-type kernel, is studied. Convergence in probability
is proved assuming non-stationary noise. The performance is investigated
using syntetic data.

1 Introduction

Let X1, . . . , Xn be a sequence of independent random variables with a common
desity function f . Consider the following model

Yi = φ(Xi) + Zi, i = 1, . . . , n, (1)

where Zi are random variables such that

E(Zi) = 0, EZ2
i = di, i = 1, . . . , n, (2)

and φ(·) is an unknown function.

f(x) ∼
∞∑
j=0

ajgj(x), (3)

where

aj =

∫
A

f(x)gj(x)dx = Egj(Xj). (4)

and {gj(·)}, j = 0, 1, 2, . . . is a complete orthonormal set defined on A ⊂ Rp.
Then the estimator of density f(·) takes the form

f̂n(x) =

N(n)∑
j=0

âjgj(x), (5)

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 443–450, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

444 M.J. Er and P. Duda

where N(n)
n−→∞ and

âj =
1

n

n∑
k=0

gj(Xk) (6)

Let us define

R(x) = f(x)φ(x). (7)

We assume that function R(·) has the representation

R(x) ∼
∞∑
j=0

bjgj(x), (8)

where

bj =

∫
A

φ(x)f(x)gj(x)dx = E(Ykgj(Xk)) (9)

We estimate function R(·) using

R̂n(x) =

M(n)∑
j=0

b̂jgj(x), (10)

where M(n)
n−→∞ and

b̂j =
1

n

n∑
k=0

Ykgj(Xk). (11)

Then the estimator of the regression function is of the following form

φ̂n(x) =
R̂n(x)

f̂n(x)
=

n∑
i=1

M(n)∑
j=0

Yigj(Xi)gj(x)

n∑
i=1

N(n)∑
j=0

gj(Xi)gj(x)

(12)

It should be noted estimate (12) can be presented in the form of general re-
gression neural networks [35] with appropriately selected kernels K1

n(x, u) =
N(n)∑
j=0

gj(x)gj(u) and K2
n(x, u) =

M(n)∑
j=0

gj(x)gj(u). In literature nonparametric es-

tiames have been widely studied both in stationary (see e.g. [3], [5], [6],[8], [10],
[12] - [15], [21] - [23], [26] - [29]) and time-varying case (see [7], [16] -[20], [24],
[25]). In this paper it will be shown that procedure (12) is applicable even if
variance of noise diverges to infinity. Block diagram of general regression neural
network is shown in Fig. 1.

On the Weak Convergence of the Regresion Neural Networks 445

Fig. 1. General regression neural network

2 Main Result

Let us assume that

max
x
|gj| < Gj . (13)

Let us denote

si = di +

∫
A

φ2(u)f(u)du (14)

Theorem 1. If si <∞, for all i ≥ 1, and the following conditions hold

1

n2
(

M(n)∑
j=0

G2
j)2

n∑
i=1

si
n−→ 0, M(n)

n−→∞ (15)

1

n
(

N(n)∑
j=0

G2
j)2

n−→ 0, N(n)
n−→∞ (16)

then

Φ̂n(x)
n−→ Φ(x) in probability, (17)

at every point x ∈ A at which series (3) and (8) converge to f(x) and R(x),
respectively.

446 M.J. Er and P. Duda

Proof. It is sufficient to show that:

E[R̂n(x)−R(x)]2
n−→ 0 (18)

E[f̂n(x)− f(x)]2
n−→ 0, (19)

in probability, at every point x ∈ A, at which series (3) and (8) are convergent.
Observe that

E(R̂n(x) −R(x))2 ≤
M(n)∑
j=0

G2
j

M(n)∑
j=0

E(b̂j − bj)2 + (

M(n)∑
j=0

bjgj(x)−R(x))2. (20)

One can see that the mean square error E(b̂j − bj)2 is bounded by

E(b̂j − bj)2 ≤
G2

j

n2

n∑
i=1

(

∫
A

φ2(u)f(u)du+ di). (21)

Then

E[R̂n(x)−R(x)]2 ≤ 1

n2
(

M(n)∑
j=0

G2
j)

2
n∑

i=1

(

∫
A

φ2(u)f(u)du+ di) + (

M(n)∑
j=0

bjgj(x)−R(x))2.

(22)

In view of assumption (15), convergence (18) is established. Convergence (19)
can be proved in a similar way. This concludes the proof.

Remark 1. Conditions for convergence of series (3) and (8) can be found in
[1],[33],[38].

Example. Let assume that

M(n) = [c1n
qM] N(n) = [c2n

qN] dn = c3n
α Gj = c4j

d, (23)

where qM , qN and α are positive numbers. It is easily seen that if

4dqM + 2qM + α < 1, 4dqN + 2qN < 1, (24)

then Theorem 1 holds. It should be noted that d = − 1
12 for the Hermite sytem,

d = − 1
4 for the Laguerre system, d = 0 for the Fourier system, d = 1

2 for the
Legendre and Haar systems (see [33]).

3 Experimental Results

For computer simulations we use synthetic data. Distribution of random vari-
ables Xi is uniform on the interval [0;π], for i = 1, . . . , n. Consider the following
model

φ(x) = exp(sin(2x)), (25)

On the Weak Convergence of the Regresion Neural Networks 447

Fig. 2. The MSE as a function of n

Fig. 3. Training set and obtained estimator

with Zi which are realizations of random variables N(0, di), di = iα, α > 0. All
constants (c1, c2, c3) in (23) are equal to 1. Parameters qM and qN are both equal
to 0, 25. The Hermite orthonormal system is chosen to perform calculations.
Number of data set is taken from the interval [500; 10000] and parameter α is
tested in the interval [1

10 ,
12
10].

Figure 2 shows how the MSE (Mean Square Error) changes with the number of
data elements n for different values of parameter α. For parameter α ∈ [0, 1; 0, 7]
we can see that, when n goes to infinity, the MSE goes to 0. For α = 0, 8 this trend
is not maintained. Moreover, for α = 0, 8, value of the MSE is much bigger than
for lower values of parameter α. Experimental results show that for higher values
of α the MSE is growing. For α = 1, 2 and n = 104, the MSE is equal to 7,37.

448 M.J. Er and P. Duda

Fig. 4. Function φ(·) and its estimators for different values of parameter α

In Figure 3 input data and the result of estimation for n = 104 and α = 0, 1 is
indicated. As we can see the estimator found in the appropriate manner center
of data and maintained its trend.

Figure 3 shows the course of the function given by (25) and estimators ob-
tained for n = 104, with parameters α equal to 0, 1 and 1, 2.

4 Conclusions

In this paper we studied general regression neural networks, based on the or-
thogonal series-type kernel. We proved convergence in probability assuming non-
stationary noise. In future works alternative methods, based on neural networks
[2], [4], [11] and neuro-fuzzy structures [9], [30] - [32], [34], [36], [37], will be
adopted to handle nonstationary noise.

Acknowledgments. The paper was prepared under project operated within the
Foundation for Polish Science Team Programme co-financed by the EU European
Regional Development Fund, Operational Program Innovative Economy 2007-
2013, and also supported by the National Science Center NCN.

References

1. Alexits, G.: Convergence Problems of Orthogonal Series, Budapest, Academia and
Kiado, pp. 261–264 (1961)

2. Bilski, J., Rutkowski, L.: A fast training algorithm for neural networks. IEEE
Transactions on Circuits and Systems II 45, 749–753 (1998)

On the Weak Convergence of the Regresion Neural Networks 449

3. Cacoullos, P.: Estimation of a multivariate density. Annals of the Institute of Sta-
tistical Mathematics 18, 179–190 (1965)

4. Cierniak, R., Rutkowski, L.: On image compression by competitive neural networks
and optimal linear predictors. Signal Processing: Image Communication - a Eurasip
Journal 15(6), 559–565 (2000)

5. Ga�lkowski, T., Rutkowski, L.: Nonparametric recovery of multivariate functions
with applications to system identification. Proceedings of the IEEE 73, 942–943
(1985)

6. Ga�lkowski, T., Rutkowski, L.: Nonparametric fitting of multivariable functions.
IEEE Transactions on Automatic Control AC-31, 785–787 (1986)

7. Greblicki, W., Rutkowska, D., Rutkowski, L.: An orthogonal series estimate of time-
varying regression. Annals of the Institute of Statistical Mathematics 35, Part A,
147–160 (1983)

8. Greblicki, W., Rutkowski, L.: Density-free Bayes risk consistency of nonparametric
pattern recognition procedures. Proceedings of the IEEE 69(4), 482–483 (1981)

9. Nowicki, R.: Rough Sets in the Neuro-Fuzzy Architectures Based on Monotonic
Fuzzy Implications. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh,
L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 510–517. Springer, Heidel-
berg (2004)

10. Parzen, E.: On estimation of a probability density function and mode. Analysis of
Mathematical Statistics 33(3), 1065–1076 (1962)

11. Patan, K., Patan, M.: Optimal training strategies for locally recurrent neural net-
works. Journal of Artificial Intelligence and Soft Computing Research 1(2), 103–114
(2011)

12. Rutkowski, L.: Sequential estimates of probability densities by orthogonal series
and their application in pattern classification. IEEE Transactions on Systems, Man,
and Cybernetics SMC-10(12), 918–920 (1980)

13. Rutkowski, L.: Sequential estimates of a regression function by orthogonal series
with applications in discrimination, New York, Heidelberg, Berlin. Lectures Notes
in Statistics, vol. 8, pp. 236–244 (1981)

14. Rutkowski, L.: On system identification by nonparametric function fitting. IEEE
Transactions on Automatic Control AC-27, 225–227 (1982)

15. Rutkowski, L.: Orthogonal series estimates of a regression function with applica-
tions in system identification. In: Probability and Statistical Inference, pp. 343–347.
D. Reidel Publishing Company, Dordrecht (1982)

16. Rutkowski, L.: On Bayes risk consistent pattern recognition procedures in a quasi-
stationary environment. IEEE Transactions on Pattern Analysis and Machine In-
telligence PAMI-4(1), 84–87 (1982)

17. Rutkowski, L.: On-line identification of time-varying systems by nonparametric
techniques. IEEE Transactions on Automatic Control AC-27, 228–230 (1982)

18. Rutkowski, L.: On nonparametric identification with prediction of time-varying
systems. IEEE Transactions on Automatic Control AC-29, 58–60 (1984)

19. Rutkowski, L.: Nonparametric identification of quasi-stationary systems. Systems
and Control Letters 6, 33–35 (1985)

20. Rutkowski, L.: The real-time identification of time-varying systems by nonpara-
metric algorithms based on the Parzen kernels. International Journal of Systems
Science 16, 1123–1130 (1985)

21. Rutkowski, L.: A general approach for nonparametric fitting of functions and their
derivatives with applications to linear circuits identification. IEEE Transactions
Circuits Systems CAS-33, 812–818 (1986)

450 M.J. Er and P. Duda

22. Rutkowski, L.: Sequential pattern recognition procedures derived from multiple
Fourier series. Pattern Recognition Letters 8, 213–216 (1988)

23. Rutkowski, L.: Nonparametric procedures for identification and control of lin-
ear dynamic systems. In: Proceedings of 1988 American Control Conference,
June 15-17, pp. 1325–1326 (1988)

24. Rutkowski, L.: An application of multiple Fourier series to identification of multi-
variable nonstationary systems. International Journal of Systems Science 20(10),
1993–2002 (1989)

25. Rutkowski, L.: Nonparametric learning algorithms in the time-varying environ-
ments. Signal Processing 18, 129–137 (1989)

26. Rutkowski, L., Rafaj�lowicz, E.: On global rate of convergence of some nonparamet-
ric identification procedures. IEEE Transaction on Automatic Control AC-34(10),
1089–1091 (1989)

27. Rutkowski, L.: Identification of MISO nonlinear regressions in the presence of
a wide class of disturbances. IEEE Transactions on Information Theory IT-37,
214–216 (1991)

28. Rutkowski, L.: Multiple Fourier series procedures for extraction of nonlinear regres-
sions from noisy data. IEEE Transactions on Signal Processing 41(10), 3062–3065
(1993)

29. Rutkowski, L., Ga�lkowski, T.: On pattern classification and system identification
by probabilistic neural networks. Applied Mathematics and Computer Science 4(3),
413–422 (1994)

30. Rutkowski, L.: A New Method for System Modelling and Pattern Classification.
Bulletin of the Polish Academy of Sciences 52(1), 11–24 (2004)

31. Rutkowski, L., Cpa�lka, K.: A general approach to neuro - fuzzy systems. In: Pro-
ceedings of the 10th IEEE International Conference on Fuzzy Systems, Melbourne,
December 2-5, vol. 3, pp. 1428–1431 (2001)

32. Rutkowski, L., Cpa�lka, K.: A neuro-fuzzy controller with a compromise fuzzy rea-
soning. Control and Cybernetics 31(2), 297–308 (2002)

33. Sansone, G.: Orthogonal functions, vol. 9. Interscience Publishers In., New York
(1959)

34. Scherer, R.: Boosting Ensemble of Relational Neuro-fuzzy Systems. In: Rutkowski,
L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS
(LNAI), vol. 4029, pp. 306–313. Springer, Heidelberg (2006)

35. Specht, D.F.: Probabilistic neural networks. Neural Networks 3, 109–118 (1990)
36. Starczewski, J., Rutkowski, L.: Interval type 2 neuro-fuzzy systems based on inter-

val consequents. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft
Computing, pp. 570–577. Physica-Verlag, Springer-Verlag Company, Heidelberg,
New York (2003)

37. Starczewski, J., Rutkowski, L.: Connectionist Structures of Type 2 Fuzzy Inference
Systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.)
PPAM 2001. LNCS, vol. 2328, pp. 634–642. Springer, Heidelberg (2002)

38. Zygmund, A.: Trigonometric Series. Cambridge University Press, Cambridge (1959)

A Graph-Based Generation of Virtual Grids

Ewa Grabska, Wojciech Palacz, Barbara Strug, and Grażyna Ślusarczyk

Faculty of Physics, Astronomy and Applied Computer Science,
Jagiellonian University, Reymonta 4, Krakow, Poland

{ewa.grabska,wojciech.palacz,barbara.strug,gslusarc}@uj.edu.pl

Abstract. This paper presents a unified formal model to be used in
the grid representation based on hierarchical graph structures. It aims
at both helping in a better understanding of grid generation and in grid
simulation problems. A new graph structure called layered graphs is pro-
posed. This approach enables one to use attributed graph grammars as
a tool to generate both a grid structure and its parameters at the same
time. To illustrate the method an example of a grid generated by means
of graph grammar rules is presented.

1 Introduction

Grid computing is based on the distributed computing concept [2]. The grid is
usually considered to be composed of several layers: Fabric, Connectivity, Re-
sources, Collective and Application [5]. As the grid can be used for many different
applications we propose each of the grid layers to be represented as a subgraph
of a hierarchical graph, called layered graph. The graph layers are connected
by inter-layer edges which represent how the communication between different
layers of a grid is carried out. Such a representation allows us to investigate
properties of a grid in a more general way and to better understand its working
and behavior.

As the grid is a dynamic structure, new resources can be added and removed
from the overall structure at any time. These changes can be modelled with
the use of attributed graph grammars that are capable of generating both a
grid structure and its parameters at the same time. As in the grid changes may
occur at different layers at the same time there is a need to use grammar rules
operating on several layers. To make sure the functionality of a grid is preserved
some rules have also to be able to invoke other rules responsible for maintaining
the stability of affected elements. Moreover, using graph grammars enables us to
quickly generate many alternative structures obeying the specified constraints.

Grid generation, discussed by Lu and Dinda [1], separates topology generation
and annotations, while the method proposed here, which uses graph grammars,
makes it possible to generate the structure with the annotations (attributes) [4].
Our earlier work on layered graphs is presented in [8].

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 451–460, 2012.
c Springer-Verlag Berlin Heidelberg 2012

452 E. Grabska et al.

2 Hierarchical Graphs

Hierarchical Graphs (HGs) consist of edges and nodes which can contain internal
nodes. These nodes can be connected to other nodes with the exception of their
ancestors. This property makes hierarchical graphs [7] well suited to represent
the structure of the grid.

Let us assume that if f : A → A is a function, then f0(x) = x, f1(x) = f(x),
f2(x) = f(f(x)), f+(x) =

⋃∞
i=1 f i(x), f∗(x) =

⋃∞
i=0 f i(x).

Formally a hierarchical graph is defined in the following way:

Definition 1 (hierarchical graph). G = (VG, EG, sG, tG, chG) is a hierarchi-
cal graph if:

1. VG ∩ EG = ∅, where VG and EG are finite sets of nodes and edges,
2. sG : EG → VG and tG : EG → VG are functions specifying edge source and

target,
3. chG : VG → P(VG) is a function specifying children nodes,
4. ∀e ∈ EG : sG(e) �= tG(e), i.e. there are no loops,
5. ∀v ∈ VG : v /∈ ch+

G(v), i.e. a node cannot be its own descendant,
6. ∀v, w ∈ VG : v �= w ⇒ chG(v) ∩ chG(w) = ∅, i.e. a node cannot have two

parents, and
7. ∀e ∈ EG : sG(e) /∈ ch∗

G(tG(e)) ∧ tG(e) /∈ ch∗
G(sG(e)), i.e. there are no edges

between hierarchically related nodes.

The universe of all graph nodes is denoted by V , the universe of edges by E . Let
⊥ be a fixed value, not equal to any graph node: ⊥ /∈ V .

Definition 2 (parent and ancestors of a node). Let G be a hierarchical
graph.
parG : VG → VG ∪ {⊥} defined as parG(v) =

{
w if ∃ w ∈ VG : v ∈ chG(w)
⊥ otherwise

is called the parent function of G.
Let ancG : VG ∪ {⊥} → VG ∪ {⊥} be defined as ancG(x) =

{
parG(x) if x ∈ VG

⊥ if x = ⊥
For a given node v, anc1

G(v) is its direct ancestor (parent), anc2
G(v) is its level

2 ancestor (grandparent), and so on.

A set of all ancestors of v can be specified as anc+
G(v). It should be noticed that

this set will always include ⊥ – this must be taken into account when checking
if two graph nodes share common ancestors.

Definition 3 (root nodes, leaf nodes). Let G be a hierarchical graph. Let us
define roots(G) = {v ∈ VG : parG(v) = ⊥}, i.e. the set of root nodes of G, and
leaves(G) = {v ∈ VG : chG(v) = ∅}, i.e. the set of leaf nodes of G.

Nodes and edges in hierarchical graphs can be labelled and attributed. Attributes
represent properties of components and relations represented by graph nodes
and edges, respectively. For the rest of this paper, let RV and RE be the sets of

A Graph-Based Generation of Virtual Grids 453

node and edge labels, respectively; let AV and AE be the sets of node and edge
attributes. Every attribute a ∈ AV ∪ AE is associated with set Da, called the
domain of a. Let D be the union of all attribute domains.

Let us also assume that a special symbol, ε, is included in all attribute do-
mains. This symbol will be used if a value of a given attribute is undefined.

Definition 4 (labelled attributed graph). A 5-tuple G = (g, vlabG, elabG,
vatrG, eatrG) is a labelled, attributed hierarchical graph if

1. g = (Vg , . . . , chg) is a hierarchical graph,
2. vlabG : Vg → RV and elabG : Eg → RE are functions specifying node and

edge labels,
3. vatrG : Vg → P(AV) and eatrG : Eg → P(AE) are functions specifying node

and edge attributes.

The labelling and attributing of a subgraph H of a labelled attributed hierar-
chical graph G is defined by restricting respective functions in G. The given
hierarchical graph G can represent a potentially infinite subset of grids having
the same structure. To represent an actual grid we must define an instance of a
graph. An instance of a hierarchical graph is a hierarchical labelled attributed
graph in which to each attribute a a value from the set of possible values of this
attribute has been assigned.

Definition 5 (instance graph). A triple IG = (G, vvalG, evalG) is an in-
stance of a labelled, attributed, hierarchical graph if

– G = (g, . . . , eatrG) is a labelled, attributed, hierarchical graph,
– vvalG = {(v, a, x) : v ∈ VG, a ∈ vatrG(v), x ∈ Da} is a set of node attribute

values which contains exactly one triple for every possible combination of v
and a, and

– evalG = {(e, a, x) : e ∈ EG, a ∈ eatrG(e), x ∈ Da} is a set with analogous
condition (for edge attribute values).

In the paper notation a(v) = x, b(e) = y will be used instead of (v, a, x) ∈ vvalG,
(e, b, y) ∈ evalG.

Definition 6 (instance subgraph). Instance graph IH is a subgraph of IG if

– H = (h, . . . , eatrH) is a subgraph of G = (g, . . . , eatrG),
– vvalH = vvalG|VH×AV ×D, and evalH = evalG|EH×AE×D.

A computational grid contains different types of elements: physical nodes (com-
puters, computational elements), virtual ones (software, operating systems, ap-
plications) and storage elements which can be treated both as physical elements
(designated hard drives) or virtual (residing on other physical elements). More-
over, some virtual elements of a grid are responsible for performing computa-
tional tasks sent to the grid, while other elements (services) are only responsible
for managing the grid structure data, behaviour and the flow of the tasks.

454 E. Grabska et al.

In this paper we introduce a notion of a layer composed of subgraphs of
hierarchical graphs as a formal description of one part of a grid. For example at
the physical layer a graph may represent a network located at one place. As such
parts of a grid are independent of each other they are represented by disjoint
subgraphs. On the other hand, each such graph consists of elements that can
communicate with each other, so they are represented by connected graphs.

The type of element represented by a given node is defined by a node la-
bel. Thus we can partition the set of node labels into four subsets, each one
containing labels representing objects from different grid layers: computational,
managing, resources and user/tasks. On the basis of this division a graph can
also be partitioned provided there are no hierarchically related nodes with labels
from different layers. Thus, formally a layer can be defined as:

Definition 7 (graph layers). Let G be an instance graph. Let L = {L1, L2,
. . . Ln} be a partition of RV such that ∀v ∈ V : vlab(v) ∈ Li ⇒ vlab(ch+(v)) ⊆
Li. Let {G1, . . .Gn} be a family of subgraphs of G such that every Gi is induced
by {v ∈ V : vlab(v) ∈ Li}. Members of this family are called layers of G.

The layers are denoted by numbers, but to make the given example clear they
are named CL, ML, RL and UTL. The graph layers are connected by interlayer
edges which represent how the communication between different layers of a grid
is carried out. While the layered graph represents the structure (topology) of
a grid, a semantics is needed to define the meaning of its elements. Such in-
formation may include an operation system installed on a given computational
element, specific software installed, size of memory or storage available, type of a
resource represented by a given element etc. This information is usually encoded
in attributes assigned to elements of a graph. Graph elements representing grid
nodes can have several attributes assigned.

3 Grid Representation

The layered graph defined in the previous section can contain any number of
layers. Three layers are used to describe the structure of the grid.

Let RV = {C, CE, RT, ST, CM, index, services, broker, jobscheduling,
monitoring} (where C stands for a computer, CE – for a computational element,
CM – for a managing unit, RT – for a router and ST – for storage), be a set of
node labels used in a grid representation. Let RV be partitioned into three sets:
L1, L2 and L3, such that L1 = {C, CE, RT }, L2 = {CM}, and L3 = {index,
services, broker, jobscheduling, monitoring}.

An example of a layered graph representing a simple grid is depicted in
Fig. 1b. The top layer of this graph, layer RL, represents the main resources/
services responsible for task distributing/assigning/allocating. The second layer
represents the elements responsible for the grid management. Each node labelled
CM represents a management system for a part of a grid, for example for a

A Graph-Based Generation of Virtual Grids 455

a)
CE

CE
CE

CE

ML

RL

CL

UTL

c)

Fig. 1. A layered graph representing a grid and its part representing a single compu-
tational element

given subnetwork/computing element. The management elements CM can be
hierarchical. Such a hierarchy represents a situation in which data received from
the grid services is distributed internally to lower-level managing components
and each of them in turn is responsible for some computational units. At the
same time each CM element can be responsible for managing one or more com-
putational elements.

Each node label describes the type of a grid element represented by a given
node. Grid elements have some additional properties represented by attributes.
Let attributes of nodes be defined on the basis of the node label. We also assume
that attributes are defined for low-level nodes only. The attributes for their
ancestors are computed on the basis of the children attributes.

Thus, let the set of node attributes be A = {capacity, RAM, OS, apps, CPU,
class}. Let vatr be a function assigning sets of attribute names to nodes of a
layered graph depicted in Fig. 1b.

The sets of attributes are determined according to two following rules. For
nodes with children (i.e. ∀v : ch(v) �= ∅) vatr(v) =

⋃
w∈ch(v) vatr(w), while for

leaf nodes (i.e. ∀v : ch(v) = ∅) labels determine attributes, according to the
following table.

456 E. Grabska et al.

vlab vatr

C RAM, OS, CPU, apps
ST capacity, type
RT class
CM load
broker load
index size

In Fig. 1c a part of the graph from Fig. 1b is shown. It represents one com-
putational element, which is a part of a computational layer. For this graph the
sets of attributes are described in the following way:

vatr(vi) =

⎧⎨⎩
{RAM, OS, CPU, apps} i = 2, 3, 4
{capacity, type} i = 5
{class} i = 6

For node v1, which is a higher level node, its attributes are computed on the
basis of children attributes. Thus vatr(v1) = {RAM, OS, CPU, apps, capacity,
type, class}.

To node attributes the appropriate values have to be assigned. Firstly, domains
for all attributes have to be defined. In this example let DOS = {Win, Lin,
MacOS, GenUnix}, Dapps = {app1, app2, app3, app4}, DCPU = {cpu1, cpu2,
cpu3}, Dclass = {c1, c2, c3, c4}, DRAM = {n ∈ N : 0 ≤ n ≤ 64}, Dcapacity =
{m ∈ N : 0 ≤ m ≤ 1000}, Dtype = {FAT, FAT 32, NTFS, ext3, ext4, xfs}. In
the example the values of attributes for node v2 are as follows: RAM(v2) = 4,
CPU(v2) = cpu1, OS(v2) = Win, apps(v2) = app1. For the hierarchical node
v1 the values for the properties CPU , OS and apps are a collection containing
all the values of attributes of the children nodes of v1. In case of numerical
properties it is a sum of the values of its children nodes.

The above approach allows us to represent a static grid structure. To represent
its dynamics we will have to introduce users and tasks. Let a label u represent
a user and t a task. Let Rd

V = RV ∪ {u, v} be the total set of node labels for
the dynamic grid representation. Let L4 = {u, v} be a set determining a layer
representing users and tasks. This layer is placed above the layer RL (Fig. 1a).
The set of attributes for nodes labelled by t contains RAM, OS, CPU and apps,
while for the ones labelled by u - slots and tasks.

4 Graph Generation

Graphs can be generated by graph grammars, which are systems of graph trans-
formations called productions. Different types of graph grammars have been
investigated and their ability to generate different structures has been proved
[7,3].

A Graph-Based Generation of Virtual Grids 457

CE r CE RT

Fig. 2. A transformation rule (attributes omitted)

To be able to find in a current graph a subgraph that can be replaced by a
right side of the transformation rule, a morphism of graphs has to be defined.
On the basis of the morphisms we can formally define a transformation rule.

Definition 8 (graph morphism). Let IG and IH be two instance graphs. Let
f = (fV , fE) be a pair of functions, fV : VG → VH and fE : EG → EH . VG and
EG are disjoint, thus instead of fV (v) and fE(e) we will simply write f(v) and
f(e), as well as f : IG → IH .

f is a graph morphism if

– f(sG(e)) = sH(f(e)) for all e ∈ EG,
– f(tG(e)) = tH(f(e)) for all e ∈ EG,
– f(v) ∈ chH(f(p)) for all v ∈ VG such that ∃ p ∈ VG : v ∈ chG(p), i.e.

parent-child relations are preserved,
– f(v) /∈ ch+

H(f(w)) and f(w) /∈ ch+
H(f(v)) for all v, w ∈ VG such that v /∈

ch+
G(w) and w /∈ ch+

G(v), i.e. unrelated nodes stay unrelated,
– vlabG(v) = vlabH(f(v)) for all v ∈ VG,
– elabG(e) = elabH(f(e)) for all e ∈ EG,
– vatrG(v) ⊆ vatrH(f(v)) for all v ∈ VG, and
– eatrG(e) ⊆ eatrH(f(e)) for all e ∈ EG.

It should be noted that in this definition it is required that all attributes from
IG have to be present in IH , but it is not required that their values are identical.
Node v, labelled “C” and having attributes ram(v) = 8, cpu(v) = cpu1, can be
mapped to the other node u with the same label, and attributes ram(u) = 16,
cpu(u) = cpu2, apps(u) = app2.

CE

CE C

CE

C

m

C C r C ST C

Fig. 3. A rule matched to a graph

Definition 9 (root-level and nesting morphisms). Let f : IG → IH be a
graph morphism. f is root-level if f(root(G)) ⊆ root(H). Otherwise, f is nesting.

458 E. Grabska et al.

Definition 10 (partial morphism). A partial morphism f from IG to IH is
a morphism from some instance subgraph IS ⊆ IG to IH .

Each rule has two graphs, L and R, and a partial morphism r : L → R. Finding
a matching subgraph in G means finding a morphism m : L → G (the matching
morphism). Let us denote the preimage of R, i.e. r−1(R), by dom(r). These
nodes and edges of L which are not in dom(r) represent elements to be removed,
and will be denoted by VDEL and EDEL. What will actually be removed, though,
are nodes and edges of G: m(VDEL) and m(EDEL). Nodes and edges of R which
are not in r(L) will be denoted by VINS and EINS ; their copies will be added
to G.

The nodes and edges which are neither deleted nor inserted provide a context
in which these operations take place. For example, there may be nodes labelled
“CE” present in L and R (with r mapping one of them to the other). The right-
hand side can then specify that a new node needs to be created as a child of the
“CE” node (see Fig. 2).

We will use VRINS to denote nodes from VINS which are at the root level in
R (VRINS = VINS ∩ root(R)). When their copies are added to G it has to be
remembered that their siblings, context nodes from R, can be mapped to nodes
in G which are not root-level. Moreover even if two nodes are siblings in L and
R, their images in G do not have to be such (see Fig. 3).

Therefore a rule must contain additional instructions, specifying which nodes
exactly should be assigned as parents. A copy of root-level node from R can be
inserted either at the root level of G, or as a brother of a node corresponding to
one of its siblings from R. This will be specified by a function, which assigns to
each node from VRINS either ⊥, or some context node from R (in which case the
rule diagram will have a dotted rectangle drawn around the considered nodes).

Definition 11 (graph transformation rule). Let L and R be instance graphs,
r : L → R be an injective root-level partial morphism, PI : VRINS → {⊥} ∪
(root(R) − VINS) be a function (parent instructions), and AI be a sequence of
attribute assignment instructions on R. p = (L, R, r, PI, AI) is a transformation
rule.

In a grid generation process we use several categories of productions [8]. Some
productions operate on only one layer, other productions - on several layers.
Moreover, we need productions that can both add and remove elements from the
grid represented by the layered graph. To make sure the functionality of a grid is
preserved the productions removing elements have also to be able to invoke rules
responsible for maintaining the stability of affected elements. The production
can also be required to start some actions. For example if a production removes
a node representing a computational element containing a virtual resource, all
other elements using this resource must be redirected to its copy. If such a copy
does not exist it must be generated on other element before it is removed from
the grid.

During the application of the production the attributes must also be properly
assigned. To make it possible the attribute assignment equations are defined as a

A Graph-Based Generation of Virtual Grids 459

CE CE

CM r

CE CE

CM CM

L R

CE

C

C

CE

C ST

RT

C

CM

CE

C

C

CE

C ST

RT

C

CM

CE

C

C

CE

C ST

RT

C

CM CM

m m′

G D H

Fig. 4. Stages of the rule application process (attributes omitted)

a) b)

Fig. 5. A part of the graph from Fig. 1b representing a single computational element
a) before b) after applying a production

Fig. 6. The production responsible for adding a computer to the grid

part of each production. In Fig. 5 an instance of a part of the graph from Fig. 1b
is depicted. In Fig. 6 a production responsible for adding a computer is shown.
There are two attribute assignments associated with this production. When the
left side of the production is matched to the current graph the matched elements
are replaced by the right side of the production. Then the attribute assignments
are applied. The first one assigns a value 2 to the attribute ram of the node
labeled by C on the right side. The second assignment is more complex: it takes

460 E. Grabska et al.

the current value of the attribute ram of the node matched to the one labelled
by CE, then takes the value of the same attribute assigned to the node labelled
by C, adds them and the sum is then used to replace the previous value of the
attribute ram of the node labelled CE.

5 Conclusions
In this paper a new approach to grid representation, which uses graph struc-
tures, has been presented. Layered graphs has been defined and an example of
such a graph as a grid representation has been shown. Using a graph based rep-
resentation enables us to use graph grammars as a tool to generate a grid. In
this paper a grid graph grammar has been described and some of its productions
have been depicted and explained. As layered graphs are attributed, both the
structure and the parameters of the grid can be generated at the same time.
Productions presented in this paper are used to generate the grid. The next step
will consist in adding productions that will be able to simulate the work and be-
haviour of the grid as well. Then a new grid simulator will be implemented. As we
have the possibility of modeling the structure of the environment in a dynamic
way, the design of the simulator focuses on building the topology and adopting
it in the runtime. The basic requirement is to enable the generation of a wide
range of different grid structures which would be described using the proposed
grid grammar for the simulation purpose. It will enable one quick verification
of suggested solutions and allow for testing different types of grids and different
grid configurations before actually implementing them. The management layer
defined explicitly gives us the opportunity to check some specific configuration or
scheduling algorithms. In this paper we do not consider the problem of whether
an existing grid structure belongs to the language generated be the given graph
grammar, but it seems to be an interesting area for future research.

References
1. Lu, D., Dinda, P.A.: GridG: Generating Realistic Computational Grids. SIGMET-

RICS Performance Evaluation Review, 30(4), 33–40 (2003)
2. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable

Virtual Organizations. Int. J. Supercomp. App., 200–220 (2001)
3. Grabska, E., Palacz, W.: Hierarchical graphs in creative design. MG&V 9(1/2),

115–123 (2000)
4. Grabska, E., Strug, B.: Applying Cooperating Distributed Graph Grammars in

Computer Aided Design. In: Wyrzykowski, R., Dongarra, J., Meyer, N., Waśniewski,
J. (eds.) PPAM 2005. LNCS, vol. 3911, pp. 567–574. Springer, Heidelberg (2006)

5. Joseph, J., Ernest, M., Fellenstein, C.: Evolution of grid computing architecture and
grid adoption models (online)

6. Joseph, J., Fellenstein, C.: Grid Computing. IBM Press (2004)
7. Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph.

Transformations, vol. 1-3. World Scientific, London (1997-1999)
8. Strug, B., Ryszka, I., Grabska, E., Ślusarczyk, G.: Generating a virtual computa-

tional grid by graph transformations. In: INGRID 2010. Springer (2011)

On General Regression Neural Network
in a Nonstationary Environment

Yoichi Hayashi1 and Lena Pietruczuk2

1 Department of Computer Science, Meiji University,
Tama-ku, Kawasaki 214-8571, Japan

hayashiy@cs.meiji.ac.jp
2 Department of Computer Engineering, Czestochowa University of Technology,

ul. Armii Krajowej 36, 42-200 Czestochowa, Poland
lena.pietruczuk@kik.pcz.pl

Abstract. In this paper we present the method for estimation of un-
known function in a time-varying environment. We study the proba-
bilistic neural network based on the Parzen kernels combined with the
recursive least square method. We present the conditions for convergence
in probability and we discuss the experimental results.

1 Introduction

In literature there are many problems requiring finding the unknown regression
function in a time-varying environment. This article will describe a method of
solving this problem in the following case. Let (Xi, Yi) for i = 1, . . . , n be a
sequence of pairs of random variables, where Xi ∈ Rp and Yi ∈ R. We will study
the system

Yi = φ(Xi) + aci + Zi, i = 1, . . . , n, (1)

where φ(x) is an unknown regression function, ci in a known sequence of num-
bers, a is unknown constant, Zi are random variables representing noise and Xi

are equally distributed random variables with density function f(x). We consider
the case when the noise Zi satisfies the following conditions

E[Zi] = 0, V ar[Zi] = σ2
i < σ2

Z , for i = 1 . . . , n. (2)

The problem is to find unknown value of parameter a and to estimate unknown
function φ. It should be emphasized that such problem was never solved in litera-
ture. The method applied in this paper is based on the nonparametric estimates,
named in the area of soft computing, probabilistic neural networks [40]. Non-
parametric regression estimates in a stationary environment were studied in [6],
[7], [10], [17]-[21], [27]-[29] and [32]-[35], whereas non-stationary environment was
considered in [9], [22]-[26], [30] and [31], assuming stationary noise. For excelent
overviews of those algorithms the reader is reffered to [8] and [11].

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 461–469, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

462 Y. Hayashi and L. Pietruczuk

2 Algorithm

The estimation of regression function φ(x) requires two steps. First we estimate
the unknown value of parameter a by estimate ân. Then we find the regression
function of random variables (Xi, Y

′
i) for i ∈ 1, . . . , n, where Y ′

i is in the form

Y ′
i = Yi − ânci = φ(Xi) + (a − ân)ci + Zi, i = 1, . . . , n. (3)

To estimate the value of parameter a we use the recursive least squares error
method [1]. Therefore we use the formula

âi = âi−1 +
ci∑i

j=1 ci

(Yi − âi−1ci). (4)

After computing the value of ân we can estimate the regression function φ(x)
under assumption a := ân. In literature there are known methods of finding the
unknown regression function. We propose to use the Parzen kernel in the form

K ′
n(x, u) = h

′−p
n K(

x − u

h′
n

), (5)

Kn(x, u) = h−p
n K(

x − u

hn
), (6)

where K is an appropriately selected function such that

||K||∞ < ∞, (7)∫
|K(y)|dy < ∞, (8)

lim
y−→∞ |yK(y)| = 0, (9)∫

Rp

K(y)dy = 1 (10)

and hn, h′
n are certain sequences of numbers. Let us denote the estimator of

density function f(x) by f̂(x) and the estimator of function R(x) = f(x)φ(x)
by R̂(x). Then function

φ(x) =
R(x)
f(x)

(11)

can be estimated by

φ̂n(x) =
R̂n(x)

f̂n(x)
. (12)

By using the formulas 5 and 6 we obtain

f̂n(x) =
1
n

n∑
i=1

K ′
n(x, Xi) (13)

On General Regression Neural Network in a Nonstationary Environment 463

and

R̂n(x) =
1
n

n∑
i=1

Y ′
i Kn(x, Xi). (14)

Then the estimator of a regression function takes the form

φ̂n(x) =

∑n
i=1 Y ′

i K(x−Xi

hn
)∑n

i=1 K(x−Xi

h′
n

)
(15)

which is known in the literature under the name probabilistic neural network
[40]. The block diagram of generalized regression neural network is presented in
Fig. 1.

Fig. 1. Block diagram of generalized regression neural network

Theorem 1. If the following conditions are satisfied∫
Rp

φ2(x)f(x)dx < ∞, (16)

lim
n−→∞

(∑n
i=1 ci∑n
i=1 c2

i

)
= 0 (17)

and

lim
n−→∞

(∑n
i=1 c2

i

(
∑n

i=1 c2
i)

2

)
= 0 (18)

then
ân

n−→ a in probability. (19)

464 Y. Hayashi and L. Pietruczuk

Theorem 2. Let us assume that∫
Rp

φ2(x)f(x)dx < ∞. (20)

If conditions (7)-(10) are satisfy and

ân
n−→ a in probability, (21)

n−1h′−p
n → 0, n−1h−p

n → 0, (22)
h′

n → 0, hn → 0, (23)

then φn(x) n−→ φ(x) in probability for each x where φ(x) is continuous.

Proofs of Theorems 1 and 2 can be based on arguments similar to those in [1]
and [4], using theorem 4.3.8 in [43].

3 Experimental Results

In the following simulations we consider the system

Yi = 10x2 sin(x) + 5nt + Zi, (24)

where Zi are random variables from normal distribution N (0, 1). Let us assume
that input data come from the uniform distribution. First we select the kernel
function. For the purpose of this paper we choose Epanecznikow kernel [12] and
assume that h′

n = hn.
By examine the relationship between the number of data elements and the

value of the estimator ân we obtained the results illustrated in Fig. 2. In this
experiment D = D′ = 2.5, H = H ′ = 0.4, t = 0.27 and the input data come from
the uniform distribution U(−5.5; 5.5). As we can see with increasing number of
input data the value of ân converges to the real value of parameter a.
In Figure 3 we can observe how the number of data elements affects the value

of the mean square error (MSE) between estimator φ̂n(x) and function φ(x). We
assume that D = D′ = 2.2, H = H ′ = 0.38, t = 0.25 and input data come from
the uniform distribution U(−7; 7). We can observe that the value of the MSE is
decreasing with increasing number of input data.
The next experiment shows the dependence between the value of parameter

H = H ′ and the value of the MSE (see Fig. 4). In this case n = 5000, t = 0.25,
input data come from the uniform distribution U(−4.9; 4.9) and D = D′. As we
can see with increasing value of H the error of the algorithm decreases however
for big values of D and large H the MSE can still be small. We should notice
that with increasing value of parameters D and D′ the value of the MSE, for
small value of H , can increas. Therefore these values should be properly chosen.
The last experiment shows how well the function φ̂(x) is adjusted to the input-
output data and to function φ(x). The input-output data come from the uniform
distribution U(−5; 5), D = D′ = 1.7, H = H ′ = 0.4 and t = 0.3.

On General Regression Neural Network in a Nonstationary Environment 465

Fig. 2. The dependence between the number of data elements and the value of the
estimator ân

Fig. 3. The dependence between the number of data elements and the value of the
MSE

466 Y. Hayashi and L. Pietruczuk

Fig. 4. The dependence between the value parameter H and the value of the MSE

Fig. 5. The input-output data, the obtained estimator values and value of function φ(x)

On General Regression Neural Network in a Nonstationary Environment 467

4 Conclusion and Future Work

In this paper we presented the probabilistic neural network, based on the Parzen
kernels, combined with the recursive least square method as a method of esti-
mation of unknown function in a time-varying environment. We presented the
conditions for convergence and we discussed the experimental results. Currently
we are adapting supervised and unsupervised neural networks [3], [5], [16] and
neuro-fuzzy structures [13], [36]-[39], [41], [42] for learning in time-varying envi-
ronment.

Acknowledgments. This paper was prepared under project operated within
the Foundation for Polish Science Team Programme co-financed by the EU Eu-
ropean Regional Development Fund, Operational Program Innovative Economy
2007-2013, and also supported by the National Science Center NCN.

References

1. Albert, A.E., Gardner, L.A.: Stochastic Approximation and Nonlinear Regression,
vol. (42). MIT Press, Cambridge (1967)

2. Benedetti, J.: On the nonparametric estimation of regression function. Journal of
Royal Statistical Society B 39, 248–253 (1977)

3. Bilski, J., Rutkowski, L.: A fast training algorithm for neural networks. IEEE
Transactions on Circuits and Systems II 45, 749–753 (1998)

4. Cacoullos, P.: Estimation of a multivariate density. Annals of the Institute of Sta-
tistical Mathematics 18, 179–190 (1965)

5. Cierniak, R., Rutkowski, L.: On image compression by competitive neural networks
and optimal linear predictors. Signal Processing: Image Communication - a Eurasip
Journal 15(6), 559–565 (2000)

6. Gałkowski, T., Rutkowski, L.: Nonparametric recovery of multivariate functions
with applications to system identification. Proceedings of the IEEE 73, 942–943
(1985)

7. Gałkowski, T., Rutkowski, L.: Nonparametric fitting of multivariable functions.
IEEE Transactions on Automatic Control AC-31, 785–787 (1986)

8. Greblicki, W., Pawlak, M.: Nonparametric system indentification. Cambridge
University Press (2008)

9. Greblicki, W., Rutkowska, D., Rutkowski, L.: An orthogonal series estimate of time-
varying regression. Annals of the Institute of Statistical Mathematics 35, Part A,
147–160 (1983)

10. Greblicki, W., Rutkowski, L.: Density-free Bayes risk consistency of nonparametric
pattern recognition procedures. Proceedings of the IEEE 69(4), 482–483 (1981)

11. Györfi, L., Kohler, M., Krzyżak, A., Walk, H.: A Distribution-Free Theory of Non-
parametric Regression, USA. Springer Series in Statistics (2002)

12. Härdle, W.: Applied Nonparametric Regression. Cambridge University Press, Cam-
bridge (1990)

13. Nowicki, R.: Rough Sets in the Neuro-Fuzzy Architectures Based on Non-monotonic
Fuzzy Implications. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh,
L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 518–525. Springer,
Heidelberg (2004)

468 Y. Hayashi and L. Pietruczuk

14. Nowicki, R., Pokropińska, A.: Information Criterions Applied to Neuro-Fuzzy Ar-
chitectures Design. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh,
L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 332–337. Springer,
Heidelberg (2004)

15. Parzen, E.: On estimation of a probability density function and mode. Analysis of
Mathematical Statistics 33(3), 1065–1076 (1962)

16. Patan, K., Patan, M.: Optimal training strategies for locally recurrent neural net-
works. Journal of Artificial Intelligence and Soft Computing Research 1(2), 103–114
(2011)

17. Rafajłowicz, E.: Nonparametric orthogonal series estimators of regression: A class
attaining the optimal convergence rate in L2. Statistics and Probability Letters 5,
219–224 (1987)

18. Rutkowski, L.: Sequential estimates of probability densities by orthogonal series
and their application in pattern classification. IEEE Transactions on Systems, Man,
and Cybernetics SMC-10(12), 918–920 (1980)

19. Rutkowski, L.: Sequential estimates of a regression function by orthogonal series
with applications in discrimination, New York, Heidelberg, Berlin. Lectures Notes
in Statistics, vol. 8, pp. 236–244 (1981)

20. Rutkowski, L.: On system identification by nonparametric function fitting. IEEE
Transactions on Automatic Control AC-27, 225–227 (1982)

21. Rutkowski, L.: Orthogonal series estimates of a regression function with applica-
tions in system identification. In: Probability and Statistical Inference, pp. 343–347.
D. Reidel Publishing Company, Dordrecht (1982)

22. Rutkowski, L.: On Bayes risk consistent pattern recognition procedures in a quasi-
stationary environment. IEEE Transactions on Pattern Analysis and Machine In-
telligence PAMI-4(1), 84–87 (1982)

23. Rutkowski, L.: On-line identification of time-varying systems by nonparametric
techniques. IEEE Transactions on Automatic Control AC-27, 228–230 (1982)

24. Rutkowski, L.: On nonparametric identification with prediction of time-varying
systems. IEEE Transactions on Automatic Control AC-29, 58–60 (1984)

25. Rutkowski, L.: Nonparametric identification of quasi-stationary systems. Systems
and Control Letters 6, 33–35 (1985)

26. Rutkowski, L.: The real-time identification of time-varying systems by nonpara-
metric algorithms based on the Parzen kernels. International Journal of Systems
Science 16, 1123–1130 (1985)

27. Rutkowski, L.: A general approach for nonparametric fitting of functions and their
derivatives with applications to linear circuits identification. IEEE Transactions
Circuits Systems CAS-33, 812–818 (1986)

28. Rutkowski, L.: Sequential pattern recognition procedures derived from multiple
Fourier series. Pattern Recognition Letters 8, 213–216 (1988)

29. Rutkowski, L.: Nonparametric procedures for identification and control of lin-
ear dynamic systems. In: Proceedings of 1988 American Control Conference,
June 15-17, pp. 1325–1326 (1988)

30. Rutkowski, L.: An application of multiple Fourier series to identification of multi-
variable nonstationary systems. International Journal of Systems Science 20(10),
1993–2002 (1989)

31. Rutkowski, L.: Nonparametric learning algorithms in the time-varying environ-
ments. Signal Processing 18, 129–137 (1989)

32. Rutkowski, L., Rafajłowicz, E.: On global rate of convergence of some nonparamet-
ric identification procedures. IEEE Transaction on Automatic Control AC-34(10),
1089–1091 (1989)

On General Regression Neural Network in a Nonstationary Environment 469

33. Rutkowski, L.: Identification of MISO nonlinear regressions in the presence of
a wide class of disturbances. IEEE Transactions on Information Theory IT-37,
214–216 (1991)

34. Rutkowski, L.: Multiple Fourier series procedures for extraction of nonlinear regres-
sions from noisy data. IEEE Transactions on Signal Processing 41(10), 3062–3065
(1993)

35. Rutkowski, L., Gałkowski, T.: On pattern classification and system identification
by probabilistic neural networks. Applied Mathematics and Computer Science 4(3),
413–422 (1994)

36. Rutkowski, L.: A New Method for System Modelling and Pattern Classification.
Bulletin of the Polish Academy of Sciences 52(1), 11–24 (2004)

37. Rutkowski, L., Cpałka, K.: A general approach to neuro - fuzzy systems. In: Pro-
ceedings of the 10th IEEE International Conference on Fuzzy Systems, Melbourne,
December 2-5, vol. 3, pp. 1428–1431 (2001)

38. Rutkowski, L., Cpałka, K.: A neuro-fuzzy controller with a compromise fuzzy rea-
soning. Control and Cybernetics 31(2), 297–308 (2002)

39. Scherer, R.: Boosting Ensemble of Relational Neuro-fuzzy Systems. In: Rutkowski,
L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS
(LNAI), vol. 4029, pp. 306–313. Springer, Heidelberg (2006)

40. Specht, D.F.: A general regression neural network. IEEE Transactions on Neural
Networks 2, 568–576 (1991)

41. Starczewski, L., Rutkowski, L.: Interval type 2 neuro-fuzzy systems based on inter-
val consequents. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft
Computing, pp. 570–577. Physica-Verlag, Springer-Verlag Company, Heidelberg,
New York (2003)

42. Starczewski, J., Rutkowski, L.: Connectionist Structures of Type 2 Fuzzy Inference
Systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.)
PPAM 2001. LNCS, vol. 2328, pp. 634–642. Springer, Heidelberg (2002)

43. Wilks, S.S.: Mathematical Statistics. John Wiley, New York (1962)

Determination of the Heat Transfer Coefficient

by Using the Ant Colony Optimization
Algorithm

Edyta Hetmaniok, Damian S�lota, and Adam Zielonka

Institute of Mathematics,
Silesian University of Technology,

Kaszubska 23, 44-100 Gliwice, Poland
{edyta.hetmaniok,damian.slota,adam.zielonka}@polsl.pl

Abstract. The paper presents a numerical method of solving the inverse
heat conduction problem based on the respectively new tool for combi-
national optimization named Ant Colony Optimization (ACO). ACO
belongs to the group of swarm intelligence algorithms and is inspired by
the technique of searching for the shortest way connecting the ant-hill
with the source of food. In the proposed approach we use this algorithm
for minimizing the proper functional appearing in the procedure of de-
termining the value of heat transfer coefficient in the successive cooling
zones.

Keywords: Swarm Intelligence, ACO algorithm, Inverse Heat Conduc-
tion Problem.

1 Introduction

In recent time there appeared many algorithms, like genetic algorithms, neural
algorithms or immune algorithms, inspired by the mechanisms functioning suc-
cessively in nature. This type of methods includes also the Swarm Intelligence
(SI) algorithms [1, 2], which is a group of algorithms of artificial intelligence
based on the collective behavior of decentralized, self-organized systems of ob-
jects. The idea was introduced by Gerardo Beni and Jing Wang in 1989, in the
context of cellular robotic systems. Each object of this system is insignificant
individually but together, by using some specific techniques, their community is
able to solve complicated problems.

Examples of such systems of units are swarms of insects like ants or bees.
During the centuries of evolution they elaborated special unique techniques of
searching for the food, imitating of which resulted with the Ant Colony Op-
timization Algorithm (ACO) and Artificial Bee Colony Algorithm (ABC). In
recent times the ACO algorithms were applied to a number of different com-
binatorial optimization problems, like for example traveling salesman problem
[3–5], quadratic assignment problem [6], vehicle routing problem [7], connection-
oriented network routing problem [8], connection-not-oriented network routing

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 470–479, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Determination of the Heat Transfer Coefficient by Using the ACO Algorithm 471

problem [9] and others, as well as to continuous optimization problems [10, 11].
In paper [12] the authors have applied the ACO algorithm for solving the inverse
heat conduction problem, whereas in [13] the ABC algorithm was used for this
purpose.

The inverse heat conduction problem is a problem of determining the tempera-
ture distribution in considered domain, usually together with reconstructing one
of the boundary condition, having the incomplete information about the process.
Therefore, finding an analytical solution of inverse problem is almost impossi-
ble, except the simplest cases, and searching for the new approximate methods
is desirable. The bibliography dedicated to the inverse heat conduction problem
is much less large than the bibliography about the direct problems. Examples
of the analytical techniques for solving the direct and inverse problems concern-
ing steady and unsteady heat flow are given for example in [14, 15]. In [16] the
authors determine the heat flux with the aid of the momentary measurements
of temperature, by using the Green function, method of iterative regularization
and Tichonov regularization. The other methods appeared for solving the in-
verse problems are for example: the Monte Carlo method [17], the mollification
method introduced by Mourio [18], methods based on the wavelets theory [19]
and very popular in recent time genetic algorithms [20–22]. In the current pa-
per, we propose to use the ACO algorithm for minimizing some functional, being
a crucial part in the procedure of reconstructing the values of heat transfer coef-
ficient appearing in boundary condition of the third kind of the inverse problem.
Similar procedure applying the ACO algorithm, but leading to reconstruction of
the boundary condition of the first and second kind, the authors have presented
in [12].

2 Ant Colony Optimization Algorithm for Finding the
Global Minimum

Ant Colony Optimization algorithm was invented by Marco Dorigo, who in 1992
in Doctoral Thesis [3] presented the first algorithm imitating the ant colony
organization. This first algorithm, named as Ant System [5, 6], was inspired by
the observation of ants community behavior and the question how these almost
blind creatures can find the best way from the ant-hill to source of food, how
they communicate and what makes them to follow one after another. Answer to
these questions is: the pheromones. Pheromone is a chemical substance produced
and recognized by the most ant species. Ants are not endowed with intelligence
but they leave the pheromone trace in the ground which is the information for
the other ants where to go and for the ant itself how to return to the ant-hill. The
more ants traverse the trail, the stronger is the pheromone trace. The shorter
is the way, the sooner can the ant reach the source of food and return to the
ant-hill, which makes the pheromone trace stronger and force the other ants to
choose this specific way.

Analogically like in nature phenomena, the role of ants is played by vectors
xk, randomly dispersed in the searching region. In each step, one of the ants

472 E. Hetmaniok, D. S�lota, and A. Zielonka

is selected as the best one, xbest – the one, for which the minimalized function
F (x) takes the lowest value. In the next step, to each vector xk is applied a
modification, based on the pheromone trail. Vector of each ant is updated at
the beginning of each iteration, by using the following formula: xk = xbest +dx,
where dx is a vector determining the length of jump, elements of which are
randomly generated from the interval [−β, β] (where β = β0 is a parameter of
narrowing, defined in the initialization of the algorithm). At the end of each
iteration the range of ants dislocations is decreasing, according to the formula
βt+1 = 0.1βt. This procedure simulates the evaporation of the pheromone trail
in nature. Pheromone trails located far from the food source, not attended by
natural ants, evaporate. The role of food source in our simulation is played by
the point of the lowest function value, that is why the presence of ants – vectors
is condensing around this point. The described procedure is iterated until the
number of maximum iteration.

We will proceed according the following algorithm.

Initialization of the algorithm.
1. Initial data:
F (x) – minimized function, x = (x1, . . . , xn) ∈ D;
nM – number of ants in one population;
I – number of iterations;
β – narrowing parameter.

2. Random selection of the initial ants localization: xk = (xk1 , . . . , x
k
n),

where xk ∈ D, k = 1, 2, . . . , nM .
3. Determination of the best located ant xbest in the initial ants population.

The main algorithm.
1. Updating of the ants locations:

– random selection of the vector dx such that

−βi ≤ dxj ≤ βi;

– generation of the new ants population:

xk = xbest + dx, k = 1, 2, . . . , nM .

2. Determination of the best located ant xbest in the current ant population.
3. Points 1 and 2 are repeated I2 times.
4. Narrowing of the ants dislocations range: βi+1 = 0.1βi.
5. Points 1 – 4 are repeated I times.

There are two basic advantages of such approach – the algorithm is effective, even
for the not differentiable functions with many local minimums, and time needed
for finding the global minimum is respectively short, even for quite complicated
functions. The only assumption needed by the algorithm is the existence of
solution. If the solution of the optimized problem exists, it will be found, with
some given precision of course. Additionally, it is worth to mention that solution
received by using the algorithm should be treated as the best solution in the
given moment. Running the algorithm again can give different solution, even
better. But it does not decrease the effectiveness of the algorithm.

Determination of the Heat Transfer Coefficient by Using the ACO Algorithm 473

3 Formulation of the Problem

The considered problem is described by the following heat conduction equation

c ρ
∂u

∂t
(x, t) = λ

∂2u

∂x2
(x, t), x ∈ [0, d], t ∈ [0, T] (1)

with the initial and boundary conditions of the form

u(x, 0) = u0, x ∈ [0, d], (2)

∂u

∂x
(0, t) = 0, t ∈ [0, T], (3)

where c is the specific heat, ρ denotes the mass density, λ is the thermal con-
ductivity and u, t and x refer to the temperature, time and spatial location. On
the boundary for x = d the boundary condition of the third kind is assumed

−λ∂u
∂x

(d, t) = α(t) (u(d, t) − u∞), t ∈ [0, T], (4)

where u∞ describes the temperature of environment and α(t) denotes the heat
transfer coefficient, form of which we desire to find. We assume that the heat
transfer coefficient takes three values αi, i = 1, 2, 3, in the successive cooling
zones. Another sought element is the distribution of temperature u(x, t) in the
considered region. By setting the value α of heat transfer coefficient the problem,
defined by equations (1)–(4), turns into the direct problem, solving of which gives
the values of temperature uij = u(xi, tj).

In the approach presented in this paper we propose to solve the direct heat
conduction problem, described by equations (1)–(4), by taking the value of heat
transfer coefficient as an unknown parameter α. Solution ũij = ũ(xi, tj), received
in this way, depends on the parameter α. Next, we determine the value of α by
minimizing the following functional:

P (α) =

√√√√ k∑
i=1

m∑
j=1

(
u(xi, tj)− ũ(xi, tj)

)2
, (5)

representing the differences between the obtained results ũ and given values u in
the measurement points xi. For minimizing the functional (5) we use the ACO
algorithm.

4 Numerical Example

In this section we will illustrate the presented method by an example. We take
the following values: c = 1000 [J/(kg K)], ρ = 2679 [kg/m3], λ = 240 [W/(m K)],
T = 1000 [s], d = 1 [m], u0 = 980 [K] and u∞ = 298 [K]. We need to reconstruct
the values of three parameters αi, i = 1, 2, 3, which describe the value of heat

474 E. Hetmaniok, D. S�lota, and A. Zielonka

transfer coefficient in the successive cooling zones. Exact values of the sought
parameters are as follows:

α(t) =

⎧⎨⎩
250 for t ∈ [0, 90],
150 for t ∈ [91, 250],
28 for t ∈ [251, 1000].

In calculations we are using the measurement values of temperature located on
the boundary for x = 1, read in five series: at every 1 s, 2 s, 5 s, 10 s and 20 s. For
every series three values of the heat transfer coefficient are reconstructed, one for
each cooling zone. We assume that, for every j = 1, 2, 3, the initial population of
ants locating the best localization of the sought parameters is randomly selected
from the range [0, 500]. We evaluate the experiment for number of ants nM = 2÷5
and number of iterations I = 1÷10. Value of the narrowing parameter is β = 0.1
and the initial β0 = 300. Because of the limited size of the paper we will present
only the results for nM = 5 and for two frontier series, at every 1 s, and 20 s.
The approximate values of reconstructed parameters are received by running the
algorithm 30 times and by averaging the obtained results.

Figures 1 and 2 present the relative error δαi of reconstructed values of co-
efficients αi, i = 1, 2, 3, in dependence on the number of iterations I. It can
be seen that even for measurement values with the time step of 20 s error of
reconstruction is satisfactorily small for 3 iterations.

Fig. 1. Relative error of reconstruction of coefficients αi for the successive iterations
(� – for α1, � – for α2, � – for α3) – series of the control points with the step 1 s,
number of ants nM = 5

Determination of the Heat Transfer Coefficient by Using the ACO Algorithm 475

Fig. 2. Relative error of reconstruction of coefficients αi for the successive iterations
(� – for α1, � – for α2, � – for α3) – series of the control points with the step 20 s,
number of ants nM = 5

Besides the heat transfer coefficients, another unknown element desired for
determining is the distribution of temperature u(x, t). For estimating the qual-
ity of reconstructed values of state function ũ(1, tj) in points where the exact
values u(1, t) are known, we calculate the absolute and relative errors of this
reconstruction. The relative errors δu for series of control points at every 1 s
and at every 20 s, in dependence on the number of iterations I, are displayed
in Figure 3. Again, we can notice that in both cases 3 iterations are enough to
receive estimated values of temperature distribution with small errors.

Fig. 3. Relative errors of reconstruction of the state function in control points for the
successive cycles – number of ants nM = 5, series with the step 1 s (left figure) and
with the step 20 s (right figure)

476 E. Hetmaniok, D. S�lota, and A. Zielonka

Figure 4 shows the comparison of exact values of state function u(x, t) on the
boundary for x = 1 with the reconstructed values calculated for the series with
time step 1 s and for 1 and 10 iterations, respectively. The same comparison, but
for the time step 20 s is displayed in Figure 5.

Fig. 4. Comparison of the given u(1, tj) (dashed line) and reconstructed (solid line)
values of the state function received for 1 iteration (left figure) and for 10 iterations
(right figure), for the series with the step 1 s and number of ants nM = 5

Fig. 5. Comparison of the given u(1, tj) (dashed line) and reconstructed (solid line)
values of the state function received for 1 iteration (left figure) and for 10 iterations
(right figure), for the series with the step 20 s and number of ants nM = 5

Finally, in Tables 1 and 2 there are compiled the errors of reconstruction of the
coefficients αi and values of the state function in given control points received in
the successive iterations for the number of ants nM = 5 and for the series with
step 1 s and 20 s.

Results compiled in tables and presented in figures indicate that the proposed
procedure ensures the approximate solution rapidly convergent to exact solu-
tion. Moreover, for the exact input data we received in few iterations the results
almost equal to the exact solution. Using the analytical method for that kind of
problem is almost impossible, therefore the approximate method giving so good

Determination of the Heat Transfer Coefficient by Using the ACO Algorithm 477

solution after so short time of working is very needed. There are also many other
heuristic algorithms, like simulated annealing, tabu search, memetic algorithms,
other swarm intelligence algorithms etc. Authors of the current paper have al-
ready applied the Artificial Bee Colony algorithm [23] and Harmony Search
algorithm [24] in solving the inverse heat conduction problem with boundary
condition of the third kind. Comparison of those methods shows that all the
applied heuristic algorithms give satisfying results, however the ACO algorithm
is better convergent, especially in comparison with HS algorithm.

Table 1. Errors of reconstruction of the coefficients αi and values of the state function
received in the successive iterations for nM = 5 and for series with step 1 s

I max δαi [%] Δu[K] δu[%]

1 18.4100 170.0130 0.0056
2 0.8078 34.8640 0.0012
3 0.1187 2.6202 0.0001
4 0.0074 0.2968 9.76 · 10−6

5 0.0010 0.0113 3.76 · 10−7

6 3.63 · 10−5 0.0015 5.03 · 10−8

7 6.85 · 10−6 0.0004 1.18 · 10−8

8 4.89 · 10−7 1.69 · 10−5 5.57 · 10−10

9 6.88 · 10−8 3.15 · 10−6 1.04 · 10−10

10 3.59 · 10−9 2.40 · 10−7 7.90 · 10−12

Table 2. Errors of reconstruction of the coefficients αi and values of the state function
received in the successive iterations for nM = 5 and for series with step 20 s

I max δαi [%] Δu[K] δu[%]

1 5.52192 167.7300 0.0055
2 0.9634 28.2307 0.0009
3 0.0362 1.0032 3.30 · 10−5

4 0.0061 0.2178 7.17 · 10−6

5 0.0004 0.0196 6.44 · 10−7

6 6.90 · 10−5 0.0016 5.33 · 10−8

7 9.32 · 10−6 0.0003 9.73 · 10−9

8 2.92 · 10−7 6.50 · 10−5 2.13 · 10−11

9 6.77 · 10−8 1.51 · 10−6 4.97 · 10−11

10 2.75 · 10−9 2.83 · 10−7 9.41 · 10−12

5 Conclusions

In the current paper we have proposed the method of determining the heat trans-
fer coefficient appearing in the boundary condition of the third kind, a crucial
part of which consists in minimization of the proper functional. For this part of
the procedure we have applied the Ant Colony Optimization algorithm, which

478 E. Hetmaniok, D. S�lota, and A. Zielonka

turned out to be an efficient idea. Results received for the example in which we
reconstruct three values of the unknown coefficients in three successive cooling
zones are satisfying for five series of control points with various step, for various
number of ants in the algorithm and for various number of iterations. Obtained
results show that the similarly good reconstructions of the unknown coefficients
and of the state function values can be received for the dense series of mea-
surement points (at every 1 s) as well as for the rare series (at every 20 s), for
relatively small number of ants (not exceeding 5) and for relatively small number
of iterations (not exceeding 10).

Additionally, it is worth to mention that an indisputable advantage of the
ACO algorithm is, apart from the effectiveness and relative simplicity, its univer-
sality. The only assumption needed by this algorithm is the existence of solution.

In future we intend to parallelize the computations in ACO algorithm and to
compare the efficiency of ACO algorithm with other, not investigated yet in this
field, heuristic approaches.

References

1. Beni, G., Wang, J.: Swarm intelligence in cellular robotic systems. In: Proceed.
NATO Advanced Workshop on Robots and Biological Syst., Tuscany (1989)

2. Eberhart, R.C., Shi, Y., Kennedy, J.: Swarm Intelligence. Morgan Kaufmann,
San Francisco (2001)

3. Dorigo, M.: Optimization, Learning and Natural Algorithms (in Italian). PhD the-
sis, Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milan (1992)

4. Dorigo, M., Stützle, T.: Ant Colony Optimization. Massachusetts Institute of
Technology Press, Cambridge (2004)

5. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: Optimization by a colony
of cooperatin gagents. IEEE Transactionson Systems, Man and Cybernetics – Part
B 26(1), 29–41 (1996)

6. Maniezzo, V., Colorni, A., Dorigo, M.: The ant system applied to the quadratic
assignment problem. Technical Report IRIDIA, Universite Libre de Bruxelles,
94–128 (1994)

7. Gambardella, L.M., Taillard, E., Agazzi, G.: A Multiple Colony System for Vehicle
Routing Problems with Time Windows. Technical Report IDSIA, IDSIA-06-99,
Lugano (1999)

8. Schoonderwoerd, R., Holland, O., Bruten, J., Rothkrantz, L.: Ant-based load bal-
ancing in telecommunications networks. Adaptive Behavior 5(2), 169–207 (1996)

9. DiCaro, G., Dorigo, M.: AntNet: A mobile agents approach to adaptive routing.
Technical Report, IRIDIA, Universite Libre de Bruxelles, 97–112 (1997)

10. Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. Eur. J.
Oper. Res. 185, 1155–1173 (2008)

11. Korošec, P., Šilc, J., Filipič, B.: The differential ant-stigmergy algorithm. Inform.
Sciences 181 (2011) (to appear)

12. Hetmaniok, E., Zielonka, A.: Solving the inverse heat conduction problem by using
the ant colony optimization algorithm. In: CMM 2009, pp. 205–206. University of
Zielona Góra Press (2009)

Determination of the Heat Transfer Coefficient by Using the ACO Algorithm 479

13. Hetmaniok, E., S�lota, D., Zielonka, A.: Solution of the Inverse Heat Conduc-
tion Problem by Using the ABC Algorithm. In: Szczuka, M., Kryszkiewicz, M.,
Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS, vol. 6086, pp. 659–
668. Springer, Heidelberg (2010)

14. Beck, J.V., Blackwell, B., St. Clair, C.R.: Inverse Heat Conduction: Ill Posed Prob-
lems. Wiley Intersc., New York (1985)

15. Beck, J.V., Blackwell, B.: Inverse Problems. Handbook of Numerical Heat Transfer.
Wiley Intersc., New York (1988)

16. Beck, J.V., Cole, K.D., Haji-Sheikh, A., Litkouhi, B.: Heat Conduction Using
Green’s Functions. Hempisphere Publishing Corporation, Philadelphia (1992)

17. Haji-Sheikh, A., Buckingham, F.P.: Multidimensional inverse heat conduction us-
ing the Monte Carlo method. Trans. of the ASME, J. Heat Trans. 115, 26–33
(1993)

18. Mourio, D.A.: The Mollification Method and the Numerical Solution of Ill-posed
Problems. Wiley and Sons, New York (1993)

19. Qiu, C.Y., Fu, C.L., Zhu, Y.B.: Wavelets and regularization of the sideways heat
equation. Comput. Math. Appl. 46, 821–829 (2003)

20. S�lota, D.: Identification of the Cooling Condition in 2-D and 3-D Continuous Cast-
ing Processes. Numer. Heat Transfer B 55, 155–176 (2009)

21. S�lota, D.: Solving the inverse Stefan design problem using genetic algorithm. In-
verse Probl. Sci. Eng. 16, 829–846 (2008)

22. S�lota, D.: Restoring Boundary Conditions in the Solidification of Pure Metals.
Comput. & Structures 89, 48–54 (2011)

23. Zielonka, A., Hetmaniok, E., S�lota, D.: Using the Artificial Bee Colony Algorithm
for Determining the Heat Transfer Coefficient. In: Czachórski, T., Kozielski, S.,
Stańczyk, U. (eds.) Man-Machine Interactions 2. AISC, vol. 103, pp. 369–376.
Springer, Heidelberg (2011)

24. Hetmaniok, E., Jama, D., S�lota, D., Zielonka, A.: Application of the Harmony
Search algorithm in solving the inverse heat conduction problem, Zeszyty Nauk.
Pol. Sl. Mat. Stos. 1, 99–108 (2011)

Learning in a Non-stationary Environment

Using the Recursive Least Squares Method
and Orthogonal-Series Type Regression

Neural Network

Maciej Jaworski1 and Meng Joo Er2

1 Department of Computer Engineering, Czestochowa University of Technology,
Armii Krajowej 36, 42-200 Czestochowa, Poland

maciej.jaworski@kik.pcz.pl
2 School of Electrical and Electronic Engineering, Nanyang Technological University,

50 Nanyang Avenue, Singapore
emjer@ntu.edu.sg

Abstract. In the paper the recursive least squares method, in combin-
ing with general regression neural network, is applied for learning in a
non-stationary environment. The orthogonal series-type kernel is applied
to design the general regression neural networks. Sufficient conditions for
convergence in probability are given and simulation results are presented.

1 Introduction

A plenty of real-life systems has a time-varying nature. Examples can be found
in geophysics or biomedicine. A group of such systems can be modeled with the
use of nonlinear regression. Among the methods to perform nonlinear regression,
nonparametric ones seem to be the most useful tools. They need no knowledge
about the probability distribution of incoming data, henceforth they are appli-
cable to the wide variety of problems. In literature, a variety of nonparametric
techniques have been developed to solve stationary (see e.g. [4], [5], [6], [10]-[13],
[19]-[21] and [24]-[27]) and non-stationary problem ([7], [14]-[18], [22] and [23]),
with the noise assumed to be stationary. In this paper systems described by the
following equation are investigated

Yi = φ(Xi) + aci + Zi, i = 1, . . . , n, (1)

where φ(x) is an unknown regression function, Xi ∈ A ⊂ R

� are i.i.d. input
random variables with some unknown probability density function f(x), Yi are
the output random variables, ci is a known sequence and the constant a is
unknown. Random variables Zi introduce a statistic perturbation to the system
and satisfy the following conditions

∀i∈{1,...,n}, E[Zi] = 0, E[Z2
i] = di, (2)

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 480–489, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Recursive LSM and Orthogonal-Series Type Regression Neural Network 481

In the next section the algorithm for estimating the constant a and the function
φ(x) will be presented. In section 3 the conditions will be formulated, under
which the algorithm is convergent. Section 4 presents some simulation results.
Conclusions are drawn in section 5.

2 Algorithm

In [1] the estimator âi for parameter a was presented, based on the recursive
least squares method

âi = âi−1 +
ci∑i
j=1 c

2
j

(Yi − âi−1ci) , i ∈ {1, . . . , n}, â0 = 0. (3)

This method can be generalized to the following form

â
(ω)
i = â

(ω)
i−1 +

cω−1
i∑i
j=1 c

ω
j

(
Yi − â(ω)

i−1ci

)
, (4)

where ω is a nonnegative real number. For example, in this notation the estimator

(3) is denoted by â
(2)
i . Estimator â

(ω)
n is calculated after n steps, with the use of

variables Y1, . . . , Yn.
In the next step, the regression function φ(x) is estimated, under assumption

that a = â
(ω)
n . Function φ(x), in each point x at which f(x) �= 0, can be expressed

as follows

φ(x) =
φ(x)f(x)

f(x)
. (5)

Nominator (further denoted by R(x) = φ(x)f(x)) and denominator of the above

formula are estimated separately. Therefore, the estimator φ̂n(x, â
(ω)
n) of function

φ(x) is given by

φ̂n(x, â(ω)
n) =

R̂n

(
x, â

(ω)
n

)
f̂n(x)

. (6)

The estimators can be established with the use of nonparametric method based
on kernel functions Kn : A × A → R and K ′

n : A × A → R. Given n pairs of
random variables (X1, Y1), . . . , (Xn, Yn), kernel functions Kn(x, u) and K ′

n(x, u),
the following estimators for R(x) and f(x) are proposed

R̂n(x, â(ω)
n) =

1

n

n∑
i=1

(
Yi − â(ω)

n ci

)
Kn(x,Xi), (7)

f̂n(x) =
1

n

n∑
i=1

K ′
n(x,Xi), (8)

482 M. Jaworski and M.J. Er

Fig. 1. General regression neural network for the estimator φ̂n(x, â
(ω)
n) of the regression

function φ(x)

where in particular Kn(x, u) and K ′
n(x, u) can be the same. The algorithm de-

scribed by equations (6) - (8) is the general regression neural network [32], the
scheme of which is presented in Fig. 1.

Let gj : A → R, j ∈ N, be the orthogonal series, satisfying sup
w∈A

|gj(w)| ≤

Gj , ∀j∈N. The kernel functions Kn(x, u) and K ′
n(x, u) in estimators (7) and (8)

can be proposed in the forms

Kn(x, u) =

M(n)∑
j=0

gj(x)gj(u), (9)

K ′
n(x, u) =

N(n)∑
j=0

gj(x)gj(u), (10)

where M(n) and N(n) are some monotonically increasing sequences of n, satis-
fying lim

n→∞
M(n) = ∞ and lim

n→∞
N(n) = ∞, respectively.

3 Convergence of the Algorithm

To ensure the proper performance of the above algorithm, functions M(n) and
N(n) and sequences ci and di must satisfy the assumptions of the following
theorem. Let us denote

si = max{E[φ2(Xi)]), di}. (11)

Theorem 1. If the following conditions hold

lim
n→∞

[∑n
i=1 c

ω−1
i∑n

i=1 c
ω
i

]
= 0, (12)

lim
n→∞

[∑n
i=1 c

2ω−2
i si

(
∑n

i=1 c
ω
i)

2

]
= 0, (13)

Recursive LSM and Orthogonal-Series Type Regression Neural Network 483

lim
n→∞

⎡⎢⎣ 1

n2

⎛⎝M(n)∑
j=0

G2
j

⎞⎠2
n∑

i=1

si

⎤⎥⎦ = 0, (14)

lim
n→∞

⎡⎢⎣ 1

n

⎛⎝N(n)∑
j=0

G2
j

⎞⎠2
⎤⎥⎦ = 0, (15)

then

â(ω)
n

n→∞−→ a in probability (16)

and

φ̂n(x, â(ω)
n)

n→∞−→ φ(x) in probability (17)

at each point x, at which the orthogonal expansions of functions f(x) and R(x)
are convergent.

Proof. Convergence (16) can be proven under the simple analysis of the variance

and bias of estmator â
(ω)
n . Convergence (17) arirsed from the convergence of

estimator (6) [11] and from Theorem 4.3.8 in [36].

4 Upgrading Procedure for Estimator â(ω)
n

The bias b
(ω)
n of estimator â

(ω)
n is of the form

b(ω)
n = E[φ(Xi)]

∑n
j=1 c

ω−1
j∑n

j=1 c
ω
j

. (18)

Since lim
n→∞

cn = ∞, the bias b
(ω)
n tends to 0. In some special cases of sequence

cn, the speed of bias convergence is known. For example, if ci = it, i ∈ N, t > 0,
the trend is given by

b(ω)
n ∼ n−t =

1

cn
. (19)

Therefore, the estimator â
(ω)
n can be expressed in the form

â(ω)
n = a+ bωn = a+B

1

cn
, (20)

where B is some unknown constant, unnecessary for further considerations.

Having the values of (n − n0 + 1) estimators â
(ω)
n0 , . . . , â

(ω)
n one can calculate

the upgraded version of estimator for parameter a, using the linear regression
procedure

484 M. Jaworski and M.J. Er

ã(ω)
n =

∑n
i=n0

â
(ω)
i

ci

∑n
i=n0

1

ci
−
∑n

i=n0
â
(ω)
i

∑n
i=n0

1

c2i∑n
i=n0

1

ci

∑n
i=n0

1

ci
− (n− n0 + 1)

∑n
i=n0

1

c2i

. (21)

The algorithm presented in section 2 can be applied with the upgraded estimator

ã
(ω)
n . Then, in formulas (6) and (7), the estimator â

(ω)
n has to be replaced by the

estimator ã
(ω)
n .

5 Simulations

In the following simulations data Xi are generated from the exponential distri-
bution with probability density function given by

f(x) = e−x, x ∈ (0;∞). (22)

Random variables Zi come from the normal distribution N(0, di). Sequence of
variances di is given in the form

di = iα, i ∈ {1, . . . , n}, α > 0. (23)

The output data Yi are calculated using formula (1), where sequence ci is given
as follows

ci = it, i ∈ {1, . . . , n}, t > 0. (24)

The Laguerre orthogonal series is taken for the gj(x) functions

gj(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp

(
−x

2

)
, j = 0,

g0(x)(1 − x), j = 1,
1

j
[(2j − 1− x)gj−1(x) − (j − 1)gj−2(x)] , j > 1

, x ∈ (0;∞). (25)

Each function gj(x) is bounded by (see [35])

∀x∈(0;∞) ∀j∈N |gj(x)| ≤ Gj = Cj−1/4. (26)

It is additionally assumed that the sequences N(n) and M(n) take the following
forms

M(n) = �DnQ�, N(n) = �D′nQ
′�, Q,Q′ > 0, D,D′ > 0. (27)

To satisfy the assumptions (12), (13), (14) and (15) of Theorem 1, the exponents
t, α, Q and Q′ should obey the following inequalities

Q′ < 1, Q+ α < 1, α < 2t+ 1. (28)

Recursive LSM and Orthogonal-Series Type Regression Neural Network 485

In the presented simulations the parameters are set to t = 0, 25 and D = D′ = 2.
Exponents Q and Q′ are equal in all simulations. The parameter ω in estimator
(4) (and (21)) is set to 4. The regression function φ(x) to be estimated is given
in the form

φ(x) = 5 cos(5x) exp

(
−x

2

2

)
+ 3. (29)

The value of constant a is set to 3.
In Figure 2 the estimators â

(4)
n and ã

(4)
n are presented as a function of number

of data elements n (for α = 0, 2).

Fig. 2. The estimators â
(4)
n and ã

(4)
n as a function of number of data elements n, α = 0, 2

In considered range of number n, the estimator â
(4)
n is far away from the real

value of parameter a. The upgraded estimator ã
(4)
n converges dramatically faster.

The influence of the estimators on the estimation of the regression function φ(x)

is shown in Fig. 3. Estimators R̂n(x, â
(4)
n), R̂n(x, ã

(4)
n) and f̂n(x) are calculated

with Q = Q′ = 0, 4 and Q = Q′ = 0, 5.

For the estimator â
(4)
n , the Mean Squared Error (MSE) cannot drop down

below some threshold value around 8. For ã
(4)
n the quality of estimation is much

more better. The presented figures prove that the estimator ã
(4)
n leads to the

significantly better results than the estimator ân does.
The estimator φ̂n(x, ãn) differs more from the regression function φ(x) if the

coefficient α takes higher values. The MSE values as a function of n, for α
equal to 0, 2, 0, 5 and 0, 7, is presented in Fig. 4. The parameters Q = Q′ are
set to 0, 5.

486 M. Jaworski and M.J. Er

Fig. 3. The Mean Squared Error as a function of number of data elements n, for
estimators â

(4)
n and ã

(4)
n , Q = Q′ = 0, 4 and Q = Q′ = 0, 5, α = 0, 2

Fig. 4. The Mean Squared Error as a function of number of data elements n, for
estimator ã

(4)
n , Q = Q′ = 0, 5 and three different values of α: 0, 2, 0, 4 and 0, 5

Recursive LSM and Orthogonal-Series Type Regression Neural Network 487

For α = 0, 5 and α = 0, 7 inequalities (28) do not hold. Therefore, the MSE
cannot converge to 0, as it is in the case of α = 0, 2.

To present the final result of the function φ(x) estimation, the estimators

φ̂n(x, ân) and φ̂n(x, ãn) are compared with function (29). The results obtained
for Q = Q′ = 0, 5, α = 0, 2 and n = 5000 are depicted in Fig. 5.

Fig. 5. The comparison of estimators φ̂n(x, ân) and φ̂n(x, ãn) with the regression func-
tion φ(x), for α = 0, 2,Q = Q′ = 0, 5, n = 5000. Points denote the input-output random
variables in the form (Xi, Yi − aci).

6 Final Remarks

In the paper we applied recursive least squares method, in combining with gen-
eral regression neural network, for learning in a non-stationary environment. The
orthogonal series-type kernel was applied to design the general regression neu-
ral networks. Sufficient conditions for convergence in probability were given and
simulation results were presented. Further work can be concentrated on handling
of time-varying noise by making use of supervised and unsupervised neural net-
works [2], [3], [9] and neurofuzzy structures developed in [8], [28]-[31], [31], [33]
and [34].

Acknowledgments. The paper was prepared under project operated within
the Foundation for Polish Science Team Programme co-financed by the EU Eu-
ropean Regional Development Fund, Operational Program Innovative Economy
2007-2013, and also supported by National Science Centre NCN.

488 M. Jaworski and M.J. Er

References

1. Albert, A.E., Gardner, L.A.: Stochastic Approximation and Nonlinear Regression,
vol. (42). MIT Press, Cambridge (1967)

2. Bilski, J., Rutkowski, L.: A fast training algorithm for neural networks. IEEE
Transactions on Circuits and Systems II 45, 749–753 (1998)

3. Cierniak, R., Rutkowski, L.: On image compression by competitive neural networks
and optimal linear predictors. Signal Processing: Image Communication - a Eurasip
Journal 15(6), 559–565 (2000)

4. Ga�lkowski, T., Rutkowski, L.: Nonparametric recovery of multivariate functions
with applications to system identification. Proceedings of the IEEE 73, 942–943
(1985)

5. Ga�lkowski, T., Rutkowski, L.: Nonparametric fitting of multivariable functions.
IEEE Transactions on Automatic Control AC-31, 785–787 (1986)

6. Greblicki, W., Rutkowska, D., Rutkowski, L.: An orthogonal series estimate of time-
varying regression. Annals of the Institute of Statistical Mathematics 35, Part A,
147–160 (1983)

7. Greblicki, W., Rutkowski, L.: Density-free Bayes risk consistency of nonparametric
pattern recognition procedures. Proceedings of the IEEE 69(4), 482–483 (1981)

8. Nowicki, R.: Rough Sets in the Neuro-Fuzzy Architectures Based on Mono-
tonic Fuzzy Implications. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R.,
Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 510–517. Springer,
Heidelberg (2004)

9. Patan, K., Patan, M.: Optimal Training Strategies for Locally Recurrent Neural
Networks. Journal of Artificial Intelligence and Soft Computing Research 1(2),
103–114 (2011)

10. Rutkowski, L.: Sequential estimates of probability densities by orthogonal series
and their application in pattern classification. IEEE Transactions on Systems, Man,
and Cybernetics SMC-10(12), 918–920 (1980)

11. Rutkowski, L.: Sequential estimates of a regression function by orthogonal series
with applications in discrimination, New York, Heidelberg, Berlin. Lectures Notes
in Statistics, vol. 8, pp. 236–244 (1981)

12. Rutkowski, L.: On system identification by nonparametric function fitting. IEEE
Transactions on Automatic Control AC-27, 225–227 (1982)

13. Rutkowski, L.: Orthogonal series estimates of a regression function with ap-
plications in system identification. In: Probability and Statistical Inference,
pp. 343–347. D. Reidel Publishing Company, Dordrecht (1982)

14. Rutkowski, L.: On Bayes risk consistent pattern recognition procedures in a quasi-
stationary environment. IEEE Transactions on Pattern Analysis and Machine In-
telligence PAMI-4(1), 84–87 (1982)

15. Rutkowski, L.: On-line identification of time-varying systems by nonparametric
techniques. IEEE Transactions on Automatic Control AC-27, 228–230 (1982)

16. Rutkowski, L.: On nonparametric identification with prediction of time-varying
systems. IEEE Transactions on Automatic Control AC-29, 58–60 (1984)

17. Rutkowski, L.: Nonparametric identification of quasi-stationary systems. Systems
and Control Letters 6, 33–35 (1985)

18. Rutkowski, L.: The real-time identification of time-varying systems by nonpara-
metric algorithms based on the Parzen kernels. International Journal of Systems
Science 16, 1123–1130 (1985)

Recursive LSM and Orthogonal-Series Type Regression Neural Network 489

19. Rutkowski, L.: A general approach for nonparametric fitting of functions and their
derivatives with applications to linear circuits identification. IEEE Transactions
Circuits Systems CAS-33, 812–818 (1986)

20. Rutkowski, L.: Sequential pattern recognition procedures derived from multiple
Fourier series. Pattern Recognition Letters 8, 213–216 (1988)

21. Rutkowski, L.: Nonparametric procedures for identification and control of linear
dynamic systems. In: Proceedings of 1988 American Control Conference, June 15-
17, pp. 1325–1326 (1988)

22. Rutkowski, L.: An application of multiple Fourier series to identification of multi-
variable nonstationary systems. International Journal of Systems Science 20(10),
1993–2002 (1989)

23. Rutkowski, L.: Nonparametric learning algorithms in the time-varying environ-
ments. Signal Processing 18, 129–137 (1989)

24. Rutkowski, L., Rafaj�lowicz, E.: On global rate of convergence of some nonparamet-
ric identification procedures. IEEE Transaction on Automatic Control AC-34(10),
1089–1091 (1989)

25. Rutkowski, L.: Identification of MISO nonlinear regressions in the presence of a
wide class of disturbances. IEEE Transactions on Information Theory IT-37, 214–
216 (1991)

26. Rutkowski, L.: Multiple Fourier series procedures for extraction of nonlinear
regressions from noisy data. IEEE Transactions on Signal Processing 41(10),
3062–3065 (1993)

27. Rutkowski, L., Ga�lkowski, T.: On pattern classification and system identification
by probabilistic neural networks. Applied Mathematics and Computer Science 4(3),
413–422 (1994)

28. Rutkowski, L.: A New Method for System Modelling and Pattern Classification.
Bulletin of the Polish Academy of Sciences 52(1), 11–24 (2004)

29. Rutkowski, L., Cpa�lka, K.: A general approach to neuro - fuzzy systems. In: Pro-
ceedings of the 10th IEEE International Conference on Fuzzy Systems, Melbourne,
December 2-5, vol. 3, pp. 1428–1431 (2001)

30. Rutkowski, L., Cpa�lka, K.: A neuro-fuzzy controller with a compromise fuzzy rea-
soning. Control and Cybernetics 31(2), 297–308 (2002)

31. Scherer, R.: Boosting Ensemble of Relational Neuro-fuzzy Systems. In: Rutkowski,
L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS
(LNAI), vol. 4029, pp. 306–313. Springer, Heidelberg (2006)

32. Specht, D.F.: A general regression neural network. IEEE Transactions on Neural
Networks 2, 568–576 (1991)

33. Starczewski, J., Rutkowski, L.: Interval type 2 neuro-fuzzy systems based on inter-
val consequents. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft
Computing, pp. 570–577. Physica-Verlag, Springer-Verlag Company, Heidelberg,
New York (2003)

34. Starczewski, J., Rutkowski, L.: Connectionist Structures of Type 2 Fuzzy Inference
Systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.)
PPAM 2001. LNCS, vol. 2328, pp. 634–642. Springer, Heidelberg (2002)

35. Szegö, G.: Orthogonal Polynomials, vol. 23. American Mathematical Society Coll.
Publ.(1959)

36. Wilks, S.S.: Mathematical Statistics. John Wiley, New York (1962)

On the Application of the Parzen-Type Kernel
Probabilistic Neural Network and Recursive

Least Squares Method for Learning
in a Time-Varying Environment

Maciej Jaworski1 and Yoichi Hayashi2

1 Department of Computer Engineering, Czestochowa University of Technology,
Armii Krajowej 36, 42-200 Czestochowa, Poland

maciej.jaworski@kik.pcz.pl
2 Department of Computer Science, Meiji University,

Tama-ku, Kawasaki 214-8571, Japan
hayashiy@cs.meiji.ac.jp

Abstract. This paper presents the Parzen kernel-type regression neu-
ral network in combination with recursive least squares method to solve
problem of learning in a time-varying environment. Sufficient conditions
for convergence in probability are given. Simulation experiments are pre-
sented and discussed.

