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Abstract. We present two zero-knowledge protocols for the code-based
McEliece public key encryption scheme in the standard model. Consider
a prover who encrypted a plaintext m into a ciphertext c under the pub-
lic key pk. The first protocol is a proof of plaintext knowledge (PPK),
where the prover convinces a polynomially bounded verifier on a joint
input (c, pk) that he knows m without actually revealing it. This con-
struction uses code-based Véron’s zero-knowledge identification scheme.
The second protocol, which builds on the first one, is a verifiable McEliece
encryption, were the prover convinces a polynomially bounded verifier
on a joint input (c, pk,m) that c is a valid encryption of m, without
performing decryption. These protocols are the first PPK and the first
verifiable encryption for code-based cryptosystems.

1 Introduction

The McEliece public key encryption (PKE) scheme [26] is the first code-based
cryptosystem. It uses the error-correcting codes by Goppa [20,25]. Security of the
McEliece PKE is based on hardness of the problems related to general decoding
[5,31]. Breaking of the McEliece PKE is believed to be infeasible for properly
chosen parameters [12,13,7], even for adversaries equipped with quantum com-
puters [6]. The later fact makes this cryptosystem a prospective candidate for
the postquantum world. In fact, it is also argued by Bernstein et al [7, App. A]
that the McEliece PKE is a prospective cryptosystem due to its good asymptotic
performance.

Informally, a proof of plaintext knowledge (PPK) for an encryption scheme
with public key pk, allows a prover P to prove knowledge of the plaintext m,
corresponding to the ciphertext c = Encpk(m), to a verifier V on the public
inputs pk and c. Moreover, if such the proof is zero-knowledge (ZK), it will not
reveal any additional information on m.

Informally, a verifiable encryption with respect to some binary relation R on
the plaintexts is a zero-knowledge proof on public inputs pk, c, and δ that allows
P to convince V that c is a ciphertext of m under pk such that (m, δ) ∈ R.

1.1 Our Contributions

– We present a computational zero-knowledge PPK for the McEliece PKE
using Véron’s ZK identification scheme [35].
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– Using this PPK, we also construct a verifiable IND-CPA McEliece encryp-
tion for equality relation by introducing a computational ZK proof of the
statement “ciphertext c decrypts to the plaintext m”.

1.2 Related Works

Proof of Plaintext Knowledge. PPK were introduced by Aumann and Rabin
[1] (as attributed in [23]), and later studied by Katz [23], who presented PPK for
RSA, Rabin, ElGamal and Paillier cryptosystems. The first PPK for a lattice-
based Ajtai-Dwork PKE is due to Goldwasser and Kharchenko [19]. Xagawa et al
[36] presented PPK for the two variants of the lattice-based Regev’s cryptosys-
tem. Xagawa and Tanaka presented that for NTRU [37] using a modification
of Stern’s code-based ZK identification scheme [34]. Bendlin and Damg̊ard [3]
presented a PPK for a variant of Regev’s cryptosystem. Compared to the previ-
ous lattice-based constructions (as well as to our protocols) the latter scheme is
constant-round that is achieved using the “multiparty computation in the head”
paradigm of Ishai et al [21].

Stern’s scheme [34] was used by Kobara et al [24] for enforcing correct behav-
ior of a sender in code-based oblivious transfer. They even suggested verifiable
encryption as a possible application for their technique, but no formal treatment
of this subject was made in their work.

Verifiable Encryption. Verifiable encryption was introduced by Stadler [33] in
the context of publicly verifiable secret sharing, and later generalized by Asokan
et al [2] with application to fair exchange of digital signatures. Developments
on this topic include further generalizations by Camenisch and Damg̊ard [8] and
Camenisch and Shoup [9].

We emphasize that none of the previous works on the above topics considered
code-based PKE.

Note that assuming that one-way functions exist, one could achieve the results
presented in this work using general zero-knowledge proofs for NP-statements
[18], however such constructions would be prohibitively inefficient.

1.3 Discussion of Our Contributions

We present a computational zero-knowledge PPK for the McEliece PKE by
showing that Véron’s ZK identification scheme [35] (that is, in a sense, a dual of
Stern’s scheme [34]) can be directly used as PPK for the McEliece encryption.
The witness in this proof is both the plaintext and the (random) error vector.
Using Véron’s scheme rather than Stern’s (as in [24]), we avoid pre-computation
on the public data.

