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Abstract. This paper revisits previous known-key distinguishers on
generic Feistel-SP ciphers based on rebound attacks. In this paper first
we propose a new 5-round inbound phase that requires 2c computations,
while the previous work requires 22c computations (c is a size of the S-
box). The new method also improves the number of rounds which can be
attacked. Then, we apply the new procedure to Camellia. After several
optimizations for Camellia, it is shown that collisions are efficiently gen-
erated against 9 rounds out of 18 rounds of Camellia-128 including FL
and whitening layers in the compression function modes such as MMO
and Miyaguchi-Preneel modes. The attack on Camellia is verified by a
machine experiment and the generated results are presented in the paper.
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1 Introduction

Block-ciphers are often used as building blocks of secret-less primitives such as
hash functions, hence recently cryptographers have started to evaluate the se-
curity of block-ciphers as hash functions. Known-key distinguishers proposed
by Knudsen and Rijmen [1] are the evidence of this approach, whereas a block-
cipher becomes a fixed permutation for a fixed key. The known-key distinguisher
efficiently detects non-ideal properties of a random instantiation of a fixed per-
mutation, while the same properties cannot be observed in a random permu-
tation with the same complexity. Knudsen and Rijmen presented a known-key
distinguisher on 7-round Feistel ciphers. They also pointed out that their attack
detects collisions in hashing modes such as MMO and Miyaguchi-Preneel modes.

At FSE 2011, Sasaki and Yasuda presented another known-key distinguisher
on Feistel ciphers [2] with the rebound attack proposed by Mendel et al. [3].
They showed that 11 rounds could be attacked if the round function consists
of the subkey addition, S-box applications and the permutation layer. In the
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Table 1. Complexities against Feistel-SP Ciphers. Notations are defined in Sect. 2.

Complexities of Previous Work [2]

N n c r 5-round 11-round 11-round 9-round 9-round 7-round
inbound distinguisher half-collision collision (N − c)-bit coll coll

128 64 8 8 216 216 224 232 − −
128 64 4 16 216 216 224 232 − −
64 32 8 4 216 Impossible Impossible Impossible 224 224

64 32 4 8 28 28 212 216 − −
Complexities of Our Attacks

128 64 8 8 216 216 216 224 − −
128 64 4 16 28 28 216 224 − −
64 32 8 4 216 Impossible Impossible 224 216 Impossible
64 32 4 8 28 28 212 216 − −

hashing modes, the distinguishers are exploited to apply collision attacks or its
variants. Examples of the known-key attack were provided in [4,5,6,2].

A chosen-key distinguisher was firstly proposed by Biryukov and Nikolić [7].
These distinguishers are able to choose the key value. Hash functions are suit-
able subjects to apply chosen-key distinguishing attacks, since the attacker can
control the key values on the hash functions. Several papers have discussed
chosen-key distinguishers on block ciphers [8,9].

In this paper, firstly we revisit the known-key distinguisher against generic
Feistel-SP ciphers by [2]. One of the core techniques of [2] is a 5-round inbound
phase that requires 22c computations, where c is the size of the S-box. We show
that complexity of the 5-round inbound phase can be improved to 2c computa-
tions (i.e. square root of the previous complexity). The new technique makes the
attack possible for more number of rounds. Summary of our results in compari-
son to the previous attacks is shown in Table 1.

In the second part of this paper, we apply the proposed attack on generic
Feistel-SP ciphers to Camellia [10]. Camellia is not a plain Feistel-SP cipher
due to the P operation, FL, and whitening layers, so the attack needs several
modifications. We evaluate Camellia using 128-bit keys including the FL and
whitening layers. The best related work were the key-recovery attacks by Lu et
al. [11] and Li et al. [12], which recover the key for 10 rounds of Camellia-1281.
However, the key-recovery attack does not indicate a faster collision attack than
the birthday attack. We show several attacks on hashing modes of Camellia-128
including collisions for 9 rounds. The results are shown in Table 2.

