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Abstract. A primary challenge in post-silicon debug is the lack of ob-
servability of on-chip signals. In 2008, we introduced BackSpace, a new
paradigm that uses repeated silicon runs to automatically compute de-
bug traces that lead to an observed buggy state. The original BackSpace,
however, required excessive on-chip overhead, so we next developed TAB-
BackSpace, which uses only pre-existing on-chip debug hardware to com-
pute an abstract debug trace with very low probability of error. With
TAB-BackSpace, we demonstrated root-causing a (previously known)
bug on an IBM POWERY processor, in actual silicon.

The problem with these BackSpace approaches, however, is the need
to repeatedly trigger the bug via the exact same execution. In prac-
tice, non-determinism makes such exact repetition extremely unlikely.
Instead, what typically arises is an intuitively “equivalent” trace that
triggers the same bug, but isn’t cycle-by-cycle identical. In this paper,
we introduce nuTAB-BackSpace to exploit this observation. The user
provides rewrite rules to specify which traces should be considered equiv-
alent, and nuTAB-BackSpace uses these rules to make progress in trace
computation even in the absence of exact trace matches. We prove that
under reasonable assumptions about the rewrite rules, the abstract trace
computed by nuTAB-BackSpace is concretizable — i.e., it corresponds
to a possible, real chip execution (with the same low possibility of er-
ror as TAB-BackSpace). In simulation studies and in FPGA-emulation,
nuTAB-BackSpace successfully computes error traces on substantial de-
sign examples, where TAB-BackSpace cannot.

1 Introduction

Post-silicon validation/debug is the problem of determining whether the fabri-
cated chip of a new design is correct, and what is wrong if it behaves incorrectly.
The problem lies between pre-silicon validation, which searches for design errors
in models of the design before fabrication, and VLSI test, which searches for
random manufacturing defects on each fabricated chip in high-volume produc-
tion. Naturally, post-silicon validation/debug inherits characteristics from both,
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but the differences necessitate novel solutions. Like pre-silicon validation, post-
silicon validation focuses on design errors. The difference, however, is that the
validation is of the actual silicon chip, which is roughly a billion times faster
than simulation, can run the real software in the real system at full speed, and
exhibits the true (not simulated) electrical and physical properties. Accordingly,
post-silicon validation catches numerous bugs that escape pre-silicon validation,
due to inadequate coverage, inaccurate models, approximate analyses, and mis-
specified properties and constraints. Unfortunately, like VLSI test, post-silicon
validation shares the problems of limited controllability and observability, as the
internal signals on-chip are essentially inaccessible. Test and debug structures can
be (and are) added on-chip, but any increase of the chip’s area, power, or pins is
expensive. These issues make post-silicon debugging extraordinarily challenging.
Post-silicon debug currently consumes more than half of the total verification
schedule on typical large designs, and the problem is growing worse [I/I0].

Post-silicon validation/debug is broad and multi-faceted. To provide context,
we briefly survey the overall debug flow and cite some representative research.
Note that the post-silicon debug process is iterative, just like any other kind of
debugging: at all stages of the process, the debug engineer formulates hypotheses
about what might be going wrong, develops a test for the hypotheses, and then
formulates new hypotheses based on the results. Because the focus is design
errors, debug engineers typically have deep knowledge of the design.

The validation/debug process starts with test planning and stimulus genera-
tion: how to thoroughly exercise the die? This is analogous to simulation test-
benches in pre-silicon validation, except that controllability/observability are
limited to the pins and the test stimuli must be generated quickly. Typical tests
include booting the OS, running applications, random instruction [I77], and fo-
cused test suites and exercisers for hard-to-verify parts of the design (e.g., [72]).
To stress electrical bugsEI, these tests are run under a variety of system configu-
rations and operating conditions (frequency, voltage, temperature, etc.).

When testing reveals the presence of a bug, the next step is to get a trace of
what happened on the chip when the bug occurred. The challenge is the lack of
observability, so the basic techniques are on-chip structures to improve observ-
ability, e.g., scan chains [29], trace buffers [27/4], and networks to access signals
to record [23[I]. Typically, one can take a snapshot of many/most latches of
the design at a single cycle (scan), or record tens or hundreds of signals over
a few hundred or thousand cycles (trace buffers), but getting this data off-chip
is extremely slow and completely disrupts the test. Accordingly, the debug en-
gineer has to trigger recording at exactly the right moment, and anecdotally,
many debug engineers describe this as one of the most time-consuming tasks in

! For bugs that create functional errors, it’s useful to distinguish between logical bugs,
which could be replicated pre-silicon in the RTL, and electrical bugs, which result
from electrical effects such as noise coupling, voltage droop, and timing errors, as
some methods apply to only one or the other. This paper handles both. There are
also electrical and physical bugs detected post-silicon that are not functional errors,
e.g., power consumption, yield, reliability, etc., which we do not consider.
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post-silicon debug. Most research supporting this phase of the debug process has
focused on selecting signals that provide the best observability (e.g., [20/I8I2216])
harkening back to earlier work on observability for test (e.g., [I9]). There is also
research on computing debug traces: For example, assuming a deterministic test
that is short enough to be simulated in its entirety on a deterministic fault-
free model of the chip, it is possible to focus the trace buffer only on cycles
where electrical errors are likely, relying on simulation to fill-in the fault-free
cycles [3I30]. Closer to our work, IFRA [2I] eliminates the assumptions of short
tests and determinism, allowing a trace to be computed, for example, for a pro-
cessor booting an operating system. The method works even if the error occurs
very rarely, but is only for electrical bugs and is processor-specific. Our work
builds on the BackSpace framework [I4I15] (described below), which also com-
putes traces of the full-speed silicon running long tests. The framework handles
non-determinism and both logical and electrical bugs, but requires bugs to be
reasonably repeatable.

Only when bug traces are available can debugging proceed. In a manual de-
bug flow, the debug engineer finally has some insight into what is happening
on-chip and can start ruling out possibilities and forming new hypotheses. Re-
search results to support this process include automatically simplifying the bug
trace [I1U16], and using the trace to localize possible explanations [28/31], and
even make layout repairs [I0]. All of these methods depend on having traces
showing what is happening on-chip leading up to the bug.

