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Abstract. In this paper, we present an identity-based encryption (IBE)
scheme from lattices with efficient key revocation. We adopt mul-
tiple trapdoors from the Agrawal-Boneh-Boyen and Gentry-Peikerty-
Vaikuntanathan lattice IBE schemes to realize key revocation, which
in turn, makes use of binary-tree data structure. Using our scheme, key
update requires logarithmic complexity in the maximal number of users
and linear in the number of revoked users for the relevant key authority.
We prove that our scheme is selective secure in the standard model and
under the LWE assumption, which is as hard as the worst-case approxi-
mating short vectors on arbitrary lattices.

Keywords: Lattice-based Cryptography, Identity-based Encryption,
Key Revocation.

1 Introduction

The concept of identity-based encryption (IBE) was proposed by Shamir [31]. It
allows a sender to encrypt a message using the recipient’s identity as a public
key. The private key corresponding to the public key or identity is generated by
a key authority (or private key generator). IBE began to be studied extensively
only after the seminal work of Boneh and Franklin [11] on practical pairing-
based IBE systems, see for example [12, 32, 33]. Meanwhile, there also exist
proposals on IBE systems based on quadratic residuosity [16, 13], although it
is still not known how to build such systems that are secure in the standard
model. In recent years, however, lattice-based IBE [20, 14, 1, 2] has received
considerable attention from the cryptographic research community. Lattices have
becoming an attractive and powerful tool to build a broad range of cryptographic
primitives [6, 23, 8, 27, 28, 19]. This is so as many lattice-based constructions are
quite efficient and typically simple to implement. Moreover they are all believed
to be secure against attacks using quantum computers, a property not achievable
by cryptographic primitives based on factoring or discrete logarithm.

A system user’s public key may need to be removed for various reasons. For
example, the private key corresponding to the public key has been stolen; the
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user has lost her private key; or the user is no longer a legitimate system user.
In these cases, it is important that the public/private key pair be revoked and
replaced by new keys. In the IBE setting, Boneh and Franklin [11] suggested that
the sender appends the current validity period to the intended identity during
encryption and the recipient periodically receives a new private key. Unfortu-
nately, such solution requires the key authority to perform work that is linear in
the number of non-revoked users. Further, the key authority needs to create and
transmit a new key to each non-revoked user through some form of authenticated
and secure channel. Boldyreva, Goyal and Kumar [10] recently proposed a revo-
cable IBE (RIBE) scheme that significantly reduces the key authority’s workload
(in terms of key revocation) to logarithmic (instead of linear) in the number of
users, while keeping the scheme efficient for senders and receivers. Their RIBE
scheme uses key revocation techniques based on binary-tree data structure, also
used in [5, 25], and builds on a fuzzy IBE (FIBE) scheme introduced by Sahai
and Waters [29] that is secure in the selective-ID model. Note that Boldyreva et
al’s RIBE is the first IBE scheme that supports non-interactive key revocation
(in the sense that non-revoked users need not interact with the key authority
in order to update their keys). Prior to their work, all revocation techniques
require interactions between users and the key authority or some kind of trusted
hardware. Moreover, the use of a binary-tree reduces the amount of work in key
update from being proportional to logarithmic complexity in the maximal num-
ber of users. Libert and Vergnaud [22] subsequently proposed an RIBE scheme
in the adaptive-ID model using similar key revocation techniques as with [10].
However, instead of making use of an FIBE scheme, they adopt a variant [21]
of the Waters IBE scheme [32]. Nevertheless, all the above RIBE schemes are
constructed from bilinear pairings.

In the spirit of expanding the study of lattice-based IBE, we show, in this
paper, how to construct an RIBE scheme in the lattice setting.

1.1 Our Results

Our construction of RIBE from lattices makes use of the following building
blocks: (i) lattice IBE proposed by Agrawal, Boneh, and Boyen [1]; (ii) trapdoors
for lattice IBE proposed by Gentry, Peikerty, and Vaikuntanathan [20]; and
(iii) the binary-tree data structure for key update used in [5, 25, 10, 22]. More
specifically, we extend the lattice IBE scheme of [1] with trapdoors from [20] to
enable non-interactive key revocation. As with prior work, the binary-tree data
structure is used to improve the efficiency of secret key update, allowing us to
achieve key update with logarithmic complexity in the maximal number of users
and linear in the number of revoked users for the key authority.