1 Introduction

A concept of probabilistic neural networks and general regression neural networks
was first proposed by Specht [36], [37]. These structures are useful nonparamet-
ric tools for providing nonlinear regression in a stationary (see e.g. [4], [6], [7],
[9], [12], [14]-[17], [23]-[25] and [28]-[31]) and nonstationary environment (see [8],
[18]-[22], [26] and [27]). Nonlinear regresion can be applied, for example, in the
analysis of multiple input-single output (MISO) systems. Such systems are as-
sociated with a wide range of biomedical, economic and engineering problems.
Let us consider a MISO system, described by the following equation

Yi = φ(Xi) + aci + Zi. (1)

Pairs (Xi, Yi), Xi ∈ A ⊂ Rp, Yi ∈ R, i ∈ {1, . . . , n}, where Xi are independent
and identically distributed random variables. The probability density function
f(x) of variables Xi is not known a priori. The zero-mean random variables Zi

represent the noise and the variance of Zi is bounded

V ar(Zi) = E[Z2
i] = σ2

z < ∞, i ∈ {1, . . . , n}. (2)

Elements of deterministic, monotonically increasing sequence ci (lim
i→∞

|ci| = ∞)
are known. In this paper we present the algorithm, which allows to estimate the
parameter a and the regression function φ(x).

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 490–500, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Parzen-Type Kernel Probabilistic Neural Network and Recursive LSM 491

2 Algorithm for Learning of Parameter a

To estimate the value of constant a, the recursive least squares method will be
applied [2]. The estimator ân is given in the form

ân = ân−1 +
cn∑n
j=0 c2

j

(Yn − ân−1cn) . (3)

To calculate the estimator φ̂n(x, ân) of regression function φ(x), the parameter a
is assumed to be equal to ân. However, if the expected value of φ(Xi) is non-zero
(i.e

∫
A φ(x)f(x)dx �= 0), then the estimator ân is biased

ân = a + E[R(Xi)]

∑n
j=1 cj∑n
j=1 c2

j

. (4)

The bias, for particular number of data elements n, can lead to the significant
difference between the estimator φ̂n(x, ân) and the function φ(x). To deal with
this problem, a linear regression method can be applied in some particular cases.
For example, if cn = nt, n ∈ N, then estimator ân is given by

ân = a + Bn−t, (5)

where B is some unknown constant. Given a sequence of estimator values âi,
i ∈ {n0, . . . , n}, one can propose the new estimator ãn of a in the following form

ãn =

∑n
i=n0

ai

ci

∑n
i=n0

1
ci

− ∑n
i=n0

ai

∑n
i=n0

1
c2
i∑n

i=n0

1
ci

∑n
i=n0

1
ci

− (n − n0 + 1)
∑n

i=n0

1
c2
i

. (6)

Estimators âi for low values of i demonstrate relatively high variances. Therefore,
in formula (6) it is recommended to set the value of n0 sufficiently high. However,
an important disadvantage of such an approach is that the estimators ãn can be
calculated only for n > n0.

3 Probabilistic Neural Network for Estimation of
Regression Function

In this section, the Probabilistic Neural Network scheme will be proposed for
estimation of regression function φ(x). Since the actual value of parameter a is
not known, the considered estimator is a function of estimator an, where an = ân

given by (3) or an = ãn given by (6). To perform the nonlinear regression, the
output variables Yi of MISO system (1) need to be transformed

Vi(an) = Yi − anci. (7)

492 M. Jaworski and Y. Hayashi

Defining R(x) = φ(x)f(x), regression function φ(x), in each point x at which
f(x) �= 0, can be written as follows

φ(x) =
φ(x)f(x)

f(x)
=

R(x)
f(x)

. (8)

Estimators R̃n(x, an) and f̃n(x) of functions R(x) and f(x) can be established
using nonparametric method based on kernel functions Kn : Rp × Rp → R and
K ′

n : Rp × Rp → R

R̃n(x, an) =
1
n

n∑
i=1

Vi(an)Kn(x, Xi), (9)

f̃n(x) =
1
n

n∑
i=1

K ′
n(x, Xi). (10)

In this paper kernel functions based on Parzen kernels K : R → R are considered.
Any function can be used as a Parzen kernel if satisfies the following conditions

sup
w∈R

|K(w)| < ∞, (11)∫
R

|K(w)|dw < ∞, (12)

lim
‖w‖→∞

‖w‖p|K(w)| = 0, (13)∫
R

K(w)dw = 1. (14)

Then, the kernel functions Kn(x, u) and K ′
n(x, u) are given in the forms

Kn(x, u) =
1
hp

n

p∏
k=1

K

(
xk − uk

hn

)
, (15)

K ′
n(x, u) =

1
h′p

n

p∏
k=1

K

(
xk − uk

h′
n

)
, (16)

where xk and uk denote the k-th coordinate of vectors x and u, hn and h′
n

are known sequences, satisfying lim
n→∞hn = 0 and lim

n→∞ h′
n = 0. Particularly,

sequences hn and h′
n can be equal.

In estimators (9) and (10) for each variable Xi the same kernel function is
used (Kn(x, u) and K ′

n(x, u) respectively). Alternatively, estimators for functions
R(x) and f(x) can be proposed with the use of different kernel functions for
each Xi

R̂n(x, an) =
1
n

n∑
i=1

Vi(an)Ki(x, Xi), (17)

Parzen-Type Kernel Probabilistic Neural Network and Recursive LSM 493

f̂n(x) =
1
n

n∑
i=1

K ′
i(x, Xi). (18)

The main advantage of this approach is that the estimators R̂n(x, an) and f̂n(x)
can be expressed in a recursive way

R̂i(x, an) =
i − 1

i
R̂i−1(x, an) +

1
i
Vi(an)Ki(x, Xi), R̂0(x, an) = 0, (19)

f̂i(x) =
i − 1

i
f̂i−1(x) +

1
i
Ki(x, Xi), f̂0(x) = 0, (20)

Finally, according to formula (8), the estimator φ̂i(x, an) is given by

φ̂i(x, an) =
R̂i(x, an)

f̂i(x)
, i ∈ {1, . . . , n}, (21)

The presented algorithm of finding the estimator φ̂n(x, an) is the general
regression neural network [36]. The network is shown in Fig. 1.

Fig. 1. The block diagram of the general regression neural network for estimating the
regression function φ(x)

494 M. Jaworski and Y. Hayashi

4 Main Result

The following theorems ensures the convergence of the algorithm presented in
sections 2 and 3

Theorem 1. If (2) holds and the following assumptions are satisfied∫
A

φ2(x)f(x)dx < ∞, (22)

lim
n→∞

(∑n
i=1 ci∑n
i=1 c2

i

)
= 0, (23)

then

ân
n→∞−→ a in probability. (24)

Proof. The convergence in probability can be proven analyzing the convergence
of expression E[ân − a]2.

Theorem 2. If (11), (12), (13) and (14) holds and additionally the following
conditions are satisfied

an
n→∞−→ a in probability, (25)

lim
n→∞h′

n = 0, lim
n→∞

(
n−2

n∑
i=1

h′−p
i

)
= 0, (26)

lim
n→∞ hn = 0, lim

n→∞

(
n−2

n∑
i=1

h−p
i

)
= 0, (27)

then

φ̂n(x, an) n→∞−→ φ(x) in probability. (28)

Proof. The theorem can be proven using the convergence (25), convergence of
the estimator φ̂n(x, an) [1] and Theorem 4.3.8 in [40].

Example
Let us assume that conditions (2) and (22) are satisfied. If the sequence ci is
taken in the form

ci = it, t > 0, (29)

then ∑n
i=1 ci∑n
i=1 c2

i

= O(i−t). (30)

Parzen-Type Kernel Probabilistic Neural Network and Recursive LSM 495

In the light of assumption (23) the algorithm described in section 2 is convergent
for any value of t > 0. To investigate convergence of the algorithm from section
3, one can propose the following form of sequences hn and h′

n

hn = Dn−H , h′
n = D′n−H′

, D, D′ > 0, H, H ′ > 0. (31)

The assumptions (26) and (27) of the Theorem 2 are held if the parameters H
and H ′ satisfy the following inequalities

0 < H < 1, 0 < H ′ < 1. (32)

5 Experimental Results

In the following experiments the quality of the regression function estimators
φ̂n(x, ân) and φ̂n(x, ãn) is examined. The value of the parameter n0 in estimator
φ̂n(x, ãn) is set to 400. The real value of parameter a is equal to 1, 5. The one-
dimensional regression function φ(x) is considered, which is given by

φ(x) = 10 ∗ exp (3 ∗ (sin x − 1)) + 1. (33)

The random variables Xi come from the normal distribution N(4, 4) and the
noise variables Zi are generated form the standard normal distribution N(0, 1).
Sequence ci is given in the form (29) with t = 0, 4. As the Parzen kernel K(w),
in kernel functions (15) and (16), the Epanechnikov kernel is proposed

K(w) =

⎧⎨⎩
3
4
(
1 − w2

)
, w ∈ [−1; 1],

0, w ∈ (−∞;−1) ∪ (1;∞).
(34)

It is easily seen that the Epanechnikov kernel satisfies conditions (11)-(14). The
sequences h′

n and hn are taken in the form (31), with parameters D = D′ = 2, 0
and Q = Q′ = 0, 3, which satisfy inequalities (32).

In Figure 2 the values of estimators ân and ãn for different numbers of data
elements n are presented. The estimators are also compared with the real value
of a.

Both estimators converge to the value a = 1, 5, however the estimator ãn is
significantly better for each considered number of data elements n. The value
of estimator an, where an can be taken as ân or as ãn, affects the quality of
the estimation of the function φ(x). If the actual value of a were known, the
unbiased estimator φ̂n(x, a) of the regression function could be calculated. The
difference between the estimator an and the value of a introduces some bias to
the estimator φ̂n(x, an). The bias is proportional to the mentioned difference
(an − a). This effect is presented in Fig. 3.

The Mean Squared Error (MSE) for the estimator φ̂n(x, ãn) is very close to
zero value, while for the estimator φ̂n(x, ân) it holds at the level of MSE ≈ 10.
This results proves the usability of the estimator ãn.

496 M. Jaworski and Y. Hayashi

Fig. 2. Comparison of the estimators ân and ãn with the actual value of parameter a

Fig. 3. The Mean Squared Error of estimator φ̂n(x, an) as a function of number of
data elements n, for an = ân and an = ãn

Parzen-Type Kernel Probabilistic Neural Network and Recursive LSM 497

Fig. 4. Estimators φ̂n(x, ân) and φ̂n(x, ãn) in comparison with the function φ(x).
Points represent the pairs of random variables (Xi, Vi(a)).

Fig. 5. The values of φ̂n(2, 5 , ân) and φ̂n(2, 5 , ãn) as functions of n in comparison with
the actual value φ(2, 5) ≈ 3, 998

498 M. Jaworski and Y. Hayashi

In Figure 4 estimators φ̂n(x, ân) and φ̂n(x, ãn), obtained for n = 5000, are
presented in comparison with the regression function (33).

The estimators φ̂n(x, an) (an = ân or an = ãn) actually try to fit the function
to the pairs (Xi, Vi(an)) instead of (Xi, Vi(a)). This explains why the bias of the
estimator φ̂n(x, ân) is such large.

Figure 5 shows the values of considered estimator in one particular point
x = 2, 5 for different numbers of data elements n. The value of the real regression
function in this point is φ(2, 5) ≈ 3, 998.

6 Conclusions

In the paper the Parzen kernel-type regression neural network in combination
with recursive least squared method were presented to solve problem of learning
in a time-varying environment. Sufficient conditions for convergence in prob-
ability were given. Simulation experiments were presented and discussed. Our
on-going work is focused on adaptation of supervised and unsupervised neural
networks (see e.g. [3], [5] and [13]) and neuro-fuzzy structures (see e.g. [10], [11],
[32]-[35] and [38]-[39]) for learning in time-varying environments.

Acknowledgments. The paper was prepared under project operated within
the Foundation for Polish Science Team Programme co-financed by the EU Eu-
ropean Regional Development Fund, Operational Program Innovative Economy
2007-2013, and also supported by National Science Centre NCN.

References

1. Ahmad, I.A., Lin, P.E.: Nonparametric sequential estimation of multiple regression
function. Bulletin of Mathematical Statistics 17, 63–75 (1976)

2. Albert, A.E., Gardner, L.A.: Stochastic Approximation and Nonlinear Regression,
vol. (42). MIT Press, Cambridge (1967)

3. Bilski, J., Rutkowski, L.: A fast training algorithm for neural networks. IEEE
Transactions on Circuits and Systems II 45, 749–753 (1998)

4. Cacoullos, P.: Estimation of a multivariate density. Annals of the Institute of Sta-
tistical Mathematics 18, 179–190 (1965)

5. Cierniak, R., Rutkowski, L.: On image compression by competitive neural networks
and optimal linear predictors. Signal Processing: Image Communication - a Eurasip
Journal 15(6), 559–565 (2000)

6. Gałkowski, T., Rutkowski, L.: Nonparametric recovery of multivariate functions
with applications to system identification. Proceedings of the IEEE 73, 942–943
(1985)

7. Gałkowski, T., Rutkowski, L.: Nonparametric fitting of multivariable functions.
IEEE Transactions on Automatic Control AC-31, 785–787 (1986)

8. Greblicki, W., Rutkowska, D., Rutkowski, L.: An orthogonal series estimate of time-
varying regression. Annals of the Institute of Statistical Mathematics 35, Part A,
147–160 (1983)

Parzen-Type Kernel Probabilistic Neural Network and Recursive LSM 499

9. Greblicki, W., Rutkowski, L.: Density-free Bayes risk consistency of nonparametric
pattern recognition procedures. Proceedings of the IEEE 69(4), 482–483 (1981)

10. Nowicki, R.: Rough Sets in the Neuro-Fuzzy Architectures Based on Non-
monotonic Fuzzy Implications. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz,
R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 518–525.
Springer, Heidelberg (2004)

11. Nowicki, R., Pokropińska, A.: Information Criterions Applied to Neuro-Fuzzy Ar-
chitectures Design. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh,
L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 332–337. Springer,
Heidelberg (2004)

12. Parzen, E.: On estimation of a probability density function and mode. Analysis of
Mathematical Statistics 33(3), 1065–1076 (1962)

13. Patan, K., Patan, M.: Optimal Training Strategies for Locally Recurrent Neural
Networks. Journal of Artificial Intelligence and Soft Computing Research 1(2),
103–114 (2011)

14. Rutkowski, L.: Sequential estimates of probability densities by orthogonal series
and their application in pattern classification. IEEE Transactions on Systems, Man,
and Cybernetics SMC-10(12), 918–920 (1980)

15. Rutkowski, L.: Sequential estimates of a regression function by orthogonal series
with applications in discrimination, New York, Heidelberg, Berlin. Lectures Notes
in Statistics, vol. 8, pp. 236–244 (1981)

16. Rutkowski, L.: On system identification by nonparametric function fitting. IEEE
Transactions on Automatic Control AC-27, 225–227 (1982)

17. Rutkowski, L.: Orthogonal series estimates of a regression function with applica-
tions in system identification. In: Probability and Statistical Inference, pp. 343–347.
D. Reidel Publishing Company, Dordrecht (1982)

18. Rutkowski, L.: On Bayes risk consistent pattern recognition procedures in a quasi-
stationary environment. IEEE Transactions on Pattern Analysis and Machine In-
telligence PAMI-4(1), 84–87 (1982)

19. Rutkowski, L.: On-line identification of time-varying systems by nonparametric
techniques. IEEE Transactions on Automatic Control AC-27, 228–230 (1982)

20. Rutkowski, L.: On nonparametric identification with prediction of time-varying
systems. IEEE Transactions on Automatic Control AC-29, 58–60 (1984)

21. Rutkowski, L.: Nonparametric identification of quasi-stationary systems. Systems
and Control Letters 6, 33–35 (1985)

22. Rutkowski, L.: The real-time identification of time-varying systems by nonpara-
metric algorithms based on the Parzen kernels. International Journal of Systems
Science 16, 1123–1130 (1985)

23. Rutkowski, L.: A general approach for nonparametric fitting of functions and their
derivatives with applications to linear circuits identification. IEEE Transactions
Circuits Systems CAS-33, 812–818 (1986)

24. Rutkowski, L.: Sequential pattern recognition procedures derived from multiple
Fourier series. Pattern Recognition Letters 8, 213–216 (1988)

25. Rutkowski, L.: Nonparametric procedures for identification and control of linear
dynamic systems. In: Proceedings of 1988 American Control Conference, June 15-
17, pp. 1325–1326 (1988)

26. Rutkowski, L.: An application of multiple Fourier series to identification of multi-
variable nonstationary systems. International Journal of Systems Science 20(10),
1993–2002 (1989)

27. Rutkowski, L.: Nonparametric learning algorithms in the time-varying environ-
ments. Signal Processing 18, 129–137 (1989)

500 M. Jaworski and Y. Hayashi

28. Rutkowski, L., Rafajłowicz, E.: On global rate of convergence of some nonparamet-
ric identification procedures. IEEE Transaction on Automatic Control AC-34(10),
1089–1091 (1989)

29. Rutkowski, L.: Identification of MISO nonlinear regressions in the presence of
a wide class of disturbances. IEEE Transactions on Information Theory IT-37,
214–216 (1991)

30. Rutkowski, L.: Multiple Fourier series procedures for extraction of nonlinear regres-
sions from noisy data. IEEE Transactions on Signal Processing 41(10), 3062–3065
(1993)

31. Rutkowski, L., Gałkowski, T.: On pattern classification and system identification
by probabilistic neural networks. Applied Mathematics and Computer Science 4(3),
413–422 (1994)

32. Rutkowski, L.: A New Method for System Modelling and Pattern Classification.
Bulletin of the Polish Academy of Sciences 52(1), 11–24 (2004)

33. Rutkowski, L., Cpałka, K.: A general approach to neuro - fuzzy systems. In: Pro-
ceedings of the 10th IEEE International Conference on Fuzzy Systems, Melbourne,
December 2-5, vol. 3, pp. 1428–1431 (2001)

34. Rutkowski, L., Cpałka, K.: A neuro-fuzzy controller with a compromise fuzzy rea-
soning. Control and Cybernetics 31(2), 297–308 (2002)

35. Scherer, R.: Boosting Ensemble of Relational Neuro-fuzzy Systems. In: Rutkowski,
L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS
(LNAI), vol. 4029, pp. 306–313. Springer, Heidelberg (2006)

36. Specht, D.F.: A general regression neural network. IEEE Transactions on Neural
Networks 2, 568–576 (1991)

37. Specht, D.F.: Probabilistic neural networks. Neural Networks 3, 109–118 (1990)
38. Starczewski, J., Rutkowski, L.: Interval type 2 neuro-fuzzy systems based on inter-

val consequents. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft
Computing, pp. 570–577. Physica-Verlag, Springer-Verlag Company, Heidelberg,
New York (2003)

39. Starczewski, J., Rutkowski, L.: Connectionist Structures of Type 2 Fuzzy Inference
Systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.)
PPAM 2001. LNCS, vol. 2328, pp. 634–642. Springer, Heidelberg (2002)

40. Wilks, S.S.: Mathematical Statistics. John Wiley, New York (1962)

Learning in Rough-Neuro-Fuzzy System

for Data with Missing Values

Bartosz A. Nowak and Robert K. Nowicki

Department of Computer Engineering, Czestochowa University of Technology,
Al. Armii Krajowej 36, 42-200 Czestochowa, Poland
{bartosz.nowak,robert.nowicki}@kik.pcz.pl

Abstract. Rough-neuro-fuzzy systems offer suitable way for classify-
ing data with missing values. The paper presents a new implementa-
tion of gradient learning in the case of missing input data which has
been adapted for rough-neuro-fuzzy classifiers. We consider the system
with singleton fuzzification, Mamdani-type reasoning and center aver-
age defuzzification. Several experiments based on common benchmarks
illustrating the performance of trained systems are shown. The learning
and testing of the systems has been performed with various number of
missing values.

Keywords: missing values, rough fuzzy, classification, back-propagation.

1 Introduction

Data classification is one of often challenge for computational intelligence. Usu-
ally data bases are collected using questionnaires, medical examinations or out-
puts from different types of measuring devices. Every sample is described by
few parameters, nearly always more than one. It is very often that part of the
data is missing. Reason that led to a lack of some information is very impor-
tant in choosing relevant method of classification. In literature [1], [2] have been
proposed three main types of databases with missing data:

– MCAR (missing completely at random) – probability of missing parame-
ter vi is not related with value of other parameters vj , j �= i neither true
or hypothetical value of vi (if exist). As an example could be outputs of
questionnaires send by unstable link, with error detection, which deletes
corrupted parts of transmission. As result, parts of data is lost, and proba-
bility of lacks in database is true random. This conditions is very strict and
is rarely fulfilled in practice.

– MAR (missing at random) – probability of missing parameter vi depends on
other parameters vj , j �= i however it not depends on true or hypothetical
value of vi (if exist). For example there is form with questions: “How old are
you?”, “What is your bank account number?”. It is obvious that younger peo-
ple will more often restraint themselves from answering the second question.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 501–510, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

502 B.A. Nowak and R.K. Nowicki

– MNAR (missing not at random) – probability of missing parameter vi is
connected with its true or hypothetical value. The same connection as in
MCAR, but with assumption that vi is more often unavailable when its
original value is 0 due to problem in transmission, could be presented as an
example.

The main approaches for classification with missing values are:

1. Imputation – method base on filling lacks in the database with valid values
using various methods, e.g: imputing average value of attribute, imputing
random value in range of occurrence, determining lost value based on most
similar samples using EM-algorithm [3], k-nn [4] or others [5] and replacing
incomplete sample v(i) by a set of complete samples, which base on v(i) [6].

2. Marginalisation – part of database that has unavailable data is simply deleted
or marginalised thus reducing dimensionality of database, e.g: list-wise dele-
tion – samples that have lacks of some values are erased (probably the sim-
plest of all marginalisation methods, but often used in real-life, suitable only
to MCAR databases with very low rate of missing), pair-wise deletion –
according to analysis requirements only samples that has missing needed at-
tributes are ignored and attribute deletion – attributes that have lacks are
deleted.

3. Rough-neuro-fuzzy system as generalisation of neuro-fuzzy system are
capable to handle data with missing values [7].

The paper proposes implementation of back-propagation as learning algorithm
for rough-neuro-fuzzy decision system [7] with Mamdani-type implication and
CA defuzzification.

2 Rough-Neuro-Fuzzy Systems

The rough neuro-fuzzy classifier which is under consideration has been described
in [7]. It is based on classic neuro-fuzzy system which implements singleton
fuzzification, Mamdani-type reasoning and Centre Average defuzzification. The
answer of such MIMO neuro-fuzzy system adapted for classification tasks has a
form

μωj (x) = zj =

N∑
r=1

zrj · μAr (v)

N∑
r=1

μAr (v)

. (1)

As was stated, the output value is interpreted as the membership degree of object
x to class ωj . Classified object is described by vector of features
v = [v1, v2, . . . , vn]. The fuzz sets Ar = Ar

1 × Ar
2 × . . . × Ar

n and parameters
zrj corresponding to rules in form

Rr : IF v1 is Ar
1 AND v2 is Ar

2 AND . . .AND vn is Ar
n

THEN x ∈ ω1(zr1), x ∈ ω2(zr2)...x ∈ ωm(zrm)
. (2)

Learning in Rough-Neuro-Fuzzy System for Data with Missing Values 503

2.1 Rough-Neuro-Fuzzy Classifier

The classifier presented in previous section assume that values of all n conditional
attributes vi are known. Now we assume that values of some attributes are
missing. So, we divide the set Q of all n attributes into two subset P and G as
follows

vi ∈ P if value for vi is known,
vi ∈ G if value for vi is missing.

(3)

Formally, we have the vector of known values vP ∈ VP and vector of unknown
values, but we known that vG ∈ VG. In consequent, the membership function
of fuzzy set Ar is unknown. However, we can approximate it by rough fuzzy set

which is the pair
{
P̃Ar, P̃Ar

}
. P̃Ar is the P̃–upper approximation of fuzzy set

Ar and P̃Ar is its P̃–lower approximation. Their membership function, as in [8],
is defined by

μ
P̃A

(v) = sup
vG∈VG

μA(vP ,vG) ,

μP̃A(v) = inf
vG∈VG

μA(vP ,vG) .
(4)

Using any t–norm in definition of Cartesian product, w have

μ
P̃A

(v) = T

(
T

i:vi∈P
(μAi(vi)), T

i:vi∈G
sup
vi∈Vi

μAi(vi)

)
,

μP̃A(v) = T

(
T

i:vi∈P
(μAi(vi)), T

i:vi∈G
inf

vi∈Vi

μAi(vi)

)
.

(5)

It is obvious that μP̃A(v) ≤ μ
P̃A

(v). When v has no lacks then P̃A = P̃A and

μA(v) = μ
P̃A

(v) = μP̃A(v) .

Following the approximation expressed sets Ar we obtain the approximate

answer of classifier
{
μ
P̃ωj

(x), μP̃ ωj
(x)

}
=

{
zj , zj

}
. As has been proven in [9]

zj =
∑N

r=1 z
r
jμP̃Ar (v)

∑N
r=1(zrjμP̃Ar (v)+¬zrjμP̃Ar (v))

,

zj =
∑N

r=1 z
r
jμP̃Ar (v)

∑N
r=1(zrjμP̃Ar (v)+¬zrjμP̃Ar (v))

,

(6)

where negation operator ¬zrj = 1− zrj .
To date learning algorithm has not been proposed. Whole decision system can

be presented in network form.

3 Learning Algorithm

One of main advantages of neuro-fuzzy system over fuzzy system, mentioned in
literature [10] is possibility of use gradient learning method as in neural networks.

504 B.A. Nowak and R.K. Nowicki

The method, working in neuro-fuzzy systems, can be adapted to rough-neuro-
fuzzy classifier. In implemented system only cri , σ

r
i are the parameters that are

subject to learn. On account of assumption zrj ∈ {0, 1} parameters zrj are no suit-
able to gradient learning. Error is computed providing sample vp on inputs and
comparing obtained result with requested output pattern d = [d1, d2, . . . , dm].

Proposed method additionally ensure that values cri are always in range of
occurrence vi, i.e. [vimin, vimax]. If the boundary aren’t known, the minimum
and maximum values funded in learning set is obtained. Correction of system’s
parameters is performed to minimise sum of squares for every error on outputs.
In the paper we propose probably the simplest error measure Q. We we would
like to equate lower z̄j and upper z̄j outputs with binary affiliation of given
sample to every class. It leads to following definition of Q:

Q(cri , σ
r
i) =

m∑
j=1

((
dj − zj

)2
+
(
dj − zj

)2
)

. (7)

Decreasing of Q(cri , σ
r
i) is done by gradient method, which in consecutive itera-

tions changes the values of parameters ckl and σkl as follow:

cri (t+ 1) = cri (t) +Δcri (t); σri (t+ 1) = σri (t) +Δσri (t) , (8)

where t is counter of iteration and Δckl , Δσ
k
l are the corrections defined by

Δckl = η

(
− ∂Q
∂cri

)
; Δσkl = η

(
− ∂Q
∂σkl

)
. (9)

Symbol η ∈ (0, 1) means the coefficient of learning.
For rough neuro-fuzzy classifier defined by eq. (6), the derivatives from eq.

(9) are expressed by

− ∂Q
∂ckl

(v) = 2

m∑
j=1

⎛⎝ εj
(u dj)2

(
u dj z̄

k
l

∂μ
P̃Ak

∂ckl
− u nj

(
z̄kl

∂μ
P̃Ak

∂ckl
+ ¬z̄kl

∂μ
P̃Ak

∂ckl

))
+

+
εj

(d dj)2

(
d dj z̄

k
l

∂μ
P̃Ak

∂ck
l

− d nj
(
z̄kl

∂μ
P̃Ak

∂ck
l

+ ¬z̄kl
∂μ

P̃Ak

∂ck
l

)) ⎞⎠ .

(10)
and

− ∂Q

2∂σk
l

(v) = 2

m∑
j=1

⎛
⎝ εj

(u dj)
2

(
u dj z̄

k
l

∂μ
P̃Ak

∂σk
l

− u nj

(
z̄kl

∂μ
P̃Ak

∂σk
l

+ ¬z̄kl
∂μ

P̃Ak

∂σk
l

))
+

+
εj

(d dj)
2

(
d dj z̄

k
l

∂μ
P̃Ak

∂σk
l

− d nj

(
z̄kl

∂μ
P̃Ak

∂σk
l

+ ¬z̄kl
∂μ

P̃Ak

∂σk
l

))
⎞
⎠ .

(11)

where the difference between desired values of lower and upper values can be
different:

εj = dj − zj ; εj = dj − zj (12)

and the symbols u nj, u dj , d nj and d dj are defined as follow

u nj =
∑N

r=1 z
r
jμP̃Ar

(v); u dj =
∑N

r=1

(
zrjμP̃Ar

(v) + ¬zrjμP̃Ar(v)
)

;

d nj =
∑N

r=1 z
r
jμP̃Ar(v); d dj =

∑N
r=1

(
zrjμP̃Ar(v) + ¬zrjμP̃Ar

(v)
)

.
(13)

Learning in Rough-Neuro-Fuzzy System for Data with Missing Values 505

Modifications of fuzzy sets are performed many times, consecutively after com-
puting gradient of error for every sample.

The P̃–lower and P̃–upper approximation of antexedent fuzzy sets Aq is

defined by eq. (5). It is obvious, the form derivatives
∂μ

P̃Aq

∂σq
i

(v),
∂μ

P̃Aq

∂cqi
(v),

∂μP̃Aq

∂σq
i

(v),
∂μP̃Aq

∂cqi
(v) are various for case of known value of attribute vi and

for case of missing one. Further we will propose corresponding forms. At first, it
is assumed that values cqi are always in the range [vimin, vimax]. It will be provide
by a corrections introduced in the learning procedure (16). Thus, the expression
sup
vl∈Vl

μA(vl) in (5) become a constant. When sets Ak
l is normal (i.e. the height

h
(
Ak

l

)
= 1), we have

sup
vl∈Vl

μAk
l
(vl) = μAk

l
(ckl) = 1. (14)

In the same way, the expression inf
vl∈Vl

μA(vl) in (5) takes the form

inf
vl∈Vl

μAk
l
(vl) = min

{
μAk

l
(vlmin), μAk

l
(vlmax)

}
. (15)

Following (14) and (15) we can replace unknown input value vl with one of:

{crl , vlmax, vlmin}. During computation of
∂μ

P̃Ak

∂σk
l

(v),
∂μ

P̃Ak

∂ckl
(v) when vl has no

value it is substituted by the centre of fuzzy set, and during computation of
∂μ

P̃Ak

∂σk
l

(v),
∂μ

P̃Ak

∂ckl
(v) in the same condition, then value of vl is replaced by vlmin

or vlmax depending which is more distant from centre of fuzzy set. Because

μAk
l
(ckl) are constant then

∂μ
P̃Ak

l

∂ckl
=

∂μ
P̃Ak

l

∂σk
l

= 0 .

if vi is not missing:

∂μ
P̃Aq

∂cqi
(v) = 2μ

P̃Aq

vi−cqi
(σq

i)
2 ;

∂μ
P̃Aq

∂σq
i

(v) = 2μ
P̃Aq

(vi−cqi)
2

(σq
i)

3 ;
∂μ

P̃Aq

∂cqi
(v) = 2μP̃Aq

vi−cqi
(σq

i)
2 ;

∂μ
P̃Aq

∂σq
i

(v) = 2μP̃Aq

(vi−cqi)
2

(σq
i)

3

if vi is missing:
∂μ

P̃Aq

∂cqi
(v) = 0 ;

∂μ
P̃Aq

∂σq
i

(v) = 0 ;

∂μ
P̃Aq

∂cqi
(v) = 2μP̃Aq

vq
i,far−cqi
(σq

i)
2 ;

∂μ
P̃Aq

∂σq
i

(v) = 2μP̃Aq

(vq
i,far−cqi)

2

(σq
i)

3

,

where

vqi,far =

⎧⎪⎨⎪⎩
vimin if |vimin − cqi | > |vimax − cqi |
vimax if |vimin − cqi | < |vimax − cqi |
cqi if |vimin − cqi | = |vimax − cqi |

,

and vimin, vimax are relevant minimum or maximum value of attribute ci among
all learning samples.

Corrections Δckl and Δσkl are not introduced directly to avoid situation that
cri exceed range of vi occurrence, and situation that σkl ≤ 0. So, there are replaced
by (Δckl)∗ and (Δσkl)∗ defined as follows:

506 B.A. Nowak and R.K. Nowicki

(Δckl)∗ =

⎧⎪⎨⎪⎩
vimin − ckl if vlmin ≥ cri +Δcri
Δckl if vlmin < c

r
i +Δcri < vlmax

vimax − ckl if cri +Δcri ≥ vlmax ,

(Δσkl)∗ =

{
0 if 0 ≥ σkl +Δσkl
Δσkl if 0 < σkl +Δσkl .

(16)

3.1 Back-Propagation Algorithm

Application of back-propagation method can significantly simplify notation of
derivatives. Corrections are calculated starting from outputs, as shown in
(Fig. 1.). Corrections are computed using several steps, where j = 1 . . .m,
r = 1 . . .N , i = 1 . . . n:

ε dj = − εju nj
(u d)2

; ε dj = −
εjd nj

(d d)2

ε nj =
εj
u d

+ ε dj ; ε nj =
εj
d d

+ ε dj

ε actr =

m∑
j=1

(
zrj ε nj + ¬zrj ε dj

)
; ε actr =

m∑
j=1

(
zrj ε nj + ¬zrj ε dj

)
ε c σr = ε actrμ

P̃A
; ε c σr = ε actrμP̃A

if vi is not missing:

Δcri = η
vi−cri
(σr

i)
2

(
ε c σr + ε c σr

)
; Δσri = η

(vi−cri)
2

(σr
i)

3

(
ε c σr + ε c σr

)
,

if vi is missing:

Δcri = ηε c σr
vr
i,far−cri
(σr

i)
2 ; Δωr

i = ηε c σr
(vr

i,far−cri)
2

(σr
i)

3 .

After each iteration same corrections as in (16) are applied.

3.2 Starting Values and Learning Parameters

Some numbers, which characterized network and learning parameters was chosen
in empirical way. Value η is the most important factor, that has direct influence
result of learning. Starting values describing fuzzy sets in antecedents are random
with assumption:

cri ∈ [vimin, vimax] , i = 1, 2 . . . n

σri ∈ [0.5 3(vimax−vimin)
N , 1.5 3(vimax−vimin)

N] r = 1, 2 . . .N .

Values of z are constant and don’t change during learning:

zrj =

{
1 if j − 1 = (r − 1 mod m)

0 if j − 1 �= (r − 1 mod m) .

Learning in Rough-Neuro-Fuzzy System for Data with Missing Values 507

Fig. 1. Back-propagation algorithm in rough-neuro-fuzzy classifier with Mamdani
implication and CA defuzzification

To avoid bias, when quantities of samples in each class differs, proper samples
in database are duplicated to enforce same number of sample in each class.
Order of samples is random. Quantity of iteration is 500 multiplied by number
of samples. Selected back-propagation parameter η = 0.1. Using these values
system usually achieves, at least local, optimum after about 200 multiplied by
number of samples iterations.

4 Testing Procedure and Results

Implemented system was tested using three common databases from UCI Ma-
chine Learning Repository [11], i.e. Glass Identification, Iris data set and Breast
Cancer Wisconsin. In the first benchmark the number of class i reduced to 2
(window glass and other), the other ones was applied without any changes.

4.1 Method of Generation Lacks in Database

To test proficiency of proposed learning algorithm mentioned databases artificially
generated lacks was inducted. To simulate MCAR mechanism pseudo-random
algorithm was used. This method tried to uniform missing rate in samples of each
class, and avoid situation where all attributes in sample are missing and all values
in attribute are missing.

508 B.A. Nowak and R.K. Nowicki

4.2 Algorithm of Performance Calculation

Performance of the network is counted for database of test samples Vt. To
properly evaluate system that has not equal quantity of samples in differ classes
performance is average probability of properly classified samples rate in every
class:

perf(Vt) =
1

m

m∑
j=1

1

‖ ωj ‖
∑

s:vs∈ωj

g ct ,

where ‖ ωj ‖ is quantity of samples in class ωj and g ct indicates if t-th sample,
x(t), is properly classified, what is calculated as follows

g ct =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if ∀j = 1, 2 . . .m :

⎛⎜⎜⎝
(
zj(t) > 0.5 ∧ zj(t) > 0.5

)
|x(t) ∈ ωj

∧(
zj(t) < 0.5 ∧ zj(t) < 0.5

)
|x(t) /∈ ωj

⎞⎟⎟⎠
0 else

As an example on not proper system can be tomatoes classifier. Possible re-
sponses are: ”good” or ”bad”. Probability that vegetable belong to first class is
0.9 and system always give that response. Applied performance’s rate method
gives result 1

2 (1 + 0) = 0.5, whilst standard, which is the rate of proper classified
samples, would give 0.9 as outcome.

System was tested by 10-fold cross validation. Database was divided into
10 parts, which have nearly same, if possible same, number of samples and
nearly same occurrence of each class. Test was conducted 10 times always using
different part as testing set and the rest parts as learning set. For every case
performance is average for each of 10 tests. Starting parameters of network and
missing placement was set differently every time.

5 Final Remarks

In the paper the learning methods suitable for rough neuro-fuzzy classifiers and
for learning database with missing values is proposed. It is the one of a few pos-
sible solutions - probably the simplest one. It based on the structures of rough
neuro-fuzzy classifiers, which are composed, in principle, of two neuro-fuzzy sys-
tems coupled in specific way. The error measure defined in proposed method is
just a sum of error measured defined typical for separate neuro-systems. More-
over, the problem of missing features in learning pattern has been solved. The
experiments performed on benchmark database confirmed the effectiveness of
this method in wide range of missing rate both in learning and testing patterns.
The authors expect to get even better results using the method proposed in the
article to the ensembles of classifiers [12], [13]. Research has shown that it is
possible to learn these systems using backpropagation [14]. Especially interest-
ing are the properties of ensembles of rough fuzzy classifiers. In future research
it would be interesting to implement our methodology for learning other neuro–
fuzzy systems, e.g. relational [13] [15], flexible [16], [17] and type 2 [18], [19].

Learning in Rough-Neuro-Fuzzy System for Data with Missing Values 509

Table 1. Performance of window glass identification

miss. rate
in test set

[%]

missing rate in learning set [%]
0 5 10 25 0 5 10 25
rules per class = 1 rules per class = 2

0 0.9240 0.9268 0.9031 0.9147 0.8591 0.9299 0.9432 0.9031
5 0.8110 0.8333 0.7982 0.8348 0.7317 0.8600 0.8606 0.8295
10 0.7248 0.7453 0.7830 0.7904 0.6431 0.7366 0.7151 0.7656
25 0.5075 0.6282 0.5570 0.5915 0.3648 0.4510 0.5335 0.6545

rules per class = 3 rules per class = 4

0 0.9239 0.9493 0.8999 0.9168 0.9216 0.9131 0.8793 0.8899
5 0.7570 0.8596 0.8603 0.8537 0.7879 0.8388 0.8057 0.8462
10 0.6672 0.7138 0.7481 0.8340 0.6303 0.7677 0.7061 0.7831
25 0.3058 0.4320 0.5651 0.6358 0.3503 0.5365 0.4799 0.6288

Table 2. Performance of iris classification

miss. rate
in test set

[%]

missing rate in learning set [%]
0 5 10 25 0 5 10 25
rules per class = 1 rules per class = 2

0 0.9200 0.8867 0.8333 0.8667 0.9533 0.9533 0.8800 0.8800
5 0.8467 0.8467 0.7333 0.7800 0.8333 0.8667 0.8067 0.8267
10 0.7600 0.8200 0.7200 0.7400 0.7333 0.8333 0.7600 0.7267
25 0.5133 0.5600 0.5267 0.4600 0.5133 0.5667 0.5267 0.5600

rules per class = 3 rules per class = 4

0 0.9733 0.9000 0.9067 0.9467 0.9533 0.9200 0.9533 0.9533
5 0.8600 0.8067 0.8467 0.9067 0.8133 0.8400 0.8867 0.8667
10 0.7200 0.7400 0.7667 0.7867 0.7200 0.7467 0.8067 0.7867
25 0.4400 0.5400 0.5400 0.5600 0.4733 0.5533 0.5400 0.6400

Table 3. Performance of Wisconsin breast cancer recognition

miss. rate
in test set

[%]

missing rate in learning set [%]
0.2543 5 10 25 0.2543 5 10 25

rules per class = 1 rules per class = 2

0.2543 0.9573 0.9576 0.9577 0.9414 0.9520 0.9648 0.9628 0.9536
5 0.8785 0.9232 0.9224 0.9170 0.8652 0.9264 0.9326 0.9210
10 0.8051 0.8580 0.8819 0.8660 0.7998 0.8726 0.8793 0.8799
25 0.6029 0.6195 0.6470 0.6538 0.5172 0.6351 0.6709 0.6746

rules per class = 3 rules per class = 4

0.2543 0.9575 0.9658 0.9565 0.9553 0.9564 0.9578 0.9594 0.9302
5 0.8310 0.9181 0.9237 0.9173 0.8445 0.9268 0.9273 0.8991
10 0.7203 0.8526 0.8694 0.8685 0.7319 0.8378 0.8688 0.8534
25 0.4087 0.5830 0.6573 0.7034 0.3908 0.5565 0.6388 0.6600

510 B.A. Nowak and R.K. Nowicki

References

1. Rubin, D.B.: Interference and missing data. Biometrika 63, 581–592 (1976)
2. Little, R.J.A., Rubin, D.B.: Statistical analysis with missing data, 2nd edn.

Wiley–Interscience (2002)
3. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete

data via the em algorithm. Journal of the Royal Statistical Society. Series B 39,
1–38 (1977)

4. Song, Q., Shepperd, M., Chen, X., Liu, J.: Can k-nn imputation improve the per-
formance of c4.5 with small software project data sets? a comparative evaluation.
The Journal of Systems & Software 81(12), 2361–2370 (2008)

5. Walczak, B., Massart, D.L.: Dealing with missing data: Part i. Chemometrics and
Intelligent Laboratory Systems 58(1), 15–27 (2001)

6. Sartori, N., Salvan, A., Thomaseth, K.: Multiple imputation of missing values in a
cancer mortality analysis with estimated exposure dose. Computational Statistics
and Data Analysis 49(3), 937–953 (2005)

7. Nowicki, R.: Rough–neuro–fuzzy structures for classification with missing data.
IEEE Trans. on Systems, Man, and Cybernetics—Part B: Cybernetics 39 (2009)

8. Dubois, D., Prade, H.: Putting rough sets and fuzzy sets together. In: Sowiski, R.
(ed.) Intelligent Decision Support: Handbook of Applications and Advances of the
Rough Sets Theory, pp. 203–232. Kluwer, Dordrecht (1992)

9. Nowicki, R.K.: On combining neuro–fuzzy architectures with the rough set theory
to solve classification problems with incomplete data. IEEE Trans. on Knowledge
and Data Engineering 20(9), 1239–1253 (2008)

10. Rutkowski, L.: New Soft Computing Techniques for System Modeling, Pattern
Classification and Image Processing. Springer, Heidelberg (2004)

11. Mertz, C.J., Murphy, P.M.: UCI respository of machine learning databases,
http://www.ics.uci.edu/pub/machine-learning-databases

12. Korytkowski, M., Rutkowski, L., Scherer, R.: From Ensemble of Fuzzy Classifiers
to Single Fuzzy Rule Base Classifier. In: Rutkowski, L., Tadeusiewicz, R., Zadeh,
L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 265–272.
Springer, Heidelberg (2008)

13. Scherer, R.: Boosting Ensemble of Relational Neuro-fuzzy Systems. In: Rutkowski,
L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS
(LNAI), vol. 4029, pp. 306–313. Springer, Heidelberg (2006)

14. Korytkowski, M., Scherer, R., Rutkowski, L.: On combining backpropagation with
boosting. In: 2006 International Joint Conference on Neural Networks, Vancouver,
BC, Canada, pp. 1274–1277 (2006)

15. Scherer, R.: Neuro-fuzzy Systems with Relation Matrix. In: Rutkowski, L., Scherer,
R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS,
vol. 6113, pp. 210–215. Springer, Heidelberg (2010)

16. Rutkowski, L., Cpa�lka, K.: A general approach to neuro - fuzzy systems. In: Pro-
ceedings of the 10th IEEE International Conference on Fuzzy Systems, December
2-5, vol. 3, pp. 1428–1431 (2001)

17. Rutkowski, L., Cpa�lka, K.: A neuro-fuzzy controller with a compromise fuzzy rea-
soning. Control and Cybernetics 31(2), 297–308 (2002)

18. Starczewski, J., Rutkowski, L.: Interval type 2 neuro-fuzzy systems based on interval
consequents. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Com-
puting, pp. 570–577. Physica-Verlag, Springer-Verlag Company, Heidelberg, New
York (2003)

19. Starczewski, J., Rutkowski, L.: Connectionist Structures of Type 2 Fuzzy Inference
Systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.)
PPAM 2001. LNCS, vol. 2328, pp. 634–642. Springer, Heidelberg (2002)

http://www.ics.uci.edu/pub/machine-learning-databases

Diameter of the Spike-Flow Graphs
of Geometrical Neural Networks

Jaroslaw Piersa

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,
Torun, Poland

piersaj@mat.umk.pl

Abstract. Average path length is recognised as one of the vital char-
acteristics of random graphs and complex networks. Despite a rather
sparse structure, some cases were reported to have a relatively short
lengths between every pair of nodes, making the whole network available
in just several hops. This small-worldliness was reported in metabolic,
social or linguistic networks and recently in the Internet. In this paper
we present results concerning path length distribution and the diameter
of the spike-flow graph obtained from dynamics of geometrically embed-
ded neural networks. Numerical results confirm both short diameter and
average path length of resulting activity graph. In addition to numeri-
cal results, we also discuss means of running simulations in a concurrent
environment.

Keywords: geometrical neural networks, path length distribution, graph
diameter, small-worldliness.

1 Introduction

Neural networks, while already turned out a worthy tool in machine learning,
still constitute a potent source of knowledge about the nature of biological brain.
Recently, a growing number of mathematical models were developed and studied
in order to shed some light [9,10].
One of the most striking facts about brain networks is its sparsity. Recall, that

number of neurons in human brain is put at 1011 while the number of synapses
1015, clearly this places brain somewhere in-between regular lattice and a fully
connected graph.
In [11] a flexible and mathematically feasible model of neural activity was

put forward. It was mathematically proven and numerically confirmed, that its
degree distribution obeys a power law, moreover the exponent value is close to
results obtained from fMRI scans of human brain [7]. Continuing the research,
we have decided to look closer on other commonly discussed features of the
model. The aim of this work is to present strictly numerical findings (although,
supported by random graph theory) about the average path length of spike-flow
graphs, which tend emerge as a result of an self-organization process accompa-
nying the dynamics of the system. Despite its sparsity, the graph turns out to

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 511–520, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

512 J. Piersa

have relatively short diameter, which again bears similarity to features reported
in real brain networks [3]. However complex the structure of the network might
be, it still admits passing of information between any areas within just a few
edge traverses. This striking feature is believed to be one of the foundations of
brain’s resilience to noise and random failures [2,3]. In addition to presenting
obtained results, we also provide a brief discussion about numerical details of
the simulation, focusing on paralleisation possibilities.
The article is organised as follows: we present the network model and the

simulation dynamics in Section 2. Than we present obtained results of the path
length distribution in Section 3. Numerical, technical and implementation details
are discussed in Section 4 and the paper is concluded with Section 5.

2 Simulation Model

We start with description of the underlying structural network G = (V , E),
where V is a set of neurons and E stands for synaptic connections. Given a
radius R > 1 of the two-dimensional sphere S2 ⊂ R

3 and the expected density
of neurons ρ � 1 we pick number of neurons N in the system randomly from
Poissonian distribution P(ρ ·4πR2), namely with parameter λ scaling as density
times surface of the sphere. Each of N neurons v is than independently picked
from the uniform distribution on the sphere surface. Additionally, it receives its
initial charge σv ≥ 0. The charge will be a subject to a dynamics, though we
admit only non-negative integer values for σv.
A set of synapses is constructed in as follows: for each pair of neurons u, v a

symmetric synaptic connection {u, v} is added to E independently with
probability

P({u, v} ∈ E) =

{
d(u, v)α d(u, v) ≥ 1
1 otherwise,

(1)

where d() stands for euclidean distance between neurons u and v. The exponent
α is fixed at the value −2.5. If successfully included, the synapse e = {u, v}
receives its weight wuv independently generated from the gaussian distribution
wuv ∼ N(0, s2). The weight indicates an excitatory or inhibitory (when negative)
type of the synapse.
A network energy function depending on the charge stored in each of neurons

is defined as
E(σ̄) =

∑
(u,v)∈E

wu,v|σv − σu|. (2)

Having presented the structural network, we describe the dynamics. We adopt a
variation of the celebrated Ising spin glass model, though extended for multiple
values of σ.

– At each step we pick a random pair of neurons u, v ∈ V , such that they are
connected with a synapse {u, v} ∈ E and the charge stored in u is non-zero
σu ≥ 1,

Diameter of the Spike-Flow Graphs of Geometrical Neural Networks 513

– We try to transfer a single unit of charge from u to v through the synapse,
in other words σu := σu − 1 and σv := σv + 1,
– if this transfer reduces energy of the system, it is accepted, and the dynamics
proceeds to next iteration,
– if this transfer increases the energy by ΔE, then it is accepted with proba-
bility P(u→ v) = exp(−βΔE) and rejected otherwise.

The parameter β � 1 stands for an inverse temperature and is assumed to be
large. Though the dynamics can run arbitrarily long, it is terminated after hitting
given number of iterations or reaching the state, where no further transfers are
accepted.

Fig. 1. A subgraph of resulting network, plot includes 719 neurons and 2500 synapses.
Spatial coordinates were remapped from a sphere to a surface for better visibility.
Despite a small sample, hubs (node with large degree) are clearly noticeable.

3 Path Length Distribution Results

As pointed out in [11] the the dynamics leads to concentration of the charge in
small number of nodes. For each synapse e = {u, v} a total amount of charge
which flew either from u to v or from v to u is recorded and denoted as de.
Reaching a predefined threshold value θ qualifies an edge as a vital in the evo-
lution process. A graph built from the vital edges will be referred as a spike
flow graph, namely G1 = (V , E1 = {e ∈ E : de ≥ θ}). A value θ = 1 is assumed
throughout rest of the work, which results in spike flow graph consisting of all
edges participating in the dynamics. A small subgraph of the resulting spike flow
network is depicted on Fig. 1.

514 J. Piersa

As a minimal path length between neurons u and v we understand classical
definition, i.e. l(u, v) is a minimum number of edges (e1 = {u1, v1}, .., en =
{un, vn}), such that

– they start at u and terminate at v, u1 = u, vn = v,
– they are incident, ∀i=1..n−1vi = ui+1,
– they are included in resulting spike flow graph ∀iei ∈ E1.

For the sake of simplicity we assume l(u, u) = 0.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

fr
eq

ue
nc

y

length

Path Length Distribution 5k
12k
19k
28k

(a) α = −2.5

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

fr
eq

ue
nc

y

length

Path Length Distribution 7k
12k
19k
28k

(b) α = −3.5

Fig. 2. A plot of path length distribution of the spike-flow graph obtained from a
simulation of networks counting 5 to 28k neurons. The distribution slowly increases its
mode as the number of nodes grows.

Obtained results of the path lengths are presented on Fig. 2. The results
were collected from simulations of networks counting between 300 and up to
5.5 · 104 neurons for exponent of the connectivity function (Eq. 1) α = −2.5
and α = −3.5. As shown in [12] a resulting spike-flow graph obeys a power law
degree distribution, this type of graphs also frequently exhibits a small world
phenomenon [2].
Fig. 3 presents the dependency between the size of the simulation sample

and corresponding average path value. It presents a slow growth, but in all
of our cases is still bounded by 4. A slow increase of the average path length
is observable, which again is in agreement with theoretical results of classical
random graphs theory. Also note, that for our small samples the path length
distribution is focused on 3 values. The the rest (number of paths of length up
to the graph diameter — see below) is non zero, though negligible.
The diameter of the graph is defined as a maximum value of shortest path

length l(u, v) between every pair of nodes (u, v) in the graph. Its plot is provided
on Fig 3. Recall that for Erdős-Réyni random graph model the diameter grows
logarithmically as the network size increases, see [5] Ch. 5 and 7 for rigorous
proof. Clearly the diameter can be arbitrarily larger than an average path length,

Diameter of the Spike-Flow Graphs of Geometrical Neural Networks 515

10-5

10-4

10-3

10-2

10-1

100

-1 0 1 2 3 4 5 6 7 8

fr
eq

ue
nc

y

path length

Path Length Distribution
neurons = 43166

Fig. 3. A semi-log plot of the path length distribution of the spike-flow graph. The
number of paths of length 0 (selfloops) and 1, though negligible, is non zero. Number
of neurons N � 40k, α = −3.5.

however in our cases it is bounded by 6 for our samples, which means that
starting in any neuron, the whole network is available in no more than 6 hops.
While our model is not a ER model, this feature make it strikingly similar to
WWW [1] or social graphs [6]. A few reports suggest small-worldliness to be
present also in brain activity networks [3].
Small discrepancy between l for different values of α seems to originate from

difference in underlying structural graphs. Lower α yields less synapses in the
structural network G, while the spike-flow graph consists exclusively of synapses
present in G. The formula of g was suggested in [7].
While the clustering coefficient is an aim of ongoing research we can provide

a brief preliminary results concerning this value. After classical theory [5] we
define a clustering coefficient of the node v as a ratio of existing edges in the
neighbourhood of v to all possible edges.

C(u) =
|{e = (w, v) : e ∈ E ∧ (w, u) ∈ E ∧ (v, u) ∈ E}|

|{(w, v) : (w, u) ∈ E ∧ (v, u) ∈ E}| (3)

The clustering coefficient of the graph C is defined as an average of clustering
coefficients of its nodes.

C =
1

|V|
∑
u∈V

C(u) (4)

Recall, that for ER graph model the clustering coefficient is relatively small (it
is equal to the average connectivity of the graph). As it can be see in Table 1
for spike-flow graph in our model the actual clustering coefficient is 2-3 orders
of magnitude higher then its average degree, which again is in agreement with
fMRI data [3].

516 J. Piersa

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 10000 20000 30000 40000 50000 60000

pa
th

 le
ng

th

neurons

alpha = -2.5
alpha = -3.5

Fig. 4. A plot of the average path length of the spike-flow graph vs sample size

0

1

2

3

4

5

6

7

0 10000 20000 30000 40000 50000 60000

di
am

et
er

neurons

alpha = -2.5
alpha = -3.5

Fig. 5. A plot of the diameter (maximum path length connecting a pair of nodes) of
the spike-flow graph vs sample size. Note, that slope segments indicate values, which
are not known (diameter must be an integer number).

Diameter of the Spike-Flow Graphs of Geometrical Neural Networks 517

Table 1. Calculated clustering coefficient and average connectivity for obtained spike-
flow graphs, α = −2.5. Note that the average degree is also a theoretical clustering
coefficient for equivalent ER random graph, while by clustering coefficient we mean an
actual, numerically obtained value for our model.

Neurons Synapses Average degree Clustering coefficient
3155 0.18M 0.038 0.243
12568 0.8M 0.010 0.207
19531 1.3M 0.006 0.198
24630 1.7M 0.005 0.194
28501 2.0M 0.004 0.191
38322 2.6M 0.0035 0.187
50241 3.5M 0.0027 0.183
58244 4.1M 0.0023 0.182

4 Numerical Details

The simulations were carried on spheres with radii varying up to R = 30 with
constant density ρ = 10, see Sec. 2. This yields samples counting up to 55k neu-
rons.Additionally, we expect an average 500 units of charge amount per neuron
to be present in the network. In most cases a strict limit of iterations turned out
a sufficient terminating condition.
The simulation itself was paralleled to take advantage of multiprocessing en-

vironment. However, due to highly unpredictable dynamics and the usage of
control-flow instructions one finds particularly demanding to put graphical com-
puting units into a good use [12]. We decided to implement a task division, i.e.
splitting the total number of iterations among parallel threads. Sparse though
the resulting network might be, it still requires visiting all of the neighbour neu-
rons before deciding whether (or not) to accept the transfer. Along with growing
number of threads it increases frequency of waiting for the lock to be released
and thus affects the speedup. The overall efficiency was about 66% for three
threads.
For calculation of the path length distribution a classical Dijkstra algorithm

has been adapted with a domain-division paralleisation. The results of calcu-
lation times are presented on Fig. 4. The computation time seems reasonable,
when take into account sequential collecting data from threads. Obtained effi-
ciency is about .78 for 4 threads, which is the number of computing cores. The
results were obtained on Core Quad 2GHz CPU + 4GB RAM + Fedora 11–14
(32bit, PAE) system.
Some of the simulations were also run of the infrastructure of the PG-Grid,

who kindly provided their computing resources. The timing and speedup results
from those simulations, while still being collected and analysed, are beyond the
scope of this work.

518 J. Piersa

Additionally a Monte Carlo was also implemented, however we found the time,
required to yield a results with a satisfactory precision, comparative to the time
required by the former algorithm. Although, for larger samples MC may turn
out indispensable.

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6

tim
e

(m
in

s)

threads

12k Neurons
18k Neurons

(a) Computation time

0

20000

40000

60000

80000

100000

0 1 2 3 4 5 6 7

ite
ra

tio
ns

 p
er

 s
ec

on
d

threads

12k Neurons
28k Neurons

(b) Iterations per second

Fig. 6. Computation times obtained for the dynamics. Reprinted from [12].

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8

tim
e

(m
in

s)

threads

38k Neurons
50k Neurons

(a) Computation time.

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

0 1 2 3 4 5 6 7

pa
th

s
pe

r
se

co
nd

threads

38k Neurons
50k Neurons

(b) Number of paths calculated per
second.

Fig. 7. Computation times obtained and number of path lengths calculated per second
for sample 38k neurons. The results were obtained on 4 cores CPU.

5 Conclusion and Future Work

In this work we have presented our findings concerning path length distribution
in spike-flow graphs of neural network. The distribution turns out concentrated
on few values and its mean value is relatively low, making the whole network
available to reach within just a few hops. Along with high clicqueliness deter-
mined by the clustering coefficient, this suggests a complicated structure of the

Diameter of the Spike-Flow Graphs of Geometrical Neural Networks 519

resulting network, even despite not so complicated dynamics. Clearly, the net-
work bears resemblances to social graphs or WWW networks, which also tend
to exhibit a small-world phenomenon.
It might turn out interesting to see how the network evolves to its final shape

throughout the simulation. This unfortunately requires either more computa-
tional power or reduction of the size of the network, in order to keep the simula-
tion time reasonable. As an additional aim of future work, we point at considering
a directed version of the spike flow graph, which is natural feature of WWW net-
works [1]. Since the dynamics in our network is directed, the distinction between
a input and output synapses seems to be a forgone conclusion. One more vital
aspect frequently discussed when working with complex networks is clustering
coefficient [2,3]. While it was bearly mentioned in in Sec. 3, a coherent compari-
son between the results obtained from fMRI and our model is a focus of ongoing
research.

Acknowledgements. The author would like to mention the unparalleled sup-
port from prof. Tomasz Schreiber, Associate Professor at Faculty of Mathematics
and Computer Science, NCU, a bright young scientist, who carried researches
in mathematics, computer science and physics, prematurely died in December
2010.
The author acknowledges a cooperation and a dash of red ink from dr Filip

Piękniewski.
Additionally, the author is grateful to PL-Grid Project1 for providing a

computing infrastructure for simulations.
The work has been partially supported by Polish Ministry of Science and

grant project 2011/01/N/ST6/01931.
The author would also like to acknowledge the support of the European Social

Fund and Government of Poland as a part of Integrated Operational Program
for Regional Development, ZPORR, Activity 2.6 ”Regional Innovation Strategies
and Knowledge Transfer” of Kuyavian-Pomeranian Voivodeship in Poland.

References

1. Albert, R., Jeong, H., Barabasi, A.L.: Diameter of the World-Wide Web.
Nature 401 (September 9, 1999)

2. Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Reviews of
Modern Physics 74 (January 2002)

3. Bassett, D.S., Bullmore, E.: Small-World Brain Networks. The Neuroscientist 12(6)
(2006)

4. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of
structural and functional systems. Nature Reviews, Neuroscience 10 (March 2009)

5. Chung, F., Lu, L.: Complex graphs and networks. In: Conference Board of the
Mathematical Sciences. American Mathematical Society (2006)

6. Csermely, P.: Weak links: the universal key to the stability of networks and complex
systems. Springer, Heidelberg (2009)

1 http://www.plgrid.pl

http://www.plgrid.pl

520 J. Piersa

7. Eguiluz, V., Chialvo, D., Cecchi, G., Baliki, M., Apkarian, V.: Scale-free brain
functional networks. Physical Review Letters, PRL 94, 018102 (2005)

8. Piekniewski, F.: Spontaneous scale-free structures in spike flow graphs for recurrent
neural networks. Ph.D. dissertation, Warsaw University, Warsaw, Poland (2008)

9. Piekniewski, F., Schreiber, T.: Spontaneous scale-free structure of spike flow graphs
in recurrent neural networks. Neural Networks 21(10), 1530–1536 (2008)

10. Piekniewski, F.: Spectra of the Spike Flow Graphs of Recurrent Neural Networks.
In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009,
Part II. LNCS, vol. 5769, pp. 603–612. Springer, Heidelberg (2009)

11. Piersa, J., Piekniewski, F., Schreiber, T.: Theoretical model for mesoscopic-level
scale-free self-organization of functional brain networks. IEEE Transactions on
Neural Networks 21(11) (November 2010)

12. Piersa, J., Schreiber, T.: Scale-free degree distribution in information-flow graphs
of geometrical neural networks. Simulations in concurren environment (in Polish).
Accepted for Mathematical Methods in Modeling and Analysis of Concurrent Sys-
tems — Postproceedings, Poland (July 2010)

13. Schreiber, T.: Spectra of winner-take-all stochastic neural networks, arXiv
3193(0810), pp. 1–21 (October 2008),
http://arxiv.org/PS_cache/arxiv/pdf/0810/0810.3193v2.pdf

14. Watts, D., Strogatz, S.: Collective dynamics of ’small-world’ networks. Nature 393,
440–442 (1998)

http://arxiv.org/PS_cache/arxiv/pdf/0810/0810.3193v2.pdf

Weak Convergence of the Recursive Parzen-Type
Probabilistic Neural Network

in a Non-stationary Environment

Lena Pietruczuk1 and Jacek M. Zurada2

1 Department of Computer Engineering, Czestochowa University of Technology,
ul. Armii Krajowej 36, 42-200 Czestochowa, Poland

lena.pietruczuk@kik.pcz.pl
2 Department of Electrical and Computer Engineering, University of Louisville,

405 Lutz Hall, Louisville, KY 40292, USA
jacek.zurada@louisville.edu

Abstract. A recursive version of general regression neural networks is
presented. Weak convergence is proved in a case of nonstationary noise.
Experimental results are given.

1 Introduction

Probabilistic neural networks proposed by Specht [35] are net structures corre-
sponding to nonparametric density and regression estimates developed to solve
stationary (see e.g. [2], [4], [6], [7], [9], [13]-[16], [22]-[24], [27]-[30], [38] and [39])
and nonstationary problems (see e.g. [8], [17]-[21], [25] and [26]). In a letter case
it was assumed in literature that noise was stationary.

Let us consider the following system

Yi = φ(Xi) + Zi, i = 1, . . . , n (1)

where X1, . . . , Xn is a sequence of independent and identically distributed vari-
ables in Rp with probability density function f , φ is an unknown function and
Z1, . . . , Zn are independent random variables with unknown distributions such
that

E[Zi] = 0, V ar[Zi] = di, for i = 1 . . . , n. (2)
It should be emphasized that the variance of Zi is not equal for all i. The
problem is to estimate function φ, in the case of time varying noise Zi. In this
paper we will apply the Parzen kernel-type regression neural network and prove
its convergence even if variance of noise diverges to infinity.

2 Probabilistic Neural Network

To estimate the regression function φ(x) we use the recursive version of Parzen
kernel procedures

Kn(x, u) = h−p
n K

(
x − u

hn

)
, (3)

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 521–529, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

522 L. Pietruczuk and J.M. Zurada

K ′
n(x, u) = h

′−p
n K

(
x − u

h′
n

)
, (4)

where K is an appropriately selected function in the form such that

||K||∞ < ∞, (5)∫
|K(y)|dy < ∞, (6)

lim
y−→R

|yK(y)| = 0, (7)∫
R

K(y)dy = 1 (8)

and hn, h′
n are certain sequences of numbers. Let

φ̂n(x) =
R̂n(x)

f̂n(x)
(9)

be the estimator of regression function

φ(x) =
R(x)
f(x)

(10)

where R(x) = f(x)φ(x). The estimators f̂n and R̂n are in the form

f̂i(x) =
1
n

n∑
i=1

Ki(x, Xi). (11)

and

R̂i(x) =
1
n

n∑
i=1

YiKi(x, Xi). (12)

Then estimator φ̂n(x) takes the form

φ̂n(x) =

∑n
i=1 Yih

−p
i K(x−Xi

hi
)∑n

i=1 h−p
i K(x−Xi

h′
i

)
(13)

which is known in the literature under the name probabilistic neural network
[35]. Observe that procedures (11) and (12) can be presented in the following
form

f̂i(x) =
1
n

n∑
i=1

h−p
i K

(
x − Xi

hi

)
(14)

and

R̂i(x) =
1
n

n∑
i=1

Yih
−p
i K

(
x − Xi

hi

)
. (15)

The block diagram of recursive generalized regression neural network is presented
in Fig. 1.

Weak Convergence of the Recursive 523

Fig. 1. The block diagram of recursive GRNN

Theorem 1. If

si = sup
x
{(σ2

i + φ2(x))f(x)} < ∞, i = 1, . . . , n (16)

||x||pK(x) −→ 0, ||x|| −→ ∞, (17)

n−2
n∑

i=1

h′−p
i → 0, (18)

n−2
n∑

i=1

h−p
i si → 0, (19)

h′
i → 0, hi → 0, (20)

then φn(x) n−→ φ(x) in probability.

Proof. It is sufficient to show that

f̂n(x) −→ f(x) with probability one (21)

and
R̂n(x) −→ R(x) with probability one. (22)

Convergence (21) under condition (18) was proved in [2]. Therefore it is enough
to show that (22) holds.

Obviously∣∣∣R̂n(x) − R(x)
∣∣∣ ≤ ∣∣∣R̂n(x) − E

[
R̂n(x)

]∣∣∣ +
∣∣∣E [

R̂n(x)
]
− R(x)

∣∣∣ . (23)

Observe that

V ar(R̂n(x)) = V ar(n−1
n∑

i=1

YiKi(x, Xi)) = n−2
n∑

i=1

(
V ar

[
h−p

i YiK

(
x − Xi

hi

)])
≤ (24)

524 L. Pietruczuk and J.M. Zurada

≤ n−2
n∑

i=1

h−p
i

∫
Rp

E
[
Y 2

i |Xi = u
]
f(u)K2

(
x − Xi

hi

)
du ≤ (25)

≤ n−2
n∑

i=1

h−p
i

∫
Rp

(σ2
i + φ2(x))f(u)||K||∞

(
x − Xi

hi

)
du ≤ (26)

≤ n−2
n∑

i=1

h−p
i 2si||K||∞. (27)

Therefore V ar(R̂n(x)) n−→ 0 if condition (19) holds and, consequently, |R̂n(x)−
ERn(x)| n−→ 0 in probability. Since |ER̂n(x)−R(x)| n−→ 0 under condition (17)
(see [2]), then the result is established.

2.1 Example for Specific Sequence dn

We consider the case when dn = O(nα) for α > 0. We choose the sequences h′
n

and hn to be in the form

h′
n = D′n−H′

, hn = Dn−H , (28)

where D, D′, H and H ′ are constants. Then conditions (18)-(20) are satisfied if

H ′ < 1 and H + α < 1. (29)

3 Simulation Results

In the following simulations we estimate the regression of the function

φ(x) = x sin(x). (30)

Let us assume that input data come from the normal distribution with the mean
equal to 0 and the standard deviation equal to 3.9. First we select the kernel
function. For the purpose of this paper we choose triangular kernel and assume
that h′

n = hn.
By examining the relationship between the value of the mean square error and

the value of the parameter H = H ′ in (28) we obtained the results illustrated in
Fig. 2 for D = D′ = 6 and α = 0.35. The experiment was performed on the set
of 6500 data. As we can see with increasing value of H the error of the algorithm
decreases. For H = 0 the mean square error (MSE) is equal to 4, 6158 and for
H = 0.3 the value of this error is equal to 0, 0501.

In Figure (3) we show the dependence between the number of elements and
the value of the MSE. We assume that H = H ′ = 0.4, D = D′ = 1 and α = 0.3.
Even with increasing variance of Zn, corresponding to the increasing number
of elements, the accuracy of the algorithm improves. For n = 6000 the MSE is
equal to 0.0705 and for n = 50000 it decreases to 0.0331.

Weak Convergence of the Recursive 525

Fig. 2. The dependence between the value of parameter H and the value of the MSE

Fig. 3. The dependence between the number of data elements N and the value of the
MSE

526 L. Pietruczuk and J.M. Zurada

Fig. 4. The dependence between the value of parameter α and the value of the MSE

Fig. 5. The obtained value of estimator for x = 1 and different number of data
elements n

In Figure (4) we show the dependence between the value of parameter α and
the MSE. In this case n = 5500, D = 5.9 and H = H ′ = 0.29. From conditions
(29) we can see, that for this value of H and H ′, value of α should not be
bigger than 0.71. For small value of α the error is small and for α outside the
permissible range the error increases very fast.

In Figure (5) we can see how the value of φn(x) is changing for x = 1 with
increasing value of n. The horizontal line show the value of φ(x) for this x.

In Figure (6) we can see input-output data with α = 0.5 and obtained esti-
mator values. Input data are from the normal distribution N (0, (4.9)2). In this
experiment H = H ′ = 0.3, D = D′ = 6.2 and n = 10000.

Weak Convergence of the Recursive 527

Fig. 6. The input-output data and the obtained estimator values

4 Conclusion and Future Work

In this paper we presented a recursive version of general regression neural net-
works and we proved the weak convergence in a case of nonstationary noise. In
the future work the application of neuro-fuzzy structures [10], [31]-[34], [36], [37]
or supervised and unsupervised neural networks [3], [5], [12] can be study in the
case of non-stationary environment. Finaly, it should be noted that procedure
(9) can be applied to data streams [1].

Acknowledgments. This paper was prepared under project operated within
the Foundation for Polish Science Team Programme co-financed by the EU Eu-
ropean Regional Development Fund, Operational Program Innovative Economy
2007-2013, and also supported by the National Science Center NCN.

References

1. Aggarwal, C.: Data Streams. Models and Algorithms. Springer, New York (2007)
2. Ahmad, I.A., Lin, P.E.: Nonparametric sequential estimation of multiple regression

function. Bulletin of Mathematical Statistics 17, 63–75 (1976)
3. Bilski, J., Rutkowski, L.: A fast training algorithm for neural networks. IEEE

Transactions on Circuits and Systems II 45, 749–753 (1998)
4. Chu, C.K., Marron, J.S.: Choosing a kernel regression estimator. Statistical

Science 6, 404–436 (1991)

528 L. Pietruczuk and J.M. Zurada

5. Cierniak, R., Rutkowski, L.: On image compression by competitive neural networks
and optimal linear predictors. Signal Processing: Image Communication - a Eurasip
Journal 15(6), 559–565 (2000)

6. Gałkowski, T., Rutkowski, L.: Nonparametric recovery of multivariate functions
with applications to system identification. Proceedings of the IEEE 73, 942–943
(1985)

7. Gałkowski, T., Rutkowski, L.: Nonparametric fitting of multivariable functions.
IEEE Transactions on Automatic Control AC-31, 785–787 (1986)

8. Greblicki, W., Rutkowska, D., Rutkowski, L.: An orthogonal series estimate of time-
varying regression. Annals of the Institute of Statistical Mathematics 35, Part A,
147–160 (1983)

9. Greblicki, W., Rutkowski, L.: Density-free Bayes risk consistency of nonparametric
pattern recognition procedures. Proceedings of the IEEE 69(4), 482–483 (1981)

10. Nowicki, R.: Rough Sets in the Neuro-Fuzzy Architectures Based on Non-
monotonic Fuzzy Implications. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz,
R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 518–525.
Springer, Heidelberg (2004)

11. Parzen, E.: On estimation of a probability density function and mode. Analysis of
Mathematical Statistics 33(3), 1065–1076 (1962)

12. Patan, K., Patan, M.: Optimal training strategies for locally recurrent neural net-
works. Journal of Artificial Intelligence and Soft Computing Research 1(2), 103–114
(2011)

13. Rutkowski, L.: Sequential estimates of probability densities by orthogonal series
and their application in pattern classification. IEEE Transactions on Systems, Man,
and Cybernetics SMC-10(12), 918–920 (1980)

14. Rutkowski, L.: Sequential estimates of a regression function by orthogonal series
with applications in discrimination, New York, Heidelberg, Berlin. Lectures Notes
in Statistics, vol. 8, pp. 236–244 (1981)

15. Rutkowski, L.: On system identification by nonparametric function fitting. IEEE
Transactions on Automatic Control AC-27, 225–227 (1982)

16. Rutkowski, L.: Orthogonal series estimates of a regression function with applica-
tions in system identification. In: Probability and Statistical Inference, pp. 343–347.
D. Reidel Publishing Company, Dordrecht (1982)

17. Rutkowski, L.: On Bayes risk consistent pattern recognition procedures in a quasi-
stationary environment. IEEE Transactions on Pattern Analysis and Machine In-
telligence PAMI-4(1), 84–87 (1982)

18. Rutkowski, L.: On-line identification of time-varying systems by nonparametric
techniques. IEEE Transactions on Automatic Control AC-27, 228–230 (1982)

19. Rutkowski, L.: On nonparametric identification with prediction of time-varying
systems. IEEE Transactions on Automatic Control AC-29, 58–60 (1984)

20. Rutkowski, L.: Nonparametric identification of quasi-stationary systems. Systems
and Control Letters 6, 33–35 (1985)

21. Rutkowski, L.: The real-time identification of time-varying systems by nonpara-
metric algorithms based on the Parzen kernels. International Journal of Systems
Science 16, 1123–1130 (1985)

22. Rutkowski, L.: A general approach for nonparametric fitting of functions and their
derivatives with applications to linear circuits identification. IEEE Transactions
Circuits Systems CAS-33, 812–818 (1986)

23. Rutkowski, L.: Sequential pattern recognition procedures derived from multiple
Fourier series. Pattern Recognition Letters 8, 213–216 (1988)

Weak Convergence of the Recursive 529

24. Rutkowski, L.: Nonparametric procedures for identification and control of lin-
ear dynamic systems. In: Proceedings of 1988 American Control Conference,
June 15-17, pp. 1325–1326 (1988)

25. Rutkowski, L.: An application of multiple Fourier series to identification of multi-
variable nonstationary systems. International Journal of Systems Science 20(10),
1993–2002 (1989)

26. Rutkowski, L.: Nonparametric learning algorithms in the time-varying environ-
ments. Signal Processing 18, 129–137 (1989)

27. Rutkowski, L., Rafajłowicz, E.: On global rate of convergence of some nonparamet-
ric identification procedures. IEEE Transaction on Automatic Control AC-34(10),
1089–1091 (1989)

28. Rutkowski, L.: Identification of MISO nonlinear regressions in the presence of
a wide class of disturbances. IEEE Transactions on Information Theory IT-37,
214–216 (1991)

29. Rutkowski, L.: Multiple Fourier series procedures for extraction of nonlinear regres-
sions from noisy data. IEEE Transactions on Signal Processing 41(10), 3062–3065
(1993)

30. Rutkowski, L., Gałkowski, T.: On pattern classification and system identification
by probabilistic neural networks. Applied Mathematics and Computer Science 4(3),
413–422 (1994)

31. Rutkowski, L.: A New Method for System Modelling and Pattern Classification.
Bulletin of the Polish Academy of Sciences 52(1), 11–24 (2004)

32. Rutkowski, L., Cpałka, K.: A general approach to neuro - fuzzy systems. In: Pro-
ceedings of the 10th IEEE International Conference on Fuzzy Systems, Melbourne,
December 2-5, vol. 3, pp. 1428–1431 (2001)

33. Rutkowski, L., Cpałka, K.: A neuro-fuzzy controller with a compromise fuzzy rea-
soning. Control and Cybernetics 31(2), 297–308 (2002)

34. Scherer, R.: Boosting Ensemble of Relational Neuro-fuzzy Systems. In: Rutkowski,
L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS
(LNAI), vol. 4029, pp. 306–313. Springer, Heidelberg (2006)

35. Specht, D.F.: A general regression neural network. IEEE Transactions Neural Net-
works 2, 568–576 (1991)

36. Starczewski, L., Rutkowski, L.: Interval type 2 neuro-fuzzy systems based on inter-
val consequents. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft
Computing, pp. 570–577. Physica-Verlag, Springer-Verlag Company, Heidelberg,
New York (2003)

37. Starczewski, J., Rutkowski, L.: Connectionist Structures of Type 2 Fuzzy Inference
Systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.)
PPAM 2001. LNCS, vol. 2328, pp. 634–642. Springer, Heidelberg (2002)

38. Wegman, E.J., Davies, H.I.: Remarks on some recursive estimators of a probability
density. Annals of Statistics 7, 316–327 (1979)

39. Yamato, H.: Sequential estimation of a continuous probability density function and
the mode. Bulletin of Mathematical Statistics 14, 1–12 (1971)

Strong Convergence of the Parzen-Type
Probabilistic Neural Network

in a Time-Varying Environment

Lena Pietruczuk1 and Meng Joo Er2

1 Department of Computer Engineering, Czestochowa University of Technology,
ul. Armii Krajowej 36, 42-200 Czestochowa, Poland

lena.pietruczuk@kik.pcz.pl
2 Nanyang Technological University, School of Electrical and Electonic Engineering,

50 Nanyang Avenue, Singapore 639798
emjer@ntu.edu.sg

Abstract. In this paper general regression neural networks are applied
to handle nonstationary noise. Strong convergence is established. Exper-
iments conducted on synthetic data show good performance in the case
of finite length of data samples.

1 Introduction

In 90’s a concept of probabilistic neural networks and general regression neural
networks was introduced by Specht [34],[35]. Both structures are implementa-
tions of nonparametric estimates working in a stationary (see e.g. [3], [4], [7],
[12]-[15], [21]-[23] and [26]-[29]) and nonstationary environment (see [6], [16]-
[20], [24] and [25]). In this paper we will consider the problem of estimation of
the regression function with non-stationary noise Zn. The system is of the form

Yi = φ(Xi) + Zi, (1)

where X1, . . . , Xn is a sequence of some independent and equally distributed
variables in Rp with probability density function f , φ is an unknown function
and Z1, . . . , Zn are independent random variables with unknown distributions
such that:

E[Zi] = 0, V ar[Zi] = di, for i ≥ 1. (2)
The problem is to estimate the regression function φ assuming different values of
variances of random variables Zi. In this paper the regression estimate is based
on the Parzen kernel. We will prove its strong convergence even if variance of
noise Zi diverges to infinity.

2 Algorithm and Main Result

For estimation of the regression function φ(x) we use the Parzen kernel estimate.
Le us define

Kn(x, u) = h−p
n K

(
x − u

hn

)
, (3)

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 530–538, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Strong Convergence of the Parzen-Type Probabilistic Neural Network 531

K ′
n(x, u) = h

′−p
n K

(
x − u

h′
n

)
, (4)

where the kernel K satisfies the conditions

||K||∞ < ∞, (5)∫
|K(y)|dy < ∞, (6)

lim
y−→∞ |yK(y)| = 0, (7)∫

Rp

K(y)dy = 1 (8)

and hn, h′
n are certain sequences of numbers. Let

φ̂n(x) =
R̂n(x)
f̂n(x)

(9)

be the estimator of the regression function

φ(x) =
R(x)
f(x)

. (10)

The functions f̂n and R̂n are in the form

f̂n(x) =
1
n

n∑
i=1

Kn(x, Xi) (11)

and

R̂n(x) =
1
n

n∑
i=1

YiKn(x, Xi). (12)

Then estimator φ̂n(x) takes the form

φ̂n(x) =

∑n
i=1 YiK(x−Xi

hn
)∑n

i=1 K(x−Xi

h′
n

)
(13)

which is known in the literature under the name probabilistic neural network [34].
The block diagram of generalized regression neural network is shown in Fig. 1.

Theorem 1. If

si = sup
x
{(σ2

i + φ2(x))f(x)} < ∞, i = 1, . . . , n (14)

||x||pK(x) −→ 0 ||x|| −→ ∞, (15)
∞∑

n=1

n−2h′−p
n < ∞, (16)

∞∑
n=1

n−2h′−p
n sn < ∞, (17)

h′
n → 0, hn → 0, (18)

532 L. Pietruczuk and M.J. Er

Fig. 1. Generalized regression neural network

then φn(x) n−→ φ(x) with probability one for each x where φ(x) is continuous.

Proof. It is sufficient to show that

f̂n(x) −→ f(x) with probability one for each x where f(x) is continuous
(19)

and

R̂n(x) −→ R(x) with probability one for each x where R(x) is continuous.
(20)

Convergence of (19) under condition (16) was proved in [5]. Therefore it is enough
to show that (20) it true. Obviously∣∣∣R̂n(x) − R(x)

∣∣∣ ≤ ∣∣∣R̂n(x) − E
[
R̂n(x)

]∣∣∣ +
∣∣∣E [

R̂n(x)
]
− R(x)

∣∣∣ . (21)

Observe that∣∣∣R̂n(x) − E
[
R̂n(x)

]∣∣∣= ∣∣∣∣∣ 1n
n∑

i=1

YiKn(x, Xi)−E

[
1
n

n∑
i=1

YiKn(x, Xi)

]]
=(22)

=
1
n

n∑
i=1

[YiKn(x, Xi) − E [YiKn(x, Xi)]] (23)

and
∞∑

i=1

1
i2

V ar (YiKn(x, Xi)) =
∞∑

i=1

1
i2

V ar

(
Yih

−p
n K

(
x − Xi

hn

))
≤ (24)

Strong Convergence of the Parzen-Type Probabilistic Neural Network 533

≤
∞∑

i=1

1
i2

E

[
Y 2

i h−2p
n K2

(
x − Xi

hn

)]
=

∞∑
i=1

1
i2

∫
Rp

E
[
Y 2

i |Xi = u
]
f(u)||K||∞h−2p

n K

(
x − Xi

hn

)
du ≤ (25)

≤
∞∑

i=1

1
i2

∫
Rp

2(σ2
n + φ2(x))f(u)||K||∞h−2p

n K

(
x − Xi

hn

)
du ≤ (26)

≤
∞∑

i=1

1
i2

2si||K||∞h−2p
n

∫
Rp

K

(
x − Xi

hn

)
du = 2||K||∞

∞∑
i=1

1
i2

sih
−p
n (27)

Therefore
∑∞

i=1 i−2V ar(YiKn(x, Xi)) ≤ ∞ if condition (17) holds and, by using
the strong law of big numbers [9], |R̂n(x)−ER̂n(x)| n−→ 0 with probability one.
Since |ER̂n(x) − R(x)| n−→ 0 under condition (15) (see [5] and [8]), then the
result is established.

Example
Let us consider the case when dn = O(nα) for α > 0 and p = 1. For this problem
we choose sequences h′

n and hn to be in the form

h′
n = D′n−H′

, hn = Dn−H (28)

where D, D′, H and H ′ are constants. Then the conditions (16)-(18) are satisfied
for

0 < H ′ < 1 and 0 < H + α < 1. (29)

3 Simulation Results

In the following simulations we will test algorithm (13) assuming that input
data are from normal distribution with the mean equal to 0 and the standard
deviation equal to 4.5. The function φ is of the form

φ(x) = (x4 − 4x3 + 5x2 + 3x − 10) sin(2x). (30)

First we select the kernel function. For the purpose of this paper we choose
Epanecznikow kernel [8] and we assume that h′

n = hn.
The first experiment examines the relationship between the value of the mean

square error and the value of the parameter H = H ′ in (28). The obtained results
are illustrated in Fig. 1 for α = 0.4. The experiment was performed on the set
of 6000 input data with values of parameter D = D′ equal to 0.4, 0.6 and 0.8.
As we can see with increasing value of H the error of the algorithm decreases.

534 L. Pietruczuk and M.J. Er

Fig. 2. The dependence between the value of parameter H and the value of the MSE

Fig. 3. The dependence between the number of data elements N and the value of the
MSE

The best results were obtained for bigger values of parameter H . The smallest
value of the MSE was equal to 2.65 for H = 0.3 and D = 0.8. The biggest value
of the MSE was equal to 277, 24 for H = 0.1 and D = 0.8.

In Figure 2 we show the dependence between the number of elements and the
value of the mean square error. We assume that H = H ′ = 0.3, D = D′ = 0.8 and
α = 0.35. Even with increasing variance of Zn, corresponding to the increasing
number of elements, the accuracy of the algorithm improves. For n = 4000 the
MSE has the biggest value equal to 43.16 and the best results were obtained
for n = 50000. In this case the MSE was equal to 1, 08.

In Figure 3 we show the dependence between the value of parameter α and
the error of the algorithm. In this case n = 7000, D = 0.8 and H = H ′ = 0.3.
From conditions (29) we can see, that for this value of H and H ′, value of α

Strong Convergence of the Parzen-Type Probabilistic Neural Network 535

Fig. 4. The dependence between the value of parameter α and the value of the MSE

Fig. 5. The input-output data and the obtained estimator values

should be not bigger than 0.7. The best results were obtained for α = 0.3. The
MSE was equal to 10.70. For α = 1 the MSE was equal to 64, 20.

In Figure 4 we can see the input-output data with α = 0.6 and obtained esti-
mator values. Input data were coming from the normal distribution N (0, (4.5)2).
In this experiment H = H ′ = 0.3, D = D′ = 0.9 and n = 7000.

4 Conclusion and Future Work

In this paper we applied the general regression neural networks to handle non-
stationary noise and we established the strong convergence. The next stage of

536 L. Pietruczuk and M.J. Er

research can be an application of supervised and unsupervised neural networks
[1], [2], [11] or neuro-fuzzy structures [10], [30]-[33], [36], [37] to the study of
noisy data.

Acknowledgments. This paper was prepared under project operated within
the Foundation for Polish Science Team Programme co-financed by the EU Eu-
ropean Regional Development Fund, Operational Program Innovative Economy
2007-2013, and also supported by the National Science Center NCN.

