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Preface

This volume contains the proceedings of the 24th International Conference on
Computer-Aided Verification (CAV) held in Berkeley, USA, July 7–3, 2012.

The Conference on Computer-Aided Verification (CAV) is dedicated to the
advancement of the theory and practice of computer-aided formal methods for
the analysis and synthesis of hardware, software, and other computational sys-
tems. Its scope ranges from theoretical results to concrete applications, with
an emphasis on practical verification tools and the underlying algorithms and
techniques.

The conference included two workshop days, a tutorial day, and three and
a half days for the main program. We received 185 submissions (140 regular
papers and 45 tool papers, a record number) and selected 38 regular and 20 tool
papers. We appreciate the diligence of our Program Committee and our external
reviewers, and thank them for their hard work; all papers received at least four
reviews, and there was intense discussion on papers after the author response
period.

This year CAV had four special tracks highlighted in the program: Computer
Security, Embedded Systems, Hardware Verification, and SAT & SMT. We thank
our Special Track Chairs for their effort in attracting papers in these areas and
coordinating the review process for those papers.

The conference was preceded by seven affiliated workshops: The 5th Inter-
national Workshop on Numerical Software Verification (NSV 2012); The First
International Workshop on Memory Consistency Models (REORDER 2012); The
5th International Workshop on Exploiting Concurrency Efficiently and Correctly
(EC2 2012); The Second International Workshop on Intermediate Verification
Languages (BOOGIE 2012); The First Workshop on Logics for System Analysis
(LfSA 2012); The First Workshop on Synthesis (SYNT 2012); The First Work-
shop on Applications of Formal Methods in Systems Biology (AFMSB 2012).

In addition to the presentations for the accepted papers, the conference also
featured three invited talks and four invited tutorials.

– Invited talks:

• Wolfgang Thomas (RWTH, Aachen): “Synthesis and Some of Its Challenges”
• David Dill (Stanford University): “Model Checking Cell Biology”
• J. Alex Halderman (University of Michigan): “On Security of Voting

Machines”

– Invited tutorials:

• Ras Bodik (University of California, Berkeley): “Synthesizing Programs with
Constraint Solvers”

• Aaron Bradley (University of Colorado at Boulder): “IC3 and Beyond:
Incremental, Inductive Verification”
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• Chris Myers (University of Utah): “Formal Verification of Genetic Circuits”
• Michal Moskal (Microsoft) “From C to Infinity and Back: Unbounded

Auto-active Verication with VCC”

We thank all our invited speakers!
We also thank the members of the CAV Steering Committee—Michael Gor-

don, Orna Grumberg, Bob Kurshan, and Ken McMillan—for their advice on
various organizational matters. Shuvendu Lahiri, our Workshop Chair, smoothly
handled the organization of the workshops. Miyoko Tsubamoto played an invalu-
able role in handling local arrangements. We thank Bryan Brady for his service as
Publicity Chair and Edgar Pek for maintaining the website. Special thanks go to
the Past Chairs, Ganesh Gopalakrishnan and Shaz Qadeer, for their advice and
guidance throughout the process. We thank Alfred Hofmann and Anna Kramer
of Springer for publishing the paper and USB proceedings for CAV 2012. We are
grateful to Andrei Voronkov and his team for the use of the EasyChair system
for tracking reviews and preparing the final camera-ready version. We gratefully
acknowledge the donations provided by our corporate sponsors—Microsoft Re-
search, IBM Research, Coverity, NEC Labs, and Intel. And last, but not the
least, we thank the office staff of EECS Department at the University of Cali-
fornia, Berkeley, and the Department of Computer Science at the University of
Illinois at Urbana-Champaign, for providing critical administrative assistance in
organizing the conference.

May 2012 P. Madhusudan
Sanjit A. Seshia
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Fatiha Zäıdi
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Synthesis and Some of Its Challenges

Wolfgang Thomas

RWTH Aachen University, Lehrstuhl Informatik 7, 52056 Aachen, Germany
thomas@informatik.rwth-aachen.de

Keywords: Infinite games, winning strategies, uniformization problem,
model-checking.

The advent of a methodology of automatic synthesis (of state-based systems)
adds a number of interesting facets to the setting of model-checking. In this
talk we focus on some conceptual aspects arising from the basic scenario of
strategy synthesis in infinite-duration two-player games, as a natural extension
of model-checking. The starting point is the simple observation that model-
checking asks about the (non-) emptiness of sets while synthesis asks for a certain
kind of uniformization of relations by functions. This raises a large number of
questions on the classification of (word-) functions (which serve as strategies in
games). We discuss basic results and recent progress, emphasizing two aspects:
the definability of strategies and their ”complexity” in various dimensions. These
results are as yet preliminary, and we end by listing unresolved problems, for
example on the logic-representation of strategies.

P. Madhusudan and S.A. Seshia (Eds.): CAV 2012, LNCS 7358, p. 1, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Model Checking Cell Biology

David L. Dill

Stanford University
dill@cs.stanford.edu

Abstract. Mathematical models of real biological systems have pre-
dominantly been deterministic or stochastic continuous models. However,
there are reasons to believe that at least some processes can be modeled
in a “digital” way. Once we do that, we enter the domain of concur-
rent and reactive systems, where model checking has been an important
tool. Perhaps techniques from the verification community could lead to
insights about the systems principles that allow biological systems us-
ing very low energy (and high noise) components to function dynamic
environments.

I will explore some past and future research directions in this area, as
well as some of the non-computational challenges that arise in this kind
of research.
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Synthesizing Programs with Constraint Solvers

Rastislav Bodik and Emina Torlak

University of California, Berkeley

Abstract. Classical synthesis derives programs from a specification.
We show an alternative approach where programs are obtained through
search in a space of candidate programs. Searching for a program that
meets a specification frees us from having to develop a sufficiently com-
plete set of derivation rules, a task that is more challenging than merely
describing the syntactic shape of the desired program. To make the search
for a program efficient, we exploit symbolic constraint solving, lifted to
synthesis from the setting of program verification.

We start by describing the interface to the synthesizer, which the pro-
grammer uses to specify the space of candidate programs P as well as
the desired correctness condition φ. The space P is defined by a program
template whose missing expressions are described with a grammar. The
correctness condition is a multi-modal specification, given as a combina-
tion of assertions, input / output pairs, and traces.

Next, we describe several algorithms for solving the synthesis problem
∃P ∀x φ(x,P (x)). The key idea is to reduce the problem from 2QBF to
SAT by sampling the space of inputs, which eliminates the universal
quantification over x.

Finally, we show how to encode the resulting SAT problem in re-
lational logic, and how this encoding can be used to solve a range of
related problems that arise in synthesis, from verification to program
state repair. We will conclude with open problems on constraint-based
synthesis.

P. Madhusudan and S.A. Seshia (Eds.): CAV 2012, LNCS 7358, p. 3, 2012.
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IC3 and beyond:

Incremental, Inductive Verification

Aaron R. Bradley

ECEE Department, University of Colorado at Boulder
bradleya@colorado.edu

IC3, a SAT-based safety model checking algorithm introduced in 2010 [1, 2],
is considered among the best safety model checkers. This tutorial discusses its
essential ideas: the use of concrete states, called counterexamples to induction,
to motivate lemma discovery; the incremental application of induction to gener-
ate the lemmas; and the use of stepwise assumptions to allow dynamic shifting
between inductive lemma generation and propagation of lemmas as predicates.

Two perspectives on IC3 are offered: IC3 as proof finder, which highlights its
ability to find mutually inductive lemmas, a crucial element of its robustness;
and IC3 as bug finder, which shows that IC3’s choices with respect to proof
obligations result in a heuristically guided search. The latter perspective casts
lemmas as refinements of estimates of states’ proximities to initial states. These
estimates guide the backward construction of potential counterexample traces.

IC3’s context is then discussed: its evolution from earlier work and how it
compares to other algorithms. Finally, the broader idea of incremental, induc-
tive verification (IIV), of which IC3 is just one example, is explored. The IIV
perspective has motivated new algorithms for analyzing ω-regular properties [4]
and CTL properties [5].

A recent tutorial paper [3] provides a conceptual exposition of IC3, while an
earlier tutorial paper [6] illustrates IC3’s workings through detailed examples.
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Formal Verification of Genetic Circuits�

Chris J. Myers

University of Utah
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Abstract. Researchers are beginning to be able to engineer synthetic
genetic circuits for a range of applications in the environmental, medical,
and energy domains [1]. Crucial to the success of these efforts is the de-
velopment of methods and tools to verify the correctness of these designs.
This verification though is complicated by the fact that genetic circuit
components are inherently noisy making their behavior asynchronous,
analog, and stochastic in nature [2]. Therefore, rather than definite re-
sults, researchers are often interested in the probability of the system
reaching a given state within a certain amount of time. Usually, this
involves simulating the system to produce some time series data and
analyzing this data to discern the state probabilities. However, as the
complexity of models of genetic circuits grow, it becomes more difficult
for researchers to reason about the different states by looking only at
time series simulation results of the models. To address this problem,
techniques from the formal verification community, such as stochastic
model checking, can be leveraged [3,4]. This tutorial will introduce the
basic biology concepts needed to understand genetic circuits, as well as,
the modeling and analysis techniques currently being employed. Finally,
it will give insight into how formal verification techniques can be applied
to genetic circuits.
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From C to Infinity and Back:

Unbounded Auto-active Verification with VCC

Micha�l Moskal

Microsoft Research Redmond
michal.moskal@microsoft.com

Abstract. In this tutorial I’ll show how to prove deep functional prop-
erties of tricky sequential and concurrent C programs using VCC. I’ll
get into induction, termination, algebraic data types, infinite maps, and
lemmas, all unified as ghost data and C-like code manipulating it. Once
these are provided, verification is automatic, but the development pro-
cess of such annotations tends to be very interactive, thus “auto-active
verification” using C as a proof language.

VCC [1] is an industrial-strength verification environment for low-level
concurrent systems code written in C. VCC takes a program (annotated
with function contracts, state assertions, and type invariants) and at-
tempts to prove the correctness of these annotations. VCC’s verification
methodology [3] allows global two-state invariants that restrict update of
shared state and enforces simple, semantic conditions sufficient for check-
ing those global invariants modularly. VCC works by translating C, via
the Boogie intermediate verification language, to verification conditions
handled by the Z3 SMT solver.

The environment includes tools for monitoring proof attempts and
constructing partial counterexample executions for failed proofs and has
been used to verify functional correctness of tens of thousands of lines of
Microsoft’s Hyper-V virtualization platform and of SYSGO’s embedded
real-time operating system PikeOS.

VCC is available with sources for non-commercial use at
http://vcc.codeplex.com/, and online at http://rise4fun.com/Vcc.
A tutorial [2] is also provided.
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Deterministic Automata

for the (F,G)-Fragment of LTL
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{jan.kretinsky,esparza}@in.tum.de

2 Faculty of Informatics, Masaryk University, Brno, Czech Republic

Abstract. When dealing with linear temporal logic properties in the
setting of e.g. games or probabilistic systems, one often needs to express
them as deterministic omega-automata. In order to translate LTL to de-
terministic omega-automata, the traditional approach first translates the
formula to a non-deterministic Büchi automaton. Then a determiniza-
tion procedure such as of Safra is performed yielding a deterministic
ω-automaton. We present a direct translation of the (F,G)-fragment of
LTL into deterministic ω-automata with no determinization procedure
involved. Since our approach is tailored to LTL, we often avoid the typ-
ically unnecessarily large blowup caused by general determinization al-
gorithms. We investigate the complexity of this translation and provide
experimental results and compare them to the traditional method.

1 Introduction

The ω-regular languages play a crucial role in formal verification of linear time
properties, both from a theoretical and a practical point of view. For model-
checking purposes one can comfortably represent them using nondeterministic
Büchi automata (NBW), since one only needs to check emptiness of the in-
tersection of two NBWs corresponding to the system and the negation of the
property, and NBWs are closed under intersection. However, two increasingly
important problems require to represent ω-regular languages by means of de-
terministic automata. The first one is synthesis of reactive modules for LTL
specifications, which was theoretically solved by Pnueli and Rosner more than
20 years ago [PR88], but is recently receiving a lot of attention (see the refer-
ences below). The second one is model checking Markov decision processes (see
e.g. [BK08]), where impressive advances in algorithmic development and tool
support are quickly extending the range of applications.

It is well known that NBWs are strictly more expressive then their deter-
ministic counterpart, and so cannot be determinized. The standard theoretical
solution to this problem is to translate NBW into deterministic Rabin automata
(DRW) using Safra’s construction [Saf88] or a recent improvement by Piterman

� The author is a holder of Brno PhD Talent Financial Aid and is supported by the
Czech Science Foundation, grant No. P202/12/G061.

P. Madhusudan and S.A. Seshia (Eds.): CAV 2012, LNCS 7358, pp. 7–22, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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[Pit06]. However, it is commonly accepted that Safra’s construction is difficult
to handle algorithmically due to its “messy state space” [Kup12]. Many pos-
sible strategies for solving this problem have been investigated. A first one is
to avoid Safra’s construction altogether. A Safraless approach that reduces the
synthesis problem to emptiness of nondeterministic Büchi tree automata has
been proposed in [KV05, KPV06]. The approach has had considerable success,
and has been implemented in [JB06]. Another strategy is to use heuristics to
improve Safra’s construction, a path that has been followed in [KB06, KB07]
and has produced the ltl2dstar tool [Kle]. Finally, a third strategy is to search
for more efficient or simpler algorithms for subclasses of ω-regular languages.
A natural choice is to investigate classes of LTL formulas. While LTL is not as
expressive as NBW, the complexity of the translation of LTL to DRW still has

22
Θ(n)

complexity [KR10]. However, the structure of NBWs for LTL formulas
can be exploited to construct a symbolic description of a deterministic parity
automaton [MS08]. Fragments of LTL have also been studied. In [AT04], single
exponential translations for some simple fragments are presented. Piterman et
al. propose in [PPS06] a construction for reactivity(1) formulas that produces
in cubic time a symbolic representation of the automaton. The construction has
been implemented in the ANZU tool [JGWB07].

Despite this impressive body of work, the problem cannot yet be considered
solved. This is particularly so for applications to probabilistic model checking.
Since probabilistic model checkers need to deal with linear arithmetic, they profit
much less from sophisticated symbolic representations like those used in [PPS06,
MS08], or from the Safraless approach which requires to use tree automata. In
fact, to the best of our knowledge no work has been done so far in this direction.
The most successful approach so far is the one followed by the ltl2dstar tool,
which explicitly constructs a reduced DRW. In particular, the ltl2dstar has been
reimplemented in PRISM [KNP11], the leading probabilistic model checker.

However, the work carried in [KB06, KB07] has not considered the devel-
opment of specific algorithms for fragments of LTL. This is the question we
investigate in this paper: is it possible to improve on the results of ltl2dstar
by restricting attention to a subset of LTL? We give an affirmative answer by
providing a very simple construction for the (F,G)-fragment of LTL, i.e., the
fragment generated by boolean operations and the temporal operators F and G.
Our construction is still double exponential in the worst case, but is algorithmi-
cally very simple. We construct a deterministic Muller automaton for a formula
ϕ of the fragment with a very simple state space: boolean combinations of for-
mulas of the closure of ϕ. This makes the construction very suitable for applying
reductions based on logical equivalences: whenever some logical rule shows that
two states are logically equivalent, they can be merged. (This fact is also crucial
for the success of the constructions from LTL to NBW.) Since the number of
Muller accepting sets can be very large, we also show that the Muller condition
of our automata admits a compact representation as a generalized Rabin accep-
tance condition. We also show how to efficiently transform this automaton to a
standard Rabin automaton. Finally, we report on an implementation of the
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construction, and present a comparison with ltl2dstar. We show that our con-
struction leads to substantially smaller automata for formulas expressing typi-
cal fairness conditions, which play a very important rôle in probabilistic model
checking. For instance, while ltl2dstar produces an automaton with over one
million states for the formula

∧3
i=1(GFai → GFbi), our construction delivers

an automaton with 1560 states.

2 Linear Temporal Logic

This section recalls the notion of linear temporal logic (LTL) [Pnu77].

Definition 1 (LTL Syntax). The formulae of the (F,G)-fragment of linear
temporal logic are given by the following syntax:

ϕ ::= a | ¬a | ϕ ∧ ϕ | ϕ ∨ ϕ | Fϕ | Gϕ

where a ranges over a finite fixed set Ap of atomic propositions.

We use the standard abbreviations tt := a ∨ ¬a, ff ; = a ∧ ¬a. We only have
negations of atomic propositions, as negations can be pushed inside due to the
equivalence of Fϕ and ¬G¬ϕ.

Definition 2 (LTL Semantics). Let w ∈ (2Ap)ω be a word. The ith letter of
w is denoted w[i], i.e. w = w[0]w[1] · · · . Further, we define the ith suffix of w as
wi = w[i]w[i+1] · · · . The semantics of a formula on w is then defined inductively
as follows:

w |= a ⇐⇒ a ∈ w[0]
w |= ¬a ⇐⇒ a /∈ w[0]
w |= ϕ ∧ ψ ⇐⇒ w |= ϕ and w |= ψ

w |= ϕ ∨ ψ ⇐⇒ w |= ϕ or w |= ψ

w |= Fϕ ⇐⇒ ∃ k ∈ N : wk |= ϕ

w |= Gϕ ⇐⇒ ∀ k ∈ N : wk |= ϕ

We define a symbolic one-step unfolding U of a formula inductively by the fol-
lowing rules, where the symbol X intuitively corresponds to the meaning of the
standard next operator.

U(a) = a

U(¬a) = ¬a
U(ϕ ∧ ψ) = U(ϕ) ∧ U(ψ)

U(ϕ ∨ ψ) = U(ϕ) ∨ U(ψ)

U(Fϕ) = U(ϕ) ∨XFϕ

U(Gϕ) = U(ϕ) ∧XGϕ

Example 3. Consider ϕ = Fa∧GFb. Then U(ϕ) = (a∨XFa)∧(b∨XFb)∧XGFb.
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3 Deterministic Automaton for the (F,G)-Fragment

Let ϕ be an arbitrary but fixed formula. In the following, we construct a deter-
ministic finite ω-automaton that recognizes the words satisfying ϕ. The definition
of the acceptance condition and its variants follow in the subsequent sections.
We start with a construction of the state space. The idea is that a state cor-
responds to a formula that needs to be satisfied when coming into this state.
After evaluating the formulae on the propositions currently read, the next state
will be given by what remains in the one-step unfold of the formula. E.g. for
Example 3 and reading a, the successor state needs to satisfy Fb ∧GFb.

In the classical syntactic model constructions, the states are usually given by
sets of subformulae of ϕ. This corresponds to the conjunction of these subformu-
lae. The main difference in our approach is the use of both conjunctions and also
disjunctions that allow us to dispose of non-determinism in the corresponding
transition function. In order to formalize this, we need some notation.

Let F and G denote the set of all subformulae of ϕ of the form Fψ and
Gψ, respectively. Further, all temporal subformulae are denoted by a shorthand
T := F ∪G. Finally, for a set of formulae Ψ , we denote XΨ := {Xψ | ψ ∈ Ψ}.

We denote the closure of ϕ by C(ϕ) := Ap∪{¬a | a ∈ Ap}∪XT. Then U(ϕ) is

a positive Boolean combination over C(ϕ). By states(ϕ) we denote the set 22
C(ϕ)

.
Each element of states(ϕ) is a positive Boolean function over C(ϕ) and we often
use a positive Boolean formula as its representative. For instance, the definition
of U is clearly independent of the choice of representative, hence we abuse the

notation and apply U to elements of states(ϕ). Note that | states(ϕ)| ∈ O(22|ϕ|
)

where |ϕ| denotes the length of ϕ.
Our state space has two components. Beside the logical component, we also

keep track of one-step history of the word read. We usually use letters ψ, χ when
speaking about the former component and α, β for the latter one.

Definition 4. Given a formula ϕ, we define A(ϕ) = (Q, i, δ) to be a determin-
istic finite automaton over Σ = 2Ap given by

– the set of states Q = {i} ∪
(
states(ϕ) × 2Ap

)
– the initial state i;
– the transition function

δ = {
(
i, α, 〈U(ϕ), α〉

)
| α ∈ Σ} ∪ {

(
〈ψ,α〉, β, 〈succ(ψ,α), β〉

)
| 〈ψ,α〉 ∈ Q, β ∈ Σ}

where succ(ψ, α) = U(next(ψ[α �→ tt, Ap \α �→ ff ]) where next(ψ′) removes
X’s from ψ′ and ψ[T �→ tt, F �→ ff ] denotes the equivalence class of formulae
where in ψ we substitute tt for all elements of T and ff for all elements of
F .

Intuitively, a state 〈ψ, α〉 of Q corresponds to the situation where ψ needs to be
satisfied and α is being read.
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Example 5. The automaton for Fa with Ap = {a} is depicted in the following
figure. The automaton is obviously unnecessarily large, one can expect to merge
e.g. the two states bearing the requirement tt as the proposition a is irrelevant
for satisfaction of tt that does not even contain it. For the sake of simplicity, we
leave all possible combinations here and comment on this in Section 8.

istart 〈a ∨XFa, {a}〉

〈a ∨XFa, ∅〉

〈tt, {a}〉

〈tt, ∅〉

{a}

∅

{a}

∅
a

∅

{a}

∅

∅

{a}

The reader might be surprised or even annoyed by the fact that the logical
structure of the state space is not sufficient to keep enough information to decide
whether a run ρ is accepting. In order to ensure this, we remember one-step
history in the state. Why is that? Consider ϕ = GF(a ∧Fb). Its unfold is then

XGF(a ∧ Fb) ∧
(
XF(a ∧Fb) ∨

(
a ∧ (b ∨XFb)

))
(∗)

Then moving under {a} results into the requirementGF(a∧Fb)∧
(
F(a∧Fb)∨Fb

)
for the next step where the alternative of pure Fb signals progress made by not
having to wait for an a. Nevertheless, the unfold of this formula is propositionally
equivalent to (∗). This is indeed correct as the two formulae are temporally
equivalent (i.e. in LTL semantics). Thus, the information about the read a is not
kept in the state and the information about this partial progress is lost! And
now the next step under both {b} and ∅ again lead to the same requirement
GF(a ∧ Fb) ∧ F(a ∧ Fb). Therefore, there is no information that if b is read,
then it can be matched with the previous a and we already have one satisfaction
of (infinitely many required satisfactions of) F(a ∧ Fb) compared to reading ∅.
Hence, the runs on ({a}{b})ω and ({a}∅)ω are the same while the former should
be accepting and the latter rejecting. However, this can be fixed by remembering
the one-step history and using the acceptance condition defined in the following
section.

4 Muller Acceptance Condition

In this section, we introduce a Muller acceptance condition. In general, the num-
ber of sets in a Muller condition can be exponentially larger than the size of the
automaton. Therefore, we investigate the particular structure of the condition. In
the next section, we provide a much more compact whilst still useful description
of the condition. Before giving the formal definition, let us show an example.
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Example 6. Let ϕ = F(Ga∨Gb). The corresponding automaton is depicted be-
low, for clarity, we omit the initial state. Observe that the formula stays the same
and the only part that changes is the letter currently read that we remember
in the state. The reason why is that ϕ can neither fail in finite time (there is
always time to fulfill it), nor can be partially satisfied (no progress counts in this
formula, only the infinite suffix). However, at some finite time the argument of
F needs to be satisfied. Although we cannot know when and whether due to Ga
or Gb, we know it is due to one of these (or both) happening. Thus we may shift
the non-determinism to the acceptance condition, which says here: accept if the
states where a holds are ultimately never left, or the same happens for b. The
commitment to e.g. ultimately satisfying Ga can then be proved by checking
that all infinitely often visited states read a.

〈U(ϕ), ∅〉 〈U(ϕ), {a}〉

〈U(ϕ), {b}〉 〈U(ϕ), {a, b}〉

∅

{a}

{b}
{a, b}

{a}

∅

{b} {a, b}

{b}

∅ {a}

{a, b}

{a, b}

∅

{a}

{b}

We now formalize this idea. Let ϕ be a formula and A(ϕ) = (Q, i, δ) its corre-
sponding automaton. Consider a formula χ as a Boolean function over elements
of C(ϕ). For sets T, F ⊆ C(ϕ), let χ[T �→ tt, F �→ ff ] denote the formula where tt
is substituted for elements of T , and ff for F . As elements of C(ϕ) are considered
to be atomic expressions here, the substitution is only done on the propositional
level and does not go through the modality, e.g. (a∨XGa)[a→ ff ] = ff ∨XGa,
which is equivalent to XGa in the propositional semantics.

Further, for a formula χ and α ∈ Σ and I ⊆ T, we put I |=α χ to denote that

χ[α ∪ I �→ tt, Ap \ α �→ ff ]

is equivalent to tt in the propositional semantics. We use this notation to describe
that we rely on a commitment to satisfy all formulae of I.

Definition 7 (Muller acceptance). A set M ⊆ Q is Muller accepting for a
set I ⊆ T if the following is satisfied:

1. for each (χ, α) ∈M , we have XI |=α χ,
2. for each Fψ ∈ I there is (χ, α) ∈M with I |=α ψ,
3. for each Gψ ∈ I and for each (χ, α) ∈M we have I |=α ψ.

A set F ⊆ Q is Muller accepting (for ϕ) if it is Muller accepting for some I ⊆ T.
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The first condition ensures that the commitment to formulae in I being ulti-
mately satisfied infinitely often is enough to satisfy the requirements. The second
one guarantees that each F-formula is unfolded only finitely often and then sat-
isfied, while the third one guarantees that G-formulae indeed ultimately hold.
Note that it may be impossible to see the satisfaction of a formula directly and
one must rely on further promises, formulae of smaller size. In the end, promising
the atomic proposition is not necessary and is proven directly from the second
component of the state space.

4.1 Correctness

Given a formula ϕ, we have defined a Muller automaton A(ϕ) and we let the
acceptance conditionM(ϕ) = {M1, . . . ,Mk} be given by all the Muller accepting
sets Mi for ϕ. Every word w : N → 2Ap induces a run ρ = A(ϕ)(w) : N → Q
starting in i and following δ. The run is thus accepting and the word is accepted
if the set of states visited infinitely often Inf(ρ) is Muller accepting for ϕ. Vice
versa, a run ρ = i(χ1, α1)(χ2, α2) · · · induces a word Ap(ρ) = α1α2 · · · . We now
prove that this acceptance condition is sound and complete.

Theorem 8. Let ϕ be a formula and w a word. Then w is accepted by the
deterministic automaton A(ϕ) with the Muller condition M(ϕ) if and only if
w |= ϕ.

We start by proving that the first component of the state space takes care of all
progress or failure in finite time.

Proposition 9 (Local (finitary) correctness). Let w be a word and
A(ϕ)(w) = i(χ0, α0)(χ1, α1) · · · the corresponding run. Then for all n ∈ N,
we have w |= ϕ if and only if wn |= χn.

Proof (Sketch). The one-step unfold produces a temporally equivalent (w.r.t. LTL
satisfaction) formula. The unfold is a Boolean function over atomic propositions
and elements of XT. Therefore, this unfold is satisfied if and only if the next
state satisfies next(ψ) where ψ is the result of partial application of the Boolean
function to the currently read letter of the word. We conclude by induction. ��

Further, each occurrence of satisfaction of F must happen in finite time. As a
consequence, a run with χi �≡ ff is rejecting if and only if satisfaction of some
Fψ is always postponed.

Proposition 10 (Completeness). If w |= ϕ then Inf(A(ϕ)(w)) is a Muller
accepting set.

Proof. Let us show that M := Inf(A(ϕ)(w)) is Muller accepting for

I := {ψ ∈ F | w |= Gψ} ∪ {ψ ∈ G | w |= Fψ}

As a technical device we use the following. For every finite Boolean combination
ψ of elements of the closure C, there are only finitely many options to satisfy
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it, each corresponding to a subset of C. Therefore, if wi |= ψ for infinitely many
i ∈ N then at least one of the options has to recur. More precisely, for some subset
α ⊆ Ap there are infinitely many i ∈ N with wi |= ψ ∪ α ∪ {¬a | a ∈ Ap \ α}.
For each such α we pick one subset Iχ,α ⊆ T such that for infinitely many i,
after reading wi = w[0] · · ·w[i] we are in state (χ, α) and wi |= ψ ∪XIχ,α, and
Iχ,α |=α ψ. We say that we have a recurring set Iχ,α modelling ψ (for a state
(χ, α)). Obviously, the recurring sets for all states are included in I, i.e. Iχ,α ⊆ I
for every (χ, α) ∈ Q.

Let us now proceed with proving the three conditions of Definition 7 for M
and I.

Condition 1. Let (χ, α) ∈M . Since w |= ϕ, by Proposition 9 wi |= χ whenever
we enter (χ, α) after reading wi, which happens for infinitely many i ∈ N. Hence
we have a recurring set Iχ,α modelling χ. Since Iχ,α |=α χ, we get also I |=α χ
by Iχ,α ⊆ I.

Condition 2. Let Fψ ∈ I, then w |= GFψ. Since there are finitely many
states, there is (χ, α) ∈ M for which after infinitely many entrances by wi it
holds wi |= ψ by Proposition 9, hence we have a recurring set Iχ,α modelling ψ
and conclude as above.

Condition 3. Let Gψ ∈ I, then w |= FGψ. Hence for every (χ, α) ∈ M
infinitely many wi leading to (χ, α) satisfy wi |= ψ by Proposition 9, hence we
have a recurring set Iχ,α modelling ψ and conclude as above. ��
Before proving the opposite direction of the theorem, we provide a property of
Muller accepting sets opposite to the previous proposition.

Lemma 11. Let ρ be a run. If Inf(ρ) is Muller accepting for I then Ap(ρ) |= Gψ
for each ψ ∈ I ∩ F and Ap(ρ) |= Fψ for each ψ ∈ I ∩G.

Proof. Denote w = Ap(ρ). Let us first assume ψ ∈ I ∩ F and wj �|= ψ for
all j ≥ i ∈ N. Since ψ ∈ I ∩ F, for infinitely many j, ρ passes through some
(χ, α) ∈ Inf(ρ) for which I |=α ψ. Hence, there is ψ1 ∈ I which is a subformula
of ψ such that for infinitely many i, wi �|= ψ1. If ψ1 ∈ F, we proceed as above;
similarly for ψ1 ∈ G. Since we always get a smaller subformula, at some point
we obtain either ψn = Fβ or ψn = Gβ with β a Boolean combination over Ap
and we get a contradiction with the second or the third point of Definition 7,
respectively. ��

In other words, if we have a Muller accepting set for I then all elements of I
hold true in wi for almost all i.

Proposition 12 (Soundness). If Inf(A(ϕ)(w)) is a Muller accepting set then
w |= ϕ.

Proof. Let M := Inf(A(ϕ)(w)) be a Muller accepting set for some I. There is
i ∈ N such that after reading wi we come to (χ, α) and stay in Inf(A(ϕ)(w)) from
now on and, moreover, wi |= ψ for all ψ ∈ I by Lemma 11. For a contradiction,
let w �|= ϕ. By Proposition 9 we thus get wi �|= χ. By the first condition of
Definition 7, we get I |=α χ. Therefore, there is ψ ∈ I such that wi �|= ψ, a
contradiction. ��
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5 Generalized Rabin Condition

In this section, we investigate the structure of the previously defined Muller
condition and propose a new type of acceptance condition that compactly, yet
reasonably explicitly captures the accepting sets.

Let us first consider a fixed I ⊆ T and examine all Muller accepting sets for I.
The first condition of Definition 7 requires not to leave the set of states {(χ, α |
I |=α χ)}. Similarly, the third condition is a conjunction of |I∩G| conditions not
to leave sets {(χ, α) | I |=α ψ} for each Gψ ∈ I. Both conditions thus together
require that certain set (complement of the intersection of the above sets) is
visited only finitely often. On the other hand, the second condition requires to
visit certain sets infinitely often. Indeed, for each Fψ the set {(χ, α) | I |=α ψ}
must be visited infinitely often.

Furthermore, a set is accepting if the conditions above hold for some set I.
Hence, the acceptance condition can now be expressed as a positive Boolean
combination over Rabin pairs in a similar way as the standard Rabin condition
is a disjunction of Rabin pairs.

Example 13. Let us consider the (strong) fairness constraint ϕ = FGa ∨GFb.
Since each atomic proposition has both F and G as ancestors in the syntactic
tree, it is easy to see that there is only one reachable element of states(ϕ) and
the state space of A is {i} ∪ 2{a,b}, i.e. of size 1 + 22 = 5. Furthermore, the
syntactic tree of U(ϕ) = XFGa∨ (XGa∧a)∨ (XGFb∧ (XFb∨ b)) immediately
determines possible sets I. These either contain Ga (possibly with also FGa or
some other elements) or GFb,Fb. The first option generates the requirement to
visit states with ¬a only finitely often, the second one to visit b infinitely often.
Thus the condition can be written as

({q | q |= ¬a}, Q) ∨ (∅, {q | q |= b})

and is in fact a Rabin acceptance condition.

We formalize this new type of acceptance condition as follows.

Definition 14 (Generalized Rabin Automaton). A generalized Rabin au-
tomaton is a (deterministic) ω-automaton A = (Q, i, δ) over some alphabet Σ,
where Q is a set of states, i is the initial state, δ : Q × Σ → Q is a transition
function, together with a generalized Rabin condition GR ∈ B+(2Q×2Q). A run
ρ of A is accepting if Inf(ρ) |= GR, which is defined inductively as follows:

Inf(ρ) |= ϕ ∧ ψ ⇐⇒ Inf(ρ) |= ϕ and Inf(ρ) |= ψ

Inf(ρ) |= ϕ ∨ ψ ⇐⇒ Inf(ρ) |= ϕ or Inf(ρ) |= ψ

Inf(ρ) |= (F, I) ⇐⇒ F ∩ Inf(ρ) = ∅ and I ∩ Inf(ρ) �= ∅

The generalized Rabin condition corresponding to the previously defined Muller
condition M can now be formalized as follows.
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Definition 15 (Generalized Rabin Acceptance). Let ϕ be a formula. The
generalized Rabin condition GR(ϕ) is

∨
I⊆T

⎛⎝({(χ, α) | I �|=α χ ∧
∧

Gψ∈I
ψ}, Q

)
∧
∧

Fω∈I

(
∅, {(χ, α) | I |=α ω}

)⎞⎠
By the argumentation above, we get the equivalence of the Muller and the gen-
eralized Rabin conditions for ϕ and thus the following.

Proposition 16. Let ϕ be a formula and w a word. Then w is accepted by the
deterministic automaton A(ϕ) with the generalized Rabin condition GR(ϕ) if
and only if w |= ϕ.

Example 17. Let us consider a conjunction of two (strong) fairness constraints
ϕ = (FGa ∨GFb) ∧ (FGc ∨GFd). Since each atomic proposition is wrapped
in either FG or GF, there is again only one relevant element of states(ϕ) and
the state space of A is {i}∪ 2{a,b,c,d}, i.e. of size 1 + 24 = 17. From the previous
example, we already know the disjunctions correspond to (¬a,Q) ∨ (∅, b) and
(¬c,Q) ∨ (∅, d). Thus for the whole conjunction, we get a generalized Rabin
condition (

(¬a,Q) ∨ (∅, b)
)
∧
(
(¬c,Q) ∨ (∅, d)

)
6 Rabin Condition

In this section, we briefly describe how to obtain a Rabin automaton from A(ϕ)
and the generalized Rabin condition GR(ϕ) of Definition 15. For a fixed I, the
whole conjunction of Definition 15 corresponds to the intersection of automata
with different Rabin conditions. In order to obtain the intersection, one has first
to construct the product of the automata, which in this case is still the original
automaton with the state space Q, as they are all the same. Further, satisfying

(G,Q) ∧
∧

f∈F :=I∩F

(∅, Ff )

amounts to visiting G only finitely often and each Ff infinitely often. To check
the latter (for a non-empty conjunction), it is sufficient to multiply the state
space by F with the standard trick that we leave the fth copy once we visit Ff
and immediately go to the next copy. The resulting Rabin pair is thus(

G×F , Ff̄ × {f̄}
)

for an arbitrary fixed f̄ ∈ F .
As for the disjunction, Rabin condition is closed under it as it simply takes

the union of the pairs when the two automata have the same state space. In our
case, one can multiply the state space of each disjunct corresponding to I by all
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J ∩ F for each J ∈ 2T \ {I} to get the same state space for all of them. We thus
get a bound for the state space ∏

I⊆T

|I ∩ F| · |Q|

Example 18. The construction of Definition 15 for the two fairness constraints
Example 17 yields

(¬a ∨ ¬c,Q) ∨ (¬a, d) ∨ (¬c, b) ∨
(
(∅, b) ∧ (∅, d)

)
where we omitted all pairs (F, I) for which we already have a pair (F ′, I ′) with
F ⊆ F ′ and I ⊇ I ′. One can eliminate the conjunction as described above at the
cost of multiplying the state space by two. The corresponding Rabin automaton
thus has 2 · 1 · |{i} ∪ 2Ap| = 34 states. (Of course, for instance the initial state
need not be duplicated, but for the sake of simplicity of the construction we
avoid any optimizations.)

For a conjunction of three conditions, ϕ = (FGa ∨GFb) ∧ (FGc ∨GFd) ∧
(FGe∨GFf), the right components of the Rabin pairs correspond to tt, b, d, f, b∧
d, b ∧ f, d ∧ f, b ∧ d ∧ f . The multiplication factor to obtain a Rabin automaton
is thus 2 · 2 · 2 · 3 = 24 and the state space is of the size 24 · 1 · (1 + 26) = 1560.

7 Complexity

In this section, we summarize the theoretical complexity bounds we have ob-
tained.

The traditional approach first translates the formula ϕ of length n into a non-
deterministic automaton of size O(2n). Then the determinization follows. The
construction of Safra has the complexity mO(m) where m is the size of the input
automaton [Saf88]. This is in general optimal. The overall complexity is thus

2n·O(2n) = 2O(2n+logn)

The recent lower bound for the whole LTL is 22
Ω(n)

[KR10]. However, to be more
precise, the example is of size less than 2O(2n). Hence, there is a small gap. To
the authors’ best knowledge, there is no better upper bound when restricting to
automata arising from LTL formulae or from the full (F,G)-fragment. (There
are results on smaller fragments [AT04] though.) We tighten this gap slightly as
shown below. Further, note that the number of Rabin pairs is O(m) = O(2n).

Our construction first produces a Muller automaton of size

O(22|T| · 2|Ap|) = O(22n+n) ⊆ 2O(2n)

which is strictly less than in the traditional approach. Moreover, as already
discussed in Example 13, one can consider an “infinitary” fragment where every
atomic proposition has in the syntactic tree both Fand Gas some ancestors.
In this fragment, the state space of the Muller/generalized Rabin automaton
is simply 2Ap (when omitting the initial state) as for all α ⊆ Ap, we have
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succ(ϕ, α) = ϕ. This is useful, since for e.g. fairness constraints our procedure
yields exponentially smaller automaton.

Although the size of the Muller acceptance condition can be potentially expo-
nentially larger than the state space, we have shown it can be compactly written
as a disjunction of up to 2n of conjunctions each of size at most n.

Moreover, using the intersection procedure we obtain a Rabin automaton with
the upper bound on the state space

|F|2|T| · |Q| ∈ n2n · 2O(2n) = 2O(logn·2n) = 2O(2n+log log n) � 2O(2n+logn)

thus slightly improving the upper bound. Further, each conjunction is trans-
formed into one pair, we are thus left with at most 2|T| ∈ O(2n) Rabin pairs.

8 Experimental Results and Evaluation

We have implemented the construction of the state space of A(ϕ) described
above. Further, Definition 15 then provides a way to compute the multiplication
factor needed in order to get the Rabin automaton. We compare the sizes of this
generalized Rabin automaton and Rabin automaton with the Rabin automaton
produced by ltl2dstar. Ltl2dstar first calls an external translator from LTL to
non-deterministic Büchi automata. In our experiments, it is LTL2BA [GO01]
recommended by the authors of ltl2dstar. Then it performs Safra’s determiniza-
tion. Ltl2dstar implements several optimizations of Safra’s construction. The
optimizations shrink the state space by factor of 5 (saving 79.7% on average on
the formulae considered here) to 10 (89.7% on random formulae) [KB06]. Our
implementation does not perform any ad hoc optimization, since we want to eval-
uate whether the basic idea of the Safraless construction is already competitive.
The only optimizations done are the following.

– Only the reachable part of the state space is generated.
– Only atomic propositions relevant in each state are considered. In a state

(χ, α), a is not relevant if χ[a �→ tt] ≡ χ[a �→ ff ], i.e. if for every valuation,
χ has the same value no matter which value a takes. For instance, let Ap =
{a, b} and consider χ = U(Fa) = Fa ∨ a. Then instead of having four copies
(for ∅, {a}, {b}, {a, b}), there are only two for the sets of valuations {∅, {b}}
and {{a}, {a, b}}. For its successor tt, we only have one copy standing for
the whole set {∅, {a}, {b}, {a, b}}.

– Definition 15 takes a disjunction over I ∈ 2T. If I ⊆ I ′ but the set of states
(χ, α) with I |=α χ and I ′ |=α χ are the same, it is enough to consider
the disjunct for I only. E.g. for U(G(Fa ∨ Fb)), we only consider I either
{G(Fa ∨ Fb),Fa} or {G(Fa ∨ Fb),Fb}, but not their union.
This is an instance of a more general simplification. For a conjunction of
pairs (F1, I1) ∧ (F2, I2) with I1 ⊆ I2, there is a single equivalent condition
(F1 ∪ F2, I1).

Table 1 shows the results on formulae from BEEM (BEnchmarks for Explicit
Model checkers)[Pel07] and formulae from [SB00] on which ltl2dstar was origi-
nally tested [KB06]. In both cases, we only take formulae of the (F,G)-fragment.
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In the first case this is 11 out of 20, in the second 12 out of 28. There is a
slight overlap between the two sets. Further, we add conjunctions of strong
fairness conditions and a few other formulae. For each formula ϕ, we give the
number | states(ϕ)| of distinct states w.r.t. the first (logical) component. The
overall number of states of the Muller or generalized Rabin automaton follows.
The respective runtimes are not listed as they were less than a second for all
listed formulae, with the exception of the fifth formula from the bottom where
it needed 3 minutes (here ltl2dstar needed more than one day to compute the
Rabin automaton). In the column GR-factor, we describe the complexity of the
generalized Rabin condition, i.e. the number of copies of the state space that are
created to obtain an equivalent Rabin automaton, whose size is thus bounded
from above by the column Rabin. The last column states the size of the state
space of the Rabin automaton generated by ltl2dstar using LTL2BA.

Table 1. Experimental comparison to ltl2dstar on formulae of [Pel07], [SB00], fairness
constraints and some other examples of formulae of the “infinitary” fragment

Formula states Muller/GR GR-factor Rabin ltl2dstar

G(a ∨Fb) 2 5 1 5 4

FGa ∨ FGb ∨GFc 1 9 1 9 36

F(a ∨ b) 2 4 1 4 2

GF(a ∨ b) 1 3 1 3 4

G(a ∨ b ∨ c) 2 4 1 4 3

G(a ∨Fb) 2 5 1 5 4

G(a ∨F(b ∨ c)) 2 5 1 5 4

Fa ∨Gb 3 7 1 7 5

G(a ∨F(b ∧ c)) 2 5 1 5 4

(FGa ∨GFb) 1 5 1 5 12

GF(a ∨ b) ∧GF(b ∨ c) 1 5 2 10 12

(FFa ∧G¬a) ∨ (GG¬a ∧ Fa) 2 4 1 4 1

(GFa) ∧ FGb 1 5 1 5 7

(GFa ∧FGb) ∨ (FG¬a ∧ ¬b) 1 5 1 5 14

FGa ∧GFa 1 3 1 3 3

G(Fa ∧Fb) 1 5 2 10 5

Fa ∧ Fb 4 8 1 8 4

(G(b ∨GFa) ∧G(c ∨GF¬a)) ∨Gb ∨Gc 4 18 2 36 26

(G(b ∨ FGa) ∧G(c ∨ FG¬a)) ∨Gb ∨Gc 4 18 1 18 29

(F(b ∧ FGa) ∨ F(c ∧ FG¬a)) ∧ Fb ∧Fc 4 18 1 18 8

(F(b ∧GFa) ∨ F(c ∧GF¬a)) ∧Fb ∧ Fc 4 18 1 18 45

(FGa ∨GFb) 1 5 1 5 12

(FGa ∨GFb) ∧ (FGc ∨GFd) 1 17 2 34 17527∧3
i=1(GFai → GFbi) 1 65 24 1 560 1 304 706

(
∧5

i=1 GFai) → GFb 1 65 1 65 972

GF(FaGFbFG(a ∨ b)) 1 5 1 5 159

FG(Fa ∨GFb ∨ FG(a ∨ b)) 1 5 1 5 2918

FG(Fa ∨GFb ∨ FG(a ∨ b) ∨ FGb) 1 5 1 5 4516
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While the advantages of our approach over the general determinization are
clear for the infinitary fragment, there seem to be some drawbacks when “fini-
tary” behaviour is present, i.e. behaviour that can be satisfied or disproved after
finitely many steps. The reason and the patch for this are the following. Consider
the formula Fa and its automaton from Example 5. Observe that one can easily
collapse the automaton to the size of only 2. The problem is that some states
such as 〈a ∨ XFa, {a}〉 are only “passed through” and are equivalent to some
of their successors, here 〈tt, {a}〉. However, we may safely perform the following
collapse. Whenever two states (χ, α), (χ′, α) satisfy that χ[α �→ tt, Ap \ α �→ ff ]
is propositionally equivalent to χ′[α �→ tt, Ap \α �→ ff ] we may safely merge the
states as they have the same properties: they are bisimilar with the same set of
atomic propositions satisfied. Using these optimizations, e.g. the automaton for
Fa ∧ Fb has size 4 as the one produced by ltl2dstar.

Next important observation is that the blow-up from generalized Rabin to
Rabin automaton (see the column GR-factor) corresponds to the number of
elements of F that have a descendant or an ancestor in G and are combined with
conjunction. This follows directly from the transformation described in Section 6
and is illustrated in the table.

Thus, we may conclude that our approach is competitive to the determiniza-
tion approach and for some classes of useful properties such as fairness con-
straints or generally the infinitary properties it shows significant advantages.
Firstly, the state space of the Rabin automaton is noticeably smaller. Secondly,
compact generalized Rabin automata tend to be small even for more complex
formulae. Thirdly, the state spaces of our automata have a clear structure to be
exploited for further possible optimizations, which is more difficult in the case
of determinization. In short, the state space is less “messy”.

9 Discussion on Extensions

Our approach seems to be extensible to the (X,F,G)-fragment. In this setting,
instead of remembering the one-step history one needs to remember n last steps
(or have a n-step look-ahead) in order to deal with formulae such as GF(a∧Xb).
Indeed, the acceptance condition requires to visit infinitely often a state provably
satisfying a ∧ Xb. This can be done by remembering the last n symbols read,
where n can be chosen to be the nesting depth of Xs. We have not presented
this extension mainly for the sake of clarity of the construction.

Further, one could handle the positive (X,U)-fragment, where only atomic
propositions may be negated as defined above. These formulae are purely “fini-
tary” and the logical component of the state space is sufficient. Indeed, the
automaton simply accepts if and only if tt is reached and there is no need to
check any formulae that we had committed to.

For the (U,G)-fragment or the whole LTL, our approach would need to be
significantly enriched as the state space (and last n symbols read) is not sufficient
to keep enough information to decide whether a run ρ is accepting only based on
Inf(ρ). Indeed, consider a formula ϕ = GF(a∧ bUc). Then reading {a, b} results
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in the requirement GF(a ∧ bUc) ∧
(
F(a ∧ bUc) ∨ (bUc)) which is, however,

temporally equivalent to ϕ (their unfolds are propositionally equivalent). Thus,
runs on ({a, b}{c}∅)ω and ({a, b}∅{c})ω have the same set of infinitely often
visited states. Hence, the order of visiting the states matters and one needs the
history. However, words such as ({a, b}{b}n{c})ω vs. ({b}n{c})ω show that more
complicated structure is needed than last n letters. The conjecture that this
approach is extensible to the whole LTL is left open and considered for future
work.

10 Conclusions

We have shown a direct translation of the LTL fragment with operators F and
G to deterministic automata. This translation has several advantages compared
to the traditional way that goes via non-deterministic Büchi automata and then
performs determinization. First of all, in our opinion it is a lot simpler than the
determinization and its various non-trivial optimizations. Secondly, the state
space has a clear logical structure. Therefore, any work with the automata or
further optimizations seem to be conceptually easier. Moreover, many optimiza-
tions are actually done by the logic itself. Indeed, logical equivalence of the
formulae helps to shrink the state space with no further effort. In a sense, the
logical part of a state contains precisely the information that the semantics of
LTL dictates, see Proposition 9. Thirdly, the state space is—according to the
experiments—not much bigger even when compared to already optimized de-
terminization. Moreover, very often it is considerably smaller, especially for the
“infinitary” formulae; in particular, for fairness conditions. Furthermore, we have
also given a very compact deterministic ω-automaton with a small and in our
opinion reasonably simple generalized Rabin acceptance condition.

Although we presented a possible direction to extend the approach to the
whole LTL, we leave this problem open and will focus on this in future work.
Further, since only the obvious optimizations mentioned in Section 8 have been
implemented so far, there is space for further performance improvements in this
new approach.

Acknowledgement. Thanks to Andreas Gaiser for pointing out to us that
ltl2dstar constructs surprisingly large automata for fairness constraints and the
anonymous reviewers for their valuable comments.
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Abstract. We introduce consumption games, a model for discrete interactive
system with multiple resources that are consumed or reloaded independently.
More precisely, a consumption game is a finite-state graph where each transition
is labeled by a vector of resource updates, where every update is a non-positive
number or ω. The ω updates model the reloading of a given resource. Each vertex
belongs either to player � or player �, where the aim of player � is to play so
that the resources are never exhausted. We consider several natural algorithmic
problems about consumption games, and show that although these problems are
computationally hard in general, they are solvable in polynomial time for every
fixed number of resource types (i.e., the dimension of the update vectors) and
bounded resource updates.

1 Introduction

In this paper we introduce consumption games, a model for discrete interactive systems
with multiple resources that can be consumed and reloaded independently. We show that
consumption games, despite their rich modeling power, still admit efficient algorithmic
analysis for a “small” number of resource types. This property distinguishes consump-
tion games from other related models, such as games over vector addition systems or
multi-energy games (see below), that are notoriously intractable.

Roughly speaking, a consumption game is a finite-state directed graph where each
state belongs either to player � (controller) or player � (environment). Every transition
s→ t is labeled by a d-dimensional vector δ such that each component δ(i) is a non-
positive integer (encoded in binary) or ω. Intuitively, if δ(i) = −n, then the current load
of the i-th resource is decreased by n while performing s→ t, and if δ(i) = ω, then
the i-th resource can be “reloaded” to an arbitrarily high value greater than or equal to
the current load. A configuration of a consumption game is determined by the current
control state and the current load of all resources, which is a d-dimensional vector of
positive integers. A play of a consumption game is initiated in some state and some
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initial load of resources. The aim of player � is to play safely, i.e., select transitions in
his states so that the vector of current resource loads stays positive in every component
(i.e., the resources are never exhausted). Player � aims at the opposite.

The resources may correspond to fuel, electricity, money, or even more abstract enti-
ties such as time or patience. To get a better intuition behind consumption games and the
abstract problems studied in this paper, let us discuss one particular example in greater
detail.

The public transport company of Brno city1 maintains the network of public trams,
buses, trolleybuses, and boats. Due to the frequent failures and breakdowns in electri-
cal wiring, rails, railroad switches, and the transport vehicles, the company has several
emergency teams which travel from one accident to another according to the directives
received from the central supervisory office. Recently, the company was considering
the possibility of replacing their old diesel vans by new cars equipped with more eco-
logical natural gas engines. The problem is that these cars have smaller range and can
be tanked only at selected gas stations. So, it is not clear whether the cars are usable at
all, i.e., whether they can always visit a gas station on time regardless where and when
an accident happens, and what are the time delays caused by detours to gas stations.
Now we indicate how to construct the associated consumption game model and how to
rephrase the above questions formally.

We start with a standard graph G representing the city road network, i.e., the nodes
of G correspond to distinguished locations (such as crossings) and the edges correspond
to the connecting roads. Then we identify the nodes corresponding to gas stations that
sell natural gas, and to each edge (road) we assign two negative numbers corresponding
to the expected time and fuel needed to pass the road. Every morning, a car leaves a
central garage (where it is fully tanked) and returns to the same place in the evening.
The maximal number of accidents serviced per day can be safely overestimated by 12.
Our consumption game C has two resource types modeling the fuel and time in the
expected way. The fuel is consumed by passing a transition (road), and can be reloaded
by the outgoing transitions of gas stations. The time is also consumed by passing the
roads, and the only node where it can be reloaded is the central garage, but only after
completing the 12 jobs. In the states of C we remember the current job number (from 1
to 12) and the current target node. At the beginning, and also after visiting the current
target node, the next target node is selected by player �. Technically, the current target
node belongs to player�, and there is a transition for every (potential) next target node.
Performing such a transition does not consume the resources, but the information about
the next target node is stored in the chosen state, job index is increased, and the control
over the play is given back to player � who models the driver. This goes on until the job
index reaches 12. Then, player � makes no further choice, but it is possible to reload
the time resource at the node corresponding to the central garage, and hence player �
aims at returning to this place as quickly as possible (without running out of gas). Note
that C has about 12 · n2 states, where n is the number of states of G.

The question whether the new cars are usable at all can now be formalized as fol-
lows: Is there is safe strategy for player � in the initial configuration such that the fuel
resource is never reloaded to a value which is higher than the tank capacity of the car?

1 DPMB, Dopravnı́ Podnik Města Brna.
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In the initial configuration, the fuel resource is initialized to 1 because it can be immedi-
ately reloaded in the central garage, and the time resource is initialized to a “sufficiently
high value” which is efficiently computable due to the finite reload property formulated
in Corollary 7. Similarly, the extra time delays caused by detours to gas stations can be
estimated by computing the minimal initial credit for the time resource, i.e., the min-
imal initial value sufficient for performing a safe strategy, and comparing this number
with the minimal initial credit for the time resource in a simplified consumption game
where the fuel is not consumed at all (this corresponds to an ideal “infinite tank capac-
ity”). Similarly, one could also analyze the extra fuel costs, or model the consumption
of the material needed to perform the repairs, and many other aspects.

An important point of the above example is that the number of resources is relatively
small, but the number of states is large. This motivates the study of parameterized
complexity of basic decision/optimization problems for consumption games, where the
parameters are the following:

• d, the number of resources (or dimension);
• �, the maximal finite |δ(i)| such that 1 ≤ i ≤ d and δ is a label of some transition.

Main Results. For every state s of a consumption game C, we consider the following
sets of vectors (see Section 2 for precise definitions):

• Safe(s) consists of all vectors α of positive integers such that player � has a safe
strategy in the configuration (s, α). That is, Safe(s) consists of all vectors describing
a sufficient initial load of all resources needed to perform a safe strategy.
• Cover(s) consists of all vectors α of positive integers such that player � has a safe

strategy σ in the configuration (s, α) such that for every strategy π for player � and
every configuration (t, β) visited during the play determined by σ and π we have that
β ≤ α. Note that physical resources (such as fuel, water, electricity, etc.) are stored in
devices with finite capacity (tanks, batteries, etc.), and hence it is important to know
what capacities of these devices are sufficient for performing a safe strategy. These
sufficient capacities correspond to the vectors of Cover(s).

Clearly, both Safe(s) and Cover(s) are upwards closed with respect to component-wise
ordering. Hence, these sets are fully determined by their finite sets of minimal elements.
In this paper we aim at answering the very basic algorithmic problems about Safe(s) and
Cover(s), which are the following:

(A) Emptiness. For a given state s, decide whether Safe(s) = ∅ (or Cover(s) = ∅).
(B) Membership. For a given state s and a vector α, decide whether α ∈ Safe(s)

(or α ∈ Cover(s)). Further, decide whether α is a minimal vector of Safe(s) (or
Cover(s)).

(C) Compute the set of minimal vectors of Safe(s) (or Cover(s)).

Note that these problems subsume the questions of our motivating example. We show
that all of these problems are computationally hard, but solvable in polynomial time
for every fixed choice of the parameters d and � introduced above. Since the degree of
the bounding polynomial increases with the size of the parameters, we do not provide
fixed-parameter tractability results in the usual sense of parameterized complexity (as it
is mentioned in Section 3, this would imply a solution to a long-standing open problem
in study of graph games). Still, these results clearly show that for “small” parameter
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values, the above problems are practically solvable even if the underlying graph of C is
very large. More precisely, we show the following for game graphs with n states:

• The emptiness problems for Safe(s) and Cover(s) are coNP-complete, and solvable
in O(d! · nd+1) time.
• The membership problems for Safe(s) and Cover(s) are PSPACE-hard and solvable

in time |α| · (d · � · n)O(d) and O(Λ2 · n2), respectively, where |α| is the encoding size
of α and Λ = Πd

i=1α(i).
• The set of minimal elements of Safe(s) and Cover(s) is computable in time

(d · � · n)O(d) and (d · � · n)O(d·d!), respectively.

Then, in Section 4, we show that the complexity of some of the above problems can
be substantially improved for two natural subclasses of one-player and decreasing con-
sumption games by employing special methods. A consumption game is one-player if
all states are controlled by player �, and decreasing if every resource is either reloaded
or decreased along every cycle in the graph of C. For example, the game constructed in
our motivating example is decreasing, and we give a motivating example for one-player
consumption games in Section 4. In particular, we prove that

• the emptiness problem for Safe(s) and Cover(s) is solvable in polynomial time both
for one-player and decreasing consumption games;
• the membership problem for Safe(s) is PSPACE-complete (resp. NP-complete) for

decreasing consumption games (resp. one-player consumption games).
• Furthermore, for both these subclasses we present algorithms to compute the mini-

mal elements of Safe(s) by a reduction to minimum multi-distance reachability prob-
lem, and solving the minimum multi-distance reachability problem on game graphs.
Though these algorithms do not improve the worst case complexity over general con-
sumption games, they are iterative and potentially terminate much earlier (we refer
to Section 4.3 and Section 4.4 for details).

Related Work. Our model of consumption games is related but incomparable to en-
ergy games studied in the literature. In energy games both positive and non-positive
weights are allowed, but in contrast to consumption games there are no ω-weights. En-
ergy games with single resource type were introduced in [5], and it was shown that the
minimal initial credit problem (and also the membership problem for Safe(s)) can be
solved in exponential time. Further, it follows from the results of [5] that the empti-
ness problem for Safe(s), which was shown to be equivalent to two-player mean-payoff
games [2], lies in NP ∩ coNP.

Games over extended vector addition systems with states (eVASS games), where
the weights in transition labels are in {−1, 0, 1, ω}, were introduced and studied in
[4]. In [4], it was shown that the question whether player � has a safe strategy in a
given configuration is decidable, and the winning region of player � is computable in
(d − 1)-EXPTIME, where d is the eVASS dimension, and hence the provided solution
is impractical even for very small d’s. A closely related model of energy games with
multiple resource types (or multi-energy games) was considered in [7]. The minimal
initial credit problem (and also the membership problem for Safe(s)) for multi-energy
games can be reduced to the corresponding problem over eVASS games with an expo-
nential reduction to encode the integer weights into weights {−1, 0, 1}. Thus the minimal
initial credit problem can be solved in d-EXPTIME, and the membership problem is
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EXPSPACE-hard (the hardness follows from the classical result of Lipton [12]). The
emptiness problem for Safe(s) is coNP-complete for multi-energy games [7]. Thus the
complexity of the membership and the minimal initial credit problem for consump-
tion games is much better (it is in EXPTIME and PSPACE-hard and can be solved
in polynomial time for every fixed choice of the parameters) as compared to eVASS
games or multi-energy games (EXPSPACE-hard and can be solved in d-EXPTIME).
For eVASS games with fixed dimensions, the problem can be solved in polynomial time
for d = 2 (see [6]), and it is open whether the complexity can be improved for other con-
stants. Moreover, for the important subclasses of one-player and decreasing consump-
tion games we show much better bounds (polynomial time algorithms for emptiness
and optimal complexity bounds for membership in Safe(s)).

The paper is organized as follows. After presenting necessary definitions in Sec-
tion 2, we present our solution to the three algorithmic problems (A)-(C) for general
consumption games in Section 3. In Section 4, we concentrate on the two subclasses
of decreasing and one-player consumption games and give optimized solutions to some
of these problems. Finally, in Section 5 we give a short list of open problems which,
in our opinion, address some of the fundamental properties of consumption games that
deserve further attention. Due to the lack of space, the proofs are ommited. They can be
found in the full version of this paper [3].

2 Definitions

In this paper, the set of all integers is denoted by Z. For a given operator� ∈ {>, <,≤,≥},
we use Z�0 to denote the set {i ∈ Z | i � 0}, and Zω�0 to denote the set Z�0 ∪ {ω}, where
ω � Z is a special symbol representing an “infinite amount” with the usual conventions
(in particular, c + ω = ω + c = ω and c < ω for every c ∈ Z). For example, Z<0 is the
set of all negative integers, and Zω<0 is the set Z<0 ∪ {ω}. We use Greek letters α, β, . . . to
denote vectors over Z�0 or Zω�0, and 0 to denote the vector of zeros. The i-th component
of a given α is denoted by α(i). The standard component-wise ordering over vectors is
denoted by ≤, and we also write α < β to indicate that α(i) < β(i) for every i.

Let M be a finite or countably infinite alphabet. A word over M is a finite or infinite
sequence of elements of M. The empty word is denoted by ε, and the set of all finite
words over M is denoted by M∗. Sometimes we also use M+ to denote the set M∗ � {ε}.
The length of a given word w is denoted by len(w), where len(ε) = 0 and the length of
an infinite word is ∞. The individual letters in a word w are denoted by w(0),w(1), . . .,
and for every infinite word w and every i ≥ 0 we use wi to denote the infinite word
w(i),w(i+1), . . ..

A transition system is a pair T = (V, → ), where V is a finite or countably infinite
set of vertices and → ⊆ V ×V a transition relation such that for every v ∈ V there is at
least one outgoing transition (i.e., a transition of the form v→ u). A path in T is a finite
or infinite word w over V such that w(i)→w(i+1) for every 0 ≤ i < len(w). We call a
finite path a history and infinite path a run. The sets of all finite paths and all runs in T
are denoted by FPath(T ) and Run(T ), respectively.

Definition 1. A (2-player) game is a triple G = (V, →, (V�,V�)) where (V, →) is a
transition system and (V�,V�) is a partition of V. If V� = ∅, then G is a 1-player game.
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A game G is played by two players, � and �, who select transitions in the vertices of
V� and V�, respectively. Let � ∈ {�,�}. A strategy for player � is a function which
to each wv ∈ V∗V� assigns a state v′ ∈ V such that v → v′. The sets of all strategies
for player � and player � are denoted by ΣG and ΠG (or just by Σ and Π if G is
understood), respectively. We say that a strategy τ is memoryless if τ(wv) depends just
on the last state v, for every w ∈ V∗. Strategies that are not necessarily memoryless are
called history-dependent. Note that every initial vertex v and every pair of strategies
(σ, π) ∈ Σ×Π determine a unique infinite path in G initiated in v, which is called a play
and denoted by Playσ,π(v).

Definition 2. Let d ≥ 1. A consumption game of dimension d is a tuple C =
(S , E, (S �, S�), L) where S is a finite set of states, (S , E) is a transition system, (S �, S�)
is a partition of S , and L is labelling which to every (s, t) ∈ E assigns a vector
δ = (δ(1), . . . , δ(d)) such that δ(i) ∈ Zω≤0 for every 1 ≤ i ≤ d. If s ∈ S�, we require
that δ(i) � ω for all 1 ≤ i ≤ d. We write s δ→ t to indicate that (s, t) ∈ E and L(s, t) = δ.

We say that C is one-player if S� = ∅, and decreasing if for every n ≥ 1, every
1 ≤ i ≤ d, and every path s0

δ1−→ s1
δ2−→ · · · δn−→ sn such that s0 = sn, there is some j ≤ n

where δ j(i) � 0.

