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Abstract. We present Weimar-DM, a double length compression func-
tion using two calls to a block cipher with 2n-bit key and n-bit block size
to compress a 3n-bit string to a 2n-bit one. For Weimar-DM, we show
that for n = 128, no adversary asking less than 2n−1.77 = 2126.23 queries
can find a collision with probability greater than 1/2. This is the high-
est collision security bound ever shown for such a compression function.
Even more important, our security analysis is much simpler than that for
comparable functions as, e.g., Tandem-DM, Abreast-DM or Hirose-
DM. We also give a preimage security analysis of Weimar-DM showing
a near-optimal bound of 22n−5 = 2251 queries. Our security bounds are
asymptotically optimal.

Keywords: double length compression function, block cipher based,
ideal cipher model, collision security, preimage security.

1 Introduction

A cryptographic hash function is a function which maps an input of arbitrary
length to an output of fixed length. It should satisfy at least collision-, preimage-
and second-preimage resistance and is one of the most important primitives in
cryptography [26].

Block Cipher-Based Hash Functions. Since their initial design by Rivest, MD4-
family hash functions (e.g., MD4, MD5, RIPEMD, SHA-1, SHA2 [4,29,30,32,33])
have dominated cryptographic practice. But in recent years, a sequence of attacks
on these type of functions [8,12,41,42] has led to a generalized sense of concern
about the MD4-approach. The most natural place to look for an alternative is
in block cipher-based constructions, which in fact predate the MD4-approach
[25]. Another reason for the resurgence of interest in block cipher-based hash
functions is due to the rise of size restricted devices such as RFID tags or smart
cards: A hardware designer has to implement only a block cipher in order to
obtain an encryption function as well as a hash function.

But since the output length of most practical encryption functions is far too
short for a collision resistant hash function, e.g., 128-bit for AES, one is mainly
interested in sound design principles for double block length (DL) hash functions
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Table 1. Comparison of double length compression function security results evaluated
for n = 128 and a success probability of 1/2; for Cyclic-DM k > 1, i.e., the cycle
length > 2 the value of k′ is ≥ 2

compression function collision bound preimage bound

Weimar-DM 2126.23 (this paper) 2252.5 (this paper)

Abreast-DM 2124.42 [11,22] 2246 [1]

Hirose-DM 2124.55 [15] 2251 [1]

Tandem-DM 2120.87 [24] 2246 [1]

Cyclic-DM (cycle length > 2) 2127−k [11] ≈ 2128 [11,22]

Cyclic-DM (cycle length 2) 2124.55 [11] ≈ 2128 [11,22]

Cube-DM 2125.56 [11] ≈ 2128 [11,22]

Add/k-DM 2127−k′
[11] ≈ 2128 [11,22]

Lee/Kwon 2125.0 [22] ≈ 2128 [11,22]

[2]. A DL hash function uses a block cipher with n-bit output as the building
block by which it maps possibly long strings to 2n-bit ones. Usually, hash func-
tions are built using compression functions only being able to compress a fixed
length input into a (smaller) fixed-length output. These compression functions
are iterated, e.g., using the Merkle-Damg̊ard [7,27] transform, in order to get a
full-fledged hash function. Since these transforms are property preserving, this
article focuses only on the compression function.

Weimar-DM. We define a new double length double call compression function
as follows (cf. Figure 1).

Definition 1. Let E be a block cipher taking an 2n-bit key and an n-bit block
size. The compression function HWDM : {0, 1}n × {0, 1}2n → {0, 1}2n is defined
as (cf. Figure 1)

HWDM(M,U, ̂U) =
(

EM‖U (̂U)⊕ ̂U,EM‖U (̂U)⊕ ̂U
)

,

where M‖U denotes the bit-by-bit complement of the bit-string M‖U .

In this paper we give very tight collision security and preimage security bounds
forWeimar-DM. Table 1 gives an overview on known double length compression
function designs using two calls to a block cipher with 2n-bit key and n-bit block
size inside. The results obtained in this paper for Weimar-DM have also been
included.

