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Preface

The 17th Australasian Conference on Information Security and Privacy
(ACISP 2012) was held at Wollongong, Australia, during July 9–11, 2012. The
conference was sponsored by the Centre for Computer and Information Security
of the University of Wollongong. The submission and review process was run
using the iChair software, written by Thomas Baigneres and Matthieu Finiasz
from EPFL, LASEC, Switzerland. We would like to thank them for letting us
use their iChair software.

The conference received 89 submissions, out of which the Program Commit-
tee selected 30 full papers and 5 short papers for presentation at the conference
after a rigorous review process. These papers are included in the proceedings.
The accepted papers cover a range of topics in information security, including
some fundamental theory, cryptanalysis, message authentications, hash func-
tions, public key cryptography, digital signatures, identity-based cryptography,
attribute-based cryptography, lattice-based cryptography, lightweight cryptog-
raphy and RFIDs. The conference proceedings contain revised versions of the
selected papers. Since some of them were not checked again for correctness be-
fore publication, the authors bear full responsibility for the contents of their
papers. We would like to thank the authors of all papers for submitting their
work to the conference.

In addition to the contributed papers, the program included two invited talks.
The invited speakers were Mihir Bellare (University of California, San Diego),
with the topic “A Cryptographic Treatment of the Wiretap Channel” and Jorge
Munilla (Universidad de Málaga, Spain), with the topic “Operating Principles of
RFID Sysems and Attacks Related to the Location.” We would like to express
our thanks to them.

As in previous years, we selected a “best student paper.” To be eligible for
selection, a paper has to be co-authored by a postgraduate student, whose con-
tribution was more than 50%. The winner was Xuhua Zhou from Shanghai Jiao
Tong University, P.R. China, for the paper “A Generic Construction of Account-
able Decryption and Its Applications.”

We would like to thank all the people who helped with the conference pro-
gram and organization. In particular, we heartily thank the Program Committee
and the sub-reviewers listed on the following pages for the effort and time they
contributed to the review process. A special thanks to the Publication Chair,
Man Ho Au, who spent a tremendous amount of time for the success of the
conference. We would also like to express our thanks to Springer for continuing
to support the ACISP conference and for help in the conference proceedings
production.



VI Preface

Finally, we would like to thank the General Chair, Jennifer Seberry, and the
Organizing Committee for their excellent contribution to the conference.

July 2012 Willy Susilo
Yi Mu
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Optimal Bounds

for Multi-Prime Φ-Hiding Assumption

Kaori Tosu� and Noboru Kunihiro

The University of Tokyo
Kaori Tosu@mist.i.u-tokyo.ac.jp, kunihiro@k.u-tokyo.ac.jp

Abstract. We propose a novel attack against the Multi-Prime Φ-Hiding
Problem, which was introduced by Kiltz et al. at CRYPTO 2010 to show
the instantiability of RSA-OAEP. The cryptanalysis of the Multi-Prime
Φ-Hiding Problem is also mentioned by them. At Africacrypt 2011, Her-
rmann improved their result by making use of the special structure of the
polynomial that is derived from the problem instance. In his method, the
bound on e is reduced by employing a linear equation with fewer vari-
ables. In order to optimize the size and number of variables, we examine
every possible variable size and number of variables. Then, we show that
our attack achieves a better bound than that of Herrmann, which shows
that our attack is the best among all known attacks.

Keywords: Multi-Prime Φ-Hiding Assumption, RSA-OAEP, lattice
based technique.

1 Introduction

1.1 Background

The RSA-OAEP encryption scheme [1] was introduced by Bellare and Rog-
away in 1994. At CRYPTO 2001, Fujisaki et al. [5] discussed the security of
the f -OAEP encryption scheme and of RSA-OAEP in the random oracle model,
where f is an abstract trapdoor permutation involved in the OAEP conver-
sion. They first proved that f -OAEP is IND-CCA secure if the permutation f
has partial-domain one-wayness. They also showed that the RSA function has
partial-domain one-wayness and then that RSA-OAEP is IND-CCA secure. In
the latter part of the proof, they employed a lattice based technique.

At CRYPTO 2010, Kiltz et al. [9] discussed the security of RSA-OAEP in
the standard model. They proved that RSA-OAEP is IND-CPA secure in the
standard model under a reasonable assumption. In their proof, the RSA function
is lossy under the Φ-hiding assumption if e is taken up to almost 1/4 the bit-
length of N . Then, they extended the Φ-hiding assumption to the multi-prime
RSA setting to introduce multi-prime Φ-hiding assumption and showed that
multi-prime RSA gains more lossiness. In the evaluation of lossiness, a lattice
based technique is also employed.

� Currently, she is working at Sumitomo Life Insurance Company.

W. Susilo, Y. Mu, and J. Seberry (Eds.): ACISP 2012, LNCS 7372, pp. 1–14, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 K. Tosu and N. Kunihiro

The original Φ-hiding assumption was introduced by Cachin et al. at EURO-
CRYPT 1999 [2]. Since its proposal, many cryptographic applications based on
the Φ-hiding assumption have been proposed. The Φ-Hiding assumption roughly
states that given an RSA modulus N = pq and a prime e it is difficult to decide
if e divides (p − 1)(q − 1) = Φ(N) or not. If e is prime and divides Φ(N) then
either e divides p − 1 or e divides q − 1. So, without loss of generality, we can
say that the assumption states that given N = pq and e it is difficult to decide
if e divides p− 1 or not.

The multi-prime Φ-hiding assumption introduced by Kiltz et al. is a natural
extension of the Φ-hiding assumption. The multi-prime Φ-hiding assumption
roughly states that given a multi-prime RSA modulus N = p1 . . . pm, where
p1, . . . , pm are distinct primes, and a prime e it is difficult to decide if e divides
pi − 1 for 1 ≤ i ≤ m− 1 or not.

Kiltz et al. perform a cryptanalysis of the Multi-Prime Φ-Hiding Assumption.
First, they mention that if e < N1/m−1/m2

they can solve the Multi-Prime Φ-
Hiding Problem similar to the attack on the Φ-Hiding Assumption based on
Howgrave-Graham’s algorithm. In this paper, we call this Howgrave-Graham
Method. They also notice the fact that we can solve the Multi-Prime Φ-Hiding
Problem if the modular equation

(ex1 − 1)(ex2 − 1) · · · (exm−1 − 1) ≡ 0 (mod p1p2 . . . pm−1) (1)

can be solved. In detail, they apply a linearization for Eq. (1) by using

u1, . . . , um−1. Then they solve the roots of u
(0)
1 , . . . , u

(0)
m−1 by making use of the

algorithm of Herrmann and May [7]. They obtain the better bound to solve the
Multi-Prime Φ-Hiding Problem than the Howgrave-Graham Method. Further-
more, at Africacrypt 2011, Herrmann [6] improved the result of Kiltz et al. He

noticed the fact that we do not have to find the roots x
(0)
1 , x

(0)
2 , . . . , x

(0)
m−1 to solve

the Multi-Prime Φ-Hiding Problem. Thus, it does not matter that we perform a
linearization for Eq. (1) by using 2 variables u1, u2. Herrmann attains the better
bound to solve the Multi-Prime Φ-Hiding Problem by reducing the number of
variables. However, when the number of variables is smaller, the upper bound on
the size of the roots is larger. That means the bound to solve the Multi-Prime
Φ-Hiding Problem is optimal when the number of variables and the size of the
upper bound of the root are well balanced.

1.2 Our Contributions

In this paper, we present an algorithm to attain better bounds for solving the
Multi-Prime Φ-Hiding Problem. Our algorithm is based on Herrmann [6]. In
detail, we investigate various linearizations for Eq. (1) and optimize the bounds
for the Multi-Prime Φ-Hiding Problem.

First, we examine two variables case. That is, we restrict to using two variables
and linearizing Eq. (1) to etu1 + eu2 + 1 ≡ 0 (mod p1p2 . . . pm−1), where t (2 ≤
t ≤ m− 1) is a fixed integer. Let Nγ1 be the upper bound of |u(0)1 | and Nγ2 be

the upper bound of |u(0)2 | . By applying the theorem of Herrmann and May [7],
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we can find all small solutions of Eq. (1) if γ1 + γ2 < (m − 3)/m+ 2(1/m)3/2.

Considering the relation ex
(0)
i = pi− 1 ≈ N1/m, this inequality is satisfied if e ≥

N δ, δ = 1/m−2(1/m)3/2/(t+1). Next, we optimize the value of t to minimize
δ. Considering 2 ≤ t ≤ m − 1, we can easily find that δ is the smallest when
t = 2. This is the same algorithm as Herrmann’s. Thus, Herrmann’s algorithm
is the best when we use two variables to linearize Eq. (1).

Then, we examine the k-variables case. That is, we consider a linearization
using k variables. In this case, we perform linearization for Eq. (1) and obtain
et1u1+e

t2u2+· · ·+euk+1 ≡ 0 (mod p1p2 . . . pm−1). By using the same approach
as the case of 2 variables, we prove that this equation is efficiently solved if

e ≥ N δ, δ =
1

m
− k

t1 + t2 + · · ·+ tk−1 + 1

(
1

m

) k+1
k

.

Then, we show that δ attains the smallest value

δ =
1

m
− 2

k + 1

(
1

m

) k+1
k

when (t1, t2, . . . , tk−1) = (k, k − 1, . . . , 2).
Finally we optimize the number of variables k. The lower bound of e attains

the smallest value when k ≈ logm, where log is a natural logarithm. The opti-
mized bound is approximated by

e ≥ N δ, δ =
1

m
− 2

em(logm+ 1)
,

where e is the base of natural logarithm. This bound is the best of all known
attacks.

2 Preliminaries

In our analysis we will use a theorem of Herrmann and May [7] that gives upper
bounds on the size of the solutions of a linear equation modulo an unknown
divisor. As required by most multivariate applications of Coppersmith’s algo-
rithm [3,4], it relies on an assumption in order to extract the final solutions
efficiently.

Assumption 1 Let h1, . . . , hn ∈ Z[x1, . . . , xn] be the polynomials that are found
by Coppersmith’s algorithm. Then the ideal generated by the polynomial equations
h1(x1, . . . , xn) = 0, . . . , hn(x1, . . . , xn) = 0 has dimension zero.

Under Assumption 1, Howgrave-Graham [8] gives upper bounds on the size of
the solutions of a univariate linear equation modulo an unknown divisor.

Theorem 1 (Howgrave-Graham 2001 [8]). Let N be a sufficiently large
composite integer (of unknown factorization) with a divisor p ≥ Nβ. Let g(x) ∈
Z[x] be a univariate linear polynomial. Under Assumption 1, we can find all the

solutions x(0) of the equation g(x) ≡ 0 (mod p) with |x(0)| ≤ Nβ2

. The time
complexity of the algorithm is polynomial in logN .
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Herrmann and May [7] extend Theorem 1 to multivariate linear equations.

Theorem 2 (Herrmann, May 2008 [7]). Let ε > 0 and let N be a sufficiently
large composite integer (of unknown factorization) with a divisor p ≥ Nβ. Fur-
thermore, let f(x1, . . . , xn) ∈ Z[x1, . . . , xn] be a linear polynomial in n variables.

Under Assumption 1, we can find all the solutions (x
(0)
1 , . . . , x

(0)
n ) of the equation

f(x1, . . . , xn) ≡ 0 (mod p) with |x(0)1 | ≤ Nγ1 , . . . , |x(0)n | ≤ Nγn if

n∑
i=1

γi ≤ 1− (n+ 1)(1− β) + n(1− β)
n+1
n − ε.

The time complexity of the algorithm is polynomial in logN and (e/ε)n.

For completeness we explicitly define the Multi-Prime Φ-Hiding Problem and
Multi-Prime Φ-Hiding Assumption.

Definition 1 (Multi-Prime Φ-Hiding Problem). Let N = p1p2 . . . pm be a
composite integer (of unknown factorization) with m (≥ 2) prime factors of equal
bit length. Given N and a prime e, decide whether e divides pi for 1 ≤ i ≤ m−1
or not.

Definition 2 (Multi-PrimeΦ-HidingAssumption).There is no polynomial-
time algorithm that decides the Multi-Prime Φ-Hiding Problem with non-negligible
success probability.

Note that all the analysis in the paper is based on approximations and constant
terms are ignored. Furthermore, we ignore “−ε”terms throughout the paper.

3 Previous Works

In this section, we will present three previous methods in attacking Multi-Prime
Φ-Hiding Assumption. For easy understanding, we show small examples in the
Appendix.

3.1 Howgrave-Graham Method

First method is mentioned by Kiltz et al. [9] making use of the theorem of
Howgrave-Graham. In this paper, we will call it “Howgrave-Graham Method”.

If a prime e divides pi − 1 for i = 1, . . . ,m− 1, then e fulfills the equations

ex
(0)
i + 1 = pi. (2)

More generally, we can write

ex
(0)
i + 1 ≡ 0 (mod pi).
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Now, given a prime e and a modulus N of unknown factorization, we have solved

Multi-Prime Φ-Hiding Problem, if we can find the solutions x
(0)
i of the equation

exi + 1 ≡ 0 (mod pi). (3)

Theorem 1 tells us that we can efficiently find all the solutions x
(0)
i of Eq. (3) if

their absolute value is smaller than N1/m2

. Considering Eq. (2), |x(0)i | < N1/m2

if e < N1/m−1/m2

. Therefore, if

e ≥ N δ, δ =
1

m
− 1

m2
,

then we can efficiently solve Multi-Prime Φ-Hiding Problem.

3.2 KOS Method

Kiltz et al. [9] proposed another method that gives a better bound on the prime
e to solve Multi-Prime Φ-Hiding Problem than the Howgrave-Graham Method.
We will call it “KOS Method”.

Now, we demonstrate the KOS Method. We consider a modulus N consisting
of m primes p1, . . . , pm of the same bitsize. First of all, we multiply the following
equations for all i = 1, . . . ,m − 1: exi + 1 ≡ 0 (mod pi). Then we obtain the
single equation

m−1∑
i=1

eiσi(x1, x2, . . . , xm−1) + 1 ≡ 0 (mod p1p2 . . . pm−1), (4)

where σi(x1, x2, . . . , xm−1) is the elementary symmetric polynomial of degree i,
which is defined by

σi(x1, x2, . . . , xm−1) =
∑

λ⊆Λm−1,|λ|=i

(∏
t∈λ
xt

)

for Λm−1 = {1, 2, . . . ,m − 1}. Next, we perform a linearization of Eq. (4) and
obtain the linear equation

em−1u1 + e
m−2u2 + · · ·+ eum−1 + 1 ≡ 0 (mod p1p2 . . . pm−1), (5)

where ui = σm−i(x1, x2, . . . , xm−1) for i = 1, . . . ,m− 1.
If we can solve Eq. (5), we can obtain u1, . . . , um−1. Then, we have x1, . . . , xm−1

by solving an equation Xm−1 − u1Xm−2 + · · ·+ (−1)m−1um−1 = 0 over the in-
tegers. Finally, we have p1, . . . , pm−1 since each pi is pi = exi + 1. Then, if we
can solve Eq. (5), we have pi. Hence, it is enough to obtain the condition such
that Eq. (5) is solvable in polynomial time.

We use Theorem 2 for obtaining such condition for Eq. (5). Let Nγ be the

upper bound of |x(0)i | for i = 1, . . . ,m−1. We can derive upper bounds on the |ui|,
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namely |u(0)i | ≤ N (m−i)γ . By applying Theorem 2 with β = (m−1)/m, n = m−1,
we can find all the solutions of Eq. (5) if

γ <
2

m

(
1

m

) m
m−1

.

For the prime e this means that we can efficiently solve the Multi-Prime Φ-Hiding
Problem if

e ≥ N δ, δ =
1

m
− 2

m

(
1

m

) m
m−1

.

For all m(≥ 2), the inequality

2

m

(
1

m

) m
m−1

≥ 1

m2

is satisfied. Therefore, the KOS Method is better algorithm than the Howgrave-
Graham Method.

3.3 Herrmann Method

Herrmann improved upon the previous two results by making use of the special
structure of the polynomial that is derived from the problem instance. If the
prime e divides pi − 1 for all i = 1, . . . ,m − 1, we can write pi ≡ 1 mod e, or
more generally

p1p2 . . . pm−1 ≡ 1 (mod e).

On the other hand, if e does not divide pi − 1 for a certain i (1 ≤ i ≤ m − 1),
then p1p2 . . . pm−1 mod e is random. That means we can solve the Multi-Prime
Φ-Hiding Problem if we decide whether p1p2 . . . pm−1 (mod e) is 1 or not.

If the prime e divides pi−1 for all i = 1, . . . ,m−1, we can write the equation

p1p2 . . . pm−1 =

m−1∏
i=1

(ex
(0)
i + 1),

where each x
(0)
i (i = 1, . . . ,m− 1) is an integer.

It is sufficient to decide whether p1p2 . . . pm−1 mod e is 1 or not by solve the
Multi-Prime Φ-Hiding Problem. Actually, the solution is not important itself.
It is important to decide whether the equation has solutions or not for solving
Multi-Prime Φ-Hiding Problem. We do not have to explicitly compute the so-

lution x
(0)
1 , . . . , x

(0)
m−1. Therefore, we can apply a linearization for Eq. (4) using

fewer than m − 1 variables. By reducing the number of variables, Herrmann
improves the previous methods.

Similar to the KOS method, we expand Eq. (1) and obtain Eq. (4). Then, we
perform another kind of linearization for Eq. (4) to obtain an equation

e2u1 + eu2 + 1 ≡ 0 (mod p1p2 . . . pm−1), (6)
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where u1 =
∑m−1

i=2 e
i−2σi(x1, x2, . . . , xm−1) and u2 = σ1(x1, x2, . . . , xm−1). In

this case, we can efficiently solve the Multi-Prime Φ-Hiding Problem if

e ≥ N δ, δ =
1

m
− 2

3

(
1

m

) 3
2

.

For any m (≥ 3), we have the inequality.

2

3

(
1

m

) 3
2

≥ 2

m

(
1

m

) m
m−1

.

Therefore, the Herrmann Method is better than KOS Method.

4 Our New Algorithm

In Section 3, we explained the three previous methods: Howgrave-Graham
Method, KOS Method and Herrmann Method. In this section, we will present
our new algorithm based on Herrmann Method in attacking the Multi-Prime
Φ-Hiding Problem. Herrmann applies the linearization for Eq. (4) to obtain the
two variable linear equation (6). He left more improvement in attacking the
Multi-Prime Φ-Hiding Problem as future works. The reason for this conjecture
is the fact that Herrmann Method does not fully exploit the relation between the
coefficients of the polynomial. Therefore, we investigate every way of linearizing
Eq. (4) and investigate the bounds to solve Multi-Prime Φ-Hiding Problem.

4.1 The Case of Two Variables

For the warm-up, we examine the two variables case. That is, we restrict to
using two variables. Let t (2 ≤ t ≤ m− 1) be an integer. Note that Herrmann’s
analysis corresponds to t = 2. We perform a linearization for Eq. (4) and obtain

etu1 + eu2 + 1 ≡ 0 (mod p1p2 . . . pm−1), (7)

where u1 =
∑m−1

i=t e
i−tσi(x1, x2, . . . , xm−1) and u2 =∑t−1

i=1 e
i−1σi(x1, x2, . . . , xm−1). The same analysis as used in the previous

methods applies to the following. Let Nγ be the upper bound of |x(0)i | for

i = 1, . . . ,m− 1. Considering the relation ex
(0)
i = pi − 1 ≈ N1/m, we can derive

upper bounds on the |ui|, namely

|u1| ≤ N
m−t−1

m +tγ , |u2| ≤ N
t−2
m +γ .

By applying Theorem 2, we can find all the solutions of Eq. (7) if

γ <
2

t+ 1

(
1

m

) 3
2

.
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For the prime e this means that we can efficiently solve the Multi-Prime Φ-Hiding
Problem if

e ≥ N δ, δ =
1

m
− 2

t+ 1

(
1

m

) 3
2

.

Then, we optimize the value of t to obtain the best bound of e. We can easily
find that δ is the smallest when t = 2. Therefore, the bound to solve Multi-Prime
Φ-Hiding Problem is the best when we perform a linearization for Eq. (4) using
two variables and obtain

e2u1 + eu2 + 1 ≡ 0 (mod p1p2 . . . pm−1).

This is the same as the Herrmann Method. Summing up the discussion, we have
the following theorem.

Theorem 3. The Multi-Prime Φ-Hiding Problem can be solved by finding the
solutions of the equation

e2u1 + eu2 + 1 ≡ 0 (mod p1p2 . . . pm−1),

where u1 =
∑m−1

i=t e
i−tσi(x1, x2, . . . , xm−1) and u2 =∑t−1

i=1 e
i−1σi(x1, x2, . . . , xm−1), if e fulfills the inequality

e ≥ N δ, δ =
1

m
− 2

t+ 1

(
1

m

) 3
2

.

The smallest value of δ is given by

δ =
1

m
− 2

3

(
1

m

) 3
2

when t = 2.

4.2 The Case of k Variables

Next we consider using k (≥ 2) variables. Let t0, . . . , tk be integers satisfying
tk = 1 < tk−1 < tk−2 < · · · < t1 < t0 = m, and j (1 ≤ j ≤ k) be an integer. We
apply a linearization for Eq. (4) to obtain

et1u1 + e
t2u2 + · · ·+ euk + 1 ≡ 0 (mod p1p2 . . . pm−1), (8)

where

uj =

tj−1−1∑
i=tj

ei−tjσi(x1, x2, . . . , xm−1)

for 1 ≤ j ≤ k. Let Nγ be the upper bound of |x(0)i | for i = 1, . . . ,m − 1.

Considering the relation ex
(0)
i = pi− 1 ≈ N1/m, we can derive upper bounds on

the |ui|, namely

|ui| ≤ N
tj−1−tj−1

m +tjγ .
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By applying Theorem 2, we can find all the solutions of Eq. (8) if

γ <
k

t1 + t2 + · · ·+ tk−1 + 1

(
1

m

) k+1
k

.

For the prime e this means that we can efficiently solve the Multi-Prime Φ-Hiding
Problem if

e ≥ N δ, δ =
1

m
− k

t1 + t2 + · · ·+ tk−1 + 1

(
1

m

) k+1
k

.

Then, we optimize the value of t1, . . . , tk to obtain the best bound of e. We can
easily find that δ attains the smallest value

δ =
1

m
− 2

k + 1

(
1

m

) k+1
k

, (9)

when (t1, t2, . . . , tk−1) = (k, k−1, . . . , 2). This is when we perform a linearization
for Eq. (4) to obtain

eku1 + e
k−1u2 + · · ·+ euk + 1 ≡ 0 (mod p1p2 . . . pm−1).

Summing up the discussion, we have the following theorem.

Theorem 4. Let k be an integer and let t0, . . . , tk be integers satisfying tk =
1 < tk−1 < tk−2 < · · · < t1 < t0 = m. The Multi-Prime Φ-Hiding Problem can
be solved by finding the solutions of the equation

eku1 + e
k−1u2 + · · ·+ euk + 1 ≡ 0 (mod p1p2 . . . pm−1),

where uj =
∑tj−1−1

i=tj
ei−tjσi(x1, x2, . . . , xm−1) for j = 1, . . . , k, if e holds the

inequality

e ≥ N δ, δ =
1

m
− k

t1 + t2 + · · ·+ tk−1 + 1

(
1

m

) k+1
k

.

δ is the smallest when (t1, t2, . . . , tk−1) = (k, k − 1, . . . , 2). The optimized bound
is

δ =
1

m
− 2

k + 1

(
1

m

) k+1
k

. (10)

4.3 Optimizing k

It is worth pointing out that from the definition of our algorithm, we have
Howgrave-Graham method, Herrmann method and KOS method by setting k =
1, k = 2 and k = m − 1, respectively. It is not clear whether the choice of
k = 1, 2,m− 1 is the best of all possible choices. Actually, this is not the case;
we show the optimal choice of k.
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First, we search the optimal value of k by using Eq. (10). For each positive
integer m(≤ 20), the optimal value of k is given as follows:

k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 (m = 2)

2 (3 ≤ m ≤ 5)

3 (6 ≤ m ≤ 14)

4 (15 ≤ m ≤ 20).

Next, we show an asymptotic performance of our algorithm.

Theorem 5. Let δ be

δ =
1

m
− 2

em(logm+ 1)
.

The Multi-Prime Φ-Hiding Problem can be solved by finding the solutions of the
equation

ek0u1 + e
k0−1u2 + · · ·+ euk0 + 1 ≡ 0 (mod p1p2 . . . pm−1).

uj =

tj−1−1∑
i=tj

ei−tjσi(x1, x2, . . . , xm−1), (j = 1, . . . , k0),

if e satisfies the inequality e ≥ N δ for large m.

Proof. Let

f(x) :=
1

m
− 2

x+ 1

(
1

m

) x+1
x

.

We differentiate f(x) and obtain

f ′(x) =
2

x2(x + 1)2

(
1

m

) x+1
x {

x2 − (x+ 1) logm
}
.

When x is a positive real number, f(x) is the smallest when

x =
logm+

√
(logm)2 + 4 logm

2
. (11)

Let α be the right hand of Eq. (11). For any positive integerm, α always satisfies
the inequality

logm < α < logm+ 1.

Therefore, when x is a positive integer, f(x) is the smallest when x = �logm�
or 	logm
. For large m, �logm� ≈ 	logm
 ≈ logm and

f(logm) =
1

m
− 2

m(logm+ 1)

(
1

m

) 1
log m

.
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By using the equation (
1

m

) 1
log m

=
1

e
,

The optimized value is approximated as follows:

f(logm) =
1

m
− 2

em(logm+ 1)
.

Then, we have the theorem. ��
Now, we consider the time complexity. Theorem 2 tells us the time complexity
to solve the Multi-Prime Φ-Hiding Problem is exponential in the number of
variables n in the target linear equation. That is, it is roughly estimated by ecn

for some constant c. If we use our method, n is set to n ≈ logm and the time
complexity is evaluated by ec logm = mc. This implies that our algorithm works
in polynomial time inm. Like our algorithm, the Howgrave-GrahamMethod and
Herrmann Method work also in polynomial time in m. On the other hand, the
KOS method needs exponential time in m. Since our algorithm involves more
variables than the Herrmann Method, the time complexity of our method is
larger than that of the Herrmann Method.

4.4 Discussions

Figure 1 compares the result value of e to efficiently solve the Multi-Prime Φ-
Hiding Problem. Note that all values of e that lie above the respective lines are
vulnerable to a polynomial time factorization attack. It is clearly verified that our
new attack solves the Multi-Prime Φ-Hiding Problem for smaller values of e than
the other methods. Form = 3, 4, 5, our method uses two variables (k = 2), which
is the same as Herrmann Method. It is remarkable that the result value of ours
is really smaller than that of Herrmann if m ≥ 6. For example, with 4096 bits
modulus and m = 10 we reduce the size of e from 369 bits (Howgrave-Graham),
356 bits (KOS), 323 bits (Herrmann) to 314 bits. Our attack is applicable to
smaller choice of e than the other methods.

Next, we discuss asymptotic performance. For all four methods described in
this paper the values mδ converge to 1 as m goes to ∞. However, their rates
of convergence are significantly different. As easily verified, it is desirable that
mδ is smaller and that the convergent rate is slower. The convergent rate of our
proposed algorithm is O(1/ log(m)); while that of Howgrave-Graham method is
O(1/m) and that of Herrmann method is O(1/m1/2). Then, the value mδ of our
method goes to 1 much slower than the other methods.

Note that our algorithm is effective only when e is close to the size of the
primes and m is large. In other words, the (Multi-Prime) Φ-hiding problem
remains still hard in general.

4.5 Full Description of Our Algorithm

For completeness, we show the full description of our algorithm for solving Multi-
Prime Φ-Hiding Problem.
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Fig. 1. Comparison of attacks on the Multi-Prime Φ-Hiding Problem

Input: Public key (N, e) and the number m of prime factors of N
Output: Decide whether e divides pi for 1 ≤ i ≤ m− 1 or not.
Step1: Choose an optimal value k, which depends on m.
Step2: Solve the linear modular equation:

eku1 + e
k−1u2 + · · ·+ euk + 1 ≡ 0 (mod p1p2 . . . pm−1)

by using Herrmann–May’s algorithm with auxiliary inputs Xi = N
(k+1−i)γ

for 1 ≤ i ≤ k, where γ = 2/(k+1)(1/m)(k+1)/k. Note that we need not know
the value: p1p2 . . . pm−1.

Step3: If the equation has the solution, output yes. Otherwise, output no.
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A Small Examples

For easy understanding, we show some small examples for KOS method and
Herrmann method.

A.1 A Small Example for KOS Method

We consider a modulus N consisting of four primes p1, p2, p3, p4 of equal bitsize.
First of all, we multiply all the equations

ex1 + 1 ≡ 0 (mod p1), ex2 + 1 ≡ 0 (mod p2), ex3 + 1 ≡ 0 (mod p3),

and obtain the single equation

e3 x1x2x3︸ ︷︷ ︸
u1

+e2(x1x2 + x2x3 + x3x1︸ ︷︷ ︸
u2

) + e(x1 + x2 + x3︸ ︷︷ ︸
u3

) + 1 ≡ 0

(mod p1p2p3). (12)

Next, we perform a linearization of Eq. (12) to obtain the linear equation

e3u1 + e
2u2 + eu3 + 1 ≡ 0 (mod p1p2p3), (13)

where u1 = x1x2x3, u2 = x1x2 + x2x3 + x3x1 and u3 = x1 + x2 + x3.
If we can solve Eq. (13), we can obtain u1, u2 and u3. Then, we have x1, x2 and

x3 by solving an equation X3 − u1X2 + u2X − u3 = 0 over integers. Finally, we
have p1, p2 and p3 since each pi is pi = exi + 1. Then, if we can solve Eq. (13),
we have pi. Hence, it is enough to obtain the condition such that Eq. (13) is
solvable in polynomial time.

We use Theorem 2 to obtain such condition for Eq. (13). Let Nγ be the

upper bound of |x(0)i | for i = 1, 2, 3. We can derive upper bounds on the |ui|,
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namely |u(0)1 | ≤ N3γ , |u(0)2 | ≤ N2γ , |u(0)3 | ≤ Nγ . By applying Theorem 2 with
β = 3/4, n = 3, we can find all the solutions of Eq. (13) if

γ <
1

2

(
1

4

) 4
3

.

For the prime e this means that we can efficiently solve the Multi-Prime Φ-Hiding
Problem if

e ≥ N δ, δ =
1

4
− 1

2

(
1

4

) 4
3

.

A.2 A Small Example for Herrmann Method

We consider a modulus N consisting of four primes p1, p2, p3, p4 of equal bitsize.
First, we expand Eq. (1) and obtain

e3x1x2x3 + e
2(x1x2 + x2x3 + x3x1)︸ ︷︷ ︸

e2u1

+e(x1 + x2 + x3︸ ︷︷ ︸
u2

) + 1 ≡ 0

(mod p1p2p3). (14)

Then, we perform a linearization for Eq. (14) to obtain the equation

e2u1 + eu2 + 1 ≡ 0 (mod p1p2p3), (15)

where u1 = ex1x2x3 + x1x2 + x2x3 + x3x1 and u2 = x1 + x2 + x3. Similar to
the KOS Method, Eq. (15) (and thus the Multi-Prime Φ-Hiding Problem) can
be efficiently solved if

e ≥ N δ, δ =
1

4
− 1

12
=

1

6
.
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Abstract. Tripartite (Diffie-Hellman) Key Exchange (3KE), introduced
by Joux (ANTS-IV 2000), represents today the only known class of group
key exchange protocols, in which computation of unauthenticated ses-
sion keys requires one round and proceeds with minimal computation
and communication overhead. The first one-round authenticated 3KE
version that preserved the unique efficiency properties of the original
protocol and strengthened its security towards resilience against leak-
age of ephemeral (session-dependent) secrets was proposed recently by
Manulis, Suzuki, and Ustaoglu (ICISC 2009).

In this work we explore sufficient conditions for building such pro-
tocols. We define a set of admissible polynomials and show how their
construction generically implies 3KE protocols with the desired security
and efficiency properties. Our result generalizes the previous 3KE proto-
col and gives rise to many new authenticated constructions, all of which
enjoy forward secrecy and resilience to ephemeral key-leakage under the
gap Bilinear Diffie-Hellman assumption in the random oracle model.

1 Introduction

Key Exchange (KE) protocols are crucial research topics with direct practical
applications. Although KE was introduced back in 1976 [17], it was not until 1993
when Bellare and Rogaway [7] made the first step towards capturing the security
requirements for these protocols in a formal way. Research efforts on provable
security in KE protocols, in the public key setting, focused on two-party KE
(2KE), e.g. [14,24,15,25,32,37,16], and group KE (GKE), e.g. [10,29,22,12,31,19],
reaching out to other flavors such as password-based solutions [8,6,9,3] or flexible
combinations of GKE and 2KE [30,1]. The security notion, shared by most KE
flavors, takes its roots in [7] and is called authenticated key exchange (AKE)
security. Although AKE-security has been modeled for different types of adver-
saries, the common idea for secure key exchange is indistinguishability of a test
session key from a randomly chosen one.

W. Susilo, Y. Mu, and J. Seberry (Eds.): ACISP 2012, LNCS 7372, pp. 15–28, 2012.
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Tripartite Key Exchange. A powerful GKE subclass of tripartite KE (3KE)
emerged with the use of pairings in the work of Joux [20], where one communi-
cation round amongst three parties is sufficient to compute the session key. Each
party communicates only one group element and performs one exponentiation
and one pairing evaluation. The original protocol in [20] was unauthenticated
and so efforts were taken to achieve protection against active attacks, without
sacrificing the efficiency of the protocol. Adopting traditional authentication
techniques such as digital signatures, as previously applied to unauthenticated
2KE Diffie-Hellman in [14] or GKE in [21,13,22], would require at least two
rounds of communication to prevent replay attacks. 3KE protocols with at least
two communication rounds have also been known in other authentication set-
tings, e.g. with passwords [2]. The only way to preserve one communication round
with constant bit communication complexity from [20] is to resort to an implic-
itly authenticated solution, in which session key is derived through a mixing of
static (long-term) and ephemeral (session-dependent) secrets. Many attempts
to achieve such authentication in 3KE, e.g. [36,4,28,27,26] failed (as detailed
in [31]). So far the only implicitly authenticated 3KE protocol that provably
fulfills this goal is by Manulis, Suzuki, and Ustaoglu [31].

Ephemeral Key Leakage. The security model from [31], stated in a more gen-
eral GKE setting, considers a very strong attacker, that may adaptively com-
promise static and ephemeral secret keys used in the protocol sessions (with
the restriction that at least one key per participant remains secret). Leakage
of ephemeral secrets, typically the exponent used in computing the ephyemeral
Diffie-Hellman key, could be damaging for implicitly authenticated protocols,
where for better efficiency one may desire to pre-compute store ephemeral pub-
lic keys off-line. Even if ephemeral secret keys are chosen (and erased) within the
protocol session, attacks exploiting side-channels may threaten their secrecy. In
general, motivation for considering leakage of ephemeral secrets in KE protocols
stems from 2KE domain, e.g. as first mentioned in [14,24] and explicitly modeled
in AKE-security definitions from [25,37]. Various efforts towards construction of
2KE leakage-resilient protocols have been taken, e.g. [25,34,37,33,23,18]. In gen-
eral, modeling and designing ephemeral key-leakage resilient KE protocols should
not be taken for granted — Cremers [16] demonstrated how various technical
elements of 2KE models such as the notions of session ids and partnering as
well as conditions for freshness of the test session may affect the strength of
AKE-security definition with ephemeral key-leakage resilience, when it comes
to comparability of models and 2KE protocols. The model in [31] is so-far the
only GKE security model that focuses on ephemeral key-leakage in test sessions
and has recently been applied in [38], for the analysis of a two-round explicitly
authenticated ephemeral key-leakage resilient GKE protocol.

Sufficient Condition for Ephemeral Key-Leakage Resilience. Most of
KE designs focus on concrete constructions, aiming to achieve particular secu-
rity goals. Some goals can be obtained generically, using protocol compilers such
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as to add authentication (without ephemeral key leakage-resilience) to unauthen-
ticated KE protocols [22,13] or to obtain optional insider security [21,11,19] in
GKE protocols. Yet another interesting direction is to search for sufficient con-
ditions for achieving a security goal. Only recently, and for 2KE protocols only,
sufficient conditions for ephemeral key-leakage resilience (in the eCK model [25])
have been identified by Fujioka and Suzuki [18]. Their key observation is that
many eCK-secure implicitly authenticated 2KE protocols derive session keys
from a shared secret group element of the form gz, where g is the generator of a
cycling group of prime order q and the exponent z ∈ Z∗

q can often be represented
as a function that “mixes” products of static and ephemeral private keys. The
authors introduced the concept of admissible polynomials over Zq to describe
which representations of z admit AKE-secure 2KE protocols in the eCK model,
by offering a general reduction algorithm to the gap Diffie-Hellman (GDH) [35]
problem (in the random oracle model). They could explain constructions of ex-
isting eCK-secure 2KE protocols and design new more efficient protocols. The
beauty of their approach is that instead of designing an eCK-secure 2KE protocol
from scratch it suffices to come up with a set of admissible polynomials.

OurContributions. We identify sufficient conditions for ephemeral key-leakage
resilience of (implicitly authenticated) one-round 3KE protocols, that is condi-
tions under which the protocol can achieve AKE-security (with forward secrecy)
from [31]. Technically, we build on the work from [18] and adopt their notion of
admissible polynomials. The main difference to the 2KE case is that we work with
three parties and that one-round 3KE protocols generally require bilinear maps,
and hence our definition of “admissible” is different. In particular, our admissible
polynomials are of degree three and involve six variables as opposed to polyno-
mials of degree two and four variables from [18]. We show that our conditions on
such polynomials are sufficient by providing a generic framework for the design
of implicitly authenticated one-round 3KE protocols with ephemeral key-leakage
resilience and forward secrecy in the model from [31] under the gap Bilinear Diffie-
Hellman (gap BDH) assumption [5] in the random oracle model. This framework
explains the 3KE protocol from [31] and gives rise to many further 3KE proto-
cols, all of which are resilient to the leakage of ephemeral session secrets and enjoy
forward secrecy.

2 The Model and Security Definitions

We recall the security model from [31], termed g-eCK model. This model extends
strongly-authenticated key exchange model for two-party protocols from [32] to
the group setting and it is described using notations and terminology of the
state-of-the-art GKE model [19].

Protocol Participants and Initialization. Let U := {U1, . . . , UN} be a set of po-
tential protocol participants and each user Ui ∈ U is assumed to hold a static
private/public key pair (si, Si) generated by some algorithm Gen(1κ) on a secu-
rity parameter 1κ during the initialization phase.
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Protocol Sessions and Instances. Any subset of U can decide at any time to
execute a new protocol session and establish a common group key. Participation
of some U ∈ U in multiple sessions is modeled through a number of instances
{Πs

U | s ∈ [1 . . . n], U ∈ U}, i.e., the Πs
U is the s-th session of U. Each instance is

invoked via a message to U with a partner id 1 pidsU ⊆ U , which encompasses the
identities of all the intended session participants (note that pidsU also includes
U). Then, we say that U owns the instance Πs

U . In the invoked session, Πs
U

accepts if the protocol execution was successful, in particular Πs
U holds then the

computed group key Ks
U .

Session State. During the session execution, each participating Πs
U creates and

maintains a session id sidsU and an associated internal state statesU which in
particular is used to maintain ephemeral secrets used by Πs

U during the protocol
execution. We say that U owns session sidsU if the instance Πs

U was invoked at U.
Note that the integer s is an internal parameter in the model, used to differentiate
amongst the invoked sessions at U, since at the onset of the instance, there may
not be enough information to create sidsU ; until sid

s
U is created, the instance is

identified via pidsU and the outgoing ephemeral public key which is unique per
user except with negligible probability. Furthermore, we assume that instances
that accepted or aborted delete all information in their respective states.

Partnering. Two instances Πs
U and Πt

U∗ are called partnered or matching if
sidsU ⊆ sidtU∗ or sidtU∗ ⊆ sidsU and pidsU = pidtU∗ . The first condition models
the fact that if session ids are computed during the protocol execution, e.g., from
the exchanged messages, then their equality should be guaranteed only at the
end of the protocol, i.e., upon the acceptance of Πs

U and Πt
U∗ .

Note also that the notion of partnering is self-inclusive in the sense that any
Πs
U is partnered with itself. If the protocol allows a user U to initiate sessions

with U, then the equality pidsU = pidtU∗ is a multi-set equality.

Adversarial Model. The adversary A, modeled as a PPT machine, can schedule
the protocol execution and mount own attacks via the following queries:

– AddUser(U, SU): This query allows A to introduce new users. In response,
if U �∈ U (due to the uniqueness of identities) then U with the static public
key SU is added to U ; Note that A is not required to prove the possession
of the corresponding secret key sU

2.
– Send(Πs

U ,m): With this query, A can deliver a message m to Πs
U whereby

U denotes the identity of its sender. A is then given the protocol message
generated by Πs

U in response to m (the output may also be empty if m
is not required or if Πs

U accepts). A special invocation query of the form
Send(U, (‘start’, U1, . . . , Un)) with U ∈ {U1, . . . , Un} creates a new instance

1 Invocation should include the order of users and perhaps some additional
information.

2 In our security argument, we will only assume that SU chosen by A must come from
the ephemeral public key space, e.g., element of G.
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Πs
U with pidsU = {U1, . . . , Un} and provides A with the first protocol mes-

sage.
– SessionKeyReveal(Πs

U): This query models the leakage of session group keys
and provides A with Ks

U . It is answered only if Πs
U has accepted.

– StaticKeyReveal(U): This query provides A with the static private key sU .
– StateReveal(Πs

U): A is given the ephemeral secret information contained in
statesU at the moment the query is asked. Note that the protocol specifies
what the state contains.

– Test(Πs
U): This query models the indistinguishability of the session group

key according to the privately flipped bit τ . If τ = 0 then A is given a
random session group key, whereas if τ = 1 the real Ks

U . The query can be
queried only once and requires that Πs

U has accepted.

Correctness. A GKE protocol is said to be correct if in the presence of a benign3

adversary all instances invoked for the same protocol session accept with the
same session group key.

Freshness. The classical notion of freshness of some instance Πs
U is traditionally

used to define the goal of AKE-security by specifying the conditions for the
Test(Πs

U) query. For example, the model in [22] defines an instance Πs
U that has

accepted as fresh if none of the following is true: (1) at some point, A asked
SessionKeyReveal to Πs

U or to any of its partnered instances; or (2) a query
StaticKeyReveal(U∗) with U∗ ∈ pidsU was asked before a Send query to Πs

U or
any of its partnered instances.

Unfortunately, these restrictions are not sufficient for our purpose since Πs
U

becomes immediately unfresh if the adversary gets involved into the protocol
execution via a Send query after having learned the static key sU∗ of some user
U∗ those instance participates in the same session as Πs

U .
The recent model in [12] defines freshness using the additional AddUser and

StateReveal queries as follows. According to [12], an instance Πs
U that has ac-

cepted is fresh if none of the following is true: (1) A queried AddUser(UM , SUM )
with some U∗ ∈ pidsU ; or (2) at some point, A asked SessionKeyReveal to Πs

U or
any of its partnered instances; or (3) a query StaticKeyReveal(U∗) with U∗ ∈ pidsU
was asked before a Send query to Πs

U or any of its partnered instances; or (4) A
queried StateReveal to Πs

U or any of its partnered instances at some point after
their invocation but before their acceptance.

Although this definition is already stronger than the one in [22] it is still
insufficient for the main reason that it excludes the leakage of ephemeral se-
crets of instances in the period between the protocol invocation and acceptance.
Also this definition of freshness does not model key compromise impersonation
attacks.

The recent update of the freshness notion in [19] addressed the lack of key
compromise impersonation resilience. In particular, it modifies the above con-
dition (3) by requiring that if there exists an instance Πt

U∗ which is partnered

3 Benign adversary executes an instance of the protocol and faithfully delivers mes-
sages without any modification.
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with Πs
U and A asked StaticKeyReveal(U∗) then all messages sent by A to Πs

U

on behalf of Πt
U∗ must come from Πt

U∗ intended for Πs
U . This condition should

allow the adversary to obtain static private keys of users prior to the execution
of the attacked session while requiring its benign behavior with respect to the
corrupted user during the attack.

Yet, this freshness requirement still prevents the adversary from obtaining
ephemeral secrets of participants during the attacked session. What is needed is
a freshness condition that would allow the adversary to corrupt users and reveal
the ephemeral secrets used by their instances in the attacked session at will
for the only exception that it does not obtain both the static key sU∗ and the
ephemeral secrets used by the corresponding instance of U∗; otherwise security
can no longer be guaranteed. In the following we define freshness taking into
account all the previously mentioned problems.

Definition 1. An accepted instance Πs
U is fresh if none of the following is true:

1. A queried AddUser(U∗, SU∗) with some U∗ ∈ pidsU ; or

2. A queried SessionKeyReveal to Πs
U or any of its accepted partnered instances;

or

3. A queried both StaticKeyReveal(U∗) with U∗ ∈ pidsU and StateReveal(Πt
U∗)

for some instance Πt
U∗ partnered with Πs

U ; or

4. A queried StaticKeyReveal(U∗) with U∗ ∈ pidsU and there exists no instance
Πt
U∗ partnered with Πs

U .

Note that since U ∈ pidsU and since the notion of partnering is self-inclusive
Condition 3 prevents the simultaneous corruption of static and ephemeral secrets
for the corresponding instance Πs

U as well. In case when users are allowed to own
two partnering instances i.e., they can initiate protocols with themselves the last
condition should be modified to say that the number of instances of U equals the
number of times U appears in pidsU . Note also that the above definition captures
key-compromise impersonation resilience through Condition 4: A is allowed to
corrupt participants of the test session in advance but then must ensure that
instances of such participants have been honestly participating in the test session.
In this way we exclude the trivial break of security where A reveals static keys of
users prior to the test session and then actively impersonates those users during
the session. On the other hand, as long as A remains benign with respect to
such users their instances will still be considered as fresh.

Definition 2 (g-eCK Security). Let P be a correct GKE protocol and τ be
a uniformly chosen bit. We define the adversarial game Gameake-τA,P (κ) as fol-
lows: after initialization, A interacts with instances via queries. At some point,
A queries Test(Πs

U), and continues own interaction with the instances until it
outputs a bit τ ′. If Πs

U to which the Test query was asked is fresh at the end of

the experiment then we set Gameake-τA,P (κ) = τ ′. We define

AdvakeA,P(κ) = |2Pr[τ = τ ′]− 1|
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and denote with AdvakeP (κ) the maximum advantage over all PPT adversaries
A. We say that a GKE protocol P provides g-eCK security if this advantage is
negligible.

3 Sufficient Condition for Secure Tripartite Protocols

We identify now sufficient conditions for a 3KE protocol to satisfy g-eCK security
from Definition 2. Technically, we build upon [18] and their notion of admissible
polynomials. We extend definition of admissible polynomials to account for the
specifics of 3KE protocols and then present a framework for the generic design
of g-eCK secure one-round 3KE protocols out of those polynomials.

3.1 Admissible Polynomials

We define admissible polynomials in Definition 3 with respect to multivariate
polynomials with six variables over Zq and state three conditions that, as we
will see, are sufficient for building g-eCK secure one-round 3KE protocols. The
first condition from Definition 3 says that each term of polynomial p(i) has
degree three and that either u0 or u1, either v0 or v1, and either w0 or w1

appear in each term. The second condition says that there exist four polynomials
p(i), p(j), p(k), p(l) such that the four corresponding vectors of the coefficients of
their terms containing a specific variable, are linearly independent. The third
condition says that for each polynomial p(i) the corresponding polynomial, which
consists of the terms containing specific variables, is a product of three linear
polynomials.

Definition 3 (Admissible Polynomials). We say m (m ≥ 4) polynomials
p(i) ∈ Zq[u0, u1, v0, v1, w0, w1] (i = 1, ...,m) are admissible if the following con-
ditions are satisfied.

1. For any i (= 1, ...,m), the following condition holds

p(i)(u0, u1, v0, v1, w0, w1) =
∑

α,β,γ=0,1

d
(i)
α,β,γuαvβwγ ,

where d
(i)
α,β,γ ∈ Zq.

2. We denote
V

(i)
α,∗,∗ = (d

(i)
α,0,0, d

(i)
α,0,1, d

(i)
α,1,0, d

(i)
α,1,1),

V
(i)
∗,β,∗ = (d

(i)
0,β,0, d

(i)
0,β,1, d

(i)
1,β,0, d

(i)
1,β,1),

V
(i)
∗,∗,γ = (d

(i)
0,0,γ , d

(i)
0,1,γ , d

(i)
1,0,γ , d

(i)
1,1,γ).

For any α (= 0, 1), there exist distinct indices i, j, k, l (1 ≤ i < j < k < l ≤
m), s.t.

V
(i)
α,∗,∗, V

(j)
α,∗,∗, V

(k)
α,∗,∗, V

(l)
α,∗,∗
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are linearly independent, and for any β (= 0, 1), there exist distinct indices
i, j, k, l (1 ≤ i < j < k < l ≤ m), s.t.

V
(i)
∗,β,∗, V

(j)
∗,β,∗, V

(k)
∗,β,∗, V

(l)
∗,β,∗

are linearly independent, and for any γ (= 0, 1), there exist distinct indices
i, j, k, l (1 ≤ i < j < k < l ≤ m), s.t.

V
(i)
∗,∗,γ , V

(j)
∗,∗,γ , V

(k)
∗,∗,γ , V

(l)
∗,∗,γ

are linearly independent.
3. We denote

P
(i)
α,∗,∗ = d

(i)
α,0,0uαv0w0 + d

(i)
α,0,1uαv0w1 + d

(i)
α,1,0uαv1w0 + d

(i)
α,1,1uαv1w1,

P
(i)
∗,β,∗ = d

(i)
0,β,0u0vβw0 + d

(i)
0,β,1u0vβw1 + d

(i)
1,β,0u1vβw0 + d

(i)
1,β,1u1vβw1,

P
(i)
∗,∗,γ = d

(i)
0,0,γu0v0wγ + d

(i)
0,1,γu0v1wγ + d

(i)
1,0,γu1v0wγ + d

(i)
1,1,γu1v1wγ .

For any i (= 1, ...,m), the following condition holds: for any α (= 0, 1),

P
(i)
α,∗,∗ is expressed as

P
(i)
α,∗,∗ = 

(i)
α,∗,∗(u0, u1)

′(i)
α,∗,∗(v0, v1)

′′(i)
α,∗,∗(w0, w1),

where 
(i)
α,∗,∗(u0, u1), 

′(i)
α,∗,∗(v0, v1), 

′′(i)
α,∗,∗(w0, w1) are linear combinations of

(u0, u1), (v0, v1), (w0, w1), respectively, and for any β (= 0, 1), P
(i)
∗,β,∗ is

expressed as

P
(i)
∗,β,∗ = 

(i)
∗,β,∗(u0, u1)

′(i)
∗,β,∗(v0, v1)

′′(i)
∗,β,∗(w0, w1),

where 
(i)
∗,β,∗(u0, u1), 

′(i)
∗,β,∗(v0, v1), 

′′(i)
∗,β,∗(w0, w1) are linear combinations of

(u0, u1), (v0, v1), (w0, w1), respectively, and for any γ (= 0, 1), P
(i)
∗,∗,γ is

expressed as

P
(i)
∗,∗,γ = 

(i)
∗,∗,γ(u0, u1)

′(i)
∗,∗,γ(v0, v1)

′′(i)
∗,∗,γ(w0, w1),

where 
(i)
∗,∗,γ(u0, u1), 

′(i)
∗,∗,γ(v0, v1), 

′′(i)
∗,∗,γ(w0, w1) are linear combinations of

(u0, u1), (v0, v1), (w0, w1), respectively.

In Section 3.2 we construct a g-eCK secure 3KE protocol from admissible polyno-

mials, where parties compute m shared secrets Zi = g
p(i)

T (= 1, ...,m). The above
three conditions will be utilized in the security proof of the designed protocol.
Roughly, the first condition ensures that each user is able to compute the shared
secret group elements. The second condition enables the simulator to extract
a BDH solution from the challenge test session. The third conditions ensures
simulator can verify that shared secret group elements are correctly formed. We
refer to the proof of Theorem 1 for further details and provide in the following
some examples of admissible polynomials.



Sufficient Condition for Ephemeral Key-Leakage Resilient Tripartite KE 23

Example 1

p(1) = u0v0w0, p
(2) = u0v0w1, p

(3) = u0v1w0, p
(4) = u0v1w1,

p(5) = u1v0w0, p
(6) = u1v0w1, p

(7) = u1v1w0, p
(8) = u1v1w1.

Example 2

p(1) = u0v0w0 + u1v1w1, p
(2) = u0v1w1 + u1v0w0,

p(3) = u1v0w1 + u0v1w0, p
(4) = u1v1w0 + u0v0w1.

Example 3. This example essentially explains the construction behind the one-
round 3KE protocol by Manulis, Suzuki, and Ustaoglu [31].

p(1) = (u0 +Du1)(v0 + v1)(w0 + w1), p
(2) = (u0 + u1)(v0 + Ev1)(w0 + w1),

p(3) = (u0 + u1)(v0 + v1)(w0 + Fw1), p
(4) = (u0 +Du1)(v0 + Ev1)(w0 + Fw1),

where D,E, F �= 1.

Example 4

p(1) = (u0 + u1)(v0 + v1)(w0 + w1) , p
(2) = u0v1w1 + u1v0w0,

p(3) = u1v0w1 + u0v1w0 , p(4) = u1v1w0 + u0v0w1.

3.2 Proposed 3KE Protocol

We now propose the 3KE protocolΠp(1),...,p(m) constructed from admissible poly-

nomials p(i) (i = 1, . . . ,m). We then prove in Theorem 1 that if polynomials p(i)

(i = 1, . . . ,m) satisfy the conditions of admissible polynomials, the proposed
3KE protocol Πp(1),...,p(m) is g-eCK secure, i.e., we provide a sufficient condition
for building g-eCK secure 3KE protocols.

The proposed 3KE protocol Πp(1),...,p(m) is described as follows. Let p(i) (i =
1, . . . ,m) be admissible polynomials. Let κ be the security parameter. Let G and
GT be cyclic groups of prime order q. Let e : G×G �→ GT be a non-degenerate
bilinear map, called pairing, from group G × G to group GT . Let g and gT =
e(g, g) be a generator of G and GT , respectively. Let H : {0, 1}∗ → {0, 1}κ be
cryptographic hash function modeled as a random oracle. Let P be the protocol
identifier of the protocol Πp(1),...,p(m) .

For a user UA, we set UA’s static and ephemeral keys A0 = ga0 and A1 = ga1 ,
respectively, and the lowercase letters are the private keys.

In the description, users UA, UB, and UC communicate with each other, and
compute the session key.

1. UA selects a random ephemeral private key a1 ∈U Zq, computes the ephemeral
public keyA1 = ga1 , stores ephemeral private key a1 as state information, and
broadcasts (P, (UA, UB, UC), UA, A1) to UB and UC .

2. UB selects a random ephemeral private key b1 ∈U Zq, computes the
ephemeral public key B1 = gb1 , stores ephemeral private key b1 as state
information, and broadcasts (P, (UA, UB, UC), UB, B1) to UC and UA.
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3. UC selects a random ephemeral private key c1 ∈U Zq, computes the
ephemeral public key C1 = gc1 , stores ephemeral private key c1 as state
information, and broadcasts (P, (UA, UB, UC), UC , C1) to UA and UB.

4. Upon receiving (P, (UA, UB, UC), UB, B1) and (P, (UA, UB, UC), UC , C1), UA
verifies B1, C1 ∈ G, computes m shared secrets

Zi =
∏

β,γ=0,1

e(Bβ, Cγ)
(d

(i)
0,β,γa0+d

(i)
1,β,γa1) (i = 1, . . . ,m),

obtains the session key K = H(Z1, . . . , Zm,P, UA, A0, A1, UB, B0, B1, UC ,
C0, C1), and completes the session.

5. Upon receiving (P, (UA, UB, UC), UC , C1) and (P, (UA, UB, UC), UA, A1), UB
verifies C1, A1 ∈ G, computes m shared secrets

Zi =
∏

γ,α=0,1

e(Cγ , Aα)
(d

(i)
α,0,γb0+d

(i)
α,1,γb1) (i = 1, . . . ,m),

obtains the session keyK = H(Z1, . . . , Zm,P, UA, A0, A1, UB, B0, B1, UC , C0,
C1), and completes the session.

6. Upon receiving (P, (UA, UB, UC), UA, A1) and (P, (UA, UB, UC), UB, B1), UC
verifies A1, B1 ∈ G, computes m shared secrets

Zi =
∏

α,β=0,1

e(Aα, Bβ)
(d

(i)
α,β,0c0+d

(i)
α,β,1c1) (i = 1, . . . ,m),

obtains the session key K = H(Z1, . . . , Zm,P, UA, A0, A1, UB, B0, B1, UC ,
C0, C1), and completes the session.

All users UA, UB, and UC compute the same shared secrets

Zi = g
p(i)(a0,a1,b0,b1,c0,c1)
T (i = 1, . . . ,m),

and so compute the same session key K.
The outlined 3KE protocol Πp(1),...,p(m) requires exactly m shared secrets, 4

pairing operations at most, and 4m+1 exponential operations at most (including
the exponentiation for the ephemeral public key).

3.3 Security

For the security of the proposed protocol, we need4 the gap Bilinear Diffie-
Hellman (gap BDH) assumption [5] described below. Let BCDH : G3 → GT

s.t. BCDH(gu, gv, gw) = e(g, g)uvw, and BDDH : G4 → {0, 1} be a predicate
which takes an input (gu, gv, gw, e(g, g)x) and returns bit 1 if uvw = x mod q
and bit 0 otherwise. An adversary A is given input U, V,W ∈U G selected uni-
formly random and oracle access to BDDH(·, ·, ·, ·) oracle, and tries to compute
BCDH(U, V,W ). For adversary A, we define advantage

4 Gap BDH assumption is used since in bilinear groups no BDDH oracle is available.
Using twin BDH technique we could also rely on BDH instead of gap BDH.
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AdvgapBDH(A) = Pr[U, V,W ∈R G,ABDDH(·,·,·,·)(U, V,W ) = BCDH(U, V,W )],

where the probability is taken over the choices of U, V,W and A’s random tape.

Definition 4 (gap BDH assumption). We say that G and GT satisfy the
gap BDH assumption if, for all polynomial-time adversaries A, advantage
AdvgapBDH (A) is negligible in security parameter κ.

Theorem 1. If G and GT are groups where the gap BDH assumption holds,
H is a random oracle, and p(i) (i = 1, . . . ,m) are admissible polynomials, the
proposed 3KE protocol Πp(1),...,p(m) constructed from p(i) (i = 1, . . . ,m) is secure
in the g-eCK model.

Proof (Sketch). From the first condition of admissible polynomials, all users UA,
UB, and UC can compute the shared secrets as follows. User UA, who knows
secret keys a0, a1, can compute shared secrets

Zi =
∏

β,γ=0,1

e(Bβ , Cγ)
(d

(i)
0,β,γa0+d

(i)
1,β,γa1) = g

∑
α,β,γ=0,1 d

(i)
α,β,γaαbβcγ

T ,

user UB, who knows secret keys b0, b1, can compute shared secrets

Zi =
∏

γ,α=0,1

e(Cγ , Aα)
(d

(i)
α,0,γb0+d

(i)
α,1,γb1) = g

∑
α,β,γ=0,1 d

(i)
α,β,γaαbβcγ

T ,

and user UC , who knows secret keys c0, c1, can compute shared secrets

Zi =
∏

α,β=0,1

e(Aα, Bβ)
(d

(i)
α,β,0c0+d

(i)
α,β,1c1) = g

∑
α,β,γ=0,1 d

(i)
α,β,γaαbβcγ

T .

The gap BDH solver S extracts the answer guvwT of an instance (U = gu, V =
gv,W = gw) of the gap BDH problem using adversary A. For instance, we as-
sume the case that test session sid∗, owner of which is user UA, has no partnered
sessions sid∗, owners of which are users UB and UC , adversaryA is given a0, and
adversary A does not obtain a1, b0 and c0 from the condition of the freshness.
In this case, solver S can perfectly simulate StaticKeyReveal query by selecting
random a0 and setting A0 = ga0 , and solver S embeds the instance as A1 = U
(= gu), B0 = V (= gv) and C0 = W (= gw) to extract guvwT from the shared

secrets Zi = g
p(i)

T (i = 1, . . . ,m).
From the second condition of admissible polynomials, solver S can extract the

answer of the gap BDH instance as follows. From the second condition, there

exist i, j, k, l (1 ≤ i, j, k, l ≤ m), s.t., V
(i)
1,∗,∗, V

(j)
1,∗,∗, V

(k)
1,∗,∗, and V

(l)
1,∗,∗ are linearly

independent. Using knowledge of a0, solver S can compute

Z ′
I = g

a1(d
(I)
1,0,0b0c0+d

(I)
1,0,1b0c1+d

(I)
1,1,0b1c0+d

(I)
1,1,1b1c1)

T

= ZI/(e(B0, C0)
d
(I)
0,0,0a0e(B0, C1)

d
(I)
0,0,1a0e(B1, C0)

d
(I)
0,1,0a0e(B1, C1)

d
(I)
0,1,1a0)



26 A. Fujioka et al.

for the indices I = i, j, k, l. Solver S can compute ga1b0c0T from Z ′
i, Z

′
j , Z

′
k, Z

′
l since

V
(i)
1,∗,∗, V

(j)
1,∗,∗, V

(k)
1,∗,∗, and V

(l)
1,∗,∗ are linearly independent, and successfully outputs

the answer ga1b0c0T = guvwT of the gap BDH problem.
From the third condition of admissible polynomials, solver S can check

whether the shared secrets are correctly formed w.r.t. static and ephemeral pub-
lic keys, and can simulateH and SessionKeyReveal queries consistently. More pre-
cisely, in the simulation of the H(Z1, . . . , Zm,P, UA, A0, A1, UB, B0, B1, UC , C0,
C1) query, solver S must check that the shared secrets Zi (i = 1, . . . ,m) are cor-
rectly formed, and if so return session keyK that is consistent with the previously
answered SessionKeyReveal(P, UX , UA, A0, A1, UB, B0, B1, UC , C0, C1) (X =
A,B,C) queries. For all i (= 1, . . . ,m), solver S performs the following pro-
cedure. Using the knowledge of a0, solver S can compute

Z ′
i = g

a1(d
(i)
1,0,0b0c0+d

(i)
1,0,1b0c1+d

(i)
1,1,0b1c0+d

(i)
1,1,1b1c1)

T

= Zi/(e(B0, C0)
d
(i)
0,0,0a0e(B0, C1)

d
(i)
0,0,1a0e(B1, C0)

d
(i)
0,1,0a0e(B1, C1)

d
(i)
0,1,1a0)

Then, solver S can check if shared secret Z ′
i is correctly formed w.r.t. the static

and ephemeral public keys, by asking BDDH oracle

BDDH(g�
(i)
1,∗,∗(a0,a1), g�

′(i)
1,∗,∗(b0,b1), g�

′′(i)
1,∗,∗(c0,c1), Z ′

i) = 1,

since the third condition of admissible polynomials holds, and this implies Zi

is correctly formed. Here solver S can compute g�
(i)
1,∗,∗(a0,a1), g�

′(i)
1,∗,∗(b0,b1), and

g�
′′(i)
1,∗,∗(c0,c1), since 

(i)
1,∗,∗(a0, a1), 

′(i)
1,∗,∗(b0, b1), and 

′′(i)
1,∗,∗(c0, c1) are linear.

��

4 Conclusion

We presented a sufficient condition for constructing one-round ephemeral key-
leakage resilient 3KE protocols where parties are equipped with a static public
key and an ephemeral public key, each comprised of only one group element,
and where key derivation is performed via a single call to the hash function,
modeled as a random oracle. Technically, the proposed 3KE protocol can be
seen as a combination of several two-dimensional versions of the original (unau-
thenticated) tripartite key exchange protocol from [20]. The protocol gives rise
to a framework for the design of efficient ephemeral key-leakage resilient one-
round 3KE protocols in the model from [31] by choosing different admissible
polynomials. The amount of work for proving security of all those protocols es-
sentially reduces to proving that chosen polynomials are admissible according to
the conditions stated in this paper.
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Abstract. Asharov, Canetti, and Hazay (Eurocrypt 2011) studied how
game-theoretic concepts can be used to capture the cryptographic prop-
erties of correctness, privacy, and fairness in two-party protocols in the
presence of fail-stop adversaries. Based on their work, we characterize the
properties of “two-message” oblivious transfer protocols by using a game-
theoretic concept. Specifically, we present a single two-player game for
two-message oblivious transfer in the game-theoretic framework, where
it captures the cryptographic properties of correctness and privacy in the
presence of malicious adversaries.

Keywords: cryptography, game theory, oblivious transfer.

1 Introduction

1.1 Background

Cryptographic protocols are designed for parties who follow them to guarantee
some properties such as correctness and privacy. In many cases, such properties
are discussed in a way that if some player honestly follow the description of the
protocol, she can achieve some desirable properties even if some of other partic-
ipants of the protocol are controlled by an adversary. Game theory studies the
behavior of “rational” parties interacting with each other. One of the interplay
between cryptography and game theory is to design cryptographic protocols in
the presence of rational parties, who are neither honest nor malicious. A line of
work on rational secret sharing [10,14,1,7,12,13,16,15,3,6] is in this direction.

Recently, Asharov, Canetti, and Hazay [2] studied how game-theoretic con-
cepts can be used to capture the cryptographic properties such as correctness,
privacy, and fairness. In particular, they characterized these properties by using
a game-theoretic concept, Nash equilibrium, in the setting of secure two-party
protocols in the presence of fail-stop adversaries. Cryptographic properties of
two-party protocols are characterized in the following way. A protocol satisfies a
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“certain” cryptographic property if and only if the strategy of honestly following
the description of the protocol is a Nash equilibrium in a “certain” game defined
with “certain” utility functions. Regarding the cryptographic properties of cor-
rectness and privacy, they showed games together with utility functions that
are equivalent to these properties. Regarding fairness, they introduced a new
cryptographic fairness that has an equivalent game-theoretic characterization.

1.2 This Work

Based on the work of Asharov et al. [2], we further explore how the crypto-
graphic properties can be captured by game-theoretic concepts. In particular,
we characterize the properties of oblivious transfer (OT), which is one of the
well-studied two-party protocols, in terms of game-theoretic concepts. OT is a
protocol between a sender and a receiver. The sender has two secrets x0 and
x1, and the receiver has a choice bit c ∈ {0, 1}. After running the protocol, the
receiver obtains xc, while the sender obtains nothing. Privacy is considered both
for the sender and the receiver. The sender’s privacy requires that the receiver
learns nothing about x1−c. The receiver’s privacy requires that the sender learns
nothing about the choice bit c. In this work, we present a game for two-message
OT together with the utility functions of the sender and the receiver such that a
protocol satisfies the cryptographic properties of correctness and privacy in the
presence of malicious adversaries if and only if the strategy of honestly following
the description of the protocol is a Nash equilibrium in the game.

Our characterization of two-message OT has several advantages compared to
the work of [2].

First, the game defined in our work is played between two rational players,
while every game defined in [2] is played by a single rational player. For example,
in [2], the privacy of a protocol is characterized by two games, one for the privacy
of the player 1 and the other the player 2. In each game, the utility function of
only one player is essentially considered. Since game-theoretic concepts are of
significant meaning in the presence of multiple rational players, it is preferable
to characterize a single game which is essentially played between two rational
players.

Second, we characterize both correctness and privacy by a single game, while
each property is characterized by different games in [2].

Third, we consider the setting in the presence of malicious adversaries, who
can take any malicious action in the protocol and are stronger than fail-stop
adversaries, who are allowed to take only two actions, “continue” and “stop”, in
each round.

The reason for focusing on “two-message” OT is that there exists an definition
of privacy based on indistinguishability for two-message OT in the presence of
malicious adversaries [11,8]. Although the ideal/real simulation paradigm pro-
vides strong and desirable security in some cryptographic contexts, the defini-
tion based on indistinguishability fits for a game-theoretic framework. In the
indistinguishability-based privacy, a player is asked to predict which of the two
values is used as the input of the other player in the protocol. Thus, the utility of
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the player can be explicitly defined in a way such that she obtains higher utility
if the prediction is correct, and lower utility otherwise.

We present a single game between two players that characterize the cryp-
tographic properties of two-message OT. This characterization is the first step
toward understanding how OT protocols work for rational players. It is an in-
teresting challenge to characterize other variations of games with other utility
functions and other solution concepts than Nash equilibrium.

2 Models and Definitions

We review some basic definitions as well as the solution concepts from game
theory.

A function μ : N → R is called negligible if for any polynomial p, there
exists a value N ∈ N such that for all n > N it holds that μ(n) < 1/p(n). We
describe a negligible function on n as negl(n). Let X = {X(n, a)}n∈N,a∈{0,1}∗

and Y = {Y (n, a)}n∈N,a∈{0,1}∗ be distribution ensembles. Then, we say that X

and Y are computationally indistinguishable, denoted by X
c≡ Y , if for every

probabilistic polynomial-time distinguisher D, it holds that

|Pr[D(X(n, a)) = 1]− Pr[D(Y (n, a)) = 1]| ≤ negl(n).

All players are assumed to run in time which is polynomial on the security
parameter n. Formally, each player has a security parameter tape that the value
1n is written as a part of the input.

2.1 Cryptographic Security

We now turn to define OT and its cryptographic security. We focus only on
two-message OT. The receiver sends a message to the sender, then the sender
sends a message to the receiver. After receiving the message, the receiver ob-
tains the resulting output. Namely, an OT protocol consists of two probabilistic
polynomial-time algorithms Sπ and Rπ. When a protocol π = (Sπ, Rπ) is ex-
ecuted on the input pair ((x0, x1), c) where x0, x1 ∈ {0, 1}∗, |x0| = |x1| and
c ∈ {0, 1}, the two algorithms run as follows. First, Rπ runs on input c and
outputs a message mR ∈ {0, 1}∗, then Sπ runs on ((x0, x1),mR) and it outputs
a message mS ∈ {0, 1}∗. After that, Rπ computes the resulting output. As we
define the privacy of OT in malicious model, one of the players can be malicious.
A malicious adversary use any polynomial-time algorithm. Note that we restrict
a malicious receiver to use a deterministic polynomial-time algorithm, while a
malicious sender can use a probabilistic polynomial-time algorithm. As we will
mention later, this restriction is necessary when we define the privacy based on
indistinguishability, which is used widely [11].

Definition 1 (View). Let π = (Sπ, Rπ) be an OT protocol. The view of
the sender during the execution of π on input pair (xS , xR), when the sender
and the receiver use S and R as their algorithms respectively, is denoted by
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viewπ,S(S(xS), R(xR)) and equals (xS , rS ,mR), where rS is its random tape,
and mR represents the message which the sender received from the receiver. The
view of the receiver is defined as viewπ,R(S(xS), R(xR)) = (xR, rR,mS), where
rR is its random/advice tape, and mS represents the message which the receiver
received from the sender.

Definition 2 (Output). Let π = (Sπ, Rπ) be an OT protocol. The out-
put of the receiver after the execution of π on input pair (xS , xR) when
the sender and the receiver use S and R as their algorithms is denoted by
outputπ,R(S(xS), R(xR)). The output of the receiver is equal to ⊥ if and only
if the receiver does not receive any message from the sender.

Next, we define the cryptographic security of OT. Our definition of secure OT
is similar to the ones considered in previous works [8,4].

Definition 3 (Cryptographic security). An OT protocol π = (Sπ, Rπ) is
said to be cryptographically secure if all of the following properties are satisfied.

Sender’s privacy: π is said to be cryptographically private for the sender if
the following two properties holds.

– It holds that

{viewπ,R(Sπ(X0), Rπ(c))}x0,x1,x∈{0,1}∗,|x0|=|x1|=|x|,c∈{0,1}
c≡ {viewπ,R(Sπ(X1), Rπ(c))}x0,x1,x∈{0,1}∗,|x0|=|x1|=|x|,c∈{0,1}, (1)

where X0 = (x0, x1), and X1 = (x0, x) if c = 0 and X1 = (x, x1) if
c = 1.

– There exists a function Choice such that for every deterministic
polynomial-time algorithm R∗ and advice tape z ∈ {0, 1}∗, it holds that

{viewπ,R(Sπ(X0), R∗(c, z))}x0,x1,x∈{0,1}∗,|x0|=|x1|=|x|,c∈{0,1}
c≡ {viewπ,R(Sπ(X1), R∗(c, z))}x0,x1,x∈{0,1}∗,|x0|=|x1|=|x|,c∈{0,1}, (2)

where X0 = (x0, x1), and X1 = (x0, x) if Choice(R∗, c, z) = 0 and
X1 = (x, x1) if Choice(R

∗, c, z) = 1.

Receiver’s privacy: π is said to be cryptographically private for the receiver
if for every probabilistic polynomial-time algorithm S∗, it holds that

{viewπ,S(S∗(x0, x1), Rπ(0))}x0,x1,z∈{0,1}∗,|x0|=|x1|
c≡ {viewπ,S(S∗(x0, x1), Rπ(1))}x0,x1,z∈{0,1}∗,|x0|=|x1|.

Correctness: π is said to be cryptographically correct if for every sender’s
two input strings x0, x1 ∈ {0, 1}∗ such that |x0| = |x1|, it holds that

Pr[outputπ,R(S
π(x0, x1), R

π(c)) = xc] ≥ 1− negl(n).
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Since we focus on two-message OT and the malicious receiver’s algorithm is
deterministic, the message which the receiver sends to the sender is fully de-
termined by its input. This means that the receiver’s algorithm and its input
fully determines which secret he should receive after interacting with the sender.
The function Choice outputs the index of the received secret. As mentioned in
[11], restricting the receiver’s algorithm to be deterministic does not weaken its
maliciousness, but allows us to define the sender’s privacy based on indistin-
guishability.

2.2 Game-Theoretic Concepts

To capture the security of OT in the field of game theory, we define the concepts
of games, utility functions, and a solution concept called Nash equilibrium. Our
definitions are similar to the ones in previous works [5,9].

First, we define non-cooperative two-player games with incomplete informa-
tion. Since the players of OT do not know any information about the other
player’s input, and they independently decide how to behave, the implementa-
tion of OT can be defined in terms of non-cooperative two-player games with
incomplete information. Formally, we define such games as follows.

Definition 4 (Non-cooperative two-player games with incomplete in-
formation). A non-cooperative two-player game with incomplete information
is described as Γ = (N, {Ai, Ti,Ui}i∈N ,D), where

– N = {0, 1} is a set of players.
– Ai is a set of actions for player i ∈ N . Let A = A0 ×A1.
– Ti is a set of types for player i ∈ N . Let T = T0 × T1.
– Ui : A× T → R is the utility function for player i ∈ N .
– D is the probability distribution over T . The tuples of the types for each

player (t0, t1) ∈ T happens with probability pD(t0, t1) which is defined by D.
Each player i ∈ N with the type ti believes that the type t1−i of the other
player occur with probability pD(t1−i|ti).

A function σi : Ti → Ai is called a strategy for player i. Each player’s action is
determined by its type and its strategy.

If the player i knows the types of the both players, it can calculate its own utility
with respect to any pair of their strategies. For example, when the pair of their
types is (t0, t1) and each player has strategy σ0 and σ1 respectively, the utility
of the player i after the completion of the game is Ui(σ0(t0), σ1(t1), t0, t1). We
write it as Ui(σ0(t0), σ1(t1)) for simplicity.

The values of utility functions are used as the “indicator” when the players
select their strategies. Each players rationally select their strategies based on
their utility functions, that is, they select the strategies with which they can get
the highest utility.

However, in games with incomplete information, not knowing the other’s type
even after the execution of the protocol, each player cannot calculate its own
utility. Thus, they use the expectation value of the utility to decide what strategy
they take. Formally, we use the following concept of the expected utility.
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Definition 5 (Expected utility for non-cooperative two-player games
with incomplete information). Let Γ = (N, {Ai, Ti,Ui}i∈N ,D) be a non-
cooperative two-player game with incomplete information, and let N = {0, 1}.
The expected utility of the player 0 with type t0 for a pair of their strategies
(σ0, σ1) on the game Γ is

U0(σ0, σ1) =
∑
t1∈T1

U0(σ0(t0), σ1(t1)) pD(t1|t0).

The expected utility of the player 1 is defined analogously.

The players of incomplete information games seek to maximize their expected
utility instead of the exact value of utility with respect to a certain strategy
and a certain type. With such games, we use the following definition of Nash
equilibrium as a solution concept. To compensate for the small inevitable imper-
fections of cryptographic constructs, we take no account of negligible differences
of values.

Definition 6 (Computational Nash equilibrium for non-
cooperative two-player games with incomplete information). Let
Γ = (N, {Ai, Ti,Ui}i∈N ,D) be a non-cooperative two-player game with incom-
plete information, and let N = {0, 1}. A pair of probabilistic polynomial-time
strategies (σ0, σ1) is a computational Nash equilibrium if for every player i ∈ N
and every strategy σ′i it can take, it holds that

Ui(σ0, σ1) ≥ Ui(σ′′0 , σ′′1 )− negl(n)

where σ′′i = σ′i and σ
′′
1−i = σ1−i.

3 Game-Theoretic Perspective

3.1 Game-Theoretic Security

We formally define a game to capture the security of OT. Our game can be
roughly divided into two phases. In the first phase, the sender and the receiver
execute an OT protocol, and in the second one, they are given two values and
guess the other’s input from them.

Definition 7 (A game to capture the security). Let π = (Sπ, Rπ) be an
OT protocol. On input ((S,GS), (R,GR), Choice, (x0, x1, x, c, z)) where

– S is a probabilistic polynomial-time algorithm of the sender to execute the
protocol π,

– R is Rπ or a deterministic polynomial-time algorithm of the receiver to ex-
ecute the protocol π,

– GS and GR are probabilistic polynomial-time guessing algorithms which out-
puts a binary value,

– Choice is a function which outputs 0 or 1,
– x0, x1, x, z ∈ {0, 1}∗, |x0| = |x1| = |x|, c ∈ {0, 1},
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the game Gameπ runs as follows.

1. Let X0 = (x0, x1). If Choice(R, c, z) = 0 then let X1 = (x0, x), and if
Choice(R, c, z) = 1 then let X1 = (x, x1). If R = Rπ then set z be an empty
string.

2. Choose a bit b from {0, 1} uniformly at random.
3. Execute π with algorithms S and R on the pair of input (Xb, (c, z)). The

receiver outputs outputπ,R(S(X
b), R(c, z)). Let finπ(S(X

b), R(c, z)) = 1 if
the protocol finishes to the end or in the middle, without stopped by the
players during the protocol execution.

4. Compute GS(historyπ,S(S(X
b), R(c, z))) and

GR(historyπ,R(S(X
b), R(c, z)), X0, X1). Here we describe the local his-

tories of each player by historyπ,S and historyπ,R. They consist of their own
inputs, their random/advice tapes, and the message received from the other
player.

5. Let guessS = 1 if GS(historyπ,S(S(X
b), R(c, z))) = c holds and guessS = 0

otherwise, guessR = 1 if GR(historyπ,R(S(X
b), R(c, z)), X0, X1) = b holds

and guessR = 0 otherwise , and correct = 1 if (finπ(S(X
b), R(c, z)) = 0 or

outputπ,R(S(X
b), R(c, z)) = xc holds and correct = 1 otherwise.

6. Output (guessS , guessR, correct).

As well as the cryptographic security, we consider the three properties such that
sender’s privacy, receiver’s privacy and correctness in a game-theoretic manner.
More specifically, we define the utility function of each player with three terms
representing the properties. The functions describe the motivation of each player
to execute an OT protocol which protects his/her privacy, delivers the proper
secret and may tell him/her some information about the other’s input.

Definition 8 (A pair of expected utility functions for the security). Let
π = (Sπ, Rπ) be an OT protocol, and αS, βS, γS, αR, βR and γR be positive
constants. The pair of utility functions for security is defined by U = (US ,UR).
For a pair of strategies and guessing algorithms ((S,GS), (R,GR)), four strings
x0, x1, x, z such that |x0| = |x1| = |x|, a bit c and a function Choice, let
X0 = (x0, x1), X

1 = (x0, x) if Choice(R, c, z) = 0 and X1 = (x, x1) if
Choice(R, c, z) = 1. The functions on ((S,GS), (R,GR), Choice, (x0, x1, x, c, z))
are defined as follows.

US((S,GS), (R,GR), Choice, (x0, x1, x, c, z))
= −αS (guessR − 1/2) + βS (correct− 1) + γS (guessS − 1/2)

UR((S,GS), (R,GR), Choice, (x0, x1, x, c, z))
= −αR (guessS − 1/2) + βR (correct− 1) + γR (guessR − 1/2)

Here, guessS, guessR and correct is the outcome of the Gameπ on input
((S,GS), (R,GR), Choice, (x0, x1, x, c, z)). We omit to write the input of the
function as ((S,GS), (R,GR)) if the function Choice and the input tuple
(x0, x1, x, c, z) are obvious from the context.
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Utility functions capture the preference of the players. Since each of our function
has three parameters, changing the parameters will make it represents a player
with another incentive. For example, if we set γS larger than αS and βS , it
captures the sender who have a strong desire to learn the receiver’s choice bit.

Definition 9 (Computational Nash equilibrium for the security). For a
pair of utility functions U = (US ,UR), we say a pair of the strategies (S,R) is a
Nash equilibrium for the game Gameπ, if there exist a function Choice such that
for every pair of probabilistic polynomial-time guessing algorithms (GS , GR), pair
of polynomial-time strategies (S′, R′) and tuple (x0, x1, x, c, z) where x0, x1, x, z ∈
{0, 1}∗, |x0| = |x1| = |x|, c ∈ {0, 1}, it holds that

US((S,GS), (R,GR)) ≥ US((S′, GS), (R,GR))− negl(n),

and
UR((S,GS), (R,GR)) ≥ UR((S,GS), (R′, GR))− negl(n).

Using the game Gameπ and the pair of utility functions U = (US ,UR), we define
game-theoretic security of OT. Intuitively, if both players can get the highest
utility when both of them act “honestly” then the protocol is said to be game-
theoretically secure. The definition of game-theoretic security is as follows.

Definition 10 (Game-theoretic security of oblivious transfer). An OT
protocol π = (Sπ, Rπ) is said to be game-theoretically secure if the pair of strate-
gies (Sπ, Rπ) is a Nash equilibrium for the game Gameπ with the pair of utility
functions U = (US ,UR).

3.2 Equivalence of the Two Security Definitions

We show the equivalence between the two security notions. That is, crypto-
graphic security introduced in Section 2.1 and our game-theoretic security de-
fined in the Section 3.1 are equal.

Theorem 1. An OT protocol π is cryptographically secure if and only if π is
game-theoretically secure.

We prove this theorem in the next two sections.

3.3 Cryptographic Security Implies Game-Theoretic Security

In this section, we prove the “only if” part of Theorem 1, that is, we prove the
following lemma.

Lemma 1. An OT protocol π is game-theoretically secure if π is cryptographi-
cally secure.

Proof. To prove the lemma, we assume that a protocol is not game-theoretically
secure and show that nor is it cryptographically secure. When a protocol π is
not game-theoretically secure, at least one of the next two cases holds.
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Case1: For every function Choice, there exist probabilistic polynomial-time
algorithms S∗,G∗

S andG∗
R, a tuple (x0, x1, x, c, z) where x0, x1, x, z ∈ {0, 1}∗,

|x0| = |x1| = |x|, c ∈ {0, 1}, and a non-negligible function εS such that

US((S∗, G∗
S), (R

π, G∗
R), Choice, (x0, x1, x, c, z))

> US((Sπ , G∗
S), (R

π, G∗
R), Choice, (x0, x1, x, c, z)) + εS(n).

Case2: For every function Choice, there exist a deterministic polynomial-time
algorithm R∗, probabilistic polynomial-time algorithms G∗

S and G∗
R, a tuple

(x0, x1, x, c, z) where x0, x1, x, z ∈ {0, 1}∗, |x0| = |x1| = |x|, c ∈ {0, 1}, and
a non-negligible function εR such that

UR((Sπ , G∗
S), (R

∗, G∗
R), Choice, (x0, x1, x, c, z))

> UR((Sπ, G∗
S), (R

π, G∗
R), Choice, (x0, x1, x, c, z)) + εR(n).

When Case 1 holds, then for at least one of the three terms of the utility
function US , the expectation on ((S∗, G∗

S), (R
π, G∗

R)) is greater than that on
((Sπ, G∗

S), (R
π , G∗

R)). That is, at least one of the next formulae holds, where ε1,
ε2 and ε3 are non-negligible functions.

Pr[G∗
R(historyπ,R(S

∗(Xb), Rπ(c)), X0, X1) = b]

< Pr[G∗
R(historyπ,R(S

π(Xb), Rπ(c)), X0, X1) = b]− ε1(n) (3)

Pr[finπ(S
∗(Xb), Rπ(c))=0∨outputπ,R(S∗(Xb), Rπ(c))=xc]

> Pr[finπ(S
π(Xb), Rπ(c))=0∨outputπ,R(Sπ(Xb), Rπ(c))=xc]+ε2(n) (4)

Pr[G∗
S(historyπ,S(S

∗(Xb), Rπ(c))) = c]

> Pr[G∗
S(historyπ,S(S

π(Xb), Rπ(c))) = c] + ε3(n) (5)

When formula (3) holds, we have

Pr[G∗
R(historyπ,R(S

π(Xb), Rπ(c)), X0, X1) = b]

> Pr[G∗
R(historyπ,R(S

∗(Xb), Rπ(c)), X0, X1) = b] + ε1(n)

≥ 1/2 + ε1(n), (6)

since b ∈ {0, 1} is chosen uniformly at random and any valid algorithm succeed
in guessing b with probability at least 1/2.

Let DR be an algorithm that runs G∗
R on its own input after the execution

of Gameπ, and outputs what G∗
R outputs. Obviously DR runs in probabilistic

polynomial-time. Since historyπ,R(S
π(Xb), Rπ(c)) = viewπ,R(S

π(Xb), Rπ(c)), it
holds that

Pr[DR(viewπ,R(S
π(X1), Rπ(c))) = 1]

− Pr[DR(viewπ,R(S
π(X0), Rπ(c))) = 1] > 2ε1(n)

by formula (6). It means that π is not cryptographically private for the sender.
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When formula (4) holds, we have

Pr[outputπ,R(S
π(Xb), Rπ(c, z)) = xc]

≤ Pr[finπ(S
π(Xb), Rπ(c, z)) = 0 ∨ outputπ,R(S

π(Xb), Rπ(c, z)) = xc]

≤ Pr[finπ(S
∗(Xb), Rπ(c, z)) = 0 ∨ outputπ,R(S

∗(Xb), Rπ(c, z)) = xc]− ε2(n)
≤ 1− ε2(n).

This means that π is not cryptographically correct.
And when formula (5) holds, we have

Pr[G∗
S(historyπ,S(S

∗(Xb), Rπ(c))) = c]

> Pr[G∗
S(historyπ,S(S

π(Xb), Rπ(c))) = c] + ε3(n)

≥ 1/2 + ε3(n). (7)

Let DS be an algorithm that runs G∗
S on its own input after the execution

of Gameπ, and outputs what G∗
S outputs. Obviously DS runs in probabilistic

polynomial-time, and it holds that

Pr[DS(viewπ,S(S
∗(Xb), Rπ(1))) = 1]

− Pr[DS(viewπ,S(S
∗(Xb), Rπ(0))) = 1] > 2ε3(n)

by formula (7). It means that π is not cryptographically private for the receiver.
From a similar consideration, Case 2 also implies that π is not cryptographi-

cally secure.
Therefore, π is not cryptographically secure if it is not game-theoretically

secure. �

3.4 Game-Theoretic Security Implies Cryptographic Security

In this section, we prove the “if” part of Theorem 1. That is, we prove the
following lemma.

Lemma 2. An OT protocol π is cryptographically secure if π is game-
theoretically secure.

To prove Lemma 2, we assume that a protocol is not cryptographically secure
and show that nor is it game-theoretically secure. Namely, we show that the pair
(Sπ, Rπ) is not a Nash equilibrium. For the sake of convenience, we divide the
lemma into two lemmas depending on whether the protocol is cryptographically
correct or not, and prove them one by one.

Lemma 3. If an OT protocol π is not cryptographically correct, then π is not
game-theoretically secure.

Proof. To prove this lemma, we assume that an OT protocol is not cryptograph-
ically correct, and show that the pair of algorithms (Sπ, Rπ) is not a Nash equi-
librium. Namely, we show that the existence of an alternative pair of algorithms
which achieves a higher utility than the pair (Sπ, Rπ).



A Game-Theoretic Perspective on Oblivious Transfer 39

Let π = (Sπ, Rπ) be an OT protocol which is not cryptographically correct.
Then, there exist x0, x1 ∈ {0, 1}∗ such that |x0| = |x1|, c ∈ {0, 1} and a non-
negligible function ε such that

Pr[outputπ,R(S
π(x0, x1), R

π(c)) = xc] < 1− ε(n).

Let G be an algorithm that outputs 0 or 1 uniformly at random, and Sdef be
an algorithm of the sender which stops the protocol before it starts. Then, for
every function Choice the expected utilities are as follows.

US((Sπ, G), (Rπ , G)) < −αS(1/2− 1/2) + βS(1− ε(n)− 1) + γS(1/2− 1/2)

= −βSε(n)
US((Sdef , G), (Rπ , G)) = −αS(1/2− 1/2) + βS(1− 1) + γS(1/2− 1/2)

= 0

Then we have

US((Sdef , G), (Rπ, G))− US((Sπ , G), (Rπ, G)) > βSε(n)

which is a non-negligible value. Namely, the pair (Sπ, Rπ) is not a Nash equilib-
rium, which concludes that π is not game-theoretically secure. �

Before proving the next lemma, we briefly look at the receiver’s privacy. If there
is an OT protocol π that is not cryptographically private for the receiver, then
there exist a sender’s algorithm S∗ and a guessing algorithm G∗

S and the sender
can guess the receiver’s input that the algorithm Rπ used. Recall that π is
a two-message OT protocol and the input of G∗

S is the history of the sender
historyπ,S(S

∗(Xb), Rπ(c)). The output of G∗
S relies on whether the sender have

received a message from the receiver, and not on how the sender behaves after
she receives a message from him. Namely, if π is not private for the receiver,
then it is not private even against the semi-honest receiver. Therefore the next
proposition holds.

Proposition 1. If π = (Sπ, Rπ) is not cryptographically private for the receiver,
then there exists a probabilistic polynomial-time distinguisher D, a non-negligible
function ε and a tuple (x0, x1) where |x0| = |x1| such that,

Pr[D(viewπ,S(S
π(x0, x1), R

π(1))) = 1]

− Pr[D(viewπ,S(S
π(x0, x1), R

π(0))) = 1] > ε(n).

Using this proposition, we prove the next lemma.

Lemma 4. If an OT protocol π is not cryptographically secure but cryptograph-
ically correct, then π is not game-theoretically secure.

Proof. Similar to the proof of Lemma 3, we show that the pair (Sπ, Rπ) is not
a Nash equilibrium.
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Let π = (Sπ, Rπ) be an OT protocol which is not cryptographically secure but
cryptographically correct. Recall that π is not private for the receiver means that
it is not private against the honest sender by Proposition 1. To prove this lemma,
we divide such π into three groups according to the privacy of the players.

First, we assume that the formula (1) in Definition 3 does not hold. Then there
exist a probabilistic polynomial-time algorithmD1, a non-negligible function μR,
and a tuple (x0, x1, x, c) where |x0| = |x1| = |x|, c ∈ {0, 1} such that

Pr[D1(viewπ,R(S
π(X1), Rπ(c))) = 1]

− Pr[D1(viewπ,R(S
π(X0), Rπ(c))) = 1] > 2μR(n),

where X0 = (x0, x1), and X
1 = (x0, x) if c = 0 and X1 = (x, x1) otherwise.

Let GR be an algorithm that runs D1 on its own input and outputs what D1

outputs. Then, for every function Choice the expected utilities are as follows.

US((Sπ, G), (Rπ , GR))
< −αS(1/2 + μR(n)− 1/2) + βS(1− negl(n)− 1) + γS(1/2− 1/2)

< −αSμR(n)
US((Sstop, G), (Rπ, GR))

= −αS(1/2− 1/2) + βS(1 − negl(n)− 1) + γS(1/2− 1/2)

> −negl(n)
Here, Sstop is an algorithm of the sender which stops the protocol when she
receives a message from the receiver. Then we have

US((Sstop, G), (Rπ, GR))− US((Sπ, G), (Rπ , GR)) > αSμR(n)− negl(n),

which is non-negligible.
Secondly, we assume that π is not cryptographically private for the receiver

and formula (1) holds. Then there exist a probabilistic polynomial-time algo-
rithm D2, a non-negligible function μS and a tuple (x0, x1) where |x0| = |x1|
such that

Pr[D2(viewπ,S(S
π(x0, x1), R

π(1))) = 1]

− Pr[D2(viewπ,S(S
π(x0, x1), R

π(0))) = 1] > 2μS(n).

Let GS be an algorithm that runs D2 on its own input and outputs what D2

outputs. Then, the expected utilities are as follows.

UR((Sπ, GS), (Rπ , G))
< −αR(1/2 + μS(n)− 1/2) + βR(1− negl(n)− 1) + γR(1/2− 1/2)

< −αRμS(n)
UR((Sπ, GS), (Rdef , G)) = 0

Here, Rdef is an algorithm of the receiver which stops the protocol before it
starts. Therefore, for every function Choice we have

UR((Sπ, GS), (Rdef , G)) − UR((Sπ, GS), (Rπ, G)) > αRμS(n)
which is non-negligible.
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Finally, we assume that π is cryptographically private for the receiver and
formula (1) holds but formula (2) does not holds. Then there exist a deterministic
polynomial-time algorithm R∗ a probabilistic polynomial-time algorithm D3, a
non-negligible function μR, a function Choice and a tuple (x0, x1, x, c, z) where
|x0| = |x1| = |x| and c ∈ {0, 1}, such that

Pr[D3(viewπ,R(S
π(X1), R∗(c, z))) = 1]

− Pr[D3(viewπ,R(S
π(X0), R∗(c, z))) = 1] > 2μR(n),

where X0 = (x0, x1), and X
1 = (x0, x) if Choice(R

∗, c, z) = 0 and X1 = (x, x1)
otherwise.

Let GR be an algorithm that runs D3 on its own input and outputs what D3

outputs. Then, the expected utilities are as follows.

UR((Sπ, G), (Rπ, GR))
= −αR(1/2− 1/2) + βR(1 − negl(n) + 1) + γR(1/2 + negl(n)− 1/2)

< negl(n)

UR((Sπ, G), (R∗, GR))
> −αR(1/2− 1/2) + βR(1 − negl(n)− 1) + γR(1/2 + μR(n)− 1/2)

> γRμR(n)− negl(n)

Therefore, for every function Choice we have

UR((Sπ, G), (R∗, GR))− UR((Sπ, G), (Rπ, GR)) > γRμR(n)− negl(n)

which is non-negligible.
With all cases, we prove that the pair (Sπ, Rπ) is not a Nash equilibrium,

which concludes that π is not game-theoretically secure. �
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Abstract. At Eurocrypt2011, Becker, Coron and Joux proposed an al-
gorithm for solving hard knapsacks, i.e., knapsacks with a density close
to 1. Their algorithm solves hard knapsacks in time Õ(20.2909n). In this
paper, we evaluate their algorithm by O notation and prove that the run-
ning time is O(n3.5 · 20.2909n). Furthermore, we extend their algorithm
and propose the algorithm of which running time is O(n3 · 20.2919n).
Asymptotic running time of our algorithm is not faster. However, when
n < 6312, our algorithm can solve subset sum problem faster than algo-
rithm of Becker, Coron and Joux.

Keywords: knapsack cryptosystem, subset sum problem, hard knap-
sacks.

1 Introduction

Knapsack cryptosystem is based on the difficulty of subset sum problem. When
a set of positive integers (a1, . . . , an) and a positive integer S is given, finding a
vector (ε1, . . . , εn) ∈ {0, 1}n satisfying

S =

n∑
i=1

εiai

is subset sum problem. In this paper, we assume that
∑n

i=1 εi = n/2 and we can
determine (ε1, . . . , εn) uniquely from S and (a1, . . . , an). This problem is NP-
hard [3], and polynomial time algorithms are not known. Subset sum problem
was introduced in cryptography by Merkle and Hellman [6] in 1978.

We define the density of a knapsack as:

d :=
n

log2 maxi ai
.

When the density d of a knapsack is low, some attacks are proposed. If d is lower
than 0.64, Lagarias and Odlyzko [5] proved that knapsack schemes are broken
by using lattice. Furthermore, Coster et al. [2] proposed an improved algorithm
which can solve the schemes with higher density d < 0.94. However, there is no
effective lattice-based approach to solve subset sum problem for knapsacks with
density close to 1. Such knapsacks are called hard knapsacks in [1], [4].

W. Susilo, Y. Mu, and J. Seberry (Eds.): ACISP 2012, LNCS 7372, pp. 43–56, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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For hard knapsacks, the best algorithm was due to Schroeppel and Shamir [7]
with time complexity Õ(20.5n) until 2009 (see Appendix 2.1 about the definition
of Õ notation). At Eurocrypt2010, Howgrave-Graham and Joux [4] proposed
the algorithm with time complexity Õ(20.337n). Furthermore, Becker et al. [1]
proposed an improved algorithm of Howgrave-Graham and Joux which can solve
subset sum problem in time Õ(20.2909n) for any density. We call this algorithm
BCJ algorithm. By decomposing a knapsack into eight subknapsacks, they
succeed in reducing running time. In [1], they estimated the running time by Õ
notation. When n is not so large, estimation by Õ notation is inadequate, so we
estimate detail running time by O notation.

In this paper, first we analyze BCJ algorithm in detail and we prove that
the running time of BCJ algorithm is O(n3.5 · 20.2909n). Second, we extend
BCJ algorithm and prove that our algorithm can solve subset sum problem in
O(n3 · 20.2919n). Specifically, our algorithm decomposes a knapsack into 16 sub-
knapsacks. Our algorithm can solve subset sum problem more efficiently when
n is not so large, and n < 6312 in particular.

This paper is organized as follows: In Sect. 2 we introduce some preliminaries.
In Sect. 3 we introduce the basic principle of BCJ algorithm. In Sect. 4 we analyze
BCJ algorithm in detail. In Sect. 5 we extend BCJ algorithm and analyze our
algorithm, finally in Sect. 6 we introduce extensions.

2 Preliminaries

2.1 Õ Notation

Let f(n) and g(n) be function of n and i be a fixed value. We write

f(n) = Õ(g(n)),

if there is constants i such that

g(n) = O(f(n) · (log f(n))i).

In particular, we write g(n) = Õ(2cn) if g(n) equal to O(ni · 2cn). When n is not
so large, O notation allows us to analyze time cost in detail.

2.2 Asymptotic Values of Binomials and Multinomials

When we analyze running time of algorithm, we need to obtain asymptotic
approximation for binomials and multinomials. In this section, we introduce
approximation method.

Let n be a positive number. When n � 1, we approximate n! by using Stir-
ling’s formula as:

n! = (1 + o (1))
√
2πn

(n
e

)n
.
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By using this formula, we find(
n
αn

)
=

n!

(αn)! · ((1− α)n)! ≈
1√
n
· 2h(α)n,

for fixed value 0 < α < 1, where h(α) := −α log2 α − (1 − α) log2(1 − α).
Furthermore, we approximate as:(

an
bn

)
≈ 1√

n
· 2a·h( b

a )n.

We approximate multinomials with 0 < α, β < 10 < α+ β < 1 as:(
n

αn, βn, (1 − α− β)n

)
=

n!

(αn)! · (βn)! · ((1− α− β)n)! ≈
1

n
· 2h(α,β)n,

where h(α, β) := −α log2 α−β log2 β− (1−α−β) log2(1−α−β). Furthermore,
we find (

an
bn, cn, dn

)
=

(
an

bn, cn, ∗

)
≈ 1

n
· 2a·h( b

a ,
c
a )n ,

where d = a− b− c. The symbol ∗ in the above multinomial denotes the number
of remaining elements.

3 Basic Principle of BCJ Algorithm [1]

In this section, we introduce the basic principle of BCJ algorithm. This algo-
rithm decomposes a knapsack into two subknapsacks three times, that is to say,
it finally decomposes a knapsack into eight subknapsacks. By solving modular
knapsack problems for eight subknapsacks, we obtain the solution of original
subset sum problem.

3.1 Decomposing Knapsack

In this section, we introduce the idea of splitting a knapsack to reduce the overall
running time. Given a list of n positive integers (a1, . . . , an) and a non-negative
integer σ such that:

σ =

n∑
i=1

xiai,

where xi ∈ {0, 1}, we split the knapsack as:

n∑
i=1

xiai︸ ︷︷ ︸
σ

=

n∑
i=1

yiai︸ ︷︷ ︸
σ1

+

n∑
i=1

ziai︸ ︷︷ ︸
σ2

(1)
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where yi, zi ∈ {−1, 0, 1}. By this split, we reduce the overall running time of
recovering the coefficients xi. We assume that

∑n
i=1 xi = n/2 and we can deter-

mine x from σ and (a1, . . . , an) uniquely.
By this decomposition, we decompose a single solution of the original sub-

set sum problem into many different representations. In other words, we can
represent xi as: {

xi = 1⇒ (yi, zi) = (1, 0), (0, 1)

xi = 0⇒ (yi, zi) = (0, 0), (−1, 1), (1,−1)

by a tuple (yi, zi). When x contains n/2 1s and n/2 0s, we decompose a knapsack
so that y and z contain (1/4 + α)n 1s and αn −1s, where 0 < α < 3/8. The
number of such decompositions is

M =

(
n/2

(1/4 + α)n

)
·
(

n/2
αn, αn, ∗

)
.

In other words, when we split the knapsack as Eq. (1), there exist M pairs
(σ1, σ2) which satisfy σ = σ1 + σ2. We use this to reduce the overall running
time. We introduce a modulus M and a random element R ∈ ZM and we only
use σ1 and σ2 which satisfy

σ1

(
=

n∑
i=1

yiai

)
≡ R (mod M), σ2

(
=

n∑
i=1

ziai

)
≡ σ −R (mod M)

to solve the original subset sum problem.

3.2 Decomposing Knapsack into Eight Subknapsacks

We extend the idea in Sect. 3.1, that is to say, we decompose the original knap-
sack into eight subknapsacks. More specifically, we first decompose the knapsack
as:

n∑
i=1

εiai︸ ︷︷ ︸
σε=S

=

n∑
i=1

ν
(1)
i ai︸ ︷︷ ︸

σ
(1)
ν

+

n∑
i=1

ν
(2)
i ai︸ ︷︷ ︸

σ
(2)
ν

.

Second, we decompose the knapsack as:

n∑
i=1

ν
(j)
i ai︸ ︷︷ ︸

σ
(j)
ν

=
n∑
i=1

κ
(2j−1)
i ai︸ ︷︷ ︸

σ
(2j−1)
κ

+
n∑
i=1

κ
(2j)
i ai︸ ︷︷ ︸

σ
(2j)
κ

(j = 1, 2).

Last, we decompose the knapsack as:

n∑
i=1

κ
(j)
i ai︸ ︷︷ ︸

σ
(j)
κ

=

n∑
i=1

ω
(2j−1)
i ai︸ ︷︷ ︸

σ
(2j−1)
ω

+

n∑
i=1

ω
(2j)
i ai︸ ︷︷ ︸

σ
(2j)
ω

(j = 1, . . . , 4).



Faster Algorithm for Solving Hard Knapsacks for Moderate Message Length 47

We can denote the partial sum of level χ as:

σ(j)χ =

n∑
i=1

χ
(j)
i ai,

where χ ∈ {ε, ν, κ, ω}.
We denote the ratio of occurrences of x ∈ {−1, 0, 1} in the coefficient vector

χ by Nχ(x). For a knapsack element, we have

ε

⎧⎪⎨⎪⎩
Nε(1) = 1/2

Nε(−1) = 0

Nε(0) = 1/2,

(2)

ν

⎧⎪⎨⎪⎩
Nν(1) = 1/4 + α

Nν(−1) = α
Nν(0) = 3/4− 2α,

(3)

κ

⎧⎪⎨⎪⎩
Nκ(1) = 1/8 + α/2 + β

Nκ(−1) = α/2 + β
Nκ(0) = 7/8− α− 2β,

(4)

ω

⎧⎪⎨⎪⎩
Nω(1) = 1/16 + α/4 + β/2 + γ

Nω(−1) = α/4 + β/2 + γ
Nω(0) = 15/16− α/2− β − 2γ.

(5)

We always have Nχ(−1)+Nχ(0)+Nχ(1) = 1. Parameters α, β and γ denote the
proportion of extra −1s in the subknapsacks. We control these parameters to
minimize the overall running time. Parameters α, β and γ satisfy 0 < α, β, γ < 1
and 0 < Nχ(x) < 1.

We introduce a modulus and a target value for each subknapsack to reduce
overall running time. First, we consider the eight subknapsacks at the level ω.
We denote the modulus corresponding to the level ω by Mω. We choose random

values R
(j)
ω (j = 1, . . . , 7) and let R

(8)
ω = S −

∑7
j=1 R

(j)
ω . We solve the eight

modular subknapsacks:

σ(j)ω ≡ R(j)
ω (mod Mω). (6)

We denote a list of values σ
(j)
ω satisfying Eq. (6) by L

(j)
ω .

Next, we consider the four modular subknapsacks at the level κ. To build

list L
(j)
κ , we use the lists L

(2j−1)
ω and L

(2j)
ω . We choose a modulus Mκ which is

coprime toMω and random valuesR
(j)
κ (j = 1, 2, 3) and let R

(4)
κ = S−

∑3
j=1 R

(j)
κ .

We solve the four modular subknapsacks:

σ(j)κ (= σ(2j−1)
ω + σ(2j)ω ) ≡ R(j)

κ (mod Mκ). (7)

We denote a list of values σ
(j)
κ satisfying Eq. (7) by L

(j)
κ .
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At the level ν, we choose a modulus Mν and a random value R
(1)
ν and let

R
(2)
ν = S −R(1)

ν . We build lists L
(1)
ν and L

(2)
ν in the same way at the level κ.

Last, we search for the solution of the original knapsack by searching for a

collision of the form σ
(1)
ν + σ

(2)
ν = S with σ

(1)
ν ∈ L

(1)
ν and σ

(2)
ν ∈ L

(2)
ν .

4 Analyzing Detailed Running Time of BCJ Algorithm

In this section, we analyze the running time of BCJ algorithm in detail. While
[1] analyzed their algorithm by Õ notation and proved that the running time
was Õ(20.2909n), we analyze the running time in detail by O notation.

4.1 Details of Every Step

In this section, we explain the detail steps of BCJ algorithm and analyze the
running time in detail.

Steps at the Level ω. We explain the steps at the level ω. In particular, we

explain how to construct list L
(j)
ω .

First, we assume that an ω vector has Nω(1)n/2 1s, Nω(−1)n/2 −1s and
Nω(0)n/2 0s among first half n/2 elements. This assumption holds with proba-
bility 2/(nπ

√
Nω(1)Nω(−1)Nω(0)) when we randomly choose an ω vector sat-

isfying Eq. (5). We do not know whether this assumption holds in advance, so
we need to run algorithm to the end. Therefore, we need to repeat the overall

algorithm O(n) times in average. We construct the lists L(1)
ω/2 and L(2)

ω/2. The list

L(1)
ω/2 is list of values

∑n/2
i=1 ωiai and the list L(2)

ω/2 is list of values
∑n

i=n/2+1 ωiai,

where the ω vector satisfies the assumption. The average size of lists L(1)
ω/2 and

L(2)
ω/2 is

Lω/2 =

(
n/2

Nω(1)n/2, Nω(−1)n/2, Nω(0)n/2

)
≈ 1

n
· 2( 1

2h(Nω(1),Nω(−1)))n.

Next, we letMω the modulus at the level ω and choose random integers R
(j)
ω (j =

1, . . . , 7) and let R
(8)
ω = S−

∑7
j=1 R

(j)
ω . From the lists L(1)

ω/2 and L(2)
ω/2, the target

sum R
(j)
ω and the modulus Mω, we construct the list L

(j)
ω by list algorithm(see

Append A about list algorithm). The list L
(j)
ω is list of values σ

(j)
ω satisfying

σ
(j)
ω ≡ R(j)

ω (mod Mω). The average size of the list L
(j)
ω is Lω = L2

ω/2/Mω.
When the assumption holds, the average running time of these steps is

O(max(n · Lω/2, n · Lω)).

Steps at the Level κ. We explain the steps at the level κ. In particular, we

present how to construct list K
(j)
κ from the lists L

(2j−1)
ω and L

(2j)
ω and the list

L
(j)
κ from K

(j)
κ .
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First, we let Mκ the modulus at the level κ and choose random integers

R
(j)
κ (j = 1, 2, 3) and let R

(4)
κ = S −

∑3
j=1 R

(j)
κ . Here, we choose Mκ so that it is

coprime to Mω. From the lists L
(2j−1)
ω and L

(2j)
ω , the target sum R

(j)
κ and the

modulus Mκ, we construct the list K
(j)
κ by list algorithm. The list K

(j)
κ is the list

of values σ
(j)
κ satisfying σ

(j)
κ ≡ R(j)

κ (mod Mκ). The average size of the list K
(j)
κ

is Kκ = L2
ω/Mκ.

The list K
(j)
κ includes some inconsistent κ vectors which do not satisfy Eq. (4)

or contain 2s or −2s. So we need to remove some inconsistent solutions from
K

(j)
κ in order to produce list L

(j)
κ . To complete this step, we must check all κ

vector’s elements, so cost of this step is O(n ·K(j)
κ ). The average size of the list

L
(j)
κ is Lκ = Lκ/(Mκ ·Mω), where

Lκ =

(
n

Nκ(1)n,Nκ(−1)n,Nκ(0)n

)
≈ 1

n
· 2h(Nκ(1),Nκ(−1))n.

The average running time of these steps is O(max(n · Lω, n ·Kκ)).

Steps at the Level ν. We explain the steps at the level ν. In particular, we

present how to construct the list K
(j)
ν from lists L

(2j−1)
κ and L

(2j)
κ and the list

L
(j)
ν from the list K

(j)
ν .

First, let Mν the modulus at the level ν and choose a random integer R
(1)
ν

and let R
(2)
ν = S − R(1)

ν . Here, we choose Mν so that it is coprime to Mκ and
Mω.

Steps at the level ν are the same as the steps at the level κ. The average

size of the list K
(j)
ν is Kν = L2

κ/Mν . The average size of the list L
(j)
ν is Lν =

Lν/(Mν ·Mκ ·Mω), where

Lν =

(
n

Nν(1)n,Nν(−1)n,Nν(0)n

)
≈ 1

n
· 2h(Nν(1),Nν(−1))n.

The average running time of these steps is O(max(n · Lκ, n ·Kν)).

Steps at the Level ε. We explain the steps at the level ε. In particular, we

present how to construct list Kε from the lists L
(1)
ν and L

(2)
ν and obtain the

solution of the original subset sum problem.

From the lists L
(1)
ν and L

(2)
ν and the target sum σε(= S), we construct the list

Kε by list algorithm. Here, we do not use a modulus. The upper size of the list

K
(j)
ε is Kε = L

2
ν ·Mν ·Mκ ·Mω/2

n. This is because it is easier to find a solution
modulo the value than a solution over the integers and a modulus should be
smaller than 2n.

The list Kε includes some inconsistent ε vectors which do not satisfy Eq. (2)
or contain 2s, −2s or −1s. So we need to remove some inconsistent solutions
from the list Kε in order to obtain the original solution.

The average running time of these steps is O(max(n · Lν , n ·Kε)).
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Specifying the Values of Moduli. We specify the values of moduli Mν , Mκ

and Mω. We specify moduli as we present in Sect. 3.1. In particular, we specify
Mω so that Mω is the combination of decomposing a κ vector into an ω vector
as:

Mω =

(
Nκ(1)n
Nκ(1)n/2

)
·
(
Nκ(−1)n
Nκ(−1)n/2

)
·
(

Nκ(0)n
(Nω(1)−Nκ(1)/2)n, (Nω(−1)−Nκ(−1)/2)n, ∗

)
≈ 1

n2
· 2(Nκ(1)+Nκ(−1)+Nκ(0)h( γ

Nκ(0)
, γ
Nκ(0) ))n.

Next, we specify Mκ ·Mω so that Mκ ·Mω is the combination of decomposing a
ν vector into a κ vector as:

Mκ ·Mω =

(
Nν(1)n
Nν(1)n/2

)
·
(
Nν(−1)n
Nν(−1)n/2

)
·
(

Nν(0)n
(Nκ(1)−Nν(1)/2)n, (Nκ(−1)−Nν(−1)/2)n, ∗

)
≈ 1

n2
· 2(Nν(1)+Nν(−1)+Nν(0)h( β

Nν(0)
, β
Nν(0) ))n.

Lastly, we specify Mν ·Mκ ·Mω so that Mν ·Mκ ·Mω is the combination of
decomposing an ε vector into a ν vector as:

Mν ·Mκ ·Mω =

(
Nε(1)n
Nε(1)n/2

)
·
(

Nε(0)n
Nν(−1)n,Nν(−1)n, ∗

)
≈ 1√

n3
· 2(Nε(1)+Nε(0)h( α

Nε(0)
, α
Nε(0)

))n.

4.2 Running Time of BCJ Algorithm

When the assumption in Sect. 4.1 holds, the overall running time of BCJ algo-
rithm is denoted by the function of n, α, β and γ as:

T0(n;α, β, γ)

= O(max(n · Lω/2, n · Lω, n ·Kκ, n · Lκ, n ·Kν, n · Lν , n ·Kε)).

Without this assumption, we need to repeat overall algorithm O(n) times in
average. So the overall running time is denoted as:

T1(n;α, β, γ) = O(n · To(n;α, β, γ)) (8)

Next, we adjust parameters to minimize the running time. When n is large
enough, Eq. (8) is minimized with the values as:

α = 0.026727, β = 0.016857, γ = 0.002901.
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Thus, T1 is denoted as:

T1(n; 0.026727, 0.016857, 0.002901)

= O(n · (max(20.2660n, n · 20.2909, n · 20.2909n, n2 · 20.2789n,
n2.5 · 20.2909n, n1.5 · 20.2173n, n0.5 · 20.2331n)))

= O(n3.5 · 20.2909n).

So, without the assumption in Sect. 4.1, the overall running time is O(n3.5 ·
20.2909n). While the running time was estimated Õ(20.2909n) in [1], we estimate
the running time O(n3.5 · 20.2909n) in detail.

Note that since the list Kχ need not to be stored, memory cost is:

O(max(n · Lω/2, n · Lω, n · Lκ, n · Lν)).

5 Our Algorithm

While BCJ algorithm requires the assumption in Sect. 4.1, our algorithm does
not require the assumption and O(n) repetitions. Our algorithm extends BCJ
algorithm by decomposing subknapsack at the level ω into two subknapsacks.
That is to say, we decompose the subknapsack as:

n∑
i=1

ω
(j)
i ai︸ ︷︷ ︸

σ
(j)
ω

=

n∑
i=1

φ
(2j−1)
i ai︸ ︷︷ ︸

σ
(2j−1)
φ

+

n∑
i=1

φ
(2j)
i ai︸ ︷︷ ︸

σ
(2j)
φ

(j = 1, . . . , 8).

Let us call the fourth level level φ, and we introduce a parameter δ which
controls the proportion of −1s at the level φ. The proportions of 1s, −1s and 0s
are denoted as:

φ

⎧⎪⎨⎪⎩
Nφ(1) = 1/32 + α/8 + β/4 + γ/2 + δ

Nφ(−1) = α/8 + β/4 + γ/2 + δ
Nφ(0) = 31/32− α/4− β/2− γ − 2δ.

5.1 Details of Every Step

In this section, we introduce the steps of our algorithm. However, the steps after
the level κ are the same as BCJ algorithm’s steps, so we do not explain them in
detail.

Steps at the Level φ. First, we explain about steps at the level φ. In particular,

we explain how to construct lists L
(j)
φ . First, we let Mφ the modulus at the level
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φ and choose random integers R
(j)
φ (j = 1, . . . , 15) and let R

(16)
φ = S−

∑15
j=1 R

(j)
φ .

We specify the modulus Mφ in the same way as BCJ algorithm. Thus, Mφ is

Mφ =

(
Nω(1)n
Nω(1)n/2

)
·
(
Nω(−1)n
Nω(−1)n/2

)
·
(

Nω(0)n
(Nφ(1)−Nω(1)/2)n, (Nφ(−1)−Nω(−1)/2)n, ∗

)
≈ 1

n2
· 2(Nω(1)+Nω(−1)+Nω(0)h( δ

Nω(0)
, δ
Nω(0) ))n.

We construct the list Lφ of values
∑n

i=1 φiai from φ vector, where φ vector
has Nφ(1)n 1s, Nφ(−1)n −1s and Nφ(0)n 0s. Here, we are not required the
assumption in the Sect. 4.1 and O(n) repetitions. The average size of the list Lφ
is

Lφ =

(
n

Nφ(1)n,Nφ(−1)n,Nφ(0)n

)
≈ 1

n
· 2h(Nφ(1),Nφ(−1))n.

Next, from the list Lφ, the target sum R
(j)
φ and the modulus Mφ, we construct

the list L
(j)
φ of values σ

(j)
φ satisfying σ

(j)
φ ≡ R(j)

φ (mod Mφ). The average size of

the list L
(j)
φ is Lφ = Lφ/Mφ.

The average running time of these steps is O(n · Lφ).

Steps at the Level ω. We explain steps at the level ω. In particular, we present

how we construct list K
(j)
ω from the lists L

(2j−1)
φ and L

(2j)
φ and list L

(j)
ω from the

list K
(j)
ω .

First, we denote the modulus at the level ω by Mω which is coprime to Mφ

and choose random integers R
(j)
ω (j = 1, . . . , 7) and let R

(8)
ω = S −

∑7
j=1 R

(j)
ω .

From the lists L
(2j−1)
φ and L

(2j)
φ , the target sum R

(j)
ω and the modulus Mω, we

construct the list K
(j)
ω by list algorithm. The list K

(j)
ω is the list of values σ

(j)
ω

satisfying σ
(j)
ω ≡ R(j)

ω (mod Mω). The average size of list K
(j)
ω is Kω = L2

φ/Mω.

Next, we obtain list L
(j)
ω by removing some inconsistent solutions from the

list K
(j)
ω . The average size of the list L

(j)
ω is Lω = Lω/(Mω ·Mφ) where

Lω =

(
n

Nω(1)n,Nω(−1)n,Nω(0)n

)
≈ 1

n
· 2h(Nω(1),Nω(−1))n.

The average running time of these steps is O(max(n · Lφ, n ·Kω)).

Steps after Level κ. Remain steps are the same as BCJ algorithm’s steps,
but we need to transpose from Mω to Mω ·Mφ. Furthermore, our algorithm’s
Lω is different from BCJ algorithm’s one, so we need to reestimate L2

ω/Mκ. In
our algorithm, L2

ω/Mκ is

L2
ω

Mκ
=

L2
ω

(Mκ ·Mω ·Mφ) · (Mω ·Mφ)
.
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5.2 Running Time of Our Algorithm

Overall running time of our algorithm is denoted by the function of n, α, β, γ
and δ as:

T (n;α, β, γ, δ) = O((max(n · Lφ, n · Lφ, n ·Kω, n · Lω,
n · Lκ, n · Lκ, n ·Kν , n · Lν , n ·Kε))). (9)

When n is large enough, Eq. (9) is minimized with the values as:

α = 0.022267, β = 0.013603, γ = 0.001285, δ = 0.

With these parameters, the running time is

T (n; 0.022267, 0.013603, 0.001285, 0)

= O(max(20.2919n, n2 · 20.2021n, n3 · 20.2919n, n2 · 20.2889n,
n3 · 20.2919n, n2 · 20.2826n, n2.5 · 20.2919n, n1.5 · 20.2271n, n0.5 · 20.2155n))

= O(n3 · 20.2919n).

Thus, the running time of our algorithm is O(n3 · 20.2919n).
Note that since the list Kχ need not to be stored, memory cost is:

O((max(n · Lφ, n · Lφ, n · Lω, n · Lκ, n · Lν))).

5.3 Comparison between BCJ Algorithm and Our Algorithm

The discussions in Sect. 4 and Sect. 5 show that the running time of BCJ algo-
rithm is O(n3.5 ·20.2909n) and the running time of our algorithm is O(n3 ·20.2919n).
Instead of comparing O(n3.5 ·20.2909n) with O(n3 ·20.2919n), we compare n0.5 with
20.001n as Fig. 1. Here we assume that constant terms of both functions are equal.
When n < 6312, it holds n0.5 > 20.001n. So our algorithm can solve subset sum
problem faster than BCJ algorithm when n < 6312.

6 Extensions in More Decompositions

In this paper, while we decompose a knapsack four times, we can decompose a
knapsack more times and it may reduce the running time. When we decompose
a knapsack k times, the evaluation function is denoted as:

T (n; a1, a2, . . . , ak) = O(n ·max(Lk, Lk,Kk−1, Lk−1,Kk−2, . . . , L1,K0)).

First, we introduce the ration of occurrences of x ∈ {−1, 0, 1} at the knapsack
of i-th(i = 1, . . . , k) level as:

Ni(1) =
1

2i+1
+

i∑
j=1

aj
2i−j

, Ni(−1) =
i∑

j=1

aj
2i−j

, Ni(0) = 1− 1

2i+1
− 2

i∑
j=1

aj
2i−j

,
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Fig. 1. Relation between n0.5 and 20.001n

where ai is the parameter introduced at the i-th level and

N0(1) = 1/2, N0(−1) = 0, N0(0) = 1/2.

Next, we denote modulus M
(k)
i as:

M
(k)
i =

(
Ni−1(1)n
Ni−1(1)n/2

)
·
(
Ni−1(−1)n
Ni−1(−1)n/2

)
·
(

Ni−1(0)n
(Ni(1)−Ni−1(1)/2)n, (Ni(−1)−Ni−1(−1)/2)n, ∗

)
,

when i = 2, . . . , k and define modulus M
(k)
1 as:

M
(k)
1 =

(
N0(1)n
N0(1)n/2

)
·
(

N0(0)n
N1(−1)n,N1(−1)n, ∗

)
.

By using them, each function included in the evaluation function is denoted as:

Li =
(

n
Ni(1)n,Ni(−1)n,Ni(0)n

)
, Li =

Li
M

(k)
i

,

Ki =
L2
i+1

M
(k)
i ·M (k)

i+1

(i �= k), K0 = L2
1 ·
M

(k)
1

2n
,

where i = 1, . . . , k. However, an evaluation function has more than five parame-
ters, so we have not optimized the evaluation function yet.
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7 Concluding Remarks

In this paper, we analyze the running time of BCJ algorithm [1] by O notation
and extend it. Our algorithm can solve subset sum problem faster than BCJ
algorithm when n < 6312. We have not yet settled how to determine the best
parameters of estimation function analytically. However, we believe that our
parameters setting is optimal.

Acknowledgement. The second authorwas supported byKAKENHI 22700006.
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A List Algorithm

We introduce the algorithm which computes integers list LR. We denote the size
of LR by LR.

Given two list of integers La and Lb of respective size La and Lb, together
with a positive integerM and a non-negative integer R, the algorithm computes
the list LR such that:

LR = {x+ y | x ∈ La, y ∈ Lb s.t. x+ y ≡ R (mod M)}.

In this paper, we call this algorithm list algorithm. This algorithm is introduced
in [1] and its pseudo-code is given by Algorithm 1. The running time of Algorithm
1 is

O(max(La logLa, Lb logLb, LR)).
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Moreover, assuming that the values of La and Lb modulo M are randomly dis-
tributed, the expected value of LR is La · Lb/M . In this paper’s analysis, we
assume that this assumption is guaranteed.

Using a slight variation of Algorithm 1, it is possible given La and Lb together
with a target integer R to construct the set:

LR = {x+ y | x ∈ La, y ∈ Lb s.t. x+ y = R}.

Algorithm 1. List Algorithm(Compute List LR)

Sort list La and Lb(by increasing order of the values modulo M)
Let Target ← R
Let i ← 0 and j ← Lb − 1
while i < La and j ≥ 0 do

Let Sum ← (La[i] (mod M)) + (Lb[j] (mod M))
if Sum < Target then

Increment i
end if
if Sum > Target then

Decrement j
end if
if Sum = Target then

Let i0, i1 ← i
while i1 < La and La[i1] ≡ La[i0] (mod M) do

Increment i1
end while
Let j0, j1 ← j
while j1 ≥ 0 and Lb[j1] ≡ Lb[j0] (mod M) do

Decrement j1
end while
for i ← i0 to i1 − 1 do

for j ← j1 + 1 to j0 do
Append La[i] + Lb[j] to LR

end for
end for
Let i ← i1 and j ← j1

end if
end while
Let Target ← R +M
Let i ← 0 and j ← Lb − 1
Repeat the above loop with the new target
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Abstract. Lindell and Pinkas (2002) have proposed the idea of using
the techniques of secure multi-party computations to generate efficient
algorithms for privacy preserving data-mining. In this context Kiltz,
Leander, and Malone-Lee (2005) have presented a protocol for the se-
cure distributed computation of the mean and related statistics in a
two-party setting. Their protocol achieves constant round complexity.
As a novel suggestion we use a Chebyshev expansion to accelerate this
protocol. This approach considerably reduces the overhead of the pro-
tocol in terms of both computation and communication. The proposed
technique can be applied to other protocols in the field of privacy pre-
serving data-mining as well.

Keywords: Privacy preserving data mining, secure two-party compu-
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1 Introduction

Kiltz, Leander, and Malone-Lee [6] have presented a protocol for the secure com-
putation of the mean and related statistics in a two-party setting. Each party
owns a database with an attribute present in both databases. The protocol en-
ables the two parties to evaluate the mean of these attribute values for the union
of their databases. At the end of the protocol, the two parties learn the mean and
nothing else without requiring a trusted party. The crucial point of the protocol
is the computation of the quotient. For this purpose it employs a Taylor polyno-
mial as an approximation of the geometric power series. This approximation can
be made arbitrarily accurate by increasing the degree of this polynomial. How-
ever, under efficiency considerations such a simple truncation of the power series
is not optimal. As a novel approach the present paper takes as point of departure
a Chebyhev series

∑∞
ν=0 Tν(x) where Tν(x) denotes the Chebyshev polynomial

of the first kind of degree ν. The paper heavily uses the fact that these expan-
sions converge very rapidly under reasonable conditions (see Bulirsch and Stoer
[2] or Mason and Handscomb [8]). Indeed, in the present case the coefficients of
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the Chebyshev expansion decrease much faster than the coefficients of the corre-
sponding Taylor expansion. Consequently, we use a truncated Chebyshev series
as the approximating polynomial. In this way an approximating polynomial can
be constructed, which at equal accuracy requirements has a much lower degree
than the truncated Taylor expansion. In fact, the degree can be reduced by a
factor of approximately 0.43. Additionally, a novel approach is presented that
merges three protocol steps of [6] into two. By these modifications considerable
reductions in both the computation overhead and the communication overhead
can be achieved. The security properties of the protocol are not affected because
only publicly known parameters are used for the modifications.

