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Abstract. Linearisability is the standard correctness criterion for concurrent data
structures. In this paper, we present a sound and complete proof technique for
linearisability based on backward simulations. We exemplify this technique by
a linearisability proof of the queue algorithm presented in Herlihy and Wing’s
landmark paper. Except for the manual proof by them, none of the many other
current approaches to checking linearisability has successfully treated this intri-
cate example. Our approach is grounded on complete mechanisation: the proof
obligations for the queue are verified using the interactive prover KIV, and so is
the general soundness and completeness result for our proof technique.

1 Introduction

The advent of multi- and many-core processors will see an increased usage of concur-
rent data structures. These are implementations of data structures like queues, stacks or
hashtables which allow for concurrent access by many processes at the same time. Li-
braries such as java.util.concurrent offer a vast number of such concurrent
data structures. To increase concurrency, these algorithms often completely dispose
with locking, or only lock small parts of the structure. This inevitably leads to race
conditions. Indeed, the designers of such algorithms do not aim at race-free but at lin-
earisable algorithms. Linearisability [14] requires that fine-grained implementations of
access operations (e.g., insertion or removal of an element) appear as though they take
effect “instantaneously at some point in time” [14], thereby achieving the same effect
as an atomic operation.

Recently, a number of new approaches to proving linearisability have appeared, some
supported by theorem provers (like our own), some automatic based on user-annotated
algorithms and some manual (see Section 7). Looking at these approaches, one finds
that a number of techniques (including our own so far) get adapted every time a new
type of algorithm is treated. Every new “trick” designers build into their algorithms to
increase performance (e.g., like a mutual push and pop elimination for stacks, or lazy
techniques) requires an extension of the verification approach.

In this paper, we propose a proof technique which can be used to prove linearisability
of every linearisable algorithm: Our method is sound and complete for linearisability.
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The approach is based on backward simulations - a technique borrowed from data re-
finement. More precisely, we show that a fine-grained implementation is linearisable
with respect to an abstract atomic specification of the data structure if and only if there
is a backward simulation between the specification and the implementation. The use of
simulations for showing linearisability is not new; however, current refinement-based
approaches (e.g. [9]) are based on both backward and forward simulations. We exem-
plify our approach on the queue implementation of Herlihy and Wing [14]. None of
the current other works on linearisability have treated this algorithm; and it is also not
clear whether the many approaches tailored towards heap usage (like separation logic or
shape analysis based techniques) can successfully verify the queue, as the complexity
in the interaction between concurrent processes in the queue is not due to a shared heap
(there is no heap involved at all). Along with this queue example we also show how to
systematically construct the backward simulations needed in the linearisability proofs.

Last but not least we have a complete mechanisation of our approach. It is complete
in the sense that we both carry out the backward simulation proofs for our examples
(here, the queue) with an interactive prover (which is KIV [23]), and have verified
within KIV that the general soundness and completeness proof of our technique is cor-
rect. In summary, this paper thus contains three contributions: (1) the proof of sound-
ness and completeness of backward simulations for linearisability, (2) the linearisability
proof for the Herlihy and Wing queue, and (3) the full mechanisation of both the exam-
ple and the general theory.

The next section gives the algorithms for the example. Section 3 defines linearisabil-
ity as a specific form of refinement. Section 4 gives our main theorem, that linearisabil-
ity can always be proven with a backward simulation, and Section 5 derives one for the
example, showing that this can be done systematically. Section 6 gives some informa-
tion on the KIV prover, and sketches how the proof obligations for backward simulation
could be verified. Full details of all proofs are online [17]. Section 7 gives related work
and Section 8 discusses possible improvements and concludes.

2 Example

The queue of [14], which serves as our running example, is a data structure with two
operations: enqueue appends new elements (of some type T) to the end of the queue
and dequeue removes elements from the front of the queue. The implementation of the
queue uses a shared array AR of unbounded length. All slots of the array are initialised
with a value null, signalling ‘no element present’. A back pointer back into the array
stores the current upper end of the array where elements are enqueued. Dequeues oper-
ate on the lower end of the array. The pseudocode of the queue operations is as follows:

E0 enq(lv : T) D0 deq(): T
E1 /* increment */ D1 lback := back; k := 0; lv := null;

(k, back) := D2 if k < lback goto D3 else goto D1;
(back,back+1); D3 (lv, AR[k]) := (AR[k], lv); /* swap */

E2 /* store */ D4 if lv �= null then goto D6 else goto D5;
AR[k]:= lv; D5 k := k + 1; goto D2;

E3 return D6 return(lv)
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The enq operation simply gets a local copy of back, increments back (these two steps are
executed as an atomic “fetch & increment”) and then stores the element to be enqueued
in the array.

