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Abstract. We study the synthesis problem for specifications of the common frag-
ment of ACTL (computation tree logic with only universal path quantification)
and LTL (linear-time temporal logic). Key to this setting is a novel construction
for translating properties from LTL to very-weak automata, whenever possible.
Such automata are structurally simple and thus amenable to optimizations as well
as symbolic implementations.

Based on this novel construction, we describe a synthesis approach that inher-
its the efficiency of generalized reactivity(1) synthesis [27]], but is significantly
richer in terms of expressivity.

1 Introduction

Synthesizing reactive systems from functional specifications is an ambitious challenge.
It combines the correctness assurance that systems obtain after model checking with
the advantage to skip the manual construction step for the desired system. As a conse-
quence, a rich line of research has emerged, witnessed by the fact that recently, off-the-
shelf tools for this task have become available.

A central question in synthesis is: what is the right specification language that allows
us to tackle the synthesis problem for its members efficiently, while still having enough
expressivity to capture the specifications that system designers want to write?

Some recent approaches focused on supporting full linear-time temporal logic as the
specification language. While the synthesis problem for such specifications was shown
to be 2EXPTIME-complete, by focusing on specifications of the form that engineers
tend to write, significant progress could recently be obtained for full LTL [[17413]). Still,
it is not hard to write small specifications that cannot be tackled by such tools.

At the same time, there are numerous techniques that trade the high expressivity of
logics such as LTL against the computational advantages of only having to deal with
structurally simpler specifications. A prominent approach of this kind is generalized
reactivity(1) synthesis [27]. It targets specifications that consist of some set of assump-
tions (which we can assume the environment of the system to fulfill) and some set of
guarantees that the system needs to fulfill. Both assumptions and guarantees can contain
only safety properties that relate the input and output in one computation cycle with the
input and output in the next computation cycle and basic liveness properties over current
input and output. In order to encode more complex properties, the output of the system
to be designed can be widened and the additional bits can be used to stitch together
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more complex properties. Getting such an encoding right and efficient is manual and
cumbersome work, which is why Somenzi and Sohail coined the term “pre-synthesis”
for such an operation [28I11]].

It is apparent that there is a desperate need for a sweet spot between the high ex-
pressivity but low performance that full LTL synthesis approaches offer, and fast but
low-level synthesis approaches such as generalized reactivity(1) synthesis, where cur-
rently, pre-synthesis is crucial to its performance.

In this paper, we present ACTL N LTL synthesis as a solution to this problem. Our ap-
proach targets specifications of the form A . Assumptions @ — A g€ Guarantees §» Where
all assumptions and guarantees are written in LTL, with the restriction that they must
also be representable in ACTL, i.e., computation tree logic with only universal path
quantification. We reduce the synthesis problem for such specifications to solving sym-
bolically represented three-color parity games, which is the reasoning framework from
which also generalized reactivity(1) synthesis takes its good efficiency. In particular,
such games can be solved in time quadratic in the number of positions (see, e.g., [[1]).

The reason why ACTL N LTL is such an interesting fragment for synthesis is the
fact that the fragment has universal very-weak automata as the characterizing automa-
ton class. These automata do not only allow the application of simple, yet effective
minimization algorithms, but give rise to a straight-forward efficient symbolic encod-
ing into binary decision diagrams (BDDs), without the need for pre-synthesis. Alterna-
tively, other symbolic data structures such as anti-chains [[16] can also be used, but for
the simplicity of the initial evaluation of the approach in this paper, we use BDDs.

For best performance in solving the parity games that we build in our approach, we
present a novel construction that defers choosing the assumption and guarantee parts
to be satisfied next to the system player and the environment player, respectively. This
keeps the number of iterations that need to be performed in the fixed-point based game
solving process small and leads to short computation times of the game solving process.

The contribution of this paper is threefold. First of all, it describes a new efficient
synthesis workflow for the common fragment of ACTL and LTL. Secondly, it describes
the first algorithm for translating an LTL formula that lies in this common fragment
into its characterizing automaton class, i.e., universal very-weak automata. As a corol-
lary, we obtain a translation algorithm from LTL to ACTL, whenever possible. Third,
we introduce a technique to speed up the game solving process for generalized reactiv-
ity(1) games by letting the two players in the game choose the next obligation for the
respective other player instead of using counters as in previous approaches.

We start with preliminaries in Sect.[2] where we discuss the basic properties of very-
weak automata. Then, we describe the construction to obtain universal very-weak au-
tomata from LTL formulas that are also representable in ACTL. Afterwards, we present
the smart reduction of our synthesis problem to three-color parity games in Sect.dl Sec-
tion [3] then discusses the twists and tricks for solving parity games symbolically in an
efficient way and describes how a winning strategy that represents an implementation
satisfying the specification can be extracted. Finally, Sect. [0 contains an experimen-
tal evaluation of the approach using a prototype toolset for the overall workflow. We
conclude in Sect.[7}
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2 Preliminaries

Basics: Given a (finite) alphabet 3, we denote the sets of finite and infinite words of X
as X* and X, respectively. Sets of words are called languages. A useful tool for repre-
senting languages over finite words are regular expressions, and w-regular expressions
are regular expressions that are enriched by the (-)* operator, which denotes infinite
repetition. This way, languages over infinite words can be expressed.