This paper focuses on the central task of deriving such debug traces, showing
on-chip signals for many cycles leading up to an observed bug or crash. Until
the trace is obtained, further debugging is essentially impossible.

1.1 The BackSpace Framework

Our work builds on the BackSpace framework, a novel paradigm that uses re-
peated silicon runs to automatically compute debug traces that lead to an ob-
served buggy state. The core assumption of BackSpace is that the bring-up tests
can be run repeatedly, and the bug being targeted will be at least somewhat
repeatable (e.g., with probability 1/n for reasonably small n). The methods rely
on repetition, which is fast on silicon, to compensate for the lack of observability.

The original BackSpace [14] introduced the basic theory and a proof-of-concept
implementation on a small design. The method relied on some on-chip hardware,
pre-image computations, and repetition to compute a provably correct trace to
the bug. In theory, it solved the problem of computing a trace perfectly: com-
puting arbitrarily long sequences of all signals on-chip, leading up to the bug.
However, this perfect solution came with impractical overhead: correctness relied
on computing breakpoints, signatures, and pre-images over the entire concrete
state of the chip. The hardware overhead was too high to be practical.

Most complex chips, however, already include some on-chip debug hardware.
In TAB-BackSpace [15], we flipped the problem around: instead of adding exces-
sive on-chip hardware for a perfect debug solution, we leveraged the BackSpace
approach to get much more out of the already existing in-silicon debug logic
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Fig.1. TAB-BackSpacing. Once the bug is observed, we re-run the chip with trace
arrays enabled, i.e., runl; we collect the information from the trace arrays and compute
a new set of triggers for the subsequent run (run2); and we iterate these steps, extending
the length of the computed trace beyond the trace arrays’ depth.

(i.e., trace buffers). Thus, there is no additional hardware cost. TAB-BackSpace
achieves the effect of extending the trace buffer arbitrarily far back in time (as-
suming no spurious traces — more on this below).

Fig. [ gives an overview of TAB-BackSpace. We assume the trace buffer
records until stopped by a trigger. TAB-BackSpace iterates the following:

1. Run the chip until it “crashes” (hits the bug or the programmed breakpoint).

2. Dump out the state of the trace buffer into a file.

3. Select an entry from the trace dump as the new trigger condition, configuring
the breakpoint circuitry to stop the chip when it hits this breakpoint on the
next run.

The trace-buffer dump of the next run will overlap the most recent trace-dump
by some number of cycles f. If all states in the overlapping region agree, we
join the new trace-dump to the previous trace-dump, extending the length of
the computed trace; if not, we select another state to be the breakpoint and try
again. If the length of each trace-dump is m, then after n iterations, we will have
computed a trace approximately n(m — f) cycles long (approximate because f
may vary between runs). Using TAB-BackSpace, we demonstrated root-causing
a (previously known) bug on an IBM POWERT processor, in actual silicon.

In theory, the weakness of TAB-BackSpace is the possibility of spurious ab-
stract traces. By practical necessity, a trace buffer can record only a tiny fraction
of on-chip signals. Therefore, the trace computed is an abstract trace. When two
abstract trace dumps agree on the overlap region, TAB-BackSpace joins the two
into a longer abstract trace, implicitly assuming that the underlying concrete
traces agree as well, which might not be true. Empirically, we showed that by
using a reasonably sized overlap region, the possibility of spurious traces could
be made very small.

In practice, the real weakness of TAB-BackSpace is the need to repeatedly
trigger the bug via the same execution. Non-determinism in the hardware and
bring-up environment makes such exact repetition unlikely. The result is that
the new trace-dump doesn’t completely agree with the previous trace over the
entire overlap region, so TAB-BackSpace fails to make progress. Indeed, the
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POWERYT result was achieved only by creating an environment that minimized
non-determinism: running on bare metal, only one core enabled, and using a
specialized post-silicon exerciser [I5]. Creating an environment to minimize non-
determinism while still triggering a bug is a difficult and time-consuming task.

We have observed, however, that although an ezact match rarely occurs, what
typically happens in practice is that the same bug is triggered by an intuitively
“equivalent” trace, that isn’t cycle-by-cycle identical. How can we formalize the
debug engineer’s informal notion of “equivalent”? And how do we extend TAB-
BackSpace to correctly account for such user-specified equivalences?

This paper is an answer to those questions. The debug engineer provides
rewrite rules to specify which traces should be considered equivalent, and our
new algorithm uses those rules to make progress in trace computation even
in the absence of exact trace matches. Under reasonable assumptions about
the rewrite rules, and about the trace buffer length and signals, we prove that
the abstract trace computed by nuTAB-BackSpace is concretizable — i.e., it
corresponds to a possible, real chip execution. In simulation studies, we show
that nuTAB-BackSpace can indeed compute correct error traces, even when
non-determinism renders TAB-BackSpace infeasible. Finally, we demonstrate
nuTAB-BackSpace successfully computing error traces on an industrial-size SoC
in FPGA-emulation, where TAB-BackSpace cannot.

2 Background

2.1 Trace Buffers

A trace buffer is an on-chip structure for storing limited history of internal events
that occur on-chip during full-speed execution. Because of the importance of
post-silicon debug, most complex chips are now built with trace buffers.

A typical trace buffer consists of a memory array, organized as a FIFO, per-
haps with some simple compression capabilities. A small number (typically tens
to a few hundred) of important signals on the chip are routed to the FIFO. The
signals routed to the trace buffer must be chosen before the chip is fabricated
(although some limited reconfigurability is sometimes provided). The signals can
be recorded in the FIFO in real-time as the chip runs, capturing typically a few
hundred to a few thousand cycles of history. Control logic allows triggering the
starting and stopping of this recording based on the signals that appear, cycle
counters, watchdog timers, etc. There must also be some mechanism to read out
(“dump”) the contents of the trace buffer, for example, by putting the chip into
debug mode. Dumping the trace buffer is slow and radically perturb the execu-
tion of the chip, so debug methodologies avoid trying to continue an execution
after a trace buffer dump.