The deq operation proceeds in several steps: first, it gets a local copy of back and ini-
tialises a counter k and a local variable, lv, which is used to store the dequeued element.
It then walks through the array trying to find an element to be dequeued. Steps D2 and
D5 of the code are a loop consecutively visiting the array elements. At every position
k visited, the array contents AR[k] is swapped with variable lv (i.e., the assignment at
D3 is executed in parallel). If the dequeue finds a proper non-null element this way
(lv �= null), this will be returned, otherwise the search is continued. In the case where
no element can be found in the entire array, deq restarts the search. Note that if no enq
operations occur, deq will thus run forever.

The complete specification consists of a number of processes p ∈ P, each capable of
executing its queue operations on the shared data structure. For the concrete implemen-
tation, therefore, these two algorithms can be executed concurrently by any number of
processes - where the individual steps (i.e., the statements in locations E0 to D6) in the
operations are taken to be atomic, but crucially can be interleaved. That is, a process
may start an enq operation (say doing E0 and E1) but then another process may execute
its own atomic step (e.g., start a deq). Verification that the concrete implementation is
somehow correct with respect to abstract, atomic enqueue and dequeue operations is
the crux of the problem and linearisability is the proof obligation.

Our proof of linearisability proceeds by showing that the concurrent implementation is
a backward simulation of an atomic abstract specification of the queue, i.e. that every
step of the implementation can be simulated by the abstract specification in a backward
fashion. To this end, we phrase both abstract specification and implementation in terms
of data types. A data type consists of a state State (set of variables) and operations on
the state Op ⊆ State×State (e.g. enqueue or dequeue, or operations like D1, D2, . . .). In
addition, an initialisation operation Init : State specifies constraints on the initial state
and a finalisation operation Fin ⊆ State × F relates states to global result values from
some set F. Intuitively, Fin fixes those parts of the state that we are interested in and
want to observe when comparing the data types. A data type is written as

(State, Init, (Opp,i)p∈P,i∈I,Fin)

Note that we have incorporated processes in here. We take a relational view on opera-
tions, and use o

9 for composition of relations. Primed variables in operations refer to the
after state. Sequences of operations are written as Op∗.

For the abstract queue (omitting Fin for the moment), we for instance have A =
(AState,AInit,Enqp∈P,Deqp∈P) given by

AState =̂ [q : seq T]

AInit =̂ [q = 〈 〉]
Enqp(x? : T) =̂ [q′ = q � 〈x?〉]
Deqp(x! : T) =̂ [x! = first(q) ∧ q′ = rest(q)]

Here, the variable x? is an input to and x! an output of the operation.
The data type C = (CState,CInit, (COpp,j)p∈P,j∈J) for the concurrent implemen-

tation is more complex. The state consists of the two global variables back : IN and
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AR : IN → T to represent the array with elements of type T. Additionally, the local vari-
ables of processes are part of the state, e.g. lback : P → IN represents the values of the
local variable lback for all the processes. Finally, pc : P → {N,E1,E2,E3,D1, . . . ,D6}
defines a program counter for all processes, pc(p) = N means that process p is currently
running no operation. Initial states CInit : CState have an empty array, back = 0 and
pc(p) = N for all p ∈ P.

The operations of this concrete data type are made up of the steps of the algorithm:
every line in the algorithm becomes one operation1. We thus for instance have an oper-
ation called enq1p (line E1 in the enqueue of process p) which is specified as

enq1p =̂ [pc(p) = E1 ∧ pc′(p) = E2 ∧ k′(p) = back ∧ back′ = back + 1]

Here, we use the convention of not mentioning variables of the state which remain un-
changed. In a similar way we can define operations for all other steps of the algorithm.

Our goal for the next section is to show that all concurrent runs of the algorithm given
here faithfully implement queue operations. E.g., a concrete run might start with the
sequence enq03 o

9 enq13 o
9 enq01 o

9 deq02. Does this represent a possible implementation
of an abstract run? Formally, we have to prove linearisability and we will do so by
showing that the concurrent implementation is (a particular type of) refinement of the
abstract atomic specification.

3 Linearisability and Refinement

Linearisability is defined by comparing histories created by the atomic queue opera-
tions and those created by the concurrent implementation. Histories are sequences of
invoke and return events of particular operations (out of some index set I) by particular
processes p ∈ P with certain input or output values. For example, a possible history of
our queue implementation is

h = 〈inv(3, enq, a), inv(1, enq, b), inv(2, deq, ), inv(4, enq, c), ret(3, enq, ), ret(4, enq, )〉
In this history, process 3 first invokes an enqueue operation with argument a. Next, pro-
cess 1 invokes an enqueue for element b. While these two processes are running, process
2 starts a dequeue, and process 4 invokes an enqueue of c. At the end, first process 3
returns from its enqueue and finally process 4. These histories are thus abstracting the
algorithm into just its start and end given by the invokes and returns of the operations.
In a legal history, a return event of process p from operation i is always preceded by
a matching (i.e., corresponding) invoke event with the same p and i, while an invoke
event may or may not be followed by a matching return. In the latter case, the operation
has not yet finished, and the invoke is a member of the set pi(h) of pending invokes of
history h. For the given history pi(h) = {inv(1, enq, b), inv(2, deq, )}. In the following,
Event denotes the set of all events, and we write Ret for the set of all return events.