We note that our RIBE scheme is not a straightforward combination of the
aforementioned building blocks because we require that our user public key
comprises two components: identity and time, in order to obtain the “non-
interactive” property. Hence, our construction requires two instances of Agrawal
et al.’s IBE scheme to deal with users’ identities and times respectively. Further,
we require a random n-vector u to be part of the public parameters that plays
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the role of linking identity to time for each node associated to the binary-tree.
Briefly speaking, this can be achieved by randomly splitting the vector u into
two vectors u1,u2 for each node to indicate identity and time, respectively.

We prove that our RIBE scheme is selective secure in the standard model and
under the LWE assumption, which is as hard as the worst-case approximation
of short vectors on arbitrary lattices [28, 26]. Simply applying the simulation
techniques of [1] to our lattice setting does not work, since the trapdoors can
respond to only all key (short vector) queries for all identities id �= id∗ and times
t �= t∗. We address this by adopting the simulation trapdoors of [20]. That is,
we sample a short vector from some distribution to generate u1 or u2 instead
of generating both u1 and u2 randomly for each node in the simulation. Such
u1 or u2 is indistinguishable from the uniform distribution. The sampled short
vectors will be used to respond to a query for the challenge identity id∗ and a
query for the challenge time t∗.

1.2 Related Work

Our work, which focuses on how to construct revocable IBE from lattices, is
concurrent but independent from the very recent proposal of lattice FIBE in [4].
There is some similarity between [4] and our work, that is, attributes are em-
bedded in the shares ui of vector u in the construction and the shares ui of
the challenge attributes are generated by sampling random short vectors in the
simulation. However, our approach is different in the sense that we directly and
randomly split the vector u instead of using the Shamir secret-sharing scheme
and the Lagrange interpolation formula. This makes our system more efficient.
Another difference is that we make use of only one matrix associated with a
trapdoor basis instead of � matrices, where � is the maximal number of at-
tributes. Our method could also be applied to their large universe scheme and
this significantly reduces the size of the master secret key.

We note that the idea of using more than one trapdoor in the keys has also
been mentioned in Agrawal et al.’s hierarchical IBE (HIBE) scheme [3] and in
the completely non-malleable public-key encryption scheme by Sapehi et al. [30].

2 Definitions

2.1 Notation

Throughout the paper we say that a function ε : R≥0 → R≥0 is negligible if
ε(n) is smaller than all polynomial fractions for sufficiently large n. We say that
an event happens with overwhelming probability if it happens with probability
at least 1 − ε(n) for some negligible function ε. We say that integer vectors
v1, . . . ,vn ∈ Z

m are Zq-linearly independent if they are linearly independent
when reduced modulo q.

The statistical distance of two random variables X and Y over a discrete
domain Ω is defined as Δ(X ;Y ) := 1

2

∑
s∈Ω |Pr[X = s] − Pr[Y = s]|. We say
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that X is δ-uniform over Ω if Δ(X ;UΩ) ≤ δ where UΩ is a uniform random
variable over Ω. Let X(λ) and Y (λ) be ensembles of random variables, we say
that X and Y are statistically close if d(λ) := Δ(X(λ);Y (λ)) is a negligible
function of λ.

2.2 Syntax of RIBE

Here, we recall the definitions of security for RIBE as defined in [10].

Definition 1. An identity-based encryption with efficient revocation or simply
revocable IBE scheme has seven probabilistic polynomial-time (PPT) algorithms
Setup, PriKeyGen, KeyUpd, DecKeyGen, Enc, Dec, and KeyRev with
associated message space M, identity space I, and time space T .
Setup(1λ, N) takes as input a security parameter λ and a maximal number of

users N . It outputs a public parameters PP, a master key MK, a revocation
list RL (initially empty), and a state ST. (This is run by the key authority.)