In this paper, we assume very minimal trace buffer capabilities. We assume
the recording can run continuously (the array treated as a circular buffer), and
that we can set a breakpoint to stop recording when a specified input signal
reaches the trace buffer. The trace buffer can be dumped arbitrarily later. This
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gives the effect recording the last m cycles of the trace buffer signals before the
chip “stops” at the breakpoint, where m is the length of the trace buffer.

2.2 Abstraction

We will reason about both the signals recorded in the trace buffer as well as the
underlying state of the full chip as it runs in actual silicon. Because the signals
recorded in the trace buffer are a subset of the total signals on-chip, we can view
a state in the trace buffer as an abstraction of the state of the chip.

Formally, we model the full chip on-silicon as a finite-state transition system
with state space S, and (possibly non-deterministic) transition relation d. € S, x
S.. This is the concrete system. As is typical in model checking [12], we abstract
away the inputs and consider only signals on-chip as the state. A concrete trace
is a finite sequence of concrete states s1,. .., s, such that Vi. (s;, s;+1) € de.

The choice of signals to record in the trace buffer defines an abstraction func-
tion a : S, — S, that projects away everything but the chosen signals. S, is the
abstract state space, and the abstract transition relation d,(sq,ts) is defined as
usual (e.g., [I3]): Isc, te [0c(Se, te) A Sq = a(Se) A tq = a(t.)]. An abstract trace is
a finite sequence of abstract states s, ..., s, such that Vi. (s;, $;41) € 0q-

We lift the abstraction function to traces by abstracting each state of the
trace: given a concrete trace o., we get a unique abstract trace a(o.). In the
opposite direction, an abstract trace o, is said to be concretizable if there ex-
ists a concrete trace o, such that o, = a(o.). Because the abstract transition
relation is conservative, not all abstract traces are concretizable; such traces
are called spurious. In practice, concretizability is a crucial property: a spurious
trace doesn’t correspond to any possible execution of the real hardware, so it is
not only wrong, but it misleads the debug engineer and wastes time.

2.3 Semi-Thue Systems

We will allow the debug engineer to specify intuitive notions of “equivalence” by
providing rewrite rules. This provides ease-of-use, expressiveness, and a rich un-
derlying theory that allows efficient checking of equivalent traces. In particular,
we treat the debug trace and trace buffer dumps as strings whose alphabet is
the abstract state space, and the user-provided rewrite rules produces a string
rewriting system AKA a semi-Thue system. Semi-Thue systems have been ex-
tensively studied; our presentation is based on [9/5].

Definition 1. A semi-Thue system is a tuple (X*, R), where

— X is a finite alphabet,
— R is a relation on strings from X*, i.e., R C X* x X*.

Each element (I,r) € R is called a rewrite rule, notated as [ — r. Rewrite rules
can be applied to arbitrary strings as follows: for any w,v € X*, u — v iff there
exists an (I,r) € R such that for some z,y € X* u = zly and v = zry. The



nuTAB-BackSpace: Rewriting to Normalize Non-determinism 519

notation —¥ is the reflexive and transitive closure of —. We denote the symmetric
closure of = by ¢, which is an equivalence relation on X*.

The question we need to solve is whether two strings = and y are equivalent,
i.e., whether x ¢%y. This is the standard “word problem” for semi-Thue systems.
In general, the problem is undecidable, but under certain restrictions on the
rewrite rules, the problem can be solved efficiently by reducing each of x and y
to a unique normal form representing the equivalence class.

Definition 2. A semi-Thue system is Noetherian (terminating) if there is no
infinite chain xg,x1,... such that for alli >0, x; = T;41.

Noetherianness can be established by finding an ordering function (e.g., string
length) that all rewrite rules obey. Under the assumption of Noetherianness, the
two properties in the next definition are equivalent:

Definition 3. A semi-Thue system is confluent if for all w,z,y € X*, the
existence of reductions w —¥x and w —y implies there exists a z € X* such
that x =z and y —*z. A semi-Thue system is locally confluent if for all
w,x,y € X*, the existence of reductions w — x and w — y implies there exists
az € X* such that x %z and y —$z.

A key result from rewriting theory is that for a rewriting system that is confluent
and Noetherian, any object can be reduced to a unique normal form by apply-
ing rewrite rules arbitrarily until the object is irreducible (i.e., no rules apply).
Furthermore, two objects are equivalent x <y iff their unique normal forms are
the same. We will use the notation N(x) to denote the unique normal form for
any string .

3 nuTAB-BackSpace

3.1 Formalizing the Intuition

Before describing the nuTAB-BackSpace algorithm, we first need to formalize
our assumptions about the user-supplied abstraction and rewrite rules.

The fundamental principle underlying the BackSpace approaches is to use
repetition to compensate for the lack of on-chip observability. The fundamental
challenge, therefore, is how to determine when a new run of the chip is following
“the same” execution as a previous one, so that information from the two physical
runs can be combined.

The first technique is the breakpoint mechanism. We never try to combine
traces unless the new trace breakpoints (i.e., the hardware reaches a specified
state) on a state from the older traces. Because the two traces share an identical
state, we are guaranteed that we can combine the two traces at that state and
have a wvalid, longer trace — but the guarantee is only valid at the level of
abstraction of the breakpoint state. In the original BackSpace, the breakpoint
was concrete, guaranteeing that the algorithm constructed a valid, concrete trace
leading to the bug. In TAB-BackSpace and nuTAB-BackSpace, the breakpoint
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is only on a partial state, so the guarantee is only that the constructed trace is
a legal, but possibly spurious (non-concretizable), abstract trace.

To reduce the possibility of spurious traces, and since a trace buffer provides
multiple cycles of history anyway, we therefore insist that not only the breakpoint
match, but every abstract state match in a multicycle overlap region between a
new trace buffer dump and the previously computed trace. Intuitively, the longer
the overlap region we require to match, the less likely that we compute spurious
traces. We can formalize the intuition that a large enough overlap eliminates
spurious traces as follows:

Definition 4. Let lg;, (“divergence length”) be the smallest constant such that
for all concrete traces x1y121 and xay222 (where the xs, ys, and zs are strings
of concrete states), if a(y1) = a(yz) and the length |a(y1)| > lgw, then z1y122
and T1y229 are also valid concrete traces.