References

1. Bilski, J., Rutkowski, L.: A fast training algorithm for neural networks. IEEE
Transactions on Circuits and Systems II 45, 749–753 (1998)

2. Cierniak, R., Rutkowski, L.: On image compression by competitive neural networks
and optimal linear predictors. Signal Processing: Image Communication - a Eurasip
Journal 15(6), 559–565 (2000)

3. Gałkowski, T., Rutkowski, L.: Nonparametric recovery of multivariate functions
with applications to system identification. Proceedings of the IEEE 73, 942–943
(1985)

4. Gałkowski, T., Rutkowski, L.: Nonparametric fitting of multivariable functions.
IEEE Transactions on Automatic Control AC-31, 785–787 (1986)

5. Greblicki, W., Pawlak, M.: Nonparametric system identification. Cambridge
University Press (2008)

6. Greblicki, W., Rutkowska, D., Rutkowski, L.: An orthogonal series estimate of time-
varying regression. Annals of the Institute of Statistical Mathematics 35, Part A,
147–160 (1983)

7. Greblicki, W., Rutkowski, L.: Density-free Bayes risk consistency of nonparametric
pattern recognition procedures. Proceedings of the IEEE 69(4), 482–483 (1981)

8. Härdle, W.: Applied Nonparametric Regression. Cambridge University Press,
Cambridge (1990)

9. Loeve, M.: Probability Theory. Springer, Heidelberg (1977)
10. Nowicki, R.: Rough Sets in the Neuro-Fuzzy Architectures Based on Non-

monotonic Fuzzy Implications. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz,
R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 518–525.
Springer, Heidelberg (2004)

11. Patan, K., Patan, M.: Optimal training strategies for locally recurrent neural net-
works. Journal of Artificial Intelligence and Soft Computing Research 1(2), 103–114
(2011)

12. Rutkowski, L.: Sequential estimates of probability densities by orthogonal series
and their application in pattern classification. IEEE Transactions on Systems, Man,
and Cybernetics SMC-10(12), 918–920 (1980)

13. Rutkowski, L.: Sequential estimates of a regression function by orthogonal series
with applications in discrimination, New York, Heidelberg, Berlin. Lectures Notes
in Statistics, vol. 8, pp. 236–244 (1981)

14. Rutkowski, L.: On system identification by nonparametric function fitting. IEEE
Transactions on Automatic Control AC-27, 225–227 (1982)

15. Rutkowski, L.: Orthogonal series estimates of a regression function with applica-
tions in system identification. In: Probability and Statistical Inference, pp. 343–347.
D. Reidel Publishing Company, Dordrecht (1982)

Strong Convergence of the Parzen-Type Probabilistic Neural Network 537

16. Rutkowski, L.: On Bayes risk consistent pattern recognition procedures in a quasi-
stationary environment. IEEE Transactions on Pattern Analysis and Machine In-
telligence PAMI-4(1), 84–87 (1982)

17. Rutkowski, L.: On-line identification of time-varying systems by nonparametric
techniques. IEEE Transactions on Automatic Control AC-27, 228–230 (1982)

18. Rutkowski, L.: On nonparametric identification with prediction of time-varying
systems. IEEE Transactions on Automatic Control AC-29, 58–60 (1984)

19. Rutkowski, L.: Nonparametric identification of quasi-stationary systems. Systems
and Control Letters 6, 33–35 (1985)

20. Rutkowski, L.: The real-time identification of time-varying systems by nonpara-
metric algorithms based on the Parzen kernels. International Journal of Systems
Science 16, 1123–1130 (1985)

21. Rutkowski, L.: A general approach for nonparametric fitting of functions and their
derivatives with applications to linear circuits identification. IEEE Transactions
Circuits Systems CAS-33, 812–818 (1986)

22. Rutkowski, L.: Sequential pattern recognition procedures derived from multiple
Fourier series. Pattern Recognition Letters 8, 213–216 (1988)

23. Rutkowski, L.: Nonparametric procedures for identification and control of lin-
ear dynamic systems. In: Proceedings of 1988 American Control Conference,
June 15-17, pp. 1325–1326 (1988)

24. Rutkowski, L.: An application of multiple Fourier series to identification of multi-
variable nonstationary systems. International Journal of Systems Science 20(10),
1993–2002 (1989)

25. Rutkowski, L.: Nonparametric learning algorithms in the time-varying environ-
ments. Signal Processing 18, 129–137 (1989)

26. Rutkowski, L., Rafajłowicz, E.: On global rate of convergence of some nonparamet-
ric identification procedures. IEEE Transaction on Automatic Control AC-34(10),
1089–1091 (1989)

27. Rutkowski, L.: Identification of MISO nonlinear regressions in the presence of
a wide class of disturbances. IEEE Transactions on Information Theory IT-37,
214–216 (1991)

28. Rutkowski, L.: Multiple Fourier series procedures for extraction of nonlinear regres-
sions from noisy data. IEEE Transactions on Signal Processing 41(10), 3062–3065
(1993)

29. Rutkowski, L., Gałkowski, T.: On pattern classification and system identification
by probabilistic neural networks. Applied Mathematics and Computer Science 4(3),
413–422 (1994)

30. Rutkowski, L.: A New Method for System Modelling and Pattern Classification.
Bulletin of the Polish Academy of Sciences 52(1), 11–24 (2004)

31. Rutkowski, L., Cpałka, K.: A general approach to neuro - fuzzy systems. In: Pro-
ceedings of the 10th IEEE International Conference on Fuzzy Systems, Melbourne,
December 2-5, vol. 3, pp. 1428–1431 (2001)

32. Rutkowski, L., Cpałka, K.: A neuro-fuzzy controller with a compromise fuzzy rea-
soning. Control and Cybernetics 31(2), 297–308 (2002)

33. Scherer, R.: Boosting Ensemble of Relational Neuro-fuzzy Systems. In: Rutkowski,
L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS
(LNAI), vol. 4029, pp. 306–313. Springer, Heidelberg (2006)

538 L. Pietruczuk and M.J. Er

34. Specht, D.F.: A general regression neural network. IEEE Transactions Neural Net-
works 2, 568–576 (1991)

35. Specht, D.F.: Probabilistic neural networks. Neural Networks 3, 109–118 (1990)
36. Starczewski, L., Rutkowski, L.: Interval type 2 neuro-fuzzy systems based on inter-

val consequents. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft
Computing, pp. 570–577. Physica-Verlag, Springer-Verlag Company, Heidelberg,
New York (2003)

37. Starczewski, J., Rutkowski, L.: Connectionist Structures of Type 2 Fuzzy Inference
Systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.)
PPAM 2001. LNCS, vol. 2328, pp. 634–642. Springer, Heidelberg (2002)

Learning in a Time-Varying Environment

by Making Use of the Stochastic Approximation
and Orthogonal Series-Type Kernel

Probabilistic Neural Network

Jacek M. Zurada1 and Maciej Jaworski2

1 Department of Electrical and Computer Engineering, University of Louisville,
405 Lutz Hall, Louisville, KY 40292, USA

jacek.zurada@louisville.edu
2 Department of Computer Engineering, Czestochowa University of Technology,

Armii Krajowej 36, 42-200 Czestochowa, Poland
maciej.jaworski@kik.pcz.pl

Abstract. In the paper stochastic approximation, in combining with
general regression neural network, is applied for learning in a time-
varying environment. The orthogonal-type kernel is applied to design
the general regression neural networks. Sufficient conditions for weak
convergence are given and simulation results are presented.

1 Introduction

In literature, a nonlinear regression issue with the use of nonparametric methods
has been widely studied. One of them are probabilistic neural networks, devel-
oped by Specht [35]. These are net structures, corresponding to nonparametric
density and regression estimates, designed to solve stationary (see e.g. [5], [6],
[8], [13]-[16], [22]-[24] and [27]-[30]) and nonstationary problems (see e.g. [7],
[17]-[21], [25] and [26]). It should be noted that the second case was considered
in literature only with a stationary noise.

Given n pairs of random variables (Xi, Yi), i ∈ {1, . . . , n}, where Xi ∈ A ⊂
R

p, Yi ∈ R, the aim of nonlinear regression is to find a function φ(x), which
reflects the dependency of Xi and Yi as best as possible. Variables Xi are inde-
pendent and identically distributed, however their probability density function
f(x) is unknown. In general, the relation between Xi nd Yi can be expressed in
the form

Yi = φ(Xi) + Zi, i ∈ {1, . . . , n}, (1)

where random variables Zi represent the noise. The only assumptions about the
noise variables are as follows

E[Zi] = 0, E[Z2
i] = σ2i ≤ σ2Z , i ∈ {1, . . . , n}. (2)

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 539–548, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

540 J.M. Zurada and M. Jaworski

In this paper, the generalized nonlinear regression problem is considered. In
this case, an additional deterministic perturbation is introduced to the system
described by (1)

Yi = φ(Xi) + aci + Zi, i ∈ {1, . . . , n}, (3)

where ci, i ∈ {1, . . . , n} are elements of some known sequence (lim
i→∞

|ci| = ∞)

and a is an unknown constant. The task of the presented generalized nonlinear
regression is to estimate the value of parameter a and to find the model function
φ(x) simultaneously.

2 Algorithm

The algorithm of solving the generalized nonlinear regression problem will be
considered as a two-step process:

– first, an estimator ân of the parameter a is calculated, with the use of values
of Y1, . . . , Yn,

– second, assuming that a is equal to ân, the estimator φ̂n(x, ân) of function
φ(x) is established with the use of (X1, Y1), . . . , (Xn, Yn).

The first part of the algorithm can be performed with the application of the
stochastic approximation. It is easily seen that formula (3) leads to the following
equation

a =
E[Yi]

ci
−

∫
A
φ(x)f(x)dx

ci
. (4)

Let Âi denotes the estimator of E[Yi]. Knowing that lim
i→∞

|ci| = ∞, the estimator

âi of prameter a can be proposed in the form

âi =
Âi

ci
. (5)

Estimator Âi can be treated as a solution of a trivial equation

Mi(Ai) = E[Yi]−Ai = 0. (6)

Therefore, the values of E[Yi], i ∈ {1, . . . , n} can be estimated with the
Robbins-Monro stochastic approximation procedure [12]

Âi = (1− γi)Âi−1 + γiYi, (7)

where Â0 = 0 and γi is some known sequence. Combining (5) with (7) one
obtains the formula for estimator âi

âi =
(1− γi)Âi−1 + γiYi

ci
, Â0 = 0. (8)

Stochastic Approximation and Orthogonal Series 541

After the value of ân is computed, one can perform the second step of the
nonlinear regression algorithm. The following transformation of random variables
Yi is introduced

Vn,i = Yi − ânci. (9)

In view of (3) one can write

Vn,i = φ(Xi) + Zi + (a− ân)ci. (10)

Then, the commonly known regression procedures can be applied to find the
function φ(x) for pairs (Xi, Vn,i), i ∈ {1, . . . , n}. In this paper the nonparametric
approach with orthogonal series is proposed.

The function φ(x), at each point x such that f(x) �= 0, can be expressed as
follows

φ(x) =
φ(x)f(x)

f(x)

def.
=
R(x)

f(x)
. (11)

Estimators R̂n(x, ân) and f̂n(x) of functions R(x) and f(x) are calculated sep-

arately. Then, the estimator φ̂n(x, ân) of function φ(x) is defined as a quotient

of R̂n(x, ân) and f̂n(x).
It is assumed that probability density function can be decomposed into some

orthogonal series gj(x), j ∈ N

f(x) ∼
∞∑
j=0

ajgj(x), (12)

where |gj(x)| ≤ Gj , ∀x∈A, ∀j∈N. The coefficients aj can be estimated by the
appropriate arithmetic means

an,j =
1

n

n∑
i=1

gj(Xi). (13)

Then, as an estimator of function f(x) one can take

f̂n(x) =

N(n)∑
j=0

an,jgj(x) =
1

n

n∑
i=1

N(n)∑
j=0

gj(Xi)gj(x), (14)

where N(n) is some function of n, satisfying lim
n→∞

N(n) = ∞.

Function R(x) can be decomposed into orthogonal series in similar way

R(x) ∼
∞∑
j=0

bjgj(x). (15)

As an estimator of bj one can propose

542 J.M. Zurada and M. Jaworski

bn,j =
1

n

n∑
i=1

Vn,igj(Xi). (16)

Analogously to (14), the estimator of function R(x) is expressed as follows

R̂n(x, ân) =
1

n

n∑
i=1

M(n)∑
j=0

Vn,igj(Xi)gj(x), (17)

where M(n) satisfies lim
n→∞

M(n) = ∞. Finally, combining (14) and (17), the

estimator of function φ(x) is obtained

φ̂n(x, ân) =
R̂n(x, ân)

f̂n(x)
=

∑n
i=1

∑M(n)
j=0 Vn,igj(Xi)gj(x)∑n

i=1

∑N(n)
j=0 gj(Xi)gj(x)

. (18)

3 Main Result

The following theorem allows to determine the forms of sequences γi and ci,
which provide the convergence of estimator (8)

Theorem 1. If (2) holds and additionally the following conditions are satisfied∫
A

φ2(x)f(x)dx <∞, (19)

γi = δi−r, δ > 0, 0 < r < 1, (20)

|ci+1 − ci| = O(i−q), q > r, (21)

ci = O(it), 0 < 2t < r, (22)

then

âi
i→∞−→ a in probability. (23)

Proof. The theorem can be proven by making use of the Dvoretzky Theorem [4].

In estimator (18) the sequences M(n) and N(n) have to be chosen. Theorem 2

allows to choose them properly, ensuring the convergence of estimator φ̂n(x, ân).

Theorem 2. If (2), (19) and (23) holds and the following conditions are true

lim
n→∞

N(n) = ∞, lim
n→∞

⎡⎢⎣ 1

n

⎛⎝N(n)∑
j=1

G2
j

⎞⎠2
⎤⎥⎦ = 0, (24)

Stochastic Approximation and Orthogonal Series 543

lim
n→∞

M(n) = ∞, lim
n→∞

⎡⎢⎣ 1

n

⎛⎝M(n)∑
j=1

G2
j

⎞⎠2
⎤⎥⎦ = 0, (25)

then

φ̂n(x, ân)
n→∞−→ φ(x) in probability (26)

at each point x at which series (12) and (15) are convergent to f(x) and R(x),
respectively.

Proof. The theorem can be proven combining convergence (23), weak conver-
gence of estimator (18) [14] and Theorem 4.3.8 in [38]. Conditions for conver-
gence of series (12) and (14) are given in [1].

Example
Let us assume that the sequence ci is of the form ci = it. Then ci = O(it) and
|ci+1 − ci| = O(it−1). According to conditions (21) and (22), the sequence γi
from (20) should be given in the following form

γi = δi−r, δ > 0, 0 < 2t < r < 1− t. (27)

This mean, that the exponent t should belong to the interval

(
0,

1

3

)
. In esti-

mators (14) and 17), one of the possible choices of an orthogonal series gj is
the Fourier orthogonal series. The functions, defined on the interval [aF ; bF], are
given by

gj(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1√
bF − aF

, j = 0,√
2

bF − aF
sin

(
2πj

x− aF
bF − aF

)
, jmod 2 = 1,√

2

bF − aF
cos

(
2πj

x− aF
bF − aF

)
, jmod 2 = 0, j �= 0.

(28)

Each function gj(x) is bounded by a constant Gj = C. Assumption (24) of
Theorem 2 can be expressed as

lim
n→∞

⎡⎢⎣ 1

n

⎛⎝N(n)∑
j=1

G2
j

⎞⎠2
⎤⎥⎦ = lim

n→∞

[
N2(n)C2

n

]
= 0. (29)

Then, the sequence N(n) can be proposed in the following form

N(n) = �D′nQ
′�, D′ > 0, Q′ <

1

2
. (30)

544 J.M. Zurada and M. Jaworski

The analogous form can be obtained for the function M(n) = �DnQ�, in the
light of condition (25)

M(n) = �DnQ�, D > 0, Q <
1

2
. (31)

4 Experimental Results

In the following simulations, the system described by equation (3) is examined,
with the real value of parameter a = 2 and the function φ(x) given by

φ(x) =
10x

1 + x2
, x ∈ [−5 : 5]. (32)

Random variables Xi are generated from the uniform distribution, where Xi ∈
[−5 : 5]. Noise variables Zi are taken from the standard normal distribution
N(0, 1). Sequence ci is taken in the form

ci = it, t = 0, 3. (33)

Then, in view of condition (27), the exponent r in the sequence γi should belong
to the interval (0, 6; 0, 7). In the presented simulations r is set to 0, 65, i. e.

γi = i−r, r = 0, 65. (34)

To estimate the functions R(x) and f(x), the orthogonal Fourier series (28)
is applied. Functions N(n) and M(n) are given in the forms (30) and (31),
respectively, with D = D′ = 2. Simulation are performed for several allowed,
distinct values of parameters Q = Q′

In Figure 1 the convergence of estimator ân is presented.
The estimator converges to the actual value of a with the increasing number of

data elements n, although it demonstrates a relatively high variance. These vari-
ations affect the quality of estimation of function φ(x), what is shown in Fig. 2.
Although the trend of the Mean Squared Error (MSE), as a function of n, is
decreasing, it follows the variations of estimator ân.

In Figure 3 an example result of estimator φ̂n(x, ân) is presented, for Q = 0, 4
and the number of data elements n = 5000. The result is compared with the
function (32).

5 Final Remarks

In the paper we applied stochastic approximation in connection with general
regression neural network for learning in a time-varying environment. The or-
thogonal series-type kernel was applied to design the general regression neural
networks. Sufficient conditions for weak convergens were given and simulation
results were presented. In future work it would be interesting to apply neuro-
fuzzy structures [9], [10], [31]-[34], [36], [37] and supervised and unsupervised
neural networks [2], [3], [11] for learning in a time-varying environment.

Stochastic Approximation and Orthogonal Series 545

Fig. 1. Convergence of the estimator ân to the actual value of parameter a

Fig. 2. Dependence of the Mean Squared Error on the number of data elements n, for
three different values of parameter: Q = Q′ = 0, 1, Q = Q′ = 0, 2 and Q = Q′ = 0, 4

546 J.M. Zurada and M. Jaworski

Fig. 3. Comparison of the real function φ(x) with the estimator φ̂n(x, ân), obtained
for n = 5000 and Q = 0, 4. Points represent the random variables (Xi, Yi − aci)

Acknowledgments. The paper was prepared under project operated within the
Foundation for Polish Science Team Programme co-financed by the EU European
Regional Development Fund, Operational Program Innovative Economy 2007-
2013, and also supported by National Science Centre NCN.

References

1. Alexits, G.: Convergence Problems of Orthogonal Series, Budapest, Academia and
Kiado, pp. 261–264 (1961)

2. Bilski, J., Rutkowski, L.: A fast training algorithm for neural networks. IEEE
Transactions on Circuits and Systems II 45, 749–753 (1998)

3. Cierniak, R., Rutkowski, L.: On image compression by competitive neural networks
and optimal linear predictors. Signal Processing: Image Communication - a Eurasip
Journal 15(6), 559–565 (2000)

4. Dvoretzky, A.: On stochastic approximation. In: Proceedings of the Third Berkeley
Symposium on Mathematical Statistics and Probability, vol. 1, pp. 39–56. Univer-
sity of California Press (1956)

5. Ga�lkowski, T., Rutkowski, L.: Nonparametric recovery of multivariate functions
with applications to system identification. Proceedings of the IEEE 73, 942–943
(1985)

6. Ga�lkowski, T., Rutkowski, L.: Nonparametric fitting of multivariable functions.
IEEE Transactions on Automatic Control AC-31, 785–787 (1986)

7. Greblicki, W., Rutkowska, D., Rutkowski, L.: An orthogonal series estimate of time-
varying regression. Annals of the Institute of Statistical Mathematics 35, Part A,
147–160 (1983)

Stochastic Approximation and Orthogonal Series 547

8. Greblicki, W., Rutkowski, L.: Density-free Bayes risk consistency of nonparametric
pattern recognition procedures. Proceedings of the IEEE 69(4), 482–483 (1981)

9. Nowicki, R.: Rough Sets in the Neuro-Fuzzy Architectures Based on Monotonic
Fuzzy Implications. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh,
L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 510–517. Springer, Heidel-
berg (2004)

10. Nowicki, R.: Nonlinear modelling and classification based on the MICOG defuzzi-
fications. Journal of Nonlinear Analysis, Series A: Theory, Methods and Applica-
tions 7(12), 1033–1047 (2009)

11. Patan, K., Patan, M.: Optimal Training Strategies for Locally Recurrent Neural
Networks. Journal of Artificial Intelligence and Soft Computing Research 1(2),
103–114 (2011)

12. Robbins, H., Monro, S.: A stochastics approximation method. Annals Mathematics
of Statistics 22, 400–407 (1951)

13. Rutkowski, L.: Sequential estimates of probability densities by orthogonal series
and their application in pattern classification. IEEE Transactions on Systems, Man,
and Cybernetics SMC-10(12), 918–920 (1980)

14. Rutkowski, L.: Sequential estimates of a regression function by orthogonal series
with applications in discrimination, New York, Heidelberg, Berlin. Lectures Notes
in Statistics, vol. 8, pp. 236–244 (1981)

15. Rutkowski, L.: On system identification by nonparametric function fitting. IEEE
Transactions on Automatic Control AC-27, 225–227 (1982)

16. Rutkowski, L.: Orthogonal series estimates of a regression function with applica-
tions in system identification. In: Probability and Statistical Inference, pp. 343–347.
D. Reidel Publishing Company, Dordrecht (1982)

17. Rutkowski, L.: On Bayes risk consistent pattern recognition procedures in a quasi-
stationary environment. IEEE Transactions on Pattern Analysis and Machine In-
telligence PAMI-4(1), 84–87 (1982)

18. Rutkowski, L.: On-line identification of time-varying systems by nonparametric
techniques. IEEE Transactions on Automatic Control AC-27, 228–230 (1982)

19. Rutkowski, L.: On nonparametric identification with prediction of time-varying
systems. IEEE Transactions on Automatic Control AC-29, 58–60 (1984)

20. Rutkowski, L.: Nonparametric identification of quasi-stationary systems. Systems
and Control Letters 6, 33–35 (1985)

21. Rutkowski, L.: The real-time identification of time-varying systems by nonpara-
metric algorithms based on the Parzen kernels. International Journal of Systems
Science 16, 1123–1130 (1985)

22. Rutkowski, L.: A general approach for nonparametric fitting of functions and their
derivatives with applications to linear circuits identification. IEEE Transactions
Circuits Systems CAS-33, 812–818 (1986)

23. Rutkowski, L.: Sequential pattern recognition procedures derived from multiple
Fourier series. Pattern Recognition Letters 8, 213–216 (1988)

24. Rutkowski, L.: Nonparametric procedures for identification and control of lin-
ear dynamic systems. In: Proceedings of 1988 American Control Conference,
June 15-17, pp. 1325–1326 (1988)

25. Rutkowski, L.: An application of multiple Fourier series to identification of multi-
variable nonstationary systems. International Journal of Systems Science 20(10),
1993–2002 (1989)

26. Rutkowski, L.: Nonparametric learning algorithms in the time-varying environ-
ments. Signal Processing 18, 129–137 (1989)

548 J.M. Zurada and M. Jaworski

27. Rutkowski, L., Rafaj�lowicz, E.: On global rate of convergence of some nonparamet-
ric identification procedures. IEEE Transaction on Automatic Control AC-34(10),
1089–1091 (1989)

28. Rutkowski, L.: Identification of MISO nonlinear regressions in the presence of
a wide class of disturbances. IEEE Transactions on Information Theory IT-37,
214–216 (1991)

29. Rutkowski, L.: Multiple Fourier series procedures for extraction of nonlinear regres-
sions from noisy data. IEEE Transactions on Signal Processing 41(10), 3062–3065
(1993)

30. Rutkowski, L., Ga�lkowski, T.: On pattern classification and system identification
by probabilistic neural networks. Applied Mathematics and Computer Science 4(3),
413–422 (1994)

31. Rutkowski, L.: A New Method for System Modelling and Pattern Classification.
Bulletin of the Polish Academy of Sciences 52(1), 11–24 (2004)

32. Rutkowski, L., Cpa�lka, K.: A general approach to neuro - fuzzy systems. In: Pro-
ceedings of the 10th IEEE International Conference on Fuzzy Systems, Melbourne,
December 2-5, vol. 3, pp. 1428–1431 (2001)

33. Rutkowski, L., Cpa�lka, K.: A neuro-fuzzy controller with a compromise fuzzy rea-
soning. Control and Cybernetics 31(2), 297–308 (2002)

34. Scherer, R.: Boosting Ensemble of Relational Neuro-fuzzy Systems. In: Rutkowski,
L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS
(LNAI), vol. 4029, pp. 306–313. Springer, Heidelberg (2006)

35. Specht, D.F.: Probabilistic neural networks. Neural Networks 3, 109–118 (1990)
36. Starczewski, J., Rutkowski, L.: Interval type 2 neuro-fuzzy systems based on inter-

val consequents. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft
Computing, pp. 570–577. Physica-Verlag, Springer-Verlag Company, Heidelberg,
New York (2003)

37. Starczewski, J., Rutkowski, L.: Connectionist Structures of Type 2 Fuzzy Inference
Systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.)
PPAM 2001. LNCS, vol. 2328, pp. 634–642. Springer, Heidelberg (2002)

38. Wilks, S.S.: Mathematical Statistics. John Wiley, New York (1962)

Accelerating BST Methods

for Model Reduction with Graphics Processors

Peter Benner1, Pablo Ezzatti2,
Enrique S. Quintana-Ort́ı3, and Alfredo Remón3

1 Max Planck Institute for Dynamics of Complex
Technical Systems, Magdeburg, Germany

benner@mpi-magdeburg.mpg.de
2 Centro de Cálculo-Instituto de Computación,

Universidad de la República, Montevideo, Uruguay
pezzatti@fing.edu.uy

3 Depto. de Ingenieŕıa y Ciencia de Computadores,
Universidad Jaume I, Castellón, Spain

{quintana,remon}@icc.uji.es

Abstract. Model order reduction of dynamical linear time-invariant
system appears in many scientific and engineering applications. Numer-
ically reliable SVD-based methods for this task require O(n3) floating-
point arithmetic operations, with n being in the range 103−105 for many
practical applications. In this paper we investigate the use of graphics
processors (GPUs) to accelerate model reduction of large-scale linear
systems via Balanced Stochastic Truncation, by off-loading the computa-
tionally intensive tasks to this device. Experiments on a hybrid platform
consisting of state-of-the-art general-purpose multi-core processors and
a GPU illustrate the potential of this approach.

Keywords: Model reduction, linear dynamical systems, Lyapunov
equations, SVD-based methods, GPUs.

1 Introduction

Model order reduction is an important numerical tool to reduce the time and
cost required for the design of optimal controllers in many industrial processes
where dynamics can be modeled by a linear time-invariant (LTI) system of the
form:

ẋ(t) = Ax(t) +Bu(t), t > 0, x(0) = x0,
y(t) = Cx(t) +Du(t), t ≥ 0.

(1)

Here, x(t) contains the states of the system, with x0 ∈ R

n the initial state, u(t) ∈
R

m and y(t) ∈ R

p contain the inputs and outputs, respectively, and A ∈ R

n×n,
B ∈ R

n×m, C ∈ R

p×n, D ∈ R

p×m. The system in (1) can also be described by
the associated transfer function matrix (TFM) G(s) = C(sIn − A)−1B +D. A
particularly important property is that the number of states (also known as the

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 549–558, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

550 P. Benner et al.

state-space dimension or the order) of the system, n, is in general much larger
than m and p.

The goal of model reduction is to find a reduced-order LTI system,

˙̂x(t) = Âx̂(t) + B̂u(t), t > 0, x̂(0) = x̂0,

ŷ(t) = Ĉx̂(t) + D̂u(t), t ≥ 0,
(2)

of order r, with r � n, and associated TFM Ĝ(s) = Ĉ(sIn − Â)−1B̂ + D̂ which
approximates the dynamics of the original system defined by G(s). The reduced-
order realization (2) can then replace the original model of order n in subsequent
simulations or processes, thus simplifying these tasks considerably. Model order
reduction of large-scale systems appears, e.g., in thermal, thermo-mechanical,
electro-mechanical and acoustic finite element models [1]. We consider a system
to be large-scale if n ∼ O(1, 000) − O(100, 000), while, often, m, p ∼ O(10) −
O(100).

The numerical method for model order reduction considered in this paper is
based on the so-called state-space truncation approach and requires, at an initial
stage, the solution of a Lyapunov and a Riccati equation. The reduced-order sys-
tem is then obtained using a variant of the balanced stochastic truncation (BST)
method [2], which only requires dense linear algebra computations. Although
there exist several other approaches for model order reduction (see, e.g., [1, 3]
and the references therein), those are specific for a certain subset of problems
and often do not possess relevant properties such as error bounds, preservation
of stability and passivity, or phase information. A comparison of the numeri-
cal properties of SVD-based methods (as Balanced Stochastic Truncation, BST)
and Krylov subspace methods can be found in [1].

The Lyapunov and Riccati equations are solved in our algorithms via the
matrix sign function, which yields a computational cost for the global model
order reduction procedure of O(n3) flops (floating-point arithmetic operations).
This calls for the application of high performance computing in the reduction of
models with n in the order of thousands or larger.

Recent work on the implementation of the BLAS specification and some rele-
vant linear algebra operations included in LAPACK [4–7] has demonstrated the
potential of graphics processors (GPUs) to yield high performance for the exe-
cution of dense linear algebra operations, specially if they can be cast in terms
of matrix-matrix products. In [8] we built upon these works to deal with the so-
lution of the standard Lyapunov equation on a GPU. Here, we extend this work
by tackling the different stages in BST methods for model reduction of linear
systems, namely, the solution of the Lyapunov and Riccati equations, the com-
putation of the SVD, and other auxiliary computations. The target architecture
is a hybrid platform consisting of a general-purpose multicore processor and a
GPU. We exploit these two resources by designing a hybrid numerical algorithm
for model order reduction that performs fine-grain computations on the CPU
while off-loading computationally intensive operations to the GPU.

The rest of the paper is structured as follows. In Section 2 we briefly review
the BST method for model order reduction, including the Lyapunov solver, the

Accelerating BST Methods for Model Reduction with Graphics Processors 551

sign function-based Riccati solver and the remaining stages of the method. In
Section 3 high performance implementations for a hybrid CPU-GPU platform
are described. In Section 4 we present experimental results that expose the par-
allelism attained by the numerical algorithms on a platform consisting of two
Intel QuadCore processors connected to an NVIDIA Tesla C2050 GPU. Finally,
in Section 5 we provide a few concluding remarks and future lines of work.

2 Model Reduction Methods Based on SVD

Relative error methods attempt to minimize the relative error ‖Δr‖∞, defined
implicitly by G − Ĝ = GΔr. Among these, BST and its variants are particu-
larly popular [9–11]. Due to their high computational cost, BST methods have
been used only for problems of moderate dimension, i.e., models of state-space
dimension in the order of hundreds. The implementation included in the Subrou-
tine Library in Control Theory – SLICOT1 [12], available for MATLAB R© and
Fortran 77, made feasible to target systems with a few thousands of state-space
variables on nowadays standard desktop computers, but larger problems remain
un-affordable, unless a cluster of computers and a message-passing library as
PLiCMR [13] is employed.

BST is a technique where the reduced order model is obtained truncating a
balanced stochastic realization. Such a realization is obtained as follows. Define
Φ(s) = G(s)GT (−s), and let W be a square minimum phase right spectral factor
of Φ, i.e., Φ(s) = WT (−s)W (s). As D has full row rank, E = DDT is positive
definite and a minimal state-space realization (AW , BW , CW , DW) of W is given
by (see [14, 15])

AW = A, BW = BDT +WcC
T ,

CW = E− 1
2 (C −BT

WXW), DW = E
1
2 .

(3)

Here, Wc is the controllability Gramian of G(s) given by the solution of the
Lyapunov equation

AWc +WcA
T +BBT = 0 (4)

while Wo is the observability Gramian of W (s) obtained as the stabilizing solu-
tion of the algebraic Riccati equation (ARE)

0 = (A−BWE
−1C)TWo +Wo(A−BWE

−1C) +WoBWE
−1BT

WWo+
CTE−1C.

(5)

In the following subsections we revisit the sign function methods for the solu-
tion of Lyapunov and Riccati equations introduced in [16] and [17] respectively.
For the solution of the Lyapunov equation, the algorithm introduced in [8] has
demonstrated to be highly efficient on hybrid architectures equipped with a
GPU. This Lyapunov solver provides a low-rank approximation to the full-rank
factor of the solution matrix.

1 Available from http://www.slicot.org

552 P. Benner et al.

2.1 Solution of the Lyapunov Equation

The matrix sign function was introduced in [17] as an efficient tool to solve stable
(standard) Lyapunov equations. The variant of the Newton iteration method for
the matrix sign function in Algorithm CECLNC [16] can be employed for the
solution of a Lyapunov equation (like that in (4)).

Algorithm CECLNC:

A0 ← A, S̃0 ← BT

k← 0
repeat

Compute the rank-revealing QR (RRQR) decomposition

1√
2ck

[
S̃k, ckS̃kA

−T
k

]
= Qs

[
Us

0

]
Πs

S̃k+1 ← UsΠs

Ak+1 ← 1√
2

(
Ak/ck + ckA

−1
k

)
k ← k + 1

until ‖Ak − I‖1 < τl‖Ak‖1

The number of columns of factor S̃ is doubled at each iteration and, in con-
sequence, the computational and storage costs associated with its update grow
at each iteration. To moderate this increase, and the number of columns in the
factors, an RRQR factorization is computed at each step. This approach yields
important gains when the number of iterations that are required for convergence
is large. Note that Qs is not accumulated as it is not needed in further compu-
tations. This reduces the cost of the RRQR significantly. For simplicity, we do
not detail this compression procedure; see [18].

On convergence, after j iterations, S̃ = 1√
2
S̃j , of dimension k̃c × n, is the full

(row-)rank approximation of S, so that Wc = STS ≈ S̃T S̃.
The Newton iteration for the sign function method usually presents a fast

convergence rate, which is ultimately quadratic. Initial convergence can be ac-
celerated using several techniques. In our case, we employ a scaling factor defined
by the parameter

ck =
√
‖Ak‖/‖A−1

k ‖.

In the convergence test, τl is a tolerance threshold for the iteration that is usually
set as a function of the problem dimension and the machine precision ε. In
particular, to avoid stagnation in the iteration, we set τl = n · √ε and perform
one or two additional iteration steps after the stopping criterion is satisfied. Due
to the quadratic convergence of the Newton iteration, this is usually enough
to reach the attainable accuracy. The RRQR decomposition can be obtained
by means of the traditional QR factorization with column pivoting [18] plus a
reliable rank estimator.

Accelerating BST Methods for Model Reduction with Graphics Processors 553

2.2 Solution of the Riccati Equation

The solution of an Algebraic Riccati Equation (ARE) of the form

FTX +XF −XGX +Q = 0, (6)

can be obtained from the stable invariant subspace of the Hamiltonian matrix
defined in [19]

H =

[
F G
−Q −FT

]
. (7)

This solution can be obtained computing the matrix sign function of H [17]:

sign(H) = Y =

[
Y11 Y12
Y21 Y22

]
, (8)

and then, solving the overdetermined system[
Y11

Y12 + In

]
X =

[
In − Y21
−Y11

]
(9)

(e.g., applying the least squares method).
Algorithm GECRSG summarizes the steps to solve an ARE with this method.

Algorithm GECRSG:

H0 ←
[
F G
−Q −FT

]
k ← 0

repeat

Hk+1 ← 1
2

(
Hk/dk + dkH

−1
k

)
until ‖Hk+1 −Hk‖1 < τr‖Hk‖1
Solve [

Y11
Y12 + In

]
X =

[
In − Y21
−Y11

]
The scaling factor dk and the tolerance threshold τr can be defined here following
the ideas presented for ck and τl, respectively, in the previous subsection.

3 High Performance Implementation on a Hybrid
Architecture

In this section, we describe an efficient implementation of the BST model or-
der reduction method, specially designed for hybrid platforms composed of a
multicore CPU connected to a single GPU. The objective of the hybrid imple-
mentation is to reduce the computational time of the BST method, executing

554 P. Benner et al.

each operation on the most convenient architecture and reducing the amount
of data transfers between the two components. Specifically, the most expen-
sive computations are executed on the GPU while the fine-grain operations are
executed on the CPU.

3.1 Hybrid Implementation of the Lyapunov Solver

The most time consuming operation of Algorithm CECLNC is the update of Ak+1.
This is due to the large dimension of A and the significant computational cost
of the matrix inversion.

The hybrid algorithm to accelerate the solution of this equation proceeds as
follows. At the beginning of each iteration, the CPU transfers matrix Ak to the
GPU. Then, the CPU and the GPU cooperate in the inversion of matrix Ak,
which is returned to the CPU upon completion. The rest of the operations are
performed on the CPU since they require a minor computational effort and can
be efficiently executed on a multicore processor, e.g. invoking parallel implemen-
tations of BLAS and LAPACK to compute the linear algebra operations or using a
simple OpenMP-based parallelization in other cases.

The inversion algorithm is based on the Gauss-Jordan elimination method [20],
since this is a highly parallel algorithm. The implementation, presented in [21],
includes some performance-enhancing techniques, as the processing by blocks
to exploit the hierarchical organization of the memory, hybrid and concurrent
computing (CPU + GPU) to increment the resource utilization, look-ahead tech-
niques [22] to avoid bottlenecks, padding to accelerate the memory accesses on
the GPU, and multilevel blocks strategies to improve throughput of both devices.

3.2 Hybrid Implementation of the Riccati Solver

This stage can be divided into three steps:

– First, it is necessary to build matrixH performing some matrix-matrix multi-
plications (see equations (3)-(5)). As the dimensions of the matrices involved
in these operations are moderate, the related computational cost is moderate
as well. For this reason, and with the aim to reduce data transfers overheads,
those operations are performed on the CPU.

– Second, the sign function for the extended matrix (7) is computed. The
proposal is based on the efficient matrix inversion kernel described in sub-
section 3.1 and the utilization of OpenMP to parallelize a loop, executed
on the CPU, that simultaneously computes the matrix addition, the matrix
scaling, and the matrix norm required for the evaluation of the loop guard;
see Algorithm GECRSG. Note that the solution of the Riccati equation via
this solver involves matrices which are twice as big as those that appear in
the sign function solver for the Lyapunov equation.

– Finally, the overdetermined system is solved. To do so, a multi-thread version
of routine GEQP3 (included in LAPACK) is employed. Other minor operations
are also executed on the CPU and parallelized using OpenMP.

Accelerating BST Methods for Model Reduction with Graphics Processors 555

3.3 Remaining Stages of the BST Method

Once the low rank factor from the controllability gramian (S) and the observ-
ability gramian (Wo) have been computed from the solution of the Lyapunov and
the Riccati equations respectively, only some minor operations with moderate
computational effort are required to obtain the reduced order model.

The main computations in this step include some matrix-matrix products
involving matrices of relatively small dimension. All these operations require
a moderate number of arithmetic operations and, therefore, can be efficiently
computed on the CPU using BLAS. Computing them on the CPU avoids data
transfers and the associated overhead.

4 Numerical Experiments

In this section we evaluate the parallel performance of the BST model order
reduction method. The target platform consists of two Intel Xeon QuadCore
E5520 processors (2.27GHz) with 24GB of RAM connected to an Nvidia Tesla
C2050 via a PCI-e bus. Multi-threaded implementation of BLAS, from the Intel
MKL library (version 11.1) for the general-purpose processor and from Nvidia

CUBLAS (version 3.2) for the GPU are used.
We compare three different implementations: a sequential one (bst scpu)

that is executed on a single CPU core (used as the reference implementation),
a parallel multi-thread routine (bst mtcpu) that exploits all the cores from
the CPU, and a hybrid CPU-GPU implementation (bst hyb) that executes
operations concurrently on the GPU and the CPU cores.

We employ double precision arithmetic for the solution of two instances of the
STEEL I model reduction problem [23], extracted from the Oberwolfach bench-
mark collection (University of Freiburg)2. This model arises in the manufactur-
ing process of steel profiles. The goal is to design a control that yields moderate
temperature gradients when the rail is cooled down. The mathematical model
corresponds to the boundary control for a 2-D heat equation. A finite element
discretization, followed by adaptive refinement of the mesh, results in the ex-
ample in this benchmark. The problem dimensions depend of the discretization
mesh; the two versions employed are STEEL I1357 with n = 1, 357, m = 7, p = 6;
and STEEL I5177 with n = 5, 177, m = 7, p = 6.

Table 1 summarizes the results (in seconds) obtained with all the implemen-
tations evaluated. The execution time dedicated to solve the Lyapunov equation
is shown in column 2; columns 3, 4 and 5 report the time required to initialize
matrix H , compute sign(H) and solve the overdetermined system, respectively;
column 6 displays the accumulated time. All the times given in Table 1 include
the costs to perform all the necessary CPU-GPU data transfers.

Note that most of the time is dedicated to compute the solution of the Riccati
equation, in particular the computation of sign(H) (column 4). The rest of the
time is basically spent in the Lyapunov equation solver. A careful study of these

2 http://www.imtek.de/simulation/benchmark/

http://www.imtek.de/simulation/benchmark/

556 P. Benner et al.

Table 1. Execution time (in secs.) of the different steps of the BST method for the
STEEL I problem

Implementation Lyapunov H init. sign(H) System solver Total

solver time(s)

STEEL I1357

bst scpu 7.74 0.10 118.15 3.23 129.22

bst mtcpu 1.68 0.05 22.34 0.57 24.64

bst hyb 9.46 0.05 10.93 0.57 21.01

STEEL I5177

bst scpu 334.16 1.52 6404.65 325.34 7065.67

bst mtcpu 63.75 0.86 1127.87 25.05 1217.53

bst hyb 26.82 0.78 292.93 24.92 345.48

two operations demonstrates that the computational effort is concentrated in the
calculation of matrix inverses. This operation is accelerated in the bst mtcpu

implementation using multi-thread codes. The bst hyb variant improves the
parallelization of the matrix inversion procedure using the Gauss-Jordan elimi-
nation method, which is more suitable for its execution on parallel architectures,
and off-loading part of the computations to the GPU.

The times reported for the STEEL I1357 instance show a notable benefit from
the usage of the multicore (bst mtcpu) and the hybrid (bst hyb) implementa-
tion, which are respectively 5 and 6 times faster than the sequential implemen-
tation. From the results obtained for STEEL I5177 we can conclude that these
differences are even higher for larger problems. In this case, bst mtcpu is nearly
6 times faster than bst scpu, while bst hyb is more than 20 times faster. The
reason is that larger problems present a higher inherent parallelism which can
be leveraged by the massively parallel architecture of the GPU.

5 Concluding Remarks

We have presented two high performance parallel implementations for the BST
method for model reduction. Variant bst mtcpu is optimized for its execution
on a multicore CPU, while bst hyb targets hybrid platforms composed of a CPU
and a GPU. bst hyb exploits the capabilities of both architectures, the multi-
core CPU and the many-core GPU, yielding a high performance implementation
of the BST model reduction technique. Two levels of parallelism are exploited
in this implementation: at the inner level, multithread lineal algebra kernels
included in the BLAS library (MKL and CUBLAS) are employed to compute
the most time-consuming linear algebra operations; at the outer level, operations
proceed concurrently in both architectures, overlapping computations on the
CPU and the GPU.

Accelerating BST Methods for Model Reduction with Graphics Processors 557

Experimental results on a platform consisting of a state-of-the-art general-
purpose multi-core processor and a pre-Fermi GPU show that model order re-
duction of large-scale linear systems can be significantly accelerated using this
kind of platforms.

The promising results obtained encourage us to further improve the developed
implementations. On-going and future work include:

– Exploit the use of multiple GPUs to further reduce the computational time
and increase the dimension of the affordable problems.

– Evaluate the use of mixed precision techniques that allow to perform most
of the computations in single precision arithmetic.

References

1. Antoulas, A.: Approximation of Large-Scale Dynamical Systems. SIAM Publica-
tions, Philadelphia (2005)

2. Benner, P., Quintana-Ort́ı, E.S., Quintana-Ort́ı, G.: Efficient numerical algorithms
for balanced stochastic truncation. Internat. J. in Applied Mathematics and Com-
puter Science 1(1), 15–21 (2005)

3. Freund, R.: Reduced-order modeling techniques based on Krylov subspaces and
their use in circuit simulation. In: Datta, B. (ed.) Applied and Computational
Control, Signals, and Circuits, vol. 1, ch. 9, pp. 435–498. Birkhäuser, Boston (1999)

4. Volkov, V., Demmel, J.: LU, QR and Cholesky factorizations using vector capabil-
ities of GPUs. EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2008-49 (May 2008),
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-49.html

5. Bientinesi, P., Igual, F.D., Kressner, D., Quintana-Ort́ı, E.S.: Reduction to Con-
densed Forms for Symmetric Eigenvalue Problems on Multi-core Architectures. In:
Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2009.
LNCS, vol. 6067, pp. 387–395. Springer, Heidelberg (2010)

6. Barrachina, S., Castillo, M., Igual, F.D., Mayo, R., Quintana-Ort́ı, E.S., Quintana-
Ort́ı, G.: Exploiting the capabilities of modern GPUs for dense matrix compu-
tations. Concurrency and Computation: Practice and Experience 21, 2457–2477
(2009)

7. Ltaif, H., Tomov, S., Nath, R., Du, P., Dongarra, J.: A scalable high performance
cholesky factorization for multicore with gpu accelerators. University of Tennessee,
LAPACK Working Note 223 (2009)

8. Benner, P., Ezzatti, P., Quintana-Ort́ı, E.S., Remón, A.: Using Hybrid CPU-GPU
Platforms to Accelerate the Computation of the Matrix Sign Function. In: Lin,
H.-X., Alexander, M., Forsell, M., Knüpfer, A., Prodan, R., Sousa, L., Streit, A.
(eds.) Euro-Par 2009. LNCS, vol. 6043, pp. 132–139. Springer, Heidelberg (2010)

9. Desai, U., Pal, D.: A transformation approach to stochastic model reduction. IEEE
Trans. Automat. Control AC–29, 1097–1100 (1984)

10. Green, M.: Balanced stochastic realization. Linear Algebra Appl. 98, 211–247
(1988)

11. Varga, A., Fasol, K.H.: A new square–root balancing–free stochastic truncation
model reduction algorithm. In: Prepr. 12th IFAC World Congress, Sydney, Aus-
tralia, vol. 7, pp. 153–156 (1993)

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-49.html

558 P. Benner et al.

12. Varga, A.: Task II.B.1 – selection of software for controller reduction. The Working
Group on Software (WGS), SLICOT Working Note 1999–18 (December 1999),
http://www.win.tue.nl/niconet/NIC2/reports.html

13. Benner, P., Quintana-Ort́ı, E.S., Quintana-Ort́ı, G.: State-space truncation meth-
ods for parallel model reduction of large-scale systems. Parallel Comput. 29,
1701–1722 (2003)

14. Anderson, B.: An algebraic solution to the spectral factorization problem. IEEE
Trans. Automat. Control AC-12, 410–414 (1967)

15. Anderson, B.: A system theory criterion for positive real matrices. SIAM J. Cont. 5,
171–182 (1967)

16. Benner, P., Quintana-Ort́ı, E.S., Quintana-Ort́ı, G.: Solving linear-quadratic opti-
mal control problems on parallel computers. Optimization Methods Software 23(6),
879–909 (2008)

17. Roberts, J.: Linear model reduction and solution of the algebraic Riccati equation
by use of the sign function. Internat. J. Control 32, 677–687 (1980); Reprint of
Technical Report No. TR-13, CUED/B-Control, Cambridge University, Engineer-
ing Department (1971)

18. Golub, G., Van Loan, C.: Matrix Computations, 3rd edn. Johns Hopkins University
Press, Baltimore (1996)

19. Benner, P., Byers, R., Quintana-Ort́ı, E.S., Quintana-Ort́ı, G.: Solving algebraic
Riccati equations on parallel computers using Newton’s method with exact line
search. Parallel Comput. 26(10), 1345–1368 (2000)

20. Gerbessiotis, A.V.: Algorithmic and Practical Considerations for Dense Matrix
Computations on the BSP Model, Oxford University Computing Laboratory,
PRG-TR 32 (1997), http://web.njit.edu/~alexg/pubs/papers/PRG3297.ps

21. Ezzatti, P., Quintana-Ort́ı, E.S., Remón, A.: Using graphics processors to acceler-
ate the computation of the matrix inverse. The Journal of Supercomputing (2011),
http://dx.doi.org/10.1007/s11227-011-0606-4,
doi:10.1007/s11227-011-0606-4

22. Strazdins, P.: A comparison of lookahead and algorithmic blocking techniques for
parallel matrix factorization, Department of Computer Science, The Australian Na-
tional University, Canberra 0200 ACT, Australia, Tech. Rep. TR-CS-98-07 (1998)

23. Benner, P., Saak, J.: A semi-discretized heat transfer model for optimal cooling
of steel profiles. In: Benner, P., Mehrmann, V., Sorensen, D. (eds.) Dimension
Reduction of Large-Scale Systems. Lecture Notes in Computational Science and
Engineering. Springer, Heidelberg (2005)

http://www.win.tue.nl/niconet/NIC2/reports.html
http://web.njit.edu/~alexg/pubs/papers/PRG3297.ps
http://dx.doi.org/10.1007/s11227-011-0606-4

Reducing Thread Divergence in GPU-Based

B&B Applied to the Flow-Shop Problem

Imen Chakroun1, Ahcène Bendjoudi2, and Nouredine Melab1

1 Université Lille 1 CNRS/LIFL, INRIA Lille Nord Europe
Cité scientifique - 59655, Villeneuve d’Ascq cedex, France

{imen.chakroun,nouredine.melab}@lifl.fr
2 CEntre de Recherche sur l’Information Scientifique et Technique (CERIST)

Division Théorie et Ingénierie des Systèmes Informatiques DTISI,
3 rue des frères Aissou, 16030 Ben-Aknoun, Algiers, Algeria

abendjoudi@cerist.dz

Abstract. In this paper,we propose a pioneering work on designing and
programming B&B algorithms on GPU. To the best of our knowledge, no
contribution has been proposed to raise such challenge. We focus on the
parallel evaluation of the bounds for the Flow-shop scheduling problem.
To deal with thread divergence caused by the bounding operation, we
investigate two software based approaches called thread data reordering
and branch refactoring. Experiments reported that parallel evaluation of
bounds speeds up execution up to 54.5 times compared to a CPU version.

Keywords: Branch and Bound, Data Parallelism, GPU Computing,
Thread Divergence, Flow-shop Scheduling.

1 Introduction

Solving to optimality large size combinatorial optimization problems using a
Branch and Bound algorithm (B&B) is CPU time intensive. Although B&B al-
lows to reduce considerably the exploration time using a bounding mechanism,
the computation time remains significant and the use of parallelism to speed
up the execution has become an attractive way out. Because of their tremen-
dous computing power and remarkable cost efficiency, GPUs (Graphic Processing
Units) have been recently revealed as a powerful way to achieve high performance
on long-running scientific applications [9]. However, while several parallel B&B
strategies based on large computer clusters and grids have been proposed in the
litterature [7], to the best of our knowledge no contribution has been proposed
for designing B&B algorithms on GPUs. Indeed, the efficient parallel B&B ap-
proaches proposed in the literature [2] do not immediately fit GPU architecture
and have to be revisited.

B&B algorithms are characterized by four basic operations: branching, bound-
ing, selection and elimination. For most combinatorial problems, bounding is a
very time consuming operation. Indeed, a bounding function is used to compute
the estimated optimal solution called lower bound of the problem being tackled.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 559–568, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

560 I. Chakroun, A. Bendjoudi, and N. Melab

For this reason, and in order to reach higher computing performance, we focus
on a GPU based B&B algorithm using a parallel evaluation of the bounds. This
parallel strategy is a node-based approach. It does not aim to modify the search
trajectory, neither the dimension of the B&B tree nor its exploration. The main
objective is to speed up the evaluation of the lower bounds associated to the sub-
problems using a GPU CUDA-based computing without changing the semantics
of the execution.

The design and programming paradigm proposed in CUDA is based on the
Simple Program Multiple Data (SPMD) model. However, its execution model is
Single Instruction Multiple Data (SIMD) which is well suited for regular func-
tions (kernels) but represent a challenging issue for irregular computations. In
this paper, we address such issue on the Flow-shop scheduling problem for which
the bounding function is irregular leading to thread divergence. Indeed, if sub-
problems evaluated in parallel by a warp of threads (32 threads in the G80 GPU
model) are located at different levels of the search tree, the threads may di-
verge. This means that at a given time they execute different instruction flows.
This behavior is due to the bounding function for the Flow-shop problem which
is composed of several conditional instructions and loops that depend on the
data associated to the sub-problem on which it is applied. We investigate two
approaches called thread data reordering and branch refactoring to deal with
thread divergence for the Flow-shop scheduling on GPU.

The remainder of the paper is organized as follows: in Section 2, we present
the different B&B parallel existing models focusing on the parallel evaluation of
bounds. We also highlight the issues and challenges to deal with the irregular
nature of the bounding operation of the Flow-shop problem. In Section 3, we
analyse the thread divergence scenarios for this problem, our case study. While
in Section 4, we show how to reduce thread divergence using a judicious thread
data remapping, we detail in Section 5 some software optimizations useful to
get around control flow instructions. Finally, some perspectives of our work are
proposed in Section 6.

2 GPU-Based Parallel B&B: Issues and Challenges

Solving exactly a combinatorial optimization problem consists in finding the so-
lution having the optimal cost. For this purpose, the B&B algorithm is based
on an implicit enumeration of all the solutions of the problem being solved. The
space of potential solutions (search space) is explored by dynamically building
a tree which root node represents the initial problem. The leaf nodes are the
possible solutions and the internal nodes are subspaces of the total search space.
The construction of such a tree and its exploration are performed using four
operators: branching, bounding, selection and pruning. The bounding operation
is used to compute the estimated optimal solution called “lower bound” of the
problem being tackled. The pruning operation uses this bound to decide whether
to prune the node or to continue its exploration. A selection or exploration strat-
egy selects one node among all pending nodes according to defined priorities.

Reducing Thread Divergence 561

The priority of a node could be based on its depth in the B&B tree which leads
to a depth-first exploration strategy. A priority based on the breadth of the node
is called a breadth-first exploration. A best first selection strategy could also be
used. It is based on the presumed capacity of the node to yield good solutions.

Thanks to the pruning operator, B&B allows to reduce considerably the com-
putation time needed to explore the whole solution space. However, the explo-
ration time remains significant and parallel processing is thus required. In [7],
three parallel models are identified for B&B algorithms: (1) the parallel multi-
parametric model (2), the parallel tree exploration, and (3) the parallel evalua-
tion of the bounds. The model (1) consists in launching simultaneously several
B&B processes. These processes differ by one or more operator(s), or have the
same operators differently parameterized. The trees explored in this model are
not necessarily the same. Model (2) consists in launching several B&B processes
to explore simultaneously different paths of the same tree.

Unlike the two previous models, model (3) suppose the launching of only one
B&B process. It does not assume to parallelize the whole B&B algorithm but
only the bounding operator. Each calculation unit evaluates the bounds of a
distinct pool of nodes. This approach perfectly suits GPU computing. In fact,
bounding is often a very time consuming operation. In this paper, we focus on the
design and implementation of a B&B algorithm on GPU based on the parallel
evaluation of the lower bounds.

End
of

Permutations

Initialization of
the matrices

Copy of the pool of permutations

Threads Block

LB Computing Function

H
ie

ra
rc

hi
ca

l M
em

or
y

Generation of a pool

Elimination of the
solutions having

LB > UB
Copy of the pool of Lower Bounds

CPU

GPU

of permutations

T0 T1 T2 Tm

Fig. 1. GPU-based evaluation of bounds

As illustrated in Figure 1, the idea is to generate a pool of subnodes on CPU
using the branching operator and to send it to GPU where each thread handles
one node. The subnodes are then evaluated in parallel, the resulting lower bounds
are moved back to CPU where the remaining selection and elimination operators
are applied.

562 I. Chakroun, A. Bendjoudi, and N. Melab

Using Graphics Processing Units have become increasingly popular in High-
Performance Computing. A large number of optimizations have been proposed to
improve the performance of GPU programs. The majority of these optimizations
target the GPU memory hierarchy by adjusting the pattern of accesses to the
device memory [9]. In contrast, there has been less work on optimizations that
tackle another fundamental aspect of GPU performance, namely its SIMD exe-
cution model. This is the main challenge we are facing in our work. When a GPU
application runs, each GPU multiprocessor is given one or more thread block(s)
to execute. Those threads are partitioned into warps1 that get scheduled for ex-
ecution. At any clock cycle, each processor of the multiprocessor selects a half
warp that is ready to execute the same instruction on different data. The GPU
SIMD model assumes that a warp executes one common instruction at a time.
Consequently, full efficiency is realized when all 32 threads of a warp agree on
their execution path. However, if threads of a warp diverge via a data-dependent
conditional branch, the warp serially executes each branch path taken. Threads
that are not on that path are disabled, and when all paths complete, the threads
converge back to the same execution path. This phenomenon is called thread
divergence and often causes serious performance degradations.

The parallel evaluation of bounds is a node-based parallelism. This feature
implies an irregular computation depending on the data of each node. Irregu-
larities calculation are reflected in several flow control instructions that would
conduct to different behaviors. As we explained before, such data-dependent
conditional branches are the main cause of thread divergence. In the following
section, we discuss such conditional instruction we encounter in the lower bound
of the Flow-shop permutation problem.

3 Thread Divergence in the Flow-Shop Lower Bound

The permutation Flow-shop problem is a very known NP-hard combinatorial
optimization problem. It can be formulated as a set of N jobs J1, J2..JN to be
scheduled in the same order on M machines. The machines are critical resources
as each machine can not be simultaneously assigned to two jobs. Each job Ji is
composed of M consecutive tasks ti1..tiM , where tij designates the jth task of
the job Ji requiring the machine Mj . To each task tij is associated a processing
time pij . The goal is to find a permutation schedule that minimizes the total
processing time called makespan.

The effectiveness of B&B algorithms resides in the use of a good estimation
(lower bound for the maximization problem) of the optimal solution. In that pur-
pose we use the most known lower bound for the permutation Flow-shop problem
with M machines; the one proposed by Lageweg et al. [6] with O(M2NlogN)
complexity. This bound is based mainly on Johnson’s theorem [5], which provides
a procedure for finding an optimal solution with 2 machines. Johnson algorithm
assumes to assign jobs at the beginning or at the end of the schedule depending
of the processing time of that job.

1 We assume using the G80 model in which a warp is a pool of 32 threads.

Reducing Thread Divergence 563

Fig. 2. Representation of the thread input

Starting from this principle of Johnson’s algorithm, we designed a thread
input as a set of unscheduled jobs, an index representing the start of the range of
unscheduled jobs namely LIMIT1 and an index addressing the end of the range of
the unscheduled jobs namely LIMIT2 (see Figure 2). Each thread would pick one
of the unscheduled jobs, schedule it and calculate the corresponding makespan.

The Flow-shop permutation lower bound we adopted clearly provides a good
estimation of the cost of a solution. However, its implementation on GPU per-
fectly echoes the thread divergence. Actually, it counts almost a dozen of control
instructions namely “if” and “for”. The example above shows a piece of our code
that exhibits thread divergence.

int thread_idx = blockIdx.x * blockDim.x + threadIdx.x;

1. if(pool[thread_idx].limit1 != 0)

time = TimeMachines[1] ;

else

time = TimeArrival[1] ;

2. if(TimeMachinesEnd[pool[thread_idx].permutation[0]] > minima)

{

nbTimes++ ;

minima = TimeMachinesEnd[pool[thread_idx].permutation[0]];

}

3. for(int k = 0 ; k < pool[thread_idx].limit1; k++)

jobTime = jobEnd[k] ;

Consider the first “if” scenario. Let us suppose the values of LIMIT of the first
31 threads of a warp are not null except one. When that warp encounters the
conditional instruction “if”, only one thread passes through the condition check-
ing and performs the assignment instruction. All the other 31 threads will be
idle waiting for the thread 32 to be completed. The big deal in this case is that
no other warps are allowed to run on that multiprocessor meanwhile because
the warp is not completely idle. The same problem is encountered with the “for”
loop. Suppose LIMIT1 of the first 31 threads of a warp is null while its value
for the thread 32 is quite important. In that case, the 31 threads have to stay
idle and wait until the other thread finishes its loop. The gap could be quite
important since the value of LIMIT1 could be high depending on the size of the
permutation being evaluated.

564 I. Chakroun, A. Bendjoudi, and N. Melab

Some present techniques for handling branch divergence either demand hard-
ware support [1] or require host-GPU interaction [11], which incurs overhead. Some
other works such as [3] intervene at the code level. They expose a branch distri-
bution method that aims to reduce the divergent portion of a branch by factoring
out structurally similar code from the branch paths. In our work, we have also
opted for software-based optimizations like [3]. In fact, we figure out how to lit-
erally rewrite the branching instructions into basic ones in order to make thread
execution paths uniform. We also demonstrate that we could ameliorate perfor-
mances only by judiciously reordering data being assigned to each thread.

4 Thread-Data Reordering

As explained in Section 2, any flow control instruction (if, switch, for, while) can
significantly affect the instruction throughput by causing threads of the same
warp to diverge. If this happens, the different paths are executed in a serial way,
increasing the total amount of instructions executed for this warp. It is important
here to note that the threads execution path are data-dependent that is the data
input set of a thread determines its behavior in a given kernel. Starting from this
observation, we propose to reorder the data sets that the GPU threads work on.

The purpose of thread-data reordering is essentially to find an appropriate
mapping between threads and input sets. In our work, we propose a reorder-
ing based on the data of the thread rather than its identifier like it is usually
done [11]. Indeed, since the data of a given sub problem depend on its level
in the search tree, the idea is to generate the pool of nodes to be evaluated in
parallel from the same level unless from close levels on the tree. To do so we
used the breadth-first exploration strategy (BFS) to generate the pool. Breadth
first exploration expands nodes from the root of the tree and then generates one
level of the tree at a time until a solution is found. Initially the pool contains
just the root. At each iteration, the node at the head of the pool is expanded.
The generated nodes are then added to the tail of the pool. Using breadth-first
branching guarantees that nodes belonging to the same level in the tree have
much in common than other nodes generated by other decomposition paradigms
namely depth first (DFS) or best first (BEFS) branching. Particularly in our
case, nodes generated from the same father node have the same LIMIT1 and
LIMIT2 but have different jobs to schedule.

To evaluate the performance of the proposed approach we run experiments
over Flow-shop instances proposed by Taillard in [10]. Taillard’s benchmarks
are the best known problem instances for basic model with makespan objective.
Each Taillard’s instance NxM defines the number N of jobs to be scheduled and
the number of machines M on which the jobs are scheduled. For each experiment,
different pool sizes and problem instances are considered. The approach has been
implemented using C-CUDA 4.0. The experiments have been carried out using a
an Intel Xeon E5520 bi-processor coupled with a GPU device. The bi-processor
is 64-bit, quad-core and has a clock speed of 2.27GHz. The GPU device is an
Nvidia Tesla C2050 with 448 CUDA cores (14 multiprocessors with 32 cores
each) and a 2.8GB global memory.

Reducing Thread Divergence 565

Table 1. Time measurements on GPU without data reordering (using DFS) and with
data reordering (using BFS)

Pool Size \ Instances 20x20 50x20 100x20 200x20 500x20

4096 DFS 191.1 214.41 242.28 283.4 383.84
16x256 BFS 186.75 204.58 238.1 275.43 366.47

8192 DFS 198.73 218.53 248.39 293.69 408.2
32x256 BFS 194.22 209.26 241.46 287.18 404.72

16384 DFS 224.82 253.36 300.21 351.14 546.62
64x256 BFS 216.86 235.78 291.10 325.93 521.80

32768 DFS 231.02 276.91 340.15 426.98 761.38
128x256 BFS 219.5 259.16 316.5 410.52 711.86

65536 DFS 269.8 318.52 405.8 568.76 1133.97
256x256 BFS 253.96 301.81 380.95 543.84 1090.22

The obtained results are reported in Table 1. Each pool size in the first column
is expressed as bxt where b and t designates respectively the number of blocks
and the number of threads within a block. Each node in the pool is evaluated
by exactly one thread. We notice that although the speed-up is not impres-
sive, reordering data makes the kernel run faster than with a pool generated
via a DFS exploration strategy. For a same pool size, the acceleration grows
accordingly with the permutation size associated to the instance. For example,
in the instance corresponding to the scheduling of 500 jobs over 20 machines, the
permutation size is equal to 500. For this instance, a pool of 4096 sub-problems
would contain nodes from the same level of the exploration tree whereas the same
pool generated in instance 20 jobs over 20 machines would have sub-problems
from different levels. This explains why the acceleration follows the permutation
size behavior. Generating the pool to evaluate using a breadth first strategy
guarantees for large instances to have nodes from almost the same level. This al-
lows to reduce the impact of conditional instructions that depends of the values
of LIMIT1 and LIMIT2.

5 Branch Refactoring

To reduce the divergence caused by conditional instructions, we use the branch
refactoring approach. This latter consists in rewriting the conditional instruc-
tions so that threads of the same warp execute an uniform code avoiding their
divergence. To do that, we study in the following different “if” scenarios and
propose some optimizations accordingly. Consider a generalization of the if-else
statement of the scenario (1) exposed in the Section 3. In this case, the condi-
tional expression compares the content of a variable to 0. The idea is to replace
this conditional expression by two functions namely f and g as explained in the
Equation 1.

566 I. Chakroun, A. Bendjoudi, and N. Melab

if(x �= 0) if(x �= 0)
a = b[1]; a = b[1] + 0× c[1];

else ⇒ else
a = c[1]; a = 0× b[1] + c[1];

⇒ a = f(x)× b[1] + g(x)× c[1];

where: f(x)=

{
f(x) = 0 if x = 0
1 else

and g(x)=

{
g(x) = 1 if x = 0
0 else

(1)

The behavior of f and g fits the trigonometric function cosinus. This function
returns values between 0 and 1. Particularly, we defined an integer variable to
which we assign the result of the cosinus function as quoted in the above code.
The value taken would only be 0 or 1 since it would be rounded to 0 if it is
not equal to 1. In order to increase performance we used CUDA runtime math
operations: sinf(x), expf(x) and so forth. Those functions are mapped directly
to the hardware level [8]. They are faster but provide lower accuracy which does
not matter in our case because we do round results to int. The throughput of

sinf(x), cosf(x), expf(x) is 1 operation per clock cycle [8].
Result of branch rewriting for the scenario (1)

int coeff = __cosf(pool[tid].limit1);

time = (1 - coeff) * TimeMachines[1] + coeff * TimeArrival[1];

Let us now consider a scenario with an “if” statement which compares two values
between themselves like shown in Equation 2.

if(x � y) a = b[1]; ⇒ if(x− y ≥ 1) a = b[1];

⇒ if(x− y − 1 ≥ 0) a = b[1]; (x, y) ∈ N

⇒ a = f(x, y)× b[1] + g(x, y)× a;

where: f(x,y)=

{
1 if x− y − 1 ≥ 0
0 if x− y − 1 < 0

and g(x,y)=

{
0 if x− y − 1 ≥ 0
1 if x− y − 1 < 0

(2)

We do the same transformations than before using the exponential function. The
exponential is a positive function which is equal to 1 when applied to 0. Thus, if
x is less than y expf(x-y-1) returns a value between 0 and 1. If we round this
result to an integer value we obtain 0. Now, if x is greater than y expf(x-y-1)

Reducing Thread Divergence 567

return a value greater than 1 and since we get the minimum between 1 and the
exponential, the returned result would be 1. This behavior exactly satisfies our
prerequisites. The “if” instruction is now equivalent to:

int coeff = min(1, __expf(x - y - 1));

a = coeff * b[1] + (1 - coeff) * a ;

The effectiveness of both transformations was tested on the same configuration
used in Section 4. Table 2 compares the parallel efficency of the GPU-based
evaluation of bounds with and without using code optimizations. The reported
speed ups are calculated relatively to the sequentiel version considering the ratio
between the measured execution times.

Table 2. Parallel speedup obtained with/without code optimization

Pool Size \ Instances 20x20 50x20 100x20 200x20 500x20

4096 refactored 1.17 2.14 3.24 6.93 10.24
16x256 basic 1.05 1.89 3.06 5.17 9.66

8192 refactored 2.25 4.20 6.35 10.77 18.44
32x256 basic 2.01 3.72 5.99 9.88 17.39

16384 refactored 4.00 7.96 10.52 18.92 28.55
64x256 basic 3.58 7.04 9.92 17.36 26.93

32768 refactored 7.99 11.90 19.52 30.02 41.76
128x256 basic 7.13 10.53 18.42 27.54 39.40

65536 refactored 10.43 15.15 32.38 45.76 54.53
256x256 basic 9.31 13.41 30.55 41.98 51.44

The reported accelerations no doubtly prove that bound evaluation paral-
lelization on top of GPU provides an efficient way for speed up B&B algo-
rithms. In fact, the GPU-based evaluation runs up to 51.44 times faster than
the CPU one. The other important result, is that using thread divergence re-
duction improves the classic GPU acceleration. This acceleration improvement
grows acccordingly to the size of the problem instance and the size of the pool of
sub-problems considered in the experiment. Indeed, with a pool of 65536 nodes
and an instance of 500 jobs and 20 machines a speed up of x54,5 is achieved
while it reaches only x10,2 with a pool of 4096 nodes.

6 Conclusion and Future Work

In this work, we have investigated using GPUs to improve the performance
of B&B algorithms. To the best of our knowledge, no contribution has been
proposed to raise such challenge. We focused on the parallel evaluation of the
bounds for the Flow-shop permutation problem. In order to face out irregularities
caused by data dependent branching and leading to thread divergence, we have
proposed some software based optimizations. Experiments reported that parallel

568 I. Chakroun, A. Bendjoudi, and N. Melab

evaluation of bounds speed up executions up to 54.5 times compared to a CPU
version. This promising results could be easily improved when the approach is
combined with an optimized data access to GPU memory spaces.

As future contribution, we aim to focus on memory management issues related
to data inputs for combinatorial optimization problems. Indeed, when working
with such structures usually large in size many memory transactions are per-
formed leading to a global loss of performance. Our direction for future work
is also to generate the pool of subproblems directly on GPU. This modification
would reduce the transfer time of data structures from CPU to GPU. The chal-
lenging issue of this approach is to find an efficient mapping between a thread
id and the nodes to generate.

References

1. Fung, W., Sham, I., Yuan, G., Aamodt, T.: Dynamic warp formation and schedul-
ing for efficient gpu control flow. In: MICRO 2007: Proceedings of the 40th An-
nual IEEE/ACM International Symposium on Microarchitecture, Washington, DC,
USA, pp. 407–420 (2007)

2. Gendron, B., Crainic, T.G.: Parallel Branch and Bound Algorithms: Survey and
Synthesis. Operations Research 42, 1042–1066 (1994)

3. Han, T., Abdelrahman, T.S.: Reducing branch divergence in GPU programs. In:
Proceedings of the Fourth Workshop on General Purpose Processing on Graphics
Processing Units (GPGPU-4), Article 3, 8 pages. ACM, New York (2011)

4. Jang, B., et al.: Exploiting memory access patterns to improve memory perfor-
mance in data-parallel architectures. IEEE Trans. on Parallel and Distributed Sys-
tems 22(1), 105–118 (2011)

5. Johnson, S.M.: Optimal two and three-stage production schedules with setup times
included. Naval Research Logistis Quarterly 1, 61–68 (1954)

6. Lenstra, J.K., Lageweg, B.J., Rinnooy Kan, A.H.G.: A General bounding scheme
for the permutation Flow-shop problem. Operations Research 26(1), 53–67 (1978)

7. Melab, N.: Contributions à la résolution de problèmes d’optimisation combinatoire
sur grilles de calcul. HDR thesis, LIFL, USTL (Novembre 2005)

8. NVIDIA CUDA C Programming Best Practices Guide,
http://developer.download.nvidia.com/compute/cuda/2 3/toolkit/docs/

NVIDIA CUDA BestPracticesGuide 2.3.pdf

9. Ryoo, S., Rodrigues, C.I., Stone, S.S., Stratton, J.A., Ueng, S.-Z., Baghsorkhi,
S.S., Hwu, W.W.: Program optimization carving for gpu computing. J. Parallel
Distributed Computing 68(10), 1389–1401 (2008)

10. Taillard, E.: Benchmarks for basic scheduling problems. European Journal of Eu-
ropean Research 23, 661–673 (1993)

11. Zhang, E.Z., Jiang, Y., Guo, Z., Shen, X.: Streamlining GPU applications on the
fly: thread divergence elimination through runtime thread-data remapping. In: Pro-
ceedings of the 24th ACM International Conference on Supercomputing (ICS 2010),
pp. 115–126. ACM, New York (2010)

http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_BestPracticesGuide_2.3.pdf
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_BestPracticesGuide_2.3.pdf

A GPU-Based Approximate SVD Algorithm

Blake Foster, Sridhar Mahadevan, and Rui Wang

Department of Computer Science
Univ. of Massachusetts, Amherst, MA 01003, USA
{blfoster,mahadeva,ruiwang}@cs.umass.edu

Abstract. Approximation of matrices using the Singular Value Decom-
position (SVD) plays a central role in many science and engineering appli-
cations. However, the computation cost of an exact SVD is prohibitively
high for very large matrices. In this paper, we describe a GPU-based ap-
proximate SVD algorithm for large matrices. Our method is based on the
QUIC-SVD introduced by [6], which exploits a tree-based structure to
efficiently discover a subset of rows that spans the matrix space. We de-
scribe how to map QUIC-SVD onto the GPU, and improve its speed and
stability using a blocked Gram-Schmidt orthogonalization method. Us-
ing a simple matrix partitioning scheme, we have extended our algorithm
to out-of-core computation, suitable for very large matrices that exceed
the main memory size. Results show that our GPU algorithm achieves
6∼7 times speedup over an optimized CPU version of QUIC-SVD, which
itself is orders of magnitude faster than exact SVD methods.

Keywords: SVD, GPU, cosine trees, out-of-core computation.

1 Introduction

The Singular Value Decomposition (SVD) is a fundamental operation in linear
algebra. Matrix approximation using SVD has numerous applications in data
analysis, signal processing, and scientific computing. Despite its popularity, the
SVD is often restricted by its high computation cost, making it impractical for
very large datasets. In many practical situations, however, computing the full-
matrix SVD is not necessary; instead, we often need only the k largest singular
values, or an approximate SVD with controllable error. In such cases, an al-
gorithm that computes a low-rank SVD approximation is sufficient, and can
significantly improve the computation speed for large matrices.

A series of recent papers have studied using matrix sampling to solve the
low-rank matrix approximation (LRMA) problem. These algorithms construct a
basis made up of rows or linear combinations of rows sampled from the matrix,
such that the projection of the matrix onto the basis has bounded error (more
specifically, the error is statistically bounded with high probability). Common
sampling-based methods include length-squared sampling [4,2] and random pro-
jection sampling [3,12]. In this paper, we focus on a method called QUIC-SVD,
recently introduced by [6]. QUIC-SVD exploits a tree-based structure to perform
fast sampled-based SVD approximation with automatic error control. The main

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 569–578, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

570 B. Foster, S. Mahadevan, and R. Wang

benefit compared to previous work is that it iteratively selects samples that are
both adaptive and representative.

Our goal is to map the QUIC-SVD algorithm onto the graphics processing
unit (GPU) to further improve its efficiency. Modern GPUs have emerged as
low-cost massively parallel computation platforms that provide very high float-
ing point performance and memory bandwidth. In addition, the availability of
high-level programming languages such as CUDA has significantly lowered the
programming barrier for the GPU. These features make the GPU a suitable and
viable solution for solving many computationally intensive tasks in scientific
computing. We describe how we implemented the QUIC-SVD algorithm on the
GPU, and demonstrate its speedup (about 6∼7 times) over an optimized CPU
version, which itself is orders of magnitude faster than exact SVD methods. We
also describe a matrix partitioning scheme that easily adapts the algorithm to
out-of-core computation, suitable for very large matrices. We have tested our
algorithm on dense matrices up to 22,000× 22,000, as reported in Section 3.

Related Work. Acceleration of matrix decomposition algorithms on modern
GPUs has received significant attention in recent years. Galoppo et al. [5] reduced
matrix decomposition and row operations to a series of rasterization problems
on the GPU, and Bondhugula et al. [1] provided a GPU-based implementation of
SVD using fragment shaders and frame buffer objects. Since then, the availability
of general programming language such as CUDA has made it possible to program
the GPU without relying on the graphics pipeline. In [13], a number of matrix
factorization methods are implemented using CUDA, including LU, QR and
Cholesky, and considerable speedup is achieved over optimized CPU algorithms.
GPU-based QR decomposition was also studied by [9] using blocked Householder
reflections. Recently, Lahabar et al. [10] presented a GPU-based SVD algorithm
built upon the Golub-Reinsch method. They achieve up to 8× speedup over an
Intel MKL implementation running on dual core CPU. Like most existing work
(including commercial GPU-based linear algebra toolkit such as CULA [7]), their
focus is on solving the exact SVD. In contrast, our goal is to solve approximate
SVD on the GPU, which can provide additional performance gain for many
large-scale problems in practical applications.

2 Algorithm

2.1 Overview

Given an m× n matrix A (where n is the smaller dimension), the SVD factors
A into the product of three matrices: A = UΣV T where U and V are both
orthogonal matrices (UTU = I and V TV = I) and Σ is a diagonal matrix
storing the singular values. An exact SVD takes O(mn2) time to compute and
thus is expensive for large matrices. To approximate the SVD, we can construct
a subspace basis that captures the intrinsic dimensionality of A by sampling
rows or taking linear combinations of rows. The final SVD can be extracted
by performing an exact SVD on the subspace matrix, which is a much smaller

A GPU-Based Approximate SVD Algorithm 571

(a) Single cosine tree (b) Partitioned cosine trees

Fig. 1. (a) shows a single cosine tree; (b) shows a set of cosine trees constructed using
our partitioning scheme, such that all trees collectively build a common basis set.
Yellow arrow indicates the matrix rows that a tree node owns; red arrow indicates a
vector inserted into the basis set, which is the mean vector of the rows owned by a
node.

than the original matrix. For example, if the intrinsic dimensionality of A is
approximately k, where k � n, the computation cost is now reduced to O(mnk).

The QUIC-SVD [6] is a sample-based approximate SVD algorithm. It itera-
tively builds a row subspace that approximates A with controlled L2 error. The
basis construction is achieved using a binary tree called cosine tree, as shown in
Figure 1(a), where each node represents a collection (subset) of the matrix rows.
To begin, a root node is built that represents all rows (i.e. the entire matrix A),
and the mean (average) vector of the rows is inserted into the initial basis set.
At each iteration, a leaf node ns in the current tree is selected for splitting. The
selection is based on each node’s estimated error, which predicts whether split-
ting a node is likely to lead to a maximal reduction in the matrix approximation
error. To perform the splitting, a pivot row rp is sampled from the selected node
ns according to the length-squared distribution. Then, ns is partitioned into two
child nodes. Each child node owns a subset of rows from ns, selected by their
dot products with the pivot row. Specifically, rows closer to the minimum dot
product value are inserted to the left child, and the remaining are inserted to
the right child. Finally, the mean vector of each subset is added to the basis set,
replacing the mean vector contributed by the parent node.

Figure 1(a) shows the cosine tree constructed at an intermediate step of the
algorithm. Each leaf node represents a subset of rows, and contributes a mean
vector to the current basis set. As the tree is split further, the basis set expands.
The process terminates when the whole matrix approximation error is estimated
to fall below a relative threshold:

‖A− Â‖2F = ‖A−AV̂ V̂ T‖2F ≤ ε‖A‖2F

where V̂ is the approximate row basis set constructed using the algorithm, Â =
AV̂ V̂ T is the reconstructed matrix with the approximate SVD, and ‖·‖F denotes

572 B. Foster, S. Mahadevan, and R. Wang

the Frobenius norm. This error is calculated using a Monte Carlo estimation
routine, which estimates the projection error of A onto the row basis set V̂ . The
error estimation routine returns an error upper bound with confidence 1 − δ,
where δ is an adjustable parameter. Therefore, when δ is small, the error is
bounded by the returned value with high probability.

The Monte Carlo estimation works as follows. First, randomly select s rows
from the matrix using length-squared distribution, where s is logarithmic to
the number of rows. Second, project each selected row ri to the current basis
set V̂ , calculate the squared length of the projection ‖riV̂ ‖2F , and divide it by
the probability of selecting that row (recall the probability is proportional to
the squared length of that row). This results in a weighted squared magnitude
wSqMagi for each selected row. Intuitively, if a row is well represented by the
basis V̂ , the projection will preserve its squared magnitude. Finally, the mean
and variance of wSqMagi is used to model the statistics of all rows in A projected
onto V̂ , from which the error bound can be calculated. Details can be found in [6].

This Monte Carlo estimation routine is also used to estimate the error con-
tributed by a node, in order to prioritize the selection of nodes for splitting.
Intuitively, nodes with large error are not well-approximated by the current ba-
sis, and thus splitting them is likely to yield the largest benefit.

Whenever a vector is inserted into the basis set, it is orthogonalized against the
existing basis vectors using Gram-Schmidt orthogonalization. This is necessary
for the Monte Carlo error estimation and SVD extraction. Once the tree building
terminates, the current basis set accurately captures the row subspace of A, and
the final SVD can be extracted from the basis set by solving a much smaller
SVD problem.

In summary, the main computation loop involves the following steps: 1) select
a leaf node with the maximum estimated error; 2) split the node and create
two child nodes; 3) the mean vector of each child is inserted into the basis set
and orthonormalized (while the one contributed by the parent is removed); 4)
estimate the error of each child node; 5) estimate the error of the whole matrix
approximation, and terminate when it’s sufficiently small. For more details, we
refer the reader to [6].

2.2 GPU Implementation

We implemented QUIC-SVD using the CUDA programming language, in con-
junction with the CULA [7] library to extract the final SVD. We found that most
of the computation is spent on the following two parts: 1) computing vector inner
products and row means for node splitting; 2) Gram-Schmidt orthogonalization.
Therefore in the following we focus on discussing these two parts. The compu-
tation for each tree node is spread across the entire GPU device. Note that as
we assume the input matrix is low-rank, the number of nodes we need to create
is small relative to the matrix dimensions.

When we split a node, we need to compute the inner product of every row with
the pivot row (which is selected by sampling length-squared distribution of the
rows). Since a node does not necessarily span contiguous rows, we could not use

A GPU-Based Approximate SVD Algorithm 573

a simple matrix-vector multiplication call to accomplish this step. Rearranging
the rows of each node into contiguous chunks after each split was not an option,
as this would incur excessive memory traffic. Instead, we maintain an index array
at each node to point to the rows that the node owns, and then use a custom
CUDA kernel to compute all inner products in parallel. To maintain memory
coherence, we assign each CUDA block to a row. Thus all threads in a block
cooperatively work on a single row, which is stored contiguously in memory.
Next, the rows are split into two subsets based on their inner products with the
pivot row. Specifically, we first use a parallel reduction to compute the minimum
and maximum inner product values, then assign a subset label to each row based
on whether its inner product value is closer to the minimum or maximum. For
each subset we again use a custom CUDA kernel to compute the mean vector,
which will be inserted into the basis set.

When we add a new mean vector to the basis, it must be orthonormalized with
respect to the existing basis vectors with the Gram-Schmidt process. Given a
set of orthonormal basis vectors v1, ...,vk and a new basis vector r, the classical
Gram-Schmidt process would compute

r′ = r− pv1(r)− ...− pvk
(r), and vk+1 = r′/‖r′‖

where pv(r) = (r · v)v denotes the projection of r onto v. Both the projection
and subtraction can be done in parallel, but the numerical stability is poor. The
modified Gram-Schmidt process subtracts the projection vector sequentially:

r1 = r− pv1(r); r2 = r1 − pv2(r1); ... r′ = rk = rk−1 − pvk
(rk−1)

This is mathematically the same, but the numerical stability is improved greatly.
Unfortunately, this formulation serializes the computation and cannot be easily
parallelized.

To exploit the benefits of both, we propose to use a blocked Gram-Schmidt
process [8], which involves partitioning the basis vectors into κ blocks (subsets).
Within each block, we use the classical Gram-Schmidt to gain parallelism; and
across blocks we use the modified Gram-Schmidt to gain numerical stability.
Specifically, assume the current set of basis vectors is partitioned into the fol-
lowing κ blocks: V1, ..., Vκ(κ� k). We will then compute

u1 = r−GS(r, V1), u2 = u1 −GS(u1, V2), ...uκ = uκ−1 −GS(uκ−1, Vκ) = r′

where GS(u, V) denotes the standard Gram-Schmidt orthogonalization of u with
respect to basis subset V . Note that when κ = 1 or κ = k, the algorithm
degenerates to the classical or the modified Gram-Schmidt respectively. We set
κ such that each block contains approximately 20 basis vectors, and we have
found that this provides a good tradeoff between speed and numerical stability.

Among the other steps, the Monte Carlo error estimation is straightforward
to implement on the GPU; selecting a splitting node is achieved with a priority
queue [6] maintained on the CPU; and the extraction of the final SVD is per-
formed with the CULA toolkit. The cost of SVD extraction is insignificant as it

574 B. Foster, S. Mahadevan, and R. Wang

only involves computing the SVD of a k×k matrix. The priority queue is imple-
mented on the CPU because it’s inefficient to implement such a data structure
on the GPU. Moreover, as the priority queue requires only a small amount of
data to be transferred between the CPU and GPU, it incurs very little overhead.

2.3 Partitioned Version

To accommodate large datasets, we introduce a partitioned version of the algo-
rithm that can process matrices larger than GPU or even main memory size.
While the original QUIC-SVD algorithm [6] did not consider out-of-core com-
putation, we found that the structure of the cosine tree lends itself naturally
to partitioning. To begin, we split the matrix A into s submatrices A1, ..., As,
each containing �m/s� consecutive rows from A. Next, we run QUIC-SVD on
each submatrix Ai sequentially. A naive algorithm would then simply merge the
basis set constructed for each submatrix Ai to form a basis for the whole matrix.
While this would give correct results, it would introduce a lot of redundancy (as
each basis set is computed independently), and consequently reduce efficiency.

We make a small modification to the algorithm to eliminate redundancy. We
build an individual cosine tree for each submatrix Ai, but all submatrices share
a common basis set. The algorithm processes the submatrices sequentially in or-
der. When processing submatrix Ai, the corresponding matrix rows are loaded
into GPU memory, and a new cosine tree is constructed. The basis set from
previous submatrices is used as the initial basis. If the error estimated from this
basis is already below the given threshold, the algorithm will stop immediately
and proceed to the next submatrix. Intuitively this means submatrix Ai is al-
ready well represented by the current basis set, hence no update is necessary.
Otherwise, the algorithm processes Ai in the same way as the non-partitioned
version, and the basis set is expanded accordingly. Once we are done with the
current submatrix, the GPU memory storing the matrix rows is overwritten with
the next submatrix.

After a complete pass through every submatrix, we observe that the whole
matrix approximation error is equal to the sum of the each subset’s approxi-
mation error, which is bounded by the given relative error threshold. In other
words:

‖A− Â‖2F =
∑s

i=1 ‖Ai − Âi‖2F ≤
∑s

i=1 ε‖Ai‖2F = ε‖A‖2F
where Âi = AiV̂ V̂

T is the submatrix Ai reconstructed using the row basis V .
The equalities in the above equation hold due to the definition of the squared
Frobenius norm, which sums over the squares of individual elements. Thus by
controlling the relative error of each submatrix, we can bound the error of the
whole matrix in the end. Figure 1(b) shows an example of three cosine trees
sharing a common basis.

Note that by using partitioning, only a fraction of the matrix data are loaded
to GPU memory at a time, allowing for out-of-core computation. However,
a downside with this method is that it serializes the processing of submatri-
ces, thus is not suitable for parallel computation on multiple GPU devices.

A GPU-Based Approximate SVD Algorithm 575

(a) Running time reported for each of the three algorithms listed.

(b) Plots of speedup factors comparing each pair of algorithms.

Fig. 2. Performance and speedup comparisons for the following three algorithms: CPU
QUIC-SVD, GPU QUIC-SVD, and MATLAB’s svds. The input matrices are randomly
generated with size ranging from 10002 to 75002 and rank ranging from 100 to 1000.

One approach to address this issue would be to process one submatrix indepen-
dently on each GPU, and then merge the results on a single GPU. The merging
step is essentially performing another QUIC-SVD. The related error analysis of
this approach remains for future work.

SVD Extraction. Given a matrix A ∈ R

m×n and a basis V̂ ∈ R

n×k, QUIC’s
SVD-extraction procedure first projects A onto the basis, resulting in an m× k
matrix P = AV̂ . It then computes an exact SVD on the k × k matrix PTP ,
resulting in U ′Σ′V ′T = PTP . Note that this step can be replaced by an eigen-
decomposition of P . Finally, the approximate SVD of A is extracted as V = V̂ V ′,
Σ =

√
Σ′, and U = PV ′Σ−1.

We assume that P can fit in memory, since k � n. The matrix A cannot fit
in memory, so we once again load A into memory one block at a time. Given a
block Ai, the corresponding block of Pi ⊂ P is AiV̂ . After we have completed a
pass over all of A, the entire P is in memory. We then proceed with the rest of
the computation as described above.

576 B. Foster, S. Mahadevan, and R. Wang

3 Results

For testing and evaluation, we compared results of our GPU-based algorithm to
the following three implementations: 1) a multi-threaded CPU version of QUIC-
SVD; 2) MATLAB svds routine; and 3) the Tygert SVD [11], which is a fast
CPU-based approximate SVD algorithm built upon random projection. To make
fair comparisons, we have optimized the CPU version as much as we can. We
used Intel Math Kernel Library for linear algebra operations and OpenMP for
all applicable loops. In each test case, we plot the running time as well as the
speedup over a range of matrix sizes and ranks. We use random matrices for
testing. Given a rank k and size n, we first generate an n×k matrix and a k×n
matrix filled with uniform random numbers between [−1, 1]; we then multiply
them to obtain an n×nmatrix of rank k. Our experimental results were collected
on a PC with an Intel Core i7 2.66 GHz CPU (which has 8 hyperthreads), 6 GB of
RAM, and an NVIDIA GTX 480 GPU. Both the CPU and GPU algorithms use
double-precision arithmetic. For QUIC-SVD, we set the relative error threshold
ε = 10−12, and δ = 10−12 (in Monte Carlo error estimation) for all experiments.
All timings for the GPU implementation includes both the data transfer time
(to and from the GPU) and actual computation time (on the GPU).

Figure 2(a) shows a performance comparison of our GPU implementation vs.
the CPU implementation of QUIC-SVD as well as MATLAB svds. The matrix
size ranges from 1, 0002 to 7, 5002 (the largest that svds could handle on our
system), and the matrix rank ranges from 100 to 1000. All three algorithms
were run with the same input and similar accuracy, measured by the L2 error
of SVD approximation. Figure 2(b) plots the speedup factor for the same tests.
In addition, we show the speedup factor of the CPU version of QUIC-SVD
over svds. We observe that the CPU QUIC-SVD is up to 30 times faster than
svds, and our GPU implementation is up to 40 times faster. In both cases, the
maximum speedup is achieved under a large and low-rank matrix. This makes
sense because matrices with lower ranks favor the QUIC-SVD algorithm. From
this plot we can see that the speedup primarily comes from the QUIC-SVD
algorithm itself. If we compare the GPU and the CPU versions of QUIC-SVD
alone, the maximum speedup of the GPU version is about 3 times (note that
the two have their peak performances at different points). Although this is a
moderate speedup, it will become more significant for larger matrices (shown
below), as the GPU’s parallelism will be better utilized.