The protocol of [6] repeatedly uses oblivious polynomial evaluation (OPE).
Protocols for OPE are powerful cryptographic primitives for privacy preserving
computations, which were first considered by Naor and Pinkas [9] and further
elaborated by the same authors in [12]. As with oblivious transfer, OPE involves
a sender and a receiver. The sender’s input is a polynomial P of degree d over
some finite field F and the receiver’s input is an element α ∈ F . The degree d of
P is public. The protocol is such that the receiver obtains P (α) without learning
anything else about the polynomial P , and the sender learns nothing.

Notation. Let a be a real number. Then we denote by �a� (	a
) the smallest
(largest) integer b with b ≥ a (b ≤ a), and by �a
 the largest integer b ≤ a+1/2.
The operator trunc(a) rounds a towards 0, that is trunc(a) = �a� if a < 0 and
trunc(a) = 	a
 if a ≥ 0. Let p be a positive integer. All arithmetic modulo p is
done centered around 0; that is c mod p = c−�c/p
p. Much of the computation is
going to occur in a suitably large finite field, named Fp. The meaning of “suitably
large” will be discussed in Section 5. Throughout the paper log a is the binary
logarithm.

Outline. The paper is organized as follows: Section 2 presents the protocol of [6]
for the privacy preserving computation of the mean. It is accelerated in Section
3 by using a Chebyshev expansion. This approach results in a new accelerated
protocol (Section 4). Its overhead in terms of both computation and communica-
tion is studied in Section 5. The conclusion in Section 6 refers to other protocols
in the field of privacy preserving data mining that benefit from the presented
technique.

2 Privacy Preserving Computation of the Mean

Kiltz, Leander, and Malone-Lee [6] have presented a protocol for the secure
computation of the mean and related statistics where the entries are shared by
two players. Their protocol achieves constant round complexity (cf. Damg̊ard et
al. [4]) and enjoys a formal proof of security in the scenario of a semi-honest
adversary. A semi-honest (or passive) adversary is an adversary that follows the
instructions of the protocol but may try to use the information that he/she
obtains during the execution of the protocol to learn something about the input
of the other party. Using standard techniques the protocol can be made secure
against an active adversary that attempts to deviate from the protocol.
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For the reader’s convenience, the protocol in [6] is briefly outlined here: Sup-
pose that player P1 has n1 entries in its database and P2 has n2, which are
denoted by {x1,1, x1,2, . . . , x1,n1} and {x2,1, x2,2, . . . , x2,n2} respectively. Let the
sums x1 and x2 be defined as x1 =

∑n1

i=1 x1,i and x2 =
∑n2

i=1 x2,i. Without loss
of generality it can be assumed that x1 and x2 are integers. The task is the
computation of the mean M = (x1+x2)/(n1+n2) where P1 knows (x1, n1) and
P2 knows (x2, n2). It is assumed that there are publicly known values N1 and
N2 such that

−2N1 ≤ x1 + x2 ≤ 2N1 (1)

and
0 < n1 + n2 < 2N2−1 .1 (2)

In the following a protocol is described for privately computing an approximation
M̂ of M . Let m1 be the closest power of 2 to n1. That is

2m1−1 + 2m1−2 ≤ n1 < 2m1 + 2m1−1

and let m2 be defined analogously. Let

k = max{m1,m2}+ 1 . (3)

As a consequence of (2), 0 ≤ m1,m2 ≤ N2 − 1 and

1 ≤ k ≤ N2. (4)

With the definition
ε := 1− (n1 + n2)/2

k (5)

we have

n1 + n2 = 2k(1− ε) where − 1

2
< ε ≤ 5

8
. (6)

Consequently,

1

n1 + n2
=

1

2k(1 − ε) =
1

2k

( ∞∑
i=0

εi

)
=

1

2k

(
d∑
i=0

εi

)
+

1

2k
Rd (7)

where

|Rd| ≤
8

3

(
5

8

)d+1

. (8)

It follows that 2N2d/(1 − ε) = 2N2d+k/(n1 + n2) = Zd + 2N2dRd where Zd is
defined by

Zd =

d∑
i=0

(2N2ε)i2N2(d−i) . (9)

Finally, some polynomials are defined. For i = 1, 2, . . . , N2 let Pi(X) be the
polynomial of degree N2 − 1 such that for X ∈ {1, 2, . . . , N2} Pi(X) = 1 for
X = i and Pi(X) = 0 otherwise.

The protocol is given in Fig. 1. It involves a series of sub-protocols from [6],
which are repeated in Appendix A for the reader’s convenience.

1 The assumption 0 < n1 + n2 < 2N2 in [6] does not guarantee that 2N2ε in the
definition of Zd in (9) is an integer.
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Set d = � 3
2
(t+N1 + 2)�.

1. P1 and P2 input n1 and n2 respectively. Using Protocols 5 and 7 they compute
additive shares of 2N2ε. With these shares as inputs P1 and P2 use Protocol
6 and calculate additive shares aF

1 , a
F
2 of Zd over Fp.

2. P1 and P2 input aF
1 and aF

2 respectively. Using Protocol 4 they compute
additive shares aI

1, a
I
2 of Zd over Z.

3. For j = 1, . . . , N2:
a P1 computes b1,j = �aI

1/2
j�; P2 computes b2,j = �aI

2/2
j� .

4. Parties locally convert their shares back into additive Fp-shares ci,j , where
share ci,j is the Fp-equivalent of integer share bi,j .

5. P1 and P2 input m1 and m2 respectively. Using Protocol 7 they compute
additive shares d1, d2 of k over Fp.

6. P1 chooses e1 at random from Fp and defines the polynomial

R1(X) =

N2∑
i=1

c1,iPi(d1 +X)− e1 .

P1 runs an OPE protocol with P2 so that P2 learns e2 = R1(d2) and P1
learns nothing.

7. P2 chooses f2 at random from Fp and defines the polynomial

R2(X) =

N2∑
i=1

c2,iPi(d2 +X)− f2 .

P2 runs an OPE protocol with P1 so that P1 learns f1 = R2(d1) and P2
learns nothing.

8. P1 and P2 input e1 + f1 and e2 + f2 respectively. Using Protocol 2 they
compute multiplicative shares g1, g2 of (e1 + f1) + (e2 + f2) over Fp.

9. P1 inputs x1 and P2 inputs x2. Using Protocol 2 they compute multiplicative
shares h1, h2 of x1 + x2 over Fp.

10. P1 computes M̂1 = g1h1 · 2−N2d and sends it to P2.
11. P2 computes M̂2 = g2h2 and sends it to P1.
12. P1 computes and outputs M̂ = M̂1M̂2.
13. P2 computes and outputs M̂ = M̂1M̂2.

a The range for j is determined by (4), cf. steps 6 and 7.

Fig. 1. The protocol of [6] to compute a private 2−t-approximation M̂ of M = x1+x2
n1+n2

.
For Protocols 2–7 see Appendix A. The size of the finite field Fp is a sufficiently large
prime p (see Section 5).



Secure Distributed Computation of the Mean 61

3 Acceleration of the Computation of the Mean by a
Chebyshev Expansion

The protocol of Fig. 1 relies on the fact that the integer Zd with d+1 summands
as defined in (9) approximates the quotient 2N2d+k/(n1+n2). The present section
applies a Chebyshev expansion in order to reduce the number of terms in the
definition of Zd. Let ε be defined as in Section 2 with the interval given in (6).
By the substitution ε = (9x + 1)/16 this interval is mapped to the standard
interval −1 < x ≤ 1 and 1/(1− ε) is transformed to

f(x) :=
16

15
· 1

1− 3x
5

, (10)

which allows an analytic continuation to the function f(z) with z = x+iy on the
ellipse with foci at z = ±1, major semi-axis a = 5/3 and eccentricity e = 1/a.

Theorem 1. Let the function f(z) be defined as above. Then its Chebyshev
expansion is given by

f(z) =
8

3

[
1

2
+

∞∑
ν=1

(
1

3

)ν

Tν(z)

]
. (11)

Proof. By the transformation

z =
1

2

(
ζ +

1

ζ

)
(12)

the annulus 1/ρ < |ζ| < ρ with ρ := a+
√
a2 − 1 = 3 in the ζ-plane is mapped

to the above mentioned (doubly covered) ellipse in the z-plane and

f

(
1

2

(
ζ +

1

ζ

))
=

16

15
· −10ζ
3ζ2 − 10ζ + 3

=
4

3
· 1

1− ζ
3

+
4

9
· 1
ζ
· 1

1− 1
3ζ

.

This yields the Laurent expansion

f

(
1

2

(
ζ +

1

ζ

))
=

8

3

[
1

2

∞∑
ν=0

(
1

3

)ν

ζν +
1

6

∞∑
ν=1

(
1

3

)ν−1
1

ζν

]

in the above mentioned annulus, which proves (11) (see e.g. Bulirsch and Stoer
[2] or Mason and Handscomb [8]). �
Using the result of Theorem 1 and the first equation in (7) we get

2k

n1 + n2
=

1

1− ε =
8

3

⎡⎣1

2
+

d̂∑
ν=1

(
1

3

)ν

Tν(x)

⎤⎦ +
8

3
R̂d̂ (13)

where

x =
16ε− 1

9
(14)
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and

|R̂d̂| ≤
1

2

(
1

3

)d̂

. (15)

The Chebyshev polynomial Tν(x) is a polynomial of degree ν in the independent
variable x (see again [2] or [8]):

Tν(x) =

ν∑
j=0

tν,j x
j . (16)

The polynomials Tν(x) are even or odd functions involving only even or odd
powers of x, according as ν is even or odd. For 0 ≤ κ ≤ 	ν/2
 the coefficient
tν,ν−2κ of xν−2κ in (16) is given by

tν,ν−2κ = (−1)κ2ν−2κ−1

[
2

(
ν − κ
κ

)
−

(
ν − κ− 1

κ

)]
(17)

= (−1)κ2ν−2κ−1 ν

ν − κ

(
ν − κ
κ

)
, (18)

whereas for the coefficient tν,ν−2κ−1 of xν−2κ−1

tν,ν−2κ−1 = 0. (19)

Obviously, the coefficients tν,j are integers. A straightforward application of for-
mula (16) gives

1

2
+

d̂∑
ν=1

(
1

3

)ν

Tν(x) =
1

2
+

d̂∑
ν=1

(
1

3

)ν

tν,0 +

d̂∑
j=1

⎡⎣ d̂∑
ν=j

(
1

3

)ν

tν,j

⎤⎦ · xj . (20)

In order to keep the computations in the integers, we multiply this equation by

2 · 3d̂ and get ⎡⎣1

2
+

d̂∑
ν=1

(
1

3

)ν

Tν(x)

⎤⎦ · 2 · 3d̂ = d̂∑
j=0

βjx
j (21)

where the coefficients βj are defined by

β0 := 3d̂ + 2

d̂∑
ν=1

3d̂−νtν,0, (22)

βj := 2

d̂∑
ν=j

3d̂−νtν,j (j = 1, 2, . . . , d̂). (23)

For the same reason (14) is multiplied by 9 · 2N2,

9 · 2N2x = 16 · 2N2ε− 2N2 . (24)
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It follows from (4) and the definition of ε in (5) that this quantity is an integer.

Multiplying (21) by 9d̂ · 2N2d̂,⎡⎣1

2
+

d̂∑
ν=1

(
1

3

)ν

Tν(x)

⎤⎦ · 2 · 3d̂ · 9d̂ · 2N2d̂ = Ẑd̂ (25)

where

Ẑd̂ :=

d̂∑
j=0

γjθ
j2N2(d̂−j) (26)

with

θ := 9 · 2N2x and γj := βj · 9d̂−j (j = 0, 1, . . . , d̂). (27)

Now the following theorem is an immediate consequence of (13) and (15).

Theorem 2. Let n1 and n2 be integers that obey (2) and let k be defined by (3).

Further, let Ẑd̂ be defined by (26) and (27). Then the quotient Ẑd̂/(3
3d̂+12N2d̂−2)

approximates 2k/(n1 + n2) such that

2k

n1 + n2
=

Ẑd̂
33d̂+12N2d̂−2

+
8

3
R̂d̂, where |R̂d̂| ≤

1

2

(
1

3

)d̂

. (28)

Please note that only integers are involved in the computation of Ẑd̂. The coef-
ficients γj are defined in (27); for the βj see (22) and (23); the tν,j are given in
(17) – (19).

4 The New Protocol

A closer look at steps 5–7 of the of the protocol of Fig. 1 reveals that a further
gain in efficiency is possible: Protocol 7 in step 5 returns additive shares of k.
This involves a case distinction owing to the definition (3) of k, which motivates
the definition of the polynomials Qa and Qb in [6]. This case distinction can
be merged into steps 6 and 7. Please remember that m1,m2 ∈ {0, . . . , N2 − 1},
m1−m2 ∈ S := {−(N2−1), . . . , (N2−1)} and |S| = 2N2−1. Let the polynomials
Q̂a and Q̂b of degree |S| − 1 be defined by

Q̂a(s) =

⎧⎨⎩
random values for s ∈ S \ {−(N2 − 1) +m1, . . . , N2 − 1}
c1,1+m1−s for s ∈ {−(N2 − 1) +m1, . . . ,−1}
c1,m1+1 for s ∈ {0, 1, . . . , N2 − 1}

and

Q̂b(s) =

⎧⎨⎩
random values for s ∈ S \ {−(N2 − 1) +m2, . . . , N2 − 1}
c2,1+m2−s for s ∈ {−(N2 − 1) +m2, . . . ,−1, 0}
c2,m2+1 for s ∈ {1, . . . , N2 − 1}
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Parameter d̂, see Theorem 3; coefficients γj , j = 0, 1, . . . , d̂, see (27).

1. P1 and P2 input n1 and n2 respectively. Using Protocols 5 and 7 they compute
additive shares of 2N2ε. Then each party locally computes its additive share
of θ = 16 · 2N2ε − 2N2 . With these shares as inputs P1 and P2 use Protocol
6’ and calculate additive shares aF

1 , a
F
2 of Ẑd̂ over Fp.

2. P1 and P2 input aF
1 and aF

2 respectively. Using Protocol 4 they compute
additive shares aI

1, a
I
2 of Ẑd̂ over Z.

3. Step 3 of Fig. 1.
4. Step 4 of Fig. 1.
5. This step is eliminated.
6. P1 chooses e1 at random from Fp and defines the polynomial

Ra(X) = Q̂a(m1 −X)− e1 .

P1 runs an OPE protocol with P2 so that P2 learns e2 = Ra(m2) and P1
learns nothing.

7. P2 chooses f2 at random from Fp and defines the polynomial

Rb(X) = Q̂b(m2 −X)− f2 .

P2 runs an OPE protocol with P1 so that P1 learns f1 = Rb(m1) and P2
learns nothing.

8. Step 8 of Fig. 1.
9. Step 9 of Fig. 1.

10. P1 computes M̂1 = g1h1 · 2−N2d̂+2 and sends it to P2.
11. Step 11 of Fig. 1.
12. Step 12 of Fig. 1.
13. Step 13 of Fig. 1.

Fig. 2. The new protocol. For Protocols 2–7 see Appendix A .

It is easily verifiable that Q̂a(m1 −m2) = c1,k and Q̂b(m2 −m1) = c2,k . This
and the results of Section 3 are the basis of a new protocol, which is presented
in Fig. 2.

As in [6] it is assumed, that Fp is sufficiently large that whenever a conver-
sion from the integers to Fp is necessary it can be done without wrap-around
(no modular reduction). The consequences for the selection of the value p are
discussed in Section 5. It follows from Theorem 2 that after steps 1 and 2 of the
new protocol players P1 and P2 hold aI1 and aI2 respectively such that∣∣∣∣∣2N2d̂−2+k

n1 + n2
− a

I
1 + a

I
2

33d̂+1

∣∣∣∣∣ ≤ 4

3
· 2N2d̂−2

(
1

3

)d̂

.

The definition of k implies k ≥ 1 (see (4)). Consequently, b1,k and b2,k after step
3 obey the inequality∣∣∣∣∣ 2N2d̂−2

n1 + n2
− b1,k + b2,k

33d̂+1

∣∣∣∣∣ < 2

3
· 2N2d̂−2

(
1

3

)d̂

+
2

33d̂+1
.
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When e1, e2, f1 and f2 are considered as integers it follows that∣∣∣∣∣ 2N2d̂−2

n1 + n2
− (e1 + f1) + (e2 + f2)

33d̂+1

∣∣∣∣∣ < 2

3
· 2N2d̂−2

(
1

3

)d̂

+
2

33d̂+1
.

Treating M̂ as an integer we have because of (1)∣∣∣∣∣x1 + x2n1 + n2
· 2N2d̂−2 − 2N2d̂−2

33d̂+1
· M̂

∣∣∣∣∣ <
[
2

3
· 2N2d̂−2

(
1

3

)d̂

+
2

33d̂+1

]
· 2N1 .

A division by 2N2d̂−2 gives∣∣∣∣∣x1 + x2n1 + n2
− M̂

33d̂+1

∣∣∣∣∣ <
[
2

3

(
1

3

)d̂

+
2

33d̂+1 · 2N2d̂−2

]
· 2N1.

Inequality (2) implies N2 ≥ 2. Thus, the following theorem is proven:

Theorem 3. Let M̂ be the output from the protocol of Fig. 2 and let p be suffi-
ciently large. Further, let d̂ be chosen such that

2

3

(
1

3

)d̂

+
8

33d̂+1 · 22d̂
≤ 2−(t+N1) , (29)

then M̂/33d̂+1 is a 2−t-approximation of the mean M = x1+x2

n1+n2
.

Table 1 shows the degrees d̂ of the polynomial (26) that satisfy (29) for a series of
values of the accuracy parameter t+N1. The entries in the table are computed
with the help of the GNU Multiple Precision Arithmetic Library [5]. Table 1
also gives the corresponding values for the degree d[6]. This is the degree of the

Taylor polynomial (9) according to [6] that guarantees the same accuracy. The
corresponding formula is given in the first line of Fig. 1. However, it would be
unfair to compare this degree with d̂ because in the proof of Theorem 3 sharper
bounds are used than in [6]. Proceeding analogously to the proof of Theorem 3
results in the accuracy requirement

5

6

(
5

8

)d

+ 21−2d ≤ 2−(t+N1) , (30)

for the degree d of the Taylor polynomial (9). The fair degrees d
(fair)

[6] in Table 1

are calculated in this way.

The left hand sides of (29) and (30) are clearly dominated by (2/3)(1/3)d̂ and

by (5/6)(5/8)d respectively. Equating these terms gives d̂ ≈ 0.43 · d(fair)
[6] − 0.2 .

Further neglecting the small additive term,

d̂ ≈ 0.43 · d(fair)
[6] . (31)



66 P. Lory and M. Liedel

Table 1. Degree d̂ of (26) satisfying (29), degree d[6] according to [6] and fair degree

d
(fair)

[6] for various values of the accuracy parameter t+N1 (cf. text in Section 4); logB

with B := maxi |βi|. For the last two rows see text in Section 5.

t+N1 8 16 24 32 40 48 64 80 104 128

Degree d̂ of (26) 5 10 15 20 25 30 41 51 66 81

Degree d[6] 15 27 39 51 63 75 99 123 159 195

Fair degree d
(fair)

[6] 12 24 36 47 59 71 94 118 153 189

d̂/d
(fair)

[6] 0.42 0.42 0.42 0.43 0.42 0.42 0.44 0.43 0.43 0.43

logB 7.61 15.53 23.45 31.38 39.30 47.23 64.66 80.51 104.29 128.06

N
(equal)
2 of (33) 3.43 3.48 3.48 3.60 3.57 3.54 3.74 3.67 3.65 3.60

This result is confirmed by the entries in the fifth row of Table 1 and demon-
strates that considerable reductions in the computational efforts are possible by
the use of Chebyshev expansions as presented in Section 3.

Security. The above described construction of the polynomial defining Ẑd̂ uses
only publicly known parameters. Therefore, the new protocol has the same se-
curity properties as the protocol in [6]. In particular, it enjoys a formal proof of
privacy (for details and definitions see [6]).

5 Computation and Communication Overhead

The protocol of Fig. 2 clearly runs in a constant number of communication rounds
between the two parties. The computation overhead of the protocol depends on
the accuracy of the result. Naturally the degree d̂ grows with increasing accuracy
requirements (see Table 1).

Let us now consider the size of the field Fp. For the protocol of Fig. 2 we have
to choose the prime p sufficiently large so that no unwanted wrap-around (no
modulo p reduction) can occur. It follows from (28) and (29) that the value Ẑd̂
that is computed in the first step according to (26) is positive. Since |x| ≤ 1, the
following bound can be proven from the definitions in (26) and (27):

0 < Ẑd̂ ≤ B ·
d̂∑
j=0

9d̂−j(9 · 2N2)j2N2(d̂−j) = B · (d̂+ 1) · 9d̂ · 2N2d̂ (32)

where B := maxj |βj |. Consequently Protocol 4 in Appendix A (FTI protocol
that converts additive shares over Fp into additive shares over the integers)

requires a prime p with log p > N2d̂+ logB+ log(d̂+1)+ 2d̂ log 3+ ρ+6 where
ρ is a security parameter, typically chosen as ρ = 80. In steps 10 to 13 it has to

be ensured that the value g1h1g2h2 = 2N2d̂−2M̂ does not exceed p. Since M̂ ≈
33d̂+1(x1+x2)/(n1+n2), it can be concluded that |g1h1g2h2| ≤ 2N2d̂−233d̂+12N1

and the requirement.
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log p > N2d̂+ 2d̂ log 3 + max{logB + log(d̂+ 1) + ρ+ 6, (d̂+ 1) log 3 +N1 − 2}

is sufficient. By an improved FTI protocol (see [6]) this requirement can be

weakened to log p > N2d̂+N1−2+2d̂ log 3+max{logB+log(d̂+1), (d̂+1) log 3} .
This has to be compared with the requirement log p[6] > N2d+N1 in [6]. Because

of (31) the bound for log p[6] grows faster with increasing N2 than our bound.
Both bounds coincide for

N
(equal)
2 =

2d̂ log 3− 2 + max{logB + log(d̂+ 1), (d̂+ 1) log 3}
d− d̂

(33)

These values are presented in the last row of Table 1 for d = d
(fair)

[6] . Please note

that N2 = �N (equal)
2 � is the bound (2) and will exceed these values in almost all

practical cases. Then the approach of the present paper allows smaller field sizes
than [6].

The complexities of both the protocol of [6] (see Fig. 1) and the new protocol
of Fig. 2 are clearly dominated by two operations: (1) Step 1 to compute shares
of Zd and Ẑd̂ respectively. This is implemented by Protocol 7 (see Appendix
A) using two invocations of an OPE with polynomials of degree 2N2 − 2 and
Protocols 6 and 6’ respectively (see again Appendix A) using an OPE with

polynomials of degree d and d̂ respectively. (2) Steps 5–7 in Fig. 1 and steps 6,
7 in Fig. 2 respectively.

Let us first consider (1), i.e.the effect of the reduction of the degree in step 1.

The comparison (31) shows that at equal accuracy requirements the degree d̂ of
Ẑd̂ in the new protocol is reduced by a factor of approximately 0.43. The conse-
quences of such a reduction on the computation overhead of the OPE depend on
the selected OPE protocol. Following the arguments in [12] we measure the com-
putation overhead in terms of the number of invocations of a 1-out-of-2 oblivious
transfer protocol (OT 2

1 ). This is justified because the overhead of this operation
is greater by orders of magnitude than the overhead of the other operations. The
OPE Protocol 3.2 in [12] runs a single invocation of a (kd+1)-out-of-[(kd+1)·m]
oblivious transfer where k and m are security parameters and d is the degree of
the polynomial. The OPE Protocol 3.3 in [12] runs (kd + 1) invocations of a 1-
out-of-m oblivious transfer. The oblivious transfer protocols of Naor and Pinkas
[11] are optimized with respect to efficiency. If these protocols are used as sub-
protocols in the OPE Protocols 3.2 and 3.3 of [12], the number of invocations of
OT 2

1 grows linearly with the degree d. Taking into account that an efficient OT 2
1

protocol (see [10]) requires a constant number of exponentiations we conclude
that the computation complexity of Protocols 6 and 6’ respectively is O(d log p)
multiplications in the finite field Fp. Thus, the computational overhead for the

calculation of additive shares of Ẑd̂ in the new protocol is approximately 43%
of the overhead the corresponding operation in the protocol of [6]. Taking into
account that the new protocol allows smaller field sizes (see above) the accel-
eration is even more pronounced. Using Horner’s rule the OPE can be reduced
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to the parallel execution of an OPE of d linear polynomials where all the linear
polynomials are evaluated at the same point. In this sense, the number of invo-
cations of OT 2

1 required by Protocol 3.4 in [12] is independent of the degree. In
any case the communication complexity is O(d log p).

Finally, let us study (2) i.e. the effects of merging steps 5–7 of the protocol
of [6] (see Fig.1) into steps 6 and 7 of the new protocol of Fig. 2. The former
protocol uses in its step 5 Protocol 7 (see Appendix A), which requires two
invocations of an OPE with polynomials of degree 2N2 − 2. Each step 6 and 7
requires an OPE with a polynomial of degree N2 − 1. In the new protocol step
5 is eliminated and each step 6 and 7 now requires an OPE with a polynomial
of degree 2N2 − 2. Let us assume that Protocols 3.2 or 3.3 of [12] are used as
OPE protocols. Then the number of invocations of OT 2

1 grows linearly with the
degree (see above). Consequently, it is proportional to 6N2 − 6 for the protocol
of [6], whereas it is proportional to 4N2−4 for the new protocol. This is a gain of
approximately 30%. Protocol 3.4 of [12] requires the same number of invocations
of OT 2

1 regardless of the degree of the polynomial. Therefore, in this case steps
5–7 of the new protocol require only 50% of the number of invocations of OT 2

1

that is needed for steps 5–7 of the protocol of [6]. As above the communication
complexity is O(d log p) in any case, where d is again the degree of the polynomial
and p the size of the finite field Fp.

6 Conclusion

The two-party protocol of Kiltz, Leander, and Malone-Lee [6] for the secure
computation of the mean has been accelerated in the present paper by replacing
a Taylor approximation of 1/(1 − ε) by a corresponding truncated Chebyshev
series expansion. It has been demonstrated that this technique allows much lower
degrees of the approximating polynomial. In this way it forms a sound basis for
practical improvements. The method is useful not only for the protocol of [6] but
for all protocols, where a power series is approximated by a Taylor polynomial.
Obviously, the new technique can be applied to the distributed calculation of an
additive sharing of the variance as described in [6] as well. Another example is
the protocol for the private computation of the ID3 data mining algorithm of
Lindell and Pinkas [7], which employs the power series for the logarithm function.
A third application is oblivious neural learning (see Chang and Lu [3]), where
the activation function φ(ε) = a tanh(bε) has to be approximated by low degree
polynomials in a piecewise manner.
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A Sub-protocols

The main protocol of [6] is presented in Fig. 1, the corresponding new main
protocol in Fig. 2. Both use Protocols 2–7 of [6] as sub-protocols. This appendix
summarizes them for the reader’s convenience and gives the (slight) modifications
that are necessary for the new protocol. Most of these protocols employ an
oblivious polynomial evaluation protocol OPE (see e.g. Naor and Pinkas [12]).

The protocols of Figs. 1 and 2 use a series of conversion protocols: Protocols
2 (ATM) and 3 (MTA) of [6] can be used for converting additive to multiplicative
shares over Fp and vice versa. Protocol 4 (FTI) of [6] converts additive shares
from Fp to additive shares from the integers. It is taken from [1] (where it is
called Protocol SQ2SI) and specialised to the two-party case. It assumes that
the parties have shares (zF1 , z

F
2 ) over Fp where

−2n−1 < z = (zF1 + zF2 ) mod p < 2n−1

http://gmplib.org
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for some n and requires p > 2ρ+n+5 where ρ is a security parameter.
By Protocol 5 of [6] the parties obtain additive shares of

2N2ε = 2N2 − (n1 + n2)2
N2−k

over Fp. Protocol 6 computes additive shares of Zd over Fp. It is used as a sub-
protocol in step 1 of Fig. 1. The parties have already obtained additive shares
a1, a2 of 2N2ε by using Protocols 5 and 7.

Protocol 6. Sharing of Zd.

1. P1 chooses b1 at random and defines the polynomial
P (X) =

∑d
i=0(a1 +X)i2N2(d−i) − b1.

2. P1 runs OPE with P2 so that P2 learns b2 = P (a2) and P1 learns nothing.

At the end the parties hold additive shares b1, b2 of Zd.

In step 1 of Fig. 2 a slightly different sub-protocol is used, which is presented
here as Protocol 6’. The parties have already obtained additive shares of 2N2ε by
using Protocols 5 and 7 and each party has already locally computed its additive
share a1 and a2 respectively of θ = 16 · 2N2ε− 2N2 . With these shares as inputs
P1 and P2 use Protocol 6’ and calculate additive shares of Ẑd̂ over Fp.

Protocol 6’. Sharing of Ẑd̂.

1. P1 chooses b1 at random and defines the polynomial

P (X) =
∑d̂

i=0 γi(a1 +X)i2N2(d̂−i) − b1.
2. P1 runs OPE with P2 so that P2 learns b2 = P (a2) and P1 learns nothing.

At the end the parties hold additive shares b1, b2 of Ẑd̂.

Protocol 5 requires a protocol for obtaining an additive sharing of 2k over Fp.
Protocol 7 in [6] does this. At the end of this protocol the parties hold additive
shares of 2k. By a slight modification (see [6]) the same technique can be used
for sharing k. The latter version is used in step 5 of Fig. 1, but it is not used in
the new protocol of Fig. 2.
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Abstract. In this paper, we investigate the security of the lightweight
block ciphers against the meet-in-the-middle (MITM) attack. Since the
MITM attack mainly exploits low key-dependency in a key expanding
function, the block ciphers having a simple key expanding function are
likely to be vulnerable to the MITM attack. On the other hand, such a
simple key expanding function leads compact implementation, and thus
is utilized in several lightweight block ciphers. However, the security of
such lightweight block ciphers against the MITM attack has not been
studied well so far. We apply the MITM attack to the ciphers, then
give more accurate security analysis for them. Specifically, combining
thorough analysis with new techniques, we present the MITM attacks
on 29, 8, 16, 14 and 21 rounds of XTEA, LED-64, LED-128, Piccolo-80
and Piccolo-128, respectively. Consequently, it is demonstrated that the
MITM attack is the most powerful attack in the single-key setting on
those ciphers with respect to the number of attacked rounds. Moreover,
we consider the possibility of applying the recent speed-up keysearch
based on MITM attack to those ciphers.

Keywords: block cipher, lightweight, meet-in-the-middle attack, speed-
up keysearch.

1 Introduction

Over the past years the demand for security in low resource devices such as
RFID tags and sensor nodes has been dramatically increased. This motivates
cryptographers to design a new cryptographic primitives aimed to such con-
strained devices, and thus several lightweight block ciphers have been proposed
such as PRESENT [6], LED [13] and Piccolo [22]. In such ciphers, several newly
developed design tricks are utilized in order to reduce the required gates. For
example, a serially computable MDS matrix used in LED provides good diffu-
sion but requires small gate areas. The key expanding function of KTANTAN [8]
does not need to update the user provided secret key itself to generate sub-keys.
This allows us to significantly reduce the required gates especially in the fixed-
key mode, i.e., a secret key is hard-wired. This technique is utilized in several
block ciphers such as XTEA [18], LED and Piccolo. We refer such design trick
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for a key expanding function as a direct-key expansion throughout this paper.
More precisely, the direct-key expansion referred in this paper is defined that
each subkey ki can be represented by a secret key K and a round constant ci
as ki = KPi(K)⊕ ci or ki = KPi(K)� ci, where KPi denotes an arbitrary bit
permutation.

While the direct-key expansion leads compact implementation peculiarly in
the fixed-key mode, it sometimes causes the security problems due to its slow
diffusion regarding sub-keys. For instance, it has been known that KASUMI [1],
which consists of the direct-key expansion, is vulnerable to the related-key at-
tacks [3,11]. Though the practical impact on a related-key attack depends on
an application and required conditions for related-keys, the security for most
of the recently proposed block ciphers having the direct-key expansion against
the related-key attack is well analyzed by the designers such as KTANTAN,
LED and Piccolo. Therefore these ciphers are expected to be secure against the
related-key attack. In fact, for a well-designed direct-key expansion, it is rela-
tively simple to show that there is no unexpected flaw regarding the related-key
attack in the key expanding, in contrast to a complicated key expanding such as
AES [12]. It is considered as one of the desirable design features of the direct-key
expansion.

Meet-in-the-middle (MITM) attack was first introduced in [10]. Since the
MITM attack usually exploits the slowness of the diffusion in a key expanding
function, the ciphers having the direct-key expansion are likely to be vulnerable
to it. In fact, KTANTAN, which is believed to be secure against the related-
key attack, has been theoretically broken by the MITM attack [7]. However,
the security of the other block ciphers consisting of the direct-key expansion
against the MITM attack have not been well studied. Thus, while the direct-key
expansion has several desirable features especially in implementation, it is less
reliable compared to a complicated key expanding function due to lack of the
thorough security analysis.

In this paper, we reconsider the security of lightweight block ciphers against
the MITM attacks. Our target ciphers are XTEA, LED and Piccolo, which
have the direct-key expansion. Combining recent advanced techniques with new
techniques such as an equivalent transformation technique for SPN ciphers, we
succeed in improving the numbers of attacked rounds for those ciphers by the
MITM attack. Specifically, we present the MITM attacks on 29 (out of 64), 8
(out of 32), 16 (out of 48), 14 (out of 25) and 21 (out of 31) rounds of XTEA,
LED-64, LED-128, Piccolo-80 and Piccolo-128, respectively. Note that all of
our attacks are the best with respect to the number of attacked rounds1 in the
single-key setting in literature. This implies that the MITM attack is actually the
most effective attack for block ciphers having the direct-key expansion, and its
security analysis is necessary. Moreover, we consider the possibility of applying
the recent speed-up keysearch based on the MITM attack, which are applied to
the full AES [5] and the full IDEA [15], to our target ciphers.

1 The MITM attacks on the 14- and 21-round Piccolo-80 and Piccolo-128 were intro-
duced in [22]. However, the details of those attacks have not been published.
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The rest of this paper is organized as follows. Brief introductions of our target
ciphers and the MITM attack are given in Sections 2 and 3, respectively. Sec-
tion 4 shows our MITM attacks on the target ciphers. We give discussions on the
speed-up keysearch based on the MITM attack and other attacks in Section 5.
Finally, we conclude in Section 6.

2 Target Ciphers

This section gives brief descriptions of our target ciphers including XTEA [18],
LED [13] and Piccolo [22]. Note that all of our target ciphers consist of the
direct-key expansion. In the descriptions, for each algorithm, we use the same
notations used in their original papers.

2.1 Description of XTEA

XTEA is a 64-round Feistel cipher with 64-bit block and 128-bit key proposed by
Needham and Wheeler in 1997 [18]. Let 64-bit state of the round i be Si = Li|Ri,
where Li, Ri ∈ {0, 1}32. Each round updates a state by using a 32-bit round key
RKi as

Li+1 = Ri, Ri+1 = Li �(32) ((δ
i �(32) RK

i)⊕ F (Ri)),
where �(32) denotes an addition modulo 232 and δi represents the i-th round
constant. The function F is defined as F (x) = ((x� 4)⊕ (x� 5))�(32) x. Each
round key RKi is derived from a secret key K = K0|K1|K2|K3, Ki ∈ {0, 1}32
according to the predefined rule (see Table 1).

2.2 Description of LED

LED is an SPN-type block cipher supporting a 64-bit block and 64-bit to 128-bit
keys proposed by Guo et al. in 2011 [13]. For the 64-bit key mode called LED-64,
a 64-bit secret key K is XORed to the 64-bit state every 4 rounds. For the 128-
bit key mode called LED-128, a 128-bit secret key K is divided into two 64-bit
sub-keys K1 and K2, then K1 and K2 are alternatively XORed to the 64-bit
state every 4 rounds. Each round function consists of AddConstants, SubCells,
ShiftRows and MixColumnsSerial similar to the round function of AES. The
numbers of rounds for LED-64 and LED-128 are 32 and 48, respectively.

2.3 Description of Piccolo

Piccolo is a 64-bit block cipher supporting 80 and 128-bit keys proposed by
Shibutani et al. in 2011 [22]. Piccolo-80 and Piccolo-128 consist of 25 and 31
rounds of a variant of a generalized Feistel network, respectively. Let 64-bit
input of the i-th round be Si = X i

0|X i
1|X i

2|X i
3, X

i
j ∈ {0, 1}16. Then the (i+1)-th

round input Si+1 is derived as follows:

Si+1 = RP (X i
0|(X i

1 ⊕ F (X i
0)⊕ rk2i−2)|X i

2|(X i
3 ⊕ F (X i

2)⊕ rk2i−1)),
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Table 1. Key expanding functions of XTEA, Piccolo-80 and Piccolo-128

Key expanding function of XTEA

Round i (1 to 32) 1 to 8 9 to 16 17 to 24 25 to 32

j of Kj for RKi 0 3 1 2 2 1 3 0 0 0 1 3 2 2 3 1 0 0 1 0 2 3 3 2 0 1 1 1 2 0 3 3

Round i (33 to 64) 33 to 40 41 to 48 49 to 56 57 to 64

j of Kj for RKi 0 2 1 1 2 1 3 0 0 3 1 2 2 1 3 1 0 0 1 3 2 2 3 2 0 1 1 0 2 3 3 2

Key expanding function of Piccolo-80

Round i (1 to 16) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

j of kj for (rk2i−2|rk2i−1) 2 3 0 1 2 3 4 4 0 1 2 3 0 1 2 3 4 4 0 1 2 3 0 1 2 3 4 4 0 1 2 3

Round i (17 to 25) 17 18 19 20 21 22 23 24 25
j of kj for (rk2i−2|rk2i−1) 0 1 2 3 4 4 0 1 2 3 0 1 2 3 4 4 0 1

Key expanding function of Piccolo-128

Round i (1 to 16) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

j of kj for (rk2i−2|rk2i−1) 2 3 4 5 6 7 2 1 6 7 0 3 4 5 6 1 4 5 2 7 0 3 4 1 0 3 6 5 2 7 0 1

Round i (17 to 31) 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
j of kj for (rk2i−2|rk2i−1) 2 7 4 3 6 5 2 1 6 5 0 7 4 3 6 1 4 3 2 5 0 7 4 1 0 7 6 3 2 5

where F is a 16-bit F-function, RP is a 64-bit permutation, and rk2i−2 and
rk2i−1 are round keys introduced into the i-th round. Each 16-bit round key
rki is derived from an 80-bit secret key K = k0|k1|...|k4 or a 128-bit secret key
K = k0|k1|...|k7, where kj ∈ {0, 1}16 according to the predefined manner (see
Table 1).

3 Meet-in-the-Middle Attacks

In this section, we briefly review the MITM attack presented in [7] and several
advanced techniques introduced in [23,2,19,5,15].

The MITM attack consists of the MITM stage and the key testing stage. The
attacker first filters out some wrong keys and reduces the key space in the MITM
stage, then exhaustively searches a correct key from the surviving key candidates
in the key testing stage.

The MITM stage first divides an n-bit block cipher E with an -bit secret
key K into two functions F(1) and F(2). K is grouped into three sets K(1), K(2)

and K(3), where K(1) and K(2) are used only in F(1) and F(2), respectively, and
K(3) denotes the other bits of K. Such K(1) and K(2) are called neutral key

bits of F(2) and F(1), respectively. Then, we can compute F(1)(P ) and F−1
(2) (C)

independently by guessing each neutral key bit. If the guessed key value is cor-
rect, the equation F(1)(P ) = F−1

(2) (C) holds. Due to parallel guesses of K(1) and

K(2), we can efficiently check whether the guessed key is the correct one. After

this stage, we have 2�−n(= 2|K(1)|+|K(2)|/2n× 2|K(3)|) key candidates2. In the key

2 The number of key candidates can be reduced by repeatedly performing the MITM
stage with additional plaintext/ciphertext pairs.
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testing stage, the attacker exhaustively searches a correct key from the surviv-
ing key candidates by using additional plaintext/ciphertext pairs. The required
computations of the attack in total Ccomp is estimated as

Ccomp = 2|K(3)|(2|K(1)| + 2|K(2)|)︸ ︷︷ ︸
MITM stage

+(2�−n + 2�−2n + 2�−3n + ...)︸ ︷︷ ︸
Key testing stage

.

The number of the required plaintext/ciphertext pairs is �/n�. The required
memory is min(2|K(1)|, 2|K(2)|) blocks, which is the cost of the table used in the
MITM stage.

Here, we review several advanced techniques that enhance the MITM attack.

– Partial Matching [2] : When checking F(1)(P ) = F−1
(2) (C), it is not neces-

sary to match all values of the state. By using only part of the state value
for the matching, some key bits around the matching point can be omitted.

– Splice and Cut [23,2] : It regards the last and the first rounds of the block
cipher as consecutive rounds assuming the chosen plaintext attack or the cho-
sen ciphertext attack. This allows the attacker to freely choose two functions
F(1) and F(2), though it generally requires more plaintext/ciphertext pairs
than the attack without the splice and cut.

– Initial Structure [19,5] : It is used to skip some rounds around the
starting point of the MITM attack, by exchanging two neutral key bits in
those skipped round. The formal concept of the initial structure is called
biclique [16,5].

Since the MITM attack exploits low key-dependency that large parts of the
cipher are independent from some key bits, it is considered as one of the most
powerful attacks for the direct-key expansion. Moreover, since the MITM attack
does not require related-keys, i.e., it works in the single-key setting, its security
analysis is considered to be more important than related-key attacks. These are
the reasons why we focus on the MITM attack in this work.

4 Meet-in-the-Middle Attacks on Lightweight Block
Ciphers

In this section, we apply the MITM attack to lightweight block ciphers XTEA,
LED and Piccolo. The results on our MITM attacks and known single-key attacks
are summarized in Table 2.

In the followings, F [i, j] denotes the (j − i + 1) consecutive rounds starting
from the i-th round, e.g., F [3, 6] represents 4 consecutive rounds starting from
the 3rd round. Xi[j] denotes the j-th bit of Xi, where Xi[0] is the most significant
bit. Also, Xi[0−4] denotes the bits Xi[0] to Xi[4].
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Table 2. Summary of the attacks in the single-key setting

algorithm #rounds attack/bound
#attacked

time data
memory

reference
rounds [bytes]

XTEA 64
MITM 23 2117 18 KP negligible [21]
IDA 23 2105.6 263 CP 2104 [9]

MITM 29 2124 245 CP 24 This paper

LED-64 32
diff./linear 8∗1 - - - [13]
MITM 8 256 28 CP 211 This paper

LED-128 48
diff./linear 8∗1 - - - [13]
MITM 16 2112 216 CP 219 This paper

Piccolo-80 25
MITM 14 - - - [22]
MITM 14 273 264 CP 28 This paper

Piccolo-128 31
MITM 21 - - - [22]
MITM 21 2121 264 CP 29 This paper

IDA: impossible differential attack, KP: known plaintext, CP: chosen plaintext
∗1: there is no useful differentials or linear hulls over 8 rounds.

4.1 Security of XTEA against MITM Attack

The MITM attack on the 23-round reduced XTEA was proposed in [21]. In order
to improve this attack, we develop the 12-round partial matching by thoroughly
analyzing the diffusion property of the round functions of XTEA, especially the
addition property regarding key differences. Moreover, we carefully choose the
value of the starting point in each inner loop to make the splice and cut technique
more effective. It enables us to save the amount of the required data in spite of the
use of the splice and cut technique. By combining these techniques, we succeed
in constructing a MITM attack on the 29-round reduced XTEA. Figure 1 shows
an overview of the attack. In the figure, PM and IS denote partial matching and
initial structure, respectively.

plaintext ciphertext

round

K3[0−4]K3[0−4] K0[0−4]

PM

11 15 21 33 39

Fig. 1. Overview of the 29-round attack on XTEA

MITM Attack on 29-round XTEA. For the 29-round variant of XTEA
starting from the round 11, using neutral key bits K(1)(=K0[0−4]) and K(2)

(=K3[0−4]), two chunks, F [16, 21] and F−1[34, 39] ◦ F−1[11, 15], can be com-
puted independently. The detailed explanations of the partial matching for this
attack and the attack complexity are given as follows.

– Partial Matching. Due to the differential property of the addition, we can
compute L27

[30−31] and R
27
[30−31] from S

21 without using the value of K3[0−4] in
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Fig. 2. 12-round partial matching of
XTEA
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Fig. 3. F−1[11, 15] of XTEA

the forward process. On the other hand, L27
[30−31] and R

27
[30−31] are calculated

from S33 without using the value of K0[0−4] in the backward process as well.
Thus, the 12-round partial matching works (see Fig. 2).

– Evaluation. The time complexity Ccomp is estimated as

Ccomp = 2118(25 + 25)︸ ︷︷ ︸
MITM

+ 2124︸︷︷︸
Key testing

≈ 2124.

The required memory is 24 byte (= 25 · 4 bits). The number of the required
plaintext/ciphertext pairs depends on the range of the output of F−1[11, 15].
As mentioned in [25], the entire code book seems to be necessary, because
F−1[11, 15] contains more key bits than the block size. However, by using
the fact that neutral key bits K3[0−4] do not affect L11

[25−31] and R
11
[20−31] as

shown in Fig. 3, we can fix L11
[25−31] and R

11
[20−31] in the MITM stage. To put it

more precisely, we choose the start value as S16 = F [11, 15](S11) in each value
of K(3), where L

11
[25−31] and R

11
[20−31] are set as arbitrary constant, and the

other bits are free. Then, during the MITM stage, L11
[25−31] and R

11
[20−31] are

always fixed. Thus, the required data is estimated as 245(= 264−19) chosen
plaintext/ciphertext pairs.

4.2 Security of LED against MITM Attack

For SPN structures with the direct-key expansion, it seems hard to apply a
MITM attack, since all of secret key bits are used in the small number of rounds.
In fact, all of secret key bits of LED-64 are introduced in every 4 rounds. However,
using equivalent transformation technique, we show MITM attacks on the 16-
round and the 8-round reduced LED-128 and LED-64, respectively. Figures 4
and 5 show attack overviews for LED-128 and LED-64, respectively.
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plaintext ciphertext

round

K1 K1K1 K2K2

PM

4-round4-round4-round4-round

1 5 9 13 16

Fig. 4. Overview of the 16-round attack on LED-128

plaintext ciphertext

round

Ka Ka KaKbKbKb

PM

4-round4-round

1 5 8

Fig. 5. Overview of the 8-round attack on LED-64

MITM Attack on 16-round LED-128. We consider the 16-round variant
of LED-128 starting from the 1st round (i.e., F [1, 16] of LED-128). Let FF
and FB be 8 and 4 consecutive round functions starting from the round 1 and
13, respectively, i.e., FF = F [1, 8] and FB = F [13, 16] of LED-128. Also, FB
contains both the final and the initial key additions by K1 as shown in Fig. 4.
Using neutral key bits K1 and K2, two chunks FB and FF can be computed
independently. The partial matching used in this attack and the estimated attack
complexity are explained as follows.

– Partial Matching. The 4-round partial matching is done at rounds 9 to 12
including the key additions before the 9-th round by K1 and after the 12th
round by K2. T1, ..., T19 denote each state in this part as shown in Fig. 6,
where each state consists of the 16 4-bit words arranged in a 4 × 4 square
array. Ti[j] denotes the j-th 4-bit word of Ti and Ti[j, k] denotes Ti[j] and
Ti[k] , e,g., Ti[3, 7, 11, 15] is four 4-bit words in the right most column of Ti.
K1 and K2 are denoted in a similar way.

In the straightforward method, it seems hard to construct the 4-round
partial matching, since the 2 rounds of LED achieve the full diffusion. We
introduce an equivalent transformation technique regarding the key ad-
dition by K2. Since MC is a linear operation, T19 can be expressed as
T19 = MC(T17) ⊕ K2 = MC(T17 ⊕ K ′

2), where MC is an operation of
MixColumnsSerial andK ′

2 =MC−1(K2). This equation means that the op-
eration of MixColumnsSerial and the key addition of K2 are exchangeable
by exploiting the linearity of MixColumnsSerial. In that case, the diffusion
effect of the MixColumnsSerial regarding K2 can be omitted in the back-
ward computation. Since MC−1 is an invertible function, even if we directly
control the value of K ′

2 instead of K2, the MITM attack surely works in a
similar manner.

Besides, we utilize the match through MixColumns technique [20]. Sup-
pose that K(1) is K

′
2[0, 5, 10, 15] and K(2) isK1[0, 7, 10, 13] , then we can com-

pute the values of T9[1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14]without using K(2) in the
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Fig. 6. 4-round partial matching of LED-128

forward computation, and the values of T10[1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15]
without using K(1) in the backward computation as shown in Fig. 6.
Then we do the matching between these values by using the match through
MixColumnsSerial. In particular, we obtain the following equations with
respect to the first columns of T10,

T10[4] = (8 · T9[0])⊕ (6 · T9[4])⊕ (5 · T9[8])⊕ (6 · T9[12]), (1)

T10[8] = (B · T9[0])⊕ (E · T9[4])⊕ (A · T9[8])⊕ (9 · T9[12]), (2)

T10[12] = (2 · T9[0])⊕ (2 · T9[4])⊕ (F · T9[8])⊕ (B · T9[12]). (3)

For Eqs. (1)-(3), only T9[0] is unknown values in the matching. We eliminate
this values by combining with these equations. Then we obtain the two
independent equations that do not include the variable T9[0]. As an example,
we give the following equation obtained from Eqs. (1) and (2),

B · T10[4]⊕ 8 · T10[8] = B · ((6 · T9[4])⊕ (5 · T9[8])⊕ (6 · T9[12]))
⊕8 · ((E · T9[4])⊕ (A · T9[8])⊕ (9 · T9[12])).

Since each column has such two independent 4-bit equations, it is equivalent
to 32 (= 4× 2× 4)-bit matching.

– Evaluation. The complexity of the attack Ccomp is estimated as

Ccomp = 296(216 + 216)︸ ︷︷ ︸
MITM

+ 296︸︷︷︸
Key testing

≈ 2112.

The required memory is 219 byte (≈ 216 · 6 bytes). For the backward chunk,
only 16 bits of the plaintext are affected by K1[0, 7, 10, 13]. Thus, when the
start state is properly chosen similar to the attack on XTEA, the number of
required plaintext/ciphertext pairs is estimated as 216.
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MITM Attack on 8-round LED-64. We consider the 8-round variant of
LED-64 starting from the round 1. Let Ka and Kb be the 32-bit left and right
two columns of K, respectively, i.e., Ka = K[0, 1, 4, 5, 8, 9, 12, 13] and Kb =
K[2, 3, 6, 7, 10, 11, 14, 15]. Then the 64-bit key XOR of K is divided into two 32-
bit key XORs of Ka and Kb. FF denotes the functions from rounds 1 to 4 (i.e.,
F [1, 4] of LED-64) including key addition of Kb, and FB denotes the first and
last key addition of Ka. By using Ka and Kb, two chunks FB and FF can be
computed independently (see Fig. 5).

Suppose that K(1) is K[10, 15] ∈ Kb and K(2) is K ′[0, 13] ∈ Ka, where K
′ =

MC−1(K). Then, the 4-round partial matching can be constructed similar to
the partial matching for the attack on the reduced LED-128. The complexity of
the attack Ccomp is estimated as

Ccomp = 248(28 + 28)︸ ︷︷ ︸
MITM

+ 232︸︷︷︸
Key testing

≈ 256.

The required memory is 211 bytes and the required data is 28 chosen plain-
text/ciphertext pairs.

4.3 Security of Piccolo against MITM Attack

We show MITM attacks on the 21-round and the 14-round reduced Piccolo-128
and Piccolo-80, respectively.

MITM Attack on 21-Round Piccolo-128. For the 21-round variant of
Piccolo-128 starting from the round 2, using neutral key bits K(1)(= k3[8−15])
and K(2)(= k6[0−7]), two chunks F [9, 13] and F−1[19, 22] ◦F−1[2, 5] can be com-
puted independently (see Fig. 7). We give detailed explanations for the partial
matching and the initial structure used in this attack, and the estimated attack
complexity as follows.

plaintext ciphertext

round

k6[0−7]k6[0−7] k3[8−15]

IS PM

2 5 8 13 18 22

Fig. 7. Overview of the 21-round attack on Piccolo-128

– Partial Matching. For F [14, 18], in the forward process, X17
1 is obtained

from S14 without using the value of k6[0−7]. On the other hand, X17
1 is

also computed from S19 without using the value of k3[8−15] in the backward
process. Thus, the 5-round partial matching works (see Fig. 8).
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– Initial Structure. For F [6, 8], we aim to exchange the positions of k6[0−7]

for k3[8−15]. Here, differences of k6[0−7] in the forward process and k3[8−15]

in the backward process are independent in F [6, 8]. It means that one dif-
ferential trail does not affect the others, since these trails do not share any
non-linear elements. Thus, these values are exchangeable by splitting F [6, 8]
as illustrated in Fig. 9. This can be seen as the 3-round bicliques, and find-
ing independent differentials directly leads the construction of the initial
structure as mentioned in [5].

– Evaluation. The complexity of the attack on the 21-round reduced Piccolo-
128 Ccomp is estimated as

Ccomp = 2112(28 + 28)︸ ︷︷ ︸
MITM

+ 2112︸︷︷︸
Key testing

≈ 2121.

The required memory is 29 bytes (= 28· 2 bytes), which is the cost of the
table used in the MITM stage. The number of required plaintext/ciphertext
pairs depends on the range of F−1[2, 8], because k6[0−7] is included in the
initial structure. Due to the 4-round full diffusion property, the required data
is 264 plaintext/ciphertext pairs, which is called a code book attack. In case
the code book attack is not allowed, the number of attacked rounds might
be decreased.

MITM Attack on 14-Round Piccolo-80. For the MITM attack on the
14-round variant of Piccolo-80 starting from the round 5, using neutral key
bits K(1)(= k0[0−7]) and K(2)(= k4[8−15]), two chunks F [5, 8] ◦ F [15, 18] and
F−1[13, 14] can be computed independently. For F [9, 12], the 4-round partial
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matching is constructed as illustrated in Fig. 10. The complexity of the attack
on the 14-round reduced Piccolo-80 Ccomp is estimated as

Ccomp = 264(28 + 28)︸ ︷︷ ︸
MITM

+ 272︸︷︷︸
Key testing

≈ 273.

The required memory is 28 bytes (= 28· 1 bytes), which is the cost of the table
used in the MITM stage. The number of required plaintext/ciphertext pairs
depends on the range of F [15, 18], i.e., size of the possible output values of
F [15, 18] during the MITM stage. In general, if neutral key bits k0[0−7] does
not affect the all bits of the output of F [15, 18], it is possible to avoid code
book attack by fixing some bits of the output similar to the AES attack [5].
However, k0[0−7] affects all bits of the output due to the 4-round full diffusion
property. Thus, the required data is 264 plaintext/ciphertext pairs. In our search,
such 14-round attack without relying on the code book cannot be found. Thus,
we expect that the number of attacked rounds may be slightly reduced in the
non-code book attack on the reduced Piccolo-80.

5 Discussion

This section discusses the security of lightweight block ciphers against the speed-
up keysearch based on the MITM attack. Then we compare our results with the
previous attack results on our target ciphers.

5.1 Security against Speed-up Keysearch Based on MITM Attack

The speed-up keysearch based on the MITM attack is the recently proposed
novel technique, which is known as the first attack for the full AES [5]. It makes
use of matching with precomputation in conjunction with a biclique which is a
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formal concept of the initial structure. In general, it works slightly faster than
the exhaustive key search, i.e., by a factor of 2 to 5, since it essentially tests all
possible keys. This cryptanalysis is naturally applicable to lightweight block ci-
phers. Indeed, it has been applied to HIGHT and KATAN [14,17], whose attacks
are slightly faster than that of the exhaustive key search. As mentioned in [4], for
many block ciphers, one also can speed up the exhaustive keysearch with simple
techniques, e.g., distributive technique and early abort technique. Therefore, it is
debatable whether such a marginal improvement regarding the time complexity
should be considered as a real attack in terms of exploiting algorithmic weak-
nesses. However, it is still meaningful from the view of the security evaluation
of such ciphers. In the following, we roughly estimate the required time com-
plexity for the speed-up keysearch of the lightweight block ciphers, XTEA, LED
and Piccolo, assuming that the code book is allowed to use and the rounds of
the partial matching and the initial structure can be omitted, i.e., the cost of
the recomputation is regarded as zero in these rounds. Due to such strong as-
sumptions, our estimations may not be accurate but provide indications of the
security evaluations of the speed-up keysearch based on the MITM attack.

For XTEA, assuming the 12-round partial matching and two 6-round in-
dependent chunks, the time complexity for the speed-up keysearch of the full
XTEA is estimated as 2127.32(= 2128 × ((64 − 12 − 12)/64)). For LED-64/128,
the 4-round partial matching is constructed. Exploiting the two 4-round inde-
pendent chunks, the time complexities for the speed-up keysearch of the full
LED-64/128 are roughly estimated as 2127.59(= 2128 × ((48 − 4 − 8)/48)) and
279.32(= 280 × ((32 − 4 − 8)/32)), respectively. For Piccolo-80/128, the 3-round
initial structure and the 5-round partial matching are constructed as described
in Section 4.3. Assuming the two 5-round independent chunks, the time com-
plexity for the speed-up keysearch of the full Piccolo-128 is roughly estimated as
2126.74(= 2128× ((31− 3− 5− 10)/31)). In a similar way, the time complexity of
the full Piccolo-80 is roughly estimated as 278.53(= 280 × ((25− 3− 5− 8)/25)).

We emphasize that the above observations are rough estimations of the speed-
up keysearch based on the MITM attack. Thus, the time complexities seem to be
improved by analyzing deeply 3. However, since these are marginal improvements
in time complexity compared to the exhaustive key search, we do not claim them
to be real attacks based on algorithmic weaknesses.

5.2 Comparison with Other Cryptanalysis Results

We compare our MITM attacks to the previously proposed attacks for each
cipher. Note that we focus only on the single-key setting, which is the practical
setting of fields in where lightweight cipher are needed, e.g., RFID tags and
sensor nodes.

For XTEA, the previously best attacks regarding the number of the attacked
rounds are the impossible differential attack and the MITM attack on the 23-

3 This types of the speed-up keysearch on the reduced Piccolo-80/128 has been esti-
mated in [24].



84 T. Isobe and K. Shibutani

round variants [21,9]4. Thus, our MITM attack, which is the 29-round attack,
greatly improves their attacks with respect to the number of attacked rounds.

For LED-64/128 and Piccolo-80/128, there exist only designers’ self evalua-
tions, i.e., no external cryptanalysis has been published so far. According to [13],
the maximum differential probability and the best linear hull probability of 4
rounds of LED-64/128 are both upper bounded by 2−32. Thus, it was implic-
itly claimed that there is no useful differentials or linear hulls over 8 rounds of
LED-64/128 in the single-key setting, though the actual attack has not been
presented so far. By using the equivalent transformation technique, we showed
the MITM attacks on the 8-round LED-64 and the 16-round LED-128. While
the designers showed chosen key distinguishers for the 15-round LED-64 and the
27-round LED-128, our MITM attacks can be regarded as the best attacks on
the reduced LED in the single-key setting.

For Piccolo-80/128, according to [22], the 9-round Piccolo-80/128 have a suf-
ficient security level against differential and the linear cryptanalysis by the eval-
uations based on the number of the active F-functions. On the other hand, our
MITM attacks work on the 14-round Piccolo-80 and the 21-round Piccolo-128,
though both attacks require full plaintext/ciphertext pairs, which are called
code book attacks. These results imply that MITM-type attacks are more effec-
tive than differential and linear cryptanalysis for both LED-64/128 and Piccolo-
80/128 in the single-key setting, because the number of rounds to be attacked
by the MITM attack is much larger than those of differential and linear crypt-
analysis.

Therefore it is demonstrated that MITM attacks are the most powerful attacks
on these lightweight ciphers in the single-key setting.

6 Conclusion

We have analyzed the security of several lightweight block ciphers that have the
direct-key expansion against the meet-in-the-middle attack. While a simple key
expanding function like the direct-key expansion leads compact implementation,
its security analysis has not been studied well so far. On the other hand, since
MITM attack mainly exploits low key-dependency that large parts of the cipher
are independent from some key bits, a block cipher having the direct-key ex-
pansion is likely to be vulnerable to MITM attack. Moreover, since the MITM
attack does not require related-keys, i.e., it works in the single-key setting, its
security analysis is considered to be more important than related-key attacks.

In this paper, we have shown new MITM attacks on several lightweight block
ciphers that have the direct-key expansion. Combined with new techniques such
as equivalent transformation technique, we have presented the MITM attacks
on 29 (out of 64), 8 (out of 32), 16 (out of 48), 14 (out of 25) and 21 (out of 31)
rounds of XTEA, LED-64, LED-128, Piccolo-80 and Piccolo-128, respectively.
Note that all of our attacks presented in this paper are the best or the first

4 Recently, the zero correlation linear attack on the 27-round reduced XTEA was
proposed in [26].
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attacks in literature. For instance, the attack on the 29-round reduced XTEA
is the best attack with respect to the number of attacked rounds. These results
imply that MITM attack is actually effective for lightweight block ciphers. Thus,
its security analysis is crucial, even if the cipher is expected to be secure against
the other attacks.

Acknowledgments. We would like to thank to the anonymous referees for
their insightful comments and suggestions.
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Abstract. This paper revisits previous known-key distinguishers on
generic Feistel-SP ciphers based on rebound attacks. In this paper first
we propose a new 5-round inbound phase that requires 2c computations,
while the previous work requires 22c computations (c is a size of the S-
box). The new method also improves the number of rounds which can be
attacked. Then, we apply the new procedure to Camellia. After several
optimizations for Camellia, it is shown that collisions are efficiently gen-
erated against 9 rounds out of 18 rounds of Camellia-128 including FL
and whitening layers in the compression function modes such as MMO
and Miyaguchi-Preneel modes. The attack on Camellia is verified by a
machine experiment and the generated results are presented in the paper.

Keywords: block cipher, Feistel-SP, Camellia, known-key, rebound.

1 Introduction

Block-ciphers are often used as building blocks of secret-less primitives such as
hash functions, hence recently cryptographers have started to evaluate the se-
curity of block-ciphers as hash functions. Known-key distinguishers proposed
by Knudsen and Rijmen [1] are the evidence of this approach, whereas a block-
cipher becomes a fixed permutation for a fixed key. The known-key distinguisher
efficiently detects non-ideal properties of a random instantiation of a fixed per-
mutation, while the same properties cannot be observed in a random permu-
tation with the same complexity. Knudsen and Rijmen presented a known-key
distinguisher on 7-round Feistel ciphers. They also pointed out that their attack
detects collisions in hashing modes such as MMO and Miyaguchi-Preneel modes.

At FSE 2011, Sasaki and Yasuda presented another known-key distinguisher
on Feistel ciphers [2] with the rebound attack proposed by Mendel et al. [3].
They showed that 11 rounds could be attacked if the round function consists
of the subkey addition, S-box applications and the permutation layer. In the
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Table 1. Complexities against Feistel-SP Ciphers. Notations are defined in Sect. 2.

Complexities of Previous Work [2]

N n c r 5-round 11-round 11-round 9-round 9-round 7-round
inbound distinguisher half-collision collision (N − c)-bit coll coll

128 64 8 8 216 216 224 232 − −
128 64 4 16 216 216 224 232 − −
64 32 8 4 216 Impossible Impossible Impossible 224 224

64 32 4 8 28 28 212 216 − −
Complexities of Our Attacks

128 64 8 8 216 216 216 224 − −
128 64 4 16 28 28 216 224 − −
64 32 8 4 216 Impossible Impossible 224 216 Impossible
64 32 4 8 28 28 212 216 − −

hashing modes, the distinguishers are exploited to apply collision attacks or its
variants. Examples of the known-key attack were provided in [4,5,6,2].

A chosen-key distinguisher was firstly proposed by Biryukov and Nikolić [7].
These distinguishers are able to choose the key value. Hash functions are suit-
able subjects to apply chosen-key distinguishing attacks, since the attacker can
control the key values on the hash functions. Several papers have discussed
chosen-key distinguishers on block ciphers [8,9].

In this paper, firstly we revisit the known-key distinguisher against generic
Feistel-SP ciphers by [2]. One of the core techniques of [2] is a 5-round inbound
phase that requires 22c computations, where c is the size of the S-box. We show
that complexity of the 5-round inbound phase can be improved to 2c computa-
tions (i.e. square root of the previous complexity). The new technique makes the
attack possible for more number of rounds. Summary of our results in compari-
son to the previous attacks is shown in Table 1.

In the second part of this paper, we apply the proposed attack on generic
Feistel-SP ciphers to Camellia [10]. Camellia is not a plain Feistel-SP cipher
due to the P operation, FL, and whitening layers, so the attack needs several
modifications. We evaluate Camellia using 128-bit keys including the FL and
whitening layers. The best related work were the key-recovery attacks by Lu et
al. [11] and Li et al. [12], which recover the key for 10 rounds of Camellia-1281.
However, the key-recovery attack does not indicate a faster collision attack than
the birthday attack. We show several attacks on hashing modes of Camellia-128
including collisions for 9 rounds. The results are shown in Table 2.

2 Preliminaries

We introduce the following notations. Recall that many of the block ciphers are
equipped with 128-bit or 64-bit blocks and use 8-bit or 4-bit S-boxes.

1 After the submission, 11-round key recovery attacks have been reported [13,14].
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Table 2. Summary of attack results on Camellia-128 with FL and whitening layers

Target Modes #Rounds Approach Complexity Target structure Reference

Block-Cipher 10 Imp. Diff. 2118 [11]

Hash Function 7 4-sum 232 Ours

Compression Function 9 Half-collision 216 Ours

Compression Function 9 4-sum 240 Ours

Compression Function 9 Collision 248 Ours

’, ’, and ’ represent inbound round, outbound round, and FL layer, respectively.

Fig. 1. Left: Detailed description of the SP round function Right: Simplified one

N : The block length of the cipher (in bits),
n: The word size in bits, equal to the size of the round function (n = N/2).
c: The size of an S-box in bits,
r: The number of S-box sequences, so that r = n/c.

SP Round Function. We denote ciphers with the Feistel network and an
SP-round function by Feistel-SP ciphers, which is specified in Fig. 1.

Key XOR: The round-function input is XORed with a round key Ki.
S-box layer: Each input value is substituted with the output value by S-box.

For simplicity, we assume that the S-box is designed to resist differential and
linear cryptanalysis, like the one in AES [15,16].

Permutation layer: The linear diffusion is introduced to output sequences of
the S-boxes. We make the assumption that the branch number of P is r+1
e.g., a multiplication by an Maximum Distance Separable matrix.

Note that the assumptions on S-box and Permutation layers are not necessary.
In fact, the branch number of the permutation layer of Camellia is not r+ 1. In
addition, Whirlpool [17] adopts a more biased S-box, however Lamberger et al.
[18] showed that the rebound attack for Whirlpool can work similar to AES.

Hashing Modes. Preneel et al. [19] considered all possible configurations of a
compression function built from a block cipher and proved that 12 modes are
secure (providing the block cipher as a family of random permutations indexed
by the key [20]). Given a block cipher EK with a keyK, the compression function
for the so-called MMO mode computes Hi by Hi = EHi−1 (Mi−1) ⊕Mi−1 for
a message Mi−1 and a previous chaining value Hi−1. While the Miyaguchi-
Preneel mode computes Hi by Hi = EHi−1(Mi−1) ⊕Mi−1 ⊕ Hi−1. To build a
hash function, the domain extender must be defined. Because our attack works
on 1-block message, we only assume that the initial value H0 is a fixed constant.
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Fig. 2. A differential path for three round inbound and three round outbounds by [2]

3 Previous and Related Work

3.1 Previous Rebound Attack on Feistel-SP Ciphers

Similarly to Sasaki and Yasuda [2], we are going to use the following notations:

0: A word where all the differences are equal to zero.
1: A word where the difference on the j-th byte position is non-zero (we call

it active) and the differences on the other byte positions are zeros,
F: A word where all the differences are non-zeros.

The goal of the rebound attack is to find a pair of values that satisfies the
truncated differential path. The rebound attack consists of two phases: inbound
and outbound. In the inbound phase, the attacker computes differential path
using the meet-in-the-middle strategy. In the outbound phase, the differential
paths are extended outwards (to the input and output) using either deterministic
or probabilistic arguments. A sample differential path including 3-round inbound
and 3-round outbound phases is given in Fig. 2 (taken from [2]).

The inbound phase starts from the difference (1,0) and ends with (0,1).
Sasaki and Yasuda [2] presented a procedure to find such a path through 3 and
5 rounds with a complexity of r · 22c and r · 22c, respectively.

The outbound phase examines whether a solution of the inbound phase satis-
fies the outbound differential path or not. They showed that the difference (1,0)
goes to the difference (P (1),F) after 3 rounds backward computation, with prob-
ability 1. Similarly, the difference (0,1) results the difference (P (1),F) after 3
rounds forward computation, with probability 1. The outbound phase sometimes
only covers 2 rounds for each direction. In this case, with probability 1, the dif-
ferences (1,0) and (0,1) on the inbound sides result differences (1, P (1)) and
(1, P (1)) after 2 rounds backward and forward computations, respectively.

The 11-round distinguisher is built from a 5-round inbound part followed by
3-round outbound parts in both directions. It allows to find a pair of plaintext
values whose difference is (P (1),F) and a pair of ciphertext values with the
difference (P (1),F). The complexity of this attack is r · 22c. On the other hand,
the complexity of the generic attack is equal to the birthday attack on n − c
bits, which requires 2(n−c)/2 computations. Moreover this does not always work,
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when (N, c) = (128, 4), two bytes must be activated to increase the degree of
freedom, and the complexity is higher, 24c in this specific case.

The 11-round distinguisher was exploited in [2] to attack the hashing modes.
In the MMO and Miyaguchi-Preneel modes, the plaintext and ciphertext are
XORed. Hence, if the left half of the differences in the 11-round distinguisher
is cancelled, the half-state collision is obtained. Several other attacks were pre-
sented in [2]. The attack complexities are summarized in Table 1.

4 New Known-Key Distinguishers on Feistel-SP Ciphers

First of all, we explain the impossibility of the previous 7-round collision attack
in Sect. 4.1. Then an improved 5-round inbound phase will be described in
Sect. 4.2. Finally, in Sect. 4.3, we show that 4-sums can be detected even on the
full state of hashing modes with 11-round Feistel-SP ciphers.

4.1 Flaw of Previous 7-Round Collisions for (N, c) = (64, 8)

It was claimed that collisions could be obtained for 7 rounds with parame-
ters (N, c) = (64, 8) in the MMO and Miyaguchi-Preneel modes [2, Sect.4.4].
Fig. 3 illustrates the attack with 3-round inbound phase and two (2-round)
outbound phases. The attacker first generates a pair of values satisfying the dif-

ferences of the inbound phase, namely (Δ, 0)
3R−−→ (0,∇). Through the outbound

phase, the plaintext difference and ciphertext difference becomes (Δ,P (Δ′)) and
(∇, P (∇′)). It was claimed that Δ = ∇ and Δ′ = ∇′ are satisfied with proba-
bility 2−2c. However, we prove that Δ = ∇ is an impossible event and always
Δ �= ∇.

Lemma 1. Given a 7-round Feistel-SP cipher, the collision attack based on the
rebound attack with 3-round inbound phase and 2-round outbound phases always
fails.
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Proof. Inside the 3-round inbound phase in Fig. 4, to obtain Δ = ∇, the dif-
ference right after the P-layer in the middle round (denoted by #B) must be
0. However, to perform the rebound attack, the difference at #B is always 1.
Hence, Δ = ∇ is never satisfied. ��

4.2 Improved 5-Round Inbound Phase with 2c Computations

In this section, the improved inbound phase with 2c computations is described.
First we give an overview of the attack presented in [2].

First Inbound Phase: A pair of values which follow the differential path is
obtained. 2c solutions are generated with the workload of 2c computations.

Second Inbound Phase: A pair of values for the 4th and 5th inbound rounds
that follow the differential path is obtained. It costs 2c computations.

Merge Inbound Phase: All possible solutions of the first and second inbound
phases are combined in the third inbound round.

Validity Check Phase: Pairs of values generated by the merge inbound phase
are computed from the third inbound round to the first and fifth inbound
rounds, respectively. Then, 1-byte match is performed in both of the first and
fifth rounds. The probability of each match is 2−c, thus 2−2c totally. Finally,
by trying 22c combinations at the merge inbound phase, a pair which satisfies
two matches is obtained.

In our improved attack, the differential path is developed using S-box differential
profile. This approach leads to an attack with better complexity. The core of the
improvement is the merging phase, in which we combine the results of the two
inbound phases so that an n-bit match condition is always satisfied. This reduces
the complexity of each step below by 2c. In more details, we change the merge
inbound phase so that the validity check is carried out in the third and fifth
inbound rounds. We first choose a solution of the first inbound phase from 2c

candidates. Then, at the validity check in the third inbound round, we only
choose solutions of the second inbound phase which satisfy the n-bit condition.
Finally, the validity check at the fifth inbound round succeeds with probability
2−c. By iterating this for 2c candidates of the first inbound phase, we will succeed
the validity check in the fifth round with a negligible cost.

Parallel Check of Differences in the First Inbound Phase. The goal of
the first inbound phase is to find the differential path for the first two inbound
rounds which is shown in Fig. 5. The original attack procedure is as follows [2]:

1. Search for several pairs of differences Δ#Aj and Δ#Bj such that P (Δ#Aj)
and P−1(Δ#Bj) have solutions for all S-boxes in the second inbound round
(bold line in Fig. 5).

2. For each pair, exhaustively try 2c values of #Aj which is denoted by x, and
check if S−1(x)⊕S−1(x⊕Δ#Aj) can cancel Δ#Bj (broken line in Fig. 5).

Step 1 and Step 2 are independently performed. Thus the possibility of the 1-byte
match at Step 2 is never considered during Step 1.
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We notice that fixing the differences Δ#Aj and Δ#Bj for Step 1 immedi-
ately fixes the input and output differences of the active S-box for Step 2. This
indicates that (Δ#Aj , Δ#Bj) determined at Step 1 may not have any solu-

tion for Δ#Aj
S−1

−→ Δ#Bj at Step 2. Obviously, spending 2c computations for
such (Δ#Aj , Δ#Bj) at Step 2 is meaningless. In other words, by only choosing
(Δ#Aj , Δ#Bj) which is known to have solutions at Step 1, the probability of
the match at Step 2 is increased.

For any input and output differences of the S-box (ΔI,ΔO) which is known to
have solutions, Pr

[(
S(x)⊕ S(x⊕ΔI)

)
= ΔO

]
≥ 2−c+1, where x is a randomly

chosen value. Hence, the probability increases from 2−c to 2−c+1. So the parallel
check is applied to the match in the fourth and fifth inbound rounds (second
inbound phase). Therefore, the entire probability increases from 2−2c to 2−2c+2.

Attack Procedure. For simplicity, we first assume that all S-boxes are iden-
tical and r and c satisfy c ≥ r + 1 (It only happens for (N, c) = (64, 8)). The
assumption is going to be weakened later on. In the following, we explain the
attack procedure as illustrated in Fig. 6. In Fig. 6, the equivalent transformation
is applied to the third inbound round. The first inbound phase is denoted by red
lines. Similarly, the second inbound phase, the merge inbound phase, and the
validity check are denoted by blue, green and yellow lines, respectively.

First Inbound Phase: Choose a difference at #A (i.e. Δ#A), and compute
P (Δ#A), which is an input to the S-layer in the second inbound round.
Then, choose all differences at #B (i.e. Δ#B) such that the differential
propagation through the active S-box in the first inbound round can have
solutions, namely, ∃x : S(x) ⊕ S(x ⊕ Δ#B) = Δ#A. The number of such
Δ#B is approximately 2c−1. For 2c−1 choices ofΔ#B, compute P−1(Δ#B),
which is an output of the S-layer in the second inbound round. Check if all
S-boxes in the second inbound round have solutions. If the check succeeds,
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for each of the possible solutions, store the corresponding pair of values at
state #B by computing P in the second inbound round and pair of values
at state #E by computing the subkey XOR and then P−1(·). Let T1 be the
table in which these values are stored. T1 is expected to have 2c−1 entries.

Second Inbound Phase: Set Δ#A′ ← Δ#A. Similar to the first inbound
phase, compute 2c−1 solutions of the last two inbound rounds and store the
paired values at #E in table T2.

Merge Inbound Phase: For 2c−1 solutions of the first two inbound rounds
stored in T1 and all solutions (2 solutions on average) of the active S-box in
the first inbound round (at state #D), do the followings: Regarding only the
active byte, compute the value up to the state #C. If the computed value at
state #E matches one of the entries in T2, fix the solution for the last two
rounds to this value. Go to the validity check with this value.

Validity Check Phase: Regarding only the active byte, compute the value up
to the output of the active S-box in the fifth inbound round (#F ). If the
computed difference matchesΔ#A′, the paired values are the valid solutions.
Otherwise, go back to the merge inbound phase.

Attack Evaluation. The complexity of the first inbound phase is 2c 1-round
computations in time and 2c−1 state in memory. The number of solutions over
the P -layer in the second middle round is 2c−1, and for each of them, 2 solutions
are obtained for the active S-box in the first inbound round. Overall, the first
inbound phase produces 2c solutions with a cost of 2c. The evaluation for the
second inbound phase is the same. In the merge inbound phase, the number
of trials is 2c. The match at state #E succeeds with probability 2−c. Since 2c

solutions are stored in T2, we expect to find one match for each trial. Then,
the matched result is computed up to state #F for the validity check. The
success probability is 2−c. Since the merge inbound phase is iterated 2c times,
we expect to find one solution of the validity check. The merge inbound phase
and the validity check require 2c 5-round computations. Finally, one solution of
the inbound phase is computed with 2c 1-round + 2c 1-round + 2c 5-round =
2c 7-round computations and 2c state in memory.

Remarks for Other Parameters. The above attack can also be applied to
other parameters with several minor changes. First of all we explain the case for
c = r. (N, c) = (128, 8) is included in this parameter. In this case, the freedom
degrees will be slightly short in the first inbound phase (Step 5) because only
2c−1 = 2r−1 pairs can be examined. This problem is solved by running the first
inbound phase for two different Δ#A. Hence, the complexity does not change
from 2c, and our procedure can also be applied to the parameter c = r.

The attack is also applied to the cases (N, c) = (128, 4) and (64, 4). We regard
a group of two S-boxes as a big S-box with the size of 2c bits. This gives enough
freedom degrees to find the match of differences over the S-layer. The attack
becomes the same as (N, c) = (128, 8) and (64, 8).
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Impact of the Improvement. Due to the improvement of the complexity of
the 5-round inbound phase, many attacks presented in [2] are improved. The
updated results are summarized in Table 1.

4.3 4-Sums on Compression Function Modes

The notion of 4-sum represents 4 different inputs where the XOR-sum of the
corresponding outputs is 0. The 4-sum is known to have many applications such
as an attack on a random oracle instantiation [21] and on a signature scheme
[22]. In the 11-round attack, the right halves of the plaintext and ciphertext do
not have any property. Thus, the previous attack could only detect a non-ideal
property on the left-half of the state. We explain that 4-sums can be obtained on
the full state in compression function modes e.g. MMO and Miyaguchi-Preneel
modes.

Each solution of the inbound phase produces a pair of outputs whose difference
is the form (P (1),F). Let t1 and t2 be the paired solutions of the inbound phase,
and O(t1) and O(t2) be corresponding outputs. Then, O(t1)⊕O(t2) = (P (1),F).
Assume that you have two pairs (t1, t2) and (t′1, t′2). The second-order difference
(O(t1) ⊕ O(t2)) ⊕ (O(t′1) ⊕ O(t′2)) becomes 0 if O(t1) ⊕ O(t2) = O(t′1) ⊕ O(t′2).
Because O(t1) ⊕ O(t2) takes 2c+n possibilities, 4-sums can be generated with
2(c+n)/2 solutions of the inbound phase due to the birthday paradox.

5 Applications to Camellia and Its Hashing Modes

5.1 Specification of Camellia

Camellia was jointly designed by NTT and Mitsubishi Electric Corporation. It is
widely standardized such as ISO [23], NESSIE [24], and CRYPTREC [25]. This
paper attacks Camellia-128, where both of the key and block sizes are 128 bits.

Let M and K be 128-bit plaintext and secret key, respectively. Eighteen 64-
bit round keys K1, . . . ,K18, four 64-bit whitening keys kw1, . . . , kw4, and four
64-bit subkeys for the FL layer kl1, . . . , kl4 are generated from K. Let Lr and
Rr (0 ≤ r ≤ 18) be left and right 64-bits of the internal state in each round.
The plaintext is loaded into L0‖R0 after the whitening operation, i.e. L0‖R0 ←
M⊕(kw1‖kw2). (L18‖R18) is computed by Lr = Rr−1⊕F (Lr−1,Kr), Rr = Lr−1

for 1 ≤ r ≤ 18. Note that the FL and FL−1 functions are applied to Lr and Rr
for r = 6 and 12. Finally, (L18‖R18)⊕ (kw3‖kw4) is the ciphertext.

Key Schedule. The key schedule takes 128-bit key K as input and firstly pro-
duces another 128-bit valueKA. In our known-key attacks, subkeys are randomly
given values, thus the key schedule function is irrelevant. In chosen-key attacks,
we only need to control the values of kl1, kl2, kl3, and kl4. kl1 is the left 64-bits
of (KA ≪ 30) and kl2 is the right 64-bits of (KA ≪ 30). kl3 is the left 64-bits
of (KL ≪ 77) and kl4 is the right 64-bits of (KL ≪ 77).
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Round Function. The round function consists of the subkey addition, S-layer
and P -layer. For the S-layer, 4 S-boxes are defined. The DDTs for these S-boxes
have the same property as the one for AES. Let (z1‖z2‖ · · · ‖z8) be 64-bit values
input to the P -layer. The output (z′1‖z′2‖ · · · ‖z′8) is computed as follows. Here,
z[s, t, u, · · · ] means zs ⊕ zt ⊕ zu ⊕ · · · . The branch number of P is only 5.

z′1 = z[1, 3, 4, 6, 7, 8], z′3 = z[1, 2, 3, 5, 6, 8], z′5 = z[1, 2, 6, 7, 8], z′7 = z[3, 4, 5, 6, 8],

z′2 = z[1, 2, 4, 5, 7, 8], z′4 = z[2, 3, 4, 5, 6, 7], z′6 = z[2, 3, 5, 7, 8], z′8 = z[1, 4, 5, 6, 7].

FL and FL−1 Functions. The FL function takes a 64-bit value (XL‖XR)
and a 64-bit subkey (klL‖klR) as input and produces a 64-bit value (YL‖YR) by
computing YR =

(
(XL∩klL) ≪ 1

)
⊕XR and YL = (YR∪klR)⊕XL, where ∩, ∪,

and ≪ 1 are the logical AND, OR, and a left cyclic shift by 1 bit, respectively.

5.2 Applications to Camellia Hashing Modes

A Small Branch Number in the P -Layer. The attack in Sect. 4 assumes
that the branch number of the P function is r+1, i.e. 9 for Camellia. Otherwise,
P (1) and P−1(1) may not become full active in the first inbound phase. However,
the branch number of the P function in Camellia is 5.

We avoid this problem by activating more bytes at state #A and #B in Fig. 6.
Since increasing the number of active bytes makes the attack inefficient, we need
to choose active byte positions carefully. The conditions of active byte positions
are as follows; 1) Active byte positions for #A and #B must be identical. 2)
The active byte positions of P (Δ#A) and P−1(Δ#B) must be identical.

We first search for a single active byte position satisfying these conditions.
Since the value of r is 8, we have 8 possibilities. Unfortunately, any of the 8
cases cannot satisfy the conditions. We then search to find the positions of two
active bytes. There are

(
8
2

)
= 28 possibilities. The result is shown in Table 3. We

found 8 solutions for two-active byte differences. Hereafter, 5th and 7th bytes
are activated. We also use the notation 10100000 to represent that only 5th and
7th bytes have differences in some states.
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Table 3. Active-byte positions

0th 1st 2nd 3rd 4th 5th 6th 7th

0th × √ × × × × ×
1st × √ × × × ×
2nd × × × × ×
3rd × × × ×
4th

√ √ √
5th

√ √
6th

√

Table 4. Sample solutions of the improved 5-round
inbound phase for Camellia-128 (in hexadecimal)

L �L R �R

Input 3C0EF35D6F89AE61 0F00A20000000000 33F035B96274F068 0000000000000000

Output 32848AF48CE3D7EB 0000000000000000 A383FB0B17307503 2200810000000000

Input 1447452393AF07BF D5006B0000000000 D7A0E862AF8343B9 0000000000000000

Output FD6901A999C97E6C 0000000000000000 CE1249DCA3LC251B C400D40000000000

Input AB131279BE6E5342 3E00780000000000 6EF4FD4CA00881EB 0000000000000000

Output 798EB0992C1C6160 0000000000000000 301DBF0D730C71AD 0600780000000000

Input 62B5DB720A58E01D 33002D0000000000 95AAF7AD94613A12 0000000000000000

Output 8B24C8FAA65E8E33 0000000000000000 D2F68668ADE68225 C6001B0000000000

FL and FL−1 Functions. These functions mix the difference of the half state.
If they are inserted inside the inbound rounds, the differential path would be
broken. Hence, we choose the starting round of our attacks carefully. As shown
in Table 2, the FL-layer is located immediately after the inbound phase. This
avoids inserting the FL-layer in the middle of the inbound phase.

In the following, we analyze the differential propagation through FL and
FL−1. Assume that the FL-layer is used only once immediately after the in-
bound phase. For the FL-layer, the form of the input differences is always
(0, 10100000). It is obvious that 0 results in 0. Therefore, we only need to con-
sider the right half of the state, where 10100000 is input to the FL−1 function.
The differential propagation through FL−1 is described in Fig. 7. Distinguishers
want to keep the number of active bytes low. Hence, in the known-key setting,
distinguishers avoid activating the most significant bit (MSB) in each byte in
order to prevent the difference from propagating through ≪ 1 operation. This
reduces the degrees of freedom while selecting differences. However, there is
enough freedom for the attack to proceed as expected. Note that if the MSB
in each active byte of the key kliL is 1, distinguishers can activate the MSB in
each byte. Such weak keys exist with probability 2−2, and the number of weak
keys is 2128−2 = 2126. In the chosen key scenario, distinguishers choose the key
value. Choosing one subkey value is trivially done with complexity 1 for any key
value. This is because kli is a part of K or KA. If it is a part of K, distinguishers
directly choose the value. If it is a part of KA, distinguishers firstly choose KA

and then invert it to K through the key schedule.
As shown in Table 2, distinguishers need to control two FL-layers in the

chosen-key attacks with 5-round inbound phase. The FL-layer is inserted be-
tween the first and the second rounds of the backward outbound. According
to Fig. 2, the form of the input differences to the inverse of the FL-layer is
(0, 10100000). Therefore, we need to analyze the differential propagation of
(FL−1)−1(10100000), which is equivalent to FL(10100000). The analysis is the
same as the previous one, and we omit it. As a result, if distinguishers can choose
the values of 2 active bytes of the subkey, the form of the output difference is
unchanged from 10100000. Finally, distinguishers need to control two bytes in
KA and two bytes in K. We search for such keys by the brute force manner. The
success probability of this event is 2−16.
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3-Round Inbound Phase and Its Application. The procedure of the 3-
round inbound phase is heavily based on the one in previous work [2]. Our
attack activates 2-bytes, however, we can keep the attack complexity unchanged
with some optimization. The procedure is described in Fig. 8. The attack first
chooses the differences of state #A and #B so that the differences can match
over the S-layer in the second inbound round. If they match, one solution for all
bytes are chosen and the corresponding paired values denoted by red in Fig. 8
are computed. Then, the attack searches for the value of each active byte at
state #A that can satisfy the difference of the same byte position at state #A′.
Finally, the 3-round inbound phase is carried out with 28 computations, and
once it is satisfied, up to 240 solutions can be generated for free.

As listed in Table 2, the 3-round inbound phase has 3 applications. Due to the
page limitation, we only explain 4-sums on the 7-round hash function. Hereafter
we denote by 2 the difference form of 10100000, and by 4 the difference form of

10101010. The differential path that we use is (2, P (2))
2ndR−−−→ (0,2)

3rdR−−−→ (2,0)

for the first outbound rounds, (2,0)
4thR−−−→ (F,2)

5thR−−−→ (2,F)
6thR−−−→ (0,2) for

the inbound rounds, and (0,2)
FL−−→ (0,4)

7thR−−−→ (4,0)
8thR−−−→ for the second

outbound rounds. The number of active bytes increases by the FL-layer. After

the feed-forward, the output should be
(
2⊕4, P (2)⊕P (4)

)
, which is in the space

of (4, P (4)). With the technique in Sect. 4.3, if we generate 28∗4 = 232 pairs,
differences on two pairs collide, and form a 4-sum. Since 3-round inbound phase
generates up to 240 solutions for free, our attack requires 232 computations, which
is equivalent to the information theoretic bound to generate a 4-sum (2128/4),
and faster than the generalized birthday attack.

5-Round Inbound Phase and Its Application. The procedure for the 5-
round inbound phase is basically the same as the generic case while activating
two S-boxes in Camellia is the same as activating 1 big S-box of the size 2c = 16
bits. Hence, one solution of the 5-round inbound phase is obtained with 216

in both time and memory. This leads to collisions on the 9-round compres-

sion function. The differential path that we use is (2, P (2))
6thR−−−→ (0,2)

FL−−→
(0,2)

7thR−−−→ (2,0) for the first outbound rounds, (2,0)
8thR−−−→ (F,2)

9thR−−−→
(0,F)

10thR−−−−→ (F,0)
11thR−−−−→ (2,F)

12thR−−−−→ (0,2) for the inbound rounds, and

(0,2)
FL−−→ (0,2)

13thR−−−−→ (2,0)
14thR−−−−→ (2, P (2)) for the second outbound rounds.

The difference of the output of the compression function has the form (2, P (2)).
Hence, if we generate such pairs 232 times, the difference is 0 in one pair. With
the improved 5-round inbound phase in Sect. 4.2, 1 solution of the inbound phase
is generated with 216 computations. Hence, 232 solutions are generated with 248

computations, which is faster than the birthday attack on a 128-bit value.

5.3 Experiments and Generated Data

To verify the attacks, we implemented the chosen-key 5-round inbound phase.
First of all, a valid key is chosen to bypass the FL−1 layer after round 6. We find
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these keys in the expected time of about 216 computations in average. Then, the
chosen keys are used to find solutions of the new 5-round inbound phase. Table 4
shows some of the found solutions. Most of the solutions are found in less than
28 computations in our experiments. Therefore the experimental complexity is
less than predicated in theory (i.e. 216 computations).

6 Concluding Remarks

In this paper, we revisited the known-key attacks on generic Feistel-SP ciphers.
Our main contribution is a new 5-round inbound phase which results in an
improved complexity and works for a high number of rounds. Then with several
modifications, the framework was applied to Camellia-128. Our results have been
confirmed by computer simulations. We have presented several new attacks on
the hashing modes of Camellia-128 including a collision attack on 9 rounds.
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Abstract. This paper proposes a low data complexity attack on reduced-
round block cipher Camellia. Utilizing a 7-round meet-in-the-middle dis-
tinguisher with an FL layer between the fifth and the sixth round, one
can attack 12-round Camellia-256 with 219 chosen plaintexts and 2231.2

encryptions. This attack starts from the first round of Camellia-256, so
as to keep the property of Camellia that inserting the FL layers every
6 rounds; it also takes the whitening keys into account. Compared with
the recent proposed attacks on Camellia-256, the attack in this paper has
much lower data complexity; at the same time, it is also the best attack on
Camellia-256 in terms of the number of rounds and the time complexity,
if one only consider the ’regular’ reduced Camellia with 6 rounds before
(after) the first (last) FL layer and with whitening keys.

Keywords: Block Cipher, Camellia, Meet-in-the-Middle Attack, Low
Data Complexity, Cryptanalysis.

1 Introduction

Block cipher Camellia is proposed by NTT and Mitsubishi in 2000 [1]. Its block
size is 128 bits and it supports 128-, 192- and 256-bit key sizes with 18, 24 and
24 rounds respectively. Camellia was selected as an e-government recommended
cipher by CRYPTREC [6] and recommended in NESSIE [23] block cipher port-
folio. Then it was selected as an international standard by ISO/IEC 18033-3 [12].
It is also a part of the OpenSSL Project [24] and the Mozilla’s NSS (Network
Security Services) module [22].

Due to its wide use, Camellia has been analyzed since it was proposed. The
structure of Camellia is Feistel structure with FL and FL−1 functions inserted
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every 6 rounds. The FL and FL−1 functions1 are keyed linear functions which are
designed to provide faster diffusion. A number of cryptanalytic results on simpli-
fied Camellia which excludes the FL layers and whitening are given, for example
[9,14,18,21,25,26,27,28]. Although it will increase the difficulty for cryptanalysis,
the attacks that take the FL layers into account seem more attractive [11,15].

Recently, more papers are studying the security of Camellia with FL lay-
ers. On the one hand, several impossible differential attacks [4,13] are proposed;
these attacks are based on impossible differentials with FL layers. Chen et al.
presented a 6-round impossible differential with an FL layer in the middle;
with this impossible differential, they gave attacks on 10-round Camellia-192
and 11-round Camellia-256 [5]. With the same impossible differential, Lu. et
al. presented impossible differential attacks on 10-round Camellia-1282 and 11-
round Camellia-192 [19]. Later, Li et al. proposed a 7-round impossible differ-
ential with an FL layer before the 7th round [16] to analyze 10-/10-/11-round
Camellia-128/-192/-256 (from the first round). Then 7-round impossible differ-
entials (with FL layers after the 5th round or before the 3rd round) which hold
with probability 75% were proposed in [17]; the weak-key impossible differen-
tial attacks on 10-/11-/12-round Camellia-128/-192/-256 and 14-round irregular
Camellia-256 could also be converted to attacks that hold for the whole key space.
In [17], they also built a set of differentials which contains at least one 8-round
impossible differential of Camellia with two FL layers, which led to attacks on
irregular Camellia-128/-192/-256 reduced to 11/12/13 rounds. There is also a
7-round impossible differential with 2 FL layers given by Bai et al. [3], which
results in reduced irregular Camellia without whitening. All the data complexi-
ties of these attacks are higher than 2116 bytes, due to the inherent requirement
of impossible differential attack that one has to find enough pairs to meet the
input and output differences of the impossible differential thus to discard the
wrong keys.

On the other hand, Lu et al. also proposed attacks on 10-/11-/12-round
Camellia-128/-192/-256 with FL layers (without whitening keys) [20], but with
a method named higher-order meet-in-the-middle attack. The data complexities
of their attacks are around 294 bytes.

Since data can only be collected during the online phase of the attack, some-
times it is more difficult to obtain than time and memory. Hence in this paper,
we attempt to reduce the data complexity of the 12-round attack on regular
Camellia-256 with whitening keys. This is achieved by getting rid of the inte-
gral property, extending the distinguisher in [20] to 7-rounds, and leveraging the
meet-in-the-middle attack to Camellia-256 reduced to 12 rounds.

1 The FL and FL−1 functions are called FL layers for simplicity in the rest of the
paper.

2 However, this attack is from Round 8 to Round 17, i.e., the target reduced Camellia
that can be broken using chosen plaintext attack has only 5 rounds (less than 6
rounds) before the FL layer; in this paper, we call this kind of variants of reduced
Camellia as irregular, while the ones with 6 rounds before/after the first/last FL
layer (in chosen-plaintext/-ciphertext setting) as regular.
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The meet-in-the-middle (MITM) attack was first applied to block cipher by
Diffie and Hellman [8]. The idea is as follows: A block cipher EK can be regard
as the cascade of two subciphers EK = E2

K2
◦E1

K1
; for a plaintext-ciphertext pair

(P,C), the adversary guesses K1, K2 and check whether E1
K1

(P ) = E2−1

K2
(C).

If so, then the adversary might have the right key; otherwise, the guessed key
must be wrong. This attack will be slower than the exhaustive search if the key
information included in the union set of K1 and K2 (K1

⋃
K2) is more than that

of K. However, the adversary can apply the time-memory trade-off technique to
pre-compute the value of E1

K1
(P ) under each K1 and store then in a hash table;

then he guesses K2, calculate E
2−1

K2
(C) and looks for it in the pre-computed

table. Let us denote |X | as the number of bits in X ; this strategy will succeed
if |K1| < |K| and |K2| < |K|. Nevertheless, for a block cipher with a good key
schedule, these would be satisfied only for a very small number of rounds, which
means that the number of rounds could be broken is limited.

Demirci et al. [7] went a step further when they applied the MITM at-
tack to AES. They follow the similar idea in [10] and treated the cipher E
as EK = E2

K2
◦ Em ◦ E1

K1
. In their strategy, at first, the adversary builds a

distinguisher in Em: For the input of Em, all values of one byte (denoted by
x) are chosen, while the other bytes are fixed values. Then the output of Em

can be expressed as a function of x and some parameters that are determined
by the fixed values of the input and the subkeys involved in Em. If the total
number of bits of the parameters is small enough (e.g. less than |K| − 8), then
the distinguisher will work, and the adversary pre-computes the output (usually
one byte or a function of the output) sequence of Em(x) by the expression of
the parameters and stores them in a hash table where in each row the values
are sorted according to the order of x. With the distinguisher, the adversary
can mount an attack by guessing the K1, choosing suitable plaintexts (thus ob-
taining the corresponding ciphertexts) and partially decrypting the ciphertexts

(guessing K2) to check whether the sequence E2−1

K2
(C)(x) can match a row in the

pre-computed table. By this means, some wrong (K1, K2) pairs will be discarded
while the right one will be kept.

Our Contribution. In this paper, we apply the attacking model in [7] to
Camellia-256. In our MITM distinguisher, we express one bit of a function of
Em(x) by some 8-bit parameters and 1-bit parameters. For the byte-oriented
ciphers, the expressions of one bit and one byte usually need the same num-
ber of parameters; however, the scenario for Camellia is different due to the
keyed linear functions FL and FL−1. Our distinguisher could be seen as an im-
provement of the 6-round higher-order MITM distinguisher (with the FL layer
between the 4th and 5th rounds) of Camellia-256 in [20]; the 6-round higher-
order MITM distinguisher is hard to be extended to a 7-round one as the four
round integral property is difficult to expand to 5 rounds, see Sect. 3.1 for the
detailed explanation. We get rid of the integral property and built a standard
MITM distinguisher with the FL layer between Round 5 and Round 6 by one-
bit expression to reduce as many parameters as possible. Due to the improved
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Table 1. Summary of the Attacks on Camellia-256 with FL layers

#Rounds Method Data Time Memory Source

11	 Higher Order DC 293CC 2255.6 298 [11]
11 Impossible DC 2121CP 2206.8 2166 [5]
11 Impossible DC 2119.6CP 2194.5 2135 [16]

12 (Weak Key) Impossible DC 2121.12CP 2202.55 2142.12 [17]
12 Impossible DC 2116.17CP/CC 2240 2150.17 [17]
12† Higher-Order MITM 294CP 2237.3 2174 [20]
12 MITM 219CP 2231.2 2229 this paper
13‡ Impossible DC 2123CP 2251.1 2208 [17]
14†‡ Impossible DC 2120CC 2250.5 2131 [17]
14†‡ Impossible DC 2121.2CP 2238.2 2180.2 [3]

DC: differential cryptanalysis; CP: chosen plaintext; CC: chosen ciphertext
	: this attack is mounted on the last 11 rounds
†: this attack excludes the whitening keys
‡: this is an attack on irregular Camellia-256

distinguisher, we can mount an attack on 12-round Camellia-256 with only 219

chosen plaintexts. The time complexity of our attack is 2231.2, which is also the
best for regular Camellia-256. We summarize our result along with some major
previous results of Camellia-256 with FL layers in Table 1. The rest of this paper
is organized as follows. Section 2 gives some notations and a brief description of
Camellia-256. Our 7-round MITM distinguisher and the attack on Camellia-256
reduced to 12 rounds are proposed in Sect. 3 and Sect. 4, respectively. Finally,
we conclude the paper in Sect. 5.

2 Preliminaries

This section gives some notations used through out the paper and a brief de-
scription of Camellia-256.

2.1 Notations

Lr−1 : the left half of the 128-bit r-th round input
Rr−1 : the right half of the 128-bit r-th round input
Ai: the i-th byte of a 64-bit value A (i = 1, ..., 8)
B ≪ j: left rotation of B by j bits
C(t): the t-th bit of C, where C can be a 64-bit value (here t = 0, ..., 63), a
32-bit value (here t = 0, ..., 31) or a 8-bit value (here t = 0, ..., 7). The big-endian
ordering is used, hence the 0th bit is the most significant bit.
C(i−j): the i-th bit to the j-th bit of C (0 ≤ i < j)
XL<64>: the left half of a 128-bit word X
XR<64>: the right half of a 128-bit word X
YL<32>: the left half of a 64-bit word Y
YR<32>: the right half of a 64-bit word Y
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||: the cascade of two words
x: the bitwise complement of x
⊕, ∩, ∪: bitwise exclusive-OR(XOR), AND, OR

2.2 Brief Description of Camellia

Camellia [1] is a 128-bit block cipher with Feistel structure. It has 18 rounds
for 128-bit key, and 24 rounds for 192-/256-bit key. We give the encryption
procedure of Camellia-256 as follows, see Fig. 1.

6 rounds

FL FL-1

6 rounds

FL FL-1

6 rounds

FL FL-1

6 rounds

KS P

KS P

KS P

KS P

KS P

KS P

∩ <<<1

klL

∩ klR

∩

∩

<<<1

klR

klL
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FL-1-function

kw1 kw2

kw3 kw4

Fig. 1. Camellia-256

Encryption Procedure. The input of the encryption procedure is a 128-bit
plaintext M , and 64-bit subkeys kwi (i = 1, ..., 4), kr (r = 1, ..., 24) and klj

(j = 1, ..., 6). FirstM is XORed with kw1 and kw2 to get two 64-bit intermediate
values L0 and R0: L0||R0 =M ⊕ (kw1||kw2). Then the following operations are
carried out for i = 1 to 24, except for r = 6, 12 and 18:

Lr = Rr−1 ⊕ F (Lr−1, kr), Rr = Lr−1.

For r = 6, 12 and 18, do the following:

L∗r = Rr−1 ⊕ F (Lr−1, kr), R∗r = Lr−1.

Lr = FL(L∗r, kl2r/6−1), Rr = FL−1(R∗r, kl2r/6).

Finally the 128-bit ciphertext C is computed as: C = (R24||L24)⊕ (kw3||kw4).
The FL function is defined as: (XL<32>||XR<32>, klL<32>||klR<32>) �→

(YL<32>||YR<32>), where:

YR<32> = ((XL<32> ∩ klL<32>) ≪ 1)⊕XR<32>,

YL<32> = (YR<32> ∪ klR<32>)⊕XL<32>.
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The FL−1 function is the inverse of FL function, and FL and FL−1 are linear
as long as the keys are fixed [2].

The round function F is composed of the key-addition layer, S-box layer S
and linear transformation P . In the key-addition layer, the input of the round
function is XORed with the subkey. There are four 8 × 8 S-boxes S1, S2, S3, S4
used in the S-box layer, and each S-box is used twice. Finally, the linear trans-
formation P : ({0, 1}8)8 → ({0, 1}8)8 maps (z1, ..., z8) → (y1, ..., y8). P function
and its inverse function P−1 are:

y1 = z1 ⊕ z3 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8 z1 = y2 ⊕ y3 ⊕ y4 ⊕ y6 ⊕ y7 ⊕ y8
y2 = z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z7 ⊕ z8 z2 = y1 ⊕ y3 ⊕ y4 ⊕ y5 ⊕ y7 ⊕ y8
y3 = z1 ⊕ z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z8 z3 = y1 ⊕ y2 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y8
y4 = z2 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7 z4 = y1 ⊕ y2 ⊕ y3 ⊕ y5 ⊕ y6 ⊕ y7
y5 = z1 ⊕ z2 ⊕ z6 ⊕ z7 ⊕ z8 z5 = y1 ⊕ y2 ⊕ y5 ⊕ y7 ⊕ y8
y6 = z2 ⊕ z3 ⊕ z5 ⊕ z7 ⊕ z8 z6 = y2 ⊕ y3 ⊕ y5 ⊕ y6 ⊕ y8
y7 = z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z8 z7 = y3 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y7
y8 = z1 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7 z8 = y1 ⊕ y4 ⊕ y6 ⊕ y7 ⊕ y8

Key Schedule. For Camellia-256, the 256-bit main key K = KL||KR, where
KL and KR are 128 bits. Using KL and KR, the key schedule algorithm first
calculateKA andKB, which is described in Fig. 2. Where F is the round function
of Camellia and Ci (1 ≤ i ≤ 6) are constants used as the keys. Then the subkeys
kwi (i = 1, ..., 4), kr (r = 1, ..., 24) and klj (j = 1, ..., 6) are derived from rotating
KL, KR, KA or KB. For details of Camellia, we refer to [1].

It can be known from Fig. 2 that, ifKB andKA are known, thenKR is known.
Therefore, one can get KL using the relation between KL and KA described in
Sect. 3.2 of [21]. So once KB and KA are known, K can be computed.

3 7-Round Meet-in-the-Middle Distinguisher with FL
Layer

In this section, we first briefly reintroduce the higher-order MITM distinguishers
in [20], and then propose our improved distinguisher.

3.1 Lu et al.’s Higher-Order MITM Distinguishers

In [20], Lu et al.’s introduce 5-round and 6-round distinguishers with FL lay-
ers. They call their distinguishers higher-order MITM distinguishers because
they use the integral property of 3-/4-round Camellia [30] with FL layers to
cancel some parameters; we use the 6-round distinguisher (see Fig. 5 in Ap-
pendix B) as an example to show how this can be achieved. In Fig. 5, ’C’
stands for a constant byte, ’A’ stands for an active byte (a byte that takes

all 256 possible values) and ’B’ stands for a balanced byte (
255⊕
i=0

B=0). We can

see from Fig. 5 that if the input of the 6-round distinguisher is of the form



Low Data Complexity Attack on Reduced Camellia-256 107

F

F

F

F

F

F

KL KR

KL

KR

KA KB

C1

C2

C3

C4

C5

C6

Fig. 2. The Calculation of KA and KB

(PL=(C,C,C,C,C,C,C,C), PR=(C,A,C,C,C,C,C,C)), then each byte of T is bal-
anced, which leads to the balance of W (since FL−1 is linear for a specific key).

Hence we have:

255⊕
i=0

(P−1(Z))j =

255⊕
i=0

Yj ⊕ (P−1(W ))j =

255⊕
i=0

Yj , for j = 1, ..., 8.

As a result, several parameters can be canceled by the integral property when
255⊕
i=0

(P−1(Z))j is expressed. See [20] for detail. However, if there are 5 rounds

before the FL layer, the integral property would disappear, hence one cannot
get a 7-round higher-order MITM distinguisher by extending one round forward.
Adding one more round at the bottom of the 6-round higher-order MITM dis-
tinguisher is also infeasible, since the required parameters is too many. Instead,
we remove the integral property and attempt to build a valid 7-round MITM
distinguisher.

3.2 7-Round Meet-in-the-Middle Distinguisher

As claimed by Lu et al. in [20], 12 more 8-bit parameters are required if one uses
an MITM technique to build the 6-round distinguisher. It is true if one aims to
express one byte of P−1(Z) = Y ⊕ P−1(W ); but if we only want to know the
expression of one bit of P−1(Z), then fewer parameters are needed. Furthermore,
we can even add one more round to the top of the 6-round MITM distinguisher
and get a 7-round one, provided that we are looking for the expression of only
one bit. See the observation below:

Observation 1. Let the input to 7-round Camellia with an FL layer between
Round 5 and Round 6 be: L0 = (α1, α2, α3, α4, α5, α6, α7, α8), R

0 = (x, β2, β3, β4,
β5, β6, β7, β8), where x take all 28 values and αi (i = 1, ..., 8), βi (i = 2, ..., 8)
are constants (see Fig. 3). Denote Z = R7 and Z(t) as the value of Z when
x = t, then (P−1(Z(0)))6(0) ⊕ (P−1(Z(x)))6(0) (for x = 1, ..., 255) is a func-
tion of x fully determined by 224-bit fixed parameters, i.e., 26 8-bit param-
eters (b1, d1, d2, d3, d5, d8, e1, ..., e8, f1, ..., f8,KL1(9−16), e

′
2, e

′
3, g) and 16 1-bit
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Fig. 3. 7-Round MITM Distinguisher of Camellia-256

parameters (KL2(1),KL2(8), KL2(9), KL2(16),KL2(25), KL2(33), KL2(41),KL2(57),
c1(1), c2(1), c4(1), c5(1), c6(0), c6(1), c7(0), c8(1)).

The proof of Observation 1 can be found in Appendix A.
We know that there are 2255 possible values for a 255-bit sequence, hence a

7-round MITM distinguisher is acquired for Camellia-256 from Observation 1.

4 Meet-in-the-Middle Attack on 12-Round Camellia-256
with Low Data Complexity

In this section, an attack on 12-round Camellia-256 is proposed; as mentioned,
compared with the best previous attack on regular Camellia-256, the data com-
plexity of our attack is much lower, while the time complexity is also better.
When attacking the first 12 rounds of Camellia-256, we add one round before
the 7-round distinguisher and 4 rounds after, see Fig. 4. The procedure of the
attack is depicted as follows:

Precomputation.A 7-round distinguisher is build according to Observation 1.
For all values of 8-bit parameters (b1, d1, d2, d3, d5, d8, e1, ..., e8, f1, ..., f8,KL1(9−16),
e′2, e

′
3, g) and 1-bit parameters (KL2(1), KL2(8), KL2(9), KL2(16),KL2(25), KL2(33),

KL2(41), KL2(57), c1(1), c2(1), c4(1), c5(1), c6(0), c6(1), c7(0), c8(1)), calculate
(P−1(Z(0)))6(0) ⊕ (P−1(Z(x)))6(0) (for x = 1, ..., 255) and insert them into a hash
tableH . In each row of the table, (P−1(Z(0)))6(0) ⊕(P−1(Z(x)))6(0) are sorted ac-
cording to the value of x; the size of Table H is 2229 bytes. The time complexity
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Fig. 4. 12-Round MITM Attack on Camellia-256

of the precomputation is less than 2232 7-round encryptions, equivalent to 2231.2

12-round encryptions.

Data Collection. Choose 23 structures of plaintexts; in each structure, guess
(kw1

1 , k11) and compute the plaintexts with the form PL = (x ⊕ kw1, γ2, γ3, γ4,
γ5, γ6, γ7, γ8) and PR = (S(x ⊕ k11) ⊕ η1, S(x ⊕ k11) ⊕ η2, S(x ⊕ k11) ⊕ η3, η4,
S(x⊕ k11)⊕ η5, η6, η7, S(x⊕ k11)⊕ η8). Where x takes all 28 values, while γ2, γ3,
γ4, γ5, γ6, γ7, γ8,η1, η2, η3, η4, η5, η6, η7, η8 are randomly chosen constants. En-
crypt the plaintexts in each structure to get corresponding ciphertexts.

Key Recovery. In order to deal with the whitening keys, we first denote some
equivalent keys of Round 9 to Round 12: ka = k12 ⊕ kw4, kb = k11 ⊕ kw3,
kc = k10 ⊕ kw4, kd = k9 ⊕ kw3 and ke = kw4

2(0) ⊕ kw4
3(0) ⊕ kw4

5(0) ⊕ kw4
6(0) ⊕ kw4

8(0).

For each (kw1
1 , k11) and each structure obtained from the data collection phase,

guess ka, kb, kc2, k
c
3, k

c
5, k

c
6, k

c
8, k

d
6 and ke. Under each key guess, we calculate

L0
1 (the value of x) and (P−1(L7(x)))6(0) = (S(L8

6 ⊕ kd6))(0) ⊕ (P−1(L9))6(0) for
all the 256 plaintext-ciphertext pairs in the structure.

If for all the structures, the corresponding sequences (P−1(L7(0)))6(0) ⊕
(P−1(L7(x)))6(0) (for x = 1, ..., 255) are in H , then we say that the guessed
key is the right key; otherwise, we discard the wrong key and try another
one. Since for a wrong key, the probability that one can find the sequence
(P−1(L7(0)))6(0) ⊕ (P−1(L7(x)))6(0) (for x = 1, ..., 255) in a structure to be
consistent with a specific row of H is 2−255, and there are 2224 rows in H , the
probability that all sequences in the structures can be found inH is (2224−255)8 =
2−248. As a consequence, the expected number of remaining wrong 193-bit keys
(kwl1 , k1, ka, kb, kc2, k

c
3, k

c
5, k

c
6, k

c
8, k

d
6 , k

e) is 2193 × 2−248 = 2−55; the one that
is kept is supposed to be the right one.

Note that k11 = (KA ≪ 45)L<64>, k
12 = (KA ≪ 45)R<64>, k

w3 = (KB ≪
111)L<64> and kw4 = (KB ≪ 111)R<64>; if we guess KA, then KB can also
be deduced from the right key we obtained. From KA and KB, the main key
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can be calculated as described in Sect. 2. Then we test the main key by trial
encryptions. Consequently, the complexity for recovering the main key from the
equivalent keys is about 2128.

From the discussion above, one can know that the complexity of the key
recovery phase is about 2193× 28× 23 = 2204 4-round encryptions; the time and
memory complexities of the whole attack are dominated by the precomputation
phase. The data complexity is 219 chosen plaintexts.

5 Conclusion

This paper proposes an MITM attack on 12-round Camellia-256 with much lower
data complexity than the previous attacks. It is also the best attack on Camellia-
256 in terms of time complexity and the number of rounds if we consider the
’regular’ Camellia which has 6 rounds before the first FL layer (in a chosen
plaintext scenario) or 6 rounds after the last FL layer (in a chosen ciphertext
scenario). Note that our attack does not harm the security of Camellia-256, since
it is an analysis on reduced Camellia-256 and impractical.

Acknowledgements. We are grateful to the anonymous reviewers for their
valuable comments on this paper.
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A Proof of Observation 1

Observation 1 benefits from the facts that FL−1 is keyed linear and P is linear.
For simplicity, let us denote the subkeys used in the FL and FL−1 functions as
KL1 and KL2, those used in the seven rounds as K1, ...,K7 and the cascade of
the key-addition and S-box layer as SK. We will also allow ourself to abuse the
notation S as the application of the S-box layer to the intermediate values and
the application of an S-box to a byte (we will not specify which one of the 4
S-boxes is being used as well).

From the input we have: P (SK(L0)) = (a1, a2, a3, a4, a5, a6, a7, a8), where
a1, ..., a8 are determined by α1, ..., α8 andK

1. Then L1 = (x⊕a1, a2, a3, a4, a5, a6,
a7, a8), SK(L1) = (S(x ⊕ b1), b2, b3, b4, b5, b6, b7, b8), where b1 = a1 ⊕ K2

1 , bi =
S(ai ⊕K2

i ) (i = 2, ..., 8).
Similarly we have the following equations.

L2
1 = S(x⊕ b1)⊕ c1, SK(L2

1) = S(S(x⊕ b1)⊕ d1),
L2
2 = S(x⊕ b1)⊕ c2, SK(L2

2) = S(S(x⊕ b1)⊕ d2),
L2
3 = S(x⊕ b1)⊕ c3, SK(L2

3) = S(S(x⊕ b1)⊕ d3),
L2
4 = c4, SK(L2

4) = d4,
L2
5 = S(x⊕ b1)⊕ c5, SK(L2

5) = S(S(x⊕ b1)⊕ d5),
L2
6 = c6, SK(L2

6) = d6,
L2
7 = c7, SK(L2

7) = d7,
L2
8 = S(x⊕ b1)⊕ c8, SK(L2

8) = S(S(x⊕ b1)⊕ d8).
Since L3 = P (SK(L2))⊕ L1,

SK(L3
1) = S(S(S(x⊕ b1)⊕ d1)⊕S(S(x⊕ b1)⊕ d3)⊕S(S(x⊕ b1)⊕ d8)⊕x⊕ e1),

SK(L3
2) = S(S(S(x⊕ b1)⊕d1)⊕S(S(x⊕ b1)⊕d2)⊕S(S(x⊕ b1)⊕d5)⊕S(S(x⊕

b1)⊕ d8)⊕ e2),
SK(L3

3) = S(S(S(x⊕ b1)⊕d1)⊕S(S(x⊕ b1)⊕d2)⊕S(S(x⊕ b1)⊕d3)⊕S(S(x⊕
b1)⊕ d5)⊕ S(S(x⊕ b1)⊕ d8)⊕ e3),
SK(L3

4) = S(S(S(x⊕ b1)⊕ d2)⊕ S(S(x⊕ b1)⊕ d3)⊕ S(S(x⊕ b1)⊕ d5)⊕ e4),
SK(L3

5) = S(S(S(x⊕ b1)⊕ d1)⊕ S(S(x⊕ b1)⊕ d2)⊕ S(S(x⊕ b1)⊕ d8)⊕ e5),
SK(L3

6) = S(S(S(x⊕ b1)⊕d2)⊕S(S(x⊕ b1)⊕d3)⊕S(S(x⊕ b1)⊕d5)⊕S(S(x⊕
b1)⊕ d8)⊕ e6),
SK(L3

7) = S(S(S(x⊕ b1)⊕ d3)⊕ S(S(x⊕ b1)⊕ S(y⊕ b2)⊕ d5)⊕ S(S(x⊕ b1)⊕
d8)⊕ e7),
SK(L3

8) = S(S(S(x⊕ b1)⊕ d1)⊕ S(S(x⊕ b1)⊕ d5)⊕ e8),
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From L4 = P (SK(L3))⊕ L2,
L4
1 =SK(L3

1)⊕SK(L3
3)⊕SK(L3

4)⊕SK(L3
6)⊕SK(L3

7)⊕SK(L3
8)⊕ S(x⊕ b1)⊕ c1,

L4
2 =SK(L3

1)⊕SK(L3
2)⊕SK(L3

4)⊕SK(L3
5)⊕SK(L3

7)⊕SK(L3
8)⊕ S(x⊕ b1)⊕ c2,

L4
3 =SK(L3

1)⊕SK(L3
2)⊕SK(L3

3)⊕SK(L3
5)⊕SK(L3

6)⊕SK(L3
8)⊕ S(x⊕ b1)⊕ c3,

L4
4 =SK(L3

2)⊕SK(L3
3)⊕SK(L3

4)⊕SK(L3
5)⊕SK(L3

6)⊕SK(L3
7)⊕ c4,

L4
5 =SK(L3

1)⊕SK(L3
2)⊕SK(L3

6)⊕SK(L3
7)⊕SK(L3

8)⊕ S(x⊕ b1)⊕ c5,
L4
6 =SK(L3

2)⊕SK(L3
3)⊕SK(L3

4)⊕SK(L3
7)⊕SK(L3

8)⊕ c6,
L4
7 =SK(L3

3)⊕SK(L3
4)⊕SK(L3

5)⊕SK(L3
6)⊕SK(L3

8)⊕ c7,
L4
8 =SK(L3

1)⊕SK(L3
4)⊕SK(L3

5)⊕SK(L3
6)⊕SK(L3

7)⊕ S(x⊕ b1)⊕ c8,

SK(L4
1) = S(SK(L3

1)⊕SK(L3
3)⊕SK(L3

4)⊕SK(L3
6)⊕SK(L3

7)⊕SK(L3
8)⊕S(x⊕b1)⊕

f1),
SK(L4

2) = S(SK(L3
1)⊕SK(L3

2)⊕SK(L3
4)⊕SK(L3

5)⊕SK(L3
7)⊕SK(L3

8)⊕S(x⊕b1)⊕
f2),
SK(L4

3) = S(SK(L3
1)⊕SK(L3

2)⊕SK(L3
3)⊕SK(L3

5)⊕SK(L3
6)⊕SK(L3

8)⊕S(x⊕b1)⊕
f3),
SK(L4

4) = S(SK(L3
2)⊕SK(L3

3)⊕SK(L3
4)⊕SK(L3

5)⊕SK(L3
6)⊕SK(L3

7)⊕ f4),
SK(L4

5) = S(SK(L3
1)⊕SK(L3

2)⊕SK(L3
6)⊕SK(L3

7)⊕SK(L3
8)⊕ S(x⊕ b1)⊕ f5),

SK(L4
6) = S(SK(L3

2)⊕SK(L3
3)⊕SK(L3

4)⊕SK(L3
7)⊕SK(L3

8)⊕ f6),
SK(L4

7) = S(SK(L3
3)⊕SK(L3

4)⊕SK(L3
5)⊕SK(L3

6)⊕SK(L3
8)⊕ f7),

SK(L4
8) = S(SK(L3

1)⊕SK(L3
4)⊕SK(L3

5)⊕SK(L3
6)⊕SK(L3

7)⊕ S(x⊕ b1)⊕ f8),
We know that L∗5 = P (SK(L4))⊕ L3, hence

L∗5
2 =SK(L4

1)⊕SK(L4
2)⊕SK(L4

4)⊕SK(L4
5)⊕SK(L4

7)⊕SK(L4
8)⊕S(S(x⊕b1)⊕d1)⊕

S(S(x⊕ b1)⊕ d2)⊕ S(S(x⊕ b1)⊕ d5)⊕ S(S(x⊕ b1)⊕ d8)⊕ e′2,
L∗5
3 =SK(L4

1)⊕SK(L4
2)⊕SK(L4

3)⊕SK(L4
5)⊕SK(L4

6)⊕SK(L4
8)⊕S(S(x⊕b1)⊕d1)⊕

S(S(x⊕b1)⊕d2)⊕S(S(x⊕b1)⊕d3)⊕S(S(x⊕b1)⊕d5)⊕S(S(x⊕b1)⊕d8)⊕e′3,
L∗5
6 =SK(L4

2)⊕SK(L4
3)⊕SK(L4

4)⊕SK(L4
7)⊕SK(L4

8)⊕S(S(x⊕b1)⊕d2)⊕S(S(x⊕
b1)⊕ d3)⊕ S(S(x⊕ b1)⊕ d5)⊕ S(S(x⊕ b1)⊕ d8)⊕ e′6,

After the FL function,
L5
6 = ((L∗5

2(1−7)||L∗5
3(0)) ∩KL1(9−16))⊕ L∗5

6 = ((L∗5
2(1−7)||L∗5

3(0)) ∩KL1(9−16))⊕
SK(L4

2)⊕SK(L4
3)⊕SK(L4

4)⊕SK(L4
7)⊕SK(L4

8)⊕S(S(x⊕ b1)⊕d2)⊕S(S(x⊕ b1)⊕
d3)⊕ S(S(x⊕ b1)⊕ d5)⊕ S(S(x⊕ b1)⊕ d8)⊕ e′6.

As a result,
Y6 = S(((L∗5

2(1−7)||L∗5
3(0)) ∩KL1(9−16))⊕SK(L4

2)⊕SK(L4
3)⊕SK(L4

4)⊕
SK(L4

7)⊕SK(L4
8)⊕ S(S(x⊕ b1)⊕ d2)⊕ S(S(x⊕ b1)⊕ d3)⊕ S(S(x⊕ b1)⊕ d5)⊕

S(S(x⊕ b1)⊕ d8)⊕ g).

Hence Y6 is a function of x that entirely determined by 8-bit parameters (b1, d1, d2,
d3, d5, d8, e1, ..., e8, f1, ..., f8,KL1(9−16), e

′
2, e

′
3, g).

Furthermore, Y6 = (P−1(W⊕Z))6, Y6(0) = (P−1(W⊕Z))6(0), and (P−1(W ))6(0)
= w8 ⊕ w16 ⊕ w32 ⊕ w40 ⊕ w56. Here w8 = KL2(8)l(40) + l(8) + l(40) + KL2(8),
w16 = KL2(16)l(48)+l(16)+l(48)+KL2(16), w32 = KL2(33)KL2(1)l(33)+KL2(33)l(1)+
KL2(33)l(33) + KL2(33)KL2(1) + l(32), w40 = KL2(41)KL2(9)l(41) + KL2(41)l(9) +
KL2(41)l(41)+KL2(41)KL2(9)+l(40) and w56 = KL2(57)KL2(25)l(57)+KL2(57)l(25)+
KL2(57)l(57) +KL2(57)KL2(25) + l(56), hence
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(P−1(Z))6(0) = Y6(0)⊕KL2(33)KL2(1)l(33)⊕KL2(41)KL2(9)l(41)⊕KL2(57)KL2(25)

l(57) ⊕KL2(8)l(40) ⊕KL2(16)l(48) ⊕ KL2(33)l(1) ⊕ KL2(33)l(33) ⊕ KL2(33)KL2(1) ⊕
KL2(41)l(9) ⊕ KL2(41)l(41) ⊕ KL2(41)KL2(9) ⊕ KL2(57)l(25) ⊕ KL2(57)l(57)
⊕KL2(57)KL2(25) ⊕ l(8) ⊕ l(16) ⊕ l(32) ⊕ l(48) ⊕ l(56) ⊕KL2(8) ⊕KL2(16).
Where l(i) = L

4
i/8+1(i%8) for i = {1, 8, 9, 16, 25, 32, 33, 40, 41, 48, 56, 57}. As a re-

sult, (P−1(Z))6(0) can be expressed as function of x with 26 8-bit parameters
(b1, d1, d2, d3, d5, d8, e1, ..., e8, f1, ..., f8,KL1(9−16), e

′
2, e

′
3, g) and 20 1-bit param-

eters (KL2(1),KL2(8), KL2(9), KL2(16), KL2(25), KL2(33), KL2(41),KL2(57), c1(1),
c2(0), c3(0), c5(0), c8(0), c2(1), c4(1), c5(1), c6(0), c6(1), c7(0), c8(1)). Furthermore,
(P−1(Z(0)))6(0)⊕(P−1(Z(x)))6(0) (for x = 1, ..., 255) can be determined by 26
8-bit parameters (b1, d1, d2, d3, d5, d8, e1, ..., e8, f1, ..., f8,KL1(9−16), e

′
2, e

′
3, g) and

16 1-bit parameters (KL2(1),KL2(8), KL2(9), KL2(16),KL2(25),KL2(33), KL2(41),
KL2(57), c1(1), c2(1), c4(1), c5(1), c6(0), c6(1), c7(0), c8(1)). This is because the four
bits of (c2(0), c3(0), c5(0), c8(0)) will be eliminated when XORing (P−1(Z(0)))6(0)
with (P−1(Z(x)))6(0) (for x = 1, ..., 255). �
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Abstract. This paper investigates the security of RSA system with
short exponents. Let N = pq be an RSA modulus with balanced primes
p and q. Denote the public exponent by e and the private exponent by
d. Then e and d satisfy ed− 1 = kφ(N), which is usually called the RSA
equation. When e and d are both short, and parameter k is the smallest
unknown variable in RSA equation, we prove that there exist two new
square root attacks. One attack applies the baby-step giant-step method,
the other applies the Pollard’s ρ method. We show that if K is a known
upper bound of k, then k can be recovered in time Õ(

√
K) and memory

Õ(
√
K) by using the baby-step giant-step method, and in time Õ(

√
K)

and negligible memory by applying Pollard ρ method. As an application
of our new attacks, we present the cryptanalysis on an RSA-type scheme
proposed by Sun et al.