2 Preliminaries

We introduce the following notations. Recall that many of the block ciphers are
equipped with 128-bit or 64-bit blocks and use 8-bit or 4-bit S-boxes.

1 After the submission, 11-round key recovery attacks have been reported [13,14].
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Table 2. Summary of attack results on Camellia-128 with FL and whitening layers

Target Modes #Rounds Approach Complexity Target structure Reference

Block-Cipher 10 Imp. Diff. 2118 [11]

Hash Function 7 4-sum 232 Ours

Compression Function 9 Half-collision 216 Ours

Compression Function 9 4-sum 240 Ours

Compression Function 9 Collision 248 Ours

’, ’, and ’ represent inbound round, outbound round, and FL layer, respectively.

Fig. 1. Left: Detailed description of the SP round function Right: Simplified one

N : The block length of the cipher (in bits),
n: The word size in bits, equal to the size of the round function (n = N/2).
c: The size of an S-box in bits,
r: The number of S-box sequences, so that r = n/c.

SP Round Function. We denote ciphers with the Feistel network and an
SP-round function by Feistel-SP ciphers, which is specified in Fig. 1.

Key XOR: The round-function input is XORed with a round key Ki.
S-box layer: Each input value is substituted with the output value by S-box.

For simplicity, we assume that the S-box is designed to resist differential and
linear cryptanalysis, like the one in AES [15,16].

Permutation layer: The linear diffusion is introduced to output sequences of
the S-boxes. We make the assumption that the branch number of P is r+1
e.g., a multiplication by an Maximum Distance Separable matrix.

Note that the assumptions on S-box and Permutation layers are not necessary.
In fact, the branch number of the permutation layer of Camellia is not r+ 1. In
addition, Whirlpool [17] adopts a more biased S-box, however Lamberger et al.
[18] showed that the rebound attack for Whirlpool can work similar to AES.

Hashing Modes. Preneel et al. [19] considered all possible configurations of a
compression function built from a block cipher and proved that 12 modes are
secure (providing the block cipher as a family of random permutations indexed
by the key [20]). Given a block cipher EK with a keyK, the compression function
for the so-called MMO mode computes Hi by Hi = EHi−1 (Mi−1) ⊕Mi−1 for
a message Mi−1 and a previous chaining value Hi−1. While the Miyaguchi-
Preneel mode computes Hi by Hi = EHi−1(Mi−1) ⊕Mi−1 ⊕ Hi−1. To build a
hash function, the domain extender must be defined. Because our attack works
on 1-block message, we only assume that the initial value H0 is a fixed constant.
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Fig. 2. A differential path for three round inbound and three round outbounds by [2]

3 Previous and Related Work

3.1 Previous Rebound Attack on Feistel-SP Ciphers

Similarly to Sasaki and Yasuda [2], we are going to use the following notations:

0: A word where all the differences are equal to zero.
1: A word where the difference on the j-th byte position is non-zero (we call

it active) and the differences on the other byte positions are zeros,
F: A word where all the differences are non-zeros.

The goal of the rebound attack is to find a pair of values that satisfies the
truncated differential path. The rebound attack consists of two phases: inbound
and outbound. In the inbound phase, the attacker computes differential path
using the meet-in-the-middle strategy. In the outbound phase, the differential
paths are extended outwards (to the input and output) using either deterministic
or probabilistic arguments. A sample differential path including 3-round inbound
and 3-round outbound phases is given in Fig. 2 (taken from [2]).

The inbound phase starts from the difference (1,0) and ends with (0,1).
Sasaki and Yasuda [2] presented a procedure to find such a path through 3 and
5 rounds with a complexity of r · 22c and r · 22c, respectively.

The outbound phase examines whether a solution of the inbound phase satis-
fies the outbound differential path or not. They showed that the difference (1,0)
goes to the difference (P (1),F) after 3 rounds backward computation, with prob-
ability 1. Similarly, the difference (0,1) results the difference (P (1),F) after 3
rounds forward computation, with probability 1. The outbound phase sometimes
only covers 2 rounds for each direction. In this case, with probability 1, the dif-
ferences (1,0) and (0,1) on the inbound sides result differences (1, P (1)) and
(1, P (1)) after 2 rounds backward and forward computations, respectively.