Intuitively, if s δ→ t, then the system modeled by C can move from the state s to the
state t so that its resources are consumed/reloaded according to δ. More precisely, if
δ(i) ≤ 0, then the current load of resource i is decreased by |δ(i)|, and if δ(i) = ω, then
the resource i can be reloaded to an arbitrarily high positive value larger than or equal to
the current load. The aim of player� is to play so that the resources are never exhausted,
i.e., the vector of current loads stays positive in every component. The aim of player �
is to achieve the opposite.

The above intuition is formally captured by defining the associated infinite-state
game GC for C. The vertices of GC are configurations of C, i.e., the elements of S ×Zd

>0
together with a special configuration F (which stands for “fail”). The transition relation
→ of GC is determined as follows:

• F → F.
• For every configuration (s, α) and every transition s δ→ t of C such that α(i)+ δ(i) > 0

for all 1 ≤ i ≤ d, there is a transition (s, α) → (t, α+γ) for every γ ∈ Zd such that

− γ(i) = δ(i) for every 1 ≤ i ≤ d where δ(i) � ω;
− γ(i) ≥ 0 for every 1 ≤ i ≤ d where δ(i) = ω.

• If (s, α) is a configuration and s δ→ t a transition of C such that α(i) + δ(i) ≤ 0 for
some 1 ≤ i ≤ d, then there is a transition (s, α) → F.
• There are no other transitions.

A strategy σ for player � in GC is safe in a configuration (s, α) iff for every strategy
π for player � we have that Playσ,π(s, α) does not visit the configuration F. For every
s ∈ S , we use

• Safe(s) to denote the set of all α ∈ Zd
>0 such that player � has a safe strategy in (s, α);

• Cover(s) to denote the set of all α ∈ Zd
>0 such that player � has a safe strategy σ in

(s, α) such that for every strategy π for player � and every configuration (t, β) visited
by Playσ,π(s, α) we have that β ≤ α.



Consumption Games 29

If α ∈ Safe(s), we say that α is safe in s, and if α ∈ Cover(s), we say that α covers s.
Obviously, Cover(s) ⊆ Safe(s), and both Safe(s) and Cover(s) are upwards closed w.r.t.
component-wise ordering (i.e., if α ∈ Safe(s) and α ≤ α′, then α′ ∈ Safe(s)). This means
that Safe(s) and Cover(s) are fully described by its finitely many minimal elements.

Intuitively, Safe(s) consists of all vectors describing a sufficiently large initial amount
of all resources needed to perform a safe strategy. Note that during a play, the resources
can be reloaded to values that are larger than the initial one. Since physical resources are
stored in “tanks” with finite capacity, we need to know what capacities of these tanks
are sufficient for performing a safe strategy. These sufficient capacities are encoded by
the vectors of Cover(s).

3 Algorithms for General Consumption Games

In this section we present a general solution for the three algorithmic problems (A)-(C)
given in Section 1.

We start by a simple observation that connects the study of consumption games to a
more mature theory of Streett games. A Streett game is a tuple S = (V, →, (V�,V�),A),
where (V, →, (V�,V�)) is a 2-player game with finitely many vertices, and A =

{(G1,R1), . . . , (Gm,Rm)}, where m ≥ 1 and Gi,Ri ⊆ → for all 1 ≤ i ≤ m, is a Streett
(or strong fairness) winning condition (for technical convenience, we consider Gi,Ri

as subsets of edges rather than vertices). For an infinite path w in S, let inf(w) be the
set of all edges that are executed infinitely often along w. We say that w satisfies A iff
inf(w) ∩ Gi � ∅ implies inf(w) ∩ Ri � ∅ for every 1 ≤ i ≤ m. A strategy σ ∈ ΣS is
winning in v ∈ V if for every π ∈ ΠS we have that Playσ,π(v) satisfies A. The problem
whether player � has a winning strategy in a vertex v ∈ V is coNP-complete [9], and
the problem can be solved in O(m! · |V |m+1) time [13].

For the rest of this section, we fix a consumption game C = (S , E, (S �, S�), L) of
dimension d, and we use � to denote the maximal finite |δ(i)| such that 1 ≤ i ≤ d and δ
is a label of some transition.

Lemma 3. Let SC = (S , E, (S �, S�),A) be a Streett game where A =

{(G1,R1), . . . , (Gd,Rd)}, Gi = {(s, t) ∈ E | L(s, t)(i) < 0}, and Ri =

{(s, t) ∈ E | L(s, t)(i) = ω} for every 1 ≤ i ≤ d. Then for every s ∈ S the following
assertions hold:

1. If Safe(s) � ∅, then player � has a winning strategy in s in the Streett game SC.
2. If player � has a winning strategy in s in the Streett game SC, then

(d! · |S | · � + 1, . . . , d! · |S | · � + 1) ∈ Safe(s) ∩ Cover(s).

An immediate consequence of Lemma 3 is that Safe(s) = ∅ iff Cover(s) = ∅. Our next
lemma shows that the existence of a winning strategy in Streett games is polynomially
reducible to the problem whether Safe(s) = ∅ in consumption games.

Lemma 4. Let S = (V, →, (V�,V�),A) be a Streett game where A =

{(G1,R1), . . . , (Gm,Rm)}. Let CS = (V, →, (V�,V�), L) be a consumption game of di-
mension m where L(u, v)(i) is either −1, ω, or 0, depending on whether (u, v) ∈ Gi,
(u, v) ∈ Ri, or (u, v) � Gi ∪ Ri, respectively. Then for every v ∈ V we have that player �
has a winning strategy in v (in S) iff Safe(v) � ∅ (in CS).
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A direct consequence of Lemma 3 and Lemma 4 is the following:

Theorem 5. The emptiness problems for Safe(s) and Cover(s) are coNP-complete and
solvable in O(d! · |S |d+1) time.

Also observe that if managed to prove that the emptiness problem for Safe(s) or
Cover(s) is fixed-parameter tractable in d for consumption games where � is equal to
one (i.e., if we proved that the problem is solvable in time F(d) ·nO(1) where n is the size
of the game and F a computable function), then due to Lemma 4 we would immedi-
ately obtain that the problem whether player � has a winning strategy in a given Streett
game is also fixed-parameter tractable. That is, we would obtain a solution to one of the
long-standing open problems of algorithmic study of graph games.

Now we show how to compute the set of minimal elements of Safe(s). A key obser-
vation is the following lemma whose proof is non-trivial.

Lemma 6. For every s ∈ S and every minimal α ∈ Safe(s) we have that α(i) ≤ d · � · |S |
for every 1 ≤ i ≤ d.

Observe that Lemma 6 does not follow from Lemma 3 (2.). Apart from Lemma 6 pro-
viding better bound, Lemma 3 (2.) only says that if all resources are loaded enough,
then there is a safe strategy. However, we aim at proving a substantially stronger result
saying that no resource needs to be reloaded to more than d · � · |S | regardless how large
is the current load of other resources.

Intuitively, Lemma 6 is obtained by a somewhat tricky inductive argument where we
first consider all resources as being “sufficiently large” and then bound the components
one by one. Since a similar technique is also used to compute the minimal elements of
Cover(s), we briefly introduce the main underlying notions and ideas.

An abstract load vector μ is an element of (Zω>0)d. The precision of μ is the number
of components different fromω. The standard componentwise ordering is extended also
to abstract load vectors by stipulating that c < ω for every c ∈ Z. Given an abstract load
vector μ and a vector α ∈ (Z>0)d, we say that αmatches μ if α( j) = μ( j) for all 1 ≤ j ≤ d
such that μ( j) � ω. Finally, we say that μ is compatible with Safe(s) (or Cover(s)) if
there is some α ∈ Safe(s) (or α ∈ Cover(s)) that matches μ.

The proof of Lemma 6 is obtained by showing that for every minimal abstract load
vector μ with precision i compatible with Safe(s) we have that μ( j) ≤ i · � · |S | for every
1 ≤ j ≤ d such that μ( j) � ω. Since the minimal elements of Safe(s) are exactly the
minimal abstract vectors of precision d compatible with Safe(s), we obtain the desired
result. The claim is proven by induction on i. In the induction step, we pick a minimal
abstract vector μwith precision i compatible with s, and choose a component j such that
μ( j) = ω. Then we show that if we replace μ( j) with some k whose value is bounded by
(i + 1) · � · |S |, we yield a minimal compatible abstract vector with precision i + 1. The
proof of this claim is the very core of the whole argument, and it involves several subtle
observations about the structure of minimal abstract load vectors. The details are given
in [3].

An important consequence of Lemma 6 is the following:

Corollary 7 (Finite reload property). If α ∈ Safe(s) and β(i) = min{α(i), d · � · |S |} for
every 1 ≤ i ≤ d, then β ∈ Safe(s).



Consumption Games 31

Due to Corollary 7, for every minimal α ∈ Safe(s) there is a safe strategy which never
reloads any resource to more than d · � · |S |. Thus, we can significantly improve the
bound of Lemma 3 (2.).

Corollary 8. If Safe(s) � ∅, then (d · � · |S |, . . . , d · � · |S |) ∈ Safe(s) ∩ Cover(s).

Another consequence of Corollary 7 is that one can reduce the problem of comput-
ing the minimal elements of Safe(s) to the problem of determining a winning set in a
finite-state 2-player safety game with at most |S | · dd · �d · |S |d + 1 vertices, which is
obtained from C by storing the vector of current resource loads explicitly in the states.
Whenever we need to reload some resource, it can be safely reloaded to d ·� · |S |, and we
simulate this reload be the corresponding transition. Since the winning set in a safety
game with n states and m edges can be computed in time linear in n + m [10,1], we
obtain the following:

Corollary 9. The sets of all minimal elements of all Safe(s) are computable in time
(d · � · |S |)O(d).

The complexity bounds for the algorithmic problems (B) and (C) for Safe(s) are given
in our next theorem. The proofs of the presented lower bounds are given in [3].

Theorem 10. Let α ∈ Zd
>0 and s ∈ S .

• The problem whether α ∈ Safe(s) is PSPACE-hard and solvable in time
|α| · (d · � · |S |)O(d), where |α| is the encoding size of α.
• The problem whether α is a minimal vector of Safe(s) is PSPACE-hard and solvable

in time |α| · (d · � · |S |)O(d), where |α| is the encoding size of α.
• The set of all minimal vectors of Safe(s) is computable in time (d · � · |S |)O(d).

Now we provide analogous results for Cover(s). Note that deciding the membership
to Cover(s) is trivially reducible to the problem of computing the winning region in
a finite-state game obtained from C by constraining the vectors of current resource
loads by α. Computing the minimal elements of Cover(s) is more problematic. One
is tempted to conclude that all components of the minimal vectors for each Cover(s)
are bounded by a “small” number, analogously to Lemma 6. In this case, we obtained
only the following bound, which is still polynomial for every fixed d and �, but grows
double-exponentially in d. The question whether this bound can be lowered is left open,
and seems to require a deeper insight into the structure of covering vectors.

Lemma 11. For every s ∈ S and every minimal α ∈ Cover(s) we have that α(i) ≤
(d · � · |S |)d! for every 1 ≤ i ≤ d.

The proof of Lemma 11 is given in [3]. It is based on re-using and modifying some
ideas introduced in [4] for general eVASS games. The following theorem sums up the
complexity bounds for problems (B) and (C) for Cover(s).

Theorem 12. Let α ∈ Zd
>0 and s ∈ S .

• The problem whether α ∈ Cover(s) is PSPACE-hard and solvable in O(Λ2 · |S |2)
time, where Λ = Πd

i=1α(i).
• The problem whether α is a minimal element of Cover(s) is PSPACE-hard and solv-

able in O(d · Λ2 · |S |2) time, where Λ = Πd
i=1α(i).

• The set of all minimal vectors of Cover(s) is computable in (d · � · |S |)O(d·d!) time.
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4 Algorithms for One-Player and Decreasing Consumption Games

In this section we present more efficient algorithms for the two subclasses of decreas-
ing and one-player consumption games. Observe that these special classes of games can
still retain a rich modeling power. In particular, the decreasing subclass is quite natural
as systems that do not decrease some of the resources for a long time most probably
stopped working completely (also recall that the game considered in Section 1 is de-
creasing). One-player consumption games are useful for modeling a large variety of
scheduling problems, as it is illustrated in the following example.

Consider the following (a bit idealized) problem of supplying shops with goods such
as, e.g., bottles of drinking water. This problem may be described as follows: Imagine
a map with c cities connected by roads, n of these cities contain shops to be supplied,
k cities contain warehouses with huge amounts of the goods that should be distributed
among the shops. The company distributing the goods owns d cars, each car has a
bounded capacity. The goal is to distribute the goods from warehouses to all shops
in as short time as possible. This situation can be modeled using a one-player con-
sumption game as follows. States would be tuples of the form (c1, . . . , cd, A) where
each ci ∈ {1, . . . , c} corresponds to the city in which the i-th car is currently located,
A ⊆ {1, . . . , n} lists the shops that have already been supplied (initially A = ∅ and the
goal is to reach A = {1, . . . , n}). Loads of individual cars and the total time would be
modelled by a vector of resources, (�(1), . . . , �(d), t), where each �(i) models the current
load of the i-th car and t models the amount of time which elapsed from the beginning
(this resource is steadily decreased until A = {1, ..., n}). Player � chooses where each car
should go next. Whenever the i-th car visits a city with a warehouse, the corresponding
resource �(i) may be reloaded. Whenever the i-th car visits a city containing a shop,
player � may choose to supply the shop, i.e. decrease the resource �(i) of the car by the
amount demanded by the shop. Now the last component of a minimal safe configuration
indicates how much time is needed to supply all shops. A cover configuration indicates
not only how much time is needed but also how large cars are needed to supply all
shops. This model can be further extended with an information about the fuel spent by
the individual cars, etc.

As in the previous section, we fix a consumption game C = (S , E, (S �, S�), L) of di-
mension d, and we use � to denote the maximal finite |δ(i)| such that 1 ≤ i ≤ d and δ is a
label of some transition. We first establish the complexity of emptiness and membership
problem, and then present an algorithm to compute the minimal safe configurations.

4.1 The Emptiness and Membership Problems

We first establish the complexity of the emptiness problem for decreasing games by a
polynomial time reduction to generalized Büchi games. A generalized Büchi game is
a tuple B = (V, →, (V�,V�), B), where (V, →, (V�,V�)) is a 2-player game with finitely
many vertices, and B = {F1, . . . , Fm}, where m ≥ 1 and Fi ⊆ → for all 1 ≤ i ≤ m.
We say that infinite path w satisfies the generalized Büchi condition defined by B iff
inf(w) ∩ Fi � ∅ for every 1 ≤ i ≤ m. A strategy σ ∈ ΣB is winning in v ∈ V if for
every π ∈ ΠB we have that the Playσ,π(v) satisfies the generalized Büchi condition. The
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problem whether player� has a winning strategy in state s can be decided in polynomial
time, with an algorithm of complexity O(|V | · | → | · m) (see [8]).

We claim that the following holds:

Lemma 13. If C is a decreasing game, then Safe(s) � ∅ if and only if the player � has
winning strategy in generalized Büchi game BC = (S , E, (S �, S�), {R1, . . . ,Rd}), where
for each 1 ≤ i ≤ d we have Ri = {(s, t) ∈ E | L(s, t)(i) = ω}.

Previous lemma immediately gives us that the emptiness of Safe(s) in decreasing games
is decidable in time O(|S | · |E| · d). We now argue that the emptiness of Safe(s) for
one-player games can also be achieved in polynomial time. Note that from Lemma 3
we have that Safe(s) � ∅ if and only if player � has a winning strategy in state s of
one-player Streett game SC. The problem of deciding the existence of winning strategy
in one-player Streett game is exactly the nonemptiness problem for Streett automata
that can be solved in time O((|S | · d + |E|) ·min{|S |, d}) [11].

Theorem 14. Given a consumption game C and a state s, the emptiness problems of
whether Safe(s) = ∅ and Cover(s) = ∅ can be decided in time O(|S | · |E| · d) if C is
decreasing, and in time O((|S | · d + |E|) ·min{|S |, d}) if C is a one-player game.

We now study the complexity of the membership problem for Safe(s). We prove two key
lemmas that bound the number of steps before all resources are reloaded. The key idea
is to make player � reload resources as soon as possible. Formally, we say that a play
Playσ,π(s, α) induced by a sequence of transitions s0

δ1→ · · · δk→ sk reloads i-th resource
in j-th step if δ j(i) = ω. We first present a lemma for decreasing games and then for
one-player games.

Lemma 15. Consider a decreasing consumption game C and a configuration (s, α)
such that α ∈ Safe(s). There is a safe strategy σ for player � in (s, α) such that every
Playσ,π(s, α) reloads all resources in the first d · |S | steps.

Now let us consider one-player games. As player � has only one trivial strategy, π, we
write only Playσ(s, α) instead of Playσ,π(s, α).

Lemma 16. Consider a one-player consumption game C and a configuration (s, α)
such that α ∈ Safe(s). There is a safe strategy σ for player � in (s, α) such that for the
Playσ(s, α) and every 1 ≤ i ≤ d we have that either the i-th resource is reloaded in the
first d · |S | steps, or it is never decreased from the (d · |S | + 1)-st step on.

As a consequence of Lemma 15, Lemma 16 and the hardness results presented in [3]
we obtain the following:

Theorem 17. The membership problem of whether α ∈ Safe(s) is NP-complete for
one-player consumption games and PSPACE-complete for decreasing consumption
games. The problem whether α is a minimal element of Safe(s) is DP-complete for
one-player consumption games and PSPACE-complete for decreasing consumption
games.
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4.2 Minimal Safe Configurations and Multi-distance Reachability

In the rest of the paper we present algorithms for computing the minimal safe con-
figurations in one-player and decreasing consumption games. Both algorithms use the
iterative algorithm for multi-distance reachability problem, which is described below,
as a subprocedure. Although their worst-case complexity is the same as the complexity
of generic algorithm from Section 3, we still deem them to be more suitable for practical
computation due to some of their properties that we state here in advance:

• The generic algorithm always constructs game of size (|S | · d · �)O(d). In contrast,
algorithms based on solving multi-distance reachability construct a game whose size
is linear in size of C for every fixed choice of parameter d.
• The multi-distance reachability algorithms iteratively construct sets of configurations

that are safe but may not be minimal before the algorithm stops. Although the time
complexity of this iterative computation is (|S | · d · �)O(d) at worst, it may be the case
that the computation terminates much earlier. Thus, these algorithms have a chance
to terminate earlier than in (|S | · d · �)O(d) steps (unlike the generic algorithm, where
the necessary construction of the “large” safety game always requires this number of
steps).
• Moreover, the algorithm for one-player games presented in Section 4.3 decomposes

the problem into many parallel subtasks that can be processed independently.

Let D denote a d-dimensional consumption game with transitions labeled by vectors
over Z≤0 (i.e. there is no ω in any label). Also denote D the set of states of gameD. We
say that vector α is a safe multi-distance (or just safe distance) from state s to state r if
there is a strategy σ for player � such that for any strategy π for player � the infinite
path Playσ,π(s, α) visits a configuration of the form (r, β). That is, α is a safe distance
from s to r if player� can enforce reaching r from s in such a way that the total decrease
in resource values is less than α.

We denote by SafeD(s, r) the set of all safe distances from s to r inD, and by λD(s, r)
the set of all minimal elements of SafeD(s, r). If SafeD(s, r) = ∅, then we set λD(s, r) =
{(∞, . . . ,∞)}, where the symbol ∞ is treated accordingly with the usual conventions
(for any c ∈ Z we have ∞ − c = ∞, c < ∞; we do not use the ω symbol to avoid
confusions).

We present a simple fixed-point iterative algorithm which computes the set of min-
imal safe distances from s to r. Apart from the standard set operations, the algorithm
uses the following operations on sets of vectors: for a given set M and a given vector α,
the operation min-set(M) returns the set of minimal elements of M, and M−α returns
the set {β − α | β ∈ M}. Further, given a sequence of sets of vectors M1, . . . ,Mm the
operation cwm(M1, . . . ,Mm) returns the set {α1 ∨ · · · ∨ αm | α1 ∈ M1, . . . , αm ∈ Mm},
where each α1∨· · ·∨αm denotes a component-wise maximum of the vectors α1, . . . , αm.

Technically, the algorithm iteratively solves the following optimality equations: for
any state q with outgoing transitions q δ1−→ q1, . . . , q

δm−→ qm we have that

λD(q, r) =

⎧
⎪⎪⎨
⎪⎪⎩

min-set (λD(q1, r) − δ1 ∪ · · · ∪ λD(qm, r) − δm) if q ∈ D�
min-set ( cwm(λD(q1, r) − δ1, . . . , λD(qm, r) − δm) ) if q ∈ D�

The algorithm iteratively computes the k-step approximations of λD(q, r), which
are denoted by λk

D(q, r). Intuitively, each set λk
D(q, r) consists of all minimal safe
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distances from q to r over all plays with at most k steps. The set λ0
D(q, r) is initialized to

{(∞, . . . ,∞)} for q � r, and to {(1, . . . , 1)} for q = r. Each λk+1
D (q, r) is computed from

λk
D(q, r) using the above optimality equations until a fixed point is reached. In [3] we

show that this fixed point is the correct solution for the minimal multi-distance problem.
Since the algorithm is based on standard methods, we omit its presentation (which

can be found in [3]) and state only the final result. We call branching degree of D the
maximal number of transitions outgoing from any state ofD.

Theorem 18. There is an iterative procedure Min-dist(D, s, r) that correctly com-
putes the set of minimal safe distances from s to r in time O

(

|D| · a · b · N2
)

, where
b is the branching degree of D, a is the length of a longest acyclic path in D and
N = max0≤k≤a |λk

D(q, r)|.
Moreover, the procedure requires at most a iterations to converge to the correct so-

lution and thus the resulting set λD(s, r) has size at most N. Finally, the number N can
be bounded from above by (a · �)d.

Note that the complexity of the procedure Min-dist(D, s, r) crucially depends on param-
eter N. The bound on N presented in the previous theorem follows from the obvious fact
that components of all vectors in λk

D(s, r) are either all equal to ∞ or are all bounded
from above by k · �. However, for concrete instances the value of N can be substantially
smaller. For example, if the consumption game D models some real-world problem,
then it can be expected that the number of k-step minimal distances from states of D
to r is small, because changes in resources are not entirely independent in these mod-
els (e.g., action that consumes a large amount of some resource may consume a large
amount of some other resources as well). This observation forms the core of our claim
that algorithms based on multi-distance reachability may terminate much earlier than
the generic algorithm from Section 3.

4.3 Computing Safe(s) in One-Player Consumption Games

Now we present an algorithm for computing minimal elements of Safe(s) in one-player
consumption games. The algorithm computes the solution by solving several instances
of minimum multi-distance reachability problem. We assume that all states s with
Safe(s) = ∅ were removed from the game. This can be done in polynomial time us-
ing the algorithm for emptiness (see Theorem 14).

We denote by Π(d) the set of all permutations of the set {1, . . . , d}. We view each
element of Π(d) as a finite sequence π1 . . . πd, e.g., Π(2) = {12, 21}. We use the stan-
dard notation π for permutations: confusion with strategies of player � should not arise
since S� = ∅ in one-player games.

We say that a play Playσ(s, α) matches a permutation π if for every 1 ≤ i < j ≤ d
the following holds: If the π j-th resource is reloaded along Playσ(s, α), then the πi-th
resource is also reloaded along this play and the first reload of πi-th resource occurs be-
fore or at the same time as the first reload of π j-th resource. A configuration (s, α)
matches π if there is a strategy σ that is safe in (s, α) and Playσ(s, α) matches π.
We denote by Safe(s, π) the set of all vectors α such that (s, α) matches π. Note that
Safe(s) =

⋃

π∈Π(d) Safe(s, π).
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As indicated by the above equality, computation of safe configurations in C reduces
to the problem of computing, for every permutation π, safe configurations that match π.
The latter problem, in turn, easily reduces to the problem of computing safe multi-
distances in specific one-player consumption games C(π). Intuitively, each game C(π)
simulates the gameCwhere the resources are forced to be reloaded in the order specified
by π. So the states of each C(π) are pairs (s, k) where s corresponds to the current state
of the original game and k indicates that the first k resources, in the permutation π,
have already been reloaded. Now the crucial point is that if the first k resources have
been reloaded when some configuration c = (s, β) of the original game is visited, and
there is a safe strategy in c which does not decrease any of the resources with the index
greater than k, then we may safely conclude that the initial configuration is safe. So,
in such a case we put a transition from the state (s, k) of C(π) to a distinguished target
state r (whether or not to put in such a transition can be decided in polynomial time
due to Theorem 14). Other transitions of C(π) correspond to transitions of C except
that they have to update the information about already reloaded resources, cannot skip
any resource in the permutation (such transitions are removed), and the components
indexed by π1, . . . , πk are substituted with 0 in transitions incoming to states of the form
(q, k) (since already reloaded resources become unimportant as indicated by the above
observation).

A complete construction of C(π) is presented in [3] as a part of a formal proof of the
following theorem:

Theorem 19. For every permutation π there is a polynomial time constructible con-
sumption game C(π) of size O(|S | · d) and branching degree O(|S |) such that for every
vector α we have that α ∈ Safe(s, π) in C iff α is a safe distance from (s, 0) to r in C(π).

By the previous theorem, every minimal element of Safe(s) is an element of
λC(π)((s, 0), r) for at least one permutation π. Our algorithm examines all permuta-
tions π ∈ Π(d), and for every permutation it constructs game C(π) and computes
λC(π)((s, 0), r) using the procedure Min-dist from Theorem 18. The algorithm also stores
the set of all minimal vectors that appear in some λC(π)((s, 0), r). In this way, the algo-
rithm eventually finds all minimal elements of Safe(s). The pseudocode of the algorithm
is presented in [3].

From complexity bounds of Theorems 14 and 18 we obtain that the worst case run-
ning time of this algorithm is d! · (|S | · � · d)O(d). In contrast with the generic algorithm
of Section 3, that constructs an exponentially large safety game, the algorithm of this
section computes d! “small” instances of the minimal multi-distance reachability prob-
lem. We can solve many of these instances in parallel. Moreover, as argued in previous
section, each call of Min-dist(C(π), (s, 0), r) may have much better running time than
the worst-case upper bound suggests.

4.4 Computing Safe(s) in Decreasing Consumption Games

We now turn our attention to computing minimal elements of Safe(s) in decreasing
games. The main idea is again to reduce this task to the computation of minimal multi-
distances in certain consumption game. We again assume that states with Safe(s) = ∅
were removed from the game.
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The core of the reduction is the following observation: if C is decreasing, then α ∈
Safe(s) iff player � is able to ensure that the play satisfies these two conditions: all
resources are reloaded somewhere along the play; and the i-th resource is reloaded for
the first time before it is decreased by at least α(i), for every 1 ≤ i ≤ d. Now if we
augment the states of C with an information about which resources have been reloaded
at least once in previous steps, then the objective of player � is actually to reach a state
which tells us that all resources were reloaded at least once.

So the algorithm constructs a game Ĉ by augmenting states of C with an information
about which resources have been reloaded at least once, and by substituting updates
of already reloaded resources (i.e., the corresponding components of the labels) with
zeros. Note that the construction of Ĉ closely resembles the construction of games C(π)
from the previous section. However, in two-player case we cannot fix an order in which
resources are to be reloaded, because the optimal order depends on a strategy chosen
by player �. Thus, we need to remember exactly which resources have been reloaded
in the past (we only need to remember the set of resources that have been reloaded, but
not the order in which they were reloaded).

The formal construction of Ĉ can be found in [3] along with a proof of the following
theorem.

Theorem 20. There is a consumption game Ĉ of size O(2d · |S |), branching degreeO(S )
and with maximal acyclic path of length O(|S | · d), with the following properties: Ĉ is
constructible in time O(2d · (|S | + |E|)) and for every vector α we have α ∈ Safe(s) in C
iff α is a safe distance from (s, ∅) to r in Ĉ.

The previous theorem shows that we can find minimal elements of Safe(s) with a single
call of procedure Min-dist(Ĉ, (s, ∅), r). Straightforward complexity analysis reveals that
the worst-case running time of this algorithm is (|S | · d · �)O(d). However, the game Ĉ
constructed during the computation is still smaller than the safety game constructed by
the generic algorithm of Section 3. Moreover, the length of the longest acyclic path
in Ĉ is bounded by |S | · d, so the procedure Min-dist does not have to perform many
iterations, despite the exponential size of Ĉ. Finally, let us once again recall that the
procedure Min-dist(Ĉ, (s, ∅), r) may actually require much less than (|S | · d · �)O(d) steps.

5 Conclusions

As it is witnessed by the results presented in previous sections, consumption games rep-
resent a convenient trade-off between expressive power and computational tractability.
The presented theory obviously needs further development before it is implemented in
working software tools. Some of the issues are not yet fully understood, and there are
also other well-motivated problems about consumption games which were not consid-
ered in this paper. The list of important open problems includes the following:

• Improve the complexity of algorithms for Cover(s). This requires further insights
into the structure of these sets.
• Find efficient controller synthesis algorithms for objectives that combine safety with

other linear-time properties. That is, decide whether player � has a safe strategy such
that a play satisfies a given LTL property no matter what player � does.
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• Find algorithms for more complicated optimization problems, where the individual
resources may have different priorities. For example, it may happen that fuel con-
sumption or the price of batteries with large capacity are much more important than
the time spent, and in that case we might want to optimize some weight function over
the tuple of all resources. It may happen (and we have concrete examples) that some
of these problems are actually solvable even more efficiently than the general ones
where all resources are treated equally w.r.t. their importance.

The above list is surely incomplete. The problem of optimal resource consumption is
rather generic and appears in many different contexts, which may generate other inter-
esting questions about consumption games.
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ACTL ∩ LTL Synthesis�

Rüdiger Ehlers
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Abstract. We study the synthesis problem for specifications of the common frag-
ment of ACTL (computation tree logic with only universal path quantification)
and LTL (linear-time temporal logic). Key to this setting is a novel construction
for translating properties from LTL to very-weak automata, whenever possible.
Such automata are structurally simple and thus amenable to optimizations as well
as symbolic implementations.

Based on this novel construction, we describe a synthesis approach that inher-
its the efficiency of generalized reactivity(1) synthesis [27], but is significantly
richer in terms of expressivity.

1 Introduction

Synthesizing reactive systems from functional specifications is an ambitious challenge.
It combines the correctness assurance that systems obtain after model checking with
the advantage to skip the manual construction step for the desired system. As a conse-
quence, a rich line of research has emerged, witnessed by the fact that recently, off-the-
shelf tools for this task have become available.

A central question in synthesis is: what is the right specification language that allows
us to tackle the synthesis problem for its members efficiently, while still having enough
expressivity to capture the specifications that system designers want to write?

Some recent approaches focused on supporting full linear-time temporal logic as the
specification language. While the synthesis problem for such specifications was shown
to be 2EXPTIME-complete, by focusing on specifications of the form that engineers
tend to write, significant progress could recently be obtained for full LTL [17,13]. Still,
it is not hard to write small specifications that cannot be tackled by such tools.

At the same time, there are numerous techniques that trade the high expressivity of
logics such as LTL against the computational advantages of only having to deal with
structurally simpler specifications. A prominent approach of this kind is generalized
reactivity(1) synthesis [27]. It targets specifications that consist of some set of assump-
tions (which we can assume the environment of the system to fulfill) and some set of
guarantees that the system needs to fulfill. Both assumptions and guarantees can contain
only safety properties that relate the input and output in one computation cycle with the
input and output in the next computation cycle and basic liveness properties over current
input and output. In order to encode more complex properties, the output of the system
to be designed can be widened and the additional bits can be used to stitch together
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more complex properties. Getting such an encoding right and efficient is manual and
cumbersome work, which is why Somenzi and Sohail coined the term “pre-synthesis”
for such an operation [28,11].

It is apparent that there is a desperate need for a sweet spot between the high ex-
pressivity but low performance that full LTL synthesis approaches offer, and fast but
low-level synthesis approaches such as generalized reactivity(1) synthesis, where cur-
rently, pre-synthesis is crucial to its performance.

In this paper, we present ACTL ∩ LTL synthesis as a solution to this problem. Our ap-
proach targets specifications of the form

∧
a∈Assumptions a →

∧
g∈Guarantees g, where

all assumptions and guarantees are written in LTL, with the restriction that they must
also be representable in ACTL, i.e., computation tree logic with only universal path
quantification. We reduce the synthesis problem for such specifications to solving sym-
bolically represented three-color parity games, which is the reasoning framework from
which also generalized reactivity(1) synthesis takes its good efficiency. In particular,
such games can be solved in time quadratic in the number of positions (see, e.g., [1]).

The reason why ACTL ∩ LTL is such an interesting fragment for synthesis is the
fact that the fragment has universal very-weak automata as the characterizing automa-
ton class. These automata do not only allow the application of simple, yet effective
minimization algorithms, but give rise to a straight-forward efficient symbolic encod-
ing into binary decision diagrams (BDDs), without the need for pre-synthesis. Alterna-
tively, other symbolic data structures such as anti-chains [16] can also be used, but for
the simplicity of the initial evaluation of the approach in this paper, we use BDDs.

For best performance in solving the parity games that we build in our approach, we
present a novel construction that defers choosing the assumption and guarantee parts
to be satisfied next to the system player and the environment player, respectively. This
keeps the number of iterations that need to be performed in the fixed-point based game
solving process small and leads to short computation times of the game solving process.

The contribution of this paper is threefold. First of all, it describes a new efficient
synthesis workflow for the common fragment of ACTL and LTL. Secondly, it describes
the first algorithm for translating an LTL formula that lies in this common fragment
into its characterizing automaton class, i.e., universal very-weak automata. As a corol-
lary, we obtain a translation algorithm from LTL to ACTL, whenever possible. Third,
we introduce a technique to speed up the game solving process for generalized reactiv-
ity(1) games by letting the two players in the game choose the next obligation for the
respective other player instead of using counters as in previous approaches.

We start with preliminaries in Sect. 2, where we discuss the basic properties of very-
weak automata. Then, we describe the construction to obtain universal very-weak au-
tomata from LTL formulas that are also representable in ACTL. Afterwards, we present
the smart reduction of our synthesis problem to three-color parity games in Sect. 4. Sec-
tion 5 then discusses the twists and tricks for solving parity games symbolically in an
efficient way and describes how a winning strategy that represents an implementation
satisfying the specification can be extracted. Finally, Sect. 6 contains an experimen-
tal evaluation of the approach using a prototype toolset for the overall workflow. We
conclude in Sect. 7.
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2 Preliminaries

Basics: Given a (finite) alphabetΣ, we denote the sets of finite and infinite words ofΣ
asΣ∗ andΣω, respectively. Sets of words are called languages. A useful tool for repre-
senting languages over finite words are regular expressions, and ω-regular expressions
are regular expressions that are enriched by the (·)ω operator, which denotes infinite
repetition. This way, languages over infinite words can be expressed.

Given some monotone function f : 2X → 2X for some finite set X , we define
μ0.f = ∅, ν0.f = X and for every i > 0, set μi.f = (f ◦ μi−1.f) and νi.f =
(f ◦ νi−1.f). For a monotone function f and finite X , it is assured that the series
μ0.f, μ1.f, μ2.f . . . and ν0.f, ν1.f, ν2.f . . . converge to some limit functions, which
we denote by μ.f and ν.f , respectively.

Automata: For reasoning about (ω-)regular languages, automata are a suitable tool. In
this paper, we will be concerned with deterministic, non-deterministic, non-determinis-
tic very-weak and universal very-weak automata over finite and infinite words. For all
of these types, the automata are described by tuples A = (Q,Σ,Q0, δ, F ) with the set
of states Q, the alphabet Σ, the set of initial states Q0 ⊆ Q, and the transition function
δ : Q × Σ → 2Q. For non-deterministic or deterministic automata, F ⊆ Q is called
the set of accepting states, whereas for universal automata, F ⊆ Q denotes the set of
rejecting states. For deterministic automata, we require that |Q0| = 1 and that for every
(q, x) ∈ Q × Σ, we have |δ(q, x)| ≤ 1. For very-weak automata, we require them to
have an order f : Q→ IN on the states such that for every transition from a state q to a
state q′ for some some x ∈ Σ (i.e., q′ ∈ δ(q, x)), if q′ �= q, then f(q′) > f(q). Figure 1
contains examples of very-weak automata. Intuitively, the order requires the automaton
to be representable in a figure such that all non-self-loop transitions lead from top to
bottom.

Given a word w = w0w1w2 . . . wn ∈ Σ∗, we say that π = π0π1 . . . πn+1 is a finite
run forA and w if π0 ∈ Q0 and for 0 ≤ i ≤ n, πi+1 ∈ δ(πi, wi). Likewise, for a word
w = w0w1w2 . . . ∈ Σω, we say that π = π0π1 . . . is an infinite run for A and w if
π0 ∈ Q0 and for all i ∈ IN, πi+1 ∈ δ(πi, wi).

A non-deterministic (NFA), non-deterministic very-weak (NVWF) or deterministic
(DFA) automaton over finite words accepts all finite words that have some run that ends
in an accepting state. A universal automaton over finite words accepts all finite words
for which all runs do not end in a rejecting state. A non-deterministic automaton over
infinite words accepts all infinite words that have some run that visits accepting states
infinitely often. A universal very-weak automaton over infinite words (UVW) accepts
all infinite words for which all runs visit rejecting states only finitely often.

We say that two automata are equivalent if they accept the same set of words. This
set of words is also called their language. We define the language of a state q to
mean the language of the automaton that results from setting the initial states to {q}.
The functions δ̂ : 2Q × 2X → 2Q and δ̂∗ : 2Q × 2X → 2Q with δ̂(Q′, X) =⋃

{q′∈Q′,x∈X} δ(q
′, x) and δ̂∗(Q′, X) = {q′ ∈ Q | ∃k ∈ IN, x1, x2, . . . , xk ∈ X,

q1, q2, . . . , qk+1 ∈ Q.(q1 ∈ Q′ ∧ qk = q′ ∧ ∀1 ≤ i ≤ k. qi+1 ∈ δ(qi, xi))} will sim-
plify the presentation in Sect. 3. Deterministic automata over finite words also appear
as distance automata in this paper. The only difference to non-distance automata is the
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fact that for these, we have δ : Q × Σ → 2Q×{0,1}. We assign with each of their runs
the accumulated cost, obtained by adding all of the second components of the transition
target tuples for the transitions along the run. The cost of a word is the minimal cost of
an accepting run.

Labeled parity games: A parity game is defined as a tuple G = (V0, V1, Σ0, Σ1, E0,
E1, v0, c) with the game position sets V0 and V1 for player 0 and player 1, respectively,
the action setsΣ0 andΣ1, the edge functionsE0 : V0×Σ0 → V1 and E1 : V1×Σ1 →
V0, the initial position v0 ∈ V0, and the coloring function c : (V0 � V1)→ IN.

A decision sequence in G is a sequence ρ = ρ00ρ
1
0ρ

0
1ρ

1
1 . . . such that for all i ∈

IN, ρ0i ∈ Σ0 and ρ1i ∈ Σ1. A decision sequence ρ induces an infinite play π =
π00π

1
0π

0
1π

1
1 . . . if π00 = v0 and for all i ∈ IN and p ∈ {0, 1},Ep(πpi , ρ

p
i ) = π1−pi+p .

Given a play π = π00π
1
0π

0
1π

1
1 . . ., we say that π is winning for player 1 if max{c(v) |

v ∈ V0 � V1, v ∈ inf(π)} is even for the function inf mapping a sequence onto the
set of elements that appear infinitely often in the sequence. If a play is not winning for
player 1, it is winning for player 0.

Given some parity game G = (V0, V1, Σ0, Σ1, E0, E1, v0, c), a strategy for player
0 is a function f0 : (Σ0 × Σ1)

∗ → Σ0. Likewise, a strategy for player 1 is a func-
tion f1 : (Σ0 × Σ1)

∗ × Σ0 → Σ1. In both cases, a strategy maps prefix decision
sequences to an action to be chosen next. A decision sequence ρ = ρ00ρ

1
0ρ

0
1ρ

1
1 . . . is

said to be in correspondence to fp for some p ∈ {0, 1} if for every i ∈ IN, we have
ρpi = fp(ρ

0
0ρ

1
0 . . . ρ

1−p
i+p−1). A strategy is winning for player p if all plays in the game

that are induced by some decision sequence that is in correspondence to fp are winning
for player p. It is a well-known fact that for parity games, there exists a winning strategy
for precisely one of the players (see, e.g., [26,22]).

Labeled parity games for synthesis: Parity games are a computation model for systems
that interact with their environment. For the scope of this paper, let us assume that
player 0 represents the environment of a system that we want to synthesize, and player
1 represents the system itself. The action set of player 0 corresponds to the inputs to
the system and the action set of player 1 corresponds to the output. Given a language L
over infinite words for the desired properties of a system, the main idea when building
a parity game for synthesis is to ensure that the decision sequences that induce winning
plays are the ones that, when read as words, are in L. If the game is then found to be
winning for the system player, we can take a strategy for that player to win the game
and read it as a Mealy automaton that is guaranteed to satisfy the specification. Note that
all constructions in this paper can equally be used for a Moore automaton computation
model. The two players then swap roles in this case.

Linear-time temporal logic: Linear-time temporal logic (LTL) is a popular formalism to
describe properties of systems to be synthesized or verified. LTL formulas are built in-
ductively from atomic propositions in some set AP and sub-formulas using the Boolean
operators ¬, ∨, ∧, and the temporal operators X, F, G, and U. Given an infinite word
w = w0w1w2 ∈ (2AP)ω, a LTL formula over AP either holds on w or not. The words
for which an LTL formula holds are also called its models. A full definition of LTL can
be found in [12,16,18].
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Properties of Very-Weak Automata

As foundation for the constructions of the sections to come, we discuss some properties
of very-weak automata over finite and infinite words here. Given two automata, we call
computing a third automaton that represents the set of words that are accepted by both
automata taking their conjunction, while taking their disjunction refers to computing
a third automaton that accepts all words that are accepted by either of the two input
automata.

Proposition 1. Universal and non-deterministic very-weak automata over infinite and
finite words are closed under disjunction and conjunction. Given two very-weak au-
tomata A and A′ with state sets Q and Q′, we can compute their disjunctions and
conjunctions in polynomial time, with the following state counts of the results:

1. for universal automata and taking the conjunction: |Q|+ |Q′| states,
2. for non-deterministic automata and taking the disjunction: |Q|+ |Q′| states,
3. for universal automata and taking the disjunction: |Q| · |Q′| states, and
4. for non-deterministic automata and taking the conjunction: |Q| · |Q′| states.

Proof. For the first two cases, the task can be accomplished by just merging the state
sets and transitions. For cases 3 and 4, a standard product construction can be applied,
with defining those states in the product as rejecting/accepting for which both corres-
ponding states in the factor automata are rejecting/accepting, respectively [20]. ��

Proposition 2. Every very-weak automaton has an equivalent one of the same type
for which no accepting/rejecting state has a non-self-loop outgoing edge (called the
separated form of the automaton henceforth).

Proof. Duplicate every accepting/rejecting state in the automaton and let the dupli-
cate have the same incoming edges. Then, mark the original copy of the state as non-
accepting/non-rejecting. The left part of Fig. 1 shows an example of such a state
duplication. ��

The fact that every automaton has a separated form allows us to decompose it into a set
of so-called simple chains:

Definition 1. Given an alphabetΣ, we call a subset Q′ of states of an automaton over
Σ a simple chain if there exists a transition order on Q′, i.e., a bijective function f :
Q′ → {1, . . . , |Q′|} such that:

– only the state q with f(q) = 1 is initial,
– only the state q with f(q) = |Q′| is accepting/rejecting,
– there is no transition in the automaton between a state in Q′ and a state not in Q′,
– for every transition from q to q′ in the automaton, f(q) ≤ f(q′) ≤ f(q) + 1.

Furthermore, regular expressions that are an unnested concatenation of elements of the
form A, A∗, and Aω for A ⊆ Σ are called vermicelli.

As an example, the right-most sequence of states in Fig. 1 is a simple chain and can
equivalently be represented as the vermicelli Σ∗a(b)∗b(c)ω. Note that every vermicelli
can be translated to a language-equivalent set of simple chains.
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Fig. 1. Example for converting a UVW into separated form and subsequently decomposing it
into simple chains. The automata in this example are equivalent to the LTL formula G(a →
XF(b ∧ XFc)). We use Boolean combinations of atomic propositions and their negation as edge
labels here. For example, b refers to all elements x ∈ Σ = 2AP for which b /∈ x. Rejecting states
are doubly-circled.

Proposition 3. Every very-weak automaton can be translated to a form in which it only
consists of simple chains.

Proof. Convert the very-weak automaton into separated form and enumerate all paths
to leaf nodes along with the self-loops that might possibly be taken. For every of these
paths, construct a simple chain. ��

3 Translating LTL Formulas into UVWs

Universal very-weak automata (UVW) were identified as a characterizing automaton
class for the intersection of ACTL and LTL by Maidl [25]. She also described an algo-
rithm to check for a given ACTL formula if it lies in the intersection. For the LTL case,
Maidl defined a syntactic fragment of it, named LTLdet, whose expressivity coincides
with that of ACTL ∩ LTL. However, she did not show how to translate an LTL formula
into this fragment whenever possible, and the fragment itself is cumbersome to use, as
it essentially requires the specifier to describe the structure of a UVW in LTL, and is
not even closed under disjunction, although UVW are. Thus, for all practical means,
the question how to check for a given LTL formula if it is contained in ACTL ∩ LTL
remained open.

When synthesizing a system, the designer of the system specifies the desired se-
quence of events, for which linear-time logics are more intuitive to use than branching-
time logics. Thus, to use the advantage of universal very-weak automata in actual syn-
thesis tool-chains, the ability to translate from LTL to UVW is highly desirable.

Recently, Bojańczyk [4] gave an algorithm for testing the membership of the set of
models of an LTL formula in ACTL ∩ LTL after the LTL formula has been translated
to a deterministic parity automaton. However, the algorithm cannot generate a universal
very-weak automaton (UVW) from the parity automaton in case of a positive answer.
The reason is that the algorithm is based on searching for so-called bad patterns in the
automaton. If none of these are present, the deterministic parity automaton is found



ACTL ∩ LTL Synthesis 45

to be convertible, but we do not obtain any information about how a UVW for the
property might look like. Here, we reduce the problem of constructing a UVW for a
given ω-regular language to a sequence of problems over automata for finite words.
We modify a procedure by Hashiguchi [19] that builds a distance automaton to check
if a given language over finite words can be decomposed into a set of vermicelli (see
Def. 1). Our modification adds a component to keep track of vermicelli already found.
This way, by iteratively searching for vermicellis of increasing length in the language,
we eventually find them all and obtain a full language decomposition.

Since Maidl [25, Lemma 11] described a procedure to translate a UVW to an equiv-
alent ACTL formula, we obtain as a corollary also a procedure to translate from LTL to
ACTL, whenever possible.

3.1 The Case of Automata over Infinite Words

We have seen that every UVW can be translated to a separated UVW. In a separated
UVW, we can distinguish rejecting states by the set of alphabet symbols for which the
states have self-loops. If two rejecting states have the same set, we can merge them
without changing the language of the automaton. As a corollary, we obtain that a UVW
can always be modified such that it is in separated form and has at most 2|Σ| rejecting
states. We will see in this section that obtaining a UVW for a given language L over
some alphabet Σ can be done by finding a suitable decomposition of the set of words
that are not in L among these up to 2|Σ| rejecting states, and then constructing the rest of
the UVW such that words that are mapped to some rejecting state in the decomposition
induce runs that eventually enter that rejecting state and stay there forever.

Definition 2. Given a language L over infinite words from the alphabet Σ, we call
a function f : 2Σ → 2Σ

∗
an end-component decomposition of L if L = Σω \⋃

X⊆Σ(f(X) · Xω). We call f a maximal end-component decomposition of L if for
every X ⊆ Σ, f(X) = {w ∈ Σ∗ | w ·Xω ∩ L = ∅}.

Definition 3. Given a separated UVW A = (Q,Σ,Q0, δ, F ) and an end-component
decomposition f , we say that f corresponds to A if for (q1, X1), . . . , (qm, Xm) being
the rejecting states and alphabet symbols under which they have self-loops, we have:

– for all i �= j, Xi �= Xj;
– for all 1 ≤ i ≤ m: f(Xi) = {w0w1 . . . wk ∈ Σ∗ | qi ∈ δ̂(. . . δ̂(δ̂(Q0, {w0}), . . .),
{wk})};

– for all X ⊆ Σ with X /∈ {X1, . . . , Xm}, we have f(X) = ∅.

As an example, the end-component decomposition that corresponds to the UVW in the
middle part of Fig. 1 is a function f with f(b) = Σ∗a(b)∗, f(c) = Σ∗a(b)∗b(c)∗, and
f(X) = ∅ for X �= b and X �= c. The decomposition is not maximal as, for example,
the word {a}∅ω is not in the language of the automaton, but we have {a} /∈ f({∅}) = ∅.

By the definition of corresponding end-components, every separated UVW has one
unique corresponding end-component decomposition. On the other hand, every lan-
guage has one maximal end-component decomposition. The key result that allows us
to reduce finding a UVW for a given language to a problem on finite words combines
these two facts:
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Lemma 1. Let L be a language that is representable by a universal very-weak au-
tomaton. Then, L is also representable as a separated UVW whose corresponding end-
component decomposition is the maximal end-component decomposition of L.

Proof. Let a UVW be given whose end-component decomposition f is not maximal.
The decomposition can be made maximal by taking f ′(X) =

⋃
X′⊇X f(X

′) for every
X ⊆ Σ, without changing the language. Building a corresponding UVW only requires
taking disjunctions of parts of the original UVW. Since we know that UVW are closed
under disjunction, it is assured that there also exists a UVW that corresponds to f ′. ��

Thus, in order to obtain a UVW for a given language L ⊂ Σω, we can compute the
maximal end-component decomposition f ′ of L, and for every end componentX ⊆ Σ,
compute a non-deterministic very-weak automaton over finite words for f ′(X).

Starting with an LTL formula, we can thus translate it to a UVW (if possible) as
follows: first of all, we translate the LTL formula to a deterministic Büchi automata
(see, e.g., [9] for an overview). Note that as the expressivities of LTL and deterministic
Büchi automata are incomparable, this is not always possible. If no translation exists,
we however know that there also exists no UVW for the LTL formula, as all languages
representable by UVW are also representable by deterministic Büchi automata. After
we have obtained the Büchi automaton, we compute for every possible end-component
X ⊆ Σ from which states S in the automaton every word ending with Xω is rejected.
This is essentially a model checking problem over an automaton with Büchi acceptance
condition. This way, for each end component, a deterministic automaton over finite
words with S as the set of accepting states then represents the prefix language.

3.2 Decomposing a Language over Finite Words into a Non-deterministic
Very-Weak Automaton

This problem of deciding whether there exists a non-deterministic very-weak automa-
ton for a language over finite words is widely studied in the literature. However, con-
structive algorithms that compute such an automaton are unknown. Hashiguchi studied
a more general version of the problem in [19]. His solution is based on computing the
maximal distance of an accepted word in a distance automaton. Bojańczyk [4] recently
gave a simpler algorithm.

Here, we build on the classical construction by Hashiguchi and modify it in order
to be constructive. We describe an iterative algorithm that successively searches for
vermicelli in the language to be analyzed. In a nutshell, this is done by searching for
accepting words of minimal distance in a distance automaton. Whenever a new vermi-
celli is found, the automaton is modified in order not to accept words that are already
covered by vermicelli that have been found before. At the same time, the new vermi-
celli can be read from the state sequence in the accepting run. The distance automaton
is built as follows.

Definition 4. Given a DFAA = (QA, Σ,QA
0 , δ

A, FA) for the language to be analyzed
and a NVWF B = (QB, Σ,QB

0 , δ
B, FB) for the vermicelli already found, the non-

deterministic vermicelli-searching distance automaton over finite words D = (Q,Σ,
Q0, δ, F ) is defined as follows:
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Q = 2Q
A
× 2Σ × B× 2Q

B

Q0 = {(QA
0 , ∅, false, QB

0 )}
F = {(S,X, b, R) | S ⊆ FA, (R ∩ FB) = ∅}

δ((S,X, b, R), x) = {((S,X, b, R′), 0) | R′ = δ̂B(R, {x}), x ∈ X, b = true}
∪ {((S′, X ′, true, R′), 1) | R′ = δ̂B(R, {x}), x ∈ X ′, S′ = δ̂A,∗(S,X ′)}
∪ {((S′, X ′, false, R′), 1) | R′ = δ̂B(R, {x}), x ∈ X ′, S′ = δ̂A(S,X ′)}
for all (S,X, b, R) ∈ Q, x ∈ Σ

The states in a vermicelli-searching automaton D are four-tuples (S,X, b, R) such that
X and b represent an element in a vermicelli, where b tells us if the current vermicelli
element X is starred. During a run, we track in S in which states in A we can be in
after reading some word that is accepted by a vermicelli represented by the vermicelli
elements observed in theX and b state components along the run ofD so far. Whenever
we have S ⊆ FA, then we know that all these words are accepted by A. At the same
time, the R component simulates all runs of the NVWF B, and the definition of F
ensures that no word that is in the language of B is accepted by D. Thus, D can only
find vermicelli that contain some word that is not accepted by B in their language.
Transitions with cost 1 represent moving on to the next vermicelli element.

Theorem 1. Let A be an DFA, B be a NVWF and D be the corresponding vermicelli-
searching distance automaton. We have:

– L(D) = L(A) \ L(B)
– Let L(A) contain a vermicelli V = A1 . . . Ak, where every Ai is either of the form
X∗ or X for some X ⊆ Σ. If V is not covered by L(B), then D accepts some
word w that is a model of V with a run of distance k. Along this run, the first three
state components only change during transitions with a cost of 1, and the second
and third component in between changes describe the alphabet symbol sets in the
vermicelli and whether the vermicelli elements are starred or not.

As a consequence, since every UVW of size n can be described by a set of vermicelli
in which each vermicelli is of length at most n, we can compute a UVW representation
of A by using Algorithm 1. Note that the algorithm does not terminate if A cannot be
represented as a very-weak automaton. Since we can however apply the algorithm by
Bojańczyk [4] beforehand to verify the translatability, this imposes no problem.

4 Reduction of the Synthesis Problem to Parity Games

In this section, we explain how to reduce the synthesis problem for specifications of
the form

∧
a∈Assumptions a→

∧
g∈Guarantees g (or shorter, in assumptions→guarantees

form), for which each of the assumptions and guarantees is in the common fragment of
ACTL and LTL, to solving a parity game. We have discussed in the previous section
how one assumption or guarantee can be converted to a UVW. As the conjunction of
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Algorithm 1. Translating a DFA A into a non-deterministic very-weak automaton B
1: B = (∅, Σ, ∅, ∅, ∅)
2: repeat
3: D = vermicelli searching automaton for A and B
4: r = accepting run of minimal distance in D
5: if r was found then
6: Add r as vermicelli to B
7: end if
8: until L(D) = ∅

two UVW can be taken by just merging the state sets and the initial states, we also
know how to compute one UVW for all of the assumptions and one UVW for all of the
guarantees. So it remains to be discussed how we combine these two UVW into a game
that captures the overall specification.

Bloem et al. [1] describe a way to translate a specification of the assumptions→gua-
rantee form, in which all assumptions and guarantees are in form of deterministic Büchi
automata, into a three-color parity game. Essentially, the construction splits the process
by converting the assumptions and guarantees to a so-called generalized reactivity(1)
game, and then modifying the game structure and adjusting the winning condition to
three-color parity. When converting the game, assumption and guarantee pointers rep-
resent which assumption and guarantee is observed next for satisfaction. The pointers
increment one-by-one, which makes the game solving process a tedious task; for ex-
ample, if it is the last guarantee (in some assumed order) that the system cannot satisfy,
then during the game solving process, this information has to be propagated through all
the other pointer values before the process can terminate.

As a remedy, we describe an improved construction here, and let the two players set
the pointers. This way, the winning player can set the assumption or guarantee pointer
to the problematic assumption or guarantee early in the play, which reduces the time
needed for game solving. The game only has colors other than 0 for positions of the
environment player, and the states are described as six-tuples. The first two tuple com-
ponents describe in which states the assumption and guarantee UVW are, followed by
the assumption and guarantee pointers that are updated by the system and environment
players, respectively. The last two components are Boolean flags that describe whether
recently, the assumption (guarantee) state that the respective pointer points to has been
left, or the system (environment) player has changed her pointer value, respectively,
which is then reflected in the color of the game position. On a formal level, the parity
game is built as follows:

Definition 5. Let Aa = (QA, Σ,QA
0 , δ

A, FA) and Ag = (QG, Σ,QG
0 , δ

G, FG) be
two UVW that represent assumptions and guarantees, and ΣI and ΣO be sets such
that Σ = ΣI × ΣO. Without loss of generality, let furthermore FA = {1, . . . ,m}
and FG = {1, . . . , n}. We define the induced synthesis game as a parity game G =
(V0, V1, ΣI , ΣO, E0, E1, v0, c) with:

V0 = 2Q
A

× 2Q
G

× {1, . . . ,m} × {1, . . . , n} × B× B
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V1 = V0 ×ΣI

E0 = {((SA, SG, dA, dG, bA, bG), x) �→ (SA, SG, dA, d′G, false, b′G, x) | x ∈ ΣI ,

(dG = d′G) ∨ (b′G = true)}
E1 = {((SA, SG, dA, dG, bA, bG, x), y) �→ (S′A, S′G, d′A, dG, b′A, b′G) | y ∈ ΣO,

S′A = δA(SA, (x, y)), S′G = δG(SG, (x, y)),

b′G = (bG ∨ (dG /∈ S′G) ∨ (dG /∈ δG(dG, (x, y)))),
b′A = ((dA �= d′A) ∨ (dA /∈ SA) ∨ (dA /∈ δA(dA, (x, y))))}

v0 = (QA
0 , Q

G
0 , 1, 1, false, false)

c = {V1 ∪ {(qA, qG, dA, dG, bA, bG) | ¬bA ∧ ¬bG} �→ 0, {(qA, qG, dA, dG,
bA, bG) | bA ∧ ¬bG} �→ 1, {(qA, qG, dA, dG, bA, bG) | bG} �→ 2}

For the central correctness claim of this construction, we need some more notation.
Given a play π = π00π

1
0π

0
1π

1
1 . . . for a decision sequence ρ = ρ00ρ

1
0ρ

0
1ρ

1
1 . . . in the game,

we say that a state q ∈ QA is left at position k ∈ IN if for π1k = (SA1 , S
G
1 , d

A
1 , d

G
1 , b

A
1 ,

bG1 , ρ
0
k−1) and π0k+1 = (SA2 , S

G
2 , d

A
2 , d

G
2 , b

A
2 , b

G
2 ), we have q /∈ SA1 or q /∈ δ(q, (ρ0k,

ρ1k)). The construction of G assures that this is the case whenever any run of the assump-
tion automaton corresponding to the first k choice pairs in the decision sequence leaves
state q in the k + 1th round or is not in state q in the kth round. The case for the guar-
antee automaton is analogous. We say that a player rotates through the possible pointer
values if whenever the state that the pointer refers to is left, the player increases it to the
next possible value. In case the highest value is reached, the pointer is set to 1 instead.

Theorem 2. Let Aa andAg be two UVWs over the alphabetΣ = ΣI ×ΣO, and G be
the induced synthesis game by Def. 5. The winning strategies for player 1 ensure that
along any decision sequence that corresponds to the strategy and in which the input
player rotates though the guarantee pointer values, either the sequence is not accepted
by Aa, or the sequence is accepted by Ag . Furthermore, every Mealy machine with the
inputΣI and outputΣO for which along any of its runs, the run is either rejected byAa

or accepted by Ag induces a winning strategy in G by having player 1 rotate through
the possible assumption pointer values.

The main message of Theorem 2 is that the games built according to Def. 5 are suitable
for solving the synthesis task. Note that there are plays in the game that are winning for
the system player, but do not correspond to words that are models of the specification.
The reason is that the environment player is not forced to iterate infinitely often over
every possible pointer value for the final states of the guarantee automaton. Thus, a
winning strategy for the system player in this game does not correspond one-to-one to
a Mealy machine that satisfies the specification. For obtaining an implementation for
the specification, we need to apply some post-processing to a system player’s winning
strategy in the parity game.

The post-processing step is however not difficult: observe that the worst case for
the system player is that the environment player cycles through the guarantee pointer
values. This way, the system player can only win if the decision sequence in the game
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represents a model of the guarantees, or the system player is able to eventually point out
a rejecting state of the assumption automaton that is never left again. In both cases, the
specification is met. Thus, if we attach a round-robin counter for the assumption pointer
to a system player’s strategy, we obtain a valid result for our synthesis problem.

5 Solving Parity Games Symbolically

For an efficient implementation of the synthesis approach in this paper, the ability to
perform the symbolic solution of the parity game built according to the construction of
the previous section is imperative.

For the scope of this paper, we use a simple parity game solving algorithm that is
based on a fixed-point characterization of the winning set of positions in the game,
i.e., the positions from which, if the game is started there, the system player can win
the game. This approach has three advantages over the classical parity game solving
algorithms by Jurdzinski [22] or McNaughton [26]. First of all, it is simpler. Second,
it allows applying a nested fixed-point computation acceleration method by Browne
et al. [5] that essentially reduces the solution complexity to quadratic time (in the
number of game positions), which speeds up the game solving process in contrast to
McNaughton’s algorithm. Finally, the three-color parity game acceleration method for
Jurszinski’s algorithm by de Alfaro and Faella [8] is in some sense included for free.
Their technique searches for gaps in counter values for visits to positions with color 1.
These counters are an artifact that is introduced by Jurzinski’s algorithm. The gaps wit-
ness the case that the game solving process can be terminated before the convergence of
the counter values. As we do not need such counters here, our algorithm can terminate
early automatically without the need to search for such gaps. At the same time, we still
have a quadratic complexity of the game solving process. This advantage would also
generalize to more than three colors, which the acceleration method in [8] does not.

For the special case of the games in this paper (with only player 0 having colors
other than 0 and having only three colors in total), a characterization of the winning
positions in a parity game by Emerson and Jutla [14] reduces to the following fixed-
point equation:

W0 = νX2.μX1.νX0.(V1∩♦X0)∪(V0∩C0∩�X0)∪(V0∩C1∩�X1)∪(V0∩C2∩�X2)

In this formula, Ci represents the set of positions with color i (for every 0 ≤ i < 2),
and �Y and ♦Y describe, for every Y ⊆ V , the set of positions of player 0/player 1
from which player 1 can ensure that after the next move, a position in Y is reached,
respectively. All of the operations needed to evaluate this formula can be performed
symbolically [6]. Also, encoding the state space of the game into BDDs is not difficult:
we can simply assign one bit to every state in the assumption and guarantee automata,
one bit for every input or output atomic proposition, two bits for the “recently visited”
flags in the game, and �log2m�+ �log2 n� bits for the pointers.

It remains to be discussed how a winning strategy can be computed symbolically
after the sets of winning positions for the two players have been identified. First of all,
for ψ = (V1 ∩ ♦X0) ∪ (V0 ∩ C0 ∩ �X0) ∪ (V0 ∩ C1 ∩ �X1) ∪ (V0 ∩ C2 ∩ �X2),
we compute a sequence of prefixed points Yi = νX2.μ

iX1.νX0.ψ for i ∈ IN. Then,
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we take the transition function E1 of the game and restrict it such that only actions that
result in ensuring that the successor position is in the set Yi for the lowest possible value
of i are taken. Any positional strategy that adheres to the restricted transition function
is guaranteed to be winning for the system player.

6 Experimental Results

To evaluate the new synthesis approach presented in this paper, it has been implemented
in a prototype tool-chain, written in C++ and Python. For the symbolic computation
steps, the BDD library CUDD v.2.4.2 [29] was employed. The first step in the tool-
chain is to apply the LTL-to-Büchi converter ltl2ba v.1.1 [18] to the negation of
all assumptions and guarantees of the specification. If the result happens to be very-
weak, we already have a UVW for the specification part. All remaining assumptions
and guarantees are first converted to deterministic Rabin automata using ltl2dstar
v.0.5.1 [23], then translated to equivalent deterministic Büchi automata (if possible),
and finally, after a quick check with the construction by Bojańczyk [4] that they repre-
sent languages in the common fragment of ACTL and LTL, translated to sets of vermi-
celli using the construction from Sect. 3. Whenever one of these translations is found
to be not possible for some assumption or guarantee, the specification is known not to
lie in the supported specification fragment and rejected. The construction from Sect. 3
is performed symbolically, using BDDs and dynamic variable reordering for the BDD
variables. The UVW for the individual assumptions and guarantees are then merged and
some simulation-based automaton minimization steps are applied. In contrast to gene-
ral bisimulation-based minimization techniques for non-deterministic Büchi automata
(see, e.g., [15]), we make use of the fact that the automata are very-weak, which allows
applying more optimizations. The optimization steps are:

– States that are reached by the same set of prefix words are merged (unless this
would introduce a loop).