PriKeyGen(PP,MK, id, ST) takes as input the public parameters PP, the mas-
ter key MK, an identity id ∈ I, and the state ST. It outputs a private key
SKid and an updated state ST. (This is stateful and run by the key authority.)

KeyUpd(PP,MK, t,RL, ST) takes as input the public parameters PP, the mas-
ter key MK, a key update time t ∈ T , the revocation list RL, and the state
ST. It outputs a key update KUt. (This is run by the key authority.)

DecKeyGen(SKid,KUt) takes as input a private key SKid and key update KUt.
It outputs a decryption key DKid,t or a special symbol ⊥ indicating that id
was revoked. (This is deterministic and run by the receiver.)

Enc(PP, id, t,m) takes as input the public parameters PP, an identity id ∈ I,
an encryption time t ∈ T , and a message m ∈ M. It outputs a ciphertext
CTid,t. (This is run by the sender. For simplicity and wlog we assume that
id, t are efficiently computable from CTid,t.)

Dec(PP,DKid,t,CTid,t) takes as input the public parameters PP, a decryption
key DKid,t, and a ciphertext CTid,t. It outputs a message m ∈ M. (This is
deterministic and run by the receiver.)

KeyRev(id, t,RL, ST) takes as input an identity to be revoked id ∈ I, a revo-
cation time t ∈ T , the revocation list RL, and the state ST. It outputs an
updated revocation list RL. (This is stateful and run by the key authority.)

The consistency condition requires that for all λ ∈ N and polynomials
(in λ) N , all (PP,MK) output by Setup, all m ∈ M, id ∈ I, t ∈ T
and all possible valid states ST and revocation lists RL, if identity id was

not revoked by time t then, for (SKid, ST)
$← PriKeyGen(PP,MK, id, ST),

KUt
$← KeyUpd(PP,MK, t,RL, ST), DKid,t ← DecKeyGen(SKid,KUt) we

have Dec(PP,DKid,t,Enc(PP, id, t,m)) = m.
Boldyreva et al. formalized and defined the selective-revocable-ID security in

the following experiments. Their definition captures not only the standard notion
of selective-ID security but also takes into account key revocation:
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Initial: The adversary first outputs the challenge identity id∗ and time t∗, and
also some information state it wants to preserve.
Setup: It is run to generate public parameters PP, a master keyMK, a revocation
list RL (initially empty), and a state ST. Then PP is given to A.
Query: A may adaptively make a polynomial number of queries of the following
oracles (the oracles share state):

– The private key generation oracle PriKeyGen(·) takes as input an identity
id and runs PriKeyGen(PP,MK, id, ST) to return a private key SKid.

– The key update generation oracleKeyUpd(·) takes as input time t and runs
KeyUpd(PP,MK, t,RL, ST) to return a key update KUt.

– The revocation oracle KeyRev(·) takes as input an identity id and time t
and runs KeyRev(id, t,RL, ST) to update RL.

Challenge: A outputs the same length challenge m(0),m(1) ∈ M. A random bit
β is chosen. A is given Enc(PP, id∗, t∗,m(β)).
Guess: The adversary may continue to make a polynomial number of queries
of the following oracles as in query phase and outputs a bit β′, and succeeds if
β′ = β.
The following restrictions must always hold:

1. KeyUpd(·) and KeyRev(·, ·) can be queried on time which is greater than
or equal to the time of all previous queries, i.e., the adversary is allowed to
query only in non-decreasing order of time. Also, the oracle KeyRev(·, ·)
cannot be queried at time t if KeyUpd(·) was queried on t.

2. If PriKeyGen(·) was queried on identity id∗ then KeyRev(·, ·) must be
queried on (id∗, t) for some t ≤ t∗, i.e., identity id∗ must be in RL when
KeyUpd(·) is queried at time t∗.

We define the advantage of A as the quantity

AdvIND-sRID-CPA
A (λ) := Pr[β′ = β]− 1/2.

Definition 2. The scheme RIBE is said to be IND-sRID-CPA secure if the func-
tion AdvIND-sRID-CPA

A (λ) is negligible in λ for any efficient A and polynomial n.

3 Background on Lattices

In this section, we describe the required concepts from lattices.