The 11-round distinguisher is built from a 5-round inbound part followed by
3-round outbound parts in both directions. It allows to find a pair of plaintext
values whose difference is (P (1),F) and a pair of ciphertext values with the
difference (P (1),F). The complexity of this attack is r · 22c. On the other hand,
the complexity of the generic attack is equal to the birthday attack on n − c
bits, which requires 2(n−c)/2 computations. Moreover this does not always work,
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when (N, c) = (128, 4), two bytes must be activated to increase the degree of
freedom, and the complexity is higher, 24c in this specific case.

The 11-round distinguisher was exploited in [2] to attack the hashing modes.
In the MMO and Miyaguchi-Preneel modes, the plaintext and ciphertext are
XORed. Hence, if the left half of the differences in the 11-round distinguisher
is cancelled, the half-state collision is obtained. Several other attacks were pre-
sented in [2]. The attack complexities are summarized in Table 1.

4 New Known-Key Distinguishers on Feistel-SP Ciphers

First of all, we explain the impossibility of the previous 7-round collision attack
in Sect. 4.1. Then an improved 5-round inbound phase will be described in
Sect. 4.2. Finally, in Sect. 4.3, we show that 4-sums can be detected even on the
full state of hashing modes with 11-round Feistel-SP ciphers.

4.1 Flaw of Previous 7-Round Collisions for (N, c) = (64, 8)

It was claimed that collisions could be obtained for 7 rounds with parame-
ters (N, c) = (64, 8) in the MMO and Miyaguchi-Preneel modes [2, Sect.4.4].
Fig. 3 illustrates the attack with 3-round inbound phase and two (2-round)
outbound phases. The attacker first generates a pair of values satisfying the dif-

ferences of the inbound phase, namely (Δ, 0)
3R−−→ (0,∇). Through the outbound

phase, the plaintext difference and ciphertext difference becomes (Δ,P (Δ′)) and
(∇, P (∇′)). It was claimed that Δ = ∇ and Δ′ = ∇′ are satisfied with proba-
bility 2−2c. However, we prove that Δ = ∇ is an impossible event and always
Δ �= ∇.
Lemma 1. Given a 7-round Feistel-SP cipher, the collision attack based on the
rebound attack with 3-round inbound phase and 2-round outbound phases always
fails.
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Proof. Inside the 3-round inbound phase in Fig. 4, to obtain Δ = ∇, the dif-
ference right after the P-layer in the middle round (denoted by #B) must be
0. However, to perform the rebound attack, the difference at #B is always 1.
Hence, Δ = ∇ is never satisfied. ��

4.2 Improved 5-Round Inbound Phase with 2c Computations

In this section, the improved inbound phase with 2c computations is described.
First we give an overview of the attack presented in [2].

First Inbound Phase: A pair of values which follow the differential path is
obtained. 2c solutions are generated with the workload of 2c computations.

Second Inbound Phase: A pair of values for the 4th and 5th inbound rounds
that follow the differential path is obtained. It costs 2c computations.

Merge Inbound Phase: All possible solutions of the first and second inbound
phases are combined in the third inbound round.

Validity Check Phase: Pairs of values generated by the merge inbound phase
are computed from the third inbound round to the first and fifth inbound
rounds, respectively. Then, 1-byte match is performed in both of the first and
fifth rounds. The probability of each match is 2−c, thus 2−2c totally. Finally,
by trying 22c combinations at the merge inbound phase, a pair which satisfies
two matches is obtained.