In other words, if two concrete executions share a long enough period of ab-
stracting to the same states, then the future concrete execution is oblivious to
what happened before that period, and so the combined abstract trace is not
spurious. Note that the divergence length is specific to the design and also to
the chosen abstraction function.

Although Iz, may not always exist (because, for example, the abstraction
function might abstract away key information from the concrete traces), in the-
ory, it is straightforward to check whether the length of the overlapping region
is longer than lg;,: let f be the length of the overlapping region. Do there ex-
ist two traces o1=x1y121 and o9 =zayazo such that |x;|=|z;|=1, |y1|=|y2|=T1,
a(y1)=a(yz), and either z1y122 or x1ya22 are not valid traces? If not, we know
that f > lg4;,. Otherwise, f < l4;,. Therefore, all we need is to unroll the design
(as in bounded model checking [8]) up to f + 2 cycles and check for a witness.

In practice, it may be unrealistic to unroll the design for f+2 cycles. However,
in [I5] and in Section £l we show that we can empirically limit the number of
spurious traces. In particular, if we have trace dumps from different concrete
executions that match on the overlap region, we dub this a “false match”, which
is a necessary (but not sufficient) condition for a spurious trace. Our experiments
show that false matches are rare when the overlap region is reasonably long.

Indeed, as noted earlier, the problem in practice is not too many matches
generating spurious traces, but the lack of exact matches preventing any progress
in trace computation. Empirically, however, we have often observed intuitively
“equivalent” traces that are not cycle-by-cycle matches, e.g., a trace with slightly
different timing, with independent events reordered, etc. These are all differences
that could be manipulated via rewriting, so we propose to allow the debug
engineer to specify rewrite rules to define what “equivalent” means to them, on
a particular design. nuTAB-Backspace will then match overlap regions if they are
equivalent under the specified rewriting, rather than requiring an exact match.

Will this idea produce correct traces? Correctness depends on the rewrite rules
respecting the semantics of the design. Accordingly, we impose a few restrictions
on the rewrite rules. Not surprisingly, we require that the rules be Noetherian and
confluent, which allows efficient equivalence checking via reduction to the unique
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normal form. To capture the notion that the rewrite rules truly reflect equivalent
traces of the underlying concrete chip, we define the concept of concretization
preservation:

Definition 5. Consider a rewrite rule | — r on strings of abstract states. The
rewrite rule is concretization preserving if for all concrete states x. and
Ze, the concretizability of the abstract state sequence a(zc)la(z.) to a concrete
sequence starting with x. and ending with z. implies the concretizability of the
abstract state sequence a(z.)ra(z.) to a concrete sequence starting with x. and
ending with z., i.e.:

(Elconcrete trace x Yizc - a(yl) = l)
Yconcrete states xc, z¢ =
(Hconcrete trace T Yrze - a(yr) = 7’)

Obviously, a rewrite rule should be rejected if it breaks concretizability alto-
gether. This definition is slightly stronger in that it requires that a pre-existing
concretization be preserved, mutatis mutandis the rewriting.

As with 14, in theory, it is straightforward to check whether a rule is con-
cretization preserving. There are a finite number of rewrite rules, [ — r, each
of which is finite in length. Does there exist a concrete trace z.y;z. such that
a(y)) = I, but where no string y, exists such that z.y,z. is a concrete trace
and a(y,) = r? One could, for example, use bounded model checking to enu-
merate all z. and z. that satisfy the antecedent of the definition, and then use
bounded model checking to check that each satisfying x. and z. also satisfies the
consequent.

In practice, depending on the design and abstraction, this check may also not
be realistic. On the other hand, debug engineers have expert design knowledge,
so they are capable of defining rewrite rules that are concretization preserving
(or close enough for their purposes).

3.2 Algorithm

Algorithm [ presents the nuTAB-BackSpace procedure: starting from a given
crash state and its corresponding trace-buffer, it iteratively computes an arbi-
trarily long sequence of predecessor abstract states by going backwards in time.
This procedure has 4 user-specified parameters: steps bound specifies how many
iterations back the algorithm should go; retries timeout limits the amount of
search for a new trace dump where the overlapping region with the trace com-
puted so far is equivalent; the time bound is a timeout for each chip-run and
is a mechanism to tell whether a chip-run went on a path that does not repro-
duce the crash-state or buggy-state; and, [bindex is the trace buffer’s smallest
index, which defines a region either for the overlapping (TAB-BackSpace) or the
normalization (nuTAB-BackSpace) of two consecutive trace buffers.

This procedure has 2 nested loops. The outer loop, lines — E5 controls
the three termination conditions for the algorithm: we reach the user-specified
number of iterations; we reach the initial states; or the previous iteration was
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unsuccessful. The outer loop is also responsible for joining the new trace buffer
dump onto the successful trace computed so far (line 36), and then selecting a
new state as the breakpoint for the next iteration. The inner loop, lines (2033,
is responsible for controlling the hardware while trying out different candidate-
states, Scand, given a retries timeout. The procedure keeps track of time us-
ing the subroutine FElapsedTime() (passing reset as parameter resets the time
counter, otherwise it counts the elapsed time since it was last reset). In each loop
iteration, the procedure loads scqnq4 into the breakpoint-circuit (line 22)), and runs
the chip. The objective is to collect a new trace-buffer upon matching scqunq and
match (after rewriting) it with the previous trace-buffer. If ResetAndRun() re-
turns TRUFE then the breakpoint circuitry matched s.qnq and we have a new
trace-buffer. Otherwise, the chip-run violates the time bound parameter (line[24)
because the current run took another path (caused by non-determinism). If the
breakpoint occurs, we dump the contents of the trace-buffer for comparison
with the trace computed so far. The NormalizeAndCheck() subroutine (line 28]
computes the unique normal form of the overlapping region of the previously
computed trace as well as the new trace dump, as described in Sec. 23, and
then compares them to check equivalence. If the procedure neither breakpoints
nor proves equivalence, PickState() (line[33)) selects another candidate-state from
the previous trace using a round-robin scheme while respecting lbindex and the
inner loop iterates. The procedure exits the inner loop when either it success-
fully proves equivalence of the overlapping regions of the two trace-buffers, or
this loop has iterated longer than the specified retries timeout.