Figure 3(a) shows a performance comparison of our GPU and CPU implemen-
tations to Tygert SVD [11], which is a very fast approximate SVD algorithm that
exploits random projection. Here we set the size of the test matrices to range
from 1, 0002 to 22, 0002, and the rank to range from 100 to 1000. As a 22, 0002

(double precision) matrix is too large to fit in GPU memory, we used our par-
titioned version with 4 partitions. Again all three algorithms were run with the
same input and comparable accuracy. Figure 3(b) plots the speedup factor for
each pair of the tests. Note that the CPU version and Tygert algorithm have
comparable performance, while the GPU version is up to 7 times faster than

A GPU-Based Approximate SVD Algorithm 577

(a) Running time reported for each of the three algorithms listed.

(b) Plots of speedup factors comparing each pair of algorithms.

Fig. 3. Performance and speedup comparison for the following three algorithms: CPU
QUIC-SVD, GPU QUIC-SVD, and Tygert SVD. The input matrices are randomly
generated with size ranging from 10002 to 220002 and rank ranging from 100 to 1000.

either. Although the GPU version does not perform as well on small matrices due
to the data setup and transfer overhead, its benefits are evident for large-scale
matrices.

4 Conclusions and Future Work

In summary, we have presented a GPU-based approximate SVD algorithm. Our
method builds upon the QUIC-SVD algorithm introduced by [6], which exploits
a tree-based structure to efficiently discover the intrinsic subspace of the in-
put matrix. Results show that our GPU algorithm achieves 6∼7 times speedup
over an optimized CPU implementation. Using a matrix partitioning scheme, we
have extended our algorithm to out-of-core computation, suitable for very large
matrices.

In ongoing work, we are modifying our GPU algorithm to work with sparse
matrices. This is important as large-scale matrices tend to be sparse. We will also
test our algorithm in practical applications. One application we are particularly

578 B. Foster, S. Mahadevan, and R. Wang

interested in is extracting singular vectors from large graph Laplacians. This is
instrumental for certain machine learning problems such as manifold alignment
and transfer learning. Finally, we have found that the Monte Carlo error estima-
tion is taking a considerable amount of overhead. We would like to investigate
more efficient error-estimation schemes.

Acknowledgments. We would like to thank Alexander Gray for providing
details of the QUIC-SVD algorithm. This work is supported by NSF grant
FODAVA-1025120.

References

1. Bondhugula, V., Govindaraju, N., Manocha, D.: Fast SVD on graphics processors.
Tech. rep., UNC Chapel Hill (2006)

2. Deshpande, A., Vempala, S.: Adaptive Sampling and Fast Low-Rank Matrix Ap-
proximation. In: Dı́az, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006
and RANDOM 2006. LNCS, vol. 4110, pp. 292–303. Springer, Heidelberg (2006)

3. Friedland, S., Niknejad, A., Kaveh, M., Zare, H.: Fast Monte-Carlo low rank ap-
proximations for matrices. In: Proc. of IEEE/SMC International Conference on
System of Systems Engineering (2006)

4. Frieze, A., Kannan, R., Vempala, S.: Fast Monte-Carlo algorithms for finding low-
rank approximations. J. ACM 51, 1025–1041 (2004)

5. Galoppo, N., Govindaraju, N.K., Henson, M., Manocha, D.: LU-GPU: Efficient
algorithms for solving dense linear systems on graphics hardware. In: Proc. of the
2005 ACM/IEEE Conference on Supercomputing, p. 3 (2005)

6. Holmes, M., Gray, A., Isbell, C.L.: QUIC-SVD: Fast SVD using Cosine trees. In:
Proc. of NIPS, pp. 673–680 (2008)

7. Humphrey, J.R., Price, D.K., Spagnoli, K.E., Paolini, A.L., Kelmelis, E.J.: CULA:
hybrid GPU accelerated linear algebra routines. In: Proc. SPIE, p. 7705 (2010)

8. Jalby, W., Philippe, B.: Stability analysis and improvement of the block Gram-
Schmidt algorithm. SIAM J. Sci. Stat. Comput. 12, 1058–1073 (1991)

9. Kerr, A., Campbell, D., Richards, M.: QR decomposition on GPUs. In: Proc. of
the 2nd Workshop on GPGPU, pp. 71–78 (2009)

10. Lahabar, S., Narayanan, P.J.: Singular value decomposition on GPU using CUDA.
In: Proc. of IEEE International Symposium on Parallel & Distributed Processing,
pp. 1–10 (2009)

11. Rokhlin, V., Szlam, A., Tygert, M.: A randomized algorithm for principal compo-
nent analysis. SIAM J. Matrix Anal. Appl. 31, 1100–1124 (2009)

12. Sarlos, T.: Improved approximation algorithms for large matrices via random pro-
jections. In: Proc. of the 47th Annual IEEE Symposium on Foundations of Com-
puter Science, pp. 143–152 (2006)

13. Volkov, V., Demmel, J.: LU, QR and Cholesky factorizations using vector
capabilities of GPUs. Tech. rep., UC Berkeley (2008)

Automatic CUDA Code Synthesis Framework

for Multicore CPU and GPU Architectures

Hanwoong Jung1, Youngmin Yi2, and Soonhoi Ha1

1 School of EECS, Seoul National University,
Seoul, Korea

{jhw7884,sha}@iris.snu.ac.kr
2 School of ECE, University of Seoul,

Seoul, Korea
ymyi@uos.ac.kr

Abstract. Recently, general purpose GPU (GPGPU) programming has
spread rapidly after CUDA was first introduced to write parallel pro-
grams in high-level languages for NVIDIA GPUs. While a GPU exploits
data parallelism very effectively, task-level parallelism is exploited as a
multi-threaded program on a multicore CPU. For such a heterogeneous
platform that consists of a multicore CPU and GPU, we propose an au-
tomatic code synthesis framework that takes a process network model
specification as input and generates a multithreaded CUDA code. With
the model based specification, one can explicitly specify both function-
level and loop-level parallelism in an application and explore the wide
design space in mapping of function blocks and selecting the commu-
nication methods between CPU and GPU. The proposed technique is
complementary to other high-level methods of CUDA programming.

Keywords: GPGPU, CUDA, model-based design, automatic code
synthesis.

1 Introduction

Relentless demand for high computing power is leading us to a many core era
where tens or hundreds of processors are integrated in a single chip. Graphics
Processor Units (GPUs) are the most prevailing many-core architecture today.
Compute Unified Device Architecture (CUDA) is a programming framework re-
cently introduced by NVIDIA, which enables general purpose computing on
Graphics Processing Units (GPGPU). With massive parallelism of GPGPU,
CUDA has been very successful for acceleration of a wide range of applica-
tions in various domains. CUDA is essentially a C/C++ programming language
with several extensions for GPU thread execution and synchronization as well
as GPU-specific memory access and control. Its popularity has grown rapidly,
as it allows programmers to write parallel program in high-level languages and
achieve huge performance gain by utilizing the massively parallel processors in
a GPU effectively.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 579–588, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

580 H. Jung, Y. Yi, and S. Ha

Although GPU computing can increase the performance of the task by ex-
ploiting data parallelism, it is common that not all tasks can be executed in
GPUs as they expose insufficient data parallelism or they require more mem-
ory space than the GPU can provide, and so on. While a GPU exploits data
parallelism very effectively, task-level parallelism is more easily exploited as a
multi-threaded program on a multi-core CPU. Thus, to maximize the overall ap-
plication performance, one should exploit the underlying heterogeneous parallel
platforms that consist of both multi-core CPU and GPU.

It is very challenging to write parallel programs on heterogeneous parallel plat-
forms. It is a well-known fact that high performance is not easily achieved by
parallel programming. It is reported that about 100-fold performance improve-
ment is achieved by optimizing the parallel program in a heterogeneous system
that consists of a host and a GPU [1]. But optimizing a parallel program is very
laborious and time-consuming. To help CUDA programming, several program-
ming models and tools have been proposed, which will be reviewed in the next
section. In this paper, we propose a novel model-based parallel programming
methodology.

We specify a program with a task graph where a node represents a code
segment and an arc represents the dependency and interaction between two
adjacent nodes. The task graph has the same execution semantics as dataflow
graphs: a node becomes executable when it receives data from the predecessor
nodes [2] [3] and an arc represents a FIFO queue that stores the data samples
transferred from the source node to the destination node. Such dataflow models
express the task-level parallelism of an application naturally. A node can be
mapped to a CPU processor core or to a GPU. We identify a data-parallel node
that may be mapped to the GPU, to explicitly express the data parallelism. A
data-parallel node is associated with a kernel to be executed in the GPU.

From this specification, one can explore a wide design space that is constructed
according to how design choices are combined: which node should be mapped
to the CPU and implemented in C, or mapped to the GPU and implemented in
CUDA kernel? And we can select the types of communication APIs between CPU
and GPU and kernel invocation methods. Therefore, in this paper, we propose
an automatic code synthesis framework that takes as input a dataflow graph
(similar to KPN graph) and generates CUDA code for heterogeneous GPGPUs
and multi-core CPU platforms.

2 Related Work

Since CUDA places on the programmer the burden of packaging GPU code in
separate functions, of explicitly managing data transfer, and of manually op-
timizing the utilization of the GPU memory, there is keen interest in develop-
ing a high-level method of CUDA programming without worrying about the
complexity of the underlying GPU architecture.
hiCUDA [4] is an example that has been proposed as a directive-based pro-

gramming language for CUDA programming. It uses compiler directives to spec-
ify parallel execution region of the application similarly to OpenMP. A hiCUDA

CUDA Code Synthesis Framework for Multicore CPUs and GPUs 581

compiler translates it to an equivalent CUDA program without any modification
to the original sequential C code.

In our framework, it is assumed that the kernel function is given. Therefore, if
we assume the kernel function code can be obtained using hiCUDA, our frame-
work is complementary to the works.
GPUSs [5] is a directive-based programming model for exploiting task par-

allelism as well as data parallelism. So it focuses on heterogeneous systems with
general purpose processors and multiple GPUs. Also it supports other targets
such as Cell BE, SMP with almost the same user experience. Although its run-
time system keeps track of the input and output of each kernel in order to reduce
the communication, they do not support asynchronous communication between
the CPU and the GPU for overlapping the data transfer and the kernel execution
yet to our best knowledge.
StreamIt [6] is a programming model especially targeting for streaming ap-

plications. It is based on a dataflow model with a block-level abstraction: a basic
unit for a block is called a filter. The filters can be connected in a commonly
occurred predefined fashion into composite blocks such as pipelines, split-joins,
and feedback loops. Like our framework, StreamIt supports other heterogeneous
platforms such as Cell BE. It is not known to us, however, how to explore the
design space of CUDA programming.
Jacket [7] is a runtime platform for executing MATLAB code on GPG-

PUs. It supports simple casting functions to create GPU data structure allowing
programmers to describe the application with the native MATLAB language.
Through simply casting the input data, native MATLAB functions wrap those
input into GPU functions.

3 Motivation: CUDA Programming

Typical GPUs consist of hundreds of processing cores that are organized in a
hierarchical fashion. A computational unit of GPU that is executed by a number
of CUDA threads is called the kernel. A kernel is defined as a function with the
special annotation, and the kernel is launched in the GPU when the kernel
function is called in the host code. The number of threads to be launched can
be configured when the kernel is called.

CUDA assumes heterogeneous architectures that consist of different type of
processors (i.e., CPUs and GPUs) and separate memory spaces. GPU has its
own global memory separated from the host memory; therefore, to execute a
kernel in GPU, input data needs to be copied to the GPU memory from the
host memory. Likewise, the result needs to be copied from the GPU memory to
the host memory after the kernel is completed.

A CUDA program usually uses a fork-join model of parallel execution: when
it meets a parallelizable section of the code, it defines the section as a kernel
function that will be executed in the GPU by launching a massive number of
threads (fork). And the host CPU waits until it receives the result back from the
GPU (join) and continues. The maximal performance gain can be formulated as
follows:

582 H. Jung, Y. Yi, and S. Ha

G(x) =
S + P

S + C +
P

N

=
1

x+
1− x
N

+
C

S + P

(1)

where S and P mean the execution time of the sequential section and the paral-
lelizable section to be accelerated by GPU and C means the communication and
synchronization overhead between CPU and GPU. N is the effective number of
processors in the GPU, which is usually very large, and x presents the ratio of
the sequential section in the application. It is observed that C is not negligible
and often becomes the limiting factor of the performance gain. In equation (1),
if P increases and C remains small, synchronous communication is commonly
used between the host CPU and the GPU.

In this paper, however, we also consider the case where P is not dominant
so that it is important to use task-parallelism that is included in S, and reduce
the communication overhead C in equation (1). So we utilize the multi-core
CPU maximally by making a multi-threaded program, in which a thread is
mapped to the GPU if the thread has a massive data parallelism inside. And
to overlap kernel execution and data communication between the CPU and the
GPU, asynchronous CUDA APIs are also considered.

Therefore the design space of CUDA programming is defined by the following
design axes: mapping of tasks to the processing elements, number of GPUs,
communication protocols, and the communication optimization methods that
will be discussed later in section 6. In this paper, we explore the design space of
CUDA programming for a given task graph specification graph.

4 The Proposed CUDA Code Synthesis Framework

Fig. 1 illustrates the overall flow of the proposed CUDA code synthesis frame-
work. An application is specified in a task graph based on the CIC model that
has been proposed as a parallel programming model [8]. A CIC task is a concur-
rent process that communicates with other tasks through FIFO channels. We
assume that the body of the task is defined in a separate file suffixed by .cic.
If a task has data-parallelism inside, we assume that two definitions of the task
are given, one for a CPU thread implementation and the other for a GPU kernel
implementation. Architecture information is separately specified that defines the
number of cores in the CPU and the number of GPUs available.

In the mapping stage, the programmer decides which task node to execute on
which component in the target architecture. While multiple tasks can be mapped
onto a single GPU, a single task cannot be mapped onto multiple GPUs. After
mapping is determined, programmers should decide further design configura-
tions such as communication methods between CPU and GPU, and the number
of CUDA threads, and the grid configuration for each GPU task (i.e., CUDA
kernel).

CUDA Code Synthesis Framework for Multicore CPUs and GPUs 583

CIC task graph
(task code: .cic file)

Architecture
information file

(.xml)

Mapping decision

CUDA translator for CIC

Task Code
generation

Scheduler, global
data structures
generation

Communication
code generation

Misc. files
generation

Build & Run Libraries

Fig. 1. Overall flow of the proposed CUDA code synthesis framework

Once these decisions have been made, we generate intermediate files for sub-
sequent code synthesis steps. The code synthesizer generates target executable
code based on the mapping and configuration information. In task code gen-
eration, GPU task is synthesized into a CUDA kernel code. Since the kernel
code itself is already given, the synthesizer only adds variable declarations for
parameters and includes the header files that declare the generic API proto-
types. The code synthesizer also generates a main scheduler function that creates
the threads and manages global data structures for tasks, channels, and ports.
In the current implementation, we support both POSIX threads and Windows
threads. In communication code generation, the synthesizer generates communi-
cation code between CPU host and GPU device by redefining the macros such
as MQ SEND(),MQ RECEIV E(), used as generic communication APIs in
the CIC model. As will be explained in the next section, we support various
types of communication methods. This information is kept in an intermediate
file (gpusetup.xml). There are additional files necessary for building process: for
example Makefile help the developer build programs easier.

global void Vector Add(int* C, int* A, int* B){
const int ix = blockDim.x * blockIdx.x + threadIdx.x;
C[ix] = A[ix] + B[ix];

}
TASK GO {

MQ RECEIVE(port input1, DEVICE BUFFER(input1), sizeof(int) * SIZE);
MQ RECEIVE(port input2, DEVICE BUFFER(input2), sizeof(int) * SIZE);
KERNEL CALL(Vector Add, DEVICE BUFFER(output), DEVICE BUFFER

(input1), DEVICE BUFFER(input2));
MQ SEND(port output, DEVICE BUFFER(output), sizeof(int) * SIZE);

}

Fig. 2. A CUDA CIC task file (VecAdd.cic)

584 H. Jung, Y. Yi, and S. Ha

Fig. 2 shows a simple CIC task code (VecAdd.cic) that defines a CUDA ker-
nel function. The main body of the task is described in the TASK GO section
that uses various macros whose prototypes are given as templates in the user in-
terface of the proposed framework. The DEV ICE BUFFER(port name) API
indicates GPU memory space for the channel and GPU memory allocation code
is automatically generated by the code synthesizer relieving the programmers
burden. GPU memory de-allocation code is also automatically generated at
the wrap-up stage of the task execution. The kernel launch is define by the
KERNEL CALL(kernelfunctionname, parameter1, parameter2, ...) macro.

5 Code Generation for CPU and GPU Communication

5.1 Synchronous/Asynchronous Communication

CUDA programming platform supports both of synchronous and asynchronous
communications. With the synchronous communication method, the CPU task
that calls the methods can only proceed after the communication completes.
Asynchronous communication is usually better for higher throughput but syn-
chronous communication methods require less memory space than the asyn-
chronous ones where additional memory allocations for stream buffers are re-
quired. Kernel launches are by default asynchronous executions so that the
function call returns immediately and the CPU thread can proceed during the
launched kernel is executed. Communications (i.e., memory copy) performed by
CUDA APIs that are suffixed with async also behave in this manner: instead
of blocking the CPU until the memory copy is finished, it returns immediately.
Moreover, using streams the communication and kernel execution can be over-
lapped hiding the communication time as shown in Fig. 3. Kernel executions and
memory copy with different streams do not have any dependency, and therefore
can be executed asynchronously overlapping their operations. On the contrary,
operations with the same stream should be serialized. The same stream is used

#1: HtoD(0)

#1: Kernel(0)

#2: HtoD(1)

#2: DtoH(0)

#2: Kernel(1)

HtoD [0]

Kernel [0]

Iteration
#1

HtoD [1]

Sync [0]

Kernel [1]

DtoH [0]

Sync [0]

Iteration
#2

HtoD [0]

Sync [1]

Kernel [0]

DtoH [1]

Sync [1]

Iteration
#3

#3: HtoD(0)

#3: DtoH(1)

#3: Kernel(0)

#4: DtoH(0)

Fig. 3. (a) Asynchronous calls with the stream ID and (b) the execution timeline of
each stream

CUDA Code Synthesis Framework for Multicore CPUs and GPUs 585

to specify the dependency between CUDA operations and a synchronization
function (i.e., streamSynchronize ()) denoted as ”Sync” in Fig. 3 should be
called later to guarantee the completion of the actual copying.

5.2 Bypass/Clustering Communication

To reduce the communication overhead, we define two optimization methods in
the proposed code synthesizer, bypass and clustering as depicted in Fig. 4. By
default, the data in a channel is copied into the local buffer in a task. If we want
to accelerate the task utilizing GPUs, we should copy the data in the local buffer
into the GPU device memory. Hence, it copies the data twice. To reduce such
a copy overhead, we implement bypass communication. In bypass method, the
data in the channel is copied to the device memory directly, not through the
local buffer.

Task 1 Task 2

 GPGPU
Device

memory

Task 1 Task 2

 GPGPU
Device

memory

Local Buffer

D i

Copy at once!

(a) Bypass communication (b) Cluster communication

Fig. 4. Bypass/Clustering communication

In case there are more than one input/output channels and the size of data is
not large, the setup overhead of Direct Memory Access (DMA) becomes signifi-
cant, sometimes even larger than the actual memory copy overhead. To reduce
this overhead, we support clustering communication: After the data in all of the
input channels are copied into the local buffer inside the task, we send all the
data into the device memory at once. This local cluster buffer is declared and
allocated by the code synthesizer automatically freeing the programmers from
detailed implementation.

N∑
i=1

(Di ∗DMAcost+DMAsettingtime) (2)

N∑
i=1

(Di ∗Memcpycost) +

N∑
i=1

(Di) ∗DMAcost+DMAsettingtime (3)

(Di: Sample data size of channel ith)

The total execution time of the bypass method and the clustering method is
formalized in equation (2) and (3) respectively. Comparing these two values, we
choose the better technique for communication optimization.

586 H. Jung, Y. Yi, and S. Ha

6 Experiments

For experiments, we used Intel Core i7 CPU (2.8GHz) with Debian 2.6.32-29
Linux distribution and two Tesla M2050 GPUs. For CUDA programming, we
used NVIDIA GPU Computing SDK 3.1 and CUDA toolkit v3.2 RC2.

6.1 Matrix Multiplication

We performed experiments with a simple matrix multiplication example to com-
pare communication overhead between the bypass method and the clustering
method. Two tasks send matrices to a task which multiply two matrices. So
there are two input channels in the task.

Fig. 5. Communication cost for two communication methods

Fig. 5 shows the communication time (in usec units) of two methods varying
the data size (in KBs). When the data size is smaller than 128 KB, it takes less
time with the clustering method. Otherwise, the bypass method is better.

6.2 Lane Detection Algorithm

With a real-life example of lane-detection algorithm, we performed the design
space exploration of CUDA programming in the proposed framework. As shown
in the Fig. 6, the algorithm consists of two filter chains; one is for detecting
the lane in the frame and the other is for providing clearer image display to
the driver. Tasks with gray color indicate that they can be mapped to GPU.
We used the Highway.yuv video clip which consists of 300 frames of HD size
(1280x720).

Table 1 shows the execution time of each task on a CPU core and a GPU,
obtained by profiling. As can be seen in the table, filter tasks have enough data
parallelism to be run on a GPU. Since our target platform contains two GPUs,
we can use two GPUs in the mapping stage. As of now we perform manual
mapping based on the profiling information of Table 1.

CUDA Code Synthesis Framework for Multicore CPUs and GPUs 587

Load
Image

KNN

NLM

KNN

NLM

Image
denoising Filter

Gaussian Sobel MergeGaussian Sobel

Edge detection Filter

Blending Sharpen

Non-
Maximum
Suppression

Hough
Transform

Store
Image

YUV to
RGB

RGB to
YUV

Draw
Lane

Fig. 6. Task graph of lane detection application

Table 1. Profiling information of tasks (unit: usec)

Task CPU GPU Task CPU GPU Task CPU GPU

LoadImage 479 - KNN 4963268 1615 YUVtoRGB 70226 265

NLM 6911048 13740 Gaussian 389758 1110 Blending 62069 294

Sobel 36616 181 Sharpen 336404 714 Non-max 473716 1752

Merge 45500 245 Hough 369178 2820 RGBtoYUV 76848 300

Draw Lane 3740 - StoreImage 1068 - - - -

In this experiment, we compared the following three cases: 1) All tasks are
mapped on the CPU 2) All GPU-mappable tasks are mapped on a single GPU
3) All GPU-mappable tasks of each filter chain are mapped on each GPU (tasks
with solid line in Fig. 6: GPU 0, tasks with dashed line in Fig. 6: GPU 1). Since
all tasks have only one or two input ports, we used the bypass method. The
result is shown in Table 2. Note that we also varied the number of streams for
asynchronous communication to change the depth of pipelining.

By using one GPU, we could get about 140X speed-up compared using only
one CPU core. When we used two GPUs, we could further increase the per-
formance by more than 20% from the gain with one GPU. With asynchronous
communications when using one GPU, we could increase the performance gain
by 20%. The gain was reduced to 13% when we used two GPUs because the data
transfer itself between the device memories in GPU took little time compared
to the transfer between the CPU memory and the GPU memory.

Table 2. Results of design space exploration (unit: sec)

CPU 2109.500

Sync Async 2 Async 3 Async 4

1 GPU 12.485 10.654 10.645 10.653

2 GPUs 9.845 9.254 9.168 8.992

* ”Async N” denotes asynchronous communication with N streams.

588 H. Jung, Y. Yi, and S. Ha

7 Conclusions

In this paper, we propose a novel CUDA programming framework that is based
on a dataflow model for application specification. The proposed code synthesizer
supports various communication methods, so that a user can select suitable com-
munication methods by simply changing the configuration parameters through
the GUI. Also we can change the mapping of tasks easily, which increases the
design productivity drastically. The proposed methodology could be applied for
other platforms such as Cell BE and multi-processor systems. We verified the
viability of the proposed technique with the real-life example.

Acknowledgements. This work was supported by Seoul R&BD Program
(JP090955), the 2010 Research Fund of the University of Seoul, the MKE
(The Ministry of Knowledge Economy), Korea, under the ITRC(Information
Technology Research Center), National Research Foundation of Korea Grant
funded by the Korean Government (NRF-2011-0013479) and research Grant
of Education and Research Foundation College of Engineering, Seoul National
University.

References

1. Kirk, D., Hwu, W.: Programming Massively Parallel Processors: A Hands-on Ap-
proach, pp. 78–79. Morgan Kaufmann Publisher (2010)

2. Kahn, G.: The semantics of a simple language for parallel programming. In:
Proceedings of IFIP Congress, vol. 74, pp. 471–475 (1974)

3. Lee, E.A., Messerschmitt, D.G.: Synchronous Data Flow. Proceedings of the
IEEE 75(9), 1235–1245 (1987)

4. Han, T.D., Abdelrahman, T.S.: hiCUDA: A High-level Language for GPU program-
ming. IEEE Transactions on Parallel and Distributed Systems 22(1), 78–90 (2011)

5. Ayguadé, E., Badia, R.M., Igual, F.D., Labarta, J., Mayo, R., Quintana-Ort́ı,
E.S.: An Extension of the StarSs Programming Model for Platforms with Multiple
GPUs. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704,
pp. 851–862. Springer, Heidelberg (2009)

6. Udupa, A., Govindarajan, R., Thazhuthaveetil, M.J.: Software Pipelined Execution
of Stream Programs on GPUs. In: Symposium on Code Generation and Optimiza-
tion, pp. 200–209 (2009)

7. Accelereyes,
http://wiki.accelereyes.com/wiki/index.php/Jacket_Documentation

8. Kwon, S., et al.: A Retargetable Parallel-Programming Framework for MPSoC. In:
TODAES, vol. 13, pp. 1–18 (July 2008)

http://wiki.accelereyes.com/wiki/index.php/Jacket_Documentation

Accelerating the Red/Black SOR Method

Using GPUs with CUDA

Elias Konstantinidis and Yiannis Cotronis

Department of Informatics and Telecommunications,
University of Athens, 157 84 Ilisia

Athens, Greece
{ekondis,cotronis}@di.uoa.gr

Abstract. This work presents our strategy, applied optimizations and
results in our effort to exploit the computational capabilities of GPUs
under the CUDA environment in solving the Laplacian PDE. The par-
allelizable red/black SOR method was used. Additionally, a program for
the CPU, featuring OpenMP, was developed as a performance reference.
Significant performance improvements were achieved by using optimiza-
tion methods which proved to have substantial speedup in performance.
Eventually, a direct comparison of performance of both versions was re-
alised. A 51x speedup was measured for the CUDA version over the CPU
version, exceeding 134GB/sec bandwidth. Memory access patterns prove
to be a critical factor in efficient program execution on GPUs and it is,
therefore, appropriate to follow data reorganization in order to achieve
the highest feasible memory throughput.

Keywords: GPU computing, CUDA, SOR, PDEs, red/black.

1 Introduction

Traditionaly, conventional processors have been used to solve computational
problems. Modern graphics processors (GPUs) have become coprocessors with
significantly more computational power than general purpose processors. Their
large computational potential have turned them to a special challenge for solving
general-purpose problems with large computational burden. Thus, application
programming environments have been developed like the proprietary CUDA
(Compute Unified Development Architecture) by NVidia [1,8] and the OpenCL
(Open Computing Language) [4] which is supported by many hardware vendors.

CUDA environment is rapidly evolving and has become adequately mature [1].
It provides an elegant way for writing GPU parallel programs, by using a kind
of extended C language, without involving other graphics APIs.

Partial differential equations (PDEs) constitute an important sector of the
computational science field. To solve a PDE (i.e. Laplace equation) numerically
an iterative method can be employed [7]. One of the prefered methods is the SOR
(Successive OverRelaxation) method which provides a good rate of convergence.

The next section presents the related work. In section 3 the red/black method
is analyzed and in section 4 the various implementation options are discussed,

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 589–598, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

590 E. Konstantinidis and Y. Cotronis

where a different kernel was developed for each significant improvement. Perfor-
mance results are presented in section 5, where the most critical factors affecting
performance are emphasized and the conclusions follow in section 6.

2 Related Work

The simpler Jacobi method has been applied in CUDA for solving problems
like PDEs [12] but it is not suggested due to its slow convergence. Datta has
investigated stencil kernels in a variety of multicore and manycore architectures
[16]. OpenGL and CUDA implementations have been compared [9] in perfor-
mance and CUDA environment proves to be more efficient and flexible. Hybrid
implementations have also been published [15] utilizing both CPUs and GPUs.

The Gauss-Seidel method, providing faster convergence, has been applied in
CUDA implementations to accelerate fluid dynamic simulations [13,14]. GPUs
have also been used to accelerate Gauss-Seidel by making use of shading lan-
guages, like Cg, before native GPU computing languages, like CUDA, were de-
vised [17].

The SOR method can lead to even faster convergence [7]. It has been applied
to medical analysis [10] as well as to computational fluid dynamics [11], as these
kind of problems require a large number of calculations to be performed.

3 Red/Black SOR Method

The red/black SOR method belongs to the iterative methods family like the
Jacobi. The red black coloring allows easy parallelization. The calculation of all
elements in the same color can be handled independently of the others since
there is no data dependence between them(figure 1). Therefore, this problem is
an ideal one for parallelization.

Fig. 1. Red point values are affected only by the neighbouring black points

Moving on to the iterative process, values are calculated in two phases. At
first, red elements get updated and then black elements follow. Every point is
updated according to the neighbour point values(figure 1), as the equations (1)
and (2) indicate. The boundary values are assumed constant and predetermined.

uk+1
i,j = (1− ω)uki,j + ω(uki−1,j + uki+1,j + uki,j−1 + uki,j+1)/4 (1)

uk+1
i,j = (1− ω)uki,j + ω(uk+1

i−1,j + uk+1
i+1,j + uk+1

i,j−1 + uk+1
i,j+1)/4 (2)

Accelerating the Red/Black SOR Method Using GPUs with CUDA 591

The ω is the relaxation factor which allows faster convergence. The speed of
convergence is not a subject of this paper, thus the selected value is irrelevant.

This calculation is executed iteratively until the matrix values converge.
Checking for convergence is performed by calculating the sum of squared dif-
ferences between the current values and the previous iteration values.

4 Implementations

It’s important to realize that this application is bounded to memory bandwidth
and not to calculation throughput. Assuming that cache is being used efficiently,
N2 access reads and N2/2 access writes per red or black calculation stage are
required. This equals to 3xN2 total accesses for a full iteration. For each element
about 6 floating point operations are required. So, for the whole matrix 6xN2

flops and 3xN2 accesses are required, thus the mean flops per element access
ratio is 2, or 1

2 flops per byte access ratio, as single floating point precision has
been used. A satisfactory ratio is considered to be at least 10, which is much
higher [6]. The GTX280 GPU provides almost 1 TeraFlop peak computational
power and about 142GB/sec bandwidth, making a ratio of about 7 flops per
byte. Consequently, the performance is dependent on the memory bandwidth
capability of the GPU device.

4.1 GPU Implementations

Although the red/black method provides inherent parallelism, optimizing for
CUDA can be challenging. Memory access patterns, different memory types
present factors that have to be carefully considered in efficient implementations.

All kernels were developed in plain CUDA C code, thus no other high level
GPU libraries have been used (i.e. CUBLAS [2]).

Global Memory Usage Only. A simple CUDA implementation makes use
of global memory only. For efficient implementations the access pattern should
follow the recommendations for CUDA devices about using memory coalescing
[1]. Generally, for memory coalesced accesses all accesses of a warp should con-
cern addresses within the same memory segment. The exact requirements are
described in the CUDA programming guide [1].

Memory coalescing can not be satisfied for reading all three elements in a
row(ux−1,y, ux,y and ux+1,y) on CC(compute capability) devices below 1.2. Fortu-
nately, there are alternative ways for fetching these elements as it will be shown,
by using other memory types (i.e. shared memory) via thread cooperation.

In order to satisfy memory coalescing the compute efficiency had to be de-
creased. Half of the threads remain idle which causes serious under-utilization.

Texture Memory Usage. Memory access reads are performed through tex-
ture memory. Texture memory features an intermediate memory cache which is
optimized for 2D locality.

592 E. Konstantinidis and Y. Cotronis

However, as texture memory is not writable, all writes are performed to global
memory like previously. Thus, the low efficiency problem remains as the same
access pattern is employed for memory writes. Memory coalescing on writing, en-
forces half threads to remain idle. A memory structure reorganization is required
to confront idleness.

Element Reordering with Global Memory Usage. Each iteration works
by reading all red and black elements and writing back black elements or by
reading all black and red elements and writing back red elements. In order to
avoid sparse element accesses and to enforce coalescing, it would be better to
reorder matrix elements so to have the elements grouped according to its color.
Therefore, the matrix is split into 2 independent matrices, one having only the
red elements and the other only the black elements (figure 2). Each element
position (i, j) is transformed to a new one on the new matrix (i/2, j) which is
the red one if (i + j) mod 2 = 0 or otherwise the black one.

Fig. 2. Matrix element reordering. Mapping of odd numbered row elements (i) and
even numbered row elements (ii) to the reordered matrix elements.

Working with 2 distinct matrices for each color allows to use warp threads at
full efficiency while preseving coalescing. In each iteration either all red elements
are calculated or black elements are calculated. The total accessed bytes that
get discarded are reduced and average efficiency is increased.

Assuming that threads of a thread block can share data element values, all
read accesses are performed in a coalesced manner except for the overhanging
halo elements (figure 3). These halo elements are read individualy without co-
alescing, as they belong to different memory segments, which is inefficient (32
byte transactions per element on below CC 1.2 devices [1]). Data sharing be-
tween threads is accomplished through global memory cache on CC 2.x devices
or, as it will be shown, by using shared memory or texture memory.

The data reordering procedure requires some time which can be significant
on large matrices. Fortunately, due to the large number of iterations, the benefit
compensates its cost. Although, it could be efficiently implemented on the GPU,
it was left out of scope of this work and a CPU implementation was used.

The addressing of elements is now more complex. The neighbours of an ele-
ment are 3 vertical elements plus one on the left or right, depending on the row
number (figure 2: i, ii).

Accelerating the Red/Black SOR Method Using GPUs with CUDA 593

Fig. 3. Read accesses by a typical 4x4 thread block. Elements in light grey color are
read in a coalesced manner. Elements in dark grey color are read individually. The
elements in the 4x4 box maps to threads of a block.

Element Reordering with Texture Memory Usage. Another optimization
was applied by combining the use of texture memory with the previous optimiza-
tion. This resolves the non-coalesced element accessing issue via texture caching
that devices without global memory cache suffer. The inherent 2D locality nature
of the problem helps improve performance by using texture memory.

Element Reordering with Shared Memory Usage. Alternatively, shared
memory is used to cache block elements into fast gpu memory and reduce band-
width requirements. Shared memory is very fast but it’s use is more complicated
since it is not used implicitly like texture memory cache but as a software man-
aged cache instead.

First, a group of elements that fits to shared memory is read cooperatively
by a block of threads as already shown (figure 3). Using a synchronization point
(syncthreads()) after loading data, the access through shared memory is en-
sured to be in sync. Thereafter, all calculation data are fetched from shared
memory whose latency is two orders of magnitude lower than that of global
memory (when not cached) [3]. The destination element is accessed through
global memory and its access is coalesced.

The disadvantage of shared memory is the requirement of inserting synchro-
nization points and the additional instruction overhead in code. Synchronization
points present a point for stalling a multiprocessor as when threads of a block
wait on a synchronization point total threads ready for execution are reduced.
Thus, the chances for latency hiding through multithreading get decreased. Addi-
tionally, shared memory copies from/to global memory require extra instructions
contrary to cache memory.

For a thread block of size MxN, a (M + 2) × (N + 2) space of elements is
used in shared memory. Shared memory elements are accessed sequentially by
warp threads, thus this method provides bank conflict free accesses to shared
memory [1]. To have conflict free accesses M should be a mupliple of 16 for
1.x compute capability devices or a mupliple of 32 for 2.x compute capability
devices.

594 E. Konstantinidis and Y. Cotronis

4.2 Common Optimization Strategies

Additionally, to optimize kernels a few common optimization guidelines were
applied. In order to optimize the compute efficiency of the kernel the amount of
thread computation was increased. In the initial code each thread computed a
single element value. Having more values to be computed by each thread the part
of useful computation is increased. Additionally, memory accesses are decreased
since the values needed for a thread to calculate two neighboring elements are
overlapped. However, register usage is increased which in turn can reduce the
device occupancy. We call the number of elements computed by each thread as
thread granularity.

The group of elements that is calculated by a single thread was selected to be
in vertical order to accomodate the requirements for conflict free shared memory
accessing. In such way warp threads access consecutive elements of a row in
shared memory and bank conflicts are avoided. In contrast, choosing elements
horizontally would induce bank conflicts.

5 Performance Results

An execution of each kernel can give a picture of their performance. The kernels
were executed on a GTX280 GPU for a 2050× 2050 matrix (table 1) with con-
vergence detection. Convergence was detected after running for 3201 iterations.

For each kernel execution two time metrics have been measured. The time for
the pure kernel execution is mentioned as calculation time and the full execution
time is mentioned as execution time. Execution time includes both PCI-Express
data transfer time overhead and, possibly, the element reordering time overhead.
Times were measured by the standard clock() function and always in unit of
seconds.

As expected, the versions with reordered elements performed better than the
first two. Furthermore, the calculation time is only slightly less than the full
execution time so the element reordering process does not consume significant
proportion of the total execution time. The data transfer time is negligible for
this size of problem and as the precision of clock() function is not enough to
measure it precisely, both times appear equal in the case of kernel 2.

At first glance the texture version seems to be the best kernel. Surprisingly,
the shared memory kernel performs worse than the global memory kernel. The
instruction overhead, register pressure and synchronization cost for reading data
to shared memory, synchronizing, processing, synchronizing again and finally
writing back data to global memory diminishes the benefits of the low latency
shared memory. However, this may be missleading because at this point each
thread calculates just one element in every kernel (granularity=1).

Next, a number of executions for different configurations were performed for
global memory, texture memory and shared memory versions (all using reorder-
ing) on the 1026x1026 problem size for 10000 total iterations. Each configuration
is differentiated by block size and thread granularity, both of which affect the
pattern of elements in shared memory.

Accelerating the Red/Black SOR Method Using GPUs with CUDA 595

Table 1. Execution times in seconds of all kernels for matrix 2050x2050 on GTX280
GPU with convergence detection

Kernel Calculation time Execution time

Kernel 1: Global memory (no reordering) 5.60 5.63

Kernel 2: Texture memory (no reordering) 4.34 4.34

Kernel 3: Global memory (reordered) 2.92 2.96

Kernel 4: Texture memory (reordered) 2.29 2.34

Kernel 5: Global+shared memory (reordered) 3.99 4.04

Table 2. Block size and thread granularity tuning on GTX280 GPU

The GT200 based GTX280 (compute capability 1.3) and the GF100 (Fermi)
based GTX480 (compute capability 2.0) were used in the experiments. The
GT200 and Fermi architectures are much different in various characteristics.
The most important addition regarding this computation is the addition of level
1 and level 2 global memory cache in Fermi based GPUs. The results of the
tuning process for GTX280 GPU are depicted on table 2.

The GTX280 seems to perform best with texture memory (1.95 secs) using
block size of 32x2 and thread granularity of 8, so each thread block actually
calculates a grid of 32x16 elements. Using shared memory the calculation finishes
after 2.215 secs by using block size of 64x2 and thread granularity of 8 elements,
so each block works on a grid of 64x16 elements. Global memory, as expected, is
the worst as its best configuration takes 2.511 secs to finish. So, after changing
the thread granularity the usage of shared memory proves better than global
memory only, which was expected. In contrast, the GTX480 performs best with
its global memory kernel, in a 64x4 block size with thread granularity of 4
elements per thread, which finished the calculation in just 1.004 secs and the
shared memory kernel, in a 64x2 block size with thread granularity of 8, follows
with 1.111 secs. The texture memory kernel is the worst in this case as it finishes
in 1.25 secs by using 16x12 block configuration and a granularity of just 1.

596 E. Konstantinidis and Y. Cotronis

In summary the CC 1.x device performs slightly better with texture memory
usage and worse when using only global memory, where in contrast, the CC 2.0
device performs best with just global memory and worse when using texture
memory. This reflects the great advantage that the cache memory offers when
spacial and temporal locality exists in the nature of a problem.

Fig. 4. Calculation throughput and calculation times achieved with CPU,
GTX280(k#4) & GTX480(k#3) GPUs

Fig. 5. Calculation speed-up achieved on GTX280 (k#4) & GTX480 (k#3) over CPU

Finally, the best versions of both GPUs were compared with the CPU ver-
sion. The CPU version is a typical OpenMP [5] application which does not make
use of any special optimizations (i.e. manual vectorization). The CPU used in
the experiment was an Intel Core 2 Quad Q9550 (2.83GHz) on a different host
system than of these used for the GPU executions, as the latter featured quite
inferior CPUs. The Microsoft Visual Studio C++ 2008 compiler was used for
the CPU version and the optimization flags were enabled (”/arch:SSE2 /fp:fast
/openmp /O2”). However, no automatic vectorization was noticed in the gener-
ated machine code. The experiments were run for problem sizes from 66x66 to
16386x16386 elements for 1000 iterations. The results of the execution are de-
picted on table 3. The throughput was calculated by using the calculation time

Accelerating the Red/Black SOR Method Using GPUs with CUDA 597

and the assumption that 3xN2 accesses are required for each iteration. The dis-
crepancies between execution times and calculation times are due to the element
reordering procedure and the PCI-Express limited throughput, so the execution
time is partly CPU dependent. The proportion of this extra time is relatively
small, with an exception on the last case (16386x16386), where the large dis-
crepancy is due to the limited main memory of the host which was equiped with
only 1GB RAM and it forced the excessive use of virtual memory. Moreover, the
last experiment was not possible to run on the GTX280 as it required more than
1GB of device memory which was not available on this device.

Table 3. Throughput achieved on GTX480, GTX280 and CPU (1000 iterations)

The throughput and calculation times achieved by all three devices are de-
picted in figure 4 in logarithmic scale. The speed-up observed for each GPU
compared to the CPU is depicted in figure 5.

The total throughput achieved by the GTX480 exceeded 134GB/sec. On the
GTX280 the throughput reached nearly to 98GB/sec. Theoretical numbers for
both are about 177GB/sec and 142GB/sec, which means that throughput per-
centage utilization is about 75% and 69%, respectively. Thus, these percentage
numbers seem adequate for exploiting the bandwidth capabilities of GPUs.

6 Conclusion

The advent of compute capability devices with cache memory proves that in some
cases the use of special memory types is not as critical as it was in previous gen-
eration GPUs. Simpler implementations can be quite efficient and programming
for performance on GPUs does not necessarily prove the use of special memory
types as a mandatory requirement.

Beyond vendor suggested optimizations, data reordering proves to be a crit-
ical one as it can provide significant performance improvements. Data elements
should be reordered in memory in such way that frequent accesses are coalesced
and no redundant memory transfers are performed in critical parts of code.
Increased data locality, in combination with data coalescing helps maximizing
memory throughput which is the most critical factor affecting performance in
memory bounded applications.

598 E. Konstantinidis and Y. Cotronis

Evidently, reordering poses a trade-off. Data reordering can be time consuming
for very large matrices. Fortunately, this procedure can also be moved to the
GPU in order to exploit its high throughput but this was left for future work.

Acknowledgment. This research was partially funded by the University of
Athens Special Account of Research Grants no 10812.

References

1. NVidia CUDA Reference Manual v. 3.1 NVidia (2010)
2. NVidia CUDA Toolkit 3.1 CUBLAS Library NVidia (2010)
3. NVidia CUDA C Best Practices Guide Version 3.1 NVidia (2010)
4. The OpenCL Specification Khronos group (2009)
5. OpenMP Application Program Interface version 3.0 OpenMP Architecture Review

Board (2008)
6. Kirk, D.B., Hwu, W.W.: Programming Massively Parallel Processors. Morgan

Kaufmann (2009)
7. Burden, R.L., Faires, D.: Numerical Analysis, 7th edn. Brooks Cole (2000)
8. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable Parallel Programming

with CUDA. ACM Queue 6(2), 40–53 (2008)
9. Amorim, R., Haase, G., Liebmann, M., Weber, R.: Comparing CUDA and

OpenGL implementations for a Jacobi iteration SpezialForschungsBereich F 32, 025
(December 2008)

10. Ha, L., Krger, J., Joshi, S., Silva, C.T.: Multiscale Unbiased Diffeomorphic Atlas
Construction on Multi-GPUs. GPU Computing Gems. Morgan Kaufmann (2011)

11. Komatsu, K., Soga, T., Egawa, R., Takizawa, H., Kobayashi, H., Takahashi, S.,
Sasaki, D., Nakahashi, K.: Parallel processing of the Building-Cube Method on a
GPU platform Computers & Fluids (2011) (in press, corrected proof)

12. Cecilia, J.M., Garc̀ıa, J.M., Ujaldòn, M.: CUDA 2D Stencil Computations for the
Jacobi Method Para 2010 - State of the Art in Scientific and Parallel Computing
(2010)

13. Amador, G., Gomes, A.: A CUDA-based Implementation of Stable Fluids in 3D
with Internal and Moving Boundaries. In: 2010 International Conference on Com-
putational Science and Its Applications (2010)

14. Amador, G., Gomes, A.: CUDA-based Linear Solvers for Stable Fluids. In: Inter-
national Conference on Information Science and Applications, ICISA (2010)

15. Venkatasubramanian, S., Vuduc, R.W.: Tuned and wildly asynchronous sten-
cil kernels for hybrid CPU/GPU systems. In: 23rd International Conference on
Supercomputing (2009)

16. Datta, K., Murphy, M., Volkovand, V., Williams, S., Carter, J., Oliker, L., Patter-
son, D., Shalf, J., Yelick, K.: Stencil computation optimization and auto-tuning on
state-of-the-art multicore architectures. In: ACM/IEEE Conference on Supercom-
puting (2008)

17. Krüger, J., Westermann, R.: Linear algebra operators for GPU implementation of
numerical algorithms. In: ACM SIGGRAPH 2003 (2003)

Dense Affinity Propagation on Clusters of GPUs

Marcin Kurdziel and Krzysztof Boryczko

AGH University of Science and Technology,
Faculty of Electrical Engineering, Automatics, Computer Science and Electronics,

Department of Computer Science,
al. A. Mickiewicza 30,
30-059 Krakow, Poland

{kurdziel,boryczko}@agh.edu.pl

Abstract. This article focuses on implementation of Affinity Propaga-
tion, a state of the art method for finding exemplars in sets of patterns,
on clusters of Graphical Processing Units. When finding exemplars in
dense, non-metric data Affinity Propagation has O(n2) memory com-
plexity. This limits the size of problems that can fit in the Graphical
Processing Unit memory. We show, however, that dense Affinity Propa-
gation can be distributed on multiple Graphical Processing Units with
low communication-to-computation ratio. By exploiting this favorable
communication pattern we propose an implementation which can find
exemplars in large, dense data sets efficiently, even when run over slow
interconnect.

Keywords: Affinity Propagation, multi-GPU implementation, cluster-
ing.

1 Introduction

Clustering, a fundamental unsupervised learning method, seeks groups of re-
lated patterns, i.e. clusters, in data. Classical approaches to this problem rely
on selecting exemplar patterns which serve as the centers of clusters. In order
to construct meaningful clusters, exemplars are selected in a way that maxi-
mize similarity between them and patterns in their clusters. Thus one usually
attempts to minimize a cost function of the form:

J (C1,...,k, θ1,...,k) =

k∑
i=1

∑
x∈Ci

d (x, θi) , (1)

where C1,...,k are the clusters, θ1,...,k are their corresponding exemplar patterns
and d (·, ·) is a dissimilarity measure. It turns out, however, that finding global
minimum of Eq. 1, even in metric cases, is an NP-hard problem. Only approx-
imate solutions are available in polynomial time (see e.g. [4]). Heuristic tech-
niques are therefore employed for selecting exemplar patterns, with k-means
algorithm [9] being the most widely used approach. An important drawback of

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 599–608, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

600 M. Kurdziel and K. Boryczko

the k-means algorithm is its propensity to stuck in poor local minima of the
cost function. Typically one needs to run k-means a number of times, each run
starting from a different initial choice of exemplars, and then select the best of
solution found.

Recently a new method for finding exemplars in data sets was proposed [5].
This algorithm, called Affinity Propagation (AP), finds exemplars by passing
carefully designed, real-valued messages between patterns. It turns out that a
single run of AP usually finds clusters with the cost value (Eq. 1) well below
the one obtained by several thousand runs of k-means [5]. Another strength
of affinity propagation is its ability to find clusters in non-metric data. One
example reported in [5] demonstrates successful application of AP to data given
by similarities1 which are not even symmetric.

We show that AP is very well suited for execution in massively parallel envi-
ronments. Iteration of AP over dense similarity matrix can be split between a
number of nodes with relatively modicum amount of inter-node communication.
We exploit this for efficient implementation of dense AP on clusters of Graphical
Processing Units (GPUs), thereby allowing for clustering data sets which would
not fit in the memory available on a single GPU.

2 Related Work

Graphical Processing Units were recently employed in high-performance im-
plementations of several clustering techniques, including hierarchical clustering
algorithms [15], fuzzy clustering [1], clustering by mixture decomposition with
Expectation Maximization [8] and document clustering with flocking model [16].
Several related works focused on implementing classical k-means algorithm on
GPU [6] [2] [12] [14] [8], with one approach [13] focusing on implementing classi-
cal k-means on a cluster of conventional nodes while offloading certain operations
to GPU units. The most related work, however, was presented in [7]. While pre-
vious works focused on classical k-means, ref. [7] presents a GPU implementation
of approximate AP.

A major roadblock in implementing AP on GPUs is its memory requirement.
When clustering n patterns, dense AP requires three n × n matrices, one for
the pairwise pattern similarities and two other for the exchanged messages. In
an attempt to alleviate this problem the approximation scheme proposed in [7]
employs Z-curve, a simple locality preserving space filling curve, to construct
a sparse band matrix approximation of the n × n input similarities. With this
approach messages exchanged during AP also fit in band matrices. Overall, the
approximation significantly reduces AP’s memory requirement and allows for
very efficient GPU implementation.

The main drawback of the approximation scheme proposed in [7] is its limited
applicability in terms of similarity measures as compared to the exact AP. Band

1 Exemplar selection may also be expressed in terms of maximizing a quality function
S (C1,...,k, θ1,...,k) =

∑k
i=1

∑
x∈Ci

s (x, θi), where s (·, ·) is a similarity measure. This
is the formulation used in AP.

Dense Affinity Propagation on Clusters of GPUs 601

matrix approximation with space filling curve requires that patterns be points
in a Cartesian space with input being a Gram matrix whose kernel function is
inversely proportional to the distances between the points [7]. Exact AP imposes
no such requirements and works well in dense non-metric cases. This is especially
important given the increasing amount of non-vectorial data gathered in various
experimental techniques. In molecular biology, for example, patterns may rep-
resent sequences of nucleic acids or structures of proteins and will often require
complex, non-metric similarity measures (see e.g. [11, chapters 3, 6, 11]) with
dense similarity matrices. Method given in [7] cannot be applied to dense non-
metric instances of this kind. This article approaches AP k-clustering on GPU
from other direction – instead of seeking a sparse approximation to the sim-
ilarity matrix we seek to fit the AP matrices in the available device memory
and decrease the clustering time by distributing the execution of AP over mul-
tiple GPUs. That way we can employ GPUs for efficient AP clustering of large,
dense non-metric data.

3 Affinity Propagation on Clusters of GPUs

Affinity Propagation finds exemplars by iteratively exchanging two kinds of mes-
sages, i.e. responsibilities and availabilities, between every pair of patterns [5].
Iterations begin with the availabilities set to zero and are carried out until mes-
sage values converge. In the proposed parallelization scheme matrices storing
the messages, denoted by R and A respectively, as well as the similarity ma-
trix S are split row-wise between the GPUs. That is, the k-th GPU stores
rows

⌊
n
M

⌋
· (k − 1) ...

⌊
n
M

⌋
· k, where n is the number of patterns and M is

the number of GPUs. All three matrices are stored in the row-major order, with
rows padded to facilitate coalesced memory accesses.

The responsibility message Rij quantifies the fitness of pattern xj as an ex-
emplar for pattern xi [5] and is calculated as:

R
(t)
ij = Sij −max

k �=j

(
A

(t−1)
ik + Sik

)
, (2)

where indices (t− 1) and (t) denote values from the previous and the current
iteration, respectively2. This update to the matrix R can be carried out in O(n2)
operations by finding the maximal and the second maximal element in each
row of A(t−1) − S [5, Matlab implementation in Supporting Online Material]. In
each row, the responsibilities are then updated using the corresponding maximal
element, except at the position of the maximal element itself, where the second
maximal element is used instead.

We implemented the GPU kernel responsible for finding the maximal ele-
ments following results of the performance evaluation given in [3]. Each row is

2 In the actual implementation, new responsibility values must be set to weighted
means of previous responsibility values and the values given by Eq. 2 [5]. This weight-
ing is necessary for the algorithm convergence. It increases the number of accesses
to the GPUs device memory but does not disrupt memory access patterns.

602 M. Kurdziel and K. Boryczko

thus processed by one work group3. The k-th work item in the i-th work group
processes elements (i, k), (i, k + w), (i, k + 2w), ..., where w is the size of the
work group, and stores the results in the local device memory. After scanning
the whole row, work group performs tree-reduction over the partial results in
the local memory. Limiting the number of work groups to one per row has the
benefit of reducing the number of local memory barriers [3]. The available level
of paralelizm is not affected negatively due to multiple rows being processed
concurrently. The kernel performing updates to the responsibilities is straight-
forward – each row is processed by one work group, which fetches the maximal
and second maximal element for that row and performs updates according to
Eq. 2. Overall, these kernels involve O(n) non-coalesced global memory accesses
to the arrays storing the maximal elements. This is tolerable given the O(n2)
coalesced memory accesses while scanning matrices A and S and updating R.
This part of the algorithm requires no communication between the GPUs.

After updating the responsibilities, AP proceeds with the availability mes-
sages. The availability message Aij quantifies the fitness of the pattern xi to be
a member of the cluster formed by xj [5] and is calculated as4:

A
(t)
ij =

⎧⎪⎪⎨⎪⎪⎩
min

{
0, R

(t)
jj +

∑
k �=i,j

max
{

0,R
(t)
kj

}}
, if i �= j∑

k �=i

max
{

0,R
(t)
ki

}
, otherwise

(3)

To implement this update efficiently we need to calculate the sum

u
(t)
j = R

(t)
jj +

∑
k �=j

max
{

0,R
(t)
kj

}
(4)

for each column j of the matrix R(t) [5, Matlab implementation in Support-
ing Online Material]. Availabilities can then be calculated with local matrix up-

dates: A
(t+1)
ij = min

{
0, u

(t)
j −max

{
0,R

(t)
ij

}}
for i �= j and A

(t+1)
jj = u

(t)
j −R

(t)
jj .

Note, however, that R(t) is split row-wise between the GPUs. Each GPU there-
fore calculates partial sums over the rows assigned to it. These partial sums
are transferred to the host memory, summed up in a global all-to-all reduction
operation and then written back to the device global memory. The reduction
between the nodes is carried out with an MPI All-Reduce operation [10].

In the kernel calculating the partial sums each work item processes a single
column, keeping the running sum in the local memory. Because R(t) is stored in
the row-major order with row padding and each work group processes a block

3 The implementation of the multi-GPU AP was done in OpenCL – see The OpenCL
Specification v1.0, Chapter 2, for definition of work item, work group and related
concepts.

4 As with responsibilities, in the actual implementation updates to availabilities also
involve weighting of old and new message values [5], which increases device memory
usage but does not disrupt memory access patterns.

Dense Affinity Propagation on Clusters of GPUs 603

of columns, accesses to the device global memory are coalesced. To remove one
conditional from the summation loop, work item treats all summed elements
uniformly and then performs a fix for the diagonal element with a single non-
coalesced global memory read. In the kernel updating the availabilities, each

row of A
(t+1)
ij is processed by one work group. Here all memory accesses are

coalesced. Overall, the calculation of availabilities involves O(n2) accesses to the
device global memory, including n non-coalesced accesses, two O(n)-byte trans-
fers between host and device memory and one n-element all-to-all summation
between the GPU nodes.

Iterative updates to availabilities and responsibilities constitute most of AP’s
computational cost. Identification of exemplars and assignment of patterns to
clusters is, in comparison, a relatively inexpensive operation. One way to pin-
point exemplars in AP is to scan main diagonals of converged matrices R and A
and find patterns θi for which Rii + Aii > 0 [5, Matlab implementation in Sup-
porting Online Material]. Each non-exemplar pattern is then assigned to the
cluster formed by exemplar that is most similar it.

Implemented on a cluster of GPUs, identification of exemplars involves O(n)
non-coalesced memory accesses when scanning the diagonals of the dense matri-
ces R and A. Indices of the exemplars are then transferred to the host, exchanged
between the GPU nodes in a single all-to-all gather operation and written back
to the devices’ global memory. Distribution of exemplar indices between the
nodes is carried out with an MPI Gather-to-all operation [10]. Kernel that as-
signs non-exemplar patterns to exemplars resembles the kernel that find maxima
in A(t−1) − S during updates to responsibilities. Each row of the similarity ma-
trix, Si(·), that corresponds to a non-exemplar pattern xi is scanned by one work
group, with the k-th work item processing elements Sik, Si(k+w), ..., where w
is the size of the work group. Each work item finds maximum among those of
the processed elements whose second indices correspond to exemplar patterns. A
tree-reduction is then performed in the device local memory to find the row-wise
maximum.

4 Performance Evaluation

The performance of the multi-GPU AP was evaluated on two clusters. First
cluster consists of four dual GPU, NVIDIA GeForce GTX 295 nodes with In-
tel Xeon E5540 processors and 4xQDR Infiniband interconnect. Second clus-
ter consists of 24 nodes, each one with two NVIDIA Tesla M2050 units and
two Intel Xeon X5670 processors. We used 1Gbit Ethernet interconnect in this
cluster. The GeForce GPU can use up to 900MB of global device memory.
Tesla units have 3GB of global memory. Our multi-GPU AP implementation
employs CUDA SDK version 3.2.16, MVAPICH library for the Infiniband in-
terconnect and Intel MPI library for the Ethernet interconnect. In addition
to the multi-GPU AP we also developed serial AP C code used as a refer-
ence implementation in the reported performance evaluation. Performance was
evaluated on single and double precision random similarity matrices, ranging

604 M. Kurdziel and K. Boryczko

in size from 1, 000 × 1, 000 to 56, 000 × 56, 000 for the single precision cases
and to 40, 000 × 40, 000 for the double precision cases. Each test case was run
five times and median execution time of 1, 000 AP iterations was used in the
performance evaluation.

(A)

 0

 5

 10

 15

 20

 25

 30

 35

8,0006,0004,0002,0001,000

S
p

ee
d

u
p

 o
v

er
 s

er
ia

l
im

p
le

m
en

ta
ti

o
n

Number of patterns

GeForce GTX 295

single precision
double precision

(B)

 0

 10

 20

 30

 40

 50

8,0006,0004,0002,0001,000

S
p

ee
d

u
p

 o
v

er
 s

er
ia

l
im

p
le

m
en

ta
ti

o
n

Number of patterns

Tesla M2050

single precision
double precision

Fig. 1. Speedup on (A) one GeForce GTX 295 GPU and (B) one Tesla M2050 unit
over the serial CPU implementation

Figure 1 reports speedup on 1 GPU over the serial CPU implementation.
In single precision arithmetic we achieve roughly 10-fold speedup on small test
cases. For 8, 000 × 8, 000 single precision similarity matrix speedup exceeds 30
on GeForce GPU and 40 on Tesla unit. With double precision arithmetic per-
formance decreases by roughly 50% on the GeForce GPU5 and slightly less so
on the Tesla units. Overall, the GPU implementation provide a sizable decrease
in execution time.

To investigate how this performance level translates to multi-GPU environ-
ments, we have performed benchmark runs with fixed-size and variable-size test
cases. The fixed-size, 8, 000 × 8, 000 single precision and 6, 000 × 6, 000 double
precision test cases were run on the GeForce GTX 295 cluster with Infiniband
interconnect. Performance numbers from these tests are reported in Fig. 2. For

5 The 8, 000 × 8, 000 double precision test case does not fit in the global memory of
one GeForce GTX 295 GPU, and is therefore not reported in Fig. 1.

Dense Affinity Propagation on Clusters of GPUs 605

problems of these size, the parallelization efficiency on eight GPUs exceeds 75%.
It is worth noting, that one iteration of AP takes less than 6ms in these settings,
and the whole clustering procedure can be accomplished in a matter of seconds.

(A)

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

1 2 3 4 5 6 7 8
0

50

100

150

200

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

S
p
e
e
d
u
p

Number of GPUs

Single prec. time (8000 patterns)
Single prec. speedup (8000 patterns)

Double prec. time (6000 patterns)
Double prec. speedup (6000 patterns)

(B)

70.0%

75.0%

80.0%

85.0%

90.0%

95.0%

100.0%

1 2 3 4 5 6 7 8

E
fi
c
c
ie

n
c
y

Number of GPUs

Single prec. efficiency (8000 patterns)
Double prec. efficiency (6000 patterns)

Fig. 2. Execution time, speedup over the serial implementation (A) and paral-
lelization efficiency (B) for fixed-size similarity matrices with multi-GPU AP on
GeForce GTX 295 and Infiniband interconnect

The variable-size test cases were designed to investigate the efficiency of multi-
GPU AP when clustering large datasets. In these test cases the size of similar-
ity matrices was increased proportionally to the number of employed GPUs. The
global device memory on the GPUs was therefore kept filled. Tests were carried out
on both GeForce GPUs connected by Infiniband network and Tesla M2050 units
connected by 1Gbit Ethernet. The results are reported in Fig. 3. Note that even
on the Ethernet interconnect there is only a marginal increase in execution time
when problem size increases proportionally to the number of employed GPUs. On
Infiniband interconnect execution time remains roughly constant. For the largest
variable-size test cases we also measured time spent in the MPI All-Reduce op-
erations6. On the GeForce GTX 295 cluster the total time spent in the MPI All-
Reduce operations of 1000 AP iterations was approx. 2.4s in the largest single

6 There is also an MPI Gather-to-all operation carried out after exemplar patterns are
identified. Note however, that it is carried out only once and over O(n) elements.
Its cost is therefore insignificant compared to the total cost of the MPI All-Reduce
operation, which also involve O(n) elements but is invoked in every AP iteration.

606 M. Kurdziel and K. Boryczko

precision case and approx. 0.8s in the largest double precision case. On the Tesla
M2050 cluster these operations took in total approx. 5.5s in the largest single pre-
cision case and approx. 6.9s in the largest double precision case. Overall, the time
spent in MPI operations in these test cases did not exceed several seconds.

(A)

 0.0

 5.0

 10.0

 15.0

 20.0

 25.0

 30.0

 35.0

 40.0

8
22,6/17,0

7
21,2/15,9

6
19,6/14,7

5
17,9/13,4

4
16,0/12,0

3
13,8/10,4

2
11,3/8,5

1
8,0/6,0

E
x
ec

u
ti

o
n
 t

im
e

[s
]

Number of GPUs and number of patterns (in thousands) in the single and the double precision test case

GeForce GTX 295 with variable−size test cases

single precision

double precision

(B)

 0.0

 20.0

 40.0

 60.0

 80.0

 100.0

16
56,0/40,0

14
52,4/37,4

12
48,5/34,6

10
44,3/31,6

8
39,6/28,3

7
37,0/26,5

6
34,3/24,5

5
31,3/22,4

4
28,0/20,0

3
24,2/17,3

2
19,8/14,1

1
14,0/10,0

E
x
ec

u
ti

o
n
 t

im
e

[s
]

Number of GPUs and number of patterns (in thousands) in the single and the double precision test case

Tesla M2050 with variable−size test cases

single precision

double precision

Fig. 3. Execution time with multi-GPU AP when the size of the similarity ma-
trix increases proportionally to the number of employed GPUs. Results are reported
for (A) GeForce GTX 295 GPUs with Infiniband interconnect and (B) Tesla M2050
units with 1Gbit Ethernet interconnect.

5 Conclusions

Results reported in Sect. 4 confirm that dense AP is very well suited for execution
in parallel environments. One GPU alone provides several tens-fold decrease in ex-
ecution time when compared to the serial CPU implementation. This performance
level translates well to multi-GPU environments. In the multi-GPU implementa-
tion iteration of dense AP requires only one all-to-all reduction overO(n)-element
array, even though GPUs process three floating point matrices, each oneO(n2) in
size. By running AP on multiple GPUs one can not only decrease the time needed
to find the exemplars but, even more importantly, find exemplars in data which
would not fit in global device memory of a single GPU. The largest test case re-
ported in Fig. 3 involves a 12GB similarity matrix. With 16 Tesla units intercon-
nected by 1Gbit Ethernet this test case takes a similar amount of time per AP
iteration as an 800MB similarity matrix on one unit.

Dense Affinity Propagation on Clusters of GPUs 607

Our final remark concerns the arithmetic precision in multi-GPU AP imple-
mentation. At first glance it may seem not obvious whether double precision
arithmetics is needed in multi-GPU AP. Double precision implementation suf-
fers roughly 50% performance penalty when compared to the single precision
implementation. Nevertheless, our experience suggests that in poorly conver-
gent cases double precision implementation is less likely to fall into oscillations.
This seems important mainly when working with large similarity matrices.

Acknowledgements. This work was founded by the Polish Ministry of Science
and Higher Education grant no. N N519 443039 and AGH University of Sci-
ence and Technology grant no. 11.11.120.865. For the Tesla cluster we used the
infrastructure at the Academic Computer Centre CYFRONET AGH, provided
by the POWIEW project. The project is co-funded by the European Regional
Development Fund (ERDF) as a part of the Innovative Economy program.

References

1. Anderson, D., Luke, R., Keller, J.: Incorporation of non-euclidean distance met-
rics into fuzzy clustering on graphics processing units. In: Melin, P., Castillo, O.,
Ramrez, E., Kacprzyk, J., Pedrycz, W. (eds.) Analysis and Design of Intelligent
Systems using Soft Computing Techniques. AISC, vol. 41, pp. 128–139. Springer,
Heidelberg (2007)

2. Cao, F., Tung, A.K.H., Zhou, A.: Scalable Clustering Using Graphics Processors.
In: Yu, J.X., Kitsuregawa, M., Leong, H.-V. (eds.) WAIM 2006. LNCS, vol. 4016,
pp. 372–384. Springer, Heidelberg (2006)

3. Catanzaro, B.: OpenCL optimization case study: Simple reductions. White paper,
AMD Developer Central (2010),
http://developer.amd.com/documentation/articles/Pages/

OpenCL-Optimization-Case-Study-Simple-Reductions.aspx

4. Charikar, M., Guha, S., Tardos, É., Shmoys, D.: A constant–factor approxima-
tion algorithm for the k–median problem. Journal of Computer and System Sci-
ences 65(1), 129–149 (2002)

5. Frey, B., Dueck, D.: Clustering by passing messages between data points. Sci-
ence 315(5814), 972–976 (2007)

6. Hall, J., Hart, J.: GPU acceleration of iterative clustering. In: The ACM Workshop
on General Purpose Computing on Graphics Processors. Manuscript Accompany-
ing Poster at GP2 (2004)

7. Hussein, M., Abd-Almageed, W.: Efficient band approximation of gram matrices
for large scale kernel methods on GPUs. In: Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, SC 2009. ACM, New
York (2009)

8. Ma, W., Agrawal, G.: A translation system for enabling data mining applications
on GPUs. In: Proceedings of the 23rd International Conference on Supercomputing,
pp. 400–409. ACM (2009)

9. MacQueen, J.: Some methods for classification and analysis of multivariate observa-
tions. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, pp. 281–297. University of California Press, Berkeley (1967)

http://developer.amd.com/documentation/articles/Pages/OpenCL-Optimization-Case-Study-Simple-Reductions.aspx
http://developer.amd.com/documentation/articles/Pages/OpenCL-Optimization-Case-Study-Simple-Reductions.aspx

608 M. Kurdziel and K. Boryczko

10. Message Passing Interface Forum: MPI: A message passing interface standard
(1995)

11. Pevsner, J.: Bioinformatics and functional genomics. Wiley-Blackwell (2009)
12. Shalom, S.A.A., Dash, M., Tue, M.: EfficientK-Means Clustering Using Accelerated

Graphics Processors. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2008.
LNCS, vol. 5182, pp. 166–175. Springer, Heidelberg (2008)

13. Takizawa, H., Kobayashi, H.: Hierarchical parallel processing of large scale data
clustering on a PC cluster with GPU co-processing. The Journal of Supercomput-
ing 36, 219–234 (2006)

14. Wu, R., Zhang, B., Hsu, M.: Clustering billions of data points using GPUs. In:
Proceedings of the Combined Workshops on UnConventional High Performance
Computing Workshop Plus Memory Access Workshop, pp. 1–6. ACM (2009)

15. Zhang, Q., Zhang, Y.: Hierarchical clustering of gene expression profiles with graph-
ics hardware acceleration. Pattern Recognition Letters 27(6), 676–681 (2006)

16. Zhang, Y., Mueller, F., Cui, X., Potok, T.: Large-scale multi-dimensional document
clustering on GPU clusters. In: 2010 IEEE International Symposium on Parallel &
Distributed Processing (IPDPS), pp. 1–10. IEEE (2010)

High-Performance Pseudo-Random Number

Generation on Graphics Processing Units

Nimalan Nandapalan1, Richard P. Brent1,2,
Lawrence M. Murray3, and Alistair P. Rendell1

1 Research School of Computer Science
2 Mathematical Sciences Institute,
The Australian National University

3 CSIRO Mathematics, Informatics and Statistics

Abstract. This work considers the deployment of pseudo-random num-
ber generators (PRNGs) on graphics processing units (GPUs), devel-
oping an approach based on the xorgens generator to rapidly produce
pseudo-random numbers of high statistical quality. The chosen algorithm
has configurable state size and period, making it ideal for tuning to
the GPU architecture. We present a comparison of both speed and sta-
tistical quality with other common GPU-based PRNGs, demonstrating
favourable performance of the xorgens-based approach.

Keywords: Pseudo-random number generation, graphics processing units,
Monte Carlo.

1 Introduction

Motivated by compute-intense Monte Carlo methods, this work considers the
tailoring of pseudo-random number generation (PRNG) algorithms to graph-
ics processing units (GPUs). Monte Carlo methods of interest include Markov
chain Monte Carlo (MCMC) [5], sequential Monte Carlo [4] and most recently,
particle MCMC [1], with numerous applications across the physical, biological
and environmental sciences. These methods demand large numbers of random
variates of high statistical quality. We have observed in our own work that, after
acceleration of other components of a Monte Carlo program on GPU [14,15], the
PRNG component, still executing on the CPU, can bottleneck the whole pro-
cedure, failing to produce numbers as fast as the GPU can consume them. The
aim, then, is to also accelerate the PRNG component on the GPU, without com-
promising the statistical quality of the random number sequence, as demanded
by the target Monte Carlo applications.

Performance of a PRNG involves both speed and quality. A metric for the
former is the number of random numbers produced per second (RN/s). Measure-
ment of the latter is more difficult. Intuitively, for a given sequence of numbers,
an inability to discriminate their source from a truly random source is indicative
of high quality. Assessment may be made by a battery of tests which attempt to
identify flaws in the sequence that are not expected in a truly random sequence.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 609–618, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

610 N. Nandapalan et al.

These might include, for example, tests of autocorrelation and linear dependence.
Commonly used packages for performing such tests are the DIEHARD [11] and
TestU01 [9] suites.

The trade-off between speed and quality can take many forms. Critical param-
eters are the period of the generator (the length of the sequence before repeating)
and its state size (the amount of working memory required). Typically, a gen-
erator with a larger state size will have a larger period. In a GPU computing
context, where the available memory per processor is small, the state size be-
comes a critical design component. As a conventional PRNG produces a single
sequence of numbers, an added challenge in the GPU context is to concurrently
produce many uncorrelated streams of numbers.

Existing work in this area includes the recent release of NVIDIA’s CURAND
[17] library, algorithms in the Thrust C++ library [6] and elsewhere [20,8], and
early work for graphics applications [7]. Much of this work uses simple generators
with small state sizes and commensurately short periods, in order not to exceed
the limited resources that a GPU provides to individual threads. While such
generators are potentially very fast, the statistical quality of numbers produced
is not necessarily adequate for modern Monte Carlo applications, and in some
cases can undermine the procedure enough to cause convergence to the wrong
result. Other recent work follows a trend in generators inspired by hashing algo-
rithms, like those found in cryptographic analysis [21,22,18]. These generators
are conceptually different to sequential generators, and while performance is
comparable, a proper analysis of each exceeds the scope of this work.

The Mersenne Twister [13] is the de facto standard for statistical applications
and is used by default in packages such as MATLAB. It features a large state
size and long period, and has recently been ported to GPUs [19]. However, it
has a fixed and perhaps over-large state size, and is difficult to tune for opti-
mal performance on GPUs. In this work we adapt the xorgens algorithm [3,2].
The attraction of this approach is the flexible choice of period and state size,
facilitating the optimisation of speed and statistical quality within the resource
constraints of a particular GPU architecture.

We begin with a brief overview of CUDA, then discuss qualitative testing of
PRNGs, and algorithms including the Mersenne Twister for Graphic Proces-
sors (MTGP), CURAND and xorgens. We then describe our adaptation of the
xorgens algorithm for GPUs. Finally, the results of testing these generators are
presented and some conclusions drawn.

1.1 The NVIDIA Compute Unified Device Architecture (CUDA)
and the Graphics Processing Unit (GPU)

The Compute Unified Device Architecture (CUDA) was introduced by the
NVIDIA Corporation in November 2006 [16]. This architecture provides a com-
plete solution for general purpose GPU programming (GPGPU), including new
hardware, instruction sets, and programming models. The CUDA API allows
communication between the CPU and GPU, allowing the user to control the
execution of code on the GPU to the same degree as on the CPU.

High-Performance PRNG on GPUs 611

A GPU resides on a device, which usually consists of many multiprocessors
(MPs), each containing some processors. Each CUDA compatible GPU device
has a globally accessible memory address space that is physically separate from
the MPs. The MPs have a local shared memory space for each of the processors
associated with the MP. Finally, each processor has its own set of registers and
processing units for performing computations.

There are three abstractions central to the CUDA software programming
model, provided by the API as simple language extensions:

– A hierarchy of thread groupings – a thread being the smallest unit of pro-
cessing that can be scheduled by the device.

– Shared memory – fast sections of memory common to the threads of a group.
– Barrier synchronisation – a means of synchronising thread operations by

halting threads within a group until all threads have met the barrier.

Threads are organised into small groups of 32 called warps for execution on the
processors, which are Single-Instruction Multiple-Data (SIMD) and implicitly
synchronous. These are organised for scheduling across the MPs in blocks. Thus,
each block of threads has access to the same shared memory space. Finally, each
block is part of a grid of blocks that represents all the threads launched to solve
a problem. These are specified at the invocation of kernels – functions executed
on the GPU device – which are managed by ordinary CPU programs, known as
host code.

As a consequence of the number of in-flight threads supported by a device,
and the memory requirements of each thread, not all of a given GPU device’s
computational capacity can be used at once. The fraction of a device’s capacity
that can be used by a given kernel is known as its occupancy.

1.2 Statistical Testing: TestU01

Theoretically, the performance of some PRNGs on certain statistical tests can be
predicted, but usually this only applies if the test is performed over a complete
period of the PRNG. In practice, statistical testing of PRNGs over realistic
subsets of their periods requires empirical methods [9,11].

For a given statistical test and PRNG to be tested, a test statistic is computed
using a finite number of outputs from the PRNG. It is required that the distri-
bution of the test statistic for a sequence of uniform, independently distributed
random numbers is known, or at least that a sufficiently good approximation is
computable [10]. Typically, a p-value is computed, which gives the probability
that the test statistic exceeds the observed value.

The p-value can be thought of as the probability that the test statistic or
a larger value would be observed for perfectly uniform and independent input.
Thus the p-value itself should be distributed uniformly on (0, 1). If the p-value is
extremely small, for example of the order 10−10, then the PRNG definitely fails
the test. Similarly if 1 − p is extremely small. If the p-value is not close to 0 or
1, then the PRNG is said to pass the test, although this only says that the test
failed to detect any problem with the PRNG.

612 N. Nandapalan et al.

Typically, a whole battery of tests is applied, so that there are many p-values,
not just one. We need to be cautious in interpreting the results of many such
tests; if performing N tests, it is not exceptional to observe that a p-value is
smaller than 1/N or larger than 1 − 1/N . The TestU01 library presented by
L’Ecuyer[9] provides a thorough suite of tests to evaluate the statistical quality
of the sequence produced by a PRNG. It includes and improves on all of the
tests in the earlier DIEHARD package of Marsaglia [11].

1.3 The Mersenne Twister for Graphic Processors

The MTGP generator is a recently-released variant of the well known Mersenne
Twister [13,19]. As its name suggests, it was designed for GPGPU applications.
In particular, it was designed with parallel Monte Carlo simulations in mind. It is
released with a parameter generator for the Mersenne Twister algorithm to sup-
ply users with distinct generators on request (MTGPs with different sequences).
The MTGP is implemented in NVIDIA CUDA [16] in both 32-bit and 64-bit
versions. Following the popularity of the original Mersenne Twister PRNG, this
generator is a suitable standard against which to compare GPU-based PRNGs.

The approach taken by the MTGP to make the Mersenne Twister parallel
can be explained as follows. The next element of the sequence, xi, is expressed
as some function, h, of a number of previous elements in the sequence, say

xi = h(xi−N , xi−N+1, xi−N+M).

The parallelism that can be exploited in this algorithm becomes apparent when
we consider the pattern of dependency between further elements of the sequence:

xi = h(xi−N , xi−N+1, xi−N+M)

xi+1 = h(xi−N+1, xi−N+2, xi−N+M+1)

...

xi+N−M−1 = h(xi−M−1, xi−M , xi−1)

xi+N−M = h(xi−M , xi−M+1, xi).

The last element in the sequence, which produces xi+N−M , requires the value
of xi, which has not yet been calculated. Thus, only N −M elements of the
sequence produced by a Mersenne Twister can be computed in parallel.

As N is fixed by the Mersenne prime chosen for the algorithm, all that can be
done to maximise the parallel efficiency of the MTGP is careful selection of the
constant M . This constant, specific to each generator, determines the selection
of one of the previous elements in the sequence in the recurrence that defines
the MTGP. Thus, it has a direct impact on the quality of the random numbers
generated, and the distribution of the sequence.

1.4 CURAND

The CUDA CURAND Library is NVIDIA’s parallel PRNG framework and li-
brary. It is documented in [16]. The default generator for this library is based

High-Performance PRNG on GPUs 613

on the XORWOW algorithm introduced by Marsaglia[12]. The XORWOW al-
gorithm is an example of the xorshift class of generators.

Generators of this class have a number of advantages. The algorithm be-
hind them is particularly simple when compared to other generators such as the
Mersenne Twister. This results in simple generators which are very fast but still
perform well in statistical tests of randomness.

The idea of the xorshift class generators is to combine two terms in the pseudo-
random sequence (integers represented in binary) using left/right shifts and “ex-
clusive or” (xor) operations to produce the next term in the sequence. Shifts and
xor operations can be performed quickly on computing architectures, typically
faster than operations such as multiplication and division. Also, generators de-
signed on this principle generally do not require a large number of values in the
sequence to be retained (i.e. a large state space) in order to produce a sequence
of satisfactory statistical quality.

1.5 Xorgens

Marsaglia’s original paper [12] only gave xorshift generators with periods up to
2192−1. Brent[3] recently proposed the xorgens family of PRNGs that generalise
the idea and have period 2n − 1, where n can be chosen to be any convenient
power of two up to 4096. The xorgens generator has been released as a free
software package, in a C language implementation (most recently xorgens version
3.05 [2]).

Compared to previous xorshift generators, the xorgens family has several
advantages:

– A family of generators with different periods and corresponding memory
requirements, instead of just one.

– Parameters are chosen optimally, subject to certain criteria designed to give
the best quality output.

– The defect of linearity over GF(2) is overcome efficiently by combining the
output with that of a Weyl generator.

– Attention has been paid to the initialisation code (see comments in [3,2] on
proper initialisation), so that the generators are suitable for use in a parallel
environment.

For details of the design and implementation of the xorgens family, we refer
to [3,2]. Here we just comment on the combination with a Weyl generator. This
step is performed to avoid the problem of linearity over GF(2) that is common to
all generators of the Linear-Feedback Shift Register class (such as the Mersenne
Twister and CURAND). A Weyl generator has the following simple form:

wk = wk−1 + ω mod 2w,

where ω is some odd constant (a recommended choice is an odd integer close to
2w−1(

√
5− 1)). The final output of an xorgens generator is given by:

wk(I +Rγ) + xk mod 2w, (1)

614 N. Nandapalan et al.

where xk is the output before addition of the Weyl generator, γ is some integer
constant close to w/2, and R is the right-shift operator. The inclusion of the
term Rγ ensures that the least-significant bits have high linear complexity (if we
omitted this term, the Weyl generator would do little to improve the quality of
the least-significant bit, since (wk mod 2) is periodic with period 2).

As addition mod 2w is a non-linear operation over GF(2), the result is a mix-
ture of operations from two different algebraic structures, allowing the sequence
produced by this generator to pass all of the empirical tests in BigCrush, includ-
ing those failed by the Mersenne Twister. A bonus is that the period is increased
by a factor 2w (though this is not free, since the state size is increased by w bits).

2 XorgensGP

Extending the xorgens PRNG to the GPGPU domain is a nontrivial endeavour,
with a number of design considerations required. We are essentially seeking to
exploit some level of parallelism inherent in the flow of data. To realise this, we
examine the recursion relation describing the xorgens algorithm:

xi = xi−r(I + La)(I +Rb) + xi−s(I + Lc)(I +Rd).

In this equation, the parameter r represents the degree of recurrence, and conse-
quently the size of the state space (in words, and not counting a small constant
for the Weyl generator and a circular array index). L and R represent left-shift
and right-shift operators, respectively. If we conceptualise this state space array
as a circular buffer of r elements we can reveal some structure in the flow of
data. In a circular buffer, x, of r elements, where x[i] denotes the ith element,
xi, the indices i and i + r would access the same position within the circular
buffer. This means that as each new element xi in the sequence is calculated
from x[i− r] and x[i− s], the result replaces the rth oldest element in the state
space, which is no longer necessary for calculating future elements.

Now we can begin to consider the parallel computation of a sub-sequence of
xorgens. Let us examine the dependencies of the data flow within the buffer x

as a sequence is being produced:

xi = xi−rA+ xi−sB

xi+1 = xi−r+1A+ xi−s+1B

...

xi+(r−s) = xi−r+(r−s)A+ xi−s+(r−s)B

= xi−sA+ xi+r−2sB

...

xi+s = xi−r+sA+ xi−s+sB

= xi−r+sA+ xiB.

High-Performance PRNG on GPUs 615

If we consider the concurrent computation of the sequence, we observe that the
maximum number of terms that can be computed in parallel is

min(s, r − s).

Here r is fixed by the period required, but we have some freedom in the choice of
s. It is best to choose s ≈ r/2 to maximise the inherent parallism. However, the
constraint GCD(r, s) = 1 implies that the best we can do is s = r/2±1, except in
the case r = 2, s = 1. This provides one additional constraint, in the context of
xorgensGP versus (serial) xorgens, on the parameter set {r, s, a, b, c, d} defining
a generator. Thus, we find the thread-level parallelism inherent to the xorgens
class of generators.

In the CUDA implementation of this generator we considered the approach
of producing independent subsequences. With this approach the problem of cre-
ating one sequence of random numbers of arbitrary length, L, is made parallel
by p processes by independently producing p subsequences of length L/p, and
gathering the results. With the block of threads architecture of the CUDA in-
terface and this technique, it is a logical and natural decision to allocate each
subsequence to a block within the grid of blocks. This can be achieved by pro-
viding each block with its own local copy of a state space via the shared memory
of an MP, and then using the thread-level parallelism for the threads within
this block. Thus, the local state space will represent the same generator, but
at different points within its period (which is sufficiently long that overlapping
sequences are extremely improbable).

Note that, in contrast to MTGP, each generator is identical in that only one
parameter set {r, s, a, b, c, d} is used. The main advantage of this is that parame-
ters can be known at compile time, allowing the compiler to make optimisations
that would not be available if the parameters were dynamically allocated at
runtime. This results in fewer registers being required by each thread, and so
improved occupancy of the device. For the generator whose test results are given
in §3, we used the parameters (r, s, a, b, c, d) = (128, 65, 15, 14, 12, 17).

3 Results

We now present an empirical comparison of existing GPU PRNGs against our
implementation of xorgensGP. All experiments were performed on an NVIDIA
GeForce GTX 480 and a single GPU on the NVIDIA GeForce GTX 295 (which
is a dual GPU device), using the CUDA 3.2 toolkit and drivers. Performance
results are presented in Table 1, and qualitative results in Table 2.

We first compared the memory footprint of each generator. This depends on
the algorithm defining the generator. The CURAND generator was determined
to have the smallest memory requirements of the three generators compared, and
the MTGP was found to have the greatest. The MTGP has the longest period
(211213 − 1), and the CURAND generator has the shortest period (2192 − 232).

Next, we compared the random number throughput (RN/s) of each generator
on the two different devices. This was obtained by repeatedly generating 108

616 N. Nandapalan et al.

Table 1. Approximate memory footprints, periods and speed on two devices for 32-bit
generators

Generator State-Space Period GTX 480 RN/s GTX 295 RN/s

xorgensGP 129 words 24128 17.7× 109 9.1× 109

MTGP 1024 words 211213 17.5× 109 10.7 × 109

CURAND 6 words 2192 18.5× 109 7.1× 109

random numbers and timing the duration to produce the sequence of that length.
We found that the performance of each generator was roughly the same, with
no significant speed advantage for any generator. On the newer GTX 480, the
CURAND generator was the fastest, and the MTGP was the slowest. On the
older architecture of the GTX 295 the ordering was reversed: the CURAND
generator was the slowest and the MTGP was fastest. These results can be
explained in part by the fact that the CURAND generator was designed with
the current generation of “Fermi” cards like the GTX 480, and the MTGP was
designed and tested initially on a card very similar to the GTX 295. In any
event, the speed differences are small and implementation/platform-dependent.

Finally, to compare the quality of the sequences produced, each of the gener-
ators was subjected to the SmallCrush, Crush, and BigCrush batteries of tests
from the TestU01 Library. The xorgensGP generator did not fail any of the
tests in any of the benchmarks. Only the MTGP failed in the Crush benchmark,
where it failed two separate tests. This was expected as the generator is based
on the Mersenne Twister, and the tests are designed to expose the problem of
linearity over GF(2). The MTGP failed the corresponding, more rigorous tests
in BigCrush. Interestingly, the CURAND generator failed one of these two tests
in BigCrush.

Table 2. Tests failed in each standard TestU01 benchmark

Generator SmallCrush Crush BigCrush

xorgensGP None None None
MTGP None #71,#72 #80,#81
CURAND None None #81

4 Discussion

We briefly discuss the results of the statistical tests, along with some design
considerations for the xorgensGP generator.

CURAND fails one of the TestU01 tests. This test checks for linearity and ex-
poses this flaw in the Mersenne Twister. However, like the xorgensGP, CURAND
combines the output of an xorshift generator with a Weyl generator to avoid lin-
earity over GF(2), so it was expected to pass the test. The period 2192 − 232 of

High-Performance PRNG on GPUs 617

the CURAND generator is much smaller than that of the other two generators.
The BigCrush test consumes approximately 238 random numbers, which is still
only a small fraction of the period.

A more probable explanation relates to the initialisation of the generators at
the block level. In xorgensGP each block is provided with consecutive seed values
(the id number of the block within the grid). Correlation between the resulting
subsequences is avoided by the method xorgens uses to initialise the state space.
It is unclear what steps CURAND takes in its initialisation.

The MTGP avoids this problem by providing each generator with different
parameter sets for values such as the shift amounts. This approach was also
explored in developing xorgensGP. It was found that the overhead of managing
parameters increased the memory footprint of each generator enough to impact
device occupancy, and reduced the optimisations available to the compiler. It
should also be noted that alternative parameter sets do not allow for the same
degree of thread level parallelisation that the most optimal parameter set does.
The performance of this version of the generator was noticeably less, without any
detectable improvement to the quality of the sequence, and was not developed
further.

In conclusion, we presented a new PRNG, xorgensGP, for GPUs using CUDA.
We showed that it performs with comparable speed to existing solutions and
with better statistical qualities. The proposed generator has a period that is
sufficiently large for Monte Carlo applications, while not requiring too much
state space, giving good performance on different devices.