Given some monotone function f : 2X — 2% for some finite set X, we define
pl.f = 0,0°.f = X and for every i > 0, set pu'.f = (f o p'~t.f) and v'.f =
(f o v*=L.f). For a monotone function f and finite X, it is assured that the series
pO f, ut f, . f ... and V0. f, vl f, L2 f ... converge to some limit functions, which
we denote by p. f and v. f, respectively.

Automata: For reasoning about (w-)regular languages, automata are a suitable tool. In
this paper, we will be concerned with deterministic, non-deterministic, non-determinis-
tic very-weak and universal very-weak automata over finite and infinite words. For all
of these types, the automata are described by tuples A = (Q, X, Qo, 0, F') with the set
of states (Q, the alphabet X, the set of initial states Q9 C @, and the transition function
6:Qx X — 29 For non-deterministic or deterministic automata, F' C Q is called
the set of accepting states, whereas for universal automata, /' C () denotes the set of
rejecting states. For deterministic automata, we require that |Qo| = 1 and that for every
(¢,z) € Q x X, we have |§(g, )| < 1. For very-weak automata, we require them to
have an order f : () — IN on the states such that for every transition from a state g to a
state ¢’ for some some z € X' (i.e., ¢’ € d(q,x)),if ¢’ # g, then f(¢') > f(q). Figure[ll
contains examples of very-weak automata. Intuitively, the order requires the automaton
to be representable in a figure such that all non-self-loop transitions lead from top to
bottom.

Given a word w = wowyws ... w, € X*, we say that m = w7y ... T4 1 a finite
run for A and w if my € Qg and for 0 < ¢ < n, ;41 € 6(m;, w;). Likewise, for a word
w = wowiws ... € X, we say that 7 = 7oy ... is an infinite run for A and w if
7o € Qp and forall i € IN, w11 € §(m;, w;).

A non-deterministic (NFA), non-deterministic very-weak (NVWF) or deterministic
(DFA) automaton over finite words accepts all finite words that have some run that ends
in an accepting state. A universal automaton over finite words accepts all finite words
for which all runs do not end in a rejecting state. A non-deterministic automaton over
infinite words accepts all infinite words that have some run that visits accepting states
infinitely often. A universal very-weak automaton over infinite words (UVW) accepts
all infinite words for which all runs visit rejecting states only finitely often.

We say that two automata are equivalent if they accept the same set of words. This
set of words is also called their language. We define the language of a state q to
mean the language of the automaton that results from setting the initial states to {¢}.
The functions 6 : 29 x 2X — 29 and 6* : 29 x 2¥ — 29 with 6(Q',X) =
Uigeqrzexy 0(d',2) and 6°(Q", X) = {¢' € Q | 3k € N, w1, 29,..., 23 € X,
41,92, qe+1 € Q. (1 € Q" ANge = ¢ ANV1 <@ < k.git1 € 0(¢i, x;))} will sim-
plify the presentation in Sect. Bl Deterministic automata over finite words also appear
as distance automata in this paper. The only difference to non-distance automata is the
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fact that for these, we have § : @ x X — 2Qx{0,1} We assign with each of their runs
the accumulated cost, obtained by adding all of the second components of the transition
target tuples for the transitions along the run. The cost of a word is the minimal cost of
an accepting run.

Labeled parity games: A parity game is defined as a tuple G = (Vp, V1, Yo, X1, Eo,
E1, vy, ¢) with the game position sets Vj and V; for player 0 and player 1, respectively,
the action sets Xy and X1, the edge functions Fy : Vy x Xy — Viand By : V) x X —
Vb, the initial position vy € Vj, and the coloring function ¢ : (Vo W V) — IN.

A decision sequence in G is a sequence p = pdpiplpt ... such that for all i €

IN, o9 € Xy and p} € X. A decision sequence p induces an infinite play 7 =

momgmdmt ... if 7} = vg and foralli € Nand p € {0,1}, E, (77, p?) = w;_:;’.
Given a play 7 = w0m}n{n] ..., we say that 7 is winning for player 1 if max{c(v) |

v € VoW Vi,v € inf(m)} is even for the function inf mapping a sequence onto the
set of elements that appear infinitely often in the sequence. If a play is not winning for
player 1, it is winning for player 0.

Given some parity game G = (Vp, V1, X, X1, Eo, E1, vo, ¢), a strategy for player
0 is a function fy : (Yo x X1)* — Xo. Likewise, a strategy for player 1 is a func-
tion f1 : (Xo x X1)* x Xy — X1. In both cases, a strategy maps prefix decision
sequences to an action to be chosen next. A decision sequence p = pQpipipi... is
said to be in correspondence to f, for some p € {0, 1} if for every ¢ € IN, we have
Pt = fo(pdps ... p;;)fl). A strategy is winning for player p if all plays in the game
that are induced by some decision sequence that is in correspondence to f;, are winning
for player p. It is a well-known fact that for parity games, there exists a winning strategy
for precisely one of the players (see, e.g., [26/122]]).