Keywords: RSA, square root attack, cryptanalysis.

1 Introduction

RSA scheme is the most famous and widely used public-key cryptosystem so
far. It was proposed by Rivest, Shamir and Adleman [11] in 1978. Let N = pq
be RSA modulus. Usually, primes p and q are balanced with q < p < 2q. The
public exponent e and private exponent d are chosen to be inverses of each other
modulo ϕ(N) = (p − 1)(q − 1), where ϕ(N) = (p − 1)(q − 1) is Euler’s totient
function. The public key is then (N, e) and the secret key is (p, q, d). The security
of RSA is based on the hardness of factorization.

To defend the factoring attack, usually RSA modulus N is chosen to be larger,
e.g. lN = 1024. Though it is hard to factor N , there are some other attacks as
summarized in [8]. Among all the attacks, small private exponent attack is well-
known. Using continued fractions, Wiener [22] described an attack, which applies
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when the private exponent is smaller than N0.25. Later, Boneh and Durfee [3,4]
improved the result by applying Coppersmith’s method [5] and showed that if
the private exponent is less than N0.292, then the RSA scheme can be broken in
polynomial time. Weger [21] present extended attacks of Wiener [22] and Boneh-
Durfee [3,4] on condition of small RSA prime difference. In [2], Blömer and May
showed a generalized Wiener attack by applying the continued fraction method
and Coppersmith’s method.

All the above attacks show that choosing small exponents may cause the RSA
scheme insecure. However, RSA is computationally complex, because of its re-
quirement of exponentiation operations modulo a large integer N . The RSA en-
cryption and decryption time is nearly proportional to the number of bits in the
exponent. To lower the RSA decryption time, people attempt to design some RSA
variants with short private exponent which can defend the private exponent at-
tacks listed above. In [14,15], three RSA variants are given to get a secure private
exponent shorter than the lower bound of Wiener [22] and Boneh-Durfee [3,4].
Unfortunately, the first and the third variants are broken by Durfee and Nyugen
[7] and the second one is proved to be insecure if parameters are chosen careless.

In [16,17], Sun et al. improved the second variant of [14,15] and proposed two
RSA schemes. One scheme has two balanced public and private exponents that
can balance the encryption costs and decryption costs, and the other scheme can
shift the work from decryptor to encryptor through changing the values of the
public exponent and private exponent. By applying balanced primes, and these
two schemes can defend the attacks of [7,2], etc. However, Sarkar and Maitra [12]
presented a partial key exposure attack on RSA schemes of Sun et al. [16,17].

The former works [7,2,12] are all based on Coppersmith’s method [5]. Here we
investigate square root attacks against RSA. In RSA scheme, the public exponent
e and private exponent d satisfy the following equation

ed− 1 = kφ(N), (1)

which is usually called the RSA equation. One can see that if e and d are short
exponents, such as le = 624, ld = 512 and usually lN = 1024, then lk = 112.
In this case, k is the smallest parameters in (1). This observation leads us to
recover k first, then p and q. Now we investigate two square root attacks to
recover k. One attack applies the baby-step giant-step method, the other applies
the Pollard’s method. For these two methods, one can see [6,9] and for improved
methods see [1,18,19,20]. We show that if K is a known upper bound of k such
that 1 ≤ k < K, there exist two probabilistic algorithms to recover k and then p
and q in time Õ(

√
K). Here and in the sequel, Õ() is the usual notation hiding

polynomial arithmetic terms. As an application of the new attacks, we analyze
the security of RSA schemes of Sun et al. [16,17] and find that parameter k
should be chosen larger than the values suggested in [16,17].

Notation. We denote the bit-length of an integer u by lu. Denote by 	r
 the
integral part of a real number r. Let v ≡ u mod e denote that v is congruent
to u modulo e. Let v = u mod e denote that v equals the least non-negative
remainder of u modulo e.
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This paper is organized as follows. In section 2, we apply the baby-step giant-
step method to present an attack. In section 3, we present an attack by apply
Pollard’s ρ method. Conclusions are finally drawn in section 4.

2 New Attack by Applying Shanks’ Method

2.1 Baby-Step Giant-Step Method

This method is developed by Shanks [13]. Comparing to the exhaustive search
method, it is a method of time/memory tradeoff. Usually, exhaustive search
requires negligible memory and exponential time T . The baby-step giant-step
method balances those two costs. Its time and space complexities both become
roughly

√
T . Therefore it only works well for moderate sized T . The baby-step

giant-step method has been applied to some problems such as the discrete loga-
rithm problem, the factoring problem, etc. One can see [6] for details. Here we
apply the baby-step giant-step method on RSA problem with short exponents,
and obtain the following result.

Theorem 1. Suppose N = pq be an RSA modulus with primes p and q satisfying
q < p < 2q. Let e and d be the public and private exponents satisfying (1). Let
K be a known upper bound of k such that 1 < k < K. If e > k(p+ q), then there
exists a probabilistic algorithm to recover p and q in time Õ(

√
K) and space

Õ(
√
K).

Proof. By (1), we have

ed = 1 + k(N + 1− p− q). (2)

Dividing both sides of the above equality by e, we have

d =
1 + k(N + 1− p− q)

e
. (3)

Since d is an integer and e > k(p+ q), we have

d =

⌊
kN

e

⌋
. (4)

Thus by (1) we have

kφ(N) = e

⌊
kN

e

⌋
− 1. (5)

Define

Ξ(x) = e

⌊
xN

e

⌋
− 1. (6)
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Let M = �
√
K�. Then parameter k can be written as k = k1M + k2 with

0 ≤ k1, k2 < M . Let a be an integer satisfying gcd(a,N) = 1. By Euler’s
formula, we have

aφ(N) ≡ 1 mod N.

By (5) and (6), we have

aΞ(k1M+k2) ≡ 1 mod N. (7)

Since ⌊
(t1 + t2)N

e

⌋
=

⌊
t1N

e

⌋
+

⌊
t2N

e

⌋
or

⌊
t1N

e

⌋
+

⌊
t2N

e

⌋
+ 1,

and by (6), we have that

Ξ(k1M + k2) = Ξ(k1M) + Ξ(k2) + 1 or Ξ(k1M) + Ξ(k2) + e+ 1.

In the following, for simplicity, we only suppose that

Ξ(k1M + k2) = Ξ(k1M) + Ξ(k2) + 1. (8)

Then by (7) and (8), we have

aΞ(k1M) ≡ a−Ξ(k2)−1 mod N. (9)

We will apply the above equality to find the right values of k1 and k2.
Note that k1 and k2 are in the range 0 ≤ k1, k2 < M , we construct two lists

as follows,

L1 =
{
aΞ(k1M) mod N

∣∣∣ 0 ≤ k1 < M}
,

and
L2 =

{
a−Ξ(k2)−1 mod N

∣∣∣ 0 ≤ k2 < M}
.

We can now build a table containing the M values of L1. Then for each value of
L2 we check if it presents in the table. Finally, we find a match

aΞ(k10M) ≡ a−Ξ(k20)−1 mod N. (10)

For a match (k10, k20), compute k0 = k10M + k20 and s = (N +1+ k−1
0 ) mod e.

By (1), we have that the right value of s equals p+ q. Thus solving the equation
x2 − sx+N = 0 in Ze, we obtain p and q, which yields the factorization of N .

2.2 Cryptanalysis on RSA Schemes of Sun et al.

We now apply Theorem 1 to analyze the security of RSA Schemes proposed
by Sun et al. [16,17]. For example, the following RSA instance constructed in
[16,17]: p and q are of 512 bits, d of 512 bits, and e of 624 bits, the attack
of Theorem 1 can be applied. Considering the square root attack, parameter k
should be chosen much larger than the value lk = 112 as suggested by Sun et al.
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3 New Attack by Applying Pollard’s Method

A disadvantage of the baby-step giant-step method is that it requires a lot of
storage. Pollard’s ρ method, developed by Pollard [9], runs in approximately
the same time as baby-step giant-step method, but requires very little storage.
Recently, some authors investigated the Pollard’s ρ method and obtained more
efficient algorithms, see Teske [18,19,20] and Bai and Brent [1], for example.

3.1 Pollard’s ρ Method

Let G be a finite cyclic group of order R. The Pollard’s algorithm can be applied
to any group for which the following is satisfied (see [18,20]).
! Given any two group elements gi and gj, we can compute the product gi ∗ gj .
! Given any two group elements gi and gj, we can check whether gi = gj.
! Given a small integer r, we can divide the group G into r disjoint sets
G1, · · · , Gr of roughly equal size, and given any group elements g we can check
to which these sets it belongs.

Choose a function f : G �→ G that behaves rather randomly. Then start with
a random element g1 and compute the iterations gi+1 = f(gi). Since G is a finite
set, there will be some indices i0 < j0 such that gi0 = gj0 . Then

gi0+1 = f(gi0) = f(gj0) = gj0+1,

and similarly, gi0+l = gj0+l for all l ≥ 0. Therefore, the sequence gi is periodic
with period j0 − i0 (or possibly a divisor of j0 − i0). The picture describing this
process looks like the Greek letter ρ, which is why it is called Pollard’s ρ method.
If f is a randomly chosen function, we expect to find a match with j0 in time
roughly

√
R. For an analysis of the running time for various choices of function

f , one can see [18].
As a simple implementation of the method, one can store all the points gi

until a match is found. This takes around
√
R storage. However, it is possible

to do much better at the cost of a little more computation. The key idea is
that once there is a match for two indices differing by l, all subsequent indices
differing by l will yield matches. This is just the periodicity mentioned above.
Therefore, we can compute pairs (gi, g2i), for i = 1, 2, · · · , but only keep the
current pair, we do not store the previous pairs. These can be calculated by the
rules gi+1 = f(gi) and g2(i+1) = f(f(g2i)). Suppose i ≥ i0 and i is a multiple of
l. Then the indices 2i and i differ by a multiple of l and hence yield a match:
gi = g2i. Since d ≤ j0 and i0 < j0, it follows easily that there is a match for
i ≤ j0. Therefore the number of steps to find a match is expected to be at most
a constant multiple of

√
R. Now it remains of how to choose a suitable function

f . Three iterating functions are listed in [19]: Pollard’s walk, linear walk and
combined walk. In the following, we will apply the iterating function of linear
walk to obtain the following result.

Theorem 2. Suppose that N = pq is an RSA modulus with primes p and q
satisfying q < p < 2q, and the public exponent e, private exponent d and param-
eter k satisfy (1). Let K be a known upper bound of k such that 1 < k < K. If
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e > 2
√
5N , then there exists a probabilistic algorithm to recover p and q in time

Õ(
√
K).

Here is the roadmap for the proof of Theorem 2.

1. We prove that if a multiple of k is known, then k can be recovered in poly-
nomial time;

2. We apply the Pollard ρ method to find a multiple of k;

3. When k is known, we recover the factorization of N .

Proof. First we prove that if a multiple of k is known, then k can be recovered.
Suppose that mk is a known multiple of k. For simplicity, we suppose that
gcd(mk, e) = 1. Obviously, one can factor mk and check each factor to find k.
Here we present another method to obtain k when (m−1

k mod e) > p + q. Let
σ = m−1

k mod e. Then σ is a known integer in the range ‖0, e‖, where ‖0, e‖
denotes the set of integers between 0 and e.

By (1), there exists an integer d̃ such that

ed̃ = k−1 mod e + φ(N). (11)

Since e > 2
√
N > p + q, we have d̃ = 	N/e
. We write mk = s · k with s and

k unknown. For integer s satisfying gcd(s, e) = 1, there exists an integer d̄ such
that

ed̄ = s · ((sk)−1 mod e) + φ(N),

that is,

ed̄ = s · σ + φ(N). (12)

Let (12) minus (11), we have

e(d̄− d̃) = sσ − (k−1 mod e).

Since (k−1 mod e) < e, we have

d̄ = d̃+
sσ − (k−1 mod e)

e
= d̃+

⌊sσ
e

⌋
. (13)

By (12), we have

ed̄

σ
= s+

φ(N)

σ
.

If σ > p+ q, then ⌈
ed̄

σ

⌉
= s+

⌊
N

σ

⌋
+�, (14)
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where � = 0 or 1. Insert (13) into (14), we have⌈
ed̃

σ
+
e

σ

⌊s · σ
e

⌋⌉
=

⌊
N

σ

⌋
+ s+�. (15)

Note that in the above equation, all parameters but s are known. Thus one can
solve s easily, e.g., by the bisection method. Once s is known, we can calculate
k by k = (sσ)−1 mod e.

Next, we use Pollard ρ method to find a multiple of k. We also prove that
with a probability of at least 1

2 we can find an integer � being a multiple of k0
and satisfying (�−1 mod e) > p+q in time Õ(

√
K). Let k0 denote the right value

of k in the following. Define

Gi = {g | g ∈ Z with g ≡ i mod 20}

where i = 1, 2, · · · , 20. Let Mj be integers chosen randomly, j = 1, 2, · · · , 20.
Define a function f : Z �→ Z such that

f(g) = g +Mj, if g ∈ Gj . (16)

Finally, we choose random integer g0, and let g0 be the starting point for the
random walk. While computing gi and g2i by the rules

gi+1 = f(gi), g2(i+1) = f(f(g2i)),

and store the pair. If gi and g2i satisfy

|gi − g2i| ≡ 0 mod (20k0), (17)

we call that gi and g2i is a match. We are going to explain how to check if gi
and g2i is a match. (In fact, the above process can also be stated as the follows:
Define G = Z20k0 and f ′ : G �→ G with f ′(g) = g +Mj mod 20k0, if g ∈ Gj .
Then by [19], one can find a match gi and g2i satisfying (17) by the linear walk
method. One can see that if g ∈ Gj , then g mod (20k0) ∈ Gj . Thus we need not
compute the modulo operations to find a match. This explains why there is no
modulo in (16). )

Let � = |gi − g2i|. If gi and g2i is a match, then � is a multiple of k0. We can
apply the discussions between (11) and (15) to recover k. Here if gcd(�, e) �= 1, we
used �

gcd(�,e) instead of �. The probability that �−1 mod e > p+q is 1− p+q
e > 1

2 .

In other words, for each pair gj and g2j , we can check if it is a match suitable
to recover k0. By Pollard ρ method, we can find a match of gi and g2i satisfying
(17) in time Õ(

√
K), and finally recover k0 in time Õ(

√
K). Once the right value

of k is known, p and q can be calculated as the discussions at the end of §2.1.

3.2 Cryptanalysis on RSA schemes of Sun et al.

In the RSA schemes of Sun et al. [16,17], bit sizes of the parameters in Schemes
A and B satisfy le ≥ 1

2 (lk + lN ). Thus Theorem 2 can be applied to analyze the
security of Schemes A and B. Considering the square root attack, the size of
parameter k should not be chosen larger than 112 bits.
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4 Conclusion

Since Coppersmith presented new methods of finding small modular and integer
roots of polynomial equations in 1996, variations of these methods have been
widely applied on the cryptanalysis of RSA. However, the square root attacks
can also be used to recover unknown variables whose size is small (e.g., less than
160 bits) in RSA equation, even when Coppersmith’s method does not work. This
paper investigates the baby-step giant-step method and the Pollard’s ρ method.
Our main result, Theorems 1 and 2 to be exactly, presents an application of
these two methods on RSA cryptanalysis.
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Abstract. In this paper, we propose an algebraic broadcast attack
against NTRU, which recovers a single message encrypted multiple times
using different NTRU public keys. Namely, when a message is broad-
casted, under some reasonable assumptions, our attack can be completed
in polynomial time and space. To the best of our knowledge, this is the
first successful broadcast attack against NTRU.

Keywords: Broadcast attack, NTRU, lattice-based cryptosystems,
LWE.

1 Introduction

The NTRU cryptosystem of Hoffstein, Pipher, Silverman [12] is one of the most
practical public key schemes, which is an IEEE 1363.1 Standard [18]. It features
reasonably short, easily created keys, high speed, and low memory requirements.

Coppersmith and Shamir [3] showed the security of NTRU is related to the
hardness of certain lattice problems. Although there are many attacks, like the
ciphertext-only attacks [3,19,15,13], no significant weakness has seemed to be
yet found on NTRU encryption. The most effective attacks may have been the
chosen-ciphertext attacks[14,8], most of which utilize the NTRU’s decryption
failures. When a single message is encrypted multiple times using a NTRU public
key, Hoffstein and Silverman [10] proposed a multiple transmission attack.

Another type of attack, the broadcast attack, was first proposed by Hästad
[9] in 1988. The attack enables an attacker to recover the single message sent
by the sender to multiple recipients, who use the same type of cryptosystrems
but with different keys, without requiring any knowledge of the recipients’ secret
keys. Another effective attack is the hybrid attack [13,17].

In 2009, Plantard and Susilo [22] first considered the broadcast attack against
the lattice-based public key cryptosystems. They constructed many lattices that
share the same short vector carrying the information of a single message. By
intersecting these lattices, they then gave some heuristic attacks using the lattice
reduction algorithm. However, they also showed that their attacks do not apply
to NTRU, since the lattices in general do not share the same short target vector.

W. Susilo, Y. Mu, and J. Seberry (Eds.): ACISP 2012, LNCS 7372, pp. 124–137, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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In this paper, we propose an algebraic broadcast attack against NTRU, which
is based on the new algorithms in [5,6,7,1]. Instead of the lattice reduction al-
gorithm, we present a new algebraic algorithm to complete the attack. The new
algorithm involves nonlinearization and linearization, and can also be used to
solve the learning with errors problem with bounded errors.

Since there are many variants of NTRU, we give our attacks against the main
instantiations: NTRU-1998 [12], NTRU-2001 [11] (with an odd dg whose defini-
tion can be found in Section 2.2) and NTRU-2005 [16]. Under some reasonable
assumption, to complete the attacks, we need gather O(N) (resp. O(N2)) recip-
ients’ public keys and ciphertexts, and solve a set of O(N2) (resp. O(N3)) linear
equations with O(N2) (resp. O(N3)) variables for NTRU-2001 (with an odd dg)
and NTRU-2005 (resp. NTRU-1998), where N is the main parameter of NTRU.
The attacks are efficient since they may be completed in polynomial time and
space, but these attacks become more difficult in practice as N increases.

The hybrid of these attacks and some other attacks, for example, the lattice
reduction attack and the meet-in-the-middle attack, may lead better attacks.
With XL [4,2] type of algorithms, we can further reduce the number of recipients,
but increase the computation complexity. It remains an open problem to find
an efficient broadcast attack with a constant number of recipients. Compared
with the chosen-ciphertext attacks, our attacks don’t need the decryption oracle
or the decryption failures. Compared with the multiple transmission attack, our
attacks allow that the recipients’ public keys are different. Different public keys
make attacking NTRU a hard task. Our broadcast attacks do not work for more
sophisticated padding schemes of NTRU. We can also use our method to attack
some other lattice-based cryptosystems which have a similar linear structure to
NTRU and bounded random perturbations over Zq.

To attack NTRU-1998 and NTRU-2001 with an odd dg, we have to extend
the algorithm in [5,6,7,1] over finite field onto the ring Z2k . Further more, we can
derive N linear equations with fewer variables from every recipient instead of one
linear equation with much more variables. Thus, we use much fewer recipients,
and solve much fewer linear equations for much fewer variables to complete the
attacks.

The paper is organized as follows. Section 2 gives some preliminaries. Section
3 describes our broadcast attacks. Section 4 presents the conclusion.

2 Preliminaries

Let Z be the integer ring, Zq the residue class ring Z/qZ, Fq the finite fields Zq
when q is a prime. We use bold letters to denote vectors, in column notation.
For a vector v, we denote by vi the i-th entry of v.

2.1 The Learning with Errors Problem

The learning with errors (LWE) problem introduced by Regev [23] has many
applications in constructing cryptosystems with security proofs.
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An LWE problem has a parameter n, a prime modulus q, and an error prob-
ability distribution κ on the finite field Fq. Let

∏
m,κ on Fq be the probability

distribution obtained by selecting an element a in Fnq randomly and uniformly,
choosing r ∈ Fq according to κ, and outputting (a, < a,m > +r), where +
is the addition that is performed in Fq. We say that an algorithm solves LWE
with modulus q and error distribution κ, if, for any m in F

n
q , with an arbitrary

number of independent samples from
∏

m,κ, it outputs m with high probability.

2.2 NTRU

We present a brief description of the NTRU-1998 cryptosystems. For more de-
tails see [12]. The NTRU-1998 cryptosystem depends on three integer parameters
(N, p, q) and four sets Lf ,Lg,Lr,Lm of polynomials of degree N − 1 with small
integer coefficients. We choose p, q such that gcd(p, q) = 1 and p is much smaller
than q. Denote the ring Z[x]/(xN − 1) by R and the multiplication in R by ∗.
Every element in R can be represented as a polynomial. For example, f ∈ R can
be represented as f =

∑N−1
i=0 fix

i. We work over the ring R.

Key Generation: Step 1. Choose f ∈ Lf , g ∈ Lg such that there exist
Fq, Fp ∈ R satisfying f ∗ Fq = 1 mod q and f ∗ Fp = 1 mod p. Step 2. Let
h = p ∗ Fq ∗ g mod q.
Public Key: h, p, q.
Private Key: f , Fp.
Encryption: To encrypt a message m ∈ Lm, first we choose an r ∈ Lr ran-
domly, then compute the ciphertext: c = h ∗ r +m mod q.
Decryption: First we compute a = f ∗ c mod q == pg ∗ r+ f ∗m mod q, then
we choose the coefficients of a in the interval from − q

2 to q
2 . By the fact that

all the coefficients of pg ∗ r + f ∗m may be in the interval from − q
2 to q

2 , we
almost get a = pg ∗ r + f ∗ m. Then we recover the message m by computing
m = Fp ∗ a mod p.

As pointed in [20], analyzing NTRU is a tricky task, since there are several
variants of NTRU. We may use totally different ways to attack different variants
of NTRU instead of a uniform one. We summarize the main instantiations of
NTRU in the table below as in [20]:

Variant q p Lf Lg Lm Lr F Ref

NTRU-1998 2k ∈ [N2 , N ] 3 L(df , df − 1) L(dg, dg) Lm L(dr, dr) - [12]
NTRU-2001 2k ∈ [N2 , N ] 2 + x 1 + p ∗ F B(dg) B B(dr) B(dF ) [11]
NTRU-2005 prime 2 1 + p ∗ F B(dg) B B(dr) B(dF ) [16]

where Lm = {m ∈ R : m has coefficients lying between − 1
2 (p−1) and 1

2 (p−1)},
L(d1, d2) = {F ∈ R : F has d1 coefficients equal 1, d2 coefficients equal − 1,
the rest 0}, B denotes the set of all polynomials with binary coefficients, B(d) =
{F ∈ R : F has d coefficients equal 1, the rest 0}.
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2.3 Transforming NTRU into Its Linear Form

In NTRU, a polynomial f =
N−1∑
i=0

fix
i ∈ R can also be represented as a vector:

f = (f0, f1, · · · , fN−1)
T . The multiplication of f and g can be represented as⎛⎜⎜⎜⎝

f0 fN−1 · · · f1
f1 f0 · · · f2
...

...
. . .

...
fN−1 fN−2 · · · f0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

g0
g1
...

gN−1

⎞⎟⎟⎟⎠ . The result is the vector corresponding to f ∗ g

in R. Then, for the equation in R: c = h ∗ r+m mod q, we have the linear form

c = Hr+m mod q, (1)

where H =

⎛⎜⎜⎜⎝
h0 hN−1 · · · h1
h1 h0 · · · h2
...

...
. . .

...
hN−1 hN−2 · · · h0

⎞⎟⎟⎟⎠ .
Proposition 1. For a uniformly random instance of NTRU-1998 (also NTRU-
2001 with an odd dg, NTRU-2005), for any message m, ciphertext c and the

corresponding random vector r, we can find Ĥ ∈ ZN×N
q and b ∈ Zq with very

high probability in polynomial time, without knowing m and r, such that

Ĥm+ r = b mod q.

Proof. For NTRU-2001 with an odd dg and NTRU-2005, H is invertible in
Z
N×N
q with very high probability. So we can get easily from (1): H−1m + r =

H−1c mod q. Let Ĥ = H−1, b = H−1c, then we have: Ĥm+ r = b mod q.
However, For NTRU-2001 with an even dg, H is not invertible. It seems that

we need some extra restrictions on the other parameters, for example, dr, to get
a similar result as the proposition. That’s why we exclude the case.

For NTRU-1998, notice that H is not invertible in ZN×N
q either. However, for

any public key h in NTRU-1998, we can usually find a polynomial h′ ∈ R with
overwhelming probability such that for any r ∈ L(dr, dr): h′ ∗ h ∗ r = r mod q.

We say h is pseudo-invertible as in [21].
As pointed in [21], we can find h′ in polynomial time as follows. Since Rq =

Zq[x]/(x
N − 1) is isomorphic to P1 × P2 where P1 = Zq[x]/(x − 1) and P2 =

Zq[x]/(x
N−1 + xN−2 + · · ·+ 1), we have φ : Rq → P1 × P2.

Since h(1) = 0 mod q, we have φ(h) = (0, h̄) where h̄ denotes the reduction
of h modulo xN−1 + xN−2 + · · ·+1. With high probability, h̄ is invertible in P2.
We denote its inverse in P2 by h̃. Considering the polynomial h′ = φ−1((1, h̃))
in Rq, it satisfies h

′ ∗ h ∗ r = r mod q for r ∈ L(dr, dr).

Let H ′ =

⎛⎜⎜⎜⎝
h′0 h′N−1 · · · h′1
h′1 h′0 · · · h′2
...

...
. . .

...
h′N−1 h

′
N−2 · · · h′0

⎞⎟⎟⎟⎠ , then we have: H ′m+ r = H ′c mod q, from

(1). Similarly, let Ĥ = H ′, b = H ′c, then we have Ĥm+ r = b mod q.
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Obviously, from Proposition 1, for i = 0, · · ·N − 1, we get N linear equations:∑N−1
j=0 Ĥi+1,j+1mj + ri = bi mod q.

3 A Broadcast Attack against NTRU

Suppose there is a sender and n recipients. All recipients use NTRU cryptosys-
tems with the same parameters N , q, p but different public/private keys. The
sender encrypts the single message m with each recipient’s public key with in-
dependent r ∈ Lr respectively, and sends the n ciphertexts to corresponding
recipients. The broadcast attack is to recover m with these n ciphertexts. More
precisely, the attacker wants to recover m from the n equations:

h(i) ∗ r(i) +m = c(i) mod q

where h(i) is the i-th recipient’s public key.
For each recipient, by Proposition 1, we have N linear equations. For each

linear equation, taking
N−1∑
j=0

Ĥ1,j+1mj + r0 = b0 mod q as an example, let a =

(Ĥ1,1, Ĥ1,2, · · · , Ĥ1,N), we have a pair, (a,b0 =< a,m > +r0), which can be
seen as a sample from an LWE oracle. So, recovering m from the n recipients is
similar to solving an LWE problem for m from nN samples.

3.1 The Basic Algorithm for LWE with Bounded Errors

An LWE problem is with bounded errors if the error probability distribution is
on a proper subset ES = {e1, e2, · · · , eD} of Fq with fixed D(D < q). The main
steps of the algorithm for LWE with bounded errors are:

1. Nonlinearization. For any sample (a, < a,m > +r), let b′ =< a,m > +r.

We know that m satisfies:
∑N

i=1 aixi + r = b
′.

So m also satisfies the corresponding nonlinear equation

∏
rk∈ES

(

N∑
i=1

aixi + rk − b′) = 0. (2)

Note here that D needs to be less than q, otherwise the equation above will
be totally trivial, namely the so-called field equations: xqi = xi.

2. Linearization. We will solve Equation (2) by linearization. Notice that the
total degree of every monomial of x1,x2, · · · ,xN in (2) is at most D. We
assign each of such monomials a new variable yi. Let Q(N,D) =

(
N+D
N

)
. We

know that the number of yi’s, denoted by d, is at most Q(N,D)− 1. What’s
more, we can assign xi to be yd−N+i, then we transform (2) into a linear
equation:

∑
i

ciyi = b, where ci is the corresponding coefficient of yi in (2).
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3. Solving. Since there are d yi’s, when we have enough linear equations from
above to find a d× d nonsingular matrix L with good probability such that,
Ly = b, where b is a constant vector, we can find y by solving the set of
linear equations. Then we can solve x = (x1,x2, · · · ,xN )T .

We next estimate the expectation of the number of samples in the algorithm
under an optimistic assumption that v is chosen from Fdq uniformly and inde-
pendently.

Let X be the number of samples until we first have |F | = d, Xi be the number
of samples until we first have |F | = i starting from when we first have |F | = i−1,

where i = 1, 2, · · · , d. Obviously, X =
d∑
i=1

Xi.

When |F | = i−1, the probability we have a new v that can’t be generated by

the vectors in F is 1 − qi−1

qd
. Hence, the expectation of Xi is

1

1− qi−1

qd

= qd

qd−qi−1 .

Then, E(X) =
d∑
i=1

E(Xi) =
d∑
i=1

qd

qd − qi−1
.

We just give an upper bound for E(X) here. Since
qd

qd − qi−1
<

qd

qd − qd−1
=

q

q − 1
, we have E(X) <

q

q − 1
d.

We implemented the algorithm. When we make d + O(N) queries, we have
never failed to obtain an invertible L in all the extensive experiments (thousands
and q > 3), hence to solve the LWE problem. So it is reasonable to believe the
algorithm succeeds with very high probability.

3.2 The Broadcast Attack against NTRU-1998

For NTRU-1998, ES = {−1, 0, 1} and m ∈ {−1, 0, 1}N . Since q = 2k, notice
that the algorithm above works over the finite field but not the ring Z2k and L
is invertible over Zd×d

2k
if and only if L is invertible over Fd×d2 . So, we try to work

over the finite field F2. A nature idea is to transform these equations into the
ones over F2 by simply mapping each coefficient into F2. However, if we did so,
we would get ES = {0, 1} which is not a proper set of F2. So we have to involve
some new ideas to solve the problem.

Since we will work over F2, we don’t recover m directly, but to find another
m′ ∈ FN2 such that m = m′ mod 2. We first show that this is enough for our
attack.

Suppose we have already known m′ = m mod 2, we know exactly which
entries of m are zero. Without loss of generality, we assume mi = 0 for i =
0, 1, · · · , t − 1. Then for every recipient, we eliminate the first t columns of the
corresponding Ĥ, and denote the remaining N × (N − t) matrix by Ĥ ′. We have

Ĥ ′(mt, · · · ,mN−1)
T + r = b mod 2k,

where mi is either −1 or 1 and q is a power of 2. So

Ĥ ′(mt + 1, · · · ,mN−1 + 1)T + r = b+ Ĥ ′(1, · · · , 1)T mod 2k,
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where mi +1 is either 0 or 2. Notice that ri = 0 if and only if the i−th entry of
b+Ĥ ′(1, · · · , 1)T is congruent to 0 modulo 2. We will get a set of ri’s which equal

0. For each of these ri’s, we get a linear equation:
N−t−1∑
j=0

Ĥ ′
i+1,j+1mt+j = bi.

For each recipient, we can have N−2dr such linear equations. When collecting
enough equations, we can obtain these mi’s.

We next show that how to find m′ such that m = m′ mod 2.
From (2), we know m satisfies

∏
rk∈{−1,0,1}(

∑N
i=1 aixi+ rk− b′) = 0 mod 2k,

i.e.
N∑
i=1

a3
ix

3
i + 6

∑
i<j<k

aiajakxixjxk + 3
∑
i	=j

a2
iajx

2
ixj

−6
∑
i<j

b′aiajxixj − 3
N∑
i=1

b′a2ix
2
i +

N∑
i=1

(3(b′)2ai − ai)xi

= (b′)3 − b′ mod 2k.

Since x3
i = xi for xi ∈ {−1, 0, 1} and there exists x̄i ∈ {0, 1} such that x2

i =
xi + 2x̄i, substituting xi for x

3
i , and xi + 2x̄i for x

2
i , we have

6
∑

i<j<k

aiajakxixjxk +
∑
i<j

(3a2iaj + 3a2jai − 6b′aiaj)xixj

+6
∑
i	=j

a2iaj x̄ixj − 6
N∑
i=1

b′a2
i x̄i +

N∑
i=1

(3(b′)2ai − ai + a3
i − 3b′a2i )xi

= (b′)3 − b′ mod 2k.

Since t3 = t mod 2 and t2 = t mod 2 for any integer t, obviously there is a
positive integer u ≥ 1 such that 2u divides the greatest common divisor of all
the coefficients but 2u+1 can not. If u < k, we have

3

2u−1

∑
i<j<k

aiajakxixjxk +
1

2u
∑
i<j

(3a2iaj + 3a2jai − 6b′aiaj)xixj

+
3

2u−1

∑
i	=j

a2
iaj x̄ixj −

3

2u−1

N∑
i=1

b′a2
i x̄i +

1

2u

N∑
i=1

(3(b′)2ai − ai + a3i − 3b′a2i )xi

=
1

2u
((b′)3 − b′) mod 2k−u.

As above, we assign each of the monomials a new variable yi(Notice that
yd−N+i = xi for 1 ≤ i ≤ N), and transform it into a linear equation:

∑
i

c̄iyi =

b̄ mod 2k−u.
Let ci = c̄i mod 2 and b = b̄ mod 2. We get a linear equation over F2:∑

i

ciyi = b mod 2.

Collecting enough equations in our experiments, we always get a matrix L,
by performing Gaussian elimination, such that

Ly =

⎛⎜⎝1 · · ·
. . . ∗
0 IN×N

⎞⎟⎠
⎛⎜⎝y1

...
x

⎞⎟⎠ = b.
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whereas L is not invertible, x = (x1, · · · ,xN )T . Nevertheless, it is enough for us
to recover m′ since we can solve for x.

What’s more, we can use the strategy below to get an invertible L with very
high probability. Notice that u = 1 holds for very high probability. We just use
those samples in which u = 1. So we have∑

i<j<k

aiajakxixjxk +
1

2

∑
i<j

(3a2iaj + 3a2jai − 6b′aiaj)xixj

+
∑
i	=j

aiaj x̄ixj −
N∑
i=1

b′aix̄i +
1

2

N∑
i=1

(3(b′)2ai − ai + a3i − 3b′a2i )xi

=
1

2
((b′)3 − b′) mod 2.

(3)

Denote by y(i,j) the new variable corresponding to x̄ixj , by y{i,j,s} the new
variable corresponding to xixjxs and by c(i,j), c{i,j,s} their coefficients in the
equation above. We claim that

Proposition 2. Denote by S the set {i1, i2, i3} where 1 ≤ ik ≤ N , we have: 1).
c(i,j) = c(j,i) mod 2; 2). c(i,j) =

∑
{i,j}⊂S

cS mod 2.

Proof. The first one is obvious. It remains to prove the second one. Denote by
ĥ(x) the polynomial corresponding to any row of the matrix Ĥ . Since ĥ(x) is

invertible over the ring Z2k [x]/(x
N − 1), we have ĥ(1) = 1 mod 2. Hence,

N∑
i=1

ai = ĥ(1) = 1 mod 2. (4)

Finally, we have c(i,j) = aiaj
N∑
s=1

as =
∑

{i,j}⊂S
cS + a2iaj + aia

2
j =

∑
{i,j}⊂S

cS +

aiaj + aiaj =
∑

{i,j}⊂S
cS mod 2.

We involve some new variables ȳ{i,j,s} = y{i,j,s} +
∑

{i,j}⊂S
(y(i,j) + y(j,i)).

Since c(i,j)y(i,j) =
∑

{i,j}⊂S
cSy(i,j) and c(j,i)y(j,i) =

∑
{i,j}⊂S

cSy(j,i), we have

∑
i<j<k

c{i,j,s}ȳ{i,j,s} =
∑

i<j<k

aiajakxixjxk +
∑
i	=j

aiaj x̄ixj mod 2

=
∑

i<j<k

c{i,j,s}y{i,j,s} +
∑
i	=j

c(i,j)y(i,j) mod 2.

Using the new variables ȳ{i,j,s} in Equation (3), we can eliminate the old vari-

ables y{i,j,s} and y(i,j)(i �= j). Now the number of the variables is d =
(
N
3

)
+(

N
2

)
+ 2N = O(N3).

If we have enough such linear equations such that we can find a d × d non-
singular matrix L satisfying Ly = b, we can find y by solving the set of linear
equations over F2. In our experiments, we can always find an invertible L. So we
can find an m′ such that m = m′ mod 2.
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Remark 3. Notice that from
∑
i

c̄iyi = b̄ mod 2k−u, we can also get the linear

equation:
∑
i

ciyi = b mod 4, when k − u > 1 if we let ci = c̄i mod 4 and

b = b̄ mod 4. If we have enough linear equations, and use the similar strategy
above, we may recover m directly.

3.3 The Broadcast Attack against NTRU-2001 with an Odd dg

For NTRU-2001 with an odd dg, ES = {0, 1} and m ∈ {0, 1}N . As the section
above, we can not use the algorithm for LWE directly. We also propose a new
algorithm below.

First, from Equation (2), we have (
∑N

i=1 aixi − b′)(
∑N

i=1 aixi − b′ + 1) =
0 mod 2k, i.e.

N∑
i=1

a2
ix

2
i + 2

∑
i<j

aiajxixj +

N∑
i=1

(ai − 2b′ai)xi = −(b′)2 + b′ mod 2k.

Since x2
i = xi holds for xi ∈ {0, 1}, we have

2
∑
i<j

aiajxixj +

N∑
i=1

((a2
i + ai)− 2b′ai)xi = −(b′)2 + b′ mod 2k.

Since a2i = ai mod 2, there is obviously an integer u ≥ 1 such that 2u divides
the greatest common divisor of all the coefficients but 2u+1 can not. We have

1

2u−1
(
∑
i<j

aiajxixj +
N∑
i=1

(
a2
i + ai
2

− b′ai)xi) =
−(b′)2 + b′

2u
mod 2k−u.

If u < k, we assign each of the monomials a new variable yi, and transform it
into a linear equation:

∑
i

c̄iyi = b̄ mod 2k−1−u.

Let ci = c̄i mod 2 and b = b̄ mod 2. So we get a linear equation over F2:∑
i

ciyi = b mod 2.

As in Section 3.2, when collecting enough equations in our experiments, we
always get a matrix L by performing Gaussian elimination, such that

Ly =

⎛⎜⎝1 · · ·
. . . ∗
0 IN×N

⎞⎟⎠
⎛⎜⎝y1

...
x

⎞⎟⎠ = b.

whereas L is not invertible. Nevertheless, it is enough for us to recover m.
What’s more, we can also use the strategy below to get an invertible L with

very high probability. Notice that u = 1 holds for very high probability. We only
use those samples in which u = 1. So we have∑

i<j

aiajxixj +
N∑
i=1

(
a2
i + ai
2

− b′ai)xi =
−(b′)2 + b′

2
mod 2. (5)
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Denote by y(i,j) the variable corresponding to xixj (i < j) and by c(i,j) its
coefficient, namely aiaj . We claim that

Proposition 4. For 1 ≤ i ≤ N − 1, c(i,N) =
i−1∑
k=1

c(k,i) +
N−1∑
k=i+1

c(i,k) mod 2.

Proof. By Equation (4), we know that
N∑
k=1

ak = 1 mod 2. So

i−1∑
k=1

c(k,i) +
N−1∑
k=i+1

c(i,k) =
i−1∑
k=1

akai +
N−1∑
k=i+1

aiak mod 2

=
i−1∑
k=1

akai + ai(1−
i−1∑
k=1

ak − ai − aN ) mod 2

=
i−1∑
k=1

akai −
i−1∑
k=1

akai + ai − a2i − aiaN mod 2

= aiaN mod 2
= c(i,N) mod 2

We involve some new variables: ȳ(i,j) = y(i,j) + y(i,N) + y(j,N), where 1 ≤ i ≤

N − 2, i < j ≤ N − 1. Since for 1 ≤ i ≤ N − 1, c(i,N)y(i,N) =
i−1∑
j=1

c(j,i)y(i,N) +

N−1∑
j=i+1

c(i,j)y(i,N) mod 2, we have

∑
i<j<N

c(i,j)ȳ(i,j) =
∑

i<j≤N
aiajxixj mod 2 =

∑
i<j≤N

c(i,j)y(i,j) mod 2.

Using the new variables ȳ(i,j) (i < j < N) in Equation (5), we can eliminate
the old variables y(i,j) (i < j ≤ N). Now the number of the variables is d =(
N
2

)
+ 1 = O(N2).

If we have enough such linear equations such that we can find a d × d non-
singular matrix L satisfying Ly = b, we can find y by solving the set of linear
equations over F2. In our experiments, we can always find an invertible L. So we
can find m.

3.4 The Broadcast Attack against NTRU-2005

For NTRU-2005, ES = {0, 1} and m ∈ {0, 1}N . Since q is a prime, so we can
use the algorithm for LWE directly. To decrease the number of the variables,
we can also use the fact x2

i = xi holds for xi ∈ {0, 1}. So we use the following
equations

2
∑
i<j

aiajxixj +

N∑
i=1

((a2
i + ai)− 2b′ai)xi = −(b′)2 + b′ mod q.

If we have enough linear equations such that we can find a d × d nonsingular
matrix L satisfying Ly = b, where d =

(
N
2

)
+ N = O(N2), we can find y by

solving the set of linear equations over Fq.
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3.5 Analysis of the Attacks

Some Observations. Notice that we can obtain N linear equations from every
recipient. If we assume that d linearly independent linear equations can be found
fromO(d/N) recipients with very high probability, it is easy to show that we need
gather O(N) (resp. O(N2)) recipients’s information and solve a set of O(N2)
(resp. O(N3)) linear equations to complete the attack against NTRU-2001 with
an odd dg and NTRU-2005 (resp. NTRU-1998). With ordinary Gaussian elimi-
nation and multiplication, we have the following result.

Variant N d Recipients Space Time
NTRU-1998 N O(N3/6) O(N2/6) O(N6/36) O(N9/768)
NTRU-2001 N O(N2/2) O(N/2) O(N4/4) O(N6/24)

NTRU-2005 N O(N2/2) O(N/2) O(N4 logN/4) O(N6 log2N/24)

It remains to discuss the assumption. We have done many experiments and
find that d linearly independent linear equations can be found from O(d/N)
recipients with probability very close to one. So the broadcast attacks succeed
with overwhelming probability. In the appendix, we give the concrete estimates
for the attack complexities for the cases used in IEEE 1363.1 Standard [18] based
on NTRU 1998, regardless of its padding. Next we give our experimental results.

Experimental Results. All experiments were performed on a Windows XP
system with a 3.20 GHz Pentium 4 processor and 2 GByte RAM using Shoup’s
NTL library version 5.4.1 [24].

We implemented the three instantiations of NTRU and the successful attacks
against them, where we find a L invertible. For NTRU-1998 and NTRU-2001,
we adopted the algorithms for u = 1. In our experiments, we always obtained an
invertible L with the recipients whose number is just a little more than or equal
to d/N . Some results are listed below:

Variant N q p df dg dr d Recipients Rank(L) Result
NTRU-1998 47 32 3 7 8 5 17390 373 17390 Success
NTRU-2001 167 128 2 + x 60 19 18 13862 88 13862 Success
NTRU-2005 107 97 2 25 24 25 5778 56 5778 Success

All the experiment finish within minutes.

3.6 Improving the Attack

We have some methods to improve the attack.

With the Known Bits. If we know some bits, either the message bits or the
random bits, we can also improve the attack.

– If we know some bits of m, for example, m0,m2, · · · ,mt−1, then we can
eliminate those monomials containing at least one of these known bits.

– If we know some bits of r, for example, r0, r2, · · · , rt−1, then for i = 0, · · · , t−
1, we have t linear equations:

∑N−1
j=0 Ĥi+1,j+1mj + ri−bi = 0 mod q. Since
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these equations are linear independent, we can represent some t mi’s by the
other N − t variables, hence also eliminate those monomials containing at
least one of these t mi’s.

However, how can we obtain these bits? We next show that ”guessing” is a good
idea for NTRU as pointed in [19].

For any vector v = (v0,v1, · · · ,vN−1)
T , we denote by v(r) its r-cycle:

v(r) =

{
v, r = 0;
(vN−r,vN−r+1, · · · ,vN−1,v0,v1, · · · ,vN−r−1)

T , r ∈ {1, · · · , N − 1}.

For NTRU, since Hr + m = c mod q, we have Hr(i) + m(i) = c(i) mod q for
i = 0, · · · , N − 1. We take r as an example to show how we guess some of its bits.
For example, we guess r0 = 0, r2 = 0, · · · , rt−1 = 0. Then, if there is an i-cycle

of r such that, for j=0,...,t-1, r
(i)
j = rj , we can use the corresponding equation

Hr(i) +m(i) = c(i) mod q instead of the origin one for any recipient to continue
the attack. Of course, we don’t knowwhat i is. However, we can commit the attack
for every i ∈ {0, 1, · · · , N − 1}, then check whether we get the correct message.

By [19], we know that the probability that there is an i-cycle satisfying our

need is approximately equal to 1− (1−
dr−1∏
j=0

(1− t
N−j ))

N for L(r) = B(dr), which

is very close to 1 for small t. For more analysis see [19].

With the Clue from the Parameters. We can easily get: h(1)r(1)+m(1) =
c(1) mod q, when we take h(x), r(x),m(x) and c(x) as polynomials. Since we
know h(x), c(x), and by Lr we also know that r(1) = 0 in NTRU-1998 and

r(1) = dr in NTRU-2001 and NTRU-2005, we have
∑N−1

j=0 mj + h(1)r(1) −
c(1) = 0 mod q. Then we can eliminate a variable. For example, since m0 =

h(1)r(1)− c(1)−
N−1∑
j=1

mj mod q, we can substitute m0 in every equation.

Use the XL or the Mutant XL Algorithms. Our attack can also be further
improved with XL and MutantXL algorithms[2,4], or similar Gröbner basis type
of algorithms. For instance, in case of NTRU 2001, if we do not have enough
recipients to obtain enough ciphertext to generate enough quadratic equations
in our attack, we could use the idea of the XL type of algorithm by multiplying
the derived equations by monomial of degree one or higher, such that we may
solve our system of equations at a higher degree. In this case, our attack could
work with much fewer recipients but higher computation cost. The details of this
part of work will be left to a subsequent paper.

4 Conclusion

In this paper, we present an algebraic broadcast attack against NTRU. Under
a reasonable assumption, the attack can be completed in polynomial time and
space. The experiments show that the attack succeed with probability very close
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to one. This is the first efficient successful broadcast attack against NTRU. How-
ever, it is still an open problem to find a more efficient broadcast attack with
just a constant number of recipients.
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Abstract. This paper presents a model for generating a MAC tag with
a stream cipher using the input message indirectly. Several recent pro-
posals represent instances of this model with slightly different options.
We investigate the security of this model for different options, and iden-
tify cases which permit forgery attacks. Based on this, we present a new
forgery attack on version 1.4 of 128-EIA3. Design recommendations to
enhance the security of proposals following this general model are given.

Keywords: MAC, Stream ciphers, Forgery attacks, Grain-128a, Sfinks,
128-EIA3.

1 Introduction

A Message Authentication Code (MAC) is used to provide assurance of the in-
tegrity of a message, and requires use of an algorithm along with a secret key.
MACs are commonly formed using block ciphers in certain modes, and keyed
hash functions. Recently algorithms to construct MACs using stream ciphers
have been proposed. Some proposals using symmetric ciphers claim to provide
both confidentiality and integrity assurance; these are referred to as Authenti-
cated Encryption (AE).

There is extensive research in the existing literature on generating MAC tags
using block ciphers, but much less on generating MAC tags using stream ciphers.
This may be due to the existence of block cipher standards (DES, AES) with
well known modes of operation. However, the potential for increased speed and
a smaller footprint in hardware (and often software), makes stream cipher based
MACs worth considering.

Lai et al. [10] proposed a cryptographic checksum algorithm based on stream
ciphers. Golić also describes a mode of operation to generate a MAC using a
stream cipher [8]. More recently, seven of the thirty-four stream cipher pro-
posals submitted to eSTREAM [6] claimed to provide AE. The current NIST
cryptographic hash competition received sixty-four submissions; seven of these
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use stream cipher algorithms to generate a hash value. Although flaws exist in
these proposals, resulting in none of them being considered as finalists in the
respective competitions, the proposals demonstrate increasing interest in MAC
generation using stream ciphers.

Nakano et al. [12] proposed a general model for generating a MAC tag using
stream ciphers by injecting the input message directly into the internal states of
the ciphers. Their security analysis suggests that the message injection function
is critical for achieving collision resistance for MACs which fit the model. This
relates to [11], in which two methods for direct message injection into the internal
states of the ciphers are examined.

In this paper we analyse proposals for MAC generation which use stream
ciphers in a way that is not considered in the Nakano model [12]. Some existing
stream cipher proposals do not incorporate the input message directly into the
internal state of the cipher. Instead, they use the input message to control the
compression of a bitstream from the keystream generator. We propose a general
model for generating a MAC tag using stream ciphers in this manner, which
we refer to as indirect message injection. We consider possible options at several
stages of MAC generation under this model, and analyse the security implications
associated with these options with respect to forgery attacks.

The paper is organized as follows. Section 2 outlines the phases in generating
a MAC tag, and discusses the forgery attacks on this model. Section 3 describes
our general model for generating a MAC using a stream cipher with indirect
message injection. Three specific stream cipher algorithms that generate a MAC
tag in this way (128-EIA3 [4,5], Grain-128a [1] and Sfinks [2]) are examined in
section 4. Our security analysis is presented in section 5, and concluding remarks
are contained in section 6.

2 MAC Generation

A MAC algorithm takes three inputs: an arbitrary length message M of length
l bits, a k-bit secret key K and a v-bit initialisation vector IV , and produces a
d-bit MAC tag.

2.1 MAC Generation Phases

The generation of a MAC tag usually involves three phases: preparation, ac-
cumulation and finalization. The preparation phase involves initializing the
internal states of the integrity components of the device, and preparing the in-
put message. Message preparation may involve adding padding bits to either
end of the message M . The accumulation phase is where the input message
is processed and values are accumulated in the internal states of the integrity
components. The finalization phase completes the processing of the MAC tag,
usually by combining the stored value at the end of the accumulation phase with
a mask.
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2.2 Forgery Attacks on MAC Generation

Consider the possibility of a forgery attack being conducted as follows. Suppose
for a message M , a MAC tag MACK,IV (M) is generated using key K and
IV . The sender intends to transmit the message-MAC tag pair to a particular
receiver. Assume a man in the middle attacker intercepts the message-MAC tag
pair, and can modify M and possibly also MACK,IV (M) to calculate a valid
MAC tag MACK,IV (M

′) for a modified message M ′. The attacker then sends
the new pair (M ′,MACK,IV (M ′)) to the intended recipient. If it is possible
to alter M to M ′ and provide a valid MACK,IV (M

′) without any knowledge
of the keystream sequences used to generate MACK,IV (M), the forgery attack
is successful. In this paper, we investigate the possibility of such forgeries for
MACs formed by indirect message injection, for modifications involving flipping,
deleting or inserting bits in the original message M .

3 MAC Generation Using Indirect Message Injection

Common structures for MAC algorithms use the message directly and accumu-
late message values in a component of the device. Some recent AE stream cipher
proposals use a different strategy. These proposals use the input message to
control the accumulation of a keystream sequence, with the accumulated value
forming the basis of the MAC tag. In this section we describe explicitly a model
for generating a MAC tag using stream ciphers in this manner.

3.1 General Structure for AE Algorithms

The keystream generator of a stream cipher takes as inputs a secret key K and
a public IV , and generates a pseudorandom binary sequence. Usually these se-
quences are used as keystreams for binary additive stream ciphers to provide
confidentiality for plaintext messages. However, they can also be used for in-
tegrity applications. Where authenticated encryption is required, the sequence
used for the integrity application may be produced by the same generator as
the sequence used for the confidentiality application, but a different keystream
generator could also be used. Figure 1(a) shows a single keystream generator us-
ing K and an IV to produce two different binary sequences, zt and yt, used for
confidentiality and integrity applications, respectively. If one generator is used
to produce both sequences, then we assume that the two sequences are distinct.
Examples of such algorithms include Sfinks [2] and Grain-128a [1]. Figure 1(b)
shows an alternative case where the sequences zt and yt are generated by sep-
arate keystream generators, with distinct keys and IV s for each: KC , IVC , KI

and IVI , respectively. An example of such algorithms is ZUC [4], used in 128-
EIA3. In this paper our focus is on the integrity component of the designs; the
part inside the dashed lines in Figure 1 (for both (a) and (b)). In this figure, we
also use dashed lines from the output ciphertext to the integrity component of
the algorithm to show that either plaintext or ciphetext could be used by this
model to control the segment of keystream to be accumulated.
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Keystream Generator 

Confidentiality  Integrity 

Plaintext 
yt zt 

MAC tag  Ciphertext 

IV K 

Confidentiality  Integrity 

Plaintext 
yt zt 

MAC tag  Ciphertext 

IVI KI IVC KC 

Keystream Generator Keystream Generator 

(a) (b)

Fig. 1. General structure for AE algorithms

3.2 Structure of the Integrity Algorithm

The integrity component in Figure 1 consists of two registers, each of d binary
stages. The relationship between these two registers, the keystream sequence and
message M is shown in Figure 2.

Shift Register R r[0] r[d-1] 

Register A a[0] a[d-1] 

mi 

MAC tag 

Accumulation  

Finalization  
Final mask 

yt 

Fig. 2. MAC generation using indirect message injection

The first register is a binary shift register, denoted R. Let Rt denote the
contents of R at time t, with Rt = (rt[0], . . . , rt[d − 1]) and initial contents
R0 = (r0[0], . . . , r0[d− 1]). At each time clock t, for t > 0, the contents of R are
updated using the binary sequence y as follows:

rt[i] =

{
rt−1[i+ 1], for i = 0, . . . , d− 2
yt−1, for i = d− 1

(1)

Thus the contents of register R can be considered as a “sliding window” of length
d on the sequence R0||y, where || denotes concatenation.

The second register is an accumulation register, denoted A. Let At denote
the contents of A at time t, with At = (at[0], . . . , at[d− 1]) and initial contents
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A0 = (a0[0], . . . , a0[d− 1]). The contents of A are updated using the contents of
R, conditional on the value of the input message bitmt, according to Equation 2.
If mt = 1 then A is updated by XORing the current contents with the contents
of R at time t; otherwise A remains unchanged:

At =

{
At−1 ⊕Rt−1, if mt = 1
At−1, otherwise

(2)

The input message M controls which d-bit segments of the sequence R0||y are
accumulated into register A. When the ith message bit has been processed, the
value in register A can be expressed as Ai = A0⊕TiMi, whereMi consists of the
first i bits of the message M and Ti is a d × i matrix such that the jth column
of Ti contains Rj , for j = 0, . . . , i− 1; that is:

Ai = A0 ⊕ TiMi

=

⎛⎜⎜⎜⎝
a0[0]
a0[1]
...

a0[d− 1]

⎞⎟⎟⎟⎠⊕

⎛⎜⎜⎜⎝
r0[0] r0[1] . . . r0[d− 1] y0 . . . yi−d−1

r0[1] r0[2] . . . y0 y1 . . . yi−d
...

... . .
. ...

... . .
. ...

r0[d− 1] y0 . . . yd−2 yd−1 . . . yi−2

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
m0

m1

...
mi−1

⎞⎟⎟⎟⎠ .
Note also that each row of Ti consists of i consecutive bits from the sequence
R0||y and is closely related to both the preceding and following rows.

When all of the message bits have been processed, the MAC finalization phase
begins. This involves combining the final contents of A with a masking value
F = (f [0], . . . , f [d− 1]). Thus, for a message M of length l we have

MAC(Ml) = Al ⊕ F = A0 ⊕ TlMl ⊕ F (3)

3.3 Optional Processes

For the general model using indirect message injection in the accumulation phase,
as shown in Figure 2, we consider several options for the preparation and final-
ization phases, respectively.

In the preparation phase, options relate to the initialization of the two
registers R and A, and to preparation of the message. Either register could be
initialized with fixed values, such as all zeroes; or with key dependent values,
such as a segment from the keystream sequence y. The input message could
be padded, by appending a specified sequence of bits at either the beginning,
the end, or at both places. Alternatively no padding could be applied. If Ml is
padded with n bits, we use Mp to denote the padded message, where p = l+ n.

In the finalization phase, the final contents of accumulation register A are
combined with a mask, as shown in Figure 2. The mask may be obtained from
the sequence used for the accumulation phase, y, or from another sequence. For
AE this may be z the sequence used for the confidentiality application. In some
cases a null mask (all zero values) is used.
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4 Current Proposals Using This Model

We examine the MAC generation process for algorithms that use the model
presented in section 3.2, but with slight differences in the options applied. As
each uses the same accumulation process, we describe only the options taken for
the preparation and finalization phases for these ciphers.

4.1 128-EIA3 Version 1.4

Version 1.4 of the 128-EIA3 [3] integrity algorithm uses the ZUC stream cipher
[5] as a keystream generator. ZUC is a word-based stream cipher with word size
32 bits, that uses 128-bit secret key and 128-bit IV . The 128-EIA3 MAC tag
has length d = 32 bits.

Preparation Phase. 128-EIA3 does not use physical registers for R and A
but they use instead variables k and T to represent these registers respectively.
Register A is initialized with all zero values and register R is initialized with
keystream sequence. Let (y−32, y−31, . . . , y−1) denote the first 32 bits of the
keystream y produced; then

R0 =

⎛⎜⎜⎜⎝
y−32

y−31

...
y−1

⎞⎟⎟⎟⎠ .
The input message Ml is padded by adding one bit at the end of the message,
so Mp =Ml||1 = (m0, . . . ,ml−1, 1).

Finalization Phase. After all l + 1 bits of the padded message have been
processed, the contents of A at time l + 1 are combined with the final mask, a
32-bit segment from y starting at yl+32. The final MAC tag is given by:

MAC(Mp) =

⎛⎜⎜⎜⎜⎜⎝
y−32 y−31 . . . y−1 y0 . . . yl−32

y−31 y−30 . . . y0 y1 . . . yl−31

...
... . .

. ...
... . .

. ...
y−2 y−1 . . . y29 y30 . . . yl−2

y−1 y0 . . . y30 y31 . . . yl−1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
m0

m1

...
ml−1

1

⎞⎟⎟⎟⎟⎟⎠⊕

⎛⎜⎜⎜⎜⎜⎝
yl+32

yl+33

...
yl+62

yl+63

⎞⎟⎟⎟⎟⎟⎠ .

4.2 128-EIA3 Version 1.5

Version 1.5 of 128-EIA3 was proposed in response to a successful forgery attack
[7] on version 1.4. We discuss this attack in more detail in section 5. This version
is identical to version 1.4 except in the starting position of the final mask, ob-
tained from the sequence y. Instead of starting at bit number (l+32), the mask
in version 1.5 starts at the beginning of the next 32-bit word of the bitstream.
The final MAC tag is given by:
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MAC(Mp) =

⎛
⎜⎜⎜⎜⎜⎝

y−32 y−31 . . . y−1 y0 . . . yl−32

y−31 y−30 . . . y0 y1 . . . yl−31

...
... . .

. ...
... . .

. ...
y−2 y−1 . . . y29 y30 . . . yl−2

y−1 y0 . . . y30 y31 . . . yl−1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

m0

m1

...
ml−1

1

⎞
⎟⎟⎟⎟⎟⎠

⊕

⎛
⎜⎜⎜⎜⎜⎝

y(�l/32�+1)∗32
y((�l/32�+1)∗32)+1)

...
y((�l/32�+1)∗32)+30)

y((�l/32�+1)∗32)+31)

⎞
⎟⎟⎟⎟⎟⎠

.

4.3 Grain-128a

Grain-128a [1] is a bit-based cipher from the Grain family [9] with an added
authentication mechanism. Grain-128a uses a 128-bit secret key and a 96-bit
IV , and generates two sequences, zt and yt, used for confidentiality and integrity
applications, respectively. The MAC tag has length d = 32 bits.

Preparation Phase. Both R and A are initialized directly from the Grain-
128a bitstreams. Let (y−64, y−63, . . . , y−33, y−32, . . . , y−1) denote the first 64 bits
of the keystream y produced; then

A0 =

⎛⎜⎜⎜⎝
y−64

y−63

...
y−33

⎞⎟⎟⎟⎠ and R0 =

⎛⎜⎜⎜⎝
y−32

y−31

...
y−1

⎞⎟⎟⎟⎠ .
The input message is padded with a single bit of value 1, so Mp =Ml||1.

Finalization Phase. After all l + 1 bits of the padded message have been
processed, the contents of A at time l + 1 represents the final MAC tag. That
is, the final mask is a null mask.

MAC(Mp) =

⎛⎜⎜⎜⎝
y−64

y−63

...
y−33

⎞⎟⎟⎟⎠⊕

⎛⎜⎜⎜⎝
y−32 y−31 . . . yl−32

y−31 y−30 . . . yl−31

...
... . .

. ...
y−1 y0 . . . yl−1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝
m0

m1

...
ml−1

1

⎞⎟⎟⎟⎟⎟⎠ .

4.4 Sfinks

The Sfinks [2] stream cipher proposal, submitted to eSTREAM [6], includes an
authentication mechanism. The bit-based keystream generator uses an 80-bit
secret key and an 80-bit IV , to form an initial state for the 256 bits LFSR,
which is the major component of the keystream generator. Nonlinear filters are
applied to the contents of the LFSR to produce two different sequences z and y,
used for confidentiality and integrity applications, respectively. In addition, two
64-bit registers are used in the authentication mechanism in the manner shown
in Figure 2. The Sfinks MAC tag has length d = 64 bits.
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Preparation Phase. Before processing the message, both R and A are set to
all zero and an initialization algorithm is used to incorporate the first 128 bits of
keystream (y−128, y−127, . . . , y−1) into the initial values of these registers. This
algorithm consists of updating the two registers R and A 128 times according
to Equations 1 and 2 but with mi = 1 for −127 ≤ i ≤ 0. Note that this process
is equivalent to padding the message at the beginning by concatenating with a
sequence of 128 ones. That is Mp = (1, 1, . . . , 1)||(m0, . . . ,ml−1).

Finalization Phase. The final contents of register A are combined (by XOR-
ing) with a final mask that comprises 64 consecutive bits from the confidentiality
sequence z, beginning immediately after the segment used to encrypt the input
message. The final MAC tag is:

MAC(Mp) =

⎛⎜⎜⎜⎜⎜⎝
0 0 . . . 0 y−128 . . . yl−65

0 0 . . . y−128 y−127 . . . yl−64

...
... . .

. ...
... . .

. ...
0 0 . . . y−67 y−66 . . . yl−3

0 y−128 . . . y−66 y−65 . . . yl−2

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
...
1
m0

...
ml−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⊕

⎛⎜⎜⎜⎜⎜⎜⎜⎝

zl
zl+1

zl+2

...
zl+62

zl+63

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

5 Forgery Attacks

Generating aMAC tag using the input message indirectly is simple and fast, as the
accumulation phase makes repeated use of the XOR operation. In this section, we
analyze the security provided by MACs generated using this model with respect
to a man in the middle forgery attack as described in section 2.2. In our analysis
we assume that the binary sequences produced by the keystream generators are
pseudo-random and cannot be distinguished from truly random sequences.

Our analysis considers particularly the options for the preparation and finaliza-
tion phases, and explores the security implications of particular choices. In most
cases, modifying bits between the ends of a non-zero message changes which seg-
ments of the (unknown) pseudo-random sequence are accumulated into register
A, so this should not lead directly to forgery attacks. Instead we consider forg-
eries related to the modification of bits at the ends of the messageM . Recall from
Equation 3 that the MAC tag MACK,IV (Ml) takes the form MACK,IV (Ml) =
A0 ⊕ TlMl⊕ F = (TlMl)⊕ (A0 ⊕F ). Note that the final MAC tag is simply the
XOR combination of the separate effects of the accumulation process Tl Ml and
the masking vector A0 ⊕ F . In our analysis, we first consider the security of the
accumulation process TlMl, and then the effect of the masking elements A0⊕F .

5.1 Security of the Accumulation Process

Consider a message M of length l, with no padding. Let the vector X =
(x0, x1, . . . , xd−1) denote the output of the accumulation process. We represent
the accumulation process in matrix form as follows:



146 M. ALMashrafi et al.

X(Ml) = TlMl =

⎛⎜⎜⎜⎝
r0[0] r0[1] . . . r0[d− 1] y0 . . . yl−d−1

r0[1] r0[2] . . . y0 y1 . . . yl−d
...

... . .
. ...

... . .
. ...

r0[d− 1] y0 . . . yd−2 yd−1 . . . yl−2

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
m0

m1

...
ml−1

⎞⎟⎟⎟⎠ .
Where a message M is modified to obtain a new message M ′, we will use the
notation X ′ = (x′0, x

′
1, . . . , x

′
d−1) to refer to X(M ′).

Bit Flipping Forgeries. Consider firstly the case where R is initialized with
zero values. Then all elements in the first column of matrix Tl are zero. Now m0,
the first bit of Ml, has no effect on the value of X(Ml). Thus it is possible to
modify Ml by flipping m0. Let mi denote the complement of mi. The output X

′

for the modified message M ′ = (m0, . . . ,ml−1) is exactly the same as X(Ml).
This collision clearly leads directly to a forgery; the attacker can provide a valid
X ′ for M ′ with probability of 1.

Similarly, since all elements of the second column are zero except possibly y0,
it follows that message bit m1 only affects bit xd−1 of X(Ml). Modifying Ml by
flippingm1 requires the attacker to guess only x

′
d−1 to constructX

′ for the modi-
fied message. For the modified messageM ′ = (m0,m1, . . . ,ml−1), the probability
that X(M ′) will be exactly the same as X(Ml) is therefore 0.5. Similarly, for a
message M ′′ modified in the first two bit positions, M ′′ = (m0,m1, . . . ,ml−1),
the probability that X(M ′′) collides with X(Ml) is also 0.5. In general, if we flip
bit mi and any of the bits up to mi in the original message, for 0 ≤ i ≤ d − 1,
then the probability of collision is 2−i.

Consider now the case where R0 is known and of the form (1, 0, . . . , 0). Then
all elements in the first column of matrix Tl are zero except r0[0] = 1. Now m0,
the first bit of Ml, affects only bit x0 of X(Ml). Thus it is possible to modify
Ml by flipping m0 and to provide a valid X ′ for M ′

l = (m0,m1, . . . ,ml−1), by
flipping x0. That is, X ′ = (x0, x1, . . . , xd−1). Thus an attacker can produce a
valid MAC for the forged message M ′ with probability of 1.

Similarly, for R0 = (1, 1, 0, . . . , 0), all elements of the first column are zero
except r0[0] and r0[1], and in the second column all elements are zero except
r0[1] and possibly y0. Thus message bit m0 affects positions x0 and x1 of X(Ml),
while message bitm1 affects x0 and possibly xd−1. ModifyingMl by flipping both
m0 and m1 requires the attacker to flip only x1 to form x′1 and to guess x′d−1.
Therefore, the probability that an attacker can construct a valid vector X ′ for
M ′′ = (m0,m1, . . . ,ml−1) is 0.5.

In general, for any known R0, if we flip bit mi and any of the bits up to mi in
the original message, for 0 ≤ i ≤ d− 1, then we can construct a valid X ′ for this
modified message M ′ by flipping the required bits in X and guessing the final
i bits in vector X ′. Therefore, the probability that an attacker can construct a
valid vector X ′ for M ′ is 2−i.

Resistance against this type of forgery attack can be provided in two ways.
Firstly, we could initialize registerR using key dependent values, such as a segment
from the keystream sequence, y. Alternatively, the message Ml may be padded
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by concatenating with a segment of all ones, so thatMp = (1, 1, . . . , 1)||Ml. The
padding should consist of at least d ones so that all message bits affect all bits in
X , and hence all bits in the final MAC tag, in an unpredictable manner. Note that
a key dependent initialisation ofRmay be the more efficient approach, as padding
the message increases both the length of the message and the size of the matrix
T , requiring at least (d+ l) operations to generate the final MAC tag.

Bit Deletion Forgeries. Suppose we modify M by deleting m0 to obtain
M ′
l−1 = (m1,m2, . . . ,ml−1). Then the matrix Tl−1 for M ′

l−1 is just the matrix
Tl for Ml without the last column of Tl. Note in Equation 1, for 1 ≤ i ≤ d− 1,
that row i in matrix T is row i − 1 shifted one position to the left, and with
a new value as the final element in the row. Applying this to X = Tl Ml and
X ′ = Tl−1 M

′
l−1, it follows that xi = r0[i]m0 + x

′
i+1, for 0 ≤ i ≤ d− 2.

Now consider the case where R is initialized with zero values. Then, all
elements in the first column of matrix Tl are zero and hence xi = x′i+1 for
i = 0, . . . , d− 2; that is, X ′ = (β,X � 1) for some unknown β. We call this the
sliding property of the product Ti Mi. An attacker can guess β, and hence pro-
vide a valid X ′ for M ′ with probability of 0.5. Similarly, an attacker can form a
messageM ′′ by deleting i bits from the beginning of the messageMl, and obtain
the new X ′′

l−i = (β0, β1, . . . , βi−1, X � i), where the bits β0, β1, . . . , βi−1 must
be guessed by the attacker. The attacker will provide a valid X for M ′′

l−i with
probability 2−i, for 1 ≤ i ≤ d. Note that for i = d, this is effectively a brute
force attack on X , so this attack is only effective for deletion of up to the first
d− 1 bits of the message. This attack can also be adapted for the case when R0

is non-zero but known; all that is required is to flip appropriate bits of X , as
described earlier in this section, before shifting X and guessing β0, β1, . . . , βi−1.

Suppose now that R0 is unknown but that the first j bits of the message are
known to be zeroes. We can again delete the first i ≤ j bits of the input message,
shift X by i times and guess β0, β1, . . . , βi−1 to get a valid X ′ for the modified
message. The attacker will provide a valid X ′ for M ′

l−i with probability 2−i, for
1 ≤ i ≤ d.

The attacks discussed above can all be prevented by either padding the mes-
sage at the start with at least d ones or by initialising R with unknown bits and
padding the message at the start with a single one.

Now suppose that we try deleting bits from the end of a message. Assume
l > d, if we delete the last bit of M , then xi = x

′
i + y(l−d+i−1)ml−1, for 0 ≤ i ≤

d− 1. If ml−1 = 1, the second term is unknown since it involves keystream bits,
but if ml−1 = 0, then X ′ = X , giving rise to a potential MAC forgery. The same
argument clearly applies for deleting any number of zeroes from the message.
Such forgeries can be prevented by padding the message with a final one.

Bit Insertion Forgeries. Suppose we modifyMl by appending additional zero
bits to the end of the message to obtain M ′

l+n = M ||(0, . . . , 0). In our matrix
representation, adding n zeroes to the end of Ml requires adding n columns
to matrix T . During the accumulation process, regardless of the values in these
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columns, multiplying by the additional message bits of value zero does not change
the value of X . Hence X(M ′

l+n) = X(Ml), for any n > 0. Again, this collision
leads to an obvious forgery attack which succeeds with probability 1.

Now consider the effects of modifyingMl by inserting an additional bit of value
1 at the end of the message. During the accumulation process, the additional
column of T will be multiplied by the additional message bit of value 1 and this
may change the values inX . An attacker must guess d elements in that additional
column in order to calculate a valid X . So the probability of obtaining a valid
X for this modified message is the same as the probability of brute force attack
on the MAC. Therefore forgery attacks consisting of inserting zero bits at the
end of the message can be prevented if we pad the message with a bit of value
1 at the end. An equivalent solution, which we discuss in the following section,
is to use a masking term that depends on the message length.

Now suppose we modify Ml by adding a zero bit to the beginning of the
message; that is, M ′

l+1 = 0||M . From the structure of Tl and Tl+1, it follows
that x′i = r0[i]0 + xi+1, for 0 ≤ i ≤ d− 2. That is x′i = xi+1 for i = 0, . . . , d− 2,
so X ′ = (X � 1, α) for some unknown value α. An attacker can guess α, and
hence provide a valid X ′ for M ′ with probability of 0.5. Similarly, an attacker
can form a messageM ′′

l+i by adding i zeroes to the beginning of messageMl, and
obtain the new X ′′

l+i = (X � i, α0, α1, . . . , αi−1), where the bits α0, α1, . . . , αi−1

must be guessed by the attacker. The attacker will provide a valid X for M ′′
l+i

with probability 2−i, for 1 ≤ i ≤ d. This is the basis of the previously reported
attack on 128-EIA3 version 1.4 [7].

If R is initialised with zeroes, then this attack will work for inserted bits of
either value, since the first i bits of M ′′

l+i are all multiplied by zeroes in the first
d − i + 1 rows of Tl+i. Therefore, the inserted bits affect only the last i − 1
bits of X ′′

l+i, which are bits that must be guessed anyway. Further, this forgery
can again be adapted to the case of R0 known (but not necessarily zero), since
the effects of any inserted bits of value 1 can be determined and allowed for in
applying the attack.

From the above discussion, it follows that attacks involving the insertion of
bits at the start of a message can be prevented by ensuring that R0 is initialized
with unknown values (keystream) and that the start of the message is padded
with at least one bit of value 1.

5.2 Security Considerations for the Masking Vector A0 ⊕ F

The forgeries discussed in section 5.1 can all be prevented by suitable choices
of R0 and of message padding; specifically, by initialising R with keystream bits
and padding the message with a bit of value 1 at both ends. The masking vector
A0 ⊕ F provides an alternative method of preventing many of these forgeries.
We now discuss the security implications associated with various options for this
term. If this term is to contribute to the security of the MAC, it is important
that its contents are unknown to the attacker. Therefore at least one of A0 and
F must be sourced from keystream.
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If R0 is known and there is no message padding, the accumulation term X =
TlMl is vulnerable to attacks involving insertion or deletion of zeroes at the end
of the message and to insertion or deletion of bits at the start of the message. (If
R0 is unknown, only the attacks involving insertion or deletion of zeroes apply.)
Forgeries involving insertions or deletions at the start of a message rely on the
sliding property of Tl Ml described in section 5.1. These can be prevented by
using an appropriate mask. It is important that changes in the length of the
message do not result in corresponding changes in the position of the mask bits.
Otherwise the sliding property in the accumulation process will apply to the
MAC as a whole. The easiest way to satisfy this requirement is to initialise A
with bits from a fixed position such as the start of the keystream sequence y.

Conversely, forgeries involving zeroes inserted or deleted at the end of the
message rely on the fact that the additional bits have no effect on the accu-
mulated value X . Such forgeries can be prevented by using an unknown mask
that depends on the message length, for example by populating F with a se-
quence of keystream bits starting at a fixed distance from the last bit used in
the accumulation process. Together, these choices for A0 and F provide an effec-
tive alternative to message padding as a means of preventing bit insertion and
deletion attacks. Note, however, that the masking term A0 ⊕ F cannot prevent
attacks based on flipping bits of the message.

5.3 Security Analysis of Existing Ciphers

In this section, we show how the previous attack on version 1.4 of 128-EIA3
works using our model and then we extend this attack to a new attack on the
same version of this algorithm. Then we investigate the security provided by the
existing ciphers that follow this model.

Previous Attack on 128-EIA3 Version 1.4 [7]. Recall that for 128-EIA3,
A0 = (0, . . . , 0), so the masking value is merely the value of F , that is, the
32 consecutive bits of y starting a fixed distance after the last bit used in the
accumulation process. Any increase or decrease in the message length therefore
causes a corresponding shift in the keystream bits from y used to form F .

Now consider inserting a zero at the start of the message. We noted in section
5.1 that the result X ′ of the accumulation process for this modified message is
related to the original value of X by the sliding relationship X ′ = (X � 1, α).
Since F also slides by one bit when a zero is appended to the message, the entire
MAC has this sliding property, as noted in [7].

New Attack on 128-EIA3 Version 1.4. We extend the previous attack on
version 1.4 of 128-EIA3, in the case where the message starts with one or more
zeroes. As discussed in section 5.1, if we delete i of these zeroes, (where i < d),
the result X ′ of the accumulation process for this modified message is related to
the original value of X by the sliding relationship X ′ = (β0, . . . , βi−1, X � i).
Since F also slides by i bits when these zeroes are deleted, the entire MAC has
this property and a forgery results with probability of 2−i.
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128-EIA3 Version 1.5. The modification to the starting position of the 32-bit
segment of y used to form F , introduced in version 1.5 of 128-EIA3, breaks the
sliding property on F and provides effective resistance to the types of forgery
just discussed. Resistance to bit flipping forgeries is provided by initialising R
with keystream, and padding the end of the message prevents bit insertion or
deletion forgeries at the end of the message.

Grain-128a. The cipher Grain-128a [1], described in section 4.3, initializes
both registers R and A with keystream sequence. Initialising register R with
keystream prevents forgery attacks due to bit flipping. Initializing register A
with keystream prevents forgeries involving insertion or deletion of bits at the
start of the message by breaking the sliding property in the accumulation phase.
Padding at the end of the message by one bit of value 1 also prevents bit insertion
and deletion forgeries at the end of the message.

Sfinks. For Sfinks stream cipher [2], described in section 4.4, padding is per-
formed by prepending 2d ones to Ml to initialize both registers R and A with
keystream sequence. However, padding by d bits is sufficient to ensure the reg-
ister R is loaded with keystream bits before Ml is processed. Using this way of
initialization prevents forgery attacks due to flipping, insertion or deletion of bits
at the start of the message. Sfinks uses confidentiality sequence z started at zl
for 64-bits as a final mask F . Using a sequence related to the length of the input
message prevents bit insertion or deletion forgeries at the end of the message.

6 Conclusion

In this paper, we describe a general model for generating MAC tags using stream
ciphers by injecting the input message, either plaintext or ciphertext, indirectly.
We outline the options available for various phases in this model and examine
the MAC generation processes for three stream ciphers described by this model.
These are 128-EIA3, Grain-128a and Sfinks.

The security analysis in section 5.1 highlights the importance of initialising
register R with keystream bits. This prevents bit flipping forgeries and reduces
the scope of the forgeries involving insertion or deletion of bits at the start of the
message. Prepadding the message with at least d ones is a feasible but arguably
less efficient alternative.

To prevent the remaining bit insertion and deletion forgeries, both of the
following practices must also be adopted:

1. The message is padded with a 1 at the start and/or register A is initialised
with keystream (from a fixed location in the keystream sequence).

2. The message is padded with a 1 at the end and/or the final mask F comprises
a keystream sequence that depends on the length of the message.
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Abstract. We present Weimar-DM, a double length compression func-
tion using two calls to a block cipher with 2n-bit key and n-bit block size
to compress a 3n-bit string to a 2n-bit one. For Weimar-DM, we show
that for n = 128, no adversary asking less than 2n−1.77 = 2126.23 queries
can find a collision with probability greater than 1/2. This is the high-
est collision security bound ever shown for such a compression function.
Even more important, our security analysis is much simpler than that for
comparable functions as, e.g., Tandem-DM, Abreast-DM or Hirose-

DM. We also give a preimage security analysis of Weimar-DM showing
a near-optimal bound of 22n−5 = 2251 queries. Our security bounds are
asymptotically optimal.

Keywords: double length compression function, block cipher based,
ideal cipher model, collision security, preimage security.

1 Introduction

A cryptographic hash function is a function which maps an input of arbitrary
length to an output of fixed length. It should satisfy at least collision-, preimage-
and second-preimage resistance and is one of the most important primitives in
cryptography [26].

Block Cipher-Based Hash Functions. Since their initial design by Rivest, MD4-
family hash functions (e.g., MD4, MD5, RIPEMD, SHA-1, SHA2 [4,29,30,32,33])
have dominated cryptographic practice. But in recent years, a sequence of attacks
on these type of functions [8,12,41,42] has led to a generalized sense of concern
about the MD4-approach. The most natural place to look for an alternative is
in block cipher-based constructions, which in fact predate the MD4-approach
[25]. Another reason for the resurgence of interest in block cipher-based hash
functions is due to the rise of size restricted devices such as RFID tags or smart
cards: A hardware designer has to implement only a block cipher in order to
obtain an encryption function as well as a hash function.

But since the output length of most practical encryption functions is far too
short for a collision resistant hash function, e.g., 128-bit for AES, one is mainly
interested in sound design principles for double block length (DL) hash functions

W. Susilo, Y. Mu, and J. Seberry (Eds.): ACISP 2012, LNCS 7372, pp. 152–165, 2012.
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Table 1. Comparison of double length compression function security results evaluated
for n = 128 and a success probability of 1/2; for Cyclic-DM k > 1, i.e., the cycle
length > 2 the value of k′ is ≥ 2

compression function collision bound preimage bound

Weimar-DM 2126.23 (this paper) 2252.5 (this paper)

Abreast-DM 2124.42 [11,22] 2246 [1]

Hirose-DM 2124.55 [15] 2251 [1]

Tandem-DM 2120.87 [24] 2246 [1]

Cyclic-DM (cycle length > 2) 2127−k [11] ≈ 2128 [11,22]

Cyclic-DM (cycle length 2) 2124.55 [11] ≈ 2128 [11,22]

Cube-DM 2125.56 [11] ≈ 2128 [11,22]

Add/k-DM 2127−k′
[11] ≈ 2128 [11,22]

Lee/Kwon 2125.0 [22] ≈ 2128 [11,22]

[2]. A DL hash function uses a block cipher with n-bit output as the building
block by which it maps possibly long strings to 2n-bit ones. Usually, hash func-
tions are built using compression functions only being able to compress a fixed
length input into a (smaller) fixed-length output. These compression functions
are iterated, e.g., using the Merkle-Damg̊ard [7,27] transform, in order to get a
full-fledged hash function. Since these transforms are property preserving, this
article focuses only on the compression function.

Weimar-DM. We define a new double length double call compression function
as follows (cf. Figure 1).

Definition 1. Let E be a block cipher taking an 2n-bit key and an n-bit block
size. The compression function HWDM : {0, 1}n × {0, 1}2n → {0, 1}2n is defined
as (cf. Figure 1)

HWDM(M,U, Û) =
(
EM‖U (Û)⊕ Û , EM‖U (Û)⊕ Û

)
,

where M‖U denotes the bit-by-bit complement of the bit-string M‖U .
In this paper we give very tight collision security and preimage security bounds
forWeimar-DM. Table 1 gives an overview on known double length compression
function designs using two calls to a block cipher with 2n-bit key and n-bit block
size inside. The results obtained in this paper for Weimar-DM have also been
included.

Our Contribution. We present a new and surprisingly simple design of a dou-
ble length double call compression function (Weimar-DM) and give a collision
security bound as well as a preimage security bound. It has the best collision
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Fig. 1. Weimar-DM compression function HWDM; the small circle ’◦’ denotes a bit-
by-bit complement

security bound of all known double length double call compression functions
using a block cipher with 2n-bit key and n-bit block size. Also, no compression
function has a tighter preimage security bound, only for Hirose-DM a compa-
rable one is known. The collision security proof not only delivers an ultra-tight
bound, but is also very short.

Outline. The paper is organized as follows: Section 2 gives formal notations and
definitions. In Section 3, we prove that any adversary asking less than 2126.23

oracle queries has negligible advantage in finding a collision for the Weimar-

DM compression function. Section 4 derives a near-optimal preimage bound for
Weimar-DM. In Section 5 we discuss our results and conclude. Directly related
publications have been mentioned in Table 1, a broader overview on block-cipher
based hashing is provided in Appendix A.

2 Preliminaries

2.1 Basic Notions

Ideal Cipher Model. A (k, n) block cipher is a keyed family of permutations
consisting of two paired algorithms E : {0, 1}k × {0, 1}n → {0, 1}n and E−1 :
{0, 1}k × {0, 1}n → {0, 1}n, both accepting a key of size k bits and an input
block of size n bits for some k, n > 0. For positive k, n, Block(k, n) is the
set of all (k, n) block ciphers. For any E ∈ Block(k, n) and any fixed key
K ∈ {0, 1}k, decryption E−1

K := E−1(K, ·) is the inverse function of encryption
EK := E(K, ·), so that E−1

K (EK(X)) = X holds for any admissible input X ∈
{0, 1}n.

Most of the attacks on hash functions based on block ciphers do not utilize
the internal structure of the block ciphers. The security of such hash functions is
usually analyzed in the ideal cipher model [2,9,18]. In this model, the underlying
primitive, the block cipher E, is modeled as a family of random permutations
{EK} whereas the random permutations are chosen independently for each key
K, i.e. formally E is selected randomly from BC(X ,K).



Weimar-DM: A Highly Secure Double-Length Compression Function 155

Block Cipher Based Compression Functions. Generally speaking, a single length
(SL) block cipher based compression function is a compression function HSL :
{0, 1}n × {0, 1}n → {0, 1}n using a block cipher with n-bit block size inside.
The idea was first discussed in literature by Rabin [25]. Most SL functions use a
block cipher from Block(n, n) and compress a 2n bit string to an n bit string.
A popular example is the Davies-Meyer (DM) [43] mode

H(M,U) = EM (U)⊕ U,

which is essentially used twice inside Weimar-DM. The ⊕ operation is usually
called feed-forward. A double (block) length (DL) compression function is a
compression function HDL : {0, 1}k−n×{0, 1}2n → {0, 1}2n taking a (k−n)-bit
message and a 2n-bit chaining value and outputs a new 2n-bit chaining value.
It also uses a block cipher from Block(k, n) inside. Weimar-DM as given in
Definition 1 is an example of a double length compression function using exactly
two calls to a block cipher from Block(2n, n) in order to compute its output
value.

2.2 Security Notions for Double Length Compression Functions

Security is quantified by the success probability of an optimal resource-bounded
adversary. An adversary is a computationally unbounded but always-halting
collision-finding algorithm A with resource-bounded access to an oracle E ∈
Block(2n, n). We can assume (by standard arguments) that A is determinis-
tic. The adversary may make forward queries (X,K, ?)fwd to discover the cor-
responding value Y = EK(X), or the adversary may make backward queries
(?,K, Y )bwd, so as to learn the corresponding value X = E−1

K (Y ) for which
EK(X) = Y . Either way the result of the query is stored in a triple (Xi,Ki, Yi).
The query history, denoted byQ, is the tuple (Q1, . . . , Qq) whereQi=(Xi,Ki, Yi)
is the result of the i-th query made by the adversary and where q is the total
number of queries made by the adversary. Without loss of generality, it is as-
sumed that A asks at most only once on a triplet of a key Ki, a plaintext Xi

and a ciphertext Yi obtained by a query and the corresponding reply.
As usual, we define the collision security of a hash functionH by an experiment

of an adversary A with a security parameter of 2n, i.e. equal to the output bit-
length of the compression function.

Experiment 1 (Collision-Finding Experiment Exp-CollA,HDL(2n))

1. The adversary A is given oracle access to a block cipher E ∈ Block(k, n)

and returns values (M,U, Û), (M ′, U ′, Û ′) ∈ {0, 1}n × {0, 1}n × {0, 1}n.
2. The output of the experiment is defined to be 1 iff (M,U, Û) �= (M ′, U ′, Û ′)

and HDL(M,U, Û) = HDL(M ′, U ′, Û ′). In such a case we say that A has
found a collision for HDL.

The advantage of an adversary A finding such a collision of HDL is given in the
following definition.
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Definition 2. AdvcollHDL (A) = Pr
[
Exp-CollA,HDL(2n) = 1

]
.

Since we only limit the adversary by the number of queries it is allowed to ask
to the E oracle, i.e. it is explicitly given ’unlimited computing power’, we write

AdvcollHDL (q) := max
A
{AdvcollHDL (A)},

where the maximum is taken over all adversaries that ask at most q oracle queries
in total.

There are several notions known that formalize preimage security [34]. We
adopt everywhere preimage resistance (epre) in the information theoretic setting
which essentially lets the adversary pre-commit to the hash value it likes to be
challenged on before submitting any queries to the oracle. The corresponding
preimage finding experiment is definied as follows.

Experiment 2 (Preimage-Finding Experiment Exp-EpreA,HDL(2n))

1. The adversary A is given oracle access to a block cipher E ∈ Block(k, n).

A selects and announces a value (V, V̂ ) ∈ {0, 1}n × {0, 1}n before making

any oracle queries. It outputs a value (M,U, Û) ∈ {0, 1}n×{0, 1}n×{0, 1}n.
2. The output of the experiment is defined to be 1 iff HDL(M,U, Û) = (V, V̂ ).

In such a case we say that A has found a preimage of HDL.

Now, we let AdvepreHDL (A) be the predicate that is true iff ’1’ is returned by the

experiment Exp-EpreA,HDL(2n). The pre-committed value (V, V̂ ) is an omitted

parameter of AdvepreHDL (A). Again, we define

AdvepreHDL (q) := max
A
{AdvepreHDL (A)},

where the maximum is taken over all adversaries that ask at most q oracle queries
in total.

3 Collision Security Analysis of Weimar-DM

3.1 Security Results

It is easy to see that HWDM is of type Cyclic-DM with a cycle length of 2,
i.e., we directly have a collision security bound of 2124.55 (cf. Table 1). So we
are done with our analysis. But we do not use this generic proof technique but
rather use a specialized one delivering us a number of benefits. First, our proof
is way simpler than the generic proof for Cyclic-DM. And, second, our new
collision security bound is much better by virtually halving the gap between
the theoretically optimal bound known before (via Cyclic-DM) and the best
bound theoretically possible (≈ 2127). Our main collision security result is stated
in the following theorem.
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Theorem 1. Let N = 2n. Then, AdvcollHWDM (q) ≤ q(q+1)
(N−2q)2 .

In numerical terms, e.g., for n = 128 and AdvcollHWDM(q) = 1/2, we have q =
2126.23. Using simple calculus, it is easy to see that for α = N(1− 1√

2
)= 2n−1.77

we have

AdvcollHWDM(α) =
1

2
+ o(1),

where the term o(1) → 0 for n → ∞. Neglecting constant factors, our security
bound reads as an asymptotically optimal bound of O(2n) for a compression
function with 2n-bit output.

3.2 Proof of Theorem 1

We assume that the adversary has made any relevant query to E to come up
with a collision – which is reasonable in the ideal cipher model. Another standard
assumption made in ideal cipher proofs is that “the adversary never makes a
query to which it already knows the answer”. By this it is meant, for example,
that one can assume that the adversary never makes a query EK(X), obtaining
an answer Y , and then makes the query E−1

K (Y ) (which will necessarily be
answered by X). We start by considering an arbitrary q-query collision finding
adversary A. We then construct an adversary A′ which simulates A but does
sometimes ask an additional query to the E oracle under certain circumstances.

Since A′ is more powerful than A, it suffices to upper bound the success
probability of A′. We now give a detailed description of A′ by simultaneously
upper bounding its chances of success. We say that an adversary is successful if
its query history Q contains the means of computing a collision. This is discussed
more thoroughly in the following case analysis.

Description of A′. The adversary A′ maintains an initially empty list L repre-
senting any possible input/output of the compression function HWDM that can
be computed by the adversary A. An entry L ∈ L is a 4-tuple (K,X, Y, Y ′) ∈
{0, 1}5n where K ∈ {0, 1}2n, X ∈ {0, 1}n is the 3n-bit input to the compression

function such that (M,U) = K and Û = X . The n-bit values Y, Y ′ are given by
Y = EK(X), Y ′ = EK(X).

The list is now built as follows. Say that the adversaryAmounts its i-th query
to E or E−1, 1 ≤ i ≤ q. In the case of a forward query, the adversary gets hold
of the tuple (K,X, Y ) where Y = EK(X). In the case of a backward query, the
adversary gets also hold of the tuple (K,X, Y ), but in this case X = E−1

K (Y ).
In either case, the value X ⊕ Y is randomly determined by the output of the
query.

Now, A′ checks if an entry L = (K,X, ∗, ∗) or L′ = (K,X, ∗, ∗) is contained
in L where ′∗′ denotes an arbitrary value. We now analyze the two possible
cases A′ might be confronted with and upper bound their success probabilities
separately.
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Case 1. Neither L nor L′ are in L. Then A′ mounts an additional forward
query Y ′ = EK(X). Note that Y ′ ⊕ X , the result of the ’bottom row’ of the
compression function, is always uniformly distributed since K �= K always, i.e.,
the results of the first query asked by the adversary A and the second query
asked additionally by the adversary A′ are always independently distributed.
Set Li := (K,X, Y, Y ′). We append Li to the list L.

We now define what we mean by a collision in the list. Fix two integers r, s
with r �= s, such that Lr = (Kr, Xr, Yr, Y

′
r ) represents the r-th entry in L and

Ls = (Ks, Xs, Ys, Y
′
s ) the s-th entry in L and both entries exist. We say that

Ls and Lr collide if a collision of the compression functions occurs that can be
computed using the query results given in Lr and Ls. This is the case if at least
one of the following two conditions is met:

1. Yr ⊕Xr = Ys ⊕Xs and Y ′
r ⊕Xr = Y

′
s ⊕Xs or

2. Yr ⊕Xr = Y
′
s ⊕Xs and Y ′

r ⊕Xr = Ys ⊕Xs.

So for the i-th query, there are at most i − 1 entries in the list L that might
collide with Li. We can upper bound the probability of success of the i-th query
by

i−1∑
j=1

2

(N − 2q)(N − 2q)
≤ 2i

(N − 2q)(N − 2q)

As the adversary can ask at most q queries, the list L cannot contain more than
q entries since for any adversary query at most one additional entry is added to
the list L of A′. So the total chance of success for q queries is

≤
q∑
i=1

2i

(N − 2q)(N − 2q)
=

q(q + 1)

(N − 2q)2
.

In case of a collision in L we give the attack to the adversary.

Case 2. It is clear that, by design, it cannot happen that exactly one of the values
L or L′ is already in L. So now assume that both values L, L′ are already in L.
Then A′ ignores this query, since we know that A has zero chance of winning
since otherwise we would have given the attack to the adversary before. ��

4 Preimage Security Analysis of Weimar-DM

4.1 Security Results

Preimage security results for double length compression function have ’histori-
cally’ been limited by the birthday bound, mainly due to technical reasons. At
Asiacrypt 2011 a new breakthrough result by Armknecht et al. [1] gave new
techniques that enable preimage security results for double length compression
function way beyond the birthday-barrier. For our preimage security proof of
Weimar-DM, we adopt these methods. More precise, we show the following
Theorem.
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Theorem 2. Let N = 2n. Then, AdvepreHWDM (q) ≤ 16q/N2.

It is easy to see that AdvepreHWDM (22n−5) = 1/2 and therefore our bound is asymp-
totically optimal for a 2n-bit compression function.

4.2 Proof of Theorem 2

Parts of the proof closely follow the proofs of [1, Theorems 1 and 2]. Our security
proof uses the notion of free queries. Formally, these can be modeled as queries
which the adversary is forced to query (under certain conditions), but for which
the adversary is not charged: they do not count towards the maximum of q queries
which the adversary is allowed. However, these queries become part of the adver-
sary’s query history, just like other queries. In particular, the adversary is not al-
lowed, later, to remake these queries “on its own” (due to the previously discussed
assumption that the adversary never makes a query which it already owns).

Similar to our collision security analysis, we say the attacker succeeds or finds
a preimage if its query history Q contains the means of computing a preimage
of C, in the sense that there exist values B ∈ {0, 1}3n, K1,K2 ∈ {0, 1}2n and
X1, X2, Y1, Y2 ∈ {0, 1}n such that both (X1,K1, Y1) and (X2,K2, Y2) are in
the query history Q, HWDM(B) = C and the two queries used to evaluate
HWDM(B) are precisely EK1(X1) and EK2(X2). In this case, we also say Q
contains a preimage of C. In the current context, where we consider adversaries
making 2n queries or more, the assumption that the adversary never makes a
query where it knows the answer to, should be more precisely restated as “the
adversary never makes a query that will result in a triple (X,K, Y ) which is
already present in the query history”. (This latter assumption can be made
without loss of generality using the fact that EK(·) is a permutation.) Indeed, if
an adversary has made 2n−1 queries under a key K, the result of the last query
under that key is predetermined, and thus the adversary “already knows” the
answer to this query. However, one should not forbid the adversary from making
this query, since the query may be necessary to complete the attack.

Let (V, V̂ ) ∈ {0, 1}n × {0, 1}n be the point to invert (chosen by the ad-
versary before it makes any queries to E). We upper bound the probability

that, in q queries, the adversary finds a point (M,U, Û) ∈ ({0, 1}n)3 such that

HWDM(M,U, Û) = (V, V̂ ).

When the adversary makes a (normal) forward query EM‖U (Û) we give it for
free, also, the answer to the queryEM‖U (Û). Moreover when the adversarymakes

a (normal) backward query E−1
M‖U (R), resulting in an answer Û = E−1

M‖U (R), we

give it for free the answer to the forward query EM‖U (Û). As discussed, we

assume that the adversary never makes a query to which it knows the answer.
Thus the elements of the adversary’s query history Q can be paired into adjacent
pairs of the form (M‖U, Û, R), (M‖U, Û , S). We call such a pair an adjacent
query pair.
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We now give further free queries to the adversary, in the fashion described
next. After each adjacent query pair has been completed (namely, after the
adversary has received the response to both its query and its associated free
query, and after these have been placed in the query history), we check whether
the key prefix used for the latest query is such that the (current) query history
contains exactly N/2 adjacent query pairs with this key prefix. If so, we give all
remaining adjacent query pairs under this key for free to the adversary. There
will be exactly N/2 such query pairs. We insert these N/2 free query pairs into
the query history pair-by-pair (to maintain, mostly for conceptual simplicity,
the adjacent pair structure of the query history). We note that, after these free
queries have been inserted into the query history, the adversary cannot make
any more queries under this key prefix, since, the adversary is assumed never
to make a query to which it knows the answer. When N/2 free query pairs are
given to the adversary in the fashion just described, we say that a super query
occurs. This can be summed up as follows.

Super Query. Given N/2 adjacent query pairs to E all using the same key
K ∈ {0, 1}2n, all the remaining N/2 queries using the same key K and the
remaining N/2 queries using key K are given for free.

We say that an adjacent query pair (M‖U, Û, R), (M‖U, Û , S) is successful, if

Û ⊕ R = V and Û ⊕ S = V̂ , or if Û ⊕ R = V̂ and Û ⊕ S = V . Thus the
adversary obtains a preimage of (V, V̂ ) precisely if it obtains a successful adjacent
query pair. This can occur in one of two ways: either the winning query pair is
part of a super query, or not. We let SuperQueryWin(Q) denote the event that
the adversary obtains a winning query pair that is part of a super query, and
NormalQueryWin(Q) the event that the adversary obtains a winning query pair
of normal queries (either forward or backward). It thus suffices to upper bound

Pr[SuperQueryWin(Q)] + Pr[NormalQueryWin(Q)].

Here probabilities are taken (as usual) over the adversary’s randomness (if any)
and over the randomness of the ideal cipher.

We first upper bound Pr[NormalQueryWin(Q)]. Note that when the adversary

makes, say, a forward query EM‖U (Û), at most N/2 − 2 queries (counting free
queries) have been previously answered with the keyM‖U , since otherwise a su-

per query for the key M‖U would have occurred. Thus the value R = EM‖U (Û)
comes uniformly at random from a set of size at least N/2 + 2 ≥ N/2, and

there is chance at most 2/(N/2) = 4/N that either Û ⊕ R = V or Û ⊕ R = V̂

(this is also true if V = V̂ ). If, say, Û ⊕ R = V , there is further chance at

most 1/(N/2) = 2/N that the free query EM‖U (Û) returns Û ⊕ V̂ , since the

answer to the free query comes uniformly at random from a set of size at least
N/2+1 ≤ N/2. Other cases (e.g. when Û⊕R = V̂ , and when the adversarymakes
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a backward queryE−1
M‖U (R)) are similarly analyzed, showing that the adversary’s

chance of triggering the event NormalQueryWin(Q) at any given query is at most
(4/N)(2/N) = 8/N2. Since the adversary makes q queries total, we therefore
have

Pr[NormalQueryWin(Q)] ≤ 8q/N2. (1)

We now bound Pr[SuperQueryWin(Q)]. Assume that a super query is about to
occur on keys M‖U and M‖U meaning that the value of EM‖U (·) and EM‖U (·)
are already known on exactly N/2 points. Let us denote this set of points by
X and let Y = EM‖U (X ) and Y ′ = EM‖U (X ). Further let R = {0, 1}n\X ,

S = {0, 1}n\Y and S ′ = {0, 1}n\Y ′. Clearly, |X | = |Y| = |Y ′| = |R| = |S| = |S ′|.
Now fix a point R ∈ R in the domain of the super query. We now estimate

the probability that this point R induces a successful pair. This can only be the
case if

1. R⊕ V ∈ S and R⊕ V̂ ∈ S ′ or
2. R⊕ V̂ ∈ S and R⊕ V ∈ S ′.

The probability that EM‖U (R) = R⊕V and EM‖U (R) = R⊕V̂ equals 1/(N/2)2.

The same is true for the probability that EM‖U (R) = R ⊕ V̂ and EM‖U (R) =
R⊕ V . Thus the total probability to be successful in a super query is at most

2 ·N/2 ·
(

1

N/2

)2

=
2

N/2
.

Since at most q/(N/2) super queries can ever occur, we have

Pr[SuperQueryWin(Q)] ≤ 8q/N2. (2)

The sum of (1) and (2) gives our claim. ��

5 Discussion and Conclusion

In this paper, we have presented Weimar-DM, a double length compression
function. We have shown very tight collision security bounds and preimage se-
curity bounds. The collision security bound is currently the best known bound
for any such compression functions known in literature. Also, no compression
function with a tighter preimage security bound is known – only Hirose-DM

has a numerically similar bound. For our security benefits, we have to pay the
price of two key-scheduler runs per compression function.

Although a lot of progress has been made in recent years in the field of double
length hashing, a lot of open questions remain. Related to our analysis, it would
be interesting to investigate if our techniques in the collision security proof can
be generalized, e.g., to a subclass of Cyclic-DM. Another open problem is the
design of conveniently secure compression functions only using a block cipher
from Block(n, n).
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A Related Work

Schemes with NonOoptimal or Unknown Collision Security. Preneel et al. [31]
discussed the security of single (block)length hash functions against several
generic attacks. They concluded that 12 out of 64 hash functions are secure
against these attacks. However, formal proofs were first given by Black et al. [2]
about 10 years later. Their most important result is that 20 hash functions –
including the 12 mentioned above – are optimally collision resistant. Knudsen et
al. [19] discussed the insecurity of DBL hash functions with rate 1 composed of
(n, n) block ciphers. Hohl et al. [16] analyzed the security of DBL compression
functions with rate 1 and 1/2. Satoh et al. [37] and Hattoris et al. [13] discussed
DBL hash functions with rate 1 composed of (2n, n) block ciphers. MDC-2 and
MDC-4 [5,17] are (n, n) block cipher based DBL hash functions with rates 1/2
and 1/4, respectively. Steinberger [39] proved that for MDC-2 instantiated with,
e.g., AES-128 no adversary asking less than 274.9 can usually find a collision.
Nandi et al. [28] proposed a construction with rate 2/3 but it is not optimally
collision resistant. In [20], Knudsen and Muller presented some attacks against it.
At EUROCRYPT’08 and CRYPTO’08, Steinberger [35,36] proved some security
bounds for fixed-key (n, n) block cipher based hash functions, i.e., permutation
based hash functions, that all have small rates and low security guarantees. None
of these schemes/techniques mentioned so far are known to have birthday-type
collision resistance. Lee and Stam [23] gave a scheme similar to MDC-2, called
MJH. It uses finite field multiplications to offer a collision security bound in the
iteration of O(22n/3−log n).

Schemes with Birthday-Type Collision Security. Merkle [27] presented three
DBL hash functions composed of DES with rates of at most 0.276. They are op-
timally collision resistant in the ideal cipher model. Hirose [14] presented a class
of DBL hash functions with rate 1/2 which are composed of two different and
independent (2n, n) block ciphers that have birthday-type collision resistance.
At FSE’06, Hirose [15] presented a rate 1/2 and (2n, n) block cipher based DBL
hash function that has birthday-type collision resistance. He stated that for his
compression function, no adversary can find a collision with probability greater
than 1/2 if no more than 2124.55 queries are asked (see [10, App. B] for details
on this). For Tandem-DM, the best known collision security bound is 2120.87

queries [24]. Fleischmann et al. [11] as well as Lee and Kwon [21] independently
provided a security bound for Abreast-DM of 2124.42. In [11] a lot of variants
are also discussed, e.g., Cyclic-DM, Cube-DM or Add/k-DM. Bos et al. [3]
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provided practical performance figures for some double length hash functions
using the AES-NI instruction set.

Preimage Security Results. For single length compression functions, tight se-
curity results are known [2,38]. For double length compression functions, some
birthday-type preimage results are also known [22,24], essentially stating that
any adversary asking less 2n queries has only a negligible chance of finding a
preimage. For Abreast-DM, Tandem-DM and Hirose-DM there are better
bounds known [1] (cf. also Table 1).
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cryption scheme. The security of the scheme is based on the hardness
of the Syndrome Decoding problem and the Goppa Code Distinguisha-
bility problem. The system is developed according to the construction
similar to IND-CCA2 secure encryption scheme by Peikert and Waters
using the lossy trapdoor functions. Compared to the existing IND-CCA2
secure variants due to Dowsley et.al. and Freeman et. al. (using the κ
repetition paradigm initiated by Rosen and Segev), our scheme is more
efficient as it avoids κ repetitions. This can be considered as the first
practical code-based encryption scheme that is IND-CCA2 secure in the
standard model.
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1 Introduction

The important notions in public key cryptography are that of security under cho-
sen ciphertext attack (CCA security) and trapdoor functions (TDFs) [7,17,20].
Trapdoor functions, which are hard to invert unless one possesses some secret
trapdoor information was conceptualized by Diffie and Hellman [6] and were
realized by the RSA implementation by Rivest, Shamir and Adleman [21]. The
security notions have been maturing since then and currently indistinguishability
against a chosen ciphertext attack by an adversary who has a brief access even
to a decryption oracle ( IND-CCA2 ) is considered to be the strongest security
notion for encryption schemes.
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Most of the efficient IND-CCA2 secure schemes were proven secure in the
random oracle model. But Canetti et. al. [4] observed that instantiating random
oracles in the real scenario using hash functions may lead to insecure implemen-
tation of the scheme. Hence, construction of schemes that are IND-CCA2 secure
in the standard model (without the use of random oracles) is preferred. There are
some compromises in the efficiency, due to much stronger security requirements.

In [19], the authors presented a black box construction of IND-CCA2 secure
encryption scheme based on lossy TDFs and all-but-one trapdoor functions, with
a witness recovering decryption algorithm. The decryption first recovers the ran-
domness that was used to create the ciphertext, and then tests the validity of the
ciphertext by re-encrypting the message using retrieved randomness. The same
method is adapted by Freeman et. al. [12] and Rosen and Segev [23]. This paper in-
vestigates, how code-based assumptions can be used for obtaining an IND-CCA2
secure encryption scheme in the standard model using witness recovery.

Code-based cryptography was initiated by the seminal paper due to McEliece
[22]. The security of the McEliece encryption scheme is based on the hardness of
the problems of Bounded Decoding and Goppa Code Distinguishability. Initially,
the scheme did not gain sufficient acclaim, due to the large key-sizes, hence,
Niederreiter proposed a cryptosystem, that is dual of the McEliece cryptosys-
tem [13]. Unlike number-theoretic schemes that are weak against the attack due
to Shor [24], McEliece and Niederreiter cryptosystems have resisted such at-
tacks (when using Goppa codes), thus making them strong candidates for Post-
Quantum Cryptography. Also, in comparison with number-theoretic encryption
schemes, code-based schemes are computationally attractive, as the underlying
operations are vector-matrix multiplication and vector additions, allowing even
parallel processing in practical contexts.

Related Work. Li et. al. [16] showed the equivalence of the security of McEliece
and Niederreiter cryptosystems. Berson [3] showed that the McEliece cryptosys-
tem is not CPA secure. Kobara and Imai [15] gave conversions for the McEliece
PKE that were proved CCA secure in the random oracle model. Nojima et. al.
[18] presented randomised variants of the McEliece and Niederreiter schemes,
that were IND-CPA secure in the standard model.

Recently Dowsley et al. [8] proposed a CCA2 secure scheme in the standard
model using the randomized version of the CPA secure McEliece cryptosystem
[18], by the method of κ-repetition. Rosen et al. [23] initiated the study of the
one-wayness under correlated products (κ-repetition) and Freeman et al. [12]
proposed instantiation of lossy trapdoor functions and correlation-secure trap-
door functions. They proposed a correlation-secure trapdoor functions based on
the hardness of syndrome decoding to obtain a CCA-2 secure encryption scheme
in the standard model.

Motivation. The existing variants of the Niederreiter and McEliece cryptosys-
tem that are IND-CCA2 secure in the standard model [8,12] are all based on
the κ repetition paradigm [23]. Such cryptosystems lead to extremely large keys
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and ciphertexts, and thus incurring a huge encrypting cost. The scheme by Free-
man et al. [12] not only requires the hardness of the [n, k]Syndrome Decoding
problem, but also requires the hardness of [n, κk− (κ− 1)n] Syndrome Decoding
problem, where κ is the security parameter. The parameters chosen in [12] are
for the deterministic version of Niederreiter, which are vulnerable to an attack
proposed by H̊astad, [14]. Hence, the parameters that are generally used for the
above construction, requires a large (n, k) resulting in large key-sizes. Therefore,
a cryptosystem that does not follow the κ-repetition paradigm is desirable.

Our Contributions. Our scheme uses ideas from [19,18,5]. We use strongly
unforgeable one-time signature (OTS) to handle malleability related issues as
in [19,23,5]. However we use two injective functions on the verification key and
the message. This novel approach leads to the elimination of the κ-repetition.
Note that the instantiation of the protocol in [19] in a direct way leads to the
scheme similar to [8] that involves κ-repetition. Thus, for practical code-based
cryptosystems such a κ− repetition paradigm needs to be avoided.
Our contributions in this paper are:

(i) Proposal of efficient variant of the Niederreiter scheme, that are not based
on the κ repetition paradigm, and
(ii) formal argument of their security against IND-CCA2 adversary in the stan-
dard model.

An analogous idea for selective provision of trapdoor was also used by Agrawal
et. al. [1] in the lattice-based setup, for simulation of the key-extraction phase in
their proof of CPA security of a (H)IBE in the standard model. They use lattices
built from two parts called right and left lattices. A trapdoor for the left lattices
is used as the master secret in the real system and enables one to generate private
keys for all identities. A trapdoor for the right lattice is only used in the proof
of selective security and enables the simulator to generate private keys for all
identities except for one. They used right lattices to achieve the targetted ID
method of proving, where the key extraction simulation extracts private keys
for all IDs except the targetted ID. In our case, f1, f2 are the two injective
functions that achieve the same purpose, but the details and computations are
entirely different from [1].

Organization of the Paper. Section 2 lists the preliminaries which include
the security notions and the hardness assumptions used in the paper. Section 3
gives the proposed scheme, the proof of security, the secure parameters for the
cryptosystems, and the comparison with existing schemes. Concluding remarks
are offered in section 4.

2 Preliminaries

2.1 Notation

If x is a string, then |x| denotes its length, while |S| represents the cardinality
of the set S. If κ ∈ N then 1κ denotes the string of length κ. s ∈R S de-
notes the operation of choosing an element s from a set S uniformly at random.
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w ← A(x, y, ...) represents the running of algorithm A with inputs x, y, ... and
producing output w. We write w← AO(x, y, ...) for representing an algorithm A
having access to oracle O. We denote by Pr[E] the probability that the event E
occurs. For a matrixM , its transpose is represented by MT and its inverse (if it
exists) is represented by M−1. If a and b are two strings of bits, we denote their
bitwise XOR by a⊕ b. Let A be a m×n1 matrix and B be a m×n2 matrix, the
C = [A|B] is a m× (n1+n2) matrix, where each row i of C is the concatenation
of the ith row of A with that of B.

Since, the proposed cryptosystems are code-based, a few notations regarding
coding theory are introduced. A binary linear-error correcting code of length n
and dimension k or a [n, k]- code is a k-dimensional subspace of Fn2 . The rate
of a code can be calculated as k

n . A code is high-rate if k
n → 1. If the minimum

hamming distance between any two codewords is d, then the code is a [n, k, d]
code. The hamming weight of a codeword x, wt(x), is the number of non-zero
bits in the codeword. For t ≤ 	d−1

2 
, the code is said to be t-error correcting if
it detects and corrects errors of weight at most t. Hence, the code can also be
represented as a [n, k, 2t + 1] code. The generator matrix G ∈ F

k×n
2 of a [n, k]

linear code C is a matrix of rank k whose rows span the code C. The parity-check
matrix H ∈ F

n−k×n
2 of a [n, k] code C is a matrix satisfying HGT = 0. Hence,

code C can be defined as {mG : ∀m ∈ Fk2} or {c : HcT = 0}.

2.2 Definition of the Security Notions

The IND-CCA2 security for any Public-Key Encryption Scheme (PKE ) is defined
as follows:

Definition 1 IND-CCA2 Security. For a two -stage adversary A = (A1,A2)
against PKE, with security parameter κ, we associate the following experiment
Expcca2PKE,A(κ):
(pk,sk) ← Gen(1κ)

(m0, m1, state) ← ADec(sk,·)
1 (pk) s.t. |m0| = |m1|

b ∈R (0,1)
c∗ ← Enc(pk,mb)

b′ ← ADec(sk,·)
2 (c∗,state)

if b=b
′
return 1 else return 0

The adversary A2 is not allowed to query Dec(sk,·) with c∗. We define the ad-
vantage of A in the experiment as

Advcca2PKE,A(κ) = |Pr[Expcca2PKE,A(κ) = 1]− 1
2 |

We say that PKE is indistinguishable against adaptive chosen-ciphertext attacks
(IND-CCA2) if for all probabilistic polynomial time (PPT) adversaries A =
(A1,A2) that makes a polynomial number of oracle queries the advantage of A
in the experiment is a negligible function of κ (the security parameter).
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The security notion of One-time strongly unforgeable, or one-time
existentially unforgeable under chosen message attack (EUF-1CMA) is as follows
(based on [2]):

Definition 2 EUF-1CMA. A signature scheme is said to secure under EUF-
1CMA, if there exists no PPT algorithm A, which has knowledge of only the
verification key vk and the public parameters and access for just one query to
the signature oracle to obtain a tuple(m′, σ′) , outputs a valid signature (m,σ) �=
(m′, σ′) with a non-negligible probability.

The probability that any PPT adversary A wins the EUF-1CMA game for a
one-time signature OS, given the verification key vk is denoted by SuccOS

A (vk).

2.3 Security Assumptions

The following are some of the hard problems on which the security of the pro-
posed cryptosystems is based.

Definition 3 Syndrome Decoding Problem. For some parameters [n, k, 2t+
1] given an a ∈ F

n−k
2 and a matrix H ∈ F

n−k×n
2 , find a vector e ∈ Fn2 with weight

wt(e) ≤ t such that HeT = a.

The advantage of a PPT algortihm D of solving the problem is denoted by
AdvSDD (n, k).

Assumption 1. For any probabilistic polynomial time algorithm F , AdvSDF (C) <
ε1(n, k) where ε1(n, k) is a negligible value with respect to n and k.

For Goppa codes, there is a polynomial time bounded decoding/syndrome de-
coding algorithm. Thus, there is a preference for most code-based cryptosystems
to use the Goppa code as a trapdoor.

Definition 4 Goppa code-distinguishability. For parameters [n, k, 2t + 1]
given a matrix H ∈ F

n−k×n
2 , output 1 if H is a parity check matrix of a Goppa

code, 0 if H is not a parity check matrix of any Goppa code.

The advantage of a PPT algorithm D of solving the problem is denoted by
AdvCDD (n, k).

Assumption 2. For any probabilistic polynomial time distinguisher D,
AdvCDD (n, k) < ε2(n, k) where ε2(n, k) is a negligible function if it is not a high
rate goppa code, [9].

|Pr[D(H) = 1]− Pr[D(M) = 1]| < ε2(n, k)

where H is the parity check matrix of the Goppa code and M ∈R F
n−k×n
2 .
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3 Variant of the Niederreiter Cryptosystem

3.1 Proposed Scheme

The proposed system uses the randomized Niederreiter encryption approach
given in [18] along with the construction by Peikert and Waters [19] (which uses
lossy trapdoors and all-but-one trapdoor functions) to obtain a CCA-2 secure
encryption scheme in the standard model.

The use of a one-time signature for non-malleability of the ciphertext is a
paradigm initiated by Dolev et al. [7]. Thus our scheme uses the following:

– Any one-time strongly unforgeable signature scheme OS(KeyGenOS , SignOS ,
VerfiyOS), for the security parameter κ such that
• KeyGenOS(κ) outputs the key-pair (vk, sk), where vk is the verifcation
key, and sk is signing key. The size of the domain of the keys |vk|, |sk| = κ

• SignOS(sk,M) outputs a signature σ on a message M using the signing
key sk. In this case, the message M is of size 2(n− k).

• VerfiyOS(vk,M, σ), verifies the signature σ on messageM using the ver-
ification key vk. If the signature is valid then the verification algorithm
outputs VALID, else it outputs INVALID.

– The injective functions f1, f2, map the verification key, to the set of all
full-rank n − k × n binary matrices and the set of all n × n permutation
matrices, respectively. With the use of such functions, we are in possession
of a tool that makes the ciphertext dependent on the verification key also,
but without compromise in security. Such a setup, does away with most
malleability issues.

– The encryption scheme uses two public keys H̃1, H̃2. The decoding trapdoor
associated with H̃1 is used in the decryption phase to retreive the encrypted
message. The trapdoor with regards to H̃2 is used in the decryption oracle,
and plays a role analogous to all-but-one trapdoor in [19], which makes use
of the property HGT = 0 (where H is a parity check matrix and G is among
the corresponding generator matrices).

A formal description of the scheme is as follows:

System Parameters. The system paramters are as follows: Let Dvk denotes
the domain of the signature and verification keys.

– Parameters of the code n, k, t for any [n, k, 2t + 1] linear code, with n, k
determined by the security parameter κ, and t = n−k

log2 n
. Also, select n1, n2

such that n = n1+n2 and n1 = bn, where b is a positive rational number and
b < 1. The message to be encrypted is of length n2, and weight t2 = 	 n2t

n1+n2

.

We make use of ephmeral keys (randomness) r of length n1 with weight
t1 = � n1t

n1+n2
�.

– A one-time strongly unforgeable signature scheme OS(KeyGenOS , SignOS ,
VerfiyOS), for the security parameter κ.
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– An injective function f1 : Dvk → F
n−k×n
2 which takes verification key as

input, and gives the random matrix (full-rank) Hvk .
– An injective function f2 : Dvk → Pn×n which takes the verification key

as input and output a n × n permutation matrix Pvk, for the Niederreiter
cryptosystem.

Key Generation. For the security parameter 1κ, the KeyGen is as follows:

– Randomly select two distinct [n, k, 2t + 1]Goppa codes with parity check
matrices H1, H2 respectively

– Randomly select an invertible matrix Q1 ∈R F
n−k×n−k
2 , two full-rank ma-

trices G1, G2 ∈R F
n−k×n
2 and a n× n permutation matrices P1, P2.

– Define H̃1 = Q1H1P1 and H̃2 = GT1H2P2 ⊕GT2H1P1.

Thus, we have :

– Public Keys: H̃1 & H̃2

– Secret Keys: H1, H2, Q1, P1, P2, G1, G2

Encryption. On an message m ∈ F
n2
2 with wt(m) = t2, the following steps

constitute the encryption algorithm:

– Generate r ∈R F
n1
2 , with wt(r) = t1.

– (vk, sk)← KeyGenOS(1
κ), and compute Hvk = f1(vk) and Pvk = f2(vk).

– Define K1 = H̃1Pvk and K2 = HvkH̃2Pvk.
– Define c1 = K1[r|m]T , and c2 = K2[r|m]T .
– Compute σ = SignOS(sk, (c1, c2)), i.e., the one-time signature on (c1, c2)

(where (c1, c2) is denoted as M) using the signing key sk.

The ciphertext that is sent is c = (vk, c1, c2, σ).

Decryption. The decryption on the ciphertext c = (vk, c1, c2, σ) is done as fol-
lows:

if (VerifyOS(vk, (c1, c2), σ)→ INVALID))
return ⊥

else
Compute, Hvk ← f1(vk), Pvk ← f2(vk).
if (DecodeH1(Q

−1
1 c1)→⊥)

return ⊥.
else

[r′|m′]← PTvkP
T
1 DecodeH1(Q

−1
1 c1)

if(c2 �= HvkH̃2Pvk[r
′|m′]T )

return ⊥.
else

return m′

end
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Correctness. The reciever on getting the ciphertext can verify the signature
as the the verification key is attached along with the ciphertext components,
then decode c1 to obtain r and m. The receiver can verify the consistency of the
retrieved randomness using c2. Since, r and m maintain the weight constraints
of the code used, we obtain the correct m (as long as the decoding algorithm
is correct).

3.2 Proof for the Security of the System

The proof of security is based on the proof in [18]. It is claimed that ev-
ery adversary has only a negligible advantage in the CCA-2 games under the
standard model, provided the Computational Syndrome Decoding problem and
Goppa Code Distinguishability are hard to solve, and the signature is one-time
strongly unforgeable. H̃11, H̃12 be n− k×n1 and n− k×n2 matrices such that
H̃1 = [H̃11|H̃12]. Similarly we define H̃21 & H̃22 such that H̃2 = [H̃21|H̃22]. It is

seen that c1 = H̃11r
T ⊕ H̃12m

T and c2 = H̃21r
T ⊕ H̃22m

T . Fischer and Stern
[11] had proved that a generated syndrome is computationally indistinguishable
from a randomly generated vector. The reduction along with the reduction cost
was given by Nojima et. al. [18].

Theorem 1. [18] If there exists an algorithm D which runs in time τ , such that

Pr[r ∈R F
n1
2 , wt(r) = t1, R ∈R F

n−k×n1
2 |D(RrT , R) = 1]−

Pr[s ∈R F
n−k
2 , R ∈R F

n−k×n1
2 |D(s,R) = 1] ≥ δ

then one can construct an algorithm D′ running in time τ ′ = O(n21(τ +n21)/δ2),

such that 4 3

√
n1 · AdvSDD′ (n1, k) ≥ δ.

The following corollary is deduced from the above theorem.

Corollary 1. [18] If there exists an algorithm D running in time τ for any
m ∈R F

n2
2 , wt(m) = t2, such that

Pr[r ∈R F
n1
2 , wt(r) = t1, R ∈R F

n−k×n
2 |D(R1r

T ⊕R2m
T , R) = 1 & R = [R1|R2]]−

Pr[s ∈R F
n−k
2 , R ∈R F

n−k×n
2 |D(s ⊕R2m

T , R) = 1 & R = [R1|R2]] ≥ δ

then one can construct an algorithm D′ running in time τ ′ = O(n21(τ +n21)/δ2),

and satisfying the inequality, 4 3

√
n1 · AdvSDD′ (n1, k) ≥ δ.

It also follows that if presented with two distinct n− k × n matrices R1, R2 as
in the scheme, a syndrome decoding on the 2(n− k)× n matrix RT = [RT1 |RT2 ]
(which is a parity check matrix of a [n, 2k − n] code) is also possible.

Corollary 2. If there exists an algorithm D running in time τ for any m ∈R
F
n2
2 , wt(m) = t2, such that
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Pr

⎡⎣ r ∈R F
n1
2 , wt(r) = t1 D((R11r

T ⊕R12m
T , R1),

R1 ∈R F
n−k×n
2 & R2 ∈R F

n−k×n
2 (R21r

T ⊕R22m
T , R2)) = 1

& R1 = [R11|R12] & R2 = [R21|R22]

⎤⎦−
Pr

⎡⎣ s1, s2 ∈R F
n−k
2 D((s1 ⊕R12m

T , R1),

R1 ∈R F
n−k×n
2 & R2 ∈R F

n−k×n
2 (s2 ⊕R22m

T , R2)) = 1
& R1 = [R11|R12] & R2 = [R21|R22]

⎤⎦
≥ δ

then one can construct an algorithmD′ running in time τ ′ = O(n21(τ+n21)/δ2), and

satisfying the inequality, 4( 3

√
n1 · AdvSDD′ (n1, k) +

3

√
n1 · AdvSDD′ (n1, 2k − n)) ≥ δ.

Next we formally argue the security of the protocol in the IND-CCA2 setting
without the use of random oracles. The argument is essentially an extension of
the reduction in [18] to the IND-CCA2 setting.

Theorem 2. If there exists a PPT adversary A such that Advcca2PKE,A(κ) ≥ δ,

there exists an algorithm D′ such that AdvCDD′ (n) + SuccOS
A (vk∗)+

4( 3

√
n1 · AdvSDD′ (n1, k) +

3

√
n1 · AdvSDD′ (n1, 2k − n)) ≥ δ.

Proof: We construct such a challenger D′ which simulates the cryptosystem
(giving the adversary A the public parameters of the system and access to the
decryption oracle) and uses the adversaryA by giving it an appropriate challenge
ciphertext. The simulation by D′ is as follows:

Key Generation. For the parameters [n, k, t] (also n1, n2, t1, t2), the parity
matrix R of a random [n, k, t] linear code, the injective functions f1, f2, the
one-time signature scheme OS(KeyGenOS , SignOS ,VerfiyOS), the challenger
generates the keys as follows:
– (vk∗, sk∗)← KeyGenOS(1

κ).
– Randomly selects a [n, k, 2t+1]Goppa code with parity check matrix H2

respectively
– Randomly selects an invertible matrix Q1 ∈R F

n−k×n−k
2 , the full-rank

matrix G2 ∈R F
n−k×n
2 and a n× n permutation matrices P1, P2.

– ComputesHvk∗ =f1(vk
∗) and generatesG1∈Fn−k×n2 such thatHvk∗G

T
1 =

0. To generate such a G1, one has to find a generator matrix G corre-
sponding to Hvk∗ , and select randomly Q ∈R F

n−k×k
2 and G1 = QG.

Hence G1 contains n−k code-words from the code generated by G, since
on multiplying any k (dimension of code)length vector with the corre-
sponding generator matrix G gives a code-word. Therefore HGT1 = 0.

– Define H̃1 = Q1RP1 and H̃2 = GT1H2P2 ⊕GT2 RP1.

