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Abstract. The latency gap between caches and main memory has been
successfully exploited for recovering sensitive input to programs, such as
cryptographic keys from implementation of AES and RSA. So far, there
are no practical general-purpose countermeasures against this threat.
In this paper we propose a novel method for automatically deriving
upper bounds on the amount of information about the input that an
adversary can extract from a program by observing the CPU’s cache
behavior. At the heart of our approach is a novel technique for efficient
counting of concretizations of abstract cache states that enables us to
connect state-of-the-art techniques for static cache analysis and quanti-
tative information-flow. We implement our counting procedure on top of
the AbsInt TimingExplorer, one of the most advanced engines for static
cache analysis. We use our tool to perform a case study where we derive
upper bounds on the cache leakage of a 128-bit AES executable on an
ARM processor. We also analyze this implementation with a commonly
suggested (but until now heuristic) countermeasure applied, obtaining a
formal account of the corresponding increase in security.

1 Introduction

Many modern computer architectures use caches to bridge the latency gap be-
tween the CPU and main memory. On today’s architectures, an access to the
main memory (i.e. a cache miss) may imply an overhead of hundreds of CPU cy-
cles w.r.t. an access to the cache (cache hit). While the use of caches is beneficial
for performance reasons, it can have negative effects on security: An observer
who can measure the time of memory lookups can see whether a lookup is a cache
hit or miss, thereby learning partial information about the state of the cache.
This partial information has been used for extracting cryptographic keys from
implementations of AES [12122][35], RSA [37], and DSA [6]. In particular AES is
vulnerable to such cache attacks, because most high-speed software implemen-
tations make heavy use of look-up tables. Cache attacks are the most effective
known attacks against AES and allow to recover keys within minutes [22].

A number of countermeasures have been proposed against cache attacks. They
can be roughly put in two classes: (1) Avoiding the use of caches for sensitive
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computations. This can be achieved, e.g. by using dedicated hardware imple-
mentations (For example, recent Intel processors offer support for AES), or by
side-stepping the use of caches in software implementations [25]. Both solutions
obviously defeat cache attacks; however they are not applicable to arbitrary
programs, e.g. due to lack of available hardware support, or for reasons of per-
formance. (2) Mitigation strategies for eliminating attack vectors and reducing
leakage. Proposals include disabling high-resolution timers, hardening of sched-
ulers [22], and preloading [I2l[35] of tables. Such strategies are implemented, e.g.
in the OpenSSL 1.0 [5] version of AES, however, their effectiveness is highly de-
pendent on the operating system and the CPU. Without considering/modeling
all implementation details, such mitigation strategies necessarily remain heuris-
tic. In summary, there is no general-purpose countermeasure against cache at-
tacks that is backed-up by mathematical proof.

In this paper, we propose a novel method for establishing formal security
guarantees against cache-attacks that is applicable to arbitrary programs and a
wide range of embedded platforms. The guarantees we obtain are upper bounds
on the amount of information about the input that an adversary can extract by
observing which memory locations are present in the CPU’s cache after execution
of the program; they are based on the actual program binary and a concrete
processor model and can be derived entirely automatically. At the heart of our
approach is a novel technique for effective counting of concretizations of abstract
states that enables us to connect state-of-the-art techniques for static cache
analysis and quantitative information-flow analysis.

Technically, we build on prior work on static cache analysis [20] that was
primarily used for the estimation of worst-case execution time by abstract inter-
pretation [I7]. We also leverage techniques from quantitative-information-flow
analysis that enable establishing bounds for the amount of information that a
program leaks about its input. One key observation is that (an upper bound on)
the number of reachable states of a program corresponds to (an upper bound
on) the number of leaked bits [30,40]. Such upper bounds can be obtained by
computing super-sets of the set of reachable states by abstract interpretation,
and by determining their sizes [30].