3.3 Correctness

The main correctness theorem proves that the trace computed by Algorithm [I]
is as informative as one could hope: it concretizes to a trace that leads to the
actual crash state, using reachable states.

Theorem 1 (Correctness of Trace Computation). If the rewriting rules
are Noetherian, confluent, and concretization preserving, and if the size of all
unique normal forms used to prove equivalence of overlapping regions is greater
than ly;,, then the trace produced by Algorithm[dl is concretizable to the suffix of
a concrete trace leading from the initial states Qg to the crash state s.

Proof: The proof is by induction on the iteration count ¢ at the bottom of the
outer loop. The base case is trivial, as when i = 0, the trace is a single trace
buffer dump that ends at the crash state. Since this trace dump is taken from
the physical chip, it can be concretized to the specific physical execution that
occurred on-chip.

In the inductive case, let uy represent the trace computed so far, and let zv
represent the new trace dump ¢;, with N(v) = N(u). In other words, u and v are
the overlap region that has been proven equivalent by rewriting. By construction,
x and y are non-empty.

We know that zv is concretizable to a trace with all states reachable from
the initial states, because it is taken directly from the hardware. Therefore,
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Algorithm 1. Crash State History Computation

1: input Qo : set of initial states,

2: (s,t) : crash-state and trace-buffer

3: steps bound € NT : user-specified bound on the number of iterations,
4: retries timeout € NT : user-specified time-bound on retrials,

5: timepound : user-specified time bound for any chip-run

6: lbindex: user-specified lower-bound length of normal region;

7: output trace : equivalent sequence of abstract states;

8: 1:=0;

9: // initialize breakpointable candidate-state and current trace-buffer

H
@

1 :=0; Scand := S; ti == t;

11: trace := (t;); // i.e., initialize trace with current trace-buffer

12: // initialize variable nindex; nindex gets updated by PickState()

13: // nindex range is [lbindez, |trace-buffer|]

14: nindex := lbindex; succ iteration := TRUFE

15: while (¢ < steps bound) AND (Scand ¢ Qo) AND (succ iteration = TRUE) do

16: equivalent := FALSE;

17: matched := FALSE;

18: //Resets retrial elapsed time

19: ElapsedTime(reset)

20: while (lequivalent) AND (ElapsedTime(go) < retries timeout) do
21: // Program the hardware-breakpoint circuitry with scand
22: LoadHardwareBreakpoint (Scand);

23: // (Re-)run M’ at full-speed with timeout timepound

24: matched := ResetAndRun (timepound);

25: if matched then

26: // Dump trace-buffer contents ¢;

27: t; := ScanOut();

28: equivalent := Normalize AndCheck(t;, ti—1, nindex);
29: end if

30: if (Imatched) OR (lequivalent) then

31: // Pick another state following a round-robin scheme
32: // and updates nindex

33: Scand := PickState (nindex, t;—;);

34: end if

35: end while
36: if equivalent = TRUFE then

37 // Accumulate trace

38: OwverlapConcatenate (t;, trace);

39: // Pick a candidate-state in ¢; for the next iteration
40: Scand 1= PickState(nindex, t;);

41: 1i=1+1;

42: else

43: succ iteration := FALSE

44: end if

45: end while
46: return trace;
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xN(v) has the same properties, by preservation of concretization. Similarly, uy
is concretizable to a trace that leads to the crash state s, by the inductive hy-
pothesis, and therefore, N (u)y is, too, by preservation of concretization. Let x. v,
be a witness to the concretizability (with additional properties) of 2N (v), with
z = az.) and N(v) = a(v.). Similarly, let u.y. be a witness to the concretiz-
ability of N(u)y, with N(u) = a(u.) and y = a(y.).

From the hypotheses, |N(u)| = |N(v)| > lagw, so by the definition of l4,,
both z.u.y. and z.v.y. are legal concrete traces. By construction, both start
at reachable states, and therefore contain all reachable states. And both end at
the crash state s. Therefore, either is a witness that the new trace computed by
Algorithm [Il N (u)y, is concretizable to the suffix of a concrete trace leading
from the initial states to the crash state.

4 Experiments

We present two experiments demonstrating the feasibility of nuTAB-BackSpace.
In both, we compare our new method against TAB-BackSpace. We start with a
simulation-based evaluation, where we have more controllability and can identify
false matches. Then, we evaluate nuTAB-BackSpace on a hardware prototype.

4.1 Simulation-Based Evaluation

We use a router design (henceforth, the “Router”), which is an RTL implemen-
tation of a 4x4 routing switch. The Router is typically used by IBM for training
new employees with IBM’s tools. The Router is a non-trivial design, but also not
too complex to be simulated in its entirety. The design has 9958 latches, which
is larger than most open-source design examples (e.g., from [25]).

The Router implements a routing policy, which is programmed beforehand in
configuration registers. The Router routes incoming packets from four distinct
input ports into one of four output ports. The Router recognizes packets in a
pre-defined format containing source and destination addresses, payload, and
bit-parity. In addition to routing the packets, the Router also checks the validity
of incoming packets and rejects bad packets.

To simulate the Router, we use a constrained-simulation environment devel-
oped by IBM, using Cadence’s Incisive Simulator (with Specman Elite) v.09.20-
s016. This proved very helpful when modeling environmental non-determinism.

We claim that when non-determinism cannot be extensively removed from
the environment/design, TAB-BackSpace will either fail to produce a trace or
will require an excessive number of re-trials. To validate this claim, we (1) set
the TAB length to be 50 with no compression; (2) set the TAB width to 75 bits;
(3) abstract three of the Router’s design blocks onto these 75 bits by using our
architectural insight; (4) set a goal of 20 iterations for each “crash” state (setting
steps bound = 20 in Algorithm [I)); (5) for each iteration, we set a timeout of 5
hours to allow for a large number of re-trials when necessary (typically, each
simulation-run takes about 10min); (6) and, randomly choose 30 abstract-states
as our “crash” states.
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To make sure the traces produced from these “crash” states are independent,
we first generate a lengthy “crash” trace via constrained-random simulation.
Then, we randomly choose 30 abstract-states, a;, from this trace, with the fol-
lowing properties (Qo is the initial set of states): Vi, j.a;, a; € QoA (a; # aj) Ali-
j| > 1000. These properties guarantee that the “crash” states in this experiment
are far enough apart so that the computed traces are distinct. In other words,
since steps bound = 20 and each trace dump has 50 cycles, even if the overlap
between two consecutive trace-dumps were one single cycle, the total number
of cycles for each trace would be 20%49+1 < 1000, which is smaller than the
distance between two crash states.