An immediate application of this result is the interactive chosen-ciphertext
secure encryption. Here, the sender uses an IND-CPA secure PKE to encrypt
a message for the receiver, who must be online. Along with transmitting the
ciphertext, the sender also uses the interactive PPK to convince the receiver
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that he knows the message. According to the observation by Katz [23], this
construction results in an interactive IND-CCA1 PKE [15,16]. Combined with
the IND-CPA secure McEliece encryption by Nojima et al [29], this yields the
first code-based interactive IND-CCA1 PKE in the standard model.

Using the above mentioned PPK, we also construct a verifiable IND-CPA
McEliece encryption for equality relation. Note that although the original McEli-
ece encryption is not deterministic, given pk and c = Encpk(m), it is trivial to
check whether or not c is a ciphertext of m. Therefore, for verifiable encryption,
we use an IND-CPA secure McEliece encryption [29].

It is interesting to note that in the lattice-based constructions [19,36], one
first constructs a verifiable encryption for equality relation, and then use it as
a building block for PPK, while in our case it works the other way around.

In our constructions, we assume that both the prover and the verifier are
assured that the public key pk is valid. This assumption will require a trusted
third party who generates public keys – this can be, for instance, an entity in
the public key infrastructure.

The proofs of Stern’s [34] and Véron’s schemes [35] are in the random oracle
model. In order to avoid such the strong assumption, we employ the later scheme
with (efficient) computationally hiding and statistically binding commitment
scheme based on hardness of syndrome decoding, as presented in [11].

2 Preliminaries

Let us fix some notation. Denote by “⊕” the bitwise exclusive-or. For an ordered
subset {ji, . . . , jm} = J ⊆ {1, . . . , n}, we denote the vector (xj1 , . . . , xjm) ∈ F

m
2

by xJ . Similarly, we denote byMJ the submatrix of a (k×n) matrixM consisting
of the columns corresponding to the indexes of J . A concatenation of vectors x

and y is written as (x|y). We denote by x
$← X a uniformly random selection of

an element from its domain X . A set of (n×n) permutation matrices is denoted
by Sn.

We denote by 〈A(a), B(b)〉(c) a random variable representing the output of
a Turing machine B following an execution of an interactive two-party protocol
between a Turing machine A with private input a and B with private input b
on joint input c, where A and B have uniformly distributed random tapes. If a
party, say A, has no input, then we omit the input by writing just A (instead of
A(a)) in the above notation.

In our two-party protocols, we will denote an honest prover by P and an honest
verifier by V, while a dishonest party will be denoted by ˜P and ˜V, respectively.

We call a function ε(n) negligible in n, if ε(n) = 2−ω(logn). We call a probability
1− ε(n) overwhelming, when ε(n) is negligible.

Occasionally, we omit the mentioning of a security parameter. In these cases,
by saying that a quantity is negligible (overwhelming), we mean that it is negli-
gible (overwhelming) in the security parameter.

For the relevant topics in coding theory we refer the reader to [30,25].
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2.1 Security Assumptions

Definition 1 (Syndrome Decoding (SD) Problem).

Input: H
$← F

(n−k)×n
2 , y

$← F
n−k
2 and 0 < t ∈ N.

Output: s ∈ F
n
2 such that wH(s) ≤ t, HsT = y.

This problem was shown to be NP-complete by Berlekamp et al [5]. Its equivalent
dual version can be formulated as follows.

Definition 2 (General Decoding (G-SD) Problem).

Input: G
$← F

k×n
2 , y

$← F
n
2 and 0 < t ∈ N.

Output: x ∈ F
k
2 , e ∈ F

n
2 s.t. wH(e) ≤ t, xG ⊕ e = y.

The following two problems use the quantities defined in the next subsection.
No polynomial-time algorithm is known for these problems [12,13,7].

Definition 3 (McEliece Problem).

Input: A McEliece public key (Gpub, t), where
Gpub ∈ F

k×n
2 , 0 < t ∈ N; and a McEliece ciphertext c ∈ F

n
2 .

Output: m ∈ F
k
2 such that dH(mGpub, c) = t.