Our Contribution. We present a new and surprisingly simple design of a dou-
ble length double call compression function (Weimar-DM) and give a collision
security bound as well as a preimage security bound. It has the best collision
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Fig. 1. Weimar-DM compression function HWDM; the small circle ’◦’ denotes a bit-
by-bit complement

security bound of all known double length double call compression functions
using a block cipher with 2n-bit key and n-bit block size. Also, no compression
function has a tighter preimage security bound, only for Hirose-DM a compa-
rable one is known. The collision security proof not only delivers an ultra-tight
bound, but is also very short.

Outline. The paper is organized as follows: Section 2 gives formal notations and
definitions. In Section 3, we prove that any adversary asking less than 2126.23

oracle queries has negligible advantage in finding a collision for the Weimar-
DM compression function. Section 4 derives a near-optimal preimage bound for
Weimar-DM. In Section 5 we discuss our results and conclude. Directly related
publications have been mentioned in Table 1, a broader overview on block-cipher
based hashing is provided in Appendix A.

2 Preliminaries

2.1 Basic Notions

Ideal Cipher Model. A (k, n) block cipher is a keyed family of permutations
consisting of two paired algorithms E : {0, 1}k × {0, 1}n → {0, 1}n and E−1 :
{0, 1}k × {0, 1}n → {0, 1}n, both accepting a key of size k bits and an input
block of size n bits for some k, n > 0. For positive k, n, Block(k, n) is the
set of all (k, n) block ciphers. For any E ∈ Block(k, n) and any fixed key
K ∈ {0, 1}k, decryption E−1

K := E−1(K, ·) is the inverse function of encryption
EK := E(K, ·), so that E−1

K (EK(X)) = X holds for any admissible input X ∈
{0, 1}n.

Most of the attacks on hash functions based on block ciphers do not utilize
the internal structure of the block ciphers. The security of such hash functions is
usually analyzed in the ideal cipher model [2,9,18]. In this model, the underlying
primitive, the block cipher E, is modeled as a family of random permutations
{EK} whereas the random permutations are chosen independently for each key
K, i.e. formally E is selected randomly from BC(X ,K).
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Block Cipher Based Compression Functions. Generally speaking, a single length
(SL) block cipher based compression function is a compression function HSL :
{0, 1}n × {0, 1}n → {0, 1}n using a block cipher with n-bit block size inside.
The idea was first discussed in literature by Rabin [25]. Most SL functions use a
block cipher from Block(n, n) and compress a 2n bit string to an n bit string.
A popular example is the Davies-Meyer (DM) [43] mode

H(M,U) = EM (U)⊕ U,

which is essentially used twice inside Weimar-DM. The ⊕ operation is usually
called feed-forward. A double (block) length (DL) compression function is a
compression function HDL : {0, 1}k−n ×{0, 1}2n → {0, 1}2n taking a (k−n)-bit
message and a 2n-bit chaining value and outputs a new 2n-bit chaining value.
It also uses a block cipher from Block(k, n) inside. Weimar-DM as given in
Definition 1 is an example of a double length compression function using exactly
two calls to a block cipher from Block(2n, n) in order to compute its output
value.

2.2 Security Notions for Double Length Compression Functions

Security is quantified by the success probability of an optimal resource-bounded
adversary. An adversary is a computationally unbounded but always-halting
collision-finding algorithm A with resource-bounded access to an oracle E ∈
Block(2n, n). We can assume (by standard arguments) that A is determinis-
tic. The adversary may make forward queries (X,K, ?)fwd to discover the cor-
responding value Y = EK(X), or the adversary may make backward queries
(?,K, Y )bwd, so as to learn the corresponding value X = E−1

K (Y ) for which
EK(X) = Y . Either way the result of the query is stored in a triple (Xi,Ki, Yi).
The query history, denoted byQ, is the tuple (Q1, . . . , Qq) whereQi=(Xi,Ki, Yi)
is the result of the i-th query made by the adversary and where q is the total
number of queries made by the adversary. Without loss of generality, it is as-
sumed that A asks at most only once on a triplet of a key Ki, a plaintext Xi

and a ciphertext Yi obtained by a query and the corresponding reply.
As usual, we define the collision security of a hash functionH by an experiment

of an adversary A with a security parameter of 2n, i.e. equal to the output bit-
length of the compression function.