3.1 Integer Lattices

Let B := [b1| . . . |bm] ∈ R
m×m be an m×m matrix whose columns are linearly

independent vectors b1, . . . ,bm ∈ R
m. The m-dimensional full-rank lattice Λ

generated by B is the set,

Λ := L(B) :=

{

y ∈ R
m s.t. ∃s ∈ Z

m,y = Bs =
m∑

i=1

sibi

}

Here, we are interested in integer lattices, i.e, when L is a subset of Zm.
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Definition 3. For a prime q, A ∈ Z
n×m
q and u ∈ Z

n
q , define:

Λ⊥
q (A) := {e ∈ Z

m s.t. Ae = 0 ( mod q)}
Λu
q (A) := {e ∈ Z

m s.t. Ae = u ( mod q)}

3.2 The Gram-Schmidt Norm and Trapdoors for Lattices

Let S be a set of vectors S := {s1, . . . , sk} in R
m, we use ‖S‖ to denote the

Euclidean norm of the longest vector in S, i.e., ‖S‖ := maxi
√
s2i,1 + . . .+ s2i,m

for 1 ≤ i ≤ k, where si := (si,1, . . . , si,m). We use S̃ := {s̃1, . . . , s̃k} ⊂ R
m

to denote the Gram-Schmidt orthogonalization of the vectors s1, . . . , sk in that
order. We refer to ‖S̃‖ as the Gram-Schmidt norm of S.

The problem of generating a random lattice A ∈ Z
n×m
q together with a full

short basis TA of Λ⊥
q (A) has been previously investigated by [7, 9]. Here we

use a better result with tighter parameters which was recently discovered by
Micciancio and Peikert [24].

Theorem 1. Let n ≥ 1, q ≥ 2 be integers and m = �2n log q. There is an
efficient PPT algorithm TrapGen(q, n) that outputs a pair (A ∈ Z

n×m
q ,TA ∈

Z
m×m
q ) such that A is statistically close to a uniform matrix in Z

n×m
q and TA

is a basis for Λ⊥
q (A) satisfying ‖T̃A‖ ≤ O(

√
n log q) and ‖TA‖ ≤ O(n log q)

with all but negligible probability in n.

3.3 Discrete Gaussians

Let Λ be an m-dimensional lattice. For any vector c ∈ R
m and any positive

parameter σ ∈ R>0, define:

– ρσ,c(x) := exp
(
−π ‖x−c‖2

σ2

)
: a Gaussian-shaped function on R

m with center

c and parameter σ,

– ρσ,c(Λ) :=
∑

x∈Λ ρσ,c(x): the (always converging) sum of ρσ,c over Λ,

– DΛ,σ,c: the discrete Gaussian distribution over Λ with parameters σ and
center c,

∀y ∈ Λ, DΛ,σ,c(y) :=
ρσ,c(y)

ρσ,c(Λ)
.

For notational convenience, we abbreviate ρσ,0 and DΛ,σ,0 as ρσ and DΛ,σ.
The following lemmas from [20] is essential for our security proof.

Lemma 1. There is an efficient PPT algorithm SampleGaussian that, given a
basis B of an m-dimensional lattice Λ = L(B), a parameter σ ≥ ‖B̃‖·ω(

√
logm),

and a center c ∈ R
m, outputs a sample from a distribution that is statistically

close to DΛ,σ,c.

Let Bz be the standard basis for Zm, we use the SampleGaussian(Bz , σ, 0) algo-
rithm to sample from distribution DZm,σ.
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Lemma 2. Let n and q be positive integers with q prime, and let m ≥ 2n log q.
Then for all but a 2q−n fraction of all A ∈ Z

n×m
q and for any σ ≥ ω(

√
logm),

the distribution of the syndrome u = Ae mod q is statistically close to uniform
over Z

n
q , where e is from DZm,σ.

3.4 Sampling Algorithms

The following SampleLeft [14, 1] and SampleRight [1] algorithms will be used
to sample short vectors in our construction and in the simulation, respectively.
Let A and C be matrices in Z

n×m
q and let R be a matrix in {−1, 1}m×m. By

using either a trapdoor for Λ⊥
q (A) or a trapdoor Λ⊥

q (C), we can sample a short

vector e in Λ⊥
q (F) for some u in Z

n
q , where F := (A|AR +C) ∈ Z

n×2m
q . With

appropriate parameters, the distribution of e produced by these two algorithms
is statistically indistinguishable.