We develop a novel technique for counting the number of cache states repre-
sented by the abstract states of the static cache analyses described above. We
implement this technique in a counting engine which we connect to AbsInt’s
a® [1], the state-of-the-art tool for static cache analysis. a® efficiently analyzes
binary code based on accurate models of several modern embedded processors
with a wide range of cache types (e.g. data caches, instruction caches, or mixed)
and replacement strategies. Using this tool-chain, we perform an analysis of a
binary implementation of 128-bit AES from the PolarSSL library [3], based on a
32-bit ARM processor with a 4-way set associative data cache with LRU replace-
ment strategy. We analyze this implementation with and without the preloading
countermeasure applied, with different cache sizes, and for two different adver-
sary models, obtaining the following results.
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Without preloading, the derived upper bounds for the leakage (about the
payload and the key) in one execution exceed the size of the key and are hence
too large for practical use. With preloading and a powerful adversary model,
however, the derived bounds drop to values ranging from 55 to 1 bits, for cache
sizes ranging from 16KB to 128KB. With a less powerful but realistic adversary
model, the bounds drop even further to ranges from 6 to 0 bits, yielding strong
security guarantees. This case study shows that the automated, formal security
analysis of realistic cryptosystems and accurate real processor models is in fact
feasible.

In summary, our contributions are threefold. Conceptually, we show how state-
of-the-art tools for quantitative information-flow analysis and static cache analy-
sis can be combined for quantifying cache side-channels. Technically, we develop
and implement novel methods for counting abstract cache states. Practically,
we perform a formal cache-analysis of a binary AES 128 implementation on a
realistic processor model.

2 Preliminaries

In this section we revisit concepts from quantitative information-flow analysis. In
particular, we introduce measures of confidentiality based on information theory
in Section [2.1] and we present techniques for their approximation in Section 2.2

2.1 Quantifying Information Leaks

A (deterministic) channel is a function C': S — O mapping a finite set of secrets
S to a finite set of observations O. We characterize the security of a channel in
terms of the difficulty of guessing the secret input from the observation. This
difficulty can be captured using information-theoretic entropy, where different
notions of entropy correspond to different kinds of guessing. In this paper, we
focus on min-entropy as a measure, because it is associated with strong security
guarantees [40].

Formally, we model the choice of a secret input by a random variable X with
range ran(X) = S and the corresponding observation by a random variable Y
with ran(Y) = O. The dependency between X and Y is formalized as a con-
ditional probability distribution Py x with Py|x(0,5) = 1 if C(s) = o, and 0
otherwise. We consider an adversary that wants to determine the value of X
from the value of Y, where we assume that X is distributed according to Px.
The adversary’s a priori uncertainty about X is given by the min-entropy [39)

Hoo(X) = —log, max Px(s)

of X, which captures the probability of correctly guessing the secret in one shot.
The adversary’s a posteriori uncertainty is given by the conditional min-entropy
Ho(X]Y), which is defined by

Hoo(X[Y) = —log, ZPY(O) msaXPX\Y(Sv o)
o
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and captures the probability of guessing the value of X in one shot when the
value of Y is known.

The (min-entropy) leakage L of a channel with respect to the input distribu-
tion Px is the reduction in uncertainty about X when Y is observed,

L= Hoo(X) - Hu(X]Y) |

and is the logarithm of the factor by which the probability of guessing the secret
is reduced by the observation. Note that L is not a property of the channel alone
as it also depends on Px. We eliminate this dependency as follows.

Definition 1 (Maximal Leakage). The maximal leakage ML of a channel C
1s the maximal reduction in uncertainty about X when Y is observed

ML(C) = HIIDE;X(Hoo(X) — Ho(X|Y)),

where the maximum is taken over all possible input distributions.

For computing an upper bound for the maximal leakage of a deterministic
channel, it suffices to compute the size of the range of C. While these bounds
can be coarse in general, they are tight for uniformly distributed input.

Lemma 1.

ML(C) < log, |C(5)| ,
where equality holds for uniformly distributed Px .

Proof. The maximal leakage of a (probabilistic) channel specified by the distri-
bution Py |y can be computed by ML(Py |x) = logy ), max, Py|x (0, s), where
the maximum is assumed (e.g.) for uniformly distributed input [13|31]. For deter-
ministic channels, the number of non-zero (hence 1) summands matches |C(.9)].