Definition 4 (Goppa Code Distinguishing (GD) Problem).

Input: R ∈ F
k×n
2 .

Decide: Is R a generator matrix of an (n, k) irreducible Goppa code, or of
a random (n, k)-code?

2.2 McEliece Cryptosystem

For a survey on code-based PKE and related schemes we refer the reader to the
work by Engelbert et al [12].

The McEliece PKE consists of the following triplet of algorithms (K, E ,D):

– Security parameters: n, t ∈ N.
– Key generation algorithm K: On input n, t, generate the following matrices:

• G ∈ F
k×n
2 – the generator matrix of an irreducible binary Goppa code

correcting up to t errors. Its decoding algorithm is denoted as Dec.
• S ∈ F

k×k
2 – a random non-singular matrix.

• P ∈ F
n×n
2 – a random permutation matrix (of size n).

• Gpub = SGP ∈ F
k×n
2 .

Output the public key pk = (Gpub, t) and the secret key sk = (S,G, P,Dec).
– Encryption algorithm E : On input a plaintext m ∈ F

k
2 and the public key

pk, choose a vector e ∈ F
n
2 of weight t at random, and output the ciphertext

c = mGpub ⊕ e.

– Decryption algorithm D: On input c and the secret key sk, calculate:
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• cP−1 = (mS)G⊕ eP−1.
• mSG = Dec(cP−1).
• Let J ⊆ {1, . . . , n} be s.t. GJ is invertible.
Output m = (mSG)J (GJ )

−1S−1.

It is easy to check that the decryption algorithm correctly recovers the plaintext:
Since in the first step of decryption, the permuted error vector eP−1 is again
of weight t, the decoding algorithm Dec successfully corrects these errors in the
next step.

Randomized McEliece Encryption. In the standard model, Nojima et al
[29] show that the McEliece encryption with a random padding of the plaintext
(which is multi-bit) is IND-CPA secure under hardness of the learning parities
with noise (LPN) problem1 and GD problem.

A little more formally, the Randomized McEliece encryption is constructed in
the same way as described above, except that the ciphertext c = (r|m)Gpub ⊕ e,
where r

$← {0, 1}k0, m ∈ {0, 1}k1, k = k0 + k1. A particular choice of k0 and k1
is discussed in [29].

2.3 Proof of Plaintext Knowledge

In this subsection, we closely follow the presentation of [23]. For a public key
cryptosystem (K, E ,D), denote by c = Epk(m;R) an encryption of a plaintext m
under public key pk using randomness R. We will call (m,R) a witness to the
decryption of c under pk. Informally, in a PPK protocol, a sender P proves to
a receiver V the knowledge of a witness to the decryption for some ciphertext c
under the known public key pk.

Definition 5. Let Π = (P,V) be a tuple of PPT algorithms. Π is a proof of
plaintext knowledge for encryption scheme (K, E ,D) if the following conditions
hold:
(Completeness) For all pk output by K(1n) and all c with witness w to the
decryption of c under pk, we have that Pr[〈P(w),V〉(pk, c) = 1]. (When V outputs
1 we say it accepts.)
(Soundness) For all pk output by K(1n), all c produced under pk, and for any
˜P, we have that Pr[〈˜P,V〉(pk, c) = 1] is negligible.
(Zero-knowledge) There exists a PPT Turing machine SIM (called a simu-

lator) such that, for all pk output by K(1n), all PPT ˜V, and all w, the following
distributions are computationally indistinguishable:

{c = Epk(m;R) : 〈P(w), ˜V〉(pk, c)},

{c = Epk(m;R) : 〈SIM, ˜V〉(pk, c)}.
1 See e.g. [29] for a formal definition of LPN problem – it is similar to G-SD problem
except that in the error vector e, each bit has Bernoulli distribution with fixed p,
0 < p < 0.5.
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2.4 Verifiable Encryption

We adapt the following definition from [8].

Definition 6. Let (K, E ,D) be a public key encryption scheme, let R be a binary
relation and let LR = {x|∃w : (x,w) ∈ R}. A secure verifiable encryption scheme
for a relation R consists of a two-party protocol between P and V s.t. the following
conditions hold:
(Completeness) For all pk output by K(1n) and all x ∈ LR, we have
Pr[〈P(x),V〉(pk) = 1]. (When V outputs 1 we say it accepts.)