The first step in our proof technique is to add the history created by the algorithms
to the data types: We construct history enhanced data types collecting histories. The
enhancement we define is not specific to the queue example but applies to all concrete

1 In the KIV specification of the algorithm we split IF-statements into a true and false case.
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and abstract data types for which we want to show linearisability. The history enhanced
concrete data type HC = (HCState,HCInit, (HCOpp,j)p∈P,j∈J,HCFin) gets HCState =̂
CState ∧ [h : Event∗]. As in the example above, the invoking steps of operations op
of processes p (like enq0p and deq0p for the queue corresponding to lines E0 and D0)
add an event inv(p, op, a) (where a is the input value of op) to the history. Similarly
the returning operations add return events, all others leave the history unchanged. Now
we can also define a meaningful finalisation operation: HCFin ⊆ HCState × F for
F = Event∗ extracts the collected history by defining HCFin((cs, h),H) iff H = h.

On the abstract data type we perform a slightly different form of enhancement which
is also motivated by our objective of wanting to prove linearisability. Informally, lin-
earisability means that all histories created by the implementation could also be pro-
duced by working with an abstract atomic queue. As Herlihy and Wing formulate it:
we want the concurrent implementation to “provide the illusion that each operation
. . . takes effect instantaneously at some point between its invocation and return”. This
point in time is usually called the linearisation point. The formal
definition given in [14], however, is based on comparing concurrent and sequential
histories (where the latter are sequences of matching invocation and return pairs). Al-
ready [14] note that this definition is not suitable for proofs, therefore like most re-
lated work (see Section 7) we prefer an alternative definition that directly formalises
the idea of a linearisation point. In the enhancement of the abstract data type HA =
(HAState,HAInit, {Invp,i, Linp,i,Retp,i}p∈P,i∈I},HAFin) we thus add histories plus we
also split operations in three: an invocation, a linearisation point and a return.

HAState =̂ AState ∧ [h : Event∗,R : PRet]

HAInit =̂ AInit ∧ [h = 〈 〉 ∧ R = ∅]

Invp,i(in? : In) =̂ [(¬ ∃ i′, in′ • inv(p, i′, in′) ∈ pi(h)) ∧
as′ = as ∧ R′ = R ∧ h′ = h � 〈inv(p, i, in?)〉]

Linp,i =̂ [∃ in, out • inv(p, i, in) ∈ pi(h) ∧ (¬ ∃ out2 • ret(p, i, out2) ∈ R) ∧
AOpp,i(in, as, as′, out) ∧ h′ = h ∧ R′ = R ∪ {ret(p, i, out)}]

Retp,i(out! : Out) =̂ [ret(p, i, out!) ∈ R ∧ h′ = h � 〈ret(p, i, out!)〉 ∧
R′ = R \ {ret(p, i, out!)} ∧ as′ = as]

HAFin =̂ [H : Event∗ | H = h]

As we see here we do not only add a variable h collecting histories but also a variable
R, a set of return events. The role of R is to collect return events for those operations
which have already taken effect, i.e., which are past the linearisation point but have not
yet returned. Abstract execution of operations now consists of three steps: the invocation
operation Invp,i just adds an invoke event to the history, the linearisation operation Linp,i

changes the state according to the original definition of the operation in A, adds a return
event to R (now the effect has taken place) and keeps the history. The return operation
Retp,i adds the return event to the history and – now that it is present in h – has to remove
it from R. Finalisation again gives the current history.

Note that HA is concurrent in the sense that operations of processes are interleaved.
However, the “effect” operation Lin is still atomic and thus faithfully reflects the original
abstract data type. These two abstractions HA and HC can thus be compared.
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Definition 1. The reachable states of HA are called possibilities. Writing HAOp for the
union of all operations of HA, we define

Poss(as, h,R) =̂ (HAInit o
9 HAOp∗)(as, h,R)

Our definition of possibilities is essentially the same as the one in Herlihy and Wing’s
paper [14], p. 486f. The notation given there is (as,P,R) ∈ Poss(h), with a redundant
set P, that contains those invokes in pi(h) with no matching return in R. Axioms S, I, C
and R correspond one-to-one to our operations HAInit, Inv, Lin and Ret: the premise and
conclusion are the pre- and post-state of the operations (our side conditions guarantee
legal histories in conclusions, left implicit in [14]).

Lynch [18], Sec. 13.1.2, gives a similar definition of linearisability using the “canon-
ical wait-free automaton for atomic objects”. States of this automaton are essentially
(as,P,R) (P is called inv-buffer), traces of the IO automaton correspond to our history.
Theorems 9 and 10 of [14] state that possibilities are equivalent to linearisability:

Theorem 1. An implementation data type C is linearisable with respect to some ab-
stract data type A if and only if for every history h created by C there exists a possibility
Poss(as, h,R).