– States with the same language are merged.
– For every pair of states (q, q′) in the automaton, if q is reached by at least as many

prefix words as q′, but q′ has a greater language than q, we remove q′.

Finally, we perform symbolic parity game solving for the synthesis game build using the
minimized UVW for the assumptions and guarantees as described in Sect. 4 and Sect. 5.
In case of realizability, we use an algorithm by Kukula and Shiple [24] to compute a
circuit description of the implementation. The prototype tool also checks for which
input/output bits it makes sense to encode the last values into the game as an additional
component. This can happen if there are many states in the UVW for which it only
depends on the last input and output whether we are in that state at a certain time. Then,
we can save the BDD bits for these states. For checking the resulting implementations
for correctness, we use NuSMV v.2.5.4 [7].

All computation times given in the following were obtained on an Intel Core 2 Duo
(1.86 Ghz) computer running Linux. All tools considered are single-threaded. We re-
stricted the memory usage to 2 GB and set a timeout of 3600 seconds. We compare
our new approach against Acacia+ v.1.2 [16,17] and Unbeast v.0.6 [13], both
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using ltl2ba. Both synthesis tools implement semi-algorithms, i.e., we need to test
for realizability and unrealizability separately and only give the computation time of the
invocation that terminated for comparison. We could not compare against tools that im-
plement generalized reactivity(1) synthesis such asAnzu [21] as due to the non-standard
semantics (see [11], p. 4 for details) used there, the results would not be meaningful.

Benchmarks
First of all, we consider the load balancer from [10]. This benchmark is for synthesis
tools that are capable of handling full LTL, and consists of 10 scalable specifications.
Out of these, we found 6 to be contained in the supported fragment by our approach,
including the final specification of the load balancer. Table 1 summarizes the results. It
can be observed that the two synthesis tools for full LTL are clearly outperformed on
the supported specifications.

As a second benchmark, we use the non-pre-synthesized AMBA high performance
bus arbiter specification described in [2], which is again scalable in the number of clients.
Here, our tool-chain is able to synthesize the two-client version in 151 seconds, while the
three-client version takes 1422 seconds. In both cases, most of the time is spent on the
symbolic game solving step. Neither Unbeast nor Acacia+ can handle any of these
two cases within 1 hour of computation time. According to [3], with the pre-synthesized
version of the specification of [2], the generalized reactivity(1) tool used in the experi-
mental evaluation of [3] could only handle up to four clients. Thus, our approach comes
close in terms of efficiency, but without the need of pre-synthesis. For completeness,
it must be added, however, that a (manual) rewriting of the specification was later able
boost the generalized reactivity(1) synthesis performance [3] on this benchmark.

Table 1. Running times of the synthesis tools Acacia (“A”), Unbeast (“U”) and a prototype tool
for the approach presented in this paper (“B”) for the load balancer benchmark, using setting
labels from [10]. For each combination of assumptions and guarantees, it is reported whether the
specification was realizable (+/-) and how long the computation took (in seconds).

Tool Setting / # Clients 2 3 4 5 6 7 8 9

B
1

+ 0.3 + 0.4 + 0.4 + 0.4 + 0.5 + 0.5 + 0.6 + 0.6
U + 0.0 + 0.0 + 0.6 + 0.0 + 0.0 + 0.0 + 0.1 + 0.2
A + 0.3 + 0.3 + 0.3 + 0.3 + 0.4 + 0.4 + 0.4 + 0.5

B
1 ∧ 2

+ 0.4 + 0.4 + 0.4 + 0.5 + 0.6 + 0.9 + 2.2 + 6.9
U + 0.7 + 0.0 + 0.1 + 0.1 + 0.1 + 0.1 + 0.2 + 0.3
A + 0.3 + 0.4 + 1.2 + 0.3 + 0.4 + 0.7 + 1.8 + 5.5

B
1 ∧ 2 ∧ 3

- 0.5 - 0.6 - 0.7 - 0.9 - 1.2 - 1.7 - 3.4 - 7.6
U - 0.0 - 0.0 - 0.1 - 0.1 - 0.2 - 1.3 - 11.5 - 145.4
A - 0.3 - 0.3 - 0.4 - 2.9 timeout timeout timeout timeout

B
6 ∧ 7 → 1 ∧ 2 ∧ 5 ∧ 8

+ 0.6 + 0.8 + 0.9 + 1.2 + 1.6 + 2.2 + 4.0 + 9.7
U + 0.1 + 0.4 + 1.4 + 39.9 timeout timeout timeout timeout
A + 2.1 + 1.3 timeout timeout timeout timeout timeout timeout

B
6 ∧ 7 → 1 ∧ 2 ∧ 5 ∧ 8 ∧ 9

- 0.7 - 0.9 - 1.2 - 1.6 - 2.1 - 3.2 - 5.5 - 11.5
U - 0.0 - 0.1 - 0.2 - 1.4 - 28.5 - 886.4 timeout timeout
A - 0.4 - 0.4 - 2.6 timeout timeout timeout timeout timeout

B
6 ∧ 7 ∧ 10 → 1 ∧ 2 ∧ 5 ∧ 8 ∧ 9

+ 0.8 + 1.0 + 1.3 + 2.3 + 2.5 + 3.3 + 5.7 + 11.8
U + 0.3 + 2.2 + 23.7 + 632.5 timeout timeout timeout timeout
A + 0.9 + 0.8 + 16.3 timeout timeout timeout timeout timeout
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7 Conclusion

In this paper, we have proposed ACTL ∩ LTL as a specification fragment that com-
bines expressivity and efficiency for the synthesis of reactive systems. We gave novel
algorithms and constructions for the individual steps in the synthesis workflow. In par-
ticular, we gave the first procedure to obtain universal very-weak automata from LTL
formulas (if possible) and described a novel procedure for building a parity game from
assumption and guarantee properties that speeds up the game solving process by letting
the two players choose the next obligations to the respective other player in the game.

We did not fully exploit the favorable properties of UVW in the paper, and only see
the experimental evaluation herein as a start. For example, since in the structure of the
game built from UVWs, we keep track of in which assumption and guarantee states we
could be in, the game lends itself to the symbolic encoding of the prefixed points in the
game solving process using anti-chains [16].

Also, the approach can easily be extended to support properties whose negation is in
the common fragment of ACTL and LTL. This would allow using persistence properties
like “the system must eventually signal readiness forever”. We recently described in
[12] how generalized reactivity(1) synthesis can be extended to handle such properties,
resulting in five-color parity games. The constructions in this paper are easy to extend
accordingly.

Acknowledgements. The author wants to thank Bernd Finkbeiner and Sven Schewe
for the interesting discussions in which the idea of Sect. 4 was developed. Furthermore,
the author wants to thank Armin Biere for pointing out the common fragment of ACTL
and LTL as potentially interesting for synthesis.
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Abstract. Classical learning algorithms for Boolean functions assume that un-
known targets are Boolean functions over fixed variables. The assumption pre-
cludes scenarios where indefinitely many variables are needed. It also induces
unnecessary queries when many variables are redundant. Based on a classical
learning algorithm for Boolean functions, we develop two learning algorithms
to infer Boolean functions over enlarging sets of ordered variables. We evaluate
their performance in the learning-based loop invariant generation framework.

1 Introduction

Algorithmic learning is a technique for inferring a representation of an unknown target
in a specified instance space. When designing a learning algorithm, one formalizes
intended scenarios as a learning model. In Boolean function learning, for instance, we
are interested in finding a representation (such as a Boolean formula [3]) of an unknown
target amongst Boolean functions over fixed variables. The goal of a learning algorithm
is to generate a representation of the unknown target under the learning model [1,13].

Inferring unknown targets over fixed variables however is not realistic in applications
such as loop invariant generation [11,14,12], or contextual assumption synthesis [5,4]. In
loop invariant generation, one considers a loop annotated with pre- and post-conditions.
The instance space hence consists of quantifier-free formulae over a given set of atomic
predicates. We are interested in finding a quantifier-free formula which establishes the
pre- and post-conditions in the specified instance space [11,14,12]. Note that the given
set of atomic predicates may not be able to express any loop invariant. If the current
atomic predicates are not sufficiently expressive, more atomic predicates will be added.
Hence the set of atomic predicates is not fixed but indefinite. Yet classical learning pre-
sumes a fixed set of variables for unknown targets. It does not consider scenarios where
new variables can be introduced on the fly. The classical learning model therefore do
not really fit the scenario of loop invariant generation.

Another drawback in classical learning algorithms for Boolean functions is their in-
efficiency in the presence of redundant variables. In contextual assumption generation,
one considers the problem of verifying a system composed of two components. We
would like to replace one of the components by a contextual assumption so as to verify
the system more efficiently. The instance space therefore consists of transition relations
over model variables. We are interested in finding the transition relation of a contex-
tual assumption that solves the verification problem [5,4]. Observe that a contextual
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assumption is synthesized for a specific verification problem. If a model variable is not
relevant to the problem, contextual assumptions can safely ignore it. Thus we are look-
ing for an unknown transition relation over a subset of model variables. One would
naturally expect a learning algorithm to perform really well when many model vari-
ables are irrelevant. Yet the complexity of classical learning algorithms depends on the
number of given variables, not relevant ones. Classical learning can be unexpectedly
inefficient when many given variables are redundant.

We propose to infer Boolean functions over indefinitely many variables by incremen-
tal learning. Instead of Boolean functions over a fixed number of variables, we infer the
unknown target by enlarging sets of ordered variables incrementally. At iteration �, we
try to infer the unknown target as a Boolean function over the first � variables. Our
incremental learning algorithm terminates if it infers the target. Otherwise, it proceeds
to the next iteration and tries to infer the unknown target as a Boolean function over
the first � + 1 variables. Since the unknown target is over finitely many variables, our
incremental learning algorithm will infer the target after finitely many iterations.

A naive approach to incremental learning is to apply the classical CDNF learning
algorithm for Boolean functions at each iteration. The simple approach however does
not work. Note that the complexity of the CDNF algorithm depends on the formula size
of the unknown target. When targets are arbitrary, their formula sizes are exponential in
the number of variables. SinceΩ(2�) queries are needed to infer an arbitrary target over
� variables in the worst case, the naive algorithm has to make as many queries before it
gives up the iteration �. Subsequently, the naive algorithm would require an exponential
number of queries for every unknown target and could not be efficient.

To solve this problem, we develop a criterion to detect failures at each iteration dy-
namically. At iteration �, our incremental algorithm checks whether the unknown target
is a Boolean function over the first � variables during the course of inference. If the
incremental algorithm detects that the target needs more than the first � variables, the
iteration � is going to fail. Hence the incremental learning algorithm should abort and
proceed to the next iteration. We propose two incremental learning algorithms with
dynamic failure detection. In our simple incremental learning algorithm CDNF+, the
classical learning algorithm is initialized at each iteration. Information from previous it-
erations hence is lost. Our more sophisticated incremental learning algorithm CDNF++
retains such information and attains a better complexity bound. Under a generalized
learning model, both of our incremental algorithms require at most a polynomial num-
ber of queries in the formula size and the number of ordered variables in the target.
Incremental learning on certain Boolean functions is still feasible.

To attest the performance of our incremental learning algorithms for Boolean func-
tions, we compare with the classical algorithm in the learning-based loop invariant gen-
eration framework [11,14,12]. To evaluate the performance of incremental learning in
typical settings, we consider a simple heuristic variable ordering from the application
domain. Our incremental learning algorithms achieve up to 59.8% of speedup with
the heuristic ordering. To estimate the worst-case performance of incremental learn-
ing, we adopt random variable orderings instead of the heuristic ordering. Excluding
one extreme case, the incremental learning algorithms perform slightly better than the
classical algorithm with random orderings. Since a sensible variable ordering can often
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be chosen by domain experts in most applications, the artificial worst-case scenario is
unlikely to happen. We therefore expect our new algorithms to prevail in practice.

In the classical CDNF learning algorithm for Boolean functions, unknown targets
are Boolean functions over fixed variables [3]. It is not applicable to scenarios where
unknown targets are over indefinitely many variables. Combining with predicate ab-
straction and decision procedures, the CDNF algorithm is used to generate invariants
for annotated loops [11,14,12], and transition invariants for termination analysis [16].
The classical algorithm is also deployed in assume-guarantee reasoning to infer con-
textual assumptions automatically [5,4]. In these applications, the CDNF algorithm is
used as a black box. We propose a new learning model and develop incremental algo-
rithms under the new model. We do not know of any learning algorithm for Boolean
functions over indefinitely many variables. Abstraction techniques in regular language
learning are seemingly relevant [8,2,10]. Recall that the L∗ algorithm does not apply
when queries are answered nondeterministically. It is necessary to bring the learning
algorithm to consistent states upon nondeterministic answers induced by abstraction.
Incremental queries can introduce inconsistencies. We also have to bring the incre-
mental learning algorithms back to consistent states. Since this work is about learning
Boolean functions, it is related to [8,2,10] only in spirits. Many applications of the L∗

algorithm for regular languages have been proposed (see [9], for example).
This paper is organized as follows. After Introduction, preliminaries and notations

are given in Section 2. We then review the CDNF algorithm (Section 3). Section 4
presents our technical contribution. It is followed by experimental results in Section 5.
Finally, Section 6 concludes our presentation.

2 Preliminary

Let B = {⊥,�} be the Boolean domain and x = {x1, x2, . . . , xn, . . .} an infinite
set of ordered Boolean variables. We write x� for the subset {x1, x2, . . . , x�} of x. A
valuation over x� is a function from x� to B. The set of all valuations over x� is denoted
by Val�. For any valuation u ∈ Val�, x ∈ x�+1, and b ∈ B, define

u[x �→ b](y) =

{
u(y) if y �= x
b if y = x.

Note that u[x�+1 �→ b] ∈ Val �+1 for every u ∈ Val �. Let ⊥⊥� ∈ Val� be the valuation
mapping every x ∈ x� to ⊥, and the valuation ��� ∈ Val� mapping every x ∈ x� to �.
The projection of a valuation v on x� is the valuation u ∈ Val� such that u(x) = v(x)
for every x ∈ x�. The symbol ⊕ stands for the component-wise exclusive-or operator.
Thus u⊕⊥⊥� = u for every u ∈ Val�. If R ⊆ Val � is a set of valuations and u ∈ Val �,
we define R ⊕ u = {r ⊕ u : r ∈ R}. Thus R ⊕ ⊥⊥� = R for every R ⊆ Val �. A
Boolean function over x� is a mapping from Val � to B. Let f be a Boolean function.
For any valuation u ∈ Val�, the notation f(u) denotes the Boolean function obtained
by assigning x to u(x) in f . Particularly, f(u) is the Boolean outcome of f on any
valuation u ∈ Val� when f is a Boolean function over x�. Moreover, we say u is
a satisfying valuation of the Boolean function f if f(u) = �; it is an unsatisfying
valuation of f if f(u) = ⊥. When there is a satisfying valuation of a Boolean function
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f , we say f is satisfiable. A Boolean formula F over x� represents a Boolean function
[[F ]]� defined as follows. On any valuation u ∈ Val�, [[F ]]�(u) is obtained by evaluating
F under the valuation u. For example, [[x1 =⇒ x2]]2(⊥⊥2) = �.

A literal is a Boolean variable or its negation. A term is a conjunction of literals.
A clause is a disjunction of literals. A Boolean formula is in disjunctive normal form
(DNF) if it is a disjunction of terms. A Boolean formula is in conjunctive normal form
(CNF) if it is a conjunction of clauses. A formula in CNF (DNF) is a CNF (DNF,
respectively) formula. A Boolean formula is in conjunctive disjunctive normal form
(CDNF) if it is a conjunction of DNF formulae. A formula in CDNF is a CDNF formula.

3 The CDNF Algorithm

The CDNF algorithm is an exact learning algorithm for Boolean functions over xn [3].
Suppose f is an unknown target Boolean function over xn. The learning algorithm
infers a CDNF formula representing f by interacting with a teacher. The teacher is
responsible for answering two types of queries.

– Membership queries MEM n(v) with v ∈ Valn. If f(v) = �, the teacher answers
YES ; otherwise, she answers NO .

– Equivalence queries EQn(F ) with a Boolean formula F over xn as the conjecture.
If [[F ]]n = f , the teacher answers YES . Otherwise, the teacher returns a counterex-
ample v ∈ Valn such that [[F ]]n(v) �= f(v).

Let v ∈ Valn be a valuation and F a Boolean formula over xn. We write MEM n(v)→
Y and EQn(F )→ Z to denote that Y and Z are the answers to the membership query
on v and equivalence query on F , respectively.

1 t ← 0;
2 EQn(true) → v;
3 if v is YES then return true;
4 t ← t+ 1;
5 Ht, Rt, at ← false, ∅, v ; // assert MEMn(at) → NO
6 EQn(∧t

i=1Hi) → v;
7 if v is YES then return ∧t

i=1Hi;
8 I ← {i : [[Hi]]n(v) = ⊥};
9 if I = ∅ then goto 4;

10 foreach i ∈ I do
11 r ← walkTo(n, ai, v) ; // assert MEM n(r) → YES
12 Ri ← Ri ∪ {r};
13 end
14 foreach i = 1, . . . , t do Hi ← MDNF(Ri ⊕ ai)(xn ⊕ ai);
15 goto 6;

Algorithm 1. The CDNF Algorithm
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We reprint the CDNF algorithm in Algorithm 1. In the algorithm, conjectures in
equivalence queries are always CDNF formulae. The variable t maintains the number
of DNF formulae in the current conjecture. Initially, the variable t is set to 0. The con-
jecture is hence degenerated to true (line 2, Algorithm 1).

Three variables keep track of each DNF formula in the conjecture. For the i-th DNF
formula, the variable ai is a valuation over xn, the variableRi is a set of valuations over
xn, and the variableHi is a DNF formula over xn. The i-th DNF formulaHi is derived
from ai and Ri by MDNF (line 14, Algorithm 1):

MDNF(s) =

{ ∧
s(xi)=	

xi if s �= ⊥⊥n

true otherwise
MDNF(S) =

{ ∨
s∈S

MDNF(s) if S �= ∅

false otherwise

For instance,MDNF({⊥⊥2,��2}) =MDNF(⊥⊥2) ∨MDNF(��2) = true ∨ (x1 ∧ x2).
When a new DNF formula is added to the conjecture, the variable Rt is the empty

set and the variable Ht is set to false accordingly (line 5, Algorithm 1). Conjectures in
equivalence queries are conjunctions of Hi’s.

In order to understand our extensions to the CDNF learning algorithm, we give
a new characterization of variables associated with the i-th DNF formulae in Algo-
rithm 1. Note that ai was defined when the i-th DNF formula was created and added
to the conjecture (line 5, Algorithm 1). It is not hard to see that ai is a valuation
with MEM n(ai) → NO . First, a1 was a counterexample to the equivalence query
EQn(true). We have MEM n(a1) → NO . For i > 1, observe that ai was the coun-
terexample to the equivalence queryEQn(∧i−1

j=1Hj) (line 6, Algorithm 1). Furthermore,
ai was added when the set {j < i : [[Hj ]]n(ai) = ⊥} was empty (line 9, Algorithm 1).
Since [[∧i−1

j=1Hj ]]n(ai) = � and EQn(∧i−1
j=1Hj)→ ai, we have MEM n(ai)→ NO .

The valuations in Ri can be characterized as easily. When the counterexample v
to the equivalence query EQn(∧ti=1Hi) is returned (line 6, Algorithm 1), the CDNF
algorithm checks if the set {i : [[Hi]]n(v) = ⊥} is empty (line 9, Algorithm 1). If not,
we have [[∧ti=1Hi]]n(v) = ⊥. Thus MEM n(v) → YES for v is a counterexample to
EQn(∧ti=1Hi). For each i such that [[Hi]]n(v) = ⊥, the result of walkTo(n, ai, v) is
added to Ri (line 12, Algorithm 1). Algorithm 2 gives the details of walkTo(�, a, v).

The algorithm walkTo(�, a, v) finds an x ∈ x� with v(x) �= a(x) and flips the value
of v(x). If the new valuation yields YES on a membership query, it continues flipping
other values of v different from a. Otherwise, the algorithm reverts to the old value of
v(x) and flips another value. Roughly, walkTo(�, a, v) computes a valuation r ∈ Valn
closest to a such that MEM n(r)→ YES . Define

N�(a, r) = {w ∈ Val� : w = r[x �→ a(x)] where x ∈ x� and r(x) �= a(x)}.

Each valuation in N�(a, r) is obtained by flipping the value of exactly one x ∈ x� on r
with r(x) �= a(x). Each valuation in N�(a, r) is thus closer to a than r. The following
lemma summaries Algorithm 2:

Lemma 1. Let a, v ∈ Val � (1 ≤ �) be that MEM �(a) → NO and MEM �(v) →
YES . Assume r = walkTo(�, a, v) (Algorithm 2). Then MEM �(r) → YES , and
MEM �(w)→ NO for every w ∈ N�(a, r).
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Input: 
 ∈ N : 1 ≤ 
; a ∈ Val� : MEM �(a) → NO; v ∈ Val� : MEM �(v) → YES
Output: r ∈ Val � : MEM �(r) → YES

1 r ← v;
2 k ← 1;
3 while k ≤ 
 do
4 if r(xk) = a(xk) then k ← k + 1;
5 else
6 r(xk) ← a(xk);
7 if MEM �(r) → NO then
8 r(xk) ← ¬a(xk);
9 k ← k + 1;

10 else k ← 0;
11 end
12 return r;

Algorithm 2. walkTo(�, a, v)

Recall that Ri consists of the result of walkTo(n, ai, v) where MEM n(ai)→ NO and
MEM n(v) → YES . Thus MEM n(r) → YES for every r ∈ R; MEM n(w) → NO
for every r ∈ R and w ∈ Nn(ai, r) (Lemma 1). We characterize the pairs (a,R)’s
maintained in the learning algorithm with the following definition:

Definition 1. For a ∈ Valn and R ⊆ Valn, define the property Γ (a,R) by

1. MEM n(a)→ NO;
2. MEM n(r)→ YES for every r ∈ R; and
3. MEM n(w)→ NO for every r ∈ R and w ∈ Nn(a, r).

Suppose [[¬x1 ∨ ¬x2]]2 is the target Boolean function over x2 as an example. Let
r(x1) = ⊥ and r(x2) = �. We have Γ (��2, {r}) but not Γ (��2, {⊥⊥2}).

The following lemma states that Γ (ai, Ri) holds for 1 ≤ i ≤ t in the CDNF algo-
rithm. We call (a,R) a speculative support when Γ (a,R) holds.

Lemma 2. At line 6 of Algorithm 1, Γ (ai, Ri) holds for every 1 ≤ i ≤ t.

The size of a DNF formula is the number of terms in the formula; the size of a CNF
formula is the number of clauses in it. Let f be a Boolean function over xn. The DNF
size of f (denoted by |f |DNF) is the minimal size over all DNF formulae representing
f ; the CNF size of f (denoted by |f |CNF) is the minimal size of all CNF formulae
representing f . The number of speculative supports and the size ofR in each speculative
support (a,R) give the following bounds.

Theorem 1 ([3]). Let f be an unknown target Boolean function over xn. The
CDNF algorithm (Algorithm 1) infers f within O(n2|f |CNF|f |DNF) membership and
O(|f |CNF|f |DNF) equivalence queries.

Note that the complexity of the CDNF algorithm is a polynomial in the size of the
variable set xn. If all but one variables in xn are redundant, the learning algorithm still
requiresO(n2) membership queries to infer the target.
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4 Incremental Learning

The CDNF algorithm infers an unknown target among Boolean functions over a fixed
number of variables. It is not applicable to scenarios where targets are Boolean func-
tions over indefinitely many variables. Moreover, the complexity of the CDNF algo-
rithm is a polynomial in the number of given variables. It can be unexpectedly
inefficient when many variables are redundant in the unknown target.

It appears that these issues could be resolved by invoking the CDNF algorithm itera-
tively. A naive incremental learning algorithm adopts the classical learning algorithm to
infer the unknown target as a Boolean function over x� at iteration �. If it succeeds, the
naive algorithm reports the inferred result. Otherwise, the naive algorithm increments
the number of variables and invokes the CDNF algorithm to infer the unknown target
as a Boolean function over x�+1. The naive approach however has two problems.

The first problem is to answer queries. Recall that the teacher knows a target Boolean
function over, say, xm. At iteration �, the naive incremental algorithm infers the un-
known target as a Boolean function over x�. It thus makes queries on valuations and
conjectures over x�. Yet the target Boolean function is over xm. It is unclear how the
teacher answers queries at iteration � when � �= m. A new learning model where the
teacher answers such queries is necessary for learning Boolean functions incrementally.

The other problem of the naive approach is its inefficiency. Recall that the complex-
ity of the CDNF algorithm depends on the CNF and DNF sizes of the unknown target.
Since targets are arbitrary, Ω(2�) queries are needed to decide whether the learning al-
gorithm fails to infer the target at iteration �. Deciding failures of inference requires an
exponential number of queries at each iteration. Naively adopting the CDNF algorithm
would be very inefficient compared to the classical learning algorithm. A more sophis-
ticated mechanism to identify failures of inference at each iteration is indispensable.

For the first problem, we generalize the classical learning model to enable the teacher
answering queries at all iterations (Section 4.1). To address the second problem, we de-
velop a criterion for determining failures of inference dynamically and use it in our
simple incremental learning algorithm (Section 4.2). A sophisticated incremental algo-
rithm with an economical management of information is presented in Section 4.3.

4.1 Incremental Teacher

Assume a target Boolean function f over a finite subset of x. In our incremental learning
model, an incremental teacher should answer the following queries:

– Incremental membership queries MEM �(u) with u ∈ Val �. If f(u) is satisfiable,
the incremental teacher answers YES ; otherwise, she answers NO .

– Incremental non-membership queries MEM �(u) with u ∈ Val�. If ¬f(u) is satis-
fiable, the incremental teacher answers YES ; otherwise, NO .

– Incremental equivalence queries EQ �(G) with a Boolean formula G over x�. If
[[G]]� = f , the incremental teacher answers YES . Otherwise, she returns the pro-
jection of a valuation v ∈ Valx on x� where [[G]]�(v) �= f(v) ∈ B.

Example. Let f = x1 ⊕ x2. On incremental queries MEM 1(⊥⊥1) and MEM 1(⊥⊥1),
the incremental teacher answers YES . Similarly, the incremental teacher answers YES
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on incremental queries MEM 1(��1) and MEM 1(��1). On incremental equivalence
queries EQ1(true) or EQ1(false), � is a counterexample.

Incremental queries allow a learning algorithm to acquire (incomplete) information
about the unknown target function. Intuitively, the answer to an incremental member-
ship query on a valuation reveals whether a completion of the valuation gives a satis-
fying valuation; the answer to an incremental non-membership query shows whether
a completion gives an unsatisfying valuation. Incremental equivalence queries check
whether the target is equivalent to a Boolean formula over specified variables. If not, a
valuation differentiates the conjecture and the target. The projection of such a valuation
on specified variables is returned as a counterexample. The following lemma is useful.

Lemma 3. Assume a target Boolean function over xm and 1 ≤ � ≤ m.

1. For any valuation v ∈ Valm, MEMm(v)→ YES iff MEMm(v)→ NO .
2. For any Boolean formulaG and valuation u over x�, [[G]]�(u) = ⊥ andEQ �(G)→
u imply MEM �(u)→ YES .

3. For any Boolean formulaG and valuation u over x�, [[G]]�(u) = � andEQ �(G)→
u imply MEM �(u)→ YES .

4.2 The CDNF+ Algorithm

Suppose that the CDNF algorithm is inferring an unknown target as a Boolean function
over x� at iteration �. We check if the classical algorithm will fail at this iteration. If
so, we abort and re-instantiate the CDNF algorithm to infer the unknown target as a
Boolean function over x�+1 at the next iteration. To determine failures of inference,
recall that the CDNF algorithm is exact. If the unknown target is indeed a Boolean
function over x�, the classical algorithm will infer it. It suffices to check whether the
target is a Boolean function over x� to determine whether the iteration � will fail.

In order to detect whether the unknown target is a Boolean function over x�, observe
that a function cannot have two different outcomes on one input. When the target is a
Boolean function over x�, MEM �(u) → YES if and only if MEM �(u) → NO for
every u ∈ Val� (Lemma 3). Therefore, the unknown target is not a Boolean function
over x� if MEM �(u)→ YES and MEM �(u)→ YES for some u ∈ Val �. This simple
observation motivates the following definition:

Definition 2. A valuation u ∈ Val � (1 ≤ �) is conflicting if MEM �(u) → YES and
MEM �(u)→ YES .

The following lemma follows immediately from Lemma 3.

Lemma 4. For any target Boolean function over a finite subset of x, the target Boolean
function is not over x� if there is a conflicting valuation over x�.

Example (continued). Recall that ⊥ is a counterexample to both EQ1(false) and
EQ1(true). By Lemma 3, MEM 1(⊥) → YES and MEM 1(⊥) → YES . Hence the
unknown target is not a Boolean function over x1.

Our first incremental learning algorithm is now clear. We parameterize the CDNF
algorithm by the number of ordered variables. At iteration �, we apply the parameter-
ized CDNF algorithm and infer the unknown target as a Boolean function over x�. If a
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conflicting valuation is observed, we increment � and move to the next iteration. Algo-
rithm 3 shows the parameterized CDNF algorithm. Note that incremental equivalence
queries are invoked in the parameterized algorithm. Similarly, incremental membership
queries are used in the algorithm walkTo(�, a, v) (Algorithm 2).

Input: 
 ∈ N : 1 ≤ 

1 t ← 0;
2 EQ�(true) → v;
3 if v is YES then return true;
4 t ← t+ 1;
5 Ht, Rt, at ← false, ∅, v ; // assert MEM �(at) → YES
6 EQ�(∧t

i=1Hi) → v;
7 if v is YES then return ∧t

i=1Hi;
8 I ← {i : [[Hi]]�(v) = ⊥};
9 if I = ∅ then goto 4;

10 foreach i ∈ I do
11 r ← walkTo(
, ai, v) ; // assert MEM �(r) → YES
12 if ai = r then raise conflict-found ;
13 Ri ← Ri ∪ {r};
14 end
15 foreach i = 1, . . . , t do Hi ← MDNF(Ri ⊕ ai)(x� ⊕ ai);
16 goto 6;

Algorithm 3. ℘CDNF (�)

We give a parameterized generalization of Γ (a,R) in Definition 3.

Definition 3. For a ∈ Val� (1 ≤ �) and R ⊆ Val �, defineΔ�(a,R) by

1. MEM �(a)→ YES ;
2. MEM �(r)→ YES for every r ∈ R;
3. MEM �(w)→ NO for every r ∈ R and w ∈ N�(a, r).

The following lemma states that Δ�(ai, Ri) holds for 1 ≤ i ≤ t in the parameterized
CDNF algorithm. Its proof is a generalization of those in Lemma 2. We call (a,R) a
speculative support with parameter � when Δ�(a,R) holds.

Lemma 5. At line 6 of Algorithm 3, Δ�(ai, Ri) holds for every 1 ≤ i ≤ t.

In order to decide conflicting valuations, recall that (ai, Ri)’s are speculative supports
with parameter �. We have MEM �(ai) → YES and MEM �(r) → YES for every
r ∈ Ri (Lemma 5 and 1). If furthermore ai = r, ai is conflicting. By Lemma 4, the
unknown target is not a Boolean function over x�. We abort the parameterized algorithm
by raising an exception (line 12, Algorithm 3).

Algorithm 4 gives our simple incremental learning algorithm. The CDNF+ algorithm
starts from the variable � equal to one. At iteration �, it invokes the parameterized algo-
rithm ℘CDNF with parameter � to infer the unknown target as a Boolean function over
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1 
 ← 1;
2 while � do
3 try
4 G = ℘CDNF(
)
5 with conflict-found =⇒ 
 ← 
+ 1;
6 end
7 return G;

Algorithm 4. The CDNF+ Algorithm

x�. If the parameterized algorithm infers the target, our simple algorithm terminates suc-
cessfully. If the parameterized learning algorithm raises the exception conflict-found ,
the simple algorithm increments the variable � and reiterates. The complexity of the
CDNF+ algorithm follows from Theorem 1 and the number of iterations.

Theorem 2. Let f be an unknown target Boolean function over a finite subset of x.
The CDNF+ algorithm (Algorithm 4) infers f inO(m3|f |CNF|f |DNF) incremental mem-
bership and O(m|f |CNF|f |DNF) incremental equivalence queries where m is the least
number such that f is a Boolean function over xm.

The CDNF+ algorithm does not presume a fixed set of variables. It is hence applicable
to scenarios where unknown targets are over indefinitely many variables. Moreover, the
complexity of the CDNF+ algorithm depends on the number of ordered variables in the
unknown target. If the target is a Boolean function over x1, the CDNF+ algorithm will
infer the target within O(|f |CNF|f |DNF) incremental membership queries. The classical
learning algorithm in contrast needsO(n2|f |CNF|f |DNF) membership queries if it infers
the unknown target as a Boolean function over xn. The performance of the CDNF+
algorithm however depends on variable orderings and how incremental membership
queries are resolved in practice. Section 5 evaluates these issues.

4.3 The CDNF++ Algorithm

We can actually do better than the CDNF+ algorithm. Observe that the simple incre-
mental learning algorithm restarts the learning process at each iteration. All information
from previous iterations known to the incremental algorithm is lost. The parameterized
CDNF+ algorithm has to infer the unknown target from scratch. This is apparently not
an economical management of information.

To retain the information obtained in previous iterations, we reuse parameterized
speculative supports in each iteration. Each speculative support (a,R) with parameter �
satisfies the propertyΔ�(a,R) at iteration � (Lemma 5). We compute a speculative sup-
port (a+, R+) with parameter �+1 from a speculative support (a,R) with parameter �.
After new parameterized speculative supports are constructed, we initiate the parame-
terized CDNF algorithm with the extended parameterized speculative supports and the
conjecture derived from them. Information from previous iterations is thus retained.

Consider a speculative support (a,R) with parameter � and a speculative support
(a+, R+) with parameter � + 1. We have a ∈ Val� and a+ ∈ Val�+1. Similarly,
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R ⊆ Val� and R+ ⊆ Val�+1. Each valuation in a speculative support with parameter
� is only short of the Boolean assignment to the variable x�+1. To construct (a+, R+)
from (a,R), it suffices to extend the valuation a and every valuation over x� in R by an
assignment to x�+1. To simplify the notation, we use the shorthand u+b for u[x�+1 �→ b]
where u ∈ Val � and b ∈ B. The following lemma follows from the definition.

Lemma 6. Let u ∈ Val � (1 ≤ �) be a valuation over x�.

1. If MEM �(u)→ YES , MEM �+1(u
+⊥)→ YES or MEM �+1(u

+	)→ YES .
2. If MEM �(u)→ NO , MEM �+1(u

+⊥)→ NO and MEM �+1(u
+	)→ NO .

3. If MEM �(u)→ YES , MEM �+1(u
+⊥)→ YES or MEM �+1(u

+	)→ YES .

Algorithm 5 explicates the construction of (a+, R+) from (a,R) whereΔ�(a,R) holds.
It starts by extending a. Recall that MEM �(a) → YES . We can always find an exten-
sion a+ with MEM �+1(a

+) (Lemma 6). For the set R+ ⊆ Val �+1, the construction is
not more difficult. We simply extend every valuation in R so that the extension yields
YES on an incremental membership query.

Input: 
 ∈ N : 1 ≤ 
; a ∈ Val� : MEM �(a) → YES ; R ⊆ Val � : MEM �(r) → YES
for every r ∈ R

Output: a+ ∈ Val�+1 : MEM �+1(a
+) → YES ; R+ ⊆ Val�+1 :

MEM �+1(r
+) → YES for every r+ ∈ R+

// assert Δ�(a,R)

1 b ← if MEM �+1(a
+⊥) → YES then ⊥ else �;

2 a+ ← a+b;
3 R+ ← ∅;
4 foreach r ∈ R do
5 c ← if MEM �+1(r

+b) → YES then b else ¬b;
6 R+ ← R+ ∪ {r+c};
7 end
// assert Δ�+1(a

+, R+)
8 return (a+, R+);

Algorithm 5. extendSupport(�, a, R)

The following lemma states that the construction in Algorithm 5 is indeed correct.
The only non-trivial part is to show that N�+1(a

+, r+) consists of valuations yielding
NO on incremental membership queries for every r+ ∈ R+.

Lemma 7. Let a ∈ Val � (1 ≤ �), R ⊆ Val�, and (a+, R+) = extendSupport(�, a, R)
(Algorithm 5). If Δ�(a,R), then Δ�+1(a

+, R+).

With extended parameterized speculative supports, it is now straightforward to design
our incremental learning algorithm (Algorithm 6). Similar to the simple incremental
algorithm, the CDNF++ algorithm infers unknown target Boolean functions iteratively.
At each iteration, it first proceeds as the parameterized CDNF algorithm. If the param-
eterized algorithm is able to infer the unknown target at iteration �, our incremental
algorithm terminates successfully and reports the result.
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When the CDNF++ algorithm detects a conflicting valuation, it constructs extended
parameterized speculative supports with Algorithm 5 (line 14, Algorithm 6). After ex-
tended parameterized speculative supports are obtained, the CDNF++ algorithm de-
rives a new conjecture from them and enters the next iteration (line 19, Algorithm 6).
The following theorem is proved by bounding the number of parameterized speculative
supports and the size of R in each parameterized speculative support (a,R).

1 
 ← 1;
2 t ← 0;
3 EQ�(true) → v;
4 if v is YES then return true;
5 t ← t+ 1;
6 Ht, Rt, at ← false, ∅, v ; // assert MEM �(at) → YES
7 EQ�(∧t

i=1Hi) → v;
8 if v is YES then return ∧t

i=1Hi;
9 I ← {i : [[Hi]]�(v) = ⊥};

10 if I = ∅ then goto 5;
11 foreach i ∈ I do
12 r ← walkTo(
, ai, v) ; // assert MEM �(r) → YES
13 if ai = r then
14 foreach i = 1, . . . , t do (ai, Ri) ← extendSupport (ai, Ri);
15 
 ← 
+ 1;
16 goto 19
17 Ri ← Ri ∪ {r};
18 end
19 foreach i = 1, . . . , t do Hi ← MDNF(Ri ⊕ ai)(x� ⊕ ai);
20 goto 7;

Algorithm 6. The CDNF++ Algorithm

Theorem 3. Let f be an unknown target Boolean function over a finite subset of x. The
CDNF++ algorithm (Algorithm 6) infers f in O(m2|f |CNF|f |DNF) incremental mem-
bership, O(m|f |CNF) incremental non-membership, and O(|f |CNF|f |DNF) incremental
equivalence queries where m is the least number that f is a Boolean function over xm.

Compared with the simple incremental learning algorithm, the CDNF++ algorithm im-
proves linearly in the numbers of incremental membership and equivalence queries.
In exchange, the sophisticated algorithm makes non-membership queries to extend pa-
rameterized speculative supports. Again, the performance of the CDNF++ algorithm
depends on the order of variables and the efficiency of incremental query resolution.
We give an assessment in the next section.
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5 Experiments

We apply our incremental learning algorithms to the learning-based framework for loop
invariant generation [11]. Let { δ } while κ do S { ε } be an annotated loop with the
pre-condition δ, the post-condition ε, and the loop guard κ. A loop invariant ι verifying
the annotated loop is a quantifier-free formula such that δ =⇒ ι, ι =⇒ ε ∨ κ, and
ι ∧ κ =⇒ wp(S, ι), where wp(S, ι) denotes the weakest precondition of ι for S.

The learning-based framework for loop invariant generation applies predicate
abstraction [17,7] and adopts the CDNF algorithm [3] to infer the abstraction of a
loop invariant for a given annotated loop. Using an SMT solver [6,15], a randomized
mechanical teacher is devised to answer queries from the learning algorithm. Sup-
pose n atomic predicates are used in the abstraction. Consider a membership query
MEM n(v) with v ∈ Valn. If the quantifier-free formula corresponding to the valuation
v is stronger than δ, it must be stronger than any loop invariant ι for δ =⇒ ι. The me-
chanical teacher hence answers YES to the membership query MEM n(v). Similarly,
if the the corresponding formula of v is not stronger than ε ∨ κ, it is not included in
any loop invariant ι for ι =⇒ ε ∨ κ. The mechanical teacher thus answers NO to
the membership query MEM n(v). In other cases, the mechanical teacher simply gives
a random answer. Observe that random answers may yield different loop invariants in
different runs. A multitude of loop invariants are exploited by the randomized teacher.

For predicate abstraction, atomic predicates are extracted from program texts heuris-
tically [11]. If many irrelevant atomic predicates are extracted, the performance of clas-
sical learning will be impeded. We therefore apply incremental learning to improve the
efficiency of the learning-based framework.

Two minor modifications derived from the domain knowledge are needed for this
application. First, recall that any loop invariant must be stronger than the disjunction
of the loop guard and the post-condition. An inferred loop invariant is likely to have
atomic predicates from them. We hence start with these atomic predicates and infer loop
invariants incrementally. This can be achieved by putting the atomic predicates of the
loop guard and the post-condition in front of the variable set, and initializing the variable
� with the number of such predicates. Second, observe that random answers from the
mechanical teacher may induce conflicting valuations. A conflict does not necessarily
imply the lack of variables. To give the learning algorithm more chances to infer a loop
invariant over the first � atomic predicates, the variable � is incremented only when
the number of conflicts is greater than ��1.2�. Otherwise, we restart the parameterized
CDNF algorithm to infer a loop invariant over the first � atomic predicates.

We compare the average performance of 1000 runs in five test cases. Data are col-
lected from an Intel Core2 Quad Processor Q8200 running 64-bit Linux 2.6.32 with
4GB memory. Figure 1 shows our experimental results. Three learning algorithms
(CDNF, CDNF+, and CDNF++) are compared in the same test cases from [11]. The
number of atomic predicates is reported in the column “vars.” For the CDNF algorithm,
it indicates the number of atomic predicates extracted from program texts. For the in-
cremental learning algorithms, it indicates the average number of atomic predicates in
a loop invariant. The column “cflcts” shows the average number of conflicting valua-
tions induced by random answers or lack of variables. The columns “MEM”, “MEM”,
and “EQ” are respectively the average numbers of membership, non-membership,
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test case vars cflcts MEM MEM EQ MEM$ MEM$ EQ$ time

ide-ide-tape
CDNF 6.0 0.0 16.2 - 4.8 4.0 - 0.3 0.046s

CDNF+ 3.0 0.0 1.0 - 3.0 0.0 - 0.0 0.015s
CDNF++ 3.0 0.0 1.0 0.0 3.0 0.0 0.0 0.0 0.015s

ide-wait-ireason
CDNF 8.0 1.6 85.5 - 32.9 14.9 - 7.8 0.237s

CDNF+ 4.0 0.0 8.0 - 9.5 1.0 - 0.0 0.044s
CDNF++ 4.0 0.0 19.0 0.0 29.0 0.0 0.0 0.0 0.088s

parser
CDNF 20.0 20.5 10203.9 - 1286.9 1306.6 - 44.9 41.044s

CDNF+ 9.0 0.0 97.3 - 32.4 36.8 - 0.0 0.501s
CDNF++ 9.0 0.0 304.8 0.0 91.0 8.5 0.0 0.0 1.006s

usb-message
CDNF 10.0 0.0 21.1 - 6.8 1.0 - 0.0 0.097s

CDNF+ 5.0 0.0 19.5 - 6.6 2.2 - 0.0 0.065s
CDNF++ 5.0 0.0 60.9 0.0 21.7 9.6 0.0 0.0 0.147s

vpr
CDNF 7.0 0.9 4.6 - 6.4 20.1 - 3.4 0.070s

CDNF+ 5.1 0.8 4.0 - 5.9 17.7 - 3.0 0.057s
CDNF++ 5.0 0.1 5.6 3.0 9.2 21.9 0.0 2.0 0.064s

Fig. 1. Experimental Results – Heuristic Variable Ordering

and equivalence queries answered conclusively. The columns “MEM$”, “MEM$”, and
“EQ$” show the average numbers of random membership, non-membership, and equiv-
alence queries respectively. The column “time” indicates average running time.

With our simple heuristic variable ordering, the CDNF+ algorithms performs bet-
ter than the classical learning algorithm in all test cases. The more sophisticated
CDNF++ algorithm is outperformed by the classical algorithm in only one test case
(usb-message). Both incremental learning algorithms improve the most complicated
case parser significantly. The classical learning algorithm takes about 41 seconds to
infer a loop invariant in this test case. The CDNF+ and CDNF++ algorithms use about
.5 and 1 second respectively in the same test case. Across the five test cases, the CDNF+
and CDNF++ algorithms have expected speedups of 59.8% and 36.9% respectively.

We now evaluate the worst-case performance of the incremental learning algorithms.
To this end, we randomly order the set of atomic predicates extracted from program
texts at each run. Starting from the first variable in a random variable ordering, our
incremental learning algorithms are invoked to infer loop invariants. Similarly, we in-
voke the classical CDNF algorithm on all randomly ordered variables at each run. We
compare the average of 1000 runs in each test case. Figure 2 gives the results.

With random variable orderings, the incremental learning algorithms perform com-
parably to the classical learning algorithm in all test cases but usb-message. For
this particular case, conflicts are negligible when all atomic predicates are used. In-
cremental learning, on the other hand, needs to enlarge the set of atomic predicates 8
times. Subsequently, both incremental learning algorithms make lots of useless queries
before a loop invariant is inferred. Also note that the CDNF algorithm performs signif-
icantly better with random variable orderings in the test case parser. Yet the classical
algorithm still requires about 12 seconds to infer a loop invariant. In comparison, our
incremental algorithms are an order of magnitude faster with our heuristic variable or-
dering (cf Figure 1). Using random variable orderings, we observe 19.4% and 18.5% of
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test case vars cflcts MEM MEM EQ MEM$ MEM$ EQ$ time

ide-ide-tape
CDNF 6.0 0.1 13.0 - 5.0 3.6 - 0.4 0.048s

CDNF+ 2.7 2.5 4.1 - 10.5 0.9 - 0.0 0.028s
CDNF++ 2.8 2.7 5.2 0.0 13.2 1.6 0.0 0.1 0.037s

ide-wait-ireason
CDNF 8.0 1.6 87.8 - 32.0 14.2 - 7.6 0.247s

CDNF+ 6.9 7.6 76.4 - 51.7 12.6 - 5.1 0.236s
CDNF++ 6.8 7.4 83.0 3.4 56.0 17.5 0.4 4.5 0.256s

parser
CDNF 20.0 5.6 2948.4 - 405.6 563.7 - 12.6 11.961s

CDNF+ 19.0 31.1 4343.5 - 942.0 783.0 - 8.9 18.143s
CDNF++ 19.1 31.5 3365.1 19.3 572.8 757.1 0.4 9.1 13.504s

usb-message
CDNF 10.0 0.0 21.4 - 7.3 1.0 - 0.0 0.094s

CDNF+ 8.1 8.1 47.2 - 44.1 3.1 - 0.0 0.205s
CDNF++ 8.4 8.4 39.8 3.5 35.1 5.0 0.0 0.0 0.181s

vpr
CDNF 7.0 1.6 9.5 - 9.4 33.0 - 6.3 0.112s

CDNF+ 4.4 4.4 7.3 - 16.4 16.2 - 6.4 0.082s
CDNF++ 5.1 5.6 15.9 1.4 22.5 24.0 1.0 6.5 0.119s

Fig. 2. Experimental Results – Random Variable Orderings

slowdowns respectively from the CDNF+ and CDNF++ algorithms across the five test
cases. Note that the test case usb-message alone registers a slowdown of more than
90%. The incremental learning algorithms in fact perform slightly better than the clas-
sical algorithm for the other four test cases on average (5.3% for CDNF+ and 0.1% for
CDNF++). Also recall that this is the worst-case scenario for incremental learning. As
in loop invariant inference, heuristics for choosing sensible variable orderings are often
available for most applications. Our incremental learning algorithms should outperform
the classical algorithm with the domain knowledge in practice.

6 Conclusion

Classical learning algorithms for Boolean functions assume a fixed number of variables
for unknown targets. The assumption precludes applications where indefinitely many
variables are needed. It can also be unexpectedly inefficient at the presence of irrele-
vant variables. We address the problem by inferring unknown targets through enlarging
numbers of ordered variables. Our experiments show that incremental learning attains
significant improvement with a simple heuristic variable ordering. They also suggest
manageable slowdowns in the worst-case scenario with random variable orderings.

Applications of incremental learning in formal verification are under investigation.
Particularly, problems in program verification inherently have indefinitely many vari-
ables in unknown targets. Applying incremental learning to program verification will be
interesting. We are working on applications in automated assume-guarantee reasoning.
Domain knowledge about contextual assumptions will be essential in this application.
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Abstract. We show how interpolants can be viewed as classifiers in
supervised machine learning. This view has several advantages: First,
we are able to use off-the-shelf classification techniques, in particular
support vector machines (SVMs), for interpolation. Second, we show
that SVMs can find relevant predicates for a number of benchmarks.
Since classification algorithms are predictive, the interpolants computed
via classification are likely to be invariants. Finally, the machine learning
view also enables us to handle superficial non-linearities. Even if the
underlying problem structure is linear, the symbolic constraints can give
an impression that we are solving a non-linear problem. Since learning
algorithms try to mine the underlying structure directly, we can discover
the linear structure for such problems. We demonstrate the feasibility of
our approach via experiments over benchmarks from various papers on
program verification.

Keywords: Static analysis, interpolants, machine learning.

1 Introduction

Problems in program verification can be formalized as learning problems. In
particular, we show how interpolants [4,17,11] that are useful heuristics for com-
puting “simple” proofs in program verification can be looked upon as classifiers
in supervised machine learning. Informally, an interpolant is a predicate that
separates good or positive program states from bad or negative program states
and a set of appropriately chosen interpolants forms a program proof. Our main
technical insight is to view interpolants as classifiers that distinguish positive
examples from negative examples. This view allows us to make the following
contributions:

– We are able to use state-of-the-art classification algorithms for the purpose
of computing interpolants. Specifically, we show how to use support vector
machines (SVMs) [21] for binary classification to compute interpolants.
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– Since classification algorithms are predictive, the interpolants we compute
are relevant predicates for program proofs. We show that we can discover
inductive invariants for a number of benchmarks. Moreover, since SVMs are
routinely used in large scale data processing, we believe that our approach
can scale to verification of practical systems.

– Classification based interpolation also has the ability to detect superficial
non-linearities. As shown in Section 4, even if the underlying problem struc-
ture is linear, the symbolic constraints can give an impression that we are
solving a non-linear problem. Since our algorithmmines the underlying struc-
ture directly, we can discover the linear structure for such problems.

The rest of the paper is organized as follows. We informally introduce our tech-
nique by way of an example in Section 1.1. In Section 2, we describe necessary
background material including a primer on SVMs. Section 3 describes the main
results of our work. We first introduce a simple algorithm Basic that uses an
SVM as a black box to compute a candidate interpolant and we formally char-
acterize its output. SVMs rely on the assumption that the input is linearly
separable. Hence, we give an algorithm SVM-I (which makes multiple queries
to an SVM) that does not rely on the linear separability assumption and prove
correctness of SVM-I. We augment Basic with a call to SVM-I; the output of
the resulting algorithm is still not guaranteed to be an interpolant. This algo-
rithm fails to output an interpolant when we do not have a sufficient number
of positive and negative examples. Finally, we describe an algorithm Inter-

polant that generates a sufficient number of positive and negative examples
by calling Basic iteratively. The output of Interpolant is guaranteed to be
an interpolant and we formally prove its soundness. In Section 4, we show how
our technique can handle superficial non-linearities via an example that previous
techniques are not capable of handling. Section 5 describes our implementation
and experiments over a number of benchmarks. Section 6 places our work in the
context of existing work on interpolants and machine learning. Finally, Section 7
concludes with some directions for future work.

1.1 An Overview of the Technique

We show an example of how our technique for interpolation discovers invariants
for program verification. Consider the program in Fig. 1. This program executes
the loop at line 2 a non-deterministic number of times. Upon exiting this loop,
the program decrements x and y until x becomes zero. At line 6, if y is not 0 then
we go to an error state. To prove that the error() statement is unreachable, we
need invariants for the loops. We follow the standard verification by interpolants
recipe and try to find invariants by finding interpolants for finite infeasible traces
of the program. The hope is that the interpolants thus obtained will give us
predicates that generalize well. In particular, we aim to obtain an inductive loop
invariant. For example, x = y is a sufficiently strong loop invariant for proving
the correctness of Fig. 1.

Suppose we consider a trace that goes through all the loops once. Then we
get the following infeasible trace: (1, 2, 3, 2, 4, 5, 4, 6, 7). We decompose this
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foo( )

{

1: x = y = 0;

2: while (*)

3: { x++; y++; }

4: while ( x != 0 )

5: { x--; y--; }

6: if ( y != 0 )

7: error() ;

}

Fig. 1. Motivating example for our technique

trace into two parts A and B and thereby find interpolants for this infeasible
trace. A represents the values of x and y obtained after executing lines 1, 2, and
3. B represents the values of x and y such that if we were to execute lines 4, 5,
6, and 7 then the program reaches the error() statement. Now, we have (A,B)
where A ∧B ≡ ⊥:

A ≡ x1 = 0 ∧ y1 = 0 ∧ ite(b, x = x1 ∧ y = y1, x = x1 + 1 ∧ y = y1 + 1)
B ≡ ite(x = 0, x2 = x ∧ y2 = y, x2 = x− 1 ∧ y2 = y − 1) ∧ x2 = 0 ∧ ¬(y2 = 0)

Here ite stands for if-then-else. As is evident from this example, A is typically
the set of reachable states and B is the set of states that reach error(). An
interpolant is a proof that shows A and B are disjoint and is expressed using
the common variables of A and B. In this example, x and y are the variables
common to A and B. Our technique for finding an interpolant between A and
B operates as follows: First, we compute samples of values for (x, y) that satisfy
the predicates A and B. Fig. 2 plots satisfying assignments of A as +’s (points
(0, 0) and (1, 1)) and of B as ◦’s (points (1, 0) and (0, 1)). Next, we use an SVM
to find lines separating the ◦’s from the +’s.
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Fig. 2. Finding interpolants using an SVM

We consider the ◦ points one by one and ask an SVM to find a line which
separates the chosen ◦ point from the +’s. On considering (0, 1), we get the
line 2y = 2x + 1 and from (1,0) we obtain 2y = 2x − 1. Using these two lines,
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we obtain the interpolant, 2y ≤ 2x + 1 ∧ 2y ≥ 2x − 1. It can be checked that
this predicate is an invariant and is sufficient to prove the error() statement of
Fig. 1 unreachable.

We will see in Section 2.1 that we can easily obtain the stronger predicate
x = y. Intuitively, we just have to translate the separating lines as close to the
+’s as possible while ensuring that they still separate the +’s from the ◦’s.

2 Preliminaries

Let A and B be two formulas in the theory of linear arithmetic:

φ ::= wTx+ d ≥ 0 | true | false | φ ∧ φ | φ ∨ φ | ¬φ

w = (w1, . . . , wn)
T ∈ Rn is a point: an n-dimensional vector of constants; x =

(x1, . . . , xn)
T is an n-dimensional vector of variables. The inner product 〈w, x〉 of

w and x is wTx = w1x1+ . . .+wnxn. The equation w
Tx+ d = 0 is a hyperplane

in n-1 dimensions. Each hyperplane corresponds to two half-spaces: wTx+ d ≥ 0
and wTx + d ≤ 0. A half-spaces divides Rn into two parts: variable values that
satisfy the half-space and those which do not. For example, x − y = 0 is a 1-
dimensional hyperplane, x−y+2z = 0 is a 2-dimensional hyperplane, and x ≥ y
and x ≤ y are half-spaces corresponding to the hyperplane x = y.

Suppose A ∧ B ≡ ⊥, i.e., there is no assignment to variables present in the
formula A∧B that makes the formula true. Informally, an interpolant is a simple
explanation as to why A and B are disjoint. Formally, it is defined as follows:

Definition 1 (Interpolant [17]). An interpolant for a pair of formulas (A,B)
such that A ∧ B ≡ ⊥ is a formula I satisfying A⇒ I, I ∧ B ≡ ⊥, and I refers
only to variables common to both A and B.

Let Vars(A,B) denote the common variables of A and B. We refer to the val-
ues assigned to Vars(A,B) by satisfying assignments of A as positive examples.
Dually, negative examples are values assigned to Vars(A,B) by satisfying assign-
ments of B. Sampling is the process of obtaining positive and negative examples
given A and B. For instance, sampling from (A ≡ y < x) and (B ≡ y > x) with
common variables x and y, can give us a positive example (1, 0) and a negative
example (0, 1).

A well studied problem in machine learning is binary classification. The input
to the binary classification problem is a set of points with associated labels. By
convention, these labels are l ∈{+1,-1}. The goal of the binary classification
problem given points with labels is to find a classifier C : point → {true, false}
s.t. C(a) = true for all points a with label +1, and C(b) = false for all points b
with label −1. This process is called training a classifier and the set of labeled
points is called the training data. The goal is to find classifiers that are predictive,
i.e., even if we are given a new labeled point w with label l not contained in the
training data then it should be very likely that C(w) is true iff l = +1.

Our goal in this paper is to apply standard binary classification algorithms
to positive and negative examples to obtain interpolants. We will assign positive
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examples the label +1 and the negative examples the label -1 to obtain the
training data. We are interested in classifiers, in the theory of linear arithmetic,
that classify correctly.

Definition 2 (Correct Classification). A classifier C classifies correctly on
training data X if for all positive examples a ∈ X, C(a) = true, and for all
negative examples b ∈ X, C(b) = false. If there exists a positive example a such
that C(a) = false (or a negative example b such that C(b) = true), then C is
said to have misclassified a (or b).

There are classification algorithms that need not classify correctly on training
data [10]. These are useful because typically the data in machine learning is
noisy. A classifier that misclassifies a training example is definitely not an inter-
polant. Hence we focus on classifiers that classify correctly on training data. In
particular, we use optimal margin classifiers generated by SVMs.

2.1 SVM Primer

We provide some basic background on SVMs in the context of binary classifica-
tion using half-spaces. Let us denote the training data by X , the set of positive
examples by X+, and the set of negative examples by X−.

Let us assume that the training data X is linearly separable: there exists
a hyperplane, called a separating hyperplane, wTx + d = 0 such that ∀a ∈
X+. wT a + d > 0 and ∀b ∈ X−. wT b + d < 0. For linearly separable training
data, an SVM is guaranteed to terminate with a separating hyperplane. To use
a separating hyperplane to predict the label of a new point z we simply compute
sgn(wT z+ d). In other words, if wT z+ d ≥ 0 then we predict the label to be +1
and -1 otherwise.

An interesting question to consider is the following: If there are multiple sep-
arating hyperplanes then which one is the best? If a point is away from the
separating hyperplane, say wTx + d >> 0, then our prediction that x is a pos-
itive example is reasonably confident. On the other hand, if x is very close to
the separating hyperplane then our prediction is no longer confident as a minor
perturbation can change the predicted label. We say such points have a very
low margin. The optimal margin classifier is the separating hyperplane that
maximizes the distance from the points nearest to it. The points closest to the
optimal margin classifier are called support vectors. An SVM finds the optimal
margin classifier and the support vectors given linearly separable training data
efficiently [21] by solving a convex optimization problem.

An example of SVM in action is shown in Fig. 3. The positive examples are
shown by +’s and negative examples by ◦’s. Line 4 is a separating hyperplane
and we can observe that several points of training data lie very close to it and
hence its predictions are not so confident. Line 2 is the optimal margin classifier.
The points on the dotted lines are closest to the optimal margin classifier and
hence are the support vectors.

We observe that using SVMs provides us with a choice of half-spaces for the
classifier. We can return the half-space above line 2 as a classifier. All positive
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Fig. 3. Line 2 and line 4 are separating hyperplanes. The support vectors for optimal
margin classifier (line 2) lie on dotted lines.

examples are contained in it and all negative examples are outside it. Or we can
return the half-space above line 1 and that will be a stronger predicate. Or we
can return the negation of the half-space below line 3 and that will be a weaker
predicate. Or any line parallel to line 2 and lying between line 1 and line 3
will work. The choice of predicate depends on the application (i.e., the program
verification tool that consumes these predicates) and all these predicates can be
easily generated by taking a linear combinations of the support vectors.

3 Classification Based Algorithms for Interpolation

We now discuss an algorithm for computing interpolants using an SVM as a
black box. We start with a basic version as described in Fig. 4. Basic takes as
input two predicates A and B over the theory of linear arithmetic and generates
as output a half-space h over the common variables of A and B. Basic also
has access to (possibly empty) sets of already known positive examples X+ and
negative examples X−.

Basic(A, B)
Vars := Common variables of A and B
Add Samples(A,X+) to X+

Add Samples(B,X−) to X−

SV := SVM(X+, X−)
h := Process(SV , X+, X−);
return h

Fig. 4. The basic algorithm for computing a separating hyperplane
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Basic first computes the variables common to both A and B and stores them
in the set Vars. It then computes the positive examples X+ by repeatedly asking
a theorem prover for satisfying assignments of A not already present in X+(by
calling Samples(A, X+)). The values assigned to variables in Vars by these sat-
isfying assignments are stored in X+. The negative examples X− are computed
from B in a similar fashion (by calling Samples(B, X−)). Let us assume that X+

and X− are linearly separable. Next, we compute the support vectors (SV of
Fig. 4) for X+ and X− by calling an off-the-shelf SVM to generate the optimal
margin classifier. The result is then processed via the call to procedure Process
which takes a linear combination of support vectors in SV to obtain the classifier
h = wTx+ d ≥ 0 s.t. wTx+ d = 0 is the optimal margin classifier between X+

and X−, and ∀a ∈ X+. h(a) > 0 and ∀b ∈ X−. h(b) < 0. This half-space h is
returned as output after correction for minor numerical artifacts (say rounding
4.9996 to 5). Process can be modified to produce stronger or weaker predicates
(Section 2.1). The output of Basic is characterized by the following lemma:

Lemma 1 (Correctness of SVM). Given positive examples X+ which are
linearly separable from negative examples X−, SVM and Process compute a half-
space h s.t. ∀a ∈ X+. h(a) > 0 and ∀a ∈ X−. h(x) < 0.

Proof. The lemma follows from the fact that SVM returns an optimal margin
classifier under the assumption that X+ and X− are linearly separable, and
that rounding performed by Process does not affect the predicted label of any
example in X+ or X−.

However, the algorithm Basic has two major problems:

1. SVM will produce a sound output only when X+ and X− are linearly sep-
arable.

2. Basic computes a separator for X+ and X− which might or might not
separate all possible models of A from all possible models of B.

We will now provide partial solutions for both of these concerns.

3.1 Algorithm for Intersection of Half-spaces

Suppose Basic samples X+ and X− which are not linearly separable. If we
denote x1, . . . , xn as the variables contained in Vars then there is an obvious
(albeit not very useful) separator between X+ and X− given by the following
predicate:

P =
∨

(a1,...,an)∈X+ x1 = a1 ∧ . . . ∧ xn = an

Observe that ∀a ∈ X+. P (a) = true and ∀b ∈ X−. P (b) = false . The predicate P
is a union (or disjunction) of intersection (or conjunction) of half-spaces. To avoid
the discovery of such specific predicates, we restrict ourselves to the case where
the classifier is either a union or an intersection of half-spaces. This means that
we will not be able to find classifiers in all cases even if they exist in the theory
of linear arithmetic. We will now give an algorithm which is only guaranteed
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to succeed if there exists a classifier which is an intersection of half-spaces. We
only discuss the case of intersection here as finding union of half-spaces can be
reduced to finding intersection of half-spaces by solving the dual problem.

Definition 3 (Problem Statement). Given X+ and X− such that there exist
a set of half-spaces H = {h1, . . . , hn} classifying X+ and X− correctly (i.e.,
∀a ∈ X+.