References

1. Andrieu, C., Doucet, A., Holenstein, R.: Particle Markov chain Monte Carlo meth-
ods. Journal of the Royal Statistical Society Series B 72, 269–302 (2010)

2. Brent, R.P.: xorgens version 3.05 (2008),
http://maths.anu.edu.au/~brent/random.html

3. Brent, R.P.: Some long-period random number generators using shifts and xors.
ANZIAM Journal 48 (2007)

4. Doucet, A., de Freitas, N., Gordon, N. (eds.): Sequential Monte Carlo Methods in
Practice. Springer (2001)

5. Gilks, W., Richardson, S., Spiegelhalter, D. (eds.): Markov chain Monte Carlo in
practice. Chapman and Hall (1995)

6. Hoberock, J., Bell, N.: Thrust: A parallel template library (2010),
http://thrust.googlecode.com

7. Howes, L., Thomas, D.: Efficient Random Number Generation and Application
Using CUDA. GPU Gems 3. Addison-Wesley (2007)

8. Langdon, W.: A fast high quality pseudo random number generator for NVIDIA
CUDA. In: Proceedings of the 11th Annual Conference Companion on Genetic
and Evolutionary Computation Conference: Late Breaking Papers. pp. 2511–2514.
ACM (2009)

9. L’Ecuyer, P., Simard, R.: TestU01: A C library for empirical testing of random
number generators. ACM Transactions on Mathematical Software 33 (2007)

http://maths.anu.edu.au/~brent/random.html
http://thrust.googlecode.com

618 N. Nandapalan et al.

10. Leopardi, P.: Testing the tests: using random number generators to improve em-
pirical tests. In: Monte Carlo and Quasi-Monte Carlo Methods 2008, pp. 501–512
(2009)

11. Marsaglia, G.: DIEHARD: a battery of tests of randomness (1996),
http://stat.fsu.edu/~geo/diehard.html

12. Marsaglia, G.: Xorshift RNGs. Journal of Statistical Software 8(14), 1–6 (2003)
13. Matsumoto, M., Nishimura, T.: Mersenne twister: A 623-dimensionally equidis-

tributed uniform pseudorandom number generator. ACM Transactions on Model-
ing and Computer Simulation 8, 3–30 (1998)

14. Murray, L.M.: GPU acceleration of Runge-Kutta integrators. IEEE Transactions
on Parallel and Distributed Systems 23, 94–101 (2012)

15. Murray, L.M.: GPU acceleration of the particle filter: The Metropolis resampler. In:
DMMD: Distributed Machine Learning and Sparse Representation with Massive
Data Sets (2011)

16. NVIDIA Corp: CUDA Compute Unified Device Architecture Programming Guide
Version 3.2. NVIDIA Corp., Santa Clara, CA 95050 (2010)

17. NVIDIA Corp: CUDA CURAND Library. NVIDIA Corporation (2010)
18. Phillips, C.L., Anderson, J.A., Glotzer, S.C.: Pseudo-random number generation

for Brownian dynamics and dissipative particle dynamics simulations on GPU de-
vices. Journal of Computational Physics 230(19), 7191–7201 (2011),
http://www.sciencedirect.com/science/article/pii/S0021999111003329

19. Saito, M.: A variant of Mersenne Twister suitable for graphic processors (2011),
http://arxiv.org/abs/1005.4973

20. Sussman, M., Crutchfield, W., Papakipos, M.: Pseudorandom number generation
on the GPU. In: Proceedings of the 21st ACM SIGGRAPH/EUROGRAPHICS
Symposium on Graphics Hardware, pp. 87–94. ACM, New York (2006),
http://dl.acm.org/citation.cfm?id=1283900.1283914

21. Tzeng, S., Wei, L.: Parallel white noise generation on a GPU via cryptographic
hash. In: Proceedings of the 2008 Symposium on Interactive 3D Graphics and
Games, pp. 79–87. ACM (2008)

22. Zafar, F., Olano, M., Curtis, A.: GPU random numbers via the tiny encryp-
tion algorithm. In: Proceedings of the Conference on High Performance Graphics,
pp. 133–141. Eurographics Association, Aire-la-Ville (2010),
http://dl.acm.org/citation.cfm?id=1921479.1921500

http://stat.fsu.edu/~geo/diehard.html
http://www.sciencedirect.com/science/article/pii/S0021999111003329
http://arxiv.org/abs/1005.4973
http://dl.acm.org/citation.cfm?id=1283900.1283914
http://dl.acm.org/citation.cfm?id=1921479.1921500

Auto-tuning Dense Vector

and Matrix-Vector Operations for Fermi GPUs

Hans Henrik Brandenborg Sørensen

Informatics and Mathematical Modelling,
Technical University of Denmark, Bldg. 321, DK-2800 Lyngby, Denmark

hhs@imm.dtu.dk

http://www.gpulab.imm.dtu.dk

Abstract. In this paper, we consider the automatic performance tuning
of dense vector and matrix-vector operations on GPUs. Such operations
form the backbone of level 1 and level 2 routines in the Basic Linear Al-
gebra Subroutines (BLAS) library and are therefore of great importance
in many scientific applications. As examples, we develop single-precision
CUDA kernels for the Euclidian norm (SNRM2) and the matrix-vector
multiplication (SGEMV). The target hardware is the most recent Nvidia
Tesla 20-series (Fermi architecture). We show that auto-tuning can be
successfully applied to achieve high performance for dense vector and
matrix-vector operations by appropriately utilizing the fine-grained par-
allelism of the GPU. Our tuned kernels display between 25-100% better
performance than the current CUBLAS 3.2 library.

Keywords: GPU, BLAS, Dense linear algebra, Parallel algorithms.

1 Introduction

Graphical processing units (GPUs) have already become an integral part of
many high performance computing systems, since they offer dedicated parallel
hardware that can potentially accelerate the execution of many scientific ap-
plications. Currently, in order to exploit the computing potential of GPUs, the
programmer has to use either Nvidia’s Compute Unified Device Architecture
(CUDA) [1] or the Open Compute Language (OpenCL) [2]. Recent years have
shown that many applications written in these languages, which fully utilize the
hardware of the target GPU, show impressive performance speed-ups compared
to the CPU. However, developers working in these languages are also facing se-
rious challenges. Most importantly, the time and effort required to program an
optimized routine or application has also increased tremendously.

An essential prerequisite for many scientific applications is therefore the avail-
ability of high performance numerical libraries for linear algebra on dense ma-
trices, such as the BLAS library [3] and the Linear Algebra Package (LAPACK)
[4]. Several such libraries targeting Nvidia’s GPUs have emerged over the past
few years. Apart from Nvidia’s own CUBLAS, which is part of the CUDA
Toolkit [1], other prominent libraries are the open source Matrix Algebra on GPU

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 619–629, 2012.
� Springer-Verlag Berlin Heidelberg 2012

http://www.gpulab.imm.dtu.dk

620 H.H.B. Sørensen

and Multicore Architectures (MAGMA) library [5] and the commercial CUDA
GPU-accelerated linear algebra (CULA) library [6]. These provide subsets of the
functionality of BLAS/LAPACK for GPUs but are not mature in their current
versions.

Automatic performance tuning, or auto-tuning, has been widely used to auto-
matically create near-optimal numerical libraries for CPUs [7], e.g., in the famous
the ATLAS package [8]. Modern GPUs offer the same complex and diverse ar-
chitectural features as CPUs, which require nontrivial optimization strategies
that often change from one chip generation to the next. Therefore, as already
demonstrated in MAGMA [9], auto-tuning is also very compelling on GPUs.

In this paper, our goal is to design vector and matrix-vector GPU kernels
based on template parameters and auto-tune them for given problem sizes. All
the kernels, which may be candidates as the best kernel for a particular problem
size, are thereby generated automatically by the compiler as templates, and do
not need to be hand-coded by the programmer.

In this work, we target Nvidia GPUs, specifically the Tesla C2050 (Fermi
architecture), which is designed from the outset for scientific computations. All
kernels are made in the CUDA programming model (Toolkit 3.2), where the
hardware is controlled by using blocks (3D objects of sizes 1024 × 1024 × 64
containing up to 1024 threads) and grids (2D objects containing up to 65535×
65535 blocks). Groups of 32 threads are called warps. We consider only the
single-precision case and present the double-precision results in another work.

This paper is organized as follows. Sect. 2 states the performance considera-
tions for our kernels. Next we describe the implementations. In Sect. 4 we de-
scribe the auto-tuning process. The experimental results are presented in Sect. 5.

2 Performance Considerations

When implementing a GPU kernel in CUDA, the path to high performance
follows mainly two directions. The first is to maximize the instructions through-
put and the second is to optimize the memory access patterns. Often one needs
to focus attention only on one of these directions, depending on whether the
maximum performance is bounded by the first or the latter.

2.1 Memory Bound Kernels

For our target GPU the single-precision peak performance is 1.03 Tflops and the
theoretical memory bandwidth is 144 GB/s. On such hardware, the kernels we
develop for vector and matrix-vector operations will consistently fall under the
memory bound category. For example, a matrix-vector multiplication requires
N2+2N memory accesses and 2N2 floating point operations. Since the resulting
arithmetic intensity is much less than the perfect balance (∼ 4.5 flops per byte)
for the target GPU [10], the corresponding kernel is inherently memory bound
for all N . This means that the arithmetic operations are well hidden by the
latency of memory accesses, and we will concentrate on optimizing the memory
access pattern in order to reach the maximum memory bandwidth of the GPU.

Auto-tuning Dense Vector and Matrix-Vector Operations for Fermi GPUs 621

2.2 Coalesced Memory Access

In general, two requirements must be fulfilled for a kernel’s memory access to
be efficient. First, the access must be contiguous so that consecutive threads
within a warp (32 threads) always read contiguous memory locations. Second,
the memory must be properly aligned so that the first data element accessed
by any warp is always aligned on 128 bytes segments. This allows the kernel
to read 32 memory locations in parallel as a single 128 byte memory access, a
so-called coalesced access. If by design an algorithm is required to read data in a
non-coalesced fashion, one can use the shared memory available on the graphics
card to circumvent such access patterns. Shared memory should also be used if
data is to be re-used or communicated between threads within a block.

2.3 Registers

A key performance parameter in CUDA is the number of registers used per
thread. The fewer registers a kernel uses, the more threads and blocks are likely
to reside on a multiprocessor, which can lead to higher occupancy (the ratio of
the resident warps on the hardware to the maximum possible number of resident
warps). A large number of warps is often required to hide the memory access
latencies well. However, since registers represents the major part of the per-
multiprocessor memory and have the shortest access latency, it is advantageous
to implement high-performance kernels for exhaustive register usage, if possible.

2.4 Loop Unrolling

It is important to design memory bound kernels with enough fine-grained thread-
level parallelism (TLP) to allow for the occupancy to be high and latencies well
hidden. Alternatively, having many independent instructions, i.e. high instruc-
tion level parallelism (ILP), can also hide the latencies [11]. In our kernels we
allow the compiler to unroll inner loops (using the keyword #pragma unroll),
which will increase the instruction level parallelism of the kernels and facilitate
some degree of latency hiding. Unfortunately, this may also increase the regis-
ter usage which may lower the occupancy and subsequently performance. The
key is to find the best compromise between ILP, TLP, the number of threads
per block, the register usage, and the shared memory usage to achieve the best
performance of a given kernel. To this end, we will employ auto-tuning.

3 Vector and Matrix-Vector Operations on Fermi GPUs

The Tesla C2050 Fermi architecture provides 14 multiprocessors of 32 cores each
that can execute threads in parallel. In CUDA, we utilize this parallel hardware
by distributing the work of an operation to the individual threads via a grid
of blocks. During execution, the blocks are assigned to multiprocessors, which
further split each block into sets of 32 threads known as warps, that execute the
same instructions on the multiprocessor synchronously.

622 H.H.B. Sørensen

blockIdx.x

n

128 byte

Block

Warp 0 1

Element-wise Vector Operation - Coalesced

Reduction Operation per Block in Shared Memory

1

2

3

...

log2(Block)

Ite
ra

tio
ns

Fig. 1. Coalesced access pattern for the element-wise operation on a vector and the
subsequent parallel reduction operation per block in shared memory

3.1 Operations on a Vector

In Fig. 1, we illustrate the two main cases of operations on vectors, where the
first corresponds to merely reading and writing a vector as required for an oper-
ation on the individual elements of the vector, e.g., a vector scale or vector add
(SAXPY), and the second corresponds to the subsequent reduction operation in
shared memory required for, e.g., a sum or an Euclidian norm (SNRM2).

In the first case, the operation is embarrassingly parallel and the memory
access pattern for reading the vector in a CUDA kernel is made fully coalesced
by having a block size given by a multiple of the warp size (assuming the vector
is stored at an aligned address). Each thread can be assigned to handle one
or more elements. Whether the values should be stored in shared memory for
optimal usage depends on the operation to be performed on its elements.

In the second case, the illustrated access pattern for the reduction is designed
to avoid shared memory bank conflicts [12]. It requires log2(BLOCKSIZE) iter-
ations, where the last 5 are executed synchronously per warp. Although, the
reduction operation suggested here suffers from performance inhibiters like the
use of explicit synchronizations and leaving threads idle in the last 5 iterations,
this technique is currently the optimal for reducing a result on Fermi GPUs.

3.2 Operations on a Matrix

An important access pattern for operations on a matrix is when each thread
transverses elements of a given row in order to operate on the individual elements
of the row or to reduce a result or part of a result. E.g., the typical parallel
implementation of a matrix-vector multiplication (SGEMV), where each thread
performs a dot product between one row of A and x to produce one element of
the result y. In the common case, where the matrix is stored in column major
memory layout, this access pattern can be achieved by dividing the matrix into
slices of BLOCKSIZE rows and launching a block for each of them. Each thread

Auto-tuning Dense Vector and Matrix-Vector Operations for Fermi GPUs 623

n

m

Without padding - Misaligned

n

m

With padding - Coalesced

Warp

12
8

b
yt

e

Warp

12
8

b
yt

e

blockIdx.y
0 1

blockIdx.y

b
l
o
c
k
I
d
x
.
x

b
l
o
c
k
I
d
x
.
x

0

1

0

1

0 1

Column major memory layout

BlockBlock

Fig. 2. Access pattern for the row-wise reading of matrices having column major mem-
ory layout. Left; the misaligned case of arbitrary number of rows. Right; the coalesced
case occurring when the number of rows is padded to a multiple of the warp size.

might only take care of part of a row, which is accomplished by dividing the
matrix into tiles instead of slices and using a 2D grid of blocks.

As illustrated in the left part of Fig. 2, the described memory access pattern
for an arbitrarym×n matrix is contiguous but misaligned for each warp (except
for every 32nd column). In single precision, each warp of 32 threads will request
32×4 = 128 bytes of memory per memory access in the kernel. On a Fermi GPU
with compute capability 2.0, the misalignment breaks the memory access of the
required 128 bytes per warp into two aligned 128 byte segment transactions [13].

As illustrated in the right part of Fig. 2, for the matrix memory accesses to
be coalesced, both the number of threads per block and the height of the matrix
must be a multiple of the warp size. In particular, this means that a matrix
whose height is not a multiple of the warp size will be accessed more efficiently
if it is actually allocated with a height rounded up to the closest multiple of this
size and its columns padded accordingly.

3.3 Operations on a Transposed Matrix

In BLAS, all level 2 routines for matrix-vector multiplication and linear solvers
are available for ordinary as well as transposed matrices (by specifying the TRANS
argument to ’T’). The operations on transposed matrices can be advantageously
implemented without explicit transpositions. Moreover, one can view the oper-
ations on transposed matrices stored in column major layout as equivalent to
operations on ordinary matrices stored in row major layout.

In Fig. 3, we illustrate an access pattern for an operation that requires the row-
wise transversal of matrix elements in row major memory layout, e.g., y = ATx
(SGEMV with ’T’). The threads in a block are distributed along the rows of
the matrix in order for the memory access to be contiguous for each warp. For
the case of arbitrary number of columns n (left part of the figure) the access will
be misaligned. This can only be avoided if the width of the matrix is padded to
a multiple of the warp size (right part of the figure).

624 H.H.B. Sørensen

n

m

n

m

blockIdx.y

b
l
o
c
k
I
d
x
.
x

0
blockIdx.y

b
l
o
c
k
I
d
x
.
x

0

1

0

128 byte

Without padding - Misaligned With padding - Coalesced

Row major memory layout

WarpWarp

2

0

1

2

BlockBlock

128 byte

Fig. 3. Access pattern for the row-wise reading of matrices having row major memory
layout. Left; the misaligned case of arbitrary number of columns. Right; the coalesced
case occurring when the number of columns is padded to a multiple of the warp size.

In the access pattern shown, we designate one block per row and the threads
have to work together if a reduction result is required, i.e., the row-wise transver-
sal might be followed by a reduction in shared memory as discussed above. We
allow each thread to take care of more elements on the same row. In addition,
we allow each block to take care of more than one row by dividing the matrix
into slices of a given number of rows and launching a block for each of them.

4 Auto-tuning

In order to configure the vector and matrix-vector kernels with optimal param-
eters for the targeted GPU we will use auto-tuning. We have implemented an
auto-tuning framework that can automate the performance tuning process by
running a large set of empirical benchmarks. Our search strategy is to consider
a sub-set of the possible configurations based on knowledge we have about the
GPU hardware and find the optimal among them in a brute-force manner.

4.1 Using C++ Templates

GPU auto-tuners can be constructed in a variety of ways to test different kernel
implementations, ranging from simply calling the kernel with different function
arguments to run-time code generation of kernel candidates [14]. In this work,
we implement the auto-tuner based on C++ function templates. The goal is to
represent all tuning parameters as template values, which are then evaluated at
compile time. This allows inner loops over these parameters to be completely
unrolled and conditionals to be evaluated by the compiler at compile time. We
are also able to set launch bounds depending on the tuning parameters using
the CUDA keyword launch bounds . All that is required is the declaration of
the kernel as a template via template <..> and a large switch statement [12].

Auto-tuning Dense Vector and Matrix-Vector Operations for Fermi GPUs 625

4.2 Tuning Parameters

The vector and matrix-vector operations implemented in this work incorporate
three tuning parameters, which are built into the design of the kernels.

Parameter 1: Block Size. Commonly, the most important tuning parameter
in the CUDA model is the number of threads per block. Since the smallest work
entity to be scheduled and executed is a warp of 32 threads, we know that having
BLOCKSIZE a multiple of 32 is the best choice for a high-performance kernel. We
also know that to reach an occupancy of 1, at least 192 threads per block are
needed [15], while to use the maximum 63 registers per thread at most 64 threads
per block are allowed [15]. This trade-off leads us to search the parameter space

BLOCKSIZE ∈ {32, 64, 96, 128, 160, 192, 224, 256}, (1)

for the optimal value (experiments confirm this to be appropriate for the C2050).

Parameter 2: Work Size per Thread. Another tuning parameter adresses
the performance trade-off between launching many threads in order to utilize the
fine-grained parallelism of the GPU and having each thread perform a reasonable
amount of work before it retires. Empirically, we found that the parameter space

WORKSIZE ∈ {1, 2, 3, 4, 5, 6, 7, 8}× BLOCKSIZE, (2)

for the number of elements handled per thread, is adequate for the C2050.

Parameter 3: Unroll Level. A final tuning parameter built into the design of
our kernels is related to the CUDA compiler’s technique for unrolling inner loops,
where a particular unroll level x can be specified by #pragma unroll x. Using
a high level gives the smallest loop counter overhead and fewer instructions but
it also requires more registers per thread. We found that the unroll levels

UNROLL LEVEL ∈ {FULL, 2, 3, 4, 5, 6, 7, 8}, (3)

can lead to different performances and this space is therefore searched.
We note that this amounts to total of 8 × 8 × 8 = 512 configurations of our

vector and matrix-vector kernels to be auto-tuned for a given problem size.

5 Results

Our test platform is a Nvidia Tesla C2050 card having 3 GB device memory on a
host with a quad-core Intel� Core�i7 CPU operating at 2.80 GHz. The GPU’s
peak performance is 1.03 Tflops and the theoretical bandwidth is 144 GB/s. The
error correction code (ECC) is on. A simple read-only kernel that estimates the
effective bandwidth gives 94.0 GB/s. Note that the performance timings shown
do not include transfer of data between host and GPU unless stated otherwise.

626 H.H.B. Sørensen

n

Auto-tuner Result

Performance [Gflops]

n

Kernel Names

Fig. 4. Result of auto-tuning for the SNRM2 ker-
nel on a 1 × 16 grid for vector sizes up to n =
1000000. Top; best kernel designated by color and
name. Bottom; performance in Gflops.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

50

Vector Length N [106]

G
flo

ps

SNRM2

This work
This work (result copied to host)
CUBLAS 3.2

Fig. 5. Performance of the auto-
tuned SNRM2 kernel on a Nvidia
Tesla C2050 card. The curves
show the average performance
from ten subsequent calls to the
kernel.

5.1 Euclidian Norm (SNRM2) on Fermi GPU

We show the result from auto-tuning the SNRM2 kernel in Fig. 4 for sizes up to
1000000. The top panel displays the selected best kernel designated by color and
the bottom panel the corresponding performance achieved in Gflops. Also the
names of the best kernels are listed in the middle in a form where the name of the
operation is appended by “b1×{BLOCKSIZE} w{UNROLL LEVEL}×{WORKSIZE}”.

In Fig. 5, we show the average performance of the auto-tuned SNRM2 kernel
over a span of sizes of up to 107 elements. We compare the achieved results with
the similar performance measurement for the SNRM2 kernel from CUBLAS 3.2
library. Note that the SNRM2 function in CUBLAS 3.2 gives the result on the
host while our SNRM2 function by default gives the result on the GPU. For the
sake of comparison, we make a version of our kernel that also copies the result
to the host. As shown, the difference in performance because of this is relatively
small and becomes smaller for larger sizes of n. On average, our auto-tuned
SNRM2 kernel performs > 30% better than the current CUBLAS 3.2 kernel.

5.2 Matrix-Vector Multiplication (SGEMV) on Fermi GPU

We show the result of auto-tuning our SGEMV kernel in Fig. 6, where we have
considered matrix sizes up to 10000 rows and 10000 columns on an 8× 8 tuning

Auto-tuning Dense Vector and Matrix-Vector Operations for Fermi GPUs 627

n

m

Auto-tuner Result Kernel Names

n

m

Performance [Gflops]

Fig. 6. Result of auto-tuning for the SGEMV kernel on a 8 × 8 grid for matrix sizes
m×n up to 10000 Left; best kernel designated by color. Right; performance in Gflops.

× ×

× ×

Fig. 7. Performance of the auto-tuned SGEMV kernel (with TRANS = ’N’ and ’T’) on
a Nvidia Tesla C2050 card. The curves show the average performance from ten calls.

grid. The auto-tuner and performance results shown are obtained as averages
from 25 samples within each tuning grid tile. A total of 12 different best kernels,
designated by a unique color, are selected. The names of the best kernels have
the extension “b{BLOCKSIZE}×1 w{UNROLL LEVEL}×{WORKSIZE}”.

In Fig. 7, we show the achieved performance of the auto-tuned SGEMV ker-
nel in the cases of ordinary (y = Ax) and transposed (y = ATx) square

628 H.H.B. Sørensen

matrix-vector multiplication and for matrices with and without padding. We
see a significant improvement in comparison with the corresponding kernel in
the current CUBLAS 3.2 library (up to ∼ 100% in the transposed case).

We also compare with the most recent MAGMA library [5] and see some im-
provement in the ordinary matrix-vector multiplication case. In the transposed
matrix-multiplication case, our auto-tuned kernel confirms that MAGMA’s ker-
nel is already highly optimized for square matrices of the sizes considered here.

In addition, the performance results show that the padding of matrices is not
necessary in order to achieve high performance on the C2050 card. In our kernel
the increase in performance from padding to a multiple of the warp size is only
a few percent. We credit this to the L1 and L2 caches available on Fermi GPUs.

6 Conclusion

In this work, we have implemented vector and matrix-vector operations as high-
performance GPU kernels designed for auto-tuning. We used auto-tuning of the
kernels in order to select the optimal kernel parameters on the Tesla C2050 card
(Fermi GPU). The auto-tuning consisted of an exhaustive search of the tuning
space containing key hardware dependent parameters that sets the number of
threads per block, the work per thread, and the unroll level of the inner-most
loop. An analysis of heuristics to reduce the search space is left as future work.

We have illustrated the approach for the Level 1 BLAS routines, with the ex-
ample of the Euclidian norm, and for the Level 2 BLAS routines in the case of the
matrix-vector product operations. We achieve significantly better performance
compared to the CUBLAS 3.2 library. Two other basic Level 2 operations, the
rank-1 and rank-2 updates and the triangular solve, are also left as future work.

References

1. NVIDIA Corp.: CUDA Toolkit Version 3.2. (2010)
2. Khronos Group: OpenCL Specification 1.1. (2010)
3. Dongarra, J.J., Du Croz, J., Hammarling, S., Duff, I.S.: A set of level 3 basic linear

algebra subprograms. ACM Trans. Math. Softw. 16, 1–17 (1990)
4. Anderson, E., Bai, Z., Bischof, C., Blackford, L.S., Demmel, J., Dongarra, J.J., Du

Croz, J., Hammarling, S., Greenbaum, A., McKenney, A., Sorensen, D.: LAPACK
Users’ guide, 3rd edn. SIAM, Philadelphia (1999)

5. Tomov, S., Nath, R., Du, P., Dongarra, J.: MAGMA v0.2 Users’ Guide (2009)
6. Humphrey, J.R., Price, D.K., Spagnoli, K.E., Paolini, A.L., Kelmelis, E.J.: CULA:

hybrid GPU accelerated linear algebra routines. In: Proc. SPIE, vol. 7705 (2010)
7. Dongarra, J., Moore, S.: 12. In: Empirical Performance Tuning of Dense Linear

Algebra Software, pp. 255–272. CRC Press (2010)
8. Whaley, R.C., Petitet, A., Clint, R., Antoine, W., Jack, P., Dongarra, J.J.: Auto-

mated Empirical Optimizations of Software and the ATLAS project (2000)
9. Li, Y., Dongarra, J., Tomov, S.: A note on auto-tuning gemm for gpus (2009)

10. Micikevicius, P.: Analysis-driven performance opt. GTC, Recorded Session (2010)
11. Volkov, V.: Better performance at lower occupancy. GTC, Recorded Session (2010)

Auto-tuning Dense Vector and Matrix-Vector Operations for Fermi GPUs 629

12. Harris, M.: Optimizing parallel reduction in cuda. NVIDIA Dev. Tech. (2008)
13. NVIDIA Corp.: CUDA C Programming Guide Version 3.2. (2010)
14. Klöckner, A., Pinto, N., Lee, Y., Catanzaro, B., Ivanov, P., Fasih, A.: PyCUDA:

GPU Run-Time Code Generation for High-Performance Computing (2009)
15. NVIDIA Corp.: CUDA GPU Occupancy Calculator (2010)

GPGPU Implementation

of Cellular Automata Model of Water Flow

Pawe�l Topa1,2 and Pawe�l M�locek1

1 AGH University of Science and Technology, Department of Computer Science,
al. Mickiewicza 30, Kraków, Poland

topa@agh.edu.pl
2 Institute of Geological Sciences, Polish Academy of Sciences,

Research Centre in Kraków, Senacka St. 1, PL-31002 Kraków, Poland

Abstract. In this paper we present how Cellular Automata model can
be implemented for processing on Graphics Processing Unit (GPU). Re-
cently, graphics processors have gained a lot of interest as an efficient
architecture for general-purpose computation. Cellular Automata algo-
rithms that are inherently parallel give the opportunity to achieve very
high efficiency when they are implemented on GPUs. We demonstrate
how existing model of water flow can be ported to GPU environment
with OpenCL programming framework. Sample simulation results and
performance evaluations are included.

Keywords: Cellular Automata, GPGPU, OpenCL.

1 Introduction

Cellular Automata is a very efficient modelling paradigm for simulating variety
of natural phenomena and physical processes [1], [2]. It models physical system
as a lattice of cells that are characterized by a specific set of states that change
according to certain rules of local interaction. The most important advantage
of this approach is the ability to construct very fast and conceptually simple
algorithms. CA based models overwhelm traditional approach based on solving
equations by eliminating problems with numerical stability, round-off errors and
truncation errors. Rules of local interaction that govern evolution of CA can be
easily encoded as instructions of a programming language. Algorithms usually
use relatively simple structure that gives the opportunity to provide fast access.
CA is inherently parallel — the definition states that all cells should be processed
simultaneously. The neighbourhood is usually limited to the nearest cells and
remains invariant. As a result, only limited amount of data is exchanged between
computational nodes. Therefore, the CA models can be very easily parallelized,
just by simple static domain decomposition.

Cellular Automata models can be efficiently implemented on Graphics Pro-
cessing Units (GPU) which are specialized for processing large amount of data
with regular structure. For this reason, the CA models are readily implemented
on the GPU. Gobron et al. ([3], [4]) applied cellular automata in computer

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 630–639, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

GPGPU Implementation of Cellular Automata Model of Water Flow 631

graphics for visualisation and creating various surface effects like automatic tex-
turing and creating surface imperfections. Their models were implemented for
GPUs with GLSL language and gained performance up to 200 times better than
CPU implementations. In [5] the same author demonstrated that the cellular
automata model of retina implemented for GPUs was at least twenty times as
fast as one for a classical CPU. Ferrando et al. [6] applied GPU for simulat-
ing evolving surfaces with continuous cellular automata and showed that the
GPU-based algorithm is at least two orders of magnitude faster than the purely
sequential code. Caux et al. [7] discussed various memory management scenarios
in GP-GPU implementations of the cellular automata models applied in biology.

In recent years, it was noted that the computing power of GPUs increased
rapidly surpassing, in some applications, the performance of general purpose
processors. This has led to the conclusion that GPU can be also utilized for
general purpose computing (GPGPU General-Purpose Computing on Graphics
Processing Units) [10]. Initially, such computations were performed by program-
ming vertex and pixel shaders [5]. In 2007, Nvidia announced CUDA (Compute
Unified Device Architecture) [8] architecture with a dedicated programming lan-
guage. Khronos Group in 2008 presented an open programming environment
OpenCL (Open Computing Language) [9]. The goal of this project is to pro-
vide a unified programming environment for creating programs that use various
computational resources available in modern computers: CPU units as well as
GPU units. Both tools allow easy programming of the GPU for any type of
computational problems.

This paper is organized as follows. In the next section we briefly describe
the original algorithm as it was exploited in previous works. Next we present
what modification has been introduced to the algorithm to make it more GPU-
friendly. Implementation on the GPU is described in a very detailed way. Results
of testing the algorithm efficiency are presented next. At the end we conclude
our achievements.

2 Model

Cellular Automata algorithm presented in this paper, simulates flow of water
through the terrain. It is based on a model of lava flow developed by Di Gregorio
et al [11]. The algorithm was adapted to model water flow [12] and later it was
applied to model anastomosing river phenomenon [13], [14], [15]. One of the
main disadvantage of the model of anastomosing river was the need for a very
accurate modelling of the terrain shape, which made it very time consuming.
Application of GPU computing gives the opportunity to significantly speedup
the algorithm.

We define Cellular Automata for modelling water flow as:

CAFLOW = 〈Z2, Ai, Ao, X, S, δ〉 (1)

where:

632 P. Topa and P. M�locek

– Z2 — set of cells located on regular mesh and indexed by (i, j);
– Ai ⊂ Z2 — set of inflows;
– Ao ⊂ Z2 — set of sinks;
– X — Moore neighbourhood;
– S = {(gi,j , wi,j} — set of parameters:

• g — altitude,
• w — amount of water;

– δ : (gti,j , w
t
i,j) → (gt+1

i,j , w
t+1
i,j) — set of rules of local interactions.

The key part of the model is a level minimization algorithm that calculates an
exchange of water between neighbouring cells. The factor that drives the process
of water exchange is a difference in water level, calculated as sum of gij (ground)
and wij (water). The algorithm calculates an expected average level of water in
cells. If there is a cell in neighbourhood for which the water level (or only the ground
level) is higher than the calculated average level, it is eliminated from computation
and the average level is calculated once again. Calculations are repeated until no
cell is eliminated. Finally, the algorithm calculates a distribution of water between
central cell and all not eliminated neighbours. The original algorithm is described
in a very detailed way in [11], [12]. Here we only briefly outline it (see Fig. 1).

Fig. 1. Diagram demonstrating general idea of the original algorithm of water flow

For the purpose of implementing the model on GPU the algorithm has been
redesigned. Unlike in original algorithm, the average level of water is calcu-
lated by including cells that can participate in exchanging water (see Algorithm
1.1). Cells are initially sorted according to their water level. Calculation of the
expected average level includes only cells with the water level lower than the
expected average level. The amount of water that has to be exchanged between

GPGPU Implementation of Cellular Automata Model of Water Flow 633

cells is stored in a temporary “flow” table. The level minimization algorithm
has to be executed for each cell in the mesh. Finally, the “flow” table is used to
update water levels in all cells.

f l oat b e s t l e v e l (f l oat l v l []) {
s o r t (l v l , 5) ;
f l oat sum += l v l [0] ;

for (int i = 1 ; i < 5 ; i++) {
i f (l v l [i] > sum / i) {

return sum / i ;
} else {

sum += l v l [i] ;
}

}
return sum/5 ;

}

Listing 1.1. Source code of best level(...) function that calculates the new average
level of water in neighbouring cells: the lvl variable contains water levels in the central
cell and all its neighbours

The level minimization algorithm in version presented above was used in an
implementation of the reference model that runs on a single CPU.

2.1 Migrating from CPU to GPU

The algorithm of water distribution presented in previous section cannot be just
rewritten in one of the GPU programming environment. GPUs have a completely
different architecture compared to general purpose processors. They resemble
the SIMD (Single Instructions, Multiple Data) architecture that was defined in
Flynn’s taxonomy. The algorithm for such type of processing should be deprived
of branch instructions that can significantly decrease efficiency.

The mesh of cellular automata is directly mapped on a mesh of GPU threads.
Coordinates of a particular cell can be obtained by querying the thread:
int x = get global id(0)

int y = get global id(1)

Each cell is independently processed by a separated GPU thread. Threads are
scheduled by OpenCL device i.e. graphics processor. Data structures (tables)
that store states of automata are copied to the global memory of a graphics card
(function clCreateBuffer) before processing. The level minimization function is
implemented as two OpenCL kernels (functions that are executed directly by
OpenCL device):

– gpu best levels — calculates the expected average level of water in neigh-
bouring cells (see Listing 1.2),

– gpu distribute — calculates the exchange of water between cells according
to the previously calculated average level (see Listing 1.4).

634 P. Topa and P. M�locek

Kernels are send to execution by a function clEnqueueNDRangeKernel. The
number of threads processed in parallel depends on the number of cores available
on a graphics processor.

void gpu b e s t l e v e l s (f l oat l e v e l [] [] ,
f l oat t e r r a i n [] [] ,
f l oat b e s t l e v e l s [] []) {

int x = g e t g l o b a l i d (0) ;
int y = g e t g l o b a l i d (1) ;

f l oat a [5] ;
a [0] = t e r r a i n [x] [y] ;
a [1] = l e v e l [x] [y−1] ; a [2] = l e v e l [x−1] [y] ;
a [3] = l e v e l [x+1] [y] ; a [4] = l e v e l [x] [y+1] ;
b e s t l e v e l s [x] [y] = b e s t l e v e l (l e v e l [x] [y] , a) ;

}

f l oat b e s t l e v e l (f l oat p , f l oat a []) {
f l oat sum = p − a [0] ;

s o r t 5 (a) ;
sum += a [0] ;

f l oat i = 1 , a i f ;
a i f = step (a [1] , sum) ;
s += a i f ∗ a [1] ;
i += a i f ;

a i f = step (a [2] ∗ 2 , sum) ;
sum += a i f ∗ a [2] ;
i += a i f ;

a i f = step (a [3] ∗ 3 , sum) ;
sum += a i f ∗ a [3] ;
i += a i f ;

a i f = step (a [4] ∗ 4 , sum) ;
sum += a i f ∗ a [4] ;
i += a i f ;

return sum/ i ;
}

Listing 1.2. Source code of gpu best level(...) kernel functions

Kernels are constructed without any branch instructions — they were replaced
by built-in function: step, max. Also a short loop was replaced by a sequence of
instructions.

GPGPU Implementation of Cellular Automata Model of Water Flow 635

Sorting function sort5 is also deprived of any conditional instructions. We
use static sorting network (see Listing 1.3) for a five elements table.

void s o r t 5 (f l oat a []) {
#define SWAP(i , j) { f l oat t=min(a [i] , a [j]) ;

a [j]=max(a [i] , a [j]) ;
a [i]= t ;}

SWAP(0 , 1) ; SWAP(3 , 4) ; SWAP(2 , 4) ;
SWAP(2 , 3) ; SWAP(0 , 3) ; SWAP(1 , 4) ;
SWAP(0 , 2) ; SWAP(1 , 3) ; SWAP(1 , 2) ;

#undef SWAP
}

Listing 1.3. Sorting function

void gpu d i s t r i bu t e (f l oat l e v e l [] [] ,
f l oat t e r r a i n [] [] ,
f l oat sou rce s [] [] ,
f l oat b e s t l e v e l s [] []) {

int x = g e t g l o b a l i d (0) ;
int y = g e t g l o b a l i d (1) ;
f l oat a l e v e l = l e v e l [x] [y] ;
f l oat a t e r r a i n = t e r r a i n [x] [y] ;
f l oat change = source s [x] [y] ;
change += max(0 , b e s t l e v e l s [x] [y−1] − a l e v e l) ;
change += max(0 , b e s t l e v e l s [x−1] [y] − a l e v e l) ;
change += max(0 , b e s t l e v e l s [x+1] [y] − a l e v e l) ;
change += max(0 , b e s t l e v e l s [x] [y+1] − a l e v e l) ;
change += max(a t e r r a i n , b e s t l e v e l s [x] [y]) − a l e v e l ;
l e v e l [x] [y] = max(change + a l e v e l , a t e r r a i n) ;

}

Listing 1.4. Source code of gpu distribute(...) kernel function

Our implementation uses only global memory. Data organization in cellular
automata is simple and the memory coalescing for store and read operations is
achieved automatically. Exceptions are the cells at the edges of areas assigned to
a group of threads. The use of faster local memory requires changes in the code
of kernels (handling cells at the edges), which might destroy profits resulting
from their simplicity.

3 Results

The algorithm was tested for its efficiency on several graphics processors. We fo-
cused on Nvidia processors as they have much better support for Linux platform.

636 P. Topa and P. M�locek

– Nvidia Quadro NVS 140/ Intel Core2 duo 2.1GHz
– Nvidia Quadro FX 4800/Intel i7
– Nvidia GeForce 8800 GT (G92)/ AMD Athlon XP2 4000+
– Nvidia GTX460/Fermi/Intel Pentium D 2.8GHz

Table 1. Technical parameters of graphics cards used in tests

GPU No of cores Cores timing Memory timing

GTX460/Fermi 336 1.3 GHz 3.4 GHz (256-bit)
Quadro FX4800 192 1.5 GHz 0.8 GHz (384-bit)
GeForce 8800 GT 112 1.5 GHz 0.9 GHz (256-bit)
Quadro NVS 140M 16 0.8 GHz 0.6 GHz (64-bit)

The model is implemented in two versions: “normal” with visualisation and
“benchmark” which concentrates on computational efficiency only. The visuali-
sation is implemented using OpenGL graphics library. SFML (Simple and Fast
Multimedia Library) library [16] manages simulation and user interface. Terrain
maps are supplied as pictures in grayscale where levels of luminance are trans-
formed to altitudes. Additional grayscale picture allows for defining sources and
sinks. Figure 2 demonstrates sample results of simulation for two different ter-
rain maps: A) the undulating terrain (”land of lakes“) and B) the part of river
embankment.

Fig. 2. Visualisation of sample results from simulations: A) ”land of lakes”, B) pouring
water through the embankment

The ”Benchmark“ version of the model was used to perform efficiency tests.
Figures 3 and 4 present results of the tests. Tests were run on various PC ma-
chines including laptop. There were very different combinations of graphics cards
and CPUs, which is reflected in speedup charts. The most drastic example is a
computer with a very old Pentium D processor combined with one of the most
modern graphics cards Nvidia GTX 460 (Fermi core). The model that runs on

GPGPU Implementation of Cellular Automata Model of Water Flow 637

GPU is about 500 times faster than its equivalent for the CPU. The weakest
GPU in these tests was Nvidia Quadro NVS 140 M. This is an old graphics card
for laptops with small amount of relatively slow memory (GDDR3). However,
even this card provides a bit better performance than one core of i7 — current
Intel top processor.

Charts (Figs. 3 and 4) demonstrate that GPUs provide better efficiency for
growing size of problems. Decrease of efficiency (number of simulation steps per
second) for CPUs is almost linear. GPU implementation provides an execution
of higher number of steps per second and their decrease is slower when the size of
the problem grows. It is also worth to emphasize that for small lattices the GPUs
are not fully utilized. This effect is observable for all GPUs except the weakest
NVS 140M (see Fig. 4). For small lattices the performance remains almost at
the same level.

1

10

100

1000

10000

100000

16 32 64 128 256 512 1024

A
ve

ra
ge

no
of

st
ep

s
pe

rs
ec

on
d

Mesh dimension

Nvidia Quadro NVS 140M/Intel Core2duo 2.1GHz

CPU
GPU

16 32 64 128 256 512 1024

2

3

4

5

6

7

S
pe

ed
up

1

10

100

1000

10000

100000

16 32 64 128 256 512 1024

A
ve

ra
ge

no
of

st
ep

s
pe

rs
ec

on
d

Mesh dimension

Nvidia GeForce 8800 GT/AMD Athlon64 X2 4000+

CPU
GPU

16 32 64 128 256 512 1024

10

20

30

40

50

60

70

80

90

100

S
pe

ed
up

1

10

100

1000

10000

100000

16 32 64 128 256 512 1024

A
ve

ra
ge

no
of

st
ep

s
pe

rs
ec

on
d

Mesh dimension

Nvidia QuadroFX4800/Intel i7 2.8GHz

CPU
GPU

16 32 64 128 256 512 1024

10

20

30

40

50

60

70

80

90

100

110

120

S
pe

ed
up

1

10

100

1000

10000

100000

16 32 64 128 256 512 1024

A
ve

ra
ge

no
of

st
ep

s
pe

rs
ec

on
d

Mesh dimension

Nvidia GF GTX460/Intel PentiumD 2.8GHz

CPU
GPU

16 32 64 128 256 512 1024

50

100

150

200

250

300

350

400

450

500

550

600

650

S
pe

ed
up

Fig. 3. Results of tests performed on various PC machines (identified by combination
of CPU and GPU)

The implementation for CPU was written in the C99 language as a single
threaded code and compiled using gcc 4.6 compiler with ”-O3“ option. No other
optimizations have been applied.

638 P. Topa and P. M�locek

 1

 10

 100

 1000

 10000

 100000

 16 32 64 128 256 512 1024

A
v
e

ra
g

e
 n

o
.

o
f

s
te

p
s
 p

e
r

s
e

c
o

n
d

Mesh size

Intel i7
QuadroFx4800

GTX460
GT240

GF 8800 GT
Quadro NVS 140M

Fig. 4. Results of efficiency test for all cards compared to efficiency of Intel i7 processor

4 Conclusions

Our tests show that graphics processors can provide high efficiency for Cellular
Automata models. The GPUs are very specialized processors designed for simul-
taneously processing huge amount of data with a single stream of instructions, as
it is required in computer graphics. Ideal GPGPU applications have large data
sets, high parallelism, and minimal dependency between data elements. Cellular
Automata is a modelling paradigm that meets this requirements very well:

– modeled system is represented by an usually large regular mesh of cells,
– each cell should be processed simultaneously,
– changes in cells depend only on their very local neighbourhood.

GPGPU programming requires very deep understanding of how this calculations
are preformed. The algorithms have to be carefully redesigned for the very spe-
cific architecture of these processors e.g. avoiding branching instructions. As a
result we can obtain great improvements in efficiency as it is presented in this
paper.

In this paper we concentrated only on algorithms issues. However, several
preliminary tests performed with profiler showed that memory bandwidth is
usually almost fully utilized. This suggests that the use of fast local memory
may result even greater speedups. Our future works will focus on this issue.

We are aware that so significant supremacy of GPU implementation partially
resulted from the fact that CPU code was not fully optimized. Careful optimiza-
tion of that code could reduce the advantage of GPUs, but because of massive
parallelism of Cellular Automata the similar performance could not be obtained.

GPGPU Implementation of Cellular Automata Model of Water Flow 639

Acknowledgements. This research is partially financed by the Polish Ministry
of Higher Education and Science, project N519 579338 and partially by AGH
grant No. 11.11.120.777.

References

1. Wolfram, S.: A New Kind of Science. Wolfram Media, Inc. (2002)
2. Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cam-

bridge University Press (1998)
3. Gobron, S., Finck, D., Even, P., Kerautret, B.: Merging Cellular Automata for

Simulating Surface Effects. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.)
ACRI 2006. LNCS, vol. 4173, pp. 94–103. Springer, Heidelberg (2006)

4. Gobron, S., Coltekin, A., Bonafos, H., Thalmann, D.: GPGPU Computation
and Visualization of Three-dimensional Cellular Automata. The Visual Com-
puter 27(1), 67–81 (2011)

5. Gobron, S., Devillard, F., Heit, B.: Retina Simulation using Cellular Automata and
GPU Programming. The Machine Vision and Applications Journal 18(6), 331–342
(2007)

6. Ferrando, N., Gosalvez, M.A., Cerda, J., Gadea, R., Sato, K.: Octree-based, GPU
implementation of a continuous cellular automaton for the simulation of complex,
evolving surfaces. Computer Physics Communications 182(3), 628–640 (2011)

7. Caux, J., Siregar, P., Hill, D.: Accelerating 3D Cellular Automata Computation
with GP-GPU in the Context of Integrative Biology. In: Salcido, A. (ed.) Cellular
Automata - Innovative Modelling for Science and Engineering. InTech (2011) ISBN:
978-953-307-172-5

8. CUDA Zone, http://www.nvidia.com/object/cuda_home_new.html
9. Khronos Group, http://www.khronos.org/opencl/

10. Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E., Phillips, J.C.: GPU
computing. Proceedings of the IEEE 96(5), 879–899 (2008)

11. Di Gregorio, S., Serra, R.: An empirical method for modelling and simulating
some complex macroscopic phenomena by cellular automata. Future Generation
Computer Systems 16(2-3), 259–271 (1999)

12. Topa, P.: River Flows Modelled by Cellular Automata. In: Proceedings of 1st SGI
Users Conference, Cracow, Poland, pp. 384–391. ACC Cyfronet UMM (October
2000)

13. Topa, P.: A Distributed Cellular Automata Simulations on Cluster of PCs. In:
Sloot, P.M.A., Tan, C.J.K., Dongarra, J., Hoekstra, A.G. (eds.) ICCS-ComputSci
2002. LNCS, vol. 2329, pp. 783–792. Springer, Heidelberg (2002)

14. Topa, P., Paszkowski, M.: Anastomosing Transportation Networks. In:
Wyrzykowski, R., Dongarra, J., Paprzycki, M., Wasniewski, J. (eds.) PPAM 2001.
LNCS, vol. 2328, pp. 904–911. Springer, Heidelberg (2002)

15. Topa, P., Dzwinel, W., Yuen, D.: A multiscale cellular automata model for sim-
ulating complex transportation systems. International Journal of Modern Physics
C 17(10), 1–23 (2006)

16. Simple and Fast Multimedia Library, http://www.sfml-dev.org/

http://www.nvidia.com/object/cuda_home_new.html
http://www.khronos.org/opencl/
http://www.sfml-dev.org/

A Multi-GPU Implementation

of a D2Q37 Lattice Boltzmann Code

Luca Biferale1, Filippo Mantovani2, Marcello Pivanti3, Fabio Pozzati4,
Mauro Sbragaglia1, Andrea Scagliarini5, Sebastiano Fabio Schifano3,

Federico Toschi6, and Raffaele Tripiccione3

1 University of Tor Vergata and INFN, Roma, Italy
2 Deutsches Elektronen Synchrotron (DESY), Zeuthen, Germany

3 University of Ferrara and INFN, Ferrara, Italy
4 Fondazione Bruno Kessler Trento, Trento, Italy

5 University of Barcelona, Barcelona, Spain
6 Eindhoven University of Technology, The Netherlands and CNR-IAC, Rome, Italy

Abstract. We describe a parallel implementation of a compressible Lat-
tice Boltzmann code on a multi-GPU cluster based on Nvidia Fermi
processors. We analyze how to optimize the algorithm for GP-GPU ar-
chitectures, describe the implementation choices that we have adopted
and compare our performance results with an implementation optimized
for latest generation multi-core CPUs. Our program runs at ≈ 30% of
the double-precision peak performance of one GPU and shows almost
linear scaling when run on the multi-GPU cluster.

Keywords: Computational fluid-dynamics, Lattice Boltzmann meth-
ods, GP-GPUs computing.

1 Introduction

Computational techniques are ubiquitous today to compute reliable solutions
to the highly non-linear equations of motion of fluids, in regimes interesting for
physics or engineering. Over the years, many different numerical approaches have
been proposed and implemented on virtually any computer architecture.

The Lattice Boltzmann (LB) method is a flexible approach, able to cope with
many different fluid equations (e.g., multiphase, multicomponent and thermal
fluids) and to consider complex geometries or boundary conditions. LB builds
on the fact that the details of the interactions at microscopic level do not change
the structure of the equations at the macroscopic level, but only modulate the
values of their parameters; LB then relies on some simple synthetic dynamics
of fictitious particle that evolve explicitly in time and, appropriately averaged,
provide the correct values of the macroscopic quantities of the flow; see [1] for a
complete introduction.

LB schemes are local (they do not require the computation of non local fields,
such as pressure), so parallelization is in principle simple and efficient at all
scales. In recent years, processing nodes have included more and more parallel

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 640–650, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Multi-GPU Implementation of a D2Q37 Lattice Boltzmann Code 641

features, such as many-core structures and/or vectorized data paths: the chal-
lenge now rests in combining effectively inter-node and intra-node parallelism.

In recent years, several methodologies for implementing efficient LB codes
have been studied and developed for modern CPUs [2, 3]. Recently, GP-GPUs
have drawn much attention to accelerate non-graphics applications, since the
peak performance of one GPU system exceeds that of standard CPUs by roughly
one order of magnitude; LB codes for GPUs have been recently considered in
[4–6].

In this paper, we report on an efficient LB implementation on GP-GPUs
that brings intra-node parallelism close to the highest level made possible by
current technology. Our implementation builds on programming methodologies
for GP-GPUs, like the data-layout and mapping of threads, studied, for example,
in [4], but implements a more complex communication structure based on a
D2Q37 model; our code is ready to run on a multi-GPU systems and enjoys
high efficiency and scalability.

We have tested our codes on the JUDGE (JÜlich Dedicated Gpu Environment
[8]) system at the Jülich Supercomputing Center (JSC). JUDGE is a cluster of 54
nodes, each with two multi-core processors (Intel Xeon X5650) and two Nvidia
Tesla M2050 systems, that use the Fermi GPU. The Fermi GPU (see [7] for
details) assembles 14 Symmetric Multiprocessors (SM), each containing a 32-
way SIMD computing unit. In total 448 cores are available on Fermi. Each node
has a peak double-precision performance of more that 1 Tflops.

This paper builds on previous work that addressed the same problem for
massively parallel architectures based on multi-core processors, such as the IBM
PowerXCell8i [9] or the Intel Xeon 5650 (Westmere) [10, 11].

2 Lattice Boltzmann Methods

In this work, we adopt a recently developed LB approach to the numerical so-
lution of a class of Navier-Stokes equations in two dimensions, that correctly
describes the behavior of a compressible gas, obeying the equation-of-state of an
ideal gas (p = ρT). The price to pay for this more accurate modelling is that
this algorithm (see [12, 13] for details) is computationally more demanding and
uses a more complex communication pattern than earlier approaches.

The model starts with a a thermal-kinetic description in the continuum of
a compressible gas of variable density, ρ, local velocity u, internal energy, K
and subject to a local body force density, g. The discretized counterpart of the
continuum description (that we use in this paper) uses a set of fields fl(x, t)
associated to the so-called populations; the latter can be visualized as pseudo-
particles moving in appropriate directions on a discrete mesh (see fig. 2); We
use a set of velocities with 37 elements (a so-called D2Q37 model), significantly
larger than earlier approaches. The master evolution equation in the discrete
mesh is:

fl(x + clΔt, t+Δt)− fl(x, t) = −Δt
τ

(
fl(x, t)− f (eq)l

)
(1)

642 L. Biferale et al.

where subscript l runs over the discrete set of velocities, cl (see again fig. 2)
and equilibrium is expressed in terms of hydrodynamical fields on the lattice,

f
(eq)
l = f

(eq)
l (x, ρ, ū, T̄). To first approximation, these fields are defined in terms

of the LB populations: ρ =
∑

l fl, ρu =
∑

l clfl, DρT =
∑

l |cl − u|2 fl. When
going into all mathematical details, one finds that shifts and renormalizations
have to be applied to the averaged hydrodynamical quantities to correct for
lattice discretization effects. It can be shown that with this approach one recovers
the correct thermo-hydrodynamical equations of motion:

Dtρ = −ρ∂iu(H)
i (2)

ρDtu
(H)
i = −∂ip− ρgδi + ν∂jju

(H)
i (3)

ρcvDtT
(H) + p∂iu

(H)
i = k∂iiT

(H). (4)

Dt = ∂t + u
(H)
j ∂j is the material derivative and superscript H denotes lattice-

corrected quantities; we neglect viscous dissipation in the heat equation (usually
small), cv is the specific heat at constant volume for an ideal gas and ν and k
are the transport coefficients.

LB algorithms translate into very simple codes: we set y = x + clΔt, and
rewrite eq. 1 as

fl(y, t+Δt) = fl(y − clΔt, t)−
Δt

τ

(
fl(y − clΔt, t)− f (eq)l

)
. (5)

For each time step Δt, the algorithm sweeps the lattice and performs two tasks:
a) it gathers population data from points in the lattice connected to y by a
velocity vector cl; b) it evaluates the new value of all populations by performing
the fully local computation of equation 5. Both the gather and computational
steps have an available parallelism as large as the number of lattice sites; addi-
tional steps necessary in a real program, such as enforcing appropriate boundary
conditions, do not modify this picture appreciably. In the following sections we
discuss ways to exploit this parallelism on multi-GPU architectures.

3 Single GPU Implementation

In this section we consider a single-GPU implementation, and then describe, in
a separate section, the implementation on a multi-GPU environment.

Following the programming model of CUDA [14], we associate one thread
to the processing of one site of the lattice. Threads can be grouped in blocks,
the latter being a batch of threads that cooperate, sharing data through a fast
shared-memory and synchronizing their execution to coordinate memory ac-
cesses. We often use the possibility to define dynamically the size of the blocks,
and the CUDA concept of stream, that identifies independent kernels that run
concurrently on the GPU, performing different tasks (e.g., computation and com-
munication). For the CPU-resident part of the code, we adopt the C language,
but we carefully manage all details of parallelism using the standard POSIX

A Multi-GPU Implementation of a D2Q37 Lattice Boltzmann Code 643

typedef struct {
double p1 [NSITES] ; // popu lat ion 1 array
double p2 [NSITES] ; // popu lat ion 2 array
. . .
double p37 [NSITES] ; // popu lat ion 37 array

} pop_type ;

Fig. 1. Main data structures for population data, as seen by the GPU. Lattice data is
stored in memory as a structure of arrays, to better exploit memory coalescing. Each
member is an array, one for each population used by our model. NSITES is the number
of lattice sites.

Linux pthread library (not to be confused with the thread concept of CUDA),
while MPI supports communication between the nodes.

Each grid point has a set of 37 double-precision floating point values repre-
senting the populations of the D2Q37 LB code. We implement this data-structure
as a structure of arrays as shown in figure 1. Each CUDA thread processes one
site; threads processing adjacent sites address the same population-array at the
same time. This makes it easy for the hardware to coalesce memory accesses
by the threads into just one memory transaction. There are two copies of each
population-array on GPU memory. Each step of the algorithm reads data from
one copy and write results to the other. Each population-array includes a left
and a right frame, containing a copy of (respectively) the three rightmost and
leftmost columns of the lattice; this structure helps handle periodic boundary
conditions (which we adopt in the x-direction).

At each time step, the host executes a loop that includes the following four
computational phases:

– comm(): this step copies the left and right borders of the lattice grids onto
the appropriate frames;

– move(): for each site, this phase gathers the population elements that will
collide at the next computational phase (collide()), according to the scheme
of figure 2. This implies accessing sparse blocks of memory locations, cor-
responding to populations of neighbor-cells at distance 1, 2 and 3 in the
physical grid. This step is usually called stream, but we name it move to
avoid confusion with CUDA streams that will be used later;

– bc(): this phase adjusts the values of the populations at the top and bottom
edges of the lattice to enforce boundary conditions (e.g., a constant given
temperature and zero velocity);

– collide(): this phase performs all the mathematical steps needed to compute
the new population values at each grid site (called collision in LB jargon).
Input data are the populations gathered by the move() phase. This is the
floating point intensive kernel of the code; it uses only data available of
the site on which it operates, making the processing of different sites fully
uncorrelated.

As usual with CUDA, a computation is structured as a two-dimensional grid
of blocks, and each block is a three-dimensional grid of threads. In our case all

644 L. Biferale et al.

Fig. 2. Visualization of the move() phase. Populations from grid points at the edges of
the arrows are gathered at the grid point at center, at a distance of 1, 2, 3 grid points.

threads execute the same code, processing a different lattice-site. Each phase
corresponds to a separate CUDA kernel, as follows:

– comm is a copy operation. On a single GPU, a CUDA memory-copy function
invoked by the host moves data from locations corresponding to the right
border to locations corresponding to the left border and vice-versa. The
device-to-device flag makes this operation an intra-GPU copy of data with
no host involvement, and substantially increases performance. On a multi-
GPU implementation this step implies network communications (see later);

– for move and collide operating on a lattice of NX × NY points, the layout of
each block is (1× N THREAD× 1) and the grid of blocks is (NY/N THREAD,
NX) (N THREAD is the number of thread per block), see figure 3 left. We
have profiled the execution time of collide for several values of N THREAD;
no performance increase is found as N THREAD ≥ 128.

– for bc, the layout of each block is changed to (NX × 1 × 1) and the grid
of blocks is (1 × NY), see figure 3 right. bc runs only on the threads cor-
responding to lattice-sites with coordinate y = 0, 1, 2 and y = NY − 1,
NY − 2, NY − 3.

A first version of the code (that we call V1), uses two separate kernels to perform
the move and collide steps. We can further improve our implementation, noticing
that we move data from/to memory two times, first during move, then during
collide; however, move and collide can be merged in just one step applied to
all cells of the grid (for more details see [15]). To do this we have to take into
account that we must enforce boundary conditions (bc) after move but before
collide, so we must structure the computation in a slightly different way (we call
the resulting code version V2). Also in this case the host performs a loop over
time; at each iteration, it launches GPU kernels performing the following steps:

A Multi-GPU Implementation of a D2Q37 Lattice Boltzmann Code 645

Fig. 3. (Left): Configuration used by the move() and collide() kernels, on a physical
lattice of 8 × 16 points; the block-grid is 8 × 4, and the thread-grid is 1 × 4 × 1
(N THREAD = 4). (Right): Configuration used by the bc() kernel for the same lattice;
the block-grid is 1× 16, and the thread-grid is 8× 1× 1 (N THREAD = 8).

step 1: exchange border frames;
step 2: execute move over the three topmost and lowermost rows of the grid;
step 3: adjust boundary conditions on the cells at the three top and bottom rows

of the grid; then run collide for those cells;
step 4: execute a kernel that jointly computes move and collide for all cells in

the lattice bulk.

4 Multi-GPU Implementation

We now describe the parallelization of the code for a multi-GPU environment.
We split a lattice of size Lx × Ly on Np GPUs along the X dimension. Each

GPU allocates a sub-lattice of size Lx

Np
× Ly. One could consider a different de-

composition (e.g.
Ly

Np
× Lx to reduce communication requirements if Ly ≥ Lx);

however, since we plan to use our code for physics simulations in a wide range of
aspect-ratios (both Lx > Ly and Lx < Ly) and the communication overhead is
small (see later for details) we arbitrarily pick up only one of the two possibili-
ties. This allocation scheme implies a virtual ordering of the GPUs along a ring,
so each GPU is connected with a previous and a next one. Since each node of the
cluster hosts two GPUs, each GPU has a neighbor installed on the same node
while the other neighbor sits on a different node. GPUs must exchange data at
the beginning of each time-step, before starting the move() phase, as cells close
to the right and left edges of the sub-grid of each node need data allocated on
the logically previous and next GPUs. We first copy the three left-most and
right-most y columns of each sub-lattice from both GPUs to buffers on the host,
using CUDA memory-copy instructions. We then perform the required buffer ex-
changes inside the node, and finally move buffered data from/to adjacent nodes.
When this step completes, we copy the fresh buffers back into the GPUs and the

646 L. Biferale et al.

Fig. 4. Flow diagram of the code executed by each node. Threads T0 and T1 manage
the GPUs, while thread T2 manages the exchange of border data and communication
on the Infiniband network.

program continues with move(), bc() and collide(). This communication pattern
uses standard MPI send and receive operations.

To improve performance, reduce the impact of communications and obtain
better scaling performance, we have re-scheduled all tasks in order to overlap
communication and processing. We use the CUDA concept of stream that allows
the execution of concurrent kernels, so we exploit parallelism at various levels
organizing the program on each node as a multi-threaded and multi-streamed
code. We have re-scheduled the code as following. The node executes a multi-
threaded code running three threads: T0, T1 and T2. Threads T0, T1 manage
respectively GPU0 and GPU1, while T2 takes care of the operations associated
to the comm() phase. To avoid conflicts in accessing GPU devices and memory,
we have controlled the allocation of memory and threads by using the standard
Linux NUMA library, and the lattice allocated on each node is split in two
sub-lattices, each allocated on a separate memory bank. Threads T0 and T1
run respectively on CPU0 and CPU1 and execute the same program, while
allocation of thread T2 is irrelevant since it has to perform copy operations from
one device to the other, or node-to-node communications via MPI primitives.
This allocation avoids or reduces memory and device access conflicts due to a
thread running on a CPU and accessing memory or device physically attached to
the other CPU [11]. The three threads run in parallel, and are synchronized by
barriers shown in figure 4 as tBarrier(). The execution goes through the following
phases for each time step, as shown in figure 4:

Phase 1: after an initial synchronization (phase0), threads T0 and T1 launch
three CUDA streams which run on the GPU concurrently: S0, S1 and S2. S0
executes the move(Bulk) kernel over the bulk of the sub-lattice; streams S1
and S2 execute in parallel cMemcpy(), a memory copy of the borders from
device to host;

A Multi-GPU Implementation of a D2Q37 Lattice Boltzmann Code 647

Table 1. Performance comparison for the GPU and CPU codes, versions V1 and
V2. Runs have been performed on a system of 252 × 16000 lattice points. We show
performance in GFLOPs and as a fraction of peak (Rmax).

GPU code V1 CPU code V1

comm 0.20 ms 10.00 ms
stream 47.85 ms 140.00 ms
bc 0.60 ms 0.20 ms
collide 194.69 ms 360.00 ms

GFLOps 129.23 60.17
Rmax 25% 38%

GPU code V2 CPU code V2

STEP 1 0.19 ms 7.00 ms
STEP 2 1.18 ms 0.64 ms
STEP 3 0.99 ms 0.62 ms
STEP 4 193.45 ms 410.00 ms

GFLOps 160.59 72.41
Rmax 31% 45%

Phase 2: threads T0 and T1 wait the end of streams S1 and S2 performing a
CUDA StreamSync() call, and then make a synchronization with thread T2;

Phase 3: thread T2 exchanges border data with neighbor nodes (call MPI-
comm). This proceeds in parallel with the move(Bulk) kernels run by streams
S0;

Phase 4: as T2 has received data from neighbors nodes, it makes a synchro-
nization with T0 and T1; the latter launches two streams (cMemcpy()) to
copy data from host to GPUs;

Phase 5: as the copy operation ends, T0 and T1 runs kernels to apply the
move() operation to the just updated borders;

Phase 6: T0 and T1 run sequentially kernels to compute bc() and collide().

5 Performance Results and Conclusions

To first approximation, performance results are either limited by the available
memory bandwidth or computation throughput. A rough estimation of the com-
puting time T of our code is:

T ≥ max(W/F, D/B) (6)

where W ≈ 7800 double-precision floating-point operations is the computation
workload for each lattice point, F is the peak performance of the CPU, D =
37×2×8 = 500 is the amount of data in bytes exchanged with memory, and B is
the peak memory bandwidth. Remembering that F ≈ 500 Gflops and B ≈ 144
Gbyte/sec for the GPU that we use, we obtain:

T ≥ max

(
7800

500
,

592

144

)
ns = max(15.6, 4.1) ns. (7)

In other words, if peak values for CPU performances and memory bandwidth
apply, our code is strongly compute-bound, so one can hope to reach high ef-
ficiency. In presenting our performance result, we compare our GPU-based im-
plementation with a CPU-code optimized for a commodity system based on two
Intel six-core (Westmere) CPUs. Also for this system, equation 6 tells us that

648 L. Biferale et al.

Fig. 5. Relative speedups in strong and weak regime (left), and sustained performance
(right) for code versions V1 and V2, as function of the number of GPUs. Measurements
in the strong regime have been done running the codes on a lattice size Lx × Ly =
1024× 7168, while in the weak regime a sub-lattice of size Lx ×Ly = 254× 14464 have
been allocated on each GPU.

the code is theoretically compute-bound. Our CPU implementation, described in
detail in [10, 11], has been optimized at various levels exploiting core parallelism,
vectorization and cache data re-use. Table 1 shows the results of this compari-
son. Figure 5 shows relative speedup and sustained performances (in GFLOPs)
of the multi-GPU implementation as function of the number of the GPUs. Some
final remarks are in order:

– A simple theoretical analysis shows that our code is strongly compute-bound,
and could reach high efficiency. However, even if sustained performance is
good from the point of view of physics application, the value measured is
≈ 25−30% of peak, significantly lower than one would expect from equation
7. This is partially due to the fact that the the floating-point computation
of the collide phase can be only partially mapped on fused-multiply-add in-
structions; it also uses many constants which have to be loaded from mem-
ory, causing stalls in the CPU pipeline. Moreover, the CPU registers are
not enough to hold all the intermediate values of the computation, caus-
ing register-spilling, and introducing overheads. We are currently working to
better characterize and reduce these overheads;

– The single GPU-code performs roughly a factor 2 better than the optimized
code on multi-core CPUs. This result is due to the bad impact of overheads
highlighted in the previous point;

– Even if efficiency on GPUs (as a fraction of peak) is lower than for multi-
core CPUs, sustained performances are still remarkably high for a physics
production-ready code;

– Fine tuning the CPU-program has required accurate programming efforts
(see [10, 11]), while on GP-GPUs, the coders are forced to to (re-)write pro-
grams using the CUDA paradigm, which naturally exploits data-parallelism
and performances of the GPUs;

A Multi-GPU Implementation of a D2Q37 Lattice Boltzmann Code 649

– On the other hand, performance can be dramatically affected by communi-
cation overheads between the CPUs and GPUs. At least in this case, this
problem can be swept under the carpet, but a non trivial subdivision in
computing threads and an accurate schedule is necessary;

– Scalability of our code is good in the strong-regime as the size of the local
lattice is large enough to hide communication and memory-copy overheads;
in the weak-regime the scaling is linear as the communication time has been
hidden with computation of move; same results apply to the CPU-code.

Performance improvements should be expected if communications are performed
directly between GPUs with reduced involvement of the host, and workloads
are balanced between GPUs and CPUs. Future works in this direction will ex-
plore these features. e.g. using Nvidia GPUDirect capabilities, and heterogenous
programming.

Acknowledgements. We would like to thank the Jülich Supercomputing
Center (JSC) for providing access to the JUDGE system; we acknowledge the
precious support of W. Homberg and J. Kreutz during program development,
debugging and test.

References

1. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford
University Press (2001)

2. Wellein, G., Zeiser, T., Hager, G., Donath, S.: On the Single Processor Performance
of Simple Lattice Boltzmann Kernels. Computers & Fluids 35, 910–919 (2006)

3. Axner, L., et al.: Performance evaluation of a parallel sparse lattice Boltzmann
solver. Journal of Computational Physics 227(10), 4895–4911 (2008)

4. Tölke, J.: Implementation of a Lattice Boltzmann kernel using the Compute Unified
Device Architecture developed by nVIDIA. Comp. and Vis. in Science (2008)

5. Tölke, J., Krafczyk, M.: TeraFLOP computing on a desktop PC with GPUs for
3D CFD. Journal of Computational Fluid Dynamics 22(7), 443–456 (2008)

6. Habich, J., Zeiser, T., Hager, G., Wellein, G.: Speeding up a Lattice Boltzmann
Kernel on nVIDIAGPUs. In: Proc. of PARENG09-S01, Pecs, Hungary (April 2009)

7. http://www.nvidia.com/object/fermi_architecture.html

8. http://www2.fz-juelich.de/jsc/judge

9. Biferale, L., et al.: Lattice Boltzmann fluid-dynamics on the QPACE supercom-
puter. In: ICCS Proc. 2010, Procedia Computer Science, vol. 1, pp. 1075–1082
(2010)

10. Biferale, L., et al.: Lattice Boltzmann Method Simulations on Massively Parallel
Multi-core Architectures. In: HPC 2011 Proc. (2011)

11. Biferale, L., et al.: Optimization of Multi-Phase Compressible Lattice Boltzmann
Codes on Massively Parallel Multi-Core Systems. In: ICCS 2011 Proc. 2011. Pro-
cedia Computer Science, vol. 4, pp. 994–1003 (2011)

http://www.nvidia.com/object/fermi_architecture.html
http://www2.fz-juelich.de/jsc/judge

650 L. Biferale et al.

12. Sbragaglia, M., et al.: Lattice Boltzmann method with self-consistent thermo-
hydrodynamic equilibria. J. Fluid Mech. 628, 299 (2009)

13. Scagliarini, A., et al.: Lattice Boltzmann Methods for thermal flows: continuum
limit and applications to compressible Rayleigh-Taylor systems. Phys. Fluids 22,
055101 (2010)

14. NVIDIA, NVIDIA CUDA C Programming Guide
15. Pohl, T., et al.: Optimization and Profiling of the Cache Performance of Parallel

Lattice Boltzmann Codes. Parallel Processing Letters 13(4), 549–560 (2003)

Combining Smoother and Residual Calculation

in v-cycle AMG for Symmetric Problems

Maximilian Emans

Johann Radon Institute for Computational and Applied Mathematics (RICAM), and
Industrial Mathematics Competence Center GmbH (IMCC), both 4040 Linz, Austria

maximilian.emans@ricam.oeaw.ac.at

Abstract. We examine a modified implementation of the v-cycle multi-
grid scheme which takes into account the memory traffic, i.e. the move-
ment of data between the memory and the processing units. It is known
that the relatively slow data transfer is responsible for the poor parallel
performance of multigrid algorithms on certain shared memory architec-
tures e.g. those with a front-side bus memory controller. The modification
is simple but it speeds up computations by up to 15%.

1 Introduction

Multigrid algorithms have reached a particular maturity in the field of solvers
for sparse linear systems. Such problems are often the core task of PDE (partial
differential equation) solvers. In this case, AMG (algebraic multigrid) techniques
are attractive since they exclusively require the information stored in the system
matrix; due to this they have the potential to be used as a “black-box”, whereas
geometric multigrid methods always require further information that depends
on the discretisation technique.

The memory access pattern, i.e. the order in which certain data in the mem-
ory is accessed for reading and writing, is crucial for the performance of any
numerical algorithm, multigrid being no exception. The reason is that the rate
at which data can be transferred from the main memory to the processing core
is limited by the memory bandwidth; in many situations it is slower than the
rate at which the data can be processed. The memory access therefore tends to
limit the rate at which the processing unit can practically perform the arithmetic
operations.

Emans and van der Meer [1] have reported the consequences of this on the
performance of AMG algorithms running on modern cluster hardware. They
found that the problem is particularly severe on shared memory machines where
the memory access of the individual processes is slow since all processes require
the data transfer at the same time. In this paper we examine the improvement
through a combined execution of a smoothing step and the residual calculation
that is applicable for symmetric problems; this idea has been mentioned among
some other suggestions to enhance AMG implementations by Haase and Re-
itzinger [2], and a similar idea can be found in the paper by Douglas et al. [3].

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 651–660, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

652 M. Emans

However, the impact of this particular modification on the performance of AMG
solvers has not been studied properly yet. The fact that still in many AMG im-
plementations the conventional, modular approach seems to be preferred is the
major motivation for this contribution.

2 AMG and Its Implementation

Suppose we want to use AMG to iteratively approach a solution of the system
Ax = b where A ∈ R

n×n is symmetric, regular, and sparse, b ∈ R

n is some
right-hand side vector and x ∈ R

n the solution with n being the rank of A and
thus the number of unknowns. Algorithm 1 represents a v-cycle which is one of
the most commonly used cycling strategies. As with any multigrid algorithm, it
requires the definition of a grid hierarchy with lmax levels where Al ∈ R

nl×nl

(l = 1, ...lmax) is the system matrix on level l (A1 = A) with a system size nl;
nl+1 < nl holds for l = 1, ..., lmax−1. Moreover, a smoothers Sl and prolongation
and restriction operators Pl ∈ R

nl×nl+1 and Rl ∈ R

nl+1×nl for each level l need
to be determined. As it is common practice in algebraic multigrid we choose
Rl = PT

l (l = 1, ..., lmax − 1) and define the coarse-grid hierarchy recursively
according to Galerkin.

The matrices Al are stored in the compressed row storage (CRS) format. This
format is common in many linear solver packages, such as in hypre [4] and the
algebraic multigrid package of Trilinos, ML [5]. Using this format, the matrix
elements are stored row-wisely in a coherent vector; this format is favourable if
several elements of one matrix row are accessed immediately after each other
since on modern chip architectures with caches tiles, i.e. small coherent parts
of the memory (instead of single floating-point numbers) are loaded at once to
the cache. Once a single element of a row is in the cache, one can assume that,
provided the CRS format is used, the following elements of this row have already
been loaded to the cache and can be accessed very quickly. Since transferring the
data from the main memory to the cache is limited by the memory bandwidth,
using the elements of the same row more than once (while the same operations
are done) can have a beneficial effect on the run time.

The smoother might be any algorithm that reduces high frequency error com-
ponents on the respective grid level l. In most AMG implementations a Gauß-
Seidel smoother, an ILU(0) smoother or a Jacobi smoother is employed. With
regard to memory access of the matrix elements, these algorithms are similar; in
the following we restrict ourselves to the Gauß-Seidel smoother.

In many multigrid algorithms, the application of the smoother and the com-
putation of the residual contribute significantly to the total computing time (in
serial as well as in parallel computations). Pseudocodes of an efficient parallel
implementations of the Gauß-Seidel smoother and the computation of the resid-
ual are shown in algorithms 2 and 3. The following notation is used: p is the
number of parallel processes, nd is the total number of unknowns assigned to
process d where

∑p
d=1 nd = n, md number of internal unknowns without link

to unknowns assigned to another process, Ad ∈ R

nd×nd is the matrix that re-
flects the mutual influences between the unknowns assigned to process d; for

Combining Smoother and Residual Calculation in v-cycle AMG 653

Algorithm 1. v-cycle AMG

x
(3)
l = v-cycle(l, bl, x

(0)
l)

Input: level l, right-hand side bl, initial guess x
(0)
l

Output: approximate solution x
(3)
l

1: pre-smoothing: x
(1)
l = Sl(bl, Al,x

(0)
l)

2: compute residual: rl = bl − Alx
(1)
l

3: restriction: rl+1 = P T
l rl

4: if l + 1 = lmax then
5: direct solution of coarse-grid system: xl+1 = A−1

l+1rl+1

6: else
7: recursive solution of coarse-grid system: xl+1 = v-cycle(l + 1, rl+1, 0)
8: end if
9: prolongation of coarse-grid solution and update: x

(2)
l = x

(1)
l + Plxl+1

10: post-smoothing: x
(3)
l = Sl(bl, Al,x

(2)
l)

the elements of Ad, aij , the index d is dropped for the sake of simplicity. For
parallel implementations it is also necessary to consider the influence of external
unknowns (i.e. unknowns assigned to another process) onto unknowns assigned
to the current process. This influence is reflected by Ãd ∈ R

nd×ñd with elements
ãij ; ñd is the number of external unknowns that influence the calculation of pro-
cess d. Note that ãij = 0 for i ≤ md since the unknowns with index i < md are
not connected to unknowns assigned to another process. The notation is illus-
trated in figure 1. The sparsity pattern the matrices Ad and Ãd is expressed by
the index sets Ji = {j|aij �= 0} and J̃i = {j|ãij �= 0}, respectively, where again
the index pointing to the process is skipped for simplicity.

The implementations that are expressed in algorithms 2 and 3 rely on an asyn-
chronous data exchange mechanism. These implementations have the advantage
that most of the computational work (the treatment of the internal unknowns,
loop 3-5 in algorithm 2 and loop 2-4 in algorithm 3) and the actual data trans-
fer can be done simultaneously so that the parallel overhead can be efficiently
hidden as long as the internal tasks are sufficiently large.

d d
m +1d

md

m +1dmd 1

n~d

n~d

n

1
1

1

A A

x

x

~

~

nd

d

Fig. 1. Notation of parallelised matrix storage

654 M. Emans

Algorithm 2. parallel Gauß-Seidel smoother

x
(K)
l = GS(K, b, x(0))

Input: number of sweeps K, right-hand side b, initial value x(0)

Output: smoothed vector x(K)

1: for k = 1 to k = K do
2: initialise and start exchange of x(k−1)

3: for i = 1 to md do

4: update internal values x
(k)
i = 1

aii

(
bi − ∑

j∈Ji,j<i

aijx
(k)
j − ∑

j∈Ji,j>i

aijx
(k−1)
j

)
5: end for
6: wait until x̃

(k−1)
i for i = 1, ..., ñd are obtained and terminate exchange

7: for i = md + 1 to nd do

8: x
(k)
i = 1

aii

(
bi − ∑

j∈Ji,j<i

aijx
(k)
j − ∑

j∈Ji,j>i

aijx
(k−1)
j − ∑

j∈J̃i

ãij x̃
(k−1)
j

)

9: end for
10: end for

Algorithm 1 suggests already how the v-cycle program can be organised: The
application of the smoother and the matrix-vector product or the entire com-
putation of the residual, but also that of the prolongation and the restriction
operators, are implemented as separate program units, e.g. as functions or sub-
routines. This organisation of the program is found in most publicly available
multigrid implementations such as hypre [4] and the algebraic multigrid pack-
age of Trilinos, ML [5]. The advantage is that it results in a clear and modular
structure of the program.

Algorithm 3. parallel calculation of residual

r = RS(b, x)
Input: right-hand side b, current solution x
Output: residual r

1: initialise and start exchange of x.
2: for i = 1 to md do
3: compute internal values ri = bi − ∑

j∈Ji

aijxj

4: end for
5: wait until xi for i = md + 1, ..., nd are obtained and terminate exchange.
6: for i = md + 1 to nd do
7: r

(k)
i = bi − ∑

j∈Ji

aijxj − ∑
j∈J̃i

ãij x̃j

8: end for

2.1 Simultaneous Application of Smoother and Matrix

It has been observed that the data transfer on shared-memory architectures
is a limiting factor for poor performance of parallel computations. The largest
amount of data that needs to be transferred are the elements of the matrix; they

Combining Smoother and Residual Calculation in v-cycle AMG 655

need to be accessed in every sweep of the smoother and in the matrix-vector
multiplication for the computation of the residual. Emans and van der Meer
[1] have reduced the data transfer by replacing appropriate parts of an 8-byte
arithmetic by a 4-byte implementation and report acceleration in the range of
25%. Note that this kind of data transfer is not relevant in the case of geometric
multigrid since the implementation of matrix-related operations in this kind of
algorithm is typically based on stencils and the matrix elements are not stored
explicitly. Therefore our idea is restricted to algebraic multigrid.

A similar accelerating effect can be expected if the smoothing sweep and an
immediately following computation of the residual (lines 1 and 2 of algorithm 1)
can be implemented in a way that the matrix information needs to be loaded only
once to the cache. Note that this loading is not relevant in the case of geometric
multigrid since the implementation of matrix-related operations in geometric
multigrid is typically based on stencils and the matrix elements are not stored
explicitly. Therefore this idea is restricted to algebraic multigrid. Algorithm 4
shows the pseudocode for symmetric matrices where the smoothing and the
residual calculation are combined into one program unit. Due to the symmetry
of A we use aij instead of aji for the computation of the j-th component of r;
this way both accesses of each matrix element (one for the smoother and one
for the residual calculation, see line 7 and 10 of algorithm 4, respectively) take
place immediately one after the other such that each matrix row needs to be
moved only once from the memory to the cache. The rest of the memory access
pattern of this combined implementation of smoother and residual computation
is not worse than that of the conventional implementation: In both algorithms,
two random accesses to vectors occur: the unknown vector is randomly accessed
— once for the update in line 4 of algorithm 2 and once again for the calculation
of the residual in line 3 of algorithm 3. In algorithm 4, the unknown vector in
line 7 and the residual vector in line 10 are accessed randomly.

In a parallel computation, however, it is possible that the parallel overhead
is slightly larger: While in the conventional implementation the exchange of the
unknowns at the boundaries and the treatment of the internal unknowns take
place simultaneously, in the combined implementation of smoother and residual
computation the time for the exchange of the smoothed solution can only be
used to treat the internal part of the rows with links to external unknowns (lines
20-22 in algorithm 4).

3 Benchmark

In this section we describe a benchmark on different shared memory machines.
The computers used are desktop workstations equipped with different Xeon pro-
cessors by the manufacturer Intel. Table 1 compiles some information on the
hardware. The most important differences between these processors are the num-
ber of cores, the organisation and the size of the cache (highest level in the cache
hierarchy) as well as the type of memory bus. The processors X5470, X5365, and
X5160 use a classical UMA architecture with a FSB (front-side bus) memory con-
troller while X5670 has the QPI (QuickPath Interconnect), based on a NUMA

656 M. Emans

Algorithm 4. parallel Gauß-Seidel smoother with residual computation

(x
(K)
l , r) = GSRS(K, b, x(0))

Input: number of sweeps K, right-hand side b, initial value x(0)

Output: smoothed vector x(K), residual r
1: for k = 1 to k = K do
2: if k = K then
3: initialise residual: r = b;
4: end if
5: initialise and start exchange of x(k−1);
6: for i = 1 to md do

7: update internal values: x
(k)
i = 1

aii

(
bi − ∑

j∈Ji,j<i

aijx
(k)
j − ∑

j∈Ji,j>i

aijx
(k−1)
j

)
;

8: if k = K then
9: for j ∈ Ji do
10: accumulate: rj ← rj − aijx

(k)
i ;

11: end for
12: end if
13: end for
14: wait until x̃

(k−1)
i for i = 1, ..., ñd are obtained and terminate exchange;

15: for i = md + 1 to nd do
16: update boundary values:

x
(k)
i = 1

aii

(
bi − ∑

j∈Ji,j<i

aijx
(k)
j − ∑

j∈Ji,j>i

aijx
(k−1)
j − ∑

j∈J̃i

ãij x̃
(k−1)
j

)
;

17: end for
18: end for
19: initialise and start exchange of x(K);
20: for i = md + 1 to nd do
21: for j ∈ Ji do
22: accumulate: rj ← rj − aijx

(K)
i ;

23: end for
24: end for
25: wait until x̃

(K)
i for i = 1, ..., ñd are obtained and terminate exchange;

26: for i = md + 1 to nd do
27: accumulate: rj ← rj +

∑
j∈J̃

ãij x̃
(K)
i ;

28: end for

memory layout. The new QPI is not only significantly faster, but also permits
that the L3-cache is shared between all cores whereas only two nodes of the four
nodes on the quad-cores processors share a common L2-cache. The transfer rate
of the FSB systems would correspond theoretically to a transfer rate of 1.67
GT/s; since the specifications of the manufacturer refer to theoretical peak per-
formance and the effective bandwidth does not only depend on the bus system,
we added the measured bandwidth to the data in table 1.

Our benchmark is a symmetric linear system that has to be solved in a flow
simulation of an engine calculation. It reflects the second order accurate finite
volume discretisation of a pressure-correction equation in a SIMPLE scheme

Combining Smoother and Residual Calculation in v-cycle AMG 657

used to predict the unsteady compressible motion of the air in a cylinder of a
combustion engine. The system is symmetric and positive definite; moreover,
since each finite volume has six or less neighbours, the maximum number of
elements per row is seven. For more information on the nature of this system we
refer to Emans [7]. We would like to emphasis that in this contribution we are
only interested in speeding up a particular part of the calculation; since we do
not interfere with the numerical algorithm, the results are not changed by the
suggested modification. Therefore, apart from the non-zero structure and the
symmetry, the numerical properties of the matrix are irrelevant for this paper.

The parallel decomposition of the problem is done by the graph partitioning
algorithm METIS, see Karypis and Kumar [8]. The matrices Ad and Ãd are
stored separately, i.e. the indexing shown in figure 1 is used. The program is
written in FORTRAN90 and it is compiled by the Intel-FORTRAN compiler
10.2. The communication is performed through calls to hp-MPI subroutines
(C-binding). This MPI implementation invokes a shared memory mechanism
whenever a shared memory is available. Since we consider only situations where
all processes have access to a single physical memory, this is always the case.
The consequence is that the data exchange between two processes is very fast.
Relatively slow node-to-node communication does not occur. For an OpenMP
implementation the same principal idea is valid since the data transfer from the
memory to the processing core is the same; in this case the initialisation of the
exchange should be replaced by a barrier and no waiting is necessary.

The linear system is solved by a conjugate gradient technique where AMG
acts as a preconditioner. We have chosen two different AMG algorithms to
demonstrate that the benefit of our modification is not restricted to a particular
algorithm. The cycling strategy of both algorithms is the standard v-cycle of
algorithm 1. The differences between both algorithms lie in the coarsening al-
gorithm, i.e. in the definition of the restriction and prolongation operators; for
both algorithms we apply two pre- and two post-smoothing sweeps.

The coarsening of algorithm ams1cg is an implementation of the Smoothed
Aggregation scheme that has been suggested by Vaněk et al. [9]. This algorithm
typically produces aggregates of between 10 and 50 fine-grid nodes and the struc-
ture of the prolongation operators is complex which entails that the computation

Table 1. Technical data of the employed Intel processors including bandwidth mea-
sured with the STREAM benchmark of McCalpin [6] (array size: 20 · 106 8-byte
variables, maximum number of cores employed in parallel using MPI)

processor X5670 X5470 X5365 X5160

processors per machine 2 2 2 2
cores per processor 6 4 4 2
cache per processor 12MB (L3) 2 · 6MB (L2) 2 · 4 MB (L2) 2 · 2MB (L2)
memory bus QPI, 6.4GT/s FSB, 1333MHz FSB, 1333MHz FSB, 1333MHz
bandwidth 26853 MB/s 7211 MB/s 6124 MB/s 7231 MB/s
clock speed 2.93GHz 3.33GHz 3.0GHz 3.0GHz
release Q1/2010 Q3/2008 Q3/2007 Q2/2006

658 M. Emans

of the coarse-grid hierarchy is expensive. The advantage of the algorithm is that
each coarse grid of level l + 1 is significantly smaller than the fine grid of level
l where it is constructed from; consequently the total number of grids is kept
small. The coarsening of the algorithm amv1cg, on the other hand, is a mod-
ification of the pairwise aggregation described in the paper Emans [7] where
the interpolation within the aggregates is constant. This makes the computation
of the coarse-grid hierarchy particularly cheap since it is essentially reduced to
an addition of rows of Ad. However, the number of grids will be rather large
since each coarse-grid has only about half as many unknowns as the fine grid it
is constructed from. The parallel implementation of both algorithms has been
discussed comprehensively in Emans [7].

It is instructive to examine first the contribution of the smoother and the
computation of the residual to the total computing time. In figure 2 the total
computing time (of the linear solver, i.e. conjugate gradients and AMG precon-
ditioner) and the computing times of the single tasks within the AMG algorithm
are plotted: It turns out that the contribution of smoother and calculation of
the residual (together) is around 60%. A more effective implementation of these
two parts will therefore have a significant effect on the total computing time.

The parallel efficiency of the entire solution phase drops down to 30% for
calculations on eight processes, see figure 2. Smoothing and calculation of the
residual show the same poor values. A much better parallel efficiency of the
same algorithm and the same implementation is obtained if the eight processes
are distributed to two nodes, see Emans [7], although in the latter case a node-
to-node communication through a network interconnect was necessary. Since the
data transfer between memory and the cores is the limiting factor, it is promising
to reduce this data transfer.

Figure 3 shows the ratio of the computing times measured for implementa-
tion with the combination of the smoother and residual calculation t1 and the
conventional implementation t0 (using algorithms 3 and 2 separately). For the
processors with FSB memory controller the proposed modification leads to an
acceleration of the computations; for computations with four or eight parallel
processes the gain lies in the range of up to 15% of the computing time for
smoother and residual computation with translates to up to 10% of the total
computation. The acceleration is larger if more cores are used in parallel: this
leads to a higher load of the data bus and consequently to a slower transport
of data to an individual core. It is noticeable, however, that the highest value
of the curves of X5160 and of X5365 is reached in the calculation with two pro-
cesses: Here the retardation of the computation through the slow data transfer
is much less severe than in the calculations with four or eight processes, but it
becomes noticeable that the parallel overhead of the combination of the smooth-
ing sweep and the calculation of the residual cannot be hidden as efficiently as
in the conventional implementation. Both effects are balanced in this example.

The processor X5670 with its QPI memory bus system can deliver the data
required for the computation much faster to the cores. For calculations on these
hardware the proposed modification is therefore not as efficient for calculations

Combining Smoother and Residual Calculation in v-cycle AMG 659

on hardware with FSB memory controller. Calculations with up to four paral-
lel processes are slightly slowed down, but calculations involving more parallel
processes can still be accelerated.