This theorem seems to be universally accepted, and informal arguments for its validity
appear in many papers. However, to relate the results given here to the original definition
of linearisability, we have mechanised the proof in KIV. The proof is rather complex. It
shows that a forward simulation exists between the type HA given here and the abstract
data type we have used in [7] for the original linearisability definition. This provided
a hint that backward simulation could be a complete proof procedure for the definition
given here.

The theorem gives us the option to prove linearisability by showing the existence of
possibilities, which can be viewed as a form of a refinement, given next.

Definition 2. Let A = (AState,AInit, (AOpp,i)p∈P,i∈I,AFin) and C = (CState, CInit,
(COpp,j)p∈P,j∈J, CFin) be abstract and concrete data types respectively.
A program is a sequence of operation (indices) Prg = j1 . . . jn; and running a program
on the data type C gives the execution

Prg(C) =̂ CInit o
9 COpj1

o
9 . . . o

9 COpjn
o
9 CFin

C is a data refinement of A, denoted2 C � A, if for all programs Prg, Prg(C) ⊆ AInit o
9

AOp∗ o
9 AFin. An empty concrete program must refine the empty abstract program.

Note that this is a very weak form of refinement as it assumes that the effect of a par-
ticular program in C can be achieved with some arbitrary program (AOp∗) in A. This is
crucial for our approach since for complex linearisable algorithms – such as the one we
consider in this paper – one concrete step in the implementation may correspond to the
execution of several linearisation steps in the abstract data type. This type of refinement
applied on the enhanced data types coincides with linearisability.

2 Note that the literature on refinement usually writes the notation the other way round.
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Theorem 2. HC � HA iff C linearisable wrt. A.

Proof: The concrete histories h are the values returned by finalisation of HC. Refine-
ment implies that there is an abstract run which also produces h. This run reaches a
state (as, h,R) in HA before finalisation, i.e. Poss(as,H,R) holds, and linearisability
follows by Theorem 1. On the other hand, if linearisability holds, and h is a concrete
history, then there is a possibility Poss(as, h,R) by Theorem 1, so refinement holds,
since finalisation will give h. �

4 Proving Linearisability with Backward Simulation

Data refinement is the process of adding implementation detail to an initial abstract
algorithm, and standard results show that forward and backward simulations are sound
and jointly complete for verifying refinements (see [6] for an overview).

The fact that linearisability can be expressed in terms of refinement also underlies
the work of Doherty, Groves et al. [9,12]. However, their work as well as many others
assume that linearisability needs both backward and forward simulation to be complete
(and, e.g., [9] uses both). Here, we show that in fact backward simulation alone is
already complete for proving linearisability.

Definition 3 (Backward simulation). Let A = (AState,AInit, (AOpp,i)p∈P,i∈I,AFin)
and C = (CState, CInit, (COpp,j)p∈P,j∈J, CFin) be two data types. A relation BS ⊆
CState×AState is a backward simulation from C to A, denoted C �BS A, if the following
conditions hold:

– Initialisation: CInit o
9 BS ⊆ AInit,

– Finalisation: CFin ⊆ BS o
9 AFin,

– Correctness: ∀ p ∈ P, j ∈ J • COpp,j
o
9 BS ⊆ BS o

9 AOp∗.

The correctness condition is weaker than usual (to match the weak data refinement) in
that it only requires a concrete operation to be matched by an arbitrary sequence of
abstract operations. Note that BS is often called abstraction relation: given a concrete
state one has to define what the possible corresponding abstract states are.

The main result of this paper is that backward simulations are sufficient and we can
avoid forward simulations entirely when verifying linearisability. The proof relies on
the following two observations.

Proposition 1. ([14], p. 487) Possibilities are prefix-closed: If Poss(as, h0
� h,R) for

some histories h0, h, set of returns R and abstract state as, then there are as0 and R0,
such that Poss(as0, h0,R0) and HAOp∗((as0, h0,R0), (as, h0

� h,R)).

Proof: Simple induction over the number of operation executions necessary to reach
the final state (as, h0

� h,R), since every operation adds at most one event and we start
with the empty history. �

Proposition 2. The reachable states (as, h,R) of HA satisfy an invariant called
retsforpis(h,R) (returns for pending invokes only) which says that all return events
in R have a process p with a corresponding invoke event in pi(h).
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Again the proof is by induction on the number of operation executions. This now lets us
formulate and prove our main theorem which shows that backward simulation is sound
and complete for linearisability.

Theorem 3. Let C, A be a concrete and an abstract data type, and HC,HA their history
enhancements as defined above. Then HC �BS HA iff C linearisable wrt. A.

Proof: The easy direction from left to right just combines soundness of backward sim-
ulation and Theorem 2. For the other direction, assume C is linearisable wrt. A. We
define a relation BS as

BS((cs, h), (as,H,R)) =̂ h = H ∧ Poss(as,H,R)
∧ (H = 〈 〉 ⇒ AInit(as))

and prove the three proof obligations which show backward simulation.

– For Initialisation, we must prove that HCInit(cs, h) implies HAInit(as,H,R) when
BS holds. Since h = 〈〉, we have H = h = 〈〉 and ASInit(as). It remains to show
that R = ∅. This follows from Proposition 2, since pi(〈〉) = ∅.