In our improved attack, the differential path is developed using S-box differential
profile. This approach leads to an attack with better complexity. The core of the
improvement is the merging phase, in which we combine the results of the two
inbound phases so that an n-bit match condition is always satisfied. This reduces
the complexity of each step below by 2c. In more details, we change the merge
inbound phase so that the validity check is carried out in the third and fifth
inbound rounds. We first choose a solution of the first inbound phase from 2c

candidates. Then, at the validity check in the third inbound round, we only
choose solutions of the second inbound phase which satisfy the n-bit condition.
Finally, the validity check at the fifth inbound round succeeds with probability
2−c. By iterating this for 2c candidates of the first inbound phase, we will succeed
the validity check in the fifth round with a negligible cost.

Parallel Check of Differences in the First Inbound Phase. The goal of
the first inbound phase is to find the differential path for the first two inbound
rounds which is shown in Fig. 5. The original attack procedure is as follows [2]:

1. Search for several pairs of differences Δ#Aj and Δ#Bj such that P (Δ#Aj)
and P−1(Δ#Bj) have solutions for all S-boxes in the second inbound round
(bold line in Fig. 5).

2. For each pair, exhaustively try 2c values of #Aj which is denoted by x, and
check if S−1(x)⊕S−1(x⊕Δ#Aj) can cancel Δ#Bj (broken line in Fig. 5).

Step 1 and Step 2 are independently performed. Thus the possibility of the 1-byte
match at Step 2 is never considered during Step 1.
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We notice that fixing the differences Δ#Aj and Δ#Bj for Step 1 immedi-
ately fixes the input and output differences of the active S-box for Step 2. This
indicates that (Δ#Aj , Δ#Bj) determined at Step 1 may not have any solu-

tion for Δ#Aj S−1

−→ Δ#Bj at Step 2. Obviously, spending 2c computations for
such (Δ#Aj , Δ#Bj) at Step 2 is meaningless. In other words, by only choosing
(Δ#Aj , Δ#Bj) which is known to have solutions at Step 1, the probability of
the match at Step 2 is increased.

For any input and output differences of the S-box (ΔI,ΔO) which is known to
have solutions, Pr

[(
S(x)⊕ S(x⊕ΔI)

)
= ΔO

] ≥ 2−c+1, where x is a randomly
chosen value. Hence, the probability increases from 2−c to 2−c+1. So the parallel
check is applied to the match in the fourth and fifth inbound rounds (second
inbound phase). Therefore, the entire probability increases from 2−2c to 2−2c+2.

Attack Procedure. For simplicity, we first assume that all S-boxes are iden-
tical and r and c satisfy c ≥ r + 1 (It only happens for (N, c) = (64, 8)). The
assumption is going to be weakened later on. In the following, we explain the
attack procedure as illustrated in Fig. 6. In Fig. 6, the equivalent transformation
is applied to the third inbound round. The first inbound phase is denoted by red
lines. Similarly, the second inbound phase, the merge inbound phase, and the
validity check are denoted by blue, green and yellow lines, respectively.

First Inbound Phase: Choose a difference at #A (i.e. Δ#A), and compute
P (Δ#A), which is an input to the S-layer in the second inbound round.
Then, choose all differences at #B (i.e. Δ#B) such that the differential
propagation through the active S-box in the first inbound round can have
solutions, namely, ∃x : S(x) ⊕ S(x ⊕ Δ#B) = Δ#A. The number of such
Δ#B is approximately 2c−1. For 2c−1 choices ofΔ#B, compute P−1(Δ#B),
which is an output of the S-layer in the second inbound round. Check if all
S-boxes in the second inbound round have solutions. If the check succeeds,
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for each of the possible solutions, store the corresponding pair of values at
state #B by computing P in the second inbound round and pair of values
at state #E by computing the subkey XOR and then P−1(·). Let T1 be the
table in which these values are stored. T1 is expected to have 2c−1 entries.

Second Inbound Phase: Set Δ#A′ ← Δ#A. Similar to the first inbound
phase, compute 2c−1 solutions of the last two inbound rounds and store the
paired values at #E in table T2.