Fig. 2. Computing times of partial tasks on system X5470

Fig. 3. Ratio of computing time of algorithms with combined smoother and residual
calculation t1 and conventional implementation t0

4 Conclusions and Outlook

An implementation that avoids the double loading of the matrix for a smoothing
step that is immediately followed by the calculation of the residual can be faster
than a conventional implementation by up to 15%. The advantage depends on
the capability of the hardware to transfer data from the main memory to the

660 M. Emans

caches and the cores. The method is therefore most attractive for chips equipped
with FSB memory connections. Future work will be focused on further exploiting
the symmetry in the data structures.

Acknowledgement. Part of this work has been supported in the framework of
“Industrielle Kompetenzzentren” by the Austrian Ministerium für Wirtschaft,
Jugend und Familie and by the government of Upper Austria.

References

1. Emans, M., van der Meer, A.: Mixed-precision AMG as linear equation solver for def-
inite systems. In: Sloot, P.M.A., Dongarra, G.V.A., Dongarra, J. (eds.) ICCS 2010,
Part I. Procedia Computer Science, vol. 1, pp. 175–183. Elsevier Science, North
Holland (2010)

2. Haase, G., Reitzinger, S.: Cache issues of algebraic multigrid methods for linear sys-
tems with multiple right-hand sides. SIAM Journal on Scientific Computing 27(1),
1–18 (2005)

3. Douglas, C., Hu, J., Ray, J., Thorne, D., Tuminaro, R.: Cache aware multigrid
for variable coefficient elliptic problems on adaptive mesh refinement hierarchies.
Numerical Linear Algebra with Applications 11, 173–187 (2004)

4. Falgout, R.D., Yang, U.M.: hypre: A Library of High Performance Precondi-
tioners. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J.J., Hoekstra, A.G. (eds.)
ICCS-ComputSci 2002. LNCS, vol. 2331, pp. 632–641. Springer, Heidelberg (2002)

5. Gee, M., Siefert, C., Hu, J., Tuminaro, R., Sala, M.: ML 5.0 Smoothed Aggregation
User’s Guide. SAND 2006-2009 Unlimited Release (2006)

6. McCalpin, J.: Memory bandwidth and machine balance in current high performance
computers. IEEE Computer Society Technical Committee on Computer Architec-
ture (TCCA) Newsletter, 19–25 (December 1995)

7. Emans, M.: Efficient parallel AMG methods for approximate solutions of linear
systems in CFD applications. SIAM Journal on Scientific Computing 32, 2235–2254
(2010)

8. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing 20, 359–392 (1998)

9. Vaněk, P., Mandel, J., Brezina, M.: Algebraic multigrid by smoothed aggregation
for second and fourth order elliptic problems. Computing 56, 179–196 (1996)

Enhancing Parallelism of Tile Bidiagonal
Transformation on Multicore Architectures

Using Tree Reduction

Hatem Ltaief1, Piotr Luszczek2, and Jack Dongarra2,3,4

1 KAUST Supercomputing Laboratory Thuwal, Saudi Arabia
2 University of Tennessee, Knoxville, TN, USA

3 Oak Ridge National Laboratory, USA
4 University of Manchester, United Kingdom

Abstract. The objective of this paper is to enhance the parallelism of the tile
bidiagonal transformation using tree reduction on multicore architectures. First
introduced by Ltaief et. al [LAPACK Working Note #247, 2011], the bidiagonal
transformation using tile algorithms with a two-stage approach has shown very
promising results on square matrices. However, for tall and skinny matrices, the
inherent problem of processing the panel in a domino-like fashion generates un-
necessary sequential tasks. By using tree reduction, the panel is horizontally split,
which creates another dimension of parallelism and engenders many concurrent
tasks to be dynamically scheduled on the available cores. The results reported in
this paper are very encouraging. The new tile bidiagonal transformation, targeting
tall and skinny matrices, outperforms the state-of-the-art numerical linear alge-
bra libraries LAPACK V3.2 and Intel MKL ver. 10.3 by up to 29-fold speedup
and the standard two-stage PLASMA BRD by up to 20-fold speedup, on an eight
socket hexa-core AMD Opteron multicore shared-memory system.

Keywords: Bidiagonal Transformation, Tree Reduction, High Performance
Computing, Multicore Architecture, Dynamic Scheduling.

1 Introduction

This paper extends our prior work with one-sided factorizations and in particular, the
tridiagonal reduction (TRD) [18] to the bidiagonal reduction (BRD) case, which presents
more challenges due to its increased algorithmic complexity. BRD is an important first
step when calculating the singular value decomposition (SVD). Two-stage reduction al-
gorithms for two-sided factorizations are not new approaches but have recently enjoyed
rekindled interest in the community. For instance, it has been used by Bischof et al. [6]
for TRD (SBR toolbox) and Kågström et al. [16] in the context of Hessenberg and
Triangular reductions for the generalized eigenvalue problem for dense matrices. The
tile bidiagonal reduction for square matrices that was obtained in this way considerably
outperforms the state-of-the-art open-source and commercial numerical libraries [17].

BRD for any rectangular dense matrix [11,9,22] is: A = UΣV T with A,Σ ∈ R

M×N ,
U ∈R

M×M , and V ∈R

N×N . Following the decompositional approach to matrix compu-
tation [21], we transform the dense matrix A to an upper bidiagonal form B by applying

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 661–670, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

662 H. Ltaief, P. Luszczek, and J. Dongarra

successive distinct orthogonal transformations [15] from the left (X) as well as from
the right (Y): B = XT AY B,X ,A,Y ∈ R

N×N . This reduction step actually repre-
sents the most time consuming phase when computing the singular values. Our primary
focus is the BRD portion of the computation which can easily consume over 99% of
the time needed to obtain the singular values and roughly 75% if singular vectors are
calculated [17].

The necessity of calculating SVDs emerges from various computational science ar-
eas, e.g., in statistics where it is directly related to the principal component analysis
method [13,14], in signal processing and pattern recognition as an essential filtering
tool and in analysis control systems [19]. However, the majority of the applications and
especially data collected from large sensor systems involve rectangular matrices with
the number of rows by far exceeding the number of columns [4,10]. We refer to such
matrices as tall and skinny. For such matrices, the bulge chasing procedure (see Sec-
tion 3) is no longer the bottleneck as it is the case for square matrices [17]. It is the
reduction to the band form that poses a challenge which we address in this paper.

The remainder of this document is organized as follows: Sections 2 and 3 recalls the
block BRD algorithm as implemented in LAPACK [1] as well as the two-stage BRD
algorithm available in PLASMA [23] and explains their main deficiencies, especially
in the context of tall and skinny matrices. Sections 4 gives a detailed overview of pre-
vious projects in this area and outlines the main contributions of the paper. Section 5
describes the implementation of the parallel two-stage tile BRD algorithm using a tree
reduction for tall and skinny matrices. Section 6 presents the performance results. Fi-
nally, Section 7 summarizes the results of this paper and presents the ongoing work.

2 LAPACK Bidiagonal Transformation

LAPACK [1] implements a so called block variant of singular value decomposition
algorithms. Block algorithms are characterized by two successive phases: a panel fac-
torization and an update of the trailing submatrix. During the panel factorization, the
orthogonal/unitary transformations are applied only within the panel one column at a
time. As a result, the panel factorization is very rich in Level 2 BLAS operations. Once
accumulated within the panel, the transformations are applied to the rest of the matrix
(commonly called the trailing submatrix) in a blocking manner, which leads to an abun-
dance of calls to Level 3 BLAS. While the update of the trailing submatrix is compute-
bound and very efficient, the panel factorization is memory-bound and has mostly been
a bottleneck for the majority of numerical linear algebra algorithms. Lastly, the paral-
lelism within LAPACK occurs only at the level of the BLAS routines, which results in
an expensive fork-join scheme of execution with synchronization around each call.

The use of tall-and-skinny matrices compounds the aforementioned inefficiencies.
On one hand, the memory-bound panel factorization is now disproportionately expen-
sive compared with the trailing matrix update. On the other hand, the fork-join paral-
lelism does not benefit at all from the execution of the panel factorization because only
Level 2 BLAS may be used – memory-bound operations that only marginally benefit
from parallelization. Clearly, the parallelism needs to be migrated from the BLAS level
up to the factorization algorithm itself.

Enhancing Parallelism of Tile BRD on Multicore Architectures Using Tree Reduction 663

(a) First column anni-

hilation

(b) Bulge creation (c) Chasing the bulge

with the left and

right transforma-

tions

(d) Chasing the bulge

further down

(e) Chasing in the

bottom right

corner

Fig. 1. Execution breakdown of the bulge chasing procedure for a band bidiagonal matrix of size
N=16 with NB=4

3 PLASMA Bidiagonal Transformation Using Two-Stage
Approach

In our last implementation described in [17], we fully utilize a two-stage approach –
a technique that has recently proven its value as a viable solution for achieving high
performance in the context of two-sided reductions [6,16,18]. The first stage consists
of reducing the original matrix to a band form. The overhead of the Level 2 BLAS op-
erations dramatically decreases and most of the computation is performed by the Level
3 BLAS, which makes this stage run closer to the theoretical peak of the machine.
In fact, this stage has even enough computational load to benefit from offloading the
work to GPU accelerators [5]. The second stage further reduces the band matrix to the
corresponding compact form. A bulge chasing procedure, that uses orthogonal transfor-
mations annihilates the off-diagonal elements column-wise and eliminates the resulting
fill-in elements that occur towards to the bottom right corner of the matrix. Figure 1
depicts the execution breakdown of chasing the first column (black elements) on a band
bidiagonal matrix of size M=N= 16 and NB= 4.

The next section explains why this current implementation of the tile BRD using a
two-stage approach is not appropriate for the case of tall and skinny matrices.

4 Related Work and Relevant Contributions

Numerical schemes based on tree reductions have been developed first for dense one-
sided factorization algorithms [8]. It was done in the context of minimizing communi-
cation amount between the levels of the memory hierarchy as well as between remote
parallel processors. Given the fact that such reduction schemes are numerically sta-
ble under a set of practical assumptions, we are able to apply similar schemes for the
two-sided reductions.

Practical applications of these numerical reduction schemes on multicore architec-
tures may indeed achieve very competitive results in terms of performance [12]. And
the same apply equally to GPU-accelerated implementations [2] as well as the codes
designed specifically for distributed memory clusters of multicore nodes [20].

664 H. Ltaief, P. Luszczek, and J. Dongarra

To broaden the scope, Bouwmeester et al. [7] provide a taxonomy of QR variants
based on, among others, the reduction algorithm for achieving unitary annihilation
across the full matrix height. Accordingly, our implementation may be considered as
the version named TT by the authors. And this includes both the left (QR) and the right
(LQ) application of the Householder reflectors [15]. A more exhaustive study of various
combinations of reduction algorithms is beyond the scope of this paper.

The communication optimality for eigenvalue and singular value decompositions
(as well as other related decompositions) has been studied for the entire process of
reduction to a condensed form [3]. Here, however, we only concern ourselves with the
reduction to the bidiagonal form and focus primarily on the implementation aspects of
a particular two-sided factorization algorithm.

Enhancing parallelism using tree reduction has already been performed in the con-
text of one-sided factorizations for tall and skinny matrices, as mentioned earlier. How-
ever, we propose here the very first practical implementation that uses a tree reduction
for BRD. We contribute the idea of splitting the sequential panel factorization step
into independent subdomains, that can simultaneously be operated upon. Each subdo-
main computation proceeds locally in parallel. Once the local computation finishes, the
reduction step is triggered using a binary tree, in which the contributions of neigh-
bor pairwise subdomains are merged. With tile algorithms, the whole computation can
be modeled as a directed acyclic graph (DAG), where nodes represent fine-grained
tasks and edges correspond to data dependencies. Thanks to the dynamic scheduling
framework QUARK [24], the different fine-grained tasks are processed as soon as their
data dependencies are satisfied. Therefore, unnecessary synchronization points are com-
pletely removed between the steps of the local computations within each subdomain.
The cores that are no longer active in the merging step do not have to wait until the end
of the merging step before proceeding with the next panel. The whole computation then
proceeds seamlessly by following a producer-consumer model.

5 Tile Bidiagonal Transformation Using Tree Reduction

5.1 Methodology

In the context of tall and skinny matrices, the first stage of the standard two-stage tile
BRD is not suitable anymore. Indeed, when the number of rows is substantially larger
than the number of columns, i.e. M�N, the first stage becomes now the bottleneck be-
cause of the panel being processed sequentially. The goal of the new implementation of
this two-stage BRD is to horizontally split the matrix into subdomains, allowing inde-
pendent computational tasks to concurrently execute. A similar algorithm has been used
to improve the QR factorization of tall and skinny matrices in [12]. The second stage,
which reduces the band matrix to the bidiagonal form, only operates on the top matrix
of size N×N and is negligible compared to the overall execution time. Therefore, the
authors will primarily focus on optimizing the first stage.

5.2 Description of the Computational Kernels

This section is only intended to make the paper self-contained as the description of
the computational kernels have already been done in previous author’s research papers

Enhancing Parallelism of Tile BRD on Multicore Architectures Using Tree Reduction 665

[12,18,17]. There are ten kernels overall, i.e. four kernels for the QR factorizations,
four kernels for the LQ factorizations and two kernels in order to process the merging
step. CORE DGEQRT and CORE DGELQT perform the QR/LQ factorization of a di-
agonal tile, respectively. It produces an upper (QR) or lower (LQ) triangular matrix.
The upper triangular matrix is called reference tile because it will be eventually used
to annihilate the subsequent tiles located below, on the same panel. CORE DTSQRT
and CORE DTSLQT compute the QR/LQ factorization of a matrix built by coupling
the upper/lower triangular matrices produced by CORE DGEQRT (reference tile) and
CORE DGELQT with a tile located below (QR) or to the right of the diagonal (LQ),
respectively. The transformations accumulated during the panel computation (char-
acterized by the four kernels described above) are then applied to the trailing sub-
matrix with CORE DORMQR and CORE DORMLQ using the Householder reflectors
computed by CORE DGEQRT and CORE DGELQT and with CORE DTSMQR and
CORE DTSMLQ using the Householder reflectors computed by CORE DTSQRT and
CORE DTSLQT, respectively. The last two kernels, which perform the merging steps
for tall and skinny matrices are CORE DTTQRT and CORE DTTMQR.

5.3 DAG Analysis

The dynamic runtime system QUARK [24] has the capability to generate DAGs of
execution on the fly, which are critical in order to understand the performance numbers
reported in this paper. For the next three figures, the yellow and blue nodes correspond
to the tasks of the QR and LQ factorizations, respectively. The red nodes represent the
tasks involved during the tree reduction, i.e. the merging step. The matrix size is defined
to 10× 2 in terms of number of row and column tiles. Figure 2 shows the DAG of the
standard two-stage PLASMA BRD (first stage only). The bottleneck of sequentially
computing the panel clearly appears. Here, the first stage would take 22 steps to achieve
the desired band form. Figure 3 highlights the DAG of the two-stage PLASMA BRD
using tree reduction with two subdomains. The two distinct entry points are identified,
which allows the panel to proceed in parallel. Once computed, the merging phase (red
nodes) can be initiated as soon as the data dependencies are satisfied. Here, the number
of steps to obtain the band form has been significantly reduced to 15 steps. Finally,
Figure 4 shows the DAG of the two-stage PLASMA BRD using tree reduction with
eight subdomains. The eight distinct entry points are clearly distinguished. The DAG
is now more populated with red nodes due to the high number of merging steps. The
number of steps to obtain the band form has been further reduced to 13 steps, while the
number of concurrent tasks has drastically increased.

6 Experimental Results

6.1 Environment Setting

We have performed our tests on a shared memory machine with the largest number
of cores we could access. It is composed of eight AMD OpteronTM processors labelled
8439 SE. Each of the processors contains six processing cores each clocked at 2.8 GHz.

666 H. Ltaief, P. Luszczek, and J. Dongarra

DGEQRT

DTSQRTDORMQR

DTSMQR DTSQRT

DTSMQR

DORMLQ

DTSQRT

DTSMQR

DORMLQ

DGEQRT

DTSQRT

DTSMQR

DORMLQ

DTSQRT

DTSQRT

DTSMQR

DORMLQ

DTSQRT

DTSQRT

DTSMQR

DORMLQ

DTSQRT

DTSQRT

DTSMQR

DORMLQ

DTSQRT

DGELQT

DORMLQ

DTSQRT

DTSQRT

Fig. 2. DAG of the standard two-stage PLASMA BRD (first stage only) on a matrix with MT= 8
and NT= 2 tiles

The total number of cores is evenly spread among two physical boards. The theoretical
peak for this machine for double precision floating-point operations is 537.6 Gflop/s
(11.2 Gflop/s per core). And the total available memory is 128 GB which is spread
among 8 NUMA nodes. On the software side, we used Intel Math Kernel Library MKL
version 10.3 with an appropriate threading setting to force single-thread execution. The
blocking parameters we used in our tests were NB of 144 (the external tile blocking)
and IB of 48 (the internal tile blocking) for our double precisions runs. All experiments
have been conducted on all 48 cores to stress not only the asymptotic performance but
also scalability with the largest core count we could access.

6.2 Performance Comparisons

In the figures presented in this section, we refer to the standard two-stage tile BRD as
PLASMA and to the optimized two-stage tile BRD for tall and skinny matrices using
tree reduction as PLASMA TR. Figure 5 shows the performance of PLASMA TR with
M = 57600 and N = 2880 (both sizes are fixed) and a varying number of subdomains.
When the number of subdomains is one, the implementation of PLASMA TR is in fact

Enhancing Parallelism of Tile BRD on Multicore Architectures Using Tree Reduction 667

DGEQRT

DTSQRT DORMQR

DTSMQRDTSQRT

DGEQRT

DTSQRTDORMQR

DTSQRTDTSMQR

DTSMQR

DORMLQ

DTSQRTDTSMQR

DORMLQ

DTTQRTDTSMQR

DORMLQ

DGEQRT

DTTMQR

DORMLQ

DTSQRT

DGELQT

DORMLQ

DTSQRT

DTSQRT

DTSQRT

DTSMQR

DORMLQ

DGEQRT

DORMLQ

DTSQRT

DTSQRT

DTTQRT

Fig. 3. DAG of the two-stage PLASMA BRD using tree reduction on a matrix with MT= 8 and
NT= 2 tiles using two subdomains

DGEQRT

DTTQRT DORMQR

DTTMQR DTTQRT

DGEQRT

DTTQRTDORMQR

DTTMQRDTTQRTDGEQRT

DTSQRTDORMQR

DTSMQR DTTQRT

DTTMQR

DORMLQ

DGEQRT

DGEQRT

DORMQR

DTTMQR

DORMLQ

DGEQRT

DTTQRT

DGEQRT

DTTQRT DORMQR

DTTMQR

DTTMQR

DORMLQ DORMLQ

DGEQRT

DGEQRT

DORMQR

DGEQRT

DORMQR

DGEQRT

DTTQRTDORMQR

DTTMQR

DTTMQR

DORMLQ

DGEQRT

DTTQRT

DGELQT

DORMLQ

DGEQRT

DTSQRT

DORMLQ

DGEQRT

DGEQRT

DORMQR

DORMLQ

DGEQRT

DTTQRT

DTTQRT

DORMLQ

DGEQRT

DTTQRT

DTTQRT

DTTQRT

DTTQRT

Fig. 4. DAG of the two-stage PLASMA BRD using tree reduction on a matrix with MT= 8 and
NT= 2 tiles using eight subdomains

equivalent to the one of PLASMA and this is why they report the same performance
number. However, when the number of subdomains increases, PLASMA TR rapidly out-
performs PLASMA. Noteworthy to mention the very low rates of execution of LAPACK
and MKL. This has been noticed for square matrices [17] and it is even worse for tall
and skinny matrices. Figure 6 shows the performance of PLASMA TR with M = 57600

668 H. Ltaief, P. Luszczek, and J. Dongarra

Fig. 5. Performance of PLASMA TR with M = 57600 and N = 2880 (fixed) and a varying number
of subdomains on 48 AMD Opteron cores

Fig. 6. Performance of PLASMA TR with M = 57600 (fixed) and a varying number of column
tiles on 48 AMD Opteron cores

Enhancing Parallelism of Tile BRD on Multicore Architectures Using Tree Reduction 669

(fixed) and a varying number of column tiles. The subdomain sizes giving the best per-
formance have been selected for PLASMA TR. When the matrix has only a small num-
ber of column tiles (i.e., skinny), this is where our implementation performs the best
compared to the three other libraries. PLASMA TR achieves up to 20-fold speedup and
up to 29-fold speedup compared to PLASMA (with M = 57600 and N = 3×144 = 432)
and LAPACK and MKL (with M = 57600 and N = 15×144 = 2160), respectively. The
clear advantage over LAPACK stems from exposing parallelism of reduction of tall ma-
trix panels and the good locality and plentiful parallelism of the two-stage approach. As
the number of column tiles or the matrix width increases, the performance of PLASMA
implementation starts catching up PLASMA TR, since the matrix becomes square.

7 Conclusions and Future Work

In this paper, we presented a new parallel implementation of the tile two-stage BRD al-
gorithm suitable for tall and skinny matrices on shared-memory multicore architectures.
Our implementation is far superior to any functionally equivalent code that we are aware
of. In fact, it outperforms LAPACK and Intel MKL nearly 29-fold and PLASMA –
20-fold for matrices it was designed for. Our ongoing and future work focuses on au-
tomatic selection of domains in the tree reduction stage as well as optimal interleaving
strategies for QR and LQ application of the orthogonal reflectors. We would also like
to use investigate ways of achieving larger fraction of peak performance by using static
scheduling which has lower overhead.

References

1. Anderson, E., Bai, Z., Bischof, C., Blackford, S.L., Demmel, J.W., Dongarra, J.J., Du Croz,
J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.C.: LAPACK User’s Guide,
3rd edn. Society for Industrial and Applied Mathematics, Philadelphia (1999)

2. Anderson, M., Ballard, G., Demmel, J., Keutzer, K.: Communication-avoiding QR decompo-
sition for GPUs. In: Proceedings of IPDPS 2011, Anchorage, AK USA. ACM (2011); Also
available as Technical Report UCB/EECS-2010-131, February 18, 2011 and LAWN 240

3. Ballard, G., Demmel, J., Dumitriu, I.: Minimizing communication for eigenproblems and the
singular value decomposition (2010), arXiv:1011.3077

4. Balmino, G., Bruinsma, S., Marty, J.-C.: Numerical simulation of the gravity field recovery
from GOCE mission data. In: Proceedings of the Second International GOCE User Workshop
”GOCE, The Geoid and Oceanography”, March 8-10, ESA-ESRIN, Frascati, Italy (2004)

5. Bientinesi, P., Igual, F., Kressner, D., Quintana-Orti, E.: Reduction to Condensed Forms for
Symmetric Eigenvalue Problems on Multi-core Architectures. In: Parallel Processing and
Applied Mathemetics, pp. 387–395 (2010)

6. Bischof, C.H., Lang, B., Sun, X.: Algorithm 807: The SBR Toolbox—software for successive
band reduction. ACM Trans. Math. Softw. 26(4), 602–616 (2000)

7. Bouwmeester, H., Jacquelin, M., Langou, J., Robert, Y.: Tiled QR factorization algorithms.
Technical Report RR-7601, INRIA (2011)

8. Demmel, J.W., Grigori, L., Hoemmen, M.F., Langou, J.: Communication-optimal parallel
and sequential QR and LU factorizations. Technical Report 204, LAPACK Working Note
(August 2008)

670 H. Ltaief, P. Luszczek, and J. Dongarra

9. Golub, G., Van Loan, C.: Matrix Computations, 3rd edn. Johns Hopkins University Press,
Baltimore (1996)

10. Golub, G.H., Manneback, P., Toint, P.L.: A comparison between some direct and iterative
methods for certain large scale geodetic least squares problems. SIAM J. Scientific Comput-
ing 7(3), 799–816 (1986)

11. Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solutions. Numer.
Math. 14, 403–420 (1970)

12. Hadri, B., Ltaief, H., Agullo, E., Dongarra, J.: Tile QR factorization with parallel panel pro-
cessing for multicore architectures. In: IPDPS, pp. 1–10. IEEE (2010)

13. Hotelling, H.: Analysis of a complex of statistical variables into principal components. J.
Educ. Psych. 24, 417–441, 498–520 (1933)

14. Hotelling, H.: Simplified calculation of principal components. Psychometrica 1, 27–35
(1935)

15. Householder, A.S.: Unitary triangularization of a nonsymmetric matrix. Journal of the ACM
(JACM) 5(4) (October 1958), doi:10.1145/320941.320947

16. Kågström, B., Kressner, D., Quintana-Orti, E., Quintana-Orti, G.: Blocked Algorithms for
the Reduction to Hessenberg-Triangular Form Revisited. BIT Numerical Mathematics 48,
563–584 (2008)

17. Ltaief, H., Luszczek, P., Dongarra, J.: High performance bidiagonal reduction using tile algo-
rithms on homogeneous multicore architectures. Technical report, LAPACK Working Note
247 (2011)

18. Luszczek, P., Ltaief, H., Dongarra, J.: Two-stage tridiagonal reduction for dense symmetric
matrices using tile algorithms on multicore architectures. In: Proceedings of IPDPS 2011,
Anchorage, AK, USA. ACM (2011)

19. Moore, B.C.: Principal component analysis in linear systems: Controllability, observability,
and model reduction. IEEE Transactions on Automatic Control AC-26(1) (February 1981)

20. Song, F., Ltaief, H., Hadri, B., Dongarra, J.: Scalable tile communication-avoiding QR fac-
torization on multicore cluster systems. In: Proceedings of SC 2010, New Orleans, Louisiana.
ACM (November 2010), Also available as Technical Report UT-CS-10-653 March, 2011 and
LAWN 241

21. Stewart, G.W.: The decompositional approach to matrix computation. Computing in Science
& Engineering 2(1), 50–59 (2000), doi:10.1109/5992.814658, ISSN: 1521-9615

22. Trefethen, L.N., Bau, D.: Numerical Linear Algebra. SIAM, Philadelphia (1997),
http://www.siam.org/books/OT50/Index.htm

23. University of Tennessee. PLASMA Users’ Guide, Parallel Linear Algebra Software for Mul-
ticore Archtectures, Version 2.2 (November 2009)

24. YarKhan, A., Kurzak, J., Dongarra, J.: QUARK users’ guide: Queueing and runtime for
kernels. Technical Report ICL-UT-11-02, University of Tennessee, Innovative Computing
Laboratory (2011)

http://www.siam.org/books/OT50/Index.htm

Autotuning of Adaptive Mesh Refinement PDE

Solvers on Shared Memory Architectures

Svetlana Nogina, Kristof Unterweger, and Tobias Weinzierl

Technische Universität München, Boltzmannstr. 3, 85748 Garching, Germany
{nogina,unterweg,weinzier}@in.tum.de

Abstract. Many multithreaded, grid-based, dynamically adaptive sol-
vers for partial differential equations permanently have to traverse sub-
grids (patches) of different and changing sizes. The parallel efficiency of
this traversal depends on the interplay of the patch size, the architecture
used, the operations triggered throughout the traversal, and the grain
size, i.e. the size of the subtasks the patch is broken into. We propose
an oracle mechanism delivering grain sizes on-the-fly. It takes histori-
cal runtime measurements for different patch and grain sizes as well as
the traverse’s operations into account, and it yields reasonable speedups.
Neither magic configuration settings nor an expensive pre-tuning phase
are necessary. It is an autotuning approach.

1 Introduction

Grid-based solvers of partial differential equations (PDE) used for example in
computational fluid dynamics (CFD) affect to this day the software landscape
of high performance computing. In the zoo of evolutionary trends in the field we
observe two paradigm shifts: On the one hand, the nodes of the supercomputers
evolve from single core machines to multicore architectures. An increase in single-
node performance not any longer stems from an improved clock rate but from
multiple threads [12]. On the other hand, the PDE codes change from solvers
working on regular grids to solvers working on dynamically adaptive grids due to
adaptive mesh refinement (AMR). An increase of accuracy not any longer stems
from globally refined grids but from grids that resolve the physical phenomena
accurately where it is necessary. AMR codes hence have to be able to handle
adaptive grids with a high parallel efficiency on multicore computers.

Both trends interfere with each other: Regular grids are convenient for shared
memory parallelisation, as they can be traversed basically by one big parallel
loop due to colouring techniques such as red-black Gauß-Seidel. Adaptive grids
without a homogeneous regular structure are convenient with respect to their
ratio of accuracy to computing workload. Hence, many AMR codes work with
patches of regular grids. They then can distribute the patches among threads
[7,10]. Or they can process the individual patches with several threads. While
combinations of both approaches are possible, we focus on the latter [6] raising
the question how to distribute the patch among the individual threads.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 671–680, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

672 S. Nogina, K. Unterweger, and T. Weinzierl

Multithreading libraries typically abstract from the number of threads and
split up the work—in our case the patches—into work units, chunks, or tasks.
These chunks then are distributed among the cores. Selecting a good chunk size,
often also called grain size, for the patches is important: If the size is too small,
the overhead to distribute and balance the chunks is significant. If the size is
too big, the concurrency level suffers—some cores might run out of work while
others still are busy. A good grain size depends on several factors: code location,
size of total workload, characteristics of the hardware, state of the overall algo-
rithm, synchronisation points, and so forth. Two different code fragments each
comprising a parallel loop might require two different grain sizes. Two different
patches might require two different grain sizes. Two different machines might
require two different grain sizes. And two different algorithmic phases such as an
equation system solver and a plot of the current solution might require two dif-
ferent grain sizes, too. All popular shared memory parallelisation environments
allow the user to select a grain size individually for each parallel program state-
ment. Intel’s Threading Building Blocks (TBB) [11] for example enable the user
to specify one grain size per parallel loop, and OpenMP also supports the idea
of chunk sizes [3]. This paper discusses grain sizes with respect to loops. How-
ever, the reasoning also holds for approaches that model the parallel problem as
task graph where interpreting every single work unit (stencil computation on the
patch, e.g.) as task induces a tremendous overhead. Hence, one usually combines
multiple work units into one task. Again there is the notion of a task size. While
the developer can make the size depend on the influencing factors from above,
this is cumbersome to do manually. We propose an autotuning approach trying
to find good grain sizes on-the-fly and automatically for all parallel sections.

Such an approach is not new: Some authors suggest to run the application with
different grain sizes for the individual parallel sections prior to any production
run [1,11] to identify a reasonable application configuration. Some derive chunk
models considering thread numbers, memory layout, and so forth [5,9]. Some
hold several different implementations of parallel codes available [5,17] and use
an elaborated run time estimator (typically based on historical data) as well as
a performance model to select the best-suited implementation on-the-fly [4,14].
These techniques mirror feedback optimisation. We propose to combine historic
data with a grain size search: Each time a parallel section is executed, we try to
find a better grain size based upon the historic measurements. Different to other
approaches, our approach explicitly takes into account both the code section
running in parallel, the problem size, and the state of the algorithm, i.e. we do
not study only one specific algorithmic phase such as stencil computations. Our
approach is orthogonal to work stealing, self-scheduling, and factoring [2,8,11,13],
as we do not discuss balancing but the minimal balancing granularity. Our results
exhibit that a proper chunk choice depending on both the patch size and the
algorithm’s phase (which step of an CFD code is to be performed next, e.g.) is
important no matter what work balancing approach is used. It is particularly
important for high performance computing where the workload per patch does
not change dynamically, and static load balancing often is sufficient.

Autotuning of AMR PDE Solvers 673

The remainder is organised as follows: We first present some performance
measurements and observations as well as some ideas what a good grain size
selector should look like in Section 2. In Section 3, we then introduce an oracle
telling the application on-the-fly what grain size to use for which loop. After-
wards, we present some results for this oracle and show the benefit for selected
applications. A short summary and an outlook close the discussion.

2 Performance Observations and Model

Our discussion is led by two observations that we discuss by means of a multi-
threaded AMR solver for the heat equation with an implicit Euler time stepping
[16]. Three different algorithmic steps are subject to our study: The solver com-
putes a solution to the equation system with a matrix-free multigrid solver based
upon a Jacobi smoother. For this, it traverses the grid once per Jacobi iteration.
We first study this smoother phase (smooth). Second, the solver switches to the
subsequent time step as soon as the solution converges (step). For this, it tra-
verses the grid once. Finally, the solver combines this transition in time with a
stream to an output file every k time steps (plot). The observations discussed
here for one Xeon with ten cores and TBB’s work stealing are comparable to
other multicore machines and also OpenMP though they differ in numbers, and
they also resemble insights obtained from our CFD code that is based upon the
same AMR grid management [15].

Fig. 1. Typical grid of the heat equation solver (left). This experiment studies a rotat-
ing heat source, and, hence, the patches change in time permanently as the adaptivity
structure “follows” the heat stimulus. Oracle architecture (right).

According to some measurements in Table 1 the three algorithmic phases ex-
hibit different parallel behaviour. Switching to the subsequent time step scales.
Computing the next iterate does scale up to a given number of threads, i.e. if
we increase the number of computing threads beyond a magic number, the per-
formance degenerates again. The plot operation does not scale at all. These
different characteristics are due to the fact that the Jacobi smoother comprises
some global updates. The global residual, e.g., is reduced from all the threads

674 S. Nogina, K. Unterweger, and T. Weinzierl

Table 1. Averaged time ([t]=s) per grid traversal per patch for three different solver
phases and two different patch sizes. The grain size, i.e. the size of individual subprob-
lems deployed to threads, is fixed to 128 vertices or cells, respectively, per subproblem.

82× 82 162 × 162
Threads step smooth plot step smooth plot

1 4.83 · 10−3 1.64 · 10−2 5.41 · 10−2 1.83 · 10−2 6.14 · 10−2 1.84 · 10−1

2 2.70 · . . . 1.10 · . . . 8.18 · . . . 1.03 · . . . 4.23 · . . . 3.09 · . . .
4 1.66 · . . . 0.99 · . . . 10.21 · . . . 0.61 · . . . 3.99 · . . . 4.51 · . . .
10 1.07 · . . . 0.45 · . . . 7.05 · . . . 0.34 · . . . 1.72 · . . . 2.58 · . . .
20 1.35 · . . . 0.43 · . . . 7.51 · . . . 0.29 · . . . 1.55 · . . . 2.88 · . . .

and induces a sequential section in the code. In the plot phase, the grid traversal
writes to one output stream and this stream is protected by a semaphore. The
lock acquisition is the more expensive the more threads are involved. As the
grid traversal underlying all three phases is implemented only once—it triggers
different behavioural routines—it is consequently important to know in which
phase the algorithm is at the moment, i.e. to consider the invoked call graph.

If the grid traversal is not inherently sequential, we observe a second charac-
teristics (Fig. 2): Dynamic load balancing for this kind of application where the
load is directly proportional to the patch size is not thoroughly advantageous.
Very small grain sizes allow the load balancer to distribute the workload with
a very fine granularity. If the granularity is too fine, the effort spent on the
load balancing however increases the wall clock time. If the grain size is equal
to the problem size, only one thread works and the others run idle. The best
performance often stems from a grain size in-between. Both observations make
us draw the following conclusions:

 0.5

 1

 2

 4

 8

 16

 1 4 16 64 256 1024 4096 16384

S
pe

ed
up

Grain size

Speedup on SuperMUC with TBB

244x244
162x162

82x82
28x28

No speedup
Hyperthreading threshold

Fig. 2. The choice of a proper grain size for one specific loop (here the “run over all
cells” for four 2d grid sizes) of the solver (the Jacobi smoother) determines the speedup

Autotuning of AMR PDE Solvers 675

– For each individual location in the code where we enter a parallel section,
we have to search for the best grain size.

– The bigger the problem handled by a parallel section, the bigger a good grain
size might be chosen. Hence, it is important to search for good grain sizes
for each problem size individually—in particular for AMR codes where the
spectrum of grain sizes changes permanently (Fig. 1).

– Besides the location where the parallel code is invoked, we also have to take
into account the phase of the algorithm, i.e. the call graph induced.

– The best grain size allows the load balancer to distribute the work equally
among the threads. However, it might happen that the best grain size makes
some processors run idle. A too small grain size implies a significant syn-
chronisation overhead and slows down the overall application.

3 Grain-Size Oracle

Based upon the observations, we propose a very simple implementation pattern.
An Oracle is a class providing two operations: getGrainSize(problemSize) and
terminate(elapsedT ime). getGrainSize returns a well-suited grain size for a
given problem. terminate informs the oracle how much time has elapsed since
the last getGrainSize call. Besides several instances of Oracle, there is an Or-
acleManager. The manager holds one oracle per calling code location (Fig. 1)
and per algorithmic phase. Each time the solver enters an algorithmic phase,
the manager exchanges the set of active oracles. It is a single-threaded imple-
mentation protected by a boolean semaphore, and it stores a time stamp each
time getGrainSize is invoked. Then, it forwards the function call to the ap-
propriate oracle. When terminate is called, it passes the elapsed time to the
oracle that answered to getGrainSize before. If two getGrainSize calls for the
same parallel section occur in a row, the second is answered with a “do not run
in parallel” flag. This way, we forbid nested parallelisation for the same type
of operations. With the history of grain sizes and elapsed times of one parallel
code section for one algorithmic phase at hand, the individual oracles improve
the selected grain sizes on-the-fly throughout the simulation run. In this paper,
we study two different oracle implementations.

3.1 Oscillating Search

Our first oracle implementation is based upon two assumptions: If splitting up
the problem into two pieces (i.e. to use two threads) doesn’t accelerate the appli-
cation, splitting up the problem into smaller subtasks is useless. And it assumes
that the graph of the runtime is more or less convex.

Internally, the oracle is a mapping f of problem sizes N to tuples (g, s, t). The
last case distinction in Algorithm 1 gives the oracle its name: For a given grain
size g, the algorithm studies the impact of a new grain size increasing the current
grain size by a search delta s. If this alternative size does not perform better
than the original grain size, the search direction is inverted and divided by two.

676 S. Nogina, K. Unterweger, and T. Weinzierl

Algorithm 1. getGrainSize and terminate of the oscillating search oracle.

1: procedure getGrainSize(problemSize)
2: Remember problemSize locally
3: Let f(problemSize) = (g, s, t)
4: if problemSize not studied before then
5: (g, s, t) ← (0, problemSize

2
,⊥))

6: return 0 � Grain size 0 means “run sequential”.
7: else return g + s

8: procedure terminate(elapsedT ime)
9: if t = ⊥ then (g, s, t) ← (g, s, elapsedT ime)
10: else if elapsedT ime < t then (g, s, t) ← (g + s, s, elapsedT ime)
11: else
12: if g − b/2 < 0 then (g, s, t) ← (0, 0, elapsedT ime)
13: else (g, s, t) ← (g,−s/2, t)

The first case distinction ensures that whenever a function runs for the very first
time, its sequential time is measured. And it also ensures that the next time it
is called, the oracle makes two threads run in parallel. The last case distinction
determines whether to parallelise at all. If the problem scales on two processors,
g becomes a positive number and never underruns 0. If there is no speedup for
two threads, the oracle immediately switches off the parallelisation.

3.2 Interval Search

The second oracle implementation (Algorithm 2) assumes that the speedup
graph is sufficiently smooth. It internally holds a grain-size interval represented
by its minimal and maximal grain size. We start with the whole problem size
being the interval, i.e. left and right boundary of the search interval represent
sequential runs, and measure the runtime for the grain size represented by the
mid of the interval. If this grain size yields a better runtime than the left and
right interval boundary, we shrink the interval by a factor of two around the mid
point and continue iteratively. Otherwise, we halve the interval and continue to
search for a better grain size in the left or right subinterval.

4 Results

We tested our approach for the multiscale solver for the heat equation discussed
before [16] and for a CFD code based upon Chorin’s projection method with
a Gauß-Seidel. Both solvers are based upon the same grid management and
traversal routines [15] relying on OpenMP or TBB, and both support two- and
three-dimensional simulations. The TBB variant applies dynamic load stealing
dividing the problem further and further into smaller subproblems if necessary
[2,8,11]. Here, the selected grain size is the minimum grain size allowed. The
OpenMP variant splits up the whole problem into subproblems of fixed grain
size and leaves it up to OpenMP’s dynamic scheduling to distribute this sequence

Autotuning of AMR PDE Solvers 677

Algorithm 2. The interval search oracle.

1: procedure getGrainSize(problemSize)
2: Remember problemSize locally
3: Let f(problemSize) = (gl, gr, tl, tr)
4: if problemSize not studied before then (gl, gr, tl, tr) ← (0, problemSize,⊥,⊥)

5: if tl = ⊥ then return gl
6: else if tr = ⊥ then return gr
7: else return gl+gr

2

8: procedure terminate(elapsedT ime =: t)
9: if tl = ⊥ then (gl, gr, tl, tr) ← (gl, gr, elapsedT ime, tr)
10: else if tr = ⊥ then (gl, gr, tl, tr) ← (gl, gr, tl, elapsedT ime)
11: else
12: if tl < t ∧ tl ≤ tr then (gl, gr, tl, tr) ← (gl,

gl+gr
2

, tl, t)

13: else if tr < t ∧ tr < tl then (gl, gr, tl, tr) ← (gl+gr
2

, gr, t, tr)

14: else (gl, gr, tl, tr) ← (3gl+gr
4

, gl+3gr
4

,⊥,⊥)

of tasks among the cores. We conducted the experiments on two different archi-
tectures: On an Intel Xeon Westmere-EX processor with four processors a ten
cores and 20 threads at 2.4 GHz (called SuperMUC’s fat node island), and on
a BlueGene/P’s quad core 850 MHz PowerPC (called Shaheen). Runtimes are
always averaged over the whole simulation’s execution time so far.

-2

 0

 2

 4

 6

 8

 1 4 16 64 256 1024 4096 16384

de
vi

at
io

n/
m

ea
n

ru
nt

im
e

Grain size

Mean runtime
244x244
162x162

82x82
28x28

 0.0625

 0.125

 20 40 60 80 100 120 140A
ve

ra
ge

 r
un

tim
e

pe
r

pa
tc

h
[t]

=
s

Simulation time steps

Stream snapshot to file (plot), 82x82

10 threads, interval
10 threads, oscillating

40 threads, interval
40 threads, oscillating

hyperthreading, interval
hyperthreading, oscillating

Fig. 3. The runtime measurements exhibit significant noise (left); the oracles identify
sequential algorithm phases and switch off the multithreading (right)

For measurements as presented in Fig. 2, we observe that the data is instable
(Fig. 3), and that the deviation is the bigger the smaller the grid. This holds
for both codes and both machines. Consequently, it is important not to evaluate
measurements directly in the oracle implementations but to work with averaged
values. Our implementations consider a mean value to represent a valid runtime
as soon as it does not change by more than 10−8 due to a new measurement.
With this averaging, we observe, after a certain time, a good speedup on both
the BlueGene/P machine and one Xeon, or we see that the oracle switches off the
parallelisation if it does not yield a speedup due to a strictly sequential algorithm
semantics (Fig. 3). Optimal speedup here is the best speedup obtained by a
sampling over all grain sizes similar to Fig. 2. Hence, the following discussion
concentrates on the startup phase and on more than one processor.

678 S. Nogina, K. Unterweger, and T. Weinzierl

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 100 200 300 400 500A
ve

ra
ge

 r
un

tim
e

pe
r

pa
tc

h
[t]

=
s

Simulation time steps

2d, 28x28

rhs, no parallelisation
rhs, interval search

rhs, oscillating search
smooth, no parallelisation

smooth, interval search

 1

 2

 3

 4

 5

 6

 7

 8

 0 100 200 300 400 500

Simulation time steps

3d, 28x28x28

smooth, oscillating search
step, no parallelisation

step, interval search
step, oscillating search

Fig. 4. Runtime evolvement for three phases of the CFD solver on Shaheen

 0.0625

 0.125

 0.25

 100 200 300 400 500 600 700A
ve

ra
ge

 r
un

tim
e

pe
r

pa
tc

h
[t]

=
s

Simulation time steps

Smooth, 3d, 28x28x28

sequential
hyperthreading, interval

hyperthreading, oscillating

 0.03125

 0.0625

 10 20 30 40 50 60

Simulation time steps

Smooth, 2d, 162x162

10 threads, interval
10 threads, oscillating

40 threads, interval
40 threads, oscillating

Fig. 5. Influence of hyperthreading and pinning on the performance of the first itera-
tions of the diffusion equation solver’s linear algebra phase (smooth)

When we study the CFD code and the diffusion equation solver on the Blue-
Gene/P system running OpenMP, we observe that though the applications are
different we can compare the individual algorithm phases with respect to their
theoretical concurrency level. Plot operations, e.g., always are inherently sequen-
tial, while stencil evaluations on the same grid yield comparable results no matter
what the stencil looks like. For the CFD code, we concentrate on three different
scaling phases (rhs, smooth, plot). On the long term, both oracles converge to
the same speedup. Both approaches are robust. However, the oracle behaviour
differs at the application startup (Fig. 4). For most settings, the oscillating search
identifies good grain sizes faster than the interval search analysing approximately
two grain sizes per interval before the search continues on a subinterval. For 3d
and a time-consuming non-linear operator evaluation (rhs) where the absolute
runtime deviation also is rather big compared to the other measurements, the
interval search does not even update the search grain size before the 500th solver
time step. At the same time, the interval search proves to be more robust for
phases which are embarrassingly parallel, i.e. where no sequential subparts of
the code do exist (3d, phase step, around 50th time step).

On the Xeon, we are not able to exploit the hyperthreading facilities in our
experiments (Fig. 5; left) for most problems. Furthermore, we observe issues
with the thread pinning on this machine: As long as we restrict the codes to
one processor (up to ten threads), the oracles identified good grain sizes after
a startup phase (not illustrated here). If we use more than one processor, both
the OpenMP and the TBB performance degenerate without a suitable pinning.

Autotuning of AMR PDE Solvers 679

If the thread affinity is set to core (OpenMP) or an affinity partitioner is used
(TBB), both shared memory paradigms yield comparable speedup. However,
this speedup still suffers from the NUMA access and the work steeling overhead
if the problems are too small (compare Fig. 5 left and right). Thread affinity
issues cannot be resolved by the oracles (Fig. 5; left).

5 Summary and Outlook

Our approach selects reasonable grain sizes for all experiment settings. It also
identifies regions where the parallelisation overhead eliminates any gain in per-
formance—regions for which the code should fall back to a sequential implemen-
tation. The case study not only concentrate on individual parallel subproblems
such as one data traversal with stencil computations but on the PDE solver
as a whole. And it is totally autonomous, i.e. there are no magic configuration
parameters. This makes the approach well-suited for heterogeneous supercom-
puters where the autotuning oracle runs on each computing node individually
and for AMR codes where the spectrum of grain sizes alters permanently.

In future work, we will design better search algorithms based upon experience
from other groups and upon performance models instead of observations. Fur-
thermore, we will study the interplay of oracles, hardware, and PDE solvers in
detail: it might be that the best results stem from search algorithms tailored to
the PDE solver and the environment [4,17]. Also, the oracle mechanism should
support implementational variants of one code fragment [5,14]. Of particular in-
terest finally is the combination of shared with distributed memory parallelism
and dynamic load balancing, i.e. cases where several cores handle several MPI
processes. Here, randomised algorithms and algorithms noticing when the envi-
ronment changes come into play.

Our approach can be interpreted as implementational pattern and could be
integrated into standard shared memory toolkits such as TBB. An open issue
however is to tackle the interplay of thread pinning or memory affinity, respec-
tively, and the grain size. Our experiments reveal that the affinity of the threads
is important, while TBB and OpenMP offer at most control over a static affinity
or provide affinity as black box. Here, we see a need for more sophisticated and
fine granular control for the high performance PDE solvers.

Acknowledgements. This publication is partially based on work supported
by Award No. UK-c0020, made by the King Abdullah University of Science and
Technology (KAUST). Computing resources for the present work have also been
provided by the Gauss Centre for Supercomputing under grant pr63no.

References

1. Bilmes, J., Asanovic, K., Chin, C.-W., Demmel, J.: Optimizing matrix multiply
using PHiPAC: a portable, high-performance, ANSI C coding methodology. In:
Proceedings of the 11th International Conference on Supercomputing, pp. 340–347
(1997)

680 S. Nogina, K. Unterweger, and T. Weinzierl

2. Cariño, R.L., Banicescu, I.: Dynamic Scheduling Parallel Loops With Variable
Iterate Execution Times. In: 16th International Parallel and Distributed Processing
Symposium (IPDPS 2002). IEEE (2002); electonical proceedings

3. Chapman, B., Jost, G., van der Pas, R.: Using OpenMP: Portable Shared Memory
Parallel Programming. MIT Press (2007)

4. Cuenca, J., Garćıa, L.-P., Giménez, D.: A proposal for autotuning linear algebra
routines on multicore platforms. Procedia CS 1(1), 515–523 (2010)

5. Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J., Oliker, L., Patterson,
D., Shalf, J., Yelick, K.: Stencil computation optimization and auto-tuning on
state-of-the-art multicore architectures. In: Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, pp. 4:1–4:12. IEEE Press (2008)

6. Eckhardt, W., Weinzierl, T.: A Blocking Strategy on Multicore Architectures for
Dynamically Adaptive PDE Solvers. In: Wyrzykowski, R., Dongarra, J., Kar-
czewski, K., Wasniewski, J. (eds.) PPAM 2009. LNCS, vol. 6067, pp. 567–575.
Springer, Heidelberg (2010)

7. Gmeiner, B., Gradl, T., Köstler, H., Rüde, U.: Highly parallel geometric multigrid
for hierarchical hybrid grids on Blue-Gene/P. Numer. Linear Algebr. (submitted)

8. Hummel, S.F., Schmidt, J., Uma, R.N., Wein, J.: Load-Sharing in Heterogeneous
Systems via Weighted Factoring. In: Proceedings of the 8th Annual ACM Sympo-
sium on Parallel Algorithms and Architectures, pp. 318–328. ACM (1997)

9. Kamil, S., Chan, C., Oliker, L., Shalf, J., Williams, S.: An auto-tuning framework
for parallel multicore stencil computations. In: 24th IEEE International Symposium
on Parallel and Distributed Processing, IPDPS 2010, pp. 1–12. IEEE (2010)

10. Parker, S.G.: A component-based architecture for parallel multi-physics pde simu-
lation. FGCS 22(1-2), 204–216 (2006)

11. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-core Pro-
cessor Parallelism. O’Reilly Media (2007)

12. Sutter, H.: The Free Lunch Is Over: A Fundamental Turn Toward Concurrency
in Software. Dr. Dobb’s Journal 3(30), 202–210 (2005)

13. Tang, P., Yew, P.: Processor self-scheduling for multiple-nested parallel loops. In:
Proceedings of the 1986 International Conference on Parallel Processing, pp. 528–
535. IEEE (1986)

14. Vuduc, R.: Automatic assembly of highly tuned code fragments (1998),
www.cs.berkeley.edu/~richie/stat242/project

15. Weinzierl, T.: A Framework for Parallel PDE Solvers on Multiscale Adaptive Carte-
sian Grids. Verlag Dr. Hut (2009)

16. Weinzierl, T., Köppl, T.: A geometric space-time multigrid algorithm for the heat
equation. In: NMTMA (accepted)

17. Whaley, R.C., Petitet, A., Dongarra, J.: Automated empirical optimizations of
software and the ATLAS project. Parallel Comput. 27, 3–35 (2001)

www.cs.berkeley.edu/~richie/stat242/project

GPU Acceleration

of the Matrix-Free Interior Point Method

Edmund Smith, Jacek Gondzio, and Julian Hall

School of Mathematics and Maxwell Institute for Mathematical Sciences,
University of Edinburgh, JCMB, King’s Buildings, Edinburgh,

EH9 3JZ, United Kingdom
J.A.J.Hall@ed.ac.uk

Abstract. The matrix-free technique is an iterative approach to inte-
rior point methods (IPM), so named because both the solution procedure
and the computation of an appropriate preconditioner require only the
results of the operations Ax and ATy, where A is the matrix of constraint
coefficients. This paper demonstrates its overwhelmingly superior perfor-
mance on two classes of linear programming (LP) problems relative to
both the simplex method and to IPM with equations solved directly. It
is shown that the reliance of this technique on sparse matrix-vector op-
erations enables further, significant performance gains from the use of a
GPU, and from multi-core processors.

Keywords: interior point methods, linear programming, matrix-free
methods, parallel sparse linear algebra.

1 Introduction

Since they first appeared in 1984 [9], interior point methods (IPM) have been a vi-
able alternative to the simplex method as a means of solving linear programming
(LP) problems [14]. The major computational cost of IPM is the direct solution of
symmetric positive definite systems of linear equations. However, the limitations
of direct methods for some classes of problems have led to iterative techniques
being considered [1,3,11]. The matrix-free method of Gondzio [5] is one such ap-
proach and is so named because the iterative solution procedure and the computa-
tion of a suitable preconditioner require only the results of products between the
matrix of constraint coefficients and a (full) vector. This paper demonstrates how
the performance of the matrix-free IPM may be accelerated significantly using a
Graphical Processing Unit (GPU) via techniques for sparse matrix-vector prod-
ucts that exploit common structural features of LP constraint matrices. To the
best of our knowledge this is the first GPU-based implementation of an interior
point method.

Section 2 presents an outline of the matrix-free IPM that is sufficient to mo-
tivate its linear algebra requirements. Results for two classes of LP problems
demonstrate its overwhelmingly superior performance relative to the simplex
method and to IPM with equations solved directly. Further analysis shows that

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 681–689, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

682 E. Smith, J. Gondzio, and J. Hall

the computational cost of the matrix-free IPM on these problems is dominated by
the iterative solution of linear systems of equations which, in turn, is dominated
by the cost of matrix-vector products. Techniques for evaluating products with
LP constraint matrices on multi-core CPU and many-core GPU are developed
in Section 3. These techniques exploit commonly-occurring structural features
of sparse LP constraint matrices. The results from an implementation with ac-
celerated matrix-vector products show that significant speed-up in the overall
solution time can be achieved for the LP problems considered, with the GPU
implementation in particular providing large gains. Conclusions and suggestions
for future work are offered in Section 4.

2 The Matrix-Free Interior Point Method

The theory of interior point methods [6,14] is founded on the following general
primal-dual pair of linear programming (LP) problems.

Primal Dual

min cTx max bTy
s. t. Ax = b s. t. ATy + s = c

x ≥ 0 y free, s ≥ 0,

(1)

where A ∈ IRm×n has full row rank m ≤ n, x, s, c ∈ IRn and y, b ∈ IRm. IPMs
employ logarithmic barrier functions to handle simple inequality constraints.
The first order optimality conditions for the corresponding logarithmic barrier
problems can be written as

Ax = b
ATy + s = c

XSe = μe
(x, s) ≥ 0

(2)

whereX and S are diagonal matrices whose entries are the components of vectors
x and s respectively and e is the vector of ones. The third equation XSe =
μe replaces the usual complementarity condition XSe = 0 which holds at the
optimal solution of (1). As μ is driven to zero in the course of a sequence of
iterations, the vectors x and s partition into zero and nonzero components. In
each IPM iteration, a search direction is computed by applying the Newton
method to optimality conditions (2):⎡⎣A 0 0

0 AT In
S 0 X

⎤⎦⎡⎣Δx
Δy
Δs

⎤⎦ =

⎡⎣ξpξd
ξµ

⎤⎦ =

⎡⎣ b−Ax
c−ATy − s
μe−XSe

⎤⎦ . (3)

By using the sets of equations in (3) to eliminate first Δs, and then Δx, the
following symmetric positive definite normal equations system is obtained

(AΘAT)Δy = g, (4)

GPU Acceleration of the Matrix-Free Interior Point Method 683

where Θ = XS−1 is a diagonal matrix. Since the normal equations matrix
AΘAT is symmetric and positive definite, its LLT Cholesky decomposition may
be formed. In IPM, this is the usual means of solving directly for Δy and hence,
by reversing the elimination process, Δx and Δs. However, the density of AΘAT

may be significantly higher than A, and the density of L may be higher still. For
some large LP problems, the memory required to store L may be prohibitive.
Following [6] test problems which exhibit this behaviour are given in Table 1.
The first two problems are larger instances of quadratic assignment problems
(QAP) [10] whose solution is one of the great challenges of combinatorial op-
timization. The remaining problems are part of a calculation from Quantum
Physics of non-classicality thresholds for multiqubit states, and were provided
to us by Jacek Gruca [7]. As problem size increases, the memory requirement of
the Cholesky decomposition prevents them from being solved via standard IPM
and the simplex method is seen not to be a viable alternative.

Table 1. Prohibitive cost of solving larger QAP problems and qubit problems using
Cplex 11.0.1 IPM and dual simplex

Dimensions IPM Simplex

Problem Rows Columns Nonzeros Cholesky Nonzeros Time Time

nug20 15,240 72,600 304,800 38× 106 1034 s 79451 s

nug30 52,260 379,350 1,567,800 459× 106 OoM >28 days

1kx1k0 1,025 1,025 34,817 0.5× 106 0.82 s 0.38 s

4kx4k0 4,097 4,097 270,337 8× 106 89 s 11 s

16kx16k0 16,385 16,385 2,129,921 128× 106 2351 s 924 s

64kx64k0 65,537 65,537 16,908,289 2048 × 106 OoM 111 h

For some LP problems the constraint matrix may not be known explicitly
due to its size or the nature of the model, but it may nonetheless be possible
to evaluate Ax and ATy. Alternatively, for some problems there may be much
more efficient means of obtaining these results than evaluating them as matrix-
vector products. For such problems, Gondzio [5] is developing matrix-free IPM
techniques in which systems of equations are solved by iterative methods using
only the results of Ax and ATy. However, the present work is concerned with
LPs for which which A is known explicitly but solution via standard IPM and
the simplex method is impractical. This is the case for the problems given in
Table 1.

Since the normal equations matrix AΘAT is symmetric and positive definite,
the method of conjugate gradients can, in theory, be applied. However, its con-
vergence rate depends on the ratio between the largest and smallest eigenvalues
of AΘAT , as well as the clustering of its eigenvalues [8]. Recall that since there
will be many indices j for which only one of xj and sj goes to zero as the opti-
mal solution is approached, there will be a very large range of values in Θ. This
ill-conditioning means that conjugate gradients is unlikely to converge. Within

684 E. Smith, J. Gondzio, and J. Hall

matrix-free IPM, the ill-conditioning of AΘAT is addressed in two ways: by mod-
ifying the standard IPM technique and by preconditioning the resulting normal
equations coefficient matrix.

The optimization problem is regularized by adding quadratic terms xTRpx
and yTRdy to the primal and dual objective in (1), respectively. Consequently,
the matrix in the normal equations (4) is replaced by

GR = A(Θ−1 +Rp)−1AT +Rd, (5)

in which Rp guarantees an upper bound on the largest eigenvalue of GR and Rd

guarantees that the spectrum of GR is bounded away from zero. Therefore, for
appropriate Rp and Rd the condition number of GR is bounded regardless of the
conditioning of Θ.

The convergence properties of the conjugate gradient method are improved
by applying a preconditioner P which approximates the partial Cholesky decom-
position of GR

GR =

[
L11

L21 I

] [
DL

S

] [
LT
11 L

T
21

I

]
≈ P =

[
L11

L21 I

] [
DL

DS

] [
LT
11 L

T
21

I

]
. (6)

Namely, in the preconditioner P , the Schur complement S is replaced with its
diagonal DS .

The number of nontrivial columns in the preconditioner is k � m so, since
only the diagonal entries of S are ever computed, the preconditioner is vastly
cheaper to compute, store and apply than the complete Cholesky decomposition.
Each iteration of the preconditioned conjugate gradient (PCG) method requires
one operation with both P−1 and GR. Since DL, DS , Θ, Rp and Rd are all
diagonal matrices, the major computational costs are the operations with the
nontrivial columns of P and the matrix-vector products with A and AT . It
is seen in Table 2 that the cost of PCG dominates the cost of solving the LP
problem, and that PCG is dominated by the cost of operating with P−1 and
calculating Ax and ATy. For the QAP problems the cost of applying the pre-
conditioner is significant, but for the quantum physics problems the cost of the

Table 2. Proportion of solution time accounted for by preconditioned conjugate
gradients, operations with P−1 and calculations of Ax and ATy

Percentage of solution time

Problem PCG P−1 Ax ATy

nug20 89 55 17 15

nug30 90 54 18 17

1kx1k0 62 41 12 11

4kx4k0 89 42 19 28

16kx16k0 87 30 30 29

64kx64k0 87 19 37 34

GPU Acceleration of the Matrix-Free Interior Point Method 685

matrix-vector products dominates the solution time for the LP problem, and this
effect increases for larger instances. Section 3 considers how the calculation of
Ax and ATy may be accelerated by exploiting a many-core GPU and multi-core
CPU.

3 Accelerating Sparse Matrix-Vector Products

The constraint matrix of a large LP problem is usually sparse and structured,
and any competitive routine must take advantage of this fact. Sparse arithmetic
presents different challenges as compared to dense arithmetic. Although sparse
matrices of similar size to dense matrices can be multiplied much more quickly,
it is in general the case, on both contemporary CPUs and GPUs, that the rate
at which floating point operations are performed is lower; there are simply far
fewer such operations.

We will consider the acceleration of the following operations

y = Ax (fsax), x = ATy (fsaty), z = (AΘAT)y (fsaat) (7)

where A ∈ IRm×n is sparse, Θ ∈ IRn×n is a diagonal matrix and, and the vectors
x ∈ IRn, y ∈ IRm and z ∈ IRm are dense.

Memory bandwidth is a critical bottleneck for current generation CPUs. To
alleviate this, high-speed cache is available to store recently used, or soon to
be used, data. Caching is most beneficial when data items are re-used multiple
times in quick succession. For operations requiring O(n3) operations on O(n2)
data, such as matrix-matrix multiply, correct use of cache can give significant
gains. In the case of matrix-vector multiply, there are only O(n2) operations:
each data item is used once. Thus raw bandwidth determines performance on a
large dataset, and caching may be expected to be mostly ineffective.

Vectorisation can give a significant performance gain for dense arithmetic on
modern CPUs: identical operations are performed in parallel on a bank of data
items (two at once for SSE2; four at once for AVX). Unfortunately, in sparse
matrix-vector products, the elements of the vector corresponding to the non-zeroes
in a given matrix row are widely separated in memory, and this makes efficient
vectorisation difficult (in our tests, the packing costs outweighed the gains).

It has become typical for a CPU to contain multiple cores, independent exe-
cution units with some mutual dependencies, for example shared memory band-
width and some shared cache. For a task like sparse matrix-vector multiply,
which can be easily divided into a small number of independent pieces, there
are no great problems with exploiting multiple cores. The effectiveness of the
result though is less certain, given the essentially bandwidth limited nature of
the problem in the first place. It should be noted that we shall be using a dual
CPU system, so that double the bandwidth is available when all cores are used.

Current GPUs have large numbers of execution contexts, called threads, each
of which is significantly slower and less able than a CPU core. A GPU ben-
efits from potentially better memory performance and an explicitly managed
cache, but that memory performance depends critically on achieving coalesced

686 E. Smith, J. Gondzio, and J. Hall

accesses: adjacent threads must read adjacent memory locations. The challenge
in mapping sparse matrix-vector products to a GPU, then, is predominantly in
arranging for the task to be broken down into many small ones, and for those
threads to access memory appropriately to preserve performance.

3.1 GPU Kernels

A number of kernels have been proposed in the literature for sparse matrix-vector
products [2,4,12]. We summarise some of the key ideas below.

Threads on a GPU can only synchronise in a limited context - synchronisation
within a warp is guaranteed, synchronisation within a block can be arranged.
This means that any one element of the final result must be calculated by no
more than a single block if the answer is to achieved without running the kernel
multiple times. In the context of sparse matrix-vector products, this means each
entry of the result vector may be calculated by at most one block.

If each thread calculates a row, then the data must be laid out so that the
data for neighbouring rows are interleaved: this will mean adjacent threads read
adjacent memory locations at each time step. This organisation has been called
ELLPACK [2]. In practice, having each thread calculate a row under-utilises the
device: insufficient parallelism is being identified.

An entire warp (thirty-two threads) can be used to calculate a row by first
performing all the multiplications and storing the result in cache (shared mem-
ory), then performing a parallel reduce. A warp is automatically synchronised
so there is no synchronisation overhead in this algorithm. If this is done with
variable run-length storage of the rows, the result is vector CSR [2].

When the lengths of the rows vary considerably, it can be a problem both for
load balancing, and for memory requirements. Pure ELLPACK is not practical
for matrices with dense rows. ELLR-T [12] can eliminate some of this inefficiency
by storing the length of each row, but the need to reserve enough memory for
the matrix to be stored as fully dense remains. The HYB [2] kernel overcomes
this limitation by storing a core of the problem as ELL, and any extra elements
in long rows as COO (unstructured, sparse). Unfortunately, COO is not an
especially fast kernel.

If the constraint matrix has dense blocks which can be identified, data blocking
can give significant speedup [4].

Our target problems have rows and columns of mostly identical length, barring
a fully dense row and a fully dense column. They do not lend themselves to data
blocking. The kernels discussed below were optimized for these problems.

We considered three families of kernel. Firstly, dense-hybrid ELL (DHELL)
in which dense rows are extracted for treatment by a block of their own, and the
remainder are stored in ELL format. Secondly, vector CSR as discussed by [2].
Finally, dense-hybrid transpose ELL (DHTELL), in which the matrix of indices
and coefficients is transposed relative to that encountered in ELL. It can be seen
also as CSR with a fixed row length. This kernel is novel.

As for [12], we considered using different numbers of threads per row. The ELL
format (equivalently, ELLR-T) hampers such explorations, because an entire

GPU Acceleration of the Matrix-Free Interior Point Method 687

half-warp must read adjacent memory locations. Thus the maximum number
of threads per row is the same as the number of half-warps per block, usually
sixteen. For both CSR and TELL formats, an entire block can be brought to
bear on a row (256 threads), but the minimum number of threads per row falls
to sixteen.

The best performing kernel was DHTELL with a half-warp per row (sixteen
threads) and a block devoted to any dense part. Although this level of parallelism
could be matched in the DHELL kernel, the former was marginally faster. There
is little to choose between any of the vectorised kernels, when compared to the
basic CSR or ELL kernels.

Note that the constraint matrix is stored twice on the GPU, once row-wise
and once column-wise, to allow operations with the transpose. Any näıve imple-
mentation of the alternative would require impractical amounts of memory in
which to accumulate partial results.

The only significant optimization for this platform which has not been consid-
ered, that we are aware of, is use of the texture cache to store the input vector.
Results presented for band diagonal matrices in [2] suggest this as a possible
future enhancement.

3.2 Results

The following results are obtained from a test system having two AMD Opteron
2378 (Shanghai) quad-core processors, 16 GiB of RAM and a Tesla C2070 GPU
with 6 GiB of RAM. Note that the processors are relatively slow in serial, though
the NUMA configuration of the memory bus gives high parallel memory perfor-
mance. The GPU is a significantly more highly powered unit, making raw speed
characterisations of less interest than the potential for improvement with a given
investment.

Table 3. Comparison of accelerated matrix-free IPM codes. All times include data
transfer.

Solve time (s) SpMV time (s)

Problem Serial 8 core GPU Serial 8 core GPU

nug20 2.19 1.18 1.60 1.49 0.495 0.945

nug30 20.5 15.8 15.4 15.1 9.69 9.45

1kx1k0 0.244 0.177 0.217 0.0360 0.0128 0.0506

4kx4k0 3.03 2.06 2.15 1.06 0.218 0.336

16kx16k0 24.9 18.4 13.5 13.1 6.70 1.72

64kx64k0 170.0 109.0 74.0 115.0 47.4 12.2

96kx128-0 137.0 71.1 58.8 93.4 28.6 15.3

256x256-0 866.0 283.0 222.0 699.0 119.0 56.4

688 E. Smith, J. Gondzio, and J. Hall

Speed-up of sparse matrix-vector kernels using all eight cores of the test system
is between two and six times, giving at most a threefold speed-up of the IPM
solution time. Using the high powered GPU, speed-up of these same kernels can
approach ten times, though overall solution time is reduced by no more than a
factor of four. Clearly significant speed-up of matrix-free interior point, whether
by many-core or multi-core parallelism, is possible.

4 Conclusions

The matrix-free approach shows promise in making some of the most difficult
classes of problem tractable by interior point methods. Its focus on a small core
of sparse operations makes highly optimized implementations using state of the
art hardware possible without excessive difficulty.

The particular choice of many-core or multi-core acceleration depends on the
hardware available. As has been noted elsewhere [13], a GPU can provide per-
formance essentially equivalent to a small number of multi-core processors in the
context of sparse problems.

References

1. Al-Jeiroudi, G., Gondzio, J., Hall, J.: Preconditioning indefinite systems in inte-
rior point methods for large scale linear optimization. Optimization Methods and
Software 23(3), 345–363 (2008)

2. Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on CUDA. Tech.
Rep. NVR-2008-004, NVIDIA Corporation (2008)

3. Bergamaschi, L., Gondzio, J., Zilli, G.: Preconditioning indefinite systems in in-
terior point methods for optimization. Computational Optimization and Applica-
tions 28, 149–171 (2004)

4. Choi, J.W., Singh, A., Vuduc, R.W.: Model-driven autotuning of sparse matrix-
vector multiply on GPUs. In: Proceedings of the 15th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pp. 115–126. ACM (2010)

5. Gondzio, J.: Matrix-free interior point method. Computational Optimization and
Applications, published online October 14 (2010), doi:10.1007/s10589-010-9361-3

6. Gondzio, J.: Interior point methods 25 years later. European Journal of Operational
Research, published online October 8 (2011), doi:10.1016/j.ejor.2011.09.017

7. Gruca, J., Wies�law, L., Żukowski, M., Kiesel, N., Wieczorek, W., Schmid, C.,
Weinfurter, H.: Nonclassicality thresholds for multiqubit states: Numerical analy-
sis. Physical Review A 82 (2010)

8. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear sys-
tems. J. Res. Natl. Bur. Stand 49, 409–436 (1952)

9. Karmarkar, N.K.: A new polynomial–time algorithm for linear programming. Com-
binatorica 4, 373–395 (1984)

10. Nugent, C.E., Vollmann, T.E., Ruml, J.: An experimental comparison of techniques
for the assignment of facilities to locations. Operations Research 16, 150–173 (1968)

11. Oliveira, A.R.L., Sorensen, D.C.: A new class of preconditioners for large-scale
linear systems from interior point methods for linear programming. Linear Algebra
and its Applications 394, 1–24 (2005)

GPU Acceleration of the Matrix-Free Interior Point Method 689

12. Vázquez, F., Ortega, G., Fernández, J., Garzón, E.: Improving the performance of
the sparse matrix vector product with GPUs. In: 2010 10th IEEE Conference on
Computer and Information Technology (CIT 2010), pp. 1146–1151 (2010)

13. Vuduc, R., Chandramowlishwaran, A., Choi, J., Guney, M., Shringapure, A.: On
the limits of GPU acceleration. In: Proceedings of the 2nd USENIX Conference on
Hot Topics in Parallelism. USENIX Association (2010)

14. Wright, S.J.: Primal-Dual Interior-Point Methods. SIAM, Philadelphia (1997)

Deconvolution of 3D Fluorescence Microscopy

Images Using Graphics Processing Units

Luisa D’Amore1, Livia Marcellino2, Valeria Mele3, and Diego Romano4

1 University of Naples Federico II,
Complesso Universitario M.S. Angelo, Via Cintia, 80126 Naples, Italy

luisa.damore@unina.it
2 University of Naples Parthenope,

Centro Direzionale, Isola C4, 80143 Naples, Italy
marcellino@uniparthenope.it

3 University of Naples Federico II,
Complesso Universitario M.S. Angelo, Via Cintia, 80126 Naples, Italy

valeria.mele@unina.it
4 ICAR - CNR, Via Pietro Castellino 111, Naples, Italy

diego.romano@na.icar.cnr.it

Abstract. We consider the deconvolution of 3D Fluorescence Microscopy
RGB images, describing the benefits arising from facing medical imaging
problems on modern graphics processing units (GPUs), that are non ex-
pensive parallel processing devices available on many up-to-date personal
computers. We found that execution time of CUDA version is about 2 or-
ders of magnitude less than the one of sequential algorithm. Anyway, the
experiments lead some reflections upon the best setting for the CUDA-
based algorithm. That is, we notice the need to model the GPUs archi-
tectures and their characteristics to better describe the performance of
GPU-algorithms and what we can expect of them.

1 Introduction

Graphics Processing Units (GPUs) emerge nowadays like a solid and compelling
alternative to traditional computing, delivering extremely high floating point
performance at a very low cost. In this paper we focus on medical imaging
applications, namely the deconvolution of 3D Fluorescence Microscopy images.

A fluorescence microscope is a light microscope used to study properties of
organic or inorganic substances. Deconvolution is an operation that mitigates
the distortion created by the microscope. Indeed, the application of image de-
convolution to microscopy was stimulated by the introduction of 3D fluores-
cence microscopy [1].Deconvolution problem is a inverse and ill-posed, hence
regularization methods are due to provide a solution within a reasonable accu-
racy [6,7,12,13]. A recent review of deconvolution methods in 3D fluorescence
microscopy is given in [11].

We obtain good performance using GPUs and our experiments lead reflections
upon the execution time expression and the opportunity of further work about
its modelling.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 690–699, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Image Deconvolution Using GPU 691

The paper is organized as follows: in section 2 we describe the inverse problem
of deconvolution and the Lucy Richardson algorithm while in section 3 we in-
troduce the GPU computing environment, discuss the CUDA-based algorithm,
and make some considerations about the performance analysis from a theoretical
point of view. Section 4 concludes the paper.

2 Inverse Problem and Numerical Approach

2.1 The Problem and Its Discretization

We represent images by a lowercase letter, e.g., f(x, y, x), where (x, y, z) is a
position vector locating an arbitrary point in image space, and it is:

f : (x, y, z) ∈ Ω ⊂ ,3 → ,

Given the Fourier transform of f , -(u, v, w) , knowing the related Convolution
Theorem and Correlation Theorem , and assuming isoplanatism (spatial invari-
ance), the fluorescence microscope is modeled as a linear shift-invariant system,
due to the incoherent nature of the emitted fluorescence light. In that case, the
3-D image is represented by the convolution operation between the PSF (Point
Spread Function) h(x, y, z) of the fluorescence microscope and the 3-D specimen
of interest f(x, y, z). This means that the imaging process can be expressed as:

g(x, y, z) = f(x, y, z)⊗ h(x, y, z) ≡

≡
∫ ∫ ∫

f(x′, y′, z′)h(x− x′, y − y′, z − z′)dx′dy′dz′ (1)

where g(x, y, z) is the noisy measured data and ⊗ is the convolution product. In
reality, our observed data g(x, y, z) are given by

g(x, y, z) = g̃(x, y, z) + η(x, y, z)

where a noise term η(x, y) has been added to the underlying convolution to
represent the errors present in real world measurements. The problem of de-
convolution is the inverse problem of recovering f(x, y, z) from g(x, y, z) and
h(x, y, z).

Sampling the three-dimensional function f(x, y, z) via an uniform grid in space
Ω, it results in the P vector f(i, j, k), where: i = 0, ..., L−1, j = 0, ...,M−1 and
k = 0, ...N − 1, P = L ×M × N . Concerning the PSF function, h, as is usual
we assume that it is normalized to 1, that is the matrix H , discretization of h,
is such that: ∑

i,j

Hi,j = 1

From these notations, we can consider the three-dimensional discrete Fourier
transform (DFT) and inverse discrete Fourier transform (IDFT). Sampling both
sides of (1) we obtain:

g = Hf (2)

692 L. D’Amore et al.

where g is the P vector of the measured data, H is the P × P blurring matrix,
i.e., sampled PSF, and f is the P vector form of the discrete object. In general,
the operatorH is normalized to 1. Assuming fluorescence microscope to be shift-
invariant for the deconvolution operation, H has a block-circulant form, and its
eigenvalues are given by the discrete Fourier transform (DFT) of the sampled
PSF. In addition, the matrix multiplication can be efficiently represented by
point-by-point multiplication in the Fourier domain.

2.2 The FFT-ARL Algorithm

Due to the ill posedness of deconvolution problem, let us rewrite the discrete
problem (2) as a least square approximation problem, where, taking into account
that data are affected by photon noise described as a Poisson process on g, we
use the Csiszar [5] distance (or I-divergence) to replace the metric distance that
appears in the standard least square approach used in presence of Gaussian noise.
This lead to the Expectation-Minimization (EM) algorithm[14] or, equivalently,
the Lucy -Richardson (LR) algorithm [8,10]:

fk+1 = fkHT g

Hfk
, k = 0, 1,

starting from f0 > 0. LR can be interpreted as a scaled gradient projected
(SGP) algorithm with constant step length and projection matrix and a special
scaling matrix:

fk+1 = Pk(fk − αkDk∇J(fk))

where1 αk = 1, Dk = Xk Pk = 1.
αk is the step length and Dk is the scaling diagonal matrix. Gradient-

projection-type methods seem appealing approaches for these problems because
the nonnegativity constraint, that characterizes most image restoration
applications, makes the projection a non expensive operation [4].

The Accelerated LR algorithm (ARL) is the following:

fk+1 = [fk + αk(fk − fk−1)]

[
h !

g

h⊗ [fk + αk(fk − fk−1)]

]
(3)

where there are two basic operations at each iteration: convolution and correla-
tion. Therefore, by applying the Fourier transform to both sides, the FFT-based
ARL can be written as:

fk+1 = fk · -−1

[
H� · -

(
g

-−1[H · F k]

)]
(4)

1 A gradient descent algorithm computes a zero of a function f as the limit of fk+1 =
fk + αkpk (pk = −∇J(fk)) moving along the steepest direction, i.e. along the
negative gradient direction. If D is a symmetric positive definite matrix and Ω is a
subset of �n the projection PΩ,D of f ∈ �n onto Ω is:

PΩ,D(x) = argminy∈Ω‖y − x‖D = argminy∈Ω(y − x)TD(y − x)

Image Deconvolution Using GPU 693

where fk = fk + αk(fk − fk−1), F k is the Fourier transform of function fk.
Finally, - and -−1 are the Fourier transform operator and Inverse Fourier
transform operator, respectively.

Moreover, we employ the zero padding technique to, as explained before, re-
duce the errors on the deconvolved image and to decompose the vectors among the
computing nodes of the GPU: in such a way we may use radix-2 FFT algorithms.

We use the software library FFTW (Fastest Fourier Transform in the West),
as proposed in [9]. FFTW is known as the fastest software implementation of the
Fast Fourier transform (FFT) algorithm, written in the C language: it can be
used to compute DFT and IDFT in only O(PlogP) operations [3]. So, using FFT
algorithm the computational cost of accelerate EM-RL method is O(P+PlogP).
As stopping criterium we use both the maximum number of iterations, that is
used just to control the algorithm’s robustness, and the minimum residual.

3 The GPU Algorithm

We now describe the implementation of ARL algorithm an a Tesla C1060. Our
algorithm has been implemented in C with CUDA extension, so it was possible
to run it on several NVIDIA cards to analyse the efficiency.

In table 1 specifications of hardware development/testing environment.

Table 1. Hardware and Software specifications

Hardware

Processor Intel(R) Core(TM) i7 CPU 950 (3.07GHz)

RAM 6 2 GB DRR3 1333 DIM

Hard disk 2 500 GB SATA,16 MB cache, 7.200 RPM

GPU 1 Quadro FX5800 4 GB RAM
2 Tesla C1060 4 GB RAM

Tesla C1060 details

Streaming Multiprocessors (SM) 30

Streaming Processor (SP) cores 240

SP core Frequency 1300 MHz

Memory Bandwidth 102 GB/2

Let suppose we have enough resources on the GPU to store the input image,
the PSF, two consequent iteration estimates, and all the temporary arrays. We
can implement a di fferent parallel kernel (each followed by a synchronization
barrier) for each step of the ARL algorithm: when the parallel execution of a
kernel ends, the overall control returns to the CPU. The macro-operations that
can be implemented in parallel are:

– Entry-wise matrix product
– Entry-wise matrix ratio
– Conjugate of complex matrix

694 L. D’Amore et al.

– Multiply-add combination of scalar-matrix and matrix-matrix (Entry-wise)
operations

– Calculation of acceleration parameter
– DFT and Inverse DFT.

Drawing apart the DFT, all the other macro-operations have a straight-forward
implementation in parallel on GPUs. In fact they consist in entry-wise calcula-
tions that can be easily separated in different independent threads. About the
DFT calculation, we utilize the CUDA optimized CUFFT library [15], that has
been modelled after FFTW [9]. It exploits a configuration mechanism called
plan which completely specifies the optimal configuration for a specific FFT.
Once the plan is created, it can be used for multiple FFT calculations of the
same type without requiring new configurations. This approach perfectly suits
our ARL algorithm, where several plans can be created once and then used at
each iteration. In this framework, the CPU works as a high level macroscopic
control unit which submit kernel executions, synchronizes the macro-operations,
executes the control flow directives, while data persist on device memory during
the overall execution.

3.1 Experiments

The ALR algorithm was stopped when the I-divergence reaches the minimum
value. This stopping criterium is usual for those iterative algorithms employed to
solve ill posed problems, because they suffer from the so-called semiconvergence
behavior. We report results on a real 3D RGB images.

Let us consider the image of an embryo C. Elegans. In fig. 1 we show on the
first row three slices of the image to be restored, on the second row the restored
images, obtained after 9 itrations of GPU-based ARL algorithm, are shown.
Fig. 2 show the residuals behavior. Concerning the PSF, it was defined following
characteristics of fluorescence microscopy.

Then, when looking at fig.3 it’s easy to notice that most of the execution time
is devoted to DFT and IDFT calculation.

But looking at this numbers, we want to understand what is the best set-
ting for our algorithms. That is, we have to define some performance analysis
parameters that can fit the GPU-enhanced enviroments peculiarities.

3.2 Performance Analysis Considerations

We notice the need to model the GPUs architectures and their characteristics
to describe the behavior of GPU-algorithms and what we can expect of them.
Let us introduce some preliminaries (see [16] for more details).

Definition 1. Given any algorithm A, its execution time on a processing unit
is Ts(A,N), where N is the problem dimension, and it is always decomposable
as

Image Deconvolution Using GPU 695

a) b) c)

d) e) f)

g) h)

Fig. 1. Degraded and restored images. Images size is 256 × 271 × 103. a), b) e c)
show three black and white bi dimensional degraded slices at z = 49, related to the
three florescence emissions (CY3, FITC, DAPI) respectively, d) e) f) show the restored
images, g) is the RGB sum of a) b) and c), while h) is the RGB sum of d), e) and f).

Fig. 2. Test1: ARL residuals behavior corresponding to CY3, FITC, DAPI, respec-
tively. According to the semiconvergence of ARL algorithm, the minimum is reached
at iterations 4, 5 and 4, respectively.

– Tseq execution time of Aseq that is the part that must be executed sequentially
– Tpar execution time of Apar that is the part that can be decomposed in a

number of components to execute concurrently

So Ts(A,N) = Tseq + Tpar.

Definition 2. If the parallel system has P processing units, and the work of
Apar is welll balanced among its P components, the execution time of A on that
system is

Tc(A,P,N) = Tseq(A,N) +
Tpar(A,N)

P
+ TO(A,P,N) (5)

where TO(A,P,N) is the total overhead, TO(A, 1, N) = 0 and Tc(A, 1, N) =
Ts(A,N).

696 L. D’Amore et al.

Fig. 3. Percentage of kernel execution time over total time, per kernel. Kernels using
CUFFT are marked with stripes. In brackets the number of executions for a deconvo-
lution with a 20 iterations loop.

Fig. 4. Speed-up of ARL algorithm, as defined by Definition 4. Sequential FFT has
been implemented utilizing FFTW. Image sizes marked with “*” are factorizable as
2a · 3b · 4c · 5d.

Image Deconvolution Using GPU 697

Of course the work of any algorithm includes mainly two kind of operations:
floating point operations and memory accesses. So we can give also the next:

Definition 3. Given any algorithm A, its sequential execution time can be writ-
ten as

Ts(A,N) = Ts[flop](A,N) + Ts[mem](A,N) (6)

Given any algorithm A, its parallel execution time can be written as

Tc(A,P,N) = Tc[flop](A,P,N) + Tc[mem](A,P,N) + TO(A,P,N) (7)

where

– T∗[flop], is the time spent in floating point operation, with the related latency,
– T∗[mem], is the time spent in memory accesses, with the related latency.

Let’s now suppose that the parallel part of A, Apar, is executed by p sets of q
thread, on a GPU-based computing architecture as described in [16], made of P
Multiprocessors (MP), and Q ALUs per MP. Let’s call warp the execution unit
on that machine, that is the fixed number of threads running simultaneously on
the ALUs of each MP at the same time. Let be dimW the dimension of the warp
and q multiple of dimW . On that kind of architecture we have:

Definition 4 (Occupancy). At a given instant, the occupancy of each MP is
a function of the number of thread running concurrently on that MP, say p · q
and is defined as

ϑ(Apar, q, p) =
#active warps block

#max warps per MP
=

=
q

dimW
· 1

#max warps per MP
·#active blocks MP (Apar, q, p) (8)

where

– #max warps per MP depends on hardware
– #threads per warp depends on hardware
– #active blocks MP = min(p,#max blocks MP (Apar)
– #max blocks MP (Apar, q) depends on hardware but also on the algorithm

characteristic, as the local memory management (shared memory and reg-
isters) and on the number of threads q.

Then, we get the following result [16]:

Proposition 1. The expected total execution time of a parallel algorithm ParA
designed to run on the above architecture by p sets of q thread, posed nw =
� p
P � · �

q
dimW � = #active warps MP , could be written as follows:

Tc(Apar , p, q,N) =

∑nw−1
i=0

(
Tc[flop](warpi, dimW,Ni)

)
ϕ1(ϑ(Apar , q, p))

+

+

∑nw−1
i=0

(
Tc[mem](warpi, dimW,Ni)

)
ϕ2(ϑ(Apar , q, p))

+ TO(Apar , p, q,N) (9)

698 L. D’Amore et al.

where

– Tc[flop](warpi, dimW,Ni) is the execution time spent in floating point oper-

ations by the ith warp, on each MP,
– Tc[mem](warpi, dimW,Ni) is the execution time spent in memory accesses by

the ith warp, on each MP,
– ϕ1(ϑ(Apar , q, p)) is a function of the occupancy that expresses the hiding of

the aritmetic pipeline latency by by concurrent work,
– ϕ2(ϑ(Apar , q, p)) is a function of the occupancy that expresses the hiding of

the memory latencies by concurrent work,
– TO(Apar , p, q,N) is the cost of kernel launch, host/device data transfers,

synchronization, divergences and data non-coalescence.

So, on the above GPU-based computing architecture, the key concepts seem to
be the occupancy and the amount of indipendent operations (of each kind) of
each thread: they are both quantities that we can control, given the hardware
characteristics.

In case of the FFT-ARL algorithm, suitable strategies have been implemented
to keep the overhead TO low for each kernel, also keeping memory coalescence
under control (using one dimensional vectors and CUDA optimized algorithms
for vector operation, i.e. CUBLAS [15] routines).

Fig.4 shows that running parallel ARL on GPU leads to smaller speed-ups if
the image sizes are not factorizable with primes, that is the condition to obtain
the best accuracy and performance in FFT algorithm of the CUFFT package.

4 Conclusions

We described the benefits arising from facing medical imaging problems on
GPUs. The algorithm implemented reaches good performance on GPUs because
many of the steps in the sequential algorithm consist in entry-wise matrix op-
erations (embarrassingly parallel): in our experiments we found that execution
time of CUDA version is about 2 orders of magnitude less than the one of se-
quential algorithm. Analysing the execution time from a theoretical point of
view we note that there are many different levels of parallelism to exploit and
we can say that the right setting for the algorithm heavily depends on the hid-
ing of the aritmetic pipeline latency, of the memory latencies and on the cost
of kernel launch, host/device data transfers, synchronization, divergences and
data non-coalescence. The experiments lead reflections upon the execution time
expression and the opportunity of further work about its modelling.

Acknowledgement. We would like to thank Prof. Giovanni Paolella, Diparti-
mento di Biochimica e Biotecnologie Avanzate, University of Naples Federico II,
and CEINGE, Biotecnologie Avanzate (Naples, Italy) for posing us the
deconvolution problem and providing the images.