2.2 Static Analysis of Channels

In this paper we consider channels of programs, i.e. those that are given by the
semantics of (deterministic, terminating) programs. In this setting, the set of
secrets is a part of the initial state of the program, and the set of observables
is a part of the final state of the program. Due to Lemma [I, computing upper
bounds on the maximal leakage of a program can be done by determining the
set of final states of the program. Computing this set from the program code
requires computation of a fixed-point and is not guaranteed to terminate for
programs over unbounded state-spaces. Abstract interpretation [I7] overcomes
this fundamental problem by resorting to an approximation of the state-space
and the transition relation. By choosing an adequate approximation one can
enforce termination of the fixed-point computation after a finite number of steps.
The soundness of the analysis follows from the soundness of the abstract domain,
which is expressed in terms of a concretization function (denoted ) relating
elements of the abstract domain to concrete properties of the program, ordered
by implication.
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For the purpose of this paper, we define soundness with respect to a channel,
i.e., we will use a concretization function mapping to sets of observables (where
implication corresponds to set inclusion).

Definition 2. An abstract element t* is sound for a concretization function ~
with respect to a channel C': S — O if and only if C(S) C ~(t).

The following theorem is an immediate consequence from Lemma [T} it states
that a counting procedure for (¢*) can be used for deriving upper bounds on
the amount of information leaked by C.

Theorem 1. Let t! be sound for v with respect to C. Then
ML(C) < log, |1(t9)] .

For a more detailed account of the connection between abstract interpretation
and quantitative information-flow, see [30].

3 Cache Channels

In this section, we define channels corresponding to two adversary models that
can only observe cache properties. We also revisit two abstract domains for
reasoning about cache-states and show how they relate to those channels. We
begin with a primer on caching.

3.1 Caches

Typical caches work as follows. The main memory is partitioned into blocks of
size B that are referenced using locations loc. A cache consists of a number of
sets, each containing a fixed number of lines that can each store one memory
block. The size A of the cache sets is called the associativity of the cache. Each
memory block can reside in exactly one cache set, which is determined by the
block’s location. We can formally define a single cache set as a mapping

t:{1,...,A} = locU{L},

from line numbers to locations, where | represents an empty line. The mapping ¢
is injective, which captures that a memory block is stored in at most one line.
A cache is a tuple of independent cache sets. For simplicity of presentation, we
focus on single cache sets throughout the paper, except for the case study in
Section

What happens when a memory block is requested depends on the replacement
strategy. Here we focus on the LRU (Least Recently Used) strategy, which is used
e.g. in the Pentium I processor. With LRU, each cache set forms a queue. When
a memory block is requested, it is appended to the head of the queue. If the
block was already stored in the cache (cache hit), it is removed from its original
position; if not (cache miss), it is fetched from main memory. Due to the queue
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structure of sets, memory blocks age when other blocks are looked up, i.e. they
move towards the tail of the queue and (due to the fixed length of the queue)
are eventually removed. For a formalization of the LRU set update function
see [20]. For a formalization of alternative update functions, such as FIFO (First
In First Out) see [211[38]. Depending on the concrete processor model, data and
instructions are processed using dedicated caches or a common one [20]. Unless
mentioned otherwise (e.g. in the experiments on AES), our results hold for any
cache analysis that is sound.

3.2 Two Adversary Models Observing the Cache

We consider a scenario where multiple processes share a common CPU. We as-
sume that one of these processes is adversarial and tries to infer information
about the computations of a victim process by inspecting the cache after ter-
mination. We distinguish between two adversaries Advprec and Advpyep. Both
adversaries can modify the initial state of the cache with memories in their vir-
tual memory space, which we assume is not shared between processes, but they
differ in their ability of observing the final cache state:

Advpree : This adversary can observe which memory blocks are contained in the
cache at the end of the victim’s computation.

Advyrop - This adversary can observe which blocks of his virtual memory space
are contained in the cache after the victim’s computation.