(Soundness) For all pk output by K(1n), all x′ /∈ LR, and for any ˜P,

Pr[〈˜P(x′),V〉(pk, c) = 1] is negligible.
(Zero-knowledge) There exists a PPT simulator SIM such that, for all pk

output by K(1n), all PPT ˜V, and all x ∈ LR, the following distributions are
computationally indistinguishable:

{x ∈ LR : 〈P(x), ˜V〉(pk)}, {x ∈ LR : 〈SIM, ˜V〉(pk)}.

Note that this definition captures only the properties related to verifiability. We
implicitly assume that a scheme in question is indeed a public-key encryption
scheme. For a formal definition of the latter, see e.g. [17, Ch. 5].

2.5 Commitments

Zero-knowledge proof systems use commitments as a building block. A com-
mitment scheme consists of two stages. In the first one, called committing, the
sender P provides the receiver V with an evidence about his data b. The cheating
receiver ˜V cannot learn b before the second stage, called opening, when P reveals
b to V. The cheating sender ˜P cannot successfully open anything other than b.
Let us denote by [P,V]A,st the view of the party A ∈ {P,V} at the stage st,
which is a concatenation of all the messages sent and received by A, along with
its local randomness.

We adapt the following definition from [11].

Definition 7. A protocol is said to securely implement string commitment, if
at the end of its execution by PPT Turing machines P (with input b ∈ F

l
2, l ∈ N)

and V, the following properties hold:
(Correctness) Pr[〈P(b),V〉 = 1] with overwhelming probability.

(Hiding) For any PPT ˜V, any l ∈ N, any b ∈ F
l
2 and b′ ∈ F

l
2 such that b′ 
= b,

after the committing stage, but before the opening stage, the distributions

[P(b), ˜V]
˜V,Commit and [P(b′), ˜V]

˜V,Commit

are computationally indistinguishable.
(Binding) For any ˜P, any l ∈ N, and b′ ∈ F

l
2 there exists b ∈ F

l
2 which can be

computed by P after the committing stage, such that the probability

Pr[〈˜P(b′),V〉 = 1]

is negligible.
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In the random oracle model, a string commitment which is both computation-
ally hiding and binding can be implemented using (idealized) cryptographic hash
functions. We avoid this additional strong assumption by employing a compu-
tationally hiding and statistically binding commitment based on syndrome de-
coding, which was suggested by Dowsley et al [11]. They proposed to use Naor’s
bit commitment scheme [27] based on pseudorandom generator, which, in turn,
can be constructed assuming hardness of SD problem, as proved by Fischer and
Stern [14].

3 PPK for McEliece Encryption

Our proof of knowledge for the McEliece encryption is based on Véron’s zero-
knowledge identification scheme [35]. We make the following modifications to it
– instead of a generator matrix of the random code, we use that of the irreducible
(n, k) Goppa code as described in Section 2.2, and set a weight of the error vector
to be exactly t.

Our main observation is that the security proof of Véron’s scheme [35] is valid
for any code, for which G-SD problem is hard, not just a random one. Therefore,
replacing a random code with the McEliece public key, and an assumption on the
hardness of G-SD problem with that on the hardness of the McEliece problem,
we preserve the validity of the original proof.

Remark 1. Note that we do not need to assume hardness of the Goppa Distin-
guishing problem for the proof itself.

Remark 2. In the following protocol, the probability for ˜P to break soundness
(i.e. to make V accept the proof without knowledge of the witness (m, e)) is 2/3.
It can be reduced to an arbitrary small value (2/3)s by iterating the protocol s
times.

Witness: (m, e), m ∈ F
k
2 , e ∈ F

n
2 , wH(e) = t, where the parameters n, k, t are

described in Section 2.2.

Common data: (Gpub ∈ F
k×n
2 , t) – the McEliece public key, and c = mGpub⊕e

– the McEliece PKE ciphertext (as described in Section 2.2).

Protocol 1 (McEliece PPK).

1. P computes u
$← F

k
2 , T

$← Sn and sends three commitments:
– C1 = com(T ),
– C2 = com((u ⊕m)GpubT ),
– C3 = com((uGpub ⊕ c)T ).