Labeled parity games for synthesis: Parity games are a computation model for systems
that interact with their environment. For the scope of this paper, let us assume that
player O represents the environment of a system that we want to synthesize, and player
1 represents the system itself. The action set of player O corresponds to the inputs to
the system and the action set of player 1 corresponds to the output. Given a language L
over infinite words for the desired properties of a system, the main idea when building
a parity game for synthesis is to ensure that the decision sequences that induce winning
plays are the ones that, when read as words, are in L. If the game is then found to be
winning for the system player, we can take a strategy for that player to win the game
and read it as a Mealy automaton that is guaranteed to satisfy the specification. Note that
all constructions in this paper can equally be used for a Moore automaton computation
model. The two players then swap roles in this case.

Linear-time temporal logic: Linear-time temporal logic (LTL) is a popular formalism to
describe properties of systems to be synthesized or verified. LTL formulas are built in-
ductively from atomic propositions in some set AP and sub-formulas using the Boolean
operators =, V, A, and the temporal operators X, F, G, and U. Given an infinite word
w = Wwowiws € (QAP)‘”, a LTL formula over AP either holds on w or not. The words
for which an LTL formula holds are also called its models. A full definition of LTL can
be found in [1216.18]].
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Properties of Very-Weak Automata

As foundation for the constructions of the sections to come, we discuss some properties
of very-weak automata over finite and infinite words here. Given two automata, we call
computing a third automaton that represents the set of words that are accepted by both
automata taking their conjunction, while taking their disjunction refers to computing
a third automaton that accepts all words that are accepted by either of the two input
automata.

Proposition 1. Universal and non-deterministic very-weak automata over infinite and
finite words are closed under disjunction and conjunction. Given two very-weak au-
tomata A and A’ with state sets Q) and Q)', we can compute their disjunctions and
conjunctions in polynomial time, with the following state counts of the results:

1. for universal automata and taking the conjunction: |Q| + |Q’| states,

2. for non-deterministic automata and taking the disjunction: |Q| + |Q’| states,
3. for universal automata and taking the disjunction: |Q| - |Q’| states, and

4. for non-deterministic automata and taking the conjunction: |Q| - |Q’| states.

Proof. For the first two cases, the task can be accomplished by just merging the state
sets and transitions. For cases 3 and 4, a standard product construction can be applied,
with defining those states in the product as rejecting/accepting for which both corres-
ponding states in the factor automata are rejecting/accepting, respectively [20]. a

Proposition 2. Every very-weak automaton has an equivalent one of the same type
for which no accepting/rejecting state has a non-self-loop outgoing edge (called the
separated form of the automaton henceforth).

Proof. Duplicate every accepting/rejecting state in the automaton and let the dupli-
cate have the same incoming edges. Then, mark the original copy of the state as non-
accepting/non-rejecting. The left part of Fig. [Il shows an example of such a state
duplication. a

The fact that every automaton has a separated form allows us to decompose it into a set
of so-called simple chains:

Definition 1. Given an alphabet X, we call a subset Q' of states of an automaton over

X a simple chain if there exists a transition order on @', i.e., a bijective function f :
Q' — {1,...,|Q'|} such that:

— only the state q with f(q) = 1 is initial,

— only the state q with f(q) = |Q’| is accepting/rejecting,

— there is no transition in the automaton between a state in Q' and a state not in @Q’,
— for every transition from q to ¢’ in the automaton, f(q) < f(¢') < f(q) + 1.

Furthermore, regular expressions that are an unnested concatenation of elements of the
form A, A*, and A% for A C X are called vermicelli.

As an example, the right-most sequence of states in Fig.[Ilis a simple chain and can
equivalently be represented as the vermicelli X *a(b)*b(c)*. Note that every vermicelli
can be translated to a language-equivalent set of simple chains.
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Fig. 1. Example for converting a UVW into separated form and subsequently decomposing it
into simple chains. The automata in this example are equivalent to the LTL formula G(a —
XF(b A XFc)). We use Boolean combinations of atomic propositions and their negation as edge
labels here. For example, b refers to all elements 2 € X = 2 for which b ¢ x. Rejecting states
are doubly-circled.

Proposition 3. Every very-weak automaton can be translated to a form in which it only
consists of simple chains.

Proof. Convert the very-weak automaton into separated form and enumerate all paths
to leaf nodes along with the self-loops that might possibly be taken. For every of these
paths, construct a simple chain. O

3 Translating LTL Formulas into UVWs

Universal very-weak automata (UVW) were identified as a characterizing automaton
class for the intersection of ACTL and LTL by Maidl [235]. She also described an algo-
rithm to check for a given ACTL formula if it lies in the intersection. For the LTL case,
Maidl defined a syntactic fragment of it, named LTLAt, whose expressivity coincides
with that of ACTL N LTL. However, she did not show how to translate an LTL formula
into this fragment whenever possible, and the fragment itself is cumbersome to use, as
it essentially requires the specifier to describe the structure of a UVW in LTL, and is
not even closed under disjunction, although UVW are. Thus, for all practical means,
the question how to check for a given LTL formula if it is contained in ACTL N LTL
remained open.