Merge Inbound Phase: For 2c−1 solutions of the first two inbound rounds
stored in T1 and all solutions (2 solutions on average) of the active S-box in
the first inbound round (at state #D), do the followings: Regarding only the
active byte, compute the value up to the state #C. If the computed value at
state #E matches one of the entries in T2, fix the solution for the last two
rounds to this value. Go to the validity check with this value.

Validity Check Phase: Regarding only the active byte, compute the value up
to the output of the active S-box in the fifth inbound round (#F ). If the
computed difference matchesΔ#A′, the paired values are the valid solutions.
Otherwise, go back to the merge inbound phase.

Attack Evaluation. The complexity of the first inbound phase is 2c 1-round
computations in time and 2c−1 state in memory. The number of solutions over
the P -layer in the second middle round is 2c−1, and for each of them, 2 solutions
are obtained for the active S-box in the first inbound round. Overall, the first
inbound phase produces 2c solutions with a cost of 2c. The evaluation for the
second inbound phase is the same. In the merge inbound phase, the number
of trials is 2c. The match at state #E succeeds with probability 2−c. Since 2c

solutions are stored in T2, we expect to find one match for each trial. Then,
the matched result is computed up to state #F for the validity check. The
success probability is 2−c. Since the merge inbound phase is iterated 2c times,
we expect to find one solution of the validity check. The merge inbound phase
and the validity check require 2c 5-round computations. Finally, one solution of
the inbound phase is computed with 2c 1-round + 2c 1-round + 2c 5-round =
2c 7-round computations and 2c state in memory.

Remarks for Other Parameters. The above attack can also be applied to
other parameters with several minor changes. First of all we explain the case for
c = r. (N, c) = (128, 8) is included in this parameter. In this case, the freedom
degrees will be slightly short in the first inbound phase (Step 5) because only
2c−1 = 2r−1 pairs can be examined. This problem is solved by running the first
inbound phase for two different Δ#A. Hence, the complexity does not change
from 2c, and our procedure can also be applied to the parameter c = r.

The attack is also applied to the cases (N, c) = (128, 4) and (64, 4). We regard
a group of two S-boxes as a big S-box with the size of 2c bits. This gives enough
freedom degrees to find the match of differences over the S-layer. The attack
becomes the same as (N, c) = (128, 8) and (64, 8).
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Impact of the Improvement. Due to the improvement of the complexity of
the 5-round inbound phase, many attacks presented in [2] are improved. The
updated results are summarized in Table 1.

4.3 4-Sums on Compression Function Modes

The notion of 4-sum represents 4 different inputs where the XOR-sum of the
corresponding outputs is 0. The 4-sum is known to have many applications such
as an attack on a random oracle instantiation [21] and on a signature scheme
[22]. In the 11-round attack, the right halves of the plaintext and ciphertext do
not have any property. Thus, the previous attack could only detect a non-ideal
property on the left-half of the state. We explain that 4-sums can be obtained on
the full state in compression function modes e.g. MMO and Miyaguchi-Preneel
modes.

Each solution of the inbound phase produces a pair of outputs whose difference
is the form (P (1),F). Let t1 and t2 be the paired solutions of the inbound phase,
and O(t1) and O(t2) be corresponding outputs. Then, O(t1)⊕O(t2) = (P (1),F).
Assume that you have two pairs (t1, t2) and (t′1, t′2). The second-order difference
(O(t1) ⊕ O(t2)) ⊕ (O(t′1) ⊕ O(t′2)) becomes 0 if O(t1) ⊕ O(t2) = O(t′1) ⊕ O(t′2).
Because O(t1) ⊕ O(t2) takes 2c+n possibilities, 4-sums can be generated with
2(c+n)/2 solutions of the inbound phase due to the birthday paradox.

5 Applications to Camellia and Its Hashing Modes

5.1 Specification of Camellia

Camellia was jointly designed by NTT and Mitsubishi Electric Corporation. It is
widely standardized such as ISO [23], NESSIE [24], and CRYPTREC [25]. This
paper attacks Camellia-128, where both of the key and block sizes are 128 bits.