– Finalisation requires to find an abstract (as,H,R) for every (cs, h), such that BS
holds. Since C is linearisable, there is a state (as, h,R) with Poss(as, h,R). If h is
nonempty, this state is already sufficient. Otherwise, state (as, h,R) was reached
from an initial state (as0, h0,R0) ∈ HAInit with h0 = 〈〉, R0 = ∅ and ASInit(as).
Therefore we can choose (as,H,R) := (as0, h0,R0).

– For Correctness, assume that both BS((cs′,H′), (as′,H′,R′)) and
HCOpp,j((cs,H), (cs′,H′)) hold. We have to find (as,H,R) with
BS((cs,H), (as,H,R)) and HAOp∗((as,H,R), (as′,H′,R′)). Now for all concrete

operations H is a prefix of H′: either H′ = H or H′ = H � 〈e〉 for invoking
and returning operations that add an event e. Prefix closedness of possibili-
ties (Prop. 1) gives a reachable state (as,H,R) for the prefix H of H′ with
HAOp∗((as,H,R), (as′,H′,R′)). Again, if H �= 〈〉, this state already satisfies BS.
Otherwise, like for finalisation, we have to choose the initial state. �

The theorem gives a backward simulation which matches an invoke operation COpp,j

to a sequence Lin∗ o
9 Invp,abs(j)

o
9 Lin∗, where Lin =

⋃

Linp,i. Similarly, return operations
match a sequence of linearisation steps with one return in the middle (since only such
sequences add the right event to H). Other steps are matched to an empty sequence of
abstract steps.

Theorem 3 specialises general completeness results, which imply that backward sim-
ulations and history variables are jointly complete for data refinement (these can be
adapted to our formalism from [1], or more directly from [19], Theorem 5.6). However,
all general completeness proofs add history variables, which record the full history of
all concrete states. Theorem 3 shows, that for linearisability, the only history variable
ever needed is the history needed to define linearisability (i.e. possibilities) itself.

5 Backward Simulation for the Case Study

The theory given in the last section ensures that any linearisable algorithm can be ver-
ified using a backward simulation BS. However, it does not tell us how to find such a
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Fig. 1. Observation tree for an example state cs

relation between concrete states (cs, h) and abstract states (as,H,R). As the abstract
state in our case study consists of the queue variable q only, we also write (q,H,R) for
the state of HA. As a first observation, the finalisation condition requires h = H and
thus we can split BS into the part relating state spaces and that of relating histories.

BS((cs, h), (q,H,R)) =̂ B(cs, q,R) ∧ h = H

The key insight we now need is that for finding backward simulations one has to analyse
the observations made by future behaviours.

To explain the approach consider the example state (the history for this state was
given at the start of Section 3) cs shown at the top of Figure 1. The state shows a
situation where the array has been filled with two elements, AR(0) = a and AR(2) = c.
Furthermore process 1 is running an enqueue operation that tries to enqueue the element
b at position 1, which has reached pc(1) = E2, but then has been preempted. We call
such an operation with pc(1) = E2 a pending enqueue, and write PE1(b) in the figure
to indicate it. Note that the “gap” in the array is due to this enqueue: it has increased
the global back pointer before the enqueue of c, but has not executed statement E2 yet.
In addition there is a pending dequeue of process 2 (PD2) currently looking at position
1 as well. Such a dequeue operation has already initialised its lback (pc �= D1), but has
not yet successfully retrieved an element (pc �= D6, and if pc = D4 then still lv = null).

To define B we now have to find out what possible abstract queue states this concrete
state could correspond to. For this we look at observations made about this state when
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proceeding with executions on it. The observation tree shows all future executions from
this state when new observers are started. An observer gives us information about the
elements in the data structure, most often by extracting data from it. For our queue, the
observers are dequeue operations. Processes currently running (like the enqueue) might
or might not be continued.

First, consider the leftmost branch. It describes the following steps: (1) the pending
enqueue of process 1 runs to completion (PEnq1), then (2) the pending dequeue runs
to completion and returns the element in position 1 which is b (PDeq2(1)), (3) a new
dequeue is started (of whatever process), runs to completion and returns the element
stored in position 0 which is a (NDeq(0)), and (4) another new dequeue starts, com-
pletes and returns the element in position 2 which is c. Hence from the point of view of
these dequeues the queue contents has been 〈b, a, c〉. Note that we do not start any new
enqueues, we just observe the existing state of the queue.

The rightmost branch executes pending operations in a different order (first the de-
queue and then the enqueue) and again runs two observing dequeues. Here, we see that
the queue is 〈c, a, b〉. Different future executions thus give different orderings of queue
elements. Still, the order is not arbitrary: for instance 〈b, c, a〉 is impossible. We see that
it is not only the current state of the array which determines the queue content, but also
the pending enqueues and dequeues, and their current position into the array. Hence we
cannot define B as a function from concrete to abstract state since this would contradict
one or the other run. In summary, the backward simulation we look for must relate the
current state cs to any queue that is possible in a future observation.