Decryption Oracle. The challenger has to simulate the decryption oracle, as
it does not possess the trapdoor with respect to H̃1. The decryption oracle
uses the trapdoor related to the key H̃2. The simulation is as follows:

Input: The ciphertext c = (vk, c1, c2, σ)
Output: The message m.
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if (VerifyOS(vk, c1, c2) == FALSE)
Return ⊥

else
if (vk == vk∗) // D′ does not posses a trapdoor for vk∗

ABORT // since Hvk∗G
T
1 = 0

else
Hvk ← f1(vk), Pvk ← f2(vk)
Compute c′1 = Q−1

1 c1
Compute c′′1 = HvkG

T
2 c

′
1

Compute y = c2 ⊕ c′′1
Compute Q′ = HvkG

T
1

if (Q’ is not invertible)
ABORT

else
if (DecodeH2(Q

′−1y)→⊥) // Invalid ciphertext
Return ⊥

else
Compute [r|m′] = PTvkP

T
2 DecodeH2(Q

′−1y)

if (c1 �= H̃1Pvk[r|m′]T OR c2 �= HvkH̃2Pvk[r|m′]T )
Return ⊥ // Ciphertext inconsistent

else
Return m′.

end

Challenge Ciphertext. Given the messages (m0,m1) each of length n2 and
weight t2 challenger selects (vk∗, sk∗) as the verification-signing key-pair for
the one-time signature. The challenge ciphertext is setup as follows:

– Compute Hvk∗ = f1(vk
∗) and Pvk∗ = f2(vk

∗).

– Define K1 = H̃1Pvk∗ and K2 = Hvk∗H̃2Pvk∗ . Since Hvk∗G
T
1 = 0, the key

K2 = Hvk∗G2RP1Pvk∗ . Also, we see that K1 = H1RP1Pvk∗ . Hence for
both the schemes, we find that it reduces to syndrome decoding on R.

– Randomly select b, i.e.,b ∈R {0, 1}.

Let K1 = [K11|K12] and K2 = [K21|K22] of appropriate sizes n− k×n1 and
n− k × n2. Now to generate the challenge ciphertext:

if (b ==1)
r ∈R F

n1
2 such that wt(r) ≤ t1. Compute c1 = K1[r|m1]

T and c2 =
K2[r|m1]

T .
else
s ∈R F

n−k
2 .Compute c1 = Q1s⊕K12m

T
0 and c2 = Hvk∗G2s⊕K22m

T
0 .

The challenger computes σ = SignOS(sk
∗, (c1, c2)), and sends (vk∗, c1, c2, σ)

as the challenge ciphertext. The adversary return b′. If b == b′ then D′

outputs 1 else outputs 0.
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Let Real denote the actual encryption scheme, and Sim denote the simulated
version by D′. It is noted that in Sim the key generation differs in the sense
that the Goppa matrix H1 is replaced by R. Also, the decryption oracle aborts
in certain cases. We note that the ABORT scenario in the case that Q′ is not
invertible is negligible. This is so because, for every Hvk there are exactly 2k

elements in F
n
2 that give 0 on multiplication. This is the code corresponding to

Hvk, and is hence the a vector space. Thus it follows that every vector v ∈ F
n−k
2

can be generate by exactly 2k vectors in Fn2 . Hence the probability that a vector

v ∈ F
n−k
2 is generated is 2k

2n i.e., 1
2n−k . It is noted that the probability distribution

is exactly similar to when we select a vector v ∈ F
n−k
2 uniformly at random.

Hence, the probability of matrix Q′ being non-invertible is the same as when
generated completely at random,viz. negl(n). The other scenario to abort is the
case at which vk = vk∗. In the first phase of the game, the probability of its
occurrence is negligible in the size of the verification key space. But, after the
challenge ciphertext is generated the adversary can query on altered ciphertexts
with signature σ′ verifiable using vk∗. Hence, it is seen that

Pr[b′ == b|Real]− Pr[b′ == b|Sim] ≤ AdvCDD′ (n) + SuccOS
A (vk∗) (1)

From the corollary 2 it can derived that

Pr[b′ == b|Sim]− 1

2
≤ 4(

3

√
n1 · AdvSDD′ (n1, k) +

3

√
n1 · AdvSDD′ (n1, 2k − n)) (2)

We know that Pr[b == b′|Real] is the probability of success of the adversary in
the actual encryption scheme.

Advcca2PKE,A(κ) = Pr[b == b′|Real]− 1

2

By equation 1,

Advcca2PKE,A(κ) ≤ AdvCDD′ (n) + SuccOS
A (vk∗) + Pr[b == b′|Sim]− 1

2

From equation 2

Advcca2PKE,A(κ) ≤ AdvCDD′ (n) + SuccOS
A (vk∗) + 4( 3

√
n1 · AdvSDD′ (n1, k)+

3

√
n1 · AdvSDD′ (n1, 2k − n))

Hence using algorithm D′ we get

AdvCDD′ (n, k) + SuccOS
A (vk∗) + 4( 3

√
n1 · AdvSDD′ (n1, k) +

3

√
n1 · AdvSDD′ (n1, 2k − n))

≥ δ ��
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From the result, we obtain that the advantage of the adversary, depends on the
advantage of solving the Goppa Code distinguishability problem and Syndrome
Decoding problem. For, parameters (n, k) with the appropriate n1, n2, t1, t2 for
which CD(n, k), SD(n1, k), & SD(n1, 2k − n) are hard, the advantage for the
adversary is negligible.

Validity of conditions for f1 and f2. A requirement for the security of the
scheme is that, f1 & f2 are injective. The range of the function f1 is of size
2n−k×n and the range of the function f2 is of size n!. Clearly, the range of the
function is of size comparable to that of the domain, if not much larger (since,
size of domain must be O(2κ)). Hence, injective mappings can be realised for
such domains and ranges.

3.3 Parameters

From, the previous section, we have seen that the selection of parameters is
important in defining the negligible advantage an adversary has in solving the
syndrome decoding problem. Clearly, for SD(n1, 2k − n) to be hard, we have to
select a k > n

2 . Since, the required codes need not have a very high rate, the
distinguisher attack [9] does not hold. Hence, the parameters that are generally
used for Niederreiter encryption scheme, can be used for the proposed scheme
too. The table 1, presents the (n1, k) parameters along with the appropriate n2
as message size, and the binary work factor for syndrome decoding for (n1, k) and
(n1, 2k− n). Here binary work factor, is log2(time taken). The work factors are
estimated according to the lower bound complexity given in [10]. For, the given
parameters, Goppa codes are indistinguishable [9]. The security of the scheme
for the given parameters increases with decrease in n2.

Table 1. Parameters for the given scheme, and corresponding work factors for solution
of Syndrome Decoding problem, estimated according to [10]

(n, k) (n1, n2) Security factor
for (n1, k)

Security factor
for (n1, 2k − n)

(4096,3604) (4046,50) 128.60 90.08
(3996,100) 124.96 87.31
(3896,200) 120.65 83.50
(3796,300) 116.29 80.44

3.4 Comparison with Other Schemes

It is seen that the proposed scheme is IND-CCA2 secure in the standard model,
without much change in the parameters. The comparison of the proposed schemes
with existing schemes are presented in table 2.To the best of our knowledge, this
is the first Niederreiter variant that is IND-CCA2 secure in the standard model
without κ repetition.



178 K. Preetha Mathew et al.

Table 2. Comparison with other code-based CCA-2 cryptosystems

Scheme Public-key
(bits)

Secret key
(bits)

Ciphertext Encrypt
Complexity

Decrypt
complexity

Dowsley et
al.[8]

2κ×MP 2κ×MS κ× MC κ×ME 1 MD + κ×ME

Freeman
et al. [12]

2κ×NP 2κ×NS κ×NC κ×NE
1 ND + κ× NE

Proposed
Scheme

1 NP + 1(n×n)
Matrix

2×NS 2×NC 2×NE + 1
MM

1 ND + 2×NE
+ 1 MM

(MP,MS)- McEliece (Public Key, Secret Key), (NP,NS) - Niederreiter (Public Key,
Secret Key), (ME,MD) - McEliece (Encryption Complexity, Decryption Complex-
ity), (NE,ND) - Niederreiter (Encryption Complexity, Decryption Complexity), MC -
McEliece ciphertext size, NC -Niederreiter ciphertext size MM - Matrix Multiplication.

4 Conclusion

In the paper, we propose an efficient IND-CCA2 secure code-based encryption
scheme in the standard model. The scheme is the first such scheme, that does not
use the κ repetition paradigm [23]. Thus, the scheme has avoided the inherent
costs incurred by the existing schemes [8,12] and is more efficient, because it
requires at most two repetitions of the underlying Niederreiter encryption scheme
and any one-time strongly unforgeable signature.
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Abstract. We present two zero-knowledge protocols for the code-based
McEliece public key encryption scheme in the standard model. Consider
a prover who encrypted a plaintext m into a ciphertext c under the pub-
lic key pk. The first protocol is a proof of plaintext knowledge (PPK),
where the prover convinces a polynomially bounded verifier on a joint
input (c, pk) that he knows m without actually revealing it. This con-
struction uses code-based Véron’s zero-knowledge identification scheme.
The second protocol, which builds on the first one, is a verifiable McEliece
encryption, were the prover convinces a polynomially bounded verifier
on a joint input (c, pk,m) that c is a valid encryption of m, without
performing decryption. These protocols are the first PPK and the first
verifiable encryption for code-based cryptosystems.

1 Introduction

The McEliece public key encryption (PKE) scheme [26] is the first code-based
cryptosystem. It uses the error-correcting codes by Goppa [20,25]. Security of the
McEliece PKE is based on hardness of the problems related to general decoding
[5,31]. Breaking of the McEliece PKE is believed to be infeasible for properly
chosen parameters [12,13,7], even for adversaries equipped with quantum com-
puters [6]. The later fact makes this cryptosystem a prospective candidate for
the postquantum world. In fact, it is also argued by Bernstein et al [7, App. A]
that the McEliece PKE is a prospective cryptosystem due to its good asymptotic
performance.

Informally, a proof of plaintext knowledge (PPK) for an encryption scheme
with public key pk, allows a prover P to prove knowledge of the plaintext m,
corresponding to the ciphertext c = Encpk(m), to a verifier V on the public
inputs pk and c. Moreover, if such the proof is zero-knowledge (ZK), it will not
reveal any additional information on m.

Informally, a verifiable encryption with respect to some binary relation R on
the plaintexts is a zero-knowledge proof on public inputs pk, c, and δ that allows
P to convince V that c is a ciphertext of m under pk such that (m, δ) ∈ R.

1.1 Our Contributions

– We present a computational zero-knowledge PPK for the McEliece PKE
using Véron’s ZK identification scheme [35].

W. Susilo, Y. Mu, and J. Seberry (Eds.): ACISP 2012, LNCS 7372, pp. 180–193, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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– Using this PPK, we also construct a verifiable IND-CPA McEliece encryp-
tion for equality relation by introducing a computational ZK proof of the
statement “ciphertext c decrypts to the plaintext m”.

1.2 Related Works

Proof of Plaintext Knowledge. PPK were introduced by Aumann and Rabin
[1] (as attributed in [23]), and later studied by Katz [23], who presented PPK for
RSA, Rabin, ElGamal and Paillier cryptosystems. The first PPK for a lattice-
based Ajtai-Dwork PKE is due to Goldwasser and Kharchenko [19]. Xagawa et al
[36] presented PPK for the two variants of the lattice-based Regev’s cryptosys-
tem. Xagawa and Tanaka presented that for NTRU [37] using a modification
of Stern’s code-based ZK identification scheme [34]. Bendlin and Damg̊ard [3]
presented a PPK for a variant of Regev’s cryptosystem. Compared to the previ-
ous lattice-based constructions (as well as to our protocols) the latter scheme is
constant-round that is achieved using the “multiparty computation in the head”
paradigm of Ishai et al [21].

Stern’s scheme [34] was used by Kobara et al [24] for enforcing correct behav-
ior of a sender in code-based oblivious transfer. They even suggested verifiable
encryption as a possible application for their technique, but no formal treatment
of this subject was made in their work.

Verifiable Encryption. Verifiable encryption was introduced by Stadler [33] in
the context of publicly verifiable secret sharing, and later generalized by Asokan
et al [2] with application to fair exchange of digital signatures. Developments
on this topic include further generalizations by Camenisch and Damg̊ard [8] and
Camenisch and Shoup [9].

We emphasize that none of the previous works on the above topics considered
code-based PKE.

Note that assuming that one-way functions exist, one could achieve the results
presented in this work using general zero-knowledge proofs for NP-statements
[18], however such constructions would be prohibitively inefficient.

1.3 Discussion of Our Contributions

We present a computational zero-knowledge PPK for the McEliece PKE by
showing that Véron’s ZK identification scheme [35] (that is, in a sense, a dual of
Stern’s scheme [34]) can be directly used as PPK for the McEliece encryption.
The witness in this proof is both the plaintext and the (random) error vector.
Using Véron’s scheme rather than Stern’s (as in [24]), we avoid pre-computation
on the public data.

An immediate application of this result is the interactive chosen-ciphertext
secure encryption. Here, the sender uses an IND-CPA secure PKE to encrypt
a message for the receiver, who must be online. Along with transmitting the
ciphertext, the sender also uses the interactive PPK to convince the receiver
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that he knows the message. According to the observation by Katz [23], this
construction results in an interactive IND-CCA1 PKE [15,16]. Combined with
the IND-CPA secure McEliece encryption by Nojima et al [29], this yields the
first code-based interactive IND-CCA1 PKE in the standard model.

Using the above mentioned PPK, we also construct a verifiable IND-CPA
McEliece encryption for equality relation. Note that although the original McEli-
ece encryption is not deterministic, given pk and c = Encpk(m), it is trivial to
check whether or not c is a ciphertext of m. Therefore, for verifiable encryption,
we use an IND-CPA secure McEliece encryption [29].

It is interesting to note that in the lattice-based constructions [19,36], one
first constructs a verifiable encryption for equality relation, and then use it as
a building block for PPK, while in our case it works the other way around.

In our constructions, we assume that both the prover and the verifier are
assured that the public key pk is valid. This assumption will require a trusted
third party who generates public keys – this can be, for instance, an entity in
the public key infrastructure.

The proofs of Stern’s [34] and Véron’s schemes [35] are in the random oracle
model. In order to avoid such the strong assumption, we employ the later scheme
with (efficient) computationally hiding and statistically binding commitment
scheme based on hardness of syndrome decoding, as presented in [11].

2 Preliminaries

Let us fix some notation. Denote by “⊕” the bitwise exclusive-or. For an ordered
subset {ji, . . . , jm} = J ⊆ {1, . . . , n}, we denote the vector (xj1 , . . . , xjm) ∈ Fm2

by xJ . Similarly, we denote byMJ the submatrix of a (k×n) matrixM consisting
of the columns corresponding to the indexes of J . A concatenation of vectors x

and y is written as (x|y). We denote by x
$← X a uniformly random selection of

an element from its domain X . A set of (n×n) permutation matrices is denoted
by Sn.

We denote by 〈A(a), B(b)〉(c) a random variable representing the output of
a Turing machine B following an execution of an interactive two-party protocol
between a Turing machine A with private input a and B with private input b
on joint input c, where A and B have uniformly distributed random tapes. If a
party, say A, has no input, then we omit the input by writing just A (instead of
A(a)) in the above notation.

In our two-party protocols, we will denote an honest prover by P and an honest
verifier by V, while a dishonest party will be denoted by P̃ and Ṽ, respectively.

We call a function ε(n) negligible in n, if ε(n) = 2−ω(logn). We call a probability
1− ε(n) overwhelming, when ε(n) is negligible.

Occasionally, we omit the mentioning of a security parameter. In these cases,
by saying that a quantity is negligible (overwhelming), we mean that it is negli-
gible (overwhelming) in the security parameter.

For the relevant topics in coding theory we refer the reader to [30,25].
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2.1 Security Assumptions

Definition 1 (Syndrome Decoding (SD) Problem).

Input: H
$← F

(n−k)×n
2 , y

$← F
n−k
2 and 0 < t ∈ N.

Output: s ∈ Fn2 such that wH(s) ≤ t, HsT = y.

This problem was shown to be NP-complete by Berlekamp et al [5]. Its equivalent
dual version can be formulated as follows.

Definition 2 (General Decoding (G-SD) Problem).

Input: G
$← F

k×n
2 , y

$← Fn2 and 0 < t ∈ N.

Output: x ∈ Fk2 , e ∈ Fn2 s.t. wH(e) ≤ t, xG ⊕ e = y.

The following two problems use the quantities defined in the next subsection.
No polynomial-time algorithm is known for these problems [12,13,7].

Definition 3 (McEliece Problem).

Input: A McEliece public key (Gpub, t), where
Gpub ∈ F

k×n
2 , 0 < t ∈ N; and a McEliece ciphertext c ∈ Fn2 .

Output: m ∈ Fk2 such that dH(mGpub, c) = t.

Definition 4 (Goppa Code Distinguishing (GD) Problem).

Input: R ∈ F
k×n
2 .

Decide: Is R a generator matrix of an (n, k) irreducible Goppa code, or of
a random (n, k)-code?

2.2 McEliece Cryptosystem

For a survey on code-based PKE and related schemes we refer the reader to the
work by Engelbert et al [12].

The McEliece PKE consists of the following triplet of algorithms (K, E ,D):

– Security parameters: n, t ∈ N.
– Key generation algorithm K: On input n, t, generate the following matrices:

• G ∈ F
k×n
2 – the generator matrix of an irreducible binary Goppa code

correcting up to t errors. Its decoding algorithm is denoted as Dec.
• S ∈ F

k×k
2 – a random non-singular matrix.

• P ∈ F
n×n
2 – a random permutation matrix (of size n).

• Gpub = SGP ∈ F
k×n
2 .

Output the public key pk = (Gpub, t) and the secret key sk = (S,G, P,Dec).
– Encryption algorithm E : On input a plaintext m ∈ Fk2 and the public key
pk, choose a vector e ∈ Fn2 of weight t at random, and output the ciphertext

c = mGpub ⊕ e.

– Decryption algorithm D: On input c and the secret key sk, calculate:
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• cP−1 = (mS)G⊕ eP−1.
• mSG = Dec(cP−1).
• Let J ⊆ {1, . . . , n} be s.t. GJ is invertible.
Output m = (mSG)J (GJ )

−1S−1.

It is easy to check that the decryption algorithm correctly recovers the plaintext:
Since in the first step of decryption, the permuted error vector eP−1 is again
of weight t, the decoding algorithm Dec successfully corrects these errors in the
next step.

Randomized McEliece Encryption. In the standard model, Nojima et al
[29] show that the McEliece encryption with a random padding of the plaintext
(which is multi-bit) is IND-CPA secure under hardness of the learning parities
with noise (LPN) problem1 and GD problem.

A little more formally, the Randomized McEliece encryption is constructed in
the same way as described above, except that the ciphertext c = (r|m)Gpub ⊕ e,
where r

$← {0, 1}k0, m ∈ {0, 1}k1, k = k0 + k1. A particular choice of k0 and k1
is discussed in [29].

2.3 Proof of Plaintext Knowledge

In this subsection, we closely follow the presentation of [23]. For a public key
cryptosystem (K, E ,D), denote by c = Epk(m;R) an encryption of a plaintext m
under public key pk using randomness R. We will call (m,R) a witness to the
decryption of c under pk. Informally, in a PPK protocol, a sender P proves to
a receiver V the knowledge of a witness to the decryption for some ciphertext c
under the known public key pk.

Definition 5. Let Π = (P,V) be a tuple of PPT algorithms. Π is a proof of
plaintext knowledge for encryption scheme (K, E ,D) if the following conditions
hold:
(Completeness) For all pk output by K(1n) and all c with witness w to the
decryption of c under pk, we have that Pr[〈P(w),V〉(pk, c) = 1]. (When V outputs
1 we say it accepts.)
(Soundness) For all pk output by K(1n), all c produced under pk, and for any

P̃, we have that Pr[〈P̃,V〉(pk, c) = 1] is negligible.
(Zero-knowledge) There exists a PPT Turing machine SIM (called a simu-

lator) such that, for all pk output by K(1n), all PPT Ṽ, and all w, the following
distributions are computationally indistinguishable:

{c = Epk(m;R) : 〈P(w), Ṽ〉(pk, c)},

{c = Epk(m;R) : 〈SIM, Ṽ〉(pk, c)}.
1 See e.g. [29] for a formal definition of LPN problem – it is similar to G-SD problem
except that in the error vector e, each bit has Bernoulli distribution with fixed p,
0 < p < 0.5.
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2.4 Verifiable Encryption

We adapt the following definition from [8].

Definition 6. Let (K, E ,D) be a public key encryption scheme, let R be a binary
relation and let LR = {x|∃w : (x,w) ∈ R}. A secure verifiable encryption scheme
for a relation R consists of a two-party protocol between P and V s.t. the following
conditions hold:
(Completeness) For all pk output by K(1n) and all x ∈ LR, we have
Pr[〈P(x),V〉(pk) = 1]. (When V outputs 1 we say it accepts.)

(Soundness) For all pk output by K(1n), all x′ /∈ LR, and for any P̃,

Pr[〈P̃(x′),V〉(pk, c) = 1] is negligible.
(Zero-knowledge) There exists a PPT simulator SIM such that, for all pk

output by K(1n), all PPT Ṽ, and all x ∈ LR, the following distributions are
computationally indistinguishable:

{x ∈ LR : 〈P(x), Ṽ〉(pk)}, {x ∈ LR : 〈SIM, Ṽ〉(pk)}.

Note that this definition captures only the properties related to verifiability. We
implicitly assume that a scheme in question is indeed a public-key encryption
scheme. For a formal definition of the latter, see e.g. [17, Ch. 5].

2.5 Commitments

Zero-knowledge proof systems use commitments as a building block. A com-
mitment scheme consists of two stages. In the first one, called committing, the
sender P provides the receiver V with an evidence about his data b. The cheating
receiver Ṽ cannot learn b before the second stage, called opening, when P reveals
b to V. The cheating sender P̃ cannot successfully open anything other than b.
Let us denote by [P,V]A,st the view of the party A ∈ {P,V} at the stage st,
which is a concatenation of all the messages sent and received by A, along with
its local randomness.

We adapt the following definition from [11].

Definition 7. A protocol is said to securely implement string commitment, if
at the end of its execution by PPT Turing machines P (with input b ∈ Fl2, l ∈ N)
and V, the following properties hold:
(Correctness) Pr[〈P(b),V〉 = 1] with overwhelming probability.

(Hiding) For any PPT Ṽ, any l ∈ N, any b ∈ F
l
2 and b′ ∈ F

l
2 such that b′ �= b,

after the committing stage, but before the opening stage, the distributions

[P(b), Ṽ]Ṽ,Commit and [P(b′), Ṽ]Ṽ,Commit

are computationally indistinguishable.
(Binding) For any P̃, any l ∈ N, and b′ ∈ Fl2 there exists b ∈ Fl2 which can be
computed by P after the committing stage, such that the probability

Pr[〈P̃(b′),V〉 = 1]

is negligible.
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In the random oracle model, a string commitment which is both computation-
ally hiding and binding can be implemented using (idealized) cryptographic hash
functions. We avoid this additional strong assumption by employing a compu-
tationally hiding and statistically binding commitment based on syndrome de-
coding, which was suggested by Dowsley et al [11]. They proposed to use Naor’s
bit commitment scheme [27] based on pseudorandom generator, which, in turn,
can be constructed assuming hardness of SD problem, as proved by Fischer and
Stern [14].

3 PPK for McEliece Encryption

Our proof of knowledge for the McEliece encryption is based on Véron’s zero-
knowledge identification scheme [35]. We make the following modifications to it
– instead of a generator matrix of the random code, we use that of the irreducible
(n, k) Goppa code as described in Section 2.2, and set a weight of the error vector
to be exactly t.

Our main observation is that the security proof of Véron’s scheme [35] is valid
for any code, for which G-SD problem is hard, not just a random one. Therefore,
replacing a random code with the McEliece public key, and an assumption on the
hardness of G-SD problem with that on the hardness of the McEliece problem,
we preserve the validity of the original proof.

Remark 1. Note that we do not need to assume hardness of the Goppa Distin-
guishing problem for the proof itself.

Remark 2. In the following protocol, the probability for P̃ to break soundness
(i.e. to make V accept the proof without knowledge of the witness (m, e)) is 2/3.
It can be reduced to an arbitrary small value (2/3)s by iterating the protocol s
times.

Witness: (m, e), m ∈ Fk2 , e ∈ Fn2 , wH(e) = t, where the parameters n, k, t are
described in Section 2.2.

Common data: (Gpub ∈ F
k×n
2 , t) – the McEliece public key, and c = mGpub⊕e

– the McEliece PKE ciphertext (as described in Section 2.2).

Protocol 1 (McEliece PPK).

1. P computes u
$← Fk2 , T

$← Sn and sends three commitments:
– C1 = com(T ),
– C2 = com((u ⊕m)GpubT ),
– C3 = com((uGpub ⊕ c)T ).

2. V sends b
$← {0, 1, 2}.

3. In this step, V checks the validity of the quantities presented by P, and
rejects if it does not hold:

– If b = 0,
– P sends T , u⊕m, and opens C1, C2.
– V checks validity of C1 and C2 (using Gpub).
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– If b = 1,
– P sends (u⊕m)GpubT , eT , and opens C2, C3.
– V checks that wH(eT ) = t and validity of C2, C3

(using that (u ⊕m)GpubT ⊕ eT = (uGpub ⊕ c)T ).
– If b = 2,

– P sends T , u, and opens C1, C3.
– V checks the validity of C1, C3.

Denote a protocol consisting of s independent iterations of Protocol 1 by
PPK(Gpub, c;m, e), with some appropriately chosen s.

Theorem 1. Protocol PPK(Gpub, c;m, e) is a proof of plaintext knowledge for
the McEliece cryptosystem according to Definition 5 assuming hardness of the
McEliece problem.

Proof. We closely follow the proof in [35].

Completeness. It is easy to check that P knowing a valid (m, e) for Gpub can
answer any of the queries correctly. Hence, we have Pr[〈P(w),V〉(pk, c) = 1].

Soundness. First, we prove the following lemma.

Lemma 1. If V accepts P̃’s proof with probability at least (23 )
s + ε, then there

exists a PPT algorithm M which, with overwhelming probability, computes a
witness (m, e).

Proof. Let T be an execution tree of the protocol (P̃,V) corresponding to all

possible questions of V, when P̃ has a random tape RA. V may ask 3 possible
questions at each stage. First, we show that as long as the binding property of
the commitment holds, a witness (m, e) can be computed from a vertex with 3
descendants. Next, we show that a PPT M can find such a vertex in T with
overwhelming probability.

Let v be a vertex with 3 descendants. This corresponds to a situation, where
3 commitments C1, C2, C3 have been made and where the three queries were
correctly answered.

Let T ′ and u′ ⊕m′ be the answers to the query b = 0, y′′, e′′ – to the query
b = 1, T ′′′, u′′′ – to the query b = 2.

We have wH(e′′) = t, T ′ = open(C1) = T
′′′,

(u′ ⊕m′)GpubT ′ = open(C2) = y
′′,

y′′ ⊕ e′′ = open(C3) = (u′′′Gpub ⊕ c)T ′′′.
Therefore, either P̃ was able to violate the binding property of the commit-

ment, or we have c = (u′ ⊕m′ ⊕ u′′′)Gpub ⊕ e′′(T ′)−1, where e′′(T ′)−1 is a word
of length n and weight t. Therefore, (u′ ⊕m′ ⊕ u′′′, e′′(T ′)−1) is a valid witness.

Next, we show that the probability for T to have a vertex with 3 descendants
is at least ε. Let us consider the random tape RA of P̃ as a set of μ elements,
from which P̃ randomly picks its values and let Q = {1, 2, 3}. These two sets are
considered as probability spaces, both of them with uniform distribution.
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A pair (a, b) ∈ (RA ×Q)s represents the commitments, queries and answers

communicated between P̃ and V in the protocol. We will call (a, b) a valid pair,

if the execution of (P̃,V) leads to the success state.
Let V be the subset of (RA × Q)s composed of all the valid pairs. By the

hypothesis of the lemma,

|V |
|(RA×Q)s| ≥

(
2

3

)s

+ ε.

Let Ωs ⊂ RAs such that:

– If a ∈ Ωs, then 2s + 1 ≤ |{b : (a, b) are valid}| ≤ 3s,
– If a ∈ RAs \Ωs, then 0 ≤ |{b : (a, b) are valid}| ≤ 2s.

Then, we write V = {valid (a, b), a ∈ Ωs}∪{valid (a, b), a ∈ RAs\Ωs}, therefore
|V | ≤ |Ωs| · 3s + (μs − |Ωs|) · 2s, so by noting that |RAs| = μs and |Qs| = 3s it
follows that

|V |
|(RA×Q)s| ≤

(
|Ωs|
|RAs| + 2s

(
3−s − |Ωs|

|RA×Q)s|

))
≤ |Ωs|
|RAs| +

(
2

3

)s

, (1)

and therefore |Ωs|/|RAs| ≥ ε. This shows that the probability that P̃ answers to
(at least) 2s + 1 V’s queries, by choosing random values, is bigger than ε.

Now, if more than 2s + 1 queries are correctly answered by P̃, T (RA) has at
least 2s + 1 leaves, i.e. T (RA) has at least one vertex with 3 descendants.

Therefore, by rewinding P̃ 1/ε times, it is possible to find an execution tree
with a vertex having 3 descendants with probability arbitrary close to 1. This
concludes the proof of the lemma. ��
Unless the binding property of the commitment was violated, the conclusion
of this lemma contradicts hardness of the McEliece problem. It follows that
Pr[〈P̃,V〉(pk, c) = 1] ≤ (2/3)s + ε, which is negligible in n and s.

Zero-Knowledge. Let us denote by RP,V the communication tape for P and
V, that is a concatenation of all bits they exchanged during the protocol. We
consider the probability distributions on RP,V.

Proposition 1. Protocol 1 is zero-knowledge according to Definition 5 assuming
hardness of the McEliece problem.

Proof. In order to simulate Ṽ, we have to assume that it will choose a particular
cheating strategy depending on the information received from P. Let us denote
this strategy by St(C1, C2, C3) ∈ {0, 1, 2}.

Consider the following two functions: φm : Fk2 → Fk2 , φm(u) = u ⊕m, which
is an automorphism of Fk2 and ψ : Fk2 → Fn2 , ψ(u) = uG

pub, which is an isomor-
phism of Fk2 into the code generated by Gpub.

The following PPT algorithm SIM produces a communication tape, whose
probability distribution is indistinguishable from that of a communication tape
produced by the honest parties.
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1. SIM randomly picks a query b ∈ {0, 1, 2}.
− If b = 0, SIM chooses y

$← F
k
2 , T

$← Sn, computes C1 = com(T ),
C2 = com(yGpubT ) and sets C3 to be a random binary vector of appro-
priate length.
Let COM = (C1|C2|C3) and Ans = (y|T ), here we assume a represen-
tation of T ∈ Sn as a binary vector by concatenating its rows. Note
that y and u⊕m have the same probability distribution, since for some

z ∈ Fk2 , and u
$← Fk2 , we have Pr[u ⊕m = z] = Pr[u = φ−1

m (z)] = 2−k

= Pr[y = z].

− If b = 1, SIM chooses T
$← Sn, y $← C (where C is a code generated

by Gpub), e′ $← Wn,t
2 (where Wn,t

2 = {x ∈ Fn2 |wH(x) = t}), computes
C2 = com(yT ), C3 = com((y⊕e′)T ), and sets C1 to be a random binary
vector of appropriate length.
Let COM = (C1|C2|C3) and Ans = (yT |e′T ). Then, e′T has the same
probability distribution as eT , moreover for some z ∈ C,
Pr[(u⊕m)Gpub = z] = Pr[u = φ−1

m (ψ−1(z))] = 2−k = Pr[y = z].

− If b = 2, SIM chooses y
$← Fk2 , T

$← Sn, computes C1 = com(T ),
C3 = com((yGpub ⊕ c)T ) and sets C2 to be a random binary vector of
appropriate length.
Let COM = (C1|C2|C3) and Ans = (y|T ).

2. SIM computes b′ = St(COM).
3. If b = b′, then SIM writes on the tape R the quantities H , b, and Ans,

otherwise SIM goes to Step 1.

Thus, in 3s rounds on average, the simulator SIM produces a communication
tape R computationally indistinguishable from a communication tape RP,V pro-
duced by the honest parties running s rounds of Protocol 1. Therefore, we have
that 〈P(m, e), Ṽ〉(pk, c) and 〈SIM, Ṽ〉(pk, c) are computationally indistinguish-
able. Note that computational indistinguishability is due to the fact that the bit
commitment scheme is computationally hiding according to Definition 7. This
completes the proof of the proposition. ��

The above arguments of completeness, soundness and zero-knowledge conclude
the proof of the theorem. ��

By inspecting the construction of the randomized McEliece PKC in Sec. 2.2, the
next Corollary follows immediately by replacing m with (r|m) in Theorem 1.

Corollary 1. Protocol McEliece PPK is a proof of plaintext knowledge for the
Randomized McEliece PKE of [29] assuming hardness of the McEliece problem.

3.1 Extensions

Similarly to the above construction, PPK for the Niederreiter PKE [28] (the dual
of the McEliece PKE), or its semantically secure variant [29], can be constructed
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in a straight forward manner using Stern’s zero-knowledge identification scheme
[34] (the dual of Véron’s scheme [35]).

We believe but do not prove formally that the result of this section can also
be extended to provide PPK for the q-ary variants of the McEliece encryption
[22,4] using the identification scheme by Cayrel et al [10], which is based on q-ary
codes.

4 Verifiable McEliece Encryption

Let us denote by 0l an all-zero vector of length l ∈ N.
In this section, we present the verifiable IND-CPA McEliece encryption for

the equality relation Req = {(m,m′)|m = m′}, i.e. that a given ciphertext c is
an encryption of a given plaintext m under public key Gpub.

Let the parameters n, k, k0, k1, t be as described in Section 2.2, in particular,
k = k0 + k1 and m ∈ F

k1
2 .

Witness: (r, e), where r ∈ F
k0
2 , e ∈ Fn2 , wH(e) = t.

Common data: (Gpub ∈ F
k×n
2 , t) – the McEliece public key, and

c = (r|m)Gpub ⊕ e – the Randomized McEliece PKE ciphertext (as described in
Section 2.2).

Remark 3. For the ciphertext c as defined above, we have that c⊕(0k0 |m)Gpub =
(r|0k1)Gpub ⊕ e = rGpubr ⊕ e, where Gpubr ∈ F

k0×n
2 is a restriction of Gpub to its

first k0 rows.

Protocol 2 (Verifiable McEliece PKE).

1. P and V execute PPK(Gpub, c; (r|m), e).
If PPK was rejected, then V rejects.

2. P and V each compute:
cr = c⊕ (0k0 |m)Gpub = rGpubr ⊕ e.

3. P and V execute PPK(Gpubr , cr; r, e).
If PPK was rejected, then V rejects,
otherwise V accepts.

Proposition 2. Protocol 2 is a verifiable McEliece encryption for the relation
Req under hardness of G-SD, LPN and GD problems.

Proof (Sketch). We need to argue completeness, zero-knowledge, and soundness.
The first two properties follow easily using the proof of Theorem 1.

As for soundness, Step 1 ensures that c is indeed of the form (r′|m′)Gpub ⊕ e
with wH(e) = t for some r′ ∈ F

k0
2 and m′ ∈ F

k1
2 . Now, suppose m �= m′, then we

have c′r = r
′Gpubr ⊕e⊕(m⊕m′)Gpubm , where Gpubm ∈ F

k1×n
2 is a restriction of Gpub

to its last k1 rows. Note that (m⊕m′)Gpubm is not in a code generated by Gpubr ,
since the rows of Gpub are linearly independent. However, since (m ⊕m′)Gpubm

is a codeword of the code generated by Gpub, its weight is at least d ≥ 2t + 1.
Therefore, the weight of e⊕ (m⊕m′)Gpubm is at least t+ 1. This implies that if

P̃ was accepted by V, he necessarily used an error vector of weight larger than
t, that would contradict to soundness of Protocol 1 established by Theorem 1.
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We note that although the above protocol does not reveal any information on
the witness (r, e), the verifier learns the plaintext m and hence she will be able
to construct a valid ciphertext of Randomized McEliece encryption with ran-
domness (r, e) for any plaintext. This attack can be prevented using standard
message integrity techniques, such as message authentication codes. We leave
this issue for our future study.

5 Conclusion

We presented the first proof of plaintext knowledge and the first verifiable en-
cryption for an equality relation for the McEliece PKE. Our constructions are
proved secure in the standard model, under hardness of the McEliece assump-
tions related to coding theory. An important open question is to upgrade our
scheme to non-malleable security. According to [23], this will allow us to con-
struct password-based authentication and key exchange, as well as deniable au-
thentication based on coding. Another important open question is to extend our
verifiable encryption to more general relations and to verifiable decryption. This
would, for instance, yield code-based constructions for key escrow and optimistic
fair exchange, according to [9].
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Abstract. Timed-release cryptography addresses the problem of “send-
ing messages into the future”: a message is encrypted so that it can only
be decrypted after a certain amount of time, either (a) with the help
of a trusted third party time server, or (b) after a party performs the
required number of sequential operations. We generalise the latter case
to what we call effort-release public key encryption (ER-PKE), where
only the party holding the private key corresponding to the public key
can decrypt, and only after performing a certain amount of computation
which may or may not be parallelisable. Effort-release PKE generalises
both the sequential-operation-based timed-release encryption of Rivest,
Shamir, and Wagner, and also the encapsulated key escrow techniques
of Bellare and Goldwasser. We give a generic construction for ER-PKE
based on the use of moderately hard computational problems called puz-
zles. Our approach extends the KEM/DEM framework for public key
encryption by introducing a difficulty notion for KEMs which results in
effort-release PKE. When the puzzle used in our generic construction is
non-parallelisable, we recover timed-release cryptography, with the addi-
tion that only the designated receiver (in the PKE setting) can decrypt.

Keywords: puzzles, difficulty, timed-release encryption, key escrow.

1 Introduction

Until 1992, only the hard problems of computational complexity were consid-
ered as the foundation of cryptography. Dwork and Naor introduced the notion
of moderately hard problems in 1992 [9]. Since then, moderately hard problems
have shown a great deal of promise and have emerged as an important pil-
lar of cryptography. A moderately hard problem is defined as a cryptographic
problem such that solving it is not computationally infeasible but also not easy.
Moderately hard problems have found their main application in guarding against
resource exhaustion attacks such as denial-of-service (DoS) and spam [9, 10]. In
these applications, they are called client puzzles or proofs of work ; in the case of
DoS attacks, a defending server can force its clients to commit some of its own
resources by solving a puzzle, before being granted access to a resource. In this
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work, we call all such moderately hard problems cryptographic puzzles regardless
of who is the solver.

Timed-release cryptography. Rivest et al. used a class of cryptographic puz-
zles to enable “future decryption”: encrypting a message so that the decryption
is possible only after a certain amount of time has elapsed [14]. They called this
idea timed-release cryptography (TRC) and also proposed an alternative way to
accomplish TRC with the help of a trusted third party time server. The class of
cryptographic puzzles being used for this task is called time-lock puzzles and has
the following properties: (i) solving them is an intrinsically sequential process (puz-
zle solving is a non-parallellisable task) and (ii) the puzzle generator may hold a
trapdoor allowing an easy (short-cut) way to find solutions. Timed-release encryp-
tion has been identified to have many applications in practice. Examples given by
Rivest et al. include e-voting where opening votes needs to be delayed and sealed-
bid auctionswhere the bidsmust not be opened until the end of the bidding period.

Motivation. Since Rivest et al.’s work, there has been a lot of work on TRC
but primarily focused on the second approach of using a trusted third-party
server [6, 4, 7]. Moreover the puzzle-based TRC of Rivest et al. does not provide
confidentiality which is as important as delaying the decryption since anyone
can get the message after solving the associated puzzle. Achieving both the con-
fidentiality and the delayed decryption properties is vital in many applications
where timed-release encryption is useful. For example, bid-privacy in e-auctions
and vote-privacy in e-voting schemes require the addition of confidentiality.

Another interesting scenario is the encapsulated key escrow techniques of Bel-
lare and Goldwasser [1, 2] where both the confidentiality and the delayed de-
cryption properties are essential, but the puzzles need not be non-parallelisable.
In particular an Internet service provider may need to escrow (session) keys of
its customers to the government law-enforcement agency. To prevent the agency
from engaging in massive wire-tapping, puzzles are used to delay the key recov-
ery process. However we observe that puzzle-based TRC has not been treated
in a formal way, thus a more formal and thorough approach is desirable.

Contributions. We propose the notion of effort-release PKE (ER-PKE) in
which only the intended recipient can get the message, and that too after a
certain amount of computational effort which need not be a sequential process.
Our notion generalises both the encapsulated key escrow techniques of Bellare
and Goldwasser and the puzzle-based timed-release encryption of Rivest, Shamir,
and Wagner in the PKE setting.

Moreover our notion generalises timed-release cryptography in two ways as
effort-release cryptography considers not only non-parallellisable puzzles but
also parallelisable ones and achieves confidentiality. In particular, the receiver
can decrypt the message only after solving the puzzle correctly but the solving
process may or may not be parallelisable. Since time-lock puzzles are mainly
non-parallelisable puzzles, restricting effort-release cryptography only to non-
parallelisable puzzles recovers timed-release PKE.
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In our approach, we adapt the KEM/DEM approach to obtain a generic
construction of effort-release PKE. In particular, following this strictly modular
approach, we first introduce a difficulty notion for KEMs and quantify the effort
required to release the encrypted message by extending the difficulty notion for
puzzles by Chen et al [5]. We then give a generic construction of difficult KEM
as a composition of a PKE and a difficult puzzle. Finally, we define effort-release
PKE analogous to difficult KEM, show that difficulty of the KEM carries over to
the KEM/DEM hybrid PKE, and provide a concrete construction of ER-PKE.

Paper Outline. Section 2 considers the definition and security notions for puz-
zles. Section 3 presents the difficulty notion for KEMs by adapting the framework
for puzzle schemes. Section 4 is dedicated to effort-release PKE and effort-release
hybrid PKE and Section 5 concludes the paper.

Notation. If n is an integer, |n| denotes its length in bits and if S is a set,

|S| denotes its cardinality. a
$← S means choosing a from the set S at random

and if a = (a1, . . . , an) then (a1, . . . , an) ← a means a is parsed as shown.
By y ← A(x), we mean that the output of an algorithm A with the input x is

assigned to y; y
$← A(x) denotes the similar running of a probabilistic algorithm.

PPT means probabilistic polynomial time. [A(x1, x2, . . .)] denotes the set of all
possible outputs of A on inputs x1, x2, . . .. We use negl() to denote an arbitrary
function which is negligible as a function of .

2 Cryptographic Puzzles

The functions that we often use in cryptography are either easy to compute or
intractable. In this section we look at a special kind of functions or problems
that are moderately hard to compute: cryptographic puzzles.

A cryptographic puzzle scheme CPuz is a tuple (Setup,GenPuz,GetSoln,
FindSoln,Vrfy) of algorithms defined as follows:

Setup(1�): The PPT algorithm that accepts the security parameter  as input
and returns output as follows:

• Selects the key space sSpace, the difficulty space QSpace, the string space
strSpace, the puzzle instance space puzSpace and puzzle solution space
solnSpace.

• Selects the long-term puzzle secret s
$← sSpace.

• Selects the puzzle parameters params← (sSpace, puzSpace, solnSpace,
QSpace) required for the client puzzle.

• Returns (params, s)

GenPuz(params, s, Q, str): Given params, the puzzle secret s ∈ sSpace, Q ∈
QSpace and str ∈ strSpace the probabilistic algorithm outputs a puzzle in-
stance puz ∈ puzSpace.

GetSoln(params, s, puz): Given params, the puzzle secret s ∈ sSpace, and a puzzle
puz ∈ puzSpace, the algorithm outputs a solution soln ∈ solnSpace.
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FindSoln(params, puz, τ): Given params, a puzzle puz ∈ puzSpace and a run time
τ ∈ N, the algorithm outputs a potential solution soln ∈ solnSpace after
running for at most τ clock cycles of execution.

Vrfy(params, puz, soln): is a deterministic algorithm taking as inputs params, a
puzzle puz ∈ puzSpace and a potential solution soln ∈ puzSpace and returns
a true or false.

Correctness. We say a puzzle scheme CPuz = (Setup,GenPuz,GetSoln,
FindSoln,Vrfy) is correct if for all (params, s) ∈ [Setup(1k)], all Q ∈ QSpace,
all str ∈ strSpace and all puz ∈ [GenPuz(params, s, Q, str)], there exists a τ ∈ N

such that soln← FindSoln(params, puz, τ), and true← Vrfy(params, puz, soln).

Remark 1. The GetSoln algorithm taking the trapdoor puzzle secret s as an
input and will be used by the puzzle generator to find a solution faster than
the FindSoln algorithm. Hence the difficulty of finding solution applies only to
the solver running the FindSoln without the trapdoor s. In this work we are
interested in puzzles for which GetSoln algorithms exist and there exist unique
solution for each puzzle instance.

Chen et al. [5] were the first to study computational puzzles in a rigorous manner
and they introduced two necessary security properties for a puzzle scheme to be
effective against DoS attackers. In particular they defined two security notions
of puzzles, namely, unforgeability and difficulty. The unforgeability property
requires that only the puzzle generator who holds the long-term puzzle secret can
generate genuine puzzles. The difficulty property requires that solving a puzzle
requires a certain amount of computational work.

In the context of DoS defense the unforgeability property is quite important as
argued by Chen et al.. In contrast, in the context of ER-PKE a sender generates
a puzzle and encrypts it under the receiver’s public key so that the adversary
does not see puzzles. Hence we require puzzles only to be difficult enough for
the intended recipient.

We now describe the puzzle-difficulty game of Chen et al. using the code-based
game-playing approach due to Bellare and Rogaway [3]. The difficulty of CPuz
is defined by the game executed between a challenger and an adversary A in
Figure 1. The advantage of A playing the difficulty game is defined as

AdvQ,Diff
A,CPuz() = Pr

[
ExecQ,Diff

A,CPuz() = 1
]
.

Definition 1 (Puzzle-difficulty). Let ε�,Q(τ) be a family of functions mono-
tonically increasing in τ , where  is a security parameter and Q is a difficulty
parameter. Fix  ≥ 0 and Q ≥ 0. Then, a client puzzle CPuz is ε�,Q(·)-difficult if

AdvQ,Diff
A,CPuz() ≤ ε�,Q(τ),

for all A running in time at most τ (τ ∈ N).
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ExecQ,Diff
A,CPuz() :

1. (params, s)
$← Setup(1�);List ← ∅

2. (state, str∗) $← AO
1 (params)

• If A queries O(str):

(a) puz
$← GenPuz(params, s, str)

(b) soln ← GetSoln(params, s, str, puz)
(c) Append (str, puz, soln) to List
(d) Answer A with (puz, soln).

3. puz∗ $← GenPuz(params, s, str∗)
4. soln∗ ← GetSoln(params, s, str∗, puz∗)

5. soln′ $← AO
2 (state, puz∗)

• Answer O queries as above
6. If (str∗, puz∗, soln′) is in the List, return ⊥
7. Return 1 if soln′ = soln∗, else return 0.

Fig. 1. Difficulty experiment for puzzles

Remark 2. Let Puz be an ε�,Q(t)-difficult puzzle such that each instance of it
requires about Q basic steps to solve. Then ε�,Q(t) might take the form t/Q +
negl(). However for puzzles we usually have  ≥ Q and  can be chosen according
to the difficulty we aim to achieve. When  ≥ Q, we have that εQ(t) := t/Q +
negl(Q) ≥ t/Q+negl() = ε�,Q(t) and therefore an ε�,Q(t)-difficult puzzle Puz is
also εQ(t)-difficult. Hence, for ease of notation, we set the difficulty parameter
Q to be the puzzle security parameter.

In the sections that follow we combine difficult puzzles with public-key primitives
to delay the decryption process for a certain amount of time.

3 Difficult Key Encapsulation Mechanism

The basic idea behind the work of Rivest et al. on TRC is that the symmetric
key used for encrypting the message should not be available immediately for
the recipient but only after a certain period of time. Analogous to this approach,
the natural extension to a designated solver case is to delay the decryption of the
ciphertext encapsulating the symmetric key. This leads us to seek a new class of
KEMs and we call a KEM satisfying this goal a difficult KEM.

3.1 Definition: Difficult KEM

We now propose the notion of difficult key encapsulation mechanism (DKEM)
which will lead to a PKE achieving confidentiality as well as delayed decryption.
A DKEM works very similar to a KEM scheme, except that the encapsulation
algorithm takes in addition to the regular inputs a secret generated by the param-
eter generation algorithm. A DKEM is a tuple (KEM.PG,KEM.KG,KEM.Encap,
KEM.Decap) of 4 algorithms with the following input/output behavior:
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(params, s)
$← KEM.PG(1k, 1Q)

(pk, sk)
$← KEM.KG(params)

(K,C)
$← KEM.Encap(params, s,pk)

K ← KEM.Decap(params, sk, C).

Correctness. Correctness of DKEM = (KEM.PG,KEM.KG,KEM.Encap,KEM.
Decap) requires that, for all (params, s) ∈ [KEM.PG(1k, 1Q)], and all (pk, sk) ∈
[KG(params)], we have KEM.Decap(params, sk, C) = K for all (C,K)← KEM.
Encap(params, s, pk) with probability one, where the probability is taken over
the coins of KEM.Encap.

Difficulty. We formally define what we mean by a KEM be difficult. We
observed that the difficulty in getting session keys is analogous to the difficulty
of getting puzzle solutions and thus we extend the puzzle-difficulty property of
Chen et al. to KEMs as a special security property.

The difficulty of KEM is defined by the game executed between a challenger
and an adversary A in Figure 4. The advantage of A playing the difficulty game
is defined as

Advk,Diff
A,KEM(Q) = Pr

[
Execk,Diff

A,KEM(Q) = 1
]
.

Execk,Diff
A,KEM(Q) :

1. (params, s)
$← KEM.PG(1k, 1Q);KList ← ∅

2. (pk, sk)
$← KEM.KG(params)

3. state
$← AOEnc

1 (params, sk)
• If A queries OEnc:

(a) (C,K)
$← KEM.Encap(params, s, pk)

(b) Append (C,K) to KList
(c) Answer A with (C,K).

4. (C∗, K∗) $← KEM.Encap(params, s, pk)

5. K′ $← AOEnc
2 (state, C∗)

• Answer OEnc queries as above
6. If (C∗,K∗) is in the KList, return ⊥
7. Return 1 if K′ = K∗, else return 0.

Fig. 2. Difficulty experiment for key encapsulation mechanism

Definition 2 (KEM-difficulty). Let εk,Q(τ) be a family of functions mono-
tonically increasing in τ , where k is a security parameter and Q is a difficulty
parameter. Fix k ≥ 0 and Q ≥ 0. Then, a KEM is εk,Q(·)-difficult if

Advk,Diff
A,KEM(Q) ≤ εk,Q(τ),

for all A running in time at most τ (τ ∈ N).
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Remark 3. The difficulty definition of KEM appears quite similar to the non-
invertibility under adaptive chosen ciphertext attacks of KEM but differs in the
following ways: the encapsulation here takes a secret as an input which is not an
input to the decapsulation algorithm, and (hence) the adversary is given access
to the encapsulation oracle but not to the decapsulation oracle.

3.2 A Difficult Key Encapsulation Mechanism from Puzzles

As discussed before, cryptographic puzzles have been predominantly used for
fighting against resource exhaustion attacks such as junk email (also known as
spam) and DoS attacks [9, 10]. Rivest, Shamir and Wagner [14] were the first
to combine puzzles with symmetric-key encryption to intentionally delay the
message recovery process. In particular, a sender encrypts a message under a
(random) symmetric-key. Then the sender generates a puzzle and uses its unique
solution to mask the symmetric-key. The ciphertext and the puzzle is sent to the
recipient who gets the message after solving the puzzle.

However this technique just delays the decryption process but anyone that is
willing to solve the puzzle can acquire the message and hence confidentiality is
lost. One natural way to achieve confidentiality is to encrypt the puzzle under
the recipient’s public key so that anyone else but the recipient cannot see the
puzzle. Following this idea, we instantiate a difficult KEM by using a PKE with
a difficult puzzle and we then show that the difficulty of the puzzle substantiates
the difficulty of the KEM.

The other approach for this idea could be the following: first generate a KEM
ciphertext using the recipient’s public key, then mask the ciphertext with the
solution of a puzzle and send the masked ciphertext and the puzzle to the recipi-
ent. Although this approach of adding puzzles separately to the KEM ciphertext
looks interesting it may work only for the specific KEM and puzzle schemes. Thus
we follow the direct approach of using the puzzle solution to derive a session key
and then encrypting the puzzle as it leads to a generic construction of a difficult
KEM using a PKE and a difficult puzzle. Moreover, our approach is compatible
with practical PKEs such as RSA-REACT as seen in Section 4.2.

The Scheme. Let KDF be a key derivation function [15, 16]. Let (PKE.KG,PKE.
Enc,PKE.Dec) be aPKE scheme and letCPuz = (Setup,GenPuz,GetSoln, FindSoln,
Vrfy) be a puzzle scheme. Then the proposedDKEM is a tuple (KEM.PG,KEM.KG,
KEM.Encap, KEM.Decap) of algorithms as seen in Figure 3:

Security analysis. We consider two security properties for the KEM in Fig-
ure 3, namely difficulty (see definition 2) and indistinguishability under adaptive
chosen-ciphertext attacks (IND-CCA) [8, 15].

We now show that if CPuz is difficult in the sense of Chen et al., then the
DKEM in Figure 3 is difficult according to the definition 2.
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KEM.PG(1k, 1Q) :

• (params, s)
$← Setup(1Q)

• Return (params, s)

KEM.Encap(params, s, pk) :

• puz
$← GenPuz(params, s, str)

• soln ← GetSoln(params, s, puz)

• r
$← {0, 1}poly(k); K ← KDF(soln, r)

• C
$← PKE.Enc(pk, puz||r)

• Return (C,K)

KEM.KG(params) :

• (pk, sk)
$← PKE.KG(params)

• Return (pk, sk)

KEM.Decap(params, sk, C) :

• puz||r ← PKE.Dec(sk, C)
• soln ← FindSoln(params, puz)
• K ← KDF(soln, r)
• Return K

Fig. 3. DKEM from PKE and puzzles

Theorem 1. Assume that KDF is a random oracle. Let DKEM = (KEM.PG,
KEM.KG,KEM.Encap,KEM.Decap) be the KEM scheme in Figure 3 and let CPuz
= (Setup,GenPuz,GetSoln,FindSoln,Vrfy) be a difficult cryptographic puzzle
scheme according to the definition 1. Suppose there exists an adversary A against
the difficulty of DKEM, then there is an adversary B against the difficulty of CPuz
such that

Advk,Diff
A,DKEM(Q) ≤ AdvDiff

B,CPuz(Q) + negl(k)

and the running time of B is asymptotically the same that of A.

Proof. Let A be the attacker against the difficulty of DKEM that makes at most
qEnc queries to OEnc and at most qKDF queries to the random oracle KDF. We
now build an attacker B that breaks the difficulty of CPuz using A and runs in
asymptotically the same time as A.
B interacts individually with the challenger in puzzle-difficulty game and

A playing the KEM-difficulty game. We describe how B proceeds. B’s input
are the public parameters params from the puzzle challenger. Now B generates

(pk, sk)
$← KEM.KG(params) and invokes A with (params, sk).

Encapsulation queries. NowAmay issue a polynomial number of Enc queries
for which B answers as follows: for each of A’s query to OEnc, B first selects a

string str
$← strSpace and queries O (the oracle for CreatePuzSoln queries) from

the puzzle challenger and in response receives a puzzle-solution pair (puz, soln).

Then B queries the random oracle KDF with (soln, r) for r
$← {0, 1}poly(k), to get

K, computes C
$← PKE.Enc(pk, puz||r) and responds A with (C,K). B records

(soln, r,K) into the list it maintains for KDF queries. B also records A’s queries
to the KDF oracle.

Challenge. At some point of time, A asks for the target ciphertext and now B
selects a random string str∗ $← strSpace and queries the puzzle challenger with
str∗ for the target puzzle. In response B receives the target puzzle puz∗ to solve
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and B now computes the challenge ciphertext C∗ $← PKE.Enc(pk, puz∗||r∗) and
responds A with C∗.

At some time, when A returns a key K ′ as the output of the game, B checks
with the list if there was an query to KDF having K ′ as its output. Since A has
non-negligible advantage in breaking the KEM-difficulty it must have queried
KDF with some soln′ and r∗ to obtain K ′. In this case B searches for the tuple
matching (soln′, r∗,K ′) and returns soln′ to the puzzle challenger playing the
difficulty game.

If A wins the KEM-difficulty game by guessing the session key K ′ it happens
with probability 1/(the size of key space), which is negl(k). If A does not guess
the session key but wins the KEM-difficulty game then B also wins the puzzle-
difficulty game. Therefore we have,

Advk,Diff
A,KEM(Q) ≤ AdvDiff

B,CPuz(Q) + negl(k).

The running time of B is asymptotically the same that of A. ��

The following theorem says that if PKE is IND-CCA-secure, then DKEM in
Figure 3 is IND-CCA-secure. The proof of the theorem is similar to the proof for
KEM/DEM by Cramer and Shoup[8] and is omitted due to lack of space.

Theorem 2. Assume that KDF is entropy smoothing key derivation function
[15, 16]. Let PKE = (PKE.PG,PKE.KG,PKE.Enc,PKE.Dec) be an IND-CCA-
secure public-key encryption scheme and let DKEM be a KEM as seen in Fig-
ure 3. Suppose there exists an IND-CCA adversary A against DKEM, then there
exist an adversary A1 against the entropy smoothness of KDF and an IND-CCA
adversary A2 against PKE such that

AdvIND-CCA
A,DKEM(k) ≤ AdvES

A1,KDF(k) +AdvIND-CCA
A2,PKE (k), ∀k ≥ 0

where A1 and A2 have (asymptotically) the same running time as A.

Remark 4. The proof of Theorem 1 is in the random oracle model where as
the proof of Theorem 2 is in the standard model assuming KDF to be entropy
smoothing(ES) [15, 16]. It is an interesting open problem to construct a DKEM
from a difficult puzzle such that the proof of Theorem 1 is in the standard model.

4 Effort-Release Public Key Encryption

In this section we define difficulty for public-key encryption schemes in analogous
to the difficulty for KEMs. We call a PKE scheme having this property an Effort-
Release Public Key Encryption (ER-PKE). An ER-PKE works similar to a PKE
but the recipient holding the decryption key cannot immediately and suddenly
complete the decryption process but after the required number of operations.
That is, the decryption process requires a certain amount of moderately-hard
computation which may or may not be a parallelisable task.

An ER-PKE is a tuple (PKE.PG,PKE.KG, PKE.Enc, PKE.Dec) of 4 algorithms
with the following input/output behaviour:
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(params, s)
$← PKE.PG(1k, 1Q)

(pk, sk)
$← PKE.KG(params)

C
$← PKE.Enc(params, s, pk,m)

m← PKE.Dec(params, sk, C).

Correctness. A ER-PKE scheme (PKE.PG,PKE.KG,PKE.Enc, PKE.Dec) is cor-
rect if, for all (params, s) ∈ [PKE.PG(1k)], all (pk, sk) ∈ [PKE.KG(params)], and
all plaintexts m ∈ MsgSp, we have PKE.Dec(params, sk,Enc(params, s, pk,m)) =
m with probability one, where the probability is taken over the coins of PKE.Enc.

Informally we call a PKE effort-release if the decryption algorithm cannot be
run trivially and the adversary should put in some computational effort for pre-
specified expected amount of time for the successful decryption of a ciphertext.

We now formally define what do we mean by effort-release PKE. As for the
difficulty of KEM, the effort-release game is defined as the difficulty game exe-
cuted between a challenger and an adversary A in Figure 4. The advantage of
A playing the difficulty game is defined as

Advk,Diff
A,PKE(Q) = Pr

[
Execk,Diff

A,PKE(Q) = 1
]
.

Execk,Diff
A,PKE(Q) :

1. (params, s)
$← PKE.PG(1k, 1Q);List ← ∅

2. (pk,sk)
$←PKE.KG(params)

3. state
$← AOEnc

1 (params, sk)
• If A queries OEnc(m):

(a) C
$← PKE.Enc(params, s, pk,m)

(b) Append (C,m) to List
(c) Answer A with (C,m).

4. m∗ $← MsgSp, the message space

5. C∗ $← PKE.Enc(params, s, pk,m∗)

6. m′ $← AOEnc
2 (state, C∗)

• Answer OEnc queries as above
7. If (C∗,m∗) is in the List, return ⊥
8. Return 1 if m′ = m∗, else return 0.

Fig. 4. Difficulty experiment for Effort-Release PKE

Definition 3 (Effort-Release PKE). Let εk,Q(τ) be a family of functions
monotonically increasing in τ , where k is a security parameter and Q is a dif-
ficulty parameter. Fix k ≥ 0 and Q ≥ 0. Then, a PKE is εk,Q(·)-effort-release
if

Advk,Diff
A,PKE(Q) ≤ εk,Q(τ),

for all A running in time at most τ (τ ∈ N).
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4.1 Effort-Release Hybrid PKE

Effort-release hybrid PKE can be seen as an extension of Rivest et al.’s timed-
release (symmetric-key) encryption to the PKE setting. In this section, we give
definition for an effort-release hybrid PKE, which works very similar to a hybrid
PKE proposed by Cramer and Shoup [8, 15] and we then prove that (i) the
hybrid PKE scheme in Figure 5 is an effort-release PKE if the DKEM is difficult
according to the definition 2 and (ii) the effort-release hybrid PKE is IND-CCA-
secure if both the DKEM and DEM are IND-CCA-secure.

ER-PKE.PG(1k, 1Q) :

• (params, s)
$← KEM.PG(1k, 1Q)

• Return (params, s)

ER-PKE.Enc(params, s, pk,m) :

• (K, c1) ← KEM.Encap(params, s, pk)
• K′ ← KDF(K)
• c2 ← DEM.Enc(K′,m)
• C ← (c1, c2)
• Return C

ER-PKE.KG(params) :

• (pk, sk)
$← KEM.KG(params)

• Return (pk, sk)

ER-PKE.Dec(params, sk, C) :

• (c1, c2) ← C
• K ← KEM.Decap(params, sk, c1)
• K′ ← KDF(K)
• m ← DEM.Dec(K′, c2)
• Return m

Fig. 5. Effort-Release hybrid PKE

Remark 5. In the Effort-Release hybrid PKE in Figure 5, the operation K ′ ←
KDF(K) may look redundant and undesirable since K itself is usually the output
of KDF. As shown in Theorem 3, having K ′ ← KDF(K) allows us to prove that
the difficulty of DKEM implies the difficulty of the hybrid ER-PKE.

Theorem 3. Assume that KDF is a random oracle. Let DKEM = (KEM.PG,
KEM.KG,KEM.Encap,KEM.Decap) be a difficult KEM scheme according to the
definition 2 and let ER-PKE be the scheme in Figure 5. Suppose there exists
an adversary A against the difficulty of ER-PKE, then there is an adversary B
against the difficulty of DKEM such that

Advk,Diff
A,ER-PKE(Q) ≤ (1/qKDF)Advk,Diff

B,DKEM(Q),

where qKDF is an upper bound on the number of queries to KDF made by A and
the running time of B is asymptotically the same that of A.

The proof to this theorem is similar to the proof of Theorem 1 and is omitted
due to lack of space.

Now the following theorem shows that if both the Difficult-KEM and the
DEM are IND-CCA-secure then so is the the Hybrid PKE scheme in Figure 5.
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Theorem 4 (Difficult-KEM/DEM Composition Theorem). Let (KEM.
PG,KEM.KG,KEM.Encap,KEM.Decap) be an IND-CCA-secure DKEM, let (DEM.
Enc,DEM.Dec) be an IND-CCA-secure DEM, and let (PKE.PG,PKE.KG,PKE.Enc,
PKE.Dec) be the resulting hybrid ER-PKE scheme. Then, for any IND-CCA ad-
versary A against ER-PKE, there exists an IND-CCA adversary B1 against DKEM
and an IND-CCA adversary B2 against DEM such that

AdvIND-CCA
A,ER-PKE(k) ≤ AdvIND-CCA

B1,DKEM(k) +AdvIND-CCA
B2,DEM (k) ∀k ≥ 0

and B1 and B2 have (asymptotically) the same running time as A.

The proof to this theorem is almost identical to the proof for KEM/DEM by
Cramer and Shoup [8] and is omitted.

4.2 Constructions of Effort-Release Hybrid PKE

Theorem 3 states that if the underlying KEM is difficult then the resulting hy-
brid encryption scheme is effort-release PKE. Therefore, as shown in Section 3.2
we can easily instantiate an effort-release hybrid PKE by constructing a difficult
KEM from difficult puzzles in [5, 12, 17] and combining it with a DEM.

Constructions of Timed-Release PKE. As shown by Rivest et al.[14]
timed-release encryption can be obtained from non-parallelisable puzzles in [13,
14]. Therefore using any of these two puzzles in a generic DKEM from Section 3.2
yields a timed-release PKE.

Effort-Release RSA-REACT. To get an idea of how a practical effort-release
PKE might look, we briefly describe a way of constructing ER-PKE from RSA-
REACT proposed by Okamoto and Pointcheval [11]. In particular we instantiate
Chen et al.’s generic puzzle with SHA1 hash function and combine it with KEM
part of RSA-REACT and use AES to implement DEM part of RSA-REACT.
The resulting ER-RSA-REACT works as follows:

Let G and H be two hash functions with appropriate domains.

The key generation algorithm KG(1k). On input of the security parameter
k, the probabilistic algorithm generates an RSA modulus n and outputs a
public-key (e, n) and a secret-key (d, φ(n)) such that d = e−1 mod φ(n).

The encryption algorithm Enc((e, n),m). Given a message m and a public

key (e, n) the PPT algorithm first picks r
$← Zn and u

$← {0, 1}poly(Q). Now
it computes v ← SHA1(u) and parses u into u1 and u2 such that u2 is of
length Q in bits. Then the algorithm computes K ← G(u2, r) and produces
a ciphertext (x, c, h) of m, where x← (u1||v||r)e mod n, c← AESK(m) and
the checking value h = H(r,m, x, c). Output is the ciphertext C ← (x, c, h).
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The decryption algorithm Dec((d, φ(n)), C). The algorithm first decrypts x
using the secret key to obtain u1||v||r = xd mod n. Now it starts solving the

puzzle (u1, v) by guessing u2 such that v
?
= SHA1(u1||u2). Then recovers the

session key K = G(u2, r) and the plaintext m = AESK(c). Finally checks if

h
?
= H(r,m, x, c). If the check fails, outputs ⊥ to indicate rejection, otherwise

outputs the message m.

Remark 6. In ER-RSA-REACT a recipient may securely outsource the puzzle
solving process; if this is not desirable in some applications then including the
key material r along with u as input to SHA1 for a puzzle generation prevents
such outsourcing by the recipient since the (stand-in) puzzle solver will then
have enough information to recover the message.

5 Conclusion

Timed-release cryptography has been gaining increased popularity due to its
many interesting applications. While already known schemes for this purpose
are mainly based on time-servers, the only alternative way appears to be puzzle-
based ones where the receiver will be able to decrypt the message after solving
a puzzle. To the best of our knowledge, the puzzle-based approach has been
treated in an ad hoc fashion. We have proposed the notion of effort-release PKE
which generalises both the encapsulated key escrow techniques of Bellare and
Goldwasser and the puzzle-based timed-release encryption of Rivest, Shamir, and
Wagner in the PKE setting. We also gave a generic construction of effort-release
PKE by adapting the KEM/DEM approach which is tailored to moderately-
hard puzzles and the type of puzzle being used decides whether the obtained
ER-PKE is timed-release or not.

However, our generic construction of a difficult KEM has a proof of diffi-
culty in the random oracle model and hence it is an open problem to construct a
difficult KEM (from puzzles) having the proof of difficulty in the standard model.

Acknowledgements. The authors are grateful to anonymous referees for their
comments. This work is supported by Australia-India Strategic Research Fund
project TA020002.

References

[1] Bellare, M., Goldwasser, S.: Encapsulated key escrow. Technical Report 688, MIT
Laboratory for Computer Science (April 1996),
http://cseweb.ucsd.edu/~mihir/papers/escrow.html

[2] Bellare, M., Goldwasser, S.: Verifiable partial key escrow. In: Graveman, R., Jan-
son, P.A., Neumann, C., Gong, L. (eds.) ACM CCS, pp. 78–91. ACM (1997)

[3] Bellare, M., Rogaway, P.: The Security of Triple Encryption and a Frame-
work for Code-Based Game-Playing Proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

http://cseweb.ucsd.edu/~mihir/papers/escrow.html


Effort-Release Public-Key Encryption from Cryptographic Puzzles 207

[4] Chalkias, K., Hristu-Varsakelis, D., Stephanides, G.: Improved Anonymous
Timed-Release Encryption. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS,
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Abstract. We consider the problem of constructing public-key encryption (PKE)
schemes that are resilient to a-posteriori chosen-ciphertext and key-leakage at-
tacks. Recently, Naor and Segev (CTYPTO’09) have proven that the Naor-Yung
generic construction of PKE which is secure against chosen-ciphertext attack
(CCA2) is also secure against key-leakage attacks. Their construction uses
simulation-sound NIZK and leakage-resilient CPA-secure PKE, and the latter is
a variant of the Cramer-Shoup cryptosystem. This CCA2-secure scheme is based
on the hardness of the DDH problem. In this paper, we apply the generic con-
struction of “Universal Hash Proofs and a Paradigm for Adaptive Chosen Cipher-
text Secure Public-Key Encryption” (EUROCRYPT’02) to generalize the above
work of Naor-Segev. In comparing to the first construction of Naor-Segev, ours
“removes” simulation-sound NIZK which is not efficient component. We also ex-
tend it to stateful PKE schemes. Concretely, in the construction of the stateless
PKE, we use the combination of any 1-universal hash proof system that satisfies
the condition of a key-leakage extractor and any 2-universal hash proof system
with some condition on the length of proof. In the case of the stateful PKE, we
use the combination of two hash proof systems as in the case of stateless PKE
and IND-CCA-secure symmetric encryption.

1 Introduction

KEY-LEAKAGE ATTACKS. Traditionally, the security of cryptographic schemes has been
analyzed in an idealized setting, where an adversary only sees the specified input/output
behavior of a scheme, but has no other access to its internal secret state. Unfortunately,
in the real world, an adversary may often learn some partial information about secret
state via various key-leakage attacks. Such attacks come in a large variety and include
side-channel attacks, where the physical realization of a cryptographic primitive can
leak additional information, such as the computation-time, power-consumption, radia-
tion/noise/heat emission etc. The cold-boot attack is another example of a key-leakage
attack, where an adversary can learn (imperfect) information about memory contents
of a machine, even after the machine is powered down. Schemes that are proven secure
in an idealized setting, without key leakage, may become completely insecure if the
adversary learns even a small amount of information about the secret key.
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The introduction of memory attacks (or “cold boot attacks”) by Halderman et al. [13],
gave rise to the notion of leakage resiliency, presented by Akavia, Goldwasser, and
Vaikuntanathan [2] and further explored by Naor and Segev [16]. In their definition,
security holds even if the attacker gets some information of its choosing (depending
on the value of the public key) on the scheme’s secret key, with the only restriction
that the total amount of leakage is bounded. Akavia et al. showed that the lattice-based
PKE scheme of Regev [18] and the identity-based encryption of Gentry, Peikert, and
Vaikuntanathan [12] are resilient to such leakage. PKE schemes presented in [2,16] are
resilent to leakage of even 1−o(1) fraction of secret key (we call this the “leakage rate”).
In particular, the paper [2] showed how this can be achieved under the LWE assumption,
while the paper [16] showed that this can be achieved under the DDH assumption.

Naor and Segev [16] extended the framework of key leakage to the setting of chosen-
ciphertext attack (LR-CCA2). On the theoretical side, they proved that the Naor-Yung
paradigm is applicable in this setting as well, and obtained as corollary encryption
schemes that are CCA2-secure with the leakage rate of 1−o(1) of the secret-key length.
On the practical side, they proved that variants of the Cramer-Shoup cryptosystem are
CCA1-secure with the leakage rate of 1/4, and CCA2-secure with the leakage rate of
1/6. In particular, Dodis et al. [10] proposed an efficient encryption scheme that is
CCA2-secure with the leakage rate of 1 − o(1) of the secret-key length. Their scheme
relies only on regular non-interactive zero-knowledge (NIZK), which can be instanti-
ated by using the powerful Groth-Sahai techniques.
STATEFUL PUBLIC-KEY ENCRYPTION. In 2006, Bellare, Kohno, and Shoup [5] pro-
posed the first model of stateful public-key encryption (StPE). The main goal of the
StPE schemes is to reduce the cost of PKE by allowing a sender to maintain state that
is reused across different encryptions. For example, one can obtain a stateful version of
the ElGamal encryption in which a message M is encrypted to (gr, grxM) for public
key gx by maintaining the random value r and its corresponding value gr as state so
that gr does not need to be computed each time.

Reducing the computational cost of public-key encryption is of particular importance
for low-power mobile devices where computational resources are constrained (such
as PDA and mobile phones) or sensors communicating with the relatively powerful
servers or base stations [11,17]. Due to the efficiency gained from maintaining state,
StPE schemes have potential to be employed in these settings. But, even in the envi-
ronments that provide reasonable amount of computational resources, it is preferable to
speed up public key operation.

The model of the StPE scheme proposed by Bellare et al. is specified by six algo-
rithms: StPE = (Setup, KG, PKCk, NwSt, Enc, Dec) (all possibly randomized except
the last) whose operation is illustrated in [5, Figure 2]. The approach that they adopt to
construct StPE schemes is to convert specific PKE schemes such as DHIES [1] and the
Kurosawa and Desmedts hybrid encryption scheme [15] into StPE schemes.

In 2008, Baek et al. [3] presented generic constructions of StPE, built several new
StPE schemes and explained existing ones using their generic constructions. Some of
them are built by using “identity-based technique” whereby one can construct PKE
schemes secure against chosen-ciphertext attack in the standard model from identity-
based encryption schemes.
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OUR CONTRIBUTIONS. In the paper [16], Naor and Segev proved that a variant of the
Cramer-Shoup cryptosystem [8] is secure against LR-CCA2 attack. This CCA2-secure
scheme is based on the hardness of the DDH problem. From this idea, we make the
following contributions in this paper:

1. We present a generic construction of a stateless PKE that is resilient to LR-CCA2
attack. This is the construction which generalizes Naor-Segev’s leakage-resilient
PKE scheme [16] using hash proof system (HPS). In this construction, we use the
combination of any 1-universal HPS that satisfies the condition of a key-leakage
extractor and any 2-universal HPS with some condition on the length of proof.
−See Section 4.2.

2. We present the notion of LR-CCA2 in the case of StPE. Essentially, this notion is
the same as that in the case of stateless PKE. We also present a generic construction
of a StPE scheme that is secure against this attack. In this construction, we use
the combination of two hash proof systems as in the case of stateless PKE and
IND-CCA-secure symmetric encryption. This is also a new approach to achieve
CCA2-secure StPE. −See Section 4.3.

These constructions do not rely on additional computational assumptions, and the re-
sulting schemes are as efficient as the underlying hash proof system. Existing con-
structions of hash proof systems (see, for example, [8,14]) imply that our construction
can be based on a variety of number-theoretic assumptions, including the decisional
Diffie-Hellman (DDH) assumption and its progressively weaker d-Linear variants, the
quadratic residuosity assumption, and Paillier’s composite residuosity assumption.

Our construction of stateless PKE is LR-CCA2-secure with the leakage rate depending
on the parameters of the underlying HPS. The Naor-Segev scheme [16] is an efficient
instantiation which is LR-CCA2-secure with the leakage rate of 1/6 of the secret-key
length. This rate is not as good as the result proposed in [10], which is LR-CCA2-secure
with the leakage rate of 1−o(1), but it is an important result for us to construct the generic
construction of StPE that is resilient to LR-CCA2 attack. To the best of our knowledge,
this is the first generic construction of StPE that is secure against this attack.

ROAD-MAP. We present notations, definitions, and tools in Section 2. The definition
of LR-CCA2 in the cases of both stateless and stateful PKE appears in Section 3. In
Section 4, we describe our generic constructions. Finally, we conclude in Section 5.

2 Preliminaries

In this section we present notions, definitions, and tools that are used in our construc-
tions. Let n be the security parameter of the schemes, Ut the uniform distribution of
{0, 1}t (where t ∈ N ), and U(S) the uniform distribution of the set S. We denote by

s
$←− S the assignment of a uniformly distributed random element from the set S to the

variable s. We use negl(n) to denote a negligible function in n.
The statistical distance between two random variablesX and Y over a finite domain

Ω is Δ(X,Y ) = 1
2Σω∈Ω|Pr[X = ω]− Pr[Y = ω]|. We also write Δ(x, y) instead of

Δ(X,Y ). We say that two variables are ε-close if their statistical distance is at most ε.
The min-entropy of a random variableX is H∞(X) = −log(maxxPr[X = x]).
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Dodis et al. [9] formalized the notion of average min-entropy that captures the re-
maining unpredictability of a random variableX conditioned on the value of a random
variable Y , formally defined as follows:

H̃∞(X |Y ) = −log(Ey←Y

[
2−H∞(X|Y=y)

]
).

The average min-entropy corresponds exactly to the optimal probability of guessingX ,
given knowledge of Y . The following bound on average min-entropy was proved in [9]:

Lemma 1 ([9]). If Y has 2r possible values and Z is any random variable, then
H̃∞(X |Y, Z) ≥ H∞(X |Z)− r.

One of the main tools in our constructions is a strong randomness extractor. The fol-
lowing definition naturally generalizes the standard definition of a strong extractor to
the setting of average min-entropy:

Definition 1 ([9]). A function Ext : {0, 1}n × {0, 1}t → {0, 1}m is an average-case
(k, ε)-strong extractor if for all pairs of random variables (X, I) such thatX ∈ {0, 1}n
and H̃∞(X |I) ≥ k it holds that

Δ((Ext(X,Ut), Ut, I), (Um, Ut, I)) ≤ ε.

Hash Proof Systems. We present the framework of hash proof systems, introduced by
Cramer and Shoup [8]. For simplicity we frame the description by viewing hash proof
systems as key-encapsulation mechanisms (using the notation of Kiltz et al. [14]), and
refer the reader to [8] for a more complete description.

Let X,L,W be non-empty sets, such that L is a proper subset of X , and RL ⊂
X ×W be a binary relation. For x ∈ X and w ∈ W with (x,w) ∈ RL, we say that
w is a witness for x. Note that it would be quite natural to require that for all x ∈ X ,
we have (x,w) ∈ RL for some w ∈ W if and only if x ∈ L, and that the relation
RL is efficiently computable. We can also viewX as the set of all ciphertexts, L as the
set of all valid ciphertexts (i.e., those generated appropriately with the corresponding

witness). We denote by (x,w)
$←− RL the instance sampling algorithm of L, i.e. choose

random a pair (x,w) such that x ∈ X,w ∈W , and (x,w) ∈ RL.
A hash proof system HPS = (Param,KGen, Pub, Priv) consists of four algo-

rithms that run in polynomial time. The algorithm Param(1n) generates system pa-
rameter sp. We denote by SKn and PKn the sets of secret keys and public keys that
are produced by KGen(sp). That is, KGen(sp) : {0, 1}∗ → SKn × PKn for every
n ∈ N . The deterministic public evaluation algorithm Pub is used to decapsulate valid
ciphertexts x ∈ L given a witnessw of the fact that x is indeed valid (i.e., (x,w) ∈ RL).
The algorithm Pub receives as input a public key pk ∈ PKn, a valid ciphertext x ∈ L,
and a witness w of the fact that x ∈ L, and outputs the encapsulated key π ∈ Π (where
Π denotes the set of encapsulated symmetric keys). The deterministic private evalua-
tion algorithm Priv is used to decapsulate valid ciphertexts without knowing a witness
w, but by using the secret key sk. That is, the algorithm Priv receives as input a secret
key sk ∈ SKn and a ciphertext x ∈ X , and outputs the encapsulated key π.
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Consider the probability space defined by choosing sk randomly from the set of
secret keys. We say that a HPS is 1-universal for language L if for all x ∈ X \ L and
π ∈ Π, it holds that:

Pr[Priv(sk, x) = π] =
1

|Π| .

We say that a HPS is 2-universal for language L if for all x, x∗ ∈ X and π, π∗ ∈ Π,
with x /∈ L ∪ {x∗}, it holds that

Pr[Priv(sk, x) = π | Priv(sk, x∗) = π∗] = 1

|Π| .

It is easy to see that, if HPS = (Param,KGen, Pub, Priv) is 1-universal then

Δ((pk, x, Priv(sk, x)), (pk, x,U(Π))) ≤ negl(n),

and if HPS is 2-universal then

Δ((pk, x, x∗, π∗, P riv(sk, x)), (pk, x, x∗, π∗,U(Π))) ≤ negl(n),

where π∗ = Priv(sk, x∗) and U(Π) ∈ Π is sampled uniformly at random.
We also need an extension of this notion. The definition of extended HPS is the same

as that of ordinary HPS, except that the proof system HPS accepts an extra input from
a finite set E. In this setting, the public evaluation algorithm takes as input pk ∈ PKn,
x ∈ L, e ∈ E, and a witness w of the fact that x ∈ L, and the private evaluation
algorithm takes as input sk ∈ SKn, x ∈ X and e ∈ E. We shall also require that
elements ofE are uniquely encoded as bit strings of length bounded by a polynomial in
n, and that HPS provides an algorithm that efficiently determines whether a bit string is
a valid encoding of an element of E.

We can modify in the obvious way to define extended 1(2)-universal HPS.
Next, we define a new property for HPS that is useful in our construction.

Definition 2. We say that a hash proof system HPS = (Param,KGen, Pub, Priv)
for a language L is a 1-universal (λ, ε)-key-leakage extractor if for any function f :
{0, 1}∗ → {0, 1}λ we have

Δ((pk, x, f(sk), P riv(sk, x)), (pk, x, f(sk), U(Π))) ≤ ε,

where x ∈R X \ L. If ε = negl(n) we say that HPS is a 1-universal λ-key-leakage
extractor for L.

Note that, we can obtain a 1-universal λ-key-leakage extractor HPS by combining any
1-universal HPS with any strong extractor (See Section 4.1).

Subset Membership Problem. As a computational problem we require that the subset
membership problem is hard in HPS, which means that for random valid ciphertext
x0 ∈ L and random invalid ciphertext x1 ∈ X \ L, the two ciphertexts x0 and x1 are
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computationally indistinguishable. This is formally captured by defining the advantage
function AdvSMHPS,A(n) of an adversary A as

AdvSMHPS,A(n) =
∣∣Prx0←L[A(X,L, x0) = 1]− Prx1←X\L[A(X,L, x1) = 1]

∣∣.
If for any probabilistic polynomial-time adversaryA it holds that AdvSMHPS,A(n) is neg-
ligible in n, then we say that the subset problem problem L is hard.

3 Models

3.1 Leakage-Resilient CCA2 Stateless Public-Key Encryption

In this section we review the notion of a-posteriori chosen-ciphertext key-leakage at-
tack, introduced by Naor and Segev [16].

For a PKE scheme Π = (KGen,Enc,Dec) we denote by SKn and PKn the sets
of secret keys and public keys that are produced by KGen(1n). That is, KGen(1n) :
{0, 1}∗ → SKn × PKn for every n ∈ N . The leakage oracle, denoted Leak(sk),
takes as input a function f : SKn → {0, 1}∗ and outputs f(sk). We say that an oracle
machineA is a λ-key-leakage adversary if the sum of output lengths of all the functions
that A submits to the leakage oracle is at most λ.

In this game, the adversary is allowed to adaptively access a decryption oracle
Dec(sk, ·) that receives as input a ciphertext and outputs a decryption using the secret
key sk. We denote by Dec 	=C(sk, ·) a decryption oracle that decrypts any ciphertext
other than C.

Definition 3 (LR-CCA2 security [16]). A public-key encryption schemeΠ = (KGen,
Enc,Dec) is semantically secure against a-posteriori chosen-ciphertext λ-key-leakage
attack if for any probabilistic polynomial-time λ-key-leakage adversary A = (A1,A2)
it holds that

AdvKL,CCA2
Π,A (n)

def
=

∣∣∣Pr[ExptKL,CCA2
Π,A (0) = 1

]
− Pr

[
ExptKL,CCA2

Π,A (1) = 1
]∣∣∣

is negligible in n, where ExptKL,CCA2
Π,A (b) is defined as follows:

1. (pk, sk)← KGen(1n).

2. (M0,M1, stA1)← ALeak(sk),Dec(sk,·)
1 (pk) such that |M0| = |M1|.

3. C ← Encpk(Mb).

4. b′ ← ADec �=C(sk,·)
2 (C, stA1 ).

5. Output b′.

3.2 Leakage-Resilient CCA2 Stateful Public-Key Encryption

In this section we review the definition of StPE and its security as given in [3], then
present the notion of a-posteriori chosen-ciphertext key-leakage attacks in the case of
StPE.
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Definition 4 (StPE [3]). A StPE scheme consists of the following algorithms:

– StPE.Setup(1n) → sp : Taking 1n for a security parameter n ∈ Z≥0 as input,
this algorithm generates a system parameter sp which includes n.

– StPE.KGen(sp) → (sk, pk) : Taking sp as input, this algorithm generates a
private/public key pair (sk, pk).

– StPE.PKCk(sp, pk) → δ : Taking sp and pk as input, this algorithm returns 1
if the public key pk is valid or returns 0 otherwise (i.e., δ ∈ {0, 1}).

– StPE.NwSt(sp)→ st : Taking sp as input, this algorithm generates a new state.
– StPE.Enc(sp, pk, st,M) → (C, st) : Taking sp, pk, st and a plaintext M as

input, this algorithm outputs a ciphertext C and state st which may be different
from the state provided as input to this algorithm.

– StPE.Dec(sp, sk, C) → (M) : Taking sp, sk, and C as input, this deterministic
algorithm outputsM which is either a plaintext or ⊥ (meaning reject) message.

We impose a usual consistency condition onStPE: For any sp output byStPE.Setup,
(sk, pk) generated by StPE.KG and st output by either StPE.NwSt or StPE.Enc,
if (C, st) is an output of StPE.Enc(sp, pk, st,M ), then StPE.Dec (sp, sk, C) =M .

We now define the notion of a-posteriori chosen-ciphertext and key-leakage attacks
in the case of StPE, which naturally extends that of chosen ciphertext security for StPE
of [3] by giving an adversary the leakage oracle and only allowing him to query this
oracle before challenge query.

Note that in the framework of this type of StPE, we can consider the secret key of the
receiver and the state issued by the sender as possibly leaking information. Therefore,
it seems natural to discuss also the security with state-leakage, in addition to the secret
key. However, in this paper, we only focus on the security of the security with (secret)
key-leakage.

Definition 5 (LR-CCA2 security of StPE). Let StPE be a StPE scheme. Consider a
game played with an attacker A:

Phase 1: The game computes sp←StPE.Setup(1n),(pk1, sk1)←StPE.KGen(sp)
and st ← StPE.NwSt(sp). Note that (sk1, pk1) is the private/public key pair of
the honest receiver R1. The game sends (sp, pk1) to A.

Phase 2: A outputs public keys pk2, . . . , pkt of receivers R2, . . . , Rt respectively,
all of which are in the range of the second element of StPE.KGen(sp). Note
that A may or may not know the private keys corresponding to the public keys
pk2, . . . , pkt.

Phase 3: A issues a number of (but polynomially many) queries, each of which is
responded by the game. The type of each query and the action taken by the game
are described as follows:
– Leakage queries, each of which is denoted by fj: The game computes fj(sk1)

and sends this result to A. Note that, the sum of output lengths of all leakage
functions is at most λ, and these queries are requested before the challenge
query.

– A challenge query (m0,m1) such that |m0| = |m1|: The game picks b
$←−

{0, 1}, computes (C∗, st) ← StPE.Enc(sp, pk1, st,mb), where st denotes
the current state, and sends C∗ to A.
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– Encryption queries, each of which is denoted by (i,M) where i ∈ {1, ..., t}:
The game computes (C, st) ← StPE.Enc(sp, pki, st,M), where st denotes
the current state, and sends C to A.

– Decryption queries, each of which is denoted by C �= C∗: The game computes
StPE.Dec(sp, sk1, C) and sends the resulting decryption message or ⊥ (Re-
ject) to A.

Phase 4: A outputs its guess b′ ∈ {0, 1}.

We define A’s advantage by AdvKL,CCA2
StPE,A (n) =

∣∣∣Pr[b′ = b]− 1
2

∣∣∣.
The above StPE is semantically secure against a-posteriori chosen-ciphertext λ-
key-leakage attack if for any probabilistic polynomial-time λ-key-leakage adver-
sary A, the advantage of A is negligible in n.

The LR-CCA2 security of StPE defined above can be considered in theKSK (Known
Secret Key) or theUSK (Unknown Secret Key) models [5]. In theKSK model, we as-
sume that the attackerA possesses the corresponding private (secret) keys sk2, . . . , skn
of the public keys output in Phase 2 of the attack game.

3.3 Symmetric Encryption

First, we review the formal definition of symmetric encryption as follows.

Definition 6 (SYM [3]). Let KD be the key space. A symmetric encryption scheme,
denoted by SYM, consists of the following algorithms:

– SYM.Enc(K,M) → e : Taking a key K ∈ KD and a plaintextM as input, this
algorithm encryptsM into a ciphertext e.

– SYM.Dec(K, e) → M : Taking K ∈ KD and e as input, this algorithm returns
decrypts e intoM . Note thatM can be ⊥.

To construct IND-CCA secure StPE schemes, we need a symmetric encryption scheme
secure against CCA attack in which the attacker does issue encryption queries. Now, a
formal definition follows.

Definition 7 (IND-CCA of SYM [3]). Let SYM be a symmetric encryption scheme as
defined in Definition 6. Consider a game played with an attacker A:

Phase 1: The game choosesK
$←− KD.

Phase 2: A issues encryption queries, each of which is denoted by M . On receiving

this, the game computes e
$←− Enc(K,M) and gives e to A. A also issues decryp-

tion queries, each of which is denoted by e. On receiving this, the game computes
M ← Dec(K, e) and givesM to A.

Phase 3: A issues a challenge query (a pair of plaintexts) (m0,m1) such that |m0| =
|m1|.On receiving this, the game picks b

$←− {0, 1}, computes e∗ $←− SYM.Enc(K,
mb) and gives e∗ to A.

Phase 4: A continues to issue encryption and decryption queries as in Phase 2. How-
ever, a restriction here is thatA is not allowed to issue e∗ as decryption query. The
game responds to A’s queries in the same way as it did in Phase 2.
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Phase 5: A outputs its guess b′ ∈ {0, 1}.

We define A’s advantage by AdvIND-CCA
SYM,A (n) =

∣∣∣Pr[b′ = b]− 1
2

∣∣∣.
We remark that as mentioned in [5], the symmetric encryption schemes meeting the
IND-CCA definition can in fact be easily constructed, eg. using the encrypt-then-mac
composition [6] with an AES mode of operation (such as CBC) and a MAC (such as
CBC-MAC or HMAC [4]).

4 Generic Constructions from Hash Proof Systems

In this section, we give a generic construction of a 1-universal λ-key-leakage extractor
that will be used in our constructions. We then present generic constructions of both
stateless and stateful PKE scheme that are resilient to LR-CCA2 attack. In the case of
stateless PKE, we apply the generic construction of Cramer-Shoup [7] to generalize the
work of Naor-Segev. The stateful scheme is extension from the above stateless scheme.

4.1 The Construction of a 1-Universal λ-key-Leakage Extractor HPS

Assume that L is a membership indistinguishable language, HPS = (Param,KGen,
Pub, Priv) be a 1-universal HPS forL. Let Ext: Π×{0, 1}t → {0, 1}m be an average-
case (log |Π| − λ, ε)-strong extractor. The following describes the hash proof system
HPSext = (Paramext,KGenext, Pubext, P rivext) for language L′ = {(x, s)|x ∈
L, s ∈ {0, 1}t} (it is easy to see that if L is a membership indistinguishable language,
so is L′):

Paramext: the same as the original algorithm Param of HPS.
KGenext: On input sp generated by Paramext, choose (pk, sk) ← KGen(sp), and

return (pk, sk).

Pubext: On input a public key pk, a pair of variables ((x, s), w) with (x,w)
$←− RL,

and s
$←− {0, 1}t, compute π = Pub(pk, x, w), π′ = Ext(π, s). Output π′.

Privext: On input a private key sk, and (x, s), compute π = Priv(sk, x), π′ =
Ext(π, s). Output π′.

The correctness of the scheme follows from the property that Priv(sk, x) = Pub(pk,
x, w) for any valid ciphertext x ∈ L with witness w. Thus, the output of Privext is
always the key encapsulated by Pubext.

The following theorem shows that this HPS is a 1-universal λ-key-leakage extractor.

Theorem 1. Assuming that HPS is a 1-universal HPS for the language L, and Ext is
an average-case (log |Π|−λ(n), ε)-strong extractor, the hash proof system HPSext is
a 1-universal λ(n)-key-leakage extractor for the languageL′ for any λ(n) ≤ log |Π|−
ω(logn)−m, where n is the security parameter and m is the proof size of HPSext.

The details of the proof appear in the full version of this paper.
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4.2 The Construction of Stateless Public-Key Encryption

Assume that L is a membership indistinguishable language, HPS1 = (Param1,
KGen1, Pub1, P riv1) be a 1-universal HPS for a languageL, and HPS2=(Param2,
KGen2, Pub2, P riv2) be an extended 2-universal HPS for the same language L. We
define an encryption schemeΠ = (KGen,Enc,Dec) as follows:

Key Generation: On input 1n for n ∈ Z≥0, generate system parameter sp=(sp1, sp2),
wheresp1←Param1(1

n), sp2←Param2(1
n). Choose (pk1,sk1)←KGen1(sp1),

(pk2,sk2)← KGen2(sp2), and return pk = (pk1, pk2) , sk = (sk1, sk2).
Encryption: Given 1n for n ∈ Z≥0, a public key pk = (pk1, pk2), along with a

message M ∈ Π1 (where Π1 is the domain of Pub1; it may be, for example,
{0, 1}m), do as follows.

E0: choose a pair (x,w)
$←− RL;

E1: π1 = Pub1(pk1, x, w);
E2: e =M ⊕ π1;
E3: π2 = Pub2(pk2, x, w, e);
E4: Output c = (x, e, π2).

Decryption: Given 1n for n ∈ Z≥0, a secret key sk = (sk1, sk2), along with a cipher-
text c, do the following.
D0: Parse c as a 3-tuple (x, e, π2); output⊥ if c is not of this form.
D1: Compute π′2 = Priv2(sk2, x, e).
D2: Test if π′2 = π2; output⊥ and halt if this is not the case.
D3: Compute π1 = Priv1(sk1, x).
D4: OutputM = e⊕ π1.

Next, we show that this encryption scheme is LR-CCA2 secure.

Theorem 2. Assume that L is a membership indistinguishable language, HPS1 is a
1-universal λ-key-leakage extractor for L, and HPS2 is an extended 2-universal HPS
for L, with proofs π2 of size |π2| = p ≥ λ + ω(logn). Then the encryption scheme
constructed from HPS1,HPS2 is semantically secure against a-posteriori chosen-
ciphertext λ-key-leakage attacks, where n denotes the security parameter.

The details of the proof appear in the full version of this paper.

Proof (Sketch). Before starting to prove, we state the following simple but useful lemma,
which explicitly appears in [8, Lemma 4].

Lemma 2 ( [8, Lemma 4]). Let X1, X2, and F be events defined on some probability
space. Suppose that the event X1 ∧ ¬F occurs if and only if X2 ∧ ¬F occurs. Then
| Pr[X1]− Pr[X2] |≤ Pr[F ].

Let f : {0, 1}∗ → {0, 1}λ be the function that adversary used to learn λ bits from the
secret key.

We will prove the theorem by using a sequences of game transitions.

Game 0: This is the original LR-CCA2 security game where the challenge ciphertext
and the decryption queries are generated/answered correctly. In other words:
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Challenge ciphertext c∗ = (x∗, e∗, π∗2) of messageMb is computed as : (x∗, w∗) $←−
RL; π∗1 = Pub1(pk1, x

∗, w∗); e∗ =Mb ⊕ π∗1 ; π∗2 = Pub2(pk2, x
∗, w∗, e∗).

Let b′ ∈ {0, 1} denote the output of A, and let T0 be the event that b′ = b in Game
0, so that

AdvKL,CCA2
Π,A (n) = |Pr[T0]− 1/2|. (1)

Game 1: We now modify Game 0 to obtain a new Game 1. These two games are identi-
cal, except for a small modification to the encryption oracle. Instead of using the encryp-
tion algorithm as given to compute the target ciphertext c∗, we use a modified encryption
algorithm, in which steps E1 and E3 are replaced by E1′: π∗1 = Priv1(sk1, x

∗) and
E3′: π∗2 = Priv2(sk2, x

∗, e).
The change we have made is purely conceptual: the values of π∗1 and π∗2 are exactly

the same in Game 1 as they were in Game 0. Therefore,

Pr[T1] = Pr[T0]. (2)

Note that the encryption oracle now makes use of some components of the secret key,
which is something the original encryption oracle does not do.

Game 2: We now modify Game 1 to obtain a new Game 2. We modify the challenge

ciphertext, replacing step E0 of the encryption algorithm by E0′: x∗ $←− X \ L.
By the membership indistinguishability property of the language L, Game 1 and

Game 2 are indistinguishable. Therefore, we have

| Pr[T2]− Pr[T1] |≤ negl(n). (3)

Game 3: In this game, we modify the decryption oracle in Game 2 to obtain a new
Game 3. We replace step D2 in the decryption algorithm by D2′: Test if x ∈ L; if it is
the case, the oracle runs as previously; else outputs⊥ and halts.

LetR3 be the event that in Game 3, some ciphertextC is submitted to the decryption
oracle that is rejected in step D2′ but that would have passed the test in step D2. Note
that if a ciphertext passes the test in D2′, it would also have passed the test in D2.

It is clear that Game 2 and Game 3 proceed identically until the event R3 occurs. In
particular, the event T2 ∧ ¬R3 and T3 ∧ ¬R3 are identical. So by Lemma 2, we have

| Pr[T3]− Pr[T2] |≤ Pr[R3]. (4)

On the other hand, since HPS2 is a 2-universal HPS for L, with proofs π2 of size
|π2| = p ≥ λ + ω(logn), using Lemma 1, we proved that the event R3 occurs with
only a negligible probability.

Game 4: This game is identical to Game 3, except for a small modification to the

encryption oracle. In the challenge phase, replacing step E1′ by E1′′: π∗1
$←− Π1.

It is clear by construction that

Pr[T4] = 1/2, (5)
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since in Game 4, the variable b is never used at all, and so the adversary’s output is
independent of b.

Claim 1.

| Pr[T4]− Pr[T3] |≤ negl(n). (6)

Proof of Claim 1. Now, let us condition on a fixed value of pk2, b, and the adversary’s
coins. In this conditional probability space, since the simulator rejects all ciphertexts
(x, e, π2) with x /∈ L, it follows that the output of the simulator in Game 3 is completely
determined as a function of pk1, x∗, f(sk1) and Priv1(sk1, x∗), while the output in
Game 4 is determined as the same function of pk1, x∗, f(sk1), and π∗1 ∈R Π1. More-
over, by independence, the joint distribution of (pk1, x∗, f(sk1), π∗1) does not change in
passing from the original probability space to the conditional probability space. It now
follows directly from the assumption HPS1 is a 1-universal λ-key-leakage extractor
for L that

Δ((pk1, x
∗, f(sk1), P riv1(x∗, sk1)), (pk1, x∗, f(sk1),U(Π1))) ≤ negl(n).

The claim follows. ��
The theorem now follows immediately from (1) - (6). ��

4.3 The Construction of Stateful Public-Key Encryption

Assume that L,HPS1,HPS2 are components as in Section 4.2, and SYM be a IND-
CCA symmetric encryption. We assume that the HPS scheme HPS1 and the symmetric
encryption scheme SYM are “compatible” meaning that the key spaceKK of HPS1 is
the same as the key space KD of SYM. We define a StPE scheme StPE as follows:

StPE.Setup: On input 1n for n ∈ Z≥0, return (system parameter) sp = (sp1, sp2),
where sp1 ← Param1(1

n), sp2 ← Param2(1
n).

StPE.KGen: On input sp, choose (pk1, sk1) ← KGen1(sp1) and (pk2, sk2) ←
KGen2(sp2). Then return PK = (pk1, pk2) , SK = (sk1, sk2).

StPE.PKCk: On input sp and PK = (pk1, pk2), output 1.

StPE.NwSt: On input sp, execute the instance sampling algorithm ofL by E0:(x,w) $←−
RL, and return st = (x,w).

StPE.Enc: On input sp, a public key PK = (pk1, pk2), a state st, along with a mes-
sageM , do the following.
If st is of the form (x,w) then compute E1: π1 = Pub1(pk1, x, w); else, parse st
as (x,w, PK, π1). Next, do as follows.
E2: e = SYM.Enc(π1,M);
E3: π2 = Pub2(pk2, x, w, e);
E4: Output c = (x, e, π2) and the new state st = (x,w, PK, π1).

StPE.Dec: On input sp, a secret key SK = (sk1, sk2), along with a ciphertext c, do
the following.
D0: Parse c as a 3-tuple (x, e, π2); output⊥ if c is not of this form.
D1: Compute π′2 = Priv2(sk2, x, e).
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D2: Test if π′2 = π2; output⊥ and halt if this is not the case.
D3: Compute π1 = Priv1(sk1, x).
D4: OutputM = SYM.Dec(π1, e).

Note that, StPE.PKCk returns 1 (and does nothing else) as the KSK model implies
that any public keys in this system are generated correctly following the algorithm
StPE.KGen. (Namely the entity that has generated a public key must know the cor-
responding private key.)

In our construction of stateful encryption, there are two types of state: 1) (x,w)
which is output by StPE.NwSt; 2)(x,w, PK, π1) which is produced by the algorithm
StPE.Enc. Note also that for state st = (x,w) generated by the algorithm StPE.
NwSt, [StPE.Enc(PK, st,M)]C = [StPE.Enc(PK, st′,M)]C for any st′ output
by StPE.Enc before StPE.NwSt is invoked to generate new state (different from st).
Here “[StPE.Enc(· · · )]C” denotes the ciphertext part of an output of StPE.Enc.

We remark that the StPE.Enc algorithm becomes highly efficient when a sender
sends encryptions to a single receiver: If the sender wants to send encryptions ofM1, ...,
Mn to the same receiver whose public key is PK , he does not have to run Pub1 for
each plaintext Mi for i = 1, . . . , n but just runs them once at the beginning and then
only does steps E2, E3, E4 (in StPE.Enc).

Next, we show that in the KSK model, the above scheme is LR-CCA2 secure.

Theorem 3. Assume that L is a membership indistinguishable language, HPS1 is a
1-universal λ-key-leakage extractor for L, HPS2 is an extended 2-universal HPS for
L, with proofs π2 of size |π2| = p ≥ λ + ω(logn), and the underlying symmetric
encryption SYM is IND-CCA secure. Then in the KSK model, the proposed generic
StPE scheme StPE is semantically secure against a-posteriori chosen-ciphertext λ-
key-leakage attacks. More precisely, we have

AdvKL,CCA2
StPE,A (n) ≤ AdvIND-CCA

SYM,B (n),

where n denotes the security parameter.

The details of the proof appear in the full version of this paper.

Remark. It follows from Theorems 1 and 2 (3) that the above constructions are LR-
CCA2 secure with the leakage rate at most max{|π1|,|π2|}

|sk1|+|sk2| of the secret-key length, where
|a| denotes the size of a. An efficient instantiation of the proposed construction of state-
less PKE is the encryption scheme of Naor-Segev [16], which is LR-CCA2 secure with
the leakage rate of 1/6 (the details description appear in the full version of this paper).
Since the stateful encryption scheme can also be constructed from the same HPSs, we
obtained an efficient instantiation of the proposed StPE with the same leakage rate.

5 Conclusion

We have introduced the generic constructions of both stateless and stateful PKE and
proved that they are LR-CCA2 secure. In these constructions, we have used the combi-
nation of any 1-universal HPS that satisfies the condition of a key-leakage extractor and
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any 2-universal HPS with some condition on the length of proof. In the case of StPE,
we have also used IND-CCA-secure symmetric encryption.

We leave it as an open problem to identify other generic cryptography primitives
(other than hash proof systems) that are sufficient for constructing PKE schemes that
are resilient to key-leakage. It is also an interesting open problem of constructing a StPE
secure against both state-leakage and key-leakage. We could discuss the security with
state-leakage in a similar way as that with randomness-leakage in our framework.

Acknowledgements. We thank the anonymous reviewers for their helpful comments.
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Abstract. At ACISP 2011, Peng shows that efficiency of two RSA-
based PVSS schemes deteriorates to an intolerable level when practical
parameter setting is adopted. In this paper, we show that Peng’s newest
PVSS scheme cannot solve the problem. A new PVSS scheme is designed
in this paper to fix the problem in the two RSA-based PVSS schemes.
It demonstrates that secure and practical PVSS can be designed on the
base of RSA encryption.

1 Introduction

The first threshold secret sharing technique is Shamir’s t-out-of-n secret sharing
[18]. A dealer has a secret s and wants to share it among n share holders. The

dealer builds a polynomial f(x) =
∑t−1

j=0 αjx
j and sends f(i) to the ith share

holder for i = 1, 2, . . . , n through a secure communication channel where α0 = s.
Any t shares can be used to reconstruct the secret, while no information about
the secret is obtained if the number of available shares is less than t. Secret
sharing is widely employed in various secure protocols like e-auction, e-voting and
multiparty computation. As most of the applications require public verifiability,
very often secret sharing must be publicly verifiable. Namely, it must be publicly
verified that all the n shares are consistently generated from a unique secret and
any t of them reconstruct the unique secret, while the shares are kept secret. As
the verification is public, any wrong-doing can be publicly detected by anyone
and thus is undeniable.

Publicly verifiable secret sharing is usually called PVSS. The idea was
firstly proposed by Feldman [7] and them developed into concrete schemes in
[19,9,17,3,14]. As an important cryptographic tool, they are widely employed in
various complex secure systems and applications like mix network [1], threshold
access control [16], e-voting [12,11], encryption algorithm [4], zero knowledge
proof [6], anonymous tokens [10] and fair exchange [13]. There are two impor-
tant security properties in PVSS: completeness and soundness. Completeness
requires that if the dealer is honest and does not deviate from the PVSS pro-
tocol he can always successfully prove validity of the shares. Soundness requires
that if the dealer’s proof of validity of the shares are passed with a non-negligible
probability, it is guaranteed that any t shares reconstruct the same secret.

Peng explains in [15] that among the existing PVSS schemes [19,9,17,3], only
two of them [9,3] are general and efficient and the other PVSS schemes have
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their drawbacks. Both of them employ RSA encryption in share distribution.
However, Peng notices that high efficiency in [9] and [3] depends on a special
condition: the share holders employ RSA encryption and use very small public
keys like 3. As explained in [15], such small RSA public keys are often impractical
in real life applications, especially in those applications unable to use appropriate
padding of information like PVSS. Peng points out that when larger practical
RSA keys are employed efficiency of the PVSS schemes in [9] and [3] decline to an
intolerable level in real life as extremely large integers must be stored and used
in computation. The PVSS scheme suggested by Peng for practical application
is his own work, the PVSS scheme by Peng and Bao [14].

We show that the newest PVSS scheme by Peng and Bao [14] cannot be a
solution to the problem in the two PVSS schemes in [9] and [3]. In this paper,
to solve the problem, the proof techniques in [9] and [3] are replaced with a new
proof method. Firstly, we show that extremely large integer can be avoided in the
proof even full-length RSA public keys are employed. Then, a more efficient proof
protocol is proposed, whose cost is independent of the size of the employed RSA
public keys. The new proof protocol can flexibly satisfy the security requirements
of the real life PVSS applications at a reasonable cost. It is formally illustrated
that the concern found in [9] and [3] is solved and our efficiency improvement
does not compromise or weaken security of PVSS in any way.

2 Background

Technical background in this paper is provided in this section.

2.1 Publicly Verifiable Secret Sharing

PVSS is a combination of secret sharing and publicly verifiable encryption and
usually works as follows.

1. The dealer encrypts the shares for the share holders using their public keys
and publishes the ciphertexts. Suppose Ei() is Pi’s public encryption algo-
rithm, then ci = Ei(si) for i = 1, 2, . . . , n are published. Each share holder
can decrypt the ciphertext for him and obtain his share.

2. The dealer commits to the share-generating polynomial (including all its
coefficients) and publishes the commitment.

3. The dealer publicly proves that each encrypted share is generated by the
committed share-generating polynomial without revealing them.

The following three important security properties are desired in PVSS.

– Completeness: if the dealer is honest and does not deviate from the PVSS
protocol, he can always successfully prove validity of the shares.

– Soundness: if the dealer’s proof of validity of the shares passes the corre-
sponding verification with a non-negligible probability, it is guaranteed that
they are generated by the committed share-generating polynomial such that
any t of them reconstruct the same secret.
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– Privacy: no information about the secret or any of its shares is revealed in
the proof of validity of the shares. More precisely, a private PVSS scheme
should employ zero knowledge proof techniques, which do not reveal any
secret information as their proof transcripts can be simulated without any
difference by a party without any knowledge of the secret or any of its shares.

The key technique in PVSS is the proof that each encrypted share is generated
by the committed share-generating polynomial. Firstly, commitment to every
share needs to be calculated from the commitment to the coefficients of the
share-generating polynomial. Then it is only needed to prove that the share
committed for each share holder is encrypted in the ciphertext for him using
zero knowledge proof techniques.

2.2 The Two RSA-Based PVSS Schemes in [3] and [9]

The PVSS protocols in [3] and [9] are recalled in the following strictly according
to their original presentations without any change or omission.

In [3], there are four PVSS protocols, two with fast recovery and two with
delayed recovery. Note that PVSS with delayed recovery does not support real
time secret reconstruction and has a quite limited range of applications. In Sec-
tion 4.1 of [3], its first PVSS protocol with fast recovery is as follows where the
secret integer is s and S = gs mod p is a public number and detailed definitions
of functions like Share(), Proof3() and Proof6() can be found in [3].

1. Alice runs Share(s) = ((s1, . . . , sl); (a1, . . . , ak−1)), computes
Si = gsi mod p for i = 1, . . . , l and Aj = gaj mod p for
j = 1, . . . , k − 1. Then she executes Proof3(Share(logg(S)) =
((logg(S1), . . . , logg(Sl)), (logg(A1), . . . , logg(Ak−1))).

2. For i = 1, . . . , l, Alice computesEi = s
3
i mod ni and executes Proof6(si, Si =

gsi mod p ∧ Ei = s
3
i mod ni ∧ abs(si) < (ni − 1)/2).

In this PVSS protocol g is a generator of a large cyclic group in Z∗
p , ni is the

ith share holder’s RSA modulus and Proof6() is a proof technique detailed in
[3]. In Section 4.2 of [3], the PVSS protocol with fast recovery is extended to
share a secret factorization. The other PVSS protocols with delayed recovery in
[3] employ similar techniques.

In Pages 8-9 in [9], a dealer D has a secret s in Zv and shares it using a

polynomial f(X) = s+
∑k−1

j=1 ajX
j mod v where each aj ∈R Zv and ak−1 �= 0.

Then D sets, for i = 1, . . . , l, si = (f(i) mod v) + (2m − δi)v where δi ∈ {0, 1}.
D sets and broadcasts Ci = s

ei
i mod ni for i = 1, 2, . . . , l. The PVSS protocol in

[9] is described in its Page 9 and recalled as follows where V is a verifier.

1. D sets and sends to V c0 = BC(b,v)(s, r0) where r0 ∈R Z∗
N .

2. D sets, for j = 1, . . . , k − 1, cj = BC(b,v)(aj , rj), where r1, . . . , rk−1 ∈R Z∗
N .

Then, for i = 1, . . . , l, D sets Ai = BC(b,v)(si, ti) and Bi = BC(b,ni)(si, r
′
i)

where ti =
∏k−1
j=1 r

ij

j mod N and r′i ∈R Z∗
N . D broadcast (c1, . . . , ck−1),

(A1, . . . , Al) and (B1, . . . , Bl).
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3. V checks Ai =
∏k−1
j=1 c

ij

j mod N .
4. For i = 1, . . . , l, D executes with V TRAN(b,v,ni)(Ai, Bi) and PROOF [Bi =
BC(b,ni)(si) ∧Di(si) = 0 mod ni] where Di(X) = Xei − Ci.

The symbols and denotations used in the PVSS protocol are dispersedly defined
in many different places in Pages 5, 6, 7, 8 and 9 of [9]. Some of them are needed
in our analysis and thus put together as follows.

– N = PQ, P = 2p+ 1 and Q = 2q + 1 where p and q primes. Although not
explicitly stated in [9], P and Q should be large secret primes (or at least
product of large secret primes), otherwise polynomial factorization of N en-
ables calculation of the vth-root in polynomial time and breaks bindingness1

of the commitment function BC(b,v)(s, r) = b
srv mod N .

– b is a generator of the cyclic subgroup with order pq in Z∗
N . Although not

explicitly stated in [9], p and q should be secret to guarantee hardness in
factorizing N as implied by citation of [8] in [9].

– si is the secret share for the ith share holder.
– BC() is a commitment function BC(b,v)(s, r) = bsrv mod N and Bi is a

commitment value.
– ni is an RSA modulus for the ith share holder’s RSA encryption algorithm

and ei is the i
th share holder’s RSA public key.

– TRAN(b,v1,v2)(c1, c2) is a proof primitive defined in Page 7 of [9]. It proves
knowledge of integers x1, x2, r1, r2 such that c1 = BC(b,v1)(x1, r1) and c1 =
BC(b,v2)(x2, r2) where x1 = x2 mod v.

– PROOF [ ] is a key proof technique to be discussed.

2.3 The Concern Raised in [15]

A concern about the two existing RSA-Based PVSS schemes [3,9] is pointed out
in [15].

The most important operation in PVSS is to prove and verify that the same
share is encrypted in a ciphertext and committed to in a commitment. In Step
4 of the PVSS protocol (in Page 9 of [9]), the dealer needs to prove

PROOF [Bi = BC(b,ni)(si) ∧Di(si) = 0 mod ni] (1)

where the parameter setting is as follows.

– N = PQ, P = 2p + 1 and Q = 2q + 1 where p and q primes. Although
not explicitly stated in [9], P and Q should be large secret primes (or at
least product of large secret primes), otherwise polynomial factorization of
N makes calculation of the vth-root polynomial and breaks bindingness of
the commitment function BC(b,v)(s, r) = b

srv mod N .
– b is a generator of the cyclic subgroup with order pq in Z∗

N . Although not
explicitly stated in [9], p and q should be secret to guarantee hardness in
factorizing N as implied by citation of [8] in [9].

1 Bindingness here refers to the security property “......opening the commitment with
different representations is equivalent to breaking RSA” in [9].
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– si is a secret share.
– ni is an RSA modulus.

According to the definition of BC() and Di() in [9], this proof in the form
PROOF [ ] is actually a proof of knowledge of secret integers si and r to satisfy

Bi = b
sirni mod N (2)

seii = Ci mod ni (3)

where Ci is an RSA ciphertext. The proof primitive PROOF [ ] is defined in
Page 6 of [9] and implementation of the proof is given in the so-called Example
1 in the same page. Applying the proof method in Example 1 to proof of (2) and
(3) in [9] is as follows.

1. ei is set to be 3.
2. The dealer publishes c′ = BC(s2i ) and c

′′ = BC(s3i ).
3. The dealer runs two proof primitives SQR(b,ni)(Bi : c′) and MUL(b,ni)

(Bi, c
′ : c′′) defined earlier in Page 6 of [9].

4. The dealer opens (c′′b−Ci)1/ni .

In Section 4.1 of [3], its first PVSS protocol with fast recovery includes an
operation, Step 2: “For i = 1, ..., l, Alice computes Ei = s3i mod ni and exe-
cutes Proof6(si, Si = gsi mod p ∧ Ei = s3i mod ni ∧ abs(si) < (ni − 1)/2)” to
show that the same share si is committed to in Si and encrypted in Ei where
Proof6(x,G = gx mod p ∧ E = x3 mod n1 ∧ abs(x) < (n1 − 1)/2) is realized in
its Section 3.6 as follows.

1. Alice computes α = E−x3

n1
, G1 = g−x mod N , G2 = g−x

2

mod N , G3 =

g−x
3

mod N and Z = g−αn1 mod N .
2. Alice proves knowledge of x such that G = gx mod p, G1 = g−x mod N ,
G2 = Gx1 mod N , G3 = Gx2 mod N and abs(x) < λ(N)/2) and knowledge of
α such that Z = (g−n1)α mod N .

3. The verifier checks the proofs, computes T = g−E mod N and checks that
G3 = T/Z mod N .

In Section 4.2 of [3], its second PVSS protocol with fast recovery includes an
operation, Step 3: “For i = 1, ..., l, Alice computes Ei = s

3
i mod ni and executes

Proof6(si, Si = gsi mod p ∧ Ei = s3i mod ni ∧ abs(si) < (ni − 1)/2)” to show
that the same share si is committed to in Si and encrypted in Ei.

So the PVSS schemes in [9] and [3] are only specified in the case where the
share holders use 3 as their RSA public keys. Their high efficiency is also achieved
in this case.

The specification of proof of validity of shares for general RSA keys seems
to work in theory. However, in practice, it includes a very costly operation,

especially when ei is large. The operation is calculation of s2i , s
4
i , . . . , s

2L−1

i where
L is the bit length of ei. In theory, they can be calculated using L − 1 square
operations S1 = s2i , S2 = S2

1 , . . . , SL−1 = S2
L−2 and then used in SQR() and
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MUL() as the secret logarithms to be proved knowledge of where Sk = s2
k

i .
In practice, the size of Sk increases rapidly and becomes intolerably large very
quickly. In [9], si = (f(i) mod v) + (2m − δi)v where f() is the share-generating
polynomial proposed by Shamir [18] and employed by most threshold PVSS
schemes, m = O(|N |), v is an integer decided by the dealer or a verifier and
δi ∈ {0, 1}. So 2m and thus si should be hundreds of bits long in a practical

secure setting. When ei is large (e.g. no smaller than 65537), s2
L−1

i is millions or
even billions of bits long. So large integers are difficult to store or process (e.g.

use them to calculate Sk and c′′), not to mention s2i , s
4
i , . . . , s

2L−1

i are used in
SQR() and MUL() as secret logarithms to be proved knowledge of.

It is explained in [15] why we cannot calculate Sk = S2
k−1 with a multiplicative

modulus instead in Z. The key point is what modulus to use. As s2i , s
4
i , . . . , s

2L−1

i

are in the form of exponents to the base b, the multiplicative modulus must
be a multiple of the order of b. However, the order of b and its multiples are
secret since factorization of N must be hard. If the dealer knows the order of
b, he can open his commitment in many different ways and commitment of the
secret fails. So, the dealer cannot know the order of b or any of its multiples.

Therefore, s2i , s
4
i , . . . , s

2L−1

i must be calculated in Z and become extremely large
when a large enough secure public key is employed in RSA cipher. In summary,
intolerably high cost is inevitable in [9] if secure RSA public keys are employed.
The same problem exists in [3] as well. The concerns in the two PVSS schemes
are still not solved in the most recent PVSS scheme by Peng and Bao in [14]. The
range proofs in the PVSS scheme in [14] has its own security concern. In Section
5 of [14], to guarantee that si is in the range {0, 1, . . . , Ni} where decryption
modulus ni is denoted in [14] as Ni, it is proved that si + s

′
i = Ni where s′i

is another integer with unlimited distribution. Obviously, si + s
′
i = Ni cannot

guarantee that si is in the range {0, 1, . . . , Ni}. When si is out of the range, it
is changed when its encryption is decrypted.

3 Secure and Efficient PVSS Based on RSA Encryption

In this section, it is firstly shown that the concern in the existing RSA-based
PVSS schemes can be eased. In CHCK2 in [9], X should be expected to fall in
a larger range to achieve completeness. To maintain soundness with this change,
e can be smaller and m can be larger. In Proof6() in [3], the range proof should
prove that si is in a smaller range Zni . More importantly, an efficient proof
protocol is needed to specify the proof of validity of shares encrypted in RSA
ciphertexts with large RSA in [9] and [3]. Firstly, it is shown in Section 3.1 that
extremely large integer can be avoided in the proof. Then in Section 3.2, a more
advanced proof protocol is proposed to further improve efficiency.

3.1 Avoiding Too Large Integers

The method to specify PROOF [ ] is modified to avoid extremely large integers
as follows.
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1. The dealer publishes ck+1 = csik r
ni

k mod N for k = 0, 1, . . . , ei − 2 where
c0 = Bi and rk is randomly chosen from Z∗

N and their validity is proved as
follows.
(a) The dealer proves that the committed integer in c1 is the square of the

the committed integer in Bi through SQR(b,ni)(Bi : c1) where he uses
si as his secret witness.

(b) The dealer proves that the committed integer in c2 is the product of the
the committed integers in Bi and c1 throughMUL(Bi, c1 : c2) where he
uses si as his secret witness.

(c) The dealer proves that the committed integer in c3 is the product of the
the committed integers in Bi and c2 throughMUL(Bi, c2 : c3) where he
uses si as his secret witness.
. . . . . .

(d) The dealer proves that the committed integer in cei−1 is the product of
the the committed integers in Bi and cei−2 through MUL(Bi, cei−2 :
cei−1) where he uses si as his secret witness.

2. The dealer opens (cei−1b
−Ci)1/ni .

As si is used as the secret exponent in calculating c1, c2, . . . , cei−1 and the se-
cret witness in all the SQR() and MUL() proof primitives, no extremely large
integer is needed in this modified specification of PROOF [ ]. However, cost of
the modified specification is linear in O(ei), so is still too high.

3.2 More Efficient Specification of PROOF [ ]

A new proof method whose cost is independent of ei is proposed to specify
PROOF [ ] without using any extremely large integer. Firstly, a proof primitive
is designed in Fig 1 to prove satisfaction of (2) and (3).

This new proof primitive in Fig 1 is called basic proof in this paper. As
illustrated in Theorem 1 and Theorem 2, an honest dealer’s proof can always be
successfully verified and passing the verification in basic proof with a probability
larger than 0.5 guarantees satisfaction of (2) and (3).

Theorem 1. If the dealer is honest and (2) and (3) are satisfied, he can always
pass the verification in basic proof.

Proof: As the dealer is honest, he knows integers S and R such that

B = bSRni mod N (4)

C = Sei mod ni (5)

– If u = 0, the dealer publishes S′ = S and R′ = R. (4) and (5) imply

B = bS
′
R′ni mod N

C = S′ei mod ni.

and the verification is passed.
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– If u = 1, as the dealer is honest he commits to si in Bi and publish a =
bsiSR′′ni mod N such that siS is committed to in a. (4) implies that S is
committed to in B. So the dealer can successfully give a proof MUL(Bi, B :
a) and pass its verification. The dealer publishes

S′ = siS mod ni

R′ = R′′b(siS−S
′)/ni mod N.

As he is honest, he has encrypted si in

Ci = s
ei
i mod ni

So

bS
′
R′ni = bsiS mod ni(R′′b(siS−S

′)/ni)ni

= bsiSR′′ni = a mod N

and

CiC = seii S
ei = (siS)

ei = S′ei mod ni

and the verification is passed. �

1. The dealer randomly chooses S in Zni and R in Z∗
N and publishes

B = bSRni mod N

C = Sei mod ni

2. A verifier or multiple cooperating verifiers or a (pseudo)random algorithm gen-
erates a random bit u as a challenge.

3. If u = 0, the dealer publishes S′ = S and R′ = R. If u = 1, the dealer
(a) randomly chooses R′′ in Z∗

N and publishes a = bsiSR′′ni mod N ;
(b) gives a proof MUL(Bi, B : a) to demonstrate that the integer committed

in a is the product of the two integers committed in Bi and B respectively;
(c) publishes

S′ = siS mod ni

R′ = R′′b(siS−S′)/ni mod N.

Public verification of the dealer’s proof is as follows.

– If u = 0, anyone can verify

B = bS
′
R′ni mod N

C = S′ei mod ni.

– If u = 1, anyone can verify the dealer’s MUL() proof and

a = bS
′
R′ni mod N

CiC = S′ei mod ni.

Fig. 1. Basic proof of satisfaction of (2) and (3)
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Theorem 2. If the dealer passes the verification in basic proof with a probability
larger than 0.5, (2) and (3) are satisfied.

Proof: As the dealer passes the verification in basic proof with a probability
larger than 0.5, he can provide integers S′ and R′ when u = 0 such that

B = bS
′
R′ni mod N, (6)

C = S′ei mod ni, (7)

otherwise, his proof fails when u = 0 and the probability that he can pass the
verification is no larger than 0.5.

As the dealer passes the verification in basic proof with a probability larger
than 0.5, he can prove MUL(Bi, B : a) and provide integers S′ and R′ when
u = 1 such that

a = bS
′
R′ni mod N, (8)

CiC = S′ei mod ni, (9)

otherwise, his proof fails when u = 1 and the probability that he can pass the
verification is no larger than 0.5.

Denote S′ and R′ in (6) and (7) as S′
1 and R′

1 and denote S′ and R′ in (8)
and (9) as S′

2 and R′
2, and we have

B = bS
′
1R′

1
ni mod N, (10)

C = S′
1
ei mod ni, (11)

a = bS
′
2R′

2
ni mod N, (12)

CiC = S′
2
ei mod ni. (13)

As MUL(Bi, B : a) implies that the message committed in a is the product of
the messages committed in Bi and B, (12) and (10) imply that the dealer knows
S′
2/S

′
1 and R′′ such that

Bi = b
S′
2/S

′
1R′′ni mod N

where R′′ is an integer in Z∗
N . As (13) divided by (11) yields

Ci = (S′
2/S

′
1)
ei mod ni,

the dealer knows si = S
′
2/S

′
1 and r = R′′ such that

Bi = b
sirni mod N

seii = Ci mod ni

and thus (2) and (3) are satisfied. �

Although the basic proof only guarantees soundness with a probability 0.5, it
can be repeated T (a security parameter) times such that soundness is guaran-
teed with an overwhelmingly large probability 1 − 2−T when all the T instances
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of proof pass their verifications. For example, when T is 20, the probability of fail-
ure of soundness is reduced to 2−20 (which is smaller than one out of one mil-
lion); and when T is 30, the probability of failure of soundness is reduced to 2−30

(which is smaller than one out of one billion). Obviously, running basic proof 20
or 30 times can guarantee soundness in a practical sense, but is still more efficient
than O(log2 ei) proofs involving extremely large integers (e.g. millions or billions
of bits long). Especially, cost of the new solution does not depends on ei and is only
determined by the security parameter T . So our new solution achieves better flex-
ibility in real life applications. In different applications T can be flexibly adjusted
to guarantee soundness at only the necessary cost. Replacing the implementation
of proof PROOF [ ] in [9] and the same proof in [3] with our new solution does not
compromise or weaken privacy of the PVSS scheme as illustrated in Theorem 3.