Let M and K be 128-bit plaintext and secret key, respectively. Eighteen 64-
bit round keys K1, . . . ,K18, four 64-bit whitening keys kw1, . . . , kw4, and four
64-bit subkeys for the FL layer kl1, . . . , kl4 are generated from K. Let Lr and
Rr (0 ≤ r ≤ 18) be left and right 64-bits of the internal state in each round.
The plaintext is loaded into L0‖R0 after the whitening operation, i.e. L0‖R0 ←
M⊕(kw1‖kw2). (L18‖R18) is computed by Lr = Rr−1⊕F (Lr−1,Kr), Rr = Lr−1

for 1 ≤ r ≤ 18. Note that the FL and FL−1 functions are applied to Lr and Rr

for r = 6 and 12. Finally, (L18‖R18)⊕ (kw3‖kw4) is the ciphertext.

Key Schedule. The key schedule takes 128-bit key K as input and firstly pro-
duces another 128-bit valueKA. In our known-key attacks, subkeys are randomly
given values, thus the key schedule function is irrelevant. In chosen-key attacks,
we only need to control the values of kl1, kl2, kl3, and kl4. kl1 is the left 64-bits
of (KA ≪ 30) and kl2 is the right 64-bits of (KA ≪ 30). kl3 is the left 64-bits
of (KL ≪ 77) and kl4 is the right 64-bits of (KL ≪ 77).



96 Y. Sasaki et al.

10100000

<<<1

kliR

kliL

1010 0000

1010 1010

10101010
MSB must not 
be activated

10100000

<<<1

kliR

kliL

1010 0000

1010 0000

10100000

Key values in active 
bytes must be 0

∪∩∪∩
Fig. 7. Differential propagation through FL−1

for known-key (left) and chosen-key (right)

� �

� � �

� � �

�

0

1010 0000

F F 1010 0000F

1010 0000

1010 0000

0 1010 0000

��

��

���

	
��
����

����
����

���

�������������

Fig. 8. 3-round inbound phase
with 2 active bytes

Round Function. The round function consists of the subkey addition, S-layer
and P -layer. For the S-layer, 4 S-boxes are defined. The DDTs for these S-boxes
have the same property as the one for AES. Let (z1‖z2‖ · · · ‖z8) be 64-bit values
input to the P -layer. The output (z′1‖z′2‖ · · · ‖z′8) is computed as follows. Here,
z[s, t, u, · · · ] means zs ⊕ zt ⊕ zu ⊕ · · · . The branch number of P is only 5.

z′1 = z[1, 3, 4, 6, 7, 8], z′3 = z[1, 2, 3, 5, 6, 8], z′5 = z[1, 2, 6, 7, 8], z′7 = z[3, 4, 5, 6, 8],

z′2 = z[1, 2, 4, 5, 7, 8], z′4 = z[2, 3, 4, 5, 6, 7], z′6 = z[2, 3, 5, 7, 8], z′8 = z[1, 4, 5, 6, 7].

FL and FL−1 Functions. The FL function takes a 64-bit value (XL‖XR)
and a 64-bit subkey (klL‖klR) as input and produces a 64-bit value (YL‖YR) by
computing YR =

(
(XL∩klL) ≪ 1

)⊕XR and YL = (YR∪klR)⊕XL, where ∩, ∪,
and ≪ 1 are the logical AND, OR, and a left cyclic shift by 1 bit, respectively.

5.2 Applications to Camellia Hashing Modes

A Small Branch Number in the P -Layer. The attack in Sect. 4 assumes
that the branch number of the P function is r+1, i.e. 9 for Camellia. Otherwise,
P (1) and P−1(1) may not become full active in the first inbound phase. However,
the branch number of the P function in Camellia is 5.

We avoid this problem by activating more bytes at state #A and #B in Fig. 6.
Since increasing the number of active bytes makes the attack inefficient, we need
to choose active byte positions carefully. The conditions of active byte positions
are as follows; 1) Active byte positions for #A and #B must be identical. 2)
The active byte positions of P (Δ#A) and P−1(Δ#B) must be identical.