We still have to determine the R-components B relates concrete states to. Recall that
R collects linearisation points. Again, general advice on finding a backward simulation
is to defer decisions as far as possible to the future (this observation is not specific to
linearisability or concurrency, see [3]). For our case, we delay any linearisation point
that still can be executed to the future, i.e. we do not add it to set R. This is possible for
pending dequeues. These can linearise at the time they swap the element: they have a
definite linearisation point in the sense that we can attach it to line D3 when they swap a
non-null element. However, enqueue operations cannot linearise in the future, since they
would put the element in the wrong place in the queue. We find, that enqueue already
potentially linearises when it executes E1, but only if the future run considered executes
the operation to the end. In other runs, linearisation will happen when the element is
actually inserted at line E2.

These considerations now help us towards defining B. We write NDeq(n)(cs, cs′)3 to
mean that a new (observer) dequeue is started, returns the element in array position
n and brings the concrete state from cs to cs′. Similarly, we write PDeqp(n)(cs, cs′)
to say the same for an already running (pending) dequeue of process p, and finally
PEnqp(cs, cs′) for the completion of a pending enqueue. The actual definition of B
recursively follows the paths of the tree and has to consider four cases:

– The array is empty. Then the queue is empty as well and the set R consists of re-
turn events for those processes which have definitely achieved their effect (denoted
outs(cs)). In our case, these are all the enqueues after their store (at E3), and the
dequeues after the non-null swap (at D6 or at D4, when lv �= null).

3 The web presentation [17] gives a formal definition.
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– An observing dequeue (newly started) returns the element in position n of the array.
All elements below n must be null . The corresponding abstract queue thus has
AR[n] as its first element. The rest of the queue (and of B) is defined by recursion.

– A pending dequeue finishes and returns the element in position n of the array. Thus
again one of the corresponding abstract queues has AR[n] as first element. The rest
of the queue (and B) is defined by recursion.

– A pending enqueue finishes and the corresponding return event is already in R.
Then the effect on the abstract queue has already taken place, i.e., ret(p, enq, ) ∈ R.
B is defined by recursion using the same queue q, but removing the return event
from R.

Putting into one definition (and taking as abstract state as the queue state q) we get

B(cs, q,R) := (∀ i : IN • AR[i] = null) ∧ q = 〈〉 ∧ R = outs(cs))

∨ (∃ q′, n • q = 〈AR[n]〉� q′ ∧ (NDeq(n) o
9 B)(cs, q′,R))

∨ (∃ q′, p, n • q = 〈AR(n)〉� q′ ∧ (PDeqp(n) o
9 B)(cs, q′,R))

∨ (∃ p • ret(enq, p, ) ∈ R ∧ (PEnqp
o
9 B)(cs, q,R \ {ret(enq, p, )}))

Applying this technique to our example state cs in the root of Figure 1 gives a total
of six pairs (q,R) with B(cs, q,R). These are written with shaded background at those
nodes of the tree where the array is empty.

Note that the definition of B is well-founded: PEnq removes a pending enqueue pro-
cess (and adds one element to the array), PDeq and NDeq each remove an array element.
The corresponding well-founded order <B plays a central role in the correctness proofs
of the next section.

6 Verification with KIV

KIV [23] is an interactive verifier, based on structured algebraic specifications using
higher-order logic (simply typed lambda-calculus). Crucial features of KIV used in the
proofs here are the following.

– Proofs in KIV are explicit proof trees of sequent calculus which are graphically
displayed and can be manipulated by pruning branches, or by replaying parts of
proofs after changes. This is of invaluable help to analyse and efficiently recover
from failed proof attempts due to incorrect theorems, which is typically the main
effort when doing a case study like the one here.

– KIV implements correctness management: lemmas can be freely used before be-
ing proved. This allows to focus on difficult theorems first, which are subject to
corrections. Changing a lemma invalidates those proofs only, that actually used it.

– KIV uses heuristics (e.g. for quantifier instantiation and induction) together with
conditional higher-order rewrite rules to automate proofs. The rules are compiled
into functional code, which runs very efficiently even for a large number of rules:
the case study here uses around 2000 rules, 1500 of these were inherited from KIV’s
standard library of data types.



254 G. Schellhorn, H. Wehrheim, and J. Derrick

KIV was used to verify the completeness result for backward simulation as well as to
prove the resulting proof obligations for the queue case study. A web presentation of all
specifications and proofs can be found online [17]. The completeness proof follows the
proof given in Section 4, the difficult part is Theorem 1.

The correctness of the queue implementation is proved by instantiating the backward
simulation relation B with the concrete operations of the Herlihy-Wing queue which
were sketched in Section 2. This results in proof obligations that are instances of the
backward simulation as given in Definition 3.