∧n
i=1 hi(a) and ∀b ∈ X−. ¬

∧n
i=1 hi(a)) find H.

SVM-I(X+,X−)
H := true
Misclassified := X−

while |Misclassified |�= 0
Arbitrarily choose b from Misclassified
h := Process(SVM(X+, {b}), X+, X−)
∀b′ ∈Misclassified s.t. h(b′) < 0 : remove b′ from Misclassified
H := H ∧ h

end while

return H

Fig. 5. Algorithm for classifying by intersection of half-spaces

We find such a classifier using the algorithm of Fig. 5. We initialize the classifier
H to true or 0 ≤ 0. Next we compute the set of examples misclassified byH . ∀a ∈
X+.H(a) = true and hence all positive examples have been classified correctly.
∀b ∈ X−.H(b) = true and hence all negative examples have been misclassified.
Therefore we initialize the set of misclassified points, Misclassified, by X−. We
consider a misclassified element b and find the support vectors between b andX+.
Using the assumption that a classifier using intersection of half-spaces exists for
X+ and X−, we can show that b is linearly separable from X+. Using Lemma 1,
we will obtain a half-space h = wTx+ d ≥ 0 for which h(b) < 0. We will add h
to our classifier and remove the points which h classifies correctly from the set
of misclassified points. In particular, b is no longer misclassified and we repeat
until all examples have been classified correctly. A formal proof of the following
theorem can be developed along the lines of the argument above:

Theorem 1 (Correctness of SVM-I). If there exists an intersection of half-
spaces, H, that can correctly classify X+ and X− then SVM-I is a sound and
complete procedure for finding H.

We make the following observations about SVM-I:

– The classifier found depends on the order by which the misclassified element
b is chosen and different choices can lead to different classifiers.

– In the worst case, it is possible that SVM-I will find as many half-spaces
as the number of negative examples. But since optimal margin classifiers
generalize well, the worst case behavior does not usually happen in practice.
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– SVM-I is related to the problem of “learning intersection of half-spaces”.
In the latter problem, given positive and negative examples, the goal of the
learner is to output an intersection of half-spaces which classifies any new
example correctly with high probability. There are several negative results
about learning intersection of half-spaces. If no assumptions are made re-
garding the distribution from which examples come from, we cannot learn
intersection of even 2 half-spaces in polynomial time unless RP=NP [2,18].

SVM-I can be incorporated into Basic by replacing the calls to SVM and Pro-
cess with SVM-I in Fig. 4. Now Basic with SVM-I can find classifiers when
X+ and X− are not linearly separable but can be separated by an intersection
of half-spaces.

3.2 A Sound Algorithm

We observe that Basic, with or without SVM-I, only finds classifiers between
X+ and X−. The way Basic is defined, these candidate interpolants are over
the common variables of A and B. But if we do not have enough positive and
negative examples then a classifier between X+ and X− is not necessarily an
interpolant. When this happens, we need to add more positive and negative
examples refuting the candidate interpolant.

Interpolant(A, B)
X+, X−:= ∅
while true

H := Basic(A, B) // Basic with SVM-I

if SAT(A ∧ ¬H)
Add satisfying assignment to X+ and continue

if SAT(B ∧H)
Add satisfying assignment to X− and continue

break

return H

Fig. 6. A sound algorithm for interpolation

The algorithm Interpolant computes a classifier H which classifies X+ and
X− correctly i.e., ∀a ∈ X+. H(a) = true and ∀b ∈ X−. H(b) = false by calling
Basic with SVM-I. If H is implied by A and is unsatisfiable in conjunction
with B then we have found an interpolant and we exit the loop. Otherwise we
update X+ and X− and try again. We have the following theorem:

Theorem 2 (Soundness of Interpolant). Interpolant(A,B) terminates
if and only if the output H is an interpolant between A and B.

Proof. The output H is defined over the common variables of A and B (follows
from the output of Basic).
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only if : Let Interpolant(A, B) terminate. This means that both conditions
B ∧ H ≡ ⊥ and A ∧ ¬H ≡ ⊥ must be satisfied (these are conditions for
reaching break statement), which in turn implies that A ⇒ H holds and
therefore H is an interpolant of A and B.

if : Let H be an interpolant of A and B. This means that A ⇒ H and hence
A ∧ ¬H ≡ ⊥. B ∧H ≡ ⊥ holds because H is an interpolant and therefore,
the break statement is reachable and Interpolant(A, B) terminates.

4 Handling Superficial Non-linearities

Most program verification engines do not reason about non-linear arithmetic
directly. They try to over-approximate non-linear functions, say by using unin-
terpreted function symbols. In this section, we discuss how to use our technique
to over-approximate non-linear arithmetic by linear functions.

Suppose A∧B ≡ ⊥ and A is a non-linear predicate. If we can find a linear in-
terpolant I between A and B then A⇒ I. Hence I is a linear over-approximation
of the non-linear predicate A. We discuss, using an example, how such a predicate
I can be useful for program verification.

Suppose we want to prove that line 5 is unreachable in Fig. 7. There are
some lines which are commented. These will be considered later. This program
assigns z non-deterministically and does some non-linear computations. If we
can show that an over-approximation of reachable states after line 3 is disjoint
from x = 2 ∧ y �= 2 then have a proof that error() is unreachable.

foo()

{

// do{

1: z = nondet();

2: x = 4 * sin(z) * sin(z);

3: y = 4 * cos(z) * cos(z);

// } while (*);

4: if ( x == 2 && y != 2 )

5: error() ;

}

Fig. 7. A contrived example with superficial non-linearities

We use our technique for computing interpolants over the non-linear predicates
to construct an easy to analyze over-approximation of this program. We want to
find an interpolant of the following predicates (corresponding to the infeasible
trace (1, 2, 3, 4, 5)):

A ≡ x = 4sin2(z) ∧ y = 4cos2(z)
B ≡ x = 2 ∧ y �= 2

Observe that SVMs consume examples and are agnostic to how the examples are
obtained. Since A is non-linear, we can obtain positive examples by randomly
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substituting values for z in A and recording the values of x and y. Since B
is linear, we can ask an SMT solver [19] for satisfying assignments of B to
obtain the negative examples. We have plotted one possible situation in Fig. 8 –
the positive and negative examples are represented by +’s and ◦’s respectively.
Running SVM-I and choosing the stronger predicate from the available choices
(Section 2.1) generates the predicate P ≡ (x + y = 4). We remark that to
obtain this predicate, we only need one negative example above, one negative
example below, one positive example to the left, and one positive example to the
right of (2, 2). Adding more examples will leave P unaffected, due to the way
optimal margin classifier is defined (Section 2.1). This shows the robustness of
the classifier. That is, once a sufficient number of samples have been obtained
then the classifier is not easily perturbed by changes in the training data.

Now we need to verify that P is actually an interpolant. We use an SMT
solver to show that P ∧B ≡ ⊥. To show A⇒ P can be hard. For this example,
any theorem prover with access to the axiom sin2(x)+ cos2(x) = 1 will succeed.
But we would like to warn the reader that the verification step, where we check
A⇒ I and I ∧B ≡ ⊥, can become intractable for arbitrary non-linear formulas.

Using the interpolant P , we can replace Fig. 7 by its over-approximation
given in Fig. 9 for verification. A predicate abstraction engine using predicates
{x + y = 4, x = 2, y = 2} can easily show the correctness of the program of
Fig. 9. Moreover, suppose we uncomment the lines which have been commented
out in Fig. 7. To verify the resulting program we need a sufficiently strong loop
invariant. To find it we consider a trace executing the loop once and try to find
the interpolant. We do the exact same analysis we did above and obtain the
interpolant (x + y = 4). This predicate is an invariant and is sufficient to prove
the unreachability of error().

Other techniques for interpolation fail on this example because either they
replace sin and cos by uninterpreted functions [13,24] or because of the re-
stricted expressivity of the range of interpolants computed (e.g. combination
of boxes [15]). We succeed on this example because of two reasons:

1. We are working with examples and hence we are not over-approximating the
original constraints.

2. SVM succeeds in computing a predicate which generalizes well.
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Fig. 8. Positive and negative examples for Fig. 7. The lines show classifiers.
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foo()

{

assume ( x + y == 4 );

if ( x == 2 && y != 2)

error() ;

}

Fig. 9. An over-approximation of Fig. 7

5 Experiments

We have implemented a prototype version of the algorithm described in this
paper in 1000 lines of C++ using libsvm [3] for SVM queries and the Z3 theorem
prover [19]. Specifically, we use the C-SVC algorithm with a linear kernel for
finding the optimal margin classifier. C-SVC is parametrized by a cost parameter
c. A low value of c allows the generated classifier to make errors on the training
data. Since we are interested in classifiers that classify correctly, we assign a very
high value to c (1000 in our experiments). The input to our implementation is two
SMT-LIB formulas and the output is also obtained as an SMT-LIB formula. We
try to sample for at most ten distinct positive and negative examples each before
Basic makes a call to libsvm. In these experiments, the classifier is described
by the hyperplane parallel to the optimal margin classifier and passing through
the positive support vectors. We consider the half-space, corresponding to this
hyperplane, such that the negative examples lie outside the half-space. Hence
we are considering the strongest predicate from the options provided to us by
SVM (Section 2.1).

We have tried our technique on small programs and our results are quite
encouraging (see Table 1). The goal of our experiments was to verify the imple-
mentability of our approach. We consider traces that go through the loops once
and manually generate A and B in SMT-LIB format for input to our tool. These
programs contain assertions that can be discharged using loop invariants that
are a conjunction of linear inequalities.

First, let us consider the left half of the table. The programs f1a, ex1, and
f2 are adapted from the benchmarks used in [6]. The programs nec1 to nec5

are adapted from NECLA static analysis benchmarks [12]. The program fse06

is from [7] and is an example on which Yogi [7] does not terminate because it
cannot find the invariant x ≥ 0∧ y ≥ 0. The program pldi08, adapted from [9],
requires a disjunction of half-spaces as an invariant. We obtain that by solving
the dual problem: we interchange the labels of positive and negative examples
and output the negation of the interpolant obtained.

For these examples, we were generating at most ten positive and negative
examples before invoking SVM. Hence we expect the column “Total Ex” to
have entries less than or equal to 20. Most entries are strictly less than twenty
because several predicates have strictly less than ten satisfying assignments. This
is expected for A as it represents reachable states and we are considering only
one iteration of the loops. So very few states are reachable and hence A has
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Table 1. File is the name of the benchmark, LOC is lines of code, Interpolant is the
computed interpolant, Total Ex is the sum of the number of positive and negative
examples generated for the first iteration of Interpolant. For the second part, Iters
represents the number of iterations of Interpolant.

File LOC Interpolant Total Ex Time (s) Interpolant Iters Time (s)

f1a 20 x = y 12 0.017 x = y & y >= 0 4 0.017

ex1 22 xa + 2*ya >= 0 13 0.019 xa + 2*ya >= 0 4 0.02

f2 18 3*x >= y 13 0.021 3*x >= y 12 0.022

nec1 17 x <= 8 19 0.015 x <= 8 9 0.02

nec2 22 x < y 12 0.014 x < y 2 0.019

nec3 15 y <= 9 11 0.014 y <= 9 1 0.012

nec4 22 x = y 20 0.019 x = y 4 0.017

nec5 9 s >= 0 11 0.013 s >= 0 1 0.016

pldi08 10 x < 0 | y > 0 17 0.02 6*x < y 1 0.013

fse06 8 y >= 0 & x >= 0 11 0.014 y >= 0 & x >= 0 2 0.015

very few satisfying assignments. Nevertheless, 11 to 20 examples are sufficient
to terminate Interpolant in a single iteration for all the benchmarks.

To get more intuition about Interpolant, we generate the second part of the
table. Here we start with one positive and one negative example. If the classifier
is not an interpolant then we add one new point that the classifier misclassifies.
The general trend is that we are able to find the same classifier with a smaller
number of samples and few iterations. In f1a we generate a predicate with
more inequalities. This demonstrates that the generated classifier from SVM-I

might be sensitive to the order in which misclassified examples are traversed
(Fig. 5). For pldi08, when we found the classifier between the first positive and
negative example generated by Z3 then we found that it was an interpolant. Since
the classifier has been generated using only two examples, the training data is
insufficient to reflect the full structure of the problem, and unsurprisingly we
obtain a predicate that does not generalize well. These experiments suggest that
the convergence of Interpolant is faster and the results are better if we start
with a reasonable number of samples.

Finally, we compare with the interpolation procedure implemented within
OpenSMT [16] in Table 2. OpenSMT fails to find the predicate representing
the loop invariant for f1a, pldi08, and fse06, whereas our technique succeeds
for these examples; this is in line with our claim that machine learning algo-
rithms can provide relevant predicates. OpenSMT fails on nec1 because this
benchmark contains non-linear multiplications. It turns out that the program
has a linear interpolant, found by our technique, which is sufficient to discharge
the assertions in the program. Finally, the timing measurements show that we
are competitive with OpenSMT.
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Table 2. File is the name of the benchmark and Interpolant is the interpolant computed
by the interpolation procedure implemented within OpenSMT. SAME refers to the
benchmarks for which interpolants computed by OpenSMT were identical to those
computed by our technique.

File Time(s) Interpolant

f1a 0.022 ( (y = 1 | x <= 0) & x = 1 ) | ( y = 0 & (y = 1 | x <= 0) )

ex1 0.021 xa + 2*ya >= 0 | xa + 2*ya >= 5 | xa + 2*ya >= 5

f2 0.020 y <= 3*x | y <= 3*x + 1 | y <= 3*x + 1

nec1 NA FAIL

nec2 0.018 x < y (SAME)

nec3 0.016 y <= 9 (SAME)

nec4 0.021 ( x = y | y = 0 ) | ( y = x ) | ( y = x)

nec5 0.018 s >= 0 (SAME)

pldi08 0.017 y > x

fse06 0.017 y + x >= 0 & y >= 0 & y >= 0 & y >= 0

6 Related Work

In this section, we place our work in the context of existing work on interpolation
and machine learning. Our philosophy of computing interpolants from samples
is similar to Daikon [5]; Daikon computes likely invariants from program tests.
Whereas, we compute sound interpolants statically.

We have considered interpolation only over the quantifier free theory of linear
arithmetic. Extension to richer theories, such as the theory of arrays, is left for
future work. The interpolants found by our technique are limited to conjunctions
of linear inequalities. To handle programs requiring interpolants which are a
combination of disjunctions and conjunctions of linear inequalities, we propose to
use the existing techniques for control flow refinement [1,8,26]. These techniques
perform source to source semantics preserving transformations so that the loops
in the resulting program require only disjunction-free invariants.

Extending the work of [14,22], McMillan [17] computed interpolants of (A,B),
where A and B are in the quantifier free theory of linear arithmetic, in a linear
scan of the proof of unsatisfiablity of A ∧ B. This method requires an explicit
construction of the proof of unsatisfiability. In a recent work, Kupferschmid
et al. [15] gave a proof based method for finding Craig interpolants for non-
linear predicates. The proof based methods like these are generally not scalable:
Rybalchenko et al. [24] remark that “Explicit construction of such proofs is a
difficult task, which hinders the practical applicability of interpolants for ver-
ification.” Like our approach, their method for interpolation is also not proof
based. They apply linear programming to find separating hyperplanes between
A and B. In contrast to their approach, we are working with samples and not
symbolic constraints. This allows us to use mature machine learning techniques
like SVMs as well as gives us the ability to handle superficial non-linearities.

We selected SVM for classification as they are one of the simplest and
most widely used machine learning algorithms. There are some classification



Interpolants as Classifiers 85

techniques which are even simpler than SVM [10]. We discuss them here and
give the reasons behind not using them for classification. In linear regression, we
construct a quadratic penalty term for misclassification and find the hyperplane
which minimizes the penalty. Unfortunately the classifiers obtained might err
on the training data even if it is linearly separable. Another widespread tech-
nique, logistic regression, is guaranteed to find a separating hyperplane if one
exists. But the output of logistic regression depends on all examples and hence
the output keeps changing even if we add redundant examples. The output of
SVMs, on the other hand, is entirely governed by the support vectors and is not
affected by other points at all. This results in a robust classifier which is not
easily perturbed and leads to better predictability in results.

There has been research on finding non-linear invariants [25,20,23]. These
techniques aim at finding invariants which are restricted to polynomials of vari-
ables. In contrast, we are not generating non-linear predicates. We are finding
linear over-approximations of non-linear constraints and hence our technique
only generates linear predicates. On the other hand, unlike [25,20,23] we are not
restricted to non-linearities resulting only from polynomials and have demon-
strated our technique on an example with transcendental functions.

7 Conclusion

We have shown that classification based machine learning algorithms can be
profitably used to compute interpolants and therefore are useful in the context
of program verification. In particular, we have given a step-by-step account of
how off-the-shelf SVM algorithms can be used to compute interpolants in a
sound way. We have also demonstrated the feasibility of applying our approach
via experiments over small programs from the literature. Moreover, we are also
able to compute interpolants for programs that are not analyzable by existing
approaches – specifically, our technique can handle superficial non-linearities.

As future work, we would like to extend our algorithms to compute inter-
polants for non-linear formulas. We believe that SVMs are a natural tool for this
generalization as they have been extensively used to find non-linear classifiers.
We would also like to integrate our SVM-based interpolation algorithm with a
verification tool and perform a more extensive evaluation of our approach.
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Abstract. An algorithmic-learning-based termination analysis technique
is presented. The new technique combines transition predicate abstrac-
tion, algorithmic learning, and decision procedures to compute transition
invariants as proofs of program termination. Compared to the previous
approaches that mostly aim to find a particular form of transition invari-
ants, our technique does not commit to any particular one. For the exam-
ples that the previous approaches simply give up and report failure our
technique can still prove the termination. We compare our technique with
others on several benchmarks from literature including PolyRank exam-
ples, SNU realtime benchmark, andWindows device driver examples. The
result shows that our technique outperforms others both in efficiency and
effectiveness.

1 Introduction

Termination is a critical property of functions in program libraries. Invoking a
non-terminating library function may result in system lagging or even freezing.
Because of its importance, termination analysis has been studied extensively [2–
4, 8, 10–14, 17, 22, 24–27] for the last decade and advanced to the level of
industrial uses [1, 13].

Among various strategies for proving termination, we are most interested
in the transition invariant-based technique. A transition invariant for a transi-
tion relation is an over-approximation to the reachable transitive closure of the
transition relation [13, 25, 26]. Podelski and Rybalchenko [25] have shown that
the termination of a program amounts to the existence of a disjunctively well-
founded transition invariant for its transition relation. We therefore aim to find
a disjunctively well-founded transition invariant for the transition relation of a
program.

Though transition invariants can be defined as a fixpoint, they are not neces-
sarily computed by costly fixpoint iterations. Observe that it suffices to find one
disjunctively well-founded over-approximation to the least reachable transition
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invariant. If there are lots of such over-approximations, we have only to design
an efficient algorithm to compute one. Indeed, several such algorithms have been
proposed to compute reachable transition invariants efficiently [2, 8, 22, 27].

In this paper, we report the first algorithmic-learning-based technique for ter-
mination analysis. Recently, algorithmic learning is successfully applied to avoid
the costly fixpoint iteration in the context of loop invariant generation [19–21]. In
the same spirit, the technique we propose in this paper finds disjunctively well-
founded transition invariants without the excessive cost of fixpoint iterations by
combining algorithmic learning, transition predicate abstraction, decision proce-
dures, and well-foundedness checkers. Through transition predicate abstraction,
we adopt a learning algorithm for Boolean formulae to infer transition invariants
over given atomic predicates. Using an SMT solver and well-foundedness checker,
we design a mechanical teacher to guide the learning algorithm to find a disjunc-
tively well-founded transition invariant. Randomness is moreover employed to
exploit the multitude of transition invariants.

The advantage of our technique is that it can be both efficient and effective,
compared to the previous works [2, 8, 22, 27]. The key innovation of our technique
is that we decouple the construction of transition invariants from the transition
predicate generation. In previous works, the transition predicate generation is
tightly coupled with the transition invariant inference and the whole process
is optimized by committing to a particular form of transition invariants, which
might hurt the effectiveness. However, the following intuition from the years of
research on termination analysis teaches us that this is not necessarily the case;
termination arguments, or transition predicates, are evident in most cases [27],
but it is not so obvious how to combine those predicates to get a disjunctively
well-founded transition invariant [2]. To solve the “not-so-obvious” problem effi-
ciently, we use algorithmic learning which was proven to work well in a different
domain, inferring loop invariants out of atomic predicates. Being trained by me-
chanical teachers, learning algorithms become an efficient engine for exploring
possible combinations of predicates. For the atomic transition predicate genera-
tion, we employ a simple heuristic, which is turned out to be effective for most
of examples in the experiments. We can further improve the effectiveness with
additional predicates.

Example. Consider the following nested loop. We found that this simple nested
loop cannot be proven by any of the existing termination analysis tools [8, 22, 27]:

while i < 10 do {j ← 0; while j < 10 do {i′, j′ ← i+ 1, j + 1}}

Our simple heuristic finds the set {i < 10, j < 10, i < i′, j < j′} of atomic
transition predicates. Then, our randomized technique first computes a transition
invariant for the inner loop, say, j < 10∧ j < j′. Since the transition invariant is
well-founded, it proves the termination of the inner loop. Next, we replace the
inner loop by its transition invariant and proceed to find a transition invariant
for the following simple loop:

while i < 10 do {j ← 0; assume(j < 10 ∧ j < j′); }
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Since its loop body does not update the variable i, it is impossible to prove the
termination of the loop. This is exactly what happens in some of the existing
tools [8, 27]; after they compute j < 10 ∧ j < j′ as a transition invariant of the
inner loop, they simply report possible non-termination of the outer loop. The
other tool [22] fails because it uses a even more imprecise transition invariant,
true, as the summary of the inner loop; the tool unrolls and unions the transition
relation of a loop body until it reaches a transition invariant and when it unrolls
the outer loop, the tool can only assume that the inner loop can change variables
arbitrarily. However, there exists another transition invariant j < 10∧j < j′∧i <
i′ which are both expressible with the given predicates and precise enough to
prove the termination of the outer loop. As long as a transition invariant is
expressible with the given predicates, our randomized algorithm for termination
analysis can find it. Let us say our technique returns j < 10∧ j < j′ ∧ i < i′ this
time. The new transition invariant is again well-founded. We proceed to replace
the inner loop by the new transition invariant:

while i < 10 do {j ← 0; assume(j < 10 ∧ j < j′ ∧ i < i′); }

Our termination analysis algorithm is now able to infer the transition invariant
i < 10 ∧ i < i′ for the simple loop. Since the transition invariant i < 10 ∧ i < i′

is well-founded, we conclude that the outer loop is terminating as well. ��

Contributions.

– We design and implement an algorithmic-learning-based termination ana-
lyzer. As far as we know, our work is the first to apply the algorithmic
learning to termination analysis problem.

– We empirically show that the prototype implementation of our technique
outperforms the previous tools [8, 22, 27] both in efficiency and effectiveness.

Organization. Section 2 reviews termination analysis via transition invariants
and presents our formalism of transition invariants in intentional representation.
Section 3 explains algorithmic-learning-based inference approach and how to ap-
ply it to the problem of inferring disjunctively well-founded transition invariants.
Section 4 presents our experiment results. Section 5 discusses related work and
Section 6 concludes.

2 Termination Analysis via Transition Invariants

This section explains the termination analysis technique based on transition
invariants. The technique was first introduced by Podelski and Rybalchenko [25]
and later implemented on top of the SLAM model checker [13]. We first review
the original theory of transition invariants in an extensional view [18]. We then
present our formalism of transition invariants in an intensional view which we
compute via algorithmic-learning-based approach.
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2.1 Program Termination and Transition Invariant

A program P = 〈WP , IP , RP 〉 consists of a set WP of states, a set IP ⊆ WP of
initial states, and a transition relation RP ⊆WP ×WP .

A program P terminates if there is no infinite sequence s1, s2, · · · of states
such that s1 ∈ IP and (si, si+1) ∈ RP . This condition is equivalent to the well-
foundedness of RP ∩Reach(P )×Reach(P ). Here, the set Reach(P ) denotes the
set of reachable states.

Instead of showing RP ∩Reach(P )×Reach(P ) is well-founded, we prove the
termination by finding its disjunctively well-founded transition invariant [25]. A
transition invariant T of P is a relation that contains a reachable portion of the
transitive closure of RP :

R+
P ∩ Reach(P )× Reach(P ) ⊆ T.

Furthermore, we say the transition invariant T is disjunctively well-founded when
it is a union of a finite number of well-founded relations T1, · · · , TN .

Theorem 1 ([25]). A program P terminates if and only if there exists a dis-
junctively well-founded transition invariant T of P .

Thanks to Theorem 1, the problem of program termination now becomes finding
a disjunctively well-founded transition invariant for a given program P .

Cook et al. [13] showed that transition invariants can be reduced to reachabil-
ity analysis. The authors named the relation R+

P ∩Reach(P )×Reach(P ) binary
reachability relation, which is the least fixpoint of the following functional FP
starting from the relation ⊥P .

FP (X) � (X ∪ id(2)(X)) ◦RP

id(2)(X) � {(ν2, ν2) ∈ WP ×WP : ∃ν1.(ν1, ν2) ∈ X}
X ◦ Y � {(ν1, ν3) ∈ WP ×WP : ∃ν2.(ν1, ν2) ∈ X and (ν2, ν3) ∈ Y }
⊥P � {(ν1, ν2) ∈ WP ×WP : ν1 ∈ IP and (ν1, ν2) ∈ RP }

In the next subsection, we show how to compute an over-approximation of this
binary reachability relation via intensional representations of transition invari-
ants.

2.2 Intensional Transition Invariants

Simple Loop Programs. For presentation, we consider a simple loop program
P with the following abstract syntax.

P ::= {l} while l do S
S ::= v ← e | v ← nondet | assume l | S [] S | S; S
l ::= e ≤ n | l ∧ l | l ∨ l
e ::= n | v | n× e | e+ e | e− e (v ∈ V, n ∈ Z)

where V and Z is a set of variables and integers respectively, and l represents
quantifier-free formulae over integer affine predicates. A loop with a loop guard
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is annotated with a formula specifying a precondition. We write κP for the loop
guard and δP for the precondition. In the syntax, we have non-deterministic
assignments (v ← nondet) to emulate the behaviors of unsupported features
such as arrays or function calls. For brevity, we use choice (S [] S) and assume
statements (assume l) instead of traditional if statements.

A program state ν ∈ WP of the program P is a map from V to Z. Given a
formula l, we write ν |=sat l when ν satisfies l. We write |=sat l if there exists a
state that satisfies l. When the formula is satisfied by all states, we write |= l.
We define the set W(l) to be {ν ∈ WP : ν |=sat l}. For a simple loop program
P , the set IP of initial states is the same as W(δP ).

To describe the transition relation RP for a simple loop program, we define
transition semantics [[P ]] of P . The transition semantics is a quantifier-free for-
mula over sets V and V ′ describing the current state and the state after the
transition, respectively. The transition semantics is defined as follows:

[[{δP } while κP do S]] � κP ∧ [[S]]

[[v ← e]] � v′ = e ∧
∧

w∈V \{v}
w′ = w

[[v ← nondet]] � v′ = v′′ ∧
∧

w∈V \{v}
w′ = w (v′′ : fresh)

[[assume l]] � l ∧
∧

w∈V \Vars(l)

w′ = w

[[S0 [] S1]] � [[S0]] ∨ [[S1]]

[[S0;S1]] � [[S0]][V
′ �→ V ′′] ∧ [[S1]][V �→ V ′′] (V ′′ : fresh)

where Vars(l) is the set of variables appeared in l and f [v1 �→ v2] is the formula
obtained by substituting the variable v2 for v1 in f . Given a formula f over V
and V ′, we write ν, ν′ |=sat f when the formula obtained by replacing v ∈ V in
f with ν(v) and v′ ∈ V ′ in f with ν′(v′) is satisfiable. The notations |=sat f and
|= f are defined accordingly. The notation R(f) denotes the relation {(ν, ν′) ∈
WP × WP : ν, ν′ |=sat f}. Thus the transition relation RP of a simple loop
program P is R([[P ]]).

In summary, a simple loop program P defines the program
〈WP ,W(δP ),R([[P ]])〉.
Intensional Transition Invariants. For a simple loop program P , we define
the intensional representations of the functional FP and the relation ⊥P (written

F 	
P and ⊥	

P respectively) as follows:

F 	
P (f) � (f ∨ id	(2)(f)) ◦	 [[P ]]

id	(2)(f) � f [V �→ V ′′] ∧ V = V ′ (V ′′ : fresh)

f ◦	 g � f [V ′ �→ V ′′] ∧ g[V �→ V ′′] (V ′′ : fresh)

⊥	
P � δP ∧ [[P ]]

where f [{v1, · · · , vn} �→ {v′1, · · · , v′n}] � f [v1 �→ v′1] · · ·[vn �→ v′n]. The following

lemmas show that F 	
P and ⊥	

P correspond to FP and ⊥P respectively.
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Lemma 1. For any simple loop program P , W(⊥	
P ) = ⊥P .

Lemma 2. Let f be a quantifier-free formula over V and V ′. For any simple
loop program P , R(F 	

P (f)) = FP (R(f)).

From the properties of F 	
P and ⊥	

P , we compute a transition invariant of a simple
loop program P by finding a formula T that satisfies the following conditions:

1. |= ⊥	
P =⇒ T ;

2. |= T =⇒ κP ;

3. |= F 	
P (T ) =⇒ T .

The first condition is to guarantee that T subsumes the first iteration starting
from the initial state. The second condition is to guarantee that T expresses
only the iterations within the loop. The last condition is to guarantee that T is
a fixpoint. Note that this fixpoint is not necessarily a least fixpoint. We call the
formula T intensional transition invariant which is an intensional representation
of a transition invariant.

Lemma 3. Let T be an intensional transition invariant of a simple loop program
P . Then R(T ) is a transition invariant; i.e. R(T ) ⊇ R+

P ∩Reach(P )×Reach(P ).

We say T is disjunctively well-founded when R(T ) is disjunctively well-founded.
Disjunctively well-founded intensional transition invariants are proofs of program
termination.

Theorem 2. A simple loop program P terminates if there exists a disjunctively
well-founded intensional transition invariant T of P .

In the rest of the paper, transition invariants mean intensional transition invari-
ants unless stated otherwise.

3 Algorithmic-Learning-Based Inference of Transition
Invariants

The key idea of the algorithmic-learning-based framework [19–21] is to apply
CDNF algorithm [7] to infer a formula with a mechanical teacher. CDNF algo-
rithm is an exact learning algorithm for Boolean formulae. It infers an arbitrary
Boolean formula over fixed variables by interacting with a teacher. In our case,
we are particularly interested in finding transition invariants over the given set
of atomic transition predicates. In order to apply CDNF algorithm, we will de-
sign a mechanical teacher to guide the learning algorithm to infer a transition
invariant for a simple loop program.

In this section, we explain our design of the mechanical teacher in details. We
first introduce CDNF algorithm for Boolean formulae. Through transition pred-
icate abstraction, the correspondence between Boolean formulae and quantifier-
free formulae over atomic transition predicates is explained. Lastly, we present
our design of the mechanical teacher.
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3.1 CDNF Learning Algorithm

CDNF algorithm is an exact learning algorithm for Boolean formulae. It infers an
unknown target formula by posing queries to a teacher. The teacher is responsible
for answering two types of queries. The learning algorithm may ask if a valuation
satisfies the target formula by a membership query. Or it may ask if a conjectured
formula is equivalent to the target in an equivalence query. According to the
answers to queries, CDNF algorithm will infer a Boolean formula equivalent to
the unknown target within a polynomial number of queries in the formula size
of the target.

In order to apply CDNF algorithm, a mechanical teacher that answers queries
from the learning algorithm is needed. The mechanical teacher consists of two
algorithms. The membership query resolution algorithm (MEM ) answers mem-
bership queries; the equivalence query resolution algorithm (EQ) resolves equiv-
alence queries. The algorithm MEM returns YES if the given valuation satisfies
the unknown target and NO otherwise. The algorithm EQ returns YES if the
given conjecture is equivalent to the target and a counterexample otherwise. Let
x be a set of Boolean variables, and BF [x] and Valx be the set of Boolean formu-
lae and valuations over x, respectively. The signatures of these query resolution
algorithms are as follows:

MEM : Valx → {YES ,NO}
EQ : BF [x]→ {YES}+Valx

3.2 Learning Algorithm as an Inference Engine

We establish a connection between Boolean formulae and quantifier-free formu-
lae. The connection enables CDNF algorithm to infer transition invariants. We
consider transition predicate abstraction [26] over a set P of atomic predicates
defined over V and V ′. A quantifier-free formula f over P is generated by the
following syntax.

f ::= p | ¬f | f ∨ f | f ∧ f
where p ∈ P . We write QF [P ] for the set of quantifier-free formulae over P . The
set QF [P ] and the set BF [x] of Boolean formulae, where x = {xpi | pi ∈ P},
establishes the following Galois connection.

QF [P ] −−−→←−−−
α

γ
BF [x]

From the connection, we know that once the learning algorithm finds a Boolean
formula, then it has a corresponding quantifier-free formula that we want to find.

We now show how to make a mechanical teacher under the transition predi-
cate abstraction. We define the following two functions α and γ that translate
valuations over V and x, respectively.

α(ν, ν′) � μ such that μ |=
∧

ν,ν′|=satp

xp ∧
∧

ν,ν′ �|=satp

¬xp

γ(μ) �
∧

μ(xp)=	
p ∧

∧
μ(xp)=⊥

¬p.
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The design of the query resolution algorithms MEM and EQ amounts to that
of two concrete algorithms MEM 	 and EQ 	 with the following signatures:

MEM 	 : QF [P ]→ {YES ,NO}
EQ 	 : QF [P ]→ {YES}+ValV ×ValV

With the two concrete algorithms and the translation functions α and γ, we
derive the query resolution algorithms MEM and EQ as follows:

MEM (μ) = MEM 	(γ(μ))

EQ(b) =

{
α(ν, ν′) when EQ 	(γ(b)) = (ν, ν′)
YES otherwise

3.3 Algorithms for Mechanical Teacher

In the rest of this section, we explain how to design the algorithms MEM 	

and EQ 	 for transition invariants. One technical question is how we can make
MEM 	 and EQ 	 answer questions on the formula that we do not know yet.
We solve this problem simply by giving random answers when we cannot answer
conclusively. Interesting observation is that as far as those answers are consistent
and algorithm EQ 	 returns YES when it really finds the one, CDNF algorithm
can still infer the target formula. We exploit the fact that there can exist multiple
formulae that are equivalent to the target.

Membership Query Resolution. In a membership query MEM (μ) with μ ∈
Valx, we would like to know if μ is included in an unknown target Boolean
formula that represents a disjunctively well-founded transition invariant. Since
we do not know any disjunctively well-founded transition invariant yet, we can
not answer every membership query conclusively.

To see what amount of answers we can give conclusively, we first consider
the conditions that μ should respect. Suppose T is a transition invariant. If μ
satisfies the target Boolean formula, we have γ(μ) =⇒ T . Moreover, we have

⊥	
P =⇒ T =⇒ κP for T is a transition invariant. Therefore, we have the

following relationship:

1. If �|= γ(μ) =⇒ κP , then �|= γ(μ) =⇒ T ;
2. If |= γ(μ) =⇒ ⊥	

P , then |= γ(μ) =⇒ T .

In the first case, we can conclusively answer NO . Similarly, we answer YES for
the second case conclusively.

For the others cases, we can give random answers. Since we are looking for dis-
junctively well-founded transition invariants, we heuristically answer NO when
R(γ(μ)) is not well-founded.

Algorithm 1 summarizes the membership query resolution. The MEM 	(f)
algorithm first checks if |= f =⇒ κP . If not, it returns NO . The algorithm then
checks if R(f) is well-founded. If not, it heuristically returns NO . Finally, the

algorithm checks if |= f =⇒ ⊥	
P . If so, it returns YES since we know for sure
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Algorithm 1. MEM 	(f)

Input: f ∈ QF [P ]
Output: YES or NO

1 if |=sat f ∧ ¬κP then
2 return NO
3 else
4 if R(f) is well-founded then

5 if |=sat f ∧ ¬⊥�
P then

6 return YES or NO randomly
7 else
8 return YES

9 else
10 return NO

Algorithm 2. EQ	(f)

Input: f : a CDNF formula such that f =
∧n

i=1 fi
Output: YES or a counterexample (ν, ν′) ∈ ValV × ValV

1 if isTransitionInvariant(f) is (ν, ν′) ∈ ValV × ValV then
2 return (ν, ν′)

// f is a transition invariant

3 if hasDWFConjunct(f) is YES then
4 return YES

// fi is not disjunctively well-founded for every i
5 if findCounterexample(f) is (ν, ν′) ∈ ValV ×ValV then
6 return (ν, ν′)
7 restart CDNF algorithm

that γ−1(f) is the member of the target formula. Otherwise, it gives a random
answer to the learning algorithm.

Equivalence Query Resolution. In an equivalence query EQ(b), we are given
a CDNF formula b over x as the conjecture. The algorithm should check whether
γ(b) is a disjunctively well-founded transition invariant for the simple loop pro-
gram P . If not, it returns a valuation over x as a counterexample.

Algorithm 2 presents the equivalence query resolution algorithm EQ 	(f). The
algorithm first checks if f is a transition invariant. If not, it returns a counterex-
ample. Next, it checks if the formula has a disjunctively well-founded conjunct
fi. If so, we have found a disjunctively well-founded transition invariant. Oth-
erwise, the algorithm tries to find a counterexample that possibly makes the
formula not disjunctively well-founded. If it cannot find a counterexample, the
algorithm simply restarts to find another transition invariant.

Invariance Check. Algorithm 3 shows the procedure to check if f satisfies the
three conditions of transition invariants. If the conjecture f does not satisfy one
of them, the algorithm returns a counterexample.
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Algorithm 3. isTransitionInvariant(f)

Input: f : a CDNF formula
Output: YES or a counterexample (ν, ν′) ∈ ValV × ValV

1 if |= ⊥�
P =⇒ f and |= f =⇒ κP and |= F �

P (f) =⇒ f then
2 return YES

3 if ν, ν′ |=sat ⊥�
P ∧ ¬f then

4 return (ν, ν′)
5 if ν, ν′ |=sat f ∧ ¬κP then
6 return (ν, ν′)
7 if ν, ν′ |=sat F

�
P (f) ∧ ¬f then

8 return (ν, ν′)

Algorithm 4. hasDWFConjunct(f)

Input: f : a CDNF formula such that f =
∧n

i=1

∨mi
j=1 fij

Output: YES if fi is disjunctively well-founded for some i; NO otherwise
1 foreach i = 1, · · · , n do
2 isWellFounded ← �
3 foreach j = 1, · · · ,mi do
4 if R(fij) is not well-founded then
5 isWellFounded ← ⊥
6 break

7 if isWellFounded then return YES

8 return NO ;

Disjunctively Well-foundedness Check. Algorithm 4 checks if fi is disjunctively
well-founded for some i. Recall that f is a CDNF formula such that f =

∧n
i=1 fi

and each fi is also a transition invariant since f implies fi. If the algorithm
has found one disjunctively well-founded fi, we have found a disjunctively well-
founded transition invariant. The following lemma states the correctness of the
algorithm.

Lemma 4. Let f =
∧n
i=1 fi be a CDNF formula. If f is a transition invariant

and fi is disjunctively well-founded for some i, fi is a disjunctively well-founded
transition invariant.

For each DNF formula fi, we check if all of its disjuncts are well-founded. Each
disjunct fij is a conjunction of atomic transition predicates and we can check
the well-foundedness using existing well-foundness checkers [4, 5, 11, 24].

Counterexample Generation. Conjectures from learning algorithms are some-
times not disjunctively well-founded even if they are a transition invariant.
Those are either containing an idle transition, which does nothing during an
iteration, or the ones that become disjunctively well-founded once proper bound
conditions are added. For example, transition invariant x′ ≤ x contains an idle
transition and transition invariant x′ < x becomes well-founded if additional
bound condition x > 0 is added. We implemented an algorithm that generates a
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Algorithm 5. findCounterexample(f)

Input: f : a CDNF formula
Output: a counterexample (ν, ν′) ∈ ValV × ValV or FAIL

1 if (ν, ν′) |=sat f ∧ V ′ = V then return (ν, ν′) as a counterexample
2 return FAIL

Algorithm 6. Pseudo-code of the main loop

Input: set P of transition predicates
1 while there exists a simple loop P in the program do
2 repeat N times to infer d.wf transition invariant T ∈ QF [P ] using CDNF

algorithm
3 if T is found then
4 replace P with assume(κP ∧ T ∨ ¬κP ∧ V = V ′);
5 else
6 replace P with assume(κP ∧ true ∨ ¬κP ∧ V = V ′);

counterexample for both cases, but for space reason, we present in Algorithm 5
a simplified procedure that handles only the first case. If the algorithm finds
an idle transition (|=sat f ∧ V ′ = V ), it returns a counterexample. Otherwise
it returns FAIL, hoping that the learning algorithm finds another formula next
time.

4 Experiments

To evaluate our approach, we implemented our algorithm and compared it with
existing tools. In the implementation, we use Z3 SMT solver [16] for satisfiability
check and our own implementation of RankFinder algorithm [24] for well-
foundedness check.

Algorithm 6 shows the pseudo-code of the main loop of our analyzer. The
algorithm essentially handles the nested loop in the manner similar to that of [27];
it finds a non-nested simple loop and tries to find a disjunctively well-founded
transition invariant; when it finds one, we can use it as a summary of the loop
and make the outer-loop also non-nested; if the inference fails within the given
limit N , it simply assumes that the loop can change the variable arbitrarily and
uses true as its summary.

In Algorithm 6, we make CDNF algorithm repeat only a certain number of
times because the learning algorithm loops indefinitely if a given loop does not
terminate or it does but there is no disjunctively well-founded transition invariant
expressible with the given set of predicates. In practice, CDNF algorithm could
find a disjunctively well-founded transition invariant within several trials.

We implement a simple heuristic that generates atomic transition predicates
using loop guards and branch conditions. First, all loop guards and branch con-
ditions are used as atomic transition predicates. Second, for each loop guard, say
E1 ≥ E2, we generate predicates E

′
1−E′

2 < E1−E2. The intuition is that the gap
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between values of E1 and E2 should decrease so that the loop guard would be
eventually violated. According to our experience, even with this simple heuris-
tic we could verify almost all terminating examples (only four predicates are
required to add manually in the whole experiments).

For comparison, we use the following four tools.

LTA) Our prototype algorithmic-Learning-based Termination Analyzer (LTA)
with a simple heuristic for transition predicate generation.

LF) LoopFrog [27], a summary-based termination analyzer. LoopFrog
can be configured with five different templates of transition invariants
and we use only the template i′ " i where " = {<,>}, which showed the
best performance according to [27].

LR) LinearRankTerm [8], an abstract interpretation-based termination
analyzer.

CTA) Compositional Termination Analyzer (CTA) [22].

All experiments are done on Intel Core i7 3.07 Ghz CPU with 24GB memory
running Linux 2.6.35. The timeout for CTA is set to one hour and LTA is
configured with the retrial limit (N in Algorithm 6) 100.

In all experiments, we report only the elapsed time for cases that tools could
prove the termination. If there are multiple loops, we report the elapsed time
aggregated only on terminating cases (denoted by ’+’ after numbers). The reason
is that our technique is semi-algorithm; it is not meaningful to report the elapsed
time to eventually fail since it simply depends on the parameter N . We run each
case 100 times and take the average of them.

We use four sets of examples1 from the literature, which are examples from
Octagon library [23], PolyRank distribution [5, 6], Windows device drivers [2,
8], and SNU real-time benchmark suite [27]. Since our prototype supports a
fragment of full ANSI-C, some examples are manually translated when they use
unsupported features. The experiment results are given in Figure 1.

Figure 1(a) and (b) shows the results on examples from Octagon Library and
PolyRank distribution2, respectively. All examples are known to terminate.
Our tool is the only one that proves all examples from Octagon library (note
that we got a different result from the one in [8]; we tried our best but we could
not make LinearRankTerm prove example 3). In terms of efficiency, LTA
outperforms the others except LoopFrog; since LoopFrog considers only one
iteration of loops with the pre-defined transition invariant template, it is very
efficient for simple programs. For the examples from PolyRank distribution,
only LTA and LinearRankTerm can prove the first two.

Figure 1(c) shows the result on examples from Windows device drivers. Ex-
ample 2, 3, and 9 are known to have termination bugs and the others terminate.
Only LTA and LinearRankTerm can prove all the terminating cases and LTA

1 We made them available at http://ropas.snu.ac.kr/cav12/. Windows device
driver examples cannot be made available due to the license issue.

2 As already noted in [2, 8], there was no example 5 in the original distribution. We
used the same numbering to avoid confusion.

http://ropas.snu.ac.kr/cav12/
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1 2 3 4 5 6

LTA 0.01 0.01 0.59 0.12 0.01 0.03

LF 0.01 0.01 0.02 0.03 � 0.01

LR 0.20 0.16 � 0.32 0.21 0.79

CTA 0.58 0.26 9.48 � � 0.48

(a) Results on examples from the Octagon Library

1 2 3 4 6 7 8 9 10 11 12

LTA 0.03 0.45 � � � � � � � � �
LF � � � � � � � � � � �
LR 0.71 0.34 � � � � � � � � �
CTA � � � � � � � � � � �

(b) Results on examples from the PolyRank distribution

1 2 3 4 5 6 7 8 9 10

LTA 0.43 � � 0.02 0.01 0.60 0.30 0.20 � 0.03

LF � � � 0.00 0.00 � � � � �
LR 0.66 � � 0.32 0.16 0.34 0.54 0.29 � 0.28

CTA T/O � � 0.41 0.44 2.04 8.86 8.87 � T/O

(c) Results on small arithmetic examples taken from Windows device drivers

Example Tool � � Time

bs
1 loop
1 terminates

LTA 1 0 0.01
LF 0 1 N/A

CTA 0 1 N/A

fft1k
3 loops
3 terminate

LTA 3 0 0.04
LF 2 1 0.03+

CTA 2 1 0.54+

fft1
5 loops
2 terminate

LTA 2 3 0.03+
LF 2 3 0.18+

CTA 2 3 0.66+

insertsort
2 loops
1 terminates

LTA 1 1 0.01+
LF 1 1 0.01+

CTA 1 1 0.29+

Example Tool � � Time

ludcmp
11 loops
11 terminate

LTA 11 0 0.13
LF 5 6 0.07+

CTA 4 7 1.50+

minver
17 loops
15 terminate

LTA 15 2 0.23+
LF 16 1 0.22+

CTA 15 2 5.21+

qsort-exam
6 loops
2 terminate

LTA 2 4 0.66+
LF 0 6 N/A

CTA 0 6 N/A

select
4 loops
0 terminates

LTA 0 4 N/A
LF 0 4 N/A

CTA 0 4 N/A

(d) Results on modified examples from SNU real-time benchmark

Fig. 1. Experiment Results. LTA is used to represent algorithmic-learning-based ter-
mination analyzer. LF is used to represent LoopFrog, summary-based termination
analyzer. LR is used to represent LinearRankTerm, abstract interpretation-based
termination analyzer. CTA is used to denote compositional termination analyzer.
Symbol ’+’ means that the time is aggregated only when the tool proved the termina-
tion. �=“termination proven”. �=“termination not proven”. N/A=“not comparable”.
T/O=“time out”. Tool and Time show the name and the runtime of tools.
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shows better performance than LinearRankTerm for all examples except ex-
ample 6.

Figure 1(d) is the result on SNU real-time benchmark suite3. The original
examples in the suite contain many trivial, non-nested loops of form for(i=0;

i<n; ++i){...} (52 out of 107 loops). We leave them out and make suite contain
only non-trivial, nested loops. We show in the figure the number of terminating
loops in each example, which was found manually.

Figure 1(d) shows that LTA outperforms LoopFrog and CTA, both in ef-
ficiency and effectiveness. Note that there is no comparison between Linear-

RankTerm and LTA; we could not compare LTA with LinearRankTerm on
the examples that have non-terminating loops since LinearRankTerm stops
the analysis as soon as it finds any single termination bug. We report here the
results on the examples with terminating loops only; for three such examples
(bs, fft1k, and ludcmp), LinearRankTerm tool can prove only one example
(bs) and it takes 0.59 seconds.

Our approach shows a promising result; even by a prototype implementa-
tion with a simple heuristic for atomic transition predicate generation, our tool
outperforms other tools both in efficiency and effectiveness.

5 Related Work

Our work is inspired by the recent success of the algorithmic-learning-based
approach to loop invariant inference [19–21]. In those papers, the problem of
loop invariant generation is formulated as a problem of inferring an unknown
quantifier-free formula. With a simple randomized mechanical teacher, a learning
algorithm is adopted to infer an invariant for the given annotated loop. Instead of
the costly fixpoint iteration, the learning algorithm revises its purported invari-
ants by counterexamples from the teacher. The randomized teacher can guide
the learning algorithm to find a loop invariant very efficiently since there are
usually sufficiently many loop invariants.

Terminator [13] is the most prominent termination analyzer which is suc-
cessfully applied to an industrial practice [1]. Using transition invariants [25],
Terminator decomposes a termination problem of complex loops into easier
ones. However, as reported in [13], the initial approach reveals that most of the
analysis time is spent in reachability analysis that is to check if the current
transition invariant reached a fixpoint.

Our work shares the same goal as several techniques [2, 8, 22, 27] which aims to
improve the performance of the initial approach. To compute fixpoints efficiently,
Berdine et al. [2] and Chawdhary et al. [8] use abstract interpretation [15]. We
use in experiments LinearRankTerm [8] which adopts a new abstract domain
tailored for termination proof. The new abstract domain is effective to prove the
termination in most of the practical examples, but it simply gives up when a
transition invariant of a loop is beyond its expressivity. Kroening et al. [22] and

3 The original benchmark suite can be also found at
http://archi.snu.ac.kr/realtime/benchmark/.

http://archi.snu.ac.kr/realtime/benchmark/
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Tsitovich et al. [27] use compositional transition invariants. Compositional tran-
sition invariants are the ones that are closed under composition with themselves.
If a transition invariant covers several iterations of a loop and is compositional,
it covers the entire iterations. Since compositional transition invariants can be
found by considering only several iterations, they are sometimes discovered ear-
lier than the one that covers the entire iterations. However, not all terminating
programs have a compositional transition invariant.

Our technique can be easily extended with more sophisticated ranking func-
tion synthesis algorithms, such as lexicographic linear ranking functions [4] or
bit-vector relations [11]. In this paper we use the ranking function synthesis al-
gorithm for simple linear loops [24], which has been proven to be effective on
realistic programs.

6 Conclusion

In this paper, we present an algorithmic-learning-based termination analysis
technique. By combining transition predicate abstraction, algorithmic learning,
and decision procedures, the technique can efficiently compute transition invari-
ants as proofs of program termination. Compared to the previous approaches,
our technique does not commit to any particular one, thus can prove the termina-
tion of the examples that previous techniques simply give up and report possible
non-termination. We compare our technique with others on several benchmarks
from literature. The result shows that the new technique outperforms the others
both in efficiency and effectiveness.

Although our heuristic for selecting initial atomic transition predicates is ef-
fective, a complete predicate synthesis technique will be useful. Extending our
learning-based framework to support more features such as function calls and
pointers is certainly desirable. Several optimizations under the learning-based
framework are to be explored. A more powerful well-foundedness checker should
make the framework even more effective. An incremental learning algorithm for
Boolean functions [9] should improve the efficiency of our technique as well.
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and Hongseok Yang for letting us use Windows device drivers examples. Espe-
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11. Cook, B., Kroening, D., Rümmer, P., Wintersteiger, C.M.: Ranking Function Syn-
thesis for Bit-Vector Relations. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 236–250. Springer, Heidelberg (2010)

12. Cook, B., Podelski, A., Rybalchenko, A.: Abstraction Refinement for Termination.
In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 87–101. Springer,
Heidelberg (2005)

13. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:
PLDI (2006)

14. Cook, B., Podelski, A., Rybalchenko, A.: Proving thread termination. In: PLDI
(2007)

15. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL
(1977)

16. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

17. Harris, W.R., Lal, A., Nori, A.V., Rajamani, S.K.: Alternation for Termination. In:
Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 304–319. Springer,
Heidelberg (2010)

18. Heizmann, M., Jones, N.D., Podelski, A.: Size-Change Termination and Transition
Invariants. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 22–50.
Springer, Heidelberg (2010)

19. Jung, Y., Kong, S., Wang, B.-Y., Yi, K.: Deriving Invariants by Algorithmic Learn-
ing, Decision Procedures, and Predicate Abstraction. In: Barthe, G., Hermenegildo,
M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 180–196. Springer, Heidelberg (2010)



104 W. Lee, B.-Y. Wang, and K. Yi

20. Jung, Y., Lee, W., Wang, B.-Y., Yi, K.: Predicate Generation for Learning-Based
Quantifier-Free Loop Invariant Inference. In: Abdulla, P.A., Leino, K.R.M. (eds.)
TACAS 2011. LNCS, vol. 6605, pp. 205–219. Springer, Heidelberg (2011)

21. Kong, S., Jung, Y., David, C., Wang, B.-Y., Yi, K.: Automatically Inferring Quan-
tified Loop Invariants by Algorithmic Learning from Simple Templates. In: Ueda,
K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 328–343. Springer, Heidelberg (2010)

22. Kroening, D., Sharygina, N., Tsitovich, A., Wintersteiger, C.M.: Termination Anal-
ysis with Compositional Transition Invariants. In: Touili, T., Cook, B., Jackson,
P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 89–103. Springer, Heidelberg (2010)
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Abstract. In earlier work, we developed a technique to prove termina-
tion of Java programs automatically: first, Java programs are automat-
ically transformed to term rewrite systems (TRSs) and then, existing
methods and tools are used to prove termination of the resulting TRSs.
In this paper, we extend our technique in order to prove termination of
algorithms on cyclic data such as cyclic lists or graphs automatically. We
implemented our technique in the tool AProVE and performed extensive
experiments to evaluate its practical applicability.

1 Introduction

Techniques to prove termination automatically are essential in program verifi-
cation. While approaches and tools for automated termination analysis of term
rewrite systems (TRSs) and of logic programs have been studied for decades, in
the last years the focus has shifted toward imperative languages like C or Java.

Most techniques for imperative languages prove termination by synthesizing
ranking functions (e.g., [12,26]) and localize the termination test using Ramsey’s
theorem [23,27]. Such techniques are for instance used in the tools Terminator
[4,13] and LoopFrog [22,31] to analyze termination of C programs. To handle the
heap, one can use an abstraction [14] to integers based on separation logic [24].

On the other hand, there also exist transformational approaches which auto-
matically transform imperative programs to TRSs or to logic programs. They
allow to re-use the existing techniques and tools from term rewriting or logic
programming also for imperative programs. In [17], C is analyzed by a transfor-
mation to TRSs and the tools Julia [30] and COSTA [2] prove termination of Java
via a transformation to constraint logic programs. To deal with the heap, they
also use an abstraction to integers and represent objects by their path length.

In [6,7,8,25] we presented an alternative approach for termination of Java via
a transformation to TRSs. Like [2,30], we consider Java Bytecode (JBC) to avoid
dealing with all language constructs of Java. This is no restriction, since Java
compilers automatically translate Java to JBC. Indeed, our implementation han-
dles the Java Bytecode produced by Oracle’s standard compiler. In contrast to
other approaches, we do not treat the heap by an abstraction to integers, but
by an abstraction to terms. So for any class Cl with n non-static fields, we use
an n-ary function symbol Cl. For example, consider a class List with two fields
value and next. Then every List object is encoded as a term List(v, n) where

� Supported by the DFG grant GI 274/5-3.

P. Madhusudan and S.A. Seshia (Eds.): CAV 2012, LNCS 7358, pp. 105–122, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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v is the value of the current element and n is the encoding of the next element.
Hence, a list “[1, 2]” is encoded by the term List(1, List(2, null)). In this way, our
encoding maintains much more information from the original program than a
(fixed) abstraction to integers. Now the advantage is that for any algorithm,
existing tools from term rewriting can automatically search for (possibly differ-
ent) suitable well-founded orders comparing arbitrary forms of terms. For more
information on techniques for termination analysis of term rewriting, see, e.g.,
[16,20,33]. As shown in the annual International Termination Competition,1 due
to this flexibility, the implementation of our approach in the tool AProVE [19] is
currently the most powerful termination prover for Java.

In this paper, we extend our technique to handle algorithms whose termina-
tion depends on cyclic objects (e.g., lists like “[0, 1, 2, 1, 2, . . .]” or cyclic graphs).
Up to now, transformational approaches could not deal with such programs. Si-
milar to related approaches based on separation logic [4,5,10,11,28,32], our tech-
nique relies on suitable predicates describing properties of the heap. Like [28],
but in contrast to several previous works, our technique derives these heap pre-
dicates automatically from the input program and it works automatically for ar-
bitrary data structures (i.e., not only for lists). We integrated this new technique
in our fully automated termination analysis and made the resulting termination
tool available via a web interface [1]. This tool automatically proves termination
of Java programs on possibly cyclic data, i.e., the user does not have to provide
loop preconditions, invariants, annotations, or any other manual pre-processing.

Our technique works in two steps: first, a JBC program is transformed into
a termination graph, which is a finite representation of all program runs. This
graph takes all sharing effects into account. Afterwards, a TRS is generated from
the graph. In a similar way, we also developed techniques to analyze termination
of other languages like Haskell [21] or Prolog [29] via a translation to TRSs.

Of course, one could also transform termination graphs into other formalisms
than TRSs. For example, by fixing the translation from objects to integers, one
could easily generate integer transition systems from the termination graph.
Then the contributions of the current paper can be used as a general pre-proces-
sing approach to handle cyclic objects, which could be coupled with other ter-
mination tools. However, for methods whose termination does not rely on cyclic
data, our technique is able to transform data objects into terms. For such meth-
ods, the power of existing tools for TRSs allows us to find more complex termi-
nation arguments automatically. By integrating the contributions of the current
paper into our TRS-based framework, the resulting tool combines the new ap-
proach for cyclic data with the existing TRS-based approach for non-cyclic data.

In Sect. 2-4, we consider three typical classes of algorithms which rely on data
that could be cyclic. The first class are algorithms where the cyclicity is irrelevant
for termination. So for termination, one only has to inspect a non-cyclic part
of the objects. For example, consider a doubly-linked list where the predecessor
of the first and the successor of the last element are null. Here, a traversal
only following the next field obviously terminates. To handle such algorithms,

1 See http://termination-portal.org/wiki/Termination_Competition

http://termination-portal.org/wiki/Termination_Competition
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in Sect. 2 we recapitulate our termination graph framework and present a new
improvement to detect irrelevant cyclicity automatically.

The second class are algorithms that mark every visited element in a cyclic
object and terminate when reaching an already marked element. In Sect. 3, we
develop a technique based on SMT solving to detect such marking algorithms by
analyzing the termination graph and to prove their termination automatically.

The third class are algorithms that terminate because an element in a cyclic
object is guaranteed to be visited a second time (i.e., the algorithms terminate
when reaching a specified sentinel element). In Sect. 4, we extend termination
graphs by representing definite sharing effects. Thus, we can now express that by
following some field of an object, one eventually reaches another specific object.
In this way, we can also prove termination of well-known algorithms like the
in-place reversal for pan-handle lists [10] automatically.

We implemented all our contributions in the tool AProVE. Sect. 5 shows their
applicability by an evaluation on a large benchmark collection (including numer-
ous standard Java library programs, many of which operate on cyclic data). In
our experiments, we observed that the three considered classes of algorithms cap-
ture a large portion of typical programs on cyclic data. For the treatment of (gen-
eral classes of) other programs, we refer to our earlier papers [6,7,25]. Moreover,
in [8] we presented a technique that uses termination graphs to also detect non-
termination. By integrating the new contributions of the current paper into our
approach, our tool can now automatically prove termination for programs that
contain methods operating on cyclic data as well as other methods operating on
non-cyclic data. For the proofs of the theorems as well as all formal definitions
needed for the construction of termination graphs, we refer to [9].

2 Handling Irrelevant Cycles

We restrict ourselves to programs without method calls, arrays, exception han-
dlers, static fields, floating point numbers, class initializers, reflection, and multi-
threading to ease the presentation. However, our implementation supports these
features, except reflection and multithreading. For further details, see [6,7,8].

class L1 {

L1 p, n;

static int length(L1 x) {

int r = 1;

while (null != (x = x.n))

r++;

return r; }}

Fig. 1. Java Program

00: iconst_1 #load 1

01: istore_1 #store to r

02: aconst_null #load null

03: aload_0 #load x

04: getfield n #get n from x

07: dup #duplicate n

08: astore_0 #store to x

09: if_acmpeq 18 #jump if

# x.n == null

12: iinc 1, 1 #increment r

15: goto 02

18: iload_1 #load r

19: ireturn #return r

Fig. 2. JBC for length

In Fig. 1, L1 is a class for
(doubly-linked) lists where n and
p point to the next and previous
element. For brevity, we omitted a
field for the value of elements. The
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method length initializes a variable r for the result and traverses the list until
x is null. Fig. 2 shows the corresponding JBC obtained by the Java compiler.

After introducing program states in Sect. 2.1, we explain how termination
graphs are generated in Sect. 2.2. Sect. 2.3 shows the transformation from
termination graphs to TRSs. While this two-step transformation was already
presented in our earlier papers, here we extend it by an improved handling
of cyclic objects in order to prove termination of algorithms like length

automatically.

2.1 Abstract States in Termination Graphs

00 |x :o1 |ε
o1:L1(?) o1�{p,n}

Fig. 3. State A

We generate a graph of abstract states from States = PPos×
LocVar × OpStack × Heap × Annotations, where PPos
is the set of all program positions. Fig. 3 depicts the initial
state for the method length. The first three components of a

state are in the first line, separated by “|”. The first component is the program
position, indicated by the index of the next instruction. The second component
represents the local variables as a list of references, i.e., LocVar = Refs

∗.2

To ease readability, in examples we denote local variables by names instead of
numbers. So “x : o1” indicates that the 0-th local variable x has the value o1.
The third component is the operand stack OpStack = Refs

∗ for temporary
results of JBC instructions. The empty stack is denoted by ε and “o1, o2” is a
stack with top element o1.

Below the first line, information about the heap is given by a function from
Heap = Refs → Ints ∪ Unknown ∪ Instances ∪ {null} and by a set of
annotations specifying sharing effects in parts of the heap that are not explic-
itly represented. For integers, we abstract from the different types of bounded
integers in Java and consider unbounded integers instead, i.e., we cannot han-
dle problems related to overflows. We represent unknown integers by intervals,
i.e., Ints = {{x ∈ Z | a ≤ x ≤ b} | a ∈ Z ∪ {−∞}, b ∈ Z ∪ {∞}, a ≤
b}. For readability, we abbreviate intervals such as (−∞,∞) by Z and [1,∞)
by [>0].

Let Classnames contain all classes and interfaces in the program. The val-
ues Unknown = Classnames×{?} denote that a reference points to an un-
known object or to null. Thus, “o1: L1(?)” means that at address o1, we have
an instance of L1 (or of its subclasses) with unknown field values or that o1
is null.

To represent actual objects, we use Instances = Classnames×(FieldIDs

→ Refs), where FieldIDs is the set of all field identifiers. To prevent ambi-
guities, in general the FieldIDs also contain the respective class names. Thus,
“o2:L1(p = o3, n = o4)” means that at address o2, we have some object of type
L1 whose field p contains the reference o3 and whose field n contains o4.

2 To avoid a special treatment of integers (which are primitive values in JBC), we also
represent them using references to the heap.
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In our representation, if a state contains the references o1 and o2, then the ob-
jects reachable from o1 resp. o2 are disjoint3 and tree-shaped (and thus acyclic),
unless explicitly stated otherwise. This is orthogonal to the default assumptions
in separation logic, where sharing is allowed unless stated otherwise, cf. e.g. [32].
In our states, one can either express sharing directly (e.g., “o1: L1(p = o2, n =
o1)” implies that o1 reaches o2 and is cyclic) or use annotations to indicate
(possible) sharing in parts of the heap that are not explicitly represented.