We first search for a single active byte position satisfying these conditions.
Since the value of r is 8, we have 8 possibilities. Unfortunately, any of the 8
cases cannot satisfy the conditions. We then search to find the positions of two
active bytes. There are

(
8
2

)
= 28 possibilities. The result is shown in Table 3. We

found 8 solutions for two-active byte differences. Hereafter, 5th and 7th bytes
are activated. We also use the notation 10100000 to represent that only 5th and
7th bytes have differences in some states.
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Table 3. Active-byte positions

0th 1st 2nd 3rd 4th 5th 6th 7th

0th × √ × × × × ×
1st × √ × × × ×
2nd × × × × ×
3rd × × × ×
4th

√ √ √
5th

√ √
6th

√

Table 4. Sample solutions of the improved 5-round
inbound phase for Camellia-128 (in hexadecimal)

L �L R �R

Input 3C0EF35D6F89AE61 0F00A20000000000 33F035B96274F068 0000000000000000

Output 32848AF48CE3D7EB 0000000000000000 A383FB0B17307503 2200810000000000

Input 1447452393AF07BF D5006B0000000000 D7A0E862AF8343B9 0000000000000000

Output FD6901A999C97E6C 0000000000000000 CE1249DCA3LC251B C400D40000000000

Input AB131279BE6E5342 3E00780000000000 6EF4FD4CA00881EB 0000000000000000

Output 798EB0992C1C6160 0000000000000000 301DBF0D730C71AD 0600780000000000

Input 62B5DB720A58E01D 33002D0000000000 95AAF7AD94613A12 0000000000000000

Output 8B24C8FAA65E8E33 0000000000000000 D2F68668ADE68225 C6001B0000000000

FL and FL−1 Functions. These functions mix the difference of the half state.
If they are inserted inside the inbound rounds, the differential path would be
broken. Hence, we choose the starting round of our attacks carefully. As shown
in Table 2, the FL-layer is located immediately after the inbound phase. This
avoids inserting the FL-layer in the middle of the inbound phase.

In the following, we analyze the differential propagation through FL and
FL−1. Assume that the FL-layer is used only once immediately after the in-
bound phase. For the FL-layer, the form of the input differences is always
(0, 10100000). It is obvious that 0 results in 0. Therefore, we only need to con-
sider the right half of the state, where 10100000 is input to the FL−1 function.
The differential propagation through FL−1 is described in Fig. 7. Distinguishers
want to keep the number of active bytes low. Hence, in the known-key setting,
distinguishers avoid activating the most significant bit (MSB) in each byte in
order to prevent the difference from propagating through ≪ 1 operation. This
reduces the degrees of freedom while selecting differences. However, there is
enough freedom for the attack to proceed as expected. Note that if the MSB
in each active byte of the key kliL is 1, distinguishers can activate the MSB in
each byte. Such weak keys exist with probability 2−2, and the number of weak
keys is 2128−2 = 2126. In the chosen key scenario, distinguishers choose the key
value. Choosing one subkey value is trivially done with complexity 1 for any key
value. This is because kli is a part of K or KA. If it is a part of K, distinguishers
directly choose the value. If it is a part of KA, distinguishers firstly choose KA

and then invert it to K through the key schedule.
As shown in Table 2, distinguishers need to control two FL-layers in the

chosen-key attacks with 5-round inbound phase. The FL-layer is inserted be-
tween the first and the second rounds of the backward outbound. According
to Fig. 2, the form of the input differences to the inverse of the FL-layer is
(0, 10100000). Therefore, we need to analyze the differential propagation of
(FL−1)−1(10100000), which is equivalent to FL(10100000). The analysis is the
same as the previous one, and we omit it. As a result, if distinguishers can choose
the values of 2 active bytes of the subkey, the form of the output difference is
unchanged from 10100000. Finally, distinguishers need to control two bytes in
KA and two bytes in K. We search for such keys by the brute force manner. The
success probability of this event is 2−16.
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3-Round Inbound Phase and Its Application. The procedure of the 3-
round inbound phase is heavily based on the one in previous work [2]. Our
attack activates 2-bytes, however, we can keep the attack complexity unchanged
with some optimization. The procedure is described in Fig. 8. The attack first
chooses the differences of state #A and #B so that the differences can match
over the S-layer in the second inbound round. If they match, one solution for all
bytes are chosen and the corresponding paired values denoted by red in Fig. 8
are computed. Then, the attack searches for the value of each active byte at
state #A that can satisfy the difference of the same byte position at state #A′.
Finally, the 3-round inbound phase is carried out with 28 computations, and
once it is satisfied, up to 240 solutions can be generated for free.