Theorem 2. Let q > 2 and m > n. Then there is an efficient PPT algorithm
SampleLeft that takes as input a rank n matrix A in Z

n×m
q , a matrix M in

Z
n×m1
q , a “short” basis TA of Λ⊥

q (A), a vector u ∈ Z
n
q , and a gaussian param-

eter σ > ‖T̃A‖ · ω(
√
log(m+m1)). It outputs a vector e ∈ Z

m+m1 distributed
statistically close to DΛu

q (F1),σ where F1 := (A|M). In particular, e ∈ Λu
q (F1).

Theorem 3. Let q > 2 and m > n. There is an efficient PPT algorithm
SampleRight that takes as input matrices A,C in Z

n×m
q where C is rank n,

a uniform random matrix R ∈ {−1, 1}m×m, a basis TC of Λ⊥
q (C), a vector

u ∈ Z
n
q , and a gaussian parameter σ > ‖T̃C‖ ·

√
mω(log(m)). It outputs a vector

e ∈ Z
2m distributed statistically close to DΛu

q (F2),σ where F2 := (A|AR + C).

In particular, e ∈ Λu
q (F2).

We will also need the following lemma, generalization of the left over hash lemma
due to Dodis et al. [18], in our proof.

Lemma 3. Suppose that m > (n + 1) log q + ω(logn) and that q is prime. Let
A,B be matrices chosen uniformly in Z

n×m
q and let R be an m×m matrix chosen

uniformly in {1,−1}m×m mod q. Then, for all vectors w in Z
m
q , the distribution

of (A,AR,R�w) is statistically close to the distribution of (A,B,R�w).

3.5 The LWE Hardness Assumption

The security of our construction can be reduced to the LWE (learning with
errors) problem defined by Regev [28].

Definition 4. Consider a prime q, a positive integer n, and a distribution χ
over Zq, all public. An (Zq, n, χ)-LWE problem instance consists of access to an
unspecified challenge oracle O, being, either, a noisy pseudo-random sampler Os

carrying some constant random secret key s ∈ Z
n
q , or, a truly random sampler

O$, whose behaviors are respectively as follows:
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– Os: outputs samples of the form (ui, vi) = (ui,u
�
i s+xi) ∈ Z

n
q×Zq, where, s ∈

Z
n
q is a uniformly distributed persistent value invariant across invocations,

xi ∈ Zq is a fresh sample from χ, and ui is uniform in Z
n
q .

– O$: outputs truly uniform random samples from Z
n
q × Zq.

The (Zq, n, χ)-LWE problem allows repeated queries to the challenge oracle O.
We say that an algorithm A decides the (Zq , n, χ)-LWE problem if |Pr[AOs =
1]− Pr[AO$ = 1]| is non-negligible for a random s ∈ Z

n
q .

Regev [28] and Peikert [26] showed that for some noise distribution χ, denoted
Ψα, the LWE problem is at least as hard as the worst-case SIVP and GapSVP
under a quantum reduction if the parameters are appropriately set.

Definition 5. Consider a real parameter α = α(n) ∈ (0, 1) and a prime q. Let
T := R/Z be the group of reals [0, 1) with addition modulo 1. Let Ψα be the
distribution over T of a normal variable with mean 0 and standard deviation
α/
√
2π then reduced modulo 1. Let �x := �x + 1

2 be the nearest integer to the

real x ∈ R. We then define Ψα as the discrete distribution over Zq of the random
variable �xX mod q where the random variable X ∈ T has distribution Ψα.

3.6 Encoding Identities as Matrices

In our construction and proof of security, we require an injective encoding func-
tion H : Zn

q → Z
n×n
q to map identities in Z

n
q to matrices in Z

n×n
q . Concrete

construction of such a function can be found in [1, 17].