The first kind of annotation is the equality annotation o =? o′, meaning that
o and o′ could be the same. We only use this annotation if h(o) ∈ Unknown or
h(o′) ∈ Unknown, where h is the heap of the state. The second annotation is
the joinability annotation o �� o′, meaning that o and o′ possibly have a common

successor. To make this precise, let o1
f→ o2 denote that the object at o1 has

a field f ∈ FieldIDs with o2 as its value (i.e., h(o1) = (Cl, e) ∈ Instances

and e(f) = o2). For any π = f1 . . . fn ∈ FieldIDs
∗, o1

π→ on+1 denotes that

there exist o2, . . . , on with o1
f1→ o2

f2→ . . .
fn−1→ on

fn→ on+1. Moreover, o1
ε→ o′1

iff o1 = o′1. Then o �� o′ means that there could be some o′′ and some π and τ

such that o
π→ o′′

τ← o′, where π �= ε or τ �= ε.
In our earlier papers [6,25] we had another annotation to denote references

that may point to non-tree-shaped objects. In the translation to terms later on,
all these objects were replaced by fresh variables. But in this way, one cannot
prove termination of length. To maintain more information about possibly non-
tree-shaped objects, we now introduce two new shape annotations o♦ and o�FI

instead. The non-tree annotation o♦ means that o might be not tree-shaped.
More precisely, there could be a reference o′ with o

π1→ o′ and o
π2→ o′ where π1 is

no prefix of π2 and π2 is no prefix of π1. However, these two paths from o to o′

may not traverse any cycles (i.e., there are no prefixes τ1, τ2 of π1 or of π2 where

τ1 �= τ2, but o
τ1→ o′′ and o

τ2→ o′′ for some o′′). The cyclicity annotation o�FI

means that there could be cycles including o or reachable from o. However,
any cycle must use at least the fields in FI ⊆ FieldIDs. In other words, if
o

π→ o′
τ→ o′ for some τ �= ε, then τ must contain all fields from FI . We often

write � instead of �∅. Thus in Fig. 3, o1�{p,n} means that there may be cycles
reachable from o1 and that any such cycle contains at least one n and one p field.

2.2 Constructing the Termination Graph

Our goal is to prove termination of length for all doubly-linked lists without
“real” cycles (i.e., there is no cycle traversing only n or only p fields). Hence,
A is the initial state when calling the method with such an input list.4 From
A, the termination graph in Fig. 4 is constructed by symbolic evaluation. First,
iconst 1 loads the constant 1 on the operand stack. This leads to a new state
connected to A by an evaluation edge (we omitted this state from Fig. 4 for

3 An exception are references to null or Ints, since in JBC, integers are primitive
values where one cannot have any side effects. So if h is the heap of a state and
h(o1) = h(o2) ∈ Ints or h(o1) = h(o2) = null, then one can always assume o1 = o2.

4 The state A is obtained automatically when generating the termination graph for a
program where length is called with an arbitrary such input list, cf. Sect. 5.
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00 |x :o1 |ε
o1:L1(?) o1�{p,n}

A

02 |x :o1, r : 1 |ε
o1:L1(?) o1�{p,n}

B

04 |x :o1, r : 1 |o1, null
o1:L1(?) o1�{p,n}

C

04 |x :null, r : 1 |null, null D

04 |x :o2, r : 1 |o2, null
o2:L1(p=o3, n=o4)
o3:L1(?) o4:L1(?)
o2��o3 o2��o4 o3��o4
o2, o3, o4�{p,n}

E

09 |x :o4, r : 1 |o4, null
o4:L1(?) o4�{p,n}

F

09 |x :null, r : 1 |null, null G 09 |x :o5, r : 1 |o5, null
o5:L1(p=o6, n=o7)
o6:L1(?) o7:L1(?)
o5��o6 o5��o7 o6��o7
o5, o6, o7�{p,n}

H

02 |x :o5, r : 2 |ε
o5:L1(p=o6, n=o7)
o6:L1(?) o7:L1(?)
o5��o6 o5��o7 o6��o7
o5, o6, o7�{p,n}

I

02 |x :o′1, r : i1 |ε
o′1:L1(?) o′1�{p,n} i1: [>0]

B′

09 |x :o′4, r : i1 |o′4, null
o′4:L1(?) o′4�{p,n}

F ′

04 |x :o′1, r : i1 |o′1, null
o′1:L1(?) o′1�{p,n} i1: [>0]

C′

02 |x :o′5, r : i2 |ε
o′5:L1(p=o′6, n=o′7)
o′6:L1(?) o′7:L1(?) i2: [>1]
o′5��o′6 o′5��o′7 o′6��o′7
o′5, o

′
6, o

′
7�{p,n}

I′

i2 = i1 + 1

Fig. 4. Termination Graph for length

reasons of space). Then istore 1 stores the constant 1 from the top of the
operand stack in the first local variable r. In this way, we obtain state B (in
Fig. 4 we use dotted edges to indicate several steps). Formally, the constant 1 is
represented by some reference i ∈ Refs that is mapped to [1, 1] ∈ Ints by the
heap. However, we shortened this for the presentation and just wrote r : 1.

In B, we load null and the value of x (i.e., o1) on the operand stack, result-
ing in C. In C, the result of getfield depends on the value of o1. Hence, we
perform a case analysis (a so-called instance refinement) to distinguish between
the possible types of o1 (and the case where o1 is null). So we obtain D where
o1 is null, and E where o1 points to an actual object of type L1. To get single
static assignments, we rename o1 to o2 in E and create fresh references o3 and
o4 for its fields p and n. We connect D and E by dashed refinement edges to C.

In E, our annotations have to be updated. If o1 can reach a cycle, then this
could also hold for its successors. Thus, we copy �{p,n} to the newly-created
successors o3 and o4. Moreover, if o2 (o1 under its new name) can reach itself,
then its successors might also reach o2 and they might also reach each other.
Thus, we create �� annotations indicating that each of these references may
share with any of the others. We do not have to create any equality annotations.
The annotation o2 =? o3 (and o2 =? o4) is not needed because if the two were
equal, they would form a cycle involving only one field, which contradicts�{p,n}.

Furthermore, we do not need o3 =? o4, as o1 was not marked with ♦.
D ends the program (by an exception), indicated by an empty box. In E, get-

field n replaces o2 on the operand stack by the value o4 of its field n, dup dupli-
cates the entry o4 on the stack, and astore 0 stores one of these entries in x,
resulting in F . We removed o2 and o3 which are no longer used in local variables
or the operand stack. To evaluate if acmpeq in F , we branch depending on the
equality of the two top references on the stack. So we need an instance refinement
and create G where o4 is null, and H where o4 refers to an actual object. The
annotations in H are constructed from F just as E was constructed from C.
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G results in a program end. In H , r’s value is incremented to 2 and we jump
back to instruction 02, resulting in I. We could continue symbolic evaluation,
but this would not yield a finite termination graph. Whenever two states like
B and I are at the same program position, we use generalization (or widening
[14]) to find a common representative B′ of both B and I. By suitable heuristics,
our automation ensures that one always reaches a finite termination graph after
finitely many generalization steps [8]. The values for references in B′ include all
values that were possible in B or I. Since r had the value 1 in B and 2 in I, this
is generalized to the interval [>0] in B′. Similarly, since x was Unknown in B
but a non-null list in I, this is generalized to an Unknown value in B′.

We draw instance edges (depicted by thick arrows) from B and I to B′,
indicating that all concrete (i.e., non-abstract) program states represented by B
or I are also represented by B′. So B and I are instances of B′ (written B $ B′,
I $ B′) and any evaluation starting in B or I could start in B′ as well.

FromB′ on, symbolic evaluation yields analogous states as when starting in B.
The only difference is that now, r’s value is an unknown positive integer. Thus,
we reach I ′, where r’s value i2 is the incremented value of i1 and the edge from
F ′ to I ′ is labeled with “i2 = i1 + 1” to indicate this relation. Such labels are
used in Sect. 2.3 when generating TRSs from termination graphs. The state I ′

is similar to I, and it is again represented by B′. Thus, we can draw an instance
edge from I ′ to B′ to “close” the graph, leaving only program ends as leaves.

A sequence of concrete states c1, c2, . . . is a computation path if ci+1 is obtained
from ci by standard JBC evaluation. A computation sequence is represented by
a termination graph if there is a path s11, . . . , s

k1
1 , s

1
2, . . . , s

k2
2 , . . . of states in the

termination graph such that ci $ s1i , . . . , ci $ skii for all i and such that all labels
on the edges of the path (e.g., “i2 = i1 + 1”) are satisfied by the corresponding
values in the concrete states. Thm. 1 shows that if a concrete state c1 is an
instance of some state s1 in the termination graph, then every computation
path starting in c1 is represented by the termination graph. Thus, every infinite
computation path starting in c1 corresponds to a cycle in the termination graph.

Theorem 1 (Soundness of Termination Graphs). Let G be a termination
graph, s1 some state in G, and c1 some concrete state with c1 $ s1. Then any
computation sequence c1, c2, . . . is represented by G.

2.3 Proving Termination via Term Rewriting

From the termination graph, one can generate a TRS with built-in integers [18]
that only terminates if the original program terminates. To this end, in [25] we
showed how to encode each state of a termination graph as a term and each edge
as a rewrite rule. We now extend this encoding to the new annotations ♦ and �
in such a way that one can prove termination of algorithms like length.

To encode states, we convert the values of local variables and operand stack
entries to terms. References with unknown value are converted to variables of
the same name. So the reference i1 in state B′ is converted to the variable i1.

The null reference is converted to the constant null and for objects, we use
the name of their class as a function symbol. The arguments of that function
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correspond to the fields of the class. So a list x of type L1 where x.p and x.n are
null would be converted to the term L1(null, null) and o2 from state E would be
converted to the term L1(o3, o4) if it were not possibly cyclic.

In [25], we had to exclude objects that were not tree-shaped from this transla-
tion. Instead, accesses to such objects always yielded a fresh, unknown variable.
To handle objects annotated with ♦, we now use a simple unrolling when trans-
forming them to terms. Whenever a reference is changed in the termination
graph, then all its occurrences in the unrolled term are changed simultaneously
in the corresponding TRS. To handle the annotation�FI , now we only encode a
subset of the fields of each class when transforming objects to terms. This subset
is chosen such that at least one field of FI is disregarded in the term encoding.5

Hence, when only regarding the encoded fields, the data objects are acyclic and
can be represented as terms. To determine which fields to drop from the encod-
ing, we use a heuristic which tries to disregard fields without read access.

In our example, all cyclicity annotations have the form �{p,n} and p is never
read. Hence, we only consider the field n when encoding L1-objects to terms.
Thus, o2 from state E would be encoded as L1(o4). Now any read access to p

would have to be encoded as returning a fresh variable.
For every state we use a function with one argument for each local variable

and each entry of the operand stack. So E is converted to fE(L1(o4), 1, L1(o4), null).
To encode the edges of the termination graph as rules, we consider the different

kinds of edges. For a chain of evaluation edges, we obtain a rule whose left-hand
side is the term resulting from the first state and whose right-hand side results
from the last state of the chain. So the edges from E to F result in

fE(L1(o4), 1, L1(o4), null)→ fF (o4, 1, o4, null).

In term rewriting [3], a rule � → r can be applied to a term t if there is a
substitution σ with �σ = t′ for some subterm t′ of t. The application of the
rule results in a variant of t where t′ is replaced by rσ. For example, consider a
concrete state where x is a list of length 2 and the program counter is 04. This
state would be an instance of the abstract state E and it would be encoded by the
term fE(L1(L1(null)), 1, L1(L1(null)), null). Now applying the rewrite rule above
yields fF (L1(null), 1, L1(null), null). In this rule, we can see the main termination
argument: Between E and F , one list element is “removed” and the list has
finite length (when only regarding the n field). A similar rule is created for the
evaluations that lead to state F ′, where all occurrences of 1 are replaced by i1.

In our old approach [25], the edges from E to F would result in fE(L1(o4), 1,
L1(o4), null)→ fF (o

′
4, 1, o

′
4, null). Its right-hand side uses the fresh variable o′4 in-

stead of o4, since this was the only way to represent cyclic objects in [25]. Since o′4
could be instantiated by any term during rewriting, this TRS is not terminating.

For refinement edges, we use the term for the target state on both sides of the
resulting rule. However, on the left-hand side, we label the outermost function

5 Of course, if FI = ∅, then we still handle cyclic objects as before and represent any
access to them by a fresh variable.
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symbol with the source state. So for the edge from F to H , we have the term
for H on both sides of the rule, but on the left-hand side we replace fH by fF :

fF (L1(o7), 1, L1(o7), null)→ fH(L1(o7), 1, L1(o7), null)

For instance edges, we use the term for the source state on both sides of the
resulting rule. However, on the right-hand side, we label the outermost function
with the target state instead. So for the edge from I to B′, we have the term for
I on both sides of the rule, but on the right-hand side we replace fI by fB′ :

fI(L1(o7), 2)→ fB′(L1(o7), 2)

For termination, it suffices to convert just the (non-trivial) SCCs of the termi-
nation graph to TRSs. If we do this for the only SCC B′, . . . , I ′, . . . , B′ of our
graph, and then “merge” rewrite rules that can only be applied after each other
[25], then we obtain one rule encoding the only possible way through the loop:

fB′(L1(L1(o7)), i1)→ fB′(L1(o7), i1 + 1)

Here, we used the information on the edges from F ′ to I ′ to replace i2 by i1+1.
Termination of this rule is easily shown automatically by termination provers like
AProVE, although the original Java program worked on cyclic objects. However,
our approach automatically detects that the objects are not cyclic anymore if
one uses a suitable projection that only regards certain fields of the objects.

Theorem 2 (Proving Termination of Java by TRSs). If the TRSs result-
ing from the SCCs of a termination graph G are terminating, then G does not
represent any infinite computation sequence. So by Thm. 1, the original JBC pro-
gram is terminating for all concrete states c where c $ s for some state s in G.

3 Handling Marking Algorithms on Cyclic Data

public class L2 {

int v;

L2 n;

static void visit(L2 x){

int e = x.v;

while (x.v == e) {

x.v = e + 1;

x = x.n; }}}

Fig. 5. Java Program

00: aload_0 #load x

01: getfield v #get v from x

04: istore_1 #store to e

05: aload_0 #load x

06: getfield v #get v from x

09: iload_1 #load e

10: if_icmpne 28 #jump if x.v != e

13: aload_0 #load x

14: iload_1 #load e

15: iconst_1 #load 1

16: iadd #add e and 1

17: putfield v #store to x.v

20: aload_0 #load x

21: getfield n #get n from x

24: astore_0 #store to x

25: goto 5

28: return

Fig. 6. JBC for visit

We now regard lists with a “next”
field n where every element has
an integer value v. The method
visit stores the value of the first
list element. Then it iterates over
the list elements as long as they
have the same value and “marks”
them by modifying their value. If
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05 |x :o1,e : i1 |ε
o1:L2(?) i1:Z o1�

A

06 |x :o1,e : i1 |o1
o1:L2(?) i1:Z o1�

B

06 |x :null,e : i1 |null
C

06 |x :o2,e : i1 |o2
o2:L2(v= i2, n=o3)
o3: L2(?) i1:Z i2:Z

o2,o3� o2��o3 o2=
?o3

D
06 |x :o2,e : i1 |o2
o2:L2(v= i2, n=o3)
o3: L2(?) i1:Z i2:Z
o2,o3� o2��o3

E

06 |x :o2,e : i1 |o2
o2:L2(v= i2, n=o2)
i1:Z i2:Z

F

10 |x :o2,e : i1 | i1, i2
o2:L2(v= i2, n=o3) o2��o3
o3:L2(?) i1:Z i2:Z o2,o3�

G

05 |x :o2,e : i1 |ε
o2:L2(v= i4, n=o2) i3:Z

K

10 |x :o2,e : i1 | i1, i2
o2:L2(v= i2, n= o3) o2��o3
o3:L2(?) i1:Z i2:Z o2,o3�

H
10 |x :o2,e : i1 | i1, i1
o2:L2(v= i1, n=o3)
o3:L2(?) i1:Z
o2,o3� o2��o3

I

10 |x :o2,e : i1 | i1, i2
o2:L2(v= i2, n=o2)
i1:Z i2:Z

L

05 |x :o3,e : i1 |ε
o3:L2(?) i1:Z o3�

J

i1= i2
i4= i1+1

i1 �= i2

i1 �= i2i1=
i2

i3= i1+1

Fig. 7. Termination Graph for visit

all list elements had the same value initially, then the iteration either ends with
a NullPointerException (if the list is non-cyclic) or because some element is
visited for the second time (this is detected by its modified “marked” value).6 We
illustrate the termination graph of visit in Sect. 3.1 and extend our approach
in order to prove termination of such marking algorithms in Sect. 3.2.

3.1 Constructing the Termination Graph

When calling visit for an arbitrary (possibly cyclic) list, one reaches state A in
Fig. 7 after one loop iteration by symbolic evaluation and generalization. Now
aload 0 loads the value o1 of x on the operand stack, yielding state B.

To evaluate getfield v, we perform an instance refinement and create a
successor C where o1 is null and a successor D where o1 is an actual instance
of L2. As in Fig. 4, we copy the cyclicity annotation to o3 and allow o2 and o3 to
join. Furthermore, we add o2 =? o3, since o2 could be a cyclic one-element list.

In C, we end with a NullPointerException. Before accessing o2’s fields, we
have to resolve all possible equalities. We obtain E and F by an equality re-
finement, corresponding to the cases o2 �= o3 and o2 = o3. F needs no anno-
tations anymore, as all reachable objects are completely represented in the state.

In E we evaluate getfield, retrieving the value i2 of the field v. Then we load
e’s value i1 on the operand stack, which yields G. To evaluate if icmpne, we
branch depending on the inequality of the top stack entries i1 and i2, resulting
in H and I. We label the refinement edges with the respective integer relations.

In I, we add 1 to i1, creating i3, which is written into the field v of o2. Then,
the field n of o2 is retrieved, and the obtained reference o3 is written into x,
leading to J . As J is a renaming of A, we draw an instance edge from J to A.

6 While termination of visit can also be shown by the technique of Sect. 4 which
detects whether an element is visited twice, the technique of Sect. 4 fails for analogous
marking algorithms on graphs which are easy to handle by the approach of Sect. 3,
cf. Sect. 5. So the techniques of Sect. 3 and 4 do not subsume each other.
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The states following F are analogous, i.e., when reaching if icmpne, we create
successors depending on whether i1 = i2. In that case, we reach K, where we
have written the new value i4 = i1 + 1 into the field v of o2. Since K is also an
instance of A, this concludes the construction of the termination graph.

3.2 Proving Termination of Marking Algorithms

To prove termination of algorithms like visit, we try to find a suitable marking
property M ⊆ Refs×States. For every state s with heap h, we have (o, s) ∈M
if o is reachable7 in s and if h(o) is an object satisfying a certain property. We add
a local variable named cM to each state which counts the number of references in
M . More precisely, for each concrete state s with “cM : i” (i.e., the value of the
new variable is the reference i), h(i) ∈ Ints is the singleton set containing the
number of references o with (o, s) ∈ M . For any abstract state s with “cM : i”
that represents some concrete state s′ (i.e., s′ $ s), the interval h(i) must contain
an upper bound for the number of references o with (o, s′) ∈M .

In our example, we consider the property L2.v = i1, i.e., cM counts the refer-
ences to L2-objects whose field v has value i1. As the loop in visit only continues
if there is such an object, we have cM > 0. Moreover, in each iteration, the field
v of some L2-object is set to a value i3 resp. i4 which is different from i1. Thus,
cM decreases. We now show how to find this termination proof automatically.

To detect a suitable marking property automatically, we restrict ourselves to
properties “Cl.f �� i”, where Cl is a class, f a field in Cl, i a (possibly unknown)
integer, and �� an integer relation. Then (o, s) ∈ M iff h(o) is an object of type
Cl (or a subtype of Cl) whose field f stands in relation �� to the value i.

The first step is to find some integer reference i that is never changed in the
SCC. In our example, we can easily infer this for i1 automatically.8

The second step is to find Cl, f, and �� such that every cycle of the SCC
contains some state where cM > 0. We consider those states whose incoming
edge has a label “i �� . . .” or “. . . �� i”. In our example, I’s incoming edge is
labeled with “i1 = i2” and when comparing i1 and i2 in G, i2 was the value of
o2’s field v, where o2 is an L2-object. This suggests the marking property “L2.v
= i1”. Thus, cM now counts the references to L2-objects whose field v has the
value i1. So the cycle A, . . . , E, . . . A contains the state I with cM > 0 and one
can automatically detect that A, . . . , F, . . . , A has a similar state with cM > 0.

In the third step, we add cM as a new local variable to all states of the SCC.
For instance, in A to G, we add “cM : i” to the local variables and “i : [≥ 0]”
to the knowledge about the heap. The edge from G to I is labeled with “i > 0”
(this will be used in the resulting TRS), and in I we know “i : [> 0]”. It remains
to explain how to detect changes of cM . To this end, we use SMT solving.

A counter for “Cl.f �� i” can only change when a new object of type Cl (or
a subtype) is created or when the field Cl.f is modified. So whenever “new Cl”

7 Here, a reference o is reachable in a state s if s has a local variable or an operand
stack entry o′ such that o′ π→ o for some π ∈ FieldIDs

∗.
8 Due to our single static assignment syntax, this follows from the fact that at all
instance edges, i1 is matched to i1.
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(or “new Cl′” for some subtype Cl′) is called, we have to consider the default
value d for the field Cl.f. If the underlying SMT solver can prove that ¬d �� i
is a tautology, then cM can remain unchanged. Otherwise, to ensure that cM is
an upper bound for the number of objects in M , cM is incremented by 1.

If a putfield replaces the value u in Cl.f by w, we have three cases:

(i) If u �� i ∧ ¬w �� i is a tautology, then cM may be decremented by 1.
(ii) If u �� i↔ w �� i is a tautology, then cM remains the same.
(iii) In the remaining cases, we increment cM by 1.

In our example, between I and J one writes i3 to the field v of o2. To find out
how cM changes from I to J , we create a formula containing all information
on the edges in the path up to now (i.e., we collect this information by going
backwards until we reach a state like A with more than one predecessor). This
results in i1 = i2 ∧ i3 = i1 + 1. To detect whether we are in case (i) above,
we check whether the information in the path implies u �� i ∧ ¬w �� i. In our
example, the previous value u of o2.v is i1 and the new value w is i3. Any SMT
solver for integer arithmetic can easily prove that the resulting formula

i1 = i2 ∧ i3 = i1 + 1 → i1 = i1 ∧ ¬i3 = i1

is a tautology (i.e., its negation is unsatisfiable). Thus, cM is decremented by 1
in the step from I to J . Since in I, we had “cM : i” with “i : [> 0]”, in J we have
“cM : i′” with “i′ : [≥ 0]”. Moreover, we label the edge from I to J with the
relation “i′ = i− 1” which is used when generating a TRS from the termination
graph. Similarly, one can also easily prove that cM decreases between F and K.
Thm. 3 shows that Thm. 1 still holds when states are extended by counters cM .

Theorem 3 (Soundness of Termination Graphs with Counters for
Marking Properties). Let G be a termination graph, s1 some state in G,
c1 some concrete state with c1 $ s1, and M some marking property. If we ex-
tend all concrete states c with heap h by an extra local variable “cM : i” such
that h(i) = {|{(o, c) ∈M}|} and if we extend abstract states as described above,
then any computation sequence c1, c2, . . . is represented by G.

We generate TRSs from the termination graph as before. So by Thm. 2 and 3,
termination of the TRSs still implies termination of the original Java program.

Since the new counter is an extra local variable, it results in an extra argument
of the functions in the TRS. So for the cycleA, . . . , E, . . . A, after some “merging”
of rules, we obtain the following TRS. Here, the first rule may only be applied
under the condition i > 0. For A, . . . , F, . . . A we obtain similar rules.

fA(. . . , i, . . .)→ fI(. . . , i, . . .) | i > 0 fI(. . . , i, . . .)→ fJ (. . . , i− 1, . . .)
fJ (. . . , i

′, . . .)→ fA(. . . , i
′, . . .)

Termination of the resulting TRS can easily be be shown automatically by stan-
dard tools from term rewriting, which proves termination of the method visit.
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4 Handling Algorithms with Definite Cyclicity

public class L3 {

L3 n;

void iterate () {

L3 x = this.n;

while (x != this)

x = x.n; }}

Fig. 8. Java Program

00: aload_0 #load this

01: getfield n #get n from this

04: astore_1 #store to x

05: aload_1 #load x

06: aload_0 #load this

07: if_acmpeq 18 #jump if x == this

10: aload_1 #load x

11: getfield n #get n from x

14: astore_1 #store x

15: goto 05

18: return

Fig. 9. JBC for iterate

The method in Fig. 8 traver-
ses a cyclic list until it reaches
the start again. It only ter-
minates if by following the n

field, we reach null or the
first element again. We illustrate iterate’s termination graph in Sect. 4.1 and
introduce a new definite reachability annotation for such algorithms. Afterwards,
Sect. 4.2 shows how to prove their termination.

4.1 Constructing the Termination Graph

Fig. 10 shows the termination graph when calling iterate with an arbitrary
list whose first element is on a cycle.9In contrast to marking algorithms like
visit in Sect. 3, iterate does not terminate for other forms of cyclic lists.
State A is reached after evaluating the first three instructions, where the value

05 |t :o1,x :o2 |ε
o1:L3(n=o2) o2:L3(?)

o1,o2� o1=
? o2

o1��o2 o2
{n}���! o1

A

07 |t :o1,x :o2 |o1, o2
o1:L3(n=o2) o2:L3(?)

o1,o2� o1=
? o2

o1��o2 o2
{n}���! o1

B

07 |t :o1,x :o1 |o1, o1
o1:L3(n=o1)

C

07 |t :o1,x :o2 |o1, o2
o1:L3(n=o2) o2:L3(?)
o1,o2�
o1��o2 o2

{n}���! o1

D

11 |t :o1,x :o2 |o2
o1:L3(n=o2) o2:L3(?)
o1,o2�
o1��o2 o2

{n}���! o1

E

11 |t :o1,x :o3 |o3
o1:L3(n=o3)
o3:L3(n=o4) o4:L3(?)

o1,o3,o4� o4=
? o1

o1��o4 o4��o3 o4
{n}���! o1

F

05 |t :o1,x :o4 |ε
o1:L3(n=o3)
o3:L3(n=o4) o4:L3(?)

o1,o3,o4� o4=
? o1

o1��o4 o4��o3 o4
{n}���! o1

G

05 |t :o1,x :o4 |ε
o1:L3(?) o4:L3(?)

o1,o4� o4=
? o1

o1�� o4 o1
{n}���! o4

o4
{n}���! o1

H

07 |t :o1,x :o4 |o1, o4
o1:L3(?) o4:L3(?)

o1,o4� o4=
? o1

o1��o4 o1
{n}���! o4 o4

{n}���! o1

I

07 |t :o1,x :o4 |o1, o4
o1:L3(?) o4:L3(?)
o1,o4�
o1��o4 o1

{n}���! o4 o4
{n}���! o1

J

11 |t :o1,x :o4 |o4
o1:L3(?) o4:L3(?)
o1,o4�
o1��o4 o1

{n}���! o4 o4
{n}���! o1

K

11 |t :o1,x :o5 |o5
o1:L3(?) o5:L3(n=o6)
o6:L3(?) o1,o5,o6�
o6=

? o1 o1��o5 o6��o1
o1

{n}���! o5 o6
{n}���! o1

L

Fig. 10. Termination Graph for iterate

9 The initial state of iterate’s termination graph is obtained automatically when
proving termination for a program where iterate is called with such lists, cf. Sect. 5.



118 M. Brockschmidt et al.

o2 of this.n10 is copied to x. In A, o1 and o2 are the first elements of the list,
and o1 =? o2 allows that both are the same. Furthermore, both references are

possibly cyclic and by o1 �� o2, o2 may eventually reach o1 again (i.e., o2
π→ o1).

Moreover, we added a new annotation o2
{n}���! o1 to indicate that o2 definitely

reaches o1.
11 All previous annotations =?, ��, ♦,� extend the set of concrete

states represented by an abstract state (by allowing more sharing). In contrast,
a definite reachability annotation o

FI���! o′ with FI ⊆ FieldIDs restricts the set
of states represented by an abstract state. Now it only represents states where
o

π→ o′ holds for some π ∈ FI ∗. To ensure that the FI -path from o to o′ is unique
(up to cycles), FI must be deterministic. This means that for any class Cl, FI
contains at most one of the fields of Cl or its superclasses. Moreover, we only
use o

FI���! o′ if h(o) ∈ Unknown for the heap h of the state.
In A, we load the values o2 and o1 of x and this on the stack. To evaluate

if acmpeq in B, we need an equality refinement w.r.t. o1 =? o2. We create C
for the case where o1 = o2 (which ends the program) and D for o1 �= o2.

In D, we load x’s value o2 on the stack again. To access its field n in E, we
need an instance refinement for o2. By o2

{n}���! o1, o2’s value is not null. So there
is only one successor F where we replace o2 by o3, pointing to an L3-object. The
annotation o2

{n}���! o1 is moved to the value of the field n, yielding o4
{n}���! o1.

In F , the value o4 of o3’s field n is loaded on the stack and written to x. Then
we jump back to instruction 05. As G and A are at the same program position,
they are generalized to a new state H which represents both G and A. H also
illustrates how definite reachability annotations are generated automatically: In
A, this reaches x in one step, i.e., o1

n→ o2. Similarly in G, this reaches x

in two steps, i.e., o1
n n→ o4. To generalize this connection between this and x in

the new state H where “this : o1” and “x : o4”, one generates the annotation
o1

{n}���! o4 in H . Thus, this definitely reaches x in arbitrary many steps.
From H , symbolic evaluation continues just as from A. So we reach the states

I, J,K, L (corresponding to B,D,E, F , respectively). In L, the value o6 of x.n
is written to x and we jump back to instruction 05. There, o5 is not referenced
anymore. However, we had o1

{n}���! o5 in state L. When garbage collecting o5,
we “transfer” this annotation to its n-successor o6, generating o1

{n}���! o6. Now
the resulting state is just a variable renaming of H , and thus, we can draw an
instance edge to H . This finishes the graph construction for iterate.

4.2 Proving Termination of Algorithms with Definite Reachability

The method iterate terminates since the sublist between x and this is short-
ened in every loop iteration. To extract this argument automatically, we proceed
similar to Sect. 3, i.e., we extend the states by suitable counters. More precisely,
any state that contains a definite reachability annotation o FI���! o′ is extended
by a counter c

o
FI���!o′ representing the length of the FI -path from o to o′.

10 In the graph, we have shortened this to t.
11 This annotation roughly corresponds to ls(o2, o1) in separation logic, cf. e.g. [4,5].
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So H is extended by two counters c
o1

{n}���!o4
and c

o4
{n}���!o1

. Information about

their value can only be inferred when we perform a refinement or when we
transfer an annotation o

FI���! o′ to some successor ô of o′ (yielding o
FI���! ô).

If a state s contains both o FI���! o′ and o =? o′, then an equality refinement
according to o =? o′ yields two successor states. In one of them, o and o′ are
identified and o

FI���! o′ is removed. In the other successor state s′ (for o �= o′),
any path from o to o′ must have at least length one. Hence, if “c

o
FI���!o′ : i” in s

and s′, then the edge from s to s′ can be labeled by “i > 0”. So in our example,
if “c

o4
{n}���!o1

: i” in I and J , then we can add “i > 0” to the edge from I to J .

Moreover, if s contains o FI���! o′ and one performs an instance refinement on
o, then in each successor state s′ of s, the annotation o

FI���! o′ is replaced by
ô

FI���! o′ for the reference ô with o.f = ô where f ∈ FI . Instead of “c
o

FI���!o′ : i”
in s we now have a counter “c

ô
FI���!o′ : i′” in s′. Since FI is deterministic, the

FI -path from ô to o′ is one step shorter than the FI -path from o to o′. Thus,
the edge from s to s′ is labeled by “i′ = i− 1”. So if we have “c

o4
FI���!o1

: i” in K

and “c
o6

FI���!o1
: i′” in L, then we add “i′ = i− 1” to the edge from K to L.

When a reference o′ has become unneeded in a state s′ reached by evaluation
from s, then we transfer annotations of the form o

FI���! o′ to all successors ô of

o′ with o′
f→ ô where FI ′ = {f} ∪ FI is still deterministic. This results in a new

annotation o
FI ′
���! ô in s′. For “c

o
FI′���!ô

: i′” in s′, we know that its value is exactly

one more than “c
o

FI���!o : i” in s and hence, we label the edge by “i′ = i + 1”. In

our example, this happens between L and H . Here the annotation o1
{n}���! o5 is

transferred to o5’s successor o6 when o5 is garbage collected, yielding o1
{n}���! o6.

Thm. 4 adapts Thm. 1 to definite reachability annotations.

Theorem 4 (Soundness of Termination Graphs with Definite Reacha-
bility). Let G be a termination graph with definite reachability annotations, s1 a
state in G, and c1 a concrete state with c1 $ s1. As in Thm. 1, any computation
sequence c1, c2, . . . is represented by a path s11, . . . , s

k1
1 , s

1
2, . . . , s

k2
2 , . . . in G.

Let G′ result from G by extending the states by counters for their definite
reachability annotations as above. Moreover, each concrete state cj in the compu-
tation sequence is extended to a concrete state c′j by adding counters “c

o
FI���!o′ : i”

for all annotations “o FI���! o′” in s1j , . . . , s
kj
j . Here, the heap of c′j maps i to the

singleton interval containing the length of the FI -path between the references cor-
responding to o and o′ in c′j. Then the computation sequence c′1, c

′
2, . . . of these

extended concrete states is represented by the termination graph G′.

The generation of TRSs from the termination graph works as before. Hence by
Thm. 2 and 4, termination of the resulting TRSs implies that there is no infinite
computation sequence c′1, c

′
2, . . . of extended concrete states and thus, also no

infinite computation sequence c1, c2, . . . Hence, the Java program is terminating.
Moreover, Thm. 4 can also be combined with Thm. 3, i.e., the states may also
contain counters for marking properties as in Thm. 3.
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As in Sect. 3, the new counters result in extra arguments12 of the function
symbols in the TRS. In our example, we obtain the following TRS from the only
SCC I, . . . , L, . . . , I (after “merging” some rules). Termination of this TRS is
easy to prove automatically, which implies termination of iterate.

fI(. . . , i, . . .)→ fK(. . . , i, . . .) | i > 0 fK(. . . , i, . . .)→ fL(. . . , i− 1, . . .)
fL(. . . , i

′, . . .)→ fI(. . . , i
′, . . .)

5 Experiments and Conclusion

We extended our earlier work [6,7,8,25] on termination of Java to handle methods
whose termination depends on cyclic data. We implemented our contributions
in the tool AProVE [19] (using the SMT Solver Z3 [15]) and evaluated it on a
collection of 387 JBC programs. It consists of all13 268 Java programs of the
Termination Problem Data Base (used in the International Termination Com-
petition); the examples length, visit, iterate from this paper;14 a variant of
visit on graphs;15 3 well-known challenge problems from [10]; 57 (non-termina-
ting) examples from [8]; and all 60 methods of java.util.LinkedList and
java.util.HashMap from Oracle’s standard Java distribution.16 Apart from list
algorithms, the collection also contains many programs on integers, arrays, trees,
or graphs. Below, we compare the new version of AProVE with AProVE ’11 (im-
plementing [6,7,8,25], i.e., without support for cyclic data), and with the other
available termination tools for Java, viz. Julia [30] and COSTA [2]. As in the
Termination Competition, we allowed a runtime of 60 seconds for each example.
Since the tools are tuned to succeed quickly, the results hardly change when in-

Y N F T R

AProVE 267 81 11 28 9.5
AProVE ’11 225 81 45 36 11.4
Julia 191 22 174 0 4.7
COSTA 160 0 181 46 11.0

creasing the time-out. “Yes” resp. “No” states
how often termination was proved resp. dis-
proved, “Fail” indicates failure in less than 60
seconds, “T” states how many examples led to a
Time-out, and “R” gives the average Runtime
in seconds for each example.

Our experiments show that AProVE is sub-
stantially more powerful than all other tools. In particular, AProVE suc-
ceeds for all problems of [10]17 and for 85 % of the examples from
LinkedList and HashMap. There, AProVE ’11, Julia, resp. COSTA can
only handle 38 %, 53 %, resp. 48 %. See [1] to access AProVE via a

12 For reasons of space, we only depicted the argument for the counter o4
{n}���! o1.

13 We removed one controversial example whose termination depends on overflows.
14 Our approach automatically infers with which input length, visit, and iterate

are called, i.e., we automatically obtain the termination graphs in Fig. 4, 7, and 10.
15 Here, the technique of Sect. 3 succeeds and the one of Sect. 4 fails, cf. Footnote 6.
16 Following the regulations in the Termination Competition, we excluded 7 methods

from LinkedList and HashMap, as they use native methods or string manipulation.
17 We are not aware of any other tool that proves termination of the algorithm for

in-place reversal of pan-handle lists from [10] fully automatically.
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web interface, for the examples and details on the experiments, and for
[6,7,8,9,25].
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and A. Rybalchenko and the anonymous referees for helpful comments.
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8. Brockschmidt, M., Ströder, T., Otto, C., Giesl, J.: Automated detection of non-
termination and NullPointerExceptions for JBC. In: Proc. FoVeOOS 2011. LNCS
(2012)

9. Brockschmidt, M., Musiol, R., Otto, C., Giesl, J.: Automated termination proofs
for Java programs with cyclic data. Technical Report AIB 2012-06, RWTH Aachen
(2012), Available from [1] and from http://aib.informatik.rwth-aachen.de

10. Brotherston, J., Bornat, R., Calcagno, C.: Cyclic proofs of program termination in
separation logic. In: Proc. POPL 2008, pp. 101–112. ACM Press (2008)

11. Cherini, R., Rearte, L., Blanco, J.: A Shape Analysis for Non-linear Data Struc-
tures. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 201–217.
Springer, Heidelberg (2010)

12. Colón, M.A., Sipma, H.B.: Practical Methods for Proving Program Termination.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 442–454.
Springer, Heidelberg (2002)

13. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:
Proc. PLDI 2006, pp. 415–426. ACM Press (2006)

14. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proc. POPL
1977, pp. 238–252. ACM Press (1977)

15. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

16. Dershowitz, N.: Termination of rewriting. J. Symb. Comp. 3(1-2), 69–116 (1987)
17. Falke, S., Kapur, D., Sinz, C.: Termination analysis of C programs using compiler

intermediate languages. In: Proc. RTA 2011. LIPIcs, vol. 10, pp. 41–50 (2011)

http://aprove.informatik.rwth-aachen.de/eval/JBC-Cyclic/
http://aib.informatik.rwth-aachen.de


122 M. Brockschmidt et al.
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Abstract. Proving programs terminating is a fundamental computer
science challenge. Recent research has produced powerful tools that can
check a wide range of programs for termination. The analog for prob-
abilistic programs, namely termination with probability one (“almost-
sure termination”), is an equally important property for randomized
algorithms and probabilistic protocols. We suggest a novel algorithm
for proving almost-sure termination of probabilistic programs. Our algo-
rithm exploits the power of state-of-the-art model checkers and termi-
nation provers for nonprobabilistic programs: it calls such tools within
a refinement loop and thereby iteratively constructs a “terminating pat-
tern”, which is a set of terminating runs with probability one. We report
on various case studies illustrating the effectiveness of our algorithm.
As a further application, our algorithm can improve lower bounds on
reachability probabilities.

1 Introduction

Proving program termination is a fundamental challenge of computer science.
Termination is expressible in temporal logic, and so checkable in principle by
LTL or CTL model-checkers. However, recent research has shown that special
purpose tools, like Terminator and ARMC [18,4], and techniques like transition
invariants, can be dramatically more efficient [17,20,19].

The analog of termination for probabilistic programs is termination with prob-
ability one, or almost sure termination, abbreviated here to a.s.-termination.
Since a.s.-termination is as important for randomized algorithms and probabilis-
tic protocols as termination is for regular programs, the question arises whether
the very strong advances in automatic termination proving termination can be
exploited in the probabilistic case. However, it is not difficult to see that, with-
out further restricting the question, the answer is negative. The reason is that
termination is a purely topological property of the transition system associated
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to the program, namely absence of cycles, but a.s.-termination is not. Consider
for instance the program

k = 1; while (0 < k) { if coin(p) k++ else k-- }

where coin(p) yields 1 with probability 0 < p < 1, and 0 with probability
(1 − p). The program has the same executions for all values of p (only their
probabilities change), but it only terminates a.s. for p ≤ 1/2. This shows that
proving a.s.-termination requires arithmetic reasoning not offered by termination
provers.

The situation changes if we restrict our attention to weakly finite probabilis-
tic programs. Loosely speaking, a program is weakly finite if the set of states
reachable from any initial state is finite. Notice that the state space may be infi-
nite, because the set of initial states may be infinite. Weakly finite programs are
a large class, which in particular contains parameterized probabilistic programs,
i.e., programs with parameters that can be initialized to arbitrary large values,
but are finite-state for every valuation of the parameters. One can show that a.s.-
termination is a topological property for weakly finite programs. If the program
does not contain nondeterministic choices, then it terminates a.s. iff for every
reachable state s there is a path leading from s to a terminating state, which cor-
responds to the CTL property AGEF end . (In the nondeterministic case there
is also a corresponding topological property.) As in the nonprobabilistic case,
generic infinite-state model checkers perform poorly for these properties because
of the quantifier alternation AGEF . In particular, CEGAR approaches usually
fail, because, crudely speaking, they tend to unroll loops, which is essentially
useless for proving termination.

In [1], Arons, Pnueli and Zuck present a different and very elegant approach
that reduces a.s.-termination of a probabilistic program to termination of a non-
deterministic program obtained with the help of a Planner. A Planner occasion-
ally and infinitely often determines the outcome of the next k random choices
for some fixed k, while the other random choices are performed nondeterminis-
tically. The planner approach is based on the following simple proof rule, with
P a probabilistic program and R a measurable set of runs of P :

Pr[R] = 1 Every r ∈ R is terminating

P terminates a.s.

In this paper we revisit and generalize this approach, with the goal of profiting
from recent advances on termination tools and techniques not available when [1]
was published. While we also partially fix the outcome of random choices, we
do so more flexibly with the help of patterns. A first advantage of patterns is
that we are able to obtain a completeness result for weakly finite programs,
which is not the case for Planners. Further, in contrast to [1], we show how to
automatically derive patterns for finite-state and weakly finite programs using
an adapted version of the CEGAR approach. Finally, we apply our technique to
improve CEGAR-algorithms for quantitative probabilistic verification [7,8,10,5].

In the rest of this introduction we explain our approach by means of examples.
First we discuss finite-state programs and then the weakly finite case.



Proving Termination of Probabilistic Programs Using Patterns 125

Finite-state programs. Consider the finite-state program FW shown on the left of
Fig. 1. It is an abstraction of part of the FireWire protocol [12]. Loosely speaking,

k = 0;

while (k < 100) {

old_x = x;

x = coin(p);

if (x != old_x) k++

}

c1 = ?; c2 = 2;

k = 0;

while (k < 100) {

old_x = x;

if (c1 > 0) { x = nondet(); c1-- }

elseif (c2 = 2 ) { x = 0; c2-- }

elseif (c2 = 1 ) { x = 1; c2-- }

else /* c1 = 0 and c2 = 0 */ { c1 = ?; c2 = 2 }

if (x != old_x) k++

}

Fig. 1. The programs FW and FW’

FW terminates a.s. because if we keep tossing a coin then with probability 1 we
observe 100 times two consecutive tosses with the opposite outcome (we even
see 100 times the outcome 01). More formally, let C = {0, 1}, and let us identify
a run of FW (i.e., a terminating or infinite execution) with the sequence of 0’s
and 1’s corresponding to the results of the coin tosses carried out during it.
For instance, (01)51 and (001100)50 are terminating runs of FW, and 0ω is a
nonterminating run. FW terminates because the runs that are prefixes of (C∗01)ω

have probability 1, and all of them terminate. But it is easy to see that these
are also the runs of the nondeterministic program FW’ on the right of Fig. 1
where c = ? nondeterministically sets c to an arbitrary nonnegative integer.
Since termination of FW’ can easily be proved with the help of ARMC, we have
proved a.s.-termination of FW.

We present an automatic procedure leading from FW to FW’ based on the
notion of patterns. A pattern is a subset of Cω of the form C∗w1C

∗w2C
∗w3 . . .,

where w1, w2, . . . ∈ C∗. We call a pattern simple if it is of the form (C∗w)ω .
A pattern Φ is terminating (for a probabilistic program P ) if all runs of P that
conform to Φ, i.e., that are prefixes of words of Φ, terminate. In the paper we
prove the following theorems:

(1) For every pattern Φ and program P , the Φ-conforming runs of P have prob-
ability 1.

(2) Every finite-state program has a simple terminating pattern.

By these results, we can show that FW terminates a.s. by finding a simple termi-
nating pattern Φ, taking for P ′ a nondeterministic program whose runs are the
Φ-conforming runs of P , and proving that P ′ terminates. In the paper we show
how to automatically find Φ with the help of a finite-state model-checker (in our
experiments we use SPIN). We sketch the procedure using FW as example. First
we check if some run of FW conforms to Φ0 = Cω, i.e., if some run of FW is infi-
nite, and get v1 = 0ω as answer. Using an algorithm provided in the paper, we
compute a spoiler w1 of v1: a finite word that is not an infix of v1. The algorithm
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yields w1 = 1. We now check if some run of FW conforms to Φ1 = (C∗w1)
ω, and

get v2 = 1ω as counterexample, and construct a spoiler w2 of both v1 and v2:
a finite word that is an infix of neither vω1 nor vω2 . We get w2 = 01, and check
if some run of FW conforms to Φ2 = (C∗w2)

ω . The checker finds no counterex-
amples, and so Φ2 is terminating. In the paper we prove that the procedure is
complete, i.e., produces a terminating pattern for any finite-state program that
terminates a.s.

Weakly finite programs. We now address the main goal of the paper: proving
a.s.-termination for weakly finite programs. Unfortunately, Proposition (2) no
longer holds. Consider the random-walk program RW on the left of Fig. 2, where
N is an input variable. RW terminates a.s., but we can easily show (by setting N

k = 1;

while (0 < k < N) {

if coin(p) k++ else k--

}

K = 2; c1 = ?; c2 = K;

k = 1;

while (0 < k < N) {

if (c1 > 0) {

if nondet() k++ else k--; c1--

}

elseif (c2 > 0) { k--; c2-- }

else { K++; c1 = ?; c2 = K }

}

Fig. 2. The programs RW and RW’

to a large enough value) that no simple pattern is terminating. However, there is
a terminating pattern, namely Φ = C∗00C∗000C∗0000 . . .: every Φ-conforming
run terminates, whatever value N is set to. Since, by result (1), the Φ-conforming
runs have probability 1 (intuitively, when tossing a coin we will eventually see
longer and longer chains of 0’s), RW terminates a.s. In the paper we show that
this is not a coincidence by proving the following completeness result:

(3) Every weakly finite program has a (not necessarily simple) terminating pat-
tern.

In fact, we even prove the existence of a universal terminating pattern, i.e., a
single pattern Φu such that for all weakly finite, a.s.-terminating probabilistic
programs all Φu-conforming runs terminate. This gives a universal reduction of
a.s.-termination to termination, but one that is not very useful in practice. In
particular, since the universal pattern is universal, it is not tailored towards
making the proof of any particular program simple. For this reason we propose
a technique that reuses the procedure for finite-state programs, and extends it
with an extrapolation step in order to produce a candidate for a terminating
pattern. We sketch the procedure using RW as example. Let RWi be the program
RW with N = i. Since every RWi is finite-state, we can find terminating patterns
Φi = (C∗ui)

ω for a finite set of values of i, say for i = 1, 2, 3, 4, 5. We obtain
u1 = u2 = ε, u3 = 00, u4 = 000, u5 = 000. We prove in the paper that Φi is
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not only terminating for RWi, but also for every RWj with j ≤ i. This suggests to
extrapolate and take the pattern Φ = C∗00C∗000C∗0000 . . . as a candidate for
a terminating pattern for RW. We automatically construct the nondeterministic
program RW’ on the right of Fig. 2. Again, ARMC proves that RW’ terminates,
and so that RW terminates a.s.

Related work. A.s.-termination is highly desirable for protocols if termination
within a fixed number of steps is not feasible. For instance, [3] considers the
problem of reaching consensus within a set of interconnected processes, some of
which may be faulty or even malicious. They succeed in designing a probabilistic
protocol to reach consensus a.s., although it is known that no deterministic al-
gorithm terminates within a bounded number of steps. A well-known approach
for proving a.s.-termination are Pnueli et al.’s notions of extreme fairness and
α-fairness [15,16]. These proof methods, although complete for finite-state sys-
tems, are hard to automatize and require a lot of knowledge about the con-
sidered program. The same applies for the approach of McIver et al. in [11]
that offers proof rules for probabilistic loops in pGCL, an extension of Dijk-
stra’s guarded language. The paper [13] discusses probabilistic termination in
an abstraction-interpretation framework. It focuses on programs with a (single)
loop and proposes a method of proving that the probability of taking the loop k
times decreases exponentially with k. This implies a.s.-termination. In contrast
to our work there is no tool support in [13].

Organization of the paper. Sections 2 contains preliminaries and the syntax and
semantics of our model of probabilistic programs. Section 3 proves soundness
and completeness results for termination of weakly finite programs. Section 4
describes the iterative algorithm for generating patterns. Section 5 discusses
case studies. Section 6 concludes. For space reasons, a full discussion of nonde-
terministic programs and some proofs are omitted. They can be found in the full
version of the paper in [6].

2 Preliminaries

For a finite nonempty set Σ, we denote by Σ∗ and Σω the sets of finite and
infinite words over Σ, and set Σ∞ = Σ∗ ∪Σω.

Markov Decision Processes and Markov Chains. A Markov Decision Pro-
cess (MDP) is a tuple M = (QA, QP , Init,→,LabA,LabP ), where QA and QP

are countable or finite sets of action nodes and probabilistic nodes, Init ⊆ QA∪QP

is a set of initial nodes, and LabA and LabP are disjoint, finite sets of action
labels and probabilistic labels. Finally, the relation → is equal to →A ∪ →P ,
where →A ⊆ QA × LabA × (QA ∪ QP ) is a set of action transitions, and
→P ⊆ QP × (0, 1]× LabP ×Q is a set of probabilistic transitions satisfying the
following conditions: (a) if (q, p, l, q′) and (q, p′, l, q′) are probabilistic transitions,
then p = p′; (b) the probabilities of the outgoing transitions of a probabilistic
node add up to 1. We also require that every node of QA has at least one suc-
cessor in →A. If QA = ∅ and Init = {qI} then we call M a Markov chain and
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qa q1 q2 q3a1 〈τ, 1〉

〈c0, 12〉

〈c1, 12〉
〈τ, 1〉

a0

Fig. 3. Example MDP

write M = (QP , qI ,→,LabP ). We set Q = QA ∪ QP and Lab = LabA ∪ LabP .

We write q
l−→ q′ for (q, l, q′) ∈ →A, and q

l,p−→ q′ for (q, p, l, q′) ∈ →P (we skip p

if it is irrelevant). For w = l1l2 . . . ln ∈ Lab∗, we write q
w−→ q′ if there exists a

path q = q0
w1−−→ q1

w2−−→ . . .
wn−−→ qn = q′.

Example 1. Figure 3 shows an example of a Markov Decision Process M =
({qa}, {q1, q2, q3}, Init,→,LabA,LabP ), with action labels a0, a1, probabilistic
labels τ, c0, c1, and a single initial node qa.

Runs, Paths, Probability Measures, Traces. A run of an MDP M is an

infinite word r = q0l0q1l1 . . . ∈ (QLab)ω such that for all i ≥ 0 either qi
li,p−−→ qi+1

for some p ∈ (0, 1] or qi
li−→ qi+1. We call the run initial if q0 ∈ Init. We denote

the set of runs starting at a node q by RunsM(q), and the set of all runs starting
at initial nodes by Runs(M).

A path is a proper prefix of a run. We denote by PathsM(q) the set of all paths

starting at q. We often write r = q0
l0−→ q1

l1−→ q2
l2−→ . . . instead of r = q0l0q1 . . .

for both runs and paths, and skip the superscripts of Runs(·) and Paths(·) if the
context is clear.

We take the usual, cylinder-based definition of a probability measure Prq0 on
the set of runs of a Markov chain M starting at a state q0 ∈ Init (see e.g. [2] or
[6]) for details). For general MDPs, we define a probability measure PrSq0 with
respect to a strategy S. We may drop the subscript if the initial state is irrelevant
or understood.

The trace of a run r = q0
α0−→ q1

α1−→ . . . ∈ Runs(M), denoted by r̄, is the
infinite sequence α0α1 . . . ∈ Lab of labels. Given Σ ⊆ Lab, we define r̄|Σ as the
projection of r̄ onto Σ. Observe that r̄|Σ can be finite.

2.1 Probabilistic Programs

We model probabilistic programs as flowgraphs whose transitions are labeled
with commands. Since our model is standard and very similar to [10], we give
an informal but hopefully precise enough definition. Let Var be a set of variable
names over the integers (the variable domain could be easily extended), and let
Val be the set of possible valuations of Var, also called configurations. The set
of commands contains

– conditional statements, i.e., boolean combinations of expressions e ≤ e′,
where e, e′ are arithmetic expressions (e.g, x+ y ≤ 5 ∧ y ≥ 3);
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– deterministic assignments x := e and nondeterministic assignments x :=
nondet() that nondeterministically assign to x the value 0 or 1;

– probabilistic assignments x := coin(p) that assign to x the value 0 or 1 with
probability p or (1− p), respectively.

A probabilistic program P is a tuple (L, I, ↪→, label,⊥,�), where L is a finite set
of control flow locations, I ⊆ Val is a set of initial configurations, ↪→ ⊆ L×L is
the flow relation (as usual we write l ↪→ l′ for (l, l′) ∈ ↪→, and call the elements
of ↪→ edges), label is a function that assigns a command to each edge, ⊥ is
the start location, and � is the end location. The following standard conditions
must hold: (i) the only outgoing edge of � is � ↪→ �; (ii) either all or none
of the outgoing edges of a location are labeled by conditional statements; if all,
then every configuration satisfies the condition of exactly one outgoing edge; if
none, then the location has exactly one outgoing edge; (iii) if an outgoing edge
of a location is labeled by an assignment, then it is the only outgoing edge of
this location. A location is nondeterministic if it has an outgoing edge labeled
by a nondeterministic assignment, otherwise it is deterministic. Deterministic
locations can be probabilistic or nonprobabilistic. A program is deterministic if
all its locations are deterministic.

Program Semantics. The semantics of a probabilistic program is an MDP.
Let P be a probabilistic program (L, I, ↪→, label,⊥,�), and let LD,LA denote
the sets of deterministic and nondeterministic locations of P . The semantics of
P is the MDP MP := (QA, QD, Init,→,LabA,LabP ), where QA = LA ×Val is
the set of nondeterministic nodes, QD = ((L \ LA) × Val) ∪ {�} is the set of
deterministic nodes, Init = {⊥} × I is the set of initial nodes, LabA = {a0, a1}
is the set of action labels, LabP = {τ, 0, 1} is the set of probabilistic labels, and
the relation → is defined as follows: For every node v = 〈l, σ〉 of MP and every
edge l ↪→ l′ of P

– if label(l, l′) = (x := coin(p)), then v
0,p−−→ 〈l′, σ[x �→ 0]〉 and v

1,1−p−−−−→
〈l′, σ[x �→ 1]〉;

– if label(l, l′) = (x := nondet()), then v
a0−→ 〈l′, σ[x �→ 0]〉 and v

a1−→
〈l′, σ[x �→ 1]〉;

– if label(l, l′) = (x := e), then v
τ,1−−→ 〈l′, σ[x → e(σ)]〉, where σ[x → e(σ)]

denotes the configuration obtained from σ by updating the value of x to the
expression e evaluated under σ;

– if label(l, l′) = c for a conditional c satisfying σ, then v
τ,1−−→ 〈l′, σ〉.

For each node v = 〈�, σ〉, v τ−→ � and � τ−→ �. ��
A program P = (L, I, ↪→, label,⊥,�) is called

– a.s.-terminating if PrSq [{r ∈ Runs(MP ) | r reaches �}] = 1 for every strat-
egy S and every initial state q of MP ;

– finite if finitely many nodes are reachable from the initial nodes of MP ;
– weakly finite if Pb is finite for all b ∈ I, where Pb is obtained from P by

fixing b as the only initial node.
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Assumption. We assume in the following that programs to be analyzed are de-
terministic. We consider nondeterministic programs only in Section 3.1.

3 Patterns

We introduce the notion of patterns for probabilistic programs. A pattern re-
stricts a probabilistic program by imposing particular sequences of coin toss
outcomes on the program runs. For the rest of the section we fix a prob-
abilistic program P = (L, I, ↪→, label,⊥,�) and its associated MDP MP =
(QA, QP , Init,→,LabA,LabP ).

We write C := {0, 1} for the set of coin toss outcomes in the following. A
pattern is a subset of Cω of the form C∗w1C

∗w2C
∗w3 . . ., where w1, w2, . . . ∈ Σ∗.

We say the sequence w1, w2, . . . induces the pattern. Fixing an enumeration
x1, x2, . . . of C

∗, we call the pattern induced by x1, x2, . . . the universal pattern.
For a pattern Φ, a run r ∈ Runs(MP ) is Φ-conforming if there is v ∈ Φ such that
r̄|C is a prefix of v. We call a pattern Φ terminating (for P ) if all Φ-conforming
runs terminate, i.e., reach �. We show the following theorem:

Theorem 2.

(1) Let Φ be a pattern. The set of Φ-conforming runs has probability 1. In par-
ticular, if Φ is terminating, then P is a.s.-terminating.

(2) If P is a.s.-terminating and weakly finite, then the universal pattern is ter-
minating for P .

(3) If P is a.s.-terminating and finite with n <∞ reachable nodes in MP , then
there exists a word w ∈ C∗ with |w| ∈ O(n2) such that C∗wCω is terminating
for P .

Part (1) of Theorem 2 is the basis for the pattern approach. It allows to ignore
runs that are not Φ-conforming, because they have probability 0. Part (2) states
that the pattern approach is “complete” for a.s.-termination and weakly finite
programs: For any a.s.-terminating and weakly finite program there is a termi-
nating pattern; moreover the universal pattern suffices. Part (3) refines part (2)
for finite programs: there is a short word such that C∗wCω is terminating.

Proof (of Theorem 2).
Part (1) (Sketch): We can show that the set of runs r that visit infinitely many
probabilistic nodes and do not have the form C∗w1C

ω is a null set. This result
can then easily be generalized to C∗w1C

∗w2 . . . C
∗wnC

ω . All runs conforming
Φ can then be formed as a countable intersection of such run sets.

Part (2): Let σ1, σ2, . . . be a (countable or infinite) enumeration of the nodes
in I. With Part (3) we obtain for each i ≥ 1 a word wi such that C∗wiC

ω is
a terminating pattern for P , if the only starting node considered is σi. By its
definition, the universal pattern is a subset of C∗wiC

ω for every i ≥ 1, so it is
also terminating.

Part (3) (Sketch): Since P is a.s.-terminating, for every node q there exists a
coin toss sequence wq, |wq| ≤ n, with the following property: a run that passes
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⊥ l1 l2 �
x := nondet() y := coin(p) x �= y?

x = y?

Fig. 4. Nondeterministic a.s.-terminating program without terminating pattern

through q and afterwards visits exactly the sequence wq of coin toss outcomes is
terminating. We build a sequence w such that for every state q every run that
passes through q and then visits exactly the sequence w is terminating. We start
with w = wq for an arbitrary q �= �. Then we pick a q′ �= � such that for q′′ �= q,
runs starting in q′′ and visiting exactly the probabilistic label sequence w lead
to q′. We set w = wqwq′ ; after visiting w, all runs starting from q and q′ end
in �. We iterate this until no more q′ can be found. We stop after at most n
steps and obtain a sequence w of length ≤ n2. ��

3.1 Nondeterministic Programs

For nondeterministic a.s.-terminating programs, there might not exist a termi-
nating pattern, even if the program is finite. Figure 4 shows an example. Let Φ
be a pattern and c1c2c3 . . . ∈ Φ. The run

〈⊥, σ0〉
ac1−−→ 〈l1, σ1〉 c1−→ 〈l2, σ′

1〉
τ−→ 〈⊥, σ′

1〉
ac2−−→ 〈l1, σ2〉 c2−→ 〈l2, σ′

2〉
τ−→ 〈⊥, σ′

2〉
ac3−−→ . . .

in MP is Φ-conforming but nonterminating.
We show that the concept of patterns can be suitably generalized to nonde-

terministic programs, recovering a close analog of Theorem 2. Assume that the
program is in a normal form where nondeterministic and probabilistic locations
strictly alternate. This is easily achieved by adding dummy assignments. Writing
A := {a0, a1}, every run r ∈ MP satisfies r|A∪C ∈ (AC)∞.

A response of length n encodes a mapping An → Cn in an “interleaved” fash-
ion, e.g., {a01, a10} is a response of length one, {a00a01, a00a11, a10a01, a10a11}
is a response of length two. A response pattern is a subset of (AC)ω of the form
(AC)∗R1(AC)

∗R2(AC)
∗ . . ., where R1, R2, . . . are responses. If we now define

the notions of universal and terminating response patterns analogously to the
deterministic case, a theorem very much like Theorem 2 can be shown. For in-
stance, let Φ = (AC)∗{a01, a10}(AC)ω. Then every Φ-conforming run of the
program in Fig. 4 has the form

〈⊥, σ0〉 → . . .→ q
ai−→ q′

1−i−−→ q′′ → �→ . . . for an i ∈ {0, 1}.

This implies that the program is a.s.-terminating. See [6] for the details.

4 Our Algorithm

In this section we aim at a procedure that, given a weakly finite program P ,
proves that P is a.s.-terminating by computing a terminating pattern. This
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approach is justified by Theorem 2 (1). In fact, the proof of Theorem 2 (3)
constructs, for any finite a.s.-terminating program, a terminating pattern. How-
ever, the construction operates on the Markov chain MP , which is expensive
to compute. To avoid this, we would like to devise a procedure which operates
on P , utilizing (nonprobabilistic) verification tools, such as model checkers and
termination provers.

Theorem 2 (2) guarantees that, for any weakly finite a.s.-terminating pro-
gram, the universal pattern is terminating. This suggests the following method
for proving a.s.-termination of P : (i) replace in P all probabilistic assignments by
nondeterministic ones and instrument the program so that all its runs are con-
forming to the universal pattern (this can be done as we describe in Section 4.1
below); then (ii) check the resulting program for termination with a termina-
tion checker such as ARMC [18]. Although this approach is sound and complete
(modulo the strength of the termination checker), it turns out to be useless in
practice. This is because the crucial loop invariants are extremely hard to catch
for termination checkers. Already the instrumentation that produces the enu-
meration of C∗ requires a nontrivial procedure (such as a binary counter) whose
loops are difficult to analyze.

Therefore we devise in the following another algorithm which tries to com-
pute a terminating pattern C∗w1C

∗w2 . . . It operates on P and is “refinement”-
based. Our algorithm uses a “pattern checker” subroutine which takes a sequence
w1, w2, . . ., and checks (or attempts to check) whether the induced pattern is ter-
minating. If it is not, the pattern checker may return a lasso as counterexample.
Formally, a lasso is a sequence

〈l1, σ1〉 → 〈l2, σ2〉 → . . .→ 〈lm, σm〉 → . . .→ 〈ln, σn〉 with 〈ln, σn〉 → 〈lm, σm〉

and 〈l1, σ1〉 ∈ Init. We call the sequence 〈lm, σm〉 → . . .→ 〈ln, σn〉 the lasso loop
of the lasso. Note that a lasso naturally induces a run in Runs(MP ). If P is
finite, pattern checkers can be made complete, i.e., they either prove the pattern
terminating or return a lasso.

We present our pattern-finding algorithms for finite-state and weakly finite
programs. In Section 4.1 we describe how pattern-finding and pattern-checking
can be implemented using existing verification tools.