Theorem 3. Basic proof is private. More precisely, its proof transcript can be
simulated by a party without any knowledge of any secret such that the simulating
transcript has the same distribution with the real proof transcript.

Proof: The transcript of basic proof contains B,C, u, S′, R′ and sometimes a and
the variables published by an MUL() proof. As MUL() has been proved to be
private in [9], we only need to consider how to simulate B,C, u, S′, R′, a. A party
without any knowledge of any secret can simulate them as follows.

1. He randomly chooses a bit u.
2. If u = 0,

(a) he randomly chooses S′ from Zni and R′ from Z∗
N ;

(b) he calculates

B = bS
′
R′ni mod N

C = S′ei mod ni.

3. If u = 1,
(a) he randomly chooses S′ from Zni and R′ from Z∗

N ;
(b) he calculates

a = bS
′
R′ni mod N

C = S′ei/Ci mod ni.

In both the real proof transcript of basic proof and this simulating transcript,

– B is uniformly distributed in Z∗
N ;

– C is uniformly distributed in Zni ;
– u is uniformly distributed in {0, 1};
– S′ is uniformly distributed in Zni ;
– R′ is uniformly distributed in Z∗

N ;
– a is uniformly distributed in Z∗

N ;
– if u = 0,

B = bS
′
R′ni mod N

C = S′ei mod ni;
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If u = 1,

a = bS
′
R′ni mod N

CiC = S′ei mod ni.

As the two transcripts have the same distribution, basic proof is private. �

4 Conclusion

In this paper, we have revisited the two PVSS schemes in [9,3], which are shown
to be not so efficient in practice as widely believed in [15]. Impractical proof
techniques in them are fixed and optimised. The resulting PVSS scheme over-
comes their problem and avoids any highly costly operation. So really general
and efficient PVSS is implemented in this paper.
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Abstract. Verifiable random functions (VRF) and selectively convert-
ible undeniable signature (SCUS) schemes were proposed independently
in the literature. In this paper, we observe that they are tightly related.
This directly yields several deterministic SCUS schemes based on exist-
ing VRF constructions. In addition, we create a new probabilistic SCUS
scheme, which is very compact. The confirmation and disavowal pro-
tocols of these SCUS are efficient, and can be run either sequentially,
concurrently, or arbitrarily. These protocols are based on what we call
zero-knowledge protocols for generalized DDH and non-DDH, which are
of independent interest.

Keywords: Selectively convertible undeniable signatures, verifiable ran-
dom function, standard model.

1 Introduction

1.1 Background

Selectively convertible undeniable signatures (SCUS) were introduced by Boyar,
Chaum, Damg̊ard, and Pedersen [2] in 1990, extending the concept of undeniable
signatures of Chaum and Antwerpen [5]. Recall that the verification of undeni-
able signatures is restricted, namely controlled by the signer. Any verifier needs
to run an interactive protocol with the signer to check whether the purported
signature is valid. However, in SCUS schemes, the verification of signatures can
be additionally done non-interactively; namely the signer now can release a piece
of information, often called a converter, to make his signature publicly checked.

SCUS schemes can be used directly, when one would like to allow some verifiers
to freely check his signature, while the other cannot do so. For example, IACR
members who receive the converter, can directly verify the signature, while non-
members cannot. SCUS schemes can also be used as a the main building block in
protocols such as fair payment [3]. There is a long list of work on SCUS schemes
in the literature, including [8, 12, 14, 22, 24] in the standard model.
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Table 1. Some recent SCUS schemes in the standard model, operating on a pairing
group PG = (G,GT , g, q, e), where g is a generator of G, and the order |G| = |GT | = q
for prime q, and e : G×G → GT . The notation 3G means 3 group elements in G; 1GT

means 1 group element in GT . Typically, sG = 160G

SCUS schemes Signature Converter Public keys
(all sizes are in group elements)

PKO [22] ≥ 3G 2G ≥ 12G
SM [24] 4G 2G ≈ sG

Our SCUSDY (Sect.4.2) 1GT 1G 2G
Our SCUSHW (Sect.4.2) 1GT ≈ sG ≈ sG
Our SCUSBB (Sect.5) 1Zq + 1GT 1G 4G

On the other hand, verifiable random functions (VRFs), later introduced by
Micali, Rabin, and Vadhan [17] in 1999, are like pseudo-random functions in
the sense that their outputs are indistinguishable from random. However, unlike
standard pseudo-random functions, the output of VRFs can be proved coming
from a given input if one (owning the secret key) releases an additional piece of
information, often called the proof of correctness.

VRFs have been used in various contexts, including resettable zero-knowledge
proofs [18], micro-payment schemes [19], updatable zeroknowledge databases
[16], and verifiable transaction escrow schemes [11].

1.2 Our Contributions

We first show VRF implies deterministic SCUS. The reverse side holds if SCUS
has an additional property called uniqueness. Furthermore, probabilistic SCUS
can be seen as “randomized” VRF (taking randomness as a function input).
Perhaps surprisingly, these facts were not notified before in the literature of
both SCUS and VRF.

Then, also based on the relation, we construct new deterministic SCUS in the
standard model. Going further, we build a probabilistic SCUS scheme with very
neat parameters. A comparison with the best known schemes in the standard
model is given in Table 1. More details are as follows.

Deterministic SCUS from VRF. We show that VRFs directly imply deter-
ministic SCUS schemes. This result, coupling with our zero-knowledge pro-
tocols for generalized DDH and non-DDH, then yields several efficient SCUS
schemes. We give in Sect.4.2 two concrete deterministic SCUS schemes de-
noted as SCUSDY and SCUSHW, respectively based on the VRFs of Dodis,
Yampolskiy [7] and Hohenberger, Waters [10]. We note that SCUSDY requires
small signing space, while SCUSHW does not.

Interlude: A new probabilistic SCUS. The converters and/or public keys
in the above deterministic SCUS schemes are a bit long (e.g., of at least
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160 group elements in SCUSHW). Inspired from SCUSDY and the technique
of Boneh and Boyen [1], we newly construct a more compact probabilistic
SCUS scheme, called SCUSBB, with arbitrary signing space. The scheme is
given in Sect.5.

VRF from SCUS. We investigate the other side as well, namely VRFs from
SCUS schemes with a unique property. The property requires, for every1

public key, there is one valid signature for each message in SCUS. How-
ever, since there is no known unique SCUS scheme currently, this is just of
theoretical interest. See Sect.4.3 for the construction.

Note that the confirmation and disavowal protocols for our SCUS construc-
tions can be efficiently and elegantly realized from what we call zero-knowledge
protocols for generalized DDH and non-DDH in Sect.3. These protocols are of
independent interest, and may be useful in other context as well.

Due to the restriction of space, we leave all the proofs of theorems on the full
version [13].

2 Definitions

By a
$← U we mean a is chosen randomly from a set U , and by AO(·) we mean

the adversary A gets access to the oracle O(·). The value |a| is the length in bits
of the element a, while |H| is the order of a group H.

Verifiable random function. The function, described as VRF = (Gen, Func,
V), is as follows.

– Gen(1λ): return the public key pk and the secret key sk.
– Funcsk(x): return the (pseudo-random) output y = Fsk(x) for
Fsk(·) : Domain(λ, pk) → Range(λ, pk)2, and its proof of correctness π =
πsk(x).

– Vpk(x, y, π): return 1 (meaning y = Fsk(x)) or 0.

We require the following properties on VRF.

Provability: if (y, π) = Funcsk(x) then Vpk(x, y, π) = 1 (except with negligible
probability), for all (pk, sk)← Gen(1λ), and x ∈ Domain(λ).

Uniqueness: There is no tuple (x, y1, y2, π1, π2), except with negligible prob-
ability, satisfying

y1 �= y2 and Vpk(x, y1, π1) = Vpk(x, y2, π2) = 1,

for all pk, and x ∈ Domain(λ).

1 This unique property is stronger than “deterministic”, since it deals also with mali-
ciously generated keys.

2 We will be mainly interested in the case Range(λ, pk) is big enough, e.g.,
Range(λ, pk) = {0, 1}λ for λ = 170.
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Pseudo-randomness: For all poly-time distinguisher D = (D1,D2), the fol-
lowing advantage

Advrand
VRF (D) =∣∣∣∣∣∣∣Pr
⎡⎢⎣b′ = b : (pk, sk)

$← Gen(1λ), (x∗, st)← DFuncsk(·)
0 (1λ, pk)

y∗0 ← Fsk(x
∗), y∗1

$← Range(λ),

b
$← {0, 1}, b′ ← DFuncsk(·)

1 (y∗b , st)

⎤⎥⎦− 1

2

∣∣∣∣∣∣∣,
where x∗ is not queried to the oracle Funcsk(·), is negligible in λ. Above, st
stands for state.

Selectively convertible undeniable signatures. The scheme, denoted as
SCUS, consists of the algorithms (KGen, USign, Convert, Verify) and the protocols
(Confirm, Disavowal) described as follows.

– KGen(1λ): return the public key pk and the secret key (signing key) sk.
– USignsk(m): return a signature σ on a message m. We sometimes require

that it is deterministic so that a signature σ is valid on m if and only if
σ = USignsk(m). If the algorithm is probabilistic with randomness r, we
sometimes write σ = USignsk(m; r).

– Convertsk(m,σ): release a converter cvt if (m,σ) is valid, and ⊥ otherwise.
– Verifypk(m,σ, cvt): return 1 (meaning (m,σ) is valid) or 0.
– Confirm: This is a protocol between the signer and a verifier, on common

input (pk,m, σ), the signer with sk proves that (m,σ) is a valid message-
signature pair in zero-knowledge.

– Disavowal: This is a protocol between the signer and a verifier, on common
input (pk,m, σ), the signer with sk proves that (m,σ) is an invalid message-
signature pair in zero-knowledge.

Definition 1 (Unforgeability of SCUS). The scheme SCUS is unforgeable if
for all poly-time adversary A, the advantage

Advforge
SCUS(A) =

Pr

⎡⎣(m∗, σ∗) is valid :
(pk, sk)← KGen(1λ),
(m∗, σ∗)← AUSignsk(·),Convertsk(·,·),P(pk),
m∗ was not queried to USignsk(·)

⎤⎦
is negligible in λ. Above and below, P stands for the confirmation/disavowal ora-
cle working as follows: A submits a message-signature pair of the form (m,σ) to
P, which first checks the validity of (m,σ). If it is a valid pair, the oracle returns
1 and executes the confirmation protocol with A (acting as a cheating verifier).
Otherwise, the oracle returns 0 and executes the disavowal protocol with A.

For strong unforgeability, the forged pair (m∗, σ∗) is different from the pairs
appeared at the oracle USignsk(·). (Yet m∗ can be queried to USignsk(·), yielding
for example σ∗. In that case, σ∗ �= σ∗.).

We note that all SCUS schemes in this paper meet the notion of strong unforge-
ability.
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Definition 2 (Invisibility of SCUS [9]). The scheme SCUS has invisibility
if for all poly-time distinguisher D = (D0,D1), the advantage

Advinv
SCUS(D) =∣∣∣∣∣∣∣∣∣Pr
⎡⎢⎢⎢⎣b′ = b :

(pk, sk)← KGen(1λ),

(m∗, st)← DUSignsk(·),Convertsk(·,·),P
0 (pk),

σ∗0 ← USignsk(m
∗), σ∗1

$← SigSpace(λ),

b′ ← DUSignsk(·),Convertsk(·,·),P
1 (σ∗ def

= σ∗b , st)

⎤⎥⎥⎥⎦− 1/2

∣∣∣∣∣∣∣∣∣
is negligible in λ, where SigSpace(λ) is the signature space of the scheme. Also,
there are some natural restrictions on D1’s queries: no
confirmation/disavowal query and conversion query (m∗, σ∗), and no signing
query m∗ (needed only if USign is deterministic), are allowed.

3 Zero-Knowledge Protocols for Generalized DDH and
Non-DDH

Protocols from q-oneway Homomorphism [6]. Let Dom and Rng be finite
Abelian groups, and f : Dom → Rng be a group homomorphism. Following
Cramer, Damg̊ard, and MacKenzie, we say a one-way function f is q-oneway for
a fixed prime q, if given f and b in f ’s range, one can efficiently find a ∈ Dom
such that f(a) = bq. From such f , it is shown in [6] how to build a 4-move
zero-knowledge (ZK) protocol proving the knowledge of f ’s pre-image. Namely,
for public x, the prover shows the knowledge of ω such that f(ω) = x. The
zero-knowledge protocol is based on the following Σ-protocol.

Σ-protocol proving f(ω) = x

1. The prover chooses ω′ $←Dom, and sends x′ = f(ω′) to the verifier.
2. The verifier sends back a random challenge c ∈ {0, . . . , q − 1}.
3. The prover returns ω′′ = ω′ + cω to the verifier who checks f(ω′′) = x′xc.

The well-known Schnorr protocol [23] becomes a special case of the above, when
considering f : Zq → H, and f(ω) = hω, where the order |H| = q and h is a
generator of H. It is easy to see that f is an oneway homomorphism. For y ∈ H,
we have yq = 1, thus f(0) = yq, and hence f is q-oneway.

ZK Protocol for Generalized DDH. Consider two generators g, h ∈ H. The
elements Xi = hxi for 1 ≤ i ≤ n, and Y are given in public. The prover with
secrets xi wants to show in ZK that Y = g

∏n
i=1 xi . When g = h and n = 1, this

is exactly the Schnorr protocol.
Let yj =

∏j
i=1 xi for 1 ≤ j ≤ n. For the following q-oneway homomorphism

f(y1, . . . , yn) =
(
hy1 , hy2X−y1

2 , . . . , hynX−yn−1
n , gyn

)
,

our prover proves that he knows (y1, . . . , yn) such that f(y1, . . . , yn) =
(X1, 1, . . . , 1, Y ) by using the above Σ-protocol. The protocol is a 3-move ZK pro-
tocol against honest verifier. It can be transformed to a 4-moveZKprotocol against
any verifier.
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(Completeness) It holds that hyjX
−yj−1

j = 1 because hyj = X
yj−1

j for all

2 ≤ j ≤ n. (Soundness) Note that hy1 = X1 implies y1 = x1, and h
y2X−y1

2 = 1
implies y2 = y1x2 = x1x2, and so on, so that yn =

∏n
i=1 xi as required.

Neff [21], with other techniques, also gave a protocol called iterated logarith-
mic multiplication protocol realizing the above task when g = h. Ours, described
above, is more compact and general.

ZK Protocol for Generalized Non-DDH. Given h,Xi = hxi , Y ∈ H, and
now the prover wants to show that Y �= h

∏n
i=1 xi . We call this generalized non-

DDH protocol, which will be used for disavowal in later SCUS schemes. Employ-

ing a trick of Camenisch and Shoup [4], the prover takes x0
$← Zq and sends

T =
(
Y −1h

∏n
i=1 xi

)x0
to the verifier who checks T �= 1. Let yj =

∏j
i=0 xi so that

T = Y −x0hyn . Note that hy1X−x0
1 = 1 and hyjX

−yj−1

j = 1 for 2 ≤ i ≤ n. We
then consider the following q-oneway homomorphism

f(x0, y1, . . . , yn) =
(
hy1X−x0

1 , hy2X−y1
2 , . . . , hynX−yn−1

n , Y −x0hyn
)
,

so that the prover just needs to prove the knowledge of the pre-image satisfying
f(x0, y1, . . . , yn) = (1, . . . , 1, T ). The protocol is 3-move against honest verifier,
and 4-move against any verifier.

Full zero-knowledgeness from the Σ-protocols is described in the full version
[13].

4 Relation between SCUS and VRF

4.1 SCUS from VRF: A Generic Construction

Let VRF = (Gen, Func, V) be a VRF for Funcsk(·) =
(
Fsk(·), πsk(·)

)
where the

range of Fsk(·) is considered as {0, 1}κ (κ ≈ 170 in later sections). We now
construct a scheme SCUS = (KGen, USign, Convert, Verify, Confirm, Disavowal)
described as follows.

The Construction of SCUS:

– KGen(1λ): Return (pk, sk)← Gen(1λ).
– USignsk(m): Return σ = Fsk(m) as the undeniable signature.
– Convertsk(m,σ): Return π = πsk(m) as the converter if Vpk(m,σ, π) = 1,

else return ⊥.
– Verifypk(m,σ, π): Return Vpk(m,σ, π).
– Confirm: The common input is (pk,m, σ). With private input sk, the signer

proves in zero-knowledge that σ = Fsk(m).
– Disavowal: The common input is (pk,m, σ). With private input sk, the signer

proves in zero-knowledge that σ �= Fsk(m).

In general, the Confirm and Disavowal protocols can be realized by general tech-
niques for zero-knowledge, but not very efficiently. Later, we will present efficient
protocols for specific cases. The proofs for below results in [13] assume that
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the confirmation and disavowal protocols are run sequentially. (However, it is
not hard to extend them to handle concurrent or arbitrary executions of the
protocols.)

Theorem 3. The SCUS construction above satisfies unforgeability.

Theorem 4. The SCUS construction above has invisibility. In particular, if
there is a poly-time Dscus against SCUS, then there are poly-time Dvrf and A
satisfying

Advinv
SCUS(Dscus) ≤ Advrand

VRF (Dvrf) +Advforge
SCUS(A)

4.2 Concrete Instantiations

In this section, we will use a pairing group PG = (G,GT , g, q, e), where g is a
generator of G, and the order |G| = |GT | = q for prime q, and e : G×G→ GT .

SCUS from the VRF of Dodis and Yampolskiy [7]. The VRF works
on a pairing group PG = (G,GT , g, q, e), and is pseudo-random under the q-
DBDHI assumption [20]. The secret key is sk = s ∈ Zq and the public key is
pk = gs. On input m ∈ {0, 1}�m ⊂ Zq (in which 2�m must be polynomial), define
Fs(m) = e(g, g)1/(m+s), and π = πs(m) = g1/(m+s). The function Fs(·) serves
as a random function, and πs(·) as the proof of its correctness. To ensure that
y(= Fs(m)) was computed correctly, one checks

e(πm, g
m · pk) ?

= e(g, g) and e(πm, g)
?
= y.

We now show how to turn the above VRF into a SCUS scheme. The public and
secret keys are the same as above. The signature on m is σ = Fs(m), which
is pseudo-random, so invisible, under the q-DBDHI assumption. For selective
conversion on (m,σ), release πs(m).

Confirm: To show that (m,σ) is valid in the confirmation protocol, the signer
with secret s proves that

σ = e(g, g)1/(m+s) ⇐⇒ σm+s = e(g, g)⇐⇒ σs = σ−me(g, g) ∈ GT .

Thus the signer just proves
(
e(g, g), e(pk, g), σ, σ−me(g, g)

)
is a DDH tuple

in GT , which can be realized in 4 moves as follows. Using ideas in Sect.3,
the q-oneway homomorphism is f(s) = (e(g, g)s, σs), and the signer needs
to prove for secret s ∈ Zq that f(s) = (e(pk, g), σ−me(g, g)).

Disavowal: The signer needs to prove that the value σm+s · e(g, g) �= 1. The
signer sets U = (σm+s · e(g, g))u ∈ GT for random u ∈ Zq and sends U
to the verifier who checks U �= 1. With secrets u, s, the signer shows in
zero-knowledge that

U =
(
σm+s · e(g, g)

)u
.

Imagine v = us, then what must be proven becomes, for secrets (u, v),

U = (σm)u · σv · e(g, g)u ∧ e(g, g)v · e(g, pk)−u = 1,
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which can be again realized in 4 moves by the following q-oneway homomor-
phism (mentioned in Sect.3)

f : Zq × Zq −→ GT ×GT
(u, v) �−→

(
(σm)u · σv · e(g, g)u, e(g, g)v · e(g, pk)−u

)
Then, the Disavowal protocol just becomes proving f(u, v) = (U, 1) for U �= 1.

It is worth noting that security results given in [7] hold only if the message length
m is logarithmic in the security parameter. However, other SCUS schemes below
will not suffer from the shortcoming.

SCUS from the VRF of Hohenberger and Waters [10]. The VRF also
works on a pairing group PG = (G,GT , g, q, e), and is pseudo-random under
the q-DDHE assumption. The secret key is sk = (ũ, u0, . . . , un) for n ≈ 160
typically (or more, depending on the output of a hash function), and the public
key is pk = (PG, h, Ũ , U0, . . . , Un) where Ũ = gũ, U0 = gu0 , . . . , Un = gun . The
function Fsk(m ∈ {0, 1}n) is

σ = Fsk(m) = e(g, h)ũu0

∏n
i=1 u

m[i]
i ,

for m = m[1] . . .m[n], which serves as the undeniable signature on m. (For
arbitrary m ∈ {0, 1}∗, one can apply a hash function first to get an n-bit string,
so that n = 160 typically.)

The proof of correctness πsk(m), which serves as the converter in the SCUS,
consists of π = (π1, . . . , πn, π0), in which

πk = gũ
∏k

i=1 u
m[i]
i (1 ≤ k ≤ n), and π0 = gũu0

∏n
i=1 u

m[i]
i .

To verify, Verifypk(m,σ, π) of the SCUS works step-by-step, checking

e(π1, g)
?
=

{
e(Ũ , g) if m[1] = 0

e(Ũ , U1) if m[1] = 1

and for 2 ≤ i ≤ n,

e(πi, g)
?
=

{
e(πi−1, g) if m[i] = 0
e(πi−1, Ui) if m[i] = 1

and finally

e(π0, g)
?
= e(πn, U0), and e(π0, h)

?
= σ,

and return 1 if and only if all checks pass.

Confirm: On common input (pk,m, σ), the signer with secret sk = (ũ, u0, . . . ,
un) proves in zero-knowledge

σ = e(g, h)ũu0

∏n
i=1 u

m[i]
i ,

which can be implemented by the generalized DDH protocol (see Sect.3) on
GT , with e(Ũ , h), e(U0, h), . . . , e(Un, h) and σ as public elements.
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Disavowal: On common input(pk,m, σ), the signer with secret sk=(ũ, u0, . . . , un)
proves in zero-knowledge

σ �= e(g, h)ũu0

∏n
i=1 u

m[i]
i ,

which can be implemented using the generalized non-DDH protocol in Sect.3.

4.3 VRF from Unique SCUS

Consider a deterministic SCUS consisting of the algorithms (KGen, USign, Con-
vert, Verify) and two protocols for confirmation and disavowal of signatures.
(These protocols are not used in the below construction of VRF.) The signing
space is {0, 1}∗, and the signature space is SigSpace(λ).

The Construction of VRF from Deterministic SCUS:

– Gen(1λ): run KGen(1λ) of SCUS to obtain (pk, sk).
– Funcsk(x): return y = USignsk(x), and the proof π = Convertsk

(
x, y

)
. By

construction, Fsk(·) : {0, 1}∗ → SigSpace(λ).
– Vpk(x, y, π): return Verifypk(x, y, π).

We now check the properties of the VRF. Provability is easy: if (y, π)=Funcsk(x),
then y is a valid signature on x, and π is the converter, so Vpk(x, y, π) = 1.

Uniqueness holds if we require USign produces only one valid signature on
each message. Then, if Vpk(x, y1, π1) = Vpk(x, y2, π2) = 1 then y1, y2 are valid
signatures on the same message x. Since there is only one valid signature on each
message, we have y1 = y2.

Pseudo-randomness is ensured by the following theorem.

Theorem 5. If SCUS has the property of invisibility, then VRF has the property
of pseudo-randomness. Moreover, if Dvrf is a distinguisher of VRF, then there
exists Dscus against SCUS such that

Advrand
VRF (Dvrf) ≤ Advinv

SCUS(Dscus),

T(Dvrf) ≈ T(Dscus),

where T(·) expresses the running time.

5 A New Probabilistic SCUS with Neat Converters and
Signatures

In Sect.4.2, we have seen the deterministic SCUS resulting from the VRF of
Dodis and Yampolskiy [7] with small signing space. In this section, we aim at
increasing the signing space to arbitrary one, while keeping the converters and
signatures as short as possible. We will use the result of Boneh and Boyen [1] to
build a probabilistic SCUS scheme called SCUSBB in this section.
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Let us provide some intuition first. Recall that a Boneh-Boyen signature is

of two elements
(
r, π = g

1/(x+m+ry)
1

)
for random r ∈ Zq, secrets x, y ∈ Zq and

message m ∈ Zq (for m ∈ {0, 1}∗, just applying a collision-resistant hash to Zq).
The element π will serve as the converter3. To achieve invisibility, we hide π in
GT , namely apply the pairing to compute e(π, g2), which will, together with r,
be the undeniable signature. The confirmation and disavowal protocols can be
efficiently designed thanks to the algebraic structure of the construction.

We now proceed with the concrete description of the scheme, denoted as
SCUSBB. To be compatible with [1], we will be more general than previous
schemes by considering the pairing e : G1 × G2 → GT in which |G1| = |G2| =
|GT | = q, yet G1 may be different from G2.

The scheme SCUSBB:

KGen: Generate the generators g1 for G1, and g2 for G2. Pick the secret key

sk = (x, y)
$← Z2

q . The public key pk = (u, v, g1, g2) for u = gx2 , v = g
y
2 .

USignsk(m): For a message m ∈ Zq, pick r
$← Zq, and return the undeniable

signature σ =
(
r, e(g1, g2)

1
x+m+ry

)
.

Convertsk(m,σ): Parse σ = (r, ρ) ∈ Zq×GT . If ρ = e(g1, g2)
1

x+m+ry then return

π = g
1

x+m+ry

1 as the converter.
Verifypk(m,σ, π): Let σ = (r, ρ). Return 1 iff ρ = e(π, g2) and e(π, ugm2 v

r) =
e(g1, g2).

Confirm: On common input pk, m, and σ = (r, ρ), the signer shows in ZK that

ρ = e(g1, g2)
1

x+m+ry , namely ρx+m+ry = e(g1, g2), or equivalently ρ
x(ρr)y =

e(g1, g2)ρ
−m.

Consider the q-oneway homomorphism f(x, y) = (ρx · (ρr)y, gx2 , g
y
2 ). The pro-

tocol is equivalent to proving f(x, y) = (e(g1, g2)ρ
−m, u, v) for secret (x, y),

which achieves 4 moves with full zero-knowledge.
Disavowal: The notation is as above, and the signer proves in ZK that ρx(ρr)y �=
e(g1, g2)ρ

−m, namely ρx(ρr)y · ρme(g1, g2)−1 �= 1. The prover takes t
$← Zq

and sends
T =

(
ρx(ρr)y · ρme(g1, g2)−1

)t
,

to the verifier who checks T �= 1. Let x′ = xt and y′ = yt, then T =

ρx
′
(ρr)y

′ (
ρme(g1, g2)

−1
)t
, and gx

′
2 u

−t = 1, gy
′

2 v
−t = 1. The q-oneway homo-

morphism is as follows

f(x′, y′, t) =
(
ρx

′
(ρr)y

′ (
ρme(g1, g2)

−1
)t
, gx

′
2 u

−t, gy
′

2 v
−t

)
,

so that the protocol becomes proving f(x′, y′, t) = (T, 1, 1) for published
T �= 1, which is done in 4 moves.

3 Considering groups without pairings so the DDH assumption holds, Laguillaumie and
Vergnaud [15] observed that π is pseudo-random, on which they built an undeniable
scheme. The scheme, however, is not convertible. More schemes based on the Boneh-
Boyen signature scheme are in Vergnaud’s PhD thesis [26].
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To prove security of SCUSBB, we need the following assumptions, which are
variants of the strong Diffie-Hellman assumption [1].

Computational Bilinear Strong Diffie-Hellman (CBSDH). Given g1 ∈
G1, g2 ∈ G2, and g

x
1 , . . . , g

x�

1 , gx2 , it’s hard to compute (c, e(g1, g2)
1

x+c ) for some
c ∈ Zq \ {−x}.
Decisional Bilinear Strong Diffie-Hellman (DBSDH). Given g1 ∈ G1,

g2 ∈ G2, and g
x
1 , . . . , g

x�

1 , gx2 , and random c ∈ Zq \ {−x}, it’s hard to distinguish

e(g1, g2)
1

x+c from a random element in GT .
The DBSDH assumption can be shown equivalent to the decisional bilinear

Diffie-Hellman inversion assumption [20], since c is fixed (see [1, Sect.3.3]). These
assumptions can be evaluated in the generic group model [25].

Theorem 6. The SCUSBB scheme is strongly unforgeable under the CBSDH
assumption.

Theorem 7. The SCUSBB scheme is invisible under the CBSDH assumption
and the DBSDH assumption.
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Abstract. Weakened Random Oracle Models (WROMs) are variants of
the Random Oracle Model (ROM) under some weakened collision resis-
tance assumptions. Cryptographic schemes proven secure in WROMs can
ensure security even when the underlying random oracles are susceptible
to certain extent of collision attacks, second pre-image attacks, or first
pre-image attacks. In this paper, we show that a WROM variant called
FPT-ROM (First Pre-Image Tractable ROM) can further be weakened to
a Generalized FPT-ROM which can capture more practical attacks, for
example, the chosen prefix collision attack by Stevens et al. (CRYPTO
2009). This type of attacks has never been captured by any existing
WROMs. Achieving security against FPT-ROM has been known as one of
the most challenging problems in constructing cryptographic schemes in
WROMs. In the second part of this paper, we propose a generic transfor-
mation which converts a large class of signature schemes secure in ROM
to a class of variants, which can be proven secure in all the WROMs, in-
cluding our newly proposed Generalized FPT-ROM. The transformation
does not increase the signature size, and it can apply to many practi-
cal and highly efficient signature schemes such as the Full-Domain Hash
signature, Schnorr signature, and many others.

Keywords: Random Oracle Model (ROM), Weakened ROM, First Pre-
Image Tractable ROM.

1 Introduction

The Random Oracle Model [2] (ROM) enables us to construct elegant and effi-
cient cryptographic schemes with provable security. The security of most schemes
under ROM relies on some well-studied, number-theoretic complexity assump-
tions with tight security proofs. In ROM, all the parties are supposed to have
oracle access to some truly random functions, called “random oracles”. When a
random oracle comes to practice, it is usually instantiated by a cryptographic
hash function. However, recent attacks on hash functions [35,34] revealed that
it might not be as hard as we originally thought on breaking a hash function,
for example, finding a collision. This raises a question that instead of giving up
ROM altogether for a stronger model (e.g. the standard model), whether we can
build highly efficient cryptographic schemes using weak hash functions, that is,

W. Susilo, Y. Mu, and J. Seberry (Eds.): ACISP 2012, LNCS 7372, pp. 247–260, 2012.
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when the random oracle assumption is weakened in some extent. To answer this
question, a useful observation is that the absence of collision resistance property
does not always result in breaking the security proofs of some schemes in ROM.
Instead, the programmability, uniformity and unpredictability of the random or-
acles are the key factors of detraining whether a security proof still holds or not
if weak hash functions are used to instantiate random oracles. From the obser-
vation above, Liskov introduced a set of ideal weak compression functions [23],
and some of which were later formalized by Numayama et al. [27] as Weakened
Random Oracle Models (WROMs).

In WROMs, participants not only have access to random oracles, but also
some additional oracles that can extract collisions or pre-images of the random
oracles. More precisely, currently there are three kinds of WROMs: (1) Colli-
sion Tractable Random Oracle Model CT-ROM, (2) Second Pre-image Tractable
Random Oracle Model SPT-ROM, and (3) First Pre-image Tractable Random
Oracle Model FPT-ROM, where each random oracle, say, H is associated with
an additional oracle COH , SPOH , or FPOH , respectively:

– COH(): it uniformly returns a collision pair (x, x′) of H , such that x �= x′

and H(x) = H(x′).
– SPOH(x, y): given an image y and a pre-image x of H such that H(x) = y,

it uniformly returns a second pre-image x′ �= x, such that H(x′) = y.
– FPOH(y): given an image y of H , it uniformly returns a pre-image x such

that H(x) = y.

In the literature, many of the hash-related attacks are to find random collisions,
which can be captured in CT-ROM. There are also some research results re-
garding second pre-image attacks and first pre-image attacks, e.g. attacks on
reduced-round MD5 or SHA-1 [7], or on historical hash functions like MD4 [22].
These two types of attacks are covered in SPT-ROM and FPT-ROM, respectively.

Nevertheless, a few other related attacks are yet to be captured and studied in
WROMs. For instance, the chosen prefix collision attack, described by Stevens et
al. in [32,33]. The attack is to find non-random collisions of MD5, and is yet to be
captured in WROMs. In this attack, an adversary can arbitrarily choose a pair of
prefixes (P , P ′) and produce a target collision (P‖S, P ′‖S′) by making roughly
249 calls to the compression function. The computation complexity for finding a
collision can be reduced to 216 if the prefixes are identical, i.e. P = P ′. This type
of attacks could cause great impact on the security of various applications, e.g.
a rogue Certificate Authority could be able to generate two MD5-based X.509
certificates, such that the certificates have identical signatures, but the name
fields and public keys may be different.

A reducible separation of WROMs for signature schemes is given in [27], and
it can be shown that S/ROM ⇐ S/CT-ROM ⇐ S/SPT-ROM ⇐ S/FPT-ROM,
where S denotes the security notion of existential unforgeability of signatures
against chosen message attack (EUF-CMA). Later, Kawachi et al. [21] gave a
reducible separation of WROMs for the IND-CCA2 security of public key encryp-
tion schemes as well. These results show that FPT-ROM is the most weakened
variant of ROM in existing WROMs.
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Several encryption and signature schemes have been proposed in specific
WROMs [21,27]. One of the most challenging problems is to construct FPT-
ROM-secure schemes. Since many cryptographic schemes are proven secure in
ROM, it is of great significance to generically transform ROM-secure schemes to
WROMs-secure ones without losing efficiency. In the literature, there are only
two works [28,25] on generic transformation to FPT-ROM secure schemes.

Our Results. As mentioned above, the chosen prefix collision attack is yet to
be captured in WROMs. In this paper, we first generalize FPT-ROM, which is
currently the most weakened variant of ROM, such that our new Generalized
model, namely Generalized FPT-ROM or GFPT-ROM, in short, allows an adver-
sary to extract polynomially many pre-images with adaptively chosen prefixes.
We then show that GFPT-ROM is strictly weaker (in terms of the random oracle
assumption level) than existing WROMs. The goal of our model is to further
reduce the gap between ROM security and the real-world security. In the sec-
ond part of this paper, we focus on building a generic transformation for a large
class of signature schemes to a version secure in GFPT-ROM, and also in existing
WROMs. Another merit of our generic transformation is that it does not incur
any expansion of signature size.

The rest of the paper is organized as follows. After the review of related work,
in Sec. 2, we propose our new Generalized FPT-ROM, and show that it captures
more attacks including the chosen prefix collision attack. In Sec. 3 and 4, we
propose a generic transformation for signature schemes, and show how to apply
it onto an RSA Full Domain Hash (FDH) signature for making it secure in the
Generalized FPT-ROM. We then compare our results with the existing ones and
conclude the paper in Sec. 5.

1.1 Related Work

Signature schemes with provable security roughly fall into two classes: Hash-and-
Sign Signatures [29,31,2,13,10,6,5,14] and Tree-based Signatures [15,1,26,30,11].
Tree-based signatures have the following restrictions [11]: (1) there is an upper
bound on the number of messages that could be signed; and (2) the signature
size depends on the depth of the underlying tree. On the other side, Hash-
and-Sign Signatures are more efficient with shorter signatures and public keys.
Besides, a hash function can work as a domain extender which allows signing
on arbitrarily long messages. Hash-and-Sign Signatures can also be classified
into two categories: signatures in ROM [29,31,2,6,14] and signatures that require
strong complexity assumptions [13,10,5]. One exception is the signatures [18]
applying programmable hash functions [19], e.g. Waters’ signature [36]. However,
in this type of schemes, either public keys or signatures are of linear size to the
message length. For the signatures based on strong complexity assumptions, they
may not provide high confidence in security, since that a given problem instance
generally has an exponential number of solutions. By comparison, ROM-secure
signatures usually have smaller signature and key sizes with high computational
efficiency, and relying on standard complexity assumptions.
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A widely applied approach to weaken the random oracle assumption is to put
a salt, or say randomness, in hashing. By following this approach, Bellare and
Rogaway [4] proposed using Target Collision Resistant (TCR) hash functions,
i.e. some keyed compression function H : (K,m) �→ HK(m), to replace con-
ventional hash functions in Hash-and-Sign signature schemes. Later, Halevi and
Krawczyk [16] proposed an enhanced primitive eTCR which helps avoid signing
the compression key K. The drawback of using TCR or eTCR is that K has
to be included in a signature, resulting in the increase of signature size by |K|.
Other signatures applying the salted hashing, such as PFDH [9] and its vari-
ants [27], also have the similar problem in size expansion. As a partial solution,
Mironv [24] suggested to recycle the randomness in a signature scheme with a
randomized pre-computation phase (SRP). Combining the techniques in [16] and
[24], Pasini and Vaudenay [28] proposed a generic method to construct strongly
unforgeable Hash-and-Sign signature schemes in FPT-ROM from weakly secure
signatures. More precisely, a signature is generated as sign(G(HK(m))), where
H is an eTCR hash function, G is modeled as a first pre-image tractable oracle,
and sign is the signing algorithm of an SRP which is only secure against known
message attacks. However, the randomness generated by SRP’s probabilistic pre-
computation algorithm needs to have a large enough entropy. This restriction
implies that the transformation only works for probabilistic signature schemes,
but not for deterministic signatures such as FDH signature. Naito et al. [25]
proposed an approach to construct FPT-ROM-secure cryptographic schemes by
padding the random oracles with some constant c. In Sec. 2.2, we show that this
cannot provide security in the Generalized FPT-ROM.

One of the compression function variants proposed by Liskov [23], namely
(two-way) partially-specified pre-image tractable compression function, has a
similar idea to ours. It requires that for a compression function H : (K,m) �→
HK(m), there is an additional oracle which on input (K,w) (resp. (m,w)), it
returns m (resp. K) such that H(K,m) = w. In the rest of the paper, we will
see that we have a similar idea when defining the new Generalized FPT-ROM.

2 The Generalization of FPT-ROM

Notations. If S is a finite set, |S| denotes the number of elements in S. If
s is a string, |s| denotes the length of s. For a table T = {(x, y)}, we define
T (y, r) = {(x̃, ỹ) ∈ T |(x̃ = r‖z̃) ∧ (ỹ = y)}. x ← D denotes that x is sampled
from distribution D. B(N, p) denotes the binomial distribution with N trials and
success probability p. Readers can refer to [21] for details of efficient sampling
algorithm of binomial distribution.

We now propose a Generalized FPT-ROM, denoted by GFPT-ROM, which cap-
tures more practical attacks including the chosen prefix collision attack. Infor-
mally, for each random oracle h : X → Y , the adversary can access a generalized
first pre-image oracle GFPOh parameterized by a constant k′ where |X | > 2k

′
.

Given a query y ∈ Y with an auxiliary input r where |r| = k′, GFPOh uniformly
returns a pre-image x ∈ X such that h(x) = y and the k′-bit prefix of x is r.
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Denote Th = {(x, y)} as the hash table of h : X → Y that defines the
correspondence of the elements in X with the elements in Y . Similar to existing
WROMs, we require that the message spaceX to be finite, which is for preserving
the weak uniformity of pre-images [21]. GFPT-ROM works as follows:

– Oracle h(x): when an input x ∈ X is queried, it returns y such that (x, y) ∈
Th.

– Oracle GFPOh(y, r): when y ∈ Y is queried with an auxiliary input r where
|r| = k′, it answers as follows: if there is no (x̃, y) ∈ Th such that x̃ = r‖z̃
for some z̃, returns ⊥, otherwise returns such an x̃ uniformly.

Due to page limitation, we skip the details of the simulation algorithms for
oracles h and GFPOh as they are implicitly shown in the proof of Theorem 3.

Lemma 1. GFPT-ROM captures the chosen prefix collision attack1.

Proof. Given oracle h in GFPT-ROM, a PPT (probabilistic polynomial time)
adversary can arbitrarily choose a pair of prefixes (P , P ′) such that k′ = |P | =
|P ′|, and perform the following:

1. Randomly choose S such that P‖S ∈ X , and query h for C = h(P‖S).
2. Query GFPOh with (C,P ′), and get P ′‖S′.
3. Output a chosen prefix collision (P‖S, P ′‖S′). ��

Notice that GFPT-ROM degenerates to FPT-ROM when k′ = 0.

2.1 Separation for the Security of Signature Schemes

Theorem 1. GFPT-ROM parameterized by k′ > 0 relies on a strictly weaker
collision resistance assumption than FPT-ROM with respect to the security notion
of EUF-CMA for signature schemes.

We show that PFDH⊕ signature scheme, though secure in FPT-ROM [27], is
insecure in GFPT-ROM. Below is a brief review of PFDH⊕. Let h : {0, 1}k′+l →
{0, 1}k be a hash function where l is the message length and k is a security
parameter. Define param := 〈k, l, h〉.

– (pk, sk)← keyGen(param). It generates an RSA tuple (N, e, d)
R← RSA(1k),

and sets pk = (N, e), sk = (N, d).
– σ ← sign(sk,m). It randomly picks τ ∈ {0, 1}k′, computes ξ = h(τ‖m),
y = ξ ⊕ τ , x = yd mod N and outputs σ = (τ, x).

– b ← verify(pk,m, σ). It computes ξ = h(τ‖m), y = xe mod N , and outputs
1 if y = ξ ⊕ τ , otherwise outputs 0.

1 To capture the chosen prefix collision attack, it is enough to generalize CT-ROM in a
similar way to what we do on FPT-ROM as shown in this paper. Our generalization
on FPT-ROM relies on the weaker collision resistance assumption, and may cover
more known or unknown attacks on hash functions.
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Lemma 2. In GFPT-ROM, there exists a PPT adversary A that breaks PFDH⊕

with probability at least 1 − e
1−2l

2k , by making queries to the signing oracle and
GFPOh parameterized by k′, where h : {0, 1}k′+l → {0, 1}k is modeled as a
random oracle.

Proof. We construct an adversary A as follows:

(1) Query a message m to the signing oracle where |m| = l, and obtain a signa-
ture σ = (τ, x).

(2) Query h with τ‖m, and get ξ.
(3) Query GFPOh with (ξ, τ), and get τ‖m′ such that h(τ‖m′) = h(τ‖m) = ξ.
(4) If m′ = m, abort. Otherwise output (m′, σ) as a valid forgery.

The probability that the event abort happens is:

Pr[abort] = Pr[|Th(ξ, τ)| ≤ 1 for (τ‖m, ξ) ∈ Th]

= Pr[n′ = 0|n′ ← B(2l − 1,
1

2k
)]

= (1− 1

2k
)2

l−1 ≤ e
1−2l

2k

For example, if k ≥ 1 and l = k, we have Pr[abort] ≤ e−(1−2−k) ≤ e− 1
2 . So A

can forge a PFDH⊕ signature with probability at least 1− e−1/2. ��

Theorem 1 follows this lemma directly. GFPT-ROM is therefore separated from
FPT-ROM under the security notion of EUF-CMA for signatures, and we have
EUF-CMA/FPT-ROM⇐ EUF-CMA/GFPT-ROM.

2.2 Separation for the Security of Encryption Schemes

Theorem 2. GFPT-ROM parameterized by k′ > 0 relies on a strictly weaker
collision resistance assumption than FPT-ROM with respect to the security notion
of IND-CCA2 for encryption schemes.

Kawachi et al. [21] showed that a variant of Fujisaki-Okamato conversion, denote
by FO* that applies Naito et al.’s approach [25], can be used for constructing
IND-CCA2 secure encryption schemes in FPT-ROM. Let h : {0, 1}k′+l1+l2 →
{0, 1}l1 and g : {0, 1}k′+l2 → {0, 1}l1 be two cryptographic hash functions where
l1 and l2 are security parameters. Let PKE = (Gen, Enc, Dec) be a OW-CPA
secure encryption scheme. By FO* conversion, a message m ∈ {0, 1}l1 under the
public key (pk, c) is encrypted as (c1, c2) = (Encpk(r;h(c‖m‖r)), g(c‖r) ⊕ m),

where pk is a public key produced by Gen, c is a constant string in {0, 1}k′ ,
and r is the randomness picked from {0, 1}l2. For the decryption of (c1, c2), it
computes m = c2 ⊕ g(c‖r) where r = Decsk(c1), and outputs m as the plaintext
if c1 = Encpk(r;h(c‖m‖r)).

Lemma 3. The encryption schemes converted by FO* are not IND-CPA secure
in GFPT-ROM where GFPOg is parameterized by k′, if k′ + l2 = l1 +O(1).



Generalized FPT-ROM and Signature Schemes 253

The proof is similar to that of Theorem 8 in [21], so is omitted here for lack of
space. In [21], it proves that FO conversion is insecure in FPT-ROM. More pre-
cisely, the adversary uses (0k, 1k) as the pair of challenge messages, and queries
c∗2 to FPOg where (c∗1, c

∗
2) is the target ciphertext responded by the challenger.

For the proof of Lemma 3, the adversary queries (c∗2, c) to GFPOg instead of
querying c∗2 to FPOg.

Theorem 2 follows the lemma above, so GFPT-ROM is separated from FPT-
ROM under the security notion of IND-CCA2 for encryptions, and we have
IND-CCA2/FPT-ROM ⇐ IND-CCA2/GFPT-ROM. By the security reducibility
from FPT-ROM to SPT-ROM and CT-ROM [27,21], we deduce that GFPT-ROM
captures all the attacks covered by existing WROMs.

3 Generic Transformation for Signatures in GFPT-ROM

We give a generic transformation to convert a large class of Hash-and-Sign Sig-
nature schemes in ROM to secure ones in GFPT-ROM, with no expansion of
signature size. First we formally define Hash-and-Sign Signatures, then explain
how our transformation works.

3.1 Hash-and-Sign Signatures

A large class of signature schemes, including FDH signature, Schnorr signature,
and so on, are constructed by the Hash-and-Sign paradigm. The paradigm is
usually referred to as sign(H(m)) where sign is a signing algorithm and H is a
cryptographic hash function. In this section, we present a more generic formal-
ization of Hash-and-Sign Signatures (HaSS) where the hash functions can either
be salted or non-salted.

Let us first review the definition of digital signature. It consists of the following
three algorithms: keyGen, sign, verify.

– (pk, sk) ← keyGen(param). It outputs a key pair (pk, sk) on the system
parameters param.

– σ ← sign(sk,m). It outputs a signature σ on a message m.
– b← verify(pk,m, σ). It outputs a bit b to indicate if σ is a valid signature of
m (b = 1) or not (b = 0).

Definition 1 (Hash-and-Sign Signatures). Hash-and-sign signature HaSS
is a class of signature schemes that sign (resp. verify) consists of three sub-
procedures {preSign, hash, postSign} (resp. {preVer, hash, postVer}), where only
hash invokes hash functions.

More precisely, the signing and verification algorithm work as follows:
sign(sk,m)
(1) Run (Str, τ) = preSign(sk,m).
(2) Compute ξ = hash(Str).
(3) Run σ = postSign(sk, ξ, τ), output σ as the signature.
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verify(pk,m, σ)
(1) Run Str = preVer(pk,m, σ).
(2) Compute ξ = hash(Str).
(3) Run b = postVer(pk, ξ, σ) and output b.
where the sub-procedures are listed by:

– (Str, τ) ← preSign(sk,m). It outputs a string Str and some auxiliary infor-
mation τ on the message m.

– ξ ← hash(Str). It outputs a hashed value ξ of Str.
– σ ← postSign(sk, ξ, τ). It outputs a signature σ on a hashed message ξ using
sk and some auxiliary input τ .

– Str ← preVer(pk,m, σ). It outputs a string Str on the signature σ of a
message m. This is a deterministic algorithm.

– b ← postVer(pk, ξ, σ). It outputs a bit b to indicate if σ is a valid signature
(b = 1) or not (b = 0).

Notice that HaSS covers both probabilistic and deterministic signatures, depend-
ing on whether the randomness τ is void or not. The EUF-CMA security for HaSS
is defined similarly to that of conventional signatures [15].

3.2 Transformation

Given any HaSS scheme that uses a group hash function modeled as a random
oracle, we propose a generic transformation to construct a signature scheme with
provable security in GFPT-ROM. A group hash function is an efficient function
that maps binary strings into a group G. The transformed signature is also a
HaSS scheme, and it does not have size expansion compared to the original
signature.

Definition 2 (Transformation). Given any HaSS scheme Sh = (keyGen,
preSign, hash, postSign, preVer, postVer) such that Sh.hash := {ξ ← h(Str)} where
h : M → G is a hash function and G is a cyclic group, we can choose two
independent hash functions u, v :M→ G and construct a new HaSS scheme S̃h
as below:

S̃h.keyGen := Sh.keyGen

S̃h.preSign := Sh.preSign

S̃h.postSign := Sh.postSign

S̃h.preVer := Sh.preVer

S̃h.postVer := Sh.postVer

S̃h.hash := {ξ ← u(Str) · v(Str)}

where “·” is the group operation defined on G.

Since that the hash functions u, v, h map to the same group G, S̃h has exactly
the same signature size as that of Sh, and there is almost no increase of compu-
tational cost in the transformation.
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We prove that the transformed signature S̃h is EUF-CMA secure in GFPT-
ROM, if the original scheme Sh is EUF-CMA secure in ROM.

Theorem 3. Let S̃h be any signature scheme constructed by the generic trans-
formation (Def. 2), and Sh be the original scheme proven secure in ROM. Then
in GFPT-ROM where both GFPOu and GFPOv are parameterized by k′ ≥ 0 and
|M| > 2k

′
, for all PPT machines that (teuf , εeuf )-break S̃h by making qsig

queries to the signing oracle, qu (resp. qv) queries to u (resp. v), and qfpu (resp.
qfpv ) queries to GFPOu (resp. GFPOv), there exists a PPT machine that (teuf ,
εeuf )-break Sh in ROM by making qsig queries to the signing oracle and qh queries
to h, where qh = qu + qv + q

fp
u + qfpv .

Proof. Assume there exists an adversary F that forges a signature of S̃h with
probability εeuf within time teuf , we build an adversary C that forges a signature
of Sh with the same probability and time bound. Let us denote by Tu, Lu (resp.
Tv, Lv) the tables used for simulating the oracles referring to u (resp. v). All the
tables are empty at the beginning.
C simulates the signing oracle of S̃h, the random oracles u, v and the gener-

alized first pre-image tractable oracles for u, v as follows:

i. When F queries Str ∈M to u, C performs the following steps:
(1) If there is an entry (Str, ξ̃u) ∈ Tu, then set ξu = ξ̃u and return ξu.
(2) Parse Str = ru‖zu such that |ru| = k′.
(3) Flip abiased coinwithprobabilityPr[α = 0] =

∑
((ξ̃u,ru),ñ)∈Lu

(ñ−|Tu(ξ̃u,ru)|)
|M|−|Tu|

that the oracle returns an old ξ̃u with the same prefix ru, i.e. there already
exists (S̃tr, ξ̃u) ∈ Tu for some S̃tr �= Str and S̃tr = ru‖z̃u.

(4) If α = 0, pick ξu ← D and go to Step (7). The probability mass function

of distribution D is defined as fD(ξu) = n−|Tu(ξu,ru)|∑
((ξ̃u,r̃u),ñ)∈Lu

(ñ−|Tu(ξ̃u,r̃u)|) , for

any ((ξu, ru), n) ∈ Lu.
(5) If α �= 0, pick ξu ← G \ ∪((ξ̃u,r̃u),ñ)∈Lu

ξ̃u uniformly.

(6) Pick n′ ← B(
|M|−∑

((ξ̃u,r̃u),ñ)∈Lu
ñ

2k′ − 1, 1
|G|−|Lu|), set n = n′ + 1 and insert

((ξu, ru), n) in Lu.
(7) Insert (Str, ξu) in Tu, call SyncTables(Str, ξu, Tv, Lv), and return ξu.

The function SyncTables(Str, ξu, Tv, Lv) is defined as following, where Str ∈
M, ξu ∈ G, and Tv, Lv are the tables for simulating v and GFPOv.

(1) Query Str to h, and get ξh.
(2) Compute ξv = ξh · ξ−1

u , and insert (Str, ξv) in Tv.
(3) Parse Str = rv‖zv such that |rv| = k′.
(4) If there is no entry ((ξv , rv), ñ) ∈ Lv, pick n′ ← B(

|M|−∑
((ξ̃v ,r̃v),ñ)∈Lv

ñ

2k′ −
1, 1

|G|−|Lv|), set n = n′ + 1 and insert ((ξv, rv), n) in Lv.

This sub-procedure synchronizes the entries in Tv and Lv whenever a new
entry (Str, ξu) is inserted into Tu.

ii. When F queries (ξu, ru) where ξu ∈ G and |ru| = k′ to GFPOu, C performs
the following steps:
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(1) If there is no entry ((ξu, ru), ñ) ∈ Lu, pick n← B(
|M|−∑

((ξ̃u,r̃u),ñ)∈Lu
ñ

2k′ ,
1

|G|−|Lu| ), and insert ((ξu, ru), n) in Lu.

(2) If n = 0 for ((ξu, ru), n) ∈ Lu, return ⊥.
(3) If n �= 0 for ((ξu, ru), n) ∈ Lu, flip a biased coin with probability Pr[β =

0] = |Tu(ξu,ru)|
n that the oracle returns an old S̃tr = ru‖z̃u, i.e. there

already exists an entry (ru‖z̃u, ξu) ∈ Th for some z̃u.
(4) If β = 0, pick an entry (S̃tr, ξu) ∈ Tu such that S̃tr = ru‖z̃u uniformly,

set Str = S̃tr and return Str.
(5) If β �= 0, pick Str ← M uniformly such that Str = ru‖zu and there is

no entry (Str, ξ̃u) ∈ Tu.
(6) Insert (Str, ξu) in Tu, call SyncTables(Str, ξu, Tv, Lv), and return Str.

iii. When F queries Str ∈ M (resp. (ξv, rv) where ξv ∈ G and |rv| = k′) to v
(resp. GFPOv), C works similarly as querying u (resp. GFPOu), except that all
the variables referring to u are exchanged with the corresponding variables
referring to v. For instance, SyncTables(Str, ξv, Tu, Lu) is called instead.

iv. When F queries a message m to the signing oracle of S̃h, C performs the
following steps:

(1) Query m to the signing oracle of Sh and get σ.
(2) Run Str = preVer(pk,m, σ).
(3) If there is no entry (Str, ξ̃u) ∈ Tu, query Str to u.
(4) Output σ as the signature.

The simulation for signing oracle of S̃h is perfect since that:2

1 = Sh.verify(pk,m, σ)

= postVer(pk, Sh.hash(preVer(pk,m, σ)), σ)

= postVer(pk, h(Str), σ)

= postVer(pk, u(Str) · v(Str), σ)
= postVer(pk, S̃h.hash(preVer(pk,m, σ)), σ)

= S̃h.verify(pk,m, σ)

Eventually F outputs a forgery (m�, σ�) of the signature S̃h. Then C performs
the following computation: (1) Run Str� = preVer(pk,m�, σ�); (2) If there is no
entry (Str�, ξ̃�u) ∈ Tu, query Str� to u. Due to SyncTables, there must exist an
entry (Str�, ξ�u) in Tu and an entry (Str�, ξ�v) in Tv, such that u(Str�)·v(Str�) =
ξ�u · ξ�v = ξ�h = h(Str�). C outputs (m�, σ�) as a forgery of the signature Sh.

The running time of C is approximately the running time of F , since that
whenever F queries to the random oracles u, v or GFPOu, GFPOu, C makes
a random oracle query to h; whenever F queries to the signing oracle of S̃h, C
makes a signing query to Sh on the same message. The winning advantage of C is
also approximately the same as F since that C outputs a forgery of Sh whenever
F outputs a forgery of S̃h. ��

2 As shown by the transformation, Sh and S̃h share the same verification algorithms
postVer and preVer.
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4 Application and Comparison

Applying the transformation, we construct an efficient and short signature in
GFPT-ROM from FDH signature [3].

First, we show that FDH is a HaSS scheme. Define param := 〈k, l〉 where l is
the message length and k is the security parameter.

– (pk, sk) ← keyGen(param). It generates an RSA tuple (N, e, d)
R← RSA(1k),

selects a cryptographic hash function h : {0, 1}l → Z∗
N , and sets pk =

(N, e, h), sk = (N, d, h).
– (Str, τ)← preSign(sk,m). It sets Str = m and τ =⊥.
– ξ ← hash(Str). It outputs ξ = h(Str).
– σ ← postSign(sk, ξ, τ). It outputs σ = ξd mod N .
– Str ← preVer(pk,m, σ). It outputs Str = m.
– b← postVer(pk, ξ, σ). It outputs 1 if ξ = σe mod N , otherwise outputs 0.

The security of FDH is based on RSA assumption.

Definition 3 (RSA Problem). Let N be a randomly generated RSA modulus
on the security parameter k, (e, d) be a pair of RSA exponents such that e ∈
Z∗
φ(N) and e ∗ d = 1 mod φ(N). The RSA problem is that given (N , e) and a

random η ∈ Z∗
N , find ηd mod N . The RSA assumption holds if no PPT machine

can solve this problem with non-negligible probability in k.

Numayama et al. showed that FDH is not secure in CT-ROM [27]. A FDH variant
denoted by FDH+ can be constructed following our transformation, by replacing
the hash function h with two independent ones u, v. Coron proved the security
of FDH in ROM [8]. Applying Theorem 3, FDH+ is proven secure in GFPT-ROM
by reduction to the hardness of RSA problem, as given by the theorem below.
We skip the proof here.

Theorem 4. In GFPT-ROM, for all PPT machines that (teuf , εeuf )-break FDH+

by making qsig queries to the signing oracle, qu (resp. qv) queries to u (resp. v),
qfpu (resp. qfpv ) queries to GFPOu (resp. GFPOv), there exists a PPT machine
that (trsa, εrsa)-break the RSA assumption such that:

teuf ≈ trsa − (qsig + qu + qv + q
fp
u + qfpv + 1) ∗O(k3)

εeuf ≈
1

(1− 1
qsig+1 )

qsig+1
∗ qsig ∗ εrsa ≈ e ∗ qsig ∗ εrsa

In Table 1, we compare FDH+ with the best existing signatures based on RSA
assumption (Def. 3).3 HW scheme is the first short and stateless RSA signature

3 The signature size and public key size of the schemes are represented by bit. The RSA
modulus N is 1024 bits long. All the schemes provide existential unforgeability with
κ = 80 bits of security after adaptively revealing maximally qsig = 230 signatures,
i.e. k′ = 30. The message length is l = 2κ = 160 bits to provide 80-bit security. s and
r denote the randomness used in signing. P1024 denotes the time needed to generate
and test a 1024-bit prime. EXP denotes 1 full modular exponentiation over Z∗

N .
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Table 1. Comparison of RSA-based Hash-and-Sign Signatures

Schemes Signature Size Public Key Size Signing Cost Model

HW [20] 2× |ZN | = 2048 |ZN |+ |pkCH| = 3k 160× P1024 −
Hcfs (m = 4) [18] |ZN |+ |s| = 1074 16m2l × |ZN | = 40m 50× P1024 −
Hrand (m = 4) [18] |ZN |+ |s|+ |r| = 1214 2m2l × |ZN | = 32k 50× P1024 −
Hweak (m = 11) [18] 2× |ZN | = 2048 12|ZN |+ |pkCH| = 14k 1× P1024 −

FDH [3] |ZN | = 1024 |ZN | = 1k 1× EXP ROM

PFDH [9] |ZN |+ |r| = 1054 |ZN | = 1k 1× EXP CT-ROM

PFDH+ [27] |ZN |+ |r| = 1054 |ZN | = 1k 1× EXP SPT-ROM
PFDH⊕ [27] |ZN |+ |r| = 1054 |ZN | = 1k 1× EXP FPT-ROM

FDH+ |ZN | = 1024 |ZN | = 1k 1× EXP GFPT-ROM

in the standerd model, which needs a chameleon hash function CH to achieve
EUF-CMA security. Hcfs, Hrand and Hweak are implemented by several (m, 1)-
programmable hash functions, providing various tradeoffs between signature size,
public key size and signing cost. Though the schemes are proven secure without
the random oracle methodology, all of them have to generate l random primes
of 1024 bits for signing l-bit messages. On the other hand, FDH+ outperforms
these signatures by cutting down 5% ∼ 50% of signature size and at least 66%
of public key size. Besides, modular exponentiation is the dominant operation in
the signing algorithm of FDH+, which requires for much less computations than
generating long primes. Therefore, FDH+ is more preferable for resource-limited
applications. Even compared to FDH, FDH+ needs only one more hash operation
and one multiplication on Z∗

N (the computational cost is negligible to modular
exponentiation, so is omitted in the table). Furthermore, the security in GFPT-
ROM ensures that FDH+ is robust against more practical attacks, including the
chosen prefix collision attack which can easily break FDH, PFDH, PFDH+ and
PFDH⊕. These results illustrate that our transformation offers a flexible tradeoff
between efficiency and security of Hash-and-Sign Signatures.

Besides FDH signature, our transformation is applicable to many other well-
known signature schemes, e.g. Boneh et al.’s short signature BLS [6]. It also
works for all the signature schemes applying Fiat-Shamir heuristics [12], e.g.
Schnorr signature [31] and Hess’s identity based signature on pairing [17]. We
leave the details to the full version of this paper.

5 Conclusion

In this paper, we weakened FPT-ROM to a more generalized model, namely
GFPT-ROM, which ensures security against many practical attacks on cryp-
tographic hash functions, including the chosen prefix collision attack and all
the attacks captured by the existing WROMs. Besides, a generic transformation
is proposed to construct a large class of Hash-and-Sign Signatures in the new
model. The transformed signatures are both short and efficient as the best ex-
isting ones, in the sense that there is no expansion of signature size, and almost
no increase of public key size or signing cost in the transformation. We leave the
study of encryption schemes in GFPT-ROM as one of our future work.
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Abstract. We propose a non-delegatable strong designated verifier sig-
nature (SDVS) featured by a two-element signature. Comparatively, cur-
rent SDVS schemes without delegatability produce at least three-element
signatures. The SDVS scheme provably satisfies the unforgeability prop-
erty under a computational Diffie-Hellman (CDH) problem. Its non-
delegatability holds conditioned on a knowledge extraction assumption
(KEA). Its privacy of signer’s identity (PSI) is reduced to the hardness
of a variant of CDH problem. The construction method utilizes a combi-
nation of a KEA-based identification protocol, an OR proof technique,
and a Fiat-Shamir heuristic.

Keywords: Signature Schemes, Strong Designated Verifier Signature,
Non-delegatability.

1 Introduction

Jakobsson et al. [14] proposed the concept of designated verifier signature (DVS).
A DVS consists of a proof that either “the signer has signed on a message” or
“the signer has the verifier’s secret key”. If a designated verifier is confident that
her/his private key is kept in secret, the verifier makes sure that a signer has
signed on a message. No other parties can be convinced by the DVS since the
designated verifier can generate it with her/his private key. It is useful in various
commercial cryptographic applications, such as e-voting, copyright protection.

A strong DVS (SDVS) is an extension of the DVS. In the appendix, Jakobsson
et al. [14] gave a definition of SDVS. It means that a verifier needs to use her/his
private key to verify the signature. It considers a situation where a signature
is captured before reaching a designated verifier. In this case, an adversary can
know who is the real signer as there are only two possibilities. Laguillaumie and
Vergnaud [17], and Saeednia [24] both formalized the notion.

Lipmaa et al. [21] proposed the non-delegatability property of a DVS scheme.
A real-life scenario about the property is that an adversary at first interacts
with a signer to obtain something, and then creates signatures for a particular
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designated verifier. It is intended to prevent a dishonest signer to sell a specif-
ically constructed secret. The delegatability property is believed undesirable in
many applications of DVS schemes, such as a hypothetical e-voting protocol, an
e-library application.

This paper focuses on SDVS schemes without delegatability. It reports a
scheme providing two-element non-delegatable signatures.

1.1 Contribution

We combine an identification protocol with an OR proof technique. Wu et al. [31]
proposed an identification protocol based on a knowledge extraction assumption
(KEA) [5]. Basically, the KEA means that if a probabilistic polynomial time
algorithm takes as input a group element gα and produces a pair of elements
(gβ , gαβ), it can print the value β, where g is a generator of a cyclic group. In
the identification scheme, a verifier produces a value gα as a challenge, and a
prover produces a value gαβ to prove its ownership of the value β. By using the
OR proof technique, we obtain the following KEA-based OR protocol.

– A verifier produces a value gα.
– A prover then produces two values gα1β and gα2γ satisfying α1 + α2 = α

to prove its ownership of β or γ. It returns a tuple (gα1 , gα1β, gα2γ) to the
verifier.

– However, the verifier cannot verify the tuple directly as it knows nothing
about the value α1 or α2. To make it workable, a simple method is to use
the pairing technique so that anybody can verify the relationship of the
values gα1 and gα1β .

The KEA-based OR protocol can be turned into a DVS scheme by using the
Fiat-Shamir [7] heuristic. Interestingly, if we remove one element from the DVS
signature, we turn it into an SDVS signature. For example, if the value β is
taken as a verifier’s private key, an SDVS signature consists of two elements
(gα1β , gα2γ).

To make the scheme provable, we use a symmetric encryption algorithm and
model it as a random oracle. Although the building blocks include a
KEA-based protocol, the unforgeability and PSI properties are reduced to the
hardness of CDH problem and its variant, the inverse CDH problem. Only the
non-delegatability property needs the KEA assumption.

In summary, we give a non-delegatable two-element SDVS by combining a
KEA-based identification protocol, an OR proof technique, and the Fiat-Shamir
heuristic.

1.2 Related Works

There are some approaches to construct a non-delegatable DVS scheme:

1. Jakobsson et al. [14] proposed the first DVS scheme. It is a combination of a
trapdoor commitment and a Schnorr signature. A signer adds a committed
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value of a commitment to a hash value in a signature scheme. A verifier
then can simulate a signature by producing a committed value for a given
commitment. Lipmaa et al. [21] and Wang [30] proposed a DVS and an
identity-based DVS (IBDVS) by using the similar method, separately.

2. Huang et al. [12] proposed a non-delegatable universal DVS scheme. It is
a combination of a Schnorr style signature and the OR proof technique. A
hash value in the signature scheme is divided into two challenges. A signer
answers one challenge by a simulation and the other by using its private
key. A verifier does the similar thing to simulate a signature. The schemes
proposed in [9–11] are constructed in a similar way.

3. Tian et al. [29] proposed a non-delegatable SDVS scheme. It is a combination
of a Schnorr signature, a KEA-based identification scheme, and the OR proof
technique. The KEA assumption is used partially to extract a private key in
their non-delegatability proof.

4. Feng et al. [8] proposed two general methods to construct SDVS schemes.
Their discrete logarithm instantiation seems to be non-delegatable. The in-
stantiation is based on the ring signature. The signature is Schnorr style.

Besides the construction methods, some papers discuss the non-delegatability
property of DVS schemes. Lipmaa et al. [21] shows that schemes in [17, 24–26]
are delegatable. Li et al. [20] shows that schemes in [18,23,27,32] are delegatable.
The two papers show that most DVS schemes before 2005 in the literature are
delegatable. Huang et al. [11] claims that some identity-based schemes in [3,13,
16] are delegatable. Zhang et al. [33] shows that a scheme in [34] is delegatable.
Tian et al. [29] shows that a scheme in [19] is delegatable. Sun et al. [28] shows
that a scheme in [15] is delegatable.

Although the non-delegatability property has been a focus of many literatures,
it is a controversial concept as it may be undesirable in some applications. In our
opinion, the non-delegatable DVS schemes can be viewed as a special category.
Schemes in this category have its own application area where the responsibility
of a signer is important and cannot be delegated to another entity.

1.3 Organizations

The next section gives some preliminaries about SDVS and mathematical as-
sumptions. Section 3 is our SDVS scheme. The proofs of the scheme are in
Section 4. Section 5 compares our scheme and other non-delegatable schemes.

2 Preliminaries

2.1 Assumptions

Let G be a cyclic group with a large-prime order q. Let g be the generator of G.

– Computational Diffie-Hellman (CDH) Problem: Given gα, gβ ∈ G,
compute gαβ.
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– Inverse Computational Diffie-Hellman (InvCDH) Problem: Given

gα ∈ G, compute gα
−1

.

Bao et al. [1] have proven the equivalence of the two problems. We use the
InvCDH problem for convenience in the proof of privacy of signer’s identity. The
assumption is that there are no (ε, t) algorithms to solve the CDH (InvCDH)
problem in time t with a non-negligible probability ε if q is big enough.

Knowledge Extractor Assumption version 1 (KEAv1) [5]: Let T denote
a polynomial time bounded algorithm which on input (g, gα), produces (gβ , gαβ),
where β is chosen by T . The assumption is that there is another polynomial time
bounded algorithm T ∗, which takes the same input as T , uses the same coins
as T , and produces (β, gβ , gαβ) with a probability 1 − ε where ε is a negligible
value.

Remark 1. The KEAv1 is proven in a generic group model [6]. This gives it an ev-
idence about its plausibility. It is only used in the proof of the non-delegatability
property.

2.2 SDVS

We define an SDVS scheme as follows.

– Setup: A probabilistic polynomial time algorithm, on input a security pa-
rameter κ ∈ Z, produces system parameters sp.

– KeyGen: A probabilistic polynomial time algorithm, on input the system
parameters sp, produces key pairs (yS , xS) for a signer S, and (yV , xV ) for
a verifier V .

– Sign: A probabilistic polynomial time algorithm, on input the system param-
eters sp, a signer’s private key xS , a verifier’s public key yV and a message
m, produces a signature δ.

– V er: A deterministic polynomial time algorithm, on input the system pa-
rameters sp, a public key yS of a signer, a private key xV of a verifier, a
message m, and a signature δ, produces a verification decision.

– Sim: A probabilistic polynomial time algorithm, on input the system pa-
rameters sp, a public key yS of a signer, a private key xV of a verifier, and
a message m, produces a signature δ.

Properties
We consider four properties of a SDVS scheme, namely unforgeability, non-
transferability, privacy of signer’s identity, and non-delegatability. The following
definitions mainly refer to [10, 29].

– Unforgeability: The unforgeability means that if an adversary can produce a
signature related to a signer and a verifier, and if it knows no private keys of
the signer or verifier, it can be used as a black box to solve a hard problem.
As the hard problem is not easy to be solved, the premise is false so the
adversary cannot produce a valid signature. The concept is formally defined
by a game between an adversary A and a simulator S:
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• S provides A system parameters sp, a public key yS , and a public key
yV .

• A adaptively issues queries to the following oracles for polynomially
many times:

∗ Σ: Given a message m, it returns a valid signature δ with respect to
yS and yV .

∗ Υ : Give a signature δ on a message m, it returns a decision about
its validity with respect to yS and yV .

• A produces a forgery δ∗ for a message m∗. It wins the game if the
signature is valid for m∗ with respect to yS and yV , and it has not
queried the message m∗ to oracle Σ.

Definition 1. An SDVS scheme is (ε, t)-unforgeable, if no adversary A wins
the game with a probability at least ε in time at most t.

– Non-transferability: The non-transferabilitymeans that given a validmessage-
signature pair (m, δ) for a designated verifier, it is infeasible for any probabilis-
tic polynomial-time distinguisher to tell the message was signed by a signer or
the designated verifier. Then a verifier cannot transfer a signature to a third
party to convince the party that the signature was produced by a signer. The
concept is formally defined as follows:

Definition 2. An SDVS scheme is non-transferable if signatures produced
by a signer are computationally indistinguishable from those produced by a
designated verifier, i.e.

{Sign(sp, xS, yV ,m)} ≈ {Sim(sp, yS, xV ,m)}. (1)

If the distributions of the two sets are identical, it is perfect non-transferable.

– Privacy of Signer’s Identity: It considers two signers who produce signatures
for a designated verifier. Basically, it requires that given a message-signature
pair (m, δ), a distinguisher without the private key of the designated verifier,
cannot tell it is produced by which signer. The concept is formally defined
by a game between a distinguisher D and a simulator C:
• C provides system parameters sp, two signers’ public keys yS0 and yS1,
and a verifier’s public key yV .

• D adaptively issues queries to the following oracles for polynomially
many times:

∗ Σ0 or Σ1: Given a message m, it returns a valid signature δ with
respect to yS0 and yV or to yS1 and yV .

∗ Υ : Given a message m, a signature δ, and an identity Sd ∈ {S0, S1},
it returns a decision about its validity with respect to ySd and yV .

• D produces a message m∗. C then flips a fair coin b∗ ← {0, 1}, and
computes a challenge signature δ∗ = Sign(sp, xSb∗ , yV ,m

∗). It returns
δ∗ to D.
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• D continues to issue queries as before except that it could not query Υ
on input (m∗, δ∗, S0) or (m∗, δ∗, S1). Finally, it produces a bit b′ and
wins the game if b′ = b∗.

Definition 3. An SDVS scheme is (ε, t) secure about privacy of signer’s
identity if no distinguisher D wins the game above with probability that de-
viates from one-half by more than ε in time at most t.

– Non-delegatability: Tian et al. [29] proposed an instinctive version of the
original non-delegatability concept proposed by Lipmaa et al. [21]. Basically,
the non-delegatability concept means that if an entity can create a valid
signature, it knows the private key of the signer or the verifier. They then
proposed a direct model that if an extractor interacted with a signature
producer, the extractor could extract a private key of a signer or a verifier.
It is formally defined by a game between an extractor K and a signature
producer F .

• K produces system parameters sp, and sends it to F .
• F produces a public key yS(V ), and sends it to K.
• K produces the other public key yV (S) and sends it to F .
• F produces a valid SDVS for a message m queried by K with a non-
negligible probability. F accesses to at least a signing oracle and random
oracles if F produces yV , or accesses to at least signing and verifying
oracles and random oracles if F produces yS .

• K produces xS(V ).

Definition 4. An SDVS scheme is (ε, t, ε′, t′)-non-delegatable if K can ex-
tract the private key in time t with a probability ε when F can produce a sig-
nature in time t′ with a probability ε′ in the above game, where ε > poly1(ε

′)
and t < poly2(t

′) for two polynomial functions poly1 and poly2.

3 The SDVS Scheme

– Setup: Let G and GT be two cyclic groups with a large-prime order q. Let
g be the generator of G. Let e : G × G → GT be a bilinear map. Let E
be a symmetric encryption algorithm that takes an element in G as input,
and produces a ciphertext in G with an encryption key k ∈ Zq. Let E

−1

be its corresponding decryption algorithm. Let H1 : {0, 1}∗ → G and H2 :
{0, 1}∗ → Zq be secure hash functions. The system parameters are sp =
(G,GT , g, q, e, E,E

−1, H1, H2).
– KeyGen: A signer has a private key xS ∈R Zq and a verification key yS =
gxS . A verifier has a private key xV ∈R Zq, and a public key yV = gxV .

– Sign: To sign a message m for a designated verifier V , a signer S does as
follows:

1. Choose at random r ∈R Zq, and compute δ1 = yrV .
2. Compute R = H1(m), and k = H2(m).
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3. Compute δ2 = ( R
Ek(gr)

)xS .

4. Set δ = (δ1, δ2).

– V er: After receiving a signature δ = (δ1, δ2) and a message m from a signer
S, a verifier V does as follows:

1. Compute R′ = H1(m), and k′ = H2(m).

2. Compute T = R′

Ek′(δ
x
−1
V

1 )

.

3. Check if e(g, δ2) = e(yS , T ).

– Sim: To simulate a signature on m, the verifier does as follows:

1. Choose at random r ∈R Zq, and compute δ2 = yrS .
2. Compute R = H1(m), and k = H2(m).
3. Compute δ1 = (E−1

k ( Rgr ))
xV .

4. Set δ = (δ1, δ2).

Remark 2. For a valid signature, in the verification algorithm, it should be T =

δ
x−1
S

2 . Suppose the signature is produced by a signer, then

T = R′

Ek′ (δ
x
−1
V

1 )

= R′

Ek′(yrV
x
−1
V )

= R
Ek(gr)

= δ
x−1
S

2 . (2)

If the signature is produced by a simulator, then

T = R′

Ek′(δ
x
−1
V

1 )

= R′

Ek′ (((E−1
k ( R

gr ))xV )x
−1
V )

= gr = δ
x−1
S

2 . (3)

Remark 3. The symmetric encryption and decryption algorithms E and E−1

are used in proofs as random oracles. This is mainly to prove the property of
PSI, where random oracles are used to extract a Diffie-Hellman value. We give
a sample implementation of the encryption in Appendix A.

4 Proofs

We use the following symbols. Let qh be the number of query on a hashing oracle
H1. Let qe be the number of query on an encryption oracle E. Let qd be the
number of query on a decryption oracle E−1. Let qs be the number of query on
a signing oracle Σ. Let qv be the number of query on a verifying oracle Υ . Let
τe denote the time of an exponentiation in a group G. Finally, let τp denote the
time of a pairing evaluation.

4.1 Unforgeability

Proposition 1. If the CDH problem is (ε, t)-holding, and the hashing function,
symmetric encryption and decryption algorithms are random oracles, the SDVS
scheme is (ε′, t′) unforgeable, where

ε′ < 3qhqdε (4)
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and
t′ > t− (qh + 5qs + (qe + qd)(2qv + 1))τe − 4qv(qe + qd)τp. (5)

Proof. Suppose an adversaryA who can produce valid SDVS signatures. It takes
public keys of a signer and a verifier, and queries a signing oracle Σ and a
verifying oracle Υ . Suppose a simulator S that provides inputs and oracles for
A. The simulator also provides A hashing oracles H1 and H2, an encryption
oracle E, and a decryption oracle E−1. Adversary A has to ask these oracles
when it needs such operations. The simulator tries to solve a CDH problem. It
takes an instance (g, gα, gβ). Then S plays with A as follows:

– Simulator S selects at random γ ∈R Zq, and sets yS = gα, yV = gαγ .
– The simulator provides oraclesH1, H2, E, and E

−1 by maintaining four lists
Hlist, Klist, Elist and E

−1
list.

• H1: On a query mi, S finds it in the Hlist. If the message mi has not
been queried, S selects at random ri ∈R Zq, and computes Ri = g

ri . It
records (mi, ri, Ri) in the Hlist, and returns Ri. If the message mi has
been queried, it returns Ri in a matching entry directly. For a random
selected integer i∗ ∈R {1, . . . , qh}, S simply records (mi∗ ,⊥, gβ) and
returns gβ.

• H2: On a query mi, S finds it in the Klist. If the message mi has not
been queried, S selects at random ki ∈R Zq, and records (mi, ki) in the
Klist, and returns ki. If the message mi has been queried, it returns ki
in a matching entry directly.

• E: On a query (ki, Ui), S finds it in the Elist and E
−1
list. If the pair (ki, Ui)

has not been queried to the encryption oracle, and the value Ui not been
returned as a decryption output by using the key ki, it selects at random
ei ∈R Zq, and computes Wi = g

ei . It records (ki, Ui, ei,Wi) in the Elist,
and returns Wi. Else, it returns Wi in a matching entry of Elist, or the
second element of a query in a matching entry of E−1

list.
• E−1: On a query (ki, Pi), S finds it in Elist and E

−1
list. If the pair (ki, Pi)

has not been queried to the decryption oracle, and the value Pi not
been returned as an encryption output by using the key ki, it selects at
random di ∈R Zq, and computes Qi = gdi . It records (ki, Pi, di, Qi) in
a list E−1

list, and returns Qi. Else, it returns Qi in a matching entry of
E−1
list, or the second element of a query in a matching entry of Elist. For

a random selected integer j∗ ∈R {1, . . . , qd}, S computes gγ
−1β , simply

records (kj∗ , Pj∗ ,⊥, gγ
−1β), and returns gγ

−1β .

– Simulator S provides a signing oracle Σ and a verifying oracle Υ by using
the above lists.

• Σ: On input a messagemi, S finds it in the Hlist. If it finds nothing, it se-
lects at random ri ∈R Zq, and computes Ri = g

ri . It records (mi, ri, Ri)
in the Hlist. Else, it uses a matching entry directly. Similarly, S obtains
ki by using the Klist. Then it selects at random rl ∈R Zq, and computes
Ui = grl . If (ki, Ui) is in the Elist as a query or the value Ui in the
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E−1
list as a response by using the decryption key ki, another rl is selected.

Then it selects at random ei ∈R Zq, computes Wi = gei and records
an entry (ki, Ui, ei,Wi) in the Elist. Finally, it computes δ1 = yrlV , and
δ2 = yri−eiS , and returns δ = (δ1, δ2).

• Υ : On input a signature δ = (δ1, δ2) for a messagemi, S finds a matching
entry in Hlist, and an entry in Klist. If there is no matching in Hlist or
Klist, S claims the signature invalid. Else, suppose that the two matching
entries are (mi, ri, Ri) and (mi, ki). Then S finds all entries indexed by ki
in lists Elist and E

−1
list. If it finds nothing, it claims the signature invalid.

Else,

1. Among all entries found in Elist, S finds entries containing a value ei
satisfying yri−eiS = δ2. Then among all entries containing the value
ei, it finds a value Ui satisfying e(Ui, yV ) = e(g, δ1). If it finds such
an entry (ki, Ui, ei,Wi), it claims the signature valid. Otherwise, it
does as follows.

2. Among all entries found in E−1
list, S finds entries containing a value

di satisfying y
di
V = δ1. Then among all entries containing the value

di, it finds a value Pi satisfying e(
Ri

Pi
, yS) = e(g, δ2). If it finds such

an entry (ki, Pi, di, Qi), it claims the signature valid. Otherwise, the
signature is invalid.

If A produces a forged signature for a message mj , S will check whether j = i∗.
If it is not, S Fails. Else, S finds related entries in Hlist, Klist. Suppose them be
(mi∗ ,⊥, Ri∗) and (mi∗ , ki∗). Then indexed by the value ki∗ , S finds all entries in
Elist. Among these entries, S finds a value Ui∗ satisfying e(Ui∗ , yV ) = e(g, δ1). If
it finds such an entry (ki∗ , Ui∗ , ei∗ ,Wi∗), it computes an answer (δ2y

ei∗
S ). If the

forged signature is valid, it should be gαβ . If S finds nothing in Elist, it checks
whether ki∗ = kj∗ and e(Ri∗

Pj∗
, yS) = e(g, δ2). If it is not, S Fails. Else, S takes δ1

as an answer. If the signature is valid, it should be gαβ .
Considering the simulation, it is possible that A queries a valid signature, and

S claims it invalid. It is the case that A produced a valid signature while it did
not query a hashing oracle, or an encryption oracle, or a decryption oracle. The
probability of the case is at most 1/q. Then with a probability at least 1− qv/q,
the simulation is perfect, and A gives a forgery with a probability ε′.

When A gives a forgery, the case happens at most 1/q that it does not query
oracles H1, H2, E or E−1. Then the case j = i∗ happens with a probability
1/qh. Suppose S may find a matching entry in Elist with a probability η ∈ [0, 1].
Then with a probability (1− η), A may use the E−1 oracle for the forgery. Then
with a probability 1/qd, S can take advantage over A. Finally, the successful
probability of S is:

ε ≥ (1 − qv/q)ε′(1− 1/q)(1/qh)[η + (1− η)(1/qd)]
> ε′(1 − qv/q)(1− 1/q)(1/(qhqd))

> ε′
3qhqd

(6)

where q > 2qv, and q > 3.
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For each new query on H1, S needs an exponentiation. For a query on E or
E−1, it also needs that operation. Then the time is (qh+qe+qd)τe for simulating
random oracles. For each signing query, S needs at most five exponentials. For a
verifying query, S needs to check entries in Elist and E

−1
list if needed. Each check

needs at most two exponentiations and four pairing evaluations. Then the time
is less than 5qsτe+ qv(qe+ qd)(2τe+4τp) for S to simulate signing and verifying
oracles. Finally, the runtime of S is:

t < t′ + (qh + qe + qd)τe + 5qsτe + qv(qe + qd)(2τe + 4τp)
< t′ + (qh + 5qs + (qe + qd)(2qv + 1))τe + 4qv(qe + qd)τp

(7)

4.2 Non-transferability

Proposition 2. The SDVS scheme is perfect non-transferable.

Proof. We prove that for any valid signature δ̂ = (δ̂1, δ̂2) on a message m with
respect to a signer and a designated verifier, it may be produced by a signing
algorithm or a simulation algorithm with the same probability. Then, the distri-
bution of a signature ensemble produced by the signing algorithm is the same
as an ensemble produced by the simulation algorithm.

If a signature δ = (δ1, δ2) is produced by a signing algorithm, it is(
δ1
δ2

)
=

(
yrV(

H1(m)
EH2(m)(gr)

)xS

)
(8)

for a random selected r ∈R Zq. The case δ̂ = δ happens with a probability 1/q.
If a signature δs = (δs1, δs2) is produced by a simulation algorithm, it is(

δs1
δs2

)
=

((
E−1
H2(m)

(
H1(m)
gr

))xV

yrS

)
(9)

for a random selected r ∈R Zq. The case δ̂ = δs happens with the same proba-
bility 1/q.

4.3 Privacy of Signer’s Identity (PSI)

Proposition 3. If the InvCDH problem is (ε, t)-holding, and the hashing func-
tion, symmetric encryption and decryption algorithms are random oracles, the
SDVS scheme is (ε′, t′) secure about the PSI property, where

ε′ < 6qmaxε (10)

and
t′ > t− (2 + qh + 5qs + (qe + qd)(2qv + 1))τe − 4qv(qe + qd)τp (11)

where qmax ≤ max{qe, qd}.
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Proof. Suppose a distinguisher D to distinguish a real signer of a given SDVS
signature. D takes two signer’s public keys and a verifier’s public key as input,
and queries two signing oracles Σ0 and Σ1, and a verifying oracle Υ . Suppose a
simulator C provides these oracles and inputs to D. It also provides two hashing
oracles H1, H2, an encryption oracle E, and a decryption oracle E−1. D has to
consult C when it needs these operations. C tries to solve an InvCDH problem.
It takes an instance (g, gα). Then C plays with D as follows.

– C selects at random β0, β1 ∈R Zq, and computes yS0 = gαβ0 , and sets yS1 =
gαβ1 . It sets yV = gα, and feeds all public keys to D.

– C simulates hashing oracles H1 and H2, an encryption oracle E, and a de-
cryption oracle E−1 by using four lists Hlist, Klist, Elist, and E

−1
list.

• H1: On a query mi, C finds it in the Hlist. If the message mi has not
been queried, C selects at random ri ∈R Zq, and computes Ri = g

ri . It
records (mi, ri, Ri) in the Hlist, and returns Ri. If the message mi has
been queried, it returns Ri in a matching entry directly.

• H2 and E: C simulates them in the same way as S in the unforgeability
proof.

• E−1: On a query (ki, Pi), S finds it in Elist and E
−1
list. If the pair (ki, Pi)

has not been queried to the decryption oracle, and the value Pi not
been returned as an encryption output by using the key ki, it selects at
random di ∈R Zq, and computes Qi = gdi . It records (ki, Pi, di, Qi) in
a list E−1

list, and returns Qi. Else, it returns Qi in a matching entry of
E−1
list, or the second element of a query in a matching entry of Elist.

– C provides D signing oracles Σ0 and Σ1, and a verifying oracle Υ in the
same way as S in the unforgeability proof with an exception that the signer’s
public key is yS0 for Σ0, yS1 for Σ1, and yid for Υ , where id ∈ {S0, S1} is
an indicator from D.

– When D submits a messagem∗, C randomly selects a value φ∗ ∈R Zq. And it
flips a fair coin b∗ ∈ {0, 1}. It also selects at random r∗, computes R∗ = gr

∗
,

and adds an entry (m∗, r∗, R∗) to Hlist. Then it randomly selects k∗ and
adds an entry in (m∗, k∗) in Klist. Then with a probability 1/2, it chooses
one case from the two:

1. It sets δ∗1 = gφ
∗
. It then randomly selects e∗, computes W ∗ = ge

∗
, and

adds an entry (k∗,⊥, e∗,W ∗) in Elist. It computes δ2 = yr
∗−e∗
Sb∗ . Finally,

it returns δ∗ = (δ∗1 , δ∗2).
2. It sets δ∗2 = gφ

∗
. Then it randomly selects d∗, computes Q∗ = gd

∗
, and

adds an entry (k∗,⊥, d∗, Q∗) in E−1
list. It computes δ∗1 = yd

∗
V . Finally, it

returns δ∗ = (δ∗1 , δ
∗
2).

– Then D continues to query various oracles. The behaviors of oracles H1 and
H2 keep unchanged. The oracles Σ0 and Σ1 now add an extra mark for each
entry added by them to Elist or E−1

list. The oracle Υ does not respond to
a query with the signature δ∗ on the message m∗ with an indicator id ∈
{S0, S1}. The behaviors of E and E−1 have the following changes:
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• E: If a query is (k∗, Q∗), C tries to find matching entries in E−1
list except

the entry (k∗,⊥, d∗, Q∗). If it finds nothing, C Fails. If a query begins
with k∗, say (k∗, Uj), and Uj �= Q∗, C finds matching entries in Elist
and E−1

list. If it finds nothing, it will add a new entry (k∗, Uj, ej ,Wj) and
returnWj , whereWj is selected at random andWj �=W ∗. Suppose there
are q∗e queries beginning with k∗ and no matching entries in both Elist
and E−1

list. Then for a random selected integer j∗ ∈R {1, . . . , q∗e}, C sets
ej∗ = e∗ and Wj∗ =W ∗.

• E−1: If a query is (k∗,W ∗), C finds matching entries in Elist except
the entry (k∗,⊥, e∗,W ∗). If it finds nothing, C Fails. If a query begins
with k∗, say (k∗, Pj), and Pj �= W ∗, C finds matching entries in E−1

list

and Elist. If it finds nothing, it will add a new entry (k∗, Pj , dj , Qj)
and returns Qj. Suppose there are q∗d queries beginning with k∗ and no
matching entries in both Elist and E−1

list. Then for a random selected
integer j∗d ∈R {1, . . . , q∗d}, C sets dj∗

d
= d∗ and Qj∗

d
= Q∗.

When D produces a bit b′, C finds an entry (k∗, Uj∗ , e∗,W ∗) in Elist or an entry
(k∗, Pj∗ , d∗, Q∗) in E−1

list. If it finds nothing, C Fails. If it finds such an entry in

Elist, C returns Uφ
∗−1

j∗ as an answer. If it finds such an entry in E−1
list , it computes(

( R
∗

Pj∗
)φ

∗−1
)βb′

as an answer.

Similar to the analysis in the unforgeability proof about the verifying oracle
Υ , the simulation about the oracle is perfect with a probability 1− qv/q. When
D gives a meaningful guess bit, the event happens with a probability 1/q that D
queries neither (k∗, Uj∗) nor (k∗, Pj∗). The reason is that W ∗ or Q∗ are chosen
randomly by C. When D did query E or E−1, there are two cases:

1. C finds an entry (k∗, Uj∗ , e∗,W ∗) in Elist. Suppose this event happens with a
probability η ∈ [0, 1]. Then with a probability 1/q∗e , the simulation is perfect
and D can produce a meaningful output. No matter D’s guess, C can return
a right answer if C produced the challenge signature by setting δ∗1 = gφ

∗
.

2. C finds an entry (k∗, Pj∗ , d∗, Q∗) in E−1
list. This event happens with a proba-

bility 1 − η. Then with a probability 1/q∗d, the simulation is perfect and D
can produce a meaningful output. When D guessed correctly, C can return
a right answer if C produced the challenge signature by setting δ∗2 = gφ

∗
.

In summary, the successful probability of C is

ε ≥ (1− qv/q)(1− 1/q)[η(1/q∗e)(1/2) + (1− η)(1/q∗d)ε′(1/2)]
> ε′/6[η(1/q∗e) + (1 − η)(1/q∗d)]
≥ ε′/6[η(1/qmax) + (1− η)(1/qmax)]
= ε′

6qmax

(12)

where q > 2qv, q > 3 and qmax = max{q∗e , q∗d}.
The runtime analysis is similar to the unforgeability proof except that there

is an extra two exponentiations for a challenge signature generation. It is

t < t′ + (qh + qe + qd)τe + 5qsτe + qv(qe + qd)(2τe + 4τp) + 2τe
< t′ + (2 + qh + 5qs + (qe + qd)(2qv + 1))τe + 4qv(qe + qd)τp

(13)
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4.4 Non-delegatability

Proposition 4. If the KEAv1 assumption holds with a probability 1 − ε′′, the
SDVS scheme is (ε, t, ε′, t′) non-delegatable, where

ε >
1− ε′′

3
ε′ (14)

and
t < t′ + (qh + 5qs + (qe + qd)(2qv + 1))τe + 4qv(qe + qd)τp. (15)

Proof. Suppose an adversary F that may obtain some partial secrets to produce
a valid signature with a probability ε′ in time t′. To confirm that F indeed has
signer’s secret key or verifier’s secret key, suppose an extractor K that provides
random oracles, signing oracles and verifying oracles. If F gives a signature for
a message m, K tries to print signer’s or verifier’s secret key.

– Case 1:
1. K provides F system parameters (G,GT , g, q, e).
2. F produces yS and sends it to K.
3. K selects at random γ ∈ Zq, computes yV = yγS and sends it to F .
4. K provides hashing oracles, an encryption oracle and a decryption oracle

in a similar way as S in the unforgeability proof except that no special
values i∗ or j∗ are selected. K provides a signing oracle and a verifying
oracle in the same way as S.

5. K sends a message m∗ to F .
6. F produces a signature δ∗ for the message m∗.
7. K finds the entry (m∗, r∗, R∗) in Hlist, and (m∗, k∗) in Klist. Then, there

are two cases:

• Among all entries found from Elist by indexing k∗, K finds en-
tries containing a value e∗ satisfying yr

∗−e∗
S = δ∗2 . Then among

all entries containing the value e∗, it finds a value U∗ satisfying
e(U∗, yV ) = e(g, δ∗1). If it finds such an entry (k∗, U∗, e∗,W ∗) in
Elist, K believes the signature valid, and takes F as an algorithm
with an input gr

∗−e∗ and outputs (yS , y
r∗−e∗
S ). K then builds another

algorithm F∗ with the same random tape and inputs. According to
the KEAv1 assumption, it is expected that F∗ produces outputs
(xS , yS , y

r∗−e∗
S ). However, if K does not find such an entry in Elist,

it does as follows.
• Among all entries found in E−1

list by indexing k∗, K finds entries
containing a value d∗ such that yd

∗
V = δ∗1 . Then among all entries

containing the value d∗, it finds a value P ∗ satisfying e(R
∗

P∗ , yS) =

e(g, δ∗2). If it finds such an entry (k∗, P ∗, d∗, Q∗) in E−1
list, it believes

the signature valid, and takes F as an algorithm with input gγd
∗
and

outputs (yS , δ
∗
1). K then builds another algorithm F∗ with the same

random tape and inputs. According to the KEAv1 assumption, it is
expected that F∗ produces outputs (xS , yS , δ

∗
1).
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– Case 2:
1. K provides F system parameters (G,GT , g, q, e).
2. F produces yV and sends it to K.
3. K selects at random γ ∈ Zq, computes yS = yγV and sends it to F .
4. K queries F and provides it various oracles in the same way as in the

case 1.
5. It is similar to last step of the case 1. The difference is that if K finds

a satisfying entry in Elist, it takes F as an algorithm with an input

gγ(r
∗−e∗) and outputs (yV , y

γ(r∗−e∗)
V ). If K finds an entry in E−1

list, it
takes F as an algorithm with an input gd

∗
and outputs (yV , y

d∗
V ).

The simulation of K is perfect with a probability at least 1− qv/q as it is similar
to S’s simulation in the unforgeability proof. F may produce a signature without
querying E or E−1 with a probability 1 − 1/q. After F produced a signature,
K can extract a private key if and only if the KEAv1 assumption holds. The
probability is 1 − ε′′. In summary, for any public key produced by F , K can
extract its corresponding private key with a probability

ε ≥ (1− qv/q)ε′(1 − 1/q)(1− ε′′)
> 1

3ε
′(1− ε′′). (16)

The runtime of K to extract a private key is the same as S’s runtime in the
unforgeability proof. It is

t < t′ + (qh + 5qs + (qe + qd)(2qv + 1))τe + 4qv(qe + qd)τp. (17)

5 Comparison

We compare our scheme with non-delegatable DVS schemes mentioned in Section
1.2. There are nine related schemes, including DVS, SDVS, IBDVS schemes, and
a universal DVS (UDVS) scheme. We show their signature size, signing cost and
verifying cost. The proof models of these schemes are mainly random oracle (RO)
model. An exception is the scheme in [21] whose proof model is non-programmable
random oracle (NPRO) model. The unforgeability of most schemes are reduced to
the hardness of a CDHproblem or its elliptic curve version (ECDHP). The “DDH”
denotes the decisional Diffie-Hellman problem. It is the weakest hard problem in
the hard problem column. The “DL” denotes the discrete logarithm problem. It is
the strongest hard problem in that column. The “GBDH” means the gap bilinear
Diffie-Hellman problem. As the scheme in [14] had no proofs, we use the symbol “-”
to denote the fact. The scheme in [8] is just an instantiation of their ring signature
based construction. Although it has no proofs, we can deduce its proof model and
hard problem from their general proof.

As the signature size and computation cost are related to a scheme’s system
parameters, we list some system parameters below. There are three kinds of
parameters:

1. Let (G,GT , g, q, e) be symbols defined in this paper.
2. Let p′ and q′ be large primes such that q′|p′ − 1. Let G′ be a subgroup with

an order q′ of a group Z
∗
p′ .
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3. Let (E,GE , P, n) be parameters for a group GE on a non-supersingular el-
liptic curve E with a generator point P and a large-prime order n.

The symbols related to the comparison of signature size are as follows. Let | · |
denote the bit-length of the element “·”. Considering a cryptographic strength
of approximate 80 security bits, by using the parameter set in [2], we have that
|g| = 154, |q| = 151, and |gT | ≈ 923 for an element gT ∈ GT . For the same
security level, |p′| = 1024, |q′| = 160, and |n| = 160. If an element is in GE, its
bit-length is deemed as 161.

The symbols related to computation cost are as follows. As we use the pa-
rameter set in [2], the symbol τe is the time of a scalar multiplication. We use
another symbol τn for the time of a scalar multiplication in the group GE . The
symbol τp still denotes the time of a paring evaluation. A new symbol τ ′ is used
to denote the time of an exponentiation in G

′ or GT . Note that the computation
of multi-exponentiation has accelerative algorithms. From a repot in [22], for
g1, g2, g3 ∈ G and e1, e2, e3 ∈ Zq, the computation of ge11 g

e2
2 is about as costly

as an exponentiation, and the computation of ge11 g
e2
2 g

e3
3 is about 1.5 times of an

exponentiation.

Table 1. Comparison between non-delegatable DVS schemes

Scheme Type Signature-Size (bits) Sign-Cost Verify-Cost Model Hard Problem

[14] DVS 2528 (Z3
q′ ×G

′2) 3τ ′ 5τ ′ - -

[21] DVS 640 (Z4
q′) 3τ ′ 3τ ′ NPRO DDH

[30] IBDVS 1228 (Zq ×G
2 ×GT ) 6τe + 2τp 2τe + 3τp RO GBDH

[12] UDVS 607 (Z3
q ×G) 3τe + τp τe + 2τp + τ ′ RO CDH

[10] SDVS 640 (Z4
q′) 3τ ′ 3τ ′ RO DL

[9] IBDVS 758 (Z4
q ×G) τe + 3τp + 3τ ′ 4τ ′ + 4τp RO CDH

[11] IBSDVS 2607 (Z3
q ×G

2 ×G
2
T ) τe + 4τ ′ + 4τp 4τ ′ + 5τp RO CDH

[8] SDVS 1504(Z3
q′ ×G

′) 2τ ′ 2.5τ ′ RO DL

[29] SDVS 481 (Z2
n ×GE) 2τn 2τn RO ECDHP

Ours SDVS 308 (G2) 2τe τe + 2τp RO CDH

From the Table 1, we observe the following points:

– The signature size of our scheme is short. It is the only scheme consists of
two elements in a signature. Only one scheme in [29] produces a signature
with three elements. All other schemes produce signatures consisting of at
least four elements.

– The signing and verifying costs of our scheme are moderate due to the cost
of the scalar multiplication on elliptic curves.
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A Encryption Algorithm Implementation

Note that the SDVS scheme uses an encryption in both the Sign and V er
algorithms. It uses a decryption algorithm in the Sim algorithm that produces
a signature to be verified by a V er algorithm. So it is not the case that one
encrypts something that is to be decrypted by another entity. We may design
an algorithm specially for the SDVS scheme.

We use a parameter set in BLS signature [2]. The parameter set includes an
elliptic curve (EC) that is defined over a field F3l for a positive integer l. An
additive group G is generated by a point on the EC with a large-prime order q.
The total number of points on the EC is denoted by n. Let a point C on the
curve is expressed as (cx, b) where cx ∈ F3l and b ∈ {0, 1}. Let |3l| be the binary
bit-length of the value 3l. Let the symbol || denote bit concatenation. Let (X)2
be the binary representation of the value X .

As a random number in F3l is a quadratic residue with a probability about
1/2, we need an additional parameter i to be part of a signature. The length of
the value i is a balance of the successful probability of the algorithm and the
communication bandwidth. We set i ∈ [0, 232 − 1]. Let an entity firstly set a
value i at random. Then we define an function fk(C, i) as follows.

– fk(C, i):
1. Set a value t = 0.
2. Use AES counter model to produce a bit string si with length |3l| − 1.

The encryption key is k. The initial counter number is i.
3. Set (c′x)2 = (0||si)⊕ (cx)2.
4. If c′x is a x-coordinate of a point on the EC, do

(a) Choose the point C′ = (c′x, b) in a compressed expression.
(b) If C′ ∈ G \ {0}, it produces an output (C′, i) and stops.

5. Otherwise, t = t+1 and if t < MAX , the counter i is selected at random
from the interval [0, 232− 1], and returns step 2. Else it returns an error
and stops.

The variable “MAX” is related to the successful probability of the algorithm.
There are two conditions for a successful run. One is that c′x is a x-coordinate
of a point on the EC. The other is that the point C′ ∈ G. The first condition
happens with a probability 1/2. The second condition happens with a probability
q/n. So it is expected that MAX ≥ 2n/q. As i ∈ [0, 232 − 1], we have at most
MAX < 232. We suggestMAX = 216 as a balance of the runtime and successful
probability.

Then for a signer, it sets i ∈ [0, 232 − 1] at random, and uses fk(C, i) as
an encryption algorithm. For a verifier, it sets i as a received value, and uses
fk(C, i) as an encryption algorithm. If a verifier tries to simulate an SDVS, it
sets i ∈ [0, 232 − 1] at random, and uses fk(C, i) as a decryption algorithm.

Note that the value i should be a random value. If i is set to be fixed, say
0, and increased linearly, the non-transferability property may be lost. Note that
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the property has no limitations on the knowledge of an adversary. Suppose then
an adversary has a verifier’s private key. Given a (δ1, δ2, i), it works as follows.

– Compute U = δ
x−1
V

1 .
– Compute (W, i′) = fk(U, 0). If i

′ = i, a signature is produced by a signer.
Otherwise, it is simulated by a verifier.

Note that if (C′, i) = f(C, 0), it is (C, i) = f(C′, i) and (C′′, j) = f(C′, 0) where
C′ �= C′′ with a high probability.

Finally, it is expected that one could give a more efficient implementation to
avoid the probabilistic algorithm and the extra communication cost.
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Abstract. Since the introduction of identity based cryptography in
1984 by Adi Shamir, several identity based signature schemes were re-
ported. However, there are only two deterministic identity based signa-
ture schemes available in the literature and both of them use probabilistic
private key generation and uses bilinear pairing. Moreover, these signa-
tures consist of either two or more group elements and hence they are not
‘short’. Thus an interesting and challenging open question is to design a
deterministic signature scheme which does not use randomness either in
the key generation phase or in the signing phase, avoid bilinear pairing
and having a ‘short’ signature-where the signature consists of only one el-
ement. While this problem is addressed by BLS scheme in the PKI based
setting, this has been an open problem in the identity based setting since
1984. This paper settles the open problem affirmatively. Specifically, we
propose a fully deterministic identity based signature scheme, without
using bilinear pairing. The signature consists of just one group element of
a composite order group and its security is related to strong RSA problem
in the random oracle model. Our security reduction is tight as one need
not use forking lemma during security reduction for fully deterministic
signature schemes. The major and important consequence of our scheme
is its use for aggregate signature scheme. Our scheme leads to the first
full aggregate identity based signature scheme with no prior communi-
cation among different signers. Besides our aggregate signature scheme
does not employ any computation that goes through several rounds.

Keywords: Identity Based Deterministic Signature, Aggregate Signa-
ture, Full Aggregation, Random Oracle Model, Provable Security.

1 Introduction

The concept of Identity BasedCryptography (IBC) was introduced by Adi Shamir
[21] in 1984. The distinguishing characteristic of identity based cryptography is
the ability to use any string, that uniquely identifies a user in the system as the
public key. In particular, this string may be the email address, telephone number,
or combination of any of these parameter that is unique to that user. The cor-
responding private key can only be derived by a trusted Private Key Generator
(PKG) who uses a master secret key, for deriving the private key of users.
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The private key generation algorithm executed by the PKG may be viewed
as a PKI based signature scheme. The signing algorithm executed by the user to
generate the signed document is also a PKI based signature scheme. An identity
based signature scheme is said to be probabilistic if the signing algorithm (run
by the user) and/or the key generation algorithm (run by the PKG) are proba-
bilistic. An identity based signature scheme is said to be partially deterministic
if the signing algorithm is deterministic but key generation algorithm is proba-
bilistic. The schemes reported in [8,2,19,11] are all probabilistic in nature. The
schemes reported in [14,20] are the only known partially deterministic schemes
in the literature. The scheme in [20] is the most efficient deterministic(partial)
identity based signature in the literature till now.

An identity based signature scheme is said to be fully deterministic if both the
key generation and signing algorithms are deterministic. There is no fully deter-
ministic identity based signature scheme available in the literature. This paper
presents the first of such a system. While the signatures of all other schemes con-
tain two or more components, where at-least one element is a group element, the
signature of our scheme contains just one component (a group element). Because
it is a deterministic signature scheme, there is no need for using forking lemma
and the reduction is tight, which results in compact key size that contributes for
efficiency in practice. Even though computation of bilinear pairing has become
efficient, finding out pairing friendly curves are difficult [10] and most of the effi-
cient curves and means of compressing are patented. Thus, we have only a hand
full of elliptic curves that support pairing for designing cryptosystem. Besides,
since the RSA patent expired in the year 2000, designing cryptographic schemes
based on RSA assumption gets more attention these days. Hence, the research
in pairing free protocol is a very important and worthwhile effort.

The major application of our scheme is its implication in aggregation of sig-
natures. In several real-life situations, it is advantageous to handle a collection
of signed documents together rather than handling them in isolation. In appli-
cations such as e-Banking, legal document processing (archiving and communi-
cating) in a legal firm, digital attestation related application and so on. In all
the above applications, generating, storing and transmitting a large number of
signed documents arise naturally. An Aggregate Signature Scheme combines sev-
eral signed documents, say σ1, . . . , σt on messagesm1, . . . ,mt by users U1, . . . , Ut
and produces a single signed document σagg where size of σagg is expected to be
substantially smaller than sum of the sizes of σi’s. Thus, the communication cost
can be significantly reduced if we transmit σagg instead of transmitting σ1, . . . , σt
individually. A similar remark holds good even for storage requirements when
we archive σagg (instead of σ1, . . . , σt). If |σagg | depends on the number of sig-
natures or number of messages (or both) it is called partial aggregation and if
|σagg| is independent of both the number of messages and signatures, then it is
called full aggregation.

In a PKI based system, in order to verify an aggregate signature, the verifier
needs the public keys of all the signers. In most applications, these public keys are
transmitted along with the aggregate signature, defeating the primary purpose
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of aggregate signature schemes which is to reduce communication complexity.
This is inevitable in order to support verification. Moreover, public keys come
with a certificate, which is a signature from the certification authority (CA) and
the CA’s public key. Altogether, these sum up to huge bandwidth requirement
than actually required to authenticate the messages. In an identity-based signa-
ture scheme, since the public key is just the users identity, e.g. e-mail address,
IP address, Social Security Number (SSN) and Unique Identification Number
(UID), individual public keys become no longer useful, and this removes the
need for explicit certification and all associated costs. These facts make the
identity-based paradigm more attractive or interesting for use in the design of
aggregate signatures.

If the basic identity based signature scheme is probabilistic the aggregation
will call for prior communication among signers to achieve full aggregation, where
they have to propagate the local randomness used in generating their respective
signatures. The computation will also proceed in several rounds. If the identity
based signature is partly deterministic then the aggregation will lead to partial
aggregation. However, if the basic signature scheme is fully deterministic, very
efficient full aggregation is possible with no prior communication or rounds.

RelatedWork: Manywell knownPKI based aggregate signatures are available in
the literature [7,16,3,17,18]. However, as the focus of this paper is on identity based
aggregate signature scheme,wewill not compare the PKI based schemeswith ours.
Most of the efficient aggregate signature schemes in the PKI setting are determin-
istic [7,3,17]. The first identity based aggregate signature scheme that achieves full
aggregation was proposed in [9] by Cheng et al. Their scheme uses bilinear pair-
ing and requires large setup cost because the signers essentially broadcast their
individual random values to form a single random value. Moreover, the fact that
the signature cannot be generated until all of the signers contribute in the first
round, makes the scheme less practical. Gentry et al. proposed another scheme in
[12], based on bilinear maps and the security of the scheme relies on the Gap Diffie
Hellman problem. The weakness of the scheme is that, the signers of a given ag-
gregate signature must agree on a common random value which was never used by
any of the users before to generate a signature. The weaknesses in [12] is reported
in [22]. Recently, Boldyreva et al. [5] proposed a sequential aggregate signature
scheme (in-fact, the security of their original schemes [4] and [6] were flawed due
to the assumption used to prove them was actually not hard to solve in polyno-
mial time, as pointed out by Hwang et al. [15]). Their new scheme [5] was based
on the hardness of a CDH-type problem that raised from their scheme and uses
bilinear pairings. The first RSA based identity based aggregate signature scheme
was proposed by Bagherzandi et al. [1]. This scheme uses two rounds of communi-
cation between the signers to generate a full aggregate signature, where the first
round is to commit the random value shares (again by broadcasting the individual
commitments as in [9]) and the second round is the aggregate signature generation
round. Their scheme uses equivocable commitments and hence looses its general-
ity and becomes less practical because of the overhead involved in broadcasting
the commitments. The table Table-1 summarizes the current state of the art in
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the research of identity based aggregate signatures which achieves full aggregation
and are provably secure in the random oracle model. Aggregate signature scheme
achieving partial aggregationwithout pairing is proposed by Sharmila et al. in [22].

However, aggregating the signatures generated by our scheme does not re-
quire any communication among users as there is no random value used in our
signatures, and this settles the open problem posed in [15].

Table 1. State of the art survey of IBAS schemes

Agg Sign Agg Hard Sign Rounds Agg
Schemes Sign Cost Verify Prob Type Mode

Len (/ user) (t users) (D/ND) (G/S)

[9] 2|G| 3[M] 2[P]+t[M] CDH ND 2 G

[1] 2|Z∗
n|+ |κ| 2[E] t[E] RSA ND 2 G

+|log(l)|
[5] 3|G| 7[M] 6[P]+t[M] CDH-type ND - S

[12] 2|G|+|Z∗
q | 5[M] 3[P]+t[M] GAP-DH ND - S

IBAS |Z∗
n| 2[E] (2t+ 1)[E] strong RSA D - G

The terms used in Table-1 are explained here. ND - Nondeterministic Sig-
nature, D- Deterministic Signature, G- General aggregation, S- Sequential Sig-
nature, κ is the security parameter of the scheme, [E]-Exponentiation in Z

∗
n,

[M]- Scalar Point Multiplication in G, [P]- Bilinear Pairing Operation, Gap-DH-
Gap-Diffie-Hellman, [GTM]- Exponentiation in GT .

Computational Assumption: We review the computational assumption re-
lated to the protocols we discuss.

The Strong RSA Problem: Given a randomly chosen RSA modulus n and a
random c ∈ Z∗

n, finding b > 1 and a ∈ Z∗
n, such that c ≡ ab mod n is the strong

RSA problem.

The Strong RSA Assumption: The advantage of any probabilistic polyno-
mial time algorithm F in solving the strong RSA problem in Z∗

n is defined as:

AdvsRSAF = Pr
[
F(n, c)→ {a, b} | (a ∈ Z

∗
n, b > 1) ∧ (c ≡ abmodn)

]
The strong RSA Assumption is that, for any probabilistic polynomial time al-
gorithm F , the advantage AdvsRSAF is negligibly small.

2 Generic Model

In this section, we describe the generic frame work for a identity based signa-
ture scheme and an aggregate signature scheme. An identity based aggregate
signature scheme (IBAS) consists of following six algorithms. The framework for
a deterministic identity based signature scheme (D-IBS) consists of the first four
algorithms described below, namely Setup, Extract, Sign and Verify. If the
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signature scheme is deterministic the signature for a message is always the same
for every of invocation of the sign algorithm.

Setup: The private key generator (PKG) provides the security parameter κ as
the input to this algorithm, generates the system parameters params and the
master private key msk. PKG publishes params and keeps msk secret.

Extract: The user provides his identity ID to the PKG. The PKG runs this
algorithm with identity ID, params and msk as the input and obtains the
private key D. The private key D is sent to user through a secure channel.

Sign: For generating a signature on a message m, the user provides his identity
ID, his private key D, params and the message m as input. This algorithm
generates a valid signature σ on message m by the user.

Verify: This algorithm on input a signature σ on message m by the user with
identity ID, checks whether σ is a valid signature on message m by ID. If true
it outputs “V alid”, else it outputs “Invalid”.

AggregateSign: On receiving the various signatures (σi)i=1 to t from different
users (Ui)i=1 to t, any third party or one of the signers can run this algorithm
and generate the aggregate signature σagg for the set of 〈message, identity〉 pairs
(mi, IDi)i=1 to t.

Note: For sequential aggregation, each user contribute in the generation of ag-
gregate signature by aggregating his own signature to the aggregate signature
generated by the signers so far.

AggregateVerify: This algorithm on input of an aggregate signature σagg , the
list for (mi, IDi)i=1 to t and the params checks whether σagg is a valid aggregate
signature on mi by IDi for all i = 1 to t. If true, it outputs “V alid”, else outputs
“Invalid”.

3 Security Model

3.1 Existential Unforgeability of D-IBS

We define the security model for the existential unforgeability of a deterministic
identity based signature scheme under adaptive chosen identity and message
attack in this section. A D-IBS scheme is secure against existential forgery, under
adaptive chosen identity and message attack if no probabilistic polynomial time
forger F has non-negligible advantage in the following game:

Setup Phase: The challenger C runs the setup algorithm and generates the
system parameters params and the master secret keymsk. Now, C gives params
to the forger F and keeps msk secret.
Training Phase: After the setup is done, F starts interacting with C by query-
ing the various oracles provided by C in the following way:

– Extract Oracle: When F makes a query with an identity ID as input, C
outputs D, the private key of ID to F .
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– Signing Oracle: When F makes a signing query with identity ID and
message m, C outputs a valid signature σ on m by ID.

Forgery Phase: F outputs a signature σ, with IDS as signer, and on a message
m∗. F wins the game if σ is a valid signature and F has not queried for the
signature corresponding to (IDS ,m

∗) pair from the sign oracle and private key
corresponding to IDS . The advantage of F is given by,

AdvD−IBS
F = {Pr[F(V erify(σ) = valid)}

3.2 Existential Unforgeability of IBAS

We define the security model for the existential unforgeability of an IBAS scheme
under adaptive chosen identity and message attack in this section. An IBAS
scheme is secure against existential forgery under adaptive chosen identity and
message attack if no probabilistic polynomial time algorithm F has non-negligible
advantage in the following game.

Setup Phase: The challenger C runs the setup algorithm and generates the
system public parameters params and the master secret key msk. Now, C gives
params to the forger F and keeps msk secret.

Training Phase: After the setup is done, F starts interacting with C by query-
ing the oracles provided by C in the following way:

– Extract Oracle: When F makes a query with an identity ID as input, C
outputs D, the private key of ID to F .

– Signing Oracle: When F makes a signing query with identity ID and
message m, C outputs a valid signature σ on m by ID.

Note: It should be noted that Aggregate sign oracle is not required for
the adversary because aggregation is a public process and any third party
who has t signatures can combine all the signatures to form an aggregate
signature. Thus, the forger F can always generate the aggregate signature
after querying t individual signatures. However, in a sequential aggregation
F sends a so far aggregated signature σagg along with a message, identity pair
(mi, IDi) and requests for the aggregate signature. C generates the current
aggregate signature σagg and sends it to F .

Forgery Phase: F outputs an aggregate signature σagg for signatures (σi)i=1 to t

from the users (IDi)i=1 to t on messages (mi)i=1 to t where, at least one identity
in the list of identities is the say IDS ∈ {IDi}i=1 to t, for which the private key
was not queried by F and let mS the message corresponding to IDS . The forger
F wins the game if σagg is a valid aggregate signature and F has not queried
for the signature corresponding to (IDS ,mS) pair from the sign oracle.

AdvIBASF = {Pr[F(V erify(σagg) = valid)}
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4 Deterministic Identity Based Signature Scheme
(D-IBS)

In this section, we propose a new deterministic identity based signature scheme
and also prove the scheme to be existentially unforgeable under adaptive chosen
message and adaptive chosen identity attack in the random oracle model. The
deterministic identity based signature scheme consists of the following algorithms:

– Setup(κ): Given κ as input, the PKG generates params and msk by per-
forming the following:

• Chooses two primes p and q of size κ, such that p = 2p′+1 and q = 2q′+1
where p′ and q′ are also primes.

• Computes n = pq and the Euler’s totient function φ(n) = (p− 1)(q− 1).
Therefore |n| = 2κ and |φ(n)| = 2κ.

• Chooses e, such that |e| = κ/4 and computes d such that ed ≡ 1 mod
φ(n).

• It also chooses three cryptographic hash functions H0 : {0, 1}∗×{0, 1} →
Z∗
n, H1 : {0, 1}lm × {0, 1}l1 × {0, 1} → {0, 1}κ/2 and H2 : {0, 1}lm ×
{0, 1}l1 ×{0, 1} → {0, 1}κ/2. Here lm is the size of message and l1 is the
size of identity of a user.

• Now, PKG publicizes the system parameters, params = 〈κ, n, e,H0, H1,
H2〉 and keeps the factors of n, namely p, q and the secret inverse d as
the master secret key msk.

– Extract(ID): The user provides his identity ID to PKG. The PKG per-
forms the following to find out the private key of the corresponding user:

• Compute g0 = H0(ID, 0) and g1 = H0(ID, 1).
• Compute d0 = (g0)

d mod n and d1 = (g1)
d mod n.

• The private key D = 〈d0, d1〉 is sent to the corresponding user through
a secure and authenticated channel.

– Sign(m, ID,D): To generate a deterministic signature on a message m, the
user with identity ID performs the following:

• Picks β ∈R {0, 1}
• Computes h1 = H1(m, ID, β) and h2 = H2(m, ID, β).
• Computes σ = (d0)

h1(d1)
h2 mod n.

Now, 〈σ, β〉 is the signature on m by user with identity ID.

It should be noted that β is random from others view but fixed with respect
to the signer. As in [13], in order to avoid maintaining a record of all previous
message/signature pairs, the signer can generate β as β = PRF (D, ID,m),
where PRF () is a private random function (private to the signer). Thus, for
a corresponding private key D, identity ID and message m, there is only
one possibility of β.

– Verify(m,σ, β, ID): In order to verify the validity of a signature 〈σ, β〉 with
respect to the identity ID and messagem, the verifier performs the following:
• Computes g0 = H0(ID, 0) and g1 = H0(ID, 1).
• Computes h′1 = H1(m, ID, β) and h

′
2 = H2(m, ID, β).
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• Checks whether σe mod n
?
= (g0)

h′
1(g1)

h′
2 mod n

• If the above check holds, outputs “V alid”, otherwise outputs “Invalid”.

Correctness of Verification

L.H.S = σe= ((d0)
h′
1(d1)

h′
2)e = ((gd0)

h′
1(gd1)

h′
2)e = (g0)

h′
1(g1)

h′
2 = R.H.S

4.1 Existential Unforgeability of D-IBS

Theorem 1. The identity based signature scheme (D-IBS) is EUF-D-IBS-CMA
secure in the random oracle model under adaptive chosen message and adaptive
chosen identity attack, if the strong RSA problem is assumed to be hard in Z∗

n,
where n = pq, and p, q, (p− 1)/2 and (q − 1)/2 are large prime numbers.

Proof: Suppose a forger F is capable of breaking the EUF-D-IBS-CMA security
of the D-IBS scheme and a challenger C is challenged with an instance of the
strong RSA problem say 〈n, c ∈ Z

∗
n〉, where n is a composite number with two

big prime factors p and q, such that (p− 1)/2 and (q − 1)/2 are also primes. C
can make use of F to compute a and b such that c ≡ ab mod n, by playing the
following interactive game with F . (Note that if mod operation is not specified
then the computation is pure integer computation.)

Setup: C begins the game by setting up the system parameters as in the D-IBS
scheme. C takes n from the instance of the strong RSA problem, chooses e such
that |e| = κ/4, e = xy for some arbitrary x and y, and |x| = |y| = κ/8. C chooses
w such that |w| = κ/8. C sends the public parameters params = 〈n, e〉 to F .
C stores w, x and y for future use in OH0 and OH2 oracles. C also designs the
three hash functions H0, H1 and H2 as random oracles OH0 , OH1 and OH2 . C
maintains three lists LH0 , LH1 and LH2 in order to consistently respond to the
queries to the random oracles OH0 , OH1 and OH2 respectively.

Training Phase: F performs a series of queries to the oracles provided by C.
The descriptions of the oracles and the responses given by C to the corresponding
oracle queries by F are described below. For the sake of simplicity, we assume
that OH0(.) oracle is queried with ID and both 0 and 1 as inputs, before any
other oracle is queried with the corresponding identity as the input parameters.

Oracle OH0(ID, l ∈ {0, 1}): We make a simplifying assumption that A queries
the OH0 oracle with distinct inputs in each query. If the oracle was queried with
ID as input for l = 0 first, the next query with the same identity can be made
with l = 1. There is no loss of generality due to this assumption, because, if the
an identity is repeated with the same l value, by definition the oracle consults
the list LH0 and gives the same response. Thus, we assume that A asks 2qH0

distinct queries for qH0 distinct identities. Among these qH0 identities, a random
identity has to be selected as target identity and it is done as follows.

C selects a random index T , where 1 ≤ T ≤ 2qH0 . C does not reveal T to A.
When A generates the T th query on IDT , C decides to fix IDT as target identity
for the forgery phase. Moreover, C responds to A as follows:
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– If a tuple of the form 〈ID, l, dl, gl, ∗〉 exists in list LH0 , then it returns gl as
response.

– If the tuple of the form 〈ID, l, dl, gl, ∗〉 does not exist in list LH0 , then it
does the following.

• If it is not the T th query i.e. i �= T , then C performs the following:
∗ Chooses d0, d1 ∈R Z∗

n and sets H0(ID, j) = gj = (dj)
e mod n for

j=0,1.
∗ Stores the tuple 〈IDi, j, dj , gj,−〉(for j=0,1) to list LH0 and returns
gl as the response.

• If it is the T th query i.e. i = T , then C performs the following:
∗ Chooses r0 and r such that |r0| = κ/2 and |r| = κ/4.
∗ Sets H0(IDT , 0) = g0 = cxw mod n
∗ Sets H0(IDT , 1) = g1 = cx+re mod n
Note: c is taken from the strong RSA instance, x is chosen by C
during setup.

∗ Here d0, d1 are not known to C and hence C sets dj = ”−” for j=0,1.
∗ Stores the tuples 〈ID, j,−, gj ,−〉 (for j=0,1) to list LH0 and returns
gl as the response.

Note: For λ ∈ {0, 1}, λ̄ represents the negation of λ.

Oracle OH1(m, ID, β): When this query is made by F , C does the following:

– If a tuple of the form 〈m, ID, λ, useful, s(m)
λ1 , t

(m)
λ1 , u

(m), h
(m)
1λ 〉, where λ = β

exists in the list LH1 then return h
(m)
1λ .

– If a tuple of the form 〈m, ID, λ̄, useful, s(m)

λ̄1
, t

(m)

λ̄1
, v(m), h

(m)

1λ̄
〉, where λ̄ = β

exists in the list LH1 then return h
(m)

1λ̄
.

– Else, performs the following:
• Chooses λ ∈R {0, 1}.
• For λ, perform the following:

∗ Choose s
(m)
λ1 , t

(m)
λ1 , s

(m)
λ2 , t

(m)
λ2 , u

(m) ∈R {0, 1}κ/4.
∗ Compute h

(m)
1λ = u(m) + s

(m)
λ1 e+ t

(m)
λ1 y.

∗ Compute h
(m)
2λ = −u(m)w + s

(m)
λ2 e+ t

(m)
λ2 y + 1.

∗ Set useful = 1.
∗ Store the tuple 〈m, ID, λ, useful, s(m)

λ1 , t
(m)
λ1 , u

(m), h
(m)
1λ 〉 in list LH1 .

∗ Store the tuple 〈m, ID, λ, useful, s(m)
λ2 , t

(m)
λ2 , u

(m), h
(m)
2λ 〉 in list LH2 .

• For λ̄, where λ̄ = ¬λ perform the following:

∗ Choose s
(m)

λ̄1
, t

(m)

λ̄1
, s

(m)

λ̄2
, t

(m)

λ̄2
, v(m) ∈R {0, 1}κ/4.

∗ Compute h
(m)

1λ̄
= v(m) + s

(m)

λ̄1
e+ t

(m)

λ̄1
y.

∗ Compute h
(m)

2λ̄
= −v(m)w + s

(m)

λ̄2
e+ t

(m)

λ̄2
y.

∗ Set useful = 0.
∗ Store the tuple 〈m, ID, λ̄, useful, s(m)

λ̄1
, t

(m)

λ̄1
, u(m), h

(m)

1λ̄
〉 in list LH1 .

∗ Store the tuple 〈m, ID, λ̄, useful, s(m)

λ̄2
, t

(m)

λ̄2
, u(m), h

(m)

2λ̄
〉 in list LH2 .

• If β = λ, output h1λ.
• If β = λ̄, output h1λ̄.
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Oracle OH2(m, ID, β): When this query is made by F , C does the following:

– If a tuple of the form 〈m, ID, λ, useful, s(m)
λ2 , t

(m)
λ2 , u

(m), h
(m)
2λ 〉, where λ = β

exists in the list LH2 then return h
(m)
2λ .

– If a tuple of the form 〈m, ID, λ̄, useful, s(m)

λ̄2
, t

(m)

λ̄2
, v(m), h

(m)

2λ̄
〉, where λ̄ = β

exists in the list LH2 then return h
(m)

2λ̄
.

– Else, perform the following:

• Chooses λ ∈R {0, 1}.
• For λ, perform the following:

∗ Choose s
(m)
λ1 , t

(m)
λ1 , s

(m)
λ2 , t

(m)
λ2 , u

(m) ∈R {0, 1}κ/4.
∗ Compute h

(m)
1λ = u(m) + s

(m)
λ1 e+ t

(m)
λ1 y.