Experiment 1 (Collision-Finding Experiment Exp-CollA,HDL(2n))

1. The adversary A is given oracle access to a block cipher E ∈ Block(k, n)

and returns values (M,U, ̂U), (M ′, U ′, ̂U ′) ∈ {0, 1}n × {0, 1}n × {0, 1}n.
2. The output of the experiment is defined to be 1 iff (M,U, ̂U) �= (M ′, U ′, ̂U ′)

and HDL(M,U, ̂U) = HDL(M ′, U ′, ̂U ′). In such a case we say that A has
found a collision for HDL.

The advantage of an adversary A finding such a collision of HDL is given in the
following definition.
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Definition 2. AdvcollHDL (A) = Pr
[

Exp-CollA,HDL(2n) = 1
]

.

Since we only limit the adversary by the number of queries it is allowed to ask
to the E oracle, i.e. it is explicitly given ’unlimited computing power’, we write

AdvcollHDL (q) := max
A

{AdvcollHDL (A)},

where the maximum is taken over all adversaries that ask at most q oracle queries
in total.

There are several notions known that formalize preimage security [34]. We
adopt everywhere preimage resistance (epre) in the information theoretic setting
which essentially lets the adversary pre-commit to the hash value it likes to be
challenged on before submitting any queries to the oracle. The corresponding
preimage finding experiment is definied as follows.

Experiment 2 (Preimage-Finding Experiment Exp-EpreA,HDL(2n))

1. The adversary A is given oracle access to a block cipher E ∈ Block(k, n).

A selects and announces a value (V, ̂V ) ∈ {0, 1}n × {0, 1}n before making

any oracle queries. It outputs a value (M,U, ̂U) ∈ {0, 1}n×{0, 1}n×{0, 1}n.
2. The output of the experiment is defined to be 1 iff HDL(M,U, ̂U) = (V, ̂V ).

In such a case we say that A has found a preimage of HDL.

Now, we let AdvepreHDL (A) be the predicate that is true iff ’1’ is returned by the

experiment Exp-EpreA,HDL(2n). The pre-committed value (V, ̂V ) is an omitted

parameter of AdvepreHDL (A). Again, we define

AdvepreHDL (q) := max
A

{AdvepreHDL (A)},

where the maximum is taken over all adversaries that ask at most q oracle queries
in total.

3 Collision Security Analysis of Weimar-DM

3.1 Security Results

It is easy to see that HWDM is of type Cyclic-DM with a cycle length of 2,
i.e., we directly have a collision security bound of 2124.55 (cf. Table 1). So we
are done with our analysis. But we do not use this generic proof technique but
rather use a specialized one delivering us a number of benefits. First, our proof
is way simpler than the generic proof for Cyclic-DM. And, second, our new
collision security bound is much better by virtually halving the gap between
the theoretically optimal bound known before (via Cyclic-DM) and the best
bound theoretically possible (≈ 2127). Our main collision security result is stated
in the following theorem.
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Theorem 1. Let N = 2n. Then, AdvcollHWDM (q) ≤ q(q+1)
(N−2q)2 .

In numerical terms, e.g., for n = 128 and AdvcollHWDM(q) = 1/2, we have q =
2126.23. Using simple calculus, it is easy to see that for α = N(1− 1√

2
)= 2n−1.77

we have

AdvcollHWDM(α) =
1

2
+ o(1),

where the term o(1) → 0 for n → ∞. Neglecting constant factors, our security
bound reads as an asymptotically optimal bound of O(2n) for a compression
function with 2n-bit output.