Finite Programs. First we assume that the given program P is finite. The
algorithm may take a base word s0 ∈ C∗ as input, which is set to s0 = ε by
default. Then it runs the pattern checker on C∗s0C

∗s0 . . . If the pattern checker
shows the pattern terminating, then, by Theorem 2 (1), P is a.s.-terminating.
Otherwise the pattern checker provides a lasso 〈l1, σ1〉 → . . . → 〈lm, σm〉 →
. . . → 〈ln, σn〉. Our algorithm extracts from the lasso loop a word u1 ∈ C∗,
which indicates a sequence of outcomes of the coin tosses in the lasso loop. If u1 =
ε, then the pattern checker has found a nonterminating run with only finitely
many coin tosses, hence P is not a.s.-terminating. Otherwise (i.e., u1 �= ε), let
s1 ∈ C∗ be a shortest word such that s0 is a prefix of s1 and s1 is not an infix
of uω1 . Our algorithm runs the pattern checker on C∗s1C

∗s1 . . . If the pattern
checker shows the pattern terminating, then P is a.s.-terminating. Otherwise
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the pattern checker provides another lasso, from which our algorithm extracts
a word u2 ∈ C∗ similarly as before. If u2 = ε, then P is not a.s.-terminating.
Otherwise, let s2 ∈ C∗ be a shortest word such that s0 is a prefix of s2 and s2
is neither an infix of uω1 nor an infix of uω2 . Observe that the word s1 is an infix
of uω2 by construction, hence s2 �= s1. Our algorithm runs the pattern checker
on C∗s2C

∗s2 . . . and continues similarly. More precisely, in the i − th iteration
it chooses si as a shortest word such that si is a prefix of si−1 and si is not an
infix of any of the words uω1 , . . . , u

ω
i , thus eliminating all lassos so far discovered.

The algorithm is complete for finite and a.s.-terminating programs:

Proposition 3. Let P be finite and a.s.-terminating. Then the algorithm finds
a shortest word w such that the pattern C∗wC∗w . . . is terminating, thus proving
termination of P .

In each iteration the algorithm picks a word sj that destroys all previously
discovered lasso loops. If the loops are small, then the word is short:

Proposition 4. We have |sj | ≤ |s0|+ 1 + log2 (|u1|+ · · ·+ |uj |).

The proofs for both propositions can be found in [6].

Weakly Finite Programs. Let us now assume that P is a.s.-terminating
and weakly finite. We modify our algorithm. Let b1, b2, . . . be an enumeration
of the set I of initial nodes. Our algorithm first fixes b1 as the only initial
node. This leads to a finite program, so we can run the previously described
algorithm, yielding a word w1 such that C∗w1C

∗w1 . . . is terminating for the
initial node b1. Next our algorithm fixes b2 as the only initial node, and runs the
previously described algorithm taking w1 as base word. As before, this establishes
a terminating pattern C∗w2C

∗w2 . . . By construction of w2, the word w1 is a
prefix of w2, so the pattern C∗w1C

∗w2C
∗w2 . . . is terminating for the initial

nodes {b1, b2}. Continuing in this way we obtain a sequence w1, w2, . . . such
that C∗w1C

∗w2 . . . is terminating. Our algorithm may not terminate, because it
may keep computing w1, w2, . . .. However, we will illustrate that it is promising
to compute the first few wi and then guess an expression for general wi. For
instance if w1 = 0 and w2 = 00, then one may guess wi = 0i. We encode
the guessed sequence w1, w2, . . . in a finite way and pass the obtained pattern
C∗w1C

∗w2 . . . to a pattern checker, which may show the pattern terminating,
establishing a.s.-termination of the weakly finite program P .

4.1 Implementing Pattern Checkers

Finite Programs. We describe how to build a pattern checker for finite pro-
grams P and patterns of the form C∗wC∗w . . . We employ a model checker
for finite-state nonprobabilistic programs that can verify temporal properties:
Given as input a finite program and a Büchi automaton A, the model checker
returns a lasso if there is a program run accepted by A (such runs are called
“counterexamples” in classical terminology). Otherwise it states that there is no
counterexample. For our case studies, we use the SPIN tool [9].
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. . .
c = c1 c = c2 c = c3 c = cn−1 c = cn

true c = 2 c = 2 c = 2

true

Fig. 5. Büchi automaton A(w), for w = c1c2 . . . cn ∈ C∗. Note that the number of
states in A(w) grows linearly in |w|.

Given a finite probabilistic program P and a pattern Φ = C∗wC∗w . . ., we first
transform P into a nonprobabilistic program P ′ as follows. We introduce two
fresh variables c and term, with ranges {0, 1, 2} and {0, 1}, respectively, and add
assignments term = 0 and term = 1 at the beginning and end of the program,
respectively. Then every location l of P with label(l, l′) = x = coin(p) for a label
l′ is replaced by a nondeterministic choice and an if-statement as follows:

x = nondet();

if (x = 0) { c = 0; c = 2 } else { c = 1; c = 2 } end if;

In this way we can distinguish coin toss outcomes in a program trace by
inspecting the assignments to c. Now we perform two checks on the non-
probabilistic program P ′: First, we use SPIN to translate the LTL formula
G¬term ∧ FG(c �∈ {0, 1}) into a Büchi automaton and check whether P ′ has a
run that satisfies this formula. If there is indeed a lasso, our pattern checker re-
ports it. Observe that by the construction of the LTL formula the lasso encodes
a nonterminating run in P that eventually stops visiting probabilistic locations.
So the lasso loop does not contain any coin tosses (and our algorithm will later
correctly report that P is not a.s.-terminating). Otherwise, i.e., if no run satisfies
the formula, we know that all nonterminating runs involve infinitely many coin
tosses. Then we perform a second query: We construct a Büchi automaton A(w)
that represents the set of infinite Φ-conforming runs, see Fig. 5. We use SPIN
to check whether P ′ has run that is accepted by A(w). If yes, then there is an
infinite Φ-conforming run, and our pattern checker reports the lasso. Otherwise,
it reports that Φ is a terminating pattern.

Weakly Finite Programs. Recall that for weakly finite programs, the pat-
tern checker needs to handle patterns of a more general form, namely Φ =
C∗w1C

∗w2 . . . Even simple patterns like C∗0C∗00C∗000 . . . cannot be repre-
sented by a finite Büchi automaton. Therefore we need a more involved instru-
mentation of the program to restrict its runs to Φ-conforming ones. Now our
pattern checker employs a termination checker for infinite-state programs. For
our experiments we use ARMC.

Given a weakly finite program P and a pattern Φ = C∗w1C
∗w2 . . ., we trans-

form P into a nonprobabilistic program PΦ as follows. We will use a command
x = ?, which nondeterministically assigns a nonnegative integer to x. Further
we assume that we can access the k-th letter of the i-th element of (wi)i∈N

by w[i][k], and |wi| by length(w[i]). We add fresh variables ctr, next and pos,
where ctr is initialized nondeterministically with any nonnegative integer and
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x = nondet();

if (ctr <= 0)

if (pos > length(w[next])) { ctr = ?; pos = 1; next = next+1 }

else { x = w[next][pos]; pos = pos+1 }

else ctr = ctr-1

Fig. 6. Code transformation for coin tosses in weakly finite programs

next and pos are both initialized with 1. If a run r is Φ-conforming, r̄|C is a
prefix of v1w1v2w2v3w3 . . ., with vi ∈ C∗. The variable ctr is used to “guess”
the length of the words vi; the individual letters in vi are irrelevant. We replace
every command c = coin(p) by the code sequence given in Fig. 6.

The runs in the resulting program PΦ correspond exactly to the Φ-conforming
runs in P . Then PΦ is given to the termination checker. If it proves termination,
we report “Φ is a terminating pattern for P”. Otherwise, the tool might either
return a lasso, which our pattern checker reports, or give up on PΦ, in which
case our pattern checker also has to give up.

In our experiments, a weakly finite program typically has an uninitialized in-
teger variable N whose value is nondeterministically fixed in the beginning. The
pattern C∗w1C

∗ . . . C∗wNC
ω is then often terminating, which makes next ≤ N

an invariant in PΦ. The termination checker ARMC may benefit from this in-
variant, but may not be able to find it automatically (for reasons unknown to the
authors). We therefore enhanced ARMC to “help itself” by adding the invariant
next ≤ N to the program if ARMC’s reachability mode can verify the invariant.

5 Experimental Evaluation

We apply our methods to several parameterized programs taken from the liter-
ature.1

– firewire: Fragment of FireWire’s symmetry-breaking protocol, adapted
from [12] (a simpler version was used in the introduction). Roughly speaking,
the number 100 of Fig. 1 is replaced by a parameter N .

– randomwalk: A slightly different version of the finite-range, one-dimensional
random walk used as second example in the introduction.

– herman: An abstraction of Herman’s randomized algorithm for leader elec-
tion used in [14]. It can be seen as a more complicated finite random walk,
with N as the walk’s length.

– zeroconf: A model of the Zeroconf protocol taken from [10]. The protocol
assigns IP addresses in a network. The parameter N is the number of probes
sent after choosing an IP address to check whether it is already in use.

– brp: A model adapted from [10] that models the well-known bounded re-
transmission protocol. The original version can be proven a.s.-terminating
with the trivial pattern Cω; hence we study an “unbounded” version, where
arbitrarily many retransmissions are allowed. The parameter N is the length
of the message that the sender must transmit to the receiver.

1 The sources can be found at http://www.model.in.tum.de/~gaiser/cav2012.html

http://www.model.in.tum.de/~gaiser/cav2012.html
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Name #loc Pattern words for Time i-th word of Time

N = 1, 2, 3, 4 (SPIN) guessed pattern (ARMC)

firewire 19 010 010 010 010 17 sec 010 001 min 36 sec

randomwalk 16 ε 02 03 04 23 sec 0i 001 min 22 sec

herman 36 010 0(10)2 0(10)3 0(10)4 47 sec 0(10)i 007 min 43 sec

zeroconf 39 03 04 05 06 20 sec 0i+2 026 min 16 sec

brp 57 00 00 00 00 19 sec 00 045 min 14 sec

Fig. 7. Constructed patterns of the case studies and runtimes

Proving a.s.-termination. We prove a.s.-termination of the examples using
SPIN [9] to find patterns of finite-state instances, and ARMC [18] to prove
termination of the nondeterministic programs derived from the guessed pattern.
All experiments were performed on an Intel c© i7 machine with 8GB RAM. The
results are shown in Fig. 7. The first two columns give the name of the example
and its size. The next two columns show the words w1, . . . , w4 of the terminating
patterns C∗w1C

ω, . . . , C∗w4C
ω computed for N = 1, 2, 3, 4 (see Theorem 2(3)

and Section 4.1), and SPIN’s runtime. The last two columns give word wi in the
guessed pattern C∗w1C

∗w2C
∗w3 . . . (see Section 4.1), and ARMC’s runtime.

For instance, the entry 0(10)i for herman indicates that the guessed pattern is
C∗010C∗01010C∗0101010 . . ..

We derive two conclusions. First, a.s.-termination is proved by very simple
patterns: the general shape is easily guessed from patterns for N = 1, 2, 3, 4,
and the need for human ingenuity is virtually reduced to zero. This speaks in
favor of the Planner technique of [1] and our extension to patterns, compared to
other approaches using fairness and Hoare calculus [16,11]. Second, the runtime
is dominated by the termination tool, not by the finite-state checker. So the
most direct way to improve the efficiency of our technique is to produce faster
termination checkers.

In the introduction we claimed that general purpose probabilistic model-
checkers perform poorly for a.s.-termination, since they are not geared towards
this problem. To supply some evidence for this, we tried to prove a.s.-termination
of the first four examples using the CEGAR-based PASS model checker [7,8]. In
all four cases the refinement loop did not terminate.2

Improving Lower Bounds for Reachability. Consider a program of the form
if coin(0.8) P1() else P2(); ERROR . Probabilistic model-checkers com-
pute lower and upper bounds for the probability of ERROR. Loosely speaking,
lower bounds are computed by adding the probabilities of terminating runs of P1
and P2. However, since CEGAR-based checkers [7,8,10,5] work with abstractions
of P1 and P2, they may not be able to ascertain that paths of the abstraction
are concrete paths of the program, leading to poor lower bounds. Information
on a.s.-termination helps: if e.g. P1 terminates a.s., then we already have a lower

2 Other checkers, like PRISM, cannot be applied because they only work for finite-
state systems.
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bound of 0.8. We demonstrate this technique on two examples. The first one is
the following modification of firewire:

N = 1000; k = 0; miss = 0;

while (k < N) {

old_x = x; x = coin(0.5);

if (x = old_x) k++ else if (k < 5) miss = 1

}

For i ∈ {0, 1}, let pi be the probability that the program terminates with
miss = i. After 20 refinement steps PASS returns upper bounds of 0.032 for p0
and 0.969 for p1, but a lower bound of 0 for p1, which stays 0 after 300 iter-
ations. Our algorithm establishes that the loop a.s.-terminates, which implies
p0 + p1 = 1, and so after 20 iterations we already get 0.968 ≤ p1 ≤ 0.969.

We apply the same technique to estimate the probabilities p1, p0 that zeroconf
detects/does-not-detect an unused IP address. For N = 100, after 20 refinement
steps PASS reports an upper bound of 0.999 for p0, but a lower bound of 0 for p1,
which stays 0 for 80 more iterations. With our technique after 20 iterations we
get 0.958 ≤ p1 ≤ 0.999.

6 Conclusions

We have presented an approach for automatically proving a.s.-termination of
probabilistic programs. Inspired by the Planner approach of [1], we instrument a
probabilistic program P into a nondeterministic program P ′ such that the runs
of P ′ correspond to a set of runs of P with probability 1. The instrumentation
is fully automatic for finite-state programs, and requires an extrapolation step
for weakly finite programs. We automatically check termination of P ′ profiting
from new tools that were not available to [1]. While our approach maintains the
intuitive appeal of the Planner approach, it allows to prove completeness results.
Furthermore, while in [1] the design of the Planner was left to the verifier, we
have provided in our paper a CEGAR-like approach. In the case of parameterized
programs, the approach requires an extrapolation step, which however in our
case studies proved to be straightforward. Finally, we have also shown that our
approach to improve the game-based CEGAR technique of [7,8,10] for computing
upper and lower bounds for the probability of reaching a program location. While
this technique often provides good upper bounds, the lower bounds are not so
satisfactory (often 0), due to spurious nonterminating runs introduced by the
abstraction. Our approach allows to remove the effect of these runs.

In future work we plan to apply learning techniques to pattern genera-
tion, thereby inferring probabilistic termination arguments for large program
instances from small instances.
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of the paper, Corneliu Popeea and Andrey Rybalchenko for many discussions
and their help with ARMC, and Björn Wachter and Florian Zuleger for fruitful
insights on quantitative probabilistic analysis and termination techniques.
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Abstract. The inference of linear inequality invariants among variables
of a program plays an important role in static analysis. The polyhedral
abstract domain introduced by Cousot and Halbwachs in 1978 provides
an elegant and precise solution to this problem. However, the computa-
tional complexity of higher-dimensional convex hull algorithms makes it
impractical for real-size programs. In the past decade, much attention
has been devoted to finding efficient alternatives by trading expressive-
ness for performance. However, polynomial-time algorithms are still too
costly to use for large-scale programs, whereas the full expressive power
of general linear inequalities is required in many practical cases. In this
paper, we introduce the gauge domain, which enables the efficient infer-
ence of general linear inequality invariants within loops. The idea behind
this domain consists of breaking down an invariant into a set of linear
relations between each program variable and all loop counters in scope.
Using this abstraction, the complexity of domain operations is no larger
than O(kn), where n is the number of variables and k is the maximum
depth of loop nests. We demonstrate the effectiveness of this domain
on a real 144K LOC intelligent flight control system, which implements
advanced adaptive avionics.

1 Introduction

The discovery of numerical relationships among integer variables within a loop
is one of the most fundamental tasks in formal software verification. Without
this piece of information it would be impossible, for example, to analyze pointer
arithmetic as it appears in real C programs. A fully automated solution based on
convex polyhedra has been proposed by Cousot and Halbwachs [11] in what prob-
ably remains the most spectacular application of Abstract Interpretation. The
polyhedral abstraction is precise enough to infer the exact invariants for most
program loops in practice. It is based on the double description method [4, 21],
which requires enumerating all faces of a convex polyhedron in all dimensions, an
operation that has exponential time complexity in the worst case. Unfortunately,
the combinatorial explosion almost always occurs in practice and this analysis
cannot be reasonably applied to codes involving more than 15 or so variables.

Attempts have been made to improve the performance of the polyhedral
domain. They essentially consist in finding more tractable albeit less precise
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p = &msg;

for (i = 0; i < n; i++) {

if(*p == ...) {

...

p += 16;

} else {

...

p += 32;

}

}

Convex polyhedra:{
0 ≤ i ≤ n− 1
16i ≤ p ≤ 32i

Gauges:{
λ ≤ i ≤ λ
16λ ≤ p ≤ 32λ

Additional properties:{
λ ≤ n− 1
λ ∈ [0,+∞]

Fig. 1. Loop invariant expressed with convex polyhedra and gauges

alternatives to those domain operations that may exhibit exponential com-
plexity (join, projection) without modifying the expressiveness of the domain
itself [22, 26]. Linear programming techniques are used instead of the double-
description method to compute approximate versions of operations on polyhedra.
The idea is that the Simplex algorithm exhibits better runtime performance in
practice, although still exponential in the worst case. However, available experi-
mental data make it difficult to predict how these techniques would scale to real
applications.

Another and more popular approach consists in identifying a subclass of con-
vex polyhedra that possess better algorithmic properties. Notable domains in-
clude template polyhedra [24], octahedra [5], subpolyhedra [15], simplices [25],
symbolic ranges [23] and the family of two-variables per inequality domains [17–
20, 27]. Two members of the latter class, difference-bound matrices [18] and
octagons [19], are particularly important since, to the best of our knowledge,
they are the only general-purpose relational abstract domains that have been
applied to the verification of large applications [1, 3, 10, 28].

Among relational domains that can express inequalities, octagons and dif-
ference-bound matrices have the lowest computational complexity: quadratic in
space and cubic in time in the worst case. However, due to the nature of the
closure algorithm employed to normalize their representation, the worst-case
complexity is always attained in practice, which makes this kind of domain un-
usable for codes with more than a few dozen variables [28]. In order to address
this issue, it is necessary to break down the set of program variables into small
groups on which the abstract domain can be applied independently. This variable
packing can be performed statically before analysis using knowledge on the ap-
plication [10], or at analysis time, for example, by using dependency information
computed on the fly [28].

However, the limited expressiveness of weakly relational domains precludes
the direct analysis of pointer arithmetic, which requires more general forms of
inequality constraints. This issue is addressed in C Global Surveyor [28] by using
templates for access paths in data structures. The parameters appearing in the
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template make up for the lack of expressive power of difference-bound matrices.
Although effective, these techniques substantially complicate the construction of
a static analyzer and they are very dependent on the characteristics of the code
analyzed.

In our experience with analyzing large NASA codes, we have observed that
most of the time, the value of a scalar variable inside a loop nest was entirely
determined by the control structure in terms of symbolic bounds of the form
a0+a1λ1 + · · ·+akλk, where λ1, . . . , λk denote loop counters and a1, . . . , ak are
integer coefficients. In this paper, we present an abstract interpretation frame-
work in which each variable is approximated by a pair of such symbolic bounds,
which we call a gauge. This abstraction generates far fewer constraints than
weakly relational domains while providing greater expressiveness.

In Fig. 1 we have shown a code snippet that reads variable-sized data from a
buffer of bytes, a common pattern in embedded programs. Gauges represent the
implicit loop invariants, which are hard to infer, but do not say anything about
loop bounds. The abstraction shall therefore be complemented with additional
abstractions, like intervals and symbolic constants. The main idea is that it is far
more efficient to combine simpler abstractions rather than have a powerful but
inefficient domain take care of all properties at once. The gauge domain is not
intended as a replacement for convex polyhedra or weakly relational domains, as
it has limitations. However, it provides a simple and efficient way of generating
precise loop invariants for a large swath of code without the need for customizing
the static analyzer.

The paper is organized as follows. In Sect. 2, we formally define the gauge
abstraction and state some of its basic properties. Section 3 introduces the Ab-
stract Interpretation framework in which our analysis is specified. In Sect. 4,
we construct an abstract domain that can infer gauge invariants on programs.
Section 5 reports experimental results on a large NASA flight system. Section 6
concludes the paper.

2 The Gauge Abstraction

We now give a formal construction of gauges and characterize their natural
ordering. Let Λ = {λ1, . . . , λn} be a fixed set of positive counters. Given integer
coefficients a0, . . . , an, we call gauge bound the expression a0+

∑n
i=1 aiλi. Given

a gauge bound g, we define the upper gauge g as

g = {(x, l1, . . . , ln) ∈ Z× (Z+)n | x ≤ a0 +
n∑
i=1

aili}

We define the lower gauge g dually. Now, given two gauge bounds g = a0 +∑n
i=1 aiλi and g

′ = a′0 +
∑n

i=1 a
′
iλi, we would like to characterize the inclusion

of upper gauges g ⊆ g′. This is equivalent to say that the following system has
no integral solution:
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S :

⎧⎨⎩
λi ≥ 0 i ∈ {1, . . . , n}
x ≤ a0 + a1λ1 + · · ·+ anλn
x ≥ 1 + a′0 + a′1λ1 + · · ·+ a′nλn

First, observe that if a′0 < a0 then S has a trivial solution 〈x = a′0 + 1, λ1 =
0, . . . , λn = 0〉. Assume for now that a′0 ≥ a0 and S admits a rational solution
〈x = u, λ1 = l1, . . . , λn = ln〉 such that all li are positive. There exists a nonzero
positive integer μ such that μu, μl1, . . . , μln are all integers (take the lowest
common multiplier of all denominators for example). We deduce from S the
following inequalities:{

μu ≤ μa0 + a1(μl1) + · · ·+ an(μln)
μu ≥ μ(1 + a′0) + a′1(μl1) + · · ·+ a′n(μln)

which can be rewritten as:{
μu− (μ− 1)a0 ≤ a0 + a1(μl1) + · · ·+ an(μln)

μu− (μ+ (μ− 1)a′0) ≥ a′0 + a′1(μl1) + · · ·+ a′n(μln)

From a′0 ≥ a0 and μ ≥ 1 we deduce that

μ+ (μ− 1)a′0 > (μ− 1)a0

and then μu−(μ−1)a0 > μu−(μ+(μ−1)a′0). Therefore, the variable assignment

〈x �→ μu− (μ− 1)a0, λ1 �→ μl1, . . . , λn �→ μln〉

is a solution of S. We just proved that if S admits a rational solution, then it
also admits an integral solution. Therefore, S has no integral solution if and only
if it has no rational solution. We can now reason entirely over rationals, which
allows us to use a fundamental result of convex geometry, the Farkas lemma [29]:

Theorem 1 (Farkas Lemma). Let A ∈ Qm×d and a column vector z ∈ Qm.
Either there exists a point x ∈ Qd with Ax ≤ z, or there exists a non-null row
vector c ∈ (Q+)m, such that cA = 0 and cz < 0.

Note that, although originally established for real numbers, the Farkas lemma
can be proven using only elementary linear algebra [12] and therefore holds on
rationals. We define the matrix A ∈ Q(n+2)×(n+1) as follows:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 · · · 0 0

0 −1 . . .
...

...
...

. . .
. . . 0

...
0 · · · 0 −1 0
−a1 · · · −an−1 −an 1
a′1 · · · a′n−1 a′n −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Let x be the (n+ 1)-column vector and z the (n+ 2)-column vector defined as:

x =

⎛⎜⎜⎜⎝
λ1
...
λn
x

⎞⎟⎟⎟⎠ and z =

⎛⎜⎜⎜⎜⎜⎝
0
...
0
a0

−a′0 − 1

⎞⎟⎟⎟⎟⎟⎠
Then, the system S can be equivalently rewritten as:

Ax ≤ z

According to the Farkas lemma, S has no rational solution if and only if there
exists a non-null (n + 2)-row vector c = (c1 . . . cn+2) of positive rationals such
that cA = 0 and cz < 0. If we unfold the matrix expression, this is equivalent
to: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−c1 − cn+1a1 + cn+2a
′
1 = 0

...
...
...

−cn − cn+1an + cn+2a
′
n = 0

cn+1 − cn+2 = 0
cn+1a0 − cn+2(a

′
0 + 1) < 0

If cn+1 = 0, then all ci’s are equal to zero, which contradicts the fact that c is
non-null. Hence cn+1 �= 0. Since c1, . . . , cn each appear in exactly one equation,
we can recast this condition in a much simpler form. The system Ax ≤ z has no
rational solution if and only if there exists a rational number c > 0 such that⎧⎪⎪⎪⎨⎪⎪⎪⎩

c(a′1 − a1) ≥ 0
...

...
...

c(a′n − an) ≥ 0
c(a0 − (a′0 + 1)) < 0

Since c > 0, this is equivalent to the following condition

∀i ∈ {0, . . . , n} ai ≤ a′i
We can establish a similar result on lower gauges by duality.

Theorem 2. If g = a0 +
∑n

i=1 aiλi and g
′ = a′0 +

∑n
i=1 a

′
iλi, then g ⊆ g′ (resp.

g ⊆ g′ ) iff ∀i ∈ {0, . . . , n} ai ≤ a′i (resp. ai ≥ a′i).
By analogy with intervals, we define a gauge as a pair [g, g′] of gauge bounds
and its denotation as g ∩ g′. Note that a gauge is not empty if and only if, for
all positive values of λ1, . . . , λn, there is an x ∈ Z such that

a0 + a1λ1 + · · ·+ anλn ≤ x ≤ a′0 + a′1λ1 + · · ·+ a′nλn

This condition can be equivalenty restated as

a′0 − a0 + (a′1 − a1)λ1 + · · ·+ (a′n − an)λn ≥ 0
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for all positive values of λ1, . . . , λn. An elementary reasoning shows that this
property holds if and only if ai ≤ a′i for all i ∈ {0, . . . , n}, which is the exact
analogue of the non-emptiness condition for intervals. We denote by ⊥G the
empty gauge.

Now, given two non-empty gauges G = [gl, gu] and G
′ = [g′l, g

′
u], we need to

characterize the inclusion of their denotation. Assume that G ⊆ G′. If gu = a0+∑n
i=1 aiλi, then for all (l1, . . . , ln) ∈ (Z+)n, we have (a0 +

∑n
i=1 aili, l1, . . . , ln) ∈

G, because G is not empty. Since G ⊆ G′, we have (a0 +
∑n

i=1 aili, l1, . . . , ln) ∈
g′u. By definition of upper gauges, this entails gu ⊆ g′u. By duality, we also have
g
l
⊆ g′

l
. We just proved the following result:

Theorem 3. Given two non-empty gauges

G = [a0 +
∑n

i=1 aiλi, b0 +
∑n

i=1 biλi]
G′ = [a′0 +

∑n
i=1 a

′
iλi, b

′
0 +

∑n
i=1 b

′
iλi]

G ⊆ G′ iff ∀i ∈ {0, . . . , n} a′i ≤ ai ∧ bi ≤ b′i. The operation G �G′ defined as

[min(a0, a
′
0) +

n∑
i=1

min(ai, a
′
i)λi,max(b0, b

′
0) +

n∑
i=1

max(bi, b
′
i)λi]

is the least upper bound of G and G′.

It is quite intriguing that the natural order on gauges defined by the inclusion of
denotations is the pointwise extension of the order on intervals. Gauges define a
relational numerical domain that has the structure of a non-relational domain.
This remarkable property is key to the scalability of the gauge abstraction.

Given a gauge bound g, we denote by [g,+∞] the upper gauge g, by [−∞, g]
the lower gauge g, and by [−∞,+∞] the trivial gauge Z × (Z+)n. The order
relation and the join operation defined above are readily extended to these gen-
eralized gauges, in the same way as is done for intervals. If we denote by G the
set of all gauges, we have established that:

Theorem 4. (G,⊆,�, [−∞,+∞]) is a �-semilattice. The empty gauge ⊥G is
the bottom element.

Note that, in general, the intersection of two gauges is not a gauge and the
greatest lower bound cannot be defined.

3 Abstract Interpretation Framework

We construct our static analysis in the theoretical framework of Abstract Inter-
pretation [8, 9]. A program is represented as a control-flow graph and operates
over a set of integer variables X = {x, y, . . . } and a distinct set of integer non-
negative counters Λ = {λ1, . . . , λn}. The control-flow graph is given by a set
of nodes N , an initial node start ∈ N and a transition relation n → n′ : cmd
labeled by commands. A command is either a sequence s1; · · · ; sk of statements,
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1: x = 0;

2: for (i = 0; i < 10; i++) {

3: x += 2;

4: }

5: ...

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 → 2 : x = 0; i = 0;new(λ)
2 → 3 : i ≤ 9
3 → 2 : x = x+ 2; i = i+ 1; inc(λ, 1)
2 → 4 : 10 ≤ i
4 → 5 : forget(λ)

Fig. 2. Representation of a simple C program in the language of the analyzer

a condition e1 ≤ e2, where e1, e2 are either variables or integer constants, or a
counter removal operation forget(λ), where λ ∈ Λ. The syntax of statements is
defined as follows:

stmt ::= x = exp x ∈ X
| new(λ) λ ∈ Λ
| inc(λ, k) λ ∈ Λ, k ∈ Z+

exp ::= c c ∈ Z
| x x ∈ X
| exp+ exp
| exp− exp
| exp ∗ exp

The concrete semantics is defined as a transition system on a set of states Σ.
A state σ ∈ Σ is a pair 〈n, ε〉, where n is a node of the control-flow graph and
ε ∈ ZX × (Z+)Λ is an environment assigning values to variables in X and Λ.
The semantics [[ ]] of statements and expressions is defined on environments as
follows:

[[x = e]]ε = ε[x �→ [[e]]ε]
[[new(λ)]]ε = ε[λ �→ 0]
[[inc(λ, k)]]ε = ε[λ �→ ε(λ) + k]

The transition relation over states is defined as follows:

– If n→ n′ : s1; · · · ; sk, then 〈n, ε〉 → 〈n′, [[sk]] ◦ · · · ◦ [[s1]]ε〉,
– If n→ n′ : x ≤ y and ε(x) ≤ ε(y), then 〈n, ε〉 → 〈n′, ε〉,
– If n → n′ : x ≤ c and ε(x) ≤ c, then 〈n, ε〉 → 〈n′, ε〉 (and similarly for a

constant on the left-hand side of the condition),
– If n→ n′ : forget(λ), then, for any l ∈ Z+, 〈n, ε〉 → 〈n′, ε[λ �→ l]〉.

The last rule simply expresses that the value of a counter that is removed from
scope can be any nonnegative integer. An initial state in the operational seman-
tics is a pair 〈start, ε〉, where ε is any environment, as variables are assumed to
be uninitialized at the beginning of the program. We denote by I the set of all
initial states. Although simplified, this representation of programs is very close
to the actual implementation of the analysis, which is based on LLVM [16].

In Fig. 2 we show how to translate a simple C program into our language. If
the original program is structured, it is quite straightforward to introduce the
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counter operations, as shown in the figure. In case the input program comes
as a control-flow graph, we need to identify the loops and place the counters
accordingly. This can be readily done using Bourdoncle’s decomposition of a
graph into a hierarchy of nested strongly connected components [2]. This efficient
algorithm can be used to label each node of the control-flow graph with the
sequence of nested strongly connected components in which it belongs. Using this
information, loop counters can be assigned to each component and the counter
operations can be automatically added to the relevant edges of the control-
flow graph. The complexity of Bourdoncle’s algorithm is O(ke) where k is the
maximum depth of loop nests and e is the number of edges in the control-flow
graph.

We are interested in computing a sound approximation of the collecting se-
mantics [6], i.e., the set of all states that are reachable from an initial state.
Following the theory of Abstract Interpretation, the collecting semantics can be
expressed as the least fixpoint of a semantic transformer F. We denote by E the
set ZX × (Z+)Λ of all environments. Then, the semantic transformer F is the
function defined over ℘(E)N as follows:

∀n �= start ∈ N : F(X)(n) = {ε ∈ E | ∃n′ ∈ N, ∃ε′ ∈ X(n′) : 〈n′, ε′〉 → 〈n, ε〉}

with F(X)(start) = I. In order to obtain a computable approximation of the
least fixpoint lfp F, we need to construct an abstract semantic specification [9],
i.e.,

– An abstract domain (D	,$) together with a monotone concretization func-
tion γ : (D	,$)→ (℘(E),⊆),

– An abstract initial state I	 ∈ D	 such that I ⊆ γ(I	),
– An abstract semantic transformer F	 : (D	)N → (D	)N such that F ◦ γ ⊆
γ ◦ F	,

– A widening operator ∇ : D	 ×D	 → D	 such that, for any sequence (x	i)i≥0

of elements of D	, the sequence (y	i )i≥0 inductively defined as:{
y	0 = x	0

y	i+1 = y	i ∇ x	i+1

is ultimately stationary.

Then, it can be shown [9] that the sequence (F	i)i≥0 iteratively defined as follows
using the pointwise extension of ∇:⎧⎨⎩

F	0 = I	
F	i+1 = F	i if F

	(F	i) $ F	i
= F	i ∇ F	(F	i) otherwise

is ultimately stationary and its limit is a sound approximation of lfp F.
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4 The Gauge Domain

In this section we will construct an abstract semantic specification for the gauge
abstraction. We cannot use the gauge semilattice G as is, because gauges are
defined for all values of the counters, whereas in the first steps of the abstract
iteration sequence only isolated counter values are computed. We need an oper-
ation similar to the higher-dimensional convex hull for convex polyhedra, which
can build a convex approximation of a discrete set of points. In order to enable
this type of induction, we need to keep track of constant counter values that are
obtained at the very first steps of the abstract iteration sequence.

We denote by (Z	,$) the semilattice of constants with greatest element �.
For x, y ∈ Z	, x $ y iff y = � or x = y. We define the domain of sections
S = (ZΛ	,$) ordered by pointwise extension of the order on Z	. We denote by
E	 = (GX ,$) the set of abstract environments ordered by pointwise inclusion.
A gauge section is a pair (ρ, ε	), where ρ ∈ S and ε	 ∈ E	, such that only
counters in ρ−1(�) may appear inside a gauge bound of ε	. The concretization
γ(ρ, ε	) ∈ ℘(E) of the gauge section is the set of all concrete environments ε ∈ E
satisfying the following property:

∀x ∈ X , ∃(l1, . . . , ln) ∈ (Z+)Λ : (ε(x), l1, . . . , ln) ∈ ε	(x)
∧ ∀i ∈ {1, . . . , n} : ρ(λi) �= � ⇒ li = ρ(λi) ∧ ∀i ∈ {1, . . . , n} : ε(λi) = li

A gauge section is simply an abstract environment where the value of certain
counters is set. Working on gauge sections instead of gauges will allow us to
construct the invariants incrementally during the abstract iteration sequence. We
denote by (GS,$) the domain of gauge sections ordered by pointwise extension
of the orders on S and E	.

We can now construct an abstract semantic specification for the gauge ab-
straction. We could take GS as the abstract domain of our specification. How-
ever, this choice would yield poor results on nested loops with constant iteration
bounds, a very common construct in flight systems and more generally in embed-
ded applications. In order to keep a good level of precision, we need to maintain
information on the ranges of the counters. We denote by I the standard lattice
of intervals [7]. The abstract domain D	 is given by GS× IΛ endowed with the
pointwise extension of the underlying orders. The concretization γ((ρ, ε	), �	)
of an element of the product domain D	 is defined in the standard way as
{ε ∈ γ(ρ, ε	) | ∀i ∈ {1, . . . , n} : ε(λi) ∈ �	(λi)} The abstract initial state I	 is
trivially given by the element of D	 in which all components are set either to �
or to [−∞,+∞].

The next thing we need to construct is a widening operator on D	, as it will be
needed to define the abstract semantic function later on. We just need to define a
widening on the domain of gauge sections, since the widening operator on D	 can
be obtained by pointwise application of the widenings on the underlying domains.
We first need some auxiliary operations. If G = [a0 +

∑n
i=1 aiλi, b0 +

∑n
i=1 biλi]

is a gauge, j ∈ {1, . . . , n} and l ∈ Z+, we denote by G[λj = l] the gauge

[a0 + aj l+
∑
i�=j

aiλi, b0 + bj l+
∑
i�=j

biλi]
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where we set the value of one counter. Let G and G′ be two gauges defined as
follows:

G = [a0 +
∑n

i=1 aiλi, b0 +
∑n

i=1 biλi]
G′ = [a′0 +

∑n
i=1 a

′
iλi, b

′
0 +

∑n
i=1 b

′
iλi]

Now, assume there is ι ∈ {1, . . . , n} such that aι = bι = a′ι = b′ι = 0. Let
u, v ∈ Z+ be two distinct non-negative integers. We want to construct a gauge,
denoted by G ∇λι

u,v G
′ such that

G[λι = u], G′[λι = v] ⊆ G ∇λι
u,v G

′

This operation implements the basic induction step with respect to a counter.
We have two gauges at two different values of the counter λι and we want to
extrapolate a gauge for all possible values of the counter. We choose a simple

approach and perform a linear interpolation. We compute the slope αι = 'a
′
0−a0

v−u (
for the lower gauge (resp. βι = � b

′
0−b0
v−u � for the upper gauge), taking care of

rounding to the lower (resp. upper) nearest integer. This operation introduces
new constants α0 = a0−αιu and β0 = b0−βιu into the gauge expression. There
is no guarantee that the slopes and constants calculated from the upper (resp.
lower) gauge will appear on their respective side, i.e., α0 ≤ β0 and αι ≤ βι.
Therefore, we define G ∇λι

u,v G
′ as the gauge [c0 +

∑n
i=1 ciλi, d0 +

∑n
i=1 diλi],

where

– c0 = min(α0, β0)
– d0 = max(α0, β0)
– cι = min(αι, βι)
– dι = max(αι, βι)
– For i �= ι and i �= 0, ci = min(ai, a

′
i) and di = max(bi, b

′
i)

This elementary widening can be defined similarly when one bound of the gauges
is ±∞. We need a variant of the previous operation when one of the gauges is
defined over λι. We keep the same notations and we now relax the assumptions,
i.e., a′ι and b

′
ι may be nonzero, and v = �. The gauge G′ is already defined for all

values of λι. There is no need to change the slopes a′ι and b
′
ι, we simply need to

adjust the constant coefficients. Hence, we set αι = a′ι and βι = b′ι, α0 = a0−a′ιu
and β0 = b0 − b′ιu. Using the previous notations, we define G ∇λι

u,	 G′ as the

gauge [c0 +
∑n

i=1 ciλi, d0 +
∑n

i=1 diλi]
We now construct an interval-like widening ∇I on gauges, which extrapolates

unstable bounds. If we denote by L the set {0, . . . , n}, this widening is defined
as follows:

G ∇I G
′ =

⎧⎪⎪⎨⎪⎪⎩
G if ∀i ∈ L : ai ≤ a′i ∧ b′i ≤ bi
[a0 +

∑n
i=1 aiλi,+∞] if ∃j ∈ L : bj < b′j ∧ ∀i ∈ L : ai ≤ a′i

[−∞, b0 +
∑n

i=1 biλi] if ∃j ∈ L : a′j < aj ∧ ∀i ∈ L : b′i ≤ bi
[−∞,+∞] otherwise

Similarly, given I ⊆ Λ, we define a partial join operation �I on gauges as follows:
G �I G′ = [min(a0, a

′
0) +

∑n
i=1 aiλi,max(b0, b

′
0) +

∑n
i=1 biλi], where

ai =

{
min(ai, a

′
i) if λi ∈ I

ai otherwise
and bi =

{
max(bi, b

′
i) if λi ∈ I

bi otherwise
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The widening and partial join operations on gauges defined above can be ex-

tended pointwise to abstract environments in E	. Now, let (ρ1, ε
	
1) and (ρ2, ε

	
2)

be two gauge sections. Let Δ = {λ′1, . . . , λ′k} be the set of counters on which the
sections ρ1 and ρ2 disagree, and A = Λ\Δ the set of counters on which they
agree. If Δ �= ∅, we define the widening of the gauge sections as follows:

(ρ1, ε
�
1) ∇ (ρ2, ε

�
2) =

(
ρ1 � ρ2,

(
· · ·

(
ε�1 ∇λ′

1

ρ1(λ
′
1),ρ2(λ

′
1)

ε�2

)
· · · ∇λ′

k

ρ1(λ
′
k
),ρ2(λ

′
k
)
ε�2

)
�A ε�2

)
If Δ = ∅, then ρ1 = ρ2, and we simply use the interval-like widening as follows:

(ρ1, ε
	
1) ∇ (ρ2, ε

	
2) =

(
ρ1, ε

	
1 ∇I ε

	
2

)
Note that the definition of the widening depends on the order in which the
counters in Δ are arranged, as the linear interpolation widening defined above
is commutative but not necessarily associative. In practice, for usual loop con-
structs, which are the main target of our analysis, the order in which the widening
operations are performed has no effect on the result, but this may not always be
the case. This is one limitation of our approach as compared to convex polyhedra
and weakly relational domains.

We are now ready to define the abstract semantic function F	. We first define
the abstract semantics of expressions. Let G and G′ be two gauges defined as
follows:

G = [a0 +
∑n

i=1 aiλi, b0 +
∑n

i=1 biλi]
G′ = [a′0 +

∑n
i=1 a

′
iλi, b

′
0 +

∑n
i=1 b

′
iλi]

We define G + G′ = [(a0 + a′0) +
∑n

i=1(ai + a′i)λi, (b0 + b′0) +
∑n

i=1(bi + b′i)λi]
and G − G′ = [(a0 − b′0) +

∑n
i=1(ai − b′i)λi, (b0 − a′0) +

∑n
i=1(bi − a′i)λi]. Since

the gauge abstraction is linear, we cannot compute the multiplication exactly. In
pratice, multiplication mostly occurs in pointer arithmetic when scaling a byte
offset to fit a type of a certain size. Hence, it is sufficient to consider the case
when one of the gauges is a singleton, say G′ = [c, c]. Then we define

G ∗G′ =

[
ca0 +

n∑
i=1

caiλi, cb0 +

n∑
i=1

cbiλi

]
if c is positive, swapping the bounds when c is negative. Other cases when G
is constant, both gauges are constant or one is zero are handled similarly. In
all other cases we just return the trivial gauge [−∞,+∞]. For brevity, we did
not go over the cases when one of the gauge bounds is infinite as they are
handled similarly. The abstract semantics of expressions is readily defined from
the previous operations on gauges.

Now, let ((ρ, ε	), �	) be an element of D	. We define the abstract semantics of
statements as follows. In the case of an assignment operation, we have

[[x = e]]	((ρ, ε	), �	) = ((ρ, ε	[x �→ [[e]]	ε	]), �	)

For any counter λ, we denote by ε	|λ the abstract environment in which all
occurences of a gauge where λ appears with a non-zero coefficient have been
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replaced with [−∞,+∞]. Then, the abstract semantics of a new(λ) operation
can be defined as follows:

[[new(λ)]]	((ρ, ε	), �	) = ((ρ[λ �→ 0], ε	|λ), �	 [λ �→ [0, 0]])

Given a gauge G = [a0 +
∑n

i=1 aiλi, b0 +
∑n

i=1 biλi], a counter λj and k ∈ Z+,
we define the gauge incλj ,k(G) as follows:[

min(a0 − kaj , a0 − kbj) +
n∑
i=1

aiλi,max(a0 − kaj , a0 − kbj) +
n∑
i=1

biλi

]
This operation corresponds to incrementing a counter by a constant. The re-
sulting constant coefficients may not satisfy the consistency condition for a non-
empty gauge, whence the introduction of min and max operations. Cases where
one of the gauge bounds is infinite are handled similarly. We can extend this op-
eration pointwise to abstract environments. Thus, we can define the semantics
of a inc(λ, k) operation as follows:

[[inc(λ, k)]]	((ρ, ε	), �	) = ((ρ[λ �→ ρ(λ) + k], incλ,k(ε
	)), �	[λ �→ �	(λ) + k])

Note that for clarity we have overloaded the addition operator, but its semantics
depends on the domain on which it applies.

It now remains to define the abstract semantics of commands. For a sequence
of statements s1 . . . sn, the abstract semantics is obviously given by [[sn]]

	 ◦ · · · ◦
[[s1]]

	. The abstract semantics of a condition x ≤ y is defined as follows. Assume
that a0 +

∑n
i=1 aiλi is the lower gauge bound of ε	(x) and b0 +

∑n
i=1 biλi is the

upper gauge bound of ε	(y). We denote by C the linear inequality constraint
a0 − b0 +

∑n
i=1(ai − bi)λi ≤ 0. Then we define

[[x ≤ y]]	((ρ, ε	), �	) = ((ρ, ε	), reduceC(�
	))

where reduceC(�
	) is the reduction of a collection of variable ranges against

a linear inequality constraint, using the algorithm defined in [13]. Since this
algorithm is based on constraint propagation, we arbitrarily limit the number
of propagation cycles performed (the threshold in our implementation is 5) so
as to maintain an O(|Λ|) complexity. No impact on precision has been observed
in our experiments. The other types of conditions are handled similarly. Note
that this operation only affects the loop counter bounds and does not change
the gauge invariants.

Now, consider a gauge G = [a0 +
∑n

i=1 aiλi, b0 +
∑n

i=1 biλi], a counter λj and
an interval [l, u]. We define the operation coalesceλj,[l,u](G) as follows:

coalesceλj,[l,u](G) =

⎡⎣a0 + aj l+
∑
i�=j

aiλi, b0 + bju+
∑
i�=j

biλi

⎤⎦
We can extend this operation pointwise on abstract environments. Then, we can
define the semantics of the forget(λ) operation as follows:

[[forget(λ)]]((ρ, ε	), �	) = ((ρ[λ �→ �], coalesceλ,��(λ)(ε	)), �	[λ �→ [−∞,+∞]])
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The forget(λ) operation is used when exiting the scope of a loop. If we did not
inject the range information of the loop counter back into the gauge invariants,
we would incur a major loss of accuracy when analyzing loops with constant
iteration bounds. This points to a major limitation of the gauge abstraction: it
only maintains precise loop invariants inside a loop, but most of this information
is lost when exiting the loop. The polyhedral domain keeps relational information
across loop boundaries and is more precise in this respect.

Finally, we define the abstract semantic transformer F	 as follows

∀n �= start ∈ N : F	(X)(n) = ∇{[[cmd[]	(X(n′)) | n′ → n : cmd}
with F	(X)(start) = I	. Note that the widening operation is used to merge the
invariants over a join node. We only need to use the interval-like widening ∇I and
the widening on IΛ when it is the entry node of a strongly connected component,
otherwise we can simply use the join operations, which provide better accuracy.

All elementary domain operations only depend on the number of active loop
counters and the number of variables in the program. Using a sparse implemen-
tation of abstract environments, it is not difficult to see that all operations have
an O(km) time complexity in the worst case, where m is the number of program
variables and k is the maximum depth of loop nests in the program. If we con-
sider k as a constant, which is a realistic assumption in pratice, all operations
are linear in the number of program variables. The gauge domain has a very low
complexity in the worst case and is guaranteed to scale for large programs.

In order to illustrate how the abstract semantics operates, we unroll the first
few steps of the abstract iteration sequence on the program shown in Fig. 2:

– Node 1: (({} , {}) , {})
– Node 2: ((

{λ �→ 0} ,
{
x �→ [0, 0]
i �→ [0, 0]

})
,
{
λ �→ [0, 0]

})
– Node 3: The reduction operation has no effect on the invariant((

{λ �→ 0} ,
{
x �→ [0, 0]
i �→ [0, 0]

})
,
{
λ �→ [0, 0]

})
– Node 2 through the back edge:((

{λ �→ 1} ,
{
x �→ [2, 2]
i �→ [1, 1]

})
,
{
λ �→ [1, 1]

})
We perform the linear interpolation widening and we obtain:((

{λ �→ �} ,
{
x �→ [2λ, 2λ]
i �→ [λ, λ]

})
,
{
λ �→ [0,+∞]

})
This is the limit and convergence will be confirmed at the next iteration.

– Node 3: we perform the reduction operation on intervals and we obtain((
{λ �→ �} ,

{
x �→ [2λ, 2λ]
i �→ [λ, λ]

})
,
{
λ �→ [0, 9]

})
The information on the loop bounds has been recovered thanks to the re-
duction operation.
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Analysis Analysis Time Precision

Intervals + Complete Inlining 41 min 79%
Commercial Tool 5 hours 91%
Octagons > 27 hours N/A
Gauges 10 min 30 sec 91%

Fig. 3. Experimental results

5 Experimental Evaluation

We have implemented the gauge domain described in this paper in a buffer-
overflow analyzer for C programs. The gauge domain is well suited for this kind
of application, as it is good at discovering invariants that hold inside usual
loop constructs. The buffer-overflow analyzer is implemented within an Abstract
Interpretation framework developed at NASA Ames Research Center by the
author and named IKOS (Inference Kernel for Open Static Analyzers). It is
beyond the scope of this paper to describe the design of the buffer-overflow
analyzer. We can just say that it is based on the LLVM front-end [16] and
computes an abstract representation of objects and pointers in a C program.
The analysis is modular and the effect of each function in memory is summarized
by numerical constraints on array indices and pointer offsets that are affixed
to the abstract memory graph. These numerical constraints are represented by
gauges. Symbolic bounds (such as the size of an array passed as an argument to
a function) are represented using an elementary domain of symbolic constants,
which is used in combination with the gauge abstraction.

We have run the analyzer on a large flight system developed at NASA Dryden
Flight Research Center and Ames Research Center. It consists of 144 KLOC of
C and implements advanced adaptive avionics for intelligent flight control. It is
a very pointer intensive application where matrix operations are pervasive. We
have compared the performance of this analyzer with that of (1) a simple interval
analysis running on a version of the program where function calls have been
completely expanded using the LLVM inliner, (2) a leading commercial static
analyzer based on Abstract Interpretation, and (3) a version of our analyzer
in which octagons [19] have been subsituted for gauges. In the latter, we used
Miné’s implementation of the octagon domain from the APRON library [14].
The results of these experiments are presented in Fig. 3. All analyzers ran on a
MacBook Air with a 1.86 Ghz Intel Core 2 Duo and 2 GB of memory, except
the commercial tool, which is installed on a high-end server with 32 CPU cores
and 64 GB of memory. The precision denotes the fraction of all array-bound
operations which could be statically verified by the analyzer. This figure is not
available for the version of our analyzer based on octagons, as we decided to kill
the analysis process after allowing it to run continuously for over 27 hours.
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6 Conclusion

We have constructed a numerical relational domain that is able to infer pre-
cise loop invariants and is guaranteed to scale thanks to tight bounds on the
complexity of the domain operations. An experimental study led on a complex
flight system developed at NASA showed that the gauge abstraction is able to
deliver accurate loop invariants in a consistent way. This domain is not intended
to be a replacement for more costly relational domains like convex polyhedra.
It should be seen as a cheap numerical analysis that is able to discharge many
simple verification properties, so that more powerful and computationally costly
domains can be used to focus on a significantly smaller portion of the program.

Acknowledgement. We are extremely grateful to Tim Reyes for spending
many hours getting the code through the commercial static analyzer.
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Abstract. Abstraction refinement is an effective verification technique
for automatically proving safety properties of software. Application of
this technique in shape analyses has proved impractical as core compo-
nents of existing refinement techniques such as backward analysis, gen-
eral conjunction, and identification of unreachable but doomed states are
computationally infeasible in such domains.

We propose a new method to diagnose proof failures to be used in a
refinement scheme for Separation Logic–based shape analyses. To check
feasibility of abstract error traces, we perform Bounded Model Check-
ing over the traces using a novel encoding into SMT. A subsequent di-
agnosis finds discontinuities on infeasible traces, and identifies doomed
states admitted by the abstraction. To construct doomed states, we give a
model-finding algorithm for “symbolic heap” Separation Logic formulas,
employing the execution machinery of the feasibility checker to search
for concrete counter-examples. The diagnosis has been implemented in
SLAyer, and we present a simple scheme for refining the abstraction of hi-
erarchical data structures, and illustrate its effectiveness on benchmarks
from the SLAyer test suite.

1 Introduction

Abstraction refinement has proven to be an effective technique for verification
of safety properties of software. Iterative refinement of the abstraction allows
the use of a coarse and computationally cheap abstraction that often suffices to
prove the desired property. If the abstraction is not precise enough, it supports
incremental shifting to a potentially very precise and computationally expensive
analysis. This technique has been very successfully applied to predicate abstrac-
tion domains. Not so for shape analyses. The consequence is that the abstractions
used in shape analyses must be very conservative, since any information that is
abstracted away is forever irrecoverable. One solution is to simply choose the
right abstraction in the first place, but while this can be computationally effi-
cient, the choice is sensitive to the property and program, making this approach
difficult to use in tools intended to be somewhat generally applicable.

To explain why a straightforward analogue of traditional counter-example
guided abstract refinement (CEGAR) techniques used for predicate abstraction
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does not work for shape analyses, recall a basic CEGAR procedure. Suppose
that the goal is to prove that some error state is not reachable, and that for
a given abstraction this proof fails. In this context it is common to abstract
traces rather than just states, and failing to find a proof amounts to finding an
abstract trace to error, t. The first question is whether t constitutes a disproof
of the property, or witnesses that the abstraction is too coarse to prove the
property. This question can be answered by checking feasibility of t, that is,
whether or not it represents at least one concrete trace. If so, there is nothing
to do; the concrete trace witnesses that the program violates the property. If
t is not feasible, then it must contain a discontinuity where concrete execution
cannot follow the abstract trace. That is, for every concrete trace along t from
an initial state to a state s at the discontinuity, execution would have to “leap
sideways” to some unreachable state s′ that the abstraction does not distinguish
from s, before concrete execution from s′ may proceed to reach error. The aim
of abstraction refinement is to increase the precision of the abstraction in order
to partition the doomed states such as s′ from the others, and thereby avoid
the introduction of t. To perform an effective refinement, a discontinuity and a
characterization of doomed states is found, that is, the failure of abstraction is
diagnosed. One way to do so is to search for a program point � on t such that the
over-approximationQ of the reachable states after executing along t to � and the
weakest precondition with respect to error of the command C along the suffix
of t from � to error , wp(C, error ), are consistent, i.e., Q ∧wp(C, error ) �= false.

In this case � is a discontinuity and the models of the formula Q∧wp(C, error )
are doomed states that need to be partitioned from others. There are various
refinement techniques, but the use of precondition computation and conjunction
or similar operations is ubiquitous.

The use of precondition computation and conjunction presents a serious prob-
lem in the context of shape analysis. To get an understanding of why backward
shape analysis is very expensive, consider the weakest precondition of a com-
mand that swings a pointer stored at x from one object to another p resulting in
a state satisfying Q: P = wp(∗x = p, Q). In the states that satisfy P , there are
many possible aliasing configurations for x, and ∗x might point to any object at
all, or be any dangling pointer. There are very many such states, and they are
not uniform in a way for which known shape analysis domains provide compact
representations. Additionally, shape analyses based on separation logic use “sym-
bolic heap” fragments of the logic similar to that introduced by Smallfoot [4],
which do not include general conjunction. Reducing a general conjunction to a
symbolic heap formula is theoretically possible, but computationally infeasible.

Therefore, an abstraction failure diagnosis that avoids precondition computa-
tion and general conjunction is a prerequisite for refinement of shape abstractions
in a fashion similar to that applied for predicate abstraction. We propose to refine
based on individual doomed states introduced by abstraction, rather than sym-
bolic representations of all such states, and present a diagnosis technique that
identifies discontinuities on abstract traces obtained from failed separation logic
proofs and fabricates doomed states showing where the abstraction is too coarse.
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Our procedure starts with a failed separation logic proof in the form of an
abstract transition system and slices out an abstract counter-example. These
abstract counter-examples generally contain loops and hence represent infinitely-
many abstract error traces. A finite subset of these abstract traces is checked
for feasibility using a very precise modeling of memory allocation and a new
technique for encoding bounded model checking (BMC) as a single satisfiability
modulo theories (SMT) problem, using quantified formulas with uninterpreted
functions and bit-vectors.

If a concrete counter-example is not found, then a new algorithm is used
to diagnose the failure of abstraction. This proceeds by searching through the
points on the abstract counter-example for a discontinuity. For each point on the
abstract counter-example, the prefix leading to the point is replaced with code
that generates concrete states represented by the abstract state at that point.
If this new abstract counter-example is feasible, then the program point under
consideration contains a discontinuity, and the generated state is doomed. The
diagnosis algorithm reports the input and output of abstraction and the doomed
state witnessing that the abstraction was too coarse.

It should be emphasized that the state-of-the-art in refinement of shape ab-
stractions is manual. When a shape analysis fails, the reason must be diagnosed
by hand, and the definition of abstraction must be changed by hand. As the size
of analyzed programs increases, the time and effort involved in diagnosing ab-
straction failure becomes a practical bottleneck. Therefore, automatic diagnosis
of abstraction failure by itself represents a significant advance. Additionally, as a
demonstration and quality check of the diagnosis, we present a simple automatic
abstraction refinement scheme which uses the discontinuity and doomed state
to select which “patterns” to use for abstracting hierarchical data structures.

2 Separation Logic–Based Shape Analysis

Before presenting the material on abstraction failure diagnosis, we must pro-
vide some background on shape analysis using separation logic. In particular we
introduce programs, abstract states, abstract transition systems, failed proofs,
and give some description of pattern-based abstraction.

Programs. Assuming some language of pure expressions E, the language of
state-transforming commands is generated by the following grammar:

C ::= x = malloc(E) | free(x) allocate and delete heap memory

| x = nondet() | x = E kill and move (register)

| ∗x = y | x = ∗y store and load (heap)

| assume(E) | assert(E) assumptions and assertions

| nop | C;C sequential composition
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A program is defined by its control-flow graph 〈L,E, �0, κ〉, where the vertices L
are program locations, the program entry point is the root �0 ∈ L, and the edges
E ⊆ L× L are labeled with commands by κ : E→ C.

Abstract States. Separation logic–based shape analyses represent sets of pro-
gram states using formulas in a “symbolic heaps” fragment [4] of separation
logic’s assertion language [24]. Our diagnosis algorithms are implemented in
SLAyer [5], which uses the following language of formulas :

P,Q ::= F first-order formulas

| emp | l �→ r | ls(Λ, k,p,f , b,n) atomic heap formulas

| P ∗Q | P ∨Q | ∃x.Q

Apart from emp, which describes the empty part of a heap, atomic heap formulas
are of two forms: points-to or list-segment. A points-to l �→ r describes a single
heap object at location l that contains a value described by record r. A list-
segment ls(Λ, k,p,f , b,n) describes a possibly-empty, possibly-cyclic, segment
of a doubly-linked list, where the heap structure of each item of the list is given
by Λ. In particular, ls(Λ, k,p,f , b,n) is the least predicate satisfying

ls(Λ, k,p,f , b,n) iff (k = 0 ∧ f = n ∧ p = b)

∨ ∃x′,y′. k > 0 ∧ Λ(p,f ,x′,y′) ∗ ls(Λ, k−1,x′,y′, b,n) .

See [3] for details on this predicate, but note that p,f , b,n denote vectors of
parameters, which are sometimes empty and written simply as a space.

The set of formulas is closed under separating conjunction P ∗Q, disjunction
P ∨Q, and existential quantification ∃x.Q. Note the absence of conjunction and
negation of heap formulas. The pure, heap-independent, part of the logic (F ) is
essentially passed through to the Z3 SMT solver [17]. We assume that first-order
formulas are among the expressions, F ⊂ E.

The set of abstract states is Q	, where � is the error state.

Pattern-Based Abstraction. The abstraction performed by SLAyer is pa-
rameterized by “patterns”, the Λ argument formulas of the ls predicate that
describe the shape of hierarchical data structures. See [3] for more detail, but as
an example, consider a pattern for simple singly-linked lists

sll entry(, front , , next) = (front �→ [Flink: next ])

and a pattern for singly-linked lists where each item carries a data object

sll objs(, front , ,next) = ∃d′, r.(front �→ [Data: d′;Flink: next ]) ∗ (d′ �→ r) .

Abstracting the formula, which represents a list of two items carrying data,

∃d′0, d′1, f ′, r0, r1.(head = item) ∧ (nd �= 0) ∗
(head �→ [Data: d′0;Flink: f

′]) ∗ (d′0 �→ r0) ∗
(f ′ �→ [Data: d′1;Flink: 0]) ∗ (d′1 �→ r1)
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using sll entry results in (a warning about leaked memory and)

∃l . (head = item) ∧ (nd �= 0) ∗ ls( sll entry, l, , head , , 0)

while using sll objs results in

∃l . (head = item) ∧ (nd �= 0) ∗ ls( sll objs, l, , head , , 0) .

Note that abstracting using sll objs produces a logically stronger result than
abstracting using sll entry. The former preserves the fact that the Data fields
point to valid objects, while the latter loses this information. As a result, ad-
justing the patterns used for abstraction provides an effective mechanism for
abstraction refinement, analogous to the set of predicates used to control preci-
sion of predicate abstraction.

Abstract Transition Systems and Failed Proofs. SLAyer abstracts a pro-
gram to an abstract transition system (ATS). An ATS is a graph 〈L,E, �0, κ, δ〉,
which is a program where program points are labeled with abstract states by
δ : L→ Q	.

An ATS is constructed by the analysis while exploring the computation tree of
the program under the abstract semantics, creating cycles when abstract states
are covered by existing ones. A fully-expanded ATS where no vertex is labeled
with � induces a proof in separation logic, where for each edge e = (�i, �j) ∈ E,
the triple {δ �i} κ e {δ �j} is valid.

An ATS where some vertex �e is labeled with � constitutes a failed proof. If
δ �e = �, then �e is an error vertex, and the ATS restricted to the transitive
predecessors of �e is an abstract counter-example. An abstract counter-example
is either concretely feasible, or it witnesses that the abstraction is too coarse.

Abstract Programs. The CEGAR approach to model checking commonly in-
volves construction of an abstract program. If the abstract program contains an
error, subsequent analysis finds an abstract trace that shows it. If this trace is
infeasible in the abstract program, then it is also infeasible in the concrete pro-
gram, and refinement may be performed based on the explanation for abstract
infeasibility. If it is feasible in the abstract program, then it is checked for feasi-
bility in the concrete program to determine whether it corresponds to a concrete
error or should be refined.

We do not use such a two-staged approach. While we do employ abstraction
functions to obtain an ATS, they are used to abstract sets of program states,
producing abstract states, instead of directly abstracting program transitions,
producing abstract transitions. The ATS is therefore a relation over abstract
states, not an abstracted relation over concrete states. An abstract program
could be obtained from the ATS, however, all error traces in the ATS will be
feasible in the resulting system.



160 J. Berdine et al.

In short, since we do not use a postcondition computation that loses more pre-
cision than required by the abstraction,1 there is no need to check if a potential
counter-example is due to imprecision in the postcondition computation.

[Aside: Some theoretical results regarding the complexity of adding arbitrary
Boolean connectives to the fragments of separation logic used in analyzers are
known [10]. For the simple propositional case with no inductive definitions,
the model checking problem is NP-complete and the validity problem is ΠP

2 -
complete. Adding general Boolean conjunction preserves these bounds. General
negation is more problematic, both problems become PSPACE-complete even in
this simple case. Furthermore, performing backward analysis in the known way
requires −−∗ [24], which also brings both problems up to PSPACE-complete.]

3 Abstraction Failure Diagnosis

Our approach to failure diagnosis is meant to be employed in the context of
abstraction refinement. We therefore give a brief overview using a typical ab-
straction refinement algorithm for presentation purposes. Algorithm 1 first runs
an abstract interpreter in analyze and if it succeeds, it returns Safe. If not, we
simplify ATS using slice and then search for a concrete counter-example via
feasible, which is described in Section 4. If it has a concrete counter-example,
then we report Unsafe. If it does not have a concrete counter-example, we try to
refine the abstraction. The diagnose procedure searches for doomed states and
is described in Section 5. It returns a description of the discontinuity at which
the abstract state was identified as doomed. If such a state is not found, or if
the refinement fails for other reasons, the algorithm terminates with a result of
PossiblyUnsafe. Otherwise it repeats the process using the new abstraction.

We illustrate the behavior of our algorithm on the simple linked list program
depicted in Figure 1. This program creates a list of non-deterministic length
with a heap allocated data object in every element and then deletes the list.
This program is safe.