The interesting proof obligations for the case study are the correctness conditions for
each operation. These can be written as4

(HCOpp,j
o
9 BS)((cs,H), (q′,R′,H′)) ⇒

∃ q,R • BS((cs,H), (q,R,H)) ∧ HAOp∗((q,R,H), (q′,R′,H′))

A suitable sequence of abstract operations HAOp∗ that fixes q and R is easy to determine
in most cases: for invoking and returning operations it is just the corresponding abstract
invoke and return. For all other operations, except enq1p, enq2p and deq3tp (the case
of deq3, where the swap is with a non-null element), the sequence is empty. These
correspond to cases where the observation tree for the current state cs is not changed by
the operation. For deq3tp and and enq2p the sequence is the linearisation step Lindeq,p

resp. Linenq,p. These two operations reduce the observation tree to one of its branches.
The only difficult case is when COpp,j is enq1p which is explained below. The choice
of HAOp∗ simplifies the proof obligation to

(COpp,j
o
9 B)(cs, q′,R′) ⇒ B(cs, q,R)

The simplicity of the changes to the observation tree is then reflected by the simplic-
ity of the proofs: they all are proven by well-founded induction over <B, followed by
a case split over the definition of B. This gives a trivial base case and three recursive
cases for each PN ∈ {PDeqq(n),PEnqq,NDeq(n)}. The resulting goals can be closed
immediately with the induction hypothesis by noting that COPp,j and PN always com-
mute. The only exception is deq3tp which needs an auxiliary lemma that PEnqq

o
9 deq3fp

commutes with every PN. This case crucially relies on the obvious invariant that there
may be no more than one pending enqueue process for each array element.

The difficult case is enq1p which adds a new pending enqueue process, and has to
deal with a potential linearisation point. To see what happens, consider the example
shown in Fig. 2. It shows a situation on the left where an element a is in the array and
process 2 is pending with element b, together with the possible observations (q,R) re-
turned by the simulation B. Process 1 then executes enq11(cs, cs′) and becomes pending
too with element c. This is shown on the right, together with the possible pairs (q′,R′)
such that B(cs′, q′,R′).

The pairs (q,R) before the operation are exactly the subset of those pairs (q′,R′)
where ret(1, enq, ) �∈ R′, i.e., the potential linearisation point has not been executed.
For this case simulation is trivial, choosing the empty sequence as HAOp∗. The difficult
cases have ret(1, enq, ) ∈ R′. As the last result with q′ = 〈a, c, b〉 shows, the element

4 For easier readability, we leave out the invariants of the two data types.
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a

PE2(b)

possible pairs (q,R):
〈a〉,∅
〈a, b〉, {ret(2, enq.)} a

PE2(b)
PE1(c) possible pairs (q′,R′):

〈a〉,∅
〈a, b〉, {ret(2, enq, )}
〈a, c〉, {ret(1, enq, )}
〈a, b, c〉, {ret(1, enq, ), ret(2, enq, )}
〈a, c, b〉, {ret(2, enq, ), ret(1, enq, )}

Fig. 2. Results of B before and after executing enq12

c may be observed to be not the last element of the queue. This demonstrates that one
linearisation step with c is not sufficient on the abstract level. Instead the right choice
for (q,R) is (〈a〉,∅), and both linearisation steps Lin1,enq

o
9 Lin2,enq are necessary as

HAOp∗. This exploits the fact that the potential linearisation of process 2 may not have
been executed, and can still be executed after the one for process 1.

In general, the element c enqueued by some process p may be observed in any place
behind the current elements of the array: we have q′ = q � 〈c〉 � q2, where q2 only

consists of elements that pending enqueues will add in the future. Adding 〈c〉 � q2

corresponds to a sequence of abstract linearisation steps LinEp,r := Linp,enq; Linr1,enq
o
9

. . . o
9 Linrn,enq. For the last result of the example, r = 〈2〉 and q2 = 〈a〉. Therefore we

strengthen the proof obligation for enq1p to

(enq1p
o
9 B)(cs, q′,R′) ∧ ret(p, enq, ) ∈ R′ ⇒

∃ q, q2,R, r • B(cs, q,R) ∧ LinEp,r((q,R,H), (q′,R′,H))

Again the proof follows the standard well-founded induction scheme over <B. The
difficult case occurs when unfolding B executes PEnqp for the same process p. This
case requires another induction to prove that enq1p

o
9PEnqp commutes with all PN. This

works except for a new dequeue process that removes the element just added by process
p, which can only happen for an empty array. We finally complete the proof of enq1p

by showing that the observable queues for an empty array consist of some (or none) of
the elements of pending enqueues (in any order).

7 Related Work

Our work gives a general and practically applicable method for proving linearisability.
It should be contrasted with other methods of proving linearisability which fall into
several classes.

First, there is work on model checking linearisability, e.g. [5] for checking a spe-
cific algorithm or [4] for a general strategy. These approaches are very good at finding
counter examples when linearisability is violated. However, these methods only check
short sequences of (usually two or three) operations by exploring all possibilities of lin-
earisation points, so they do not give a full proof. They also do not yield any explanation
of why a certain implementation is indeed linearisable.