Note that neither adversary can observe the actual data that is stored in the
victim’s memory blocks that reside in the cache. The channel corresponding
to the adversary Advyre. simply maps the victim’s input to the corresponding
final cache state. The channel corresponding to Advyro» can be seen as an ab-
straction of the channel corresponding to Advprec, as it can be described as
the composition of the channel of Advp .. with a function blur that maps all
memory blocks not belonging to the adversary’s virtual memory space to one
indistinguishable element. Adv,,.» corresponds to the adversaries encountered
in synchronous “prime and probe” attacks [35], which observe the cache-state
by performing accesses to different locations and use timing measurements to
distinguish whether they are contained in the cache or not.

Considering that our adversary models allow some choice of the initial state,
they formally define families of channels that are indexed by the adversarially
chosen part of the initial cache. To give an upper bound on the leakage of all
channels in those families we would need relational information, which is not
supported by the existing cache analysis tools. One possible solution is to con-
sider an abstract initial state approximating all possible adversary choices, which
leads to imprecision in the analysis. In the particular case of a LRU replacement
strategy, we can use the following property:

Proposition 1. For caches with LRU strategy, the leakage to Advprec (Advpron)
w.r.t. any initial cache state containing only memory locations from the adver-
sary’s memory space is upper-bounded by the leakage to Advprec (Advprop) w.r.t.
an empty initial cache state.
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This result follows from the following observation: for each initial cache state
containing locations disjoint from the victim’s memory space, the first ¢ lines of
the final cache state will contain the locations accessed by the victim, and the
remaining lines will contain the first A — i locations of the initial state shifted to
the right, where ¢ depends on that particular run of the victim. That is, modulo
the adversarial locations, the number of possible final cache states corresponding
to an empty initial state matches the number of final cache states corresponding
to an initial state that does not contain locations from the victim’s memory
space. The assertion then follows immediately from Theorem [Il Proposition [Tl
will be useful in our case study, since the analysis we use provides a more accurate
final state when run with an empty initial cache.

3.3 Abstract Domains for Cache Analysis

Ferdinand et al. [20] propose abstract interpretation techniques for cache analy-
sis and prove their soundness with respect to reachability of cache states, which
corresponds to soundness w.r.t the channel of Adv,,.. according to Definition [2]
In particular, they present two abstract domains for cache-states: The first do-
main corresponds to a may-analysis and represents the set of memory locations
that possibly reside in the cache. The second domain corresponds to a must-
analysis and represents the set of memory locations that are definitely in the
cache. In both cases, an abstract cache set is represented as a function

th{1,... A} — 2l

mapping set positions to sets of memory locations, where *(i) Nt*(j) = () when-
ever i # j. In the following we will use t1# and ¢, for abstract sets corresponding
to the may and must analysis respectively.

For the may analysis, the concretization function v is defined by

i

0 = {t Vi€ {1,..., A} t(0) € St () UL}

j=1

This definition implies that each location that appears in the concrete state
appears also in the abstract state, and the position in the abstract state is a
lower bound for the position in the concrete.

For the must analysis, the concretization function 4" is defined by

A (tf) = {t | Vie {1,..., A}: t25(i) C U{t(j)}}

This definition implies that each location that appears in the abstract state is
required to appear in the concrete, and its position in the abstract is an upper
bound for its position in the concrete.
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Ezample 1. Consider the following program running on a 4-way fully associa-
tive (i.e. only one set) data cache where ...z ... stands for an instruction that
references location z, and let e, a, b are pairwise distinct locations.

if...e...then...a...else...b...

With an empty initial abstract cache before execution, the may- and must-
analyses return the following abstract final states:

tl’:i = [{a7b},{e},{}7{}] tQﬁ = [{}a{e}a{}v{}]

Both Y (%) and y7(to*) contain the two reachable states [a,e, L, 1] and
[b,e, L, L] (which is due to the soundness of the analyses) but also unreachable
states such as [L,e,a,b] (which is due to the imprecision of the analyses). In
particular, states in which empty cache lines are followed by non-empty cache
lines are artifacts of the abstraction, i.e. they cannot occur according to the
concrete cache semantics from [20]. More precisely, we have

Vi,je{l,....,A}: t(i) =L Aj>i = t(j) =L . (1)

It is hence sufficient to consider only the concrete states that also satisfy (),
which enables us to derive tighter bounds in Section[dl For simplicity of notation
we will implicitly assume that () is part of the definition of 4 and ™.