3.2 Proof of Theorem 1

We assume that the adversary has made any relevant query to E to come up
with a collision – which is reasonable in the ideal cipher model. Another standard
assumption made in ideal cipher proofs is that “the adversary never makes a
query to which it already knows the answer”. By this it is meant, for example,
that one can assume that the adversary never makes a query EK(X), obtaining
an answer Y , and then makes the query E−1

K (Y ) (which will necessarily be
answered by X). We start by considering an arbitrary q-query collision finding
adversary A. We then construct an adversary A′ which simulates A but does
sometimes ask an additional query to the E oracle under certain circumstances.

Since A′ is more powerful than A, it suffices to upper bound the success
probability of A′. We now give a detailed description of A′ by simultaneously
upper bounding its chances of success. We say that an adversary is successful if
its query history Q contains the means of computing a collision. This is discussed
more thoroughly in the following case analysis.

Description of A′. The adversary A′ maintains an initially empty list L repre-
senting any possible input/output of the compression function HWDM that can
be computed by the adversary A. An entry L ∈ L is a 4-tuple (K,X, Y, Y ′) ∈
{0, 1}5n where K ∈ {0, 1}2n, X ∈ {0, 1}n is the 3n-bit input to the compression

function such that (M,U) = K and ̂U = X . The n-bit values Y, Y ′ are given by
Y = EK(X), Y ′ = EK(X).

The list is now built as follows. Say that the adversaryAmounts its i-th query
to E or E−1, 1 ≤ i ≤ q. In the case of a forward query, the adversary gets hold
of the tuple (K,X, Y ) where Y = EK(X). In the case of a backward query, the
adversary gets also hold of the tuple (K,X, Y ), but in this case X = E−1

K (Y ).
In either case, the value X ⊕ Y is randomly determined by the output of the
query.

Now, A′ checks if an entry L = (K,X, ∗, ∗) or L′ = (K,X, ∗, ∗) is contained
in L where ′∗′ denotes an arbitrary value. We now analyze the two possible
cases A′ might be confronted with and upper bound their success probabilities
separately.
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Case 1. Neither L nor L′ are in L. Then A′ mounts an additional forward
query Y ′ = EK(X). Note that Y ′ ⊕ X , the result of the ’bottom row’ of the
compression function, is always uniformly distributed since K �= K always, i.e.,
the results of the first query asked by the adversary A and the second query
asked additionally by the adversary A′ are always independently distributed.
Set Li := (K,X, Y, Y ′). We append Li to the list L.

We now define what we mean by a collision in the list. Fix two integers r, s
with r �= s, such that Lr = (Kr, Xr, Yr, Y

′
r ) represents the r-th entry in L and

Ls = (Ks, Xs, Ys, Y
′
s ) the s-th entry in L and both entries exist. We say that

Ls and Lr collide if a collision of the compression functions occurs that can be
computed using the query results given in Lr and Ls. This is the case if at least
one of the following two conditions is met:

1. Yr ⊕Xr = Ys ⊕Xs and Y ′
r ⊕Xr = Y ′

s ⊕Xs or
2. Yr ⊕Xr = Y ′

s ⊕Xs and Y ′
r ⊕Xr = Ys ⊕Xs.

So for the i-th query, there are at most i − 1 entries in the list L that might
collide with Li. We can upper bound the probability of success of the i-th query
by

i−1
∑

j=1

2

(N − 2q)(N − 2q)
≤ 2i

(N − 2q)(N − 2q)

As the adversary can ask at most q queries, the list L cannot contain more than
q entries since for any adversary query at most one additional entry is added to
the list L of A′. So the total chance of success for q queries is

≤
q

∑

i=1

2i

(N − 2q)(N − 2q)
=

q(q + 1)

(N − 2q)2
.

In case of a collision in L we give the attack to the adversary.