SLAyer initially fails to prove that the program is safe, the corresponding
ATS is shown in Figure 2(a). At the transition from vertex 4 to vertex 3, the
abstract interpreter explored the first while loop twice, creating and explicitly
tracking a list of length 2 with points-to predicates. At the third iteration of
the loop, it widens at vertex 2. In doing so, it selects an sll entry shape,
thereby discarding information that is required to complete the proof. It still
has a d0 data object, but it has lost d1 and it has lost any connection between
data elements like d0 and the list itself. When the abstract interpreter reaches
the last command through the transition from vertex 1 to 0, it no longer knows
if the particular list element points to the beginning of allocated memory or not.
As a result, the proof attempt fails.

Once analyze terminates with a failed proof attempt, feasible attempts to
find a concrete counter-example in the abstract counter-example. Since this pro-
gram is safe, it does not find one, and the algorithm then runs diagnose which

1 With the exception of losing some disequations between deallocated addresses.
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Algorithm 1. Abstraction refinement algorithm

l e t abstraction_refinement prog abstraction =
l e t ats = analyze prog abstraction in
i f safe ats

return Safe

else
let abstract_cex = slice ats in
le t concrete_cex = feasible abstract_cex bound in
i f concrete_cex != None

return Unsafe

else
let failure = diagnose abstract_cex bound in
i f failure = None

return PossiblyUnsafe

else
let abstraction ’ = refine failure abstraction in
i f abstraction ’ = None

return PossiblyUnsafe

else
return abstraction_refinement prog abstraction ’

searches for a concrete counter-example starting from each widened state in the
abstract counter-example. In this example, the state at vertex 2 is the only
widened state. It then synthesizes a new, temporary ATS shown in Figure 2(b)
which is constructed to generate all models of the separation logic formula on
the vertex (within bounds). It then continues to check feasibility of counter-
examples in this new ATS, which, in this example, yields a counter-example
that constructs a single element list, where the data pointer is invalid.

Now that a doomed state has been found, the refine procedure attempts to
construct a more precise abstraction. It succeeds only if it is able to find a new
abstraction in which the doomed state is no longer included at the discontinuity.
In this example, the refine procedure implemented in SLAyer (see Section 6)
activates the previously inactive sll objs pattern which preserves information
about the Data objects. Finally, it restarts the abstract interpreter with the new
abstraction, which, in this example, is successful in proving safety of the program.

4 Feasibility Checking

When the abstract interpretation is unable to show that a program is safe, we
obtain an ATS which represents the relevant parts of the program together with
an abstract model (abstract values for every variable at every control location).
To distinguish between actual errors and abstraction failures, we check feasibility
of error traces in the ATS. Note that this is a general verification problem and
that we may employ any of a multitude of Model Checking algorithms to solve
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1 typedef struct _SLL_ENTRY {
2 void∗ Data ;
3 struct _SLL_ENTRY ∗Flink ;
4 } SLL_ENTRY , ∗PSLL_ENTRY ;
5
6 void main (void ) {
7 SLL_OBJS ∗head = NULL , ∗item ;
8 while ( nondet ( ) ) {
9 item = ( PSLL_ENTRY ) malloc ( s izeof ( SLL_ENTRY ) ) ;

10 item−>Data = ( int ∗) malloc ( s izeof ( int ) ) ;
11 item−>Flink = head ;
12 head = item ;
13 }

14 while ( head ) {
15 item = head ;
16 head = item−>Flink ;
17 free ( item−>Data ) ;
18 free ( item ) ;
19 }
20 }

Fig. 1. An example program

this problem. Here, we propose a Bounded Model Checker (BMC). For any fixed
unrolling depth, this represents an under-approximation of the ATS. The trade-
off between precision and efficiency is of paramount importance in practice and
we propose to use BMC because it conveniently offers fine-grained control over
the precision through a single parameter.

Recent advances in SMT solving have made it possible to encode BMC in-
stances through a single query to the theorem prover [25] and to solve them by
providing efficient quantifier instantiation and elimination procedures. In par-
ticular, the theory of bit-vectors with uninterpreted functions and quantifiers
(SMT UFBV) has been shown to be a very effective means of analyzing BMC
instances [33]. This theory allows for an encoding that does not require a pre-
determined unrolling depth for every loop, but for the whole system, i.e., the
unrolling bound corresponds to the number of nodes visited in the ATS, but the
SMT solver may freely chose a different bound for each loop in the ATS. This
simplifies the analysis and allows the utilization of powerful heuristics employed
by SMT solvers to increase performance.

4.1 A Memory Model

To encode an ATS into SMT UFBV, a memory model is required. To achieve
maximum precision, we use a flat memory model that implements accurate ex-
ecution semantics. A segmented model might be easier to analyze, but would
introduce unsoundness [18].

This choice is motivated by theparticular interest in detecting four specific
classes of errors: 1) Array out of bounds errors; 2) Dereferencing NULL pointers;
3) Double frees; and 4) Frees of unallocated memory. In a flat memory model,
these four errors can be reduced to two: out of bounds errors and NULL pointer
errors can both be treated as dereferencing unallocated memory; a double free
error corresponds to an attempt to free unallocated memory.
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emp

∃d0, r0, k. head = item ∧ nd �= 0 ∧ d0 �→ r0 ∗
ls( SLL ENTRY, k, , head, , 0)

∃d0, r0, k. head = item ∧ d0 �→ r0 ∗
ls( SLL ENTRY, k, , head, , 0)

Error

head = 0;
nd = nondet();
assume(nd != 0);
item = (PSLL_ENTRY)malloc(8);
d0 = malloc(4);
item->Data = d0;
item->Flink = head;
head = item;
nd = nondet();
item = (PSLL_ENTRY)malloc(8);
d1 = malloc(4);
item->Data = d1;
item->Flink = head;
head = item;

nd = nondet();

assume(nd != 0);
item = (PSLL_ENTRY)
         malloc(8);
d0 = malloc(4);
item->Data = tmp;
item->Flink = head;
head = item;

assume(nd == 0);
assume(head != 0);
item = head;
head = item->Flink;
free(item->Data);

∃d0, d1, r0, r1. head = item ∧ nd �= 0∧
d0 �→ r0 ∗ head �→ [Data : d0;Flink : next] ∗

d1 �→ r1 ∗ next �→ [Data : d1;Flink : 0]

4:

3:

2:

1:

0:

(a)

emp

k = nondet();
assume(head == item);
assume(nd != 0);
d0 = malloc(4);
assume(head == f);
assume(len == k);

assume(len > 0);
a = malloc(8);
assume(f == a);
f = f->Flink;
l--;

assume(len == 0);
assume(f == 0);

5:

6:

∃d0, r0, k. head = item ∧ nd �= 0 ∧ d0 �→ r0 ∗
ls( SLL ENTRY, k, , head, , 0)

∃d0, r0, k. head = item ∧ ∧d0 �→ r0 ∗
ls( SLL ENTRY, k, , head, , 0)

Error

nd = nondet();

assume(nd != 0);
item = (PSLL_ENTRY)
         malloc(8);
d0 = malloc(4);
item->Data = tmp;
item->Flink = head;
head = item;

assume(nd == 0);
assume(head != 0);
item = head;
head = item->Flink;
free(item->Data);

2:

1:

0:

(b)

Fig. 2. (a) Abstract counter-example prior to refinement and (b) with prefix of vertex
2 replaced

Memory allocation must be modeled accurately for a flat model to be able to
find errors. If a strategy is chosen similar to a real memory allocator (first fit, best
fit, etc), the objects are packed together and will likely not cause errors when
accessing out of bounds array elements. For this reason we allow the SMT solver
to place the allocated objects. We existentially quantify the starting location
for each allocation, such that, if objects can be rearranged to cause an error to
occur, they will be.

In our encoding, memory is modeled by three arrays: heap, alloc, and objsize.
The first contains a representation of the heap at a given time (execution step):

heap : Time→ Address→ V alue

The alloc array is used to track whether a memory address is allocated or not:

alloc : Time→ Address→ Bool
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If some address is not allocated at the time of being accessed, this corresponds
to a segmentation fault. The objsize array is used to track the size of allocated
objects at a given time and memory address:

objsize : Time→ Address→ Nat ∪ {⊥}

Note that this array contains ⊥ (encoded as −1) for memory locations that are
allocated, but not at the beginning of an object.

4.2 Encoding to SMT

The procedure feasible ats bound checks for the feasibility of counter-examples
of bounded length in an ATS. If such a counter-example exists, it returns a
mapping μ : L→ Structures which associates each vertex with a Kripke structure
that provides a concrete interpretation for each variable, function symbol, and
the heap memory. If no such counter-example exists, feasible returns None.

In order to pose the bounded model checking problem as a single SMT prob-
lem, we make use of quantifiers. We constrain the solver to start at some symbolic
set of initial states constructed by init and then for some bounded number of
steps, unroll the transition relation of the ATS. The function tr(ats, t) corre-
sponds to the encoding of the transition relation of the ATS ats from time t− 1
to time t. The top-level check is encoded as

init() ∧ ∀t. 0 < t < bound→ tr(ats, t) .

Our encoding makes use of semantic functions �·�, which take a state and con-
tinuations (to work out what to do next in the translation). In what follows, the
encoding of commands is denoted by

�·�C : St→ (St→ SMT )→ (St→ SMT )→ SMT ,

which takes a state and two continuations, one for successful transitions and one
for transitions to error. The transition relation tr(ats, t) is encoded as

tr(ats, t) = (at(t− 1) = �e → at(t) = �e)∧⎧⎨⎩∧
�∈L

at(t− 1) = � → (
∨

(�,�′)∈E

�κ(�, �′)�C σ sk ek)
⎫⎬⎭ ,

where L and E are the sets of vertices and edges of the ATS and the function
at(t) encodes the control vertex at time t.

We use the 4-tuple 〈vars, heap, alloc, objsize〉 to represent a state of the sys-
tem, where vars is the set of variables in the ATS. This is used as the source
of generating the corresponding time-stamped variables in the encoding. For ef-
ficiency reasons, the implementation also keeps flags for if and when the state
was last updated. The arrays in the initial environment σ0 are empty.

The top-level command encoding takes the two continuations, one to signify
a successful transition sk = λσ. STEP(t, �, σ) and another for transitions to
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the error ek = λσ. ERR(t, σ). If the command completes without error, the
command threads the modified state to sk, otherwise it threads the modified
state to the error continuation. Once the error continuation is followed, the top-
level encoding tr ensures that the system will stay in the error state. These
continuations allow for a clean representation of the ATS that maximizes the
use of if-then-else structures and minimizes general disjunctions. Threading the
state also allowed us to reduce the number of quantifiers used in the problem
by using if-then-else constructs instead of quantified uninterpreted functions, so
long as we are in the same block as previous heap updates.

The initial continuations end with the STEP and ERR predicates which are
defined as follows. STEP(t, �, σ) asserts that at(t) = � to ensure the transition
of the vertex to the next time step. (A transition to �e is explicitly disallowed.)
Furthermore, it preserves all the values from the current block that must be
preserved (heap if modified, alloc and objsize if modified, as well as all vari-
ables). Lastly, STEP(t, �, σ) asserts that pure(δ �), the pure consequences of the
Separation Logic assertion at �, hold at time t. The ERR(t, σ) predicate is like
STEP(t, �, σ) except that the transition must be to �e and pure(δ �) = true.

We now describe the encoding of commands, concentrating on the memory-
related commands malloc, free and store. A forthcoming tech report [6] gives
a full definition of the encoding for the other commands.

The malloc command produces a new function for the alloc array. It uses
a fresh variable to store the location. We cannot simply constrain the target
variable x, because it may already have been assigned a value and thus is not
unconstrained. By introducing a fresh variable, f , constraining it and updating x
to be equal to f , we achieve the desired effect. The seemingly odd constraint that
f ≤ f + s, given that s ≥ 0 exists because of the modular behavior of arithmetic
in the bit-vector theory. Without this constraint, memory would be allowed
to wrap around past zero. While this behavior should be prohibited by the
constraint from init that location 0 is always deallocated, adding this constraint
provides performance benefits. Formally, the encoding of malloc is defined by

�x := malloc(s)�C σ sk ek = let 〈vars, heap, alloc, objsize〉 = σ in

let f = gensym() in

let z = (�s�Exp σ) in

∀i.f ≤ i < f + z → alloc(i) = false ∧
∀i.f ≤ i < f + z → objsize(i) = −1 ∧
let a′ = λa. ite(f ≤ a < f + z , true , alloc a) in

let s′ = λa. ite(f = a , s , objsize a) in

(sk 〈vars⊕ [x �→ f ], heap, a′, s′ 〉) ,

where gensym() represents the introduction of a fresh symbol.
The free command is similar to malloc, except that it relies upon the values

in the objsize array instead of the alloc array. It requires that the objsize of the
freed address have a value other than −1, whose value indicates no value in the
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size array. This value in objsize indicates how many successive entries in alloc,
starting at address x, need to be set back to false. Formally,

�free(x)�C σ sk ek = let 〈vars, heap, alloc, objsize〉 = σ in

let f = gensym() in

let s = (objsize x) in

let a′ = λa. ite(f ≤ a < f + s , false , alloc a) in

let s′ = λa. ite(f = a , −1 , objsize a) in
let σ′ = 〈vars, heap, a′, s′ 〉 in
ite(x = 0 , (sk σ) , ite(s �= −1 , (sk σ′) , (ek σ))) ,

The store command first checks the precondition (alloc x), which is that the
memory at the target address is in fact allocated. If this precondition holds, the
execution is allowed to continue with the updated state where heap has been
assigned to a new function. Conversely, the execution continues at �e, assuming
that the state was not updated as required by the command. Formally, we have

�*x = y�C σ sk ek = let 〈vars, heap, alloc, objsize〉 = σ in

let heap′ = λa. ite(a = x , y , (heap a)) in

ite((alloc x) , (sk 〈vars, heap′, alloc, objsize〉) , (ek σ)) .

5 Doomed State Synthesis

We define the diagnose procedure for identifying doomed states, i.e., for states
for which abstraction was too aggressive, and so can be passed to a refinement
procedure. Our procedure works as follows: It iterates through the edges of the
abstract counter-example, to determine at which of them the widening operator
has abstracted too coarsely. It does this by analyzing a new, temporary ATS in
which the prefix of the cutpoint �′ has been replaced with a program fragment
that constructs states which satisfy δ �′, the formula at that cutpoint. We then
use the feasible procedure to search for a concrete counter-example in this
new ATS. If a counter-example is found, then it returns the discontinuity (�, �′)
together with the doomed state obtained by looking up �′ in the concrete trace
μ. The diagnose procedure is depicted in Algorithm 2.

Executing the code generated by prefix Q produces states that satisfy Q.
Algorithm 3 defines prefix, where the generated pseudo-code is shorthand for
standard control-flow graph construction, and the local v in C form is short for
C[v’/v]; v’= nondet() where v’ is fresh.

The model generation assumes a model finder for first-order logic, so first-
order formulas F are simply assumed. Existential quantification is synthesized
using non-deterministic assignment, reverse engineering Floyd’s assignment ax-
iom. Disjunction is translated into a non-deterministic branch, that is, disjunc-
tion of commands. Nothing need be done to synthesize emp since it is a sub-heap
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Algorithm 2. Doomed state search

l e t diagnose 〈L,E, 
0, κ, δ〉 bound =
for (
, 
′) ∈ E do

i f widened (
, 
′)
l e t 〈Ln,En, 
n, κn〉 = cfg_of ( ( prefix δ 
′ ) ; goto 
′ ) in
le t mod_ats = 〈L ∪ Ln,E ∪ En, 
n, κ ∪ κn, δ ∪ (Ln×{emp})〉 in
match feasible mod_ats bound with
| None −>

continue
| μ −>

return ((
, 
′) , μ(
′))
return None

of any heap. Points-to formulas are synthesized by a malloc() call, and sepa-
rating conjunction is mapped to sequential composition. This has the effect of
encoding the core partiality in the semantics of ∗ into the freshness guarantee
and non-determinism provided by allocation, meaning that correctly generating
models relies on an accurate treatment of allocation. Lastly, lists are synthesized
by using a loop to realize induction on the list length. As an example, prefix
ls( sll entry, k, , p, , q) is realized by, after slight simplification:

local l , f , a ;
l = k ; f = p ;
for ( ; l> 0 ; −−l ) {

a = malloc ( sizeof ( sll ) ) ;
assume (f == a ) ;
f = f−>Flink ;

}
assume( f = q ∧ l = 0 ) ;

Lemma 1. Every reachable state of prefix Q satisfies Q.

Theorem 1. The abstraction_refinement procedure is a sound analysis.

Proof. The procedure only returns Safe when the abstract interpreter in analyze

did in fact find a proof; this result is correct as long as the refine procedure
maintains the fact that the abstraction is in fact a valid abstraction. In case the
procedure returns Unsafe, it has found a concrete counter-example which wit-
nesses the fact that the program is in fact unsafe. In all other cases, the procedure
returns PossiblyUnsafe, which does not harm the soundness of the analysis. ��

Note that approach for doomed state synthesis has the effect of translating sep-
aration logic formulas to code, and then in the feasibility checker, to first-order
logic formulas. It would be possible to compose these two translations and trans-
late separation logic formulas to first-order logic directly, but the result would
be more difficult to understand, and would impede reuse in the implementation.
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Algorithm 3. Prefix synthesis

l e t prefix Q =
match Q with
| F −>

assume (F )
| ∃x. Q −>

local x in ( prefix Q)
| Q0 ∨ . . . ∨QN −>

i f nondet ( ) then ( prefix Q0 )
else ( prefix Q1 ∨ . . . ∨QN )

| emp −>
nop

| Q ∗ R −>
( prefix Q ) ; ( prefix R )

| l �→ [r; o1 : e1; . . . ; oN : eN ] −>
local a in
a = malloc( sizeof ( typeof (r ) ) ) ;
assume (a = l ) ;
∗l . o1 = e1 ; . . . ; ∗l . oN = eN

| ls(Λ, k,p,f , b,n) −>
local l ,w ,x in
l = k ; w = p ; x = f ;
for ( ; l > 0 ; l = l − 1) {

local y ,z in
( prefix Λ(w,x,y,z) ) ;
w = y ; x = z

}
assume ( l = 0 ∧w = b ∧ x = n)

Note that the separation logic formulas are not precisely expressible in first-order
logic due to transitive closure used to interpret the list predicate and second-
order quantification implicit in the semantics of the ∗ connective. So a direct
translation must under-approximate, and the ways that the transitive closure
and second-order quantification interact make this nontrivial. The translation
via the model-construction code avoids eagerly constructing formulas of size ex-
ponential in the bound, unlike a naive “blasting” approach. Additionally, the
translation via code approach potentially allows the solver to unroll loops in the
generation of a model of the separation logic formula guided by the path to error,
where a direct translation would blindly generate the first order logic formula
without any guidance.

6 Experimental Evaluation

There are two motivations in undertaking the work described in this paper. One
is to make precise the notion of abstraction failure diagnosis in separation logic
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shape analyses. The other, a more practical one, is to use this understanding to
improve the quality of results of SLAyer runs. We implemented feasibility check-
ing and diagnosis in SLAyer. This alone has improved SLAyer regression tests,
in particular turning around two dozen known unsafe tests from PossiblyUnsafe

to definitely Unsafe.
We also implemented a simple pattern refine procedure. SLAyer keeps a set

of active and inactive abstraction patterns. When widening admits a doomed
state s, this diagnosis is fed into SLAyer’s shape discovery module in order to
select a pattern to eliminate the doomed state. The basic algorithm for refine-
ment is to enumerate the inactive patterns, for each one widen to s′ using the
active patterns plus the chosen one, and then check if s entails s′. If not, keep
the chosen pattern active; otherwise it keeps looking. This is a simple automatic
refinement procedure, and we can imagine more sophisticated schemes. For in-
stance, to deal with more complex programs, we could try with all the inactive
patterns and then minimize akin to unsat core minimization in MaxSAT.

Table 1 presents some experimental results. The programs are taken from the
SLAyer test suite, and so are biased towards control (rather than data), traver-
sal through linked lists, pointer arithmetic, etc. The table gives the results for
SLAyer without and with this simple pattern refinement scheme. The second
column indicates that these are all tests where SLAyer previously reported an
inconclusive result, in the time indicated in the third column. The fourth column
reports the result using the techniques described here, either Unsafe indicating
a concrete counter-example of memory safety was found, or Safe indicating that
a memory safety proof was found after abstraction refinement, or PossUnsafe
indicating a result that remains inconclusive. The fifth column reports the addi-
tional time taken either for feasibility checking or for diagnosis and refinement,
indicated as the sum of shape analysis and feasibility checking times.

7 Related Work

Counter-Example Guided Abstraction Refinement (CEGAR) inspired this work.
SLAyer’s implementation attempts to mirror the primary steps of the algorithm
without requiring weakest precondition or general conjunction. There have been
many implementations of CEGAR, though it is most popularly used with pred-
icate abstraction as in the SLAM tool [1,2]. Other implementations include one
by Clarke et al [13] applied to hardware, the BLAST project [23], MAGIC [11]
and SATABS [15]. Obtaining the initial abstraction is not addressed by CE-
GAR, but there are several techniques, including existential abstraction [14] and
predicate abstraction [16, 22].

Our feasibility checking algorithm is an implementation of bounded model
checking [7] and is most closely related to the CBMC [12] bounded model checker
for C programs. We implement bounded model checking as a single large problem
and leave the task of determining unrolling to the SMT solver. This differs from
CBMC in that CBMC does explicit unrolling.

Instead of bounding the depth of the search, it is possible to bound the breadth
of the search by using a symbolic or concolic testing technique. Tools like EXE [9],
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Table 1. SLAyer versus SLAyer + Feasibility Checking and Pattern Refinement

Test SLAyer SLAyer + Diagnosis

Disproved/Refined
Result Time Result Time

T2 n-19 PossUnsafe 0.031 Unsafe +0.078
T2 n-1b PossUnsafe 0.016 Unsafe +0.062
T2 n-34 PossUnsafe 0.031 Unsafe +0.140
T2 n-38 PossUnsafe 0.078 Unsafe +0.421
T2 p-38 PossUnsafe 0.515 Unsafe +12.230
T2 p-50 PossUnsafe 0.062 Unsafe +0.562
T2 p-62 PossUnsafe 0.078 Unsafe +0.546
changing truth value PossUnsafe 0.062 Unsafe +1.373
complicated safe PossUnsafe 0.140 PossUnsafe +89.279
complicated unsafe PossUnsafe 0.156 Unsafe +2.309
no loops unsafe PossUnsafe 0.016 Unsafe +0.140
simple loop unsafe PossUnsafe 0.109 Unsafe +0.078
very simple unsafe PossUnsafe 0.000 Unsafe +0.016
csll remove unsafe PossUnsafe 0.499 Unsafe +1.342
cleanup isochresourcedata PossUnsafe 0.796 Unsafe +23.306
array in formal PossUnsafe 0.016 Unsafe +0.094
deref NULL PossUnsafe 0.016 Unsafe +0.031
free free PossUnsafe 0.000 Unsafe +0.016
free local PossUnsafe 0.000 Unsafe +0.047
if pointer PossUnsafe 0.000 Unsafe +0.016
sized arrays PossUnsafe 0.016 Unsafe +0.078
store to 0 PossUnsafe 0.000 Unsafe +0.031
sll copy unsafe PossUnsafe 0.218 Unsafe +2.293
list of objects PossUnsafe 0.140 Safe +0.230+5.975

KLEE [8], DART [20], CUTE [32] and SAGE [21] are well tuned to rapidly search
large code bases looking for memory violations, assertion violations and arith-
metic bugs. They could benefit from the reduction in state-space that searching
an abstract transition system provides, but we preferred the guarantee that all
paths were searched up to a specific depth and thus did not use these techniques.

Instead of bounding the search space using an abstract transition system,
a symbolic testing engine could use a heuristic that guides it to reach certain
program points. Ma, et al [28] explore this approach but do not attempt to use
it to guide another analysis.

Our approach to refinement is complementary to the pattern discovery and
synthesis such as [3], but refinement is not the only way to improve the widening.
By adding more information to the abstraction, such as numerics [29, 30], the
proofs will become more likely to succeed. This does not preclude a refinement
phase, however. This would reduce the number of times refinement was needed,
but widening still loses data values and thus might lose information such as
sortedness of a fixed length list that our counter-example generation would know.
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An abstraction refinement technique applicable to shape analysis has been
proposed [27]. This technique refines the generalization of predicate abstrac-
tion [31] used by TVLA [26]. Rather than being guided by counter-examples,
refinement is directed by either the syntax of an asserted formula with an inde-
terminate valuation, or by detection of precision loss by the abstraction during
the proof attempt, without an indication that the lost precision is relevant to
the proof failure.

A problem similar to feasibility checking has been investigated in the context
of TVLA [19]. There, a bounded breadth-first search through program paths
and a bounded model finder for first-order logic is used, in contrast to out sin-
gle search encoded into SMT. It seems likely that this feasibility checker could
be combined with our diagnosis technique to also obtain an abstraction failure
diagnosis for shape analyses based on 3-valued logic.

8 Conclusion

We have presented a method for diagnosing abstraction failure in separation
logic-based analyses. To do this, we use a new algorithm to pinpoint where ab-
straction failed based on a concrete counter-example. We generate this concrete
counter-example with a bounded model checker that precisely analyzes abstract
transition systems. These techniques have been implemented and evaluated using
a pattern-based abstraction refinement scheme in SLAyer, a tool for automated
analysis of low-level C programs, and have become an invaluable aid in debug-
ging failed SLAyer runs and refining the definition of abstraction. With this
contribution, we look forward to finding new automatic refinement algorithms
that significantly improve the capacity and precision of shape analyses.
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Abstract. This paper helps to bridge the gap between (i) the use of
logic for specifying program semantics and performing program analy-
sis, and (ii) abstract interpretation. Many operations needed by an ab-
stract interpreter can be reduced to the problem of symbolic abstraction:
the symbolic abstraction of a formula ϕ in logic L, denoted by α̂(ϕ),
is the most-precise value in abstract domain A that over-approximates
the meaning of ϕ. We present a parametric framework that, given L
and A, implements α̂. The algorithm computes successively better over-
approximations of α̂(ϕ). Because it approaches α̂(ϕ) from “above”, if it
is taking too much time, a safe answer can be returned at any stage.

Moreover, the framework is“dual-use”: in addition to its applications
in abstract interpretation, it provides a new way for an SMT (Satisfiabil-
ity Modulo Theories) solver to perform unsatisfiability checking: given
ϕ ∈ L, the condition α̂(ϕ) = ⊥ implies that ϕ is unsatisfiable.

1 Introduction

This paper concerns the connection between abstract interpretation and logic.
Like several previous papers [29,37,21,12], our work is based on the insight that
many of the key operations needed by an abstract interpreter can be reduced to
the problem of symbolic abstraction [29].

Suppose that A is an abstract domain with concretization function γ : A → C.
Given a formula ϕ in logic L, let [[ϕ]] denote the meaning of ϕ—i.e., the set of
concrete states that satisfy ϕ. The symbolic abstraction of ϕ, denoted by α̂(ϕ),
is the best A value that over-approximates [[ϕ]]: α̂(ϕ) is the unique value A ∈ A
such that (i) [[ϕ]] ⊆ γ(A), and (ii) for all A′ ∈ A for which [[ϕ]] ⊆ γ(A′), A $ A′.

This paper presents a new framework for performing symbolic abstraction,
discusses its properties, and presents several instantiations for various logics and
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abstract domains. In addition to providing insight on fundamental limits, the
new algorithm for α̂ also performs well: our experiments show that it is 11.3
times faster than a competing method [29,21,12], while finding dataflow facts
(i.e., invariants) that are equally precise at 76.9% of a program’s basic blocks,
better (tighter) at 19.8% of the blocks, and worse (looser) at only 3.3% of the
blocks.

Most-Precise Abstract Interpretation. Suppose that G = C −−−→←−−−
α

γ
A is a

Galois connection between concrete domain C and abstract domain A. Then the
“best transformer” [7], or best abstract post operator for transition τ , denoted

by P̂ost[τ ] : A → A, is the most-precise abstract operator possible, given A, for
the concrete post operator for τ , Post[τ ] : C → C. P̂ost[τ ] can be expressed in

terms of α, γ, and Post[τ ], as follows [7]: P̂ost[τ ] = α ◦ Post[τ ] ◦ γ. This equation
defines the limit of precision obtainable using abstraction A. However, it is non-
constructive; it does not provide an algorithm, either for applying P̂ost[τ ] or for

finding a representation of the function P̂ost[τ ]. In particular, in many cases, the
application of γ to an abstract value would yield an intermediate result—a set
of concrete states—that is either infinite or too large to fit in computer memory.

Symbolic Abstract Operations. The aforementioned problem with applying
γ can be side-stepped by working with symbolic representations of sets of states
(i.e., using formulas in some logic L). The use of L formulas to represent sets
of states is convenient because logic can also be used for specifying a language’s
concrete semantics; i.e., the concrete semantics of a transformer Post[τ ] can be
stated as a formula ϕτ ∈ L that specifies the relation between input states
and output states. However, the symbolic approach introduces a new challenge:
how to bridge the gap between L and A [29]. In particular, we need to develop
(i) algorithms to handle interconversion between formulas of L and abstract
values in A, and (ii) symbolic versions of the operations that form the core
repertoire at the heart of an abstract interpreter.

1. γ̂(A): Given an abstract value A ∈ A, the symbolic concretization of A,
denoted by γ̂(A), maps A to a formula γ̂(A) such that A and γ̂(A) represent
the same set of concrete states (i.e., γ(A) = [[γ̂(A)]]).

2. α̂(ϕ): Given ϕ ∈ L, the symbolic abstraction of ϕ, denoted by α̂(ϕ), maps ϕ
to the best value in A that over-approximates [[ϕ]] (i.e., α̂(ϕ) = α([[ϕ]])).

3. Âssume[ϕ](A): Given ϕ ∈ L and A ∈ A, Âssume[ϕ](A) returns the best value
in A that over-approximates the meaning of ϕ in concrete states described

by A. That is, Âssume[ϕ](A) equals α([[ϕ]] ∩ γ(A)).
4. Creation of a representation of P̂ost[τ ]: Some intraprocedural [15] and many

interprocedural [32,22] dataflow-analysis algorithms operate on instances of
an abstract datatype T that (i) represents a family of abstract functions
(or relations), and (ii) is closed under composition and join. By “creation

of a representation of P̂ost[τ ]”, we mean finding the best instance in T that
over-approximates Post[τ ].

Several other symbolic abstract operations are discussed in §6.
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Experience shows that, for most abstract domains, it is easy to write a γ̂
function (item 1) [29]. The other three operations are inter-related. α̂ (item 2)

can be reduced to Âssume (item 3) as follows: α̂(ϕ) = Âssume[ϕ](�). Item 4 can
be reduced to item 2 as follows: The concrete post operator Post[τ ] corresponds
to a formula ϕτ ∈ L that expresses the transition relation between input states
and output states. An instance of abstract datatype T in item 4 represents
an abstract-domain element that denotes an over-approximation of [[ϕτ ]]. α̂(ϕτ )
computes the best instance in T that over-approximates [[ϕτ ]].

This paper presents a parametric framework that, for some abstract domains,
is capable of performing most-precise abstract operations in the limit. Because
the method approaches its result from “above”, if the computation takes too
much time, it can be stopped to yield a safe result—i.e., an over-approximation
to the best abstract operation—at any stage. Thus, the framework provides
a tunable algorithm that offers a performance-versus-precision trade-off. We
replace “̂ ” with “˜ ” to denote over-approximating operators—e.g., α̃(ϕ),

As̃sume[ϕ](A), and P̃ost[τ ](A).1

Key Insight. In [35], we showed how St̊almarck’s method [33], an algorithm for
satisfiability checking of propositional formulas, can be explained using abstract-
interpretation terminology—in particular, as an instantiation of a more general
algorithm, St̊almarck[A], that is parameterized by a (Boolean) abstract domain
A and operations on A. The algorithm that goes by the name “St̊almarck’s
method” is one instantiation of St̊almarck[A] with a certain abstract domain.

Abstract value A′ is a semantic reduction [7] of A with respect to ϕ if (i) γ(A′)∩
[[ϕ]] = γ(A) ∩ [[ϕ]], and (ii) A′ $ A. At each step, St̊almarck[A] holds some
A ∈ A; each of the so-called “propagation rules” employed in St̊almarck’s method
improves A by finding a semantic reduction of A with respect to ϕ.

The key insight of the present paper is that there is a connection between
St̊almarck[A] and α̃A. In essence, to check whether a formula ϕ is unsatisfiable,
St̊almarck[A] computes α̃A(ϕ) and performs the test “α̃A(ϕ) = ⊥A?” If the test
succeeds, it establishes that [[ϕ]] ⊆ γ(⊥A) = ∅, and hence that ϕ is unsatisfiable.

In this paper, we present a generalization of St̊almarck’s algorithm to richer
logics, such as quantifier-free linear rational arithmetic (QF LRA) and quantifier-
free bit-vector arithmetic (QF BV). Instead of only using a Boolean abstract
domain, the generalized method of this paper also uses richer abstract domains,
such as the polyhedral domain [8] and the bit-vector affine-relations domain [12].
By this means, we obtain algorithms for computing α̃ for these richer abstract
domains. The bottom line is that our algorithm is “dual-use”: (i) it can be used
by an abstract interpreter to compute α̃ (and perform other symbolic abstract
operations), and (ii) it can be used in an SMT (Satisfiability Modulo Theories)
solver to determine whether a formula is satisfiable.

1 P̃ost[τ ] is used by Graf and Säıdi [14] to mean a different state transformer from the

one that P̃ost[τ ] denotes in this paper. Throughout the paper, we use P̃ost[τ ] solely

to mean an over-approximation of P̂ost[τ ]; thus, our notation is not ambiguous.
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Because we are working with more expressive logics, our algorithm uses sev-
eral ideas that go beyond what is used in either St̊almarck’s method [33] or
in St̊almarck[A] [35]. The methods described in this paper are also quite dif-
ferent from the huge amount of recent work that uses decision procedures in
program analysis. It has become standard to reduce program paths to formu-
las by encoding a program’s actions in logic (e.g., by symbolic execution) and
calling a decision procedure to determine whether a given path through the pro-
gram is feasible. In contrast, the techniques described in this paper adopt—and
adapt—the key ideas from St̊almarck’s method to create new algorithms for
key program-analysis operations. Finally, the methods described in this paper
are quite different from previous methods for symbolic abstraction [29,37,21,12],
which all make repeated calls to an SMT solver.

Contributions. The contributions of the paper can be summarized as follows:

– We present a connection between symbolic abstraction and St̊almarck’s
method for checking satisfiability (§2).

– We present a generalization of St̊almarck’s method that lifts the algorithm
from propositional logic to richer logics (§3).

– We present a new parametric framework that, for some abstract domains, is
capable of performing most-precise abstract operations in the limit, includ-

ing α̂(ϕ) and Âssume[ϕ](A), as well as creating a representation of P̂ost[τ ].
Because the method approaches most-precise values from “above”, if the
computation takes too much time it can be stopped to yield a sound result.

– We present instantiations of our framework for two logic/abstract-domain
pairs: QF BV/KS and QF LRA/Polyhedra, and discuss completeness (§4).

– We present experimental results that illustrate the dual-use nature of our
framework. One experiment uses it to compute abstract transformers, which
are then used to generate invariants; another experiment uses it for checking
satisfiability (§5).

§6 discusses other symbolic operations. §7 discusses related work. Proofs can be
found in [36].

2 Overview

We now illustrate the key points of our St̊almarck-inspired technique using two
examples. The first shows how our technique applies to computing abstract trans-
formers; the second describes its application to checking unsatisfiability.

The top-level, overall goal of St̊almarck’s method can be understood in terms
of the operation α̃(ψ). However, St̊almarck’s method is recursive (counting down
on a parameter k), and the operation performed at each recursive level is the
slightly more general operation As̃sume[ψ](A). Thus, we will discuss As̃sume.

Example 1. Consider the following x86 assembly code

L1: cmp eax, 2 L2: jz L4 L3: ...

The instruction at L1 sets the zero flag (zf) to true if the value of register eax
equals 2. At instruction L2, if zf is true the program jumps to location L4 (not
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seen in the code snippet) by updating the value of the program counter (pc)
to L4; otherwise, control falls through to program location L3. The transition
formula that expresses the state transformation from the beginning of L1 to the
beginning of L4 is thus ϕ = (zf⇔(eax = 2)) ∧ (pc′ = ITE(zf, L4, L3)) ∧ (pc′ =
L4) ∧ (eax′ = eax). (ϕ is a QF BV formula.)

Let A be the abstract domain of affine relations over the x86 registers. Let
A0 = �A, the empty set of affine constraints over input-state and output-state
variables. We now describe how our algorithm creates a representation of the A
transformer for ϕ by computing As̃sume[ϕ](A0). The result represents a sound
abstract transformer for use in affine-relation analysis (ARA) [27,21,12]. First,
the ITE term in ϕ is rewritten as (zf⇒(pc′ = L4)) ∧ (¬zf⇒(pc′ = L3)). Thus,
the transition formula becomes ϕ = (zf⇔(eax = 2)) ∧ (zf⇒(pc′ = L4)) ∧
(¬zf⇒(pc′ = L3)) ∧ (pc′ = L4) ∧ (eax′ = eax).

Next, propagation rules are used to compute a semantic reduction with respect
to ϕ, starting from A0. The main feature of the propagation rules is that they
are “local”; that is, they make use of only a small part of formula ϕ to compute
the semantic reduction.

1. Because ϕ has to be true, we can conclude that each of the conjuncts of ϕ
are also true; that is, zf⇔(eax = 2), zf⇒(pc′ = L4), ¬zf⇒(pc′ = L3),
pc′ = L4, and eax′ = eax are all true.

2. Suppose that we have a function μα̃A such that for a literal l ∈ L, A′ =
μα̃A(l) is a sound overapproximation of α̂(l). Because the literal pc′ = L4

is true, we conclude that A′ = μα̃A(pc
′ = L4) = {pc′ − L4 = 0} holds, and

thus A1 = A0 � A′ = {pc′ − L4 = 0}, which is a semantic reduction of A0.
3. Similarly, because the literal eax′ = eax is true, we obtain A2 = A1 �
μα̃A(eax

′ = eax) = {pc′ − L4 = 0, eax′ − eax = 0}.
4. We know that ¬zf⇒(pc′ = L3). Furthermore, μα̃A(pc

′ = L3) = {pc′−L3 =
0}. Now {pc′−L3 = 0}�A2 is⊥, which implies that [[pc′ = L3]]∩γ({pc′−L4 =
0, eax′ − eax = 0}) = ∅. Thus, we can conclude that ¬zf is false, and hence
that zf is true. This value of zf, along with the fact that zf⇔(eax = 2)
is true, enables us to determine that A′′ = μα̃A(eax = 2) = {eax− 2 = 0}
must hold. Thus, our final semantic-reduction step produces A3 = A2�A′′ =
{pc′ − L4 = 0, eax′ − eax = 0, eax− 2 = 0}.

Abstract value A3 is a set of affine constraints over the registers at L1 (input-
state variables) and those at L4 (output-state variables), and can be used for
affine-relation analysis using standard techniques (e.g., see [19] or [12, §5]). ��
The above example illustrates how our technique propagates truth values to
various subformulas of ϕ. The process of repeatedly applying propagation rules
to compute As̃sume is called 0-assume. The next example illustrates the Dilemma
Rule, a more powerful rule for computing semantic reductions.

Example 2. Let L be QF LRA, and let A be the polyhedral abstract domain [8].
Consider the formula ψ = (a0 < b0) ∧ (a0 < c0) ∧ (b0 < a1 ∨ c0 < a1) ∧ (a1 <
b1) ∧ (a1 < c1) ∧ (b1 < a2 ∨ c2 < a2) ∧ (a2 < a0) ∈ L (see Fig. 1(a)). Suppose
that we want to compute As̃sume[ψ](�A).
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Fig. 1. (a) Inconsistent inequalities in the (unsatisfiable) formula used in Ex. 2. (b)
Application of the Dilemma Rule to abstract value (P0, A0). The dashed arrows from
(Pi, Ai) to (P ′

i , A
′
i) indicate that (P ′

i , A
′
i) is a semantic reduction of (Pi, Ai).

To make the communication between the truth values of subformulas
and the abstract value explicit, we associate a fresh Boolean variable with
each subformula of ψ to give a set of integrity constraints I. In this case,
Iψ = {u1⇔

∧8
i=2 ui, u2⇔(a0 < b0), u3⇔(a0 < c0), u4⇔(u9 ∨ u10), u5⇔(a1 <

b1), u6⇔(a1 < c1), u7⇔(u11 ∨ u12), u8⇔(a2 < a0), u9⇔(b0 < a1), u10⇔(c0 <
a1), u11⇔(b1 < a2), u12⇔(c1 < a2)}. The integrity constraints encode the struc-
ture of ψ via the set of Boolean variables U = {u1, u2, . . . , u12}. When I is used
as a formula, it denotes the conjunction of the individual integrity constraints.

We now introduce an abstraction over U ; in particular, we use the Cartesian
domain P = (U → {0, 1, ∗})⊥ in which ∗ denotes “unknown”, and each element
in P represents a set of assignments in P(U → {0, 1}). We denote an element of
the Cartesian domain as a mapping, e.g., [u1 �→ 0, u2 �→ 1, u3 �→ ∗], or [0, 1, ∗]
if u1, u2, and u3 are understood. �P is the element λu.∗. The “single-point”
partial assignment in which variable v is set to b is denoted by �P [v �→ b].

The variable u1 ∈ U represents the root of ψ; consequently, the single-point
partial assignment �P [u1 �→ 1] corresponds to the assertion that ψ is satisfiable.
In fact, the models of ψ are closely related to the concrete values in [[I]] ∩
γ(�P [u1 �→ 1]). For every concrete value in [[I]] ∩ γ(�P [u1 �→ 1]), its projection
onto {ai, bi, ci | 0 ≤ i ≤ 1} ∪ {a2} gives us a model of ψ; that is, [[ψ]] = ([[I]] ∩
γ(�P [u1 �→ 1]))|({ai,bi,ci|0≤i≤1}∪{a2}). By this means, the problem of computing

As̃sume[ψ](�A) is reduced to that of computing As̃sume[I]((�P [u1 �→ 1],�A)),
where (�P [u1 �→ 1],�A) is an element of the reduced product of P and A.

Because u1 is true in �P [u1 �→ 1], the integrity constraint u1⇔
∧8
i=2 ui

implies that u2 . . . u8 are also true, which refines �P [u1 �→ 1] to P0 =
[1, 1, 1, 1, 1, 1, 1, 1, ∗, ∗, ∗, ∗]. Because u2 is true and u2⇔(a0 < b0) ∈ I, �A can be
refined using μα̃A(a0 < b0) = {a0−b0 < 0}. Doing the same for u3, u5, u6, and u8,
refines �A to A0 = {a0−b0 < 0, a0−c0 < 0, a1−b1 < 0, a1−c1 < 0, a2−a0 < 0}.
These steps refine (�P [u1 �→ 1],�A) to (P0, A0) via 0-assume.

To increase precision, we need to use the Dilemma Rule, a branch-and-merge
rule, in which the current abstract state is split into two (disjoint) abstract
states, 0-assume is applied to both abstract values, and the resulting abstract
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values are merged by performing a join. The steps of the Dilemma Rule are
shown schematically in Fig. 1(b) and described below.

In our example, the value of u9 is unknown in P0. Let B ∈ P be �P [u9 �→ 0];
thenB, the abstract complement ofB, is�P [u9 �→ 1]. Note that γ(B)∩γ(B) = ∅,
and γ(B) ∪ γ(B) = γ(�). The current abstract value (P0, A0) is split into

(P1, A1) = (P0, A0) � (B,�) and (P2, A2) = (P0, A0) � (B,�).
Now consider 0-assume on (P1, A1). Because u9 is false, and u4 is true, we can
conclude that u10 has to be true, using the integrity constraint u4⇔(u9 ∨ u10).
Because u10 holds and u10⇔(c0 < a1) ∈ I, A1 can be refined with the constraint
c0 − a1 < 0. Because a0 − c0 < 0 ∈ A1, a0 − a1 < 0 can be inferred. Similarly,
when performing 0-assume on (P2, A2), a0−a1 < 0 is inferred. Call the abstract
values computed by 0-assume (P ′

1, A
′
1) and (P ′

2, A
′
2), respectively. At this point,

the join of (P ′
1, A

′
1) and (P ′

2, A
′
2) is taken. Because a0−a1 < 0 is present in both

branches, it is retained in the join. The resulting abstract value is (P3, A3) =
([1, 1, 1, 1, 1, 1, 1, 1, ∗, ∗, ∗, ∗], {a0 − b0 < 0, a0 − c0 < 0, a1 − b1 < 0, a1 − c1 <
0, a2−a0 < 0, a0−a1 < 0}. Note that although P3 equals P0, A3 is strictly more
precise than A0 (i.e., A3 	 A0), and hence (P3, A3) is a semantic reduction of
(P0, A0) with respect to ψ.

Now suppose (P3, A3) is split using u11. Using reasoning similar to that
performed above, a1 − a2 < 0 is inferred on both branches, and hence so is
a0− a2 < 0. However, a0− a2 < 0 contradicts a2− a0 < 0; consequently, the ab-
stract value reduces to (⊥P ,⊥A) on both branches. Thus, As̃sume[ψ](�A) = ⊥A,
and hence ψ is unsatisfiable. In this way, As̃sume instantiated with the polyhe-
dral domain can be used to decide the satisfiability of a QF LRA formula. ��

The process of repeatedly applying the Dilemma Rule is called 1-assume. That
is, repeatedly some variable u ∈ U is selected whose truth value is unknown,
the current abstract value is split using B = �P [u �→ 0] and B = �P [u �→ 1],
0-assume is applied to each of these values, and the resulting abstract values
are merged via join (Fig. 1(b)). Different policies for selecting the next variable
on which to split can affect how quickly an answer is found; however, any fair
selection policy will return the same answer. The efficacy of the Dilemma Rule
is partially due to case-splitting; however, the real power of the Dilemma Rule
is due to the fact that it preserves information learned in both branches when a
case-split is “abandoned” at a join point.

The generalization of the 1-assume algorithm is called k-assume: repeatedly
some variable u ∈ U is selected whose truth value is unknown, the current
abstract value is split using B = �P [u �→ 0] and B = �P [u �→ 1]; (k–1)-assume
is applied to each of these values; and the resulting values are merged via join.
However, there is a trade-off: higher values of k give greater precision, but are
also computationally more expensive.

For certain abstract domains and logics, As̃sume[ψ](�A) is complete—i.e.,
with a high-enough value of k for k-assume, As̃sume[ψ](�A) always computes
the most-precise A value possible for ψ. However, our experiments show that
As̃sume[ψ](�A) has very good precision with k = 1 (see §5)—which jibes with
the observation that, in practice, with St̊almarck’s method for propositional



A Method for Symbolic Computation of Abstract Operations 181

Algorithm 1. As̃sume[ϕ](A)

1 〈I, uϕ〉 ← integrity(ϕ)
2 P ← �P [uϕ �→ 1]

3 (P̃ , Ã) ← k-assume[I]((P,A))

4 return Ã

Algorithm 2. 0-assume[I]((P,A))
1 repeat
2 (P ′, A′) ← (P,A)
3 foreach J ∈ I do
4 if J has the form u⇔ 
 then
5 (P,A) ← LeafRule(J, (P,A))
6 else
7 (P,A) ← InternalRule(J, (P,A))

8 until ((P,A) = (P ′, A′)) ‖ timeout
9 return (P,A)

Algorithm 3. k-assume[I]((P,A))
1 repeat
2 (P ′, A′) ← (P,A)
3 foreach u ∈ U such that P (u) = ∗ do
4 (P0, A0) ← (P,A)

5 (B,B) ← (�P [u �→ 0],�P [u �→ 1])
6 (P1, A1) ← (P0, A0) � (B,�)

7 (P2, A2) ← (P0, A0) � (B,�)
8 (P ′

1, A
′
1) ← (k–1)-assume[I]((P1, A1))

9 (P ′
2, A

′
2) ← (k–1)-assume[I]((P2, A2))

10 (P,A) ← (P ′
1, A

′
1)� (P ′

2, A
′
2)

11 until ((P,A) = (P ′, A′)) ‖ timeout
12 return (P,A)

validity (tautology) checking “a formula is either [provable with k = 1] or not a
tautology at all!” [18, p. 227].

3 Algorithm for As̃sume[ϕ](A)

This section presents our algorithm for computing As̃sume[ϕ](A) ∈ A, for ϕ ∈ L.
The assumptions of our framework are as follows:

1. There is a Galois connection C −−−→←−−−
α

γ
A between A and concrete domain C.

2. There is an algorithm to perform the join of arbitrary elements of A.
3. Given a literal l ∈ L, there is an algorithm μα̃ to compute a safe (overap-

proximating) “micro-α̃”—i.e., A′ = μα̃(l) such that γ(A′) ⊇ [[l]].
4. There is an algorithm to perform the meet of an arbitrary element of A with

an arbitrary element of {μα̃(l) | � ∈ literal(L)}.
Note that A is allowed to have infinite descending chains; because As̃sume works
from above, it is allowed to stop at any time, and the value in hand is an over-
approximation of the most precise answer.

Alg. 1 presents the algorithm that computes As̃sume[ϕ](A) for ϕ ∈ L and
A ∈ A. Line (1) calls the function integrity, which converts ϕ into integrity
constraints I by assigning a fresh Boolean variable to each subformula of ϕ,
using the rules described in Fig. 2. The variable uϕ corresponds to formula ϕ.
We use U to denote the set of Boolean variables created when converting ϕ to I.
Alg. 1 also uses a second abstract domain P , each of whose elements represents
a set of Boolean assignments in P(U → {0, 1}). For simplicity, in this paper P
is the Cartesian domain (U → {0, 1, ∗})⊥, but other more-expressive Boolean
domains could be used [35].

On line (2) of Alg. 1, an element of P is created in which uϕ is assigned the
value 1, which asserts that ϕ is true. Alg. 1 is parameterized by the value of k
(where k ≥ 0). Let γI((P,A)) denote γ((P,A)) ∩ [[I]]. The call to k-assume on
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ϕ := 
 
 ∈ literal(L)
uϕ ⇔ 
 ∈ I

Leaf

ϕ := ϕ1op ϕ2

uϕ ⇔(uϕ1 op uϕ2 ) ∈ I
Internal

Fig. 2. Rules used to convert a formula ϕ ∈ L into a set of integrity constraints I. op
represents any binary connective in L, and literal(L) is the set of atomic formulas and
their negations.

line (3) returns (P̃ , Ã), which is a semantic reduction of (P,A) with respect to I;
that is, γI((P̃ , Ã)) = γI((P,A)) and (P̃ , Ã) $ (P,A). In general, the greater the
value of k, the more precise is the result computed by Alg. 1. The next theorem
states that Alg. 1 computes an over-approximation of Assume[ϕ](A).

Theorem 1 ([36]). For all ϕ ∈ L, A ∈ A, if Ã = As̃sume[ϕ](A), then γ(Ã) ⊇
[[ϕ]] ∩ γ(A), and Ã $ A. ��

Alg. 3 presents the algorithm to compute k-assume, for k ≥ 1. Given the integrity
constraints I, and the current abstract value (P,A), k-assume[I]((P,A)) returns
an abstract value that is a semantic reduction of (P,A) with respect to I. The
crux of the computation is the inner loop body, lines (4)–(10), which implements
an analog of the Dilemma Rule from St̊almarck’s method [33].

The steps of the Dilemma Rule are shown schematically in Fig. 1(b). At
line (3) of Alg. 3, a Boolean variable u whose value is unknown is chosen. B =
�P [u �→ 0] and its complement B = �P [u �→ 1] are used to split the current
abstract value (P0, A0) into two abstract values (P1, A1) = (P,A) � (B,�) and
(P2, A2) = (P,A) � (B,�), as shown in lines (6) and (7).

The calls to (k–1)-assume at lines (8) and (9) compute semantic reductions
of (P1, A1) and (P2, A2) with respect to I, which creates (P ′

1, A
′
1) and (P ′

2, A
′
2),

respectively. Finally, at line (10) (P ′
1, A

′
1) and (P ′

2, A
′
2) are merged by performing

a join. (The result is labeled (P3, A3) in Fig. 1(b).)
The steps of the Dilemma Rule (Fig. 1(b)) are repeated until a fixpoint is

reached, or some resource bound is exceeded. The next theorem states that
k-assume[I]((P,A)) computes a semantic reduction of (P,A) with respect to I.

Theorem 2 ([36]). For all P ∈ P and A ∈ A, if (P ′, A′) =
k-assume[I]((P,A)), then γI((P ′, A′)) = γI((P,A)) and (P ′, A′) $ (P,A). ��

Alg. 2 describes the algorithm to compute 0-assume: given the integrity con-
straints I, and an abstract value (P,A), 0-assume[I]((P,A)) returns an abstract
value (P ′, A′) that is a semantic reduction of (P,A) with respect to I. It is
in this algorithm that information is passed between the component abstract
values P ∈ P and A ∈ A via propagation rules, like the ones shown in Figs. 3
and 4. In lines (4)–(7) of Alg. 2, these rules are applied by using a single integrity
constraint in I and the current abstract value (P,A).

Given J ∈ I and (P,A), the net effect of applying any of the propagation
rules is to compute a semantic reduction of (P,A) with respect to J ∈ I. The
propagation rules used in Alg. 2 can be classified into two categories:
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J = (u1 ⇔(u2 ∨ u3)) ∈ I P (u1) = 0

(P � �[u2 �→ 0, u3 �→ 0], A)
Or1

J = (u1 ⇔(u2 ∧ u3)) ∈ I P (u1) = 1

(P � �[u2 �→ 1, u3 �→ 1], A)
And1

Fig. 3. Boolean rules used by Alg. 2 in the call InternalRule(J, (P,A))

J = (u⇔ l) ∈ I P (u) = 1

(P,A � μα̃A(l))
PtoA-1

J = (u⇔ l) ∈ I P (u) = 0

(P,A � μα̃A(¬l))
PtoA-0

J = (u⇔ 
) ∈ I A � μα̃A(l) = ⊥A
(P � �[u �→ 0], A)

AtoP-0

Fig. 4. Rules used by Alg. 2 in the call LeafRule(J, (P,A))

1. Rules that apply on line (7) when J is of the form p⇔(q op r), shown in
Fig. 3. Such an integrity constraint is generated from each internal subfor-
mula of formula ϕ. These rules compute a non-trivial semantic reduction of
P with respect to J by only using information from P . For instance, rule
And1 says that if J is of the form p⇔(q ∧ r), and p is 1 in P , then we can
infer that both q and r must be 1. Thus, P � �[q �→ 1, r �→ 1] is a semantic
reduction of P with respect to J . (See Ex. 1, step 1.)

2. Rules that apply on line (5) when J is of the form u⇔ �, shown in Fig. 4. Such
an integrity constraint is generated from each leaf of the original formula ϕ.
This category of rules can be further subdivided into
(a) Rules that propagate information from abstract value P to abstract value

A; viz., rules PtoA-0 and PtoA-1. For instance, rule PtoA-1 states
that given J = u⇔ l, and P (u) = 1, then A � μα̃(l) is a semantic
reduction of A with respect to J . (See Ex. 1, steps 2 and 3.)

(b) Rule AtoP-0, which propagates information from abstract value A to
abstract value P . RuleAtoP-0 states that if J = (u⇔ �) and A�μα̃(l) =
⊥A, then we can infer that u is false. Thus, the value of P ��[u �→ 0] is
a semantic reduction of P with respect to J . (See Ex. 1, step 4.)

Alg. 2 repeatedly applies the propagation rules until a fixpoint is reached, or some
resource bound is reached. The next theorem states that 0-assume computes a
semantic reduction of (P,A) with respect to I.

Theorem 3 ([36]). For all P ∈ P , A ∈ A, if (P ′, A′) = 0-assume[I]((P,A)),
then γI((P

′, A′)) = γI((P,A)) and (P ′, A′) $ (P,A). ��

4 Instantiations

In this section, we describe instantiations of our framework for two logical-
language/abstract-domain pairs: QF BV/KS and QF LRA/Polyhedra. We say
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that an As̃sume algorithm is complete for a logic L and abstract domain A if it

is guaranteed to compute the best value Âssume[ϕ](A) for ϕ ∈ L and A ∈ A.
We give conditions under which the two instantiations are complete.

Bitvector Affine-Relation Domain (QF BV/KS). King and Søndergaard
[21] gave an algorithm for α̂ for an abstract domain of Boolean affine relations.
Elder et al. [12] extended the algorithm to arithmetic modulo 2w (i.e., bitvectors
of width w). Both algorithms work from below, making repeated calls on a SAT
solver (King and Søndergaard) or an SMT solver (Elder et al.), performing joins
to create increasingly better approximations of the desired answer. We call this
family of domains KS, and call the (generalized) algorithm α̂↑

KS.

Given a literal l ∈ QF BV, we compute μα̃KS(l) by invoking α̂↑
KS(l). That is,

we harness α̂↑
KS in service of As̃sumeKS, but only for μα̃KS, which means that

α̂↑
KS is only applied to literals. If an invocation of α̂↑

KS does not return an answer
within a specified time limit, we use �KS.

Alg. 1 is not complete for QF BV/KS. Let x be a bitvector of width 2, and

let ϕ = (x �= 0 ∧ x �= 1 ∧ x �= 2). Thus, Âssume[ϕ](�KS) = {x − 3 = 0}.
The KS domain is not expressive enough to represent disequalities. For instance,
μα̃(x �= 0) equals �KS. Because Alg. 1 considers only a single integrity constraint
at a time, we get As̃sume[ϕ](�KS) = μα̃(x �= 0)�μα̃(x �= 1)�μα̃(x �= 2) = �KS .

The current approach can be made complete for QF BV/KS by making
0-assume consider multiple integrity constraints during propagation (in the limit,
having to call μα̃(ϕ)). For the affine subset of QF BV, an alternative approach
would be to perform a 2w-way split on the KS value each time a disequal-
ity is encountered, where w is the bit-width—in effect, rewriting x �= 0 to
(x = 1∨ x = 2∨ x = 3). Furthermore, if there is a μAs̃sume operation, then the
second approach can be extended to handle all of QF BV: μAs̃sume[�](A) would
be used to take the current KS abstract value A and a literal �, and return an
over-approximation of As̃sume[�](A). All these approaches would be prohibitively
expensive. Our current approach, though theoretically not complete, works very
well in practice (see §5).
Polyhedral Domain (QF LRA/Polyhedra). The second instantiation that
we implemented is for the logic QF LRA and the polyhedral domain [8]. Because
a QF LRA disequality t �= 0 can be normalized to (t < 0∨t > 0), every literal l in
a normalized QF LRA formula is merely a half-space in the polyhedral domain.
Consequently, μα̃Polyhedra(l) is exact, and easy to compute. Furthermore, because
of this precision, the As̃sume algorithm is complete for QF LRA/Polyhedra. In
particular, if k = |ϕ|, then k-assume is sufficient to guarantee that As̃sume[ϕ](A)

returns Âssume[ϕ](A). For polyhedra, our implementation uses PPL [28].
The observation in the last paragraph applies in general: if μα̃A(l) is exact

for all literals l ∈ L, then Alg. 1 is complete for logic L and abstract domain A.

5 Experiments

Bitvector Affine-Relation Analysis (ARA). We compare two methods for
computing the abstract transformers for the KS domain for ARA [21]:
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Prog. Measures of size α̂↑ Performance

name instrs CFGs BBs brs WPDS t/o post* query

finger 532 18 298 48 110.9 4 0.266 0.015
subst 1093 16 609 74 204.4 4 0.344 0.016
label 1167 16 573 103 148.9 2 0.344 0.032
chkdsk 1468 18 787 119 384.4 16 0.219 0.031
convert 1927 38 1013 161 289.9 9 1.047 0.062
route 1982 40 931 243 562.9 14 1.281 0.046
logoff 2470 46 1145 306 621.1 16 1.938 0.063
setup 4751 67 1862 589 1524.7 64 0.968 0.047

Fig. 5.WPDS experiments (α̂↑). The columns show the number of instructions (instrs);
the number of procedures (CFGs); the number of basic blocks (BBs); the number of
branch instructions (brs); the times, in seconds, for WPDS construction with α̂↑

KS

weights, running post*, and finding one-vocabulary affine relations at blocks that end
with branch instructions (query). The number of basic blocks for which α̂↑

KS-weight
generation timed out is listed under “t/o”.

– the α̂↑-based procedure described in Elder et al. [12].
– the α̃-based procedure described in this paper (“α̃↓”), instantiated for KS.

Our experiments were designed to answer the following questions:

1. How does the speed of α̃↓ compare with that of α̂↑?
2. How does the precision of α̃↓ compare with that of α̂↑?

To address these questions, we performed ARA on x86 machine code, computing
affine relations over the x86 registers. Our experiments were run on a single core
of a quad-core 3.0 GHz Xeon computer running 64-bit Windows XP (SP2),
configured so that a user process has 4GB of memory. We analyzed a corpus of
Windows utilities using the WALi [20] system for weighted pushdown systems
(WPDSs). For the baseline α̂↑-based analysis we used a weight domain of α̂↑-
generated KS transformers. The weight on each WPDS rule encodes the KS
transformer for a basic block B of the program, including a jump or branch to a
successor block. A formula ϕB is created that captures the concrete semantics of
B, and then the KS weight for B is obtained by performing α̂↑(ϕB) (cf. Ex. 1).
We used EWPDS merge functions [24] to preserve caller-save and callee-save
registers across call sites. The post* query used the FWPDS algorithm [23].

Fig. 5 lists several size parameters of the examples (number of instructions,
procedures, basic blocks, and branches) along with the times for constructing
abstract transformers and running post*.2 Col. 6 of Fig. 5 shows that the calls
to α̂↑ during WPDS construction dominate the total time for ARA.

Each call to α̂↑ involves repeated invocations of an SMT solver. Although the
overall time taken by α̂↑ is not limited by a timeout, we use a 3-second timeout
for each invocation of the SMT solver (as in Elder et al. [12]). Fig. 5 lists the
number of such SMT solver timeouts for each benchmark. In case the invocation

2 Due to the high cost of the α̂↑-based WPDS construction, all analyses excluded the
code for libraries. Because register eax holds the return value from a call, library func-
tions were modeled approximately (albeit unsoundly, in general) by “havoc(eax)”.
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(a) (b)

Fig. 6. (a) Performance: α̃↓ vs. α̂↑. (b) Precision: % of control points at which α̃↓ has
as good or better precision as α̂↑; the lighter-color lower portion of each bar indicates
the % of control points at which the precision is strictly greater for α̃↓.

(a) (b)

Fig. 7. (a) Log-log scatter plot of transformer-construction time. (b) Semilog plot of
Z3 vs. α̃↓ on χd formulas.

of the SMT solver times out, α̂↑ is forced to return �KS in order to be sound.
(Consequently, it is possible for α̃↓ to return a more precise answer than α̂↑.)

The setup for the α̃↓-based analysis is the same as the baseline α̂↑-based
analysis, except that we call α̃↓ when calculating the KS weight for a basic block.
We use 1-assume in this experiment. Each basic-block formula ϕB is rewritten
to a set of integrity constraints, with ITE-terms rewritten as illustrated in Ex. 1.
The priority of a Boolean variable is its postorder-traversal number, and is used
to select which variable is used in the Dilemma Rule. We bound the total time
taken by each call to α̃↓ to a fixed timeout T. Note that even when the call to
α̃↓ times out, it can still return a sound non-�KS value. We ran α̃↓ using T = 1
sec, T = 0.4 secs, and T = 0.1 secs.
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Fig. 6(a) shows the normalized time taken for WPDS construction when us-
ing α̃↓ with T = 1 sec, T = 0.4 secs, and T = 0.1 secs. The running time is
normalized to the corresponding time taken by α̂↑; lower numbers are better.
WPDS construction using α̃↓ with T = 1 sec. is about 11.3 times faster than α̂↑

(computed as the geometric mean), which answers question 1.
Decreasing the timeout T makes the α̃↓ WPDS construction only slightly

faster: on average, going from T = 1 sec. to T = .4 secs. reduces WPDS construc-
tion time by only 17% (computed as the geometric mean). To understand this
behavior better, we show in Fig. 7(a) a log-log scatter-plot of the times taken by
α̂↑ versus the times taken by α̃↓ (with T = 1 sec.), to generate the transformers
for each basic block in the benchmark suite. As shown in Fig. 7(a), the times
taken by α̃↓ are bounded by 1 second. (There are a few calls that take more
than 1 second; they are an artifact of the granularity of operations at which we
check whether the procedure has timed out.) Most of the basic blocks take less
than 0.4 seconds, which explains why the overall time for WPDS construction
does not decrease much as we decrease T in Fig. 6(a). We also see that the α̂↑

times are not bounded, and can be as high as 50 seconds.
To answer question 2 we compared the precision of the WPDS analysis when

using α̃↓ with T equal to 1, 0.4, and 0.1 seconds with the precision obtained using
α̂↑. In particular, we compare the affine relations (i.e., invariants) computed by
the α̃↓-based and α̂↑-based analyses for each control point—i.e., the beginning of
a basic block that ends with a branch. Fig. 6(b) shows the percentage of control
points for which the α̃↓-based analysis computes a better (tighter) or equally
precise affine relation. On average, when using T= 1 sec, α̃↓-based analysis com-
putes an equally precise invariant at 76.9% of the control points (computed as
the arithmetic mean). Interestingly, the α̃↓-based analysis computes an answer
that is more precise compared to that computed by the α̂↑-based analysis. That
is not a bug in our implementation; it happens because α̂↑ has to return �KS

when the call to the SMT solver times out. In Fig. 6(b), the lighter-color lower
portion of each bar shows the percentage of control points for which α̃↓-based
analysis provides strictly more precise invariants when compared to α̂↑-based
analysis; on average, α̃↓-based analysis is more precise for 19.8% of the control
points (arithmetic mean, for T = 1 second). α̃↓-based analysis is less precise at
only 3.3% of the control points. Furthermore, as expected, when the timeout for
α̃↓ is reduced, the precision decreases.