When synthesizing a system, the designer of the system specifies the desired se-
quence of events, for which linear-time logics are more intuitive to use than branching-
time logics. Thus, to use the advantage of universal very-weak automata in actual syn-
thesis tool-chains, the ability to translate from LTL to UVW is highly desirable.

Recently, Bojaiczyk [4] gave an algorithm for testing the membership of the set of
models of an LTL formula in ACTL N LTL after the LTL formula has been translated
to a deterministic parity automaton. However, the algorithm cannot generate a universal
very-weak automaton (UVW) from the parity automaton in case of a positive answer.
The reason is that the algorithm is based on searching for so-called bad patterns in the
automaton. If none of these are present, the deterministic parity automaton is found



ACTL N LTL Synthesis 45

to be convertible, but we do not obtain any information about how a UVW for the
property might look like. Here, we reduce the problem of constructing a UVW for a
given w-regular language to a sequence of problems over automata for finite words.
We modify a procedure by Hashiguchi [19] that builds a distance automaton to check
if a given language over finite words can be decomposed into a set of vermicelli (see
Def.[I). Our modification adds a component to keep track of vermicelli already found.
This way, by iteratively searching for vermicellis of increasing length in the language,
we eventually find them all and obtain a full language decomposition.

Since Maidl [25, Lemma 11] described a procedure to translate a UVW to an equiv-
alent ACTL formula, we obtain as a corollary also a procedure to translate from LTL to
ACTL, whenever possible.

3.1 The Case of Automata over Infinite Words

We have seen that every UVW can be translated to a separated UVW. In a separated
UVW, we can distinguish rejecting states by the set of alphabet symbols for which the
states have self-loops. If two rejecting states have the same set, we can merge them
without changing the language of the automaton. As a corollary, we obtain thata UVW
can always be modified such that it is in separated form and has at most 2!/*! rejecting
states. We will see in this section that obtaining a UVW for a given language L over
some alphabet X' can be done by finding a suitable decomposition of the set of words
that are not in L among these up to 2!/ rejecting states, and then constructing the rest of
the UVW such that words that are mapped to some rejecting state in the decomposition
induce runs that eventually enter that rejecting state and stay there forever.

Definition 2. Given a language L over infinite words from the alphabet X, we call
a function f : 2¥ — 2% an end-component decomposition of L if L = X% \
Uxcs(f(X) - X¥). We call f a maximal end-component decomposition of L if for
every X C X, f(X)={we X*|w-X“NL=0}

Definition 3. Given a separated UVYW A = (Q, X, Qo, 9, F') and an end-component
decomposition f, we say that f corresponds to A if for (q1,X1), ..., (qm, Xm) being
the rejecting states and alphabet symbols under which they have self-loops, we have:

— foralli # j, X; # X;;
- foralll <i<m: f(X;) = {wow;...wy € X* | q; € 5(...5(6(Qo, {wo}),...),

{we})}
— forall X C X with X ¢ {X1,..., X}, we have f(X) = 0.

As an example, the end-component decomposition that corresponds to the UVW in the
middle part of Fig.[Ilis a function f with f(b) = X*a(b)*, f(c) = X*a(b)*b(c)*, and
f(X) =0for X # band X # c. The decomposition is not maximal as, for example,
the word {a}()* is not in the language of the automaton, but we have {a} ¢ f({0}) = 0.

By the definition of corresponding end-components, every separated UVW has one
unique corresponding end-component decomposition. On the other hand, every lan-
guage has one maximal end-component decomposition. The key result that allows us
to reduce finding a UVW for a given language to a problem on finite words combines
these two facts:
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Lemma 1. Let L be a language that is representable by a universal very-weak au-
tomaton. Then, L is also representable as a separated UVW whose corresponding end-
component decomposition is the maximal end-component decomposition of L.

Proof. Let a UVW be given whose end-component decomposition f is not maximal.
The decomposition can be made maximal by taking f'(X) = |J .5y f(X') for every
X C X, without changing the language. Building a corresponding UVW only requires
taking disjunctions of parts of the original UVW. Since we know that UVW are closed
under disjunction, it is assured that there also exists a UVW that corresponds to f/. 0O

Thus, in order to obtain a UVW for a given language L. C X, we can compute the
maximal end-component decomposition f” of L, and for every end component X C X,
compute a non-deterministic very-weak automaton over finite words for f'(X).