Case 2. It is clear that, by design, it cannot happen that exactly one of the values
L or L′ is already in L. So now assume that both values L, L′ are already in L.
Then A′ ignores this query, since we know that A has zero chance of winning
since otherwise we would have given the attack to the adversary before. ��

4 Preimage Security Analysis of Weimar-DM

4.1 Security Results

Preimage security results for double length compression function have ’histori-
cally’ been limited by the birthday bound, mainly due to technical reasons. At
Asiacrypt 2011 a new breakthrough result by Armknecht et al. [1] gave new
techniques that enable preimage security results for double length compression
function way beyond the birthday-barrier. For our preimage security proof of
Weimar-DM, we adopt these methods. More precise, we show the following
Theorem.
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Theorem 2. Let N = 2n. Then, AdvepreHWDM (q) ≤ 16q/N2.

It is easy to see that AdvepreHWDM (22n−5) = 1/2 and therefore our bound is asymp-
totically optimal for a 2n-bit compression function.

4.2 Proof of Theorem 2

Parts of the proof closely follow the proofs of [1, Theorems 1 and 2]. Our security
proof uses the notion of free queries. Formally, these can be modeled as queries
which the adversary is forced to query (under certain conditions), but for which
the adversary is not charged: they do not count towards the maximum of q queries
which the adversary is allowed. However, these queries become part of the adver-
sary’s query history, just like other queries. In particular, the adversary is not al-
lowed, later, to remake these queries “on its own” (due to the previously discussed
assumption that the adversary never makes a query which it already owns).

Similar to our collision security analysis, we say the attacker succeeds or finds
a preimage if its query history Q contains the means of computing a preimage
of C, in the sense that there exist values B ∈ {0, 1}3n, K1,K2 ∈ {0, 1}2n and
X1, X2, Y1, Y2 ∈ {0, 1}n such that both (X1,K1, Y1) and (X2,K2, Y2) are in
the query history Q, HWDM(B) = C and the two queries used to evaluate
HWDM(B) are precisely EK1(X1) and EK2(X2). In this case, we also say Q
contains a preimage of C. In the current context, where we consider adversaries
making 2n queries or more, the assumption that the adversary never makes a
query where it knows the answer to, should be more precisely restated as “the
adversary never makes a query that will result in a triple (X,K, Y ) which is
already present in the query history”. (This latter assumption can be made
without loss of generality using the fact that EK(·) is a permutation.) Indeed, if
an adversary has made 2n−1 queries under a key K, the result of the last query
under that key is predetermined, and thus the adversary “already knows” the
answer to this query. However, one should not forbid the adversary from making
this query, since the query may be necessary to complete the attack.

Let (V, ̂V ) ∈ {0, 1}n × {0, 1}n be the point to invert (chosen by the ad-
versary before it makes any queries to E). We upper bound the probability

that, in q queries, the adversary finds a point (M,U, ̂U) ∈ ({0, 1}n)3 such that

HWDM(M,U, ̂U) = (V, ̂V ).

When the adversary makes a (normal) forward query EM‖U (̂U) we give it for

free, also, the answer to the queryEM‖U (̂U). Moreover when the adversarymakes

a (normal) backward query E−1
M‖U (R), resulting in an answer ̂U = E−1

M‖U (R), we

give it for free the answer to the forward query EM‖U (̂U). As discussed, we

assume that the adversary never makes a query to which it knows the answer.
Thus the elements of the adversary’s query history Q can be paired into adjacent
pairs of the form (M‖U, ̂U,R), (M‖U, ̂U, S). We call such a pair an adjacent
query pair.
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We now give further free queries to the adversary, in the fashion described
next. After each adjacent query pair has been completed (namely, after the
adversary has received the response to both its query and its associated free
query, and after these have been placed in the query history), we check whether
the key prefix used for the latest query is such that the (current) query history
contains exactly N/2 adjacent query pairs with this key prefix. If so, we give all
remaining adjacent query pairs under this key for free to the adversary. There
will be exactly N/2 such query pairs. We insert these N/2 free query pairs into
the query history pair-by-pair (to maintain, mostly for conceptual simplicity,
the adjacent pair structure of the query history). We note that, after these free
queries have been inserted into the query history, the adversary cannot make
any more queries under this key prefix, since, the adversary is assumed never
to make a query to which it knows the answer. When N/2 free query pairs are
given to the adversary in the fashion just described, we say that a super query
occurs. This can be summed up as follows.