Image Deconvolution Using GPU 699

References

1. Agard, D.A., Hiraoki, Y., Sedat, J.W.: Three-dimensional microscopy: image pro-
cessing for high-resolution subcellular imaging. In: Proc. SPIE, vol. 1161, pp. 24–30
(1989)

2. Biggs, D.S.C., Andrews, M.: Acceleration of iterative image restoration algorithms.
Applied Optics 36(8), 1766–1775 (1997)

3. Brigham, E.O.: The Fast Fourier Transform and its application. Prentice Hall
Signal Processing Series Alan V. Oppenheim, Series Editor

4. Bonettini, S., Zanella, R., Zanni, L.: A scaled gradient projection method for con-
strained image deblurring. Inverse Problems 25, 015002 (2009)

5. Csiszar, I.: Why least squares and maximum entropy? An axiomatic approach to
inference for linear inverse problems. The Annals of Statistics 19(4), 2031–2066
(1991)

6. Hadamard, J.: Sur les problemes aux derivees partielles et leur signification
physique. Bull. Univ. Princeton 13, 49–52 (1902)

7. Hadamard, J.: Lectures on Cauchy’s problem in Linear Partial Differential Equa-
tions. Yale Univ. Press, New Haven (1923)

8. Lucy, L.B.: An iterative technique for the rectification of observed images. The
Astronomical Journal 79(6), 745–754 (1974)

9. Johnson, S.G., Frigo, M.: Implementing FFTs in practice in Fast Fourier Trans-
forms. In: Burrus, C.S. (ed.), ch. 11, Rice University, Houston TX: Connexions
(September 2008)

10. Richardson, W.H.: Bayesian-based iterative method of image restoration. Journal
of the Optical Society of America 62(1), 55–59 (1972)

11. Sarder, P., Nehorai, A.: Deconvolution methods for 3-D fluorescence microscopy
images. IEEE Signal Process. Mag. 23, 32–45

12. Tikhonov, A.N., Arsenin, V.Y.: Solutions of ill-posed problems. Wiley, Chichester
(1977)

13. Tikhonov, A.N.: On the stability of inverse problems. Dokl. Akad. Nauk. SSSR 39,
195–200 (1943)

14. Vardi, V., Shepp, L.A., Kauffman, L.: A statistical model for positron emission
tomography. Journal of the American Statistical Association 80(389), 8–37 (1985)

15. NVIDIA Corporation, Documentation for CUDA FFT (CUFFT) Library (2008),
http://developer.download.nvidia.com/compute/cuda/2 0/docs/

CUBLAS Library 2.0.pdf

16. Mele, V., Murli, A., Romano, D.: Some remarks on performance evaluation in
parallel GPU computing. Preprint del Dipartimento di Matematica e applicazioni.
Univerity of Naples Federico II (2011)

http://developer.download.nvidia.com/compute/cuda/2_0/docs/CUBLAS_Library_2.0.pdf
http://developer.download.nvidia.com/compute/cuda/2_0/docs/CUBLAS_Library_2.0.pdf

HADAB: Enabling Fault Tolerance

in Parallel Applications Running
in Distributed Environments

Vania Boccia1, Luisa Carracciuolo2, Giuliano Laccetti1,
Marco Lapegna1, and Valeria Mele1

1 Dept. of Applied Mathematics, University of Naples Federico II,
Naples. 80126, Complesso Universitario Monte S. Angelo, Via Cintia, Italy

{vania.boccia,giuliano.laccetti,marco.lapegna,valeria.mele}@unina.it
2 Italian National Research Council, Italy

luisa.carracciuolo@cnr.it

Abstract. The development of scientific software, reliable and efficient,
in distributed computing environments, requires the identification and
the analysis of issues related to the design and the deployment of al-
gorithms for high-performance computing architectures and their inte-
gration in distributed contexts. In these environments, indeed, resources
efficiency and availability can change unexpectedly because of overload-
ing or failure i.e. of both computing nodes and interconnection network.
The scenario described above, requires the design of mechanisms enabling
the software to “survive” to such unexpected events by ensuring, at the
same time, an effective use of the computing resources. Although many
researchers are working on these problems for years, fault tolerance, for
some classes of applications is an open matter still today. Here we focus
on the design and the deployment of a checkpointing/migration system
to enable fault tolerance in parallel applications running in distributed
environments. In particular we describe details about HADAB, a new
hybrid checkpointing strategy, and its deployment in a meaningful case
study: the PETSc Conjugate Gradient algortithm implementation. The
related testing phase has been performed on the University of Naples
distributed infrastructure (S.Co.P.E. infrastructure).

Keywords: Fault tolerance, checkpointing, PETSc library, HPC and
distributed environments.

1 Introduction

In recent decades the focus of the scientific community moved from the tradi-
tional parallel computing systems to high performance computing systems for dis-
tributed environments, generally consisting of a set of HPC resources (clusters)
geographically scattered. They provide increasing computing power and are char-
acterized by a great resources availability (typical of distributed systems) and a
high local efficiency (typical of traditional parallel systems). These systems may

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 700–709, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

HADAB: Enabling Fault Tolerance in Parallel Applications 701

be used to solve the so-called “challenge problems”. However, employing a dis-
tributed infrastructure, where HPC resources are geographically scattered and are
not dedicated to a specific application, is not priceless. Indeed such kind of envi-
ronments are characterized by high dynamicity in resources load and by a high
failure rate, thus applications fault tolerance and efficiency are key issues [14].

For many years by now researchers are working to identify standard methods
to solve the problem of fault tolerance and efficiency of software designed for
distributed environments. However, today this is still an open issue.

In this paper we focus on the design and deployment of a checkpointing/
migration system, in order to enable fault tolerance in parallel applications run-
ning in distributed environments.

In Sec. 2 is presented a short overview on fault tolerance and checkpointing
mechanisms. In Sec. 3 is presented our checkpointing strategy, HADAB (Hybrid,
Adaptive, Distributed and Algorithm-Based), underlining criteria to enhance
strategy robustness and to narrow the overhead. In Sec. 4 the HADAB deploy-
ment in a case study (the parallel version of PETSc library Conjugate Gradient)
is shown. In Sec. 5, are described some tests and results, and finally, in Sec. 6,
are presented some conclusions and a preview on future works.

2 Fault Tolerance and Checkpointing: State of the Art

Fault tolerance is the ability of a system to react to unexpected events such as
sudden overload, temporary or persistent failure of resources [13]. An applica-
tion is called fault tolerant if it is able to complete its execution in spite of the
occurrence of faults. In “complex” computing systems, application survival to
failures during execution, depends on the proper behavior of all software layers
that the application uses and on the integrity and coherence of the execution
environment. There are applications that, because of special properties of the
algorithms on which they are based, are “naturally fault tolerant” (i.e. “super
scalable” applications)[5,6]. For all the others, it is necessary to provide “mech-
anisms” [9] to detect and report the presence of faults (detect/notify), making
it possible “to take a snapshot” of the current execution state (checkpointing)
and allow the application to resume its execution from the point where the fault
occurred (rolling back/migration) [10].

Detect/notify mechanisms are generally in charge to the runtime environment,
while checkpointing/migration mechanisms are in charge to the application (or
to its runtime environment) and consist of:

– procedures to store data (checkpointing) that, in case of fault, enable the pro-
cess restart from the point of execution where the fault occurred (checkpoint)

– procedures to resume the execution (rolling back), from where it left off
because of the fault, on alternative resources, by recovering and using check-
pointing data.

In literature there are different approaches that can be followed to realize check-
pointing mechanisms: algorithm-based vs. transparent, disk-based vs. diskless
and an exhaustive description of these can be found in [3,7,8,15,16].

702 V. Boccia et al.

The approaches used to implement such mechanisms are numerous and each
one has advantages and disadvantages in relation to checkpointing technique ef-
ficiency and robustness [3]. Sometimes, it is not sufficient to use a single strategy
to realize a robust checkpointing strategy, but new strategies can arise from the
combination of multiple methodologies (strategies for hybrid checkpointing [12]).
In general, strategies combination can be used to increase the robustness with
respect to the single methodologies, but it is necessary to limit checkpointing
overhead.

3 HADAB: The Hybrid, Adaptive, Distributed,
Algorithm-Based Checkpointing

The strategy described in this work is:

– hybrid, because combines two strategies: a variant of diskless parity-based
[11] and coordinated [12] checkpointing;

– adaptive, because different checkpointing techniques are performed each with
different frequency, with the aim to reduce the total overhead;

– distributed, because checkpointing data are periodically saved on a remote
storage resource;

– algorithm-based because, although hard to implement, this approach is still
the safest method to select and reduce the checkpointing data amount.

We focus on parallel applications based on Message Passing paradigm, in partic-
ular based on MPI standard. Currently FT-MPI [2] is the only existing message
passing library, implementing MPI standard, that providing the software tools to
identify and manage faults, makes applications able to use a diskless approach.
Indeed, FT-MPI allows to re-spawn failed processes redefining the MPI context.
Unfortunately, its development has been stopped in 2003 and so, on some new
architectures, the library seems to be not stable.

Other implementations of MPI standard, as Open MPI [4], promise to intro-
duce the important features of FT-MPI, but developers are waiting for the MPI3
standard to implement these in the production release.

In absence of the software tools needful to use a diskless approach, we chose a
disk-based approach and a stop/restart method to implement our checkpointing
strategy. In the rest of this section we describe how we built the HADAB strategy.

First, we considered a disk-based variant of the parity-based checkpoint, where
the checkpointing phase can be divided into two sub-phases:

1. each application processor [11] saves its checkpointing data locally and sends
them to the checkpoint processor

2. the checkpoint processor [11] calculates the bitwise-XOR of the received data
and stores it on its local storage device.

HADAB: Enabling Fault Tolerance in Parallel Applications 703

In a similar way, the rolling back phase can be divided into two sub-phases:

1. survived processors recover their data from local disks
2. the processor, that took the place of the failed processor, reconstructs its por-

tion of data, by both local data coming from other processors and encrypted
data sent by the checkpoint processor.

The strategy described above is already quite robust because it ensures the
checkpointing integrity (the last successfully saved checkpointing data are re-
moved only after that new coherent checkpointing data are saved) and allows
the application to survive to the fault of one processor at a time (application or
checkpoint processor).

Moreover, the use of encryption offers advantages in terms of efficiency, be-
cause the amount of data that checkpoint processor has to store is drastically
reduced (for a problem of dimension N , using p processors, checkpoint processor
data dimension is equal to N/p). So it is clear that this strategy has a lower I/O
overhead than a non-coding one, but it can tolerate only one fault at a time.

Thus, to improve checkpointing robustness, we decided to add also “few”
phases of coordinated checkpointing, realizing an hybrid strategy.

In general checkpointing frequency cannot be high (to avoid the increasing of
the total checkpointing overhead) and, anyway, the time for data saving should
not be relevant in relation to the total execution time. So we developed our hybrid
strategy using an automatic choice of the checkpointing rate that depends on
the extimated execution time.

The advantage introduced by the hybrid strategy is that, if p is the number of
processors, the application can tolerate up to p− 1 simultaneous faults, except
the fault of the checkpoint processor. So, paying a not so relevant price in terms
of total overhead, we gain in terms of checkpointing strategy robustness.

In case of checkpoint processor unavailability, the hybrid strategy is not able
to recover the application, because all checkpointing data are lost. Hence the idea
to build a distributed version of the hybrid strategy (HADAB) that periodically
saves, in an asynchronous way, checkpointing data on an “external” storage
resource.

HADAB is able to guarantee up to p faults at a time:

– up to p−1 faults there always is a local copy of checkpointing data available
(from coordinated or parity-based strategies) to recover from the fault;

– if all processes fail, a remote saved copy of all checkpointing data is available
for application resumption: an external stop/restart system migrates appli-
cation execution on a new set of computational resources, using the remote
copy of all checkpointing data (Fig. 1).

The next section describes the work done to deploy the HADAB checkpointing
strategy in a case study.

704 V. Boccia et al.

Fig. 1. Migration system schema

4 HADAB Deployment on the PETSc Conjugate
Gradient (CG)

We deployed HADAB into the parallel version of Conjugate Gradient (CG) algo-
rithm implemented in PETSc library [1] with the objective to realize a fault
tolerant version of such a procedure (CGFT).

In order to develop a fault tolerant version of CG algorithm (Fig. 2), we
followed an algorithm-based approach [3]:

– first we identified the data needed for the checkpointing in the CG algorithm:
four vectors and four scalars

– then we added to the PETSc CG routine, the code needed to implement
checkpointing phases (see lines 19-32 in Fig. 2) and rolling back phases (see
lines 5-14 in Fig. 2) of the HADAB strategy.

Application starts with checkpointing frequency chosen by the user (i.e., parity-
based checkpointing is performed at each iteration while the coordinated one
is performed every k iterations); during execution the PetscCheckFreq routine
modifies the checkpointing frequency on the bases of both:

– the average of previous iterations execution time and
– the real time spent to save data (for each checkpointing type).

During the recovery phase, the CheckCheckpoint routine selects the most
“convenient”1 checkpointing type to be used in application resumption: if it is
parity-based, the PetscRollbackCodifroutine is called, otherwise the PetscRoll
backCoord routine is executed.

1 Metric for convenience is the total cost of the recovery phase that is related to both
the data “freshness” and to the overhead in data reading.

HADAB: Enabling Fault Tolerance in Parallel Applications 705

Fault tolerant version of Conjugate Gradient with hybrid adaptive distributed checkpointing:
code fragment.

1 PetscErrorCode KSPSolve_CGFT (KSP ksp)
2 PetscFunctionBegin;
3 /* Initialization phase */
4 ...
5 IF (restart)
6 rt = CheckCheckpoint(...);
7 IF (rt == 1)
8 ierr = PetscRollbackCoord(...);
9 ELSE IF (rt == 0)

10 ierr = PetscRollbackCodif(...);
11 ELSE
12 printf("It is not possible to recover locally from the fault");
13 ENDIF
14 ENDIF
15 REPEAT
16 ...
17 /* repeat-until loop of the CG algorithm */
18 ...
19 IF (chkenable)
20 /* ck_coord is the iteration number when
21 coordinated checkpointing is performed */
22 /* ck_codif is the iteration number when
23 coded checkpointing is performed */
24 IF (i % ck_coord == 0)
25 ierr = PetscCheckpointingCoord(...);
26 ierr = PetscStartCopyThreads(...);
27 ELSE /* case i % ck_codif == 0 */
28 ierr = PetscCheckpointingCodif(...);
29 ierr = PetscStartCollectThreads(...);
30 ENDIF
31 ierr = PetscCheckFreq(...);
32 ENDIF
33 UNTIL (i < max_it && r > tol)
34 /* finalization phase */
35 PetscFunctionReturn(0);

Fig. 2. PETSc CG fault tolerant version

During the checkpointing phase PetscCheckpointingCodif routine (for parity-
based checkpointing) and PetscCheckpointingCoord routine (for coordinated
checkpointing) are called respectively with a frequency equal to ck codif and
ck coord (ϕ2 and ϕ1 respectively, see Fig. 1).

Finally, PetscStartCopyThreads and PetscStartCollectThreads routines
perform the asynchronous distributed checkpointing data saving on external stor-
age resources. Distributed checkpointing phase does not add any overhead ba-
cause of the use of threads.

When ever the local rolling back phase is impossible (see line 14 in fig. 2),
application stops and the migration system migrates the execution on a new
set of computational resources. The remote rolling back phase, included in the
migration task, introduces an overhead that may significantly change on the basis
of several parameters depending on distributed environment characteristics.

In the next section we report some tests performed at the University of Naples
Federico II on the HPC computational resources available in the S.Co.P.E. GRID
infrastructure. Tests results provided a first validation of HADAB checkpointing
strategy and some useful information about migration system overheads.

706 V. Boccia et al.

5 Tests and Remarks

The first tests have been carried out with the aim to verify the behavior of both
the checkpointing strategies: coordinated and parity-based. Tests are related
to the solution, by means of CGFT, of a linear system where sparse matrix
has N = 3.9 ∗ 1017 non-zero elements2. The linear system is solved after 6892
iterations.

Indeed, depending on when the fault occurs, the overhead introduced by the
checkpointing/rolling back phases becomes more or less relevant in comparison
to the total execution time of the application.

Table 1. Execution times in seconds: to execute one CG iteration (Titer), to save check-
poinitng data with parity-based strategy (TcheckCodif) and to save checkpoinitng data
with coordinated strategy (TcheckCoord). p is the number of processors. Checkpointing
data are written on a shared area based on Lustre File System. Data dimension is
2.5 ∗ 109. TcheckCoord value is indipendent from p.

p Titer TcheckCodif TcheckCoord

8 8.76 362.68 417
12 5.65 206.81 417
16 5.46 196.19 417
20 4.67 192.85 417
24 4.16 189.72 417
28 2.31 188.12 417

Table 1 is useful to understand the optimal value for checkpointing frequencies.
Focusing on the test performed with 16 processors, the total execution time for
the application, in absence of faults, is about 10 hours and 45 minutes. The
PetscCheckFreq routine chooses to execute a coordinated checkpointing every
196 iterations and a parity-based one every 14 iterations.

In the following tables, when HADAB is enabled, we consider checkpointing
frequencies defined on the bases of results reported in table 1.

Looking at the tables 2, 3 and 4 it is possible to evaluate the benefits, if any,
due to the use of HADAB checkpointing in the following scenarios:

– Case 1: failure free execution (see table 2)
– Case 2: a single fault during execution (see tables 3 and 4)

From table 2 we can observe that HADAB adds about the 33% of overhead on
the total execution time in absence of faults.

However, if we consider execution with faults, the use of HADAB checkpoint-
ing becomes ever more affordable when the iteration number, where the fault
occurs, increases (see table 4). Indeed, in the last three rows of the table 4, the
Overheadchkp is negative, because the TNoC

tot is greater than TC
tot. Thus HADAB

2 Checkpointing data are M = 2.5 ∗ 109 and their amount is of about 18GB.

HADAB: Enabling Fault Tolerance in Parallel Applications 707

Table 2. Application execution with HADAB checkpointing enabled: Tcomp is the time
related to the computational phase, Tcheck is the time due to HADAB checkpointing,
Ttot = Tcomp + Tcheck and Overheadcheck = Tcheck/Ttot is the overhead introduced by
HADAB in a failure free execution. All times values are expressed in seconds.

N Tcomp Tcheck Ttot Overheadcheck (%)

3.9 ∗ 1017 37630 18666 56296 33.1%

Table 3. Application execution with HADAB checkpointing disabled in an execution
with one fault occurring at Itfault. Tit−lost is the time spent to re-execute Itfault
iterations where Itfault is: 1000, 2000, 3000, 4000, 5000, 6000. T

NoC
tot = Tcomp+Tit−lost.

All times values are expressed in seconds.

Itfault Tit−lost TNoC
tot

1000 5460 37630+5460 = 43090
2000 10920 37630+10920 = 48550
3000 16380 37630+16380 = 54010
4000 21840 37630+21840 = 59470
5000 27300 37630+27300 = 64930
6000 32760 37630+32760 = 70390

Table 4. Application execution with HADAB checkpointing enabled: Tit−lost is the
time spent to execute again only the Itlost iterations from the last saved checkpointing
to Itfault. In last column we report overhead, Overheadchkp, introduced by HADAB
where Overheadchkp = (TC

tot−TNoC
tot)/TNoC

tot . All times values are expressed in seconds.

Itfault Itlost Tit−lost TC
tot Overheadchkp

1000 6 32.76 56296+32.76 = 56328.76 31%
2000 12 65.52 56296+65.52 = 56361.52 16%
3000 4 21.84 56296+21.84 = 56317.84 0%
4000 10 54.60 56296+54.60 = 56350.60 -1%
5000 2 10.92 56296+10.92 = 56306.92 -13%
6000 8 43.68 56296+43.68 = 56339.68 -20%

use is even profitable for the application: i.e. if the fault occurs at iteration 6000,
we gain about the 20% on the time TNoC

tot .
Looking at all the tables above it is possible to evaluate the benefits due to

the use of HADAB checkpointing also in an execution where more than a fault
occurs. Indeed, in case where a fault occurs twice, i.e. one at iteration 2000 and
the other at iteration 5000, the application recovers twice from the fault, re-
executing only 14 iterations. In this case, thanks to HADAB checkpointing we
gain about 26% on the time TNoC

tot
3.

3 TC
tot = Ttot+Tit−lost(2000)+Tit−lost(5000), by using data in tables 2 and 4; TNoC

tot =
Ttot + Tit−lost(2000) + Tit−lost(5000), by using data in tables 2 and 3.

708 V. Boccia et al.

Finally table 5 reports the case when all processors p fail at the same time.
Here, a migration phase is needed. HADAB checkpointing saved asyncronously
data on external storage resource during application execution. Thus when p
fault occurr at the same time, migration system selects a new cluster for exe-
cution, moves checkpointing data from external storage to the new cluster and
restarts application execution from the point when it left out.

Table 5. Application execution with HADAB checkpointing enabled and all processors
fail at the same time: TData−trans is the time to move checkpointing data from storage
external resource to the new execution cluster (remote rolling back phase).

N CheckData−dim (GB) TData−trans (secs.)

3.9 ∗ 1017 18 134

TData−trans are related only to the rolling back phase4, but we have to con-
sider, as overhead, also times due i.e. to new computational resource recruitment
and to the queue time on the scheduling system before application restarts. These
times are not fixed but depend on the distributed infrastructure characteristics.

6 Conclusion and Future Works

Checkpointing mechanisms deployment in scientific libraries, as PETSc, always
is a “good investment”. Indeed, if a library is fault tolerant so are all applica-
tions that use it. The work here reported, gave us the opportunity to evaluate
the benefit in using hybrid strategies for the implementation of checkpointing
mechanisms even when disk-based approaches are used.

The implemented system is robust and efficient enaugh; further improvements
in efficiency can arise from the use of diskless strategies, currently not feasible,
while more improvements in robustness can arise i.e. from the use of virtual
resources, fault tolerant networks and fault tolerant message passing libraries.

The remarks made in Sec. 3 and 5 about the overhead introduced by the
HADAB checkpointing, are related to an application that, on a big amount of
data, performs a “small” amount of computations.

Thus the utility of the checkpointing mechanisms is much more evident in
other contexts as i.e.:

– applications handling the same amount of data, but using algorithms with
more complexity than that here considered;

– computer centers where it is permitted the use of computing resources for a
time not adequate to terminate the application execution.

4 Data have been moved among two clusters of the S.Co.P.E. distributed infrastruc-
ture, by using grid protocols.

HADAB: Enabling Fault Tolerance in Parallel Applications 709

References

1. Balay, S., et al.: PETSc Users Manual. ANL-95/11 - Revision 3.1, Argonne National
Laboratory (2010)

2. Chen, Z., Fagg, G.E., Gabriel, E., Langou, J., Angskun, T., Bosilca, G.,
Dongarra, J.: Building Fault Survivable MPI Programs with FT MPI Using Disk-
less Checkpointing. In: Proceedings for ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pp. 213–223 (2005)

3. Dongarra, J., Bosilca, B., Delmas, R., Langou, J.: Algorithmic Based Fault Toler-
ance Applied to High Performance Computing. Journal of Parallel and Distributed
Computing 69, 410–416 (2009)

4. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J., Squyres, J.M.,
Sahay, V., Kambadur, P., Barrett, B.W., Lumsdaine, A., Castain, R.H., Daniel,
D.J., Graham, R.L., Woodall, T.S.: Open MPI: Goals, Concept, and Design of a
Next Generation MPI Implementation. In: Kranzlmüller, D., Kacsuk, P., Dongarra,
J. (eds.) EuroPVM/MPI 2004. LNCS, vol. 3241, pp. 97–104. Springer, Heidelberg
(2004)

5. Geist, A., Engelmann, C.: Development of Naturally Fault Tolerant Algorithms for
Computing on 100,000 Processors (2002)

6. Engelmann, C., Geist, A.: Super-Scalable Algorithms for Computing on 100,000
Processors. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J.
(eds.) ICCS 2005. LNCS, vol. 3514, pp. 313–321. Springer, Heidelberg (2005)

7. Hung, E., Student, M.P.: Fault Tolerance and Checkpointing Schemes for Clusters
of Workstations (2008)

8. Kofahi, N.A., Al-Bokhitan, S., Journal, A.A.: On Disk-based and Diskless Check-
pointing for Parallel and Distributed Systems: An Empirical Analysis. Information
Technology Journal 4, 367–376 (2005)

9. Lee, K., Sha, L.: Process resurrection: A fast recovery mechanism for real-time
embedded systems. In: Real-Time and Embedded Technology and Applications
Symposium, pp. 292–301. IEEE (2005)

10. Murli, A., Boccia, V., Carracciuolo, L., D Amore, L., Lapegna, M.: Monitoring
and Migration of a PETSc-based Parallel Application for Medical Imaging in a
Grid computing PSE. In: Proceedings of IFIP 2.5 WoCo9, vol. 239, pp. 421–432.
Springer (2007)

11. Plank, J.S., Li, K., Puening, M.A.: Diskless Checkpointing. Technical Report
CS-97-380, University of Tennessee (December 1997)

12. Silva, L.M., Silva, G.J.: The Performance of Coordinated and Independent Check-
pointing. In: Proceedings of the 13th International Symposium on Parallel Pro-
cessing, pp. 280–284. IEEE Computer Society, Washington, DC (1999)

13. Simon, H.D., Heroux, M.A., Raghavan, P.: Faul Tolerance in Large Scale Scientific
Computing, ch. 11, pp. 203–220. SIAM Press (2006)

14. Song, H., Leangsuksun, C., Nassar, R.: Availability Modeling and Analysis on
High Performance Cluster Computing Systems. In: First International Conference
on Availability, Reliability and Security, pp. 305–313 (2006)

15. Vadhiyar, S.S., Dongarra, J.: SRS - A Framework for Developing Malleable and
Migratable Parallel Applications for Distributed Systems. In: Parallel Processing
Letters, pp. 291–312 (2002)

16. Wang, C., Mueller, F., Engelmann, C., Scott, S.L.: A Job Pause Service under
LAM/MPI+BLCR for Transparent Fault Tolerance. In: Parallel and Distributed
Processing Symposium (2007)

Increasing the Efficiency of the DaCS
Programming Model for Heterogeneous Systems

Maciej Cytowski and Marek Niezgódka

Interdisciplinary Centre for Mathematical and Computational Modelling,
University of Warsaw, Poland

Abstract. Efficient programming of hybrid systems is usually done with
the use of new programming models. It creates a unique opportunity to
increase the performance of scientific applications and is also especially
interesting in the context of future exascale applications development
where extreme number of MPI processes tend to be a limitation. Fu-
ture scientific codes will make use of hierarchical parallel programming
models with message passing techniques used between nodes and op-
timized computational kernels used within multicore, multithreaded or
accelerator nodes. In this article we consider the x86 and PowerXCell8i
heterogeneous environment introduced in the High Performance Com-
puting (HPC) sites like Roadrunner [6] or Nautilus [5]. Programming
techniques for this environment are usually based on the IBM Data Com-
munication and Synchronization library (DaCS). We describe our effort
to increase the hybrid efficiency of the DaCS library and show how it
affects the performance of scientific computations based on FFT kernels.
The results are very promising especially for computational models that
involve large three dimensional Fourier transformations.

Keywords: hybrid computing, Cell processor, FFT, parallel computing.

1 Introduction

Novel computer systems from desktops to world’s biggest supercomputers are
very often based on new architectures or hardware accelerators. Efficient compu-
tations on such systems can be achieved with the use of new programming mod-
els. The performance of scientific applications can be increased by the functional
decomposition of computations and offloading chosen computational kernels on
accelerators. However the final performance of those applications depend on their
feasibility to the architectures in use and on the performance of the programming
tools. Therefore developers have to examine the efficiency of both applications
and programming environments in order to produce the fastest solutions for spe-
cific scientific problems. In this work we present a performance benchmark of
a novel heterogeneous programming model together with its specific scientific
application - Fast Fourier Transform (FFT) computations. The outcomes and
measurements presented in this work are important not only for FFT compu-
tations but for many other computational algorithms and scientific disciplines.
The work is accompanied with libraries and example codes.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 710–719, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Increasing the Efficiency of the DaCS Programming Model 711

In this paper we are looking at the heterogeneous programming techniques
for high performance systems based on the PowerXCell8i architecture. The Pow-
erXCell8i was released in 2008 as an enhanced Cell Broadband Engine processor
with improved double-precision floating point performance. It is a multi-core
chip composed of one Power Processor Unit (PPU) and eight Synergistic Pro-
cessing Units (SPU). The architecture itself was already extensively described
e.g. in [11], [14], [15] and [6]. The PowerXCell8i was designed to bridge the gap
between general purpose processors and specialized computer architectures like
GPUs. Applications can be compiled and executed in a standard Linux envi-
ronment on the PPU. Furthermore specific computational kernels can be imple-
mented and executed on the SPUs playing a role of hardware accelerators. Most
of the applications achieve poor performance on the PPU since it is not designed
for computations. The computations that are not optimized for execution on the
SPUs are very often 3 to 5 times slower when compared with their performance
on modern x86 compute cores. One of the techniques used to overcome those
issues is to use a heterogeneous environment. Therefore HPC architectures like
Roadrunner [6] or Nautilus [5] utilize the PowerXCell8i chip as an accelerator for
calculations running on x86 cores. Both systems are composed of the IBM LS21
and IBM QS22 blades but they differ in a type of interconnect. In the case of
the Roadrunner system [6] the interconnect is based on the PCIe x8 and Hyper-
Transport technology. In the case of the Nautilus system [5] nodes are connected
with the DDR Infiniband 4x network. Both systems are important milestones
in the development of future HPC systems. Roadrunner is well known to be the
world’s first TOP500 Linpack sustained 1.0 petaflops system (November 2008).
On the other hand Nautilus has been ranked on the 1’st place of the Green500
list twice (November 2008 and June 2009).

Most important programming technique available for such heterogeneous ar-
chitectures is the IBM Data Communication and Synchronization library (DaCS)
used in several scientific codes already developed for the Roadrunner and Nau-
tilus supercomputers ([16], [8], [12]). One of the main advantage of DaCS is that
it creates a very interesting hierarchical programming model together with the
message passing techniques like the MPI library. This is very important in the
context of future exascale applications development where extreme number of
MPI processes tend to be a limitation.

We decided to take a closer look at DaCS performance on the Roadrunner
like systems. Especially we decided to measure the data transfer rate since it
is one of the fundamental factor for application optimization on the accelerator
based systems. We describe DaCS functionality and our benchmark results in
Chapter 2. The effort we have made to increase DaCS performance is extensively
covered in Chapter 3. Finally in Chapter 4 we discuss one of the potential usage
scenarios of our implementation, the FFT computations. We describe how to
use DaCS for offloading the FFTW library computations on the PowerXCell8i
processor.

712 M. Cytowski and M. Niezgódka

2 Data Communication and Synchronization Library

2.1 Overview

The DaCS [1] library was designed to support development of applications for
the heterogeneous systems based on the PowerXCell8i and x86 architectures.
It contains two main components: the application programming interface (API)
and the runtime environment. The DaCS API provides an architecturally neutral
layer for application developers. It serves as a resource and process manager
for applications that use different computing devices. With the use of specific
DaCS functions we can execute remote processes and initiate data transfers or
synchronization between them.

One of the main concepts of DaCS is a hierarchical topology which enables ap-
plication developers to choose between a variety of hybrid configurations. First
of all it can be used for programming applications for the Cell processor by
exploiting its specific hybrid design. In such a model developers use DaCS to
create and execute processes on the PPU and SPUs and to initiate data trans-
fers or synchronization between those processes. However developers can choose
between few other programming concepts for the Cell processor and the DaCS
model is for sure not the most productive and efficient one. The DaCS library is
much more interesting as a tool for creating hybrid applications that use two dif-
ferent processor architectures. In such a model DaCS can support the execution,
data transfers, synchronization and error handling of processes on three different
architectural levels (i.e. the x86, PPU and SPU levels). Additionally program-
mer can decide to use DaCS with any other Cell programming language on the
PPU level. The PPU process can execute the SPU kernels provided by optimized
libraries or created originally by developers with the use of programming tools
like the Libspe2 [13], Cell SuperScalar [9] or OpenMP [7].

The DaCS library has a much wider impact on high performance computing
since it was designed to support highly parallel applications where the MPI
library is used between heterogeneous nodes and the DaCS library is used within
those nodes. Such programming model was used for applications development
on the Roadrunner and Nautilus systems ([16], [8], [12]).

2.2 Performance Benchmarking

A common feature of heterogeneous systems is the bottleneck introduced by the
data transfer crossing the accelerator boundary. The computational granularity
of the optimized compute kernels must be carefully measured and compared with
the data transfers performance in order to make a decision on offloading specific
calculations on the accelerator.

The performance measurements presented within this work were prepared
on two systems: the Roadrunner-like system located in IBM Laboratories in
Rochester and the Nautilus system located at ICM in Warsaw. The best data
transfers rate was achieved on the Roadrunner-like system with the use of the
PCI x8 interconnect. The measurements on the Nautilus system were performed

Increasing the Efficiency of the DaCS Programming Model 713

with the use of the Gigabit Ethernet and Infiniband interconnect. Unfortunately
the DaCS library does not support RDMA over Infiniband mechanism which
results in a very poor data transfer’s rate. In this work we will mainly concentrate
on the results achieved on the Roadrunner-like system.

We have prepared a performance benchmark for the DaCS library and eval-
uated it on available heterogeneous systems. It is a simple ping-pong program
similar to the one used for benchmarking of MPI point-to-point communication.
The sending host process sends a message of a given data size to the accelerator
process and waits for a reply. The average time of such communication is mea-
sured for different message sizes. The data transfers are initiated with the use
of dacs_put and dacs_get functions.

Developing applications on the heterogeneous systems based on the x86 and
PowerXCell8i architectures introduces an additional byte-swapping step related
to different endianness of the host and accelerator nodes. The DaCS library ad-
dresses this issue by providing a byte swapping mechanism that can be switched
on and off by setting corresponding parameters of the DaCS data transfers
functions.

The data transfers implemented in our benchmark program were used for
transferring of the double precision floating point numbers and were executed
with byte swapping mechanism turned on and off for comparison. In this way
the influence of the DaCS byte swapping step on the overall performance of the
data transfers was measured. We will refer to those two different setups by using
two shortcuts for simplicity: BS and NBS will stand for byte swapping and no
byte swapping version respectively.

The performance results obtained on the Gigabit Ethernet for medium and
large data transfers (between 218 and 230 bytes) were reaching 70 MB/s for NBS
version. The average difference between BS and NBS versions for those data
transfers is around 9 MB/s. This difference is of minor importance for computa-
tions. The performance results obtained on the Infiniband network were reaching
the level of 100 MB/s. This weak performance is related to the lack of support for
the Infiniband over RDMA transfers in the DaCS library. Much more interesting
results were those obtained on the Roadrunner-like system where data transfers
are handled by dedicated PCI based interconnect. Although the maximum per-
formance for the NBS version reached more than 1090 MB/s, the BS version
was much slower. The difference for large data transfers exceeds 800 MB/s.
The results of the benchmark on PCI interconnect are depicted on Figure 2.

3 Optimized Byte Swapping

The benchmark results described in the previous chapter present an undesirable
dependence of the computational performance of DaCS applications on the per-
formance of byte swapping step. The byte swapping mechanism implemented
in DaCS seems to be very unoptimal. Unfortunately almost every application
implemented on the described heterogeneous system have to make use of it.

714 M. Cytowski and M. Niezgódka

Byte swapping is a very simple operation and can be implemented with the
use of permutation of bytes which transforms the bit representation of a given
number from one endianness format to the other. Our implementation on the
PowerXCell8i processor is based on two very important observations. First of all
for large data sizes byte swapping can be easily parallelized in a data parallel
mode. Secondly byte swapping can be performed with the use of SIMD vector
operations. For large data sizes we decided to make use of the available vector
SPUs. For smaller data sizes we propose a SIMD-ized optimal implementation on
PPU. The final PowerXCell8i byte swapping library (PXCBS) is a mix of both
described implementations based on their performance measured for different
data sizes.

Table 1. Time measurement of byte swapping optimized kernels

Kernel version 214 bytes 220 bytes 230 bytes

1 threaded PPU 9 usec 1672 usec 1677745 usec

4 SPU threads 11 usec 1520 usec 99159 usec

AMD Opteron 29 usec 1696 usec 1716653 usec

3.1 Key Optimization Steps

Here we describe the consecutive optimization steps of byte swapping for the
PowerXCell8i architecture.

SPU Implementation. For large data sizes we can parallelize byte swapping
simply by dividing the data into blocks. For double precision floating point num-
bers we choose a block of size 1024 since the maximal transfer size for the DMA
operations is 16kB. We use a double buffering scheme to overlap computations
and communication. Moreover we exploit the SIMD operations by using the
spu_shuffle instruction. We’ve measured the performance achieved with the
use of 1,2,4,8 and 16 concurrent SPU threads. Although the final implemen-
tation presents very good performance for large data sizes it is not optimal for
smaller sizes due to the overhead introduced by creation and maintaining parallel
SPU threads during execution.

PPU Implementation. For smaller data sizes we decided to implement byte
swapping on the PPU. The main optimization technique used here is SIMD-
ization. Here we use vec_perm Altivec operation instead of spu_shuffle.
Performance results are summarized in Table 1. Since the PPU is a two-way
multithreaded core we decided to create a dual threaded version of byte swap-
ping with the use of POSIX threads. We’ve measured the performance achieved
with the use of 1 and 2 concurrent PPU threads.

Increasing the Efficiency of the DaCS Programming Model 715

Performance Measurements. The final version of optimized byte swapping
is a mix of developed kernels used interchangeably dependent on the data size.
The decision which kernel should be executed is statically implemented in the
code based on two comparisons. First of all we compare the performance of those
kernels on small, medium and large data sizes (see Table 1). In this comparison
we measure only the time needed to perform single byte swapping step.

We have also performed measurements of the full DaCS data transfer process
that includes data movement and byte swapping. This was done with the use
of the previously described DaCS ping-pong test. The results are presented in
Figure 1 for varying data sizes and show that each of the implemented kernels
should be considered for usage in the final solution.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

2
19

2
20

2
21

2
22

2
23

2
24

2
25

2
26

2
27

2
28

2
29

2
30

PCIe, BS
PCIe, NBS

PCIe, PPUx1 BS
PCIe, PPUx2 BS
PCIe, SPUx1 BS
PCIe, SPUx2 BS
PCIe, SPUx4 BS
PCIe, SPUx8 BS

PCIe, SPUx16 BS

Fig. 1. Measurements of data transfers performance for different version of optimized
byte swapping (SPU and PPU kernels). Data size in bytes is depicted on the x-axis.
Performance measured in GB/s is depicted on the y-axis.

3.2 Result and Usage Details

Based on the results presented in Table 1 and Figure 1 we have prepared a final
implementation which make use of the optimized kernels in a following way:

– the single threaded PPU version is used for sizes smaller than 219 bytes,
– the dual threaded PPU version is used for sizes between 219 and 220 bytes,
– the single SPU version is used for sizes between 220 and 222 bytes,
– the two SPUs version is used for sizes between 222 and 224 bytes,
– the four SPUs version is used for sizes bigger than 224 bytes.

The overall performance of our implementation is presented in Figure 2.
Note that the shape of presented curve is similar to the original BS version

for small and medium sizes (growth, local minimas and maximas). However the
performance for large sizes achieves a stable level of ˜980 MB/s.
The PowerXCell8i optimized byte swapping (PXCBS) is available for download
and licensed on the basis of GPL. It is a lightweight library that enables byte

716 M. Cytowski and M. Niezgódka

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

2
19

2
20

2
21

2
22

2
23

2
24

2
25

2
26

2
27

2
28

2
29

2
30

PCIe, BS
PCIe, NBS

PCIe, PXCBS

Fig. 2. DaCS data transfers performance with optimized byte swapping library com-
pared to previous versions (ping-pong benchmark). Data size in bytes is depicted on
the x-axis. Performance measured in GB/s is depicted on the y-axis.

swapping for 32- and 64-bit data. The library functions are accessible from Pow-
erXCell8i accelerator code. Basic usage is simple and straightforward. In order
to transfer a double precision floating point table T of size N programmer needs
to perform the DaCS data transfers with byte swapping turned off and call
the bswap64_pxc(N,T) function. The program needs to be linked with provided
PXCBS library.

4 Usage Scenario: FFTW Library

The usage scenario presented in this chapter addresses applications that involve
FFT computations. One of the most popular tools used for Fourier transform
computations in scientific codes is the FFTW library [10]. The FFTW library
was ported and optimized for execution on the PowerXCell8i architecture by
IBM Austin Research Laboratories [2]. The performance of the optimized FFTW
library on the PowerXCell8i architecture was reported for many different bench-
mark settings in [3] and [4]. Applications that use FFTW can be compiled and
executed on the PowerXCell8i architecture. There are some important caveats
that need to be taken into account. First of all the data must be stored in contigu-
ous arrays aligned at 16-byte boundary. Secondly as noted by the developers the
FFTW_ESTIMATE mode may produce unoptimal plans and the user is encouraged
to use FFTW_MEASURE instead. However the latter is much more time consuming
on the PowerXCell8i processor and for many applications FFTW_ESTIMATE is still
a better choice. All performance measurements presented in this article were
obtained with the use of FFTW_ESTIMATE mode.

We present the results of performance analysis of the FFTW library on het-
erogeneous systems based on the PowerXCell8i architecture. The benchmark
problem was designed to evaluate the possible advantages of using such het-
erogenous approach. We compare the reference x86 performance (AMD Opteron

Increasing the Efficiency of the DaCS Programming Model 717

2216, 2.4 GHz) with corresponding hybrid implementation. Time measurements
include the data transfers, byte swapping steps and FFT computations.

4.1 Computational Model

We have developed a set of simple heterogeneous programs that serve as a bench-
mark suite for the FFTW library. The main purpose was to show how the Pow-
erXCell8i optimized library could be used to accelerate scientific applications on
heterogeneous architectures. In a very first step of the program the decision on
type, size and direction of the transform is made within application running on
AMD Opteron core. These informations are then sent to the accelerator process.
In the next step accelerator process allocates tables for transform and prepares
the FFT plan with the use of the FFTW library interface. At the same time
transformation datas are being prepared on the host process and are sent to
the accelerator process when ready. The FFT computations on the accelerator
process are preceded and followed by the byte swapping steps. A reverse data
transfer is carried out and the FFT plan created for computations is destroyed.
The performance comparison presented here is made between reference x86 pro-
gram and two heterogeneous programs: the one that uses the PXCBS library
and the one that uses the DaCS built-in byte swapping mechanism.

4.2 Performance Measurements

The performance measurements for 1D, 2D and 3D FFT transforms are pre-
sented in Table 2. All performed FFTs are double-precision complex forward
transforms. In the case of heterogeneous programs we present the communica-
tion time and walltime measured during execution. The heterogeneous programs
based on the DaCS library built-in byte swapping mechanism do not achieve a
significantly better performance than their x86 equivalents. However the use
of optimized byte swapping mechanism gives much better overall performance.
The best speedup measured was 4.3x, 4.8x and 7.4x for 1D, 2D and 3D cases
respectively.

5 Summary

In this work we have presented the optimized byte swapping mechanism that
replaces its unoptimal equivalent in the DaCS library and can be used for im-
plementation of heterogeneous applications that involve movement of large data
between host and accelerator. The performance rate of our solution measured
with the use of DaCS ping-pong test is up to 3.7x more efficient in terms of
MB/s. This result was achieved by exploiting parallel and SIMD processing fea-
tures of the PowerXCell8i chip. The PXCBS library can be used together with
the IBM DaCS library to support heterogeneous computations. Usually it signif-
icantly increases the overall performance and in our opinion it should be always
considered as a tool for byte swapping on PowerXCell8i processor.

718 M. Cytowski and M. Niezgódka

Table 2. Performance comparison of FFT transforms on heterogeneous architecture

DaCS PCI DaCS PCI + PXCBS
1D FFT size x86 Comm. Walltime Speedup Comm. Walltime Speedup

131072 0.025s 0.016s 0.018s 1.38x 0.009s 0.011s 2.27x
262144 0.076s 0.032s 0.035s 2.17x 0.014s 0.018s 4.22x
524288 0.102s 0.064s 0.067s 1.52x 0.024s 0.030s 3.4x
1048576 0.210s 0.127s 0.141s 1.48x 0.043s 0.057s 3.68x
2097152 0.446s 0.254s 0.288s 1.54x 0.079s 0.113s 3.94x
4194304 0.924s 0.503s 0.704s 1.31x 0.146s 0.347s 2.66x
8388608 1.838s 1.007s 1.153s 1.59x 0.282s 0.425s 4.32x

DaCS PCI DaCS PCI + PXCBS
2D FFT size x86 Comm. Walltime Speedup Comm. Walltime Speedup

256x256 0.009s 0.009s 0.009s 1.0x 0.006s 0.006s 1.5x
512x512 0.073s 0.033s 0.047s 1.55x 0.015s 0.029s 2.51x
1024x1024 0.345s 0.128s 0.169s 2.04x 0.044s 0.086s 4.01x
2048x2048 1.674s 0.512s 0.701s 2.38x 0.156s 0.346s 4.83x

DaCS PCI DaCS PCI + PXCBS
3D FFT size x86 Comm. Walltime Speedup Comm. Walltime Speedup

64x64x46 0.021s 0.033s 0.036s 0.58x 0.016s 0.018s 1.16x
128x128x28 0.583s 0.261s 0.279s 2.08x 0.088s 0.105s 5.55x
256x256x256 6.062s 2.083s 2.246s 2.69x 0.643s 0.812s 7.46x

We have also described how the proposed solution can be directly and ef-
ficiently used for accelerated FFT computations based on the FFTW library.
One of the key results here is the one reported for 3D Fast Fourier transforms.
For large transform sizes like 256x256x256 we’ve achieved approximately 7.4x
speedup over reference x86 implementation. The same hybrid FFT computa-
tions based on the DaCS library built-in byte swapping mechanism achieved only
2.6x speedup. The presented FFT performance result based on optimized byte
swapping mechanism can have a significant impact on the performance of many
algorithms that involve Fourier transforms: convolution and correlation compu-
tations, spectral windowing, power spectra computations, periodicity searching
algorithms, linear prediction, wavelet transforms and many more.

All the results presented in this work can be easily reproduced with the use of
freely available tools and benchmarks available at: http://www.icm.edu.pl/~
sheed/dacs_performance.

Acknowledgments. We would like to thank Peter Hofstee (IBM Systems and
Technology Group, Austin), Minassie Tewoldebrhan (IBM Rochester) and Ma-
ciej Remiszewski (IBM Deep Computing, Central and Eastern Europe) for mak-
ing IBM triblades available remotely for tests. This research was carried out with
the support of the "HPC Infrastructure for Grand Challenges of Science and Engi-
neering" Project, co-financed by the European Regional Development Fund under
the Innovative Economy Operational Programme. Part of the calculations were
performed in the Interdisciplinary Centre for Mathematical and Computational
Modelling (ICM) at University of Warsaw under the computational grant G33-19.

http://www.icm.edu.pl/~sheed/dacs_performance
http://www.icm.edu.pl/~sheed/dacs_performance

Increasing the Efficiency of the DaCS Programming Model 719

References

1. Data Communication and Synchronization for Cell BE Programmer’s Guide and
API Reference IBM SC33-8408-01, Publication Number: v3.1

2. FFTW on Cell, http://www.fftw.org/cell
3. FFTW on the Cell Processor benchmarks, http://www.fftw.org/cell/cellblade/
4. JCCC FFTW benchmark suite, http://cell.icm.edu.pl/index.php/FFTW_on_Cell
5. Nautilus supercomputer site, http://cell.icm.edu.pl/index.php/Nautilus
6. Roadrunner supercomputer site, http://www.lanl.gov/roadrunner/
7. OpenMP Application Program Interface, Version 3.0 (2008)
8. Bowers, K.J., Albright, B.J., Yin, L., Bergen, B., Kwan, T.J.T.: Ultrahigh per-

formance three-dimensional electromagnetic relativistic kinetic plasma simulation.
Phys. Plasmas 15 (2008)

9. BSC: Cell Superscalar (CellSs) User’s Manual, Version 2.1 (2008)
10. Frigo, M., Johnson, S.G.: The Design and Implementation of FFTW3. Proceedings

of the IEEE 93(2), 216–231 (2005)
11. Gschwind, M., Hofstee, H., Flachs, B., Hopkins, M., Watanabe, Y., Yamazaki, T.:

Synergistic Processing in Cell’s Multicore Architecture. IEEE Micro 26(22), 10–24
(2006)

12. Habib, S., Pope, A., Lukić, Z., Daniel, D., Fasel, P., Desai, N., Heitmann, K., Hsu,
C.H., Ankeny, L., Mark, G., Bhattacharya, S., Ahrens, J.: Hybrid petacomputing
meets cosmology: The Roadrunner Universe project. Journal of Physics: Conference
Series 180(1), 012019 (2009),
http://stacks.iop.org/1742-6596/180/i=1/a=012019

13. International Business Machines Corporation: Programming Tutorial. Technical
document SC33-8410-00. Software Development Kit for Multicore Acceleration
Version 3.1

14. Kahle, J., Day, M., Hofstee, H., Johns, C., Maeurer, T., Shippy, D.: Introduction to
the Cell Multiprocessor. IBM Journal of Research and Development 49(4), 589–604
(2005)

15. Kistler, M., Perrone, M., Petrini, F.: Cell Multiprocessor Communication Network:
Build for Speed. IEEE Micro 26(3), 10–23 (2006)

16. Swaminarayan, S., Kadau, K., Germann, T.C., Fossum, G.C.: 369 Tflop/s molecu-
lar dynamics simulations on the Roadrunner general-purpose heterogeneous super-
computer. In: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing,
SC 2008, pp. 64:1–64:10. IEEE Press, Piscataway (2008),
http://dl.acm.org/citation.cfm?id=1413370.1413436

http://www.fftw.org/cell
http://www.fftw.org/cell/cellblade/
http://cell.icm.edu.pl/index.php/FFTW_on_Cell
http://cell.icm.edu.pl/index.php/Nautilus
http://www.lanl.gov/roadrunner/
http://stacks.iop.org/1742-6596/180/i=1/a=012019
http://dl.acm.org/citation.cfm?id=1413370.1413436

A Software Architecture

for Parallel List Processing on Grids

Apolo H. Hernández1, Graciela Román-Alonso1, Miguel A. Castro-Garćıa1,
Manuel Aguilar-Cornejo1, Santiago Domı́nguez-Domı́nguez2,

and Jorge Buenabad-Chávez2

1 Universidad Autónoma Metropolitana
Departamento de Ing. Eléctrica, México, DF., A.P. 55-534 México

apolo.h.s@gmail.com, {grac,mcas,mac}@xanum.uam.mx
2 Centro de Investigación y de Estudios Avanzados del IPN

Departamento de Computación, México, DF., A.P. 14-740 México
{sdguez,jbuenabad}@cs.cinvestav.mx

Abstract. The Data List Management Library (DLML) processes data
lists in parallel, balancing the workload transparently to programmers.
Programmers only need to organise data into a list, use DLML functions
to insert and get data items, and specify the sequential function(s) to
process each data item according to the application logic. The first design
of DLML was targeted for use at a single cluster.

This paper presents DLML-Grid, a software architecture for DLML to
run in Grid environments composed of multiple distributed clusters. The
architecture is hierarchical and tends to localise communication within
clusters, thus reducing communication overhead. Using OpenVPN, we
implemented a prototype version of DLML-Grid to gather empirical re-
sults on its performance using two clusters and two applications whose
workload is static and dynamically generated. DLML-Grid performs
much better than DLML overall.

Keywords: Cluster Computing, Parallel Computing, Grid Computing,
Load Balancing, OpenVPN.

1 Introduction

Clusters have become the most widely used architecture for high performance
computing for the cost-to-computation ratio they offer. Combined with Grid
software technologies such as Globus [1], clusters can provide in principle limitless
processing power in a flexible yet controlled manner. To some extent computing
resources are not longer a problem; but how to use them efficiently is. Developing
parallel applications for Grid environments must address both intra- and inter-
cluster parallelism. In addition, good performance and efficient use of resources
also depend on applications being adaptive, e.g., to load imbalance and hardware
failure. To cope with this complexity, software tools and middleware have been
proposed whose aim is to simplify parallel programming, such as Skeletons [6,9]
and Mapreduce [4].

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 720–729, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Software Architecture for Parallel List Processing on Grids 721

The Data List Management Library (DLML) is a middleware to process data
lists in parallel. Users only need to organise their data into items to insert and
get from a list using DLML functions. DLML applications run under the SPMD
(Single Program Multiple Data) model: all processors run the same program but
operate on distinct data lists. When a list becomes empty, it is refilled by DLML
through fetching data items from another list transparently to the programmer.
Only when DLML get does not return a data item the processing in all nodes
is over. Thus DLML functions hide synchronisation communication from users,
while automatic list refilling tends to balance the workload according to the
processing capacity of each processor, which is essential for good performance.
The first version of DLML [8] was targeted for use at a single cluster.

This paper presents DLML-Grid, a software architecture for DLML designed
to make better use of resources in Grid environments. The architecture is hier-
archical and its purpose is to localise communication within clusters as much as
possible, and thus reduce communication overhead, i.e.: intra-cluster load balanc-
ing takes precedence over inter-cluster load balancing. Only when the workload
in a cluster is exhausted, inter-cluster load balancing takes place. Using Open-
VPN [5], we implemented a prototype version of DLML-Grid to gather empirical
results on its performance using two clusters and two applications whose work-
load is static and dynamically generated. The clusters used are located at the
north and the east of Mexico City. DLML-Grid performs much better than the
original DLML. The latter could see and access both clusters through VPN as a
single cluster, but not being aware of (i.e., designed to handle) their long-distance
distributed location would not give preference to intra-cluster load balancing.

Section 2 provides background material to DLML: its architecture and load
balancing algorithm. Sections 3 and 4 present the architecture of DLML-Grid
and its load balancing algorithm. Section 5 presents our experimental evaluation
and results. Section 6 presents related work and Section 7 our conclusion.

2 DLML

DLML is written in the C language and uses MPI library functions to implement
the protocol to automatically fetch remote data, various reduce operations, and
the synchronisation needed at the start and end of computation.

DLML Architecture

The DLML architecture consists of two processes running on each processor/core:
an Application process and a DLML process, as shown in Figure 1. The former
runs the application code while the latter is in charge of: i) making data requests
to remote nodes when the local list becomes empty, and ii) serving data requests
from remote nodes whose list has become empty.

In making a data request to remote nodes, a DLML process can follow one of
the following policies which will load balance, re-distribute data, in the system:

722 A.H. Hernández et al.

Local List

Application

DLML
process

process

Sy
nc

hr
on

iz
at

io
n

Information exchange
Data transfer
Gathering of partial results

.
Local List

Application

DLML
process

process

Sy
nc

hr
on

iz
at

io
n

Local List

Application

DLML
process

process
Sy

nc
hr

on
iz

at
io

n

Core i Core p−1Core 0

Fig. 1. DLML architecture

Global Auction - when the local list of a processor/core M becomes empty,
M sends a message to all other system cores requesting their load level. All the
cores respond to M sending back a message with the size of their local list. Then
M chooses the core with the largest list, say R, and sends R a data request
message. Finally, R sends M half of its list.

Torus-Based Partial Auction - as above, but in each auction only partic-
ipate neighbour cores as specified by a logical Torus topology in order to reduce
communication overhead and thus improve DLML scalability [8].

3 DLML-Grid Architecture

Our design of the DLML-Grid architecture was mostly based on the hierarchical
model described in [10]; the main differences are in the load balancing strategy
and are discussed in Section 6 Related Work. In that model, a Grid is a sys-
tem of interconnected clusters managed through three different kinds of cores
(processes), see Figure 2. The levels comprising the hierarchical architecture are
described below.
Level 0: A Grid Manager (GM) core with the following responsibilities:

– To collect load information on each cluster.
– To make load balancing decisions at inter-cluster level: what cluster should

transfer load to an underloaded cluster.
– To interact with Cluster Managers (CMs) of level 1 to orchestrate data

transfer between them.
– To collect final partial results from CMs.

Level 1: Cluster Managers, one per cluster, whose responsibilities are:

– To gather load information from worker cores (WC) of level 2.
– To communicate with the GM to send the amount of total load in their

clusters, to ask for more data, or to transfer required load.

A Software Architecture for Parallel List Processing on Grids 723

Level 1

Level 2

Level 0

Cluster Manager

Grid Manager

Worker

Cluster

INTRA−Cluster load balancing:
DLML with global or partial bidding

INTER−Cluster load balancing:
Bidding with global information

Fig. 2. DLML load balancing model for a Grid environment

– To communicate with other CM to send or receive load, following a decision
made by the GM.

– To communicate with worker cores WC in level 2 to collect and send load
in case of a transfer.

– To collect the final partial results from WCs and sent them to the GM.

Level 2: Worker Cores (WC) - Each WC runs an Application process and a
DLML process and is also in charge of doing the following tasks:

– To send their load information to its CM when is requested.
– To run the application code.
– To participate in intra-cluster load balancing actions. In contrast to the

model in [10], where load balancing in each cluster is managed by the CM
in a centralized way, in our design each WCs can start load balancing actions
with sibling WCs.

– To send their partial results to the CM at the end of execution.

Thus intra-cluster load balance precedes inter-cluster (or intra-grid) load bal-
ance, which is only activated when there is no work left within a cluster. Com-
munication thus tends to be localised within each cluster.

Figure 3 shows the architecture DLML-Grid for a system comprising four
clusters. Each WC communicates only with its associated CM and sibling WCs
in the same cluster. CMs maintain communication with each other and with
the GM through Internet. Communication between CMs is restricted to load
transfers as requested by the GM.

724 A.H. Hernández et al.

Inter−cluster
Load Balancing

Core 0

Core 1

GM

Cluster A − zoom in

List with load
information of
the clusters

List with load
information of
the cores

Core 3 Core 4

Application ApplicationApplication

DLML DLML DLML

Core 2

CM

Cluster A

Cluster C Cluster D

CM

CMCM

GM

Core CoreCore Core Core Core

Core Core Core Core Core

CM

Cluster B

Core

Fig. 3. DLML-Grid architecture with cluster A zoomed in

4 DLML-Grid Load Balancing Algorithm

In DLML-Grid, load balancing between clusters follows the global auction pol-
icy described above, i.e., considering the load information in all clusters. It is
initiated by a receptor cluster and consists of 4 stages: local load search, external
load search, selection of the sender cluster and load redistribution.

Local Load Search. When a cluster has no more data to process, one WC
sends a request to its CM. Which WC can make this request depends on the
algorithm used for intra-cluster load balancing. If the global auction is used, any
WC can make the request. If the Torus-based partial auction is used, only the
first WC can make the request [8]. When a CM receives the request, it in turn
sends a data request to the GM, who initiates an external load search.

External Load Search. When the GM receives a data request from an un-
derloaded cluster, it requests load information from all CM s (except the CM
that requested data). Each CM then gathers load information asking the list
size from each WC under its control; all sizes are added and sent to the GM.

Sender Cluster Selection. GM selects the cluster with the largest amount of
data as the sender cluster, and checks if the load information reported by the
sender cluster comes from at least 50% of the cores. If not, the sender cluster is
likely to be close to finish processing its workload, and therefore, a distribution
to the receiver cluster would increase the processing time rather than reduce it.

Load Redistribution. GM requests the CM in the sender cluster a data trans-
fer to the receiver cluster. The CM in the sender cluster requests workload from
its WCs, each of which sends back a percentage of their local list. CM gathers

A Software Architecture for Parallel List Processing on Grids 725

all the items into a temporary list and sends it to the CM in the receiver cluster
through the Internet. Finally, the CM in the receiver cluster receives the list and
distributes it among its WCs.

If the receiver and sender have the same processing power, the sender sends
50% of its load. If the receiver has less or more processing power than the sender,
the sender sends less or more than 50% of its load, respectively. How much less
or more of its load a sender sends is a fraction computed based on the processing
power of both sender and receiver, as follows. Suppose cluster A has 32 2.4GHz
cores and cluster B has 120 2.6 GHz cores. The processing power of A is 76.8
GHz (32× 2.4), and of B 312 GHz (120× 2.6); the processing power of A and B
combined is 388.8 GHz (76.8 + 312.0). Thus the fraction of its load that cluster
A sends to B is 0.802 (312/388.8), while the fraction of its load that cluster B
sends to A is 0.197 (76.8/388.8).

5 Experimental Evaluation

5.1 Platform Setting and Applications

To compare the performance of the original DLML and DLML-Grid we need
to use at least two distributed clusters so that the hierarchical management of
DLML-Grid is exerted. Using more than one cluster can be made through a grid
middleware such as Globus [1]. However, Globus is rather complex out of the
many functions it supports (resource discovery, localisation and management,
among others). As we only need to be able to use more than one cluster, we
interconnected two clusters, C1 and C2, through VPN, which makes them ap-
pear to software as a single cluster. C1 has 6 nodes, each node with an Intel
Core2 Quad 2.4GHz, 4G RAM, located at the UAM-I (East of Mexico City);
C2 has 30 nodes, each node with an Intel Core i7 2.67GHz, 4G RAM, located
at CINVESTAV (North of Mexico City). C1 nodes are interconnected through
Fast Ethernet, while C2 nodes through Gigabit Ethernet; the (inter-cluster) link
between C1 and C2 is about 5 MB/seg.

We used 140 cores in both clusters combined, running the non-attacking N-
Queens problem [2] and a Matrix Multiplication (MM) algorithm with 4 DLML
configurations: 1) Global-VPN, 2) Torus-VPN, 3) Global-Grid and 4) Torus-
Grid. Configurations 1 and 2 run the original DLML with global and partial
auction, respectively. Configurations 3 and 4 run the new DLML-Grid architec-
ture described in Section 3, using both clusters through VPN too. All versions
were tested with regard to response time and data distribution. N-Queens was
run with N = 16, 17 and 18 (average), and Matrix Multiplication with size
400x400 and 600x600 (average).

5.2 Response Time and Load Distribution under N-Queens

Figure 4 (top) shows that Global-Grid and Torus-Grid have better response time
than corresponding VPN versions. This is because the DLML-Grid architecture
gives preference to local communication over Internet communication. Table 1

726 A.H. Hernández et al.

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 32 64 84 116 140

T
im

e
(S

ec
)

Cores

Average processing time of N-Queens with N=16 and N=17

Global-VPN
Global-Grid
Torus-VPN
Torus-Grid

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

P
ro

ce
ss

ed
 d

at
a

Core identifier

Load distribution in the N-Queens with N=17

Global-VPN
Global-Grid
Torus-VPN
Torus-Grid

Fig. 4. N-Queen: response time (top) and load distribution (bottom)

shows the number of Requests and Load Transfers (# list items) made by each
configuration over the Internet. The auction type used also has a saying on
performance. Global-Grid improved 50.35% over Global-VPN in the best case,
while Torus-Grid only 5.58% over Torus-VPN. This is because Torus connexions
are limited to 4 cores, thereby reducing communication over the Internet. Figure
4 (bottom) shows the load distribution under each configuration. The best load
distribution corresponds to Torus-Grid, as it has the lowest standard deviation
of items processed in each of the 140 cores, see Table 1.

5.3 Response Time and Load Distribution under MM

Figure 5 shows response time (top) and load distribution (bottom) for MM under
each configuration. The response times of all configurations are very similar.
This is because MM is a static application (all data to be processed is known in
advance and is distributed equally among processors at start of computation),

A Software Architecture for Parallel List Processing on Grids 727

Table 1. N-Queens: number of Internet messages and standard deviation of items
processed by each node under each configuration

DLML version # Requests # Load Transfer Standard Deviation

Global-VPN 2,508,684 22,476 27,467,836.85

Global-Grid 17 1,767 17,386,869.94

Torus-VPN 20,319 14,467 5,698,175.98

Torus-Grid 28 2,352 3,593,140.42

and there is no imbalance. This experiment shows that the overhead of DLML-
Grid hierarchical organisation is low.

Load distribution under MM (bottom in figure) is different to that under N-
Queens. Global-Grid distributes better the load, while Torus-VPN distributes it
the worst, but the spread between both is small (standard deviation in Table
2) and the effect on performance is not significant because it corresponds to
the initial load distribution, and there is no imbalance. N-queens does incur
imbalance out of dynamically generating data. Table 2 shows the number of
messages over Internet; the number of requests is better for the Grid versions. In
MM, load transfers are more expensive than in N-Queens, because in MM each
list item is of size 2424 bytes, while in N-Queens is 96 bytes.

Table 2. Matrix Multiplication: number of Internet messages and standard deviation
of items processed by each node under each configuration

DLML version # Requests # Load Transfers Standard Deviation

Global-VPN 86,708 325,426 533.54

Global-Grid 6 296,552 512.99

Torus-VPN 8,196 326,681 540.65

Torus-Grid 9 297,520 532.96

6 Related Work

The architecture of DLML-Grid is based on the hierarchical model for load bal-
ancing in grid environments proposed in [10], but our load balancing algorithm
is different to that proposed therein. Our algorithm relies on the underlying list
processing model which triggers load balancing actions when a list (or set of
lists in a cluster) becomes empty. The algorithm in [10] is more general in that it
monitors the workload periodically in order to decide whether or not to balance
the workload. The evaluation reported in [10] is based on simulation and thus
our work complements it with similar results in a real platform.

Globus [1] is the de facto standard middleware to deploy Grid infrastructures.
It offers mechanisms for resource discovery, localisation and management, and
secure communication among others. A fully-fledged DLML-Grid would map its
architecture onto Globus grid services; we are working on this.

728 A.H. Hernández et al.

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 32 64 84 116 140

T
im

e
(s

ec
)

Cores

Average processing time of Matrix Multiplication with row=col=400 and row=col=600

Global-VPN
Global-Grid
Torus-VPN
Torus-Grid

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

P
ro

ce
ss

ed
 d

at
a

Core identifier

Load distribution in the Matrix Multiplication with row=col=600

Global-VPN
Global-Grid
Torus-VPN
Torus-Grid

Fig. 5. MM: response time (top) and load distribution (bottom)

Skandium [6] is a library of skeletons (widely used parallel operations/patterns)
written in Java that includes: farm, pipe, for, fork, divide and conquer, among
others. Similar to DLML-Grid, Skandium distributes tasks, but does so only
among cores within a single node (shared memory system).

Proactive [3] is a middleware written in Java that facilitates developing and
running applications on Grids and P2P systems. It includes load balancing and
fault tolerance mechanisms, and file transfer. Similar to DLML-Grid, this mid-
dleware makes load balancing based on partial information, but the load balance
policy is initiated by the sender.

Probability Work-Stealing (PWS) and Hierarchical Work-Stealing (HWS) [7]
have some similarity to the load balancing algorithm of DLML-Grid. PWS gives
nearer processors more probability of being stolen work than more distant ones,
while HWS manages group leaders and slaves and load balancing at two levels:
(leader ⇒ slaves) and (leader ⇔ leader). Based on a threshold (chosen by the
user), tasks are classified into light and heavy (in processing). The DLML-Grid

A Software Architecture for Parallel List Processing on Grids 729

hierarchy gives preference to intra-cluster load balancing which may be consid-
ered an inherent higher probability, and also as being of level (slave ⇔ slave).
However, DLML-Grid makes no distinction between light and heavy tasks. In
HWS, a leader chooses at random another leader to steal work from it, while
DLML-Grid follows an auction; we are working on trying the random approach
which seems less costly. HWS has been tested on clusters (LAN) only.

7 Conclusions and Future Work

DLML-Grid is a hierarchical design of DLML that better uses resources on clus-
ters of clusters typical of grid environments. The hierarchy tends to keep com-
munication localised which is essential for good performance. Under both types
of auctions used DLML-Grid performs much better than the counterpart con-
figurations. The experiments with our static application show that the overhead
of the hierarchical organisation is low. We are investigating further improve-
ments to reduce communication overhead, such as overlapping communication
and computation by making data requests to remote nodes before a local list
becomes empty, and adding load monitoring to promote load balancing from
overloaded to underloaded nodes by CMs, or between clusters by the GM.

References

1. Globus toolkit (February 2010), http://www.globus.org/
2. Bruen, A., Dixon, R.: The n-queens problem. Discrete Mathematics 12, 393–395

(1975)
3. Caromel, D., Delbé, C., di Costanzo, A., Leyton, M.: ProActive: an integrated

platform for programming and running applications on grids and P2P systems.
Computational Methods in Science and Technology 12(1), 69–77 (2006)

4. Dean, J., Ghemawat, S.: Mapreduce: Simplifed data processing on large clusters.
In: Operating Systems Design and Implementation, pp. 137–149 (2004)

5. Feilner, M., Graf, N.: Beginning OpenVPN 2.0.9. Build and Integrate Virtual Pri-
vate Networks Using OpenVPN. Packt Publishing (December 2009)

6. Leyton, M., Piquer, J.M.: Skandium: Multi-core programming with algorithmic
skeletons. In: PDP, pp. 289–296 (2010)

7. Quintin, J.-N., Wagner, F.: Hierarchical Work-Stealing. In: D’Ambra, P., Guarra-
cino, M., Talia, D. (eds.) Euro-Par 2010. LNCS, vol. 6271, pp. 217–229. Springer,
Heidelberg (2010)

8. Santana-Santana, J., Castro-Garćıa, M.A., Aguilar-Cornejo, M., Roman-Alonso,
G.: Load balancing algorithms with partial information management for the dlml
library. In: 2010 18th Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP), pp. 64–68 (2010)

9. Tanno, H., Iwasaki, H.: Parallel Skeletons for Variable-Length Lists in SkeTo Skele-
ton Library. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS,
vol. 5704, pp. 666–677. Springer, Heidelberg (2009)

10. Yagoubi, B., Medebber, M.: A load balancing model for grid environment. In:
22nd International Symposium on Computer and Information Sciences, ISCIS 2007,
pp. 268–274. IEEE (2007)

http://www.globus.org/

Reducing the Time to Tune Parallel Dense Linear
Algebra Routines with Partial Execution

and Performance Modeling�

Piotr Luszczek1 and Jack Dongarra1,2,3

1 University of Tennessee, Knoxville, TN, USA
{dongarra,luszczek}@eecs.utk.edu
2 Oak Ridge National Laboratory, USA

3 University of Manchester, United Kingdom

Abstract. We present a modeling framework to accurately predict time to run
dense linear algebra calculation. We report the framework’s accuracy in a num-
ber of varied computational environments such as shared memory multicore sys-
tems, clusters, and large supercomputing installations with tens of thousands of
cores. We also test the accuracy for various algorithms, each of which having
a different scaling properties and tolerance to low-bandwidth/high-latency inter-
connects. The predictive accuracy is very good and on the order of measurement
accuracy which makes the method suitable for both dedicated and non-dedicated
environments. We also present a practical application of our model to reduce the
time required to tune and optimize large parallel runs whose time is dominated
by linear algebra computations. We show practical examples of how to apply the
methodology to avoid common pitfalls and reduce the influence of measurement
errors and the inherent performance variability.

Keywords: Linear systems, parallel algorithms, modeling techniques.

1 Introduction

Dense systems of linear equations are found in numerous applications, including: air-
plane wing design; flow around ships and other off-shore constructions; diffusion of
solid bodies in a liquid; noise reduction; and diffusion of light through small particles.
Of particular interest is the solution of the so-called radar cross-section problem – the
principal equation is the Helmholtz equation. To solve this equation, researchers use
the method of moments [19,29]. In the case of fluid flowthe boundary integral solution
is known as the panel methods [20,21].A typical approach to solving such systems is
to use LU factorization. Another major source of large dense linear systems is prob-
lems involving the solution of boundary integral equations [14]. A recent example of
the use of dense linear algebra at a very large scale is physics plasma calculation in
double-precision complex arithmetic based on Helmholtz equations [2].

� This research was supported by DARPA through ORNL subcontract 4000075916 as well as
NSF through award number 1038814. We would like to also thank Patrick Worley from ORNL
for facilitating the large scale runs on Jaguar’s Cray XT4 partition.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 730–739, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Reducing the Time to Tune Parallel Dense Linear Algebra Routines 731

Finally, virtually all large supercomputer sites do run the High Performance LIN-
PACK (HPL) benchmark [13] which is primarily based on dense linear algebra. The
reduction of time to run the benchmark is of paramount importance. The first machine
on the 34th TOP500 list took over 20 hours to complete the HPL run [17]. In 2011,
this time goes up to 30 hours [18]. And this is only a single run not counting the time
spent in optimizing the parameters for the run. In this paper we address the problem
of increasing execution time with performance modeling. This is an extension of our
previous work [10] with more comprehensive data sets.

2 Related Work

Execution model for HPL based on Self-Similarity Theory and the Π -Theorem models
floating-point performance on a p by q process grid [24]: rfp = γ pα qβ . The values for
α , β , and γ need to be determined experimentally. Because of the nonlinear relation
between these coefficients, we need to use a nonlinear optimization to fit the model to
the experimental data.

A more complex models for HPL and other parallel linear algebra routines resort
to modeling each individual period of time spent in every non-trivial computational or
communication routine involved in the factorization and back-solve [15,9]. They tend
to give accurate results provided that they are populated with accurate software and
hardware parameters such as computational rate of execution as well as bandwidth and
latency of both memory and the interconnect network.

An attempt to model HPL using memory traces [30] resulted in scoring HPL on par
if not worse with an FFT implementation in terms of memory locality. This was due
to the use of reference BLAS implementation and lack of accounting for register reuse.
Our model captures the efficiency of register reuse.

Partial execution was successfully used to perform cross-platform performance pre-
dictions of scientific simulations [33]. The study relied on the iterative nature of the sim-
ulated codes. Dense linear algebra computations, as opposed to iterative methods [11],
are not iterative in nature and commonly exhibit non-linear variation in performance.

Performance prediction in the context of grid environments focuses work load char-
acterization and its use in effective scheduling and meta-scheduling algorithms[28]. The
techniques used in such characterization tend to have a higher error rates (“between 29
and 59 percent of mean application run times”).

3 Performance Prediction by Correlation

One of the building blocks of dense linear algebra solvers and, by far, the main source if
their high performance is a dense matrix-matrix multiply routine – a Level 3 BLAS [8,7]
called DGEMM. Naturally then, the sequential version of the routine may be used to
estimate the time to run as well as the performance of a parallel dense solve. By utiliz-
ing the information from the publicly available1 results of the HPC Challenge bench-
mark [23]: during a single execution both matrix-matrix multiplication and HPL are

1 For more details please visit http://icl.cs.utk.edu/hpcc/

http://icl.cs.utk.edu/hpcc/

732 P. Luszczek and J. Dongarra

benchmarked which should provided a consistent experimental setup. DGEMM and
HPL are indeed correlated based on over 250 entries in the HPCC database. In fact, the
Pearson product-moment correlation coefficient [27] exceeds 99%. This is a somewhat
deceptive achievement though. If we use DGEMM as a predictor for HPL then the me-
dian relative prediction error will be just over 15% and the smallest one will be 1.4%.
Even if we generously dismiss all the results with greater-than-median error then we
are still left with 1% to 15% variability in prediction accuracy.

4 Execution Model of HPL

Our goal is to come up with a comprehensive model for HPL without resorting to count-
ing complexities of each and every routine involved in the factorization and back-solve
as was done by Cuenca et al. [15] and Emmanuel Jeannot and Julien Langou [9]. The
model for the HPL’s floating-point execution rate is influenced by the operation count
and the time to perform the solve. The operation count is fixed regardless of the under-
lying algorithm to facilitate performance comparisons:

opcount = 2/3 n3 + 3/2 n2 (1)

The time to do the solve has three components:

t = Fn3 + Bn2 + Ln +C (2)

where F represents the inverse of the actual floating-point rate of the update phase of
the LU factorization commonly refered to as the Schur’s complement [16]. Values of F
differ with the algorithm of choice: left-looking, right-looking, top-looking, Crout, re-
cursive, etc. [12]. The B term corresponds to O(n2) floating-point operations (primarily
panel factorizations) and various bandwidth levels such as between the cache and the
main memory as well as the interconnect bandwidth. As B embodies execution rate of
second-order terms, its value changes with the peak performance and bandwidth imbal-
ance: the execution rate included in B may be an order of magnitude lower than the one
represented by F . L mainly corresponds to both the memory hierarchy as well as the in-
terconnect latency. Finally, C represents constant overheads such as populating caches
with initial values and initializing network’s communication layer. The floating-point
rate is obtained as a ratio of operation count and the time to solution: rfp = opcount

t .
To an extent, the above model takes into account non-linear dependence of the run-

ning time on some algorithmic constants such as blocking factor NB. These constants
may be hidden inside F , B, L, and C as long as they don’t change with n. The algorith-
mic parameters2 that may be hidden in this manner include: blocking factor NB, logical
process grid order and so on. The reason why these parameters may be accounted for
by properly selecting F , B, L, and C, is that they can be fixed and don’t change with
number of cores or the problem size N.

From the data analysis standpoint, performance is the inverse of time multiplied by
the matrix size cubed: this translates to amplification of the experimental and measure-
ment errors by a large quantity. Naturally then, time to run HPL is less sensitive to

2 For more details see http://www.netlib.org/benchmark/hpl/

http://www.netlib.org/benchmark/hpl/

Reducing the Time to Tune Parallel Dense Linear Algebra Routines 733

the errors and outlying data points. The time is then chosen for modeling. By making
this choice, we alleviate the influence of outliers on the data and thus we avoid the ne-
cessity of using non-linear statistical methods that involve medians. The model fitting
may be performed with the standard least-squares formulation rather than its non-linear
counterparts that are less developed and suffer from the inaccuracies of non-smooth
optimization [3]. As described above, the time to run HPL can be written as:

t = f3n3 + f2n2 + f1n + f0 (3)

Given a k number of experiments with varying problem sizes n1,n2,n3, . . . ,nk we ob-
tain the actual running times t1,t2, t3, . . . ,tk. Using the results of these experiments, we
formulate the problem as a linear least-squares problem:⎡⎢⎢⎣

n3
1 n2

1 n1 1
n3

2 n2
2 n2 1

. . .
n3

k n2
k nk 1

⎤⎥⎥⎦
⎡⎢⎢⎣

f3

f2

f1

f0

⎤⎥⎥⎦=

⎡⎢⎢⎣
t1
t2
. . .
tk

⎤⎥⎥⎦ (4)

or more compactly:
A f = t (5)

with A ∈ Rk×4, f ∈ R4, and t ∈ Rk. The absolute modeling error can then be defined as

Merr = ‖A f − t‖∞ (6)

with the assumption that the entries of t are relatively accurate. Such is the case when
we use the median of multiple time measurements.

The system matrix A from equation (5) is a Vandermode matrix and tends to be
badly conditioned [16]. Matrices from typical experiments can have a norm-2 condition
number as high as 1011 which means that the model fitting needs to be performed in
double-precision arithmetic even though the data itself has only a handful of significant
digits worth of accuracy. Equilibration [1] may reduce the condition number by nearly
ten orders of magnitude but the resulting modeling error gets reduced only slightly. A
similar reduction of the modeling error may be achieved with a simple row scaling that
results from dividing each row of the linear system (4) by the respective problem size:

a3n2
i + a2ni + a1 + a0/ni = ti/ni (7)

The reduction of error may be as high 20 percentage points.
Figure 1(a) shows how the model performs on a non-dedicated cluster3 comprised

of commodity hardware components. The modeling error is 14% when all the data
points are accounted for. The most problematic are measurements for small n values. If
a handful of these initial data points is removed then the modeling error drops to just
over 2% which is within the noise levels of a non-dedicated system. Thus, the method
is sensitive to the measuring error but (in numerical sense) is stable because it delivers
the answer whose quality is close to the quality of the input data – a property that is an
established standard for properly implemenented numerical libraries [31,32].

3 Dual-core 1.6 GHz Intel Core 2 with Gigabit Ethernet interconnect.

734 P. Luszczek and J. Dongarra

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
N

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

c
u
b
ic

_
ro

o
t(

T
im

e
)

Intel Xeon and GigE with 2x9 process grid

Measured time

Predicted time

Performance
0

5

10

15

20

25

30

P
e
rf

o
rm

a
n
c
e
 [

G
fl
o
p
/s

]

(a) Time and performance

0 2000 4000 6000 8000 10000 12000 14000 16000
Problem size

0

2

4

6

8

10

12

14

16

R
e
la

ti
v
e
 m

o
d
e
li
n
g
 e

rr
o
r

[%
]

Relative modeling error

Performance

0

5

10

15

20

25

30

P
e
rf

o
rm

a
n
c
e
 [

G
fl
o
p
/s

]

(b) Error and performance

Fig. 1. Modeled versus measured time to run HPL on a common cluster. The cubic root of time
is plotted to increase graph’s clarity. Performance numbers are shown for reference only.

Figure 1(b) shows how the error is reduced (the farther to the right the shorter the
bars) as the left-most points are eliminated. The explanation is that the leftmost data
points do not represent the asymptotic performance rate of HPL: they cannot be mod-
eled with Equation (3) because the attained performance varies significantly with the
problem size (coefficients ai are no longer constant – instead they are a function of n).

5 Modeling ScaLAPACK: A Generic Linear Algebra Library

As mentioned earlier, our modeling methodology is applicable to more than just HPL.
For example, Table 1 shows the modeling errors achieved on a dedicated cluster4 run-
ning LU factorization available in ScaLAPACK [4,6]. The table indicates very high
accuracy (mostly around 1% and not exceeding 3%) provided that the measurements
with different virtual process grids are not modeled together but rather treated sepa-
rately as they exhibit different scalability properties [26,5]. Similarily, the size of the
matrix blocking factor influences the tradeoff between the local performance and the
ability to tolerate low-bandwidth/high-latency at the interconnect level [25].

Table 1. Various logical process grids and the corresponding modeling error for LU factorization
as implemented in ScaLAPACK

Virtual process grid Modeling error
rows columns [%]

1 30 0.7
2 15 1.0
3 10 0.8
5 6 2.2

Virtual process grid Modeling error
rows columns [%]

6 10 1.6
1 60 0.5
3 20 0.7
2 30 0.5
4 15 2.2
5 12 2.7

4 Intel 2.4 GHz Pentium 4 cluster with Gigabit Ethernet interconnect.

Reducing the Time to Tune Parallel Dense Linear Algebra Routines 735

1x1 1x2 2x2 2x4 4x4 4x8 8x8 8x16 16x16 16x24 16x26
Virtual process grid

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

R
e
la

ti
v
e
 m

o
d
e
ll
in

g
 e

rr
o
r

[%
]

(a) Overall relative modeling error

1x1 1x2 2x2 2x4 4x4 4x8 8x8 8x16 16x16 16x24 16x26
2

1

0

1

2

3

4

M
o
d
e
ll
in

g
 e

rr
o
r

[%
]

1x1 1x2 2x2 2x4 4x4 4x8 8x8 8x16 16x16 16x24 16x26
4
3
2
1
0
1
2
3
4
5

M
o
d
e
ll
in

g
 e

rr
o
r

[%
]

1x1 1x2 2x2 2x4 4x4 4x8 8x8 8x16 16x16 16x24 16x26
Virtual process grid

8
7
6
5
4
3
2
1
0
1

M
o
d
e
ll
in

g
 e

rr
o
r

[%
]

Third largest matrix size

Second largest matrix size

Largest matrix size

(b) Relative prediction error

Fig. 2. Relative modeling and prediction error. On the right figure: the largest matrix size (top),
the largest and the second largest matrix size (middle), as well as the first, second, and third
largest matrix size (bottom) on a single-core dual-processor Intel Xeon 3.2 GHz cluster with 416
processors connected with InfiBand interconnect.

For ScaLAPACK’s main three one-sided factorizations on a shared-memory multi-
core machine5, the error is larger (around 15%) then in previous dedicated runs. This
experiment shows how our modeling framework performs in an environment with noise
in the collected data. In this case, the noise comes from a stock Linux kernel installation
without necessary optimizations for large shared memory installation. The standard de-
viation relative to the median for 16 time measurements for a relatively small problem
size (n = 2000, median time under half a second) is around 15%. As shown previously,
the modeling error is on the order of the standard deviation of time measurement which
indicates to us that the method is as accurate as the quality of its input data.

6 Quality of Prediction for Extrapolation

Arguably, the most useful aspect of modeling is extrapolation of acquired data. High
quality models are able to provide information about runs with larger data sets based on
the results from runs with the smaller ones. To evaluate our approach we chose a pub-
licly availble data set of the HPC Challenge (HPCC) benchmark results6. Figure 2(a)
shows a relative modeling error for all the available results sorted by the virtual process
grids from 1-by-1 to 16-by-26. As before, the model is accurate and the relative error
stays around 1% and often drops to a fraction of a percent.

A more interesting application of our model is to compute the time to run without
actually running the code. Figure 2(b) illustrates this kind of experiment using the same
data as was modeled in Figure 2(a). There are eleven process grid in the modeled data

5 The machine has 8 NUMA nodes with an AMD Instanbul 2.8 GHz 6-core processor for each
node and a stock Linux kernel installation.

6 The data set comes from runs performed in 2007 and more information on the used hardware is
available at http://icl.cs.utk.edu/hpcc/custom/index.html?lid=111&slid=218

http://icl.cs.utk.edu/hpcc/custom/index.html?lid=111&slid=218

736 P. Luszczek and J. Dongarra

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

A
c
h
ie

v
e
d
 p

e
rf

o
rm

a
n
c
e
 R

m
a
x
 [
G

fl
o
p
/s

]

T
o
ta

l
ru

n
n
in

g
 t
im

e
 [
s
e
c
o
n
d
s
]

Size of factored portion of matrix

Reduction of running time and corresponding reduction in performance (1024 cores, 32 by 32)

Performance

Time

(a) Size: 0.2×106; 1024 cores

 50000

 52000

 54000

 56000

 58000

 60000

 62000

 64000

 66000

 400000 500000 600000 700000 800000 900000 1e+06
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

A
c
h
ie

v
e
d
 p

e
rf

o
rm

a
n
c
e
 R

m
a
x
 [
G

fl
o
p
/s

]

T
o
ta

l
ru

n
n
in

g
 t
im

e
 [
s
e
c
o
n
d
s
]

Size of factored portion of matrix

Reduction of running time and corresponding reduction in performance (10000 cores, 100 by 100)

Performance

Time

(b) Size: 1×106; 10,000 cores

 165000

 170000

 175000

 180000

 185000

 190000

 195000

 1e+06 1.1e+06 1.2e+06 1.3e+06 1.4e+06 1.5e+06 1.6e+06 1.7e+06
 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

A
c
h
ie

v
e
d
 p

e
rf

o
rm

a
n
c
e
 R

m
a
x
 [
G

fl
o
p
/s

]

T
o
ta

l
ru

n
n
in

g
 t
im

e
 [
s
e
c
o
n
d
s
]

Size of factored portion of matrix

Reduction of running time and corresponding reduction in performance (30100 cores, 172 by 175)

Performance

Time

(c) Size: 1.7×106; 30,100 cores

Fig. 3. Performance of end section factorization with various matrix sizes on Cray XT 4 with
various core counts

set and each grid was used seven times to execute the HPCC benchmark with increasing
problem sizes. However, for any given process grid, the first problem size corresponded
to the same percentage of the memory or (in other words) the same amount of data per
process was used. Then, the second process size corresponded to twice as large amount
of data per process and so on. If we look at this data set from the perspective of our
model, we may treat first six data points as measurements and use them for obtaining
the coefficients of the model and then we can predict the runtime for the remaining
seventh data point. The modeling error for each process grid is presented in the top
graph of Figure 2(b). The middle graph shows the scenario where 5 data points establish
the coefficients and the remaining two data points are predicted. Finally, the bottom of
the figure shows the situation where 4 data points are used to compute the coefficients
and the remaining 3 data points are being predicted. Since our model has 4 coefficients
we need at least 4 data points to calculate them. By looking at Figure 2(b) we see that
the modeling error is small, always below 8% and often within or below 1%. What
the figure doesn’t show is the reduction of time that a prediction would afford. With
6 data points for modeling and 1 data point predicted (top of the figure) there are no
savings in time, in fact the time to run the first 6 experiments is about 20% longer then
the time it takes to run the remaining seventh experiment. In the case of 5 data points
for modeling (middle of the figure), there is already a substantial reduction of time: the
last two experiments take about 70% of the total time. And finally, with 4 experiments
predicting the 3 longest runs, the savings in time exceed 90%.

7 Combined Application of Modeling and Sampled Factorization

To test our modeling framework together with the sampled factorization approach, we
performed a series of experiments at the Oak Ridge National Laboratory on a large
scale supercomputer: Cray XT 4 with quad-core AMD Opteron 1345 processor clocked
at 2.6 GHz. The whole installation consists of 31328 cores. Figures 3(a), 3(b), and 3(c)
show performance and running time for varying number of cores, matrix sizes, and
portions of fully factored matrix. The code used for runs was the HPL code modi-
fied to allow for partial execution as described earlier. Despite the order of magnitude

Reducing the Time to Tune Parallel Dense Linear Algebra Routines 737

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

R
e

la
ti
v
e

 p
e

rf
o

rm
a

n
c
e

 o
r

ti
m

e
 [

%
]

Percentage of factored portion of matrix

50% of time

95% of performance

Relative performance
Relative time

Fig. 4. Relative running time and achieved performance with relation to fraction of factored por-
tion of matrix (1024 cores, with 32 by 32 virtual process grid.)

difference in core counts and matrix sizes, the model is accurate to about 1% or less.
The performance-time curves from the figures show that in order to attain comparable
fraction of the peak performance the time to run will increase faster than linearly with
the number of cores.

Figure 4 shows the performance-time curve from Figure 3(a) but this time it is recast
in relative terms as a fraction of the maximum attained performance. In this manner both
time and performance may coexist on the same Y-axis because they both vary between
0% and 100%. In this setting it is now easy to perform a what-if analysis of the data as
it is indicated in the Figure 4 with arrows. The question being answered by the Figure is
this: if the time to run the benchmark is reduced by 50% how much will the performance
result be reduced. The answer is encouraging: the resulting performance drop will only
be 5%. The making of such predictions is simplified with our model based on a handful
of runs that accurately determine the modeling coefficients. Without a model, it would
be necessary to make many more additional runs which would diminish the benefits of
reduced running time. And even with the extra runs the exact point of 50% reduction of
time is unlikely to be found experimentally as is the case in Figure 4 and a curve fitting
or an approximation technique would be necessary to provide more refined guidance
for finding the right problem size. These issues are already accounted for in our model.
The sampled factorization provides the added benefit of stressing the entire system: the
system matrix occupies the entire memory. Also, the result of the partial execution can
be verfied as rigorously as is the case for the standard factorization.

8 Conclusions and Future Work

We presented a modeling framework and its applications to prediction of performance
across very diverse hardware platforms ranging from commodity clusters to large scale
supercomputer installations. The accuracy is as good as the quality of the input data
which has been a golden standard for numerical linear algebra for years [31,32]. Thus,
we consider the model to be validated by experiments with varying measurement errors
due to both multi-user environment and operating system noise. We applied our method-
ology to facilitate what-if analysis that can inform decisions regarding the tradeoff

738 P. Luszczek and J. Dongarra

between higher performance and shorter running time. We plan to increate the detail of
our model including sensitivity analysis and the ability to indicate measurement errors,
hardware problems, or software misconfiguration [22].