Starting with an LTL formula, we can thus translate it to a UVW (if possible) as
follows: first of all, we translate the LTL formula to a deterministic Biichi automata
(see, e.g., [9] for an overview). Note that as the expressivities of LTL and deterministic
Biichi automata are incomparable, this is not always possible. If no translation exists,
we however know that there also exists no UVW for the LTL formula, as all languages
representable by UVW are also representable by deterministic Biichi automata. After
we have obtained the Biichi automaton, we compute for every possible end-component
X C X from which states S in the automaton every word ending with X* is rejected.
This is essentially a model checking problem over an automaton with Biichi acceptance
condition. This way, for each end component, a deterministic automaton over finite
words with S as the set of accepting states then represents the prefix language.

3.2 Decomposing a Language over Finite Words into a Non-deterministic
Very-Weak Automaton

This problem of deciding whether there exists a non-deterministic very-weak automa-
ton for a language over finite words is widely studied in the literature. However, con-
structive algorithms that compute such an automaton are unknown. Hashiguchi studied
a more general version of the problem in [19]]. His solution is based on computing the
maximal distance of an accepted word in a distance automaton. Bojanczyk [4] recently
gave a simpler algorithm.

Here, we build on the classical construction by Hashiguchi and modify it in order
to be constructive. We describe an iterative algorithm that successively searches for
vermicelli in the language to be analyzed. In a nutshell, this is done by searching for
accepting words of minimal distance in a distance automaton. Whenever a new vermi-
celli is found, the automaton is modified in order not to accept words that are already
covered by vermicelli that have been found before. At the same time, the new vermi-
celli can be read from the state sequence in the accepting run. The distance automaton
is built as follows.

Definition 4. Givena DFA A = (QA, X, Q()“, 54, FA)for the language to be analyzed
and a NVWF B = (QB,%,Q8,65, FB) for the vermicelli already found, the non-
deterministic vermicelli-searching distance automaton over finite words D = (Q, X,
Qo, 0, F) is defined as follows:
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Q=29 x 2% x B x 29°
Qo = {(Q7',0, false, QF) }
F={(8,X,b,R)|SCF* (RNFB) =0}
5((S,X,b,R),x) = {((S,X,b,R"),0) | R = 65(R,{z}),z € X,b = true}
U {((8", X', true, R'),1) | R' = 65(R, {z}),z € X', 8" = 6**(5,X")}
U {((S', X' false, R'),1) | R = 65(R, {z}),z € X', 8" = 6*(S, X")}
forall (S,X,b,R) € Q,z € &

The states in a vermicelli-searching automaton D are four-tuples (S, X, b, R) such that
X and b represent an element in a vermicelli, where b tells us if the current vermicelli
element X is starred. During a run, we track in S in which states in A we can be in
after reading some word that is accepted by a vermicelli represented by the vermicelli
elements observed in the X and b state components along the run of D so far. Whenever
we have S C FA, then we know that all these words are accepted by .A. At the same
time, the R component simulates all runs of the NVWF B, and the definition of F’
ensures that no word that is in the language of B is accepted by D. Thus, D can only
find vermicelli that contain some word that is not accepted by B in their language.
Transitions with cost 1 represent moving on to the next vermicelli element.

Theorem 1. Let A be an DFA, B be a NVWF and D be the corresponding vermicelli-
searching distance automaton. We have:

- L(D) = L(A) \ £(B)

— Let L(A) contain a vermicelli V- = A; ... Ay, where every A; is either of the form
X* or X for some X C X.IfV is not covered by L(B), then D accepts some
word w that is a model of V with a run of distance k. Along this run, the first three
state components only change during transitions with a cost of 1, and the second
and third component in between changes describe the alphabet symbol sets in the
vermicelli and whether the vermicelli elements are starred or not.

As a consequence, since every UVW of size n can be described by a set of vermicelli
in which each vermicelli is of length at most n, we can compute a UVW representation
of A by using Algorithm [l Note that the algorithm does not terminate if .4 cannot be
represented as a very-weak automaton. Since we can however apply the algorithm by
Bojariczyk [4]] beforehand to verify the translatability, this imposes no problem.

4 Reduction of the Synthesis Problem to Parity Games

In this section, we explain how to reduce the synthesis problem for specifications of
the form A . Assumptions ¢ A 9€Guarantees 9 (OF shorter, in assumptions— guarantees
form), for which each of the assumptions and guarantees is in the common fragment of
ACTL and LTL, to solving a parity game. We have discussed in the previous section
how one assumption or guarantee can be converted to a UVW. As the conjunction of
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Algorithm 1. Translating a DFA A into a non-deterministic very-weak automaton /3
1: B=(0,%,0,0,0)
2: repeat

3: D = vermicelli searching automaton for A and

4 r = accepting run of minimal distance in D

5:  if r was found then

6 Add r as vermicelli to B

7 end if

8: until £(D) =0

two UVW can be taken by just merging the state sets and the initial states, we also
know how to compute one UVW for all of the assumptions and one UVW for all of the
guarantees. So it remains to be discussed how we combine these two UVW into a game
that captures the overall specification.