Super Query. Given N/2 adjacent query pairs to E all using the same key
K ∈ {0, 1}2n, all the remaining N/2 queries using the same key K and the
remaining N/2 queries using key K are given for free.

We say that an adjacent query pair (M‖U, ̂U,R), (M‖U, ̂U, S) is successful, if
̂U ⊕ R = V and ̂U ⊕ S = ̂V , or if ̂U ⊕ R = ̂V and ̂U ⊕ S = V . Thus the
adversary obtains a preimage of (V, ̂V ) precisely if it obtains a successful adjacent
query pair. This can occur in one of two ways: either the winning query pair is
part of a super query, or not. We let SuperQueryWin(Q) denote the event that
the adversary obtains a winning query pair that is part of a super query, and
NormalQueryWin(Q) the event that the adversary obtains a winning query pair
of normal queries (either forward or backward). It thus suffices to upper bound

Pr[SuperQueryWin(Q)] + Pr[NormalQueryWin(Q)].

Here probabilities are taken (as usual) over the adversary’s randomness (if any)
and over the randomness of the ideal cipher.

We first upper bound Pr[NormalQueryWin(Q)]. Note that when the adversary

makes, say, a forward query EM‖U (̂U), at most N/2 − 2 queries (counting free
queries) have been previously answered with the key M‖U , since otherwise a su-

per query for the key M‖U would have occurred. Thus the value R = EM‖U (̂U)
comes uniformly at random from a set of size at least N/2 + 2 ≥ N/2, and

there is chance at most 2/(N/2) = 4/N that either ̂U ⊕ R = V or ̂U ⊕ R = ̂V

(this is also true if V = ̂V ). If, say, ̂U ⊕ R = V , there is further chance at

most 1/(N/2) = 2/N that the free query EM‖U (̂U) returns ̂U ⊕ ̂V , since the

answer to the free query comes uniformly at random from a set of size at least
N/2+1 ≤ N/2. Other cases (e.g. when ̂U⊕R = ̂V , and when the adversarymakes
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a backward queryE−1
M‖U (R)) are similarly analyzed, showing that the adversary’s

chance of triggering the event NormalQueryWin(Q) at any given query is at most
(4/N)(2/N) = 8/N2. Since the adversary makes q queries total, we therefore
have

Pr[NormalQueryWin(Q)] ≤ 8q/N2. (1)

We now bound Pr[SuperQueryWin(Q)]. Assume that a super query is about to
occur on keys M‖U and M‖U meaning that the value of EM‖U (·) and EM‖U (·)
are already known on exactly N/2 points. Let us denote this set of points by
X and let Y = EM‖U (X ) and Y ′ = EM‖U (X ). Further let R = {0, 1}n\X ,

S = {0, 1}n\Y and S ′ = {0, 1}n\Y ′. Clearly, |X | = |Y| = |Y ′| = |R| = |S| = |S ′|.
Now fix a point R ∈ R in the domain of the super query. We now estimate

the probability that this point R induces a successful pair. This can only be the
case if

1. R⊕ V ∈ S and R⊕ ̂V ∈ S ′ or
2. R⊕ ̂V ∈ S and R⊕ V ∈ S ′.

The probability that EM‖U (R) = R⊕V and EM‖U (R) = R⊕ ̂V equals 1/(N/2)2.

The same is true for the probability that EM‖U (R) = R ⊕ ̂V and EM‖U (R) =
R⊕ V . Thus the total probability to be successful in a super query is at most

2 ·N/2 ·
(

1

N/2

)2

=
2

N/2
.