Work on full proofs has analysed several classes of increasing complexity, where
figuring out simulations (in particular thread-local ones, that exploit the symmetry of
all processes executing the same operations) becomes increasingly difficult.
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The simplest standard class of algorithms has an abstraction function, and all lin-
earisation points can be fixed to be specific instructions of the code of an algorithm
(often atomic compare-and-swap (CAS) instructions are candidates). A variety of ap-
proaches for such algorithms have been developed: [12] uses IO-Automata refinement
and interactive proofs with PVS, [27] executes abstract operations as “ghost-code” at
the linearisation point, arguing informally that linearisability is implied. Proof obliga-
tions for linearisability have also been verified using shape analysis [2].

Our own work in [7] gave step-local forward simulation conditions for this standard
case. Conditions were optimised for the case where reasoning about any number of pro-
cesses can be reduced to thread-local reasoning about one process and its environment
abstracted to one other process. It mechanised proofs that these are indeed sufficient to
prove linearisability.

A second, slightly more difficult class are algorithms where the linearisation point is
non-deterministically one of several instructions, the Michael-Scott queue ([20]) being
a typical example. [9] has given a solution using backward and forward simulation,
Vafeiadis [27] uses a prophecy variable as additional ghost code. Our work here shows
that backward simulation alone is sufficient.

A third, even more difficult class are algorithms that use observer operations that do
not modify the abstract data structure. Such algorithms often have no definite linearisa-
tion point in the code. Instead steps of other processes linearise. The standard example
for this class is Heller et al’s “lazy” implementation of sets [13]. There, the contains
algorithm that checks for membership in the set has no definitive linearisation point.
Based on the idea that linearisation of such operations can happen at any time during
its execution, [28] develops the currently most advanced automated proof strategy for
linearisability in the Cave tool.

Our work in [8] gives thread-local, step-local conditions for this class, and verifies
Heller et al’s lazy set. Mechanised proofs that these conditions can be derived from the
general theory given here are available on the Web too [16].

All these three classes, where mechanised proofs have been attempted, had an ab-
straction function, so different possibilities for one concrete state could only differ in the
possible linearisation points that have been executed (our set R of return events). How-
ever, the Herlihy-Wing queue is just the simplest example that falls outside of these
classes. We have chosen it here since it is easy to explain, not because it is practically
relevant. One of the practically relevant examples is the elimination queue [21], which
to our knowledge is currently the most efficient lock-free queue implementation. This
example has some striking similarities to the case study considered here. Verifying this
case study is future work, however it seems clear that it can be verified using exactly
the same proof strategy as shown here.

For this most complex class only pencil-and-paper approaches exist to proving lin-
earisability, so our proof of the Herlihy-Wing queue is the first that mechanises such a
proof (and even a full proof, not just the verification of proof obligations justified on
paper) for this algorithm. Our proof is step-local in considering stepwise simulation.
Even for simpler classes many proof approaches so far have resorted to global argu-
ments about the past, either informally e.g. [13], [20], [29], using explicit traces [22] or
with temporal past operators [11].
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Herlihy and Wing’s own proof in [14] also uses such global arguments: first, it adds
a global, auxiliary variable to the code. The abstraction relation based on this variable
is not a simulation. Therefore they have to use global, queue-specific lemmas (Lemmas
11 and 12) about normalised derivations to ensure that it is possible to switch from one
(q,R) to another (q′,R′) in the middle of the proof.

8 Conclusion and Future Work

In this paper, we have presented a sound and complete proof technique for linearisability
of concurrent data structures. We have exemplified our technique on the Herlihy and
Wing queue which is one of the most complex examples of a linearisable algorithm.
Except for pen-and-paper proofs no-one has treated this example before, in particular
none of the partially or fully automatic approaches to proving linearisability. Both the
linearisability proof for the queue and the general soundness and completeness proof
for our technique have been mechanised within an interactive prover.

The proof strategy given here is complete, but still not optimal in terms of reduction
of proof effort: in particular, we have to encode the algorithms as operations, and just
like in Owicki-Gries style proofs we require specific assertions for every particular
value of the program counter. Rely-Guarantee reasoning [15] can help to reduce the
number of necessary assertions and we have already developed an alternative approach
based on Temporal Logic that used Relys and Guarantees. That approach can currently
handle the standard class of algorithms for linearisability, though it has advantages for
proving the liveness property of lock-freedom [24] and has been used to verify the hard
case-study of Hazard pointers [25]. Integrating both approaches remains future work.

Our approach is also not fully optimal for heap-based algorithms, where the use
of concurrent versions of separation logic (e.g. RGSep [28] or HLRG [11]) helps to
avoid disjointness predicates between (private) portions of the heap, and gives heap-
local reasoning.

Finally, there is a recent trend to generalise linearisability to general refinement of
concurrent objects [10], [26], where the abstract level is not required to execute one ab-
stract operation. We have not yet studied these theoretically interesting generalisations,
since they are not needed for our examples. This – as well as techniques for optimising
our approach with respect to proof effort – is left for future work.
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