∗ Compute h
(m)
2λ = −u(m)w + s

(m)
λ2 e+ t

(m)
λ2 y + 1.

∗ Set useful = 1.
∗ Store the tuple 〈m, ID, λ, useful, s(m)

λ1 , t
(m)
λ1 , u

(m), h
(m)
1λ 〉 in list LH1 .

∗ Store the tuple 〈m, ID, λ, useful, s(m)
λ2 , t

(m)
λ2 , u

(m), h
(m)
2λ 〉 in list LH2 .

• For λ̄, where λ̄ = ¬λ perform the following:

∗ Choose s
(m)

λ̄1
, t

(m)

λ̄1
, s

(m)

λ̄2
, t

(m)

λ̄2
, v(m) ∈R {0, 1}κ/4.

∗ Compute h
(m)

1λ̄
= v(m) + s

(m)

λ̄1
e+ t

(m)

λ̄1
y.

∗ Compute h
(m)

2λ̄
= −v(m)w + s

(m)

λ̄2
e+ t

(m)

λ̄2
y.

∗ Set useful = 0.
∗ Store the tuple 〈m, ID, λ̄, useful, s(m)

λ̄1
, t

(m)

λ̄1
, u(m), h

(m)

1λ̄
〉 in list LH1 .

∗ Store the tuple 〈m, ID, λ̄, useful, s(m)

λ̄2
, t

(m)

λ̄2
, u(m), h

(m)

2λ̄
〉 in list LH2 .

• If β = λ, output h2λ.
• If β = λ̄, output h2λ̄.

Oracle OExtract(ID): C checks whether tuples of the form 〈ID, 0, d0, g0,−〉 and
〈ID, 1, d1, g1, r〉 exists in the list LH0 , if so returns the corresponding d0 and d1
as the private keys corresponding to the identity ID. However, if ID = IDT , C
aborts.
Oracle OSign(m, ID): C checks whether ID

?
= IDT and performs the following

to generate the signature on m by ID:

– If ID �= IDT , then C knows the private key corresponding to ID, so C chooses
β ∈R {0, 1} and performs the signing as per the protocol and generates σ,
after querying OH1(m, ID, β) and OH2(m, ID, β).

– If ID = IDT , then C checks whether a tuple corresponding to (m, IDT ,−) is
found in LH1 and HH2 . If it does not exist, C invokes the OH1(m, IDT , 0) and
OH2(m, IDT , 0) oracles. Then, C simulates the signing algorithm as follows:
(because, C does not know the private key corresponding to IDT ):

• C retrieves the tuples corresponding to m, IDT from the lists LH1 and

LH2 , for which the flag useful=0. Let 〈m, ID, γ, useful = 0, s
(m)
γ1 , t

(m)
γ1 ,

v(m), h
(m)
1γ 〉 be the tuple in list LH1 and 〈m, ID, γ, useful = 0, s

(m)
γ2 , t

(m)
γ2 ,

v(m), h
(m)
2γ 〉 be the tuple in list LH2 .
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• Set β = γ.

• Computes σ = cxws
(m)
γ1 cwt

(m)
γ1 cxs

(m)
γ2 ct

(m)
γ2 c−rv

(m)wcrs
(m)
γ2 ecrt

(m)
γ2 y mod n.

– Sends σ, β as the signature on the message m by identity IDT .

The verification of a signature is done by checking whether σe
?
= (g0)

h1(g1)
h2 .

We need to verify only the case when ID = IDT because in other cases, the
signature is generated as per the protocol.

Forgery Phase: At the end of the Training Phase, F produces a forged
signature σ∗, β∗ on the message m∗ as if signed by the user with identity IDS . If
σ∗ is a valid signature on m∗ and if σ∗ satisfies all the constraints given below,
then C can solve the hard problem.

– IDS = IDT

– Private key of IDT is not queried to Extract oracle.
– Signature on m∗, IDT is not queried to Sign Oracle. (This is forbidden in

the model because it is a deterministic signature scheme).

– The tuple 〈m∗, IDT , β
∗, useful, s(m

∗)
β∗1 , t

(m∗)
β∗1 , v

(m∗), h
(m∗)
1β∗ 〉 corresponding to

m∗, IDT , in list LH1 and the tuple 〈m∗, IDT , β
∗, useful, s(m

∗)
β∗2 , t

(m∗)
β∗2 , v

(m∗),

h
(m∗)
2β∗ 〉 corresponding to m∗, IDT , in list LH2 has the flag “useful=1”.

Now, if the above constraints are satisfied, then C obtains a and b such that
c = ab mod n by performing the following:

– The public keys corresponding to IDT , i.e. H0(IDT , 0) and H0(IDT , 1), are
set to be 〈g0 = cxw and g1 = cx+re〉 by C while F performed the OH0(IDT , .)
queries (Note that c was taken from the strong RSA problem instance).

– Let d be such that d ≡ e−1 mod φ(n), where e is the master public key.

Note: Now, in terms of the public keys and the value d, the private keys
corresponding to IDT are d0 = gd0 = cxwd and d1 = gd1 = cxd+r, implicitly.
However, these values cannot be computed explicitly by C, because C has
no way of computing d. That is why C has set ” − ” for these unknowns in
OH0 oracle queries. Thus, the values d0 and d1 used in the proof are only
hypothetical.

– Since we have the condition that “useful= 1”, C should have set the h
(m∗)
1β∗ =

OH2(m
∗, IDT , β

∗) = u(m
∗)+s

(m∗)
β∗1 e+ t

(m∗)
β∗1 y and h

(m∗)
2β∗ = OH2(m

∗, IDT , β
∗)

= u(m
∗)w + s

(m∗)
β∗2 e+ t

(m∗)
β∗2 y + 1 respectively.

– Now, σ∗ = (d0)
h
(m∗)

1β∗ (d1)
h
(m∗)

2β∗ = (cxwd)h
(m∗)

1β∗ (cxd+r)h
(m∗)

2β∗ and hence the signa-

ture verification holds good for a proper forgery, because (σ∗)e = ((cxwd)h
(m∗)

1β∗

(cxd+r)h
(m∗)

2β∗ )e = (cxw)h
(m∗)

1β∗ (cx+re)h
(m∗)

2β∗ = g
h
(m∗)

1β∗
0 g

h
(m∗)

2β∗
1 .

– Hence, the forgery σ∗, submitted by F is of the following form. Now, for the

sake of simplicity, we rename the values v(m
∗) = v, s

(m∗)
β∗1 = s1, t

(m∗)
β∗1 = t1,

s
(m∗)
β∗2 = s2 and t

(m∗)
β∗1 = t2 in the following equations.



Deterministic Identity Based Signature Scheme and Its Application 291

σ∗= (d0)
h
(m∗)

1β∗ (d1)
h
(m∗)

2β∗ = (cxwd)h
(m∗)

1β∗ (cxd+r)h
(m∗)

2β∗

= (cxwd)(v
(m∗)+s

(m∗)

β∗1
e+t

(m∗)

β∗1
y)(cxd+r)(−v

(m∗)w+s
(m∗)

β∗2
e+t

(m∗)

β∗2
y+1)

= (cxwd)(v+s1e+t1y)(cxd)(−vw+s2e+t2y+1)(cr)(−vw+s2e+t2y+1)

= c(xwdv+xwds1e+xwdt1y)c(−xdvw+xds2e+xdt2y+xd)c(−rvw+rs2e+rt2y+r)

= c(xwdv+xwds1e+wdt1e)c(−xwdv+xds2e+dt2e+xd)c(−rvw+rs2e+rt2y+r)

(Since xy = e)

= c(xwds1e+wdt1e+xds2e+dt2e−rvw+rs2e+rt2y+r)cxd

= c(xws1+wt1+xs2+t2−rvw+rs2e+rt2y+r)cxd (Since ed ≡ 1 mod φ(n))

– Let, z = c(xws1+wt1+xs2+t2−rvw+rs2e+rt2y+r) and z can be computed by C
because C knows the values r, s1, s2, t1, t2, v, w, x and y.

– Therefore, σ∗ = zcxd ⇒ cxd = σ∗/z ⇒ cxd = cx(x
−1y−1) = cy

−1 ⇒ σ∗ =

zcy
−1

. Thus, C can obtain the solution for the equation c = ab mod n with
a = σ∗/z and b = y.

Probability Analysis: The analysis is given in the full version of this paper

5 Identity Based Aggregate Signature Scheme from RSA
(IBAS)

We propose the new identity based aggregate signature (IBAS) scheme in this
section and prove the existential unforgeability of the scheme.

Deterministic General IBAS: Our scheme is a deterministic identity based
aggregate signature scheme, which supports full aggregation, i.e. the size of the
aggregate signature is one group element along with the message and the list
of identities. The scheme consists of six algorithms, out of which Setup, Ex-
tract, Sign and Verify are identical to that of D-IBS scheme. We explain the
AggregateSign and AggregateVerify algorithms below:

– AggregateSign: This algorithm takes as input a set of t signatures {σi,
βi}i=1 to t and the corresponding message identity pairs 〈mi, IDi〉, such that
∀i = 1 to t, 〈σi, βi〉 is the valid signature by the user with identity IDi on
message mi. The aggregation is done as follows:

σagg =

t∏
i=1

σi

The identity based aggregate signature is σagg and the corresponding list of
message, identity and β’s is L = {mi, IDi, βi}i=1 to t.

– AggregateVerify: This algorithm takes the identity based aggregate signa-
ture σagg and the corresponding list of message identity pairs, L = {mi, IDi,
βi}i=1 to t and performs the verification as follows:

• For all i=1 to t
Compute gi0 = H0(IDi, 0)
Compute gi1 = H0(IDi, 1)
Compute h′i1 = H1(mi, IDi, βi) and
Compute h′i2 = H2(mi, IDi, βi)
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• Ifσeagg
?
=

t∏
i=1

((gi0)
h′
i1(gi1)

h′
i2), thenoutputs “V alid” else outputs “Invalid”.

The correctness of verification is straight forward.

Security Proof for IBAS

Theorem 2. Our identity based aggregate signature scheme (IBAS) is EUF-
IBAS-CMA secure in the random oracle model under adaptive chosen message
and adaptive chosen identity attack, if the strong RSA problem is assumed to be
hard in Z

∗
n, where p, q, (p− 1)/2 and (q − 1)/2 are large prime numbers.

Proof is given in the full version of this paper.

6 Conclusion

This paper presents the first fully deterministic identity based signature scheme
whose signature consists of just one group element. This scheme leads to an
identity based aggregate signature scheme that is most efficient and achieves full
aggregation without any prior communication among signers and this settles the
open problem raised in [15]. Our deterministic signature scheme has additional
attractive property that it does not employ any bilinear pairing based compu-
tations. We have proved the security in random oracle model and the natural
open question is to design a fully deterministic identity based signature scheme,
secure in the standard model.

References

1. Bagherzandi, A., Jarecki, S.: Identity-Based Aggregate and Multi-Signature
Schemes Based on RSA. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 480–498. Springer, Heidelberg (2010)

2. Barreto, P.S.L.M., Libert, B., McCullagh, N., Quisquater, J.-J.: Efficient and
Provably-Secure Identity-Based Signatures and Signcryption from Bilinear Maps.
In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 515–532. Springer, Hei-
delberg (2005)

3. Bellare, M., Namprempre, C., Neven, G.: Unrestricted Aggregate Signatures. In:
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Abstract. The auxiliary input model for leakage-resilient encryption
considers the leakage of a computationally hard-to-invert function, which
can capture a wide class of possible side channel attacks. To avoid the
trivial attack that the leakage function simply outputs the forged sig-
nature, we propose a new selective auxiliary input model for signatures.
This model captures side channel attacks that are based on the physical
implementation of the cryptosystem regardless of the underlying public
parameters chosen.

We provide the first generic construction of fully leakage-resilient sig-
natures, allowing polynomial leakage of the signing key and all interme-
diate randomness used, under this selective auxiliary input model. We
then demonstrate an efficient instantiation of it, thus solving an open
problem mentioned by Boyle et al. (Eurocrypt 2011).

1 Introduction

To guarantee the security of a cryptosystem, we usually define an attack model
which captures and limits the adversarial behavior of an attacker. The system
is only guaranteed to be secure under the defined model if the adversary follows
the restrictions described in the model. One of the most fundamental restriction
of most traditional models is that the adversary should not be able to obtain
the secret key of the system1. In most cases, such as the IND-CCA model for
encryption or the EUF-CMA model for signatures, the adversary is not even
allowed to obtain one bit of information of the secret key. However, in reality,
there are a number of side-channel attacks (e.g. timing, power, etc.) which help
the attacker to obtain partial information about the secret key. Therefore we do
not have the security guarantee provided by the traditional security model, if
the attacker obtains some side-channel information about the secret key.

Leakage-resilient cryptography was proposed to capture such side-channel at-
tacks, and provides security guarantees even if the adversary can obtain partial
information about the secret key. In this paper, we will focus on leakage-resilient
signature schemes. We consider memory attacks, i.e., the adversary can learn
arbitrary information about the secret state of a system, including the signing

1 There are certain exceptions, such as the unconditional anonymity of ring signatures,
where the signer remains anonymous even if the adversary obtains all signing keys.

W. Susilo, Y. Mu, and J. Seberry (Eds.): ACISP 2012, LNCS 7372, pp. 294–307, 2012.
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key sk and the internal randomness r. More precisely, the power of an adversary
is modeled by an efficiently computable function f applied to sk and r, under
certain restrictions. The power of the attacker depends on the restrictions. The
relative leakage model [1] only allows the leakage function f to output at most l
bits, where l is smaller than the size of the secret key. The bit size restriction is
later relaxed to the entropy constraint, where f is restricted to lower the entropy
of the secret key by at most l bits [2]. These two models consider l as a fraction
of the secret key. On the other hand, the bounded retrieval model (e.g., see [3,4])
considers l as a system parameter and increases the size of the secret key to
accommodate l bits of leakage. It will not affect the size of the public key, the
signature size and the efficiency of verification in the case of signatures.

A drawback of the length/entropy-bounded leakage model is that, if a sys-
tem is used for a sufficiently long time, the real world attacker may eventually
obtain leakages larger than the upper bound of the leakage permitted in the
security model. If the secret key is shared among various cryptosystems, or the
randomness is reused in different cryptosystems, the attacker may collect enough
information through different channels for a sufficiently long time. There are two
directions to solve this problem. The first approach is to refresh the secret key
periodically, while bounding the leakage between updates. This model is known
as the continual leakage model [5,6]. The second approach is to further relax the
restriction on f by the auxiliary input model proposed by Dodis et al. [7]. This
model allows the leakage of any function f which cannot be inverted by any
polynomial time adversary with non-negligible probability. For example, the ad-
versary can obtain a one-way permutation of the secret key in the auxiliary input
model, which is not allowed in the length/entropy-bounded leakage model since
it information-theoretically reveals the entire secret key. Therefore the auxiliary
input model allows a larger classes of leakage functions.

Leakage-Resilient Signatures. Alwen et al. [8] gives a leakage-resilient sig-
nature (LR-Sig) in the bounded-retrieval model, which tolerates leakage of up to
half the secret key. Katz and Vaikuntanathan [9] proposed a generic construction
of LR-Sig in the standard model. It tolerates leakage of n−nε bits of information
about the n-bit secret key for any ε > 0, but does not allow leakage of the in-
ternal state. They also proposed an efficient leakage-resilient one-time signature
scheme in the standard model based on one-way functions, which tolerates leak-
age of the secret key and the internal state. The notion of fully leakage-resilient
was proposed in [9] to represent the resilient to leakage on all intermediate values
the signer used throughout the lifetime of the system.

Continuous LR-Sig were proposed independently by Dodis et al. [5] and Brak-
erski et al. [6]. The first scheme in [5] is an extension from [9], and is resilient
to leakage of the signing key only. The second scheme in [5] is secure in the
random oracle model, which tolerates leakage of up to n/2 bits of the entire
current secret state of the signer. Brakerski et al. [6] also proposed two LR-Sig
in the continuous (bounded) leakage model. The first scheme is also an extension
from [9], and is resilient to leakage of the signing key only. The second scheme is
fully leakage-resilient in the random oracle model and tolerates (1− o(1))n bits
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leakage, but requires refreshing the signing key after every few invocation of the
signing algorithm.

Fully leakage resilient signatures were proposed independently by Malkin et
al. [10] and Boyle et al. [11], in the continuous (bounded) leakage model, which
tolerates (1 − o(1))n bits leakage of the entire secret state. Boyle et al. [11]
mentioned that fully leakage-resilient signatures with auxiliary input is an open
problem. In this paper, we try to solve this open problem, and also extend the
auxiliary input model to support continuous updates.

A recent and independent paper by Faust et al. [12] also tried to solve this
open problem by proposing a LR-Sig scheme with auxiliary input. They proposed
two different security models and gave a secure construction in each model. They
extended their schemes to give auxiliary input secure identification schemes.

Challenge on the Model. There are two main challenges for LR-Sig with
auxiliary input: the security model and the construction. Modeling hard-to-
invert leakage for signature schemes is an important open problem in [11]. In
the bounded-leakage model, it requires that the signing key still has a certain
amount of min-entropy even after seeing the leakage (of the signing key and the
randomness used in past signatures). Firstly, observe that the EUF-CMA model
for signatures cannot be trivially combined with the auxiliary input model for
public key encryption. It is because in the auxiliary input model for encryption,
the adversary is allowed to obtain an arbitrary polynomial-time computable
hard-to-invert leakage f . It does not restrict the adversary to model the func-
tion f to be the signing algorithm for the challenge message M∗. If such leak
oracle query is allowed for LR-Sig, the adversary can always forge a signature.
Therefore, a new security model is needed for LR-Sig with auxiliary input.

Recently, Faust et al. [12] proposed two methods to solve this problem. Firstly,
they proposed a random message unforgeability model, where the challenge mes-
sage is randomly chosen from the message space instead of chosen by the ad-
versary. Therefore, the adversary cannot ask for the leakage of a signature on
the challenge message. Secondly, they proposed an auxiliary input model which
only allows exponentially hard-to-invert leakage. Since the signing algorithm can
be viewed as a polynomially hard-to-invert leakage, the signing algorithm is ex-
cluded from the set of allowed leakage in this model. Their first model is less
useful in signatures, since the adversary may be able to sign a specific message
even though he may not be able to sign a random message. Their second model
is more suitable for signatures, but the set of allowed leakage functions is greatly
reduced by the exponentially hard-to-invert restriction. It is desirable to define a
security model for the standard chosen message attack with polynomially hard-
to-invert leakage, and yet prevents the adversary to obtain a forged signature on
the challenge message from the leakage.

Our Contributions. We give the first chosen message attack model that cap-
tures the leakage of the polynomially hard-to-invert function, called the selective
auxiliary input. In this model, the adversary has to specify the leakage function
f prior to the announcement of the public parameters (the public key, generator
of the group used, modulus, etc.). As a result, the adversary cannot embed the
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signing algorithm into f without having the public parameters. It is similar to
the selective ID model for identity-based encryption [13], where the adversary
must commit ahead of time to the identity that it intends to attack. The ad-
vantage of the selective auxiliary input model is that it captures the standard
chosen message attack, while we still capture the polynomially hard-to-invert
leakage. This model is more suitable to capture real-world side channel attacks
where the leakage method is independent of the public parameters. For example,
for the power analysis of the CPU, the attacker may obtain certain bits after a
few clock cycles of the CPU, which is not related to the public parameters of the
underlying cryptosystem used. In general, side channel attacks are attacks that
are based on the physical implementation of a cryptosystem, rather than the
weakness of the public parameters that have been chosen. Therefore, the selec-
tive auxiliary input is a reasonable security model without having the problems
of the security models in [12].

Challenge on the Construction. We would like to construct the first fully
leakage-resilient signatures with selective auxiliary inputs. Under the new secu-
rity model, the adversary can even leak the entire entropy of the secret key (e.g.
one-way permutation of the secret key), which is not allowed in most LR-Sig
schemes ([8,9,5,6,11]).

The first idea we considered is to use the recent leakage-resilient identity-
based encryption (IBE) with auxiliary input [14]. It is well-known that a secure
IBE implies a secure signature scheme [15]. However, this idea does not work
since the model of leakage-resilient IBE only allows the leakage of identity-based
secret keys, but not the randomness computing them. Therefore, it cannot be
applied to the fully leakage-resilient signature model.

The second approach is to construct it from the Boyle et al. scheme [11]. The
main challenge is that [11] used the entropy bound for the security proof. For
the auxiliary input model, we only restrict that the leakage oracle cannot reveal
the secret key. Therefore restricting the entropy loss cannot be used to construct
a LR-Sig with auxiliary input. Furthermore, using an encryption scheme in a
signature is not efficient. Generally speaking, a CPA-secure encryption scheme
in the standard model can have a ciphertext size as double the message size. On
the other hand, an efficient signature scheme in the standard model can have
a signature size close to the message size. Therefore, it is desirable to design a
LR-Sig scheme without using encryption.

Our Approach. We give a generic construction secure in the auxiliary input
model by improving the schemes in [9,11]. The original purpose of the use of
lossy encryption in [11] is to enable the simulator in the security proof to switch
between the real witness (x, ω) and the fake witness (x′, ω′). The distributions
of the lossy encryption of both witnesses are statistically close. Therefore the
simulator can leak the fake witness instead of the real one. The idea to con-
struct a LR-Sig with auxiliary input is to replace the lossy encryption with a
statistically hiding commitment scheme. The first observation is that we only
need to hide the witness statistically. The decryption algorithm is only needed
in the proof in [11]. Therefore, we only need a knowledge extractor for the
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commitment scheme with respect to the challenge message only. We use the
statistically hiding commitment scheme with extraction since it can incorporate
with the SNIWI proof system. The signature of a message m is the SNIWI proof
for the following language L′:

L′ = {(s, y, ck,m,H,C′′) : ∃x, ω′′ s.t. fs(x) = y ∧ C′′ = CommitH(m)
ck (x;ω′′)},

where (KGen,Commit,Decommit) is a statistically hiding commitment scheme
with extraction, ck ← KGen(1λ) and ω′′ is the randomness used in Commitck
with the tagH(m). There are a few advantages of using commitment scheme over
encryption. Firstly, using encryption in a signature is somewhat counter-intuitive
and seems inefficient as we discuss previously. Using commitment scheme in sig-
nature is common in many signature schemes. Our proposal is more efficient
than the existing LR-Sig scheme, since the commitment scheme can be reused
in the SNIWI proof. Secondly, when we use a public key encryption scheme, the
corresponding decryption key is generated with the public key (unless the public
key can be sampled uniformly from the public key space, without affecting the
security). Although this decryption key is not stored by the signer, the key gen-
eration process may still be exposed by the side channel attack. Therefore, this
decryption key is an extra source of weakness of the system and may reduce the
security of the system. On the other hand, the binding key of the commitment
scheme only appears in the security proof, since it is generated by another in-
distinguishable key generation algorithm appeared in the security proof. There
is no real-world attack on the binding key.

2 Security Models for Leakage-Resilient Signatures

In this section, we define the security model for LR-Sig with auxiliary inputs.
A signature scheme consists of three polynomial-time algorithms:

KeyGen: On input a security parameter 1λ, it generates a signing key sk and a
verification key vk.
Sign: On input sk and a message m from a message space M, it outputs a
signature σ.
Verify: On input vk,m and σ, it outputs a bit 1 or 0 symbolizing the validity
of the signature.

Correctness. ∀m ∈ M, 1 ← Verify(vk,m, Sign(sk,m)), where (sk, vk) ←
KeyGen(1λ).

2.1 Selective Auxiliary Input Model for Unforgeability

We consider the following existential unforgeability game against adaptive cho-
sen message attacks (EUF-CMA) for unforgeability, together with the leakage-
resilient with selective auxiliary inputs.

We write (sk, vk)← KeyGen(1λ; r), where r is the randomness used in KeyGen.
We write σ ← Sign(sk,mi; ri), where ri is the randomness used in Sign. Denote
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state as a set of random coins used. Denote a polynomial-time (in λ) computable
function family F . The game LR-Sig is defined as follows.

1. Select. The adversary A gives a set of leakage functions F ⊂ F to the chal-
lenger.

2. Setup. The challenger samples r ← {0, 1}∗ and runs (sk, vk)← KeyGen(1λ; r).
The challenger gives vk to A and sets state = {r}.

3. Query. The following oracles can be queried by A:
– Signing Oracle SO(mi): On input a message mi ∈ M, it samples ri ←
{0, 1}∗ and returns the signature σi ← Sign(sk,mi; ri). It sets state :=
state ∪ {ri}.

– Leak Oracle LO(fi): On input a polynomial-time computable function
fi ∈ F, it returns fi(state).

4. Output. A returns a message-signature pair (m∗, σ∗).

A wins the game if 1 ← Verify(vk,m∗, σ∗) and m∗ was not queried to the
signing oracle.

A signature scheme is EUF-CMA secure w.r.t. selective auxiliary inputs from
F if there is no PPT A winning the game above with non-negligible probability.

2.2 Classes of Auxiliary Input Functions

We define two classes of function families as Dodis et al. [7]. For future conve-
nience, we will parametrize these families by the min-entropy ku of the signing
key, as opposed to the security parameter 1λ (Note, in our schemes the signing
key will be random, so ku is simply the length of the signing key.). Denote the
number of leak oracle query as ql. Denote statei as the value of state where the
i-th leak oracle is queried.

The first family Fbdd is the length-bounded family studied by the prior works
(e.g. [9,11]), while the second family, Fvk−ow , is similar to the auxiliary input
families introduced by Dodis et al. [7]. It only assumes that the signing key is
“hard to compute” given the leakage.

– Let Fbdd(u(ku)) be the class of all polynomial-time computable functions
f of constant output size. We have further restriction on the security model
such that for all f1, . . . , fql queried in the leak oracle,

∑ql
i=1 |fi(statei)| ≤ u,

where u is the number of bits the attacker is allowed to learn about the
signing key. The trivial leakage upper bound is u ≤ ku, which means that
the total leakage is less than the min-entropy of the signing key.

– Let Fvk−ow(gu(ku)) be the class of all polynomial-time computable functions
f ; and let S denote a set of qs signing oracle output, such that for f1, . . . , fql ∈
Fvk−ow, given vk,S, and {fi(statei)}i∈[1,ql], (for (sk, vk, r, {ri}i∈[1,ql]) that is
randomly generated), no PPT algorithm can find sk with probability greater
than gu(ku), where g

u(ku) ≥ 2−ku is the hardness parameter. Our goal is to
make gu(ku) as large (i.e., as close to negl(ku)) as possible.
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Differences from Previous Definitions. Our model bears some differences
from the existing model of public key encryption (PKE) with auxiliary input
[7], identity-based encryption (IBE) with auxiliary input [14], signatures with
entropy-bounded leakage [11], and signatures with auxiliary input [12].

1. We models the leakage as an adaptive oracle, with auxiliary function as
the input. The adversary can modify its query according to the previous
oracle output, as in [16,11]. (In [7], since the CPA security for PKE only has
the leak oracle query, they modeled it as a single oracle query.) Although
the adversary has to select the set F at the beginning, he can still change
the sequence of the query fi according to the changes of the internal state
of the challenger.

2. In [7,14], they only define the CPA security, where no decryption oracle is
provided to the adversary. For EUF-CMA, we have to provide the signing
oracle. Similar to the decryption oracle for CCA security, the signing oracle in
EUF-CMA uses the secret key to calculate the oracle output. As a result, the
output from the signing oracle (or decryption oracle in the case of PKE/IBE)
contains some information about the secret key. Therefore, they have to be
considered when defining the classes of function families. The models in
[11,12] do not need to consider this restriction.

3. Our model is similar to the EU-CMAA model in [12]. After removing step
1 of our security game, and restricting leakage family to be exponentially
hard-to-invert, we obtain the EU-CMAA model.

Definition 1. A signature scheme is said to be

– (u(ku))-sLB-EUF-CMA (selective length-bounded EUF-CMA) secure if it is
EUF-CMA secure w.r.t. family Fbdd(u(ku)).

– (gu(ku))-sAI-EUF-CMA (selective auxiliary input EUF-CMA) secure if it is
EUF-CMA secure w.r.t. family Fvk−ow(gu(ku)).

3 Building Blocks

We use the notation negl(·) to refer to some negligible function. We use PPT
stands for probabilistic polynomial-time.

3.1 Second-Preimage Resistant

A family of second-preimage resistant (SPR) functions is a pair of polynomial
time algorithms:

– KGen: on input 1λ, outputs a description s ∈ {0, 1}∗ of a function F.
– F: on input s and x ∈ {0, 1}μ(λ), outputs y ∈ {0, 1}κ(λ).

The second-preimage resistant property is that if given a randomly chosen x ∈
{0, 1}μ(λ) and a description of a randomly chosen function s ← KGen(1λ), it is
computationally infeasible to find an input x′ ∈ {0, 1}μ(λ) such that x′ �= x and
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F(s, x) = F(s, x′). For simplicity, we usually write F(s, x) as Fs(x). We further
say that F = (KGen,F) is a family of public-coin SPR functions, if it satisfies
the definition above even when A takes as input also the internal randomness
that was used by KGen(1λ) for sampling the function.

3.2 Statistical Non-interactive Witness-Indistinguishable Proof

For a language L with witness relation RL, the proof system is a triplet of
algorithms (CRSGen, P, V), where CRSGen is an algorithm generating common
reference strings crs, P and V are the prover and verifier algorithms, respectively.

– CRSGen: on input 1λ, outputs a common reference string crs.
– P: on input crs, x and w, outputs a proof π if (x,w) ∈ RL.
– V: on input crs, x and π, outputs 1 for accept and 0 for reject.

We require that the proof system is complete, sound, and statistically witness
indistinguishable given the crs.

3.3 Admissible Hash Functions

Admissible hash function [17] allows the partition of message space into two
subsets, which we will label as red and blue. We follows the definition in [18].

For K ∈ {0, 1,⊥}τ(λ), we define the function FK : {0, 1}τ(λ) → {Red,Blue}:

FK(y) :=

{
Red if ∀i ∈ {1, . . . , τ(λ)} : Ki = yi or Ki = ⊥,
Blue otherwise.

For any u = u(λ) < τ(λ), let Ku,λ denote the uniform distribution over
{0, 1,⊥}τ(λ) conditioned on exactly u positions having ⊥ values. Let H = {Hλ}
be a hash function ensemble, where each H ∈ Hλ is a polynomial-time com-
putable function H : {0, 1}∗ → {0, 1}τ(λ). For each H ∈ Hλ, we define the
function FK,H : {0, 1}∗ → {Red,Blue}, which colors the space {0, 1}∗ according
to FK,H(x) = FK(H(x)). We can further define H as a public-coin admissible
hash function ensemble as in [11].

3.4 Commitment Scheme

A commitment scheme allows one to commit to a value while keeping it hidden,
with the ability to reveal the committed value later. A commitment scheme for
a message space M has the following syntax:

– KeyGen(1λ): It takes as input the security parameter λ and outputs a com-
mitment key ck.

– Commit(ck,m): It takes as input ck and a message m ∈ M, and outputs
(c, d) where c is the commitment value and d is the decommitment value.

– Decommit(ck, c, d,m): It takes as input ck, c, d, and a message m, output 1
or 0 indicating if c is a valid commitment to m.
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A commitment scheme has Correctness, Hiding and Binding properties. We de-
note ckh ← KeyGenh(1

λ) as the commitment key generated by the challenger of
the hiding game. We denote (ckb, bk) ← KeyGenb(1

λ) as the commitment key
and the binding key generated by the challenger of the binding game.

Statistically Hiding Commitment Scheme with Extraction has the fol-
lowing properties.

– Indistinguishable Key Generation. The distribution of hiding keys and
the distribution of binding keys are computationally indistinguishable.

– Statistically Hiding. (KeyGenh,Commit,Decommit) is a statistically hiding
commitment scheme. The distribution of the commitment values generated
by different messages are statistically indistinguishable, if the commitment
key is generated by KeyGenh.

– Extraction. There exists an algorithmDec such that (KeyGenb,Commit,Dec)
is a public key encryption scheme with errorless decryption.

Tag-Based Commitment Scheme. There are a number of commitment
schemes [19,20,21,22] that use extra tags in commit and decommit. For
simulation-sound commitment scheme, we further assume that commitments are
labeled with a tag tag. Therefore, the algorithms Committag and Decommittag
use tag as an extra input. The tag-based commitment, for a message space M
and a tag space {0, 1}n, has the following syntax:

– KeyGen(1λ): It takes as input the security parameter λ and outputs a com-
mitment key ck.

– Committag(ck,m): It takes as input the commitment key ck, a message m ∈
M and a tag ∈ {0, 1}n, and outputs (c, d) where c is the commitment value
and d is the decommitment value.

– Decommittag(ck, c, d,m): It takes as input ck, c, d, a message m and a tag,
output 1 or 0 indicating if c is a valid commitment to m for tag.

We can similarly define the correctness, hiding and binding properties for the
same tag. If the hiding property holds for some tags, we call them hiding tags.
If the binding property holds for some tags, we call them binding tags.

3.5 Statistically Hiding Tag-based Commitment Scheme with
Extraction

Our construction uses a commitment scheme which has the following proper-
ties defined above: statistically hiding for hiding tags; computationally binding
for binding tags; extraction for binding tags; and indistinguishable Key Gener-
ation. We also need the oblivious sampling of KeyGen: The distribution of ck is
statistically-close to the uniform distribution.

This commitment scheme is similar to some existing primitives in the liter-
ature. For R-Lossy PKE [11], the lossiness under lossy tags (resp. decryption
under injective tags, decryption algorithm) is similar to the statistically hiding
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for hiding tags (resp. computationally binding for binding tags, extraction algo-
rithm) of the commitment scheme. Both primitives requires the indistinguishable
key generation algorithms and oblivious sampled public keys. On the other hand,
these two primitives still have some differences. For R-Lossy PKE, there are dif-
ferent ways to define the decryption relations, such as REQ for equality relation,
and RBM for bit matching relation. For the commitment scheme, no explicit
decryption algorithm is defined. Such algorithm is only defined in the extraction
property and does not have other decryption relations.

For selective opening commitment [23], it considers the case that the commit-
ment is still hiding even if a number of commitments are opened (the decommit-
ment values are given). This security requirement is important in zero-knowledge
proofs, especially in the concurrent composition of zero-knowledge proofs. For
our construction, we need the property that the commitment is still binding even
if a number of commitments are opened. Therefore we use the tag to partition
which commitments can be opened and which commitment is binding.

4 Construction

In this section, we present a fully leakage-resilient signature with auxiliary input.
We use the following primitives in our construction:

– Let F = (KeyGenSPR,F) be a family of public-coin second pre-image resistant
functions Fs : {0, 1}μ(λ) → {0, 1}κ(λ) for some κ(λ) < μ(λ).

– Let C = (KeyGenCom,Commit,Open) be a family of statistically hiding tag-
based commitment scheme with extraction.

– Let H be a public-coin admissible hash function ensemble, which maps from
the message space to the tag space of C.

– Let Π = (CRSGen,P,V) be a SNIWI proof system for the language

L = {(s, y, t, ck, C) : ∃(x, ω) st C = Committ(ck, x;ω) and Fs(x) = y}.

Now we give our signature scheme as follows:

– KeyGen(1λ): On input 1λ, it samples

• a uniformly distributed x← {0, 1}∗;
• a function description s← KeyGenSPR(1

λ) from the SPR family;
• a description of an admissible hash function H ← Hλ;
• ck ← {0, 1}∗ to be used as commitment keys of the statisically hiding
tag-based commitment scheem with extraction C;

• crs ← {0, 1}∗ to be used as a common reference string of the SNIWI
proof system Π .

It computes y = Fs(x). It outputs the signing key sk = x and the verification
key vk = (s, y,H, ck, crs).

– Sign(sk,M): On input the signing key x and a messageM , it picks some ran-
domness ω and computes C = C.CommitH(M) (ck, x;ω). It obtains a proof
π ← P(crs, (s, y,H(M), ck, C), (x, ω)) and outputs the signature (C, π).
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– Verify(vk,M, σ): On input vk, the message M and the signature σ = (C, π),
it outputs 1 if and only if V(crs, (s, y,H(M), ck, C), π) = 1.

Theorem 1. The signature is (negl(λ))-sAI-EUF-CMA assuming the existence
of the schemes F ,H, C and Π with properties described above.

The proof of the theorem will be given in the full version of the paper.

Remark. We can prove the security of our scheme under the auxilary input
model by [12], with exponentially hard-to-invert leakage. The security proof is
very similar and is omitted. Note that our sAI-EUF-CMAmodel is incomparable
to the security model in [12].

5 Efficient Instantiation

We show that our generic construction can be efficiently instantiated based on
the Decision Linear Assumption [24]: Given (u, v, h, ua, vb, hc) in a group G, it
is hard to decide if c = a+ b.

5.1 Building Blocks

Let G(1λ) be a PPT algorithms which outputs (G,GT , p, g, ê), where G and GT

are groups of prime order p, g is the generator of G, and ê : G × G → GT is a
bilinear maps.

Family of SPR Functions. The linear-based SPR function family F =
(KeyGenSPR,F) is defined as [5]:

– KeyGenSPR: On input 1λ, it samples (G,GT , p, g, ê)← G(1λ). Then it samples
s = (h1, . . . , hk(λ), h

′
1, . . . , h

′
k(λ))← G2k(λ) uniformly at random and outputs

the description s.
– F: On input a description s and an input (g1, . . . , gk(λ)) ∈ Gk(λ), it outputs:

F(s, (g1, . . . , gk(λ))) =

⎛⎝k(λ)∏
i=1

ê(hi, gi),

k(λ)∏
i=1

ê(h′i, gi)

⎞⎠ .
Admissible Hash Function. Boneh and Boyen [17] showed how to construct
admissible hash functions from collision-resistant hash functions.
Collision-resistant hash functions can be constructed from decision linear
assumption [17].

Statistically Hiding Tag-Based Commitment Scheme with Extraction.
We give an efficient instantiation for the message spaceM = G and the tag space
[1, n] as follows. It is similar to the linear-based commitment of the NIWI proof
system of Groth and Sahai [25].

– KeyGen: On input 1λ, it samples (G,GT , p, g, ê) ← G(1λ). It picks a random
set S ⊂ [1, n] and runs the following subroutines for j ∈ [1, n]:
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• KeyGenh: If j /∈ S, it chooses 3 independently and uniformly distributed
elements u0,j, u1,j , u2,j ← G and sets u1,j = (u0,j, u1,j, 1) and u2,j =
(u0,j , 1, u2,j). Then it samples u0,j ← G3 at random, such that u0,j,u1,j,
u2,j are linearly independent. It sets ckj = (u0,j,u1,j,u2,j).

• KeyGenb: If j ∈ S, it samples a random u0,j ← G, two random αj , βj ∈
Zp and sets u1,j = u

αj

0,j, u2,j = u
βj

0,j. It computes u1,j = (u0,j , u1,j, 1)
and u2,j = (u0,j, 1, u2,j). Then it samples r, s ∈ Zp uniformly at random
and sets u0,j = (ur+s0,j , u

r
1,j, u

s
2,j). It sets ckj = (u0,j,u1,j,u2,j) and

bkj = (αj , βj).
Finally, it outputs ck = (ck1, . . . , ckn).

– Commit: On input (ck,m, tag), it samples (d0, d1, d2) ← Z3
p uniformly at

random and computes c = (m, 1, 1)
∏2
j=0 uj,tag

dj . The commitment value is

c and the decommitment value is d = (u0,tag
d0 , u1,tag

d1 ,u2,tag
d2).

– Decommit: On input (ck, c,d,m, tag), it outputs 1 ifc = (m, 1, 1)
∏2
j=0 uj,tag

dj .
– Dec: On input (ck, c, bk, tag), it parses c = (c0, c1, c2) and bktag = (αtag, βtag).

If tag /∈ S, it returns ⊥. Otherwise, it outputs m = c0 · c
− 1

αtag

1 · c
− 1

βtag

2 .

We prove that the above scheme has the desired properties.

Indistinguishable Key Generation. The only difference between KeyGenh and
KeyGenb is how u0,j is chosen. If the decision linear assumption holds, no PPT
adversary can distinguish between them.

Statistically Hiding. For the hiding tags tag /∈ S, u0,tag,u1,tag,u2,tag are linearly
independent. So they form a basis for G3 and the commitment is perfectly hiding,
which implies statistically hiding.

Extraction. For the binding tags tag ∈ S, the commitment c = (m·ud1+d2+d0(r+s)0,tag ,

ud1+rd01,tag , ud2+sd02,tag ) is a linear encryption [24] of themessagemwith bk = (αtag, βtag)
as the decryption key.

Oblivious Sampling. The output of KeyGenh is statistically-close to the uniform
distribution.

Computationally Binding. For the binding tags tag ∈ S, the adversary cannot
output a commitment which can be decommit by two different messages. It is
because by the extraction property, the simulator can use bk to run Dec on
the commitment and obtain the original message. If the commitment can be
decommit by two different messages, it breaks the linear encryption scheme [24].

SNIWI Proof System. The NIWI proof system of Groth and Sahai [25] can
be instantiated by the decision linear assumption. Since it is perfectly hiding, it
is also statistically hiding.

5.2 Efficiency Analysis

Summarizing the previous instantiation under the decision linear assumption,
we can see that the secret key size is 2k elements in G (for k ≥ 3), and the
signature size is 6(k+1) elements in G. The signing time is dominated by the 9k
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exponentiation in G. The verification time is dominated by the 3(k+ 2) pairing
operations.

If one is also willing to make the double pairing assumption as in [5], the
signature scheme can be more efficient by setting k = 1. Using the SXDH-based
commitment and SNIWI proofs by Groth and Sahai [25] can also give a more
efficient construction.

5.3 Fully Leakage-Resilient Signatures with Selective Continuous
Auxiliary Input

We extend the fully leakage-resilient signatures with selective auxiliary input
to withstand attacks with continuous leakage. We only briefly describe the in-
tuition here due to the space limit. We generalize the leakage-resilient one-way
function [5] to the selective continuous auxiliary leakage setting. Compare with
the continuous leakage-resilient one-way relation [11], we firstly added the sup-
port of selective auxiliary input leakage, instead of the entropy-bounded leakage.
Secondly, we also allow the leakage of the randomness used in the KeyGen and
Update. The generic construction of the fully leakage-resilient signatures with
selective continuous auxiliary input is similar to [11]. For instantiation, we can
follow the continuous leakage-resilient identity-based encryption by Yuen et al.
[14]. We use the “update master key” algorithm in [14] as the refresh algorithm
in the one-way relation.
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Abstract. We consider designing broadcast encryption schemes with
constant-size secret keys and ciphertexts, achieving chosen-ciphertext se-
curity. We first argue that known CPA-to-CCA transforms currently do
not yield such schemes. We then propose a scheme, modifying a previ-
ous selective CPA secure proposal by Boneh, Gentry, and Waters. Our
proposed scheme has constant-size secret keys and ciphertexts and we
prove that it is selective chosen-ciphertext secure based on standard as-
sumptions. Our scheme has ciphertexts that are shorter than those of the
previous CCA secure proposals. Then we propose a second scheme that
provides the functionality of both broadcast encryption and revocation
schemes simultaneously using the same set of parameters. Finally we show
that it is possible to prove our first scheme adaptive chosen-ciphertext se-
cure under reasonable extensions of the bilinear Diffie-Hellman exponent
and the knowledge of exponent assumptions. We prove both of these ex-
tended assumptions in the generic group model. Hence, our scheme be-
comes the first to achieve constant-size secret keys and ciphertexts (both
asymptotically optimal) and adaptive chosen-ciphertext security at the
same time.

1 Introduction

A broadcast encryption is a cryptographic scheme that enables encryption of
broadcast content such that only a set of target users, selected at the time
of encryption, can decrypt the content. Apparent applications include group
communication, pay TV, content protection, file system access control, and
geolocation.

A crucial aspect of any cryptographic scheme, which arguably decides its
fate of being used in practice, is its efficiency. Since one of the most prominent
applications of broadcast encryption is real-time broadcasting, ciphertext size
is at the heart of efficiency measures for such schemes, and constructions with
constant-size ciphertexts are desirable. Indeed, if one allows the ciphertext size to
grow linearly with the number of target users, construction of secure broadcast
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encryption becomes trivial. Other important measures of efficiency for broad-
cast encryption include the secret and public key sizes and the encryption and
decryption times.

A broadcast encryption scheme can be static or dynamic, depending on if the
system users need to be fixed once and for all at the setup stage or if it supports
new users joining the system at an arbitrary time, incurring only incremental
parameter changes. Evidently, dynamic schemes are more flexible and hence
more desirable in practical applications.

An important security paradigm for broadcast encryption schemes is that
of adaptive security. This paradigm captures the fact that an adversary might
choose to compromise keys in the system adaptively, based on its acquired knowl-
edge of the system parameters and previously compromised keys and ciphertexts.
Such a definition is widely accepted as the proper notion of security for broad-
cast encryption schemes and there are schemes proposed in the literature that
provably achieve security against adaptive adversaries.

On the other hand, security against chosen ciphertext attacks (CCA) is a
fundamental notion of security for any encryption scheme, broadcast encryption
included. Although there have been a number of proposed broadcast encryption
schemes that are secure against chosen plaintext attacks (CPA), the CPA-to-
CCA transformations in the literature do not seem to yield CCA secure broadcast
encryption schemes with constant-size ciphertexts.

Adaptive and CCA security, and constant-size ciphertexts, have all three been
separately achieved for broadcast encryption. However, there has not been any
proposal that achieves all three simultaneously. In this paper, we propose a
broadcast encryption with constant-size ciphertexts and prove it adaptive CCA
secure under assumptions that are reasonable generalizations of previous as-
sumptions in the literature.

The literature on broadcast encryption mainly considers two categories of such
schemes and each work usually provides solutions that are efficient only for one of
the two cases, depending on whether the content is broadcast to a very small or
a very large proportion of registered users. The party who encrypts the content,
hence either determines their intended set of target users or that of revoked
users, respectively, as an input to the encryption algorithm. Consequently, the
latter category of schemes are sometimes called revocation schemes.

Consider the pay-TV application in which the content of the broadcast con-
sists of several TV channels. Normally, there are a number of basic channels that
are usually bundled together and provided to most of the customers in different
packages, and also there are a number of more specialized channels (e.g., pay-
per-view) that are of the interest of a small proportion of customers. Hence we
face a scenario in which both of the above categories of schemes are simultane-
ously needed to broadcast the content. Nevertheless, there has been no proposal
in the literature that provides both functionalities efficiently, and hence the ex-
isting efficient solution to the above scenario is to set up two parallel schemes,
each covering part of the broadcast content. In this paper, we propose a scheme
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that can handle both cases efficiently, providing a solution to the above scenario
that does not require maintaining two parallel sets of system parameters.

1.1 Related Work

Broadcast encryption was first formalized by Fiat and Naor [16]. Their scheme
is a private key scheme and proved secure against an upper bounded number
of colluders. Fully collusion secure (private-key) broadcast encryption was first
proposed in [20], which introduced the subset cover framework that became the
basis for many subsequent proposals, including [15] which proposed the first
public key broadcast encryption.

Boneh, Gentry, and Waters [4] were first to propose a fully collusion-resistant
public key broadcast encryption in which the ciphertext size is constant. In
all the previous schemes, the size of the ciphertext is linear in the size of the
target set. In this paper we limit our attention to such schemes. They proposed
two schemes, respectively CPA and CCA secure, both in the selective model of
security. Dynamic broadcast encryption was proposed in [11] where they designed
CPA secure schemes that were only partially adaptive secure. Strictly speaking,
their scheme is a revocation scheme, in which the set of revoked users is selected
at the time of encryption, and in turn, any user outside of the revoked set is
able to decrypt. [10] proposed identity-based broadcast encryption and gave a
selective CPA secure scheme.

Adaptive security was proposed by [17] where they gave several schemes
achieving adaptive CPA security, including two broadcast encryption schemes
and two identity-based broadcast encryption (IBBE) schemes, one of each achiev-
ing constant-size ciphertexts in the random oracle model. The schemes proposed
in [30] and [19], respectively a broadcast encryption and a revocation scheme, are
the only schemes secure under static assumptions (as opposed to the so called q-
based ones). The latter work also proposes an identity-based revocation scheme
which is proved selective CPA secure. Recently, the first adaptive CCA secure
schemes were proposed by [24], although their schemes do not have constant-size
ciphertexts.

1.2 Our Contributions

We propose an efficient dynamic broadcast encryption scheme (called OurBE)
and prove that it is selective CCA secure assuming the widely-used bilinear
Diffie-Hellman exponent (BDHE) assumption and a universal one-way hash func-
tion (UOWHF). The proposed scheme has constant-size ciphertexts (only two
group elements), constant-size secret keys (only one group element), and a public
key which grows linearly with the number of users in the system. We construct
our scheme by modifying a selective CPA secure scheme (dubbed BGW1 from
now on) by Boneh, Gentry, and Waters [4]. Our modification is minimal in the
sense that our scheme has exactly the same ciphertext and secret key sizes as
that of BGW1, and is proved secure under the same assumption, plus the com-
paratively weak UOWHF assumption. The minor difference is that our scheme
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has one extra element in the linearly-growing public key. The only other CCA
secure scheme with constant-size ciphertexts is a modified version of BGW1 by
the same authors (dubbed BGW2 from now on), which has ciphertexts that are
double the size of our scheme (i.e., four group elements vs. our two). BGW2 is
proved selective CCA secure under BDHE, plus the assumption that a signature
scheme used in the construction is strongly unforgeable, which is an assumption
of comparable strength as UOWHF.

We also propose an inclusive-exclusive broadcast encryption scheme which
can act as both a broadcast encryption and a revocation scheme at the same
time, as it allows the flexibility to specify either the target set or the revoked
set at the time of encryption. The ciphertext and the secret key are still only
two and one group elements, respectively, but we need to add one group element
per user to the already linearly-growing public key which results in a public key
which is 1.5 times that of BGW1.

Next, we show that it is possible to prove OurBE adaptive CCA secure under
generalized versions of existing assumptions. Particularly, we propose generalized
versions of the BDHE and the knowledge-of-exponent (KEA) assumptions, and
prove that both hold in the generic group model. We argue that both of these are
intuitive and reasonable generalizations of accepted assumptions, and in turn,
enable achieving the highest level of security with highly-efficient parameters.
Namely, OurBE is provably adaptive CCA secure with constant-size ciphertexts
and secret keys, and it is the first scheme to achieve such properties.

2 Preliminaries

In this section we review the notation we use, the BDHE and GBDHE assump-
tions, and the notions of security for dynamic broadcast encryption and universal
one-way hash function.

Notation. We use the following typefaces: Roman X for constants, italic X for
variables, sans serif X for algorithms, and calligraphic X for oracles. Let G and
GT be groups of order p, and e : G × G �→ GT be a bilinear map. Let g be a
generator of G and gT = e(g, g).

2.1 Dynamic Broadcast Encapsulation

Broadcast encryption is conventionally formalized as broadcast encapsulation in
which, instead of a ciphertext, a session key is produced, which is required to
be indistinguishable from random. Such a scheme can provide public encryption
functionality in combination with a symmetric encryption through the hybrid
encryption (a.k.a. KEM-DEM) paradigm [7]. We hence use the terms encryption
and encapsulation interchangeably.

Following [11], we define (public-key) dynamic broadcast encapsulation as a
tuple of four algorithms BE = (Setup, Join,Encaps,Decaps) where:
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– Setup(1k) outputs (MSK,EK) containing the master secret key and the (ini-
tial) encryption key;

– Join(MSK, i) outputs the key pair (ski, pki) for user i, and appends pki to
EK;

– Encaps(EK, S) for a set of users S outputs (H,K) containing a ciphertext
(a.k.a. header) and a session key; and

– Decaps(EK, ski, S,H) outputs K if i ∈ S and ⊥ otherwise.

Adaptive CCA security for BE is defined via the following experiments for b ∈
{0, 1} between the challenger C and the adversary A:

1. Setup: C runs Setup(1k) and gives EK to A;
2. Query: A arbitrarily issues the following oracle queries:

– join oracle query Join(i): C runs Join(MSK, i) and gives pki to A;
– corruption oracle query Cor(i): C gives ski to A;
– decapsulation oracle query Dec(i, S,H): C runs Decaps(EK, ski, S,H)

and gives K to A;
3. Challenge: A outputs a set S∗ on which it wants to be challenged; C runs

Encaps(EK, S∗) and gets (H∗,K∗), then sets K = K∗ if b = 0 or picks a
random K if b = 1, and finally gives (H∗,K) to A;

4. Query: A issues further oracle queries as the previous query phase;
5. Guess: A outputs a guess b′. The experiment outputs 1 if b′ = b and there is

no i∗ ∈ S∗ for which there has been a Cor(i∗) or Dec(i∗, S∗, H∗) query. The
experiment outputs 0 otherwise.

For any adversary A, we define its advantage against BE in an adaptive CCA
attack to be the difference between the probability that the above experiment for
b = 0 outputs 1 and the probability that the experiment for b = 1 outputs 1. The
scheme is said to be adaptive CCA secure if for any adversary A its advantage
against BE in an adaptive CCA attack is negligible in k.

Selective security is defined via similar games with the difference that A com-
mits to the set S∗ before the setup phase. For CPA security, A does not get
to query the decryption oracle. We sometimes use SCPA, SCCA, ACPA, and
ACCA as shorthands referring to selective CPA, selective CCA, adaptive CPA,
and adaptive CCA security.

Note that the above definition (which is based on that of [25]1) is stronger than
that of [4] since they require that the adversary does not make any decryption
oracle query with i ∈ S∗ for which H = H∗, but we relax the constraint and
only require no query with i ∈ S∗ for which (S,H) = (S∗, H∗).

2.2 The BDHE and GBDHE Assumptions

Let us define the sets of polynomials P = (p1, . . . , ps) and Q = (q1, . . . , qt),
with p1 = q1 = 1, and a polynomial f , where ∀i, k : pi, qk, f ∈ Fp[X1, . . . , Xn].

1 Note that, in comparison with [25], we ignore the Reg parameter here as it can be
regarded as part of EK.
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Let gP = (gp1 , . . . , gps). We say that f is independent of (P,Q) if it cannot be
written as f =

∑s
i,j=1 ai,jpipj +

∑t
k=1 bkqk for constants ai,j and bk.

The generalized decision bilinear Diffie-Hellman exponent (GBDHE) problem

[3] is defined as follows: given the input gP (x1,...,xn) and g
Q(x1,...,xn)
T for random

choices of x1, . . . , xn ∈ Fp, decide between g
f(x1,...,xn)
T and a random T ∈ GT.

The GBDHE assumption says that it is hard to solve the GBDHE problem if f
is independent of (P,Q).

The decision bilinear Diffie-Hellman exponent assumption (parameterized by
n and denoted by n-BDHE), which is an instance of the GBDHE assumption,

says that given the input g, h, {gαk}k∈{1,...,2n}\{n+1} for random h ∈ G and

α ∈ Zp, it is hard to decide between e(g, h)α
n+1

and a random T ∈ GT.

2.3 Universal One-Way Hash Function

Consider a keyed hash function H. H is called a universal one-way hash function
(UOWHF) if there is no efficient adversary winning the following security game.
First, the adversary chooses amessage and outputs it. Then, the challenger chooses
a random key for H and gives it to the adversary. Finally, the adversary outputs a
secondmessage and terminates. The adversary wins if the two messages are differ-
ent, but their hashes under the chosen key are the same. This notion was first pro-
posed in [21], and is shown to be strictly weaker than collision resistance [29,26]. In
fact, one-way functions are shown to be sufficient for UOWHF [27], whereas colli-
sion resistant hash functions are only known to be constructed assuming claw-free
permutations [8] or lattice-based assumptions [18].

Note. In the full version of this paper [23], we consider two types of standard
model CPA-to-CCA transforms, namely Naor-Yung [22] and Canetti-Halevi-
Katz [6] (along with their extensions), and argue that applying these transforms
to the proposed broadcast encryption schemes in the literature does not give us
CCA security and constant-size ciphertexts.

3 An Efficient Selective CCA Broadcast Encryption

Let Hκ : G �→ Zp be a hash family indexed by κ. We define a broadcast encryption
scheme OurBE in the following. We describe the system for (at most) n−1 users
to be notationally consistent with the original scheme of [4], on which the system
is based. The system for n users can be defined accordingly.

– Setup(1k, n − 1) picks a random generator g ∈ G, two random quantities
α, γ ∈ Zp, and a random index κ for hash function H, computes v = gγ , and
outputs MSK = (α, γ) and EK = (g, v, κ).

– Join(MSK, i) computes gk = g(α
k) for k = i, i + 1, n + 1 − i, and n + 1 + i,

and di = g
γ
i , and outputs ski = di and pki = (gi, gi+1, gn+1−i, gn+1+i). The

secret key ski is given to the user, and EK is updated by appending pki.
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– Encaps(EK, S) picks a random t ∈ Zp and sets K = e(gn+1, g)
t, which can

be computed as K = e(gn+1−i, gi)t for any i, computes H as follows, and
outputs (H,K).

H = 〈gt, (v · gHκ(g
t)

1 ·
∏
j∈S

gn+1−j)t〉.

– Decaps(EK, ski, S,H) parses the header as H = (C0, C1), checks if the fol-
lowing equation holds:

e(C1, g) = e(v · gHκ(C0)
1 ·

∏
j∈S

gn+1−j , C0), (1)

and if it does, then calculates the session key as follows:

K =
e(C1, gi)

e(di · gHκ(C0)
1+i ·

∏
j∈S\{i}

gn+1−j+i, C0)
.

In the following we bring a theorem which states that if the hash function H is
a universal one-way hash function, then the proposed scheme satisfies selective
CCA security under the same assumption as that of the original scheme, namely
n-BDHE. Intuitively, the main modification we make in (the encryption algo-

rithm of) the original scheme is the introduction of g
Hκ(g

t)
1 . If this element is not

present, as it is in the original scheme, given a header H = (C0, C1) correspond-
ing to a key K, one can compute the header (Cr0 , C

r
1 ) that corresponds to the

key Kr, and hence the scheme is malleable. We show that a UOWHF is sufficient
to eradicate malleability and get CCA security. This modification is inspired by
a similar technique in [5] which, in contrast, was shown to be applicable to an
identity-based scheme. Here we show that a similar idea is applicable to BGW1.
The proof of the following theorem can be found in the full version of this paper
[23]. In the proof we use the structure of the keys in the scheme to simulate
decryption queries.

Theorem 1. The above scheme is selective CCA secure if the n-BDHE decision
problem is hard and H is a universal one-way hash function.

On Dynamicity. Note that the bound on the number of users in OurBE does
not prevent the system from being able to handle more than n− 1 users. That
is, as long as the system “jumps over” the users number n and n+ 1 (i.e., after
user number n − 1, the next user is numbered n + 2), the system can handle
polynomially many users more than n − 1 and remains secure. The security of
the scheme with more than n − 1 users can be proved based on the following

assumption: given the input h, and {gk = gα
k} for k ∈ {n+ 1 −m, . . . , n+ 1 +

m} \ {n + 1} for random g, h ∈ G and α ∈ Zp, it is hard to decide between
e(gn+1, h) and a random T ∈ GT. It is not hard to see that this assumption is

equivalent to the following assumption: given the input g, h, and {gk = gα
k} for
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k ∈ {1, . . . , 2m}\{m} for random h ∈ G and α ∈ Zp, it is hard to decide between
e(gm, h) and a random T ∈ GT. Here m ≥ n+2 is the last user number to join.
This assumption is comparable to the m-BDHE assumption. In fact, like the
BDHE assumption, it is an instance of the GBDHE assumption. In view of this
observation, OurBE is a dynamic broadcast encryption in the sense that: (1) the
system setup and the ciphertext size are independent of the upper bound on the
number of users; (2) a new user can join anytime without incurring modification
of other user secret keys; and (3) the encryption key is incrementally updated
by an operation of O(1) complexity.

Comparison. The only broadcast encryption scheme in the literature that pro-
vides CCA security with constant-size ciphertexts is BGW2. It has similar secret
and public key sizes as our scheme. However, OurBE has a shorter ciphertext
size and is based on universal one-way hash functions which are generally more
efficient that signatures on which BGW2is based. For a more comprehensive com-
parison see the full version of this paper [23].

4 Inclusive-Exclusive Broadcast Encryption

In this section we show that OurBE can be slightly modified to provide both
the broadcast encryption and the revocation functionality simultaneously; that
is, we propose a scheme in which the encrypter may choose to determine either
a target set S or a revoked set R of users at the time of encryption, without
the need to set up two parallel systems. The decryption naturally goes ahead
only if the user is either in S or not in R. In the following we (ab)use the
notation “S/R” to indicate “either S or R” as input to the encapsulation and
decapsulation algorithms. In practice this can be implemented using the first bit
of the input to indicate the inclusive or exclusive mode of operation.

– Setup(1k, n−1) picks random g ∈ G, α, γ ∈ Zp, and κ for H, computes v = gγ ,
sets π0 = gα(α

n−1)/(α−1), and outputs MSK = (α, γ) and EK = (g, v, π0, κ).

– Join(MSK, i) computes gi, gi+1, gn+1−i, gn+1+i, and di = gγi , sets πi =

πα
i

0 /gn+1, and outputs ski = di and pki = (gi, gi+1, gn+1−i, gn+1+i, πi). Now,
ski is given to the user, and EK is updated by appending pki.

– Encaps(EK, S/R) picks a random t ∈ Zp and sets K = e(gn+1, g)
t, computes

H as either of the following accordingly, and outputs (H,K).

H = 〈gt, (v · gHκ(g
t)

1 ·
∏
j∈S

gn+1−j)t〉 or 〈gt, (v · gHκ(g
t)

1 · π0/
∏
j∈R

gn+1−j)t〉

– Decaps(EK, ski, S/R,H) parses H = (C0, C1), checks if the either of the
following equation accordingly holds:

e(C1, g) = e(v · gHκ(C0)
1 ·

∏
j∈S

gn+1−j, C0) or e(v · gHκ(C0)
1 ·π0/

∏
j∈R

gn+1−j , C0),



316 D.-H. Phan et al.

and if it does, then calculates the session key accordingly as follows:

K =
e(C1, gi)

e(di · gHκ(C0)
1+i ·

∏
j∈S\{i}

gn+1−j+i, C0)
, or

K =
e(C1, gi)

e(di · gHκ(C0)
1+i · πi/

∏
j∈R

gn+1−j+i, C0)
.

Correctness. If i /∈ R, the session key the user i calculates in the exclusive mode
is effectively the same as the session key it would have calculated if it were
decrypting a ciphertext encrypted to S = N \ R in the inclusive mode, and
therefore the scheme is correct.

Note that the parameters are set in a way that the scheme properly excludes
users that join after the time of encryption from inclusive-mode ciphertexts, and
includes such users in the exclusive-mode ciphertexts.

Efficiency. The proposed scheme enjoys similar desirable efficiency properties
as the inclusive-only scheme; that is, the ciphertext and the user secret key sizes
are both constant and the public key size is linear in the number of users.

Security. A similar security definition to that of broadcast encryption can be
defined for such schemes, with the difference that the adversary is now allowed
to ask decryption oracle queries for both modes. Naturally exclusive-mode de-
cryption oracle queries Dec(i∗, N \ S∗, H∗) for i∗ ∈ S∗ are also not allowed. It
is not hard to see that the security of OurBE translates into the above scheme
satisfying this security definition.

5 Achieving Adaptive CCA Security

Since we have a very efficient scheme with asymptotically optimal size secret keys
and ciphertexts which is already proved selective CCA secure based on standard
assumptions, in this section we try to see how further we can achieve in terms of
security by considering reasonable generalizations of some standard assumptions,
while retaining the same optimally efficient secret key and ciphertext sizes. We
first propose reasonable generalizations of the GBDHE and prove that they hold
in the generic group model; then we prove that OurBE can be proved ACCA
secure under these assumptions; and finally we compare our scheme to existing
adaptive or CCA secure broadcast encryptions.

5.1 The OBDHE Assumption

We consider extending the GBDHE problem assuming that an extra resource is
also given: the Diffie-Hellman computation oracle ODH

g,e , that takes two inputs
u, v ∈ G and outputs w ∈ G such that e(u, v) = e(g, w). Formally, we define:
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The OBDHE Problem: Given the input gP (x1,...,xn) and g
Q(x1,...,xn)
T for ran-

dom choices of x1, . . . , xn ∈ Fp, and access to the ODH
g,e oracle, decide between

g
f(x1,...,xn)
T and a random T ∈ GT.
Note that the GBDHE assumption implies that the only elements (depen-

dent on x1, . . . , xn and) in G that can be computed are those in the form
g
∑
aipi . Also note that if we assume u = gσu and v = gσv , we will have

w = ODH
g,e (u, v) = g

σuσv . Hence, by providing access to ODH
g,e , basically a number

of “free multiplications” in the exponent are given. Let us define p′ = σuσv. If
we consider q′ queries to ODH

g,e , and the output to the i-th query represented

as wi = gp
′
i , we can define P ′ = (p′1, . . . , p′q′). Our extension of the GBDHE

assumption says that it is still hard to solve the GBDHE problem if these “free
multiplications” in the exponent do not help breaking the independence prop-
erty. Formally, letting ‖ denote concatenation, we define:

Assumption 1 (OBDHE). It is hard to solve the decision (P,Q, f)-OBDHE
problem if f is independent of (P ‖ P ′, Q).

In the full version of this paper [23] we prove that the assumption holds in the
generic group model [28,3]. We prove an upper bound on the success of any
generic algorithm trying to solve the OBDHE problem which is negligible if p,
the order of Fp is super-polynomial. In fact, our proof is very similar to that of
[3], suggesting that our assumption is a natural extension of GBDHE. Note that
OBDHE is falsifiable by simply solving the corresponding (P ‖ P ′, Q, f)-GBDHE
problem efficiently.

5.2 The GKEA Assumption

We propose the generalized knowledge of exponent assumption (GKEA) as fol-
lows and prove that it holds in the generic group model.

In the following we use p to denote a polynomial (suppressing the random vari-
ables) and p(x1, . . . , xn) to denote the evaluation of p on the input (x1, . . . , xn).
Let P = (p1, . . . , ps) ∈ Fp[X1, . . . , Xn]

s. Let the linear span of P , denoted by
Span(P ), be defined as the vector space containing all the polynomials in the
form

∑s
k=1 akpk.

Assumption 2 (GKEA). Let P = (p1, . . . , ps) ∈ Fp[X1, . . . , Xn]
s, where p1 =

1. Let A be an algorithm that given gP (x1,...,xn) for a random (x1, . . . , xn), outputs

( (ak)
s
k=1, h, h

q(x1,...,xn) ), such that q(x1, . . . , xn) =

s∑
k=1

akpk(x1, . . . , xn).

Consider the subspace of Span(P ) defined as Vq = {r | r, rq ∈ Span(P )} and let
{ri}ti=1 be a basis for Vq. Then, there exists an extractor E that given the same
input as A outputs

(bi)
t
i=1, such that dlogg(h) =

t∑
i=1

biri(x1, . . . , xn).
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This assumption basically says that the only way an adversary can produce
pairs of the form (h, hq) is to pick given pairs of the form (hi, h

q
i ) and output

(
∏
hbii ,

∏
(hqi )

bi) for some known values of bi.
The original KEA of [9] and the KEA3 of [2] are both instances of GKEA

[23]. These two instances have already been proved to hold in the generic group
model [12,1,13]. We propose a theorem stating the generic assumption and prove
it in the full version of this paper [23].

Theorem 2. The GKEA Assumption holds in the generic group model.

5.3 Adaptive CCA Security

In this section we prove OurBE adaptive CCA secure under our generalized ver-
sions of the BDHE and knowledge of exponent assumptions. To prove adaptive
CCA security, we basically show that a decryption query by the adversary that
contains a valid ciphertext does not increase the (cryptographic) ‘knowledge’ of
the adversary. Also note that since ciphertext validity is publicly verifiable, a
decryption query that contains an invalid ciphertext does not increase the ad-
versary’s knowledge either. Hence we basically show that a CCA attack against
the system is equivalent to a CPA attack, under the GKEA assumption and
the hash function being a UOWHF. Furthermore, the access to ODH

g,e enables
answering adaptive corruption queries.

Formally, we prove adaptive CCA security assuming that the OBDHE and
the GKEA assumptions hold and H is a UOWHF. Intuitively, selective CPA
security stems from the BDHE assumption underlying the OBDHE assumption
along with the hash function being a UOWHF; the Diffie-Hellman oracle enables
adaptive security; and the CCA security is achieved from the GKEA assumption
along with the hash function being a UOWHF. The following theorem is proved
in the full version of this paper [23].

Theorem 3. OurBE is adaptive CCA secure if the OBDHE and the GKEA
assumptions hold and H is a universal one-way hash function.

We note that we prove CCA security based on the GKEA assumption, an as-
sumption which is much weaker than the generic model itself (and instances of
it are shown to be falsifiable [2]), and in fact, proving the equivalence of CPA
and CCA security is trivial if the generic group model is used directly, since on
a decryption query with a first element gt, we may assume that t is known.

5.4 Comparison

Since our scheme is the first to achieve adaptive CCA security with constant-
size ciphertexts, we compare our scheme with those from the literature that are
adaptive CPA or selective CCA secure. We do not consider schemes that are not
fully collusion resistant. The schemes in the literature with constant-size cipher-
texts include a selective CCA secure scheme from [4], and three adaptive CPA
secure schemes from [17] and [30]. The schemes in the literature that do not
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have constant-size ciphertexts include adaptive CPA secure schemes from [14],
[17] (identity-based) and [19] (revocation scheme), and recent adaptive CCA
secure schemes from [24]. Table 1 summarizes our comparison. We list plain
and identity-based (IB) broadcast encryption (BE) and revocation (R) schemes.
Among these, schemes from [14] and [24] are generic schemes based on (hierarchi-
cal) identity-based encryption ((H)IBE), and encryption schemes (implemented
under DDH), respectively. Since (H)IBE can be based on various assumption, we
simply use it in parentheses in the table. All other schemes are explicit proposals
based on various bilinear Diffie-Hellman assumptions, sometimes plus extra as-
sumptions such as strong unforgeability (SUF), pseudo-random functions (PRF),
and the random oracle model (ROM). To accommodate more information, we
omit the O notation and write O(f(n, s, r)) as f(n, s, r).

Table 1. Comparison of adaptive or CCA secure broadcast encryption schemes

Scheme O(|ski|) O(|H |) Security Assumption

[14] BE log n r log n
r

ACCA1 (IBE)

BE log1+ε n r
ε

ACCA1 (HIBE)

[4] BE 1 1 SCCA n-BDHE, SUF

[17] BE 1 1 ACPA n-BDHES, PRF, ROM

BE 1 s ACPA n-BDHES, PRF

IBBE 1 1 ACPA n-BDHES, PRF, ROM

IBBE 1
√
s ACPA n-BDHES, PRF

[30] BE n 1 ACPA dBDH, dLin

[19] R 1 r ACPA dBDH, dLin

[24] BE 1 r log n
r

ACCA DDH

BE 1 r ACCA DDH

OurBE BE 1 1
SCCA

ACCA

n-BDHE, UOWHF

n-OBDHE, GKEA, UOWHF

O(| · |): order of size, n, s, r: number of total, targeted, revoked users.

6 Concluding Remarks

We proposed a very efficient broadcast encryption scheme. The sizes of the secret
keys and ciphertexts in the scheme are asymptotically optimal, i.e., constant. We
showed that the scheme can be proved selective CCA secure assuming BDHE
and a universal one-way hash function. Furthermore, we showed that proving
adaptive CCA security is possible if we consider extended versions of the GB-
DHE and knowledge of exponent assumptions. Considering only the standard
assumptions, our scheme provides shorter ciphertexts than the only other known
CCA secure scheme. Considering the extended assumptions, our scheme is the
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first scheme to achieve constant size secret keys and ciphertexts and adaptive
CCA security at the same time. The problem of designing schemes that achieve
such properties under standard assumptions remains open.
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016 BEST Project. The authors would like to thank the anonymous reviewers
of ACISP 2012.
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Abstract. We propose a new cryptographic notion called accountable
decryption by which, given a ciphertext, a decryptor proves both the cor-
rectness of his decryption and the plaintext authenticity to a public ver-
ifier. We define its security from three aspects: message confidentiality,
soundness of verifiability and plaintext authenticity. Given any asym-
metric or symmetric key encryption scheme, we propose a method to
construct the corresponding accountable decryption scheme with prov-
able security. To demonstrate its applications, we also present the con-
structions for predicate encryption and for public-key encryption with
keyword search.

Keywords: Accountable Decryption, Verifiable Decryption, Plaintext
Authenticity.

1 Introduction

Recent advances in encryption schemes with fine-grained controls, such as PEKS
[1], attribute-based encryption [2] and predicate encryption [3], offer a great
flexibility for attribute-based access control, where the decryptor can access a
protected object, e.g., an encrypted file, only if she satisfies certain access control
rules. Such an access control paradigm can be further extended to decryption
capability based authorization, in the sense that the decryption capability is
bound with access control policies. For instance, an authorization server issues a
ciphertext token such that only authorized users can decipher it successfully. A
resource server (e.g., a database server) grants a user’s accesses based on whether
a user can decipher the token correctly. Scalability and flexibility are the main
advantages of such an authorization system as compared with identity-based
authorization such as Kerberos [4].

Nonetheless, it is not a trivial problem for the resource server to determine
whether a user can decrypt an authorization ciphertext token correctly when the
server is not equipped with the decryption key in many applications. Therefore,
the user has to convince the server on two aspects: the correctness of decryption
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and the authenticity of the plaintext, by constructing publicly verifiable proofs.
The former issue can be addressed by the verifiable decryption scheme defined by
Camenisch and Shoup in [5], where a verifier requests a decryption key holder to
prove that the decryption of ψ is m or satisfies other properties. Unfortunately,
their construction only works with a specific public key encryption scheme in [5].
It is unclear whether their technique is applicable to other encryption schemes,
especially to the family of attributed encryption schemes. The second issue can
be easily addressed by using signatures. Nonetheless, no study has been made
on integrating the signatures with verifiable encryption in an efficient manner.

In this paper, we propose accountable decryption as a new cryptographic no-
tion to enable the decryption capability based authorization by addressing both
issues securely and efficiently. In a high level view, we consider the problem that
a ciphertext receiver (a user requesting resources) intends to convince a public
verifier (the resource server) that the ciphertext ψ she receives from a sender (the
authorization server) decrypts to a message m. As a result, the public verifier
ascertains both the authenticity of m and the decryption of ψ. Note that sign-
cryption schemes [6,7,8,9,10,11] do not solve the problem because the decryptor
in those schemes cannot convince a public verifier that his decryption is correct.

Accountable decryption can be regarded as a combination of verifiable de-
cryption of matching plaintext [5] and message authenticity. Different from [5],
we are not interested in zero-knowledge proofs that the decryption of ψ has a
particular structure because it is not the concern in the target setting. We are
interested in using accountable decryption as a stand-alone scheme to prevent
a dishonest decryptor from making fraudulent claims about his decryption ca-
pability. Besides the aforementioned decryption-capability based authorization,
accountable decryption can be applied in other applications, such as a web cache
server’s proof that an HTML file is the plaintext of an encrypted update from the
web server and a proxy server’s proof to a user that an encrypted file from a data
publisher matches her interests. Moreover, the proof the relationship between a
plaintext and a ciphertext is the main point differing accountable encryption
from signcryption.

The main contributions of our work include the formulation of the notion of
accountable decryption and its security properties. We propose a generic method
to construct an accountable decryption scheme from any encryption scheme,
including public key encryption and symmetric key ciphers. We formally prove
the security of the generic construction and then instantiate it for predicate
encryption and PEKS.

Organization. The rest of this paper is organized as follows. We discuss related
work in Section 2. Section 3 defines the concept of accountable decryption and
its three security requirements. Our proposed generic construction and its ex-
tension to functional encryption are described in Section 4. Section 5 shows two
specific accountable decryption schemes for predicate encryption and public-key
encryption with keyword search. We conclude this paper in Section 6.
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2 Related Work

Camenisch and Shoup in [5] proposed the concept of verifiable decryption with
an emphasis on the binary relation between the plaintext and a witness, e.g. the
discrete logarithm relation. Its main motivation is for cryptographic protocols
such as key escrow and optimistic fair exchange, where the decryptor, usually a
trusted party, proves to a verifier that a ciphertext is decrypted correctly.

Verifiable decryption is related to verifiable encryption, which is also proposed
in [5]. In a verifiable encryption scheme, the encryptor, instead of the decryptor,
proves that the ciphertext is an encryption satisfying certain property. This
type of schemes are widely used in many schemes such as group signatures and
confirmer signatures. In a recent work [12], Barbosa and Farshim defined the
concept of verifiable function encryption, which is built on a standard functional
encryption and a special MAC scheme, called n-key-chameleon MAC.

Another related concept is verifiably encrypted signatures (VES), which was
introduced by Boneh et al. in [13]. In their scenario, a signer encrypts its signa-
ture under a trusted third party (PPT, called the adjudicator), and then appends
a proof about its content. This proof is used to confirm that the signer has truly
signed a certain object. A popular application of VES is online contract signing,
which is a type of optimistic fair exchange protocol. Rückert and Schröder [14]
suggested extractability and abuse-freeness as two fundamental properties for
VES. In [15], Rückert constructed a VES only for RSA signatures without pair-
ings and non-interactive zero-knowledge proofs, while [13,14] are based on paring
and [16] are based on NIZKs. Rückert, Schneider and Schröder [17] sketched a
more generic construction without pairing and NIZKs.

The notion of signcryption was introduced by Zheng [18] in order to address
message integrity and confidentiality simultaneously. In a signcryption scheme,
encryption and signature are done simultaneously with a much lower computa-
tional cost and communication overhead than the Sign-then-Encrypt approach.
Nonetheless, confidentiality offered by signcryption schemes does not necessarily
lead to verifiability required in our target applications. We refer readers to [19]
which gives a good account of some previous work on signcryption.

3 Accountable Decryption

3.1 Scheme Definition

We consider a system setting of three types of participants: a data sender denoted
by S, a ciphertext receiver denoted by P , and a verifier denoted by V . S sends out
encrypted data toP , who can decipher it to get a plaintext message. In addition,P
canproduce aproof toV that theplaintextmessage is the result of decrypting the ci-
phertext sent by S. Different from the verifiable decryption in [5], we do not require
P to present a zero knowledge proof about the relationship between the plaintext
and a witness. In addition, we do not restrict the underlying encryption scheme to
be a public key encryption. S and P can share a key and use a secure symmetric
key cipher. A scheme of accountable decryption is formally defined below.
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Definition 1 (Accountable Decryption). An accountable decryption scheme
is a special encryption scheme consisting of the following four probabilistic poly-
nomial time (PPT) algorithms.

Setup(1λ) is an initialization algorithm which takes as input a security pa-
rameter 1λ, and outputs two key-pairs: an encryption/decryption key-pair
(EKP , DKP) for the receiver P, and a signing/verification key-pair
(SKS , V KS) for the sender S. If the encryption scheme is a public key en-
cryption, P’s encryption key EKP is public; otherwise EKP , which is the
same as DKP , is assigned to S.

Encrypt(EKP , SKS ,M) takes as input P’s encryption key EKP , S’s signing
key SKS as well as a plaintext message M and outputs a ciphertext CT .

Decrypt(DKP , V KS , CT ) takes as input P’s decryption key DKP , S’s verifica-
tion key V KS , as well as a ciphertext CT and outputs a tuple (M,σ) where
M is the plaintext message and σ is a tag if the decryption succeeds, or
outputs ⊥ otherwise.

Verify(V KS , CT,M, σ) takes as input S’s verification key V KS , a ciphertext
CT , a plaintext M and a tag σ. It outputs 1 if M and σ are the outputs of
Decrypt(DKP , V KS , CT ); otherwise, outputs 0.

Correctness. These algorithms must satisfy the following consistency constraint.
For any M in the plaintext space, the below two equations hold,

(M,σ) = Decrypt(DKP , V KS , CT ), 1 = Verify(V KS , CT,M, σ)

where CT ← Encrypt(EKP , SKS ,M) and (EKP , DKP), (SKS , V KS) ←
Setup(1λ). ��
The definition does not require S’s key pair and P ’s key pair to be related. In
fact, they are generated independently by S and P respectively, as in a stardard
public key signature/encryption set up. Nonetheless, the encryption function
Encrypt(EKP , SKS ,M) is different from the standard public key encryption
algorithm as it takes a private key as input.

Remark. As compared with verifiable decryption [5], accountable decryption
has an additional assurance on the genuineness of the origin of the plaintext
embedded in a ciphertext. To some extent, accountable decryption has similar-
ity with the signcryption scheme [18] in terms of usage of keys. However, these
two notions are remarkably different. The signcryption scheme assures the de-
cryptor on the received plaintext integrity and confidentiality. In the definition
of acccountable decryption, the decryptor has to assure a public verifier about
the plaintext authenticity and its relation to the given ciphertext. Although ver-
ifiability is also mentioned in several signcryption schemes [6,7,8,9,10,11], they
are only concerned about the plaintext’s authenticity, instead of the relationship
between a plaintext and a ciphertext.

3.2 Security Definition

The security properties of an accountable decryption scheme consist of three
aspects. First of all, it should maintain the security of the underlying encryption
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scheme. Namely, the privacy of the encrypted plaintext should not be compro-
mised. This property is not discussed in the verifiable decryption definition in
[5], because that construction makes no changes on the underlying encryption
scheme. However, in our setting, Encrypt() function is not the standard one, as it
involves an extra secret input. Therefore, we must preserve the semantic security.
Secondly, as mentioned in [5] as well, the proof from P should be sound. In other
words, a dishonest P can not derive a proof passing the verification function.
P must perform the expected decryption to obtain a valid decryption proof.
Last but not the least, we require the authenticity of the plaintext. Namely, the
plaintext originates from S. The authenticity property allows that an account-
able decryption scheme can be used to detect message forgery in applications
where P plays the role of an untrusted proxy. P will be held “accountable” in
case of forgery. In the following, we formulate the three security properties by
three game models respectively, all of which are played by a challenger C and an
adversary A.

We refer to the first security property by message confidentiality, whose game
model is the same as the indistinguishability game [20] used for symmetric
or asymmetric key encryption schemes with the only difference on encryption
queries and decryption queries. For different types of attack atk ∈ {CPA,CCA,
CCA2}, we denote the game by Gameatk and explain the two queries below
without repeating the entire indistinguishability game. A in the game models
is an outsider adversary who attempts to obtain semantic information of the
encrypted message. The indistinguishability game is described below.

Setup: C runs Setup(1λ) to generate an encryption key pair EKP , DKP of an
encryption scheme Σ, and a signature key pair SKS , V KS of a signature
scheme Γ . C sends V KS to A. If Σ is a public key cipher, EKP is sent to A
as well.

Query Phase I. A issues to C a polynomial number of queries, where each
query is of one of two types:

– On the i-th encryption query, A sends to C a messageM (i). In response,
C replies with Encrypt(EKP , SKS ,M (i)).

– (In CCA and CCA2 games) On the j-th decryption query,A sends to C a
ciphertext CT (j). In response, C replies with Decrypt(DKP , V KS , CT (j)).

Challenge: A outputs a pair of plaintexts, M∗
0 ,M

∗
1 . Then C returns CT ∗ ←

Encrypt(EKP , SKS ,M∗
β), where β is a random bit chosen by C.

Query Phase II. A continues to issue queries as in the Query Phase I, with
the restriction that CT ∗ should not be submitted as a decryption query.
(Here, only in CCA2 game, decryption queries are allowed.)

Guess: At last, A outputs a guess β′ ∈ {0, 1} and wins if β = β′.

The advantage of A is defined as |Pr[β = β′] − 1
2 |. We define the notion of

message confidentiality based on A’s advantage.

Definition 2 (Message Confidentiality). An accountable decryption scheme
provides message confidentiality under atk attacks if and only if, for all PPT
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adversaries A, the advantage of A in winning Gameatk is negligible in λ, where
atk ∈ {CPA,CCA,CCA2}. ��

We refer to the second security property explained above as the soundness of
verifiability, and formally define it using a game GameS described below. Note
that A in GameS models both outsiders and a malicious P , whose goal is to
fake a proof passing the verifier’s verification function.

Setup: C runs Setup(1λ) to generate an encryption key pair EKP , DKP of an
encryption scheme Σ, and a signature key pair SKS , V KS of a signature
scheme Γ . It sends EKP , DKP , V KS to A.

Query: A adaptively issues encryption queries. On the i-th encryption query,
A sends a plaintextM (i) to C who responds with Encrypt(EKP , SKS ,M (i)).

Output: After a polynomial number of queries, A obtains a set of ciphertext
denoted by Ω. It outputs a tuple (CT ∗,M∗, σ∗) where CT ∗ ∈ Ω. The ad-
versary A wins the game if M∗ is not the plaintext encrypted in CT ∗ and
Verify(V KS , CT ∗,M∗, σ∗) = 1.

The advantage of A is defined as Pr[(M∗, σ∗) �= Decrypt(DKP , V KS , CT ∗) ∧
Verify(V KS , CT ∗,M∗, σ∗) = 1].

Definition 3 (Soundness of Verifiability). An accountable decryption scheme
is sound if and only if, for all PPT adversaries A, the advantage of A in winning
GameS is negligible in λ. ��

The third security property is referred to as plaintext authenticity. We define
it using the following game GameA between C and A. Similar to the way in
GameS , A models the malicious P and outsiders.

Setup: the same as the Setup phase in GameS .
Query: the same as the Query phase in GameS.
Output: After issuing a polynomial number of queries, A outputs CT ∗. The ad-

versary A wins the game if (M∗, σ∗) �=⊥ ∧M∗ /∈ Υ holds, where (M∗, σ∗) =
Decrypt(DKP , V KS , CT ∗) and Υ is the set of queried plaintexts.

The advantage of A is defined as Pr[(M∗, σ∗) = Decrypt(DKP , V KS , CT ∗) :
M∗ �=⊥ ∧M∗ /∈ Υ ].

Definition 4 (Plaintext Authenticity). An accountable decryption scheme
is said to be plaintext authentic if, for all PPT adversaries A, the advantage of
A in winning GameA is negligible in λ. ��

The differences between the definitions of soundness and plaintext authenticity
are subtle. However, their security implications are different, yet closely related.
Soundness emphasizes on the trustworthiness of the matching relationship be-
tween a message and a ciphertext. The plaintext authenticity emphasizes on the
genuineness of the embedded plaintext’s origin, which is a desirable property
for end users in our targeted applications. With both soundness and plaintext
authenticity, the verifiers can trust P ’s decryption results.
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4 A Generic Construction

Verifiable decryption in the public key setting could be trivially solved if the
decryptor is able to derive and publish all the randomness used in encryption.
A verifier can re-encrypt the plaintext using the same randomness which should
result in the same ciphertext. Unfortunately, this method is not feasible for all
encryptions schemes including the symmetric key ciphers. We are inspired to
design a generic accountable decryption construction for all encryption schemes.

The basic idea is that S encrypts her signature related to the pay-load message
M using P ’s encryption key EKP , and securely masksM using the signature. If
P performs decryption correctly, she obtains the correct signature which allows
her to recoverM . Taking the signature as a proof, the verifier V checks its validity
against the ciphertext and M which ensures the correctness of decryption.

Remark. An accountable decryption scheme can be trivially obtained by
retrofitting the verifiable decryption [5] with a sender signature. However, it
is not a generic construction and the technique is not applicable to other en-
cryption schemes, such as symmetric key ciphers and attribute-based encryption.

4.1 Notation

A signature scheme is denoted by Γ , which consists of three algorithms Γ =
(KeyGenΓ , Sign, V er); an encryption scheme is denoted by Σ, which consists
of three algorithms Σ = (KeyGenΣ, Enc,Dec); and the proposed scheme of
accountable decryption is denoted by Π . We suppose that the messages inMSΠ
have the same length k, i.e. MSΠ ⊆ {0, 1}k, and that the signatures of Γ have
the same length m as the plaintexts of Σ, i.e. SSΓ ⊆MSΣ ⊆ {0, 1}m. Also, we
restrict m ≥ k because of Theorem 2.5.6 in [21].

4.2 Proposed Construction

Before detailing our construction, we introduce the Goldreich-Levin (GL) the-
orem [21] and the hardcore function briefly. The GL theorem (Theorem 2.5.2
in [21]) says that if g be defined by g(x, r) = (f(x), r), where f is an arbitrary
strong one-way function and |x| = |r|, the inner product mod 2 of the binary
vectors x and r, denoted by b(x, r), is a hard-core of the function g; and The-
orem 2.5.6 in [21] extends the notion of hard-core from a bit to a bit string
(whose length is |x| at most). According their definition, the bit string produced
by the hardcore function is indistinguishable from a random bit string chosen
from the proper domain uniformly. In our construction below, we will construct
a hardcore function and use its bit string to mask the message to encrypt.

Given a secure signature scheme Γ and a secure encryption scheme Σ sat-
isfying the requirements described in Section 4.1, we construct an accountable
decryption scheme Π consisting of four algorithms Setup, Encrypt, Decrypt and
Verify as follows:

Setup(1λ): This algorithm runs KeyGenΣ(1
λ) to generate an en/decryption

key-pair EKP and DKP of the encryption scheme Σ for Pand also runs
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KeyGenΓ (1
λ) to generate the signing/verification key-pair (SKS , V KS) of

the signature scheme Γ . As stated in Definition 1, S holds its private signa-
ture key SKS and publishes V KS . P holds a secret decryption key DKP . If
Σ is a public key encryption, EKP is public too; otherwise EKP is sent to
S securely as a shared encryption key.

Finally, using the GL theorem, the algorithm outputs a hardcore function
B() of k bits outputs, w.r.t. the one-way function EncEKP (σ), where σ ∈
MSΣ .1 Specifically, B() is defined as B :MSΣ × {0, 1}m+k−1 → {0, 1}k.

Encrypt(EKP , SKS ,M): To encrypt a message M ∈MSΠ , S firstly chooses a
randomR ∈R {0, 1}m+k−1, and generates a signature as σ ← SignSKS(M ||R).
Then she encrypts σ as E ← EncEKP (σ) and computes the hardcore bits
K = B(σ,R). Finally, she sets C = M ⊕ K. The ciphertext of M is a
three-tuple CT = (R,E,C).

Decrypt(DKP , V KS , CT ): To decrypt CT = (R,E,C), P firstly computes σ ←
DecDKP (E), then computes K = B(σ,R), and M = C ⊕K. If the output
of V erV KS (M ||R, σ) is 1, return (M,σ); otherwise, return ⊥.

Verify(V KS , CT,M, σ): Let CT = (R,E,C). V computes K = B(σ,R) and
M ′ = C ⊕ K. If V erV KS (M ||R, σ) = 1 ∧ M = M ′, return 1; otherwise,
return 0.

Our construction does not require Γ and Σ to be related. They can be computa-
tionally independent of each other. We first prove that if Σ is IND-CCA2, then
the generic construction above is also IND-CCA2.

Theorem 1 (IND-CCA2 Security). If the signature scheme Γ is secure in
the sense of UF-CMA, and the encryption scheme Σ is secure in the sense of
IND-CCA2, then the proposed scheme Π of accountable decryption has message
confidentiality under IND-CCA2 attacks.

Due to the page limitation, we only give out the sketch of the proof and some key
points. Supposing an adversary A wins GameΠCCA2 with non-negligible proba-
bility, i.e. breaks the proposed scheme Π , we could construct a simulator B to
win GameΣCCA2 with non-negligible probability. With the help of the challenger
C in GameΣCCA2, B can answer A’s en/decryption queries.

In the Challenge phase, the simulator B constructs the challenge ciphertext
CT ∗ = (R∗, E∗, C∗). R∗ is a random chosen from the proper domain by B;
E∗ is a ciphertext of σ∗b , which is a sigmature of either M∗

0 ‖R∗ or M∗
1 ‖R∗;

C∗ = M∗
β ⊕ B(σ∗β , R∗). There are two random bits b and β chosen by C and B

respectively.
We denote A’s guess in GameΠCCA2 by β′, B’s guess in GameΣCCA2 by b′. If

b = b′, i.e. B wins GameΣCCA2, there are two cases for this event: 1) b = β; 2)
b �= β. The former indicates A is challenged with a valid ciphertext. If A can win
GameΠCCA2 with a non-negligible probability ε, B also can win GameΣCCA2 with

1 Let B()’s inputs be σ, R. As described in [21], the output binary string is
b1(σ, R) · · · bk(σ, R), where bi(σ,R) denotes the inner product mod 2 of the binary
strings σ and (Ri, . . . , Rm+i−1), where R = (R1, . . . , Rm+k−1).
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ε. That is, Pr[b = b′|b = β] = 1/2 + ε. The latter indicates A is challenged with
an invalid ciphertext. The second part E∗ has no information aboutM∗

β and the
third part C∗ can be treated as a random string. Thus, the probability that A
wins GameΠCCA2 in this case is 1/2, so does B. That is, Pr[b = b′|b �= β] = 1/2.

Both the above cases have the same probability, i.e. 1/2, to occur. The ad-
vantage of B is ε/2. Since Σ is IND-CCA2 secure, ε/2 is negligible, so is ε.

It’s worth to mention that in Query Phase II the adversary A may issue a
decryption query CT = (R,E,C), s.t. CT �= CT ∗∧E = E∗, e.g just replacing R∗

with R in CT ∗. In this situation, the simulator B just outputs ⊥ as response. The
reason is that the probability for CT to be a valid ciphertext of Π is negligible.
Let σ ∈ {σ∗0 , σ∗1} be the plaintext enclosed in E∗. Since Σ is IND-CCA2 secure,
E∗ would not leak any information about σ. Thus, A could not distinguish K =
B(σ,R) from a random string chosen from the proper domain, then M = C⊕K
also seems like a random string for A. For a random messageM , the probability
of V erPKS (M‖R, σ) = 1 is negligible. So is the probability that CT is a valid
ciphertext.

Theorem 2 (IND-CCA Security). If the signature scheme Γ is secure in
the sense of UF-CMA and the encryption scheme Σ is secure in the sense of
IND-CCA, then the proposed scheme Π of accountable decryption is secure in
the sense of IND-CCA.

Theorem 3 (IND-CPA Security). If the signature scheme Γ is secure in
the sense of UF-CMA and the encryption scheme Σ is secure in the sense of
IND-CPA, then the proposed scheme Π of accountable decryption is secure in
the sense of IND-CPA.

The proofs of Theorem 2 and 3 are similar with Theorem 1. The differences
are that the adversary A could not issue decryption queries and the simulator
B has no access to the decryption oracle Od in Query Phase II. We omit the
details to avoid verbosity. Next, we show that our construction of Π has sound
verifiability.

Theorem 4 (Soundness of Verifiability). Suppose the signature scheme Γ
is strong UF-CMA secure and the encryption scheme Σ is IND-CPA. Then the
scheme Π described above has soundness of verifiability.

Theorem 5 (Plaintext Authenticity). If the digital signature scheme Γ is
UF-CMA secure and the encryption scheme Σ is IND-CPA secure, the generic
construction Π described above has plaintext authenticity.

Also due to the page limitation, we omit the proofs of Theorem 4 and 5. Roughly,
if A wins GameΠS or GameΠA , the output of A will lead to a forgery signature of
the underlying signature scheme, which is (strong) UF-CMA secure.

5 Applications

Our construction of accountable decryption is applicable to all encryption
schemes. In the following, we only show how it can be applied for predicate en-
cryption and public-key encryption with keyword search because of their unique
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applications. For the former, we apply our method to the full-fledged predicate
encryption scheme (PE-KSW) described in [3]. In the resulting scheme, the de-
cryptor gives a proof by decrypting correctly, which assures the verifier that the
decryptor has the proper attributes (or capability) to decrypt. We envisage it
as a realization of attribute based access control. For the latter, the construc-
tion (based on pairing) in [1] does not encrypt a payload message, so it needs a
slight modification. The resulting scheme allows the search query issuer (i.e. the
verifier) to detect whether a proxy (i.e. the decryptor) manipulates the testing
results. We envisage it as a security enhancement in publish-subscribe systems
whereby the untrusted proxy filters events to subscribers making payments on
received events.

5.1 A Full-Fledged Predicate Encryption Scheme with Accountable
Decryption

By instantiatingΣ in Section 4 with PE-KSW, we obtain the construction for the
full-fledged PE-KSW scheme with accountable decryption. The used signature
scheme is also denoted by Γ = (KeyGenΓ , Sign, V er).

Setup(1n): The setup algorithm first runs G(1n) to obtain (p, q, r,G,GT , e) with
G = Gp ×Gq ×Gr. Next, it computes gp, gq and gr as generators of Gp,Gq

and Gr, respectively. It then chooses R1,i, R2,i ∈ Gr and h1,i, h2,i ∈ Gp

uniformly and randomly for i = 1 to n and R0 ∈ Gp. The public parameters
include (N = pqr,G,GT , e) along with:

PK =

(
gp, gr, Q = gq ·R0, P = e(gp, h)

γ ,
{H1,i = h1,i ·R1,i, H2,i = h2,i · R2,i}ni=1

)
.

The master secret key MSK is (p, q, r, gq, h
−γ , {h1,i, h2,i}ni=1).

In addition, sender S runs KeyGenΓ (1
n) to obtain a signature key-pair

(SKS , V KS) with message space MSΓ and signature space SSΓ . Besides,
the algorithm chooses an injective function fmap, which are defined as fmap :
SSΓ → GT , where k is the length of messages and is polynomial in n as
described in Section 4, and the inverse function of fmap() is denoted by
f−1
map(). Finally, using the Goldreich-Levin theorem, the algorithm outputs a
hardcore function B() w.r.t the encryption algorithm of Σ. B is defined as
B :MSΣ × {0, 1}m+k−1, where m is the length of elements in GT .

GenKey(MSK,v): Let v = (v1, . . . , vn). It first chooses random r1,i, r2,i ∈ Zp

for i = 1 to n, random f1, f2 ∈ Zq, random R5 ∈ Gr and random Q6 ∈ Gq,
and then outputs

TKv =

(
K0 = R5 ·Q6 · h−γ ·

∏n
i=1 h

−r1,i
1,i h

−r2,i
2,i ,{

K1,i = g
r1,i
p · gf1viq , K2,i = g

r2,i
p · gf2viq

}n
i=1

)
.

Enc(PK, SKS ,x,M): To encrypt a message M , sender S firstly chooses a ran-
dom R ∈R {0, 1}m+k−1 and signs it as σ ← SignSKS (M ||R).
Let x = (x1, . . . , xn) with xi ∈ ZN . It then encrypts the signature as follows.
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– Choose random s, a, b ∈ ZN and R3,i, R4,i ∈ Gr for i = 1 to n.

– Set

E =

(
C′ = fmap(σ) · P s, C0 = gsp,{

C1,i = H
s
1,i ·Qaxi ·R3,i, C2,i = H

s
2,i ·Qbxi · R4,i

}n
i=1

)
.

It outputs a three-tuple (R,E,C) as the ciphertext CT , where C = M ⊕
B(σ,R).

Dec(TKv, V KS , CT ): Let TKv, CT be as above. Receiver P computes

σ′ = C′ · e(C0,K0) ·
n∏
i=1

e(C1,i,K1,i) · e(C2,i,K2,i)

σ = f−1
map(σ

′) M = C ⊕B(σ,R).

Finally, it outputs (M,σ), if V erV KS (M ||R, σ) = 1; otherwise, outputs ⊥.
Verify(V KS , CT,M, σ): Let CT = (R,E,C). A verifier V computes M ′ = C ⊕

B(σ,R). It outputs 1, if V erV KS (M ||R, σ) = 1∧M =M ′; otherwise, outputs
0.

It is clear that if P cannot decrypt properly, it is infeasible for her to construct an
account decryption proof. Our modification slightly increases the communication
and computation costs. The increased communication cost mainly lies in longer
ciphertext, due to R,C of a ciphertext. However, the increased communication
cost is still slight compared with the length of E, i.e. the ciphertext of PE-
KSW. The computation cost is on signature generation and verification which
are rather small as compared to the bilinear mappings used in PE-KSW. The
computation of the hardcore function is lightweight as well, as it involves a
sequence of additions and multiplication modulo 2.

As proved in [3], the underlying encryption scheme Σ, i.e. PE-KSW, is
attribute-hiding. It is straightforward to show the above construction preserves
this property. Due to the length limit, we informally explain the proof as fol-
lows. On inputting (x∗

0,M
∗
0 ) and (x∗

1,M
∗
1 ) as two challenge attribute-plaintext

pairs, the challenger chooses a bit β and runs the above encryption algorithm
to get the challenge ciphertext, i.e. CT ∗ ← Enc(PK, SKS ,x∗

β,M
∗
β). Let CT

∗ =
(R∗, E∗, C∗). We have the following facts:

1. Because R∗ is chosen randomly and independent from β, this component of
the challenge ciphertext would not leak any information about β.

2. Since the underlying encryption Σ is attribute-hiding, E∗ keeps both β and
corresponding signature σ private.

3. Due to the privacy of σ and the randomness of the output of the hardcore
function B(), C∗ appears as a random string for the adversary and leaks no
information about β too.

Consequently, the scheme proposed above is also attribute-hiding.
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5.2 PEKS with Verifiable Test

For PEKS schemes, we are concerned with the correctness of keyword test, rather
than the actual decryption of the payload. In our generic construction, the un-
derlying encryption scheme Σ is used to encrypt a signature. However, the PEKS
function in [1] takes as input an attribute associated with the encrypted message.
A ciphertext of PEKS in [1] is in the form of (gr, H(w)) where r is a random
and w is related to r and a keywordW . We replace H(w) in the ciphertext with
H(w) ⊕ σ, where σ is an encrypted message. Note that the modified version
is just the IBE construction proposed by Boneh and Franklin in [22]. We call
this IBE construction as IBE-BF for short, and denote the modified version by
Σ. The used signature scheme is denoted by Γ = (KeyGenΓ , Sign, V er). The
details of PEKS with verifiable test (denoted by Π) are shown as below.

KeyGen(1λ): This algorithm first runs G(1λ) to obtain (p,G,GT , e). Next, it
picks a random α ∈ Z

∗
p and a generator g of G, and outputs Apub = (g, h =

gα) and Apriv = α.
In addition, sender S runs KeyGenΓ (1

λ) to obtain a signature key-pair
(SKS , V KS) with message space MSΓ and signature space SSΓ . She also
chooses two hash functions: H1 : {0, 1}∗ → G, H2 : GT → {0, 1}m, where
m is the length of signatures of Γ , k is the length of plaintexts of Π and
both k,m are polynomial in λ. Finally, this algorithm outputs a hardcore
function B() w.r.t the encryption algorithm of the modified PEKS Σ. B is
defined as B :MSΣ × {0, 1}m+k−1.

Trapdoor(Apriv,W ): It outputs TW = H1(W )α ∈ G.

PEKS(Apub, SKS ,W ): S firstly chooses a random message M ∈ {0, 1}k and a
random R ∈R {0, 1}m+k−1. Then it signs M ||R as σ ← SignSKS (M ||R).
Next, it computes w = e(H1(W ), hr) for a random r ∈ Z∗

p and E =
(gr, H2(w) ⊕ σ). The output ciphertext is CT = (R,E,C) where C =
M ⊕B(σ,R).

Test(TW , V KS , CT ): Let CT = (R,E,C) and E = (E1, E2). P uses the trap-
door TW to decrypt the embedded signature as σ = E2 ⊕ H2(e(TW , E1)).
Then, the message is computed as M = C ⊕B(σ,R). Eventually, P outputs
true along with (M,σ), if V erV KS (M ||R, σ) = 1 holds; otherwise, outputs
false.

Verify(V KS , CT,M, σ): Let CT = (R,E,C). A verifier V computes M ′ =
C ⊕ B(σ,R). It outputs 1, iff V erV KS (M ||R, σ) = 1 ∧M = M ′; otherwise,
outputs 0.

When P indeed has a matching trapdoor for a keywordW , it can remove H2(w)
from E2 to obtain the signature σ, and further recovers message M . If M is
exactly the random message chosen during encryption algorithm PEKS(), the
verification algorithm of Γ outputs 1. The transformation mainly introduces
one extra signature verification to Test() and a signature generation to PEKS(),
while other increased computation cost is negligible. As compared to PEKS, the
ciphertext length in the above construction is increased by m+2k−1 bits. For a
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positive response, the proxy (i.e. the prover) has to append a tuple (M,σ), and
it adds k +m bits to the communication cost between the proxy and the user.

6 Conclusion

To summarize, we have proposed a new cryptographic notion called accountable
decryption which combines verifiable decryption and message authenticity. With
the formulation of accountable decryption and its security, we design a generic
construction, which is applicable for any semantically secure encryption scheme.
The security properties of the generic construction are proved rigorously. Taking
predicate encryption and public key encryption with keyword search as two
concrete examples, we transform them to the ones with accountable decryption,
while keeping their notable properties and efficiency.

Acknowledgements. We are grateful to the anonymous reviewers of ACISP
2012 for their helpful comments. This work is partially funded by Natural Science
Foundation of China (No. 60970111, 60903189, 61133014) and Doctoral Fund of
Ministry of Education of China (New Teachers) No. 20090073120024, and also
supported by the Office of Research, Singapore Management University.

References

1. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption
with Keyword Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

2. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully Secure Func-
tional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product
Encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010)

3. Katz, J., Sahai, A., Waters, B.: Predicate Encryption Supporting Disjunctions,
Polynomial Equations, and Inner Products. In: Smart, N.P. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

4. Neuman, B., Ts’o, T.: Kerberos: an authentication service for computer networks.
IEEE Communications Magazine 32, 33–38 (1994)

5. Camenisch, J.L., Shoup, V.: Practical Verifiable Encryption and Decryption of
Discrete Logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
126–144. Springer, Heidelberg (2003)

6. Selvi, S.S.D., Sree Vivek, S., Pandu Rangan, C.: Identity Based Public Verifiable
Signcryption Scheme. In: Heng, S.-H., Kurosawa, K. (eds.) ProvSec 2010. LNCS,
vol. 6402, pp. 244–260. Springer, Heidelberg (2010)

7. Chow, S.S.M.: Verifiable Pairing and Its Applications. In: Lim, C.H., Yung, M.
(eds.) WISA 2004. LNCS, vol. 3325, pp. 170–187. Springer, Heidelberg (2005)

8. Chow, S.S.M., Yiu, S., Hui, L., Chow, K.: Efficient Forward and Provably Secure
ID-Based Signcryption Scheme with Public Verifiability and Public Ciphertext
Authenticity. In: Lim, J., Lee, D. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 352–
369. Springer, Heidelberg (2004)



A Generic Construction of Accountable Decryption 335

9. Boyen, X.: Multipurpose Identity-Based Signcryption. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 383–399. Springer, Heidelberg (2003)

10. Shin, J., Lee, K., Shim, K.: New DSA-Verifiable Signcryption Schemes. In: Lee,
P., Lim, C. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 35–47. Springer, Heidelberg
(2003)

11. Bao, F., Deng, R.H.: A Signcryption Scheme with Signature Directly Verifiable by
Public Key. In: Imai, H., Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 55–59.
Springer, Heidelberg (1998)

12. Barbosa, M., Farshim, P.: Delegatable homomorphic encryption with applications
to fully secure outsourcing of computation. Cryptology ePrint Archive, Report
2011/215 (2011)

13. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and Verifiably Encrypted
Signatures from Bilinear Maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)
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Abstract. In PKC 2010, Herranz et al. proposed the first ciphertext
policy attribute-based encryption (CP-ABE) scheme with constant size
ciphertexts for threshold predicates. However, their scheme was only se-
cure against chosen plaintext attacks (CPA), which was impossible to
obtain security against chosen ciphertext attacks (CCA) in the standard
model, and they left open the following three problems for CP-ABE
schemes with constant size ciphertexts, i.e., how to achieve full security
(i.e., not only the selective security), CCA security in the standard model,
and security reduction to a more standard mathematical problem. In this
paper, we answer the last two of these three problems affirmatively. To-
wards our goal, we first design a CPA secure threshold CP-ABE scheme,
which can be further upgraded to the CCA security. The security of our
schemes can be proved under the decisional q-Bilinear Diffie-Hellman Ex-
ponent (q-BDHE) assumption in the selective model. To the best of our
knowledge, this is the first construction of CCA secure CP-ABE scheme
with constant size ciphertexts that can support flexible threshold access
structure in the standard model.

Keywords: attribute-based encryption, constant size ciphertext, chosen
ciphertext security, threshold access structure.

1 Introduction

Attribute-based encryption (ABE) was introduced by Sahai andWaters [18] (first
under the name fuzzy identity-based encryption), as an extension of identity-based
encryption (IBE) [19]. In an ABE system, a user’s private keys and ciphertexts
are associated with sets of descriptive attributes, and decryption is possible only
if there is a match between the attributes of the ciphertext and the user’s private
keys.

Goyal et al. [10] further extended this idea and introduced two variants: key
policy attribute-based encryption (KP-ABE) and ciphertext policy attribute-
based encryption (CP-ABE). In a CP-ABE system, a user’s private key is asso-
ciated with a set of attributes and encrypted ciphertext will specify an access
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policy over attributes. A user can decrypt if and only if his attributes satisfy the
ciphertext’s policy. While in a KP-ABE system, the situation is reversed: the
private key is associated with an access policy, and the ciphertext is associated
with a set of attributes. A user can decrypt if and only if the attributes asso-
ciated with the ciphertext satisfy the user’s private key policy. A remarkable
feature of ABE schemes is collusion resistance: even if multiple users collude,
they should only be able to decrypt a ciphertext if at least one of the users could
decrypt it on their own.

Since ABE can simultaneously provide access control and data confiden-
tiality functionalities, it has become a promising technique for building secure
databases. ABE has received a lot of attention in recent years, and a number of
schemes have been proposed [18,10,5,8,11,14,24,2,21,16,6]. However, in most of
the previous ABE schemes (except [8,11,24,2,6]), the ciphertext size is at least
linear to the number of attributes involved in the access policy. So it is with
the number of pairing computations in the ABE schemes. These limit the usage
of ABE in real life applications very much, especially for the scenarios where
bandwidth issues are of great importance. Therefore, CP-ABE schemes whose
ciphertexts are of constant size, i.e., regardless of the number of underlying at-
tributes, are more preferable.

The first CP-ABE scheme with constant ciphertext size was proposed by
Emura et al. in [8], but the policies in this scheme were restricted to AND-gates
(or (t,t)-threshold). Motivated by the dynamic threshold IBE scheme of [7],
Herranz et al. [11] constructed another constant size ciphertexts CP-ABE scheme,
and this scheme could work for the (t,n)-threshold policy. Their scheme is not
very efficient, as the encryption operation requires n + t + 1 exponentiations
and the decryption operation requires 3 pairings and O(t2) exponentiations. In
addition, the security of Herranz et al.’s scheme [11] is reduced to an augment as-
sumption: Multi-Sequence of Exponents Decisional Diffie-Hellman (aMSE-DDH)
problem, which is not a standard one.

Security against chosen ciphertext attacks (i.e., CCA security) is considered
as an important notion for ABE schemes. While it is easy to obtain CCA secu-
rity in the random oracle model by applying Fujisaki-Okamoto conversion [9], in
the standard model, it is not so easy. Some ABE schemes [10,5] used the CHK
technique [4] to achieve CCA security if the ABE scheme satisfied delegatabil-
ity. Recently, Yamada et al. [22] generalized this idea, and showed a generic
construction to CCA security if the ABE scheme provided either delegatabil-
ity or verifiability. Using a method different from [22], Chen et al. [6] proposed
another CCA secure CP-ABE construction with constant size ciphertexts, but
their scheme only admitted AND-gates. Note that Herranz et al.’s scheme [11]
does not satisfy the framework of [22], so their scheme does not seems to be able
to achieve CCA security in the standard model directly.

Up to now, most of the known ABE schemes in the literature focus on the
security under selective attacks, i.e., the attacker has to commit to a target access
structure before the setup phase. Lewko et al. [14] first obtained full security by
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adapting the dual system encryption technique [20] to the ABE case. Two other
schemes [17,16] also achieved full security.

Our Contributions. As noted by Herranz et al. in [11], there are three open
problems for CP-ABE with constant size ciphertexts: how to achieve full security
(i.e., not the selective security merely), CCA security in the standard model,
and security reduction to a more standard mathematical problem. In this paper,
we have solved the last two of these three open problems. Using the “default
attributes” approach, which was indicated by Sahai and Waters in [18], we first
propose a threshold CP-ABE scheme with constant size ciphertexts, and the
design strategy is completely different from Attrapadung et al.’s method [2]. The
security against chosen plaintext attacks of our CP-ABE scheme can be proven
in the standard model by reduction to the decisional q-Bilinear Diffie-Hellman
Exponent (q-BDHE) problem. q-BDHE problem is introduced and shown to be
hard by Boneh et al. in [3], which seems more natural than the aMSE-DDH
problem used in [11].

As our threshold CP-ABE scheme satisfies the property of delegatability, it
is trivial to achieve CCA security using the CHK technique [4] or the generic
technique from [22]. However, these conversions are not efficient, especially for
the small attribute universe case. Instead, we use a technique similar to the one
used in [6] to extend our scheme to be CCA secure without losing its efficiency:
the CCA secure threshold CP-ABE scheme still maintains both constant size
ciphertexts and computation cost in the encryption and decryption algorithms.

2 Preliminaries

In this section, we review some useful notations and notions.

Notations. We denote parameters by Greek letters (e.g., λ, ε, etc.), with λ
always denoting the security parameter. Real numbers and integers are denoted
by lowercase English letters (p, q, x, y, etc.). Sets are denoted by capital English
letters (S,W, etc.). We denote Υ as the access structure used in the encryption
algorithm. If x is a string, let |x| denotes its length, while if S is a set then |S|
denotes its size. If k ∈ N, a function f(k) is negligible if ∃ k0 ∈ N, ∀ k > k0,
f(k) < 1/kc, where c > 0 is a constant.

2.1 Bilinear Groups

We briefly review bilinear maps and bilinear groups. Let G,GT be cyclic mul-
tiplicative groups of prime order p, and g is a generator of G. A bilinear map
e : G×G→ GT has the following properties:

– Bilinearity: For all u, v ∈ G and a, b ∈ Z
∗
p, we have e(ua, vb) = e(u, v)ab.

– Non-degeneracy: e(g, g) �= 1.
– Computability: It is efficient to compute e(u, v) for all u, v ∈ G.
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2.2 Hardness Assumption

The security of our schemes is based on the decisional q-BDHE problem, which is
defined as follows: Denote −→y g,α,q = (g1, g2, ..., gq, gq+2, ...g2q) where gi = g

αi

for
some unknown α ∈ Z∗

p. An algorithm A that outputs b ∈ {0, 1} has advantage ε
in solving the decisional q-BDHE problem if∣∣∣Pr [A(g, h,−→y g,α,q, e(g, h)(α

q+1)) = 0
]
− Pr [A(g, h,−→y g,α,q, T ) = 0]

∣∣∣ � ε
where the probability is over the random choice of generators g, h in G, the
random choice of α in Z

∗
p, the random choice of T ∈ GT , and the random bits

used by B.

Definition 1. We say that the decisional (t, ε, q)-BDHE assumption holds if
no t-time algorithm has advantage at least ε in solving the decisional q-BDHE
problem in (G,GT ).

2.3 Syntax of CP-ABE Scheme

There are two entities in the CP-ABE system: a central attribute authority and
users. The authority is in charge of the attribute private key, and each user
receives secret keys corresponding to the attributes that he satisfies from the
central attribute authority. Denote the universe of attributes as U. Intuitively,
an access structure Υ is a boolean function over U that returns either 0 or 1
given an attribute set A ⊆ U. We say that A satisfies Υ if and only if Υ (A) = 1.
The access structure used in our scheme is threshold policy, the sender chooses
an attribute set S ⊆ U and a threshold t such that 1 � t � |S|. Only the user
with attributes A who holds t or more attributes in S can satisfy this policy.

A CP-ABE system consists of four fundamental algorithms: Setup,KeyGen,
Encrypt and Decrypt. In addition, we allow for the option of a fifth algorithm
Delegate.

– Setup(λ,U): This algorithm takes as input a security parameter λ and an
attribute universe description U, and it returns public parameters params
and a master secret key msk as output. The master secret key msk is kept
secret by the central authority, and is used to generate users’ secret keys,
while the public parameters params containing the universe of attributes U
are made public.

– KeyGen(msk, params,A): This algorithm takes a master secret key msk,
public parameters params and a user’s attribute set A ⊆ U as input, and it
returns the attribute private key SKA.

– Delegate(SKA, A
′ ⊆ A): This algorithm takes a private key SKA for some

attribute set A and a subset A′ ⊆ A as input, and it returns an attribute
private key SKA′ for the set of attributes A′.

– Encrypt(M,params, Υ ): This algorithm takes a messageM , public param-
eters params and an access structure Υ as input, and it returns a ciphertext
CT such that only the user with attribute set A satisfies Υ can decrypt CT.
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– Decrypt(params, Υ, SKA, CT ): This algorithm takes public parameters
params, an access structure Υ , a ciphertext CT and a private key SKA

for a set of attributes A, and it returns “⊥” indicating invalid ciphertext, or
a message M if the set of attributes A satisfies the access structure Υ .

Correctness . For any correctly generated ciphertexts on the messageM and the
access structure Υ , with the private key SKA satisfying Υ (A) = 1, it is required
that: Decrypt(params, Υ, SKA,Encrypt(M,params, Υ )) =M.

2.4 Security Model for CP-ABE

We now describe the security model against chosen plaintext attacks (CPA) for
CP-ABE. This is defined by a game between a challenger C and an adversary A
as follows:

– Setup: The challenger C chooses a security parameter λ and runs Setup al-
gorithm to generate a master secret keymsk and public parameters params.
C gives params to the adversary A, while keeping the msk secret.

– Phase 1: The adversary A queries the challenger C for private keys corre-
sponding to sets of attributes A1, ..., AqK1

.
– Challenge: The adversary A declares two equal length messages M0 and
M1 and an access structure Υ ∗. This access structure Υ ∗ cannot be satisfied
by any of the queried attribute sets A1, ..., , AqK1

. The challenger C flips a
random coin β ∈ {0, 1} and encrypts Mβ under Υ ∗. The result ciphertext
CT ∗ is given to the adversary A.

– Phase 2: The adversary A queries the challenger C for private keys corre-
sponding to sets of attributes AqK1+1, ..., AqK , with the restriction that none
of these attributes satisfies Υ ∗.

– Guess: Finally, the adversary A outputs a guess β′ for β.

We say that the adversary A succeeds if β′ = β, and the advantage of A is
defined as AdvCPAA,CP−ABE = |Pr[β′ = β]− 1/2| .
Definition 2. A CP-ABE scheme is (t, ε, qK)-CPA secure if the advantage of A
AdvCPAA,CP−ABE is negligible for each t-time adversaries A who makes a total of

qK private key queries, we have that AdvCPAA,CP−ABE � ε. We say that a CP-ABE
scheme is CPA secure if for all polynomially bounded t, qK , the advantage ε is
negligible.

Note that the security model against chosen ciphertext attacks (CCA) for CP-
ABE can be easily extended by allowing for decryption queries in Phase 1 and
Phase 2, where no decryption query is allowed on CT ∗ in Phase 2. We say that
a system is selectively secure if we add an Init stage before Setup where the
adversary commits to the challenge access structure Υ ∗.

3 The Proposed CP-ABE Schemes

In this section, we present two constructions that will be proved secure without
random oracles under the decisional q-BDHE assumption. The first scheme is
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CPA secure and the second one is CCA secure. Both of our CP-ABE schemes
have constant size ciphertexts and pairing computation costs. The security anal-
ysis of these schemes will be postponed to Section 4.

3.1 Construction I: CPA Secure CP-ABE

LetG be a bilinear group of prime order p with a generator g, and e : G×G→ GT

is an efficient bilinear map. Our CPA secure threshold CP-ABE scheme with
constant size ciphertexts works as follows:

– Setup(λ,U):Takes as input a security parameter λ and the universal set of
attributes U = {att1, att2, ..., att�}, the central attribute authority chooses a
suitable encoding function ρ sending each of the  attributes atti onto a dif-
ferent element ρ(atti) = xi ∈ Zp. For simplicity, we define ρ(atti) = i for each
atti ∈ U. Besides these  normal attributes U, the attribute authority also
chooses −1 default attributes U′ = {att′1, att′2, ..., att′�−1}= {+1, ..., 2−1}.
Note that the default attributes U′(|U′| = − 1) are possessed by every user
in this system.

After that, the central attribute authority chooses g2, h0, h1, ..., , h2�−1 uni-
formly at random from G, a random x ∈ Z

∗
p, and sets g1 = gx, Z = e(g1, g2).

The master secret key is then msk = x and the public parameters are
params = (g, g2, Z, h0, h1, ..., h2�−1).

– KeyGen(msk, params,A): The attribute authority takes the following steps
to generate a private key for a user with his attribute set A ⊆ U:
1. Randomly choose an − 1 degree polynomial q(·) with q(0) = x;
2. For each attribute i ∈ (A∪U′), the attribute authority selects a random
ri in Zp, and computes:

ski = (g
q(i)
2 (h0hi)

ri , gri , hri1 , ..., h
ri
i−1, h

ri
i+1, ..., h

ri
2�−1)

= (ai, bi, ci,1, ..., ci,i−1, ci,i+1, ..., ci,2�−1);

3. Finally, the attribute authority outputs the private key: {ski}i∈A∪U′ .

– Delegate(SKA, A
′ ⊆ A): The delegate algorithm takes the attribute private

key SKA for some attribute set A ⊆ U and a subset A′ ⊆ A as input.
The attribute private key SKA for the set of attributes A is of the form
SKA = {ski}i∈A∪U′ . The algorithm chooses random r̃i for each i ∈ A′ ∪ U′.
Then it creates a new secret key as SKA′ = {s̃ki}i∈A′∪U′ , where

s̃ki = (ãi, b̃i, c̃i,1, ..., c̃i,i−1, c̃i,i+1..., c̃i,2�−1)

= (ai(h0hi)
r̃i , big

r̃i , ci,1h
r̃i
1 , ..., ci,i−1h

r̃i
i−1, ci,i+1h

r̃i
i+1, ..., ci,2�−1h

r̃i
2�−1)

– Encrypt(M,params, Υt,S): Given a threshold access structure Υt,S , i.e., a
subset S ⊆ U and a threshold 1 � t � |S|, the sender does the following to
encrypt a message M ∈ GT :

1. The sender picks a default attribute subset Ω ⊆ U′ with the first  − t
elements, i.e., Ω = {+ 1, + 2, ..., 2− t};
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2. The sender chooses a random value s ∈ Zp, and computes the ciphertext
CT = (C0, C1, C2) as follows:

C0 =M · Zs, C1 = gs, C2 = (h0
∏

j∈S∪Ω
hj)

s.

– Decrypt(params, Υt,S , SKA, CT ): Any user with a set of attributes A sat-
isfying the threshold access structure Υt,S (i.e., there exists a subset A′ ⊆
A ∩ S with |A′| = t) can use the secret key {ski}i∈A′∪U′ to decrypt the
ciphertexts as follows:
1. The user chooses the first  − t elements in U′ and sets Ω = { + 1, +

2, ..., 2− t};
2. After that, the user calculates:

D1 =
∏

i∈A′∪Ω
(ai

∏
j∈S∪Ω,j 	=i

(ci,j))
Δi,A′∪Ω(0)

, D2 =
∏

i∈A′∪Ω
(bi)

Δi,A′∪Ω(0)
;

3. Finally, the user recovers the message by computing
M = C0 · e(C2, D2)/e(C1, D1).

Correctness: Correctness is shown in Appendix A.

3.2 Construction II: CCA Secure CP-ABE

Motivated by the work of [23,13,6], we present an efficient CCA secure CP-
ABE construction with the small attribute universe. Compared with the CHK
technique [4] or the generic conversion in [22], our construction is very simple and
compact: the ciphertext size and public key size do not increase much, and so it
is with the computation costs increase in encryption and decryption operations.
Our CCA secure construction works as follows:

– Setup(λ,U): The attribute authority randomly picks (δ1, δ2, δ3) ∈ G as well
as a collision-resistant hash function H : {0, 1}∗ → Z∗

p. The other part of
the public parameters params = (g, g2, Z, h0, h1, ..., h2�−1, δ1, δ2, δ3, H) and
the master secret key msk = x are chosen samt to the Setup algorithm in
Construction I given in Section 3.1.

– KeyGen(msk, params,A): The key generation algorithm is same to the
KeyGen algorithm in Construction I given in Section 3.1.

– Delegate(SKA, A
′ ⊆ A): The delegate algorithm is same to the delegate

algorithm in Construction I given in Section 3.1.
– Encrypt(M,params, Υt,S): Given a threshold access structure Υt,S , the

sender does the following to encrypt a message M ∈ GT :
1. The sender picks a default attribute subset Ω ⊆ U

′ with the first  − t
elements, i.e., Ω = {+ 1, + 2, ..., 2− t};

2. The sender chooses random s, r ∈ Zp, and computes the follows:

C0 =M · Zs, C1 = gs, C2 = (h0
∏

j∈S∪Ω
hj)

s, C3 = (δc1δ
r
2δ3)

s

where c = H(Υt,S , C0, C1, C2).
3. The sender outputs the ciphertext CT = (C0, C1, C2, C3, r).
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– Decrypt(params, Υt,S , SKA, CT ): Suppose that a ciphertext CT = (C0, C1,
C2, C3, r) is encrypted using a threshold access structure Υt,S , the user should
first check the following two equations:

e(g, C2) = e(C1, h0
∏

j∈S∪Ω
hj), e(g, C3) = e(C1, δ

c
1δ
r
2δ3)

where c = H(Υt,S , C0, C1, C2), and Ω = {+1, +2, ..., 2−t} is the first −t
elements in U′. If one of the two equations does not hold, return ⊥. Other-
wise, the user can decrypt the ciphertext by using the secret key {ski}i∈A′∪U′

which is same to the decrypt algorithm in Construction I given in Section 3.1.

Correctness: Correctness can be verified similarly with the above CPA secure
CP-ABE in Section 3.1, so we omit it here too.

4 Security Analysis and Performance

4.1 Security Analysis

In this section, we prove that the scheme in Section 3.2 is secure against chosen
ciphertext attacks, assuming that the decisional q-BDHE assumption is hard
to solve in the standard model. Due to page limit, here we leave the security
analysis of the scheme in Section 3.1 in the full version.

Theorem 1. Our CP-ABE scheme in Section 3.2 is (t, ε, qK , qD)-CCA secure
in the selective model, suppose the decisional (t′, ε′, q)-BDHE assumption holds
in (G,GT ) and collision resistant hash function exists. Here ε′′ = (ε− qD/p)/2,
where qK and qD are the number of private key queries and decryption queries
an adversary can make at most

Proof. Suppose there exists a (t, ε, qK , qD)-adversaryA against our scheme, then
we can construct a probabilistic polynomial time algorithm that can solve the
decisional q-BDHE problem with probability at least ε′ and in time at most
t′. Suppose that the challenger C is given the the decisional q-BDHE challenge
(h, g, gα, ..., gα

q

, gα
q+2

, ..., gα
2q

, T ), where T is either e(gα
q+1

, h) or a random el-
ement of GT . Consider the game between the challenger C and the adversary A
as follows:

Init: During the initial phase, C receives a challenge access structure Υ ∗
t∗,S∗ ,

namely, a threshold value t∗ out of the attributes S∗.