2. V sends b
$← {0, 1, 2}.

3. In this step, V checks the validity of the quantities presented by P, and
rejects if it does not hold:

– If b = 0,
– P sends T , u⊕m, and opens C1, C2.
– V checks validity of C1 and C2 (using Gpub).
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– If b = 1,
– P sends (u⊕m)GpubT , eT , and opens C2, C3.
– V checks that wH(eT ) = t and validity of C2, C3

(using that (u ⊕m)GpubT ⊕ eT = (uGpub ⊕ c)T ).
– If b = 2,

– P sends T , u, and opens C1, C3.
– V checks the validity of C1, C3.

Denote a protocol consisting of s independent iterations of Protocol 1 by
PPK(Gpub, c;m, e), with some appropriately chosen s.

Theorem 1. Protocol PPK(Gpub, c;m, e) is a proof of plaintext knowledge for
the McEliece cryptosystem according to Definition 5 assuming hardness of the
McEliece problem.

Proof. We closely follow the proof in [35].

Completeness. It is easy to check that P knowing a valid (m, e) for Gpub can
answer any of the queries correctly. Hence, we have Pr[〈P(w),V〉(pk, c) = 1].

Soundness. First, we prove the following lemma.

Lemma 1. If V accepts ˜P’s proof with probability at least (23 )
s + ε, then there

exists a PPT algorithm M which, with overwhelming probability, computes a
witness (m, e).

Proof. Let T be an execution tree of the protocol (˜P,V) corresponding to all

possible questions of V, when ˜P has a random tape RA. V may ask 3 possible
questions at each stage. First, we show that as long as the binding property of
the commitment holds, a witness (m, e) can be computed from a vertex with 3
descendants. Next, we show that a PPT M can find such a vertex in T with
overwhelming probability.

Let v be a vertex with 3 descendants. This corresponds to a situation, where
3 commitments C1, C2, C3 have been made and where the three queries were
correctly answered.

Let T ′ and u′ ⊕m′ be the answers to the query b = 0, y′′, e′′ – to the query
b = 1, T ′′′, u′′′ – to the query b = 2.

We have wH(e′′) = t, T ′ = open(C1) = T ′′′,
(u′ ⊕m′)GpubT ′ = open(C2) = y′′,
y′′ ⊕ e′′ = open(C3) = (u′′′Gpub ⊕ c)T ′′′.

Therefore, either ˜P was able to violate the binding property of the commit-
ment, or we have c = (u′ ⊕m′ ⊕ u′′′)Gpub ⊕ e′′(T ′)−1, where e′′(T ′)−1 is a word
of length n and weight t. Therefore, (u′ ⊕m′ ⊕ u′′′, e′′(T ′)−1) is a valid witness.

Next, we show that the probability for T to have a vertex with 3 descendants
is at least ε. Let us consider the random tape RA of ˜P as a set of μ elements,
from which ˜P randomly picks its values and let Q = {1, 2, 3}. These two sets are
considered as probability spaces, both of them with uniform distribution.
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A pair (a, b) ∈ (RA ×Q)s represents the commitments, queries and answers

communicated between ˜P and V in the protocol. We will call (a, b) a valid pair,

if the execution of (˜P,V) leads to the success state.
Let V be the subset of (RA × Q)s composed of all the valid pairs. By the

hypothesis of the lemma,

|V |
|(RA×Q)s| ≥

(

2

3

)s

+ ε.

Let Ωs ⊂ RAs such that:

– If a ∈ Ωs, then 2s + 1 ≤ |{b : (a, b) are valid}| ≤ 3s,
– If a ∈ RAs \Ωs, then 0 ≤ |{b : (a, b) are valid}| ≤ 2s.

Then, we write V = {valid (a, b), a ∈ Ωs}∪{valid (a, b), a ∈ RAs\Ωs}, therefore
|V | ≤ |Ωs| · 3s + (μs − |Ωs|) · 2s, so by noting that |RAs| = μs and |Qs| = 3s it
follows that

|V |
|(RA×Q)s| ≤

(

|Ωs|
|RAs| + 2s

(

3−s − |Ωs|
|RA×Q)s|

))

≤ |Ωs|
|RAs| +

(

2

3

)s

, (1)

and therefore |Ωs|/|RAs| ≥ ε. This shows that the probability that ˜P answers to
(at least) 2s + 1 V’s queries, by choosing random values, is bigger than ε.