In [15], we have empirically shown that, for the Router, an overlap of 30 cycles
or more would most likely prevent false matches. Thus, in these experiments, we
use 30 cycles as the lower bound for the overlapping region of two consecutive
trace-buffers.

We use the constrained-simulation environment to simulate non-determinism.
This environment provides many parameters to make each simulation run very
different from one another. However, we want to control the non-determinism so
that we have a fair comparison between TAB-BackSpace and nuTAB-BackSpace.
Thus, we simulate non-determinism only affecting the delays on packet arrivals
(a real scenario encountered in bring-up labs). We accomplish this behavior by
changing the simulation environment such that it always uses a fixed random
seed for everything except packet generation. For packet generation, we use an
external and independent random generator to add different delays between
packets in each run.

We need to provide a set of rules for normalizing the non-determinism dur-
ing nuTAB-BackSpace simulations. In practice, defining rewrite rules will follow
the same iterative process as debugging. In this case, we had worked with this
design in [I5] and had a good understanding of it. We had been unable to TAB-
BackSpace the Router and this was due to non-determinism in the inter-packet
delays, and so, in these experiments, we develop a set of rules to normalize such
effects of non-determinism.

Recall that our abstract-model is based on 3 design blocks. In particular, three
sets of signals in this abstract-model represent the same state-machine that is repli-
cated across the 3 design blocks. In Fig.[2] we present one such machine. Notice that
6 states have self-loops, namely idle, wait buff, wait data, wait idle, wait route,
get rest. In [I5], we observed that non-determinism in the inter-packet delays af-
fects all these states with self-loop edges (e.g., a long delay might cause an input
port toremain in idle or wait data states for some number of cycles). The exception
is the state get rest. In this state, the Router processes incoming packets without
interruption, that is, the Router does not accept partial packets. Thus, to normal-
ize non-determinism, we define a rewriting system, Routerrs(X*, R).

Let Proj(+)sm be a projection function that takes in an abstract-state, a, and
projects it onto the set of bits representing the state machine from Fig. Pland let
P = {idle, wait buff, wait data, wait route, wait idle}. Now, we can define R as
follows:
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wait buff T—\T wait data ﬁ get dest ]

pkt end

Fig. 2. Router’s Internal Packet-Processing State-Machine

Va.Proj(a)sm € P . aa — a (1)

Thus, this rewriting rule creates an equivalence class of traces, treating traces
with different numbers of repetitions of certain states as similar.

Before we can apply nuTAB-BackSpace, we need to show that the rewriting
system, Routergrg(X™*, R), is Noetherian, confluent, and concretization-preserv-
ing. First, note that Routerrs(X™, R) is a length-reducing rewriting system, and
so it is Noetherian. Next, note that Eq. [l contains 5 rules (or technically, rule
schema), and no two rules have overlapping left-hand sides. The only possible
critical pairs arise from rewriting a string of the form aaa into aa with two dif-
ferent applications of a single rewrite rule. Obviously, these are locally confluent.
Thus, the entire rewrite system, Routerrs(X™*, R), is confluent. For concretiza-
tion preservation, we have only an informal argument. Based on our knowledge
of the design, any execution of the system that goes through a state that projects
to P can spend more or less time in that state, without impacting the rest of
the execution. This is exactly the property that concretization preservation cap-
tures. In contrast, when the state machine is in the state get rest, the underlying
concrete state tracks the number of cycles for the packet, so a rule that changed
the number of get rest cycles would not be concretization-preserving.

We deem a TAB-BackSpace iteration successful when two consecutive trace-
buffers agree cycle-by-cycle over all 30 cycles, i.e., a full-overlap match; and
a nuTAB-BackSpace is successful when the normalization-region (30 cycles or
more) from the consecutive trace-buffers are equivalent under Routerps(X*, R).

The experiments are successful. In Table [Il we show that nuTAB-BackSpace
computes, for all crash-states, longer traces than TAB-BackSpace. Moreover,
TAB-BackSpace could not compute even one iteration for 1/3 of the cases. And,
when TAB-BackSpace is comparable to nuTAB-BackSpace with respect to the
number of successful iterations (e.g., crash states 19, 27-30), nuTAB-BackSpace
requires, for the most cases, an order of magnitude smaller number of runs.

4.2 Case Study: The Leon3 SoC Hardware Prototype

To demonstrate that nuTAB-BackSpace is feasible in practice, we emulate on an
FPGA board [26] a System-on-Chip (SoC) including software. We use a Leon3-
based SoC [24] as our hardware-prototype. This prototype is a full-blown SoC,
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Table 1. TAB-BackSpace vs nuTAB-BackSpace Experiments. We use the same crash
states. “# of Successful Iterations” is the number of iterations before timing out or
reaching the set limit of 20. The timeout per iteration was chosen to be 5h. Each
simulation run averages 10 minutes. “# of Chip Runs” is the total number of iterations
plus the number of retries. Because “# of Chip Runs” is an aggregate, when the number
of iterations for TAB is smaller than the number of iterations for nuTAB, the number
of nuTAB runs may be greater than TAB runs (e.g., 1, 13-15). Crash states with a | are
states that nuTAB-BackSpace computed all 20 iterations, but somewhere during the
computation it deviated from the “expected” trace (in simulation, we can determine if
the run reached the specified “crash” state). Therefore, these might be spurious traces.
We suspect that, at some iteration, the normalized region of two different traces was
too small to discriminate them.