Definition 6. Let q be a prime and n a positive integer. We say that a function
H : Zn

q → Z
n×n
q is an encoding with full-rank differences (FRD) if:

1. for all distinct u,v ∈ Z
n
q , the matrix H(u)− H(v) ∈ Z

n×n
q is full rank;

2. H is computable in polynomial time in n log q.

4 Lattice RIBE

4.1 The Binary-Tree Data Structure

Our construction makes use of binary-tree data structure, as with [5, 25, 10, 22].
We denote the binary-tree by BT and its root node by root. If ν is a leaf node
then Path(ν) denotes the set of nodes on the path from ν to root (both ν and
root inclusive). If θ is a non-leaf node then θ�, θr denote the left and right child
of θ, respectively. We assume that all nodes in the tree are uniquely encoded as
strings, and the tree is defined by all of its node descriptions.

Each user is assigned to a leaf node ν. Upon registration, the key authority
provides the user with a set of distinct private keys for each node in Path(ν).

At time t, the key authority determines the minimal set Y of nodes in BT
such that none of the nodes in RL with corresponding time ≤ t (users revoked
on or before t) have any ancestor (or, themselves) in the set Y, and all other
leaf nodes (corresponding to non-revoked users) have exactly one ancestor (or,
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themselves) in the set. This algorithm, denoted by KUNodes, takes as input a
binary tree BT, a revocation list RL and a time t) and can be formally specified
as follows:

KUNodes(BT,RL, t)

X,Y← ∅
∀(νi, ti) ∈ RL

if ti ≤ t then add Path(νi) to X

∀θ ∈ X

if θ� �∈ X then add θ� to Y

if θr �∈ X then add θr to Y

If Y = ∅ then add root to Y

Return Y

The KUNodes algorithm marks all the ancestors of revoked nodes as revoked and
outputs all the non-revoked children of revoked nodes.

The key authority then publishes a key update for all nodes of Y.
A user assigned to leaf ν is then able to form an effective decryption key for

time t if the set Y contains a node in Path(ν). By doing so, every update of the
revocation list RL only requires the key authority to perform logarithmic work
in the maximal number of users and linear in the number of revoked users.

4.2 The Agrawal et al. IBE Scheme

We use the Agrawal et al. lattice IBE scheme [1] as a building block for our
construction. Briefly, their IBE scheme can be described as follows.

The public parameters in the scheme of [1] consist of three random n × m
matrices over Zq denoted by A,B and C as well as a vector u ∈ Z

n
q . The master

secret is a trapdoor TA for the lattice Λ⊥
q (A). The secret key for an identity id

is a short vector e ∈ Z
2m, which is generated using the SampleLeft algorithm of

Theorem 2 and satisfies Fide = u in Zq where Fid := (A|B+H(id)C) ∈ Z
n×2m
q .

In the security proof for a selective IBE security game, the adversary announces
an identity id∗ that it plans to attack. Instead of using a trapdoor for Λ⊥

q (A),

it samples C at random and obtains a trapdoor TC for Λ⊥
q (C). It also chooses

the public parameter A at random and sets B := AR − H(id∗)C, where R is a
random matrix in {1,−1}m×m. Since AR is uniform and independent in Z

n×m
q ,

B is uniformly distributed as required. We then have

Fid := (A|A ·R+C′) ∈ Z
n×2m
q ,

where C′ := (H(id)−H(id∗))C. To respond to a private key query for an identity
id �= id∗, the simulator could produce a short vector e satisfying Fide = u in Zq

by using the SampleRight algorithm of Theorem 3 and the basis TC. This is so
since id �= id∗ is full rank by the definition of FRD in Section 3.6 and therefore
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TC is also a trapdoor for the lattice Λ⊥
q (C

′). When id = id∗, the matrix Fid no
longer depends on C and the simulator’s trapdoor is removed. The simulator can
then produce a challenge ciphertext that helps to solve the given LWE challenge.

4.3 Intuition of Our Construction

We first consider how to create a link between an identity and a time for each
node. In our construction, we use two instances of Agrawal et al.’s IBE scheme
and its techniques to deal with users’ identities and times respectively, but re-
quire only a single random vector u ∈ Z

n
q in the public parameters. We split it

into two random vectors u1,u2 for each node corresponding to identity and time,
respectively. The randomly split u links identity to time for each node. More-
over, our technique does not require information about u1,u2 to be included in
ciphertexts, and hence does not increase the size of ciphertexts.