To obtain the channel corresponding to the adversary model Adv,,qy, we just
need to apply blur to the concretization of the must and may cache analysis,
which is equivalent to first applying blur to the sets appearing in the abstract
elements and then concretizing.

4 Counting Cache States

We have introduced channels corresponding to two adversaries, together with
sound abstract interpretations. The final step needed for obtaining an auto-
matic quantitative information-flow analysis from Theorem [ are algorithms for
counting the concretizations of the abstract cache states presented in Section [3.3]
which we present next. As before, we restrict our presentation to single cache
sets. Counting concretizations of caches with multiple sets can be done by taking
the product of the number of concretizations of each set.

4.1 Concrete States Respecting may

We begin by deriving a formula for counting the concretizations of an abstract
may-state ¢, #. To this end, let n; = |t1ﬁ(i) ,ny = 22:1 n;, for alli e {1,..., A}
and n* = n*. The definition of 4" (¢,¥) informally states that, when reading the
content of t* and ¢t € y”(¢,#) from head to tail in lockstep, each non-empty line
in t has appeared in the same or a previous line of t;*. That is, for filling line
k of t there are nj, possibilities, of which k — 1 are already used for filling lines
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1,...,k— 1. The number of concrete states with a fixed number i of non-empty

lines is hence given by
i

II i~k -1) (2)

k=1
As the definition of 4" does not put a lower bound on the number 7 of nonempty
lines, we need to consider all ¢ € {1,..., A}. We obtain the following explicit

formula for the number of concretizations of ¢ 1.

Proposition 2 (Counting May).
A
] =D T k= (k—1)

Ezample 2. When applied to the abstract may-state t,* = [{a,b}, {e}, {},{}]
obtained from the analysis of the program in Example[lwe obtain fyu(tlﬁ)| =11,
which illustrates that the bounds obtained by Proposition 2] can be coarse.

4.2 Concrete States Respecting must

For counting the concretizations of an abstract must-state tol, let m; = ‘tgu(i)|,
mf = > my, for all i € {1,...,A} and m* = m}. The definition of "

K3
informally states that when reading the lines of an abstract state tof and a
concrete state t € 77 (t2*) from head to tail in lockstep, each element of 5% has
already appeared in the same or a previous line of ¢. More precisely, the m;
elements contained in line j of tof appear in lines 1,...,7j of ¢, of which mi_y
are already occupied by the must-constraints of lines 1,...,j5 — 1. This leaves
(j_fﬂnffl) m;! possibilities for placing the elements of t2*(5), which amounts to a

total of
A i
=) ! 3
() ®

possibilities for placing all elements in t5?. However, notice that m* < A is
possible, i.e. must-constraints can leave cache lines unspecified. The number of
possibilities for filling those unspecified lines is

A

II e-®&-1), (4)

k=m*+1

where ¢ = |loc| is the number of possible memory locations.

Finally, observe that (@) and () count concrete states in which each line is
filled. However, the definition 4" only mandates that at least m* lines of each
concrete state be filled. We account for this by introducing a variable ¢ that
ranges from m* to A. We modify (B]) by choosing from min(4, j) instead of j
positionsﬂ and we modify () by replacing the upper bound by ¢. This yields the
following for explicit formula for the number of concretizations of tf.

! The index j still needs to go up to A in order to collect all constraints.
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Proposition 3 (Counting Must).

A A s . i
ERCSIED SN 1 GRS P ) R CE)

i=m* \j=1 k=m*+1

Ezample 3. When applied to the must-state to* = [{}, {e},{},{}] and a set of
locations loc = {a, b, ¢, d, e}, Proposition 3 yields a number of 81 concretizations
of t3f. This over-approximation stems from the fact that the abstract state re-
quires only the containment of e and that the rest of the lines can be chosen
from loc. We next tackle this imprecision by considering the intersection of may
and must.