Crash # of Successful # of Chip Crash # of Successful # of Chip
State  Iterations Runs State  Iterations Runs
TAB nuTAB TAB nuTAB TAB nuTAB TAB nuTAB
1 0 11 62 143 16 4 20 112 27
2 0 20 339 21 17 5 20 157 28
3 0 20 67 52 18 5 20 199 41
4 0 20 77 75 19 6 6 120 58
5 0 20 79 24 20 6 20 60 26
6 0 20 93 27 21 6 20 181 24
7 0 20 283 28 22 6 20 788 24
f8 0 20 128 20 23 7 20 568 22
f9 0 20 58 23 24 12 20 251 27
10 0 20 342 20 25 12 20 308 25
11 1 20 173 57 26 15 20 534 20
12 2 7 204 137 27 20 20 282 28
13 3 15 399 536 28 20 20 403 29
14 3 20 134 144 29 20 20 463 52
15 4 19 270 661 30 20 20 726 26

with a SPARC V8 compatible core, AMBA bus, video, DDR2, Ethernet, i2c,
and keyboard and mouse controllers. This SoC also has built-in debug features
that can be enabled. In particular, we enable the provided trace buffer, LOGAN,
but with a minimal configuration. The LOGAN has no signal compression. The
signals we monitor are a combination of AMBA bus signals and some signals of
the SPARC V8’s execution-pipeline-stage, totaling 134 signals.

Since one of the goals of demonstrating nuTAB-BackSpace on a hardware-
prototype is to show that it works in a real (or as realistic as possible) debugging
environment, we run non-trivial software on the Leon3. In our experiments, we
are booting Linux (Linux Kernel 2.6.21).

Our debug scenario is as follows: while booting Linux, we want to derive the
sequence of CPU and bus operations leading to the kernel’s function start kernel.
Thus, start kernel is our “crash” state. The boot sequence up to this “crash”
state is more than 20 million cycles deep. Simulating it with a logic simulator is
impractical given this depth. Similarly, model checking it is infeasible.
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The first experiment is to try TAB-BackSpace. We follow the same steps as
Algorithm [l The main difference is that instead of normalizing the extracted
trace, we try to find an exact match on the overlap region between the current
and previous traces. We set an address within start kernel function as our break-
point and run the chip; when it breakpoints, we extract a trace. From that trace,
we pick a trace-buffer entry as our new crash-state and repeat. In our experi-
ments, we set 2 hours as our retry timeout limit. The result of these experiments
is a total of 207 chip runs, all of which breakpoint successfully, but none overlap
cycle-by-cycle. In other words, we cannot TAB-BackSpace at all because, at each
run, non-determinism changes the path the chip takes and so the probability of
an exact match is too low.

The next experiment is to try nuTAB-BackSpace using the same scenario as
before. However, we need to define the rewrite rules first. In this case, the SoC
was built entirely from third-party IP, so our learning process was from the doc-
umentation and trace buffer dumps from the actual system running. Studying
the trace buffer dumps, we observed that sometimes entire trace-buffers might
have not a single video-controller transaction. Also, we noted that nullified in-
structions, although they vary from run to run, do not affect overall functionality
of a system run. Therefore, for this debug scenario, we hypothesize that traces
may have video-controller activity occurring at essentially arbitrary times, and
that nullified instructions can be ignored. From our understanding of the design,
we can create rewrite-rules easily to formalize the hypotheses and test them. (If
our hypotheses produced uninterested traces, we would start again with a new
hypothesis, creating new rewrite rules to try.)

We define the rewrite rules using the same notation as we used for the Router.
Let Proj(-)antm and Proj(+)inst be two projection functions that map abstract-
states, a, onto the subset of AMBA signals, which identify the current bus-master
and onto the subset of signals from the CPU that define whether an instruction
has been nullified. We can define R as follows:

Ya.Proj(a)anbm = 023 . a — € (2)
Va.Proj(a)inst = annul . a — € (3)

The rewrite rules ignore AMBA bus transactions from the video-controller and
states where instructions have been nullified in the CPU’s execution pipeline
stage. (Note that the ignored cycles do not get deleted from the generated trace
— the rewriting is solely to establish equivalence on the overlap region. The gen-
erated trace will always consist of actual states taken from trace buffer dumps.)

As in Subsection Il we need to show that Leon3rs(X*, R) is Noetherian,
confluent, and concretization-preserving. As before, the system is length-
reducing, and hence Noetherian. No two rules have an overlapping left-hand side.
Consequently, there are no critical pairs, so Leon3rs(X™, R) is locally confluent.
The argument for concretization preservation is again based on insight into the
design. The video controller bus transactions are irrelevant to the boot sequence
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Table 2. nuTAB-BackSpace on Leon3. Trace-Buffer Length is the physical depth of the
trace-buffer. Since we do not use compression, its depth is fixed. Normalization-Region
Length is the number of cycles in the current trace-buffer that we normalize and use as
a reference for the next trace-buffer. New Cycles is the number of new states present
in the current trace-buffer.

Trace # Trace-Buffer Normalization Normalized New Accumulated
Length  Region Length Length Cycles new cycles

1 1024 904 354 1024 1024
2 1024 519 137 384 1408
3 1024 781 133 241 1649
4 1024 680 168 514 2163
5 1024 709 168 348 2511
6 1024 892 141 45 2556
7 1024 - - 398 2954

and can be arbitrarily ignoredE Similarly, nullified instructions have no effect
on the (bus-level) debugging process, so they can be safely ignored as well.
Any concrete execution trace which has these ignorable states corresponds to a
concrete execution trace where those states have been deleted.

We show the results in Table 2l We iterated 7 times, resulting in a trace more
than 2.5x the length of a single trace-buffer. Unlike TAB-BackSpace, the new
technique handles the non-determinism, computing an abstract trace based on
the trace-buffer signals.

5 Conclusion and Future Work

We have presented nuTAB-BackSpace, a novel technique to compute post-silicon
debug traces in the presence of non-determinism. We exploit the observation that
traces that are not cycle-by-cycle equal still share similarities from the debug
engineer’s point-of-view. We let the user provide rewrite rules, and under some
reasonable assumptions, we prove that nuTAB-BackSpace computes an abstract
trace that concretizes to a trace that is reachable and leads to the crash state.
We have demonstrated the effectiveness of nuTAB-BackSpace both in simulation
and in hardware, computing abstract traces even when TAB-BackSpace cannot.

Increasingly, complex chips have many clock-domains and even completely
asynchronous domains. Capturing traces on these designs and reasoning about
them is a major challenge. We believe niTAB-BackSpace holds promise for this
problem, and this is the direct line of future work.