Bloem et al. [1]] describe a way to translate a specification of the assumptions— gua-
rantee form, in which all assumptions and guarantees are in form of deterministic Biichi
automata, into a three-color parity game. Essentially, the construction splits the process
by converting the assumptions and guarantees to a so-called generalized reactivity(1)
game, and then modifying the game structure and adjusting the winning condition to
three-color parity. When converting the game, assumption and guarantee pointers rep-
resent which assumption and guarantee is observed next for satisfaction. The pointers
increment one-by-one, which makes the game solving process a tedious task; for ex-
ample, if it is the last guarantee (in some assumed order) that the system cannot satisfy,
then during the game solving process, this information has to be propagated through all
the other pointer values before the process can terminate.

As a remedy, we describe an improved construction here, and let the two players set
the pointers. This way, the winning player can set the assumption or guarantee pointer
to the problematic assumption or guarantee early in the play, which reduces the time
needed for game solving. The game only has colors other than 0 for positions of the
environment player, and the states are described as six-tuples. The first two tuple com-
ponents describe in which states the assumption and guarantee UVW are, followed by
the assumption and guarantee pointers that are updated by the system and environment
players, respectively. The last two components are Boolean flags that describe whether
recently, the assumption (guarantee) state that the respective pointer points to has been
left, or the system (environment) player has changed her pointer value, respectively,
which is then reflected in the color of the game position. On a formal level, the parity
game is built as follows:

Definition 5. Ler A° = (Q4, X, Q4,64 F4) and A% = (Q%, %,Q§,6%, F) be
two UVW that represent assumptions and guarantees, and X1 and Yo be sets such
that X = X1 x Xo. Without loss of generality, let furthermore F4 = {1,...,m}

and F¢ = {1,...,n}. We define the induced synthesis game as a parity game G =
(‘/07 ‘/'17 ZIv 207 E07 Ela Vo, C) with:

Vo = 29" x 2@° x{1l,....m}x{l,...,n} xBxB
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Vi=Vox Xy

Eo = {((S4,89,d*,d%, v*,b%),z) — (84,59, d*,d'C false,v'C  z) | x € Xy,
(d9 =d'C) v (VS =true)}

Ey = {((84,89,d*,d% b4, b% z),y) — (84, 8'C d4,d% b4, 0% |y € Yo,
S =454, (2,9)), §'9 =695, (x,v)),
b = (b v (A% ¢ §C) v (a9 ¢ 69(d°, (x,1)))),
b4 = ((a* #d) v (dh ¢ SY) vt ¢ 6% (dd, (z,y)}

vy = (QOA, g, 1,1, false, false)

c={Viu{(¢?,¢% d*, d% b2, b%) | b2 A =0} = 0, {(¢?, ¢%, d*, d°,

b2, 09) | b A=Y = 1, {(¢?, ¢%,d?, d% b2, b%) | bCY - 2}

For the central correctness claim of this construction, we need some more notation.
Given aplay m = w{mimimi ... for a decision sequence p = pYpjpipi . . . in the game,
we say that a state ¢ € Q is left at position k& € IN if for T = (S, S, dt, dS, b,
b, pY_y) and mh, = (S5, SF,ds',dS b3, b ), we have ¢ ¢ St or q ¢ (g, (p},
p1))- The construction of G assures that this is the case whenever any run of the assump-
tion automaton corresponding to the first k choice pairs in the decision sequence leaves
state ¢ in the k£ + 1th round or is not in state ¢ in the kth round. The case for the guar-
antee automaton is analogous. We say that a player rotates through the possible pointer
values if whenever the state that the pointer refers to is left, the player increases it to the

next possible value. In case the highest value is reached, the pointer is set to 1 instead.

Theorem 2. Let A and A9 be two UVWs over the alphabet X = X1 X X, and G be
the induced synthesis game by Def.[3l The winning strategies for player 1 ensure that
along any decision sequence that corresponds to the strategy and in which the input
player rotates though the guarantee pointer values, either the sequence is not accepted
by A%, or the sequence is accepted by A9. Furthermore, every Mealy machine with the
input X1 and output X for which along any of its runs, the run is either rejected by A*
or accepted by A9 induces a winning strategy in G by having player 1 rotate through
the possible assumption pointer values.

The main message of Theorem[2lis that the games built according to Def.[3are suitable
for solving the synthesis task. Note that there are plays in the game that are winning for
the system player, but do not correspond to words that are models of the specification.
The reason is that the environment player is not forced to iterate infinitely often over
every possible pointer value for the final states of the guarantee automaton. Thus, a
winning strategy for the system player in this game does not correspond one-to-one to
a Mealy machine that satisfies the specification. For obtaining an implementation for
the specification, we need to apply some post-processing to a system player’s winning
strategy in the parity game.

The post-processing step is however not difficult: observe that the worst case for
the system player is that the environment player cycles through the guarantee pointer
values. This way, the system player can only win if the decision sequence in the game



50 R. Ehlers

represents a model of the guarantees, or the system player is able to eventually point out
arejecting state of the assumption automaton that is never left again. In both cases, the
specification is met. Thus, if we attach a round-robin counter for the assumption pointer
to a system player’s strategy, we obtain a valid result for our synthesis problem.