Setup: The challenger C first defines the universe of attributes used in this
system as U = {1, 2, ..., }, and the  − 1 default attribute set U′ = { + 1,  +
2, ..., 2 − 1}. For simplicity, here we let 2 − 1 = q, and the  − t∗ default
attributes chosen in the challenge Υ ∗

t∗,S∗ beΩ∗ = {+1, +2, ..., 2−t∗}. C chooses

γj(0 � j � q) randomly from Zp and sets h0 = gγ0
∏

i∈S∗∪Ω∗
h−1
i , hj = g

γjgα
q−j+1

.

Furthermore, C chooses random α′ ∈ Z
∗
p and implicitly sets x = α′+αq by letting
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g1 = gx = gα
′
gα

q

, g2 = gα. In addition, C randomly selects d2, d3, e1, e2, e3 ∈
Z∗
p to compute δ1 = g2g

e1 , δ2 = gd22 g
e2 ,δ3 = gd32 g

e3 . The challenger C then
provides A the public parameters params = (g, g2, Z, h0, h1, ..., hq, δ1, δ2, δ3, H)

with Z = e(g1, g2) = e(gα
′
, gα)e(gα

q

, gα), and H is a public collision-resistant
hash function.

Phase 1: In this phase, the challenger C answers private key queries and de-
cryption queries from the adversary A.

Private Key Queries: Suppose the adversary A makes at most qK1 extraction
queries for the private key of attributes S with the restriction that |S ∩ S∗| < t∗
(i.e., Υ ∗

t∗,S∗(S) = 0). Define three sets T, T ′, T ′′ in the following manner: T =
(S ∩S∗)∪Ω∗, T ⊆ T ′ ⊆ (S∗ ∪Ω∗) and |T ′| = − 1. Set T ′′ = T ′ ∪{0}. For each
attribute i ∈ S∪U

′, C random chooses an − 1 degree polynomial q(·) such that
q(0) = x = α′ + αq (In fact C does not know the value of x.), and the private
key ski is computed as follows for each attribute i ∈ S ∪ U′:

1. For i ∈ T ′, i.e., i ∈ (S∗∪Ω∗). C randomly picks ti, r
′
i ∈ Zp and sets q(i) = ti,

ri = α
i + r′i, then computes:
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2

(h0hi)
ri , gri , h

ri
1 , ..., h

ri
i−1, h

ri
i+1, ..., h

ri
q )

= (gti
2
(h0hi)

r′i+αi
, gr

′
i+αi

, h
r′i+αi

1 , ..., h
r′i+αi

i−1 , h
r′i+αi

i+1 , ..., h
r′i+αi

q )

= (g
ti
2
(h0hi)

r′i (gγ0
∏

j∈S∗∪Ω∗,j �=i

h
−1
j )

αi
, g

r′igα
i
, h

r′i+αi

1 , ..., h
r′i+αi

i−1 , h
r′i+αi

i+1 , ..., h
r′i+αi
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2. For i /∈ T ′, i.e., i /∈ (S∗ ∪ Ω∗). C randomly selects r′i ∈ Zp and assigns ri =
r′i −Δ0,T ′′(i)αi. By using the Lagrange interpolation: q(i) = Δ0,T ′′(i)q(0) +∑
j∈T ′

Δj,T ′′(i)q(j), C can compute the private key:

ski = (gq(i)
2

(h0hi)
ri , gri , h

ri
1 , ..., h

ri
i−1, h

ri
i+1, ..., h

ri
q )

= (g

Δ
0,T ′′ (i)q(0)+

∑
j∈T ′

Δ
j,T ′′ (i)q(j)

2 (h0hi)
r′i−Δ

0,T ′′ (i)αi

), g
r′i−Δ

0,T ′′ (i)αi

,

h
r′i−Δ

0,T ′′ (i)αi

1 , ..., h
r′i−Δ

0,T ′′ (i)αi

i−1 , h
r′i−Δ

0,T ′′ (i)αi

i+1 , ..., h
r′i−Δ

0,T ′′ (i)αi

q )

= (g

Δ
0,T ′′ (i)α′+ ∑

j∈T ′
Δ

j,T ′′ (i)tj

2 (h0hi)
r′i (h0)

−Δ
0,T ′′ (i)αi

(gα
i
)
−Δ

0,T ′′ (i)γi , gr
′
i−Δ

0,T ′′ (i)αi

,

h
r′i−Δ

0,T ′′ (i)αi

1 , ..., h
r′i−Δ

0,T ′′ (i)αi

i−1 , h
r′i−Δ

0,T ′′ (i)αi

i+1 , ..., h
r′i−Δ

0,T ′′ (i)αi

q ).

Remarks : The tricky part is to simulate the ski values since this contains terms
of the form gα

q+1

which is unknown to C. The reason is that, by dividing three
sets: T , T ′ and T ′′, all of these terms of gα

q+1

can be canceled out. Intuitively, for
any attribute i ∈ T ′, the term of gα

q+1

can be canceled out by (h0hi)
αi

; for any

attribute i /∈ T ′, the term of gα
q+1

can be canceled out by (g2)
q(0)(hi)

αi

. The con-
sistence of this simulation can be assured by the Lagrange interpolation:q(i) =

Δ0,T ′′(i)q(0)+
∑
j∈T ′

Δj,T ′′(i)q(j). As (gα, gα
2

, ..., gα
q

, gα
q+2

, ..., , gα
2q

) is known to

C, and C does not need to know gα
q+1

for above calculation, so the simulator
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can construct the private key for each attribute i ∈ S ∪ U′. Furthermore, the
distribution of the private key is identical to that of the original scheme.

Decryption Queries: The adversaryA submits a ciphertext CT = (C0, C1, C2,
C3, r) with a threshold access structure Υt,S . The challenger C first computes
c = H(Υt,S , C0, C1, C2) and checks whether the ciphertext is consistent:

e(g, C2) = e(C1, h0
∏

j∈S∪Ω
hj), e(g, C3) = e(C1, δ

c
1δ
r
2δ3)

If one of the two equations does not hold, return ⊥. C then checks whether
c + rd2 + d3 = 0. Note that the probability that c + rd2 + d3 = 0 occurs is at
most 1/p. If so, the challenger C aborts and randomly outputs a bit; otherwise
C outputs

M = C0

/
e((C3

/
Cce1+re2+e31 ), g

(c+rd2+d3)
−1

1 )

Challenge: The adversary A submits two challenge messages M0 and M1 of
equal length to the challenger C. C flips a fair binary coin β, and returns an en-
cryption of Mβ. The ciphertext CT ∗ = (C∗

0 , C
∗
1 , C

∗
2 , C

∗
3 , r

∗) is output as follows:

C∗
0 =MβT ·e(h, gα

′
2
), C∗

1 = h,C∗
2 = hγ0 , C∗

3 = he1c
∗+r∗e2+e3 , r∗ = −(c∗ + d3)/d2,

where c∗ = H(Υ ∗
t∗,S∗ , C∗

0 , C
∗
1 , C

∗
2 ).

If μ = 0, then T = e(gα
q+1

, h), and the challenge ciphertext is a valid encryp-
tion of Mβ. On the other hand, when μ = 1, T is uniform and independent in
GT , the challenger ciphertext CT is independent of β in the adversary’s view.

Phase 2: A continues to make private key queries and decryption queries, and
C responds similar as in Phase 1.

Guess: The adversary A will eventually output a guess β′ of β. If β′ = β, the
challenger C then outputs μ′ = 0 to guess that T = e(gα

q+1

, h); otherwise, it
outputs μ′ = 1 to indicate that it believes T is a random group element in GT .

Probability Analysis: As shown in the above, the distributions of public pa-
rameters and the private keys are identical to the real world.

If μ = 1, i.e., T is a random group element, the adversary A gains no infor-
mation about β. Therefore, we have Pr[β′ �= β|μ = 1] = Pr[β′ = β|μ = 1] = 1/2.

If μ = 0, the adversary sees an encryption of Mβ, The adversary’s advantage
in this situation is at least ε. Note that the probability that C aborts during the
simulation is at most qD/p, where qD is the number of decryption queries A can
make. Therefore, we have Pr[β′ = β|μ = 0] = ε+ 1/2− qD/p.

The overall advantage of the challenger C in the decisional q-BDHE game is

(1/2) · Pr[β′ = β|μ = 0] + (1/2) · Pr[β′ = β|μ = 1]− (1/2) = (ε− qD) /2.

This completes the proof of Theorem 1. ��
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4.2 Performance Comparison

In this section, we compare efficiency and security among available CP-ABE
schemes that have constant size ciphertexts in the literature. Comparisons are
made in terms of the computation costs of encryption and decryption operations,
the private key size, the ciphertext length, the flexibility of access policy, the
security assumption as well as the security model.

In Table 1, let Enc., Dec. be the computation of encryption and decryption,
respectively. For simplicity, the computation of multiplication over group is ig-
nored. Let p, e be the number of pairing and exponentiation computation,
respectively. We denote the number of attributes involved in the access policy
as n, the number of attributes the user holds as s (used in the private key size
of Table 1). Let t be the number of attributes the user has to hold in order to
satisfy the access policy. Let  be the number of normal attributes used in the
attribute university U. The notation |G| is the bit length of the element which
belongs to G.

Table 1. Comparison with other CP-ABE schemes with constant size ciphertexts

Schemes Enc. Dec. Private key Ciphertext Expressiveness Security
EMN+[8] (t+ 2)e 2p+2e 2 |G| |GT | + 2 |G| AND-gate CPA
ZH[24] 2e (2t+ 1)p (2�+ 1)G |GT | + 2 |G| AND-gate CPA
CZF1[6] 3e 2p �G |GT | + 2 |G| AND-gate CPA
CZF2[6] 6e 6p+2e �G |GT | + 3 |G| + |Zp| AND-gate CCA
AL[1] 4e 3p+(n− 1)e (2�+ 5)G |GT | + 2 |G| inner product CPA

HLR[11] (n+ t+ 1)e 3p+O(t2)e (�+ s− 1)G |GT | + 2 |G| (t, n)-threshold gate CPA
This Work1 3e 2p+(2�)e 2�(�+ s)G |GT | + 2 |G| (t, n)-threshold gate CPA
This Work2 6e 6p+(2�+2)e 2�(�+ s)G |GT | + 3 |G| + |Zp| (t, n)-threshold gate CCA

Note that [1] has a unique feature of being adaptively secure. However, since
using the inner product as the basic tool, as is shown by Katz et al. in [12],
these schemes in [1] can be only extended to “exact” threshold predicate with
constant size ciphertexts (i.e., predicates which are true if and only if exact k
input out of a set of d inputs are set to true), but not the “flexible” threshold
predicate (i.e., predicates which are true if and only if at least k input out of a
set of d inputs are set to true).

Compared with the scheme in [11], our scheme is efficient in the overhead
of encryption operation (as encryption algorithm requires O(n) exponentiations
in [11] whereas 3 exponentiations are suffice in our scheme). However, for the
decryption algorithm our scheme seems less efficient. Beyond that, the security
proof is under a well-established decisional q-BDHE assumption in the standard
model. In particular, Yamada et al.’s framework [22] does not apply to [11]. To
the best of our knowledge, this is the first construction for CCA secure CP-ABE
scheme with constant size ciphertexts that can support flexible threshold access
structure in the standard model.
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We admit that by embedding the whole universe of attributes in the private
keys, the ciphertext size in our scheme can achieve constant, somewhat sacri-
ficing the size of private keys to optimize the bandwidth requirements (i.e., the
ciphertext size). It seems that bandwidth needs are the most important feature
in the Pay-TV world or the anonymous access control, as the computational
capacities of modern receivers tend to follow Moore’s law in a quite natural way,
while increasing the bandwidth capacities for the communication is extremely
costly.

5 Conclusions

In this paper, we have presented two new CP-ABE schemes which have con-
stant size ciphertexts and constant pairing costs for a flexible threshold access
structure. Compared with Herranz et al.’s threshold CP-ABE scheme, our first
scheme, which is CPA secure, has a better efficiency in the encryption operation.
Our second scheme is the first threshold CP-ABE scheme with constant size ci-
phertexts that can achieve CCA security. The security of both schemes can be
reduced to a well-established assumption: decisional q-BDHE assumption. Our
schemes can be easily extended to admit weighted threshold decryption policies,
which is a fair trade-off between expressiveness and efficiency.
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A Correctness of CP-ABE

Proof. Assuming the private key for a user with his attribute set A satisfying
Υt,S is well-formed:

D1 =
∏

i∈A′∪Ω
(ai

∏
j∈S∪Ω,j 	=i

(ci,j))
Δi,A′∪Ω(0)

=
∏

i∈A′∪Ω
(gq(i)

2
(h0hi)

ri
∏

j∈S∪Ω,j 	=i
(hj)

ri)Δi,A′∪Ω(0)

=
∏

i∈A′∪Ω
(g
q(i)Δi,A′∪Ω(0)
2 (h0

∏
j∈S∪Ω

hj)
riΔi,A′∪Ω(0))

= g

∑
i∈A′∪Ω

q(i)Δi,A′∪Ω(0)

2 (h0
∏

j∈S∪Ω
hj)

∑
i∈A′∪Ω

riΔi,A′∪Ω(0)

= gx
2
(h0

∏
j∈S∪Ω

hj)

∑
i∈A′∪Ω

riΔi,A′∪Ω(0)

For the ciphertext that is correctly generated, then

e(C1, D1) = e(g
s, gx

2
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∏
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= Zs · e(C2, D2).

It is easily verified that M = C0 · e(C2, D2)/e(C1, D1).
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Juan Manuel González Nieto1, Mark Manulis2, and Dongdong Sun1

1 Queensland University of Technology, Brisbane QLD 4001, Australia
j.gonzaleznieto@qut.edu.au, dd.sun@student.qut.edu.au

2 University of Surrey, Guildford, United Kingdom
mark@manulis.eu

Abstract. We introduce the concept of Revocable Predicate Encryption
(RPE), which extends current predicate encryption setting with revo-
cation support: private keys can be used to decrypt an RPE ciphertext
only if they match the decryption policy (defined via attributes encoded
into the ciphertext and predicates associated with private keys) and were
not revoked by the time the ciphertext was created.

We formalize the notion of attribute hiding in the presence of re-
vocation and propose an RPE scheme, called AH-RPE, which achieves
attribute-hiding under the Decision Linear assumption in the standard
model.

We then present a stronger privacy notion, termed full hiding, which
further cares about privacy of revoked users. We propose another RPE
scheme, called FH-RPE, that adopts the Subset Cover Framework and
offers full hiding under the Decision Linear assumption in the standard
model. The scheme offers very flexible privacy-preserving access control
to encrypted data and can be used in sender-local revocation scenarios.

Keywords: Predicate Encryption, Revocation, Attribute Hiding, Full
Hiding, Sender-Local Revocation.

1 Introduction

Functional Encryption. In recent years, asymmetric encryption has expe-
rienced a paradigm shift from encryption of secret messages for particular re-
cipients (Public Key Encryption or Identity-Based Encryption) towards more
flexible encryption mechanisms, which offer manifold forms of access control to
encrypted data. These mechanisms rely on arbitrary functional relationships
between policies and attributes encoded in ciphertexts and recipients’ decryp-
tion keys. Functional Encryption has emerged from Identity-Based Encryption
techniques [6,19], and encompasses novel concepts such as Attribute-Based En-
cryption [9, 18], Hidden-Vector Encryption [7], and Predicate-Based Encryp-
tion [10, 11, 14, 15, 20–22]. At a high level these schemes implement the idea
of creating ciphertexts without prior knowledge of potential recipients. The suc-
cess of message recovery depends usually on some relation, which is implicitly
evaluated through the decryption procedure, on input the information encoded
in the ciphertext and information contributed by the private key.

W. Susilo, Y. Mu, and J. Seberry (Eds.): ACISP 2012, LNCS 7372, pp. 350–363, 2012.
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Predicate Encryption. In this work we focus on the notion of Predicate En-
cryption (PE), formalized by Katz, Sahai, and Waters [10], and further studied
in [11, 14, 15, 20, 22]. In PE schemes private keys of users are associated with
predicates f and ciphertexts are bound to attributes a. The decryption proce-
dure is successful if and only if f(a) = 1. If this relation is not satisfied then no
information about the plaintext is leaked. In contrast to Attribute-Based En-
cryption, which also states this requirement on the security of the decryption
procedure, PE schemes offer privacy of attributes that legitimate recipients of
PE ciphertexts must possess, that is PE ciphertexts ensure attribute hiding in
that they do not leak any information about a for which the condition f(a) = 1
would be satisfied. Concrete constructions of PE schemes typically focus on the
realization of certain types of predicates f . In their seminal work, Katz, Sahai,
and Waters [10] introduced PE schemes supporting Inner-Product Encryption
(IPE), i.e. vector −→y represents attributes and vector −→x determines the predicate
f−→x such that f−→x (

−→y ) = 1 iff −→x · −→y = 0 (−→x · −→y denotes the inner product of
vectors −→x and −→y over a field or ring). It has been shown that IPE can be lever-
aged to evaluate a wide class of predicates such as conjunctions or disjunctions
of equality tests, conjunctions of comparison or subset tests, and more generally,
arbitrary CNF or DNF formulae.

Revocation in Functional Encryption. The revocation problem in FE turns
out to be more subtle than in previous encryption paradigms, e.g. in comparison
to CRL-based revocation mechanisms used in traditional PKE schemes (within
public key infrastructures) [1, 8, 13] or to the time-based revocation approach
suggested by Boneh and Franklin [6] for IBE schemes, where the identities of
receivers are linked to time periods and unrevoked users must be in possession of
up-to-date private keys, obtained from the Private Key Generator (PKG). The
revocation problem in FE is apparent in that FE ciphertexts are encrypted for
predicates f that can possibly be satisfied by multiple recipients, all in possession
of suitable attributes a. Using time-based revocation for users’ attributes is in-
appropriate here for several reasons: First, a user may be in possession of several
attributes and if time periods for all attributes in the system are not synchro-
nized then unrevoked users would have to update their private keys whenever
any of their attributes expires. Second, even if time periods are synchronized
then the problem with scalability still remains. Indeed, the PKG would have to
be regularly contacted by all unrevoked users in the system to obtain updates
for their private keys. This would require online presence of the PKG, establish-
ment of secure channels between the PKG and each user for the transmission
of updated private keys, and authentication of users towards the PKG to prove
eligibility with regard to the update procedure. The amount of work performed
by the PKG is then linear in the number of (unrevoked) users and attributes
available in the system.

A more efficient approach for handling revocation in IBE systems was sug-
gested by Boldyreva, Goyal, and Kumar (BGK) [4], where the PKG on each
time period publishes some update information that is then used by unrevoked
users to update their private keys locally. The amount of work performed by
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PKG is logarithmic and, more importantly, no online communication between
the PKG and unrevoked users is required. The approach from [4] could also be
applied to ABE systems, in which case, however, it would result in a significant
limitation — while in IBE systems revoking user identities is sufficient, revoking
attributes in ABE systems would implicitly revoke private keys of all users with
those attributes. That is revocation of users (which is possible with the time-
based approach of Boneh and Franklin [6] when applied to ABE systems) would
no longer be possible with the BGK approach. Another limitation of the BGK
approach is that unrevoked users still have to update their private keys for each
time period.

To alleviate this limitation, Attrapadung and Imai [3] suggested another way
for revocation in ABE schemes: Instead of enforcing revocation via an authority,
the revocation is carried out by the senders directly, i.e., the senders encrypt a
message under a normal attribute set, as well as a revocation list. Each user’s
private key has an associated policy and some unique identifier. A private key can
be used to decrypt the ciphertext if the attributes in the ciphertext satisfy the
policy associated with the key and the identifier of the key is not contained in the
revocation list encoded into the ciphertext. This method solves the mentioned
problem behind the BGK approach, namely each user’s private key can now be
issued by PKG once and need not be updated thereafter. Later on, Attrapadung
and Imai [2] proposed another system by combining techniques from [4] with
their previous work from [3], which inherits the advantages of both approaches.

Revocation in PE Schemes and Privacy. The different ABE revocation
techniques mentioned above, aside from their scalability issues, are only partially
applicable to PE schemes due to the distinguished attribute-hiding property of
the latter. In particular, care should be taken to ensure that by introducing re-
vocation to a PE system this privacy property is preserved. To the best of our
knowledge, revocation in PE schemes has not been investigated so far and it is
not clear whether revocation introduces further privacy challenges, in addition
to the challenge of preserving their basic attribute-hiding property. We observe
that additional privacy problems may arise in scenarios, where revocation is per-
formed for individual private keys. For example, in the revocable ABE scheme of
Attrapadung and Imai [3], each sender builds a revocation list on-the-fly, using
unique identifiers of users’ private keys, and encodes this list into the ciphertext.
However, a close inspection of the scheme shows that ciphertexts reveal infor-
mation about the encoded key identifiers and by this leak information about
the revoked users. In this work we explore the concept of privacy-preserving
revocation in PE schemes. Our contributions are detailed in the following.

1.1 Our Contributions

We formalize the concept of Revocable Predicate Encryption (RPE) and
propose two RPE schemes allowing for efficient revocation of private keys.

Attribute-Hiding RPE Scheme. Our first scheme, termed AH-RPE, of-
fers attribute-hiding, which is the standard PE property (and further implies
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payload-hiding used in the context of ABE). The revocation concept behind
AH-RPE uses revocation lists (RL) and is mostly suitable for applications where
revocation management is handled centrally by the PKG. It is assumed that
senders obtain up-to-date RL published by the PKG prior to encryption. The
attribute-hiding property of our AH-RPE scheme is proven against adaptive ad-
versaries in the standard model under the established DLIN assumption. The
AH-RPE scheme has constant-size private and public keys while the length of
its ciphertexts remains linear in the number of revoked keys.

Full-Hiding RPE Scheme. Our second scheme, termed FH-RPE, offers even
stronger privacy guarantees that ensure no information about revoked users is
leaked from a given ciphertext and is a natural extension in the context of PE
that cares about privacy. Our FH-RPE scheme can be used in applications where
senders may freely decide to exclude certain key holders from running a successful
decryption operation, even if private keys of those holder match the ciphertext
policy. Such sender-local revocation (SLR), as previously addressed in [2] for
ABE schemes, allows for more flexible forms of access control to PE plaintexts
and the requirement of full-hiding keeps revoked recipients undisclosed. The full-
hiding property of FH-RPE also relies on the DLIN assumption and the length
of keys and ciphertexts becomes logarithmic in the number of decryption keys.

Techniques. Our RPE schemes are based on the Dual System Encryption
of Waters [23] and the Dual Pairing Vector Spaces (DPVS) of Okamoto and
Takashima [14]. Our AH-RPE scheme deploys the revocation system of Lewko,
Sahai and Waters [12], introduced originally for public-key broadcast encryption,
and modified here for an integration with the (payload-hiding) FE scheme of
Okamoto and Takashima [15] in a way that achieves attribute-hiding by further
using some techniques underlying the PE scheme by Lewko et al. [11]. Our
FH-RPE scheme is obtained from Okamoto and Takashima [15] and Lewko et
al. [11] in a more direct way. The logarithmic complexity of our FH-RPE scheme
is due to the use of the complete-subtree technique by Naor et al. [13], whose
integration preserving the full-hiding property was a challenge. In order to prove
security of our RPE schemes we utilize the modular approach from Okamoto and
Takashima [15] that breaks the proof down into several higher-level (artificially
looking) assumptions and proves them to be secure under the DLIN assumption.

2 Dual Pairing Vector Spaces and Assumptions

Let Gbpg be an algorithm that takes as input a security parameter 1λ and outputs
a description of the symmetric bilinear group setting (q,G,GT , G, e) where q is
a prime, G and GT are two cyclic groups of order q, G is the generator of G, e is
a non-degenerate bilinear map e : G× G → GT , i.e., e(sG, tG) = e(G,G)

st and
e(G,G) �= 1.

Let V =

N︷ ︸︸ ︷
G× · · · ×G be a vector space and each element in V be expressed

by an N-dimensional vector x = (x1G, . . . , xNG) (xi ∈ Fq for i = 1, . . . , N).
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The canonical base A of V is A = (a1, . . . ,aN ), where a1 = (G, 0, . . . , 0), a2 =
(0, G, 0, . . . , 0), . . . ,aN = (0, . . . , 0, G). Given two vectors x = (x1G, . . . , xNG) =
x1a1 + · · · + xNaN ∈ V and y = (y1G, . . . , yNG) = y1a1 + · · · + yNaN ∈ V,
where −→x = (x1, . . . , xN ) and −→y = (y1, . . . , yN), the pairing operation is defined

as e(x,y) =
∏N
i=1 e(xiG, yiG) = e(G,G)

∑N
i=1 xiyi = g

−→x−→y
T ∈ GT .

Let B = (b1, . . . , bN ) be the basis of V which is obtained from the canonical

basis A using a uniformly chosen linear transformation, Λ = (λi,j)
U← GL(N,Fq)

(GL(N,Fq) creates a matrix of size N ×N in which each element is uniformly

selected from Fq), such that bi =
∑N

j=1 λi,jaj, for i = 1, . . . , N . Similarly,

B∗ = (b∗1, . . . , b∗N ) of V is also obtained from A, such that μi,j = (ΛT )
−1

,

b∗i =
∑N

j=1 μi,jaj, for i = 1, . . . , N . It can be shown that e(bi, b
∗
j ) = g

δi,j
T ,

where δi,j = 1 if i = j, and δi,j = 0 if i �= j. B and B∗ are thus dual orthonormal
bases of V.

Definition 1 (Dual Pairing Vector Space (DPVS) [14]). Let (q,G,GT , G,
e) be a symmetric pairing group. A Dual Pairing Vector Space (q,V,GT ,A, e),
generated by an algorithm denoted Gdpvs, is a tuple of a prime q, N-dimensional
vector space V over Fq, a cyclic group GT of order q, canonical base A =
(a1, . . . ,aN) of V, and pairing e : G×G→ GT that satisfy the following condi-
tions:

1. Non-degenerate bilinear pairing: There exists a polynomial-time com-
putable non-degenerate bilinear pairing e(x,y) =

∏N
i=1 e(Gi, Hi) where x =

(G1, . . . , GN ) ∈ V and y = (H1, . . . , HN ) ∈ V. This is non-degenerate bilin-
ear i.e., e(sx, ty) = e(x,y)st and if e(x,y) = 1 for all y ∈ V, then x = 0.

2. Dual orthonormal bases: A and e satisfy that e(ai,aj) = g
δi,j
T for all i

and j, where δi,j = 1 if i = j, and 0 otherwise, and gT �= 1 ∈ GT .
3. Distortion maps: Linear transformations φi,j on V s.t. φi,j(aj) = ai and
φi,j(ak) = 0 if k �= j are polynomial-time computable. We call φi,j “distor-
tion maps”.

In our schemes, we will use the following probabilistic generator Gob for dual
orthonormal bases:
Gob(1λ,−→n = (d;n1, . . . , nd)):

paramG = (q,G,GT , G, e)
R← Gbpg(1λ), ψ U← F×

q , N0 = 5, Nl = 3nl + 1 for
l = 1, . . . , d;
For l = 0, . . . , d:

paramVl
= (q,Vl,GT ,Al, e)

R← Gdpvs(1λ, Nl, paramG),

Λ(l) = (λ
(l)
i,j)

U← GL(Nl,Fq), (μ
(l)
i,j) = ψ · (Λ(l)T )

−1
,

bi
(l) =

∑Nl

j=1 λ
(l)
i,ja

(l)
j for i = 1, . . . , Nl,B

(l) = (b
(l)
1 , . . . , b

(l)
Nl
),

b
∗(l)
i =

∑Nl

j=1 μ
(l)
i,ja

(l)
j for i = 1, . . . , Nl,B

∗(l) = (b
∗(l)
1 , . . . , b

∗(l)
Nl

),

gT = e(G,G)ψ , param−→n = ({paramVl
}l=0,...,d, gT ),

Output (param−→n , {B(l),B∗(l)}l=0,...,d). (Note that gT = e(bi
(l), b

∗(l)
i ) for l =

0, . . . , d; i = 1, . . . , Nl.)
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Definition 2 (Decisional Linear Assumption (DLIN) [5]). The DLIN

problem is to decide on bit β ∈ {0, 1}, given (paramG, G, aG, bG, acG, bdG, Yβ)
R←

GDLIN
β (1λ), where the algorithm GDLIN

β (1λ) :

paramG = (q,G,GT , G, e)
R← Gbpg(1λ), a, b, c, d U← Fq,

Y0 = (c+ d)G, Y1
U← G, β

U← {0, 1}.
Output (paramG, G, aG, bG, acG, bdG, Yβ).

The advantage AdvDLIN
D (λ) of a probabilistic polynomial-time DLIN solver D is

defined as∣∣∣ Pr[D(1λ, �)→ 1
∣∣∣ � R← GDLIN

0 (1λ)
]
− Pr

[
D(1λ, �)→ 1

∣∣∣ � R← GDLIN
1 (1λ)

] ∣∣∣.
The DLIN assumption states that for any probabilistic polynomial-time solver
D, the advantage AdvDLIN

D (λ) is negligible in λ.

3 Revocable Predicate Encryption: Model and Definitions

In predicate encryption for the inner-product relation, an attribute is expressed

as a vector −→y ∈ Fnq \ {
−→
0 } and a predicate f−→x is associated with a vector

−→x ∈ Fnq \ {
−→
0 }, where f−→x (−→y ) = 1, iff −→y · −→x = 0. Let A = Fnq \ {

−→
0 } be the

attribute space, and P = {f−→x |−→x ∈ Fnq \{
−→
0 }} be the predicate space. We assume

that indexes are in the set Γ = {1, . . . , N}, where N is the number of keys in
the system. In our definitions and schemes, we assume that attribute vector,
−→y = (y1, . . . , yn1), is normalized such that y1 = 1 (If −→y is not normalized,
change it to a normalized one by (1/y1) · −→y , assuming that y1 is non-zero).

−→e (k)
i is the canonical basis vector (

i−1︷ ︸︸ ︷
0, . . . , 0, 1,

nk−i︷ ︸︸ ︷
0, . . . , 0) ∈ Fnk

q for k = 1, 2 and
i = 1, . . . , nk.

3.1 Syntax

Definition 3. A Revocable Predicate Encryption (RPE) comprises of four algo-
rithms (Setup,GenKey,Encrypt,Decrypt) and has associated attribute space A,
predicate space P and index space Γ .

Setup(1λ, Δ) The Setup algorithm takes as input a security parameter 1λ and
format Δ of attribute and index. It outputs a public key PK, a master secret
key MSK, and a state information S.

GenKey(MSK , S,−→x ) The GenKey algorithm takes as input a master secret key
MSK, a state information S, and a predicate vector −→x . It outputs an updated
state S and a secret key k∗−→x ,I , where I ∈ Γ denotes the associated index of
the key and is included in the key.

Encrypt(PK,L,−→y ,M) The Encrypt algorithm takes as input a public key PK,
a revocation list L ⊆ Γ , an attribute vector −→y , and a message M in some
associated message space. It outputs a ciphertext C.
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Decrypt(C,k∗−→x ,I) The Decrypt algorithm takes as input a ciphertext C and a
secret key k∗−→x ,I . It outputs either a message M or the distinguished symbol
⊥.

Correctness. The correctness property of the schemes says that for all PK
and MSK output by Setup algorithm, all predicate f−→x ∈ P, all message M , all
attribute −→y ∈ A, and all possible valid state information S output by Setup or
GenKey algorithm, if the key k∗−→x ,I was not revoked, i.e., I /∈ L, then for correctly

generated k∗−→x ,I
R← GenKey(MSK , S,−→x ) and C R← Encrypt(PK,L,−→y ,M):

– If f−→x (
−→y ) = 1 then Decrypt(C,k∗−→x ,I) =M .

– If f−→x (
−→y ) = 0 then Decrypt(C,k∗−→x ,I) =⊥ with all but negligible probability.

3.2 Definitions of Attribute-Hiding and Full-Hiding in RPE

In the definition of attribute hiding for RPE schemes we additionally allow the
adversary to specify the revocation list used to create the challenge ciphertext
but we do not require ciphertexts to hide information about revoked key in-
dices. This definition suits applications where revocation lists are managed and
published by the master authority.

Definition 4 (Attribute-Hiding RPE). An RPE scheme is adaptively at-
tribute hiding against chosen plaintext attacks if for all PPT adversaries A, the
advantage AdvAHA,RPE(λ) in the following game is negligible in the security param-
eter λ:

Setup. A challenger C runs the Setup algorithm to generate a public key PK,
a master secret key MSK, and S. PK is given to A.

Query phase 1. A adaptively makes a polynomial number of GenKey queries:

A produces a predicate −→x , C computes the key k∗−→x ,I
R← GenKey(MSK , S,−→x )

associated with an index I, and gives it to A.
Challenge. A outputs challenge attribute vectors (−→y (0),−→y (1)), challenge plain-

texts (M (0),M (1)), and a revocation list L, subject to one of the following
restrictions for each queried key k∗−→x ,I :
1. I ∈ L, or
2. I /∈ L and f−→x (

−→y (0)) = f−→x (
−→y (1)) = 0.

C flips a random bit b. If b = 0 then A is given C = Encrypt(PK,L,−→y (0),
M (0)). If b = 1 then A is given C = Encrypt(PK,L,−→y (1),M (1)).

Query phase 2. Repeat the Query phase 1 subject to the restrictions as in
the challenge phase.

Guess. A outputs a guess b′ of b, and succeeds if b′ = b.

The advantage of A is defined to be AdvAHA,RPE(λ) = |Pr[b = b′]− 1/2|.

In addition to attribute hiding, our notion of full hiding ensures that ciphertexts
do not leak any information about the revoked indexes. This strong privacy
goal is essential when key indexes can be linked to users and whenever senders
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wish to exclude some users from decrypting PE ciphertexts — this concept
of sender-local revocation (SLR) [2] allows senders to compose revocation lists
(per ciphertext) during the encryption process and by this flexibly refine access
control to encrypted data.

Definition 5 (Full-Hiding RPE). An RPE scheme is adaptively full hiding
against chosen plaintext attacks if for all PPT adversaries A, the advantage
AdvFHA,RPE(λ) in the following game is negligible in the security parameter λ:

Setup. A challenger C runs the Setup algorithm to generate a public key PK,
a master secret key MSK, and S. PK is given to A.

Query phase 1. A adaptively makes a polynomial number of GenKey queries:

A produces a predicate −→x , C computes the key k∗−→x ,I
R← GenKey(MSK , S,−→x )

associated with an index I, and gives it to A.
Challenge. A outputs challenge attribute vectors (−→y (0),−→y (1)), challenge revo-

cation lists (L(0), L(1)), and challenge plaintexts (M (0),M (1)), subject to one
of the following restrictions for each queried key k∗−→x ,I :
1. f−→x (

−→y (0)) = f−→x (
−→y (1)) = 0

2. f−→x (
−→y (0)) = f−→x (

−→y (1)) = 1 and (I ∈ L(0) ∧ I ∈ L(1))
3. (f−→x (

−→y (0)) = 1 ∧ f−→x (−→y (1)) = 0) and I ∈ L(0)

4. (f−→x (
−→y (0)) = 0 ∧ f−→x (−→y (1)) = 1) and I ∈ L(1).

C flips a random coin b. If b = 0 then A is given C = Encrypt(PK,L(0),−→y (0),
M (0)). If b = 1 then A is given C = Encrypt(PK,L(1),−→y (1),M (1)).

Query phase 2. Repeat the Query phase 1 subject to the restrictions as in
the challenge phase.

Guess. A outputs a guess b′ of b, and succeeds if b′ = b.

The advantage of A is defined to be AdvFHA,RPE(λ) = |Pr[b = b′]− 1/2|.

Remark 1. In Definition 5, adversary A is not allowed to ask a key query for
an index I and a predicate −→x such that I /∈ L(b) and f−→x (

−→y (b)) = 1 for some
b ∈ {0, 1}, i.e., the queried key is not allowed to decrypt the challenge cipher-
text. Recently, Okamoto and Takashima [17] proposed a PE (HPE) which allow
such key query, provided that M (0) = M (1). The technique of Okamoto and
Takashima [17] can be applied in our scheme to achieve strong security.

Remark 2. Definitions 4 and 5 can be extended to capture chosen-ciphertext
attacks (CCA) by allowing decryption queries (for all but the challenge cipher-
text). The advantage of A in such CCA game is defined to be AdvX-CCAA,RPE(λ) =
|Pr[b = b′] − 1/2|, where X ∈ {AH,FH}. One could also define relaxed selective
security, where the adversary is required to specify the challenge attributes and
the revocation list in advance (before obtaining public key PK).

4 An RPE Scheme with Attribute Hiding (AH-RPE)

Our first RPE scheme is attribute-hiding. It offers short, constant-size public
and private keys. The size of its ciphertexts is linear in the number of revoked
keys (which is small relative to the total number of users).
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In its construction we adopt the “two equation” technique from the public
broadcast encryption scheme by Lewko, Sahai and Waters (LSW) [12], where a
secret value required for the decryption is broken into secret shares (one share
for each revoked index) such that any unrevoked private key can be used to
reconstruct the secret. We show how to use this approach with the FE scheme
by Okamoto and Takashima [15]: at a high level, every private key is associated
with some predicate −→x and an index I, the ciphertext on some message M is
produced using attributes −→y and the set of indexes {I1, . . . , Ir} corresponding
to r revoked keys. A private key can decrypt the ciphertext if its predicate
evaluates to true, provided that its index I �= Ii for all i ∈ [1, r]. We achieve this
functionality using non-zero inner products amongst the attribute and predicate
vectors.

We now give detailed specification of our AH-RPE scheme:

Setup
(
1λ, Δ = (−→n = (2;n1, n2 = 2), N)

)
: Perform the following computations:

(param−→n ,B(0),B∗(0),B(1),B∗(1),B(2),B∗(2)) R← Gob(1λ,−→n ),

B̃(0) = (b
(0)
1 , b

(0)
3 , b

(0)
5 ), B̃(1) = (b

(1)
1 , . . . , b

(1)
n1 , b

(1)
3n1+1), B̃

(2) = (b
(2)
1 , b

(2)
2 , b

(2)
7 ),

B̃∗(0) = (b
∗(0)
1 , b

∗(0)
3 , b

∗(0)
4 ), B̃∗(1) = (b

∗(1)
1 , . . . , b

∗(1)
n1 , b

∗(1)
2n1+1, . . . , b

∗(1)
3n1

),

B̃∗(2) = (b
∗(2)
1 , b

∗(2)
2 , b

∗(2)
5 , b

∗(2)
6 ).

Let S denote the (initially empty) state information on the so far assigned
indices I. The algorithm outputs the public key PK =

(
1λ, N, param−→n ,

{B̃(k)}k∈{0,1,2}
)
, the master secret key MSK =

(
{B̃∗(k)}k∈{0,1,2}

)
, and the

state information S.

GenKey(MSK , S,−→x = (x1, . . . , xn1) ∈ Fn1
q \ {−→0 }): Pick s, η, β, η1, . . ., ηn1 , ρ1,

and ρ2 uniformly at random from Fq and s1, s2
U← Fq such that s = s1 + s2.

Choose index I
U← Γ such that I /∈ S; set S = S ∪ {I} and compute:

k0 = (−s, 0, 1, η, 0)B∗(0) ,

k1 = (

n1︷ ︸︸ ︷
s1
−→e (1)

1 + β−→x ,
n1︷ ︸︸ ︷
0n1 ,

n1︷ ︸︸ ︷
η1, . . . , ηn1 ,

1︷︸︸︷
0 )

B∗(1) ,

k2 = (

2︷ ︸︸ ︷
s2(1, I),

2︷ ︸︸ ︷
02,

2︷ ︸︸ ︷
ρ1, ρ2,

1︷︸︸︷
0 )

B∗(2) .

Output the updated state S and the secret key k∗−→x ,I = (I,k0,k1,k2).

Encrypt(PK,L,−→y = (y1, . . . , yn1) ∈ Fn1
q \ {−→0 },M ∈ GT ): If L is empty, set

L = {N + 1}, where N + 1 is a dummy index. Choose δ, ζ, ϕ, ϕ′ U← Fq, also

choose ϕr, δr
U← Fq for all r ∈ L such that δ =

∑
r∈L

δr, and compute:

c0 = (δ, 0, ζ, 0, ϕ)B(0) ,
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c1 = (

n1︷︸︸︷
δ−→y ,

n1︷ ︸︸ ︷
0n1 ,

n1︷ ︸︸ ︷
0n1 ,

1︷ ︸︸ ︷
ϕ′ )

B(1) ,

∀r ∈ L : cr = (

2︷ ︸︸ ︷
δr(−r, 1),

2︷ ︸︸ ︷
02,

2︷ ︸︸ ︷
02,

1︷ ︸︸ ︷
ϕr )

B(2) ,

cM = gζTM.

Output the ciphertext C = (L, c0, c1, {cr}r∈L, cM ).

Decrypt(C,k∗−→x ,I): Given a ciphertext C = (L, c0, c1, {cr}r∈L, cM ) and a secret

key k∗−→x ,I = (I,k0,k1,k2), if I ∈ L, output ⊥; otherwise compute and output
message M:

M =
cM

e(c0,k0)e(c1,k1)
∏
r∈L

e(cr,k2)
1

I−r

.

The correctness of our scheme holds due to the following observation. Let C
and k∗−→x ,I be as above. If −→x · −→y = 0 and I /∈ L then M can be recovered by

cM
/
(e(c0,k0)e(c1,k1)

∏
r∈L

e(cr,k2)
1

I−r ), since

e(c0,k0)e(c1,k1)
∏
r∈L

e(cr,k2)
1

I−r = g−sδ+ζT gs1δ+βδ
−→x ·−→y

T g
s2

∑
r∈L δr

T = g−sδ+ζT gsδT .

Remark 3. In the Encrypt algorithm, if the revocation list L is empty, i.e., no
key is revoked, a dummy index N + 1 is placed into the revocation list. Since
N + 1 is not in the index space Γ , the ciphertext computed from L = {N + 1}
and an attribute −→y can be decrypted by any key k∗−→x ,I provided −→x · −→y = 0.

Theorem 1. Our AH-RPE is adaptively attribute hiding against chosen plain-
text attacks under the DLIN assumption. For any adversary A, there exists a
probabilistic polynomial time machine D such that for any security parameter λ,

AdvAHA,AH-RPE(λ) ≤ (2ν + 1)AdvDLIN
D (λ) + ψ

where ν is the maximum number of A’s key queries and ψ = (2ν|L|+18ν+10)/q
(|L| denotes the number of revoked keys).

The proof of Theorem 1 is presented in the full version.

5 An RPE Scheme with Full Hiding (FH-RPE)

Our second RPE scheme is based on Okamoto and Takashima’s FE [15] and the
Subset-Cover Framework due to Naor et al . [13]. At a high level, in addition to
attribute and predicate vectors we use index and revocation vectors. The scheme
can be seen as a combination of two encryption steps, one using attribute and
predicate vectors, and the other one using index and revocation vectors.
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Our scheme takes advantage of the complete-subtree data structure from
[13]. Informally, in a binary tree with N leaves, the index I of a key will be
associated with a leaf node. Each node in the tree will be assigned a unique
identity. To compute a key with an index, we compute on identities of all the
nodes on the path from the leaf node associated with I to the root node. To
encrypt, the sender first finds a minimal set of nodes which contains an ancestor
(or, the node itself) of all the non-revoked indexes. It then computes ciphertext
on the attribute and the identities of all the nodes in that set. To retain the
full-hiding property we apply the binary structure in an anonymous setting.
Decryption works if there exists one common node (identity) between the key
and the ciphertext, which is given for unrevoked keys only.

We now give a detailed specification of our FH-RPE scheme:

Setup
(
1λ, Δ = (−→n = (2;n1, n2 = 2), N)

)
: Perform the following computations:

(param−→n ,B(0),B∗(0),B(1),B∗(1),B(2),B∗(2)) R← Gob(1λ,−→n ),

B̃(0) = (b
(0)
1 , b

(0)
3 , b

(0)
5 ), B̃(1) = (b

(1)
1 , . . . , b

(1)
n1 , b

(1)
3n1+1), B̃

(2) = (b
(2)
1 , b

(2)
2 , b

(2)
7 ),

B̃∗(0) = (b
∗(0)
1 , b

∗(0)
3 , b

∗(0)
4 ), B̃∗(1) = (b

∗(1)
1 , . . . , b

∗(1)
n1 , b

∗(1)
2n1+1, . . . , b

∗(1)
3n1

),

B̃∗(2) = (b
∗(2)
1 , b

∗(2)
2 , b

∗(2)
5 , b

∗(2)
6 ).

Let Tree be a complete binary tree structure with at least N leaf nodes,
which corresponds to the number of keys in the system. Each node x in Tree
has unique identity IDx. Let state information S, which records the assigned
indexes I so far, be an initially empty set.

The output of the algorithm is given by the public key PK =
(
1λ, param−→n ,

{B̃(k)}k=0,1,2,Tree
)
, the master secret key MSK =

(
{B̃∗(k)}k=0,1,2

)
, and the

state information S.

GenKey(MSK , S,−→x = (x1, . . . , xn1) ∈ F
n1
q \ {−→0 }): Pick α, η, η(1)1 , . . ., η

(1)
n1 ,

and β(1) uniformly at random from Fq, and α
(1), α(2) U← Fq such that α =

α(1) + α(2). Choose index I
U← Γ such that I /∈ S; set S = S ∪ {I} and

compute:

k0 = (−α, 0, 1, η, 0)B∗(0) ,

k1 = (

n1︷ ︸︸ ︷
α(1)−→e (1)

1 + β(1)−→x ,
n1︷ ︸︸ ︷
0n1 ,

n1︷ ︸︸ ︷
η
(1)
1 , . . . , η(1)n1

,

1︷︸︸︷
0 )

B∗(1) ,

∀x ∈ P(I) : kx = (

2︷ ︸︸ ︷
α(2) + β(2)x IDx, β

(2)
x ,

2︷ ︸︸ ︷
02,

2︷ ︸︸ ︷
η
(2)
1,x, η

(2)
2,x,

1︷︸︸︷
0 )

B∗(2) ,

with β(2)x , η
(2)
1,x, η

(2)
2,x

U← Fq.

The output is given by S and the secret key k∗−→x ,I = (I,k0,k1, {kx}x∈P(I)).

(Note that I is associated with the Ith leaf node in the binary tree. P(I)
denotes all the nodes on the path from the leaf node I up to the root node
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(leaf and root nodes inclusive). The secret key k∗−→x ,I thus contains secrets for
all nodes IDx on the mentioned path from I to the root.)

Encrypt(PK,L,−→y = (y1, . . . , yn1) ∈ Fn1
q \{

−→
0 },M ∈ GT ): Choose δ, ζ, ϕ, ϕ

(1) U←
Fq and compute:

c0 = (δ, 0, ζ, 0, ϕ)B(0) ,

c1 = (

n1︷︸︸︷
δ−→y ,

n1︷ ︸︸ ︷
0n1 ,

n1︷ ︸︸ ︷
0n1 ,

1︷ ︸︸ ︷
ϕ(1) )

B(1) ,

∀x ∈ RevokeNodes(Tree, L) : cx = (

2︷ ︸︸ ︷
δ, δ(−IDx),

2︷ ︸︸ ︷
02,

2︷︸︸︷
02,

1︷ ︸︸ ︷
ϕ(2)
x )

B(2) ,

where ϕ(2)
x

U← Fq,

cM = gζTM.

Output the ciphertext C = (c0, c1, {cx}x∈RevokeNodes(Tree,L), cM ).

Remark 4. Note that RevokeNodes(Tree, L) outputs a minimal set of nodes
which contains an ancestor (or, the node itself) of all the non-revoked in-
dexes. cx is then computed on all the identities of the nodes in the set.

Decrypt(C,k∗−→x ,I): Given a ciphertext C = (c0, c1, {cx}x∈RevokeNodes(Tree,L), cM )

and a secret key k∗−→x ,I = (I,k0,k1, {kx′}x′∈P(I)) compute

∀x, x′ : Mx,x′ =
cM

e(c0,k0)e(c1,k1)e(cx,kx′)
.

If there exists a pair (x, x′) corresponding to the same node in Tree and
−→x · −→y = 0, the decrypted message is M = Mx,x′. Otherwise, obtained
messages are random with all but negligible probability.

Correctness. Let C and k∗−→x ,I be as above. If −→x ·−→y = 0 and I /∈ L then M can

be recovered by computing cM
/
(e(c0,k0)e(c1,k1)e(cx,kx′)), since

e(c0,k0)e(c1,k1)e(cx,kx′) = g−αδ+ζT gα
(1)δ+β(1)δ−→x ·−→y

T g
α(2)δ+β

(2)

x′ δ(IDx′−IDx)

T = gζT .

Theorem 2. FH-RPE is adaptively full hiding against chosen plaintext attacks
under the DLIN assumption (provided the restriction in Remark 5 holds). For
any adversary A, there exists a probabilistic polynomial time machine D such
that for any security parameter λ,

AdvFHA,FH-RPE(λ) ≤ (2ν + 1)AdvDLIN
D (λ) + ψ

where ν is the maximum number of A’s key queries and ψ = (2 logNν + 18ν +
logN + 10)/q.

The proof of Theorem 2 is presented in the full version.
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Remark 5. In the proof of Theorem 2 we assume that |X(0)| = |X(1)|, where
X(0) = {x|x ∈ RevokeNodes(Tree, L(0))} and X(1) = {x′|x′ ∈ RevokeNodes(Tree,
L(1))}. The revocation lists L(0) and L(1) are defined in the challenge phase of
Definition 5. This restriction is necessary to prevent the adversary from trivially
distinguishing based on the length of the challenge ciphertext.

6 Conclusion

We formalized Revocable Predicate Encryption (RPE) and proposed two RPE
schemes. Our AH-RPE scheme is attribute hiding whereas our FH-RPE scheme
offers stronger full hiding. Both schemes are proven secure in the standard model
under the DLIN assumption. Recently, Okamoto and Takashima [16] proposed
a PE scheme with short private keys. We observe that private keys in our RPE
constructions can be further reduced in size by adopting their techniques.

Acknowledgements. This work is part of the project between Germany and
Australia, funded jointly by the German Academic Exchange Service (DAAD,
grant 53361649) and by Australia’s Department of Innovation, Industry, Science
and Research (DIISR).
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Abstract. ID-based proxy re-encryption (IBPRE) allows a proxy with
some information (a.k.a. re-encryption key) to transform the ciphertext
under one identity to another ciphertext under another identity. These
two ciphertexts can yield the same plaintext, while the proxy cannot get
any information of the plaintext. Due to its transformable functionality,
IBPRE can be used in many applications. Some of these applications re-
quire that the underlying IBPRE scheme is CCA-secure and anonymous.
However, to the best of our knowledge, none of the existing schemes sat-
isfy the security requirement. In this paper, we first extend the concept
of IBPRE to that of anonymous IBPRE (AIBPRE), including the def-
inition and security model. After that, we propose the first AIBPRE
scheme, which can be proven-secure in the random oracle model based
on the decisional bilinear Diffie-Hellman assumption and modified deci-
sional bilinear Diffie-Hellman assumption.

Keywords: identity-based, proxy re-encryption, CCA security,
anonymity.

1 Introduction

ID-based proxy re-encryption (IBPRE) proposed by Green and Ateniese[11] aims
to give an efficient solution to the following problem: how to distribute data
protected under one identity id1 to a user with a different identity id2 without
revealing the private key corresponding to id1? In particular, IBPRE allows a
proxy given special information (a.k.a. re-encryption key) to efficiently transform
a ciphertext for the delegator (id1) to a ciphertext for the delegatee (id2) of
the same message. In Green-Ateniese definition, there is only a fully trusted
party named private key generator (PKG) whose responsibility is to generate
the user’s private key, while a little trust is placed in the proxy. That is, an
adversary cannot learn the contents of messages encrypted under either id1 or
id2, even if the adversary corrupts the proxy.

However, some applications of IBPRE require that the underlying IBPRE
scheme can protect not only the confidentiality of the message, but also the
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privacy of intended recipients. For example, in the IBPRE-based distributed file
systems, user id1, user id2 and the proxy act the file owner, file sharer(s) and
file server, respectively. It is easy to see that a good file system should guarantee
that only the intended recipients can obtain the file content even if the file server
cannot do. The anonymity requirement may be from the file owner or the file
sharer, who asks for the unlinkability of their activities on the file server. The
unlinkability can be obtained by using multiple identities, which however leads to
the extension of secret storage. A simple solution of anonymity is highly desirable
for many encrypted communication scenarios [1].

Nevertheless, to the best of our knowledge, there is no IBPRE scheme hiding
the contents of messages and the identities of the intended recipients at the same
time. In this paper, we will propose the first such IBPRE scheme.

1.1 Our Contributions

The contributions in this paper can be summarized as follows.

– We propose the concept of IBPRE hiding the contents of messages and
the identities of the recipients simultaneously, called anonymous IBPRE
(AIBPRE).

– We propose the security models of AIBPRE, including the CCA (chosen ci-
phertext attack) security model corresponding to the confidentiality of mes-
sages, and the anonymity security model corresponding to the anonymity of
the intended recipients. It was not easy to extend the security models of IBE
to the ones of AIBPRE, especially with the anonymity security model. It is
mainly because that compared to IBE, there are two kinds of ciphertexts
(original ciphertexts and re-encrypted ciphertexts) and the re-encryption
keys in AIBPRE. The situation in AIBPRE is more complex than that in
IBE.

– We propose the first AIBPRE scheme that can be proven secure in the
random oracle model. Designing such a scheme was a surprisingly difficult
task. We cannot obtain an AIBPRE scheme directly from an anonymous
IBE, such as BF-IBE scheme [4]. See the details in Section 4.

In this paper, we only consider single-use unidirectional AIBPRE scheme, i.e.
the re-encrypted ciphertext cannot be further re-encrypted, and the proxy can
only do the transformation from id1 to id2 but not from id2 to id1.

2 Related Work

The concept of proxy re-encryption (PRE), proposed by Blaze et al. [3] at Euro-
crypt 1998, was formalized by Ateniese et al. [2]. Ivan and Dodis [13] proposed a
generic construction for PRE from public key encryption. However, the schemes
proposed by them are only CPA (chosen plaintext attack)-secure. Canetti and
Hohenberger [6] proposed the first CCA-secure bidirectional PRE scheme where
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the proxy can do bidirectional transformation. Libert and Vergnaud [16] pro-
posed the first replayable CCA-secure unidirectional PRE scheme in the stan-
dard model. Shao and Cao [18] proposed the first CCA-secure unidirectional PRE
scheme in the random oracle model. Later, Chow et. al. [7] proposed a more effi-
cient CCA-secure unidirectional PRE scheme in the random oracle model. Shao
et al. [19] proposed a generic construction for CCA-secure unidirectional PRE by
using CCA-secure (2, 2) threshold encryption. Recently, Hanaoka [12] obtained
a similar result by using similar techniques as that in [19]. Till now, many CCA-
secure PRE schemes with some special properties were proposed, such as type-
based PRE [24,8,10,26,27], PRE with invisible proxy [14], attribute-based PRE
[15], PRE with key privacy (anonymous PRE) [1,20,21].

The first ID-based PRE (IBPRE) scheme was proposed by Green and Ate-
niese [11]. Chu and Tzeng [9] proposed the first replayable CCA-secure IBPRE
scheme in the standard model. Tang et. al. [23] proposed an inter-domain IBPRE
scheme. Wang et. al.[25] proposed the first CCA-secure IBPRE scheme in the
standard model. Shao et. al. [22] proposed an identity-based conditional proxy
re-encryption. Recently, Shao and Cao [17] proposed a generic construction for
IBPRE from non-anonymous hierarchical identity-based encryption. However,
none of the above IBPRE schemes are anonymous. In particular, the identities
of the recipients in some of these schemes [9,22] can be easily revealed by using
pairings, or the simulator of the security proof in some of these schemes [11,23,25]
cannot generate all valid re-encryption keys for the delegation between any two
identities. See the details of analysis on the schemes in [11,23,25] in Section 4.

In this paper, we will propose the first anonymous IBPRE scheme.

3 Preliminaries

3.1 Definitions for Single-Use Unidirectional AIBPRE

Definition 1 (Single-Use Unidirectional AIBPRE). A single-use unidi-
rectional AIBPRE scheme AIBPRE is a tuple of probabilistic polynomial time
(PPT) algorithms (KeyGen, Ext, ReKeyGen, Enc, ReEnc, Dec):

– KeyGen(1λ)→ (pk, sk). On input a security parameter λ, the key generation
algorithm KeyGen outputs the system parameter para, and the public/private
key pair (pk, sk) of PKG. In the following algorithms, the system parameter
para and the PKG’s public key pk are included implicitly. This algorithm is
performed by the PKG.

– Ext(id, sk)→ did. On input a user’s identity id, and the PKG’s private key
sk, the extract algorithm Ext outputs the private key did corresponding to
the identity id. This algorithm is performed by the PKG.

– ReKeyGen(did1 , id2) → rkid1,id2 . On input a private key did1 and a user’s
identity id2, the re-encryption key generation algorithm ReKeyGen outputs
a re-encryption key rkid1,id2 . This algorithm is performed by the delegator
whose identity is id1.
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– Enc(id,m) → C. On input a user’s identity id, and a message m from
the message space M, the encryption algorithm Enc outputs a ciphertext C
under the identity id. This algorithm is performed by the encryptor.

– ReEnc(rkid1,id2 , C1) → C2. On input a re-encryption key rkid1,id2 and a
ciphertext C1, the re-encryption algorithm ReEnc outputs a re-encrypted ci-
phertext C2 under the identity id2 or a special symbol reject. This algorithm
is performed by the proxy holding the re-encryption key rkid1,id2 .

– Dec(did, C) → m. On input a private key did and a ciphertext C, the de-
cryption algorithm Dec outputs m in the message space or a special symbol
reject. This algorithm is performed by the decryptor (the delegator or the
delegatee).

Correctness. The correctness property has two requirements. For any mes-
sage m in the message space M and (pk, sk) ← KeyGen(1λ), the following two
conditions must hold: Dec(Ext(id, sk), Enc(id,m)) = m and Dec(Ext(id2, sk),
ReEnc(ReKeyGen(Ext(id1, sk), id2), C)) = m, where C is the ciphertext of the
message m under id1 from algorithm Enc.

3.2 Security Models for Single-Use Unidirectional AIBPRE

Indistinguishability of Encryptions under Chosen-Ciphertext Attack
for Single-Use Unidirectional AIBPRE. This security model aims to guar-
antee the confidentiality of the message, i.e., the ciphertext can only be decrypted
by the intended recipient(s).

Note that we have two types of ciphertexts (original ciphertexts from Enc and
re-encrypted ciphertexts from ReEnc) in AIBPRE; hence, there are two situations
in this security model.

The challenge ciphertext is an original ciphertext.

Setup: The Challenger C runs KeyGen(1λ) with the security parameter λ, and
then sends the system parameter para and the PKG’s public key pk to the
adversary A, but keeps the PKG’s private key sk secret.

Phase 1: A issues queries q1, · · · , qn1 where query qi is one of:

– Extract oracle Oext: On input id by A, C returns did by running Ext(id,
sk). If an identity has been queried toOext, it is considered as a corrupted
one; otherwise, it is an uncorrupted one.

– Re-encryption key generation oracle Ork: On input (id1, id2) by A, C
returns the re-encryption key rkid1,id2 = ReKeyGen(Ext(id1,
sk), id2).

– Re-encryption oracle Ore: On input (id1, id2, C1) by A, C returns the
re-encrypted ciphertext C2 = ReEnc(ReKeyGen(Ext(id1, sk), id2), C).

– Decryption oracle Odec: On input (id, C), C returns Dec(Ext(id, sk), C).

These queries may be asked adaptively, that is, each query qi may depend
on the replies to q1, · · · , qi−1.
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Challenge: Once A decides that Phase 1 is over, it outputs two equal length
plaintexts m0, m1 from the message spaceM, and an identity id∗ on which
it wishes to challenge. There are two restrictions on the identity id∗, (i)
id∗ has not appeared in any query to Oext; (ii) if (id

∗,�) has appeared in
any query to Ork, then � should not appear in any query to Oext. C picks
a random bit b ∈ {0, 1} and sets C∗ = Enc(id∗,mb). It sends C∗ as the
challenge to A.

Phase 2: Almost the same as that in Phase 1, but with the following
restrictions.

– Oext: On input id by A, if id1 = id∗, C outputs reject.
– Ork: On input (id1, id2) by A, if id1 = id∗, and id2 has appeared in a

query to Oext, C outputs reject.
– Ore: On input (id1, id2, C1) by A, if (id1, C1) = (id∗, C∗), and id2 has

appeared in a query to Oext, C outputs reject.
– Odec: On input (id, C), if (id, C) is a derivative1 of (id∗, C∗), C outputs

reject.

Guess: Finally, the adversary A outputs a guess b′ ∈ {0, 1} and wins the game
if b = b′.

The advantage AdvID-IE-CCA-O
AIBPRE (λ) is defined as |Pr[b = b′] − 1/2|. The scheme

AIBPRE is said to be ID-IE-CCA-O secure if all efficient adversaries A specified
as above, the advantage AdvID-IE-CCA-O

AIBPRE (λ) is negligible.

The challenge ciphertext is a re-encrypted ciphertext.

Phase 1: Identical to that in the challenge original ciphertext case.
Challenge: Once the adversary A decides that Phase 1 is over, it outputs two

equal length plaintexts m0, m1 from the message space, two uncorrupted
identities id∗1 and id∗2 on which it wishes to challenge. C∗ = ReEnc(rk∗,
Enc(id∗2,mb)), where rk

∗ is a re-encryption key from id∗1 to id∗2. It sends
C∗ as the challenge to A.

Phase 2: Almost the same as that in Phase 1, but with the following restric-
tions.
– Oext: On input id, if id = id∗i (i ∈ {1, 2}), C outputs reject.
– Odec: On input (id, C), if (id, C) = (id∗, C∗), C outputs reject.

Guess: Identical to that in the challenge original ciphertext case.

The advantage AdvID-IE-CCA-R
AIBPRE (λ) is defined as |Pr[b = b′] − 1/2|. The scheme

AIBPRE is said to be ID-IE-CCA-R secure if all efficient adversaries A specified
as above, the advantage AdvID-IE-CCA-R

AIBPRE (λ) is negligible.

1 Derivatives of (id∗, C∗) is adapted from [6]:
1. (id∗, C∗) is a derivative of itself.
2. If A has queried Ore on input (id∗, id, C∗) and obtained (id, C), then (id, C) is a

derivative of (id∗, C∗).
3. If A has queried Ork on input (id∗, id), and C = ReEnc(Ork(id

∗, id), C∗), then
(id, C) is a derivative of (id∗, C∗).
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Remark 1. As mentioned in [2], collusion resistance is necessary for proxy re-
encryption. This security guarantees that the delegatee colluding with the proxy
cannot obtain the private key of the delegator. It is easy to show that the ID-
IE-CCA-R security implies collusion resistance [16]. In particular, the adversary
corrupting the delegatee and the proxy can easily decrypt the re-encrypted ci-
phertexts of the delegator, if collusion resistance is not held.

Anonimity under Chosen-Ciphertext Attack for Single-Use Unidirec-
tional AIBPRE. This security model aims to guarantee the anonymity of
the recipient(s). Informally speaking, ID-Ano-CCA security has three-fold. 1).
the adversary cannot reveal the identity of the original ciphertext’s recipient
(anonymity of the original ciphertext), 2). the adversary cannot reveal the iden-
tity of the re-encrypted ciphertext’s recipient (anonymity of the re-encrypted
ciphertext), and 3). the adversary holding a re-encryption key cannot reveal the
identities corresponding to the re-encryption key (anonymity of the re-encryption
key). However, in this security model, only the first one and third one are dealt
with. It is because that Shao et al. [20] has shown that the anonymity of the
re-encrypted ciphertext is implied by the anonymity of the original ciphertext
or the re-encryption key.

The challenge is an original ciphertext.

Phase 1: Identical to that in the ID-IE-CCA-O game for single-use unidirec-
tional AIBPRE.

Challenge: Once A decides that Phase 1 is over, it outputs two identities id∗0
and id∗1, and a message m∗, on which it wishes to challenge. There are
two restrictions on the identities id∗0 and id∗1, (i) id∗i (i ∈ {0, 1}) has not
appeared in any query to Oext; (ii) if (id∗i ,�) (i ∈ {0, 1}) has appeared in
any query to Ork, then � should not appear in any query to Oext. C picks
a random bit b ∈ {0, 1} and computes C∗ = Enc(id∗b,m

∗). At last, C sends
C∗ as the challenge to A.

Phase 2: Almost the same as that in Phase 1, but with the following
restrictions.
– Oext: On input id by A, if id = id∗i (i ∈ {0, 1}), C outputs reject.
– Ork: On input (id1, id2) by A, if id1 = id∗i (i ∈ {0, 1}), and id2 has

appeared in a query to Oext, C outputs reject.
– Ore: On input (id1, id2, C1) by A, if (id1, C1) = (id∗i , C

∗) (i ∈ {0, 1}),
and id2 has appeared in a query to Oext, C outputs reject.

– Odec: On input (id, C), if (id, C) is not a derivative of (id∗i , C
∗) (i ∈

{0, 1}), C outputs reject.
Guess: Finally, the adversary A outputs a guess b′ ∈ {0, 1} and wins the game

if b = b′.

The advantage AdvID-Ano-CCA-O
AIBPRE (λ) is defined as |Pr[b = b′] − 1/2|. The scheme

PRE is said to be ID-Ano-CCA-O secure if all efficient adversaries A specified as
above, the advantage AdvID-Ano-CCA-O

AIBPRE (λ) is negligible.
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The challenge is a re-encryption key.

Phase 1: Identical to that in the ID-Ano-CCA-O game for single-use unidirec-
tional AIBPRE.

Challenge: Once the adversary A decides that Phase 1 is over, it outputs two
identities id∗I and id∗J , on which it wishes to challenge, where id∗I and id∗J are
two uncorrupted identities. C picks a random bit b ∈ {0, 1}. If b = 0, then it
sets rkid∗I ,id∗J as a random key from the re-encryption key space; otherwise, it
sets rkid∗I ,id∗J = ReKeyGen(did∗I , id

∗
J), where did∗I is the corresponding private

key of id∗I . At last, C sends rkid∗I ,id∗J as the challenge to A.
Phase 2: It runs almost the same as that in Phase 1, but with the following

restrictions.
– Oext: On input id by A, if id = id∗I or id = id∗J , C outputs reject;

otherwise, C responds as in Phase 1.
– Odec: The input (id, C) cannot satisfy the following situations simulta-

neously:
• id = idJ ;
• C is a re-encrypted ciphertext computed by the challenge
re-encryption key.

Guess: Finally, the adversary A outputs a guess b′ ∈ {0, 1} and wins the game
if b = b′.

The advantage AdvID-Ano-CCA-R
AIBPRE (λ) is defined as |Pr[b = b′] − 1/2|. The scheme

PRE is said to be ID-Ano-CCA-R secure if all efficient adversaries A specified as
above, the advantage AdvID-Ano-CCA-R

AIBPRE (λ) is negligible.

Remark 2 (Restrictions). Like that in [20,21], the restrictions inOdec in Phase
2 of the ID-Ano-CCA-R game for single-use unidirectional AIBPRE are rea-
sonable, since if not, the adversary can trivially decide whether the challenge
re-encryption key is a random value or a real re-encryption key as follows. The
adversary first encrypts a message m with id∗I to get a ciphertext C, and then
it re-encrypts C with the challenge re-encryption key to get another ciphertext
C′. At last, the adversary queries the decryption oracle with (id∗J , C

′). If the
resulting message equals to m, then the challenge re-encryption key is a real
one; otherwise, it is a random value.

The other question on the restrictions is whether it is too weak, since it is not
easy for the decryptor to decide whether a re-encrypted ciphertext is computed
by a specific re-encryption key. However, it is possible to make the decryptor
have the ability: If every re-encrypted ciphertext computed from the same re-
encryption key contains the same value, which can be obtained by the decryptor
but not the proxy. In our proposal, the re-encrypted ciphertexts re-encrypted
by the same re-encryption key always contain the same c5. See the details in
Section 4.2.

3.3 Bilinear Groups

In this subsection, we briefly review the definitions about bilinear maps and
bilinear map groups, which follow that in [4,5].
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1. G and GT are two (multiplicative) cyclic groups of prime order q;
2. g is a generator of G;
3. e is a bilinear map e : G×G→ GT .

Let G and GT be two groups as above. An admissible bilinear map is a map
e : G×G→ GT with the following properties:

1. Bilinearity: For all P,Q,R ∈ G, e(P ·Q,R) = e(P,R) · e(Q,R) and e(P,Q ·
R) = e(P,Q) · e(P,R).

2. Non-degeneracy: If e(P,Q) = 1 for all Q ∈ G, then P = O, where O is a
point at infinity.

We say that G is a bilinear group if the group action in G can be computed
efficiently and there exists a group GT and an efficiently computable bilinear
map as above. We denote BSetup as an algorithm that, on input the security
parameter λ, outputs the parameters for a bilinear map as (q, g,G,GT , e), where
q ∈ Θ(2λ).

3.4 Complexity Assumptions

Definition 2 (Decisional Bilinear Diffie-Hellman Assumption). Let (q, g,
G,GT , e)← BSetup(1k). The decisional Bilinear Diffie-Hellman problem (DBDH)
in (G,GT ) is defined as follows: given 5-tuple (g, ga, gb, gc, S) ∈ G

4×GT as input,
decide whether S = e(g, g)abc. An algorithm A has advantage ε in solving the
DBDH problem in (G,GT ) if

|Pr[A(g, ga, gb, gc, e(g, g)abc) = 0]− Pr[A(g, ga, gb, gc, S) = 0]| ≥ ε,

where the probability is taken over the random choices of a, b, c ∈ Z∗
q , S ∈ G and

the random bits of A.
We say that the (t, ε)-decisional Bilinear Diffie-Hellman (DBDH) assumption

holds in (G,GT ) if no t-time algorithm has advantage ε at least in solving the
DBDH problem in (G,GT ).

Definition 3 (modifiedDecisionalBilinearDiffie-HellmanAssumption).
Let (q, g,G,GT , e)← BSetup(1k).Themodified decisionalBilinearDiffie-Hellman
problem (mDBDH) in (G,GT ) is defined as follows: given 4-tuple (g, ga, gb, S) ∈
G3 ×GT as input, decide whether S = e(g, g)a

2b. An algorithm A has advantage ε
in solving the mDBDH problem in (G,GT ) if

|Pr[A(g, ga, gb, e(g, g)a
2b) = 0]− Pr[A(g, ga, gb, S) = 0]| ≥ ε,

where the probability is taken over the random choices of a, b ∈ Z∗
q, S ∈ G and the

random bits of A.
We say that the (t, ε)-modified decisional Bilinear Diffie-Hellman (mDBDH) as-

sumption holds in (G,GT ) if no t-time algorithm has advantage ε at least in solving
the mDBDH problem in (G,GT ).

In this paper, we drop the t and ε and refer to the DBDH (mDBDH) assumption
rather than the (ε, t)-DBDH (mDBDH) assumption.
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4 The Proposed Scheme

4.1 A Wrong Design

In this subsection, we propose an AIBPRE scheme based on the AIBE scheme—
BF-IBE scheme [4]. For simplicity, we only show the CPA-secure version here.
Actually the schemes in [11,23,25] follow the method used in the scheme.

KeyGen: On input the security parameter 1λ, it outputs the system parameter
(G,GT , q, g,Hi, i = 1, 2, 3, 4, 5), the key pair of the PKG (pk, sk) = (y, x),
where (q, g,G,GT , e) ← BSetup(1λ), Hi, (i = 1, 2) are hash functions Hi :
{0, 1}∗ → G for i = 1, 2, and y = gx. The system parameter is included in
the following algorithms implicitly.

Ext: On input an identity id and the private key sk = x of the PKG, it outputs
the private key corresponding to id: did = H1(id)

x.
ReKeyGen: On input the delegator’s private key did1 and the delegatee’s iden-

tity id2, it outputs the re-encryption key from id1 to id2: rkid1,id2 =

(rk
(1)
id1,id2 , rk

(2)
id1,id2) = (gx̄, did1 · H2(e(y,H1(id2))

x̄)), where x̄ is a random
number from Z∗

q .
Enc: On input m ∈ GT , an identity id, it outputs the ciphertext C = (c1, c2) =

(gr,m · e(H1(id), y)
r).

ReEnc: On input an original ciphertext C = (c1, c2) under identity id1, and a re-

encryption key rkid1,id2 = (rk
(1)
id1,id2 , rk

(2)
id1,id2) from id1 to id2, it outputs the

re-encrypted ciphertext C′=(c′1, c
′
2, c

′
3, c

′
4)=(c1, c2, rk

(1)
id1,id2 , e(c1, rk

(2)
id1,id2)).

Dec: On input a ciphertext C under id, and a private key did, the algorithm is
as follows.
– If C is an original ciphertext (c1, c2), compute m = c2/e(did, c1).
– If C is a re-encrypted ciphertext (c′1, c

′
2, c

′
3, c

′
4), compute

m = c′2 · e(c′1, H2(c
′
3, did))/c

′
4.

At first glance, the above scheme is anonymous, since from original ciphertexts,
re-encrypted ciphertexts, and re-encryption keys, the adversary cannot reveal
the identities of the corresponding users. However, it is not true.

On the one hand, for the re-encryption key challenge case of the anonymity
security model, the simulator should have the ability to generate all valid re-
encryption keys for the delegation between any two identities. On the other
hand, without knowing the private key did∗I (that is unknown to the simulator),
the simulator cannot generate valid any re-encryption key for any delegation
from id∗I to any corrupted identity. With this conflict, we deduce that the above
scheme is not proven-anonymous at least.

4.2 Description of the Proposal

In this section, we give the first anonymous ID-based proxy re-encryption.

KeyGen: On input the security parameter λ, it outputs the system parameter
(G,GT , q, g, h,Hi, i = 1, 2, 3, 4, 5), the key pair of the PKG (pk, sk) = (y, x),
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where (q, g,G,GT , e)← BSetup(1λ), h is a random number from G, Hi, (i =
1, 2, 3, 4, 5) are hash functions Hi : {0, 1}∗ → G for i = 1, 2, 5, H3 : {0, 1}∗ →
Z∗
q and H4 : {0, 1}∗ → G2, and y = gx. The system parameter is included in

the following algorithms implicitly.
Ext: On input an identity id and the private key sk = x of the PKG, it outputs

the private key corresponding to id: did = H1(id)
x.

ReKeyGen : On input the delegator’s private key did1 and the delegatee’s iden-
tity id2, it outputs the re-encryption key from id1 to id2: rkid1,id2 =

(rk
(1)
id1,id2 , rk

(2)
id1,id2) = (gx̄, did1 ·hx̄ ·H2(e(y,H1(id2))

x̄)), where x̄ is a random
number from Z∗

q .
Enc: On inputm ∈ G, an identity id, it outputs the ciphertext C = (c1, c2, c3, c4)

= (hr, gr, (m||σ) ⊕ H4(e(H1(id), y)
r), H5(c1||c2||c3)r) where σ is a random

number from G, and r = H3(m||σ).
ReEnc: On input an original ciphertext C = (c1, c2, c3, c4) under identity id1,

and a re-encryption key rkid1,id2 = (rk
(1)
id1,id2 , rk

(2)
id1,id2) from id1 to id2, it

outputs the re-encrypted ciphertext C′ = (c2, c3, c5, c6) if e(c1, g)
?
= e(h, c2)

and e(c1, H5(c1||c2||c3)) ?
= e(h, c4) both hold; otherwise, it outputs reject.

c5 = rk
(1)
id1,id2 = gx̄

c6 =
e(rk

(2)
id1,id2 , c2)

e(c1, rk
(1)
id1,id2)

=
e(H1(id1)

x · hx̄ ·H2(e(y,H1(id2)
x̄)), gr)

e(hr, gx̄)

= e(H1(id1)
x, gr) · e(H2(e(y,H1(id2)

x̄)), gr)

Dec: Since there exist two types of ciphertext, we have two situations in this
algorithm.
– If C is an original ciphertext (c1, c2, c3, c4), then the decryptor is id1.

The decryptor first checks e(c1, g)
?
= e(h, c2) and e(c1, H5(c1||c2||c3)) ?

=
e(h, c4). If one of the equations does not hold, then output reject and
abort; otherwise, do the following steps.
• Computem||σ = c3⊕H4(e(did1 , c2)) = (m||σ)⊕H4(e(H1(id1), y)

r)⊕
H4(e(H1(id1)

x, gr)), and r = H2(m||σ).
• Check gr

?
= c2. If it holds, then output m; otherwise, output reject.

– If C is a re-encrypted ciphertext (c2, c3, c5, c6), then the decryptor is id2.
The decryptor does the following steps.
• Compute

R =
c6

e(H2(e(did2 , c5)), c2)
=

e(H1(id1)
x, gr) · e(H2(e(y,H1(id2)

x̄)), gr)

e(H2(e(H1(id2)x, gx̄)), gr)

= e(H1(id1)
x, gr)

• Compute m||σ = c3 ⊕ H4(R) = (m||σ) ⊕ H4(e(H1(id1), y)
r) ⊕

H4(e(H1(id1)
x, gr)), and r = H3(m||σ).

• Check gr
?
= c2. If it holds, then output m; otherwise, output reject.

Correctness. It is easy to check the correctness of our proposal, we omit it here.
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4.3 Security Analysis

Due to the limited space, we only present the theorems here.

Theorem 1 (ID-IE-CCA Security). Our proposal is ID-IE-CCA secure based
on the DBDH assumption in the random oracle model.

Theorem 2 (ID-IK-CCA Security). Our proposal is ID-IK-CCA secure
based on the DBDH assumption and mDBDH assumption in the random oracle
model.

5 Conclusion

In this paper, we propose the concept of anonymous ID-based proxy re-encryption
(AIBPRE), including the definition and the security models. Furthermore, the
first concrete AIBPRE scheme is also proposed. Based on the DBDH assumption
and the mDBDH assumption, we give the security proofs (including CCA secu-
rity and anonymity) in the random oracle model. An interesting open problem
is to find efficient AIBPRE proven-secure in the standard model.
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LNCS, vol. 5594, pp. 327–342. Springer, Heidelberg (2009)

9. Chu, C.-K., Tzeng, W.-G.: Identity-Based Proxy Re-Encryption Without Random
Oracles. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007.
LNCS, vol. 4779, pp. 189–202. Springer, Heidelberg (2007)



Anonymous IBPRE 375

10. Fang, L., Susilo, W., Wang, J.: Anonymous Conditional Proxy Re-Encryption
without Random Oracle. In: Pieprzyk, J., Zhang, F. (eds.) ProvSec 2009. LNCS,
vol. 5848, pp. 47–60. Springer, Heidelberg (2009)

11. Green, M., Ateniese, G.: Identity-Based Proxy Re-Encryption. In: Katz, J., Yung,
M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 288–306. Springer, Heidelberg (2007)

12. Hanaoka, G., Kawai, Y., Kunihiro, N., Matsuda, T., Weng, J., Zhang, R., Zhao,
Y.: Generic Construction of Chosen Ciphertext Secure Proxy Re-Encryption. In:
Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 349–364. Springer, Hei-
delberg (2012)

13. Ivan, A.-A., Dodis, Y.: Proxy cryptography revisited. In: NDSS. The Internet So-
ciety (2003)

14. Jia, X., Shao, J., Jing, J., Liu, P.: Cca-secure type-based proxy re-encryption with
invisible proxy. In: CIT, pp. 1299–1305. IEEE Computer Society (2010)

15. Liang, X., Cao, Z., Lin, H., Shao, J.: Attribute Based Proxy Re-encryption with
Delegating Capabilities. In: ACM ASIACCS 2009, pp. 276–286 (2009)

16. Libert, B., Vergnaud, D.: Unidirectional Chosen-Ciphertext Secure Proxy Re-
encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379. Springer,
Heidelberg (2008)

17. Shao, J., Cao, Z.: Multi-use unidirectional identity-based proxy re-encryption from
hierarchical identity-based encryption. Information Sciences (to appear)

18. Shao, J., Cao, Z.: CCA-Secure Proxy Re-encryption without Pairings. In: Jarecki,
S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 357–376. Springer, Heidelberg
(2009)

19. Shao, J., Cao, Z., Liu, P.: Sccr: a generic approach to simultaneously achieve cca
security and collusion-resistance in proxy re-encryption. Security and Communica-
tion Networks 4(2), 122–135 (2011)

20. Shao, J., Liu, P., Wei, G., Ling, Y.: Anonymous proxy re-encryption. Security and
Communication Networks 5(5), 439–449 (2012)

21. Shao, J., Liu, P., Zhou, Y.: Achieving key privacy without losing cca security in
proxy re-encryption. Journal of Systems and Software 85(3), 655–665 (2012)

22. Shao, J., Wei, G., Ling, Y., Xie, M.: Identity-based conditional proxy re-encryption.
In: IEEE ICC 2011 (2011)

23. Tang, Q., Hartel, P., Jonker, W.: Inter-domain Identity-Based Proxy Re-
encryption. In: Yung, M., Liu, P., Lin, D. (eds.) Inscrypt 2008. LNCS, vol. 5487,
pp. 332–347. Springer, Heidelberg (2009)

24. Tang, Q.: Type-Based Proxy Re-encryption and Its Construction. In: Chowdhury,
D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 130–144.
Springer, Heidelberg (2008)

25. Wang, H., Cao, Z., Wang, L.: Multi-use and unidirectional identity-based proxy
re-encryption schemes. Inf. Sci. 180(20), 4042–4059 (2010)

26. Weng, J., Deng, R.H., Chu, C., Ding, X., Lai, J.: Conditional Proxy Re-Encryption
Secure against Chosen-Ciphertext Attack. In: ACM ASIACCS 2009, pp. 322–332
(2009)

27. Weng, J., Yang, Y., Tang, Q., Deng, R.H., Bao, F.: Efficient Conditional Proxy
Re-encryption with Chosen-Ciphertext Security. In: Samarati, P., Yung, M., Mar-
tinelli, F., Ardagna, C.A. (eds.) ISC 2009. LNCS, vol. 5735, pp. 151–166. Springer,
Heidelberg (2009)



On the Optimality of Lattices

for the Coppersmith Technique

Yoshinori Aono1, Manindra Agrawal2,
Takakazu Satoh3, and Osamu Watanabe4

1 National Institute of Information and Communications Technology, Tokyo, Japan
aono@nict.go.jp

2 Department of Computer Science and Engineering,
Indian Institute of Technology, Kanpur, India

manindra@iitk.ac.in
3 Department of Mathematics, Tokyo Institute of Technology, Tokyo, Japan

4 Department of Mathematical and Computing Sciences,
Tokyo Institute of Technology, Tokyo, Japan

watanabe@is.titech.ac.jp

Abstract. We investigate the Coppersmith technique [7] for finding so-
lutions of a univariate modular equation within a range given by range
parameter U . This paper provides a way to analyze a general type of
limitation of the lattice construction. Our analysis bounds the possible
range of U from above that is asymptotically equal to the bound given
by the original result of Coppersmith. To show our result, we establish a
framework for the technique by following the reformulation of Howgrave-
Graham [14], and derive a condition for the technique to work. We then
provide a way to analyze a bound of U for achieving the condition. Tech-
nically, we show that (i) the original result of Coppersmith achieves an
optimal bound for U when constructing a lattice in a standard way.
We then show evidence supporting that (ii) a non-standard lattice con-
struction is generally difficult. We also report on computer experiments
demonstrating the tightness of our analysis. Some of the detailed argu-
ments are omitted due to the space limit; see the full-version [1].

Keywords: Lattice, Coppersmith technique, Univariate equation, Im-
possibility result, RSA.

1 Introduction

Coppersmith [7] introduced a polynomial-time algorithm, which we refer to as
the Coppersmith technique, for finding solutions of a modular equation

F (x) = xD + aD−1x
D−1 + · · ·+ a0 ≡ 0 (mod N) (1)

within the range of |x| < N1/D−ε, and showed that it can be used to design an
attacking algorithm for RSA cryptography. (Here, for any A, 0 < A < N , the
notation |x| < A under moduloN means that x is an integer satisfying 0 ≤ x < A
or N−A < x < N .) Since his work and the reformulation by Howgrave-Graham
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[14], it has gained attention in relation to attack several cryptographies; (e.g.,
[3,4]). The technique has also been generalized for the multivariate case.

The outline of the Coppersmith technique is (i) converting a given modular
equation to a certain algebraic equation keeping the same small solutions by
using a lattice reduction algorithm and (ii) solving the algebraic equation by
a numerical method. One key point of this technique is constructing a good
lattice for the lattice reduction algorithm. For instance, considering a bivariate
modular equation for RSA cryptanalysis the original result of [4] has been im-
proved essentially by defining better lattices [10,2]. There should clearly be some
limit in such improvements. Here, we focus on the univariate case and investi-
gate the optimality of the lattice construction for the Coppersmith technique.
We demonstrate that for solving (1) the range of |x| < N1/D−ε Coppersmith
achieved based on his lattice construction is “in some sense” optimal.

Note that some investigations have shown the limit of polynomial-time algo-
rithms. Konyagin and Steger [17] gave an upper bound of the number of roots
of (1) within the range of |x| < U , which becomes exponential in logN when
U = N1/D+ε (The bound is attained by an equation of the form xr ≡ 0 (mod pr)
[21].) This somewhat extreme example provides that there are some equations
such that no polynomial-time algorithm works to find all solutions within the
range of |x| < N1/D+ε; however it is insufficient for showing the hardness of
solving particular equations. In fact, for most such equations, the number of
solutions is easily shown to be quite small. Our objective is to provide a tech-
nique to analyze the limit of the Coppersmith technique that is applicable for
equations for attacking cryptographies.

Our Results: In this paper, we show a general type limitation of lattices used
in the Coppersmith technique for solving any univariate equation (1), by which
we can show that the Coppersmith’s bound U = N1/D−ε is best (except for the
choice of ε). Our result consists of two technical results. We investigate a certain
condition — the lattice condition — which is sufficient for the Coppersmith tech-
nique to work. This condition is essentially determined by a set of polynomials
used for constructing a lattice. We first prove that this bound is not satisfied for
U ≥ N1/D if the lattice is constructed based on “standard” integer coefficient
polynomials. This paper establishes the notion of standard polynomials, in short,
it is a natural generalization of a way to select polynomials that have been used
in the previous work. We then consider a non-standard lattice construction, that
is, constructing a lattice based on non-standard integer coefficient polynomials.
We show that any non-standard construction indeed leads either (i) a reduction
of the original equation (1) to a strictly simpler one, or (ii) derives a non-trivial
factor of the modulo N that we assume difficult to compute. Moreover, neither
reduction requires the Coppersmith technique. That is, we show that such a
non-standard construction will lead a better way to solve the original problem
than the Coppersmith technique. Thus, from these results, we can claim that
the range larger than N1/D cannot be achieved by the Coppersmith technique
using any lattice construction. Note that the lattice condition is sufficient, and
the Coppersmith technique sometimes works even if the lattice condition is not
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satisfied. We thus discuss the tightness of the lattice condition for showing the
limits of the Coppersmith technique. The lattice condition is derived from two
inequalities — one for a key algebraic property and one for the length of a short
lattice vector. While it seems difficult to show that they are tight, we justify
our analysis from the following two points: (i) a limit similar to U < N1/D

still holds unless significantly better inequalities can be used, and (ii) computer
experiments indicate that these inequalities cannot be significantly improved.

Another contribution of this paper is description of a method for improv-
ing lattices. To show the limitations of standard lattice construction, we give
a method for decreasing the determinant of a given lattice. Thus, this method
may be used to improve lattices in the Coppersmith technique It should also be
noted that this method can be extended for multivariate situations, though we
state the procedure for the univariate situation.

Related Work: Before Coppersmith’s work, there were similar ideas for at-
tacking cryptographic schemes. Vallée, Girault and Toffin [26] proposed a lat-
tice based attack for the Okamoto-Shiraishi signature scheme [22] that uses a
quadratic inequality. H̊astad [13] also proposed a procedure for solving simulta-
neous modular equations by converting them to one modular equation. Based on
such previous works, Coppersmith [7] proposed his method for solving general
univariate equations and its application for recovering an RSA message with its
(1− 1/e)-fraction of MSBs. After his work, Howgrave-Graham [14] reformulated
the technique, and many applications have been proposed in the cryptographic
area. Shoup [25], for instance, gave an interesting application for proving the se-
curity of the RSA-OAEP encryption scheme with e = 3. Our result would show
the limitations of these approaches. For example, the RSA message cannot be
recovered from its MSBs that have length of less than (1− 1/e) log2N by using
the direct usage of the Coppersmith technique.

The rest of this paper is as follows. Section 2 provides some necessary tech-
nical background. Section 3 follows [14] and precisely defines the Coppersmith
technique and the lattice condition. Section 4 derives a necessary condition for
the solution range to achieve the lattice condition under the standard lattice con-
struction. Section 5 discusses what we are able to compute from a non-standard
construction. Section 6 discusses the tightness of our analysis and reports on
computer experiments. Finally, Section 7 concludes the paper with remarks.
Most of technical arguments as well as some related topics are omitted due to
the space limit, see the full version in ePrint Archive [1].

2 Preliminaries

Here we introduce definitions and technical lemmas. For any positive integer
n, let [n] to denote the set {1, . . . , n}. A vector consisting of s ≥ 2 coordi-
nates a1, . . . , as is denoted as [a1, . . . , as]. On the other hand, for polynomials
f1(x), . . . , fs(x), we use (f1, . . . , fs) to denote their sequence.

Let Z[x] denote the ring of integer coefficient univariate polynomials. Denote
by ZN the ring Z/NZ, and let ZN [x] denote the ring of polynomials whose
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coefficients are in ZN . Use Z×
N to denote the set of units; i.e., elements that have

inverses, in ZN . Based on this, we denote the set of units in ZN [x] by ZN [x]×.
We also use MN [x] to denote the set of monic polynomials in ZN [x]; that is, the
polynomials whose leading coefficients are one.

By ≡N we denote the equivalence between two polynomials under modulo N ;
that is, for two polynomials f(x) =

∑d
i=0 aix

i and g(x) =
∑e

i=0 bix
i, we write

f(x) ≡N g(x) if ai ≡ bi (mod N) for any i, 0 ≤ i ≤ max(d, e). Here we under-
stand that ai = 0 (resp. bi = 0) for i > d (resp. i > e.)

For any polynomial f(x), we use deg(f) and lc(f) to denote its degree and the
leading coefficient, respectively. For any positive integer c and any polynomial
f(x), we define ordc(f) by the largest integer r such that f(x) ≡cr 0 holds.

Howgrave-Graham [14] reformulated the Coppersmith technique and gave a
lemma that plays a key role in analysis of the technique. We first introduce the
notion of U -norm for simplifying notation. Define the U -norm of a polynomial

f(x) =
∑d

i=0 aix
i by ||f ||U =

√∑d
i=0(aiU

i)2. Thus, this is just the length of

the coefficient vector of f(Ux).

Lemma 1. (Howgrave-Graham [14]) Consider any polynomial f(x) ∈ Z[x]
consisting of w monomials. Let W be a non-negative integer satisfying

||f ||U < W/
√
w. (2)

Then we have

∀v, |v| < U [ f(v) ≡ 0 (mod W )⇔ f(v) = 0 ]. (3)

In the Coppersmith technique, we need to find a polynomial having a small U -
norm via a lattice reduction algorithm. First, we introduce a way to relate poly-
nomials with vectors (and a lattice). Consider any polynomial f(x) =

∑d
i=0 aix

i.
Its vectorization is a vector V(f, U) defined by [a0, a1U, . . . , adU

d]. On the other
hand, as its inverse transformation, for a given vector v, we define the func-
tionalization of v as a unique polynomial f(x) such that v = V(f, U) holds,
and denote it by F(v, U). Note that this is undefined if no such f(x) exists.
V(f, U) and F(v, U) are clearly linear mapping w.r.t. polynomials and vectors,
respectively. The Euclidean norm of v (= V(f, U)) is equal to the U -norm of
f(x) (= F(v, U)). This relation is the motivation for our transformation.

For any k ≥ 1 and any w ≥ k, let b1, . . . ,bk ∈ Rw be linearly independent
vectors. Then, the lattice spanned by these vectors is defined by the set {a1b1 +
· · · + akbk | a1, . . . , ak ∈ Z}. We use the notation L(b1, . . . ,bk) to denote it.
The set of vectors {b1, . . . ,bk} is called a basis of this lattice. We sometimes
omit the basis if it is clear from the context. An element of a lattice is called a
lattice vector. The determinant of the lattice is defined by det(L) =

∏k
i=1 |b∗

i |,
where {b∗

1, . . . ,b
∗
k} is the Gram-Schmidt basis. Here, the notation | · | denotes

the standard Euclidean norm.
We need to compute a non-zero short vector in a lattice, which can be com-

puted by a lattice basis reduction algorithm such as the LLL algorithm [18].
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For a lattice L, let v1 denote the first vector in the basis computed by the LLL
algorithm. Then it has been known [18] that this length is bounded by

|v1| ≤ A(k) det(L)1/k, (4)

where A(k) is a constant that only depends on k. It has been shown that (4)
holds with A(k) = 2(k−1)/4. Note that this upper bound may not be tight,
and that better algorithms have improved this. On the other hand, it has been
observed [11] that for any polynomial-time lattice reduction algorithm, we have
δ > 1 such that |v1| ≈ δk det(L)1/k holds. (Here by “polynomial-time” we mean

polynomial-time w.r.t. k and logB
def
= logmaxi |bi|.)

Remarks on the Problem Setting: We consider the problem of finding all
solutions for (1) within the range of |x| < U for a given parameter U . We call
(1) the target equation and the range |x| < U the target range. Throughout this
paper, we fix the usage of symbols F ,D,N , and U . We use the standard unit cost
time complexity, and we evaluate complexity measures in terms of logN , because
we can assume that D ≤ poly(logN) and U < N . Hence, by “polynomial-time”
we mean a time polynomial in logN unless otherwise stated.

We assume that N is a large composite number whose non-trivial factor can-
not be found during the computation that we investigate. This is because the
factor of N would give the complete solution to the original problem in almost
all applications of the Coppersmith technique. Thus, we can assume that all
numbers that appear during the computation are coprime to N . This is used in
the argument of Section 5. Because of this, we can assume that the coefficient
aD of xD of F (x) is one as stated in (1) since otherwise we can “divide” it by
multiplying a−1

D modulo N because aD must be coprime to N .

3 Framework for the Coppersmith Technique

This section introduces our framework for discussing the Coppersmith technique
for a univariate equation. As mentioned in the above section, for a given target
equation (1) and a target range U , our task is to find all solutions within the
target range. For this task, we formulate the Coppersmith technique as an algo-
rithm stated as Figure 1 by following Howgrave-Graham’s reformulation [14].

Remarks may be necessary for some steps of the algorithm. First note that
the algorithm is given two parameters k ≥ 1 and m ≥ 2, which are chosen (often
heuristically) for the target equation. They are usually chosen as small because
the time complexity of the original LLL algorithm [18] is O(k5u log3B) (e.g., [21,
Chapter 5]), where u and B are the dimension of each vector, and logmaxi ||bi||,
respectively. We can at least assume that these parameters relating to time
complexity are poly(logN), and this assumption is sufficient for our analysis.
Thus, throughout the following discussion, we will consider any k,m, u, logB ≤
(logN)c for c > 0 and let them be fixed.

At Step 1, we define linearly independent polynomials g1(x), . . . , gk(x) ∈ Z[x],
which we call initial polynomials, that satisfy

∀v [ F (v) ≡ 0 (mod N)⇒ gi(v) ≡ 0 (mod Nm) ]. (5)
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Input F (x), N , U ; Parameters k ≥ 1, m ≥ 2;
Output All solutions of F (x) ≡ 0 (mod N) satisfying |x| < U ;
Step 1: Based on the input, define a sequence of linearly independent poly-

nomials g1(x), . . . , gk(x) that satisfy (5);
Step 2: Define vectors b1, . . . ,bk by bi = V(gi, U) for i ∈ [k], and carry out

the LLL algorithm on L(b1, . . . ,bk); Denote the obtained reduced
basis by v1, . . . ,vk;

Step 3: Define a polynomial h(x) = F(v1, U), and solve the equation
h(x) = 0 numerically; Output all integer roots within the target
range satisfying (1);

Fig. 1. Outline of Coppersmith technique

As we will see, the choice of these polynomials determines the lattice used in the
algorithm, and this is crucial for the performance of the algorithm. Again, they
are defined somewhat heuristically in each application of the technique. We can
at least assume that their degrees are bounded by poly(logN). From the role of
the parameter m in the above, we refer to m as an initial exponent.

At Step 3, we enumerate all roots of h(x). Here, we simply assume that a nu-
merical algorithm achieves this task efficiently (which is the case in the reported
applications). Note that the degree of h(x) is poly(logN); hence, the number of
roots is polynomially bounded. Finally, among all obtained roots, output integers
within the target range satisfying (1).

For designing an algorithm following the outline of Figure 1, the key point is
the choice of initial polynomials that determines the lattice L(b1, . . . ,bk) used
to compute a final h(x).

Here, we follow [14] and derive a condition for initial polynomials that is
sufficient for guaranteeing the correctness of the algorithm. Clearly, the algorithm
works correctly when ∀v, |v| < U [ F (v) ≡ 0 (modN)⇒ h(v) = 0 ]. On the other
hand, noting that v1 is an integer linear combination of b1, . . . ,bk, we can show
that h(x) (= F(v1, U)) is an integer linear combination of initial polynomials.
Then, from the requirement (5) for initial polynomials it follows that

∀v [ F (v) ≡ 0 (mod N)⇒ h(v) ≡ 0 (mod Nm) ].

Thus, our above goal is satisfied if we have

∀v, |v| < U [ h(v) ≡ 0 (mod Nm)⇔ h(v) = 0 ]. (6)

By Lemma 1, we see that ||h||U < Nm/
√
dmax + 1 (< Nm/

√
deg(h) + 1) is

sufficient for (6), where dmax is the largest degree of initial polynomials. Then,
our sufficient condition for the algorithm to work is derived by evaluating ||h||U .
First, by definition of h(x) and F(·, U), and the bound (4), we have |v1| =
||h||U ≤ A(k) det(L)1/k, where L = L(b1, . . . ,bk). Therefore, (6) is implied by

det(L)1/k/Nm <
(
A(k)

√
dmax + 1

)−1

. (7)

We call this the lattice condition (as a sufficient condition for the Coppersmith
technique to work). Note that this is a condition for initial polynomials because the
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basis of L is {V(gi, U)}i∈[k]. In fact, by using the initial polynomials derived from
the original work by Coppersmith [7], we can show that this condition is satisfied
if U ≤ N1/D−ε (for any ε > 0 if N and m are large enough), thereby confirming
in our framework that the original method [7] works for this range of U .

In this paper, we discuss when the condition (7) cannot be achieved by any
lattice; i.e., any set of initial polynomials, thereby showing the technique’s limit.
Thus, for our following discussion, we will use a somewhat stronger and much
simpler condition

det(L)1/k/Nm < 1 (8)

for our target condition, which we refer as a simplified lattice condition (for
discussing when the lattice condition cannot be achieved). Recall that A(k) =
2(k−1)/4 for the LLL algorithm and it has been believed that A(k) cannot be
smaller than δk for δ > 1 for any polynomial-time lattice reduction algorithm.
Then, since (

√
dmax + 1A(k))−1 < 1 holds for any k, this simplified condition is

necessary for (7). See section 6 for analysis with a more relaxed condition.

4 Analysis for Canonical Initial Polynomials

We consider standard lattice construction and investigate its properties. Based
on this investigation, we derive a lower bound for U such that the simplified
lattice condition (8) fails to hold, which we may regard as the limit of U that
the Coppersmith technique works under the standard lattice construction.

Note that initial polynomials need to satisfy the condition (5). One trivial
way to define such polynomials g(x) is by

g(x) =
m∑
i=0

qi(x)N
m−i(F (x))i, where qi(x) ∈ Z[x]. (9)

This is an integer linear combination of polynomials that were usually called
“shift polynomials” in previous work. Formally, we define the following notion.

Definition 1. Consider the ideal a = 〈F (x), N〉Z[x] in the polynomial ring Z[x].
For any non-zero polynomial f(x) ∈ Z[x], let ν(f) be the a-adic order of f(x),
i.e., an integer s that satisfies f(x) ∈ as and f(x) �∈ as+1. For the zero polyno-
mial, define ν(0) =∞. We say f(x) is an s-canonical polynomial if ν(f) ≥ s.

We simply say that f(x) is canonical if ν(f) ≥ m for the initial exponent m.
Initial polynomials (or similar ones) used in the previous work are all canonical
and we can consider that using canonical polynomials is a standard way to define
initial polynomials. This section discusses the case in which initial polynomials
are all canonical.

Consider any initial polynomials g1(x), . . . , gk(x). Assume that they are all
canonical and linearly independent as requested in the algorithm. Consider a se-
quence (g1, . . . , gk) and denote it by G. For any sequence F = (f1, . . . , fk) of lin-
early independent polynomials, we use L(F) to denote a lattice L(V(f1, U), . . . ,
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V(fk, U)). Note that L(G) is L(b1, . . . ,bk) used in the algorithm in Figure 1 for
the initial polynomials g1(x), . . . , gk(x).

Our task is to provide a good lower bound of det(L(G)). For this, we trans-
form G to a polynomial sequence with some good properties for our analysis.
Here, we explain the outline of our transformations and proof outline of the
first main theorem. Technical discussions with necessary lemmas are given in
the full-version [1].

We say a polynomial sequence G̃ = (g̃1, . . . , g̃k) has a strictly increasing
degree sequence if it holds that deg(g̃1) < · · · < deg(g̃k). We first transform

G to a sequence G̃ = (g̃1, . . . , g̃k) with this property while maintaining that

det(L(G)) = det(L(G̃)) and that all g̃i(x)’s are canonical. We proved this trans-
formation is always possible. (Roughly, L(G) is transformed to row echelon form
by the Gaussian elimination.) Next, we define a sequence H = (h1, . . . , hk)
by defining each hi(x) = g̃i(x)/N

ri where we let ri = ordN (g̃i); that is, ri is
the largest integer r such that every coefficient of g̃i(x) is divisible by N r. Let
si = ν(hi). Then, since g̃i(x) is canonical, we have si + ri = ν(g̃i) ≥ m. Hence
we have

det(L(G)) = det(L(G̃)) =

(
k∏
i=1

N ri

)
×det(L(H)) ≥

(
k∏
i=1

Nm−si
)
×det(L(H)).

(10)

Finally, we transform H again to Ĥ = (ĥ1, . . . , ĥk) with “everywhere linearly
independent reduction” which is defined as the property that for any integers
a1, . . . , ak and any integer B ≥ 2,

∑k
i=1 aiĥi(x) ≡B 0 ⇔ ∀i, 1 ≤ i ≤ k [ ai ≡

0 (mod B) ]. This transformation can be efficiently performed. Moreover, it can

be shown that (i) det(L(H)) ≥ det(L(Ĥ)) and (ii) Ĥ also has a strictly increasing
degree sequence. Then, the determinant term of (10) can be bounded by

det(L(H)) ≥ det(L(Ĥ)) ≥
k∏
i=1

|âiU d̂i | ≥
k∏
i=1

U d̂i , (11)

where d̂i and âi are used for deg(ĥi) and lc(ĥi), respectively. Note that the second
inequality is trivial if the matrix is square; we proved the general case.On the other

hand, we define integer sequence ŝ1, . . . , ŝk as ŝi = max(∗) ν
(∑i

j=1 aj f̂j(x)
)
,

where the condition (∗) is that a1, . . . , ai ∈ Z, ai �= 0, and at least one aj is not

divisible by N . Then we can show that ŝi ≥ si and d̂i ≥ ŝiD. Thus, from (10) and
(11), we have

det(L(G)) ≥
(

k∏
i=1

Nm−ŝi
)
×

(
k∏
i=1

U d̂i

)

≥
(

k∏
i=1

Nm−d̂i/D
)
×

(
k∏
i=1

U d̂i

)
= Nmk ·

(
U

N1/D

)∑
d̂i

. (12)



384 Y. Aono et al.

It is then easy to see that if U ≥ N1/D, we have det(L(G)) ≥ Nmk. Thus,
det(L(G))1/k ≥ Nm and the simplified lattice condition (8) fails. This proves
our first main theorem.

Theorem 1. If U ≥ N1/D, then the simplified lattice condition (8) fails to hold
for any lattice constructed from canonical initial polynomials.

5 Computation from Non-canonical Polynomials

This section considers the possibility of using non-canonical initial polynomials.
Recall that in the lattice construction for a given polynomial F (x) and an initial
exponent m, an initial polynomial g(x) is said to be canonical if ν(g) ≥ m holds.
A non-canonical initial polynomial is defined as a polynomial g(x) satisfying (5)
and ν(g) < m w.r.t. F (x) and N . We discuss what we are able to compute if we
can indeed construct a non-canonical polynomial. We show technical evidence
supporting that there is no polynomial-time algorithm computing such a non-
canonical polynomial for any F (x), N , and m. Technically, we show that if
F (x) and its derivative has no common factor (a property we call “separability”
following the polynomial theory over a field; e.g., [12, Def. 2]), then by using such
a non-canonical initial polynomial, it is possible to compute either a non-trivial
factor of N or a polynomial G(x) with deg(G) ≤ deg(F )−2 that keeps the same
set of solutions. This computation can also be done in polynomial-time.

5.1 Technical Preliminaries

Our investigation is based on arithmetic computations under modulo N . Since
it was assumed that N is not prime; there may be points at which we need to
be careful. On the other hand, as explained in the introduction, we can assume
that no factor of N appears during these computations; that is, we can treat N
as a prime number in the following analysis. Below, we clarify the points where
careful arguments are necessary.

We use standard arithmetics in ZN [x]. There is no problem with addition,
subtraction, and multiplication, which can be defined the same as in Z[x]. On
the other hand, the division is defined as follows. For any f(x), g(x) ∈ ZN [x],
g(x) �≡N 0, consider polynomials q(x) ∈ ZN [x] and r(x) ∈ ZN [x] such that
satisfy f(x) ≡N q(x)g(x) + r(x) and deg(r) < deg(g) (recall that ≡N means the
polynomial equivalence under modulo N). Note that q(x) and r(x) are unique
when the leading coefficient of g(x) is coprime toN . Thus, under our assumption,
we can consider q(x) and r(x) the quotient and the remainder of f(x) divided
by g(x), and denote them by quo(f, g) and rem(f, g), respectively. We say that
g(x) divides f(x) under modulo N or g(x) an N -divisor of f(x) (and write it as
g(x)|Nf(x)) if r(x) ≡N 0 in the above. For any two polynomials f(x) and g(x),
we say they are N -coprime to each other if h(x)|Nf(x) and h(x)|Ng(x) implies
that h(x) ∈ ZN [x]×.
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5.2 From a Non-canonical Polynomial

We discuss what we are able to compute from a non-canonical initial polynomial
for given F (x), N , and m. We need to assume that F (x) is separable, that is,
F (x) and its derivative are N -coprime to each other. Our result is given by the
following theorem. The proof is given in Appendix B in the full-version.

Theorem 2. Assume that our target polynomial F (x) is separable. For F (x),
N , and m, suppose that we have a non-canonical initial polynomial g(x); that
is, it satisfies both ν(g) ≤ m − 1 and the condition (5). Then we can compute
in polynomial-time w.r.t. logN and deg(g), either a non-trivial factor of N or
a polynomial G(x) with deg(G) ≤ deg(F )− 2 satisfying

∀v [ F (v) ≡ 0 (mod N)⇒ G(v) ≡ 0 (mod N) ]. (13)

Moreover, G(x) is an N -divisor of F (x), and hence, the separability of G(x) is
immediate from that of F (x).

Note that this theorem gives a polynomial-time algorithm that reduces a given
target equation to a simpler one based on any non-canonical initial polynomial
for the target polynomial. We expect that this reduction itself is impossible
for various cases. We have shown one example from the RSA cryptography.
Roughly, it claims that if we have a polynomial time algorithm for computing a
non-canonical initial polynomial for any separable target equation, then it can
be used to break the RSA cryptosystem with e = poly(logN) efficiently; the
detailed argument is given in the full-version.

6 Tightness of Our Analysis

In Section 3 we derive the (simplified) lattice condition (7) (and (8))

det(L)1/k/Nm <
(
A(k)

√
dmax + 1

)−1

< 1

as a sufficient condition that the Coppersmith technique works, and then in
the following sections, we show that this condition fails to hold for any initial
polynomials when U ≥ N1/D, thereby claiming that N1/D is the limit of U for
the Coppersmith technique. Apparently this argument is not mathematically
correct, and it may be possible that the Coppersmith technique works using
initial polynomials that do not satisfy the lattice condition, from which we may
need to revise the limit N1/D. Here, we provide evidence supporting that this
situation is quite unlikely to happen.

Recall that the lattice condition is derived by using two inequalities. We recall
these inequalities and state them by using the symbols from Section 3 used to
derive the lattice condition. First is the inequality (2) stated below. This is
a sufficient condition to guarantee that (3) of Lemma 1 holds and that the
algorithm works with the designed initial polynomials.

(2) ||h||U < Nm/
√
dmax + 1 (4) |v1| ≤ A(k) det(L)1/k
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The second is the upper bound (4) for the length of a short lattice vector obtained
by a lattice algorithm (such as LLL) in a lattice L constructed from the ini-
tial polynomials. From these inequalities, the lattice condition A(k) det(L)1/k <
Nm/

√
dmax + 1 is immediately sufficient for ||h||U to satisfy (2), which guaran-

tees that the algorithm yields a correct answer. We also assume that
(A(k)

√
dmax + 1)−1 < 1 for the simplified lattice condition.

We believe that the inequalities (2) and (4) are more or less tight for at
least h(x) and L appearing in the execution of the Coppersmith technique. But
it is possible that they are not as sharp as we expect. We first show that a
similar limit N1/D+ε can be derived even if much stronger inequalities could
be used. For this, consider the following situation for a large β and γ: (i) the
property (3) holds if ||h||U < βNm, and (ii) a lattice algorithm obtains a short
vector satisfying ||v1||U ≤ det(L)1/k/γ. That is, the algorithm works so long
as det(L)1/k/γ < βNm (⇔ det(L)1/k/Nm < βγ) holds. Note that β and γ are
big numbers that may grow depending on parameters k, dmax, etc. Thus, the
lattice condition is relaxed considerably. by this condition Even for this relaxed
condition, we can show that U < N1/D+ε is necessary to satisfy it. To see this,
we use the lower bound (12) for det(L(G)), where L(G) is the lattice constructed
from any given canonical initial polynomials. From this bound, it is easy to see
that if U ≥ N1/D,

det(L(G))1/k/Nm ≥ Nmk ·
(

U

N1/D

)∑
d̂i

≥ Nmk ·
(

U

N1/D

)k(k−1)/2

holds, where the last inequality follows from the fact that d̂i ≥ i − 1 for all
i ∈ [k] (because Ĥ has a strictly increasing degree sequence), and hence,

∑
d̂i ≥

k(k−1)/2. Thus, even the relaxed lattice condition fails to hold if the right-hand
side ≥ βγ, which is equivalent to

U ≥ N1/D+ 2 log(βγ)
(k−1) log N . (14)

Therefore, even if much stronger inequalities could be used, so long as βγ << N ,
we can claim that the relaxed lattice condition fails if U ≥ N1/D+ε for any
constant ε > 0 and any sufficiently large N .

6.1 Justifications from Computer Experiments

We can provide evidence from computer experiments that supports tightness of
(2) and (4). First, consider (4), an upper bound for the length of a short vector
given by a lattice reduction algorithm. Due to the importance of obtaining a short
lattice vector, the improvement of lattice reduction algorithms and analysis of
their performance have been studied extensively. Various computer experiments
have also been conducted (e.g., [20,11]). From such investigation, it has been
believed that for any lattice algorithm P , there is δP > 1 such that ||v1||U ≈
δkP det(L)1/k holds; that is, the coefficient A(k) of (4) is δkP . In particular, from a



On the Optimality of Lattices for the Coppersmith Technique 387

large number of computer experiments, we can assume that the bound (4) holds
with, at least, A(k) = 1.

Next consider the inequality ||h||U < β0W that is a sufficient condition for

(3) ∀v, |v| < U [ h(v) ≡ 0 (mod W )⇒ h(v) = 0 ],

where β0 = (
√
dmax + 1)−1 and W = Nm in our analysis. Since this is only

a sufficient condition, it may be possible that (3) holds even if ||h||U is much
larger. While it seems quite difficult to show that this is unlikely, it is pos-

sible to relate ||h||U and a condition closely related to (3). Note that if W∗
def
=

max|x|<U,x∈Z |h(x)| < W , then (3) holds. On the other hand, (3) fails whenW =
max|x|<U,x∈Z |h(x)|. This indicates that the condition max|x|<U,x∈Z |h(x)| < W
and (3) are closely related. On the other hand, letting β∗

def
= ‖h‖U/W∗, we have

that max|x|<U,x∈Z |h(x)| < W ⇐⇒ ||h||U < β∗W . Thus, we investigate how
large β∗ could become by computing it for randomly generated polynomials h(x).

Here is the outline of our experiment. For a sufficiently large U (i.e., U = 1010

and = 10100) and a degree parameter d (i.e., d = 5, 10, ..., 100), we gener-

ate a polynomial h(x) =
∑d

i=0 aix
i by choosing coefficients ai randomly so

that |aiU i| is located in [0.1BUd, 10BUd] for a large B (i.e., B is an inte-
ger sampled from [U/2, U ]). This random generation is motivated by our ob-
servation that actual polynomials h(x) derived in the Coppersmith technique
have coordinates that usually satisfy |aiU i|/Ud+1 = Θ(1). We then compute
W∗ := max|x|<U,x∈Z |h(x)|. Since h(x) is a polynomial of a relatively small de-
gree, this computation can be performed easily by examining integer points near
all ξ ∈ R satisfying h′(ξ) = 0. We then compute β∗ = ‖h‖U/W∗. For each
choice of parameters, such β∗’s are computed for 500 randomly generated poly-
nomials. From this experiment (see Figure 2), we can claim that β∗ ≤ 99 and
||h||U ≥ 99W =⇒ max|x|<U |h(x)| > W ; in other words, it is unlikely that
inequality (2) can be improved to ‖h‖U < 100Nm.
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generated polynomials, and the vertical axis is β∗.

Fig. 2. Experimental values of β∗
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7 Concluding Remarks

We investigated the optimality of lattice constructions used in the Coppersmith
technique for finding small roots of a univariate modular equation (1). For this
purpose, we provide a framework of the technique and a sufficient condition, i.e.,
the lattice condition (7) (and its simplified version (8)) in which the technique
works. Then, for any lattice constructed from canonical initial polynomials, we
derive a way to estimate a lower bound for the lattice determinant and prove
that the condition fails to satisfy if U ≥ N1/d (Theorem 1). A similar limit can
be shown unless the Coppersmith technique works under a significantly relaxed
condition, and we show a computer experiments indicating that it is unlikely that
the lattice condition is significantly relaxed. Thus, these results are reasonable
evidence of the limit of the standard lattice construction for the technique.

We also discuss the possibility of constructing a better lattice by using poly-
nomials constructed in a non-standard way. We show that such a construction
itself would lead to quite a strong method for solving the original problem or
factorizing a large number.

From these results, we can claim that our bound U < N1/d is sharp for
the direct usage of the Coppersmith technique solving (1) for various target
polynomials considered in, for instance, cryptographic applications.

Coppersmith [8] employed a family of integer valued polynomials and Cheby-
chev polynomial representations to extend the rangeU < N1/d. Their approaches
indeed increases the range by a poly(logN) factor. Although our framework con-
siders only polynomials with integer coefficients, it can be adopted for the above
framework and provide a similar limitation result. A detailed argument is given
in the full-version of this paper.

Acknowledgments. We would like to thank the anonymous referees for helpful
comments.
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Abstract. In this paper, we present an identity-based encryption (IBE)
scheme from lattices with efficient key revocation. We adopt mul-
tiple trapdoors from the Agrawal-Boneh-Boyen and Gentry-Peikerty-
Vaikuntanathan lattice IBE schemes to realize key revocation, which
in turn, makes use of binary-tree data structure. Using our scheme, key
update requires logarithmic complexity in the maximal number of users
and linear in the number of revoked users for the relevant key authority.
We prove that our scheme is selective secure in the standard model and
under the LWE assumption, which is as hard as the worst-case approxi-
mating short vectors on arbitrary lattices.

Keywords: Lattice-based Cryptography, Identity-based Encryption,
Key Revocation.

1 Introduction

The concept of identity-based encryption (IBE) was proposed by Shamir [31]. It
allows a sender to encrypt a message using the recipient’s identity as a public
key. The private key corresponding to the public key or identity is generated by
a key authority (or private key generator). IBE began to be studied extensively
only after the seminal work of Boneh and Franklin [11] on practical pairing-
based IBE systems, see for example [12, 32, 33]. Meanwhile, there also exist
proposals on IBE systems based on quadratic residuosity [16, 13], although it
is still not known how to build such systems that are secure in the standard
model. In recent years, however, lattice-based IBE [20, 14, 1, 2] has received
considerable attention from the cryptographic research community. Lattices have
becoming an attractive and powerful tool to build a broad range of cryptographic
primitives [6, 23, 8, 27, 28, 19]. This is so as many lattice-based constructions are
quite efficient and typically simple to implement. Moreover they are all believed
to be secure against attacks using quantum computers, a property not achievable
by cryptographic primitives based on factoring or discrete logarithm.

A system user’s public key may need to be removed for various reasons. For
example, the private key corresponding to the public key has been stolen; the
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user has lost her private key; or the user is no longer a legitimate system user.
In these cases, it is important that the public/private key pair be revoked and
replaced by new keys. In the IBE setting, Boneh and Franklin [11] suggested that
the sender appends the current validity period to the intended identity during
encryption and the recipient periodically receives a new private key. Unfortu-
nately, such solution requires the key authority to perform work that is linear in
the number of non-revoked users. Further, the key authority needs to create and
transmit a new key to each non-revoked user through some form of authenticated
and secure channel. Boldyreva, Goyal and Kumar [10] recently proposed a revo-
cable IBE (RIBE) scheme that significantly reduces the key authority’s workload
(in terms of key revocation) to logarithmic (instead of linear) in the number of
users, while keeping the scheme efficient for senders and receivers. Their RIBE
scheme uses key revocation techniques based on binary-tree data structure, also
used in [5, 25], and builds on a fuzzy IBE (FIBE) scheme introduced by Sahai
and Waters [29] that is secure in the selective-ID model. Note that Boldyreva et
al’s RIBE is the first IBE scheme that supports non-interactive key revocation
(in the sense that non-revoked users need not interact with the key authority
in order to update their keys). Prior to their work, all revocation techniques
require interactions between users and the key authority or some kind of trusted
hardware. Moreover, the use of a binary-tree reduces the amount of work in key
update from being proportional to logarithmic complexity in the maximal num-
ber of users. Libert and Vergnaud [22] subsequently proposed an RIBE scheme
in the adaptive-ID model using similar key revocation techniques as with [10].
However, instead of making use of an FIBE scheme, they adopt a variant [21]
of the Waters IBE scheme [32]. Nevertheless, all the above RIBE schemes are
constructed from bilinear pairings.

In the spirit of expanding the study of lattice-based IBE, we show, in this
paper, how to construct an RIBE scheme in the lattice setting.

1.1 Our Results

Our construction of RIBE from lattices makes use of the following building
blocks: (i) lattice IBE proposed by Agrawal, Boneh, and Boyen [1]; (ii) trapdoors
for lattice IBE proposed by Gentry, Peikerty, and Vaikuntanathan [20]; and
(iii) the binary-tree data structure for key update used in [5, 25, 10, 22]. More
specifically, we extend the lattice IBE scheme of [1] with trapdoors from [20] to
enable non-interactive key revocation. As with prior work, the binary-tree data
structure is used to improve the efficiency of secret key update, allowing us to
achieve key update with logarithmic complexity in the maximal number of users
and linear in the number of revoked users for the key authority.

We note that our RIBE scheme is not a straightforward combination of the
aforementioned building blocks because we require that our user public key
comprises two components: identity and time, in order to obtain the “non-
interactive” property. Hence, our construction requires two instances of Agrawal
et al.’s IBE scheme to deal with users’ identities and times respectively. Further,
we require a random n-vector u to be part of the public parameters that plays
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the role of linking identity to time for each node associated to the binary-tree.
Briefly speaking, this can be achieved by randomly splitting the vector u into
two vectors u1,u2 for each node to indicate identity and time, respectively.

We prove that our RIBE scheme is selective secure in the standard model and
under the LWE assumption, which is as hard as the worst-case approximation
of short vectors on arbitrary lattices [28, 26]. Simply applying the simulation
techniques of [1] to our lattice setting does not work, since the trapdoors can
respond to only all key (short vector) queries for all identities id �= id∗ and times
t �= t∗. We address this by adopting the simulation trapdoors of [20]. That is,
we sample a short vector from some distribution to generate u1 or u2 instead
of generating both u1 and u2 randomly for each node in the simulation. Such
u1 or u2 is indistinguishable from the uniform distribution. The sampled short
vectors will be used to respond to a query for the challenge identity id∗ and a
query for the challenge time t∗.

1.2 Related Work

Our work, which focuses on how to construct revocable IBE from lattices, is
concurrent but independent from the very recent proposal of lattice FIBE in [4].
There is some similarity between [4] and our work, that is, attributes are em-
bedded in the shares ui of vector u in the construction and the shares ui of
the challenge attributes are generated by sampling random short vectors in the
simulation. However, our approach is different in the sense that we directly and
randomly split the vector u instead of using the Shamir secret-sharing scheme
and the Lagrange interpolation formula. This makes our system more efficient.
Another difference is that we make use of only one matrix associated with a
trapdoor basis instead of  matrices, where  is the maximal number of at-
tributes. Our method could also be applied to their large universe scheme and
this significantly reduces the size of the master secret key.

We note that the idea of using more than one trapdoor in the keys has also
been mentioned in Agrawal et al.’s hierarchical IBE (HIBE) scheme [3] and in
the completely non-malleable public-key encryption scheme by Sapehi et al. [30].

2 Definitions

2.1 Notation

Throughout the paper we say that a function ε : R≥0 → R≥0 is negligible if
ε(n) is smaller than all polynomial fractions for sufficiently large n. We say that
an event happens with overwhelming probability if it happens with probability
at least 1 − ε(n) for some negligible function ε. We say that integer vectors
v1, . . . ,vn ∈ Zm are Zq-linearly independent if they are linearly independent
when reduced modulo q.

The statistical distance of two random variables X and Y over a discrete
domain Ω is defined as Δ(X ;Y ) := 1

2

∑
s∈Ω |Pr[X = s] − Pr[Y = s]|. We say
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that X is δ-uniform over Ω if Δ(X ;UΩ) ≤ δ where UΩ is a uniform random
variable over Ω. Let X(λ) and Y (λ) be ensembles of random variables, we say
that X and Y are statistically close if d(λ) := Δ(X(λ);Y (λ)) is a negligible
function of λ.

2.2 Syntax of RIBE

Here, we recall the definitions of security for RIBE as defined in [10].

Definition 1. An identity-based encryption with efficient revocation or simply
revocable IBE scheme has seven probabilistic polynomial-time (PPT) algorithms
Setup, PriKeyGen, KeyUpd, DecKeyGen, Enc, Dec, and KeyRev with
associated message space M, identity space I, and time space T .

Setup(1λ, N) takes as input a security parameter λ and a maximal number of
users N . It outputs a public parameters PP, a master key MK, a revocation
list RL (initially empty), and a state ST. (This is run by the key authority.)

PriKeyGen(PP,MK, id, ST) takes as input the public parameters PP, the mas-
ter key MK, an identity id ∈ I, and the state ST. It outputs a private key
SKid and an updated state ST. (This is stateful and run by the key authority.)

KeyUpd(PP,MK, t,RL, ST) takes as input the public parameters PP, the mas-
ter key MK, a key update time t ∈ T , the revocation list RL, and the state
ST. It outputs a key update KUt. (This is run by the key authority.)

DecKeyGen(SKid,KUt) takes as input a private key SKid and key update KUt.
It outputs a decryption key DKid,t or a special symbol ⊥ indicating that id
was revoked. (This is deterministic and run by the receiver.)

Enc(PP, id, t,m) takes as input the public parameters PP, an identity id ∈ I,
an encryption time t ∈ T , and a message m ∈ M. It outputs a ciphertext
CTid,t. (This is run by the sender. For simplicity and wlog we assume that
id, t are efficiently computable from CTid,t.)

Dec(PP,DKid,t,CTid,t) takes as input the public parameters PP, a decryption
key DKid,t, and a ciphertext CTid,t. It outputs a message m ∈ M. (This is
deterministic and run by the receiver.)

KeyRev(id, t,RL, ST) takes as input an identity to be revoked id ∈ I, a revo-
cation time t ∈ T , the revocation list RL, and the state ST. It outputs an
updated revocation list RL. (This is stateful and run by the key authority.)

The consistency condition requires that for all λ ∈ N and polynomials
(in λ) N , all (PP,MK) output by Setup, all m ∈ M, id ∈ I, t ∈ T
and all possible valid states ST and revocation lists RL, if identity id was

not revoked by time t then, for (SKid, ST)
$← PriKeyGen(PP,MK, id, ST),

KUt
$← KeyUpd(PP,MK, t,RL, ST), DKid,t ← DecKeyGen(SKid,KUt) we

have Dec(PP,DKid,t,Enc(PP, id, t,m)) = m.
Boldyreva et al. formalized and defined the selective-revocable-ID security in

the following experiments. Their definition captures not only the standard notion
of selective-ID security but also takes into account key revocation:
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Initial: The adversary first outputs the challenge identity id∗ and time t∗, and
also some information state it wants to preserve.
Setup: It is run to generate public parameters PP, a master keyMK, a revocation
list RL (initially empty), and a state ST. Then PP is given to A.
Query: A may adaptively make a polynomial number of queries of the following
oracles (the oracles share state):

– The private key generation oracle PriKeyGen(·) takes as input an identity
id and runs PriKeyGen(PP,MK, id, ST) to return a private key SKid.

– The key update generation oracleKeyUpd(·) takes as input time t and runs
KeyUpd(PP,MK, t,RL, ST) to return a key update KUt.

– The revocation oracle KeyRev(·) takes as input an identity id and time t
and runs KeyRev(id, t,RL, ST) to update RL.

Challenge: A outputs the same length challenge m(0),m(1) ∈ M. A random bit
β is chosen. A is given Enc(PP, id∗, t∗,m(β)).
Guess: The adversary may continue to make a polynomial number of queries
of the following oracles as in query phase and outputs a bit β′, and succeeds if
β′ = β.
The following restrictions must always hold:

1. KeyUpd(·) and KeyRev(·, ·) can be queried on time which is greater than
or equal to the time of all previous queries, i.e., the adversary is allowed to
query only in non-decreasing order of time. Also, the oracle KeyRev(·, ·)
cannot be queried at time t if KeyUpd(·) was queried on t.