Clearly, the simulator can answer all private key queries for all identities
id �= id∗, key update queries for all time t �= t∗ by two trapdoors TC1 ,TC2 . The
main difficulty in the simulation is as follows. The simulator may be required
to answer either a key update query at time t∗ with node in Path(ν∗) or a
private key query for identity id∗ and a key update query at time t∗ without
any node in Path(ν∗), where id∗ is assigned in ν∗ (id∗ must be revoked before
or at time t∗). In other words, the simulator should answer either a query for
identity id∗ or a query for time t∗ for each node. To overcome this difficulty,
we use the SampleGaussian algorithm of Lemma 1 to sample a short vector and
generate either u1 or u2 (instead of generating one of them randomly). Such u1

or u2 is indistinguishable from the uniform distribution, which is guaranteed by
Lemma 2. More precisely, there are two possibilities for those nodes in Path(ν∗)
(we can pick a node ν∗ beforehand and assign id∗ to it if necessary) depending
on whether or not identity id∗ will be queried:

– If identity id∗ is queried, then it must be revoked before or at time t∗. In
this case, we set u1 to be the product of Fid∗ and a short vector e sampled
by SampleGaussian(Bz , σ, 0).

– If identity id∗ is not queried. In this case, we set u2 to be the product of Ft∗

and a short vector e sampled by SampleGaussian(Bz, σ, 0).

For those nodes that are not in Path(ν∗), we set u2 to be the product of Ft∗ and
a short vector e sampled by SampleGaussian(Bz , σ, 0). We have probability 1/2
to simulate the correct game and the adversary cannot distinguish which one is
simulated.

4.4 Our RIBE Scheme

We now describe our RIBE scheme from lattices. At the end of each algorithm,
we provide some intuition and/or remark (marked by the symbol “//”) about
the algorithm.

Setup(λ,N) On input a security parameter λ and a maximal number N of
users, set the parameters q, n,m, σ, α as specified in Section 4.5 below. Next
perform the following steps:
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1. Use the TrapGen(q, n) algorithm to select a uniformly random matrix

A ∈ Z
n×m
q with a basis TA for Λ⊥

q (A) such that ||T̃A|| ≤ O(
√
n log q).

2. Select four uniformly random matrices B1, B2, C1, and C2 in Z
n×m
q .

3. Select a uniformly random vector u
$← Z

n
q .

4. Let RL be an empty set and BT be a binary-tree with at least N leaf
nodes, set ST := BT. Select an FRD map H as defined in Section 3.6.

5. Output RL, ST, the public parameters, and the master key MK,

PP := {H,A,B1,B2,C1,C2,u} , MK := {TA} .

PriKeyGen(PP,MK, id,RL, ST) On input the public parameters PP, the mas-
ter key MK, an identity id ∈ Z

n
q , the revocation list RL, and the state ST, it

picks an unassigned leaf node ν from BT and stores id in that node. It then
performs the following steps:

1. For any θ ∈ Path(ν), if uθ,1,uθ,2 are undefined, then pick uθ,1
$← Z

n
q ,

set uθ,2 := u − uθ,1, and store them in node θ. Sample eθ,1 ∈ Z
2m as

eθ,1 ← SampleLeft(A,B1 + H(id)C1,TA,uθ,1, σ).

2. Output SKid := {(θ, eθ,1)}θ∈Path(ν), ST.

//The algorithm computes the id-component of the decryption key for all
the nodes on the path from ν to root.

KeyUpd(PP,MK, t,RL, ST) On input the public parameters PP, the master
key MK, a time t ∈ Z

n
q , the revocation list RL, and the state ST, it performs

the following steps:

1. ∀θ ∈ KUNodes(BT,RL, t), if uθ,1,uθ,2 are undefined, then pick uθ,1
$←

Z
n
q , set uθ,2 := u − uθ,1, and store them in node θ. Sample eθ,2 ∈ Z

2m

as eθ,2 ← SampleLeft(A,B2 + H(t)C2,TA,uθ,2, σ).