5 Solving Parity Games Symbolically

For an efficient implementation of the synthesis approach in this paper, the ability to
perform the symbolic solution of the parity game built according to the construction of
the previous section is imperative.

For the scope of this paper, we use a simple parity game solving algorithm that is
based on a fixed-point characterization of the winning set of positions in the game,
i.e., the positions from which, if the game is started there, the system player can win
the game. This approach has three advantages over the classical parity game solving
algorithms by Jurdzinski [22]] or McNaughton [26]. First of all, it is simpler. Second,
it allows applying a nested fixed-point computation acceleration method by Browne
et al. [5] that essentially reduces the solution complexity to quadratic time (in the
number of game positions), which speeds up the game solving process in contrast to
McNaughton’s algorithm. Finally, the three-color parity game acceleration method for
Jurszinski’s algorithm by de Alfaro and Faella [§] is in some sense included for free.
Their technique searches for gaps in counter values for visits to positions with color 1.
These counters are an artifact that is introduced by Jurzinski’s algorithm. The gaps wit-
ness the case that the game solving process can be terminated before the convergence of
the counter values. As we do not need such counters here, our algorithm can terminate
early automatically without the need to search for such gaps. At the same time, we still
have a quadratic complexity of the game solving process. This advantage would also
generalize to more than three colors, which the acceleration method in [8]] does not.

For the special case of the games in this paper (with only player 0 having colors
other than 0 and having only three colors in total), a characterization of the winning
positions in a parity game by Emerson and Jutla [[14]] reduces to the following fixed-
point equation:

Wo = VXQ.,U,Xl.I/XO.(V1ﬂQX())U(VbﬂComDXU)U(VE)ﬂC1mDXﬂU(VbﬂCQmDXQ)

In this formula, C; represents the set of positions with color ¢ (for every 0 < i < 2),
and Y and QY describe, for every Y C V/, the set of positions of player O/player 1
from which player 1 can ensure that after the next move, a position in Y is reached,
respectively. All of the operations needed to evaluate this formula can be performed
symbolically [6]. Also, encoding the state space of the game into BDDs is not difficult:
we can simply assign one bit to every state in the assumption and guarantee automata,
one bit for every input or output atomic proposition, two bits for the “recently visited”
flags in the game, and [log, m] + [log, 1] bits for the pointers.

It remains to be discussed how a winning strategy can be computed symbolically
after the sets of winning positions for the two players have been identified. First of all,
for ¢ = (‘/1mOXU)U(‘/[)ﬂC[)QDX())U(%mClﬂDXl)U(%mCQQDXQ),
we compute a sequence of prefixed points Y; = vX.u'X;.vX¢.9) for i € IN. Then,
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we take the transition function F; of the game and restrict it such that only actions that
result in ensuring that the successor position is in the set Y; for the lowest possible value
of ¢ are taken. Any positional strategy that adheres to the restricted transition function
is guaranteed to be winning for the system player.

6 Experimental Results

To evaluate the new synthesis approach presented in this paper, it has been implemented
in a prototype tool-chain, written in C++ and Python. For the symbolic computation
steps, the BDD library CUDD v.2.4.2 [29] was employed. The first step in the tool-
chain is to apply the LTL-to-Biichi converter 1t12ba v.1.1 [18] to the negation of
all assumptions and guarantees of the specification. If the result happens to be very-
weak, we already have a UVW for the specification part. All remaining assumptions
and guarantees are first converted to deterministic Rabin automata using 1t12dstar
v.0.5.1[23], then translated to equivalent deterministic Biichi automata (if possible),
and finally, after a quick check with the construction by Bojariczyk [4] that they repre-
sent languages in the common fragment of ACTL and LTL, translated to sets of vermi-
celli using the construction from Sect. [3l Whenever one of these translations is found
to be not possible for some assumption or guarantee, the specification is known not to
lie in the supported specification fragment and rejected. The construction from Sect. 3]
is performed symbolically, using BDDs and dynamic variable reordering for the BDD
variables. The UVW for the individual assumptions and guarantees are then merged and
some simulation-based automaton minimization steps are applied. In contrast to gene-
ral bisimulation-based minimization techniques for non-deterministic Biichi automata
(see, e.g., [15]]), we make use of the fact that the automata are very-weak, which allows
applying more optimizations. The optimization steps are:

— States that are reached by the same set of prefix words are merged (unless this
would introduce a loop).

— States with the same language are merged.

— For every pair of states (g, ¢’) in the automaton, if g is reached by at least as many
prefix words as ¢’, but ¢’ has a greater language than ¢, we remove ¢’.

Finally, we perform symbolic parity game solving for the synthesis game build using the
minimized UVW for the assumptions and guarantees as described in Sect.[dand Sect.
In case of realizability, we use an algorithm by Kukula and Shiple [24] to compute a
circuit description of the implementation. The prototype tool also checks for which
input/output bits it makes sense to encode the last values into the game as an additional
component. This can happen if there are many states in the UVW for which it only
depends on the last input and output whether we are in that state at a certain time. Then,
we can save the BDD bits for these states. For checking the resulting implementations
for correctness, we use NusMv v.2.5.4 [7].