2. If PriKeyGen(·) was queried on identity id∗ then KeyRev(·, ·) must be
queried on (id∗, t) for some t ≤ t∗, i.e., identity id∗ must be in RL when
KeyUpd(·) is queried at time t∗.

We define the advantage of A as the quantity

AdvIND-sRID-CPA
A (λ) := Pr[β′ = β]− 1/2.

Definition 2. The scheme RIBE is said to be IND-sRID-CPA secure if the func-
tion AdvIND-sRID-CPA

A (λ) is negligible in λ for any efficient A and polynomial n.

3 Background on Lattices

In this section, we describe the required concepts from lattices.

3.1 Integer Lattices

Let B := [b1| . . . |bm] ∈ Rm×m be an m×m matrix whose columns are linearly
independent vectors b1, . . . ,bm ∈ Rm. The m-dimensional full-rank lattice Λ
generated by B is the set,

Λ := L(B) :=

{
y ∈ R

m s.t. ∃s ∈ Z
m,y = Bs =

m∑
i=1

sibi

}
Here, we are interested in integer lattices, i.e, when L is a subset of Zm.
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Definition 3. For a prime q, A ∈ Zn×mq and u ∈ Znq , define:

Λ⊥
q (A) := {e ∈ Z

m s.t. Ae = 0 ( mod q)}
Λu
q (A) := {e ∈ Z

m s.t. Ae = u ( mod q)}

3.2 The Gram-Schmidt Norm and Trapdoors for Lattices

Let S be a set of vectors S := {s1, . . . , sk} in Rm, we use ‖S‖ to denote the

Euclidean norm of the longest vector in S, i.e., ‖S‖ := maxi
√
s2i,1 + . . .+ s

2
i,m

for 1 ≤ i ≤ k, where si := (si,1, . . . , si,m). We use S̃ := {s̃1, . . . , s̃k} ⊂ Rm

to denote the Gram-Schmidt orthogonalization of the vectors s1, . . . , sk in that
order. We refer to ‖S̃‖ as the Gram-Schmidt norm of S.

The problem of generating a random lattice A ∈ Zn×mq together with a full

short basis TA of Λ⊥
q (A) has been previously investigated by [7, 9]. Here we

use a better result with tighter parameters which was recently discovered by
Micciancio and Peikert [24].

Theorem 1. Let n ≥ 1, q ≥ 2 be integers and m = �2n log q�. There is an
efficient PPT algorithm TrapGen(q, n) that outputs a pair (A ∈ Z

n×m
q ,TA ∈

Zm×m
q ) such that A is statistically close to a uniform matrix in Zn×mq and TA

is a basis for Λ⊥
q (A) satisfying ‖T̃A‖ ≤ O(

√
n log q) and ‖TA‖ ≤ O(n log q)

with all but negligible probability in n.

3.3 Discrete Gaussians

Let Λ be an m-dimensional lattice. For any vector c ∈ Rm and any positive
parameter σ ∈ R>0, define:

– ρσ,c(x) := exp
(
−π ‖x−c‖2

σ2

)
: a Gaussian-shaped function on Rm with center

c and parameter σ,

– ρσ,c(Λ) :=
∑

x∈Λ ρσ,c(x): the (always converging) sum of ρσ,c over Λ,

– DΛ,σ,c: the discrete Gaussian distribution over Λ with parameters σ and
center c,

∀y ∈ Λ, DΛ,σ,c(y) :=
ρσ,c(y)

ρσ,c(Λ)
.

For notational convenience, we abbreviate ρσ,0 and DΛ,σ,0 as ρσ and DΛ,σ.
The following lemmas from [20] is essential for our security proof.

Lemma 1. There is an efficient PPT algorithm SampleGaussian that, given a
basis B of an m-dimensional lattice Λ = L(B), a parameter σ ≥ ‖B̃‖·ω(

√
logm),

and a center c ∈ Rm, outputs a sample from a distribution that is statistically
close to DΛ,σ,c.

Let Bz be the standard basis for Zm, we use the SampleGaussian(Bz , σ, 0) algo-
rithm to sample from distribution DZm,σ.
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Lemma 2. Let n and q be positive integers with q prime, and let m ≥ 2n log q.
Then for all but a 2q−n fraction of all A ∈ Zn×mq and for any σ ≥ ω(

√
logm),

the distribution of the syndrome u = Ae mod q is statistically close to uniform
over Znq , where e is from DZm,σ.

3.4 Sampling Algorithms

The following SampleLeft [14, 1] and SampleRight [1] algorithms will be used
to sample short vectors in our construction and in the simulation, respectively.
Let A and C be matrices in Zn×mq and let R be a matrix in {−1, 1}m×m. By
using either a trapdoor for Λ⊥

q (A) or a trapdoor Λ⊥
q (C), we can sample a short

vector e in Λ⊥
q (F) for some u in Znq , where F := (A|AR +C) ∈ Zn×2m

q . With
appropriate parameters, the distribution of e produced by these two algorithms
is statistically indistinguishable.

Theorem 2. Let q > 2 and m > n. Then there is an efficient PPT algorithm
SampleLeft that takes as input a rank n matrix A in Zn×mq , a matrix M in

Zn×m1
q , a “short” basis TA of Λ⊥

q (A), a vector u ∈ Znq , and a gaussian param-

eter σ > ‖T̃A‖ · ω(
√
log(m+m1)). It outputs a vector e ∈ Z

m+m1 distributed
statistically close to DΛu

q (F1),σ where F1 := (A|M). In particular, e ∈ Λu
q (F1).

Theorem 3. Let q > 2 and m > n. There is an efficient PPT algorithm
SampleRight that takes as input matrices A,C in Zn×mq where C is rank n,

a uniform random matrix R ∈ {−1, 1}m×m, a basis TC of Λ⊥
q (C), a vector

u ∈ Znq , and a gaussian parameter σ > ‖T̃C‖ ·
√
mω(log(m)). It outputs a vector

e ∈ Z2m distributed statistically close to DΛu
q (F2),σ where F2 := (A|AR + C).

In particular, e ∈ Λu
q (F2).

We will also need the following lemma, generalization of the left over hash lemma
due to Dodis et al. [18], in our proof.

Lemma 3. Suppose that m > (n + 1) log q + ω(logn) and that q is prime. Let
A,B be matrices chosen uniformly in Zn×mq and let R be an m×m matrix chosen
uniformly in {1,−1}m×m mod q. Then, for all vectors w in Zmq , the distribution
of (A,AR,R	w) is statistically close to the distribution of (A,B,R	w).

3.5 The LWE Hardness Assumption

The security of our construction can be reduced to the LWE (learning with
errors) problem defined by Regev [28].

Definition 4. Consider a prime q, a positive integer n, and a distribution χ
over Zq, all public. An (Zq, n, χ)-LWE problem instance consists of access to an
unspecified challenge oracle O, being, either, a noisy pseudo-random sampler Os

carrying some constant random secret key s ∈ Znq , or, a truly random sampler
O$, whose behaviors are respectively as follows:
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– Os: outputs samples of the form (ui, vi) = (ui,u
	
i s+xi) ∈ Znq×Zq, where, s ∈

Znq is a uniformly distributed persistent value invariant across invocations,
xi ∈ Zq is a fresh sample from χ, and ui is uniform in Znq .

– O$: outputs truly uniform random samples from Znq × Zq.

The (Zq, n, χ)-LWE problem allows repeated queries to the challenge oracle O.
We say that an algorithm A decides the (Zq , n, χ)-LWE problem if |Pr[AOs =
1]− Pr[AO$ = 1]| is non-negligible for a random s ∈ Znq .

Regev [28] and Peikert [26] showed that for some noise distribution χ, denoted
Ψα, the LWE problem is at least as hard as the worst-case SIVP and GapSVP
under a quantum reduction if the parameters are appropriately set.

Definition 5. Consider a real parameter α = α(n) ∈ (0, 1) and a prime q. Let
T := R/Z be the group of reals [0, 1) with addition modulo 1. Let Ψα be the
distribution over T of a normal variable with mean 0 and standard deviation
α/
√
2π then reduced modulo 1. Let 	x� := 	x + 1

2� be the nearest integer to the

real x ∈ R. We then define Ψα as the discrete distribution over Zq of the random
variable 	xX� mod q where the random variable X ∈ T has distribution Ψα.

3.6 Encoding Identities as Matrices

In our construction and proof of security, we require an injective encoding func-
tion H : Znq → Z

n×n
q to map identities in Z

n
q to matrices in Z

n×n
q . Concrete

construction of such a function can be found in [1, 17].

Definition 6. Let q be a prime and n a positive integer. We say that a function
H : Znq → Zn×nq is an encoding with full-rank differences (FRD) if:

1. for all distinct u,v ∈ Znq , the matrix H(u)− H(v) ∈ Zn×nq is full rank;

2. H is computable in polynomial time in n log q.

4 Lattice RIBE

4.1 The Binary-Tree Data Structure

Our construction makes use of binary-tree data structure, as with [5, 25, 10, 22].
We denote the binary-tree by BT and its root node by root. If ν is a leaf node
then Path(ν) denotes the set of nodes on the path from ν to root (both ν and
root inclusive). If θ is a non-leaf node then θ�, θr denote the left and right child
of θ, respectively. We assume that all nodes in the tree are uniquely encoded as
strings, and the tree is defined by all of its node descriptions.

Each user is assigned to a leaf node ν. Upon registration, the key authority
provides the user with a set of distinct private keys for each node in Path(ν).

At time t, the key authority determines the minimal set Y of nodes in BT
such that none of the nodes in RL with corresponding time ≤ t (users revoked
on or before t) have any ancestor (or, themselves) in the set Y, and all other
leaf nodes (corresponding to non-revoked users) have exactly one ancestor (or,
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themselves) in the set. This algorithm, denoted by KUNodes, takes as input a
binary tree BT, a revocation list RL and a time t) and can be formally specified
as follows:

KUNodes(BT,RL, t)

X,Y ← ∅
∀(νi, ti) ∈ RL

if ti ≤ t then add Path(νi) to X

∀θ ∈ X

if θ� �∈ X then add θ� to Y

if θr �∈ X then add θr to Y

If Y = ∅ then add root to Y

Return Y

The KUNodes algorithm marks all the ancestors of revoked nodes as revoked and
outputs all the non-revoked children of revoked nodes.

The key authority then publishes a key update for all nodes of Y.
A user assigned to leaf ν is then able to form an effective decryption key for

time t if the set Y contains a node in Path(ν). By doing so, every update of the
revocation list RL only requires the key authority to perform logarithmic work
in the maximal number of users and linear in the number of revoked users.

4.2 The Agrawal et al. IBE Scheme

We use the Agrawal et al. lattice IBE scheme [1] as a building block for our
construction. Briefly, their IBE scheme can be described as follows.

The public parameters in the scheme of [1] consist of three random n × m
matrices over Zq denoted by A,B and C as well as a vector u ∈ Z

n
q . The master

secret is a trapdoor TA for the lattice Λ⊥
q (A). The secret key for an identity id

is a short vector e ∈ Z2m, which is generated using the SampleLeft algorithm of
Theorem 2 and satisfies Fide = u in Zq where Fid := (A|B+H(id)C) ∈ Zn×2m

q .
In the security proof for a selective IBE security game, the adversary announces
an identity id∗ that it plans to attack. Instead of using a trapdoor for Λ⊥

q (A),

it samples C at random and obtains a trapdoor TC for Λ⊥
q (C). It also chooses

the public parameter A at random and sets B := AR − H(id∗)C, where R is a
random matrix in {1,−1}m×m. Since AR is uniform and independent in Z

n×m
q ,

B is uniformly distributed as required. We then have

Fid := (A|A ·R+C′) ∈ Z
n×2m
q ,

where C′ := (H(id)−H(id∗))C. To respond to a private key query for an identity
id �= id∗, the simulator could produce a short vector e satisfying Fide = u in Zq

by using the SampleRight algorithm of Theorem 3 and the basis TC. This is so
since id �= id∗ is full rank by the definition of FRD in Section 3.6 and therefore
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TC is also a trapdoor for the lattice Λ⊥
q (C

′). When id = id∗, the matrix Fid no
longer depends on C and the simulator’s trapdoor is removed. The simulator can
then produce a challenge ciphertext that helps to solve the given LWE challenge.

4.3 Intuition of Our Construction

We first consider how to create a link between an identity and a time for each
node. In our construction, we use two instances of Agrawal et al.’s IBE scheme
and its techniques to deal with users’ identities and times respectively, but re-
quire only a single random vector u ∈ Znq in the public parameters. We split it
into two random vectors u1,u2 for each node corresponding to identity and time,
respectively. The randomly split u links identity to time for each node. More-
over, our technique does not require information about u1,u2 to be included in
ciphertexts, and hence does not increase the size of ciphertexts.

Clearly, the simulator can answer all private key queries for all identities
id �= id∗, key update queries for all time t �= t∗ by two trapdoors TC1 ,TC2 . The
main difficulty in the simulation is as follows. The simulator may be required
to answer either a key update query at time t∗ with node in Path(ν∗) or a
private key query for identity id∗ and a key update query at time t∗ without
any node in Path(ν∗), where id∗ is assigned in ν∗ (id∗ must be revoked before
or at time t∗). In other words, the simulator should answer either a query for
identity id∗ or a query for time t∗ for each node. To overcome this difficulty,
we use the SampleGaussian algorithm of Lemma 1 to sample a short vector and
generate either u1 or u2 (instead of generating one of them randomly). Such u1

or u2 is indistinguishable from the uniform distribution, which is guaranteed by
Lemma 2. More precisely, there are two possibilities for those nodes in Path(ν∗)
(we can pick a node ν∗ beforehand and assign id∗ to it if necessary) depending
on whether or not identity id∗ will be queried:

– If identity id∗ is queried, then it must be revoked before or at time t∗. In
this case, we set u1 to be the product of Fid∗ and a short vector e sampled
by SampleGaussian(Bz , σ, 0).

– If identity id∗ is not queried. In this case, we set u2 to be the product of Ft∗

and a short vector e sampled by SampleGaussian(Bz, σ, 0).

For those nodes that are not in Path(ν∗), we set u2 to be the product of Ft∗ and
a short vector e sampled by SampleGaussian(Bz , σ, 0). We have probability 1/2
to simulate the correct game and the adversary cannot distinguish which one is
simulated.

4.4 Our RIBE Scheme

We now describe our RIBE scheme from lattices. At the end of each algorithm,
we provide some intuition and/or remark (marked by the symbol “//”) about
the algorithm.

Setup(λ,N) On input a security parameter λ and a maximal number N of
users, set the parameters q, n,m, σ, α as specified in Section 4.5 below. Next
perform the following steps:
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1. Use the TrapGen(q, n) algorithm to select a uniformly random matrix

A ∈ Zn×mq with a basis TA for Λ⊥
q (A) such that ||T̃A|| ≤ O(

√
n log q).

2. Select four uniformly random matrices B1, B2, C1, and C2 in Zn×mq .

3. Select a uniformly random vector u
$← Znq .

4. Let RL be an empty set and BT be a binary-tree with at least N leaf
nodes, set ST := BT. Select an FRD map H as defined in Section 3.6.

5. Output RL, ST, the public parameters, and the master key MK,

PP := {H,A,B1,B2,C1,C2,u} , MK := {TA} .

PriKeyGen(PP,MK, id,RL, ST) On input the public parameters PP, the mas-
ter key MK, an identity id ∈ Znq , the revocation list RL, and the state ST, it
picks an unassigned leaf node ν from BT and stores id in that node. It then
performs the following steps:

1. For any θ ∈ Path(ν), if uθ,1,uθ,2 are undefined, then pick uθ,1
$← Znq ,

set uθ,2 := u − uθ,1, and store them in node θ. Sample eθ,1 ∈ Z2m as
eθ,1 ← SampleLeft(A,B1 + H(id)C1,TA,uθ,1, σ).

2. Output SKid := {(θ, eθ,1)}θ∈Path(ν), ST.

//The algorithm computes the id-component of the decryption key for all
the nodes on the path from ν to root.

KeyUpd(PP,MK, t,RL, ST) On input the public parameters PP, the master
key MK, a time t ∈ Znq , the revocation list RL, and the state ST, it performs
the following steps:

1. ∀θ ∈ KUNodes(BT,RL, t), if uθ,1,uθ,2 are undefined, then pick uθ,1
$←

Znq , set uθ,2 := u − uθ,1, and store them in node θ. Sample eθ,2 ∈ Z2m

as eθ,2 ← SampleLeft(A,B2 + H(t)C2,TA,uθ,2, σ).

2. Output KUt := {(θ, eθ,2)}θ∈KUNodes(BT,RL,t).

//The algorithm first finds a minimal set of nodes which contains an ancestor
(or, the node itself) of all the non-revoked nodes. It then computes the t-
component of the decryption key for all the nodes in that set.

DecKeyGen(SKid,KUt) On input a private secret key SKid := {(i, ei,1)}i∈I,
KUt := {(j, ej,2)}j∈J for some set of nodes I, J, it runs the following steps:

1. ∀(i, ei,1) ∈ SKid, (j, ej,2) ∈ KUt, if ∃(i, j) s.t. i = j then DKid,t ←
(ei,1, ej,2); else (if SKid and KUt do not have any node in common)
DKid,t ← ⊥.

2. Output DKid,t.

// We can drop the subscripts i, j since they are equal, i.e., DKid,t := (e1, e2).
The algorithm finds components of SKid and KUt such that Fide1+Fte2 = u
since they are in the same node.
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Enc(PP, id, t,m) On input the public parameters PP, an identity id, a time
t ∈ Znq , and a message m, it runs the following steps:

1. Set Fid,t ← (A|B1 + H(id)C1|B2 + H(t)C2) ∈ Zn×3m
q .

2. Choose a uniformly random s
$← Znq .

3. For i = 1, 2, choose a uniformly random matrix Ri
$← {−1, 1}m×m.

4. Choose noise x
Ψα←− Zq and noise vectors y

Ψ
m
α←− Zmq and for i = 1, 2 set

zi ← R	
iy ∈ Zmq . (The distribution Ψα is as defined by Definition 5)

5. Set c0 ← u	s+ x+m	 q2
 ∈ Zq, c1 ← F	
id,ts+

⎡⎣ y
z1
z2

⎤⎦ ∈ Z3m
q .

6. Output the ciphertext CTid,t := (c0, c1) ∈ Zq × Z
3m
q .

Dec(PP,DKid,t,CTid,t) On input the public parameters PP, a decryption key
DKid,t := (e1, e2), and a ciphertext CTid,t := (c0, c1), it runs the following
steps:

1. Parse c1 as

⎡⎣c1,0
c1,1
c1,2

⎤⎦, where c1,i ∈ Zmq .

2. Compute w ← c0 − e	1

[
c1,0
c1,1

]
− e	2

[
c1,0
c1,2

]
∈ Zq.

3. Compare w and 	 q2
 treating them as integers in Z. If they are close, i.e.,
if

∣∣w − 	 q2

∣∣ < 	 q4
, output 1, otherwise output 0.

KeyRev(id, t,RL, ST) On input an identity id, a time t, the revocation list RL,
and the state ST, the algorithm adds (id, t) to RL for all nodes ν associated
with identity id and returns RL.

4.5 Parameters, Correctness and Security

As in [3], the following error term is bounded by [qσmαω(
√
logm)+O(σm3/2)],

that is

w = c0 − e	1

[
c1,0
c1,1

]
− e	2

[
c1,0
c1,2

]
= m	 q

2

+ x− e	1

[
y
z1

]
− e	2

[
y
z2

]
︸ ︷︷ ︸

error term

.

We can similarly set the parameters (q,m, σ, α) to ensure that the error term is
less than q/5 and the system works:

m = 2n1+δ, q = m2
√
n · ω(logn),

σ = m · ω(logn), α = [m2 · ω(logn)]−1,

and round up m to the nearest larger integer and q to the nearest larger prime.
We choose δ such that nδ > �log q� = O(logn).
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We show that our RIBE construction is secure in the following theorem:

Theorem 4. The RIBE system is IND-sRID-CPA secure provided that the
(Zq, n, Ψ̄α)-LWE assumption holds.

We have given some intuition of our security proof earlier in Section 4.3. Due to
space constraints, the detail is given in the full version of this paper [15].

5 Open Problem

We have proven our RIBE scheme to be selective-ID secure under the LWE as-
sumption. However, we leave open the problem of how to construct an adaptive-
ID secure RIBE scheme [22].
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Abstract. Recently one of the most active fields of cryptography has
been the design of lightweight algorithms. Often the explicit goal is to
minimise the physical area for an implementation. While reducing area
is an important consideration, beyond a certain threshold there is little
point minimising area further. Indeed, it can be counter-productive and
does not necessarily lead to the most appropriate solution. To provide a
clear demonstration of this, we consider two lightweight algorithms that
have been proposed for deployment on UHF RFID tags and which appear
in a forthcoming ISO standard. Our results show that by choosing an
implementation strategy that reduces but not necessarily minimises the
area, very significant savings in time and substantial reductions to other
physical demands on tag performance can be delivered. In particular,
given the crucial importance of transaction time in the deployment of
most contactless applications, our work illustrates that the most suitable
practical implementation does not always conform to expectations.

1 Introduction

The challenging physical constraints posed by RFID tags have been a signif-
icant spur to cryptographic research. The world of RFID tag deployment is
dominated by two operating frequencies; HF and UHF. Tags that communicate
with an interrogator using HF (13.56 MHz) are well-established. Most familiarly
we see these in public-transport applications and they will play a significant
role in the proliferation of Near Field Communication (NFC) applications. Hap-
pily, the physical constraints for short-range HF-based tags are not onerous:
sufficient power can be delivered to the tag to deploy standard cryptographic
primitives like Triple-DES [21] and AES [22]. By contrast, the much cheaper
and much smaller tags standardised by EPCglobal [4] communicate using UHF
(860–960 MHz). As well as size and price, a significant advantage of UHF tags
is that they can be read at a distance. For these tags, though, space and power
consumption are at a premium.

The UHF RFID tag is a remarkable piece of engineering; not only are these
passive devices small and cheap enough to be attached to millions of objects—
for track-and-trace applications in the supply chain—but they must operate in
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multi-tag and multi-reader environments with exceptional reliability. This suc-
cess is spurring their wide-spread deployment and, at the same time, leading
calls for an extension of their functionality. One particular application of inter-
est is that of product authentication and calls to use cheap UHF RFID tags as
part of an anti-counterfeiting solution are well-known [1,15,17]. But the favored
long-term solution to the problem, that of providing dynamic cryptographic tag
authentication, requires lightweight cryptographic algorithms and standardised
solutions would be a plus. This consideration helps provide a focus to the work
in this paper. Our goal is to consider the issue of area-time trade-offs and as
targets we consider two parts of the forthcoming ISO/IEC 29192 standard [14]
dedicated to lightweight cryptography.

1.1 Area and Time: The Obvious Trade-Off?

Of course it is easy to say (and it is true) that there always exist trade-offs
in implementation strategy. Indeed area and time offer the basis for the most
well-known trade-offs in hardware implementation. Yet such a statement can
sometimes mask considerable complexities. To those that rarely work at the
hardware level, an area-time tradeoff often suggests that a factor t increase in
area allows a t-fold parallelisation of algorithm components. This would yield a
factor t reduction in processing time (also called latency) and a constant area-
time product (AT-product). However when we consider the range of trade-offs
available, the AT-product is rarely, if ever, constant since there are fixed-size
components in any implementation. Further, for systems that result from an
accumulation of optimisations, understanding the net gain for any given trade-
off requires careful analysis.

The pioneering papers in the field of lightweight cryptography effectively de-
fined the operating parameters for the field. With good justification, the primacy
of area was singled out as the most influential parameter in an implementation.
However many other factors effect the suitability of a solution in deployment
and these factors are often set aside. For example HB+ [16] was particularly
lightweight in terms of on-the-tag operations. But it was observed in [5] that the
scheme would require more than 80 000 bits of communication between reader
and tag. Similarly, transaction time is rarely considered as a limiting factor in
much of the academic work on RFID tags; yet for contactless applications this
can be critical. Our goal in this paper, therefore, is to explore a range of im-
plementation strategies for certain core technologies. By doing so we hope to
highlight a more complete range of factors that determine the suitability of a
solution for a particular application.

1.2 This Paper

In this paper we consider the value of implementation strategies that might differ
from the “minimum-area” approach. While our focus will be on area and time,
we will keep our eye on other factors. Maximum and average power consump-
tion are important issues, particularly for UHF RFID tags that will be read at
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Table 1. Area-time trade-offs for the block cipher present with 80-bit keys. The
area-time product is proportional to the energy consumption per bit encrypted.

Datapath width
64 32 16 8 4

S-layer 379.61 200.97 111.65 66.99 44.66
scaleable key xor 170.88 85.44 42.72 21.36 10.68

sub-total 550.49 286.41 154.37 88.35 55.34
MUXes 0.00 149.12 74.56 37.28 18.64

overhead counter 0.00 5.00 10.00 15.00 20.00
sub-total 0.00 154.12 84.56 52.28 38.64
flip-flops 864.00 864.00 864.00 864.00 864.00

fixed counter 54.00 54.00 54.00 54.00 54.00
sub-total 918.00 918.00 918.00 918.00 918.00

Area (GE) 1 468.49 1 358.53 1 156.93 1 058.63 1 011.98
Time (clk) 31 65 129 258 516

Area-Time product 45 523 88 304 149 244 273 127 522 182
Factor increase 1.0 1.9 3.3 6.0 11.5

a distance. For the lightweight designs we consider in this paper, power con-
sumption is dominated by static power consumption which is proportional to
the physical area of the implementation. This suggests that we would always
be particularly interested in minimum-area implementations. However an im-
portant consideration, particularly say for battery-powered sensor nodes, can be
the energy consumption of an implementation. And since energy is given by the
product of power and time, energy consumption will be effectively proportional
to the area-time product.

To illustrate the issues in this paper, we have decided to concentrate on
two algorithms that feature in ISO 29192, a forthcoming standard dedicated
to lightweight cryptographic techniques. This multi-part document covers block
ciphers (part two), stream ciphers (part three), and asymmetric techniques (part
four) and we decided to consider present and cryptoGPS here. It is possible
that the reader will find the paper somewhat unbalanced, with more space being
attributed to the trade-off in cryptoGPS than to present. However this is a
direct result of the more complex trade-off offered by cryptoGPS which takes
some analytic and implementation effort to fully understand.

To compare the area of different implementations, it is typical to use the
concept of the gate equivalent (GE). The physical area of an implementation is
divided by the size of a nand gate to give, what is intended to be, a broadly
technology-neutral estimate of the size of an implementation. Since there can
be significant variations in the area reported for different technologies, it is not
perfect. But it nevertheless remains a reasonable measure, provided we avoid
claiming too much if the difference between implementations is modest.
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Fig. 1. Area (GE), time (cycles), and AT-product (scaled down by a multiplicative
factor of 300 for convenience) for different implementations of 80-bit present

2 Area and Time for present

present is a compact block cipher with a classical SPN structure [3]. Designed to
take either 80- or 128-bit keys, its simple regular structure means that the cipher
offers a wide range of implementation options. The net results of some of these
trade-offs are presented in Table 1. As can be seen from the table, the components
in an implementation can be separated into three classes; components that are
scaleable, components that are fixed-size, and any overheads that are required to
deal with a specific implementation strategy. All the figures given in Table 1 were
derived using Synopsys DesignCompiler A-2007.12-SP1 to synthesize the VHDL
code to the Virtual Silicon (VST) standard cell library UMCL18G212T3 [29].

The results in Table 1 are worth considering in some detail. When consid-
ered solely in terms of area, there is not much to choose between the different
implementations; the area lies between 1 000 and 1 500 GE, a variation of 50%.
Yet, at the same time, the time to encrypt 64 bits varies by a factor of more
than 16 and energy consumption per bit can vary by a factor of more than 11.
This is illustrated in Fig. 1. It can therefore be hard to decide which approach
would be most suitable for a given application. But it seems almost certain that
the smallest implementation (of around 1 000 GE) will only be suitable on an
exceptional basis. Instead it is likely that the implementation of around 1 500
GE will provide the best trade-off; in short the largest implementation.
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Table 2. A headline comparison of the efficient implementation of the two block ciphers
that feature in ISO 29192-2 and the aes

present (this paper) clefia ([28,2])
Area Time AT- Area Time AT-
(GE) (clk) product (GE) (clk) product
1 468 31 45 523 6 050 18 108 900
1 359 65 88 304 5 490 36 197 640
1 157 129 149 244 2 678 176 471 328
1 059 258 273 127 2 594 192 498 048
1 012 516 522 182 2 488 328 816 064

aes ([20,12])
Area Time AT-
(GE) (clk) product
3 100 160 496 000
2 400 210 504 000

For the sake of completeness we provide some area-time tradeoffs for the
implementation of clefia [2,28] which also appears in ISO 29192-2 and aes
which does not. These are 128-bit block ciphers that use a 128-bit key and it
is, therefore, only to be expected that they will both require more space for an
implementation. Given these different operational parameters it is quite difficult
to make a meaningful comparison between present and clefia or aes. For
these last two ciphers the implementation results, by other authors, are presented
in Table 2. Since different synthesis tools and technologies have been used, a close
comparison between clefia and aes cannot be made. However it is interesting
that the trade-offs available to clefia and aes appear to be broadly comparable
and these figures suggest that clefia and aes are likely to offer very similar
implementation characteristics in terms of area, time, and energy efficiency.

3 The Trade-Off for cryptoGPS

cryptoGPS is a commitment-challenge-response scheme from ISO/IEC 29192
part 4. It is due to Girault, Poupard, and Stern and well-established in the litera-
ture [6,10,27]. Several variants have previously been standardised [13] and, over
the years, several optimisations [9,11,13] have been proposed. Since our focus
here is on the implementation rather than the specifics of the scheme, detailed
descriptions can be found elsewhere. In short, the system-wide parameters in-
clude an elliptic-curve and an elliptic curve point P . Each tag contains a unique
private key s, typically 160-bits long, while the associated public key V = −sG
is assumed to be available to the reader. Typical descriptions of cryptoGPS
incorporate several optimisations. Among them is a storage/computation trade-
off based around coupons which has been discussed in a variety of papers [7,11].
Coupons are not to everyone’s tastes nor are they suitable for all use-cases.
However limited-use tokens are familiar in a wide range of applications from
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pre-paid telephone cards to public transport ticketing and it might be argued
that coupons are ideally suited to many RFID applications where tags might
be read 10-20 times and then either discarded or recommissioned. Certainly the
small additional cost in memory when storing coupons is more than offset by
removing elliptic-curve operations from the tag.

The use of coupons is illustrated below where a hash function hash [23] is
used to reduce their size. Note the hash function is only needed during coupon
generation and on the reader during tag verification; it is not implemented on
the tag itself. In addition, optimisations outlined in ISO 9798-5 [13] suggest that
the ri be pseudo-random and re-generated on-the-fly at the time of use (instead
of being stored). To do this we can use present in OFB mode with an 80-bit
key k. We assume that the tag-specific keys s and k are fixed for the life of the
tag while the IV used to begin OFB encryption will be variable (as required
by any realistic cryptoGPS implementation). The form of the IV would likely
contain some tag and/or coupon identifying information, but this is essentially
an issue for the application architecture. The appropriate size of the coupons
and challenges [7,10,11] will depend on the risk analysis and use-case.

Tag Reader
coupon pre-computation with prng

For 1 ≤ i ≤ t
Let ri = prngk(i)

where |ri| = ρ
Set xi = hash(riP )

Store coupon xi

protocol using on-tag prng

At time i fetch xi
xi−−−−−→
c←−−−− Pick c ∈R {0, 1}δ

Gen. ri = prngk(i)

yi = ri + (s× c)
yi−−−−−→ hash(yiP + cV ) ?= xi

For this paper our interest lies in a special trade-off that is available to cryp-
toGPS. The main tag computation consists of two components. One is to recom-
pute ri. The other is to compute yi = ri + sc. This simple computation involves
integer addition and integer multiplication; there is no modular reduction and
we will denote this version the mult variant. While avoiding a modular reduction
is a major step towards UHF tag deployment, another optimisation has sought
to overcome the cost of the multiplication itself. This is done by means of what
is termed a Low Hamming Weight challenge [9]. Here the interrogator chooses a
challenge that is longer than usual but which has a very low Hamming weight.
Since there are few ones in the challenge and they can be judiciously spaced; the
multiplication (s × c) on the tag is turned into a modest number of additions.
This gives the potential to further optimise the on-tag computation and we will
denote this version the lhw variant.
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It is instructive to look at some sample parameter values, offering the same
security, which highlight some of the essential differences between the mult and
lhw variants. Even though we must increase the length of the challenge c in
the lhw variant, to maintain the same security level for a comparable mult
variant, the challenge is sparse and allows a variety of compact representations
(see [19,26] for more details). In fact it turns out that the cost of transmitting the
challenge for the mult-variant or the compressed challenge for the lhw-variant
is the same, though there is a very minor penalty in decoding the compressed
challenge on the tag. We summarise the basic trade-offs below for some sample
parameter sets. The contrast between the two variants is clear. By avoiding an
integer multiplication (in the lhw variant) we need a longer c, which means we
need a longer ri which takes longer to generate. This increases the time required
to compute the response yi as well as the time required to transmit it.

mult-variant lhw-variant
{|s|, |k|, |c|} {160, 80, 36} {160, 80, 1 179}

communication of c (bits) 36 36
on-tag computation required add, mult add

length of ri (bits) 276 1 419
communication of yi (bits) 276 1 419

Note that this is a very different area-time trade-off than for Sect. 2. In the case
of present the components of the computation remained unchanged; through-
out we used the same S-boxes and the same diffusion layer but these were pack-
aged in different ways. In the case of cryptoGPS however, the operation itself
is changed from a multiplication to an addition and the trade-off is far more
complicated. In previous implementation papers of cryptoGPS the single goal
of minimising area meant that the lhw-variant was used. The range of imple-
mentations included FPGA [8] as well as synthesized [18,19] and fabricated [26]
ASICs. The most useful comparison point is that reported in [26] which offers a
full fabricated implementation using 0.25 μm technology. There the lhw-variant
was implemented with present in OFB mode as a way of regenerating the ri.
Using two alternative implementations of present, serial and round-based, the
results showed that the full cost of cryptoGPS would likely be bracketed by
2 876 GE and 724 cycles as the most time-efficient implementation and 2 403 GE
but 9 319 clock cycles for the most space-efficient variant. The headline compar-
ison between all this prior work is provided in Fig. 2.

3.1 Implementations of the Mult-Variant

Implementations of the lhw-variant showed that cryptoGPS was conceptually
feasible on passive UHF RFID tags, particular if we focus on the key indicators
of area and power consumption, see Fig. 2. However even then, the variant in
Fig. 2 most likely to be preferred in practice is the one with the largest area
requirement; yielding a response in 724 cycles with an area of 2 876 GE. A closer
look at the implementation costs [26] is revealing, and motivates our exploration
of the area-time trade-off for cryptoGPS.
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w/o prng with prng
synthesized [18,19] synthesized [26] fabricated [26]

variant area time area time area time
(GE) (cycles) (GE) (cycles) (GE) (cycles)

1-bit 317 1 088 - - - -
4-bit - - 2 143 9 319 2 403 9 319
8-bit 431 136 2 433 724 2 876 724
16-bit 900 68 - - - -

Fig. 2. The performance profiles offered by different architectures, denoted variant,
for existing work on the lhw-variant of cryptoGPS. Work on the left [18,19] is solely
concerned with the computation of yi, while work on the right [26] also incorporates
the regeneration of ri.

Total Implementation: 2 876 GE
PRESENT Addwc Controller S_Storage

[GE] % [GE] % [GE] % [GE] %

1 751 60.9 60 2.1 905 31.5 159 5.5

Fig. 3. The area breakdown for the cryptoGPS implementation of [26]

As we can see from Fig. 3 there are four main components to the implementa-
tion; present for the regeneration of ri, the addition used in the cryptoGPS
response computation (called Addwc in [26]) the controller, and some storage. We
observe that the bulk of the implementation cost is due to present. This is not
a problem with present itself, but rather an indication of the very low com-
putation overhead incurred when supporting the lhw-variant of cryptoGPS.
While the computation time of 724 cycles is reasonable, amounting to seven ms
if the digital component is clocked at 100 KHz, we note from Sect. 3 that the size
of the response yi is quite large. The implications would depend on the applica-
tion and use-case, but low-end communication rates provided in data sheets [24]
suggest that returning yi for the lhw-variant could take anywhere up to five
times longer than its computation. This potential drawback could be avoided
by moving to a version of cryptoGPS that uses multiplication. There will be
a cost since the space required to support mult will certainly be several multi-
ples of that required to support integer addition. However, since 61% of the lhw
implementation is dominated by present (see Fig. 3) then the impact on the
overall cost of implementation in moving to mult will not be significant. Indeed,
we will show that the additional total area overhead should be only around 20%.

Implementing Multiplication. In this, and later sections, we will refer to
specific operand sizes that correspond to previously proposed parameter sets.
The computation at the heart of cryptoGPS is yi = ri + sc. In the mult
variant, the computation of sc can be done in a variety of ways and the most
important parameter is the word-size used for this multiplication. Do we perform
a multiplication bit-by-bit or do we build the multiplication out of a series of
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Table 3. Time (clk) to generate b bits when using n-by-n-bit operations within the
multiplication. Area estimates (GE) are provided at the foot of the table.

bits generated size of operand (bits)
(bits) n = 4 n = 8 n = 16 n = 32 n = 36

b = 16 112 44 16 16 16
b = 32 256 116 52 32 32
b = 48 400 188 88 52 48
b = 64 544 260 124 68 64

area (GE) 820 850 950 1 020 1 040

n-by-n-bit operations? In addition to the impact on the area, our choice has
timing and latency implications and an indication of the trade-offs is given in
Table 3 where we give the area and the number of cycles to generate the least
significant 16, 32, 48, and 64 bits of a 36- by 160-bit product respectively.

Combining with present. To find the most suitable implementation we need
to recall that when we compute sc we are also required to compute ri. Using
present in OFB mode, i.e. following [26], means that after each encryption
operation (32 clock cycles), 64 bits of ri are available. It makes sense for the
relevant 64 bits of sc to be available at the same time, so that they can be
immediately added to the lower parts of the product as it is generated rather
than having to store any intermediate values.

It turns out for our choices of n that mult requires more clock cycles than
present. As a consequence we tried to reduce the timing requirements of mult
while keeping the area requirements low. We chose a basic Shift-And-Add
algorithm, where the least significant n bits of s are added to an intermediate
result if the ith bit of the challenge, bit ci, is one; zero is added otherwise. Then
the intermediate value is shifted by one bit to the right and the next bit of the
challenge is used to determine whether the same chunk of s or zero is added.
Once all bits of c are processed, the next n bits of s are used and the procedure
repeats. In this way the first n output bits sci are available after i clock cycles.
After that it takes 36 clock cycles for each consecutive n output bits until all
160 bits of s have been processed. At this time all 196 bits of sc are available.

The combination of a Shift-And-Add multiplier and round-based present
has the advantage that parts of sc can be immediately added to ri as they
become available, while the time to compute the next part of sc (36 clocks) is
also used to generate the next 64 bits of ri (which requires only 32 clocks) in
parallel.

As a side-issue, it is interesting to note that this discussion really helps to
highlight the role and impact of latency in a design. While the time required to
generate ri should drop by a factor close to five—from 23 iterations of present
to five iterations—the overall time to compute the response yi will only drop by
a factor of two. This is entirely due to the larger timing requirements carried by
mult when compared to present.
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Table 4. The area of the different components under two implementation strategies
for present and multiplication

PRESENT MUL Controller Adder Total
[GE] % [GE] % [GE] % [GE] % [GE]

n = 36, IO = 32 1 689 54.8 1 034 33.5 185 6.0 175 5.7 3 083

n = 4, IO = 4 1 651 58.3 832 29.4 319 11.3 28 1.0 2 830

Implementation Results for |c| = 36. For our implementation of cryp-
toGPS we followed the work of [26]. We are not in a position to go through the
fabrication process, but we can get good estimates on the performance of our
implementations from synthesis. We used Synopsys DesignCompiler A-2007.12-
SP1 to synthesize our VHDL code to the Virtual Silicon (VST) standard cell
library UMCL18G212T3 [29], which is based on the UMC L180 0.18μm 1P6M
logic process with a typical voltage of 1.8 V. We used Synopsys Power Compiler
version A-2007.12-SP1 to estimate the power consumption of our ASIC imple-
mentations. For synthesis and for power estimation we advised the compiler to
keep the hierarchy and use a clock frequency of 100 KHz.

The input and output port size of cryptoGPS, mult, present and the full-
adder component is denoted by IO (see Fig. 4(a)). It is typically reasonable to
choose IO = n, but for our first implementation we used an operand size of
n = 36 (since this should give the fastest implementation). However 36 is not a
common bus width and we used IO = 32.

The challenge c is variable and so we save c in a shift-register that can operate
in two ways: 1) as a bit-serial shift-register that rotates the content by one bit to
the right; 2) as an IO bit shift-register that shifts the content by IO bits to the
right. When |c| is not a multiple of IO the least significant bits are discarded.
Since s can be fixed we chose to hardwire it, which gives a saving of 160 flip-
flops. The appropriate part of s is chosen by a multiplexer, where we pad the last
part of s with zeros when n does not divide |s|. The part in question is AND-ed
with an n-bit replication of the least significant bit of the challenge register and
this serves as one input to an n-bit full-adder. The sum (including the carry
overhead) is stored in an (n+1)-bit register and the n most significant bits serve
as the second input to the adder. The least significant bit is stored in a bit-serial
shift-register of length IO+ |c|−n−1 bits and the IO least significant bits serve
as the output of this component which is ready every 32 clock cycles.

Recall that the 36 most significant bits of sc are ready at the same time, when
all 160 bits of s have been processed. So to have a balanced design we chose to
keep the output frequency and to save area at the cost of 29 additional clock
cycles. In our implementation (depicted in Fig. 4(b)) yi is available after 257
cycles. Power estimates for a frequency of 100 KHz, at a supply voltage of 1.8
V and using the smallest wire-load model (for circuits of about 10K GE) are
3.45μW. The total area requirement is 3 083 GE with a breakdown provided in
Table 4. The overhead for present, when compared to the implementation in
[3], is due to additional multiplexers that are required to a) interface between
present and adder, and to b) feedback the ciphertext (OFB mode).
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Table 5. Comparison of time, area, and area-time (AT) product of mult and lhw
variants [25,26]. All figures are extrapolated except synthesized results marked *.

Variant |c| (n, IO) Time (clk) Area (GE) AT-product

mult

36

(4,4) *1 533 *2 830 *4 338 811
(8,8) 799 2 857 2 282 991

(16,16) 432 2 980 1 287 338
(36,32) *257 *3 083 *792 311

64

(4,4) 2 660 3 138 8 346 936
(8,8) 1 362 3 177 4 327 496

(16,16) 713 3 300 2 352 864
(32,32) 389 3 424 1 331 917

lhw 1 179 (8,8) 880 2 556 2 249 280

Our second implementation aimed at minimal area while keeping an eye on
time and we chose n = IO = 4 for the multiplication. We also used a different
strategy to reduce the processing time. As soon as the multiplication has finished,
the least significant bit shift register is stopped by a gated clock. The required
part of sc is selected by a multiplexer which allows us to output one chunk every
clock cycle without introducing additional latency. This saves 315 clock cycles at
a cost of 63 GE for an additional multiplexer and a more complex control logic.1
In this implementation (depicted in Fig. 4(c)) yi is available after 1 533 cycles.
The total area is 2 830 GE (Table 4) with 3μW an estimated power consumption.

Estimates for |c| = 64. It is interesting to consider a cryptoGPS variant
with a 64-bit challenge. In this case ri has a length of 304 bits, which still only
requires five iterations of present, though these additional 28 bits (compared
to the |c| = 36 variant) still impose a single figure clock cycle overhead. However
the true expense lies in the multiplication as the time required for computing
the product grows linearly with the challenge size |c|. The area increment is
less severe, as the challenge size only impacts two register lengths. Hence the
overhead consists of 56-bits of additional storage (299 to 336 GE). We have
included timing and area estimates for this variant in Table 5.

4 Area and Time for cryptoGPS

While it will depend to some extent on the application, it seems that the mult-
variant of cryptoGPS has been neglected in the cryptographic literature. While
it is not straightforward, we can extrapolate the results in [26] to make a com-
parison. In that work the lhw challenge consisted of a 847-bit string that had
a Hamming weight of five. These were the parameter choices specified in the
original proposal by Girault and Lefranc [9]. Taking account of other considera-
tions [7], we are interested to explore a different parameter set. However the net
1 It is not obvious to what extent the 134 GE increment of the controller module is

caused by this design decision and not by the additional counters required etc.
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result of the changes to the figures given in [26] is surprisingly minor. A simple
way of achieving a challenge space equivalent to 36 bits in the lhw-variant is
to move to a slightly longer challenge of Hamming weight six. The power con-
sumption will be effectively unchanged, as will the area for the implementation,
though the computation time for yi will increase from 724 cycles to an estimated
880 cycles2 due to the longer generation time for ri. The same implementation
of cryptoGPS in [26] has been synthesized to the same standard-cell library
used3 in [25] allowing us to fairly compare area figures.

Using mult instead of lhw provides an interesting—but sophisticated—trade-
off for cryptoGPS. Table 5 shows a comparison of our implementations using
mult with the lhw variant reported in [26,25] with regards to time (in clock
cycles), area (in GE), and the area-time (AT) product. All metrics are considered
to be better the smaller they are. It is easy to see that the choice of n = 4 is
not very useful, as it is 11% larger and 75% slower than lhw, resulting in an
AT product that is nearly twice as bad. However, that changes with a growing
operand size. An operand size of n = 8 will already yield a similar AT product as
the lhw variant, and n = 16 will result in an AT product that is 43% smaller than
the lhw variant. The real advantage of mult lies in larger operand sizes, such
as n = 32, which yields an AT product that is only a third of the lhw variant,
indicating energy savings in the same range and a much faster processing time.

5 Conclusion

In this paper we have highlighted the importance, and the very different results,
that arise from different implementation strategies for lightweight cryptography.

As a first example we considered present where the different trade-off points
are reasonably straightforward to establish. While many papers on security so-
lutions for RFID would suggest that we take the minimum-area implementation
of present, in reality it is hard to see an application where this would really be
the preferred solution. Instead a more practical trade-off is obtained by taking
the largest-area implementation of the ones we examined which takes one six-
teenth the computation time and one eleventh the energy per bit of encryption.
The moderate increase in area that is required will almost certainly be viewed
as a reasonable cost.

We also considered the typical strategy of minimising area in implementations
of cryptoGPS. This is achieved by replacing a conventional multiplication with
a long sparse multiplication, the so-called lhw-variant. However we have shown
in this paper that by using multiplication, and thereby accepting an increase in
area, we appear to get a more reasonable trade-off. If we look purely at the rela-
tive costs of addition in lhw and multiplication in mult, then the area increases
from 60 GE to over 1 000 GE, a factor of more than 16. The initial reaction

2 To generate 1 419 bits requires 23 iterations of present instead of the 19 used in [26].
3 Table 7.1 in [25] reports a higher cycle count since they also included the overhead

from the IO handshake protocol; this has been excluded in [26] and here.



On Area, Time, and the Right Trade-Off 417

would be to choose the lhw-variant. However the true additional cost of sup-
porting multiplication—when considered in relation to the entire cryptographic
component—is only around 20%. So by accepting such a modest increase to a
low-area implementation, the on-tag computation time can be reduced by more
than 70%, the communication overhead can be reduced by 80%, and the to-
tal transaction time can be potentially reduced by more than 75%. These are
significant performance savings, all at the same security level.

While we have deliberately focused on two algorithms that can be found in
a forthcoming ISO standard, our work carries broader lessons for the use of
cryptography in constrained devices. In particular, while area is a vital metric,
the minimum-area implementation is not necessarily the most useful in practice.
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Abstract. Many cryptographic primitives rely on word rotations (R)
and xor (X) to provide proper mixing. We give RX-system mixing a very
general treatment and deduce some theoretical results on related proba-
bility distributions. Pure RX-systems are easy to break, so we show how
to apply our theory to a more complex system that uses RX operations
in combination with S-boxes. We construct an impractical (keystream
complexity 290.9), but new and non-trivial distinguisher for a variant of
HC-128 for which modular addition is replaced with xor.

Keywords: RX, probability distribution, stream cipher, HC-128, crypt-
analysis, distinguisher.

1 Introduction

Consider the Xorrotation family

gw,r1,...,rn(x) = x⊕ (x≪ r1)⊕ . . .⊕ (x≪ rn)

of functions for which x is a w-bit word, ⊕ denotes xor and ≪ denotes left rota-
tion (cyclic shift) with respect to the word length w. For the rotation amounts ri
we have 0 < ri < w. These bit mixing functions are often used in cryptographic
primitives to provide intra-word diffusion.

While primitives that rely on modular addition (A), rotation (R) and xor (X)
are commonly labeled ARX, gw,r1,...,rn is RX. Pure AX- and RX-systems have
been shown to be weak, see [3,8], but we will show how our theory can be used in
practice by applying it to a more complex system that includes RX operations
and S-boxes.

The Xorrotation function family was studied by Thomsen [11] and Rivest [9].
Thomsen showed that the mapping is invertible for all choices of distinct ri with
0 ≤ ri < w, and all word lengths w = 2k if n is odd. Very recently, Rivest
gave a different and more general proof, a proof that in some sense reveals the
true nature of the invertibility of the mapping. Many questions remain open,
however. For example, some insight into the cases w �= 2k and even n, separately
and together, would be desirable.

� This is the short version of the paper.

W. Susilo, Y. Mu, and J. Seberry (Eds.): ACISP 2012, LNCS 7372, pp. 419–425, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



420 P. Stankovski, M. Hell, and T. Johansson

While the main focus of Thomsen and Rivest was on invertibility, we are
more interested in the probability distributions that gw,r1,...,rn induce. That is,
given an x chosen uniformly at random, what can we say about gw,r1,...,rn(x) for
different values of w and ri, how much do the resulting probability distributions
differ from the uniform one? To answer this question we will need some more
information about the function than an assessment of its invertibility.

From a cryptanalytic perspective, a primitive that exposes a heavily biased
probability distribution is prone to distinguishing attacks. This motivates the
main goal of this paper, which is to show a few very general results on the
probability distributions of Xorrotations. We will then show how to apply our
findings toward a cryptanalysis of the eSTREAM final portfolio stream cipher
HC-128 [12] designed by Wu.

There have been very few cryptanalytic results on HC-128. In Wu’s design pa-
per [12], a distinguisher was constructed based on analysis of the least significant
bit of the 32-bit keystream words. The keystream complexity of his distinguisher
was about 2160.5 32-bit words according to the revised analysis of Stankovski et
al. [10]. In that paper they constructed a new distinguisher with a keystream
complexity of about 2152.5, which is the current best for the original HC-128.
Other observations and attempts at HC-128 can be found in [2,4,5,6,7].

1.1 Contributions of This Paper

In this paper we present a general treatment of bit mixing using xor and word
rotations. We deduce a few simple theoretical results on related probability dis-
tributions, results that can be used for cryptanalysis.

We further show how to apply the theory, together with some additional
new observations, to produce a new analysis of a variant of the eSTREAM final
portfolio stream cipher HC-128. While the keystream complexity of the resulting
distinguisher is far from practical (290.9), these are the first results for the given
HC-128 variant.

The paper is organized as follows. In Section 2 we first review distinguishers
and hypothesis testing before showing some theoretical results on biased proba-
bility distributions and bit mixing using xor and word rotations. In Section 3 we
apply the theory from the previous section by constructing a new distinguisher
for the variant of HC-128 in which addition is replaced with xor. The paper is
concluded in Section 4.

2 Biased and RX-Specific Probability Distributions

2.1 Reviewing Distinguishers and Relative Entropy

A distinguisher is a decision mechanism that takes n samples of keystream as
input and outputs either “CIPHER” or “RANDOM”. The decision mechanism
uses the n input samples to perform a hypothesis test to determine which of
the two known probability distributions that is more likely, that of the cipher,



Analysis of Xorrotation with Application to an HC-128 Variant 421

or the uniform one. The Neyman-Pearson Lemma (see [1]) provides the optimal
hypothesis test, which is translated into Definition 1 for independent samples.

For a probability mass function P , we use square bracket notation P [x] here
to denote the probability of event x.

Definition 1 (Relative Entropy). The relative entropy between two probabil-
ity mass functions P0 and P1 over the same domain X is defined as

D (P0‖P1) =
∑
x∈X

P0[x] log
P0[x]

P1[x]
. (1)

Relative entropy has a couple of aliases in literature; information divergence and
Kullback-Leibler distance. In our paper we will sometimes say ’the divergence of
P ’ meaning D(P‖U), where U denotes the corresponding uniform distribution.

The error probabilities for the corresponding hypothesis test reach the point
at which they start to decrease exponentially when the number of samples n
used in the hypothesis test approaches

n ≈ 1

D(P0‖P1)
. (2)

In this paper, (2) will be used as a measure of the number of samples needed for
our distinguisher. This is the same measure that was used in [10].

The time- and keystream complexities of the distinguisher depend on how the
observed keystream is used to assemble the samples. In our application, as we
will see in Section 3, this assembly is very fast, requiring only four xor operations
to build one sample.

2.2 The Divergence of Probabilistically Biased Distributions

We will be using probabilistic equalities in conjunction with the divergence mea-
sure D, so we need to determine how the former influence the latter.

Definition 2 (Probabilistically biased distribution). Let A be any distri-
bution of size 2w, and let U be the uniform distribution of the same size. A
distribution resulting from sampling A with probability p and U with probability
1−p is said to be probabilistically biased with parameters (p,A), or (p,A)-biased.

Theorem 1 (Probabilistic divergence). The divergence of a (p,A)-biased
distribution is p2D(A‖U).

Theorem 1 is proven in the full version of this paper.

2.3 RX-Induced Probability Distributions

Consider the function
fw,r(x) = x⊕ (x≪ r),



422 P. Stankovski, M. Hell, and T. Johansson

where x is a w-bit variable and ≪ denotes left rotation with respect to the word
length w. For all rotation amounts r in this section we enforce the constraint
0 < r < w. This construction is often used as a basic mixing component in
cryptographic primitives.We take a probability distribution approach here to
provide results that are practical for cryptanalysis.

For a distribution to be of use to an analyst, it needs to boast a high diver-
gence. This makes it easily distinguishable from a uniform distribution. In this
context, all divergences of magnitude 1 and above are extremely high.

In the following we assume w-bit words, and we number the bit positions from
least- to most significant bit 0 through w − 1. Also, for all rotation amounts r
we assume that 0 < r < w.

Definition 3 (Probability distribution operator E). A mapping f : U −→
V is said to generate a probability distribution on V (uniformly) in the following
way. Starting with an empty array of size |V |, let each x ∈ U contribute prob-
ability 2−|U| to slot f(x). Summation over all possible domain values produces
the probability distribution in question. The probability distribution generated by
f is denoted E(f).

Thus, fw,r(x) and fw,r1(x1)⊕ . . . ⊕ fw,rn(xn) = fw,r1,...,rn(x1, . . . , xn) generate
probability distributions E(fw,r) and E(fw,r1,...,rn), respectively.

Definition 4 (r-orbit). In a w-bit word, the bit positions reachable from bit
position i as we apply r-bit rotation again and again – the orbit of bit position
i under r-bit rotation – is given by the bit set

{(i+ kr) mod w | k ∈ N},

and there are gcd(w, r) distinct orbits, each of length w
gcd(w,r) .

Proposition 1 (Divergence of E(fw,r)). The divergence of E(fw,r) is
gcd(w, r).

Proof. For every given w-bit output value y = yw−1 . . . y0, the equation system

fw,r(x) = y

has 2gcd(w,r) solutions. That is, restricting the domain and range of fw,r to only
one r-orbit, that corresponding equation system has precisely two solutions, and
the restricted mapping is consequently 2-to-1. There are gcd(w, r) disjoint r-
orbits, so the entire mapping fw,r is 2gcd(w,r)-to-1.

From this it follows that the probability distribution E(fw,r) has precisely
2w−gcd(w,r) non-zero probability entries, each being equal to 2gcd(w,r)−w since x
is uniformly distributed over the domain. Using (1) we get

D(E(fw,r)‖U) = 2w−gcd(w,r)

(
2gcd(w,r)−w log2

2gcd(w,r)−w

2−w

)
= gcd(w, r).

��
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We state a generalized version as Theorem 2, the proof of which can be found
in the full version of this paper.

Theorem 2 (Divergence of E(fw,r1,...,rn)). The divergence of
E(fw,r1,...,rn) is gcd(w, r1, r2, . . . , rn).

The probability distribution E(fw,r1,··· ,rn) is precisely what we will need for our
cryptanalysis of the HC-128 variant, so we will be content with these findings.
A deepened RX analysis along the lines of Thomsen [11] and Rivest [9] with
further results on E(gw,r1,...,rn) is available in the full version of this paper.

3 Application to HC-128

We now illustrate how Theorems 1 and 2 can be applied in a beautiful way to
produce a new distinguisher for a partly linearized version of the stream cipher
HC-128. In particular, we show that HC-128 becomes weak if its + operators
are replaced with ⊕.

Despite the removal of the non-linearity provided by modular addition, it
is still not easy to construct low-complexity distinguishers for this variant of
HC-128. This is because we still have to deal with the S-boxes.

3.1 Notation and Review of HC-128

In this section we give a very brief description of the original HC-128 keystream
generation process. HC-128 is defined in [12], from which we adopt and adapt the
notation. HC-128 specifies both a key and initialization vector size of 128 bits.
Up to 264 bits of keystream can be generated with each key/IV pair. Letting
x and y be 32-bit integers, we have binary operators +,�,⊕, ||,≫ and ≪
that denote 32-bit addition, subtraction modulo 512, xor, concatenation, and
right and left rotation, respectively. The internal state of HC-128 consists of two
tables denoted P and Q. Each table contains 512 words of 32 bits each. The
keystream is denoted by s and the 32-bit keystream word generated at the ith

step is denoted si; s = s0||s1||s2|| . . ..
Keystream generation proceeds as follows. One table entry is updated and one

32-bit keystream word is generated at each step. One full update of an entire
table P or Q takes place during a session consisting of 512 consecutive steps.
First, table P is updated and table Q is used to provide update values. The roles
of tables P and Q are reversed every session.

We will find it convenient to express table entries P [i] as Pi, P [i� j] as Pi−j ,
and we write P ki−j for (Pi−j ≫ k).

Our analysis is independent of the initialization, so we leave that part out of
this description referring to [12].

Probabilistic equalities, equalities that are true with some given minimum
probability, are indicated by annotating the equality sign with the corresponding
probability.
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3.2 A New HC-128 Variant Distinguisher

Table updates in the original HC-128 are performed according to

Pi = Pi + (P 10
i−3 ⊕ P 23

i−511) + P
8
i−10.

During the first half session we have 256 table updates with keystream generation

si = (Qa +Qb)⊕ Pi, (3)

where 0 ≤ i, a ≤ 255 and 256 ≤ b ≤ 511. Similarly, the second half session
provides 256 table updates with keystream generation

sj = (Qc +Qd)⊕ Pj , (4)

where 0 ≤ c ≤ 255 and 256 ≤ j, d ≤ 511. This completes one full update of table
P . The subsequent session updates table Q, and for the three first updates we
have

sk = (Pl + Pm)⊕Qk
= (Pl + Pm)⊕ (Qe + (Q10

f ⊕Q23
g ) +Q8

h), (5)

with 0 ≤ l, e, g ≤ 255 and 256 ≤ m, f, h ≤ 511. The P ’s and Q’s in Eq’s. (3), (4)
and (5) denote lookups into the same tables.

Now consider the HC-128 variant for which all + operators are replaced by
⊕. Choosing any one equation triplet (3)(4)(5), we have i = l and j = m (and
thus Pi = Pl and Pj = Pm) each with probability 2−8. We also have a = e, c = g
or a = g, c = e with combined probability 2−15 (assume a = e, c = g without
loss of generality). We similarly have b = f, d = h or b = h, d = f with combined
probability 2−15 (assume b = h, d = f). Using (3) and (4) linearly together with
all the equations (5) gives us 3× 256 equation triplets for every 512 keystream
words. With probability 3×256

512 × 2−46 > 2−45.42 we therefore have

si ⊕ sj ⊕ sk 2−45.42

= (Qb ⊕Q8
b)︸ ︷︷ ︸

N1

⊕ (Qc ⊕Q23
c )︸ ︷︷ ︸

N2

⊕ (Qd ⊕Q10
d )︸ ︷︷ ︸

N3

, (6)

where the left-hand side consists of known keystream words only, and N1, N2

and N3 are observations from E(f32,8), E(f32,23) and E(f32,10), respectively.
Their combined distribution E(f32,8,23,10) has divergence gcd(32, 8, 23, 10) = 1
according to Theorem 2. Eq. (6) shows that we have a (2−45.42, E(f32,8,23,10))-
biased distribution, which according to Theorem 1 results in a divergence of
about 2−90.9 × gcd(32, 8, 23, 10) = 2−90.9. This yields a distinguisher requiring
roughly 290.9 32-bit keystream words, so it is clear that the + operator plays a
vital role in HC-128.

If we use evaluation of the left-hand side of Eq. (6) over all three k-values –
four xor operations on 32-bit keystream words – as time unit, we obtain a time
complexity of 289.9. In absolute terms, this measure is much cheaper, a factor
of at least 210, than the cost of an initialization. For comparison, if we were to
consider initializations instead, the time complexity of our distinguisher would
be less than 280.
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4 Conclusions

We have presented some new and general results on probability distributions
related to RX-systems. We have also shown how to apply the new theory to a
non-trivial system that uses RX operations in combination with S-boxes. We did
this by building a new distinguisher for a partly linearized variant of HC-128.
The total time complexity of the new distinguisher is 289.9 very simple operations
(xor and comparison of 32-bit keystream words) and the distinguisher requires
about 290.9 32-bit keystream words.

Acknowledgements. This work was sponsored in part by the Swedish Re-
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Abstract. We propose a fully private fingerprint matching protocol that
compares two fingerprints based on the most widely-used minutia-based
fingerprint matching algorithm. The protocol enables two parties, each
holding a private fingerprint, to find out if their fingerprints belong to
the same individual. Unlike previous works, we do not make any simpli-
fying assumption on the matching algorithm or use generic multiparty
computation protocols in our constructions. We employ a commonly-
used algorithm that works by first comparing minutia pairs from the two
fingerprints based on their types, locations, and orientations, and then
checking if the number of matching minutia pairs is more than a thresh-
old, and we propose a concrete, scalable, and modular protocol. We prove
security against honest-but-curious adversaries and discuss how security
against malicious adversaries can be achieved using standard crypto-
graphic techniques. Our protocol is realized using common cryptographic
primitives and do not require pairing- or lattice-based cryptography.

1 Introduction

Fingerprints authentication systems are increasingly used as means of verifying
the identities of individuals in everyday life. This trend calls for the invention
and deployment of more efficient privacy enhancing technologies to protect fin-
gerprint privacy. Fundamental to any fingerprint-based system is the fingerprint
matching algorithm which decides whether or not two given fingerprints belong
to the same individual. Often the two fingerprints in question are held by two
separate entities that are not willing to share unnecessary information with each
other. Hence, protocols are required that enable the two parties decide whether
or not their private fingerprints match without revealing any further information
about them. We call such a protocol a private fingerprint matching protocol.

A fingerprint is usually represented by a tuple of minutiae, where each minu-
tia is in the form of a vector of elements representing e.g. the type, location,
and orientation of the minutia. The fingerprint matching algorithms run in two
general steps. First minutia pairs from the two fingerprints are compared based
on e.g. the Euclidean distance of their locations and the angular difference of
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their orientations, and matching pairs are identified. Then a decision is made on
whether the fingerprints match based on the outcomes of minutia pair matchings,
e.g. based on the number and certain patterns of matching minutiae.

Applications of private fingerprint matching protocols in fingerprint-based au-
thentication systems range from the more classic match-on-server applications
to the newer match-on-card applications. The former category of applications
employ private fingerprint matching as a building block and include e.g. bio-
metric authentication systems using extended private information retrieval [3,4].
The latter category of applications employ private fingerprint matching proto-
cols directly and include e.g. the proposal of [1] in which a protocol similar to
private fingerprint matching is used. Further applications of private fingerprint
matching protocols are conceivable in any situation where the two fingerprints
being matched are held by two separate privacy-conscious parties.

Protocols for private fingerprint matching proposed in the literature fall short
of providing full privacy without the presence of a trusted third party. In this
paper, we propose a private fingerprint matching protocol which guarantees that
no information other than the outcome of the matching is revealed to the par-
ticipating entities.

1.1 Our Contributions

We propose a fully private fingerprint matching protocol that compares two
fingerprints based on the most widely-used minutia-based fingerprint matching
algorithm. The protocol enables Alice to compare a (private) fingerprint that
she holds, with another (private) fingerprint that Bob holds, such that at the
end of the protocol, Alice only learns if her fingerprint ‘matches’ Bob’s or not,
and Bob does not learn anything.

Unlike (all but one) previous works, we do not make any simplifying assump-
tion on the matching algorithm and base our protocol on a commonly used
algorithm that compares minutia pairs of the two fingerprints based on their
types, locations, and orientations. A pair of minutiae are defined to match if
they have the same type (i.e. they are both ridge endings, bifurcations, etc.),
their locations are within a threshold Euclidean distance, and their orientations
are within a threshold angular difference. Two fingerprints ‘match’ if the number
of their matching minutia pairs is more than a threshold. The only previous work
that is based on the same fingerprint matching protocol uses generic multiparty
computation as a building block. Our protocol is concrete and does not rely on
any generic building blocks.

One of the main building blocks of our constructions is a primitive that we call
aided computation. Consider a polynomial P (x) =

∑
akx

k and a homomorphic
encryption algorithm E for which Alice knows the decryption key. It is known
that given {E(ak)}∀k and x, the homomorphic property of E enables Bob to com-
pute E(P (x)). Aided computation, on the other hand, enables Bob to compute
E(P (x)) given {ak}∀k and E(x). The underlying idea, which has appeared before
in the cryptographic literature, is to simply get Alice to obliviously help with
the calculation. This can be done in situations like ours where Alice is available
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for interaction and in effect enables the kinds of computations that only a fully-
homomorphic encryption permits, to be performed using only a homomorphic
encryption.

A simplified description of our proposed private fingerprint matching proto-
col is as follows. Let {pi}ni=1 and {p′j}mj=1 denote Alice and Bob’s fingerprint
minutiae, respectively. We first use the properties of homomorphic encryption
schemes to privately calculate and compare the Euclidean distance and angular
difference for each pair of minutiae (pi, p

′
j) to given thresholds. Our protocol

enables Bob to calculate E(zij) for each pair (pi, p
′
j), such that zij is zero if the

two minutiae match and non-zero otherwise. Then, using the aided computation
idea, Bob calculates E(R(zij)), where R is a polynomial that maps zero to one
and non-zero values to zero. Let σ =

∑
R(zij). Now, using the homomorphic

property of the encryption scheme E(σ) can be calculated by Bob. Note that σ
equals the total number of minutia matchings. Finally, the homomorphic prop-
erty can be used to finalize the protocol and let Alice find out if σ is greater
than or equal to a threshold τ or not.

We provide standard two-party computation security definitions for our proto-
col and prove its security against honest-but-curious adversaries. Furthermore,
we discuss how security against malicious adversaries can be achieved using
standard cryptographic techniques. Our protocol is constructed using common
cryptographic primitives, such as homomorphic encryption schemes, and do not
require pairing- or lattice-based cryptography that imply complex structures
and high computational complexity. As an example application, we show how
our private fingerprint matching protocol can be integrated into a previously
proposed fingerprint-based remote authentication system to enhance the level of
privacy it provides for the entities in the system.

1.2 Related Work

There has been proposals in the literature for fingerprint matching protocols in
which the two fingerprints are held by two entities. The closest to our work are
[1,6,2]. For a comprehensive discussion of related works please refer to the full
version of this paper [9].

2 Preliminaries

In the following we discuss the notation and preliminary definitions that we use
throughout the paper.

2.1 Notation

We use the notation (OA, OB) ← P[Alice(IA) ↔ Bob(IB)](Ip) to denote that a
protocol P between a party Alice with private input IA and a party Bob with
private input IB is run with public protocol input (i.e. input to both parties) Ip
and at the end of the protocol Alice’s output is OA and Bob’s output is OB. If
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a party has no input or output we use the placeholder −. We use E(·) and D(·)
short for Epk(·) and Dsk(·) to denote encryption and decryption using public key
pk and secret key sk, respectively.

2.2 Homomorphic Encryption Schemes

An encryption scheme defined on a plaintext field with operations (+, ·), with
encryption and decryption schemes (E,D), is homomorphic if there exists a public
operation ⊕ such that for any plaintexts a and b: E(a + b) = E(a) ⊕ E(b). This
automatically implies that there exists a second public operation , such that for
any plaintext a and any scalar c: E(c · a) = c, E(a). We consider schemes that
are semantically secure [5], e.g. . Paillier’s encryption scheme [8]. We assume
that the resulting ciphertexts are rerandomized when , and ⊕ operations are
carried out.

2.3 Fingerprint Minutiae and Fingerprint Matching

The most common method for fingerprint matching is through extraction of
minutiae, comparing them based on their types, locations, and orientations, and
deciding based on the number of minutia matchings [7]. A fingerprint minutia is
in the form (t, x, y, θ), where t, (x, y), and θ determine the type, location, and
orientation of the minutia. Minutia type represents the fact that the minutia is
e.g. either a ridge ending, bifurcation point, or of other types. We also assume
that the size and orientation of each fingerprint is adjusted after acquisition.
To this end, first the orientation needs to be adjusted using widely-used pre-
alignment techniques (see [7] and the references within.). Then the resulting
fingerprint image can be resampled/resized so that the resolution/size of the
image conforms to a fixed value.

Two minutiae are considered to match if their types are the same, their
locations are closer than a threshold Euclidean distance dE, and their orien-
tations are within an angular difference da of each other. Let us define the fol-
lowing distance functions for two minutiae p = (t, x, y, θ) and p′ = (t′, x′, y′, θ′):
disE((x, y), (x

′, y′)) =
√
(x− x′)2 + (y − y′)2 and disa(θ, θ

′) = min(|θ− θ′|, 2π−
|θ − θ′|). The two minutiae are defined to match if t = t′, disE((x, y), (x′, y′)) ≤
dE, and disa(θ, θ

′) ≤ da.
A fingerprint matching can be carried out by checking if the two sets of ex-

tracted minutiae have at least a threshold number of matching minutiae in com-
mon. In this paper we propose a protocol to carry out the above fingerprint
matching privately.

2.4 Aided Computation

Assume Alice is in possession of a decryption key for a homomorphic encryption
scheme. The basic idea in aided computation is for Bob to employ the ability to
interact with Alice to enable him to use the homomorphic encryption scheme as
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(−,E(P (β))) ← AidComp[Alice(sk) ↔ Bob(E(β), P )](pk, η)

1. Bob randomizes its input by computing E(rβ) = r�E(β) for a random r, and
sends the result to Alice.

2. Alice decrypts the received ciphertext to get rβ, calculates {(rβ)k}ηk=2, en-
crypts the results to ciphertexts {E((rβ)k)}ηk=2, and sends them to Bob.

3. Bob derandomizes the results by computing for all k = 2 to η: E(βk) = r−k �
E((rβ)k) and then computes E(P (β)) =

⊕η
k=0 (ak � E(βk)).

Fig. 1. The aided computation protocol

a fully homomorphic one. That is, Alice aids Bob in carrying out operations in
the encrypted domain that are not supported by the homomorphic encryption
but are possible with the knowledge of the secret key. The aid by Alice must be
performed obliviously to ensure privacy of the plaintexts corresponding to the
involved ciphertexts.

In our protocol, given E(β) Bob often needs to calculate E(P (β)) for a poly-
nomial P (x) =

∑η
k=0 akx

k. Hence we formalize an aided computation protocol
AidComp in which Alice has private input sk, Bob has private input (E(β), P ),
the public input is a pair (pk, η), and Bob needs to calculate E(P (β)). The pro-
tocol we propose is based on the idea mentioned above and depicted in Figure 1.
We will use this protocol as a building block for our constructions.

An important note is that the protocol requires non-zero β so that E(β) and
E(rβ) do not leak information about β. Let us call this the non-zero requirement.
We make sure this condition is met in our constructions.

3 The Private Fingerprint Matching Protocol

We propose the following protocol between Alice and Bob for private fingerprint
matching. Let Alice have as private input a set of minutiae F = {p1, . . . , pn}
where for each i = 1 to n: pi = (ti, xi, yi, θi) and Bob have as private input a set
of minutiae F ′ = {p′1, . . . , p′m} where for each j = 1 to m: p′j = (t′j , x

′
j , y

′
j , θ

′
j).

Alice’s private output of the protocol is the binary predicate whether or not
there are at least τ number of her minutiae matching those of Bob’s, where two
minutiae are defined to match if their types are the same, their locations are
closer than a threshold Euclidean distance dE, and their orientations are within
an angular difference da of each other.

Let us denote the set of all possible minutia types by T . Consider the set
of minutiae F = {p1, . . . , pn} where for each i = 1 to n: pi = (ti, xi, yi, θi).
For each pi, let the polynomial Qi be defined and calculated via the Lagrange
interpolation such that we have the following:

Qi(x) =

|T |−1∑
k=0

bikx
k =

{
0 if x = ti
1 if x ∈ T \ {ti}

(1)

Let us denote the set of all possible Euclidean distances (resp. angular differ-
ences) between two arbitrary points (resp. orientations) by DE (resp. D′

a). Let
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Δ(dE) (resp. Δ
′(da)) denote the subset of DE (resp. D′

a) that includes the quan-
tities less than or equal to dE (resp. da). Assume NE = |DE| and Na = |Da|.
Let the polynomials QE and Qa be defined and calculated via the Lagrange
interpolation such that we have the following:

QE(x) =
∑NE−1

k=0 ekx
k =

{
0 if

√
x− 1 ∈ Δ(dE)

1 if
√
x− 1 ∈ DE \Δ(dE)

and

Qa(x) =
∑Na−1

k=0 akx
k =

{
0 if

√
x− 1 ∈ Δ′(da)

1 if
√
x− 1 ∈ D′

a \Δ′(da)

(2)

Let the polynomials R and S be defined for τ , m and n and written as follows,
where τ ′ = min(m,n)− τ + 1.

R(x) =
∑3

k=0 Rkx
k =

{
1 if x− 1 = 0
0 if x− 1 ∈ {1, 2, 3} and

S(x) =
∑τ ′

k=0 skx
k =

∏min(m,n)
k=τ (x− 1− k)

(3)

Let ‖F |F ′‖dE,da return the number of minutia pairs that match in the two fin-
gerprints F and F ′. We propose the private fingerprint matching protocol PFM
depicted in Fig. 2.

Through the initial steps of the protocol, Alice and Bob’s interaction en-
ables Bob to compute E(Qi(t

′
j)), E(QE(d

2
ij + 1)), and E(Qa(γ

2
ij + 1)). Based

on Equation 1, Qi(t
′
j) is zero if ti = t′j and is one otherwise. Similarly, based

on Equation 2, QE(d
2
ij + 1) is zero if dij ∈ Δ(dE) and is one otherwise; and

Qa(γ
2
ij + 1) is zero if γij ∈ Δ′(da) and is one otherwise. Hence, zij is zero if the

two minutiae pi and p
′
j match and is one, two, or three otherwise. Therefore,

based on Equation 3, R(zij + 1) is zero if pi and p
′
j match and is one otherwise.

This implies that σ =
∑

∀i,j R(zij + 1) reflects the total number of minutia pair
matchings ‖F |F ′‖dE,da . Now, based on Equation 3, S(σ + 1) is zero if σ ≥ τ
and is non-zero otherwise. Hence, r′S(σ) is equal to zero if ‖F |F ′‖dE,da ≥ τ
and is random otherwise. Hence, the protocol correctly computes the predicate
‖F |F ′‖dE,da ≥ τ . Note that the the non-zero requirement is met.

Security against honest-but-curious adversaries is guaranteed by Theorem 1.
Security against malicious adversaries can be achieved via standard crypto-
graphic techniques. For the definition of security, the proof of the following the-
orem, and further discussion on how to achieve full security, please refer to the
full version of this paper [9].

Theorem 1. Protocol PFM privately computes the predicate ‖F |F ′‖dE,da ≥ τ
for an honest-but-curious Alice and an honest-but-curious Bob.

In the full version of this paper [9], we discuss some practical considerations
of implementing our protocol and an application of it in realizing a remote
fingerprint authentication system. We also compare our protocol to previous
works in the literature dealing with the same problem, namely [6,1,2].
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(‖F |F ′‖dE,da ≥ τ,−) ← PFM[Alice(F ) ↔ Bob(F ′)](n,m, dE, da, τ )

1. Alice generates a key pair for a homomorphic encryption scheme and sends
the public key to Bob. Let the polynomials Qi, QE, Qa, R, and S be defined
as in Equations 1–3. Let i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.

2. Alice computes for all i: {E(bik)}|T |−1
k=0 , E(x2

i + y2
i ), E(xi), E(yi), E(θ

2
i ), and

E(θi) and sends them to Bob.
3. Let dij = disE((xi, yi), (x

′
j, y

′
j)) and γij = |θi − θ′j |. Bob computes for all i and

j: E(d2ij+1) = E(x2
i +y2

i )⊕(−2x′
j�E(xi))⊕(−2y′

j�E(yj))⊕E(x′2
j+y′2

j )⊕E(1)

and E(γ2
ij + 1) = E(θ2i )⊕ (−2θ′j � E(θi))⊕ E(θ′2j )⊕ E(1).

4. Aided computation ∀i, j:
(−,E(QE(d

2
ij +1))) ← AidComp[Alice(sk) ↔ Bob(E(d2ij +1), QE)](pk,NE − 1).

5. Aided computation ∀i, j:
(−,E(Qa(γ

2
ij + 1))) ← AidComp[Alice(sk) ↔ Bob(E(γ2

ij + 1), Qa)](pk,Na − 1).
6. Let zij = Qi(t

′
j) + QE(d

2
ij + 1) + Qa(γ

2
ij + 1). Bob calculates for all i and j:

E(Qi(t
′
j)) =

⊕|T |−1
k=0 (t′kj � E(bik)) and E(zij + 1) = E(Qi(t

′
j)) ⊕ E(QE(d

2
ij +

1))⊕ E(Qa(γ
2
ij + 1))⊕ E(1).

7. Aided computation ∀i, j:
(−, {E(R(zij + 1))) ← AidComp[Alice(sk) ↔ Bob(E(zij + 1), R)](pk, 3).

8. Let σ =
∑

∀i,j R(zij + 1). Bob computes E(σ+1) =
⊕

∀i,j E(R(zij + 1))⊕E(1).
9. Aided computation:

(−,E(S(σ + 1))) ← AidComp[Alice(sk) ↔ Bob(E(σ + 1), S)](pk, τ ′).
10. Bob calculates E(r′S(σ + 1)) = r′ � E(S(σ + 1)) for a random r′ and sends it

to Alice.
11. Alice decrypts the received ciphertext and decides that ‖F |F ′‖dE,da ≥ τ if the

resulting plaintext is equal to zero and ‖F |F ′‖dE,da < τ otherwise.

Fig. 2. The private fingerprint matching protocol

4 Concluding Remarks

We have proposed for the first time a protocol for private fingerprint verification
without generic protocols. The proposed protocol has a linear computation com-
plexity in the number of minutia matchings and provides the highest possible
privacy guarantee, and hence is highly suitable for match-on-server biometric
applications. Designing private fingerprint matching protocols with less compu-
tation complexity that are more suitable for match-on-card applications remains
a challenging problem for future research.
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Abstract. The privacy of efficient tree-based RFID authentication pro-
tocols is heavily dependent on the branching factor at the top layer.
Indefinitely increasing the branching factor, however, is not a practical
option. This paper proposes an alternate tree-walking scheme as well as
two protocols to circumvent this problem. The privacy of the resulting
protocols is shown to be comparable to that of linear-time protocols,
where there is no leakage of information, whilst reducing the computa-
tional load of the database by one-third of what is required of tree-based
protocols during authentication. We also identify and address a limita-
tion in quantifying privacy in RFID protocols.

1 Introduction

RFID is a wireless technology designed for convenient automatic identification
of physical objects, originally intended to replace bar codes. However this conve-
nience also comes with a risk to privacy, as these objects are commonly carried
or used in our daily lives. In particular it is possible to track people based on
RFID attached objects they carry. Thus it is critical to ensure that only the
minimum amount privacy is leaked when using this technology.

The most commonly used RFID networks are low-cost RFID networks. Such
networks typically consist of three components: a back-end database, multiple
readers and a large number of RFID tags. Whereas the database and reader
are usually workstation class devices, tags are severely limited in terms of com-
putational power and storage. A large amount of research has been focused on
increasing the privacy of low-cost RFID networks, yet an increase in privacy of-
ten comes at the cost of efficiency on the database. Of particular interest in this
paper are tree-based protocols which require comparatively little computation
but were later shown to be susceptible to information leakage.

This paper presents a scheme to minimize the leakage of privacy in tree-based
protocols before presenting two new protocols. In addition, the paper identifies
a limitation in, and proposes an extension to, a current method of measuring

� A full version of the paper is available [5].
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privacy leakage in RFID protocols. The protocols proposed are shown to leak
significantly less information compared to currently proposed protocols whilst
only requiring one third of the computation when pre-computation is used. Also
discussed is the effort required to attack the protocols, and it is shown that an
attacker is required to perform significantly more work to succeed.

Tree-Based Protocols. Tree-based authentication was proposed in 2004 by Mol-
nar et al. [6], referred to as the CR/MW Scheme. They introduced the concept
of a hierarchical arrangement of tags that significantly improves the efficiency
of the authentication protocol at the reader. Let N be the total number of tags
in a RFID system. A tree-based authentication protocol considers a M -ary tree,
where tags correspond to the leaves of the tree and each edge of the tree is
assigned a random secret. Each tag Ti has associated a tuple of secret values
(ki,1, . . . , ki,l), where l = logM N is the depth of the tree and ki,j is the secret
corresponding to the jth edge in the tree path from the root to the ith leaf. The
main motivation behind this approach is to solve the scalability issue associated
with linear protocols. This approach has since been considered as one of the
most efficient methods of private authentication proposed [2], however it is not
without limitations and drawbacks. One of the most significant drawbacks of
using a M-ary tree based approach is the leakage of information when secrets of
tags are revealed. Where in linear protocols there exists only one unique secret
per tag, in tree-based protocols there are multiple secrets per tag, of which most
are shared among other tags. Thus revealing the secrets of one or multiple tags
will dramatically reduce the privacy of the system as a whole.

2 Limitations of Privacy Leakage Measurement

The amount of privacy leakage has been analyzed and quantified in a number
of works [4,2,7,3]. This paper will focus on the work of Avoine et al . [2], who
measure leakage as the probability that an adversary can distinguish between two
tags in a privacy attack experiment. However this defintiion does not take into
consideration the ability for an adversary to view transcripts of other successful
sessions, a potential major increase of leakage of information. For example, in
a library scenario transcripts can be obtained by an adversary eavesdropping
communication between a reader (typically close to doors) and tags (attached to
books) as they are carried out. Having access to transcripts significantly increases
the probability of the adversary winning in the CR/MW scheme as the adversary
is able to compare all secrets at the same time. Thus this section proposes an
extension to the experiment that also considers the adversary’s ability to view
successful protocol transcripts. The experiments will subsequently be compared.

In the new experiment, only steps 2 and 3 need to be changed. The experiment
is now as follows:

1. The adversary draws one tag, Tm, and obtains its full set of secrets, (km,1,. . . ,
km,l). The tag is put back into circulation.
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2. The adversary is then randomly given a tag Tj and is allowed to query the
tag and request successful protocol transcripts as much as it wants. However,
the adversary is not allowed to reveal the secrets of the tags.

3. The adversary is now given two tags, Ta and Tb such that Tj ∈ {Ta, Tb}. and
is allowed to query both tags and request successful protocol transcripts.
The adversary wins the experiment if it can definitely output i, such that
Ti = Tj.

Remark: In the above definition, following the definition of Avoine et al. [2]
the adversary is said to definitely win if and only if it can obtain from Tm
the keys necessary to distinguish between Ta and Tb. In other words, here we
are interested in measuring how leakage of the secrets of a tag improves the
adversary’s advantage in tracing other tags.

2.1 Comparison of Experiments

In this section, the proposed extension of the experiment will be compared with
the original using the CR/MW scheme. Before further detailing the results, it
should be noted that schemes are considered under a 3-layer tree as opposed
to an M-ary tree. In a 3-layer tree each tag Tj is only required to store three
keys: kj,1, kj,2, kj,3, as opposed to the b keys, where b is the branching factor of

the tree. Whereas in a balanced 3-layer tree the branching factor is always N
1
3 ,

where N is the total number of tags in the system, an M-ary-tree does not set
any limits on its branching factor and consequently the number of layers, making
direct comparisons difficult.

The probability of success in the extended experiment of the CR/MW scheme
would become as follows:

Pr(win) = Pr((km,1 = ka,1) ∧ (km,1 �= kb,1)) ∨ Pr(((km,1 �= ka,1) ∧ (km,1 = kb,1)) ∨
Pr((km,2 = ka,2) ∧ (km,2 �= kb,2)) ∨ Pr((km,2 �= ka,2) ∧ (km,2 = kb,2)) ∨
Pr((km,3 = ka,3) ∧ (km,3 �= kb,3)) ∨ Pr((km,1 �= ka,1) ∧ (km,1 �= kb,1))

For a more meaningful comparison, two cases of the CR/MW scheme will be con-
sidered in the new experiment, its best case and worst case scenario. In its best
case scenario, all k∗,3 and k∗,2 secrets are assumed to be unique with its layer. Thus

there are N possible values of k3 and N
2
3 possible values of k2. In its worst case

scenario, however, all secrets are assumed to be unique only within its branch. As
such there are N

1
3 possible values of k3 and N

1
3 possible values of k2. The possi-

bilities are as follows:

Pr(win− best) =
2N

1
3 − 2

N
2
3

+
2N

2
3 − 2

N
4
3

+
2N − 2

N2

Pr(win− worst) =
6N

1
3 − 6

N
2
3

The results of the comparison are presented in Table 1. It should be emphasized
that in the old experiment, the values presented use the same tree-structure
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Table 1. Comparison of Experiments

No. of Tags OldExp NewExp-Best NewExp-Worst

100 35% 45% 99%
500 22% 26% 66%
1000 18% 20% 54%
5000 11% 12% 33%

as the worst case scenario in the extended experiment. In the table it is shown
throughout the experiments under the same conditions, probability of the adver-
sary winning when given successful protocol transcripts increases by three-fold.
Interestingly, it can be observed that, even in the best case scenario, the proba-
bility of the adversary with transcripts winning is still higher than worst case of
the one without. Nevertheless, it is apparent that this additional power of the
adversary does not have any effect on group and linear protocols.

On a side note, by giving the adversary transcripts the alternate tree-walking
scheme does not gain any privacy advantage over the CR/MW scheme. For the
rest of the paper the best case scenario from the extended experiment will be
used as a baseline for the CR/MW scheme.

2.2 Leakage Results of Current Protocols

For the purpose of comparison, three protocols are used as a baseline. In addition
to the CR/MW protocol above, the group protocol and linear-time protocol are
used. The results shown below can be obtained using the experiment from the
previous section. If N is the total number of tags in the system, the results are
as follows.

– Group Protocols [1]

Pr(win) =
2N

1
2 − 2

N
+

2N − 2

N2

– Linear(-Time) Protocols

Pr(win) =
2N − 2

N2

3 Alternate Tree-Walking (ATW)

The privacy of the CR/MW scheme is heavily dependent on the branching factor
on the top layer [3], but it is not feasible to indefinitely increase the branching
factor. Thus this paper proposes the alternate-tree walking scheme to circumvent
this problem. The resulting scheme significantly reduces the amount of leakage
compared to traditional tree-based (and group) protocols whilst maintaining a
reasonable amount of computational load on the database. The core concept of
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alternate-tree walking is to start authentication from a layer in-between the top
and bottom layers of a tree, as opposed to authenticating sequentially from the
top to bottom. Although the concept can be applied to any tree with more than
three layers, for simplicity the rest of the paper will consider a tree with only
three layers.

Whereas the traditional CR/MW scheme authenticates sequentially down the
tree, the ATW scheme starts from the middle back to the top before working
down the tree. In essence, this approach is to achieve benefits of a large branching
factor without altering the structure of the tree. In a tree structure it is required
that all secrets be unique within a branch, thus in traditional tree-based ap-
proach the number of possible unique secrets in the initial branch is limited to
its branching factor. However, by starting authentication from a middle layer,
the number of possible unique secret values has increased to N

2
3 from N

1
3 of the

CR/MW Scheme, and N
1
2 of group protocols.

3.1 The ATW Protocol

Simply by analyzing protocol transcript it is possible for an adversary to gain
the same amount of information as the original approach. Thus the remainder
of this section will be used to propose protocols designed to take advantage of
the reduced information leakage of the ATW scheme.

Table 2. AlternateTree Walking Protocol (ATW Protocol)

Reader Tag
k1, k2, k3

NR−−−−−−−−−−−−−−−−→
H(NT ‖NR‖k2)‖H(NR‖k1)⊕H(NT ‖k3), NT←−−−−−−−−−−−−−−−−

Table 2 shows the ATW protocol designed to take advantage of the alternate-
tree walking scheme. Evidently, transcripts of this protocol does not leak any
more information than required. In the protocol, the database first verifies the
message by checking if

1. H(NT ‖NR‖k2) = H(NT ‖NR‖ki,2) for some i ∈ {1, . . .N}, and
2. H(NR‖k1)⊕H(NT ‖k3) = H(NR‖ki,1)⊕H(NT ‖ki,3).

Note that the database only computes the value of H(NR‖ki,1) ⊕ H(NT ‖ki,3)
for those i that satisfy condition 1.

Due to the use of H(NR‖k1) ⊕ H(NT ‖k3) to authenticate layer 1 and 2, it
should be noted that the leakage of information using this protocol is less than
that given in the previous section. Let Di = H(NR‖ki,1) ⊕ H(NT ‖ki,3), for
i = 1, . . . , N . The possible outcomes of winning are:

– C1: (km,1 = ka,1) ∧ (km,1 �= kb,1)
– C2: ((km,1 �= ka,1) ∧ (km,1 = kb,1)
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– C3: (Dm = Da) ∧ (Dm �= Da)
– C4: (Dm �= Da) ∧ (Dm = Db)

For consistency the best case tree-structure, where there are N possible values of
k3 and N

2
3 possible values of k2, will be used. The overall probability of winning

is:

Pr(win) = Pr(C1) ∨ Pr(C1) ∨ Pr(C2) ∨ Pr(C3) ∨ Pr(C4)

=
2N

2
3 − 2

N
4
3

+
2N

4
3 − 2

N
8
3

The resulting leakages are shown in Table 3. Note in particular that the leakage
of the ATW protocol has been reduced by more than 50% than when the ATW
scheme was compared using the CR/MW protocol. Nevertheless, the protocol
still leaks twice as much information as linear protocols.

Table 3. Protocol Leakage Comparison

No. of Tags CR/MW Group Linear ATW

100 9% 20% 2% 4%
500 3% 8.9% 0.4% 0.08%
1000 2% 6.3% 0.2% 0.04%
5000 0.7% 2.8% 0.04% 0.08%

Further Reduction of Privacy Leakage for Small Networks. This section
proposes a modification of the protocol proposed in the previous section that
aims to minimize the leakage of information for small networks. The protocol is
shown in Table 4.

Table 4. Alternate-Tree Walking Protocol for Small Networks (ATWS-Protocol)

Reader Tag
k1, k2, k3

NR−−−−−−−−−−−−−−−−→
H(NR‖S2)⊕H(NT ‖S1)‖H(NT ‖S2)⊕H(NR‖S3)), NT←−−−−−−−−−−−−−−−−

By requiring the database to compute H(NR‖S1)⊕H(NT ‖S2) first, followed
by H(NR‖S2) ⊕ H(NT ‖S3) the probability of the adversary winning has de-
creased to:

Pr(win) =
4N − 4

N2

Nevertheless, the number of required computations has increased to N
2
3 +2N

1
3 .

However even though this scheme is aimed at small networks, the increased com-
putational requirement is comparatively minimal compared to linear protocols.
A comparison is shown in Table 5; evidently the ATWS provides a comparable
level of privacy to linear protocols at significantly less computational cost.
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Table 5. ATW and ATWS Protocol Results Comparison

No# Tags ATW Linear ATWS

100 9.3% 2% 2.1%
200 5.8% 1% 1%
300 4.5% 0.7% 0.7%
400 3.7% 0.5% 4%

Further Reduction of Computation Using Pre-computation. This sec-
tion discusses the use of pre-computation by the database. By pre-computing
the values of H(NR‖k∗), it is possible to decrease the amount of time and
computation required during authentication. Although the method can be ap-
plied to both proposed schemes, it would be most useful when applied to the
ATWS-Protocol. By pre-computing the values of H(NR‖S2) and H(NR‖S3) in
H(NR‖S2) ⊕ H(NT ‖S1)‖H(NT ‖S2) ⊕H(NR‖S3)), it is possible to reduce the

number of computations during authentication from N
2
3 + 2N

1
3 to N

1
3 , allow-

ing the protocol to complete authentication with less computations than the
CR/MW scheme.

3.2 Other Considerations

In key exchange protocols a security parameter governs the length of secrets and
determines the effort required by an adversary to mount a brute-force attack.
Due to the limited storage it is desirable to make secrets as short as possible for
RFID protocols, making brute-force attacks seemingly more attractive than for
traditional key-exchange protocols. Assuming that the total amount of memory
given to a tag for storing secrets is K bits, the amount of work required is shown
in Table 6. It can be observed that linear protocols require the most amount
of work to attack followed by the ATW-Scheme. It should be noted that both
protocols based on the ATW-Scheme require the same amount of work to attack.

Table 6. Work Comparison

Tree Group Linear ATree

Work Required 3(2
K
3 ) 2(2

K
2 ) 2K 2

K
3 + 2

2K
3

4 Conclusion

This paper analyzed the leakage of information in linear, tree-based and group-
based RFID protocols as well addresses a limitation of a current privacy mea-
surement method. The paper also proposed two protocols, the ATW protocol
and ATWS protocol, which were showed to leak substantially less privacy com-
pared to analyzed protocols. The increased computational requirement of the
proposed protocols can also be offloaded though the use of pre-computation.
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The resulting protocol can be completed using less computations than that of
tree-based protocols. The resulting P-ATWS protocol was able to match linear
protocols in terms of privacy but at the same time only require one-third of what
is required of tree-based protocols.
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Abstract. Context-aware systems acquire and integrate multi-faceted know-
ledge about their environments in order to make decisions. A number of at-
tempts to build frameworks for context-aware systems have been made, but 
these have not provided adequate support for context-aware access control. In 
this paper, we present a framework for context-aware access control and its pro-
totype implementation. The framework includes a context model for classifying 
and capturing access control-oriented contextual information, a situation model 
for identifying and defining contextual conditions of concern, and a policy 
model for specifying context-aware access control policies. 

Keywords: Context-aware access control, context modeling, context reasoning, 
situation modeling, access control policy. 

1 Introduction 

Computer systems have shifted from fixed desktop environments to pervasive compu-
ting environments in which, as Weiser [1] describes, resources or services should be 
available for the life of everyday users in an ‘anywhere, anytime’ fashion even when 
they are on the move. A key challenge in such pervasive environments is the control 
over access to these resources or services. Unlike traditional access control, access 
control decisions in pervasive environments need to take into account the relevant 
contextual information such as time and location that reflect the dynamically chang-
ing conditions of the environments [2].  

Access control is a mechanism to determine whether a request to access resources 
in a system should be permitted or denied. The traditional access control models (e.g., 
[3]) do not provide adequate functionality to adapt to and incorporate dynamically 
changing contexts. More recently, a number of research efforts (e.g., [4-6]) have at-
tempted to design access control models that consider context information, focusing 
on time and location. In general, there are also other types of environmental factors or 
context information that need to be considered. When considering whether or not a 
doctor can access a patient’s medical records, for example, the purpose of the request, 
the health condition of the patient and the relationship between the doctor and the 
patient (treating physician or not) are all possible additional factors that need to be 
considered beyond the time and location of the particular request.  
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In this paper, we introduce a general framework for context-aware access control. 
It has three major components: an access control-oriented context model for classify-
ing and capturing contextual information, a situation model for identifying and defin-
ing relevant environmental or contextual conditions, and a policy model for defining 
context-aware access control policies. A prototype has been developed to realize this 
framework. 

2 Research Motivation 

As an example of the type of situations that a context-aware access control model has 
to be considered, let us consider the following scenario: patient Bob has been hospita-
lized due to a heart attack and is in the emergency room of the hospital. While not 
being Bob’s usual treating physician, Jane, a resident doctor of the hospital, is re-
quired to treat Bob and needs to access ( read and write) Bob’s medical records from 
the emergency room at 3:00 pm on 18 January 2012. 

Normally, only a patient’s treating physician is able to access the patient’s medical 
records. In the above emergency scenario, Jane, while not being the treating physi-
cian, needs to access and should be given access to Bob’s medical records. The rele-
vant contextual information concerning the above scenario of access control include: 
Jane’s personal role is ‘Resident Doctor’, Jane is located in the ‘EmergencyRoom’ 
where Bob is, Bob’s current health state is ‘Critical’, and Jane’s relationship to Bob 
is that of ‘NonTreatingPhysician’. In addition, the purpose of Jane’s request for ac-
cessing Bob’s medical records is for ‘Treatment’. In making this access control deci-
sion, all these factors need to be taken into account. Furthermore, when the situation 
changes (e.g., Bob has come out of emergency and moved to a hospital ward), deci-
sions on further access requests by Jane to Bob’s medical records may change accor-
dingly (e.g., denied).   

To support such context-aware access control in a computer application like the 
medical record management system, we need to consider the 4Ws: who (user) wants 
to access what (resources), when (current contexts), and why (purpose for resource 
access). In particular, a general framework is required to manage the access to re-
sources in such applications by taking into account the different types of changing 
environmental factors that impact on the access control decisions. The framework 
should support (i) different types of context information, (ii) different types of pur-
pose-oriented situations, and (iii) context-aware access control policy rules. 

3 Related Work 

Wang et al [7] have proposed an OWL encoded CONtext ONtology (CONON) for 
modeling context information in pervasive environments. The CONON ontology 
helps to share a common understanding of the structure of contextual information 
concerning users, places, and devices in order to support semantic interoperability and 
reuse of domain knowledge. Henricksen et al [8] have developed a Context Modeling 
Language (CML) and a tool that translates CML-based context models to an OWL 
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representation for the purpose of utilizing the OWL technology. However, these exist-
ing general context models do not provide direct support for concepts related to 
access control such as resource owners, or for relationships between context entities 
such as that between the resource requester and the resource owner.  

The research presented in [7,8] considers the concept of situation as a means to 
identify high-level context information (user activities/states). In making access con-
trol decisions, however, in addition to the state of the user, the states of the resource, 
its owner and environment are also important considerations. Furthermore, the pur-
pose of resource access is also part of the consideration. 

The generalized role based access control model GRBAC [4] is an extension of the 
traditional role based access control (RBAC) model [3] by introducing the notions of 
subject, object and environment roles, where the environment roles are used to model 
the environmental context (day time, night time, etc.). The GEO-RBAC model [5] 
also extends the RBAC model, where authorizations to access resources are based on 
the assigned role and location of the user. Toninelli et al [6] have proposed a context-
aware access control framework that provides resource access permission based on 
such factors as resources availability, actor roles/identities and environmental condi-
tions (such as time, other available resources, etc.). These existing research efforts 
either consider only specific types of context information or do not provide a classifi-
cation of the relevant contextual factors for access control. As such, none of the exist-
ing context-aware access control approaches sufficiently support the requirements 
identified in Section 2. 

4 A Context-Aware Framework for Access Control 

Our context-aware framework for access control supports the following three phases 
of developing context-aware access control applications: modeling context, modeling 
situation, and modeling context-aware access control policy. 

4.1 Representation and Modeling of Context 

The most accepted definition of context is given by Dey [2]. However, this definition 
is not specific enough for access control as it does not identify the access control-
specific entities. From the running application scenario, we can see that the access 
control entities are user, resource, resource owner and their environments. We spe-
cialize Dey’s definition of context to cover access control applications as follows: 

‘Context information’ used in an access control decision is defined as any relevant 
information about the state of a relevant entity (user, resource, resource owner and 
their environments) or the state of a relevant relationship between the entities. 

Focusing on the context information relevant to making access control decisions, 
we classify context entities as follows:  

• User context is any relevant information about the user or resource requester, who 
makes a request, e.g., the user’s Identity and Role;  
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• Resource context is any relevant information about the resource, which is being 
requested, e.g., the PrivacyAttribute of resource information; 

• Owner context is any relevant information about the resource owner, e.g., the own-
er’s Identity and Category; 

• Environment context is any relevant information about the environments of the 
resource, owner and user, e.g., the Status of the Emergency Room at a specific time. 

We have further classified the environment entities into the following sub-categories:  

• Temporal environment context – information about time characteristics, e.g., Re-
questTime;  

• Spatial environment context – information about location characteristics, e.g., Loca-
tionAddress;  

• Spatio-temporal environment context – information that is about a specific location 
at a particular time, e.g., the Status of the Emergency Room at a specific time;  

• Social environment context – information about relationships between entities, e.g., 
the Relationship between the user and the resource owner;  

• Other environment context – information other than the above four types of envi-
ronment entities, e.g., the HealthState of a patient, which is deduced based on the 
patient’s medical data possibly obtained through wearable sensors. 

We have created a conceptual context model to represent our definition and classifica-
tion of access control-oriented context. Ontology has been used to represent context 
models in several research works (e.g., [7]) due to its expressiveness and capability 
for formal representation and reasoning. We also adopt an ontology-based representa-
tion of our context model. Figure 1 presents a high-level ontology model for our enti-
ty-based context model, where the superclass-subclass relationships between context 
entities are represented using the ‘is-a’ (is a subclass of) properties, and the other 
relationships using ‘user-defined’ properties. The context entities (classes) are orga-
nized into a hierarchy. User, Resource, Resource Owner and Environment are the four 
main context entities in the hierarchy. The Environment entity is related to the other 
three main entities, and is further specialized into its sub-classes. 

For a particular context-aware access control application, the above context model 
can be instantiated to capture the application-specific context entities and information, 
i.e., resulting in a domain/application-specific context model.  For the motivating 
scenario, for example, we have some of context entities and information as follows: 

• The user’s Identity and Role are part of the context information about the User 
(Jane and ResidentDoctor).  Her LocationAddress and RequestTime are context in-
formation concerning the user’s Spatial and Temporal environments. 

• The PrivacyAttribute of Bob’s medical records is part of the context information 
about the Resource (Bob’s medical records). 

• The resource owner’s Identity and Category are part of the context information 
about the Owner (Bob, Patient). 
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Fig. 1. Context model for access control 

• The patient (Bob) is an environment entity relevant to the access request. His Loca-
tionAddress and HealthState are part of the Spatial and Other context information 
concerning the patient. Note that Bob is both the resource owner and the patient in 
this case; in general, however, this does not have to be the case (e.g., the medical 
records of the patient’s mother may need to be consulted in certain situations). 

• The Relationship (NonTreatingPhysician) between Jane and Bob is context infor-
mation about the Social environments of Jane and Bob. 

• The Status of the Emergency Room at 3:00 pm on 18 January 2012 is part of the 
context information about the Spatio-temporal context entity EmergencyRoom. 

4.2 Representation of Situation 

In the context-aware literature (e.g., [7]), existing situation definitions typically de-
scribe the state or activity of the user. However, these definitions are limited when 
considering access control in pervasive environments, where a user can access a re-
source from a particular environment (e.g., a patient is in a critical health condition) 
for a certain purpose. In addition to the state of the user, the states of the resource, its 
owner and their environments are also important considerations. Our definition of 
purpose-oriented situation is as follows: 

A ‘situation’ is defined as a specific subset of the complete state of the universe of 
access control entities that are relevant to a certain goal or purpose of a resource 
access request. 

Here, the universe of access control entities is formed or defined by the context 
entities from the context model. A situation is a set of values whose types are defined 
by a domain-specific context model. These values are determined by what the system 
needs to know given its current state in order to make the access control decision. 

Our purpose-oriented situation model S is defined using a tuple as follows: 

S = {p, c1, c2, c3, …, cn} 

where p is the purpose, and ci (i = 1, 2, 3, …) are the states of relevant entities with 
each relevant entity attribute taking on a specific value. The situation to capture the 
access control condition from the motivating scenario can be defined as follows: 
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emergencyMedicalRecordAccess = { 
Purpose = ‘Treatment’; 
User_Role = ‘ResidentDoctor’; 
Owner_Category = ‘Patient’; 
Resource_PrivacyAttribute = ‘EmergencyMedicalRecords’; 
User_LocationAddress = ‘EmergencyRoom’; 
Owner_LocationAddress = ‘EmergencyRoom’; 
User_Owner_Relationship = ‘NonTreatingPhysician’; 
Patient_HealthState = ‘Critical’; 
Owner_Identity = Patient_Identity; 

} 

4.3 Representation of Context-Aware Access Policies 

Our context-aware policy model uses an identified situation as a condition to make 
context-aware access control decisions. When a user sends a request to access re-
sources, the required situation or condition needs to be identified and evaluated based 
on the relevant context information. 

Our access control policies are essentially security policies related to access control 
decision making and they specify whether a subject is permitted or denied access to a 
set of target objects for their specific action or sequence of actions, when a set of con-
straints (a condition) are satisfied. In particular, our context-aware policy model is 
composed of four basic elements: user or subject (S), resource or object (O), situation 
or condition (C), and access action (A). This model captures which parts of the re-
sources a user can access and under what conditions. The model uses an identified 
situation as the condition for making context-aware access control decisions. The 
context-aware access control policy for the motivating scenario from Section 2 can be 
defined as follows: 

emergencyMedicalRecordAccessPolicy = { 
S = ‘ResidentDoctor’; 
O = ‘EmergencyMedicalRecords’; 
C = ‘emergencyMedicalRecordAccess’; 
A = ‘Write’; 

}  

5 ICAF Prototype 

Figure 2 depicts the overall system architecture of our intelligent context-aware 
framework (ICAF) for access control. The ICAF architecture for access control con-
sists of three layers: sensor, context, and service. It supports the building of context-
aware access control (CAAC) services or applications. 

As part of the prototype implementation of the framework, we have implemented a 
number of ICAF components in Java 2 Platform Standard Edition (J2SE) using open 
source tools. Some of them are Context Providers (CPs), Context Interpreter (CI) and 
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Fig. 2. Overall system architecture of our ICAF framework 

Situation Inference Engine (SIE). A CP receives the low-level, raw context data from 
the physical or logical sensors, and then generates the context information. (Note that 
in our prototype, Java programs are used to simulate the physical and logical sensors.) 
We have used the Protégé-OWL graphical ontology API1 to implement the context 
model (context ontologies). We have implemented the CI to deduce high-level con-
text information from low-level context information. To define and identify situa-
tions, we have used SWRL2 rules. The Jess Rule Engine3 is used to implement SIE for 
executing the SWRL rules. The Service Layer uses an identified situation from SIE as 
a condition to evaluate context-aware policies stored in the Policy Database. XACML 
is used as a policy language, and Sun XACML4 is used as XACML engine. 

Referring back to our motivating scenario from Section 2, the sensors provide the 
raw context data (i.e., the information about Jane, Bob, Emergency Room, etc) for CP 
to convert to properly formatted context information. Then, the CI infers additional 
high-level context information such as Bob’s health state. The context ontology data-
base receives and records both the low-level and high-level context information. The 
identified situations are defined in SWRL and stored in the situation rules database. 
The access control policies for the healthcare application are defined using XACML 
and are stored in the policy database. When Jane’s request for accessing Bob’s medi-
cal records comes, the SIE is asked to evaluate the access condition (situation) using 

                                                           
1 Protégé OWL.  http://protege.stanford.edu/download/download.html 
2 SWRL (Semantic Web Rule Language). http://www.daml.org/swrl 
3 Jess Rule Engine. http://www.jessrules.com/jess/download.shtml 
4 Sun’s XACML Implementation. http://www.sunxacml.sourceforge.net 
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the relevant context information in the context ontology database. As the condition is 
evaluated to be true, the system grants Jane access to Bob’s medical records. 

6 Conclusion 

The use of context is important in many access control applications, where users can 
only access certain resources depending on the prevailing contextual conditions. In 
this paper, we have introduced a framework for context-aware access control, incor-
porating context into access control policies, so that when a user sends a request to 
access resources, the access control decision can take into account the relevant situa-
tion present. Its key components include an access control oriented context model, a 
purpose-oriented situation model, and a context-aware access control policy model. 
As future work, we intend to test our framework in various real-world application 
domains. 
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Abstract. An instance-dependent commitment (IDC) scheme takes an instance
in a promise problem as public input at each time of committing and separately
achieves statistical hiding and statistical binding when the instance is from dif-
ferent subsets of the promise. In this paper, we define a new security property
called “instance-non-malleability ” for the IDC. It requires the non-malleability
of the instances as well as the committed messages. Instance-non-malleability is
not only stronger than previous definitions of non-malleability for commitments,
but can be achieved in the standard model as well. We also present a general
construction of the non-interactive instance-non-malleable IDC.

Keywords: non-malleability, instance-dependent commitment, zero-knowledge
proof.

1 Introduction

1.1 Motivation

It has shown that commitment schemes and zero-knowledge protocols have some sym-
metric properties [7]. The hiding and binding properties of the commitment schemes
can be translated to the zero-knowledge and soundness properties of the zero-knowledge
protocols respectively. Since it is impossible for a commitment to be both statistically
hiding and statistically binding at the same time, there are difficulties in translating
SZKP (zero-knowledge protocols for which both zero-knowledge and soundness prop-
erties are statistically achieved), to a corresponding commitment scheme. Itoh et. al.
proposed a cryptographic primitive called the “instance-dependent commitment” in
1994 [12], which can be applied to solve this problem. An instance-dependent com-
mitment(IDC) scheme takes an instance “x” in a promise problem

∏
as a public input

to separate the requirements for the hiding and binding properties. A promise prob-
lem is composed of two non-intersection sets, with one of the subsets containing the
“yes-instances” and the other containing the “no-instances”(see section 2.2 for the for-
mal definition ). For a statistical zero-knowledge proof protocol, we require the zero-
knowledge property while “x ∈

∏
Yes” to protect the prover, and we require soundness
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while “x ∈
∏

No” to ensure that the receiver cannot be cheated. Correspondingly, the
instance-dependent commitment achieves statistical hiding while “x ∈

∏
Yes” and sta-

tistical binding while “x ∈
∏

No”. For a promise problem, if there exists a statistical
hiding and statistical binding instance-dependent commitment, an SZKP can be con-
structed [7].

With these special properties, instance-dependent commitment scheme can replace
some ordinary commitment schemes in constructing zero-knowledge protocols. There-
fore, studying special security properties of an instance-dependent commitment such as
non-malleability can help us to build upper-level protocols that are more secure.

We observe that for a promise problem with “hard relations” (see definition 1 and re-
mark 1), an SZKP sometimes can be generally constructed with an IDC using a pattern
called the “commit-challenge-answer” pattern[13]. However, the non-malleable com-
mitments according to previous definition[11] cannot assure the non-malleability of the
ZKP. In previous definition of the non-malleable commitment, all public parameters are
required to remain unchanged and only the committed message is taken into consider-
ation while measuring non-malleability. Since the instance x is necessary according to
upper-level protocols, it is different from the usual common reference string (CRS) for
an IDC. Therefore, even the commitment is non-malleable according to previous defi-
nitions, given a commitment to m, there might be an adversary who is able to generate a
commitment to a related message m′ using a different instance x′ which is related with
the x. The ZKP constructed with the “commit-challenge-answer” pattern then will be
malleable. Therefore, a stronger definition of non-malleability for the commitments is
inspired. We try to let the new definition of non-malleability of the commitments be
consistent with the non-malleability of the ZKP and thus provide stronger security for
the upper-level protocols.

1.2 Contribution

In this paper, we first study the non-malleability of the IDC and make a new definition
called instance-non-malleability.

We hope that by executing the scheme, the ability of an adversary to commit under
a certain type of instance does not increase. Moreover, it is reasonable to assume that
the adversary has the ability to impersonate the third party and generate its own in-
stances. Hence, it is necessary to create a new definition of non-malleability that takes
the instance into consideration.

We propose a definition of non-malleability for the IDC called instance-non-
malleability. We consider a binary relationship R((x,m), (xA,mA)) in our definition in-
stead of only R(m,mA) considered in previous definitions of non-malleability.

We also present a general non-interactive construction of instance-non-malleable
IDC.

2 Preliminaries

2.1 Notations

We write y← A(x) to denote that algorithm A takes x as input and outputs y, and y←R

A(x) means the algorithm A is a randomized algorithm. We write y←< A(x), B(z) > (w)



452 W. Jing, H. Xu, and B. Li

to denote an interactive machine. A and B take w as public inputs and x and z as private
input respectively.

2.2 Definitions

Definition 1 (Promise Problems[6])
A promise problem

∏
is a pair of non-intersecting sets, denoted (

∏
Yes,
∏

No); that is,
∏

Yes,
∏

No ⊆ {0, 1}∗ and
∏

Yes ∩
∏

No = ∅. The set
∏

Yes ∪
∏

No is called the promise.

Remark 1. In the following context, we only discuss “hard promise problems” (promise
problem with “hard relations”[3]), for which the following conditions are satisfied.

(1) It is easy to recognize an instance in the promise: there is a polynomial time algo-
rithm to decide if “x ∈

∏
” with high success probabilities.

(2) For each “x ∈
∏

Yes”, there is a witness w and a relation R∏
Yes

such that “(x,w) ∈
R∏

Yes
” and there is a probabilistic polynomial time algorithm that on input 1k out-

puts a pair (x,w) ∈ R∏
Yes

. Additionally, given a pair (x,w), it is easy to establish
whether (x,w) ∈ R∏

Yes
. Moreover, for any x ∈

∏
No, the probability of finding a

witness w such that (x,w) ∈ R∏
Yes

is negligible.
(3) Given a instance x ∈

∏
, the probability of any probabilistic polynomial time ma-

chine outputting a witness w such that (x,w) ∈ R∏
Yes

is negligible.

Definition 2 (Instance-Dependent Commitment). Let
∏
=
∏

Yes ∪
∏

No be a promise
problem. An instance-dependent commitment scheme with the third trusted party is a
protocol < T ,C,R > involves a third trusted party T , a committer C and a receiver
R. Let “crs” denotes all the common inputs other than x ∈

∏
. “k” is the security

parameter. The protocol has three parts:

– The setup phase. T generates all common inputs including crs and x and makes
them public.

– The commit phase. If C and R follow the protocol, after the commit phase, R ob-
tains a commitment com ←< C(m),R > (crs, x), which includes all the messages
exchanged between C and R in this phase.

– The reveal phase. In this phase, C sends the message m being committed to, and
all the randomness (denoted by dec) being used, to R. The receiver outputs either
“accept” or “reject” (which is denoted by “1” and “0” in the following context).

The protocol satisfies hiding and binding properties on varying degrees according to
x ∈
∏

Yes or x ∈
∏

No:

– Hiding property:

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(crs, x)← T (1k),where x ∈
∏

;
(m0,m1)←R M(1k);
com←< C(mb),R > (crs, x);
b′ ← D(crs, x, comb);
decb,mb ← C(crs, x, comb,mb);
accept← R(crs, x, comb, decb,mb) :
b′ = b

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ 1/2 + neg(k)
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whereM is a random sampling algorithm on the message space,D is a distinguish
algorithm and b, b′ ∈ {0, 1}.

– Binding property:

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(crs, x)← T (1k),where x ∈
∏

;
com←< C,R > (crs, x);
{(m, dec)(m′, dec′)} ← C(crs, x, com) :
accept← R(prs, com, dec,m) ∩ accept← R(prs, com, dec′,m′),
m � m′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ neg(k)

The commitment is an instance-dependent commitment scheme on the promise problem,
if the following conditions are satisfied:

(1) While x ∈
∏

Yes, for any probabilistic polynomial time algorithm C, and any com-
putationally unbounded algorithms R andD, the above properties hold.

(2) While x ∈
∏

No, for any computationally unbounded algorithm C, and any proba-
bilistic polynomial time algorithms R andD, the above properties hold.

Note that there are some differences between our definition of IDC and previous def-
initions [10]: (1) We require computational binding and hiding for yes-instances and
no-instances respectively, which are not required according to previous definitions.
Since most of the existing IDCs already satisfy these requirements, this restriction does
not make constructing an IDC less efficient, but makes the definition of instance-non-
malleability possible. (2) Our definition considers both the interactive situation and non-
interactive situation.

3 Instance-Non-malleable IDC

Before we give a formal definition for the instance-non-malleability of an IDC , we
clarify the model of man-in-the-middle attacks for a protocol. The description of the
model is mainly after [11].

Man-in-the-Middle Attack. During a man-in-the-middle attack, the adversary simul-
taneously participates in two executions, which are called the left and right interactions.
In the left interaction, the adversary acts as a verifier and obtains messages from a real
sender (which is the committer in a commitment scheme). In the right interaction, the
adversary acts as a sender who composes messages that are related to the real sender’s
messages. An honest receiver would not be able to tell the difference between inter-
actions with a real sender and with the adversary. For simplicity and without loss of
generality, we only consider the cases of the protocol being fully executed when calcu-
lating the success probability.

Stand-Alone Execution. In this execution, the adversary A′ only obtains the public
inputs as in the man-in-the-middle execution. It then interacts with a real receiver until
the protocol is fully executed.

For an IDC scheme < T ,C,R >, in the man-in-the-middle execution, T generates
an instance x,A receives x and outputs xA to the receiver, and the left and right interac-
tions then proceed. Let m denote the message being decommitted by the real committer
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in the left interaction, mA denote the message being decommitted by the adversary A
and z denote the auxiliary input of A. Let mimAR (R, x,m, z) denote the random vari-
able describing the final outputs of < A,R > in the man-in-the-middle execution. We
have mimAR (R, x,m, z) = 1 if A’s commitment in the right interaction is decommitted
to mA that an honest verifier accepts and there is a non-trivial binary relation R s.t.
R((x,m), (xA,mA)) = 1.

In the stand-alone execution, T generates an instance x, and a stand-alone adversary
A′ receives x and outputs x′ to the receiver. m is chosen prior to the interactions be-
tween A′ and the verifier but is only passed on to A′ after the commitment phase. Let
staA

′

R (R, x,m, z) denote the random variable describing the final outputs of < A,R > in
stand-alone execution. We have staA

′

R (R, x,m, z) = 1 if A′’s commitment is decommit-
ted to mA′ that the honest verifier accepts, and for the same non-trivial binary relation
R, we have R((x,m), (xA′,mA′)) = 1.

Definition 3 (Instance-Non-malleable IDC). Let < T ,C,R > be an
instance-dependent commitment on a promise problem

∏
= {
∏

Yes,
∏

No} and k be
the security parameter. We say that < T ,C,R > is instance-non-malleable if for any
probabilistic polynomial time man-in-the-middle adversary A, there exists a polyno-
mial time stand-alone simulator A′, such that for every non-reflexive polynomial-time
computable relation R:

Pr[mimAR (R, x,m, z) = 1] − Pr[staA
′

R (R, x,m, z) = 1] ≤ neg(k)

.
Theorem 1. For an IDC, instance-non-malleability is stronger than non-malleability
according to previous definitions.1

4 Construction

In this section, we give a general construction of instance-non-malleable IDC from bit-
IDCs.

We first briefly show the basic building blocks to construct our scheme. Let k be
the security parameter. A collision-resistant one-way hash function H(r) : {0, 1}∗ →
{0, 1}k is used in our construction. In addition, a hash function G(x) : {0, 1}∗ → {0, 1}2k

which satisfies the pair-wise independent property is also used (Note that there are
many well-known and very simple construction of pair-wise independent hash families
[1]. Informally speaking, pair-wise independent requires that for x � x′, G(x) and G(x′)
are uniformly independent distributed). We also apply a common statistical binding
commitment scheme {com, dec} (which is not instance-dependent) and a strong one-
time signature scheme {KeyGen,Sig,Ver} in our construction. Finally, we construct our
scheme with the non-interactive bit-IDC {Com, Dec}, which can be constructed from a
variation of Σ-protocol for the hard promise problems[3].

1 We omit all the theorem proofs in this paper due to the length limitation. The readers could
contact the authors for a full version of this work including the proofs if interested.
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The IDC scheme is described as following.
With an instance x ∈

∏
as a previous input to both the committer and the verifier,

and the description of the hash functions H(·) : {0, 1}∗ → {0, 1}k and G(·) : {0, 1}∗ →
{0, 1}2k as the common reference; to commit to a message m, the committer generates
its commitment as following.

1. Chooses random strings: r; r1, r2, ...rk ∈ {0, 1}∗;
2. Uses the algorithm KeyGen to generate the signature key and the verification key

(S K,VK) for the strong one-time signature scheme.
3. Computes H(m) = u1u2...uk (where ui represents the ith bit of H(m)) and calculates

the bit-IDCs for each bits of u1u2...uk: Comx,r1(u1),Comx,r2 (u1), ...,
Comx,rk(uk).

4. Computes G(r ‖ VK) = v1v2, ..., v2k ( where vi represents the ith bit of G(r ‖ VK))
and generates a commitment composed of 2k bit-IDCs Com = Com1 ◦ Com2 ◦
Com3...Com2k as following:

If the number of “0” is larger than that of “1” in the string “v1v2, ..., v2k”, assume
the jth “0” is vi ( j ≤ k), we let Comi = Comx,r j(u j) for all of the j such that
1 ≤ j ≤ k. For the rest of vi = 0 and all of the vi = 1 (1 ≤ i ≤ 2k), the committer
randomly choose Comi ∈ COM as the redundant padding of Com, where COM is
the range of the bit-IDC.

Similarly, if the number of “0” is not larger than that of “1” in the string “v1v2, ...,
v2k”, assume the jth “1” is vi ( j ≤ k), we let Comi = Comx,r j(u j) for all of the j
such that 1 ≤ j ≤ k. For all the vi = 0 and the rest of vi = 1 (1 ≤ i ≤ 2k), the
committer just randomly choose Comi ∈ COM.

In addition, using the common commitment algorithm com to commit to the
randomness r and let c denote the commitment.

5. The committer calculates the signature σ = SigS K(x,Com, c).

Afterwards, the committer sends (Com,VK, c, σ) to the verifier as its commitment. The
verifier uses the algorithm Ver to check the validity of the signature.

To decommitment:

1. The committer reveals the message m, and the randomness (r, r1, r2, ...rk) to the
verifier.

2. The verifier checks if the deccommitment of c is r. If true, computes G(r ‖ VK)
and picks the effective bit-IDCs out of Com accordingly, which are denoted as
s1, s2, ..., sk.

3. The verifier computes H(m) = u1u2, ..., uk, and checks if si = Comx,ri(ui) for all of
the i such that 1 ≤ i ≤ k.

If true, the decommitment is accepted; and if false, the verifier rejects.

Theorem 2. The above construction is an IDC according to definition 2.

Theorem 3. The above construction is instance-non-malleable according to defini-
tion 3.
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Intuitively, the strong one-time signature scheme in our construction prevents the
man-in-the-middle adversary from choosing its own instance and commitment which
is different from the real committer’s. Similar technique has been widely used in con-
structing non-malleable encryption schemes and zero-knowledge protocols[4,8]. What
is new and interesting in our construction is that we choose the redundant padding in
the same range with real bit-IDCs and introduce a randomness r to hide the value of
the output of the hash function G, so that it is hard for a probabilistic polynomial time
adversary to tell which ones of the bit-IDCs are meaningful (being the commitments
of the bits of H(m)). Therefore, the man-in-the-middle adversary has no advantage in
picking the meaningful commitments and making its own bit-IDCs related to them.

Just for clarification, the strong one-time signature is necessary here. Especially, just
use G(r ‖ x) cannot even achieve non-malleability in the standard model. Because in
this situation, an adversary can choose xA = x, cA = c and make each of its bit-
IDCs related with the real committer’s bit-IDCs in the same position. Since the effective
bit-IDCs of the adversary’s and the real committer’s are on the same positions, in the
opening phase, hA and h can be correlated. Moreover, the hash function H does not
provide non-malleability.

It is worth noting that the common commitment which is applied to hide r has to be
statistical binding and computational hiding in order to achieve the statistical binding
property of the construction.

5 Conclusions

In this paper, we explained the necessariness of instance-non-malleability for an IDC
and proposed a formal definition. We also give a general construction for the non-
interactive instance-non-malleable IDC scheme according to our definition.

We hope more usages of instance-non-malleable IDC can be found in constructing
secure protocols and more efficient instance-non-malleable IDCs can be developed in
the future.
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González-Nieto, Juan Manuel 194, 350,

434

Han, Jun 442
Hell, Martin 419
Henricksen, Matt 223
Higo, Haruna 29
Hong, Deukjo 87
Hui, Lucas C.K. 294

Isobe, Takanori 71

Jing, Wenpan 450
Johansson, Thomas 419

Kayes, A.S.M. 442
Kumar, Ashish 87
Kunihiro, Noboru 1, 43

Kuppusamy, Lakshmi 194
Kurosawa, Kaoru 235

Lee, Kaleb 434
Li, Bao 450
Li, Jin 261
Li, Leibo 101
Liedel, Manuel 57
Lim, Hoon Wei 390
Ling, San 390
Lory, Peter 57
Lucks, Stefan 152

Ma, Chuangui 336
Manulis, Mark 15, 350
Meng, Xianmeng 115
Morozov, Kirill 180

Nagashima, Yuji 43
Nguyen, Khoa 390
Nguyen, Manh Ha 208
Nojima, Ryo 235

Ogunbona, Philip 426

Pan, Yanbin 124
Pandu Rangan, C. 166, 280
Peng, Kun 223
Phan, Duong-Hieu 308
Phong, Le Trieu 235
Pointcheval, David 308
Poschmann, A. 404
Preetha Mathew, K. 166

Rangasamy, Jothi 194
Robshaw, M.J.B. 404

Safavi-Naini, Reihaneh 426
Sasaki, Yu 87
Satoh, Takakazu 376
Shahandashti, Siamak F. 308, 426
Shao, Jun 364
Sharmila Deva Selvi, S. 280
Shibutani, Kyoji 71
Simpson, Leonie 138



460 Author Index

Sree Vivek, S. 280
Stankovski, Paul 419
Stebila, Douglas 194
Strefler, Mario 308
Sun, Dongdong 350
Suzuki, Koutarou 15

Takagi, Tsuyoshi 180
Tan, Xiao 247
Tanaka, Keisuke 29, 208
Tian, Haibo 261
Tosu, Kaori 1
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