2. Output KUt := {(θ, eθ,2)}θ∈KUNodes(BT,RL,t).

//The algorithm first finds a minimal set of nodes which contains an ancestor
(or, the node itself) of all the non-revoked nodes. It then computes the t-
component of the decryption key for all the nodes in that set.

DecKeyGen(SKid,KUt) On input a private secret key SKid := {(i, ei,1)}i∈I,
KUt := {(j, ej,2)}j∈J for some set of nodes I, J, it runs the following steps:

1. ∀(i, ei,1) ∈ SKid, (j, ej,2) ∈ KUt, if ∃(i, j) s.t. i = j then DKid,t ←
(ei,1, ej,2); else (if SKid and KUt do not have any node in common)
DKid,t ← ⊥.

2. Output DKid,t.

// We can drop the subscripts i, j since they are equal, i.e., DKid,t := (e1, e2).
The algorithm finds components of SKid and KUt such that Fide1+Fte2 = u
since they are in the same node.
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Enc(PP, id, t,m) On input the public parameters PP, an identity id, a time
t ∈ Z

n
q , and a message m, it runs the following steps:

1. Set Fid,t ← (A|B1 + H(id)C1|B2 + H(t)C2) ∈ Z
n×3m
q .

2. Choose a uniformly random s
$← Z

n
q .

3. For i = 1, 2, choose a uniformly random matrix Ri
$← {−1, 1}m×m.

4. Choose noise x
Ψα←− Zq and noise vectors y

Ψ
m
α←− Z

m
q and for i = 1, 2 set

zi ← R�
iy ∈ Z

m
q . (The distribution Ψα is as defined by Definition 5)

5. Set c0 ← u�s+ x+m� q2� ∈ Zq, c1 ← F�
id,ts+

⎡

⎣
y
z1
z2

⎤

⎦ ∈ Z
3m
q .

6. Output the ciphertext CTid,t := (c0, c1) ∈ Zq × Z
3m
q .

Dec(PP,DKid,t,CTid,t) On input the public parameters PP, a decryption key
DKid,t := (e1, e2), and a ciphertext CTid,t := (c0, c1), it runs the following
steps:

1. Parse c1 as

⎡

⎣
c1,0
c1,1
c1,2

⎤

⎦, where c1,i ∈ Z
m
q .

2. Compute w ← c0 − e�1

[
c1,0
c1,1

]

− e�2

[
c1,0
c1,2

]

∈ Zq.

3. Compare w and � q2� treating them as integers in Z. If they are close, i.e.,
if
∣
∣w − � q2�

∣
∣ < � q4�, output 1, otherwise output 0.

KeyRev(id, t,RL, ST) On input an identity id, a time t, the revocation list RL,
and the state ST, the algorithm adds (id, t) to RL for all nodes ν associated
with identity id and returns RL.

4.5 Parameters, Correctness and Security

As in [3], the following error term is bounded by [qσmαω(
√
logm)+O(σm3/2)],

that is

w = c0 − e�1

[
c1,0
c1,1

]

− e�2

[
c1,0
c1,2

]

= m� q
2
�+ x− e�1

[
y
z1

]

− e�2

[
y
z2

]

︸ ︷︷ ︸
error term

.

We can similarly set the parameters (q,m, σ, α) to ensure that the error term is
less than q/5 and the system works:

m = 2n1+δ, q = m2
√
n · ω(logn),

σ = m · ω(logn), α = [m2 · ω(logn)]−1,

and round up m to the nearest larger integer and q to the nearest larger prime.
We choose δ such that nδ > �log q = O(logn).
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We show that our RIBE construction is secure in the following theorem:

Theorem 4. The RIBE system is IND-sRID-CPA secure provided that the
(Zq, n, Ψ̄α)-LWE assumption holds.

We have given some intuition of our security proof earlier in Section 4.3. Due to
space constraints, the detail is given in the full version of this paper [15].

5 Open Problem

We have proven our RIBE scheme to be selective-ID secure under the LWE as-
sumption. However, we leave open the problem of how to construct an adaptive-
ID secure RIBE scheme [22].
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