All computation times given in the following were obtained on an Intel Core 2 Duo
(1.86 Ghz) computer running Linux. All tools considered are single-threaded. We re-
stricted the memory usage to 2 GB and set a timeout of 3600 seconds. We compare
our new approach against Acacia+ v.1.2 [16l17] and Unbeast v. 0.6 [13]], both
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using 1t12ba. Both synthesis tools implement semi-algorithms, i.e., we need to test
for realizability and unrealizability separately and only give the computation time of the
invocation that terminated for comparison. We could not compare against tools that im-
plement generalized reactivity(1) synthesis such as Anzu [21]] as due to the non-standard
semantics (see [[L1], p.4 for details) used there, the results would not be meaningful.

Benchmarks

First of all, we consider the load balancer from [10]. This benchmark is for synthesis
tools that are capable of handling full LTL, and consists of 10 scalable specifications.
Out of these, we found 6 to be contained in the supported fragment by our approach,
including the final specification of the load balancer. Table [Tl summarizes the results. It
can be observed that the two synthesis tools for full LTL are clearly outperformed on
the supported specifications.

As a second benchmark, we use the non-pre-synthesized AMBA high performance
bus arbiter specification described in [2], which is again scalable in the number of clients.
Here, our tool-chain is able to synthesize the two-client versionin 151 seconds, while the
three-client version takes 1422 seconds. In both cases, most of the time is spent on the
symbolic game solving step. Neither Unbeast nor Acacia+ can handle any of these
two cases within 1 hour of computation time. According to [3], with the pre-synthesized
version of the specification of [2]], the generalized reactivity(1) tool used in the experi-
mental evaluation of [3]] could only handle up to four clients. Thus, our approach comes
close in terms of efficiency, but without the need of pre-synthesis. For completeness,
it must be added, however, that a (manual) rewriting of the specification was later able
boost the generalized reactivity(1) synthesis performance [3]] on this benchmark.

Table 1. Running times of the synthesis tools Acacia (“A”), Unbeast (“U”) and a prototype tool
for the approach presented in this paper (“B”) for the load balancer benchmark, using setting
labels from [10]]. For each combination of assumptions and guarantees, it is reported whether the
specification was realizable (+/-) and how long the computation took (in seconds).

Tool Setting / # Clients 2 3 4 5 6 7 8 9
B +03 +04 +04 +04 +05 +05 + 06 + 06
U 1 +00 +00 +06 +00 +00 +00 +01 +02
A +03 +03 +03 +03 + 04 + 04 + 04 +05
B +04 +04 +04 +05 + 06 + 09 +22 +69
U 1A2 + 07 +00 +01 + 0.1 + 0.1 + 0.1 +02 +03
A +03 +04 +12 +03 + 04 + 07 + 18 +55
B -05-06 -07 -09 - 1.2 - 17 - 34 - 176
U 1A2A3 - 00 -00-01 - 0.1 - 02 - 13 - 115 - 1454
A -03-03-04 -29 timeout timeout timeout timeout
B +06 +08 +09 + 12 + 16 + 22 +40 + 97
U 6AT—1A2A5A8 + 01 +04 + 14 + 399 timeout timeout timeout timeout
A + 2.1 + 1.3 timeout timeout timeout timeout timeout timeout
B - 07 -09 -12 - 16 - 21 - 32 - 55 - 115
U 6AT—=>1A2ABA8A9 -00-01-02 - 14 - 285 - 886.4 timeout timeout
A - 04 - 04 - 26 timeout timeout timeout timeout timeout
B +08 +10 +13 +23 +25 +33 +57 + 118
U 6ATAI0 - 1A2ABA8A9 + 03 + 22 + 237 + 632.5 timeout timeout timeout timeout
A + 09 + 0.8 + 16.3 timeout timeout timeout timeout timeout
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7 Conclusion

In this paper, we have proposed ACTL N LTL as a specification fragment that com-
bines expressivity and efficiency for the synthesis of reactive systems. We gave novel
algorithms and constructions for the individual steps in the synthesis workflow. In par-
ticular, we gave the first procedure to obtain universal very-weak automata from LTL
formulas (if possible) and described a novel procedure for building a parity game from
assumption and guarantee properties that speeds up the game solving process by letting
the two players choose the next obligations to the respective other player in the game.

We did not fully exploit the favorable properties of UVW in the paper, and only see
the experimental evaluation herein as a start. For example, since in the structure of the
game built from UVWs, we keep track of in which assumption and guarantee states we
could be in, the game lends itself to the symbolic encoding of the prefixed points in the
game solving process using anti-chains [[16].

Also, the approach can easily be extended to support properties whose negation is in
the common fragment of ACTL and LTL. This would allow using persistence properties
like “the system must eventually signal readiness forever”. We recently described in
[[12]] how generalized reactivity(1) synthesis can be extended to handle such properties,
resulting in five-color parity games. The constructions in this paper are easy to extend
accordingly.
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