Since at most q/(N/2) super queries can ever occur, we have

Pr[SuperQueryWin(Q)] ≤ 8q/N2. (2)

The sum of (1) and (2) gives our claim. ��

5 Discussion and Conclusion

In this paper, we have presented Weimar-DM, a double length compression
function. We have shown very tight collision security bounds and preimage se-
curity bounds. The collision security bound is currently the best known bound
for any such compression functions known in literature. Also, no compression
function with a tighter preimage security bound is known – only Hirose-DM
has a numerically similar bound. For our security benefits, we have to pay the
price of two key-scheduler runs per compression function.

Although a lot of progress has been made in recent years in the field of double
length hashing, a lot of open questions remain. Related to our analysis, it would
be interesting to investigate if our techniques in the collision security proof can
be generalized, e.g., to a subclass of Cyclic-DM. Another open problem is the
design of conveniently secure compression functions only using a block cipher
from Block(n, n).
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A Related Work

Schemes with NonOoptimal or Unknown Collision Security. Preneel et al. [31]
discussed the security of single (block)length hash functions against several
generic attacks. They concluded that 12 out of 64 hash functions are secure
against these attacks. However, formal proofs were first given by Black et al. [2]
about 10 years later. Their most important result is that 20 hash functions –
including the 12 mentioned above – are optimally collision resistant. Knudsen et
al. [19] discussed the insecurity of DBL hash functions with rate 1 composed of
(n, n) block ciphers. Hohl et al. [16] analyzed the security of DBL compression
functions with rate 1 and 1/2. Satoh et al. [37] and Hattoris et al. [13] discussed
DBL hash functions with rate 1 composed of (2n, n) block ciphers. MDC-2 and
MDC-4 [5,17] are (n, n) block cipher based DBL hash functions with rates 1/2
and 1/4, respectively. Steinberger [39] proved that for MDC-2 instantiated with,
e.g., AES-128 no adversary asking less than 274.9 can usually find a collision.
Nandi et al. [28] proposed a construction with rate 2/3 but it is not optimally
collision resistant. In [20], Knudsen and Muller presented some attacks against it.
At EUROCRYPT’08 and CRYPTO’08, Steinberger [35,36] proved some security
bounds for fixed-key (n, n) block cipher based hash functions, i.e., permutation
based hash functions, that all have small rates and low security guarantees. None
of these schemes/techniques mentioned so far are known to have birthday-type
collision resistance. Lee and Stam [23] gave a scheme similar to MDC-2, called
MJH. It uses finite field multiplications to offer a collision security bound in the
iteration of O(22n/3−log n).

Schemes with Birthday-Type Collision Security. Merkle [27] presented three
DBL hash functions composed of DES with rates of at most 0.276. They are op-
timally collision resistant in the ideal cipher model. Hirose [14] presented a class
of DBL hash functions with rate 1/2 which are composed of two different and
independent (2n, n) block ciphers that have birthday-type collision resistance.
At FSE’06, Hirose [15] presented a rate 1/2 and (2n, n) block cipher based DBL
hash function that has birthday-type collision resistance. He stated that for his
compression function, no adversary can find a collision with probability greater
than 1/2 if no more than 2124.55 queries are asked (see [10, App. B] for details
on this). For Tandem-DM, the best known collision security bound is 2120.87

queries [24]. Fleischmann et al. [11] as well as Lee and Kwon [21] independently
provided a security bound for Abreast-DM of 2124.42. In [11] a lot of variants
are also discussed, e.g., Cyclic-DM, Cube-DM or Add/k-DM. Bos et al. [3]
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provided practical performance figures for some double length hash functions
using the AES-NI instruction set.

Preimage Security Results. For single length compression functions, tight se-
curity results are known [2,38]. For double length compression functions, some
birthday-type preimage results are also known [22,24], essentially stating that
any adversary asking less 2n queries has only a negligible chance of finding a
preimage. For Abreast-DM, Tandem-DM and Hirose-DM there are better
bounds known [1] (cf. also Table 1).
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