4.3 Concrete States Respecting must and may

For computing the number of concrete states respecting both o and ¢,* we reuse
the notation introduced in Sections 1] and As in Section 2 we use (@) for
counting the cache lines constrained by the must-information. However, instead
of filling the unconstrained lines with all possible memory locations, we now
choose only from the lines specified by the may-information. The counting is
similar to equation (2], the difference being that, as in (@), the product starts
with & = m* 4+ 1 because the content of m™* lines is already fixed by the must-
constraints. The key difference to (@) is that now we pick only from at most nj;
lines instead of ¢ lines. We obtain the following proposition.

Proposition 4 (Counting May and Must).

A A o N i

SRCRLEUCCIED Sl B 1 f G NS | (RO C)
i=m* \j=1 J k=m*+1
Two comments are in order. First, notice that the inequality in Proposition [
stems from the fact that the lines unconstrained by the must-information may
be located at positions j < k. Using the constraint n} instead of nj would lead
to tighter bounds, however, an explicit formula for this case remains elusive.
Second, observe that the rightmost product is always non-negative. For this it is
sufficient to prove that the first factor ny .., —m™* is non-negative, because the
value of subsequent factors decreases by at most 1. Assume that n},.,, —m* <0
(and hence n},. < m*). By (@), n; < j implies that line j is empty for all concrete
states, which for j = m™ contradicts the requirement that all states contain at
least m* lines.

Ezample 4. When applied to the abstract cache states t,* = [{a, b}, {e}, {},{}]
and tof = [{},{e},{},{}] from Example [T, Proposition @ delivers a total of 9
concrete states.

It is easy to see that the expression in Proposition @] can be evaluated in time
O(A3) because both the factorial and and n} can be computed in linear time
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and they are nested in two loops of length at most A. Although efficient, an
approximation using Proposition @ can be coarse: In Example dl we computed
a bound of 9 states, although (as is easily verified manually) there are only
4 concrete states respecting the constraints of both abstract states. We have
developed more accurate (but more complex) variants of Proposition @ that yield
the exact bounds for this example, however, they are also not tight in general.
In the absence of a closed expression for the exact number of concrete states,
one can proceed by enumerating the set of all concrete states respecting may,
and filtering out those not respecting must (see [29] for an implementation).
The price to pay for this brute-force approach is a worst-case time complexity of
O(A!), e.g. if there are no must-constraints and the first location of the abstract
may-state contains A or more locations. This is not a limitation for the small
associativities often encountered in practice (A = 2 or A = 4), however, for fully
associative caches in which A equals the total number of lines of the cache, the
approximation given by Proposition [ is the more adequate tool.

4.4 Counting for Probing Adversaries

For counting the possible observations of Adv,.. for arbitrary replacement
strategies, we can apply the techniques presented above to previously blurred
abstract states. For the case of a LRU strategy, we obtain the following better
bounds.

Proposition 5. The number of observations Advprop can make is bounded by
min(n*, A) —m* +1

The assertion follows from the fact that, after the computation, each cache set
will first contain the victim’s locations (which Adv,op cannot distinguish), and
then a fixed sequence of locations from the adversary’s virtual memory whose
length only depends on the number of the victim’s blocks. I.e., when starting
from an empty cache set, the adversary can only observe the length of the final
cache set. This size is at least m* (because at least that number of lines must be
filled), and at most min(n*, A). The additional 1 accounts for the empty state.

5 Case Study

In this section we report on a case-study where we use the methods developed
in this paper for analyzing the cache side-channel of a widely used AES imple-
mentation on a realistic processor model with different cache configurations.

5.1 Tool Support

We have implemented a tool for the static quantification of cache side-channels,
based on the development presented in this paper. Its building blocks are the
AbsInt a® for static cache analysis, and a novel counting engine for cache-states.
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Static analyzer. The AbsInt a3 [1] is a suite of industrial-strength tools for the
static analysis of embedded systems. In particular, a® comprises tools (called
aiT and TimingExplorer) for the estimation of worst-case execution times based
on [20]. The tools cover a wide range of CPUs, such as ERC32, M68020, LEON3
and several PowerPC models (aiT), as well as CPU models with freely con-
figurable LRU cache (TimingExplorer). We base our implementation on the
TimingExplorer for reasons of flexibility. The TimingExplorer receives as in-
put a program binary and a cache configuration and delivers as output a control
flow graph in which each (assembly-level) instruction is annotated by the corre-
sponding abstract may and must states. We extract the annotations of the final
state of the program, and provide them as input to the counting engine.