Now, if more than 2s + 1 queries are correctly answered by ˜P, T (RA) has at
least 2s + 1 leaves, i.e. T (RA) has at least one vertex with 3 descendants.

Therefore, by rewinding ˜P 1/ε times, it is possible to find an execution tree
with a vertex having 3 descendants with probability arbitrary close to 1. This
concludes the proof of the lemma. ��
Unless the binding property of the commitment was violated, the conclusion
of this lemma contradicts hardness of the McEliece problem. It follows that
Pr[〈˜P,V〉(pk, c) = 1] ≤ (2/3)s + ε, which is negligible in n and s.

Zero-Knowledge. Let us denote by RP,V the communication tape for P and
V, that is a concatenation of all bits they exchanged during the protocol. We
consider the probability distributions on RP,V.

Proposition 1. Protocol 1 is zero-knowledge according to Definition 5 assuming
hardness of the McEliece problem.

Proof. In order to simulate ˜V, we have to assume that it will choose a particular
cheating strategy depending on the information received from P. Let us denote
this strategy by St(C1, C2, C3) ∈ {0, 1, 2}.

Consider the following two functions: φm : Fk
2 → F

k
2 , φm(u) = u ⊕m, which

is an automorphism of Fk
2 and ψ : Fk

2 → F
n
2 , ψ(u) = uGpub, which is an isomor-

phism of Fk
2 into the code generated by Gpub.

The following PPT algorithm SIM produces a communication tape, whose
probability distribution is indistinguishable from that of a communication tape
produced by the honest parties.
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1. SIM randomly picks a query b ∈ {0, 1, 2}.
− If b = 0, SIM chooses y

$← F
k
2 , T

$← Sn, computes C1 = com(T ),
C2 = com(yGpubT ) and sets C3 to be a random binary vector of appro-
priate length.
Let COM = (C1|C2|C3) and Ans = (y|T ), here we assume a represen-
tation of T ∈ Sn as a binary vector by concatenating its rows. Note
that y and u⊕m have the same probability distribution, since for some

z ∈ F
k
2 , and u

$← F
k
2 , we have Pr[u ⊕m = z] = Pr[u = φ−1

m (z)] = 2−k

= Pr[y = z].

− If b = 1, SIM chooses T
$← Sn, y $← C (where C is a code generated

by Gpub), e′ $← Wn,t
2 (where Wn,t

2 = {x ∈ F
n
2 |wH(x) = t}), computes

C2 = com(yT ), C3 = com((y⊕e′)T ), and sets C1 to be a random binary
vector of appropriate length.
Let COM = (C1|C2|C3) and Ans = (yT |e′T ). Then, e′T has the same
probability distribution as eT , moreover for some z ∈ C,
Pr[(u⊕m)Gpub = z] = Pr[u = φ−1

m (ψ−1(z))] = 2−k = Pr[y = z].

− If b = 2, SIM chooses y
$← F

k
2 , T

$← Sn, computes C1 = com(T ),
C3 = com((yGpub ⊕ c)T ) and sets C2 to be a random binary vector of
appropriate length.
Let COM = (C1|C2|C3) and Ans = (y|T ).

2. SIM computes b′ = St(COM).
3. If b = b′, then SIM writes on the tape R the quantities H , b, and Ans,

otherwise SIM goes to Step 1.

Thus, in 3s rounds on average, the simulator SIM produces a communication
tape R computationally indistinguishable from a communication tape RP,V pro-
duced by the honest parties running s rounds of Protocol 1. Therefore, we have
that 〈P(m, e), ˜V〉(pk, c) and 〈SIM, ˜V〉(pk, c) are computationally indistinguish-
able. Note that computational indistinguishability is due to the fact that the bit
commitment scheme is computationally hiding according to Definition 7. This
completes the proof of the proposition. ��

The above arguments of completeness, soundness and zero-knowledge conclude
the proof of the theorem. ��

By inspecting the construction of the randomized McEliece PKC in Sec. 2.2, the
next Corollary follows immediately by replacing m with (r|m) in Theorem 1.