References

1. Anderson, E., Bai, Z., Bischof, C., Blackford, S.L., Demmel, J.W., Dongarra, J.J.,
Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.C.: LAPACK
User’s Guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia (1999)

2. Barrett, R.F., Chan, T.H.F., D’Azevedo, E.F., Jaeger, E.F., Wong, K., Wong, R.Y.: Com-
plex version of high performance computing LINPACK benchmark (HPL). Concurrency and
Computation: Practice and Experience 22(5), 573–587 (2010)

3. Björk, Å.: Numerical methods for Least Squares Problems. SIAM (1996) ISBN 0-89871-
360-9

4. Suzan Blackford, L., Choi, J., Cleary, A., D’Azevedo, E.F., Demmel, J.W., Dhillon, I.S.,
Dongarra, J.J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D.W., Clint
Whaley, R.: ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathematics,
Philadelphia (1997)

5. Chen, Z., Dongarra, J., Luszczek, P., Roche, K.: Self-adapting software for numerical linear
algebra and LAPACK for Clusters. Parallel Computing 29(11-12), 1723–1743 (2003)

6. Choi, J., Dongarra, J.J., Ostrouchov, S., Petitet, A., Walker, D.W., Clint Whaley, R.: The
design and implementation of the ScaLAPACK LU, QR, and Cholesky factorization routines.
Scientific Programming 5, 173–184 (1996)

7. Dongarra, J., Du Croz, J., Duff, I., Hammarling, S.: Algorithm 679: A set of Level 3 Basic
Linear Algebra Subprograms. ACM Trans. Math. Soft. 16(1), 18–28 (1990)

8. Dongarra, J., Du Croz, J., Duff, I., Hammarling, S.: A set of Level 3 Basic Linear Algebra
Subprograms. ACM Trans. Math. Soft. 16(1), 1–17 (1990)

9. Dongarra, J., Jeannot, E., Langou, J.: Modeling the LU factorization for SMP clusters. In:
Proceeedings of Parallel Matrix Algorithms and Applications (PMAA 2006), September 7-9.
IRISA, Rennes, France (2006)

10. Dongarra, J., Luszczek, P.: Reducing the time to tune parallel dense linear algebra routines
with partial execution and performance modelling. In: Poster Session of SC 2010, New Or-
leans, Louisianna, USA, November 13-19 (2010), Also: Technical Report UT-CS-10-661,
University of Tennessee, Computer Science Department

11. Dongarra, J.J., Duff, I.S., Sorensen, D.C., van der Vorst, H.A.: Numerical Linear Algebra for
High-Performance Computers. Society for Industrial and Applied Mathematics, Philadelphia
(1998)

12. Dongarra, J.J., Gustavson, F.G., Karp, A.: Implementing linear algebra algorithms for dense
matrices on a vector pipeline machine. SIAM Review 26(1), 91–112 (1984)

13. Dongarra, J.J., Luszczek, P., Petitet, A.: The LINPACK benchmark: Past, present, and future.
Concurrency and Computation: Practice and Experience 15, 1–18 (2003)

14. Edelman, A.: Large dense numerical linear algebra in 1993: the parallel computing influence.
International Journal of High Performance Computing Applications 7(2), 113–128 (1993)

15. Garcı́a, L.-P., Cuenca, J., Giménez, D.: Using Experimental Data to Improve the Perfor-
mance Modelling of Parallel Linear Algebra Routines. In: Wyrzykowski, R., Dongarra,
J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 1150–1159.
Springer, Heidelberg (2008) ISSN 0302-9743 (Print) 1611-3349 (Online), doi:10.1007/978-
3-540-68111-3

Reducing the Time to Tune Parallel Dense Linear Algebra Routines 739

16. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University
Press, Baltimore and London (1996)

17. Meuer, H., Strohmaier, E., Dongarra, J., Simon, H.: TOP500 Supercomputer Sites,
34th edn. (November 2009), http://www.netlib.org/benchmark/top500.html and
http://www.top500.org/

18. Meuer, H., Strohmaier, E., Dongarra, J., Simon, H.: TOP500 Supercomputer Sites, Hambug,
Germany, 37th edn. (June 2011), http://www.netlib.org/benchmark/top500.html
and http://www.top500.org/

19. Harrington, R.: Origin and development of the method of moments for field computation.
IEEE Antennas and Propagation Magazine (June 1990)

20. Hess, J.L.: Panel methods in computational fluid dynamics. Annual Reviews of Fluid
Mechanics 22, 255–274 (1990)

21. Hess, L., Smith, M.O.: Calculation of potential flows about arbitrary bodies. In: Kuchemann,
D. (ed.) Progress in Aeronautical Sciences, vol. 8. Pergamon Press (1967)

22. Kerbyson, D.J., Hoisie, A., Wasserman, H.J.: Verifying Large-Scale System Performance
During Installation using Modeling. In: High Performance Scientific and Engineering Com-
puting, Hardware/Software Support. Kluwer (October 2003)

23. Luszczek, P., Dongarra, J., Kepner, J.: Design and implementation of the HPCC benchmark
suite. CT Watch Quarterly 2(4A) (November 2006)

24. Numerich, R.W.: Computational forces in the Linpack benchmark. Concurrency Practice and
Experience (2007)

25. Oram, A., Wilson, G. (eds.): Beautiful Code. O’Reilly (2007), Chapter 14: How Elegant
Code Evolves with Hardware: The Case of Gaussian Elimination

26. Roche, K.J., Dongarra, J.J.: Deploying parallel numerical library routines to cluster comput-
ing in a self adapting fashion. In: Parallel Computing: Advances and Current Issues. Imperial
College Press, London (2002)

27. Rodgers, J.L., Nicewander, W.A.: Thirteen ways to look at the correlation coefficient. The
American Statistician 42, 59–66 (1988)

28. Smith, W., Foster, I., Taylor, V.: Predicting application runt times with historical informa-
tion. In: Proceedings of IPPS Workshop on Job Scheduling Strtegies for Parallel Processing.
Elsevier Inc. (1998), doi:10.1016/j.jpdc.2004.06.2008

29. Wang, J.J.H.: Generalized Moment Methods in Electromagnetics. John Wiley & Sons, New
York (1991)

30. Weinberg, J., McCracken, M.O., Strohmaier, E., Snavely, A.: Quantifying locality in the
memory access patterns of HPC applications. In: Proceedings of SC 2005, Seattle, Washing-
ton. IEEE Computer Society Washington, DC (2005)

31. Wilkinson, J.H.: Rounding Errors in Algebraic Processes. Prentice Hall, Englewood Cliffs
(1963)

32. Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Oxford University Press, Oxford (1965)
33. Yang, L.T., Ma, X., Mueller, F.: Cross-platform performance prediction of parallel appli-

cations using partial execution. In: Proceedings of the ACM/IEEE SC 2005 Conference
(SC 2005). IEEE (2005)

http://www.netlib.org/benchmark/top500.html
http://www.top500.org/
http://www.netlib.org/benchmark/top500.html
http://www.top500.org/

A General-Purpose Virtualization Service
for HPC on Cloud Computing:

An Application to GPUs

Raffaele Montella1, Giuseppe Coviello1, Giulio Giunta1, Giuliano Laccetti2,
Florin Isaila3, and Javier Garcia Blas3

1 Department of Applied Science, University of Napoli Parthenope, Italy
2 Department of Mathematics and Applications

University of Napoli Federico II, Italy
3 Department of Computer Science, University of Madrid Carlos III, Spain

Abstract. This paper describes the generic virtualization service GVir-
tuS (Generic Virtualization Service), a framework for development of
split-drivers for cloud virtualization solutions. The main goal of GVirtuS
is to provide tools for developing elastic computing abstractions for high-
performance private and public computing clouds. In this paper we focus
our attention on GPU virtualization. However, GVirtuS is not limited to
accelerator-based architectures: a virtual high performance parallel file
system and a MPI channel are ongoing projects based on our split driver
virtualization technology.

Keywords: HPC, Cloud Computing, Virtualization, Split Driver,
GPGPU.

1 Introduction

In recent years the general purpose graphics processing units (GPGPUs) have
become attractive cost-efficient platforms for scientific computing community.
GPGPUs have a shared-memory massive multicore architecture, which can be
efficiently leveraged in order to accelerate data-parallel computing tasks [1]. An
active research field currently focuses on exploiting special purpose processors
as accelerators for general-purpose scientific computations. In addition to high-
performance, GPGPUs have the advantage of being energy-efficient, as the high
number of processing elements operating at low frequency dissipate less heat
than one core with the same aggregate frequency [2].

Cloud computing offers an appealing elastic distributed infrastructure, but
whether and how it can efficiently provide the high performance required by
most e-science applications is still a research issue [9]. Especially in the field of
parallel computing applications, virtual clusters deployed on cloud infrastruc-
tures suffer from the low performance of message passing communication among
virtual machine instances and from the difficulties to access hardware specific
accelerators such as GPUs [3].

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 740–749, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A General-Purpose Virtualization Service for HPC on Cloud Computing 741

In this paper we describe a general-purpose virtualization service (GVirtuS)
for high performance computing applications on cloud computing environments,
focusing on GPU virtualization and distributed memory virtual clusters. The
rest of this work has the following structure. Section 2 introduces GVirtuS and
describes the evolution of its architecture and implementation. Section 3 dis-
cusses GPU virtualization. Section 5 presents some preliminary experimental
results. Section 5 overviews related work. Finally, Section 6 concludes and out-
lines future work directions.

2 GVirtuS: General Virtualization Service

GVirtuS extends and generalizes gVirtus (with lower case g), a GPU virtualiza-
tion solution proposed in our previous work [4]. The main motivation of gVirtuS
was to address the limitations of transparently employing accelerators such as
CUDA-based GPUs in virtualization environments. Before gVirtuS, using GPUs
required explicit programming of the communication between virtual and phys-
ical machines and between guest and host operating systems. Furthermore, the
solution had to deal with issues related to the vendor specific interfaces on the
virtual machine side. These limitations drastically reduced the productivity of
virtualization solutions based on GPUs and hindered the employment of accel-
erators as on-demand resources in cloud computing infrastructures.

The generic virtualization service presented in this work, GVirtuS (Generic
Virtualization Service) is a framework for facilitating the development of split-
drivers for virtualization solutions (as shown in Figure 1). As the previous
gVirtus, the brightest GVirtuS feature is the independence from all involved
technologies: the hypervisor, the communicator and the target of the virtualiza-
tion (general purpose graphics processing units for computing acceleration, high
performance network interface cards, distributed parallel file systems, measure-
ment instruments and data acquisition interfaces).

GVirtuS, the software component presented in this paper is different from his
ancestor gVirtus in the following ways. While gVirtuS proposes a virtualization
solution for CUDA, GVirtuS offers virtualization support for generic libraries
such as accelerator libraries (OpenCL, OpenGL and CUDA as well), parallel
file systems, communication libraries (MPI). gVirtuS required explicit porting
on virtualization technologies of frontends, bbackends, and communicators. Fur-
ther, GVirtuS targets to facilitate independence of virtualization technology by
offering generic interfaces, which simplifies porting virtualization solutions across
platforms. Finally, GVirtuS could be seen as an abstraction for generic virtual-
ization in HPC on cloud infrastructures.

In GVirtuS the split-drivers are abstracted away, while offering the developers
abstractions of common mechanisms, which can be shared for implementing the
desired functionality. In this way, developing a new virtualization driver is simpli-
fied, as it is based on common utilities and communication abstractions. GVirtuS
abstracts away frontends, bbackends, and communicators. The GVirtuS software
stack is designed in a modular fashion: the frontend, the communicator, and the

742 R. Montella et al.

backend are implemented as plug-ins. For each virtualized device the frontend and
the backend are cooperating, while both of them are completely independent from
the communicator.Developers can focus their efforts on virtual device and resource
implementation without taking care of the communication technology.

2.1 Frontends

The frontend is the component used by the applications running in the virtual
machine to access services and resources provided by the virtualized device.
The frontend provides applications the routines for requesting physical device
services in a transparent way and using the same API offered by device driver
manufacturers (device library and/or driver interface). This choice permits to
run applications in virtual environments without modifications.

In GVirtuS the frontend is implemented as a stub library. A stub library is a
virtualization of the physical driver library on the guest operating system. The
stub library implements the driver functionality in the guest operating system
in cooperation with the backend running on the host operating system. The
communication between the frontend and backend is done via abstract commu-
nicators.

2.2 Backends

The backend is a component serving frontend requests through the direct access
to the driver of the physical device. This component is implemented as a server
application waiting for connections and responding to the requests submitted
by frontends. In an environment requiring shared resource access (as it is very
common in cloud computing), the back-end must offer a form of resource multi-
plexing. Another source of complexity is the need to manage multi-threading at
the guest application level.

A daemon runs on the host operating system in the user space or super user
space depending on the specifics of applications and security policies. The dae-
mon implements the back-end functionality dealing with the physical device
driver and performing the host-side virtualization.

2.3 Communicators

A communicator is a key piece of software in GVirtuS stack because it con-
nects the guest and host operating systems. The communicators have strict
high-performance requirements, as they are used in system-critical components
such as split-drivers. Additionally, in a virtual machine environment the isola-
tion between host and guest and among virtual machines is a design requirement.
Consequently, the communicator main goal is to provide secure high-performance
direct communication mechanisms between guest and host operating systems.

In GVirtuS the communicators are independent of hypervisor and virtualized
technology. Additionally, novel communicator implementations can be provided
independently from the cooperation protocols between frontend and back-end.

A General-Purpose Virtualization Service for HPC on Cloud Computing 743

GVirtuS provides several communicator implementations including a TCP/IP
communicator. The TCP/IP communicator is used for supporting virtualized
and distributed resources. In this way a virtual machine running on a local
host could access a virtual resource physically connected to a remote host in a
transparent way.

However, in the some application scenarios the TCP/IP based communicator
is not feasible because of the following limitations:

– The performance is strongly impacted by the protocol stack overhead.
– In a large size public or private cloud computing environment the use of the

network could be restricted for security and performances reasons.
– For protection reasons a virtual machine may be unaware of the network

address of its hosting machine.

For addressing these potential limitations, GVirtuS open solution allows for fu-
ture protocols to be simply integrated into the architecture without any frontend
or backend modification.

Fig. 1. GVirtuS architecture in a distributed virtualized GPU scenario

3 Implementing the GPU Virtualization Plug-in

As stated above, GVirtuS is a generalization of the previously developed gVirtuS.
In this paper we focus on acceleration services provided by the nVIDIA in order to

744 R. Montella et al.

support the CUDA programming model. More exactly, we target two main goals:
to provide a fully transparent virtualization solution (CUDA enabled software
has to be executed in a virtual environment without any further modification of
binaries or source code) and to reduce the overhead of virtualization so that the
performance of the virtualized solution is as close as possible to the one of the
bare metal execution.

The GVirtuS framework is implemented as a collection of C++ classes. The
utility library contains the common software components used by both frontend
and back-end. This library provides the support for communication between the
frontend and the backend. The communicator component is implemented behind
an interface called Communicator. GVirtuS already provides several Communi-
cator subclasses such as TCP/IP, Unix sockets, VMSocket (high performance
communicator for KVM based virtualization) [5], and VMCI (VMWare efficient
and effective communication channel for VMWare based virtualization) [6,7].

Fig. 2. GVirtuS nVIDIA/CUDA plug-in schema

The frontend library allows the development of the frontend component and
contains a single class, called Frontend. There is only one instance of this class for
each application using the virtualized resource. This instance is in charge of the
backend connection, which is based on an implementation of a Communication
interface. This is a critical issue especially when the virtualized resources have
to be thread-safe as in the case of GPUs providing CUDA support. The meth-
ods implemented in this class support request preparation, input parameters
management, request execution, error checking, and output data recovery.
The backend is executed on the host machine. It waits for connections from
frontends. As a new connection is incoming it spawns a new thread for serving
the frontend requests. The application running on the virtual machine requests
services to the virtualized device via the stub library. Each function in the stub
library follows these steps: 1) obtains a reference to the single frontend instance,
2) uses frontend class methods for setting the parameters, 3) invokes the frontend
handler method specifying the remote procedure name, and 4) checks the remote
procedure call results and handles output data.

As an improvement over the nVIDIA/CUDA virtualization offered by gVirtuS,
we used the general-purpose virtualization service GVirtuS to provide virtualiza-
tion support for CUDA, openCL and openGL. The CUDA driver implementation
is similar to the CUDA runtime except for the low-level ELF binary management

A General-Purpose Virtualization Service for HPC on Cloud Computing 745

for CUDA kernels. A slightly different strategy has been used for openCL and
openGL support. The openCL library provided by nVIDIA is a custom imple-
mentation of a public specification. That means that the openCL GVirtuS wrap
is independent of the openCL implementation. Based on the implemented split
driver a software using openCL running on a virtual machine could use nVIDIA
or ATI accelerated devices physically connected to other remote machines in
a transparent and dynamic way. As in the case of openCL, openGL wrap is a
custom implementation of a public specification. In order to support remote vi-
sualization in a high performance way a VNC based screen virtualization had to
be implemented (Figure 2).

Each GPU physical devices executes kernels from VMs as in first come first
served fashion. If multiple GPU devices are available a round robin schema is
applied. More complex GPU scheduling policies could be implemented as plug-
gable components. In a high performance on demand cloud computing scenario,
different QoS levels could be enforced enabling remote GPU sharing.

4 Experimental Results

We have designed and implemented the GVirtuS virtualization system with the
primary goal of using GPUs in a private cloud setup for high performance sci-
entific computing. We have set up a prototype IaaS cloud system based on open
source software for cloud management [8], [9], [10] based on the same interface
as Amazon Web Services [11]. The system gives users the ability to run and
control entire virtual machine instances deployed across a variety of physical
resources. Our objective was to set up a high-performance computing cluster
provisioning on-demand resources of an already existing infrastructure [12]. Our
experimental evaluation aims at assessing the performance of GVirtuS in a high
performance computing cloud system. The experiments have been performed in
cluster equipped with Intel-based 4-core processors with hyperthreading (i7-940
2,93 133 GHz, Quad Core 8 MB cache, 12 GB of RAM) workstation imitat-
ing a computing nodes in a bigger cluster infrastructure. Each compute node is
equipped with a Tesla C1060 with 240 CUDA cores, 4 GB of on-board memory
and 1.3 compute capabilities. The software stack is based on Ubuntu 10.04 Linux
operating system, nVIDIA CUDA drivers and Tools/SDK 3.x, and KVM-QEMU
(kvm-88).

4.1 GVirtuS/CUDA Performance Analysis

The Table 1 reports some experimental results carried out running tree nVIDIA
SDK sofware in different scenarios:

– 0: No virtualization, no accleration (blank)
– 1: Acceleration without virtualization (target)
– 2,3: Virtualization with no acceleration
– 4...6: GPU acceleraion, Tcp/Ip communication
– 7: GPU acceleration using GVirtuS, Unix Socket based communication
– 8,9: GVirtuS virtualization

746 R. Montella et al.

This benchmarks have been performed in order to understand the impact of the
CPU virtualization and the overhead introduced by GVirtuS/CUDA stack. The
scenario defined as 0 is the experiment blank where none acceleration has been
used. With the number 1 is pointed out the target as the maximum performance
achievable. Comparing the results labelled as 0 with ones labelled as 2 and 3 is
evaluated the CPU virtualization overhead (averagely about the 6%). Scenarios
number 4 to 6 has similar performances due to communication overhead. The
scenario 7 depict the weight of the GVirtuS stack without considering virtual-
ization and communication between VMs and the physical host. Finally 8 and
9 represent performances using GVirtuS and CUDA virtualization comparing
KVM+vmSocket (8) and VMWare+VMCI (9): the open source stack presented
in this paper performs in the best way (8).

Table 1. CUDA/SDK benchmarks: computing times as Host-CPU rate

n Hypervisor Comm. Hystogram matrixMul scalarProd

0 Host CPU 100.00% 100.00% 100.00%

1 Host GPU 9.50% 9.24% 8.30%

2 KVM CPU 105.57% 99.48% 106.75%

2 Kvm CPU 105.57% 99.48% 106.75%

3 VM-Ware CPU 103.63% 105.34% 106.58%

4 Host Tcp/Ip 67.07% 52.73% 40.87%

5 Kvm Tcp/Ip 67.54% 50.43% 42.95%

6 VM-Ware Tcp/Ip 67.73% 50.37% 41.54%

7 Host AfUnix 11.72% 16.73% 9.09%

8 Kvm vmSocket 15.23% 31.21% 10.33%

9 VM-Ware vmcl 28.38% 42.63% 18.03%

4.2 Analyzing GVirtuS/CUDA in a Virtual Cluster Environment

In the high performance cloud computing scenario, our evaluation is based on a
benchmark implementing a parallel matrix multiplication algorithm. The algo-
rithm decomposes the domain by distributed the first matrix by rows and the
second matrix by columns over all processes. Subsequently, each process performs
a local matrix multiplication. The final results are stored in RAM memory. For
remote machine message passing we have used the Massage Passing Interface
(MPI) distribution MPICH2 version 1.2.1p1. Each process uses the CUDA li-
brary to perform the local matrix multiplication.

Figure 3 shows the results obtained by running the MPI-based algorithm on a
virtual cluster with 8 virtual computing nodes (VCNs). Each VCN is an instance
of a virtual machine based on a lightweight Ubuntu 10.04 Linux installation.
Each presented result is the mean of 100 runs. We have evaluated two scenarios:

A General-Purpose Virtualization Service for HPC on Cloud Computing 747

Fig. 3. Matrix multiplication algorithm performance on GVirtuS for 2, 4 and 8 nodes

VCN and VCN-GPU. The VCN scenario runs only on virtual CPUs. The VCN-
GPU scenario runs on virtual machine instances with GPUs enabled thanks
to GVirtuS/CUDA [5]. The problem size ranges from matrix sizes of 103x103

doubles to 4 ∗ 103x4 ∗ 103 doubles. The number of VCNs ranged from 2 to 8
increasing by a factor of 2.

The results show that virtualized GPUs provide substantial performance ben-
efits in all cases but one. The only case when the VCN scenario outperforms the
VCN-GPU is for the smallest matrix size (103x103) and 8 VCN. This can be
attributed to the fact that the small amount of computations does not com-
pensate the cost of transferring the data from virtual machine memory to GPU
memory and back. However, in all other cases for the same number of VCNs,
the GPU virtualization solution substantially outperforms the non-GPU solu-
tion. Even more, for matrix sizes larger than 3∗103x3∗103 doubles, the time for
using VCN with GPUs is considerably lower than using 8 VCN without GPU.
Increasing the number of VCNs with GPUs further improves the performance.

5 Related Works

GViM (GPU-accelerated Virtual Machines) [13] and vCUDA [14] are Xen-based
system that provide GPU virtualization solutions [15]. GVirtuS, gVirtuS, GViM,
and vCUDA use a similar split-driver approach for GPU virtualization. The main
difference lies in the use of the hypervisor and in the communication mechanisms.
Both GViM and vCUDA employ the Xen hypervisor and execute CUDA drivers
in the Domain 0. GViM uses the XenStore component to provide communication
between the two components of the CUDA split driver. The GViM performance
is mainly affected by the XenStore behavior and in particular by memory copy

748 R. Montella et al.

operations, as shown in [16]. vCUDA transforms the CUDA calls in the frontend
into XML-RPCs, which are served by the backend. This is a commonly used
approach, but which requires a considerable overhead as shown in [14].

Our solution differs from the latter two solutions because GVirtuS is com-
pletely independent of the hypervisor. We have proved it by implementing GVir-
tuS in a VMWare [16] setup and in a KVM setup. In our operational GVirtuS
setup, we have chosen the KVM open source hypervisor because it is a Linux
loadable kernel module included in mainline Linux [5], [17]. The fact that KVM
is not a modified Linux kernel (as in the case of Xen) ensures future compati-
bility between the hypervisor and the CUDA drivers. GVirtuS can run on Xen
using the VGA pass-through feature: a thin Linux virtual machine runs on Xen
DomainU with the CUDA device directly attached to it. This virtual machine
instance is provided by nVIDIA/CUDA drivers and acts as a backend for other
Xen virtual machines executing CUDA code via GVirtuS. In this case a Xen-
Store based communicator component is used in order to increase performance.
Finally, GVirtuS relies on a high performance communication channel between
the virtual and the physical machines. The communicator interface is open and
new communicators could be developed and plugged in. We also emphasize that
neither GViM nor vCUDA use a TCP based communicator for the deployment
on asymmetric computing clusters.

gVirtuS, the predecessor of GVirtuS, has been successfully used in a frame-
work to enable applications executing within virtual machines to transparently
share one or more GPUs by Ravi et al [8]. They extend gVirtuS to include ef-
ficient GPU sharing, and propose solutions to the conceptual problem of GPU
kernel consolidation. Finally, they develop an algorithm to efficiently map a set of
kernels on GPUs and find that even when contention is high, their consolidation
algorithm is effective for improving the throughput with a low overhead.

Our General Virtualization Service has been used as GPU virtualization solu-
tion for virtual machines hosted by the OpenStack cloud management software
[18] providing a cloud-based access model to clusters containing heterogeneous
architectures and accelerators [19].

6 Conclusions and Future Directions

In this work we presented GVirtuS, a general-purpose virtualization service,
which is a direct evolution and generalization of the previously developed gVir-
tuS. GVirtuS brightest feature is its modularity, which allows for the develop-
ment of split-drivers in a straightforward fashion by requiring to only implement
stub routines in the frontend and service routines in the backend.

GVirtuS has been implemented so far to offer transparent virtualization sup-
port for CUDA library, openCL and openGL on top of nVIDIA/CUDA virtual-
ization. We show that GVirtuS can be efficiently used for leveraging acceleration
devices in scientific clouds. Based on GVirtuS architecture we are working on
two ambitious projects: a virtual parallel high performance file system and a
MPI channel for low-latency communication among virtual machines running in
a virtual HPC cluster environment [20].

A General-Purpose Virtualization Service for HPC on Cloud Computing 749

References

1. Tarditi, D., Puri, S., Oglesby, J.: Accelerator: using data parallelism to program
gpus for general-purpose uses. SIGOPS Oper. Syst. Rev. 40, 325–335 (2006)

2. Wang, L., Tao, J., von Laszewski, G., Marten, H.: Multicores in cloud computing:
Research challenges for applications. JCP 5(6), 958–964 (2010)

3. Vecchiola, C., Pandey, S., Buyya, R.: High-performance cloud computing: A view of
scientific applications. In: Proceedings of the 2009 10th International Symposium
on Pervasive Systems, Algorithms, and Networks, ISPAN 2009, pp. 4–16. IEEE
Computer Society, Washington, DC (2009)

4. Giunta, G., Montella, R., Agrillo, G., Coviello, G.: A GPGPU Transparent Virtu-
alization Component for High Performance Computing Clouds. In: D’Ambra, P.,
Guarracino, M., Talia, D. (eds.) Euro-Par 2010. LNCS, vol. 6271, pp. 379–391.
Springer, Heidelberg (2010)

5. KVM website, http://www.linux-kvm.org
6. VMWare website, http://www.vmware.com
7. VMCI website, http://pubs.vmware.com/vmci-sdk
8. Ravi, V.T., Becchi, M., Agrawal, G., Chakradhar, S.: Supporting gpu sharing in

cloud environments with a transparent runtime consolidation framework. In: Pro-
ceedings of the 20th International Symposium on High Performance Distributed
Computing, HPDC 2011, pp. 217–228. ACM, New York (2011)

9. OpenNebula website, http://www.opennebula.org
10. Eucalyptus website, http://open.eucalyptus.com
11. Amazon Web Services, http://aws.amazon.com
12. Sotomayor, B., Keahey, K., Foster, I.: Combining batch execution and leasing using

virtual machines. In: Proceedings of the 17th HPDC
13. Gupta, V., Gavrilovska, A., Schwan, K., Kharche, H., Tolia, N., Talwar, V., Ran-

ganathan, P.: Gvim: Gpu-accelerated virtual machines. In: Proceedings of the 3rd
ACM Workshop on System-level Virtualization for HPC, HPCVirt 2009, pp. 17–24.
ACM, New York (2009)

14. Shi, L., Chen, H., Sun, J.: vcuda: Gpu accelerated high performance computing in
virtual machines. In: Proceedings of the 2009 IEEE IPDPS (2009)

15. XEN website, http://www.xen.org
16. Wang, J., Wright, K.L., Gopalan, K.: Xenloop: a transparent high performance

inter-vm network loopback. In: Proceedings of the 17th HPDC
17. vmChannel web, http://www.linux-kvm.org/page/VMchannel_Requirements
18. OpenStack website, http://www.openstack.org
19. Crago, S.P., et al.: Heterogeneous cloud computing. In: CLUSTER, pp. 378–385

(2011)
20. Giunta, G., Montella, R., Coviello, G., Laccetti, G., Isaila, F., Garcia Blas, J.: A gpu

accelerated high performance cloud computing infrastructure for grid computing
based virtual environmental laboratory | intechopen

http://www.linux-kvm.org
http://www.vmware.com
http://pubs.vmware.com/vmci-sdk
http://www.opennebula.org
http://open.eucalyptus.com
http://aws.amazon.com
http://www.xen.org
http://www.linux-kvm.org/page/VMchannel_Requirements
http://www.openstack.org

A Simulated Annealing Algorithm

for GPU Clusters

Maciej Zbierski

Institute of Computer Science, Warsaw University of Technology,
ul. Nowowiejska 15/19, Warsaw 00-665, Poland

m.zbierski@ii.pw.edu.pl

Abstract. Simulated Annealing (SA) is a powerful global optimization
technique that is frequently used for solving many practical problems
from various scientific and technical fields. In this article we present a
novel approach to parallelization of SA and propose an algorithm opti-
mized for execution in GPU clusters. Our technique exploits the basic
characteristics of such environments by using hierarchical problem de-
composition. The proposed algorithm performs especially well for com-
plex problems with large number of variables. We compare our approach
with traditional parallel Simulated Annealing, both in terms of speed
and result accuracy.

Keywords: Simulated Annealing, GPU clusters, global optimization,
distributed systems, GPGPU, Monte Carlo methods.

1 Introduction

Parallelization has recently become a popular approach to solving complex com-
putational problems, mainly as a result of high availability and relatively low cost
of computers with many processing cores. This process can usually be performed
using either powerful parallel computers or distributed systems, i.e. groups of
interconnected machines. Over the years, many parallel computation models,
such as farm processing [17], have emerged. Nowadays, GPU (graphics process-
ing unit) computing is also considered a powerful technique for obtaining inex-
pensive, high performance parallelism [16]. Grouping a considerable number of
machines designed to perform computations using their graphic processing units
in so called GPU clusters might enable solving even more complex problems.

Unfortunately, regardless of the effort put into expansion of parallel process-
ing, there still exist problems that cannot be solved using conventional numerical
methods. Perhaps the most well known example is the travelling salesman prob-
lem. One of the techniques that is often used when dealing with computationally
hard, global optimization tasks is Simulated Annealing (SA) [9]. The main con-
cept of this approach is the probabilistic acceptance of suboptimal solutions in
order to prevent from locking in local minima. Simulated Annealing is popular
in many scientific and technical areas, including physics, chemistry and biology;
several specific applications have been described in [8].

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 750–759, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Simulated Annealing Algorithm for GPU Clusters 751

While the Simulated Annealing is an inherently sequential algorithm, much
work has been put into its parallel adaptations. Different approaches are dis-
cussed for instance in [3], [1], [6], [8] and [4]. Verhoeven and Aarts [19] provide
a further overview of parallel implementations of local search techniques. An
extensive survey on various parallel Simulated Annealing algorithms and their
applications in global optimization can also be found in [15].

To the best of our knowledge, the GPU-based Simulated Annealing has not
yet achieved much attention. The majority of existing work in this field lacks
generality and is limited to very specialized applications. These include for in-
stance FPGA placement [2] and integrated circuit floorplanning [7]. Moreover,
all these techniques consider single GPU environments only.

In this paper we present a novel approach to parallelization of Simulated
Annealing and demonstrate that it can be successfully used in GPU clusters.
We contribute with the design of a two-level algorithm, called TLSA, that can
be used in such environments. We also compare its efficiency with previously
developed methods, both in terms of speed and result accuracy.

The remainder of this article is constructed as follows: section 2 presents the
architecture of the distributed GPU-based system we will use. In section 3 we
introduce the proposed two-level algorithm and explain how it differs from the
traditional approach. The description and results of the experiments we have
performed are presented in section 4. Finally, section 5 contains conclusion and
discussion on the work presented in the article.

2 Basic Concepts of the Processing Platform

Let us consider a simple distributed system, i.e. a set of computers connected by
a common network. Regardless of the choice of physical representation, which lies
beyond the scope of this article, there exist a wide selection of decomposition and
mapping techniques that can be applied. We propose the usage of the master-
slave model [5,20], as it is the most straightforward and versatile for our purpose.
In this method selected nodes perform the role of managers. These machines,
sometimes also referred to as masters, are responsible for generating the work,
allocating it to the workers and gathering their results. Throughout this article
we assume that the set of managers is limited to one machine only.

It is worth noting that the model itself does not limit in any way the type
of computations, nor the way they are performed by the workers. While in the
most typical case the workers would run sequential algorithms, we focus on the
case, where each worker performs parallel computations using its graphics pro-
cessing unit. Such architecture can be treated as a two-level distributed system
and is sometimes called a GPU cluster. From now on we will refer to any tasks
performed by workers, including the GPU-based computations, as the work per-
formed on the lower level. By the upper level tasks will on the other hand denote
all actions taken by the master, including the communication with workers.

In order to maximize the efficiency of the whole system, we assume that each
machine performs its computations independently from the others. While this

752 M. Zbierski

implies the impossibility of cooperation between GPU threads of different ma-
chines, it also creates the opportunity of using the asynchronous communication
on the upper level. This on the other hand allows for more flexibility with regard
to the system architecture and its components. For instance, a slow machine or
network interconnection does not have to drastically limit the throughput of
the whole system. Furthermore, as the system can be entirely heterogeneous,
we can imagine a situation where some machines, instead of carrying out the
computations on graphic processing units, might rather use their CPUs.

While the distributed system presented above can be used as a basis for dif-
ferent types of algorithms, we will focus specifically on Simulated Annealing.
In order to produce accurate results, it requires fast and high quality random
number generators. This usually does not pose any problems for CPU computa-
tions, as RNGs are already implemented in many well-known libraries, such as
boost (http://www.boost.org/) or gsl (http://www.gnu.org/software/gsl/)
to name only a few. However, random number generation is still missing from
most GPU programming environments. In our previous study we have performed
a comparison of GPU-based implementations of RNGs and have converged on
the Warp Standard generator [18], which has demonstrated both high quality
output and good speed [20].

The most recent version of CUDA GPU programming environment supplies
XORWOW generator [12], which has not been included in our previous research.
While both Warp Standard and XORWOW provide acceptable amount of ran-
domness, in a quick test we have performed on GeForce GTX 260, XORWOW
has turned out to be around 1.5 times slower. As a result, the Warp Standard will
be used as the random number generator in the remainder of this article. Note
that we have previously demonstrated in [20] that when applying this generator
in GPU clusters, the probability of obtaining overlapping random number series
throughout the cluster is negligible. This is true as long as those generators are
initialized with a high quality CPU RNG, such as Mersenne Twister [10].

3 The Proposed Algorithm

Simulated Annealing is a single point stochastic search technique proposed by
Kirkpatrick et al. [9]. In each iteration of the algorithm the current optimal so-
lution undergoes slight modification. If this new solution is better, it is accepted;
otherwise it is accepted probabilistically. The probability of acceptance is varied
accordingly to a selected cooling scheme, which can be chosen differently for spe-
cific needs. We will describe the approach presented in [14], which has previously
provided good result.

Let us consider the global optimization problem, that can be stated as
min f(x), L ≤ x ≤ U, where x ∈ R

n and L and U are the lower and up-
per boundary vectors respectively. A random point from R

n located between L
and U is chosen as the initial solution x(0). In each iteration a random value
d ∈ {1..n} is selected. This number represents the dimension of the solution
that will be modified. The d-th dimension of the solution in the step (i + 1) is
computed as follows:

http://www.boost.org/
http://www.gnu.org/software/gsl/

A Simulated Annealing Algorithm for GPU Clusters 753

x
(i+1)
d =

{
x
(i)
d + u · (Ud − x

(i)
d) if u < 0.5

x
(i)
d − u · (x(i)

d − Ld) if u ≥ 0.5
,

where u is a uniformly distributed random variable on [0, 1]. All the other di-
mensions of the solution are copied from the previous step.

The probability of accepting the suboptimal solution is controlled according
to a geometric cooling scheme, and can be computed using the following formula:

PA(i+1) = exp

(
−f(x(i+1))− f(x(i))

f(x(i)) · T (i+1)

)
.

The T factor represents the temperature of the system, initially set to T (0) = 1.
In each iteration its value is recalculated using the algorithm:

T (i+1) =

{
T (i)

1+0.1·T (i) if a worse solution has been chosen in i-th iteration

T (i) otherwise
,

Additionally, if at some point the temperature drops below 0.01, it is re-assigned
the initial value. This process, called the re-annealing, prevents the algorithm
from blocking in function’s local minima.

In the remainder of this chapter the introduced sequential algorithm will be
adapted to parallel computations according to the two-level concept described
earlier. The functions and cooperation of the lower and upper levels are presented
in the following sections.

3.1 The Lower Level

As mentioned before, the lower level comprises all the computations performed
by each node independently. Namely, as we are proposing the usage of the GPU,
it will be responsible for supervising the work of all GPU threads, gathering
their results and presenting them in a form acceptable by the upper level.

We have chosen to base on the MHCS (Modified Highly Coupled Synchronous)
technique, as it has demonstrated very good results in previous studies and
has shown to outperform many other parallel approaches [15]. However, as it
was originally designed to be used on the CPU, we have introduced several
modifications in order to adapt it to the GPU-based architecture.

The initial solution x(0) is obtained from the upper level and is identical for all
the threads. Each GPU thread selects a value d, which represents the dimension
of the solution it will modify. We propose that this value is connected with the
thread identifier ID in a way that d ≡ ID mod n, where n is the number of
dimensions of the minimized function. The assigned d value therefore remains
unchanged for the whole run of the algorithm. This allows to limit the total
amount of memory required to store the intermediate solution. As a result, each
thread needs only to keep the value of the dimension it will modify, while the
remainder of the solution might be stored in the shared or global memory.

754 M. Zbierski

Each thread performs m steps of sequential Simulated Annealing, altering
only the d-th dimension of the solution. After this is done, for each dimension
i ∈ {1..n} we choose the most optimal solution among those generated by the
threads altering this dimension. We will denote this value as Xi. Note that
X = {X1,X2, ...,Xn} is a set of solutions that differ from x(0) on one dimension
only. All these results are then copied to the CPU memory and sorted accordingly
to f(Xi).

The obtained results are then combined into one output solution using the
following algorithm. Let X̂ be the output solution, initially X̂ = x(0). In each
step the next element is acquired from our sorted list and the value of the
modified dimension is used to replace the value on corresponding dimension in
X̂. If the new solution is better, the substitution is accepted, otherwise it is
rejected and a rollback is performed on X̂. When all the elements of the list
have been considered, the X̂ is treated as a temporary result that will be used
as the initial solution in the next run of the algorithm. After performing the
desired number of runs, the temporary result is transmitted to the master.

3.2 The Upper Level

Let Fb represent the current best solution, corresponding to the vector of pa-
rameters Xb, so that Fb = f(Xb). Each time the worker reports its solution Fw

and Xw, the temporary optimal result is calculated as the smaller of the two,
that is FL = min(Fb, Fw). The vector of function parameters XL is defined as:

XL =

{
Xb if FL = Fb

Xw if FL = Fw

Similarly, we denote FG and XG as those corresponding to the less optimal of
the two, i.e. FG = Fw and XG = Xw if FL = Fb, and vice versa.

The next step is to combine these two solutions. For each dimension i, if
Xbi �= Xwi we perform a substitution XLi = XGi. If f(XL) < FL, we accept
the new move and recalculate FL, otherwise we retrieve the old value of XLi.
After all the dimensions have been considered, we store the FL and XL values
and treat them as the current best solution. Each time the worker requests a
new set of input data, it receives the current best result, which it then uses as
the initial solution on the lower level of the algorithm.

It is worth noting that the quality of final result depends on the sequence of the
abovementioned substitutions. For instance, iterating through the dimensions in
the reverse order (n, n− 1, ...1) might sometimes produce better results than in
the natural one (1, 2, ..., n), as different points are being checked in each case. If
XL and XG are entirely different, it gives the total of n! combinations to check,
which might prove impossible for big n values. However, as workers provide their
results relatively rarely, several different step sequences might be examined to
determine the best result.

The algorithm proposed for the upper level diverges greatly from the tra-
ditional SA approach, mainly because it does not introduce the possibility of

A Simulated Annealing Algorithm for GPU Clusters 755

accepting the non-optimal solutions. We have rejected this idea mostly because
the upper level algorithm is executed relatively low number of times in each
simulation. As a result, accepting worse solutions might lead to decrease in the
rate of convergence of the whole approach. However, for very long simulations,
applying SA-like pattern might be considered.

4 Experiments and Results

In order to verify our approach, we have performed a series of comparison tests
between TLSA and a widely used MHCS implementation of parallel SA. The
latter was run on a 16-core Sun Fire X4600M2 machine, equipped with 8 AMD
Opteron 8218 CPUs and 32GB of DDR2-667 memory. The execution environ-
ment of the former consisted of 16 PCs, each fitted with one Intel Core2Duo
E8400 CPU and one NVIDIA GeForce 130 GT graphic card.

The goal of our experiment was to compare the execution times and result ac-
curacy of both algorithms. For this purpose we have chosen several well-known,
demanding test functions. The more detailed description of these functions, in-
cluding their formulae and domain, can be found for instance in [11]. All the
tests have been performed for n ∈ {10, 100} dimensions. We have set a time
limit for all our experiments to four minutes in case of 10 dimensional functions
and four hours for 100 dimensional ones.

Our test has been divided into three parts. Firstly, we have converged on the
total number of iterations to be performed in the GPU cluster and carried out
five simulations for each test function. Then we have computed mean values of
these results and iterated the MHCS until it achieved at least the same result
precision. Finally, we have calculated the mean runtime achieved in the GPU
cluster and executed the MHCS algorithm for at least the same amount of time.

The mean execution times required to obtain the desired result precision for
five runs of both algorithms are presented in table 1. For 10 dimensional problems
a variety of results can be observed. In most cases the MHCS algorithm either
converged very quickly on the desired solution or did not converge at all before
reaching the time limit. After increasing the number of dimensions, the results
have become more uniform and TLSA has proven to be faster than MHCS for
all the test functions. The obtained mean runtimes of TLSA are from 1.5 to
roughly 70 times shorter. Additionally, none of the MHCS simulations for the
Michalewicz function has converged on the result before reaching the time limit.
The standard deviation values of the MHCS algorithm are higher as a result of
the selected test strategy.

Table 2 contains the observed result errors in the situation when both algo-
rithms were run for roughly the same amount of time. In the ideal case, these
results should be as close to zero as possible.

In case of 10 dimensional functions, both techniques have generated relatively
accurate solutions. While for some problems the MHCS algorithm has provided
more precise results (De Jong and Rosenbrock’s Valley functions), in most cases
our algorithm has been more accurate. The greatest difference between the re-
sults of both methods can be observed for the Schwefel function.

756 M. Zbierski

Table 1. Execution times required to achieve the same result accuracy for a 16-node
GPU cluster running TLSA and a 16-core Sun Fire machine running MHCS

Function
GPU cluster Sun Fire

mean [s] STDV [s] mean [s] STDV [s]

n
=

1
0

Ackley 26.36 0.31 > 4min 0
De Jong 14.65 0.46 1.11 0.55
Griewank 26.38 0.29 > 4min 0

Michalewicz 26.29 0.35 32.94 10.39
Rastrigin 26.28 0.22 > 4min 0

Rosenbrock 34.92 0.29 1.32 0.92
Schwefel 26.42 0.25 46.47 18.01

n
=

1
0
0

Ackley 109.82 0.1 704.56 302.57
De Jong 55.15 0.33 113.98 5.61
Griewank 110.64 0.33 7886.96 7522.44

Michalewicz 113.41 0.27 > 4h 0
Rastrigin 109.22 0.12 174.93 19.17

Rosenbrock 165.14 0.27 1284.03 1479.14
Schwefel 111.81 0.26 1027.48 70.75

Table 2. Mean result errors for a 16-node GPU cluster running TLSA and a 16-core
Sun Fire machine running MHCS, both executed for the same amount of time

Function
GPU cluster Sun Fire

mean STDV mean STDV

n
=

1
0

Ackley 5× 10−4 2× 10−4 3× 10−3 8× 10−4

De Jong 1× 10−5 1× 10−5 8.6 × 10−6 4× 10−6

Griewank 8× 10−6 1× 10−5 0.05 0.02
Rastrigin 2× 10−5 3× 10−5 7× 10−4 3× 10−4

Rosenbrock 0.38 0.44 0.11 0.12
Schwefel 6.73 3.4 48.55 23.65

n
=

1
0
0

Ackley 0.006 0.0009 2.57 0.14
De Jong 0.0003 0.0002 0.03 0.01
Griewank 0.009 0.008 3.66 0.79
Rastrigin 0.003 0.002 0.005 0.0006

Rosenbrock 107.65 26.12 91.92 56.92
Schwefel 0.33 0.05 3054.05 290.62

A Simulated Annealing Algorithm for GPU Clusters 757

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

N
o
rm

al
iz

ed
ti

m
e

2 4 6 8 10 12 14 16

Number of thread blocks per machine

1 machine

2 machines

8 machines

16 machines

Fig. 1. Execution times for various cluster sizes. The results were normalized to the
shortest time in each run. Each block contained 64 threads.

For all 100 dimensional problems, apart from the Rosenbrock’s Valley, TLSA
has provided more accurate results than MHCS. For this function, however, the
minimum estimated by both techniques lies relatively far from the optimal one.
Furthermore, high standard deviation values indicate significant divergence of
solutions obtained in the consecutive runs of the algorithm. Therefore, before as-
sessing the results for this function, the number of iterations should be increased
until the solutions are more accurate.

The tests with different number of machines in the GPU cluster have revealed
almost ideal scalability of the upper level, which confirms the expected theoret-
ical results. Multiple runs of the algorithm on the 16 node cluster achieved a
mean speedup of around 15.3 compared to a single-GPU environment.

A more interesting aspect is the scalability with regard to the number of GPU
threads in each machine. The obtained results, presented in figure 1, demonstrate
that the number of threads can be increased only up to some point without fur-
ther decrease in the achieved speedup. This optimal number of threads is tightly
connected to the number of stream processors of the underlying graphic process-
ing unit. An important observation is that the general trend of the increase in
runtimes presented in figure 1 is similar regardless of the number of machines in
the cluster.

The performed experiments show that in case of computationally hard prob-
lems our approach will with high probability perform better than the standard
MHCS technique. This however depends greatly on the complexity of the op-
timized function and the number of its variables. The main strength of the
proposed two-level architecture is the greater number of threads that can be run

758 M. Zbierski

in parallel. For instance, in our test roughly several thousand threads were used
in the whole GPU cluster, compared to sixteen in case of the SUN16 machine.
This transfers into the ability to alter many more dimensions in parallel, rather
than consider them sequentially, as it would be the case with the traditional ap-
proach. However, when the number of function dimensions is close to the number
of threads of the one-level SA algorithm, this advantage might disappear.

Our technique might also be preferable with less complex functions when the
ultimate result precision is desirable. As the experiment has shown, our algo-
rithm can sometimes provide more accurate solutions than MHCS even for func-
tions with small number of variables. However, it cannot be determined a priori
whether it would be the case for the given problem. We have presented sample
functions (De Jong and Rosenbrock’s Valley) where the traditional approach had
been more effective.

5 Conclusion

We have presented a new approach to Simulated Annealing by developing a two-
level parallel algorithm designed to perform especially well in GPU clusters. The
main advantage of TLSA over traditional methods is that it is able to perform
significantly more independent SA steps in parallel. This is vital especially for
problems with a considerable number of variables. We have demonstrated that in
some cases our algorithm can achieve the same result precision as other parallel
SA methods even several dozen times faster.

The accuracy of the obtained results is however strictly related to the char-
acteristics of the optimized functions. As we have mentioned earlier, the perfor-
mance of our approach might be reduced for some less complicated problems,
mostly because of the low number of variables. Furthermore, we need to remem-
ber that some problems are not suited for the GPU architectures, for instance
due to requirements on the memory size, inconsistent memory access patterns
or frequent data exchange between CPU and GPU memory. In such cases it is
therefore still better to use the CPU-based techniques, such as MHCS or other
parallel Simulated Annealing algorithm.

We believe that GPU clusters will become even more popular in the future,
which will result in increased interest in efficient and practical algorithms de-
signed for execution in such environments. Considering other approaches to Sim-
ulated Annealing rather than the MHCS we have used, might lead to obtaining
even better results. The future work might also include the adaptation of other
Monte Carlo methods for GPU clusters.

References

1. Boissin, N., Lutton, J.-L.: A parallel simulated annealing algorithm. Parallel Com-
puting 19(8), 859–872 (1993)

2. Choong, A., Beidas, R., Zhu, J.: Parallelizing Simulated Annealing-Based Place-
ment Using GPGPU. In: Proceedings of the 2010 International Conference on Field
Programmable Logic and Applications, pp. 31–34 (2010)

A Simulated Annealing Algorithm for GPU Clusters 759

3. Debudaj-Grabysz, A., Czech, Z.: Theoretical and Practical Issues of Parallel Simu-
lated Annealing. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski,
J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 189–198. Springer, Heidelberg (2008)

4. Frost, R., Heineman, P.: Simulated annealing: A heuristic for parallel stochastic
optimization. Tech. rep., San Diego Supercomputer Center (1997)

5. Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Comput-
ing, 2nd edn. Addison Wesley, Harlow (2003)

6. Greening, D.R.: Parallel simulated annealing techniques. Physica 42, 293–306
(1990)

7. Han, Y., Roy, S., Chakraborty, K.: Optimizing simulated annealing on GPU: A case
study with IC floorplanning. In: Proceedings of the 12th International Symposium
on Quality Electronic Design, pp. 1–7 (2011)

8. Ingber, L.: Simulated annealing: Practice versus theory. Mathematical Computer
Modelling 18(11), 29–57 (1993)

9. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–680 (1983)

10. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Trans. Model. Comput.
Simul. 8(1), 3–30 (1998)

11. Molga, M., Smutnicki, C.: Test functions for optimization needs (2005),
http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf

12. NVIDIA: CUDA C programming guide (2010),
http://developer.download.nvidia.com/compute/cuda/3 2 prod/

toolkit/docs/CUDA C Programming Guide.pdf

13. NVIDIA: CUDA CURAND library (2010),
http://developer.download.nvidia.com/compute/cuda/3 2 prod/

toolkit/docs/CURAND Library.pdf

14. Özdamar, L., Demirhan, M.: Experiments with new stochastic global optimization
search techniques. Comput. Oper. Res. 27, 841–865 (2000)

15. Onbaşoğlu, E., Özdamar, L.: Parallel simulated annealing algorithms in global
optimization. Journal of Global Optimization 19, 27–50 (2001)

16. Ryoo, S., Rodrigues, C., Stone, S., et al.: Program optimization carving for GPU
computing. Journal of Parallel and Distributed Computing 68(10), 1389–1401
(2008)

17. Sosnowski, J., Tymoczko, A., Gawkowski, P.: An Approach to Distributed
Fault Injection Experiments. In: Wyrzykowski, R., Dongarra, J., Karczewski, K.,
Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 361–370. Springer,
Heidelberg (2008)

18. Thomas, D.B., Luk, W.: GPU optimised uniform random number generation,
http://www.doc.ic.ac.uk/~dt10/research/gpu_rng/gpu_warp_rng.pdf

19. Verhoeven, M., Aarts, E.: Parallel local search. Journal of Heuristics 1, 43–65 (1995)
20. Zbierski, M.: Analysis of a CUDA-based distributed system in the context of se-

lected Monte Carlo methods. Master’s thesis, Warsaw University of Technology
(2011)

http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CURAND_Library.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CURAND_Library.pdf
http://www.doc.ic.ac.uk/~dt10/research/gpu_rng/gpu_warp_rng.pdf

Author Index

Adrjanowicz, Lukasz I-357
Aguilar-Cornejo, Manuel I-720
Amorim, Ronan Mendonça II-111
Araujo, Filipe I-92
Arbenz, Peter II-302
Axelsson, Owe I-366
Ayala, Orlando II-401

Baboulin, Marc I-133
Bader, David A. I-286
Ba�la, Piotr I-276, I-317, II-191
Balcerek, Bart�lomiej I-317
Balis, Bartosz II-131
Bartosiewicz, Pavel II-496
Bawidamann, Uwe II-71
Bazyd�lo, Marcin I-20
Becker, Dulceneia I-133
Bendjoudi, Ahcène I-559
Benedyczak, Krzysztof II-191
Benner, Peter I-549
Berka, Tobias II-81
Bezy-Wendling, Johanne I-376
Bielecki, W�lodzimierz I-307
Biferale, Luca I-640
Blaheta, Radim I-366
Blas, Javier Garcia I-740
Blazewicz, Jacek II-262
B�lażewicz, Marek I-337
B�locho, Miros�law I-255
Blomquist, Frithjof II-457
Boccia, Vania I-700
Bollhöfer, Matthias II-313
Bonfiglioli, Aldo II-313
Boryczko, Krzysztof I-599
Bosak, Bartosz II-262
Bowser, Samuel S. II-588
Bożejko, Wojciech II-1
Brent, Richard P. I-609
Brewer, Eric A. II-281
Brodecki, Bartosz II-608
Brzeziński, Jerzy I-30, I-40
Bubak, Marian I-317, II-131
Buenabad-Chávez, Jorge I-720
Burak, Dariusz II-323

Burtseva, Larisa II-61
Bzowski, Krzysztof II-381

Campobasso, Sergio II-313
Campos, Fernando Otaviano II-111
Carns, Philip I-10
Carothers, Christopher I-10
Carpentieri, Bruno II-313
Carracciuolo, Luisa I-700
Castro-Garćıa, Miguel A. I-720
Castro-Garcia, Yair II-61
Chakroun, Imen I-559
Chapuis, Guillaume II-272
Chen, Weiwei II-11
Chikhi, Rayan II-272
Chlebiej, Michal II-191
Chrobot, Arkadiusz II-141
Chudzik, Micha�l II-323
Čiegis, Raimondas II-333
Ciżnicki, Mi�losz II-343
Clematis, Andrea I-347
Colmenares, José I-347
Cope, Jason I-10
Corbin, Tyler II-101
Cotronis, Yiannis I-589
Coviello, Giuseppe I-740
Crouseilles, Nicolas II-221
Crume, Adam I-10
Cytowski, Maciej I-710
Czarnul, Pawe�l II-151
Czech, Zbigniew J. I-255

D’Agostino, Daniele I-347
D’Ambrosio, Donato II-533
D’Amore, Luisa I-690
Decherchi, Sergio I-347
Deelman, Ewa II-11
Deniziak, Stanislaw I-406
Dif-Pradalier, Guilhem II-221
Dimitrakopoulou, Katerina A. I-416
Domı́nguez-Domı́nguez, Santiago I-720
Dongarra, Jack I-133, I-661, I-730
dos Santos, Rodrigo Weber II-111
Drozdowski, Maciej II-21

762 Author Index

Duda, Jerzy II-429
Duda, Piotr I-427, I-435, I-443
Dudek, Pawe�l I-266
Dutka, �Lukasz I-317
Dwornik, Maciej II-353
Dwornikowski, Dariusz I-30, II-618
Dyk, Grzegorz II-131
Dymova, Ludmila II-439
Dzwinel, Witold II-578

Ediger, David I-286
Emans, Maximilian I-651, II-361
Er, Meng Joo I-443, I-480, I-530
Ezzatti, Pablo I-549

Filocha, Maciej I-317
Foster, Blake I-569
Francuzik, Szymon I-20
Fras, Mariusz I-327
Fry, Christopher II-101
Funika, W�lodzimierz II-171

Galizia, Antonella I-347
Gansterer, Wilfried N. I-235
Ganzha, Maria I-173
Gawron, Piotr II-262
Gawroński, Przemys�law II-543
Gehweiler, Joachim II-31
Gepner, Pawel I-194
G ↪ezikiewicz, Hubert II-628
Giraud, Mathieu II-292
Giunta, Giulio I-740
Goesele, Michael I-297
Gondzio, Jacek I-681
Grabowski, Wojciech W. II-252, II-401
Grabska, Ewa I-451
Grandgirard, Virginie II-221
Grzelachowski, Grzegorz I-337
Gustavson, Fred G. I-60, I-122

Ha, Soonhoi I-579
Hagenauer, Helge II-81
Hall, Julian I-143, I-681
Hamacher, Kay I-297
Hapla, Vaclav I-152
Haupt, Tomasz II-161
Hayashi, Yoichi I-427, I-461, I-490
Hernández, Apolo H. I-720
Herrero, José R. I-60
Hetmaniok, Edyta I-470

Hiltebrand, Andreas II-302
Hodgkinson, Luqman II-281
Hoffgaard, Franziska I-297
Horak, David I-152
Horstemeyer, Mark F. II-161
Hrtus, Rostislav I-366
Huangfu, Qi I-143

Isaila, Florin I-740

Jakl, Ondřej I-366
Jankiewicz, Krzysztof II-628
Jankowska, Malgorzata A. II-447
Jarynowski, Andrzej II-543
Javed, Noman II-91
Jaworski, Maciej I-480, I-490, I-539
Jocksch, Andreas I-163
Jung, Hanwoong I-579
Jurczuk, Krzysztof I-376
Juszczyszyn, Krzysztof II-648

Kaczmarek, Pawe�l Lech II-638
K̊agström, Bo I-80
Kalewski, Micha�l I-40, II-608
Kapturczak, Marta I-112
Kasprzak, Marta II-262
Kemloh Wagoum, Armel Ulrich I-386
Kempa, Wojciech M. II-242
Kierzynka, Micha�l II-343
Kitowski, Jacek I-317, II-201, II-232
Kjelgaard Mikkelsen, Carl Christian

I-80
Kling, Peter II-31
Kluszczyński, Rafa�l I-276
Kobusińska, Anna II-618
Kobusiński, Jacek II-618
Kohut, Roman I-366
Kolaczek, Grzegorz II-648
Konstantinidis, Elias I-589
Koperek, Pawe�l II-171
Kosturski, Nikola II-211
Krämer, Walter II-457
Kraska, Krzysztof I-307
Kretowski, Marek I-376
Kryza, Bartosz II-201
Kubanek, Mariusz I-357
Kubica, Bart�lomiej Jacek II-467, II-477
Kuczyński, Tomasz I-337
Ku�lakowski, Krzysztof II-543

Author Index 763

Kulisch, Ulrich II-484
Kupczak, Arkadiusz II-570
Kurdziel, Marcin I-599
Kurkowski, Miros�law I-266
Kurowski, Krzysztof I-317, I-337,

II-262, II-343
Kurowski, Marcin J. II-419
Kuźniar, Maciej II-578
Kwiatkowski, Jan I-327

Laccetti, Giuliano I-700, I-740
Lančinskas, Algirdas II-371
Lapegna, Marco I-700
Lasota, Maciej II-141
Latu, Guillaume II-221
Lavenier, Dominique II-272
Leśniak, Andrzej II-411
Lirkov, Ivan I-173
Liu, Ning I-10
Loulergue, Frédéric II-91
Ltaief, Hatem I-661
Ludwiczak, Bogdan I-337, II-343
�Lukawski, Grzegorz II-141
Luszczek, Piotr I-661, I-730

Maciejewski, Micha�l II-551
Mahadevan, Sridhar I-569
Malinowski, Janusz II-570
Maltzahn, Carlos I-10
Manis, George II-121
Mantovani, Filippo I-640
Marcellino, Livia I-690
Marciniak, Pawe�l II-21
Marcinkowski, Leszek I-70
Margenov, Svetozar II-211
Maśko, �Lukasz I-50, II-51
Mastoras, Aristeidis II-121
Meira Jr., Wagner II-111
Melab, Nouredine I-559
Mele, Valeria I-690, I-700
Meyer auf der Heide, Friedhelm II-31
Meyerhenke, Henning I-286
Miet�la, Agnieszka II-561
Mishra, Siddhartha I-245
Misyrlis, Michail N. I-416
Mizio�lek, Jan Krzysztof II-101
M�locek, Pawe�l I-630, II-232
Montella, Raffaele I-740
Morzy, Tadeusz II-628
Mosurska, Zofia I-317

Müldner, Tomasz II-101
Murray, Lawrence M. I-609
Murri, Riccardo I-183

Nagel, Kai II-551
Nandapalan, Nimalan I-609
Napiera�la, Krystyna II-343
Nehmeier, Marco II-71
Neves, Samuel I-92
Niezgódka, Marek I-710
Nikolow, Darin II-232
Nogina, Svetlana I-671
Nowak, Bartosz A. I-501
Nowakowski, Micha�l II-638
Nowicki, Robert K. I-501

Obrist, Dominik II-302
Olas, Tomasz I-194
Oliveira, Rafael Sachetto II-111
Onderka, Zdzislaw II-181

Paj ↪ak, Robert I-317
Palacz, Wojciech I-451
Palak, Bartek I-317
Palczyński, Jaros�law II-343
Panka, Maciej II-191
Paprzycki, Marcin I-173, I-225
Parishani, Hossein II-401
Pawlak, Grzegorz II-21
Pi ↪atkowski, �Lukasz I-30
Piech, Henryk I-102
Piersa, Jaroslaw I-511
Pi ↪eta, Anna II-353
Pietruczuk, Lena I-461, I-521, I-530
Pilarek, Mariusz I-206, II-439
Piontek, Tomasz II-262
Piotrowski, Zbigniew P. II-252
Pivanti, Marcello I-640
P�laza, Maciej II-21
Pozzati, Fabio I-640

Quarati, Alfonso I-347
Quintana-Ort́ı, Enrique S. I-549

Radecki, Marcin I-317
Rauch, Lukasz II-381
Remón, Alfredo I-549
Rendell, Alistair P. I-609
Riedy, E. Jason I-286

764 Author Index

Rocchia, Walter I-347
Rocha, Bernardo Martins II-111
Rodzaj, Artur II-381
Rojek, Krzysztof II-391
Román-Alonso, Graciela I-720
Romano, Diego I-690
Rongo, Rocco II-533
Rosa, Bogdan II-401, II-419
Rosa, Javier II-281
Ross, Robert I-10
Ruskin, Heather J. II-598

Saougkos, Dimitris II-121
Sapiecha, Krzysztof II-141
Sasak, Piotr II-608
Sawerwain, Marek I-215
Sbragaglia, Mauro I-640
Scagliarini, Andrea I-640
Schifano, Sebastiano Fabio I-640
Schwab, Christoph I-245
Sedukhin, Stanislav G. I-225
Seredynski, Franciszek II-41
Sevastjanov, Pavel II-496, II-504
Seyfried, Armin I-386
Siedlecka-Lamch, Olga I-102
Sikora, Wies�lawa II-570
Skalna, Iwona II-429, II-513
S�lota, Damian I-470
S�lota, Renata I-317, II-232
Ślusarczyk, Grażyna I-451
Smith, Edmund I-681
Smyk, Adam I-396
Śniegowski, Piotr I-337
Sobaniec, Cezary I-20
Sobański, Grzegorz I-30
Sørensen, Hans Henrik Brandenborg

I-619
Spataro, William II-533
Srebrny, Marian I-266
Steffen, Bernhard I-386
Stelmach, Marcin II-201
Sterzel, Mariusz I-317
Straková, Hana I-235
Strug, Barbara I-451
Sukhija, Nitin II-161
Šukys, Jonas I-245
Swiercz, Aleksandra II-262
Switalski, Piotr II-41
Szepieniec, Tomasz I-317
Szerszen, Krzysztof I-112

Szostek, Kamil II-411
Szustak, Lukasz II-391
Szychowiak, Micha�l II-608
Szyszka, Barbara II-523

Tchernykh, Andrei II-61
Tikhonenko, Anna II-504
Tikhonenko, Oleg II-242
Tkacz, Kamil II-496
Toledo, Elson Magalhães II-111
Tomas, Adam I-357
Topa, Pawe�l I-630, II-578, II-588
Toschi, Federico I-640
Tran, Tuan Tu II-292
Travis, Jeffrey L. II-588
Tripiccione, Raffaele I-640
Trunfio, Giuseppe A. II-533
Tudruj, Marek I-50, I-396, II-51
Tumanova, Natalija II-333
Tura�la, Micha�l I-317
Tylman, Rafa�l I-317
Tyszka, Jaros�law II-588

Uchroński, Mariusz II-1
Unterweger, Kristof I-671

Vajteršic, Marian II-81
Varré, Jean-Stéphane II-292
Vasic, Jelena II-598
Villagomez-Ramos, Victor Manuel II-61
Vutov, Yavor II-211

Waechter, Michael I-297
Wanat, Iwona II-561
Wang, Lian-Ping II-401
Wang, Rui I-569
W ↪as, Jaros�law II-561
Waśniewski, Jerzy I-1, I-60
Wawrzyniak, Dariusz I-20, I-40
Weinzierl, Tobias I-671
Wiatr, Kazimierz I-317
Widmer, Sven I-297
Wieczorek, Karol I-406
Wodecki, Mieczys�law II-1
Wójcik, Damian K. II-419
Wójcik, Micha�l II-151
Woźniak, Adam II-477
Wyrzykowski, Roman I-194, I-206
Wyszogrodzki, Andrzej A. II-252

Author Index 765

Yaurima-Basaldua, Victor Hugo II-61
Yi, Youngmin I-579

Zbierski, Maciej I-750
Zemen, Thomas I-235

Zielonka, Adam I-470
Ziemiański, Micha�l Z. II-419
Zieniuk, Eugeniusz I-112
Žilinskas, Julius II-371
Zurada, Jacek M. I-435, I-521, I-539

	Title
	Preface
	Organization
	Table of Contents
	A Look Back: 57 Years of Scientific Computing
	Parallel/Distributed Architectures and Mobile Computing
	Modeling a Leadership-Scale Storage System
	Introduction
	The ALCF Computing Environment
	Modeling the ALCF Computing Environment
	Model Validation and Discussion
	Related Work
	Conclusions and Future Work
	References

	Combining Optimistic and Pessimistic Replication
	Introduction
	Assumptions and System Model
	The Concept
	Related Work
	Conclusions
	References

	K-Resilient Session Guarantees Synchronization Protocol for Mobile Ad-Hoc Networks
	Introduction
	The Session Guarantees Environment
	The SGASP Protocol
	Environment Assumptions
	Data Structures
	General Idea
	Protocol Description and Examples

	Simulation Evaluation of SGASP
	Simulation Parameters
	Basic Simulation Results

	Conclusions
	References

	On Time Constraints of Reliable Broadcast Protocols for Ad Hoc Networks with the Liveness Property
	Introduction
	System Model
	Nodes and Communication
	Network Liveness Requirement

	Crash-Tolerant Broadcast Protocols
	Analysis of Time Constraints of the Broadcast Protocols
	Conclusions
	References

	Data Transfers on the Fly for Hierarchical Systems of Chip Multi-Processors
	Introduction
	System Architecture and Reads on the Fly in Local CMP Networks
	Reads on the Fly on L2–Memory Busses
	Data Reads on the Fly during Global Inter–CMP Transfers
	Experimental Results
	Conclusions
	References

	Numerical Algorithms
	New Level-3 BLAS Kernels for Cholesky Factorization
	Introduction
	Introduction to BPF

	The _POTF3 Routines
	_POTF3 Routines Can Use a Larger Block Size nb

	Experimental Results
	Conclusions
	References

	Parallel Preconditioner for Nonconforming Adini Discretization of a Plate Problem on Nonconforming Meshes
	Introduction
	Discrete Problem
	Additive Schwarz Method Preconditioner
	Implementation

	Condition Number Estimates
	References

	Incomplete Cyclic Reduction of Banded and Strictly Diagonally Dominant Linear Systems
	Introduction
	The Algorithm
	The Main Result
	Numerical Experiments
	References

	Fast and Small Nonlinear Pseudorandom Number Generators for Computer Simulation
	Introduction
	Related Work
	Tyche
	Initialization
	The Algorithm
	The MIX Function

	Analysis of Tyche
	Design
	Period
	Parallelization

	A Faster Variant
	Experimental Evaluation
	Performance
	Statistical Quality Tests

	Conclusion
	References

	Parallel Quantum Algorithm for Finding the Consistency of Saaty’s Matrices
	Introduction
	Vector Variants for Saaty's Matrices
	Eigenvalues of Relative Judgements Operator and Assumption for Correction of Consistency
	The Physical Interpretation of Quantum Conversion
	Parallel Superposition of Quantum Matrix Characteristics in Simulation Variant
	Conclusions
	References

	A Numerical Approach to the Determination of 3D Stokes Flow in Polygonal Domains Using PIES
	Introduction
	PIES for the Stokes Equation on Polygonal Domains
	Approximation of the Boundary Functions over the Surface Patches
	Solutions in the Domain

	Numerical Examples
	Example 1
	Example 2

	Conclusions
	References

	Parallel Numerics
	Cache Blocking for Linear Algebra Algorithms
	Introduction
	Dimension Theory and Its Relation to Standard CM and RM Arrays of Fortran and C
	Submatrices Aij of A in Fortran and C
	Generalization of Standard Format to RB format
	Changes to RB Format Have Happened
	Tutorial on the Essence of Dimension

	Converting Standard Format to RB Format In-Place via Vector Transposition
	Dense Linear Algebra Algorithms for MC Use RB or SB Format
	The VIPX Vector Transpose Algorithm
	Interpretation of Vector Transposition as a Form of Cache Blocking for MC

	Some Early IBM History on Cache Blocking
	Conclusions and Summary
	References

	Reducing the Amount of Pivoting in Symmetric Indefinite Systems
	Introduction
	Tile-Wise Pivoting
	An Alternative to Pivoting in Symmetric Systems
	Numerical Experiments
	Conclusion and Future Work
	References

	A High Performance Dual Revised Simplex Solver
	Introduction
	Background
	Suboptimization
	Parallelising the Simplex Method

	A Parallel Scheme and Its Implementation
	Results
	Conclusions
	References

	TFETI Coarse Space Projectors Parallelization Strategies
	Introduction
	FETI-1 and TFETI
	Coarse Problem Parallelization Strategies
	Data Distribution
	Implementation of the Dual Actions

	Numerical Experiments
	Conclusion and Further Work
	References

	FFTs and Multiple Collective Communication on Multiprocessor-Node Architectures
	Introduction
	Bruck's Algorithm
	Sparse Bruck Algorithm
	FFTs Using 2D Decomposition
	Experimental Results
	Conclusions
	References

	Performance Analysis of Parallel Alternating Directions Algorithm for Time Dependent Problems
	Introduction
	Stokes Equation
	Parallel Alternating Directions Algorithm
	Formulation of the Scheme
	Parallel Algorithm

	Experimental Results
	Conclusions and Future Work
	References

	A Novel Parallel Algorithm for Gaussian Elimination of Sparse Unsymmetric Matrices
	Introduction
	Description of the ``Rheinfall'' Algorithm
	Variant: Computation of Matrix Rank
	Variant: LUP Factorization
	Pivoting

	Sample Implementation
	Sequential Performance
	Integer Performance
	Floating-Point Performance

	Parallel Performance and Scalability
	Experimental Results

	Conclusions and Future Work
	References

	Parallel FEM Adaptation on Hierarchical Architectures
	Introduction
	Parallel FEM Adaptation
	Mesh Decomposition in NuscaS
	Parallel Algorithm for Mesh Adaptation
	Performance Results

	Hybrid Approach
	Adapting Pure MPI Approach to Hardware Topology of Clusters
	Conclusion and Future Work
	References

	Solving Systems of Interval Linear Equations in Parallel Using Multithreaded Model and “Interval Extended Zero” Method
	Introduction
	Efficient Implementation of Interval Arithmetic
	Solving Interval Linear Systems Using ``Interval Extended Zero'' Method
	Parallel Implementation of the Interval Block Gaussian Elimination Algorithm
	OpenMP and SMP Superscalar Parallel Environments
	Interval Block Gaussian Elimination Algorithm Implementation Using OpenMP and SMP Superscalar

	Conclusions
	References

	GPU-Based Parallel Algorithms for Transformations of Quantum States Expressed as Vectors and Density Matrices
	Introduction
	Basic Information about Quantum Computing Model
	Algorithms for Parallel Processing of Quantum States
	The Measurement of Quantum States as Parallel Reduction Primitive
	Unitary Transformations for States Vectors and Density Matrices

	Performance of Proposed Methods
	Conclusions and Further Work
	References

	Generalizing Matrix Multiplication for Efficient Computations on Modern Computers
	Introduction
	Algebraic Semirings in Scientific Calculations
	Matrix Operations and Computer Hardware: Today and in the Near Future
	Proposed Generalized Multiply-Add Operation
	Data Manipulation by Matrix Multiplication

	Relating BLAS to the Generalized MMA
	Concluding Remarks
	References

	Distributed QR Factorization Based on Randomized Algorithms
	Introduction
	Methodology
	Distributed QR Factorization (dmGS)
	Evaluation of dmGS
	Reliability and Scalability
	Theoretical Analyses and Comparison with Parallel Algorithms

	Conclusions
	References

	Static Load Balancing for Multi-level Monte Carlo Finite Volume Solvers
	Introduction
	Highly Scalable Implementation of MLMC-FVM
	Robust Pseudo Random Number Generation
	A Priori Estimates for Computational Work
	Static Load Balancing
	Implementation Using C++ and MPI
	Variance Computation for Parallel Runs

	Efficiency and Linear Scaling in Numerical Simulations
	Conclusion
	References

	Parallel Non-numerical Algorithms
	A Parallel Algorithm for Minimizing the Number of Routes in the Vehicle Routing Problem with Time Windows
	Introduction
	Parallel Algorithm
	The MPI Implementation
	Experimental Results
	Conclusions
	References

	Towards Parallel Direct SAT-Based Cryptanalysis
	Introduction
	Feistel Network and DES Cipher
	Feistel Network
	DES Cipher

	Boolean Encoding for Cryptanalysis
	Encoding Feistel Network
	Encoding DES
	Cryptanalysis Procedure

	Optimisation and Parallel Computation
	Conclusion and Future Directions
	References

	Parallel Version of Image Segmentation Algorithm Using Polygonal Markov Fields
	Introduction
	Polygonal Markov Fields
	Segmentation Using Polygonal Markov Fields
	Parallel Simulated Annealing Method
	Exchange Scenarios and Results
	Results for Different Synchronization Scenarios
	Results for Different Number of Threads

	Conclusions
	References

	Parallel Community Detection for Massive Graphs
	Communities in Graphs
	Agglomerative Community Detection
	Defining the Algorithm
	Local Optimization Metrics

	Mapping Our Algorithm to the Cray XMT
	Evaluating Parallel Community Detection
	Parallel Performance
	Community Quality

	Related Work
	Observations
	References

	Is Your Permutation Algorithm Unbiased for n �= 2m?
	Introduction
	Related Work
	Critical Analysis of the Butterfly Permutation Network
	Unbiasedness for n=2m
	Bias for n=2m

	Consistency
	Convergence
	Convergence Speed

	Improvement for the Butterfly Permutation Network
	Experimental Results
	Conclusions and Future Work
	References

	Tools and Environments for Parallel/Distributed/Grid Computing
	Extracting Coarse–Grained Parallelism for Affine Perfectly Nested Quasi–uniform Loops
	Introduction
	Background
	Approach to Extracting Parallelism
	Algorithm Extracting Equivalence Classes for Both Uniform and Quasi–uniform Loops
	Degree of Parallelism
	Time Complexity
	Example

	Experiments
	Conclusions
	References

	Polish Computational Research Space for International Scientific Collaborations
	Introduction
	Goals and Platform Overview
	Innovation in International Context
	Efficient Resource Allocation
	Experimental Workbench
	Overview of Selected Tools and Middleware

	Users, Software Packages and Their Applications
	Software Packages
	Helpdesk System and Training Courses
	Applications

	PL-Grid Platform as Part of European Infrastructure
	Conclusions
	References

	Request Distribution Toolkit for Virtual Resources Allocation
	Introduction
	Design Issues and Related Works
	The Differences between RDM and Other Approaches

	Request Distribution Manager
	The General Architecture of Request Distribution Manager
	Request Distribution Manager Components
	Request Handling and Resource Management

	Preliminary Tests
	Conclusions and Future Work
	References

	Vitrall: Web-Based Distributed Visualization System for Creation of Collaborative Working Environments
	Introduction
	Evolution of the Vitrall System
	Initial Approach
	Second Iteration

	Current Approach
	Management and Execution of Rendering
	Communication Abstraction
	Vitrall Clients
	User Input Processing and Handling
	Data Providers

	Competitive Solutions
	Current and Future Work
	References

	Applications of Parallel/Distributed Computing
	CUDA Accelerated Blobby Molecular Surface Generation
	Introduction
	Related Work
	Blobby Surface Definition
	CUDA Accelerated Blobby Surface Generation
	Scalar Field Generation
	Isosurface Extraction

	Experimental Results
	Conclusions and Future Works
	References

	GPU Accelerated Image Processing for Lip Segmentation
	Introduction
	Previous Work
	Lip Segmentation
	CUDA Implementation
	Performance Results
	Conclusions
	References

	Material Parameter Identification with Parallel Processing and Geo-applications
	Introduction, Framework for Parameter Identification
	Optimization Techniques
	Nelder–Mead Method
	Gradient Gauss–Newton Type Methods
	Genetic Algorithms

	Geo-applications
	APSE – Heat Conduction Problem
	Geocomposites – Local Elastic Properties

	Parallel Processing
	Parallelization of the Forward Problem Solution
	Straightforward Parallelization of the Optimization Techniques
	Numerical Experiments

	Conclusions
	References

	Hierarchical Parallel Approach in Vascular Network Modeling – Hybrid MPI+OpenMP Implementation
	Introduction
	Vascular Model Description
	Vascular Network
	Sequential Algorithm of Vascular Network Development

	Hybrid Parallel Algorithm of Vascular Development
	Two-Level Hybrid Parallel Perfusion Algorithm
	Two-Level Hybrid Parallel Retraction Algorithm

	Experimental Results
	Conclusion
	References

	Runtime Optimisation Approaches for a Real-Time Evacuation Assistant
	Introduction
	Modelling
	The Generalized Centrifugal Force Model
	Event Driven Routing

	Runtime Optimisation
	Simulation Area
	Linked-Cells
	Parallelisation
	Load Balancing
	Results

	Conclusion
	References

	A Parallel Genetic Algorithm Based on Global Program State Monitoring
	Introduction
	FDTD Method Overview
	Computation Partitioning Using a Genetic Algorithm
	Parallelization of a Genetic Algorithm Based on Global Program State Monitoring
	Conclusions
	References

	Applied Mathematics, Neural Networks and Evolutionary Computing
	Parallel Approach to the Functional Decomposition of Logical Functions Using Developmental Genetic Programming
	Introduction
	Functional Decomposition
	Developmental Genetic Programming
	Evolution of the Multilevel Decomposition Strategy
	Genotypes and Phenotypes
	Genetic Operators

	Parallel DGP Model
	Experimental Results
	Conclusions
	References

	The Nine Neighbor Extrapolated Diffusion Method for Weighted Torus Graphs
	Introduction
	The Nine Neighbor Extrapolated Diffusion (NEDF) Method
	Quasi Optimum i
	Determination of Optimum ci(1) and cj(2)
	The Stretched Torus

	Numerical Experiments
	Conclusions and Future Work
	References

	On the Weak Convergence of the Recursive Orthogonal Series-Type Kernel Probabilistic Neural Networks in a Time-Varying Environment
	Introduction
	Main Result
	Experimental Results
	Conclusions
	References

	On the Cesaro Orthogonal Series-Type Kernel Probabilistic Neural Networks Handling Non-stationary Noise
	Introduction
	Main Result
	Experimental Results
	Conclusions
	References

	On the Weak Convergence of the Orthogonal Series-Type Kernel Regresion Neural Networks in a Non-stationary Environment
	Introduction
	Main Result
	Experimental Results
	Conclusions
	References

	A Graph-Based Generation of Virtual Grids
	Introduction
	Hierarchical Graphs
	Grid Representation
	Graph Generation
	Conclusions
	References

	On General Regression Neural Network in a Nonstationary Environment
	Introduction
	Algorithm
	Experimental Results
	Conclusion and Future Work
	References

	Determination of the Heat Transfer Coefficient by Using the Ant Colony Optimization Algorithm
	Introduction
	Ant Colony Optimization Algorithm for Finding the Global Minimum
	Formulation of the Problem
	Numerical Example
	Conclusions
	References

	Learning in a Non-stationary Environment Using the Recursive Least Squares Method and Orthogonal-Series Type Regression Neural Network
	Introduction
	Algorithm
	Convergence of the Algorithm
	Upgrading Procedure for Estimator n()
	Simulations
	Final Remarks
	References

	On the Application of the Parzen-Type Kernel Probabilistic Neural Network and Recursive Least Squares Method for Learning in a Time-Varying Environment
	Introduction
	Algorithm for Learning of Parameter a
	Probabilistic Neural Network for Estimation of Regression Function
	MainResult
	Experimental Results
	Conclusions
	References

	Learning in Rough-Neuro-Fuzzy System for Data with Missing Values
	Introduction
	Rough-Neuro-Fuzzy Systems
	Rough-Neuro-Fuzzy Classifier

	Learning Algorithm
	Back-Propagation Algorithm
	Starting Values and Learning Parameters

	Testing Procedure and Results
	Method of Generation Lacks in Database
	Algorithm of Performance Calculation

	Final Remarks
	References

	Diameter of the Spike-Flow Graphsof Geometrical Neural Networks
	Introduction
	Simulation Model
	Path Length Distribution Results
	Numerical Details
	Conclusion and Future Work
	References

	Weak Convergence of the Recursive Parzen-Type Probabilistic Neural Network in a Non-stationary Environment
	Introduction
	Probabilistic Neural Network
	Simulation Results
	Conclusion and Future Work
	References

	Strong Convergence of the Parzen-Type Probabilistic Neural Network in a Time-Varying Environment
	Introduction
	Algorithm and Main Result
	Simulation Results
	Conclusion and Future Work
	References

	Learning in a Time-Varying Environmentby Making Use of the Stochastic Approximation and Orthogonal Series-Type Kernel Probabilistic Neural Network
	Introduction
	Algorithm
	Main Result
	Experimental Results
	Final Remarks
	References

	Minisymposium on GPU Computing
	Accelerating BST Methods for Model Reduction with Graphics Processors
	Introduction
	Model Reduction Methods Based on SVD
	Solution of the Lyapunov Equation
	Solution of the Riccati Equation

	High Performance Implementation on a Hybrid Architecture
	Hybrid Implementation of the Lyapunov Solver
	Hybrid Implementation of the Riccati Solver
	Remaining Stages of the BST Method

	Numerical Experiments
	Concluding Remarks
	References

	Reducing Thread Divergence in GPU-Based B&B Applied to the Flow-Shop Problem
	Introduction
	GPU-Based Parallel B&B: Issues and Challenges
	Thread Divergence in the Flow-Shop Lower Bound
	Thread-Data Reordering
	Branch Refactoring
	Conclusion and Future Work
	References

	A GPU-Based Approximate SVD Algorithm
	Introduction
	Algorithm
	Overview
	GPU Implementation
	Partitioned Version

	Results
	Conclusions and Future Work
	References

	Automatic CUDA Code Synthesis Framework for Multicore CPU and GPU Architectures
	Introduction
	Related Work
	Motivation: CUDA Programming
	The Proposed CUDA Code Synthesis Framework
	Code Generation for CPU and GPU Communication
	Synchronous/Asynchronous Communication
	Bypass/Clustering Communication

	Experiments
	Matrix Multiplication
	Lane Detection Algorithm

	Conclusions
	References

	Accelerating the Red/Black SOR Method Using GPUs with CUDA
	Introduction
	Related Work
	Red/Black SOR Method
	Implementations
	GPU Implementations
	Common Optimization Strategies

	Performance Results
	Conclusion
	References

	Dense Affinity Propagation on Clusters of GPUs
	Introduction
	Related Work
	Affinity Propagation on Clusters of GPUs
	Performance Evaluation
	Conclusions
	References

	High-Performance Pseudo-Random Number Generation on Graphics Processing Units
	Introduction
	The NVIDIA Compute Unified Device Architecture (CUDA) and the Graphics Processing Unit (GPU)
	Statistical Testing: TestU01
	The Mersenne Twister for Graphic Processors
	CURAND
	Xorgens

	XorgensGP
	Results
	Discussion
	References

	Auto-tuning Dense Vector and Matrix-Vector Operations for Fermi GPUs
	Introduction
	Performance Considerations
	Memory Bound Kernels
	Coalesced Memory Access
	Registers
	Loop Unrolling

	Vector and Matrix-Vector Operations on Fermi GPUs
	Operations on a Vector
	Operations on a Matrix
	Operations on a Transposed Matrix

	Auto-tuning
	Using C++ Templates
	Tuning Parameters

	Results
	Euclidian Norm (SNRM2) on Fermi GPU
	Matrix-Vector Multiplication (SGEMV) on Fermi GPU

	Conclusion
	References

	GPGPU Implementation of Cellular Automata Model of Water Flow
	Introduction
	Model
	Migrating from CPU to GPU

	Results
	Conclusions
	References

	Workshop on Memory and Data Parallelism on Multi- and Manycore Platforms
	A Multi-GPU Implementation of a D2Q37 Lattice Boltzmann Code
	Introduction
	Lattice Boltzmann Methods
	Single GPU Implementation
	Multi-GPU Implementation
	Performance Results and Conclusions
	References

	Combining Smoother and Residual Calculation in v-cycle AMG for Symmetric Problems
	Introduction
	AMG and Its Implementation
	Simultaneous Application of Smoother and Matrix

	Benchmark
	Conclusions and Outlook
	References

	Enhancing Parallelism of Tile Bidiagonal Transformation on Multicore Architectures Using Tree Reduction
	Introduction
	LAPACK Bidiagonal Transformation
	PLASMA Bidiagonal Transformation Using Two-Stage Approach
	Related Work and Relevant Contributions
	Tile Bidiagonal Transformation Using Tree Reduction
	Methodology
	Description of the Computational Kernels
	DAG Analysis

	Experimental Results
	Environment Setting
	Performance Comparisons

	Conclusions and Future Work
	References

	Autotuning of Adaptive Mesh Refinement PDE Solvers on Shared Memory Architectures
	Introduction
	Performance Observations and Model
	Grain-Size Oracle
	Oscillating Search
	Interval Search

	Results
	Summary and Outlook
	References

	GPU Acceleration of the Matrix-Free Interior Point Method
	Introduction
	The Matrix-Free Interior Point Method
	Accelerating Sparse Matrix-Vector Products
	GPU Kernels
	Results

	Conclusions
	References

	Workshop on Models, Algorithms and Methodologies for Hierarchical Parallelism in New HPC Systems
	Deconvolution of 3D Fluorescence Microscopy Images Using Graphics Processing Units
	Introduction
	Inverse Problem and Numerical Approach
	The Problem and Its Discretization
	The FFT-ARL Algorithm

	The GPU Algorithm
	Experiments
	Performance Analysis Considerations

	Conclusions
	References

	HADAB: Enabling Fault Tolerance in Parallel Applications Running in Distributed Environments
	Introduction
	Fault Tolerance and Checkpointing: State of the Art
	HADAB: The Hybrid, Adaptive, Distributed, Algorithm-Based Checkpointing
	HADAB Deployment on the PETSc Conjugate Gradient (CG)
	Tests and Remarks
	Conclusion and Future Works
	References

	Increasing the Efficiency of the DaCS Programming Model for Heterogeneous Systems
	Introduction
	Data Communication and Synchronization Library
	Overview
	Performance Benchmarking

	Optimized Byte Swapping
	Key Optimization Steps
	Result and Usage Details

	Usage Scenario: FFTW Library
	Computational Model
	Performance Measurements

	Summary
	References

	A Software Architecture for Parallel List Processing on Grids
	Introduction
	DLML
	DLML-Grid Architecture
	DLML-Grid Load Balancing Algorithm
	Experimental Evaluation
	Platform Setting and Applications
	Response Time and Load Distribution under N-Queens
	Response Time and Load Distribution under MM

	Related Work
	Conclusions and Future Work
	References

	Reducing the Time to Tune Parallel Dense LinearAlgebra Routines with Partial Execution and Performance Modeling
	Introduction
	Related Work
	Performance Prediction by Correlation
	Execution Model of HPL
	Modeling ScaLAPACK: A Generic Linear Algebra Library
	Quality of Prediction for Extrapolation
	Combined Application of Modeling and Sampled Factorization
	Conclusions and Future Work
	References

	A General-Purpose Virtualization Service for HPC on Cloud Computing: An Application to GPUs
	Introduction
	GVirtuS: General Virtualization Service
	Frontends
	Backends
	Communicators

	Implementing the GPU Virtualization Plug-in
	Experimental Results
	GVirtuS/CUDA Performance Analysis
	Analyzing GVirtuS/CUDA in a Virtual Cluster Environment

	Related Works
	Conclusions and Future Directions
	References

	A Simulated Annealing Algorithm for GPU Clusters
	Introduction
	Basic Concepts of the Processing Platform
	The Proposed Algorithm
	The Lower Level
	The Upper Level

	Experiments and Results
	Conclusion
	References

	Author Index