Counting engine. Our counting engine determines the number of concretizations
of abstract cache states according to the development in Section[dl Our language
of choice is Haskell [4], because it allows for a concise representation of sums,
products, and enumerations using list comprehensions. A detailed description
of the routines for exact counting can be found in the extended version of the
paper [29].

5.2 Target Implementations

Code. We analyze the implementation of 128 bit AES encryption from the
PolarSSL library [3], a lightweight crypto suite for embedded platforms. As
is standard for software implementations of AES, the code consists of single
loop (corresponding to the rounds of AES) in which heavy table lookups are
performed to indices computed using bit-shifting and masking. We also ana-
lyze a modified version of this implementation, where we add a loop that loads
the entire lookup table into the cache before encryption. This preloading has
been suggested as countermeasure against cache attacks because, intuitively, all
lookups during encryption will hit the cache.

Platform. We compile the AES C source code into a binary for the ARM7TDMI
CPU [2]. Although the original ARM7TDMI does not have any caches, the Ab-
sInt TimingExplorer supports this CPU with the possibility of specifying arbi-
trary configurations of data/instruction/mixed caches with LRU strategy. For
our experiments we use data caches with sizes of 16-128 KB, associativity of 4
ways, and a line size of 32 Bytes, which are common configurations in practice.

5.3 Improving Precision by Partitioning

The TimingExplorer can be very precise for simple expressions, but loses preci-
sion when analyzing array lookups to non-constant indexes. This source of im-
precision is well-known in static analysis, and abstract interpretation offers tech-
niques to regain precision, such as abstract domains specialized for arrays [1§],
or automatic refinement of transfer functions. For our analysis, we use results on
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trace partitioning [32], which consists in performing the analysis on a partition
of all possible runs of a program, each partition yielding more precise results.

We have implemented a simple trace partitioning strategy using program
transformations that do not modify the data cache (which is crucial for the
soundness of our approach). For each access to the look-up table, we introduce
conditionals on the index, where each branch corresponds to one memory block,
and we perform the table access in all branches. As the conditionals cover all
possible index values for the table access, we add one memory access to the index
before the actual table look-up, which does not change the cache state for an
LRU cache strategy, since the indices have to be fetched before accessing the
table anyway. An example of the AES code with trace partitioning can be found
in the extended version of this paper [29].

Note that the same increase in precision could be achieved without program
transformation if the trace partitioning were implemented at the level of the
abstract interpreter, which would also allow us to consider instruction caches
and cache strategies beyond LRU. Given that the TimingExplorer is closed-
source, we opted for partitioning by code transformation.

5.4 Results and Security Interpretation

The results of our analysis with respect to the adversary Advp,.. are depicted in
Figure[ll For AES without preloading of tables, the bounds we obtained exceed
160 bits for all cache sizes. For secret keys of only 128 bits, they are not precise
enough for implying meaningful security guarantees. With preloading, however,
those bounds drop down to 55 bits for caches sizes of 16KB and to only 1 bit for
sizes of 128KB, showing that only a small (in the 128KB case) fraction of the
key bits can leak in one execution. The results of our analysis with respect to the
(less powerful, but more realistic) adversary Advp.op are depicted in Figure 21
As for Advprec, the bounds obtained without preloading exceed the size of the
secret key. With preloading, however, they remain below 6 bits and even drop
to 0 bits for caches of 128KB, giving a formal proof of noninterference for this
implementation and platform.

Notice that the leakage bounds we derive hold for single executions. For the
case of zero leakage they trivially extend to bounds for multiple executions and
immediately imply strong security guarantees. For the case of non-zero leakage,
the bounds can add up when repeatedly running the victim process with a
fixed key and varying payload, leading to a decrease in security guarantees. See
Section [7] for possible solutions to this problem.