Corollary 1. Protocol McEliece PPK is a proof of plaintext knowledge for the
Randomized McEliece PKE of [29] assuming hardness of the McEliece problem.

3.1 Extensions

Similarly to the above construction, PPK for the Niederreiter PKE [28] (the dual
of the McEliece PKE), or its semantically secure variant [29], can be constructed
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in a straight forward manner using Stern’s zero-knowledge identification scheme
[34] (the dual of Véron’s scheme [35]).

We believe but do not prove formally that the result of this section can also
be extended to provide PPK for the q-ary variants of the McEliece encryption
[22,4] using the identification scheme by Cayrel et al [10], which is based on q-ary
codes.

4 Verifiable McEliece Encryption

Let us denote by 0l an all-zero vector of length l ∈ N.
In this section, we present the verifiable IND-CPA McEliece encryption for

the equality relation Req = {(m,m′)|m = m′}, i.e. that a given ciphertext c is
an encryption of a given plaintext m under public key Gpub.

Let the parameters n, k, k0, k1, t be as described in Section 2.2, in particular,
k = k0 + k1 and m ∈ F

k1
2 .

Witness: (r, e), where r ∈ F
k0
2 , e ∈ F

n
2 , wH(e) = t.

Common data: (Gpub ∈ F
k×n
2 , t) – the McEliece public key, and

c = (r|m)Gpub ⊕ e – the Randomized McEliece PKE ciphertext (as described in
Section 2.2).

Remark 3. For the ciphertext c as defined above, we have that c⊕(0k0 |m)Gpub =
(r|0k1)Gpub ⊕ e = rGpub

r ⊕ e, where Gpub
r ∈ F

k0×n
2 is a restriction of Gpub to its

first k0 rows.

Protocol 2 (Verifiable McEliece PKE).

1. P and V execute PPK(Gpub, c; (r|m), e).
If PPK was rejected, then V rejects.

2. P and V each compute:
cr = c⊕ (0k0 |m)Gpub = rGpub

r ⊕ e.
3. P and V execute PPK(Gpub

r , cr; r, e).
If PPK was rejected, then V rejects,
otherwise V accepts.

Proposition 2. Protocol 2 is a verifiable McEliece encryption for the relation
Req under hardness of G-SD, LPN and GD problems.

Proof (Sketch). We need to argue completeness, zero-knowledge, and soundness.
The first two properties follow easily using the proof of Theorem 1.

As for soundness, Step 1 ensures that c is indeed of the form (r′|m′)Gpub ⊕ e
with wH(e) = t for some r′ ∈ F

k0
2 and m′ ∈ F

k1
2 . Now, suppose m 
= m′, then we

have c′r = r′Gpub
r ⊕e⊕(m⊕m′)Gpub

m , where Gpub
m ∈ F

k1×n
2 is a restriction of Gpub

to its last k1 rows. Note that (m⊕m′)Gpub
m is not in a code generated by Gpub

r ,
since the rows of Gpub are linearly independent. However, since (m ⊕m′)Gpub

m

is a codeword of the code generated by Gpub, its weight is at least d ≥ 2t + 1.
Therefore, the weight of e⊕ (m⊕m′)Gpub

m is at least t+ 1. This implies that if
˜P was accepted by V, he necessarily used an error vector of weight larger than
t, that would contradict to soundness of Protocol 1 established by Theorem 1.
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We note that although the above protocol does not reveal any information on
the witness (r, e), the verifier learns the plaintext m and hence she will be able
to construct a valid ciphertext of Randomized McEliece encryption with ran-
domness (r, e) for any plaintext. This attack can be prevented using standard
message integrity techniques, such as message authentication codes. We leave
this issue for our future study.

5 Conclusion

We presented the first proof of plaintext knowledge and the first verifiable en-
cryption for an equality relation for the McEliece PKE. Our constructions are
proved secure in the standard model, under hardness of the McEliece assump-
tions related to coding theory. An important open question is to upgrade our
scheme to non-malleable security. According to [23], this will allow us to con-
struct password-based authentication and key exchange, as well as deniable au-
thentication based on coding. Another important open question is to extend our
verifiable encryption to more general relations and to verifiable decryption. This
would, for instance, yield code-based constructions for key escrow and optimistic
fair exchange, according to [9].
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