2 Technically, ignoring video controller transactions is not truly concretization pre-
serving, since any real concrete trace will have the occasional video transaction,
whose timing is determined by state hidden in the video controller and the external
video hardware. What the rewrite rule is really specifying is that that hidden state
is irrelevant for the current debugging scenario. If we were debugging some video
controller timing interaction, we would use different rewrite rules.



530

F.M. De Paula, A.J. Hu, and A. Nahir

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Abramovici, M., Bradley, P., Dwarakanath, K., Levin, P., Memmi, G., Miller, D.:

A Reconfigurable Design-for-Debug Infrastructure for SoCs. In: DAC. IEEE (2006)
Adir, A., Golubev, M., Landa, S., Nahir, A., Shurek, G., Sokhin, V., Ziv, A.:
Threadmill: a post-silicon exerciser for multi-threaded processors. In: DAC. IEEE
(2011)

Anis, E., Nicolici, N.: Low Cost Debug Architecture using Lossy Compression for
Silicon Debug. In: DATE. IEEE (2007)

. ARM. Embedded Trace Macrocell Architecture Specification. Trace and Debug.

ARM (2007), Ref: THI00140

Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge Univ. Press
(1998)

Basu, K., Mishra, P., Patra, P.: Efficient combination of trace and scan signals for
post silicon validation and debug. In: International Test Conference (ITC 2011).
IEEE (2011)

Bentley, B., Gray, R.: Validating the Intel Pentium 4 processor. Intel Technology
Journal (Quarter 1, 2001)

Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193-207.
Springer, Heidelberg (1999)

Book, R.V., Otto, F.: String-Rewriting Systems. Springer (1993)

Chang, K.H., Markov, I.L., Bertacco, V.: Automating Post-Silicon Debugging and
Repair. In: ICCAD (2007)

Chang, K.H., Bertacco, V., Markov, I.L.: Simulation-Based Bug Trace Minimiza-
tion With BMC-Based Refinement. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 26(1), 152-165 (2007)

Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic Specifications. ACM TOPLAS 8(2),
244-263 (1986)

Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. In:
POPL, pp. 343-354 (1992)

de Paula, F.M., Gort, M., Hu, A.J., Wilton, S.J.E., Yang, J.: BackSpace: formal
analysis for post-silicon debug. In: FMCAD. IEEE (2008)

de Paula, F.M., Nahir, A., Nevo, Z., Orni, A., Hu, A.J.: TAB-BackSpace:
Unlimited-length trace buffers with zero additional on-chip overhead. In: DAC.
IEEE (2011)

Hong, T., Li, Y., Park, S.B., Mui, D., Lin, D., Kaleq, Z.A., Hakim, N., Naeimi, H.,
Gardner, D.S., Mitra, S.: QED: Quick Error Detection tests for effective post-silicon
validation. In: International Test Conference (ITC). IEEE (2010)

Klug, H.P.: Microprocessor testing by instruction sequences derived from random
patterns. In: International Test Conference (ITC). IEEE (1988)

Ko, H.F., Nicolici, N.: Algorithms for State Restoration and Trace-Signal Selection
for Data Acquisition in Silicon Debug. IEEE TCAD 28(2), 285-297 (2009)

Lee, D.H., Reddy, S.M.: On Determining Scan Flip-Flops in Partial-Scan Designs.
In: IEEE International Computer-Aided Design. Digest of Technical Papers, pp.
322-325. IEEE International (November 1990)

Park, S., Yang, S., Cho, S.: Optimal State Assignment Technique for Partial Scan
Designs. Electronics Letters 36(18), 1527-1529 (2000)



21.
22.
23.
24.
25.
26.
27.

28.

29.

30.

31.

nuTAB-BackSpace: Rewriting to Normalize Non-determinism 531

Park, S.B., Mitra, S.: IFRA: Instruction Footprint Recording and Analysis for
Post-Silicon Bug Localization in Processors. In: DAC. IEEE (2008)

Prabhakar, S., Hsiao, M.: Using Non-trivial Logic Implications for Trace Buffer-
Based Silicon Debug. In: Asian Test Symposium. IEEE (2009)

Quinton, B.R., Wilton, S.J.E.: Concentrator Access Networks for Programmable
Logic Cores on SoCs. In: Int’l. Symp. on Circuits and Systems. IEEE (2005)
Web Reference, http://wuw.gaisler.com

Web Reference, http://wuw.opencores.org

Web Reference, http://www.xilinx.com/univ/xupv5-1x110t.html

Riley, M., Chelstrom, N., Genden, M., Sawamura, S.: Debug of the CELL Proces-
sor: Moving the Lab into Silicon. In: International Test Conference. IEEE (2006)
Safarpour, S., Mangassarian, H., Veneris, A.G., Liffiton, M.H., Sakallah, K.A.:
Improved Design Debugging Using Maximum Satisfiability. In: Formal Methods in
Computer-Aided Design. IEEE (2007)

Williams, M.J.Y., Angell, J.B.: Enhancing Testability of Large-Scale Integrated
Circuits via Test Points and Additional Logic. IEEE TC C-22(1), 46-60 (1973)
Yang, J.S., Touba, N.A.: Expanding Trace Buffer Observation Window for In-
System Silicon Debug through Selective Capture. In: VLSI Test Symposium 2008.
IEEE (2008)

Zhu, C.S., Weissenbacher, G., Malik, S.: Post-silicon fault localisation using maxi-
mum satisfiability and backbones. In: Formal Methods in Computer-Aided Design
(FMCAD). IEEE (2011)


http://www.gaisler.com
http://www.opencores.org
http://www.xilinx.com/univ/xupv5-lx110t.html

	nuTAB-BackSpace: Rewriting to Normalize Non-determinism in Post-silicon Debug Traces
	Introduction
	The BackSpace Framework

	Background
	Trace Buffers
	Abstraction
	Semi-Thue Systems

	nuTAB-BackSpace
	Formalizing the Intuition
	Algorithm
	Correctness

	Experiments
	Simulation-Based Evaluation
	Case Study: The Leon3 SoC Hardware Prototype

	Conclusion and Future Work
	References