6 Prior Art

Timing attacks against cryptosystems date back to [26]. They can be divided into
those exploiting timing variations due to control-flow [1426] and those exploiting
timing variations of the execution platform, e.g. due to caches [7,[9[121[351[3637],
or branch prediction units [8]. In this paper we focus solely on caching.
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Fig.1. Upper bounds for the maximal leakage w.r.t. the adversary Advprec and a
4-way set associative cache with 32B lines of sizes 16KB-128KB
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Fig. 2. Upper bounds for the maximal leakage w.r.t. the adversary Advpro» and a 4-way
set associative cache with 32B lines of sizes 16KB-128KB

The literature on cache attacks is stratified according to a variety of different
adversary models: In time-driven attacks [9,[12] the adversary can observe the
overall execution time of the victim process and estimate the overall number
of cache hits and misses. In trace-driven attacks [7] the adversary can observe
whether a cache hit or miss occurs, for every single memory access of the victim
process. In access-driven attacks [3537] the adversary can probe the cache either
during computation (asynchronous attacks) or after completion (synchronous
attacks) of the victim’s computation, giving him partial information about the
memory locations accessed by the victim. Finally, some attacks assume that the
adversary can choose the cache state before execution of the victim process [35],
whereas others only require that the cache does not contain the locations that are
looked-up by the victim during execution [9]. The information-theoretic bounds
we derive hold for single executions of synchronous access-driven adversaries,
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where we consider initial states that do not contain the victim’s data. The deriva-
tion of bounds for alternative adversary models is left future work.

A number of mitigation techniques have been proposed to counter cache at-
tacks. Examples include coding guidelines [16] for thwarting cache attacks on x86
CPUs, or novel cache-architectures that are more resistant to cache attacks [42].
One commonly proposed mitigation technique is preloading of tables [12,[35].
However, as first observed by [12], it is a non-trivial issue to establish the effi-
cacy of this countermeasure. As [35] comments:

[...], it should be ensured that the table elements are not evicted by the
encryption itself, by accesses to the stack, inputs or outputs. Ensuring
this is a delicate architecture-dependent affair [...].”

The methods developed in this paper enable us to automatically and formally
deal with these delicate affairs based on an accurate model of the CPU.

For the case of AES, there are efficient software implementations that avoid
the use of data caches by bit-slicing, and achieve competitive performance by
relying on SIMD (Single Instruction, Multiple Data) support [25]. Furthermore,
a model for statistical estimation of the effectiveness of AES cache attacks based
on sizes of cache lines and lookup tables has been presented in [41]. For programs
beyond AES that are not efficiently implementable using bit-slicing, our analysis
technique enables the derivation of formal assertions about their leakage, based
on the actual program semantics and accurate models of the CPU.

Technically, our work builds on methods from quantitative information-flow
analysis (QIF) [15], where the automation by reduction to counting appears
in [11,24,[33,[34], and the connection to abstract interpretation in [30]. Prior
applications of QIF to side-channels in cryptosystems [27,28,31] are limited to
stateless systems. For the analysis of caches, we rely on the abstract domains
from [20] and their implementation in the AbsInt TimingExplorer [I]. Finally,
our work goes beyond language-based approaches that consider caching [10,23]
in that we rely on more realistic models of caches and aim for more permissive,
quantitative guarantees.

7 Conclusions and Future Work

We have shown that cache side-channels can be automatically quantified. For
this, we have leveraged powerful tools for static cache analysis and quantitative
information-flow analysis, which we connect using novel techniques for counting
the concretizations of abstract cache states. We have demonstrated the practi-
cality of our approach by deriving information-theoretic security guarantees for
an off-the-shelf implementation of 128-bit AES (with and without a commonly
suggested countermeasure) on a realistic model of an embedded CPU.

Our prime target for future work is to derive security guarantees that hold
for multiple executions of the victim process. One possibility to achieve this
is to extend static cache analysis along the lines of [27]. Another possibility is
to employ leakage-resilient cryptosystems [19], where our work can be used for
bounding the range of the leakage functions. Further avenues are to extend our
quantification to cater for alternative adversary models, such as asynchronous,
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trace-based, and timing-based. Progress along these lines will enable the auto-
matic derivation of formal, quantitative security guarantees for a larger class of
relevant attack scenarios.
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