As listed in Table 2, the 3-round inbound phase has 3 applications. Due to the
page limitation, we only explain 4-sums on the 7-round hash function. Hereafter
we denote by 2 the difference form of 10100000, and by 4 the difference form of

10101010. The differential path that we use is (2, P (2))
2ndR−−−→ (0,2)

3rdR−−−→ (2,0)

for the first outbound rounds, (2,0)
4thR−−−→ (F,2)

5thR−−−→ (2,F)
6thR−−−→ (0,2) for

the inbound rounds, and (0,2)
FL−−→ (0,4)

7thR−−−→ (4,0)
8thR−−−→ for the second

outbound rounds. The number of active bytes increases by the FL-layer. After

the feed-forward, the output should be
(
2⊕4, P (2)⊕P (4)

)
, which is in the space

of (4, P (4)). With the technique in Sect. 4.3, if we generate 28∗4 = 232 pairs,
differences on two pairs collide, and form a 4-sum. Since 3-round inbound phase
generates up to 240 solutions for free, our attack requires 232 computations, which
is equivalent to the information theoretic bound to generate a 4-sum (2128/4),
and faster than the generalized birthday attack.

5-Round Inbound Phase and Its Application. The procedure for the 5-
round inbound phase is basically the same as the generic case while activating
two S-boxes in Camellia is the same as activating 1 big S-box of the size 2c = 16
bits. Hence, one solution of the 5-round inbound phase is obtained with 216

in both time and memory. This leads to collisions on the 9-round compres-

sion function. The differential path that we use is (2, P (2))
6thR−−−→ (0,2)

FL−−→
(0,2)

7thR−−−→ (2,0) for the first outbound rounds, (2,0)
8thR−−−→ (F,2)

9thR−−−→
(0,F)

10thR−−−−→ (F,0)
11thR−−−−→ (2,F)

12thR−−−−→ (0,2) for the inbound rounds, and

(0,2)
FL−−→ (0,2)

13thR−−−−→ (2,0)
14thR−−−−→ (2, P (2)) for the second outbound rounds.

The difference of the output of the compression function has the form (2, P (2)).
Hence, if we generate such pairs 232 times, the difference is 0 in one pair. With
the improved 5-round inbound phase in Sect. 4.2, 1 solution of the inbound phase
is generated with 216 computations. Hence, 232 solutions are generated with 248

computations, which is faster than the birthday attack on a 128-bit value.

5.3 Experiments and Generated Data

To verify the attacks, we implemented the chosen-key 5-round inbound phase.
First of all, a valid key is chosen to bypass the FL−1 layer after round 6. We find
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these keys in the expected time of about 216 computations in average. Then, the
chosen keys are used to find solutions of the new 5-round inbound phase. Table 4
shows some of the found solutions. Most of the solutions are found in less than
28 computations in our experiments. Therefore the experimental complexity is
less than predicated in theory (i.e. 216 computations).

6 Concluding Remarks

In this paper, we revisited the known-key attacks on generic Feistel-SP ciphers.
Our main contribution is a new 5-round inbound phase which results in an
improved complexity and works for a high number of rounds. Then with several
modifications, the framework was applied to Camellia-128. Our results have been
confirmed by computer simulations. We have presented several new attacks on
the hashing modes of Camellia-128 including a collision attack on 9 rounds.
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