Satisfiability Checking. The formula used in Ex. 2 is just one instance of a
family of unsatisfiable QF LRA formulas [25]. Let χd = (ad < a0) ∧

∧d−1
i=0 ((ai <

bi)∧ (ai < ci)∧ ((bi < ai+1)∨ (ci < ai+1))). The formula ψ in Ex. 2 is χ2; that is,
the number of “diamonds” is 2 (see Fig. 1(a)). We used the QF LRA/Polyhedra
instantiation of our framework to check whether α̃(χd) = ⊥ for d = 1 . . . 25
using 1-assume. We ran this experiment on a single processor of a 16-core 2.4
GHz Intel Zeon computer running 64-bit RHEL Server release 5.7. The semilog
plot in Fig. 7(b) compares the running time of α̃↓ with that of Z3, version
3.2 [11]. The time taken by Z3 increases exponentially with d, exceeding the
timeout threshold of 1000 seconds for d = 23. This corroborates the results of a
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similar experiment conducted by McMillan et al. [25], where the reader can also
find an in-depth explanation of this behavior.

On the other hand, the running time of α̃↓ increases linearly with d taking
0.78 seconds for d = 25. The cross-over point is d = 12. In Ex. 2, we saw
how two successive applications of the Dilemma Rule suffice to prove that ψ is
unsatisfiable. That explanation generalizes to χd: d applications of the Dilemma
Rule are sufficient to prove unsatisfiability of χd. The order in which Boolean
variables with unknown truth values are selected for use in the Dilemma Rule has
no bearing on this linear behavior, as long as no variable is starved from being
chosen (i.e., a fair-choice schedule is used). Each application of the Dilemma
Rule is able to infer that ai < ai+1 for some i.

We do not claim that α̃↓ is better than mature SMT solvers such as Z3. We do
believe that it represents another interesting point in the design space of SMT
solvers, similar in nature to the GDPLL algorithm [25] and the k-lookahead
technique used in the DPLL(�) algorithm [4].

6 Applications to Other Symbolic Operations

The symbolic operations of γ̂ and α̂ can be used to implement a number of other
useful operations, as discussed below. In each case, over-approximations result
if α̂ is replaced by α̃.

– The operation of containment checking, A1 $ A2, which is needed by anal-
ysis algorithms to determine when a post-fixpoint is attained, can be imple-
mented by checking whether α̂(γ̂(A1) ∧ ¬γ̂(A2)) equals ⊥.

– Suppose that there are two Galois connections G1 = C −−−→←−−−
α1

γ1 A1 and

G2 = C −−−→←−−−
α2

γ2 A2, and one wants to work with the reduced product of

A1 and A2 [7, §10.1]. The semantic reduction of a pair (A1, A2) can be per-
formed by letting ψ be the formula γ̂1(A1) ∧ γ̂2(A2), and creating the pair
(α̂1(ψ), α̂2(ψ)).

– Given A1 ∈ A1, one can find the most-precise value A2 ∈ A2 that over-
approximates A1 in A2 as follows: A2 = α̂2(γ̂1(A1)).

– Given a loop-free code fragment F , consisting of one or more blocks of pro-
gram statements and conditions, one can obtain a representation of its best
transformer by symbolically executing F to obtain a transition formula ψF ,
and then performing α̂(ψF ).

7 Related Work

Extensions of St̊almarck’s Method. Björk [3] describes extensions of
St̊almarck’s method to first-order logic. Like Björk, our work goes beyond the
classical setting of St̊almarck’s method [33] (i.e., propositional logic) and ex-
tends the method to more expressive logics, such as QF LRA or QF BV. How-
ever, Björk is concerned solely with validity checking, and—compared with the
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propositional case—the role of abstraction is less clear in his method. Our algo-
rithm not only uses an abstract domain as an explicit datatype, the goal of the
algorithm is to compute an abstract value A′ = As̃sume[ϕ](A).

Our approach was influenced by Granger’s method of using (in)equation solv-
ing as a way to implement semantic reduction and Assume as part of his tech-
nique of local decreasing iterations [16]. Granger describes techniques for per-
forming reductions with respect to (in)equations of the form x1 �� F (x1, . . . , xn)
and (x1 ∗ F (x1, . . . , xn)) �� G(x1, . . . , xn), where �� stands for a single relational
symbol of L, such as =, �=, <, ≤, >, ≥, or ≡ (arithmetical congruence). Our
framework is not limited to literals of these forms; all that we require is that for a
literal l ∈ L, there is an algorithm to compute an overapproximating value μα̃(l).
Moreover, Granger has no analog of the Dilemma Rule, nor does he present any
completeness results (cf. §4).
SMT Solvers. Most methods for SMT solving can be classified according to
whether they employ lazy or eager translations to SAT. (The SAT procedure
then employed is generally based on the DPLL procedure [10,9].) In contrast,
the algorithm for SMT described in this paper is not based on a translation to
SAT; instead, it generalizes St̊almarck’s method for propositional logic to richer
logics.

Lazy approaches abstract each atom of the input formula to a distinct propo-
sitional variable, use a SAT solver to find a propositional model, and then check
that model against the theory [1,13,11]. The disadvantage of the lazy approach
is that it cannot use theory information to prune the search. In contrast, our
algorithm is able to use theory-specific information to make deductions—in par-
ticular, in the LeafRule function (Fig. 4) used in Alg. 2. The use of theory-specific
information is the reason why our approach outperformed Z3, which uses the lazy
approach, on the diamond example (§5).

Eager approaches [5,34] encode more of the theory into the propositional
formula that is given to the SAT solver, and hence are able to constrain the
solution space with theory-specific information. The challenge in designing such
solvers is to ensure that the propositional formula does not blow up in size. In
our approach, such an explosion in the set of literals in the formula is avoided
because our learned facts are restricted by the abstract domain in use.

A variant of the Dilemma Rule is used in DPLL(�), and allows the theory
solver in a lazy DPLL-based SMT solver to produce joins of facts deduced along
different search paths. However, as pointed out by Bjørner et al. [4, §5], their
system is weaker than St̊almarck’s method, because St̊almarck’s method can
learn equivalences between literals.

Another difference between our work and existing approaches to SMT is the
connection presented in this paper between St̊almarck’s method and the com-
putation of best abstract operations for abstract interpretation.

Best Abstract Operations. Several papers about best abstract operations
have appeared in the literature [14,29,37,21,12]. Graf and Säıdi [14] showed
that decision procedures can be used to generate best abstract transformers
for predicate-abstraction domains. Other work has investigated more efficient
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methods to generate approximate transformers that are not best transformers,
but approach the precision of best transformers [2,6].

Several techniques work from below [29,21,12]—performing joins to incorpo-
rate more and more of the concrete state space—which has the drawback that if
they are stopped before the final answer is reached, the most-recent approxima-
tion is an under-approximation of the desired value. In contrast, our technique
works from above. It can stop at any time and return a safe answer.

Yorsh et al. [37] developed a method that works from above to perform
As̃sume[ϕ](A) for the kind of abstract domains used in shape analysis (i.e.,
“canonical abstraction” of logical structures [30]). Their method has a splitting
step, but no analog of the join step performed at the end of an invocation of the
Dilemma Rule. In addition, their propagation rules are much more heavyweight.

Template Constraint Matrices (TCMs) are a parametrized family of linear-
inequality domains for expressing invariants in linear real arithmetic. Sankara-
narayanan et al. [31] gave a parametrized meet, join, and set of abstract trans-
formers for all TCM domains. Monniaux [26] gave an algorithm that finds the
best transformer in a TCM domain across a straight-line block (assuming that
concrete operations consist of piecewise linear functions), and good transform-
ers across more complicated control flow. However, the algorithm uses quan-
tifier elimination, and no polynomial-time elimination algorithm is known for
piecewise-linear systems.

Cover Algorithms. Gulwani and Musuvathi [17] defined the “cover problem”,
which addresses approximate existential quantifier elimination: Given a formula
ϕ in logic L, and a set of variables V , find the strongest quantifier-free formula ϕ
in L such that [[∃V : ϕ]] ⊆ [[ϕ]]. They presented cover algorithms for the theories
of uninterpreted functions and linear arithmetic, and showed that covers exist
in some theories that do not support quantifier elimination.

The notion of a cover has similarities to the notion of symbolic abstraction, but
the two notions are distinct. Our technical report [36] discusses the differences
in detail, describing symbolic abstraction as over-approximating a formula ϕ
using an impoverished logic fragment, while a cover algorithm only removes
variables V from the vocabulary of ϕ. The two approaches yield different over-
approximations of ϕ, and the over-approximation obtained by a cover algorithm
does not, in general, yield suitable abstract values and abstract transformers.
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Abstract. Craig interpolation is a well known method of abstraction
successfully used in both hardware and software model checking. The
logical strength of interpolants can affect the quality of approximations
and consequently the performance of the model checkers. Recently, it was
observed that for the same resolution proof a complete lattice of inter-
polants ordered by strength can be derived. Most state-of-the-art model
checking techniques based on interpolation subject the interpolants to
constraints that ensure efficient verification as, for example, in transition
relation approximation for bounded model checking, counterexample-
guided abstraction refinement and function summarization for software
update checking. However, in general, these verification-specific con-
straints are not satisfied by all possible interpolants.

The paper analyzes the restrictions within the lattice of interpolants
under which the required constraints are satisfied. This enables inves-
tigation of the effect of the strength of interpolants on the particular
techniques, while preserving their soundness. As an additional benefit,
combination of this result with proof manipulation procedures allows the
use of optimized solvers to generate interpolants of different strengths for
various model checking techniques.

1 Introduction

Craig interpolants [4] are commonly used for abstraction in hardware and soft-
ware model checking. Recently, it was shown [5] that for the same resolution
proof a complete lattice of interpolants ordered by the implication relation, i.e.,
strength, can be systematically derived. The strength of the interpolants may
influence speed of convergence of the model checking algorithms as well as the
amount of spurious behaviors that require refinement. The result in [5] shows
that there are interpolants of different strengths to choose from. However, [5]
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opens two new research problems. First, it is not clear how to choose the right
interpolation algorithm for a particular model checking application. Second, if a
concrete application puts additional constraints on the interpolants, it is unclear
if the choice among interpolants of various strengths is restricted and how much.

This paper presents a theoretical solution to the second problem. We iden-
tify two classes of common interpolation-based model checking approaches that
indeed put additional requirements on the interpolants. Then we formally deter-
mine and prove the restrictions for both classes on the choice of the interpolants
strength under which these requirements are satisfied.

The first class of approaches concerns simultaneous abstraction by multiple
interpolants. In this scenario, we have an unsatisfiable formula in the form of a
conjunction of subformulae. From the proof of unsatisfiability, we compute inter-
polants abstracting the different conjuncts. The additional requirement (Req1 )
is ensuring unsatisfiability of the original formula with multiple conjuncts re-
placed by the corresponding interpolants. A notable example of this setting is
the approach presented in [8], where the abstract transition relation is itera-
tively refined using interpolants. The authors notice the requirement imposed
on the interpolants, and observe it satisfied while implicitly assuming the use
of the interpolation algorithm of [11]. However, [8] is restricted to a single in-
terpolant generated by this algorithm. Our solution overcomes this limitation
by showing formally how to generate interpolants of different strength that sat-
isfy the requirement. Interestingly, we discovered that not all interpolants do.
Another application is software update checking, where the formula represents
the original program with different conjuncts representing different functions as,
e.g., in [17]. When a subset of functions is updated due to code changes and
fixes, this approach checks if the interpolants remain valid abstractions of the
new function bodies. This is a local check to show that a formula representing
the new function body still implies the corresponding interpolant. If the check
succeeds, unsatisfiability of the formula with multiple conjuncts replaced by the
corresponding interpolants (Req1) provides correctness of the updated system
without the need to check the entire formula of the updated system again.

The second class of model checking methods is typical of counterexample-
guided abstraction refinement (CEGAR) [3]. Given a spurious error trace, the
goal is to annotate nodes of an abstract reachability tree with an inductive
sequence of formulae that together rule out the trace. The spurious error trace
is represented by an unsatisfiable path formula, constructed from the SSA form
of the trace. An interpolant is computed from the prefix and suffix of the trace
for every location along the error trace. Here, the additional requirement (Req2 )
is that the resulting sequence of interpolants is inductive, i.e., that for every
location, the current interpolant conjuncted with the precise representation of
the instruction at the location implies the next interpolant along the trace. For
example, this reasoning is crucial for the refinement techniques used in Blast [1],
Impact [13] and Wolverine [9]. In general, however, such a sequence is not
inductive. Therefore, the authors restrict themselves to specific proof systems to
ensure this property [7] ruling out not only the choice of interpolants of varying
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strength but also the possibility of using state-of-the-art solvers. Other authors
even require multiple solver calls to ensure a similar property [6].

Contribution. The main contribution is a theoretical formulation and proof of
the constraints within the lattice of interpolants, such that Req1 and Req2 are
satisfied.

In particular, building on [5], this work analyzes a whole family of interpo-
lation procedures from which the lattice is generated. The analysis yields two
interesting results: (1) we prove that every member of the family that produces
interpolants stronger than the ones given by Pudlák’s algorithm [15] complies
with Req1, and (2) we identify a subset, within the family of procedures (by
means of the logical constraints that characterize it), that satisfies Req2. These
results allow for the systematic study of how interpolants strength affects state-
of-the-art model checking techniques, while preserving their soundness.

Since our results are not limited to the use of an ad-hoc proof system, any
state-of-the-art solver can be chosen to generate proofs (if needed, post-processed
by, e.g., the techniques of [2]) from which the interpolants are computed. Addi-
tionally, proof manipulation procedures, as in [16], can be applied to alter the
size and the strength of interpolants in the various model checking applications.

2 Preliminaries

2.1 Craig Interpolation

Craig interpolants [4], since the seminal work by McMillan [10], have been ex-
tensively applied in SAT-based model checking and predicate abstraction [12].
Formally, given an unsatisfiable conjunction of formulae A ∧ B, an interpolant
I is a formula that is implied by A (i.e., A → I), is unsatisfiable in conjunction
with B (i.e., B ∧ I → ⊥) and is defined on the common language of A and B.
The interpolant I can be thought of as an over-approximation of A that still
conflicts with B.

Several state-of-the art approaches exist to generate interpolants in an auto-
mated manner; the most successful techniques derive an interpolant for A ∧ B
(in certain proof systems) from a proof of unsatisfiability of the conjunction.
This approach grants two important benefits: the generation can be achieved
in linear time w.r.t. the proof size, and interpolants themselves only contain
information relevant to determine the unsatisfiability of A ∧ B. In particular,
Pudlák [15] investigates interpolation in the context of resolution systems for
propositional logic, while McMillan [11] addresses both propositional logic and
a quantifier free combination of the theories of uninterpreted functions and lin-
ear arithmetic. All these techniques adopt recursive algorithms, which initially
set partial interpolants for the axioms. Then, following the proof structure, they
deduce a partial interpolant for each conclusion from those of the premises. The
partial interpolant of the overall conclusion is the interpolant for the formula.
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2.2 Resolution Proofs

Assuming a finite set of propositional variables, a literal is a variable, either with
positive (p) or negative (p) polarity. A clause C is a finite disjunction of literals;
a formula ϕ in conjunctive normal form (CNF) is a finite conjunction of clauses.
A resolution proof of unsatisfiability (or refutation) of a formula φ in CNF is a
tree such that the leaves are the clauses of φ, the root is the empty clause ⊥ and
the inner nodes are clauses generated by means of the resolution rule:

C+ ∨ p C− ∨ p

C+ ∨ C−

where C+ ∨ p and C− ∨ p are the antecedents, C+ ∨ C− the resolvent and p is
the pivot of the resolution step.

2.3 Strength of Interpolants

D’Silva et al. [5] generalize the algorithms by Pudlák [15] and McMillan [11]
(as well as the approach dual to McMillan’s, which we will call McMillan′) for
propositional resolution systems by introducing the notion of labeled interpo-
lation system, focusing on the concept of interpolant strength (a formula φ is
stronger than χ whenever φ → χ). They present an analysis and a comparison
of the systems corresponding to the three algorithms, together with a method
to combine labeled systems in order to obtain weaker or stronger interpolants
from a given proof of unsatisfiability. Throughout the paper we will adopt the
notation of [5], adapted as necessary.

Given a refutation of a formula A ∧ B, a variable p can appear as literal only
in A, only in B or in both conjuncts; p is respectively said to have class A, B or
AB. The authors define a labeling L as a mapping that assigns a color among
{a, b, ab} independently to each variable in each clause (since a variable cannot
have two occurrences in a clause, this is equivalent to coloring literals). The set
of possible labelings is restricted by ensuring that class A variables receive color
a and class B variables receive color b; freedom is left for AB variables to be
colored either a, b or ab.

In [5], a labeled interpolation system is defined as a procedure Itp (shown in
Table 1) that, given A, B, a refutation R of A ∧ B and a labeling L, outputs a
partial interpolant ItpL(A, B, R, C) for any clause C in R; this depends on the
clause being in A or B (if leaf) and on the color of the pivot associated with
the resolution step (if inner node). ItpL(A, B, R) represents the interpolant for
A ∧ B, that is ItpL(A, B, R) � ItpL(A, B, R, ⊥)1. We will omit the parameters
whenever clear from the context.

In Table 1, C 
 α denotes the restriction of a clause C to the literals of
color α. p : α indicates that variable p has color α. By C[I] we represent that
clause C has a partial interpolant I. I+, I− and I are the partial interpolants
respectively associated with the two antecedents and the resolvent of a resolution
step: I+ � ItpL(C+ ∨ p), I− � ItpL(C− ∨ p), I � ItpL(C+ ∨ C−).
1 As customary, we use � to characterize a definition, while ≡ a correspondence.
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Table 1. Labeled interpolation system ItpL

Leaf: C [I ]

I =
{

C
 b if C ∈ A
¬(C
 a) if C ∈ B

Inner node: C+ ∨ p : α [I+] C− ∨ p : β [I−]
C+ ∨ C− [I ]

I =

{
I+ ∨ I− if α � β = a
I+ ∧ I− if α � β = b
(I+ ∨ p) ∧ (I− ∨ p) if α � β = ab

Table 2. Pudlák’s interpolation system ItpP

Leaf: C [I ]

I =
{

⊥ if C ∈ A
� if C ∈ B

Inner node: C+ ∨ p : α [I+] C− ∨ p : α [I−]
C+ ∨ C− [I ]

I =

{
I+ ∨ I− if α = a
I+ ∧ I− if α = b
(I+ ∨ p) ∧ (I− ∨ p) if α = ab

ItpM′

ItpM

ItpP

	 	

	 	

ItpL′
ItpL

ItpL⇓L′

ItpL⇑L′

Fig. 1. Lattice of labeled interpolation systems

An operator � allows to determine the color of a pivot p, taking into ac-
count that p might have different colors α and β in the two antecedents: � is
idempotent, symmetric and defined by a � b � ab, a � ab � ab, b � ab � ab.

The systems corresponding to McMillan, Pudlák and McMillan′’s interpola-
tion algorithms will be referred to as ItpM , ItpP , ItpM ′ . ItpL subsumes ItpM ,
ItpP and ItpM ′ , obtained as special cases by coloring all the occurrences of AB
variables with b, ab and a, respectively (compare, for example, Tables 1 and 2).

A total order � is defined over the colors as b � ab � a, and extended to
a partial order over labeled systems: ItpL � ItpL′ if, for every clause C and
variable p in C, L(p, C) � L′(p, C). This allows the authors to directly compare
the logical strength of the interpolants produced by two systems. In fact, for any
refutation R of a formula A ∧ B and labelings L, L′ such that L � L′, we have:
ItpL(A, B, R) → ItpL′(A, B, R) and we say that ItpL is stronger than ItpL′ .
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Two interpolation systems ItpL and ItpL′ can generate new systems ItpL⇑L′

and ItpL⇓L′ by combining the labelings L and L′ in accordance with a re-
lation �: (L ⇑ L′)(p, C) � max�{L(p, C), L′(p, C)} and (L ⇓ L′)(p, C) �
min�{L(p, C), L′(p, C)}. The authors remark that the collection of labeled sys-
tems over a refutation, together with the order � and the operators ⇑, ⇓, rep-
resent a complete lattice, where ItpM is the greatest element and ItpM ′ is the
least, with ItpP being in between (see Fig. 1).

3 Simultaneous Abstraction with Interpolation

This section analyzes simultaneous abstraction of the conjuncts of an unsatis-
fiable formula by means of multiple interpolants. The requirement (Req1) is to
guarantee that the formula obtained by replacing the conjuncts with the re-
spective interpolants remains unsatisfiable2. We formally describe the problem,
proving that the requirement is satisfied if the interpolants are generated using
Pudlák’s interpolation system, and later generalize the result to any interpola-
tion system which is stronger than Pudlák’s. We conclude by illustrating the
applications to model checking.

3.1 Problem Description

As input, we assume an unsatisfiable formula φ in CNF, such that φ � φ1∧. . .∧φn

and each φi (a partition) is a conjunction of clauses. Given a refutation R of φ
and a sequence of labeled interpolation systems ItpL1 , . . . , ItpLn , we compute a
sequence of interpolants I1, . . . , In from R. Viewing φ as an unsatisfiable con-
junction of the form A ∧ B, each Ii is obtained by setting φi to A and all the
other φj to B (Ii � ItpLi(φi, φ1 ∧ . . . ∧ φi−1 ∧ φi+1 ∧ . . . ∧ φn)). These n ways
of splitting the formula φ into A and B will be referred to as configurations. We
prove that I1 ∧ . . . ∧ In → ⊥ (requirement Req1), if for each i: ItpLi ≡ ItpP

3,
and then generalize to any sequence of interpolation systems stronger than ItpP .

3.2 Proof for Pudlák’s System

Pudlák’s system is symmetric, i.e., ItpP (φ1, φ2) = ¬ItpP (φ2, φ1). Thus for n = 2,
I1 = ¬I2; it follows that I1∧I2 → ⊥. We will prove that Req1 holds for n = 3 and
can be extended to an arbitrary number of partitions n. Table 3 shows the class
and the color that a variable p assumes in the three configurations, depending
on presence of p in the three partitions.

Lemma 1. For Pudlák’s interpolation system, I1 ∧ I2 ∧ I3 → ⊥.
2 In [8], a notion of symmetric interpolant overlapping with Req1 is used. We avoid

this name for its easy confusion with symmetry of interpolants, a known property
of the interpolants generated by ItpP .

3 Recall that ItpP is applied to n distinct configurations, so it may be associated with
different labelings for different values of i.
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Table 3. Variables coloring in ItpP for n = 3

p in ? Variable class, color for each configuration
A � φ1 , B � φ2 ∧ φ3 A � φ2 , B � φ1 ∧ φ3 A � φ3 , B � φ1 ∧ φ2

φ1 A, a B, b B, b
φ2 B, b A, a B, b
φ3 B, b B, b A, a
φ1, φ2 AB, ab AB, ab B, b
φ1, φ3 AB, ab B, b AB, ab
φ2, φ3 B, b AB, ab AB, ab
φ1, φ2, φ3 AB, ab AB, ab AB, ab

Proof (by structural induction). We show that for any clause C in the refutation,
the conjunction of its partial interpolants in the three configurations is unsat-
isfiable. In accordance with Tables 1, 2, we refer to the partial interpolants of
the antecedents as I+ and I− with a subscript i to identify the corresponding
configuration.
Base case (leaf). A clause C can belong either to φ1, φ2 or φ3. In each case the
clause belongs to A in one configuration and to B in the other two configura-
tions; this implies that the conjunction of its partial interpolants contains one
⊥ element (see Table 2), which makes the conjunction unsatisfiable.
Inductive step (inner node). The inductive hypothesis (i.h.) consists of I+

1 ∧
I+

2 ∧ I+
3 → ⊥, I−

1 ∧ I−
2 ∧ I−

3 → ⊥. A pivot p can either be local to a partition
or shared by at least two partitions. If local, it has color a in one configuration
and b in all the others; let us assume w.l.o.g. that p is local to φ1. In ItpP the
partial interpolants for the three configurations are I+

1 ∨ I−
1 , I+

2 ∧ I−
2 , I+

3 ∧ I−
3 :

(I+
1 ∨ I−

1 ) ∧ I+
2 ∧ I−

2 ∧ I+
3 ∧ I−

3 ↔
(I+

1 ∧ I+
2 ∧ I−

2 ∧ I+
3 ∧ I−

3 ) ∨ (I−
1 ∧ I+

2 ∧ I−
2 ∧ I+

3 ∧ I−
3 ) →i.h. ⊥

If shared, p has color b in (at most) one configuration and ab in the other ones.
Let us assume w.l.o.g. that p is shared between φ2 and φ3. The three partial
interpolants are I+

1 ∧ I−
1 , (I+

2 ∨ p) ∧ (I−
2 ∨ p), (I+

3 ∨ p) ∧ (I−
3 ∨ p):

I+
1 ∧ I−

1 ∧ (I+
2 ∨ p) ∧ (I−

2 ∨ p) ∧ (I+
3 ∨ p) ∧ (I−

3 ∨ p) →∨introduction

(I+
1 ∨ p) ∧ (I−

1 ∨ p) ∧ (I+
2 ∨ p) ∧ (I−

2 ∨ p) ∧ (I+
3 ∨ p) ∧ (I−

3 ∨ p) ↔
(p ∨ (I+

1 ∧ I+
2 ∧ I+

3 )) ∧ (p ∨ (I−
1 ∧ I−

2 ∧ I−
3 )) →resolution

(I+
1 ∧ I+

2 ∧ I+
3 ) ∨ (I−

1 ∧ I−
2 ∧ I−

3 ) →i.h. ⊥

��
Lemma 1 can be extended to an arbitrary number of partitions:

Theorem 1. For Pudlák’s interpolation system, I1 ∧ . . . ∧ In → ⊥.
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Proof. Proof by structural induction as in Lemma 1.
Base case (leaf). As in the proof of Lemma 1, with n partitions instead of 3.
Inductive step (inner node). If the pivot p is local to a partition, the same
argumentation of the proof of Lemma 1 holds. If p is shared, it might assume
colors b (possibly in several configurations) or ab. Multiple applications of the
∨introduction rule and one resolution step yield the result. ��

3.3 Proof Generalization

Now we generalize Theorem 1 to a family of sequences of interpolation systems.

Theorem 2. For any sequence of interpolation systems ItpL1, . . . , ItpLn, s.t.
every ItpLi is stronger than ItpP , I1 ∧ . . . ∧ In → ⊥. (see Figure 2).

Proof. Let Ĩi be ItpP (φi, φ1 ∧ . . . ∧ φi−1 ∧ φi+1 ∧ . . . ∧ φn); we have that Ii → Ĩi

(recall the partial order on systems defined in §2.3). This implies I1 ∧ . . . ∧ In →
Ĩ1 ∧ . . . ∧ Ĩn, which in turn implies ⊥. ��

The result does not necessary hold for systems weaker than ItpP . For example,
let us consider ItpM ′ . A simple counterexample shows that I1 ∧. . .∧In → ⊥ does
not hold even for a trivial formula with only two partitions; let φ1 � (p ∨ q) ∧ r,
φ2 � (p ∨ r) ∧ q:

Configuration A � φ1 , B � φ2: Configuration A � φ2 , B � φ1:

p ∨ q [⊥] p ∨ r [p ∧ r]
q ∨ r [p ∧ r] r [⊥]

q [p ∧ r] q [q]
⊥ [(p ∧ r) ∨ q]

p ∨ q [p ∧ q] p ∨ r [⊥]
q ∨ r [p ∧ q] r [r]

q [(p ∧ q) ∨ r] q [⊥]
⊥ [(p ∧ q) ∨ r]

Clearly, the interpolants (p∧r)∨q and (p∧q)∨r are not mutually unsatisfiable:
a partial model is q, r.

3.4 Application to Model Checking

We provide two examples of model checking algorithms, where the above setting
occurs. In [8], the authors present an algorithm for iterative refinement of an
abstraction of a transition relation. Initially, a coarse abstraction of the transition
relation T̂0 ≡ true is used. The abstraction T̂i is used to check reachability of
error states represented by a predicate ψ from initial states represented by a
predicate U . If error states are unreachable using the abstract transition relation,
the system is safe. Otherwise, we have a trace from an initial state to an error
state in T̂i of length n, for some n. Then, reachability of the error states in n
steps is checked using the precise transition relation T . For this purpose, a precise
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ItpM′

ItpM

ItpP

ItpLi

Fig. 2. The interpolation
systems stronger than ItpP

(colored area)
Fig. 3. Update check of a program with functions f2,
f4 changed to f2’, f4’

bounded model checking formula is constructed and checked for satisfiability4:

U 〈0〉 ∧ T 〈0〉 ∧ T 〈1〉 ∧ . . . ∧ T 〈n−1〉 ∧ ψ〈n〉

If satisfiable, a real error is found and the error trace is extracted from the sat-
isfying assignment. If unsatisfiable, the corresponding interpolants are extracted
from the refutation and used to strengthen the abstraction:

T̂i+1 � T̂i ∧ I
〈0〉
1 ∧ I

〈−1〉
2 ∧ . . . ∧ I〈−n+1〉

n

The fact that T̂i+1 → I
〈−j+1〉
j , for 1 ≤ j ≤ n, and the requirement Req1 yield:

U 〈0〉 ∧ T̂
〈0〉
i+1 ∧ T̂

〈1〉
i+1 ∧ . . . ∧ T̂

〈n−1〉
i+1 ∧ ψ〈n〉 → ⊥

So the new transition relation T̂i+1 does not contain any error trace of length n
and it is a tighter abstraction than T̂i. For this reason, the algorithm terminates
for finite state systems if Req1 holds. Otherwise, termination is not guaranteed.

Another example concerns software update checking. Figure 3 depicts a sit-
uation where a program is being updated. Under a suitable encoding (e.g., as
in [17]), safety of the program (w.r.t. assertion violation) is equivalent to unsatis-
fiability of a formula of the form φmain∧φf1∧φf2∧φf3∧φf4, where each conjunct
represents one of the functions main, f1, f2, f3, f4. If the original program is
safe, the formula is unsatisfiable and we can generate interpolants Imain, If1,
If2, If3, If4. The requirement Req1 yields Imain ∧ If1 ∧ If2 ∧ If3 ∧ If4 → ⊥ and
thus also φmain ∧ φf1 ∧ If2 ∧ φf3 ∧ If4 → ⊥. Now, to prove safety of the updated
program, it suffices to show that φf2′ → If2 and φf4′ → If4. In other words,
that the abstractions If2 and If4 of functions f2 and f4 are still valid abstrac-
tions for the changed functions f2’ and f4’. Note that this is a local and thus
4 In accordance with [8], we expect the transition relation to be a relation over state

variables and their primed versions for the next state values and we use superscript
〈i〉 to indicate addition of i primes (or removal if i is negative).
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computationally cheap check. Without the requirement Req1, the whole formula
for the entire updated program would have to be constructed and checked again,
which could require many more computational resources.

Theorem 2 offers the choice of interpolation systems generating interpolants
of different strength satisfying Req1. In this second example, the benefit of a
stronger interpolant is a tighter abstraction, i.e., the interpolant more closely
reflects the actual behavior of the corresponding function. On the other hand,
a weaker interpolant is more permissive. So it is more likely to remain a valid
abstraction, when the corresponding function gets updated.

4 Inductive Sequence of Interpolants

This section analyzes the generation of a sequence of interpolants from the con-
juncts of an unsatisfiable formula; the requirement (Req2) is to guarantee that
the sequence is inductive [7]. We formally describe the problem, proving that the
requirement is satisfied if the interpolants are produced using Pudlák’s interpo-
lation system, and later generalize the result to a particular family of systems
in the lattice. We conclude by illustrating the applications to model checking.

4.1 Problem Description

As input, we assume an unsatisfiable formula φ in CNF, such that φ � φ1 ∧
. . . ∧ φn and each φi is a conjunction of clauses. Given a refutation R of φ
and a sequence of labeled interpolation systems ItpL0 , . . . , ItpLn , we compute a
sequence of interpolants I0, I1, . . . , In from R; Ii is obtained by setting φ1∧. . .∧φi

to A and φi+1∧. . .∧φn to B (Ii � ItpLi(φ1∧. . .∧φi, φi+1∧. . .∧φn)), in particular
I0 ≡ ItpL0(�, φ) ≡ � and In ≡ ItpLn(φ, �) ≡ ⊥. These ways of splitting the
formula φ into A and B will be referred to as configurations.

We prove that I0, I1, . . . , In is an inductive sequence of interpolants: for every
i, Ii ∧ φi+1 → Ii+1 holds (requirement Req2) if, for every i, ItpLi ≡ ItpP (as in
the previous setting, ItpP can be associated with different labelings for different
values of i). Then we generalize to a family of sequences of interpolation systems.

Notice that, for a given i, only two configurations need to be taken into ac-
count, the first associated with Ii (A � φ1 ∧ . . . ∧ φi, B � φi+1 ∧ . . . ∧ φn), the
second with Ii+1 (A � φ1 ∧ . . . ∧ φi+1, B � φi+2 ∧ . . . ∧ φn); φi+1 is the only
subformula shared between A and B.

Since the proof is independent of i, to simplify the notation we will represent
φ1∧. . .∧φi as X , φi+1 as S, φi+2 ∧. . .∧φn as Y (so that the formula is X∧S∧Y ),
Ii as I, Ii+1 as J and Ii ∧ φi+1 → Ii+1 as I ∧ S → J .

4.2 Proof for Pudlák’s System

Theorem 3. For Pudlák’s interpolation system, I ∧ S → J .
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Table 4. Variables coloring for Definition 1

p in ? Variable class, color for each configuration
A � X , B � S ∧ Y A � X ∧ S , B � Y

X A, a A, a
S A, a B, b
Y B, b B, b
X, S AB, α ∈ {a, b, ab} A, a
S, Y B, b AB, β ∈ {a, b, ab}
X, Y AB, γ1 ∈ {a, b, ab} AB, γ2 ∈ {a, b, ab}
X, S, Y AB, δ1 ∈ {a, b, ab} AB, δ2 ∈ {a, b, ab}

Proof. By the above definitions, I ≡ Itp(X, S ∧ Y ) and J ≡ Itp(X ∧ S, Y ) =
¬Itp(Y, X ∧S) (by symmetry of Pudlák’s system). Denoting K � Itp(S, X ∧Y ),
Lemma 1 states that I ∧ K ∧ ¬J → ⊥. Since S → K, then I ∧ S ∧ ¬J → ⊥, that
is I ∧ S → J . ��

4.3 Proof Generalization

We will now prove that I ∧ S → J holds in all the sequences of interpolation
systems that comply with particular coloring restrictions. As shown in Table 4,
two configurations are to be considered, which share the conjunct S. By C
1,σ

and C 
2,σ we denote the restriction of a clause C to the literals of color σ
according to the labeling of configurations 1 and 2, respectively.

To simplify the proofs we initially enforce a set of constraints, so that the
color taken by the occurrence of a variable in a clause in the two configurations
is consistent; we will later show that the result still holds if the constraints are
relaxed.

Definition 1 (Coloring constraints). We define a set of coloring constraints
(CC) over Table 4 as follows: α = a, β = b, γ1 = γ2, δ1 = δ2.

Lemma 2. I ∧ S → J , assuming the coloring constraints of Definition 1.

Proof (by structural induction). We prove that, for any clause C in a refutation
of X ∧ S ∧ Y , fC ∧ I(C) ∧ S ∧ ¬J(C) → ⊥, where fC is an additional constraint
(to be determined), dependent on C, that becomes empty at the end of the proof
(f⊥ ≡ �). For simplicity we drop the parameter C in I, J . I+, I− are defined
as in the previous setting, similarly J+ and J−.
Base case (leaf). Case splitting on C (refer to Table 4):

C ∈ X : I ≡ C
1,b and J ≡ C
2,b

C ∈ S : I ≡ ¬(C
1,a) and J ≡ C
2,b

C ∈ Y : I ≡ ¬(C
1,a) and J ≡ ¬(C
2,a)

We construct fC in order to simultaneously satisfy the following conditions:

C ∈ X : fC ∧ C
1,b ∧S ∧ ¬(C
2,b) → ⊥
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C ∈ S : fC ∧ ¬(C
1,a) ∧ S ∧ ¬(C
2,b) → ⊥
C ∈ Y : fC ∧ ¬(C
1,a) ∧ S ∧ C
2,a→ ⊥
The CC constraints yield C
1,b ∧¬(C
2,b) → ⊥ and ¬(C
1,a) ∧ C
2,a→ ⊥; as for
¬(C
1,a) ∧ ¬(C
2,b), it “counteracts” the literals of S with variables in X, S and
S, Y and X, S, Y (colored a or b). The literals left are those whose variables are
in S (denoted by C
S) and those in X, S, Y colored ab (denoted by C
XSY

ab ); it
is thus sufficient to set fC � ¬(C
S ∨C
XSY

ab ).
Inductive step (inner node). The inductive hypothesis (i.h.) provides that
f(C+∨p) ∧ I+ ∧ S ∧ ¬J+ → ⊥ and f(C−∨p) ∧ I− ∧ S ∧ ¬J− → ⊥.
Now fC ≡ f(C+∨C−), that is ¬((C+ ∨ C−)
S) ∧ ¬((C+ ∨ C−)
XSY

ab ).
We have:

fC → fC+ ∧ fC− (1)

since ¬((C+ ∨ C−)
S) ↔ ¬(C+
S) ∧ ¬(C−
S) and (C+
XSY
ab ) ∨ (C−
XSY

ab ) →
((C+ ∨ C−)
XSY

ab ) 5.
Case splitting based on the presence of the pivot p in X/S/Y (see Table 4):
Case 1 (p in X).

fC ∧ S ∧ I ∧ ¬J ↔
fC ∧ S ∧ (I+ ∨ I−) ∧ ¬(J+ ∨ J−) ↔
fC ∧ S ∧ (I+ ∨ I−) ∧ ¬J+ ∧ ¬J− ↔

(fC ∧ S ∧ I+ ∧ ¬J+ ∧ ¬J−) ∨ (fC ∧ S ∧ I− ∧ ¬J− ∧ ¬J+) →
(fC ∧ S ∧ I+ ∧ ¬J+) ∨ (fC ∧ S ∧ I− ∧ ¬J−) →(1)

(fC+ ∧ S ∧ I+ ∧ ¬J+) ∨ (fC− ∧ S ∧ I− ∧ ¬J−) →(2)

(f(C+∨p) ∧ S ∧ I+ ∧ ¬J+) ∨ (f(C−∨p) ∧ S ∧ I− ∧ ¬J−) →i.h. ⊥

where (2) holds since p is restricted.
Case 2 (p in S).

fC ∧ S ∧ I ∧ ¬J ↔
fC ∧ S ∧ (I+ ∧ I−) ∧ ¬(J+ ∨ J−) ↔

fC ∧ S ∧ I+ ∧ I− ∧ ¬J+ ∧ ¬J− ↔
(fC ∧ S ∧ I+ ∧ ¬J+) ∧ (fC ∧ S ∧ I− ∧ ¬J−) →(1)

(fC+ ∧ S ∧ I+ ∧ ¬J+) ∧ (fC− ∧ S ∧ I− ∧ ¬J−) →(2)

(fC+ ∧ S ∧ I+ ∧ ¬J+ ∧ p) ∨ (fC− ∧ S ∧ I− ∧ ¬J− ∧ p) ↔(3)

(f(C+∨p) ∧ S ∧ I+ ∧ ¬J+) ∨ (f(C−∨p) ∧ S ∧ I− ∧ ¬J−) →i.h. ⊥
5 Notice that the inverse of the last implication does not hold; in fact, a variable in

X, S, Y could have, e.g., color ab in C+ ∨ C− because it has color a in C+ and
color b in C− (recall the definition of � in §2.3), which means that it appears in
(C+ ∨ C−)
XSY

ab but gets restricted both in C+
XSY
ab and in C−
XSY

ab .
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where (2) holds since φ ∧ χ → (φ ∧ p) ∨ (χ ∧ p), (3) since fCi ∧ p ↔ f(Ci∨p).
Case 3 (p in Y ). Dual to Case 1.
Case 4 (p in X, S). As for Case 1.
Case 5 (p in S, Y ). As for Case 3.
Case 6 (p in X, Y ). As for Case 1 or Case 3 if color is either a or b. If ab:

fC ∧ S ∧ I ∧ ¬J ↔
fC ∧ S ∧ ((I+ ∨ p) ∧ (I− ∨ p)) ∧ ¬((J+ ∨ p) ∧ (J− ∨ p)) ↔
fC ∧ S ∧ (I+ ∨ p) ∧ (I− ∨ p) ∧ (¬(J+ ∨ p) ∨ ¬(J− ∨ p)) →

(fC ∧ S ∧ (I+ ∨ p) ∧ ¬(J+ ∨ p)) ∨ (fC ∧ S ∧ (I− ∨ p) ∧ ¬(J− ∨ p)) ↔
(fC ∧ S ∧ (I+ ∨ p) ∧ ¬J+ ∧ p) ∨ (fC ∧ S ∧ (I− ∨ p) ∧ ¬J− ∧ p) →

(fC ∧ S ∧ I+ ∧ ¬J+) ∨ (fC ∧ S ∧ I− ∧ ¬J−) →(1)

(fC+ ∧ S ∧ I+ ∧ ¬J+) ∨ (fC− ∧ S ∧ I− ∧ ¬J−) →(2)

(f(C+∨p) ∧ S ∧ I+ ∧ ¬J+) ∨ (f(C−∨p) ∧ S ∧ I− ∧ ¬J−) →i.h. ⊥

where (2) holds since p is restricted.
Case 7 (p in X, S, Y ). As for Case 1 or Case 3 if color is either a or b, since p
is restricted. As for Case 6 if color is ab, but last three lines are replaced by:

(fC ∧ S ∧ (I+ ∨ p) ∧ ¬J+ ∧ p ∧ p) ∨ (fC ∧ S ∧ (I− ∨ p) ∧ ¬J− ∧ p ∧ p) →
(fC ∧ S ∧ I+ ∧ ¬J+ ∧ p) ∨ (fC ∧ S ∧ I− ∧ ¬J− ∧ p) →(1)

(fC+ ∧ S ∧ I+ ∧ ¬J+ ∧ p) ∨ (fC− ∧ S ∧ I− ∧ ¬J− ∧ p) →(2)

(f(C+∨p) ∧ S ∧ I+ ∧ ¬J+) ∨ (f(C−∨p) ∧ S ∧ I− ∧ ¬J−) →i.h. ⊥

where (2) holds since fCi ∧ p ↔ f(Ci∨p). ��

Lemma 3. The CC constraints of Definition 1 can be relaxed as follows: α � a,
b � β, γ1 � γ2, δ1 � δ2.

Proof. Let I, J be interpolants generated using interpolation systems according
to the constraints CC in Def. 1. Let us use primed variables to represent the
relaxed constraints of Lemma 3 as α′ � α = a (i.e., any α′), b = β � β′ (i.e.,
any β′), γ′

1 � γ1 = γ2 � γ′
2, δ′

1 � δ1 = δ2 � δ′
2 and let I ′, J ′ represent the

corresponding interpolants. Recalling the order b � ab � a over colors, which
induces a partial order over interpolation systems (see §2.3), we get I ′ → I and
J → J ′. Thus, the relaxed constraints yield: I ′ ∧S∧¬J ′ → I∧S∧¬J → ⊥. ��

The above considerations lead to the following result:

Theorem 4. For any sequence of interpolation systems ItpL0 , . . . , ItpLn, which
respects the relaxed constraints of Lemma 3, I0, I1, . . . , In is an inductive se-
quence of interpolants, i.e., Ii ∧ φi+1 → Ii+1, for 0 ≤ i < n.
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Fig. 5. Spurious error trace annotated by inter-
polants

4.4 Application to Model Checking

The above setting occurs, for example, during counterexample-guided abstrac-
tion refinement. Given a spurious error trace, the goal is to annotate nodes of the
abstract reachability tree with an inductive sequence of formulae that together
rule out the trace. The trace is represented as a formula φ1∧. . .∧φn, which is con-
structed from the SSA form of the trace and which is unsatisfiable if and only if
the error trace is infeasible. If so, a sequence of interpolants Ii is created by means
of a sequence of interpolation systems as Ii � ItpLi(φ1 ∧ . . .∧φi, φi+1 ∧ . . .∧φn),
I0 ≡ �, and In ≡ ⊥, as depicted in Fig. 5 (along with the partitioning of the
path formula into X , S, and Y for the purposes of Lemma 2). In addition, Req2
requires the sequence of interpolants to be inductive, i.e., Ii ∧ φi+1 → Ii+1. In
which case, the error trace is removed from the refined abstraction. However,
such a sequence of interpolants is not inductive in general and thus the same
error trace may remain also in the refined abstraction, should Req2 be violated.
As already mentioned, refinement phases of tools like Blast [1], Impact [13]
and Wolverine [9], as well as some BMC techniques [18] rely on this fact.

Theorem 4 ensures that Req2 is satisfied by interpolants derived using in-
terpolation systems weakening towards the end of the error trace (depicted in
Fig. 4). It is thus possible to choose an interpolation system depending on the
instruction at the current position along the error trace (i.e., the current S in
the language of Lemma 2). As an example, some instructions in the error trace
may trigger generation of weaker interpolants (i.e., a more coarse abstraction).
In practice, this would affect the speed of convergence of the refinement loop.

5 Related Work

In model checking, interpolation is a common means for abstraction. Interpo-
lation is used as an abstract post-image operator in hardware bounded model
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checking [10]; the interpolant is generated from the proof of unsatisfiability of a
bounded model checking formula so that it represents a superset of states reach-
able from the initial states. Faster convergence of the model checking algorithm
applying this method of abstraction is observed during experiments. Interpola-
tion is also used in concolic execution to propagate reasons of trace infeasibility
backward towards the start of the program [14]. This allows discarding infea-
sible traces as early as possible and thus saving the effort of evaluating them.
In software bounded model checking, function summaries can be created using
interpolation [17]; these are employed during analysis of different properties to
represent a function body without the need to process its whole call tree. Inter-
polation also proves to be very useful in refining predicate abstraction based on
spurious counterexamples [7]. Here, interpolation is used to derive new predicates
that rule out the spurious error traces. The listed works describe applications of
interpolation in model checking; see [12] for a comprehensive list. Typically, the
authors limit themselves to either Pudlák’s or McMillan’s algorithms without
considering further variation in the strength of interpolants. We believe that all
these techniques would benefit from choosing among interpolants of appropriate
strengths. The results of this paper provide safe boundaries for such a choice.

Other related work concerns the actual generation of interpolants. Pudlák [15]
shows that interpolants can be derived in linear time with respect to the given
refutation. McMillan [11] proposes a different algorithm that produces logically
stronger interpolants and addresses both propositional logic and a quantifier free
combination of the theories of uninterpreted functions and linear arithmetic.
In [2], local proof transformations are presented that (by reordering proofs and
removing so called ab-mixed predicates) can change a refutation produced by
a standard SMT-solver so that it becomes suitable for interpolant generation.
Authors of [5] provide a generalized algorithm for interpolation that subsumes
both Pudlák’s and McMillan’s algorithms. They also show that a complete lattice
of interpolants ordered by the implication relation can be systematically derived
from a given refutation. However, they do not study the limits with regard to
the actual application of interpolants of differing strength in model checking.
Building upon [5], our work provides this missing connection and defines and
proves these boundaries in the particular model checking settings.

In this paper, we consider two classes of model checking approaches that put
additional requirements on the resulting interpolants. These requirements were
previously formulated in the literature (Req1 in [8] and Req2 in [7]). Until now,
however, the conditions under which they hold have not been thoroughly studied,
in particular in the context of different interpolation systems of [5]. Novelty of
our work lies in the fact that we provide constraints on the complete lattice of
interpolants that, when obeyed, ensure satisfaction of the requirements.

6 Conclusion

Interpolants are not unique and may vary in strength. The effects of using in-
terpolants of different strength in model checking can be substantial and are
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yet to be properly studied. However, common applications of interpolation in
model checking put additional requirements that (as we show) are not satisfied
in general, specifically when interpolants of various strengths are generated by
different interpolation systems. In this paper, for two classes of model checking
techniques employing interpolation, we showed the safe boundaries for varying
the strength of interpolants, proving the limitations under which the require-
ments are satisfied. Our theoretical result enables study of the effects of the
interpolants strength on the model checking algorithms. Since our result is not
limited to an ad-hoc proof system, any state-of-the-art solver can be used to
generate proofs used for interpolation. Strength and size of interpolants can be
also affected by proof manipulation procedures as shown in [16]. We intend to
address the above questions in our future work.
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Abstract. We develop compositional analysis algorithms for detecting non-
termination in multithreaded programs. Our analysis explores fair and ultimately-
periodic executions—i.e., those in which the infinitely-often enabled threads
repeatedly execute the same sequences of actions over and over. By limiting the
number of context-switches each thread is allowed along any repeating action
sequence, our algorithm quickly discovers practically-arising non-terminating ex-
ecutions. Limiting the number of context-switches in each period leads to a com-
positional analysis in which we consider each thread separately, in isolation, and
reduces the search for fair ultimately-periodic executions in multithreaded pro-
grams to state-reachability in sequential programs. We implement our analysis
by a systematic code-to-code translation from multithreaded programs to sequen-
tial programs. By leveraging standard sequential analysis tools, our prototype tool
MUTANT is able to discover fair non-terminating executions in typical mutual ex-
clusion protocols and concurrent data-structure algorithms.

1 Introduction

Multithreaded programming is the predominant style for implementing parallel and
reactive single-processor software. A multithreaded program is composed of several
sequentially-executing threads who share the same memory address space. As a thread’s
operations on shared memory generally do not commute with the operations of others,
each schedule—i.e., each distinct order on the actions of different threads—leads to
distinct program behavior. Generally speaking, the schedule of inter-thread execution
relies on factors external to the program, such as processor utilization and I/O activ-
ity. Though some programming errors are witnessed in many different schedules, and
are thus likely to be discovered by testing, others manifest only in a small number of
rarely-encountered schedules; these Heisenbugs are notoriously difficult to debug.

The correctness criteria for multithreaded programs generally include both safety
and liveness conditions, and ensuring safety can threaten liveness. For instance, to en-
sure linearizability—i.e., the result of concurrently executing operations is equivalent to
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some sequential execution of the same operations—concurrent data structure implemen-
tations often employ a retrying mechanism [9] (see Figure 1c for a simple instance): a
validation phase before the effectuation of each operation ensures concurrent modifica-
tions have not interfered; when validation fails, the operation is simply attempted again.
A priori nothing prevents an operation from being retried forever. Retry is also a mech-
anism used in mutual exclusion protocols. For instance, a common solution to the din-
ing philosophers problem proposes that philosophers drop the fork they first picked up
when they cannot obtain the second fork—presumably because a neighboring philoso-
pher already holds the second. Though this scheme avoids deadlock, it also leads to
non-terminating executions in which no philosophers ever eat; particularly when each
philosopher picks up his first fork, finds his neighbor has the other, and then all re-
lease their first fork, repeatedly; Figure 1b illustrates a simplification of this pattern.
As such retrying raises the possibility that some or all interfering operations are never
completed even under fair schedules—repeatedly failing operations already execute in-
finitely often—one does want to ensure that concurrent operations do always terminate.
Note that unlike in sequential programs, where interesting non-terminating executions
involve ever diverging data values, non-terminating executions in multithreaded pro-
grams also involve repeated inter-thread interference, even over small finite data do-
mains (see Figure 1).

Proving the absence of programming errors such as assertion violations, and unin-
tentional non-termination due to inter-thread interference, in multithreaded programs
is difficult precisely because of the enormous number of possible schedules which
need be considered. Automated approaches based on model checking are highly
complex—e.g., computing state-reachability is PSPACE-complete when threads are fi-
nite state [10], and undecidable when threads are recursive [23]—and are susceptible to
state-explosion; naı̈ve approaches are unlikely to scale to realistic programs. Otherwise,
modular deductive verification techniques may apply, though they require programmer-
supplied invariants, which for multithreaded programs are regarded as difficult to divine.
Furthermore, a failed verification attempt may only prove that the supplied invariants
are insufficient, rather than the existence of a programming error.

Instead of exhaustive program exploration, recent approaches to detecting safety vi-
olations (e.g., assertion violations) have focused on exploring only a representative sub-
set of program behaviors by limiting inter-thread interaction [22, 21, 17, 15, 3]; for in-
stance, Qadeer and Rehof [21] consider only executions with a given number k ∈ N of
context switches between threads. Though techniques like context-bounding are clearly
incomplete for any given k ∈ N, every execution is considered in the limit as k ap-
proaches infinity, and small values of k have proved to provide great coverage [17]
and uncover subtle bugs [13] in practice. The bounded analysis approach is particularly
attractive since it enables compositional reasoning: each thread can be considered sepa-
rately, in isolation, once the number of environmental interactions is fixed. This fact has
been exploited by the so-called “sequentializations” which reduce multithreaded state-
reachability under an interaction bound to state-reachability in a polynomially-sized
sequential program [15, 11, 7, 3], leading to efficient analyses. Conveniently these re-
ductions allow leveraging highly-developed sequential program analysis tools for mul-
tithreaded program analysis.
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1 // One thread
2 // forever
3 // spins
4 var g: B

5

6 proc Thread1 ()
7 g := false;
8 while !g do
9 skip;
10 return
11

12 proc Thread2 ()
13 g := true;
14 return

(a)

1 // Both threads
2 // can retry
3 // forever
4 var g: B

5

6 proc Thread1 ()
7 while g do
8 g := false;
9 return
10

11 proc Thread2 ()
12 while !g do
13 g := true;
14 return

(b)

// The second thread can forever retry

1 var g: T
2 var x: B

3

4 proc Thread1 ()
5 while " do
6 acquire x;
7 g := ";
8 release x;
9 return

10 proc Thread2 ()
11 var gi, gf: T
12 while true do
13 gi := g;
14 gf := ...;
15 acquire x;
16 if g = gi then
17 g := gf;
18 release x;
19 return
20 else
21 release x
22 return

(c)

Fig. 1. Three programs with non-terminating executions. (a) Though the first thread may execute
forever if the second never sets g to true, no such execution is fair. (b) Two threads repeatedly
trying to validate their set values of g will keep retrying forever under a schedule which schedules
each loop head just after the opposing thread’s assignment. (c) As long as the first thread executes
an iteration between each of the second thread’s reads and validations of g, the second thread is
never able to finish its operation.

Though these techniques seem promising for the detection of safety violations, they
have been deemed inapplicable for detecting liveness violations, since, for instance, in
any context-bounded execution, only one thread can execute infinitely often; interesting
concurrency bugs such as unintentional yet coordinated non-termination require the par-
ticipation of multiple infinitely-often executing threads. This limitation has effectively
prevented the application of compositional bounded analyses to detecting liveness vio-
lations in multithreaded programs.

In this work we demonstrate that restricting thread interaction also leads to an effec-
tive technique for detecting liveness violations in recursive multithreaded programs—in
particular we detect the presence of fair non-terminating executions. Though in general
the problem of detecting non-terminating executions is very difficult, we restrict our
attention to the simpler (recursively-enumerable yet still undecidable) case of fair ul-
timately periodic executions, which after a finite execution prefix (called the stem) ul-
timately repeat the same sequence of actions (the lasso) over and over again. Many
interesting non-terminating executions occurring in practice are ultimately periodic.
For instance, in the program of Figure 1b, every non-terminating execution must re-
peat the same sequence of statements on Lines 7, 8, 12, and 13. Similarly, every fair
non-terminating execution of the program in Figure 1c must repeat the statements of
Lines 5–8, 12–15, and 20–21. Thus focusing on periodically repeating executions is
already quite interesting. Furthermore, every ultimately periodic execution is described
with a finite number of thread contexts: those occurring during the stem, and those oc-
curring during each iteration of the lasso; e.g., the non-terminating executions of each
program in Figure 1 require just two contexts per thread: one per stem, and one per
lasso.
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By bounding the number of thread contexts we detect ultimately periodic execu-
tions compositionally, without exposing the local configurations of each thread to one
another. We actually detect ultimately periodic executions that repeatedly encounter,
along some lasso, the same sequence of shared global state valuations at thread context-
switch points. Clearly ultimate state-repeatability is a sufficient condition for ultimate
periodicity. We prove that this condition is necessary when the domain of shared global
state valuations is finite. (This is not trivial in the presence of recursion, where threads
access unbounded procedure stacks). Then, supposing each thread executes within k1

contexts during the stem, and within k2 contexts during each iteration of this lasso,
its execution is summarized by an interface of k = 2(k1 + k2) valuations g1g′1 . . .gkg′k:
the shared global state valuations gi and g′i, resp., encountered at the beginning and
end of each execution context during the stem and lasso. Given the possible bounded
interfaces of each thread, we infer the existence of ultimately periodic executions by
composing thread interfaces. Essentially, two context summaries g1g′1 and g2g′2 com-
pose when g′1 = g2; by composing interfaces so that the valuation reached in the last
context of the lasso match both the valuation reached in the last context of the stem,
and the starting valuation of the first context of the lasso, we deduce the existence of a
periodic computation.

We thus reduce the problem of detecting ultimately periodic computations to that of
computing thread interfaces. Essentially, we must establish two conditions on an inter-
face g1g′1 . . .gkg′k of a thread t: first, the interface describes a valid thread computation,
i.e., beginning from g1, t executing alone reaches g′1, and when resumed from the valu-
ation g2, t executing alone reaches g′2, etc. Second, the interface is repeatable, i.e., each
time t returns to its first lasso context i, t can again repeat the same sequence of global
valuations gig′i . . .gkg′k. Though both conditions reduce to (repeated) state-reachability
for non-recursive programs, ensuring repeatability in recursive programs requires estab-
lishing equivalence of an unbounded number of procedure frames visited along each
period of the lasso. An execution in which the procedure stack incurs a net decrease, for
instance, along the lasso is not repeatable. We avoid explicitly comparing stack frames
simply by noticing that along each period of any repeating execution there exists a
procedure keyframe which is never returned from. By checking whether one keyframe
can reach the same keyframe—perhaps with the first keyframe below on the procedure
stack—in the same context number one period later, we ensure repeatability.

Finally, to ensure that the detected non-terminating executions are fair, we expose
a bounded amount of additional information across thread interfaces. For the case of
strong fairness, we observe that any thread t which does not execute during the lasso
must be blocked, i.e., waiting on a synchronization object x which has not been signaled.
Furthermore, in any fair execution, no concurrently executing thread may signal x, since
otherwise t would become temporarily enabled—thus a violation of strong fairness. In
this way, by ensuring thread interfaces agree on the set X of indefinitely waited-on
synchronization objects, each thread can locally ensure no x ∈ X is signaled during the
lasso, and only threads waiting on some x ∈ X are exempt from participating in the
lasso.

As is the case for finding safety violations, the compositional fair non-termination
analysis we describe in Section 3 has a convenient encoding as sequential program
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analysis. In Section 4 we describe a code-to-code translation from multithreaded pro-
grams to sequential programs which violate an assertion exactly when the source pro-
gram has a fair ultimately periodic execution with given bounds k1 and k2 on the num-
ber of stem and lasso contexts.1 In Section 5 we discuss our implementation MUTANT,
which systematically detects fair non-terminating executions in typical concurrent data
structure and mutual exclusion algorithms.

2 Recursive Multithreaded Programs

We consider a simple but general multithreaded program model in which each of a
statically-determined collection Tids of threads concurrently execute as recursive se-
quential programs which access a shared global state. For simplicity we suppose each
program declares a single shared global variable g with domain Vals, and each proce-
dure from a finite set Procs declares only a single parameter l, also of domain Vals;
furthermore each program statement is uniquely labeled from a set Locs of program
locations. A (procedure) frame f = 〈�,v〉 is a program location � ∈ Locs along with
a local variable valuation v ∈ Vals, and a configuration c = 〈g,σ〉 is a shared global
state valuation g ∈ Vals along with a local state map σ : Tids→ (Locs×Vals)+ map-

ping each thread t to a procedure frame stack σ(t). The transition relation
t,�
=⇒ between

configurations is labelled by the active program location � ∈ Locs and acting thread
t ∈ Tids. We suppose a standard set of inter-procedural program statements, including
assignment x := e, branching if e then s1 else s2, and looping while e do s statements,
lock acquire e and release e, and procedure call x := p e and return e, where e are
expressions from an unspecified grammar, s are labeled sub-statements, and p ∈ Procs.
The definition of the transition relation is standard, as are the following:

Trace, Reachable: A trace π of a program P from a configuration c is a possibly empty
transition-label sequence a0a1a2 . . . for which there exists a configuration sequence

c0c1c2 . . . such that c0 = c and c j
a j
=⇒P c j+1 for all 0 ≤ j < |π|; each configuration

c j = 〈g,σ〉 (alternatively, the shared global valuation g) is said to be reachable from
c by the finite trace π j = a0a1 . . .a j−1.

Context: A context of thread t is a trace π = a0a1 . . . in which for all 0≤ j < |π| there
exists �∈ Locs such that a j = 〈t, �〉; every trace is a context-sequence concatenation.

Enabled, Blocked, Fair: A thread t ∈ Tids is enabled after a finite trace π if and only
if there exists an a labeling a t-transition such that π ·a is also a trace; otherwise t is
blocked. An infinite trace is strongly fair (resp., weakly fair) if each infinitely-often
(resp., continuously) enabled thread makes a transition infinitely often.

Checking typical safety and liveness specifications often reduces to finding whether
certain program configurations are reachable, or determining whether fair infinite traces
are possible. The following two problems are thus fundamental.

Problem 1 (State-Reachability). Given a configuration c of a program P, and a shared
global state valuation g, is g reachable from c in P?

1 Technically, our reduction considers round-robin schedules of thread contexts.
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Problem 2 (Fair Non-Termination). Given a configuration c of a program P, does there
exist an infinite strongly (resp., weakly) fair trace of P from c?

Even for recursive multithreaded programs accessing finite data, both problems are
undecidable [23]. However, while state-reachability is recursively enumerable by ex-
amining all possible concurrent traces in increasing length, detecting non-terminating
traces is more complex; from Yen [24] one deduces that the problem is not even semi-
decidable. A simpler problem is to detect non-terminating traces which eventually re-
peat the same sequence of actions indefinitely. Formally, an infinite trace π is ultimately
periodic when there exists two finite traces µ and ν, called resp., the stem and lasso,
such that π = µ ·νω. Then a key question is the detection of ultimately periodic traces.

Problem 3 (Fair Periodic Non-Termination). Given a configuration c of a program P,
does there exist an ultimately periodic strongly (resp., weakly) fair trace of P from c?

Periodic non-termination is also undecidable, yet still recursively enumerable—by ex-
amining all possible stems and lassos in increasing length. This implies that not all
non-terminating executions are ultimately periodic. In principle, coordinating threads
can construct phased executions in which each phase consists of an increasingly-longer
sequence of actions, using their unbounded procedure stacks to simulate unbounded in-
teger counters. Still, it is unclear whether non-periodic executions arise in practice. Our
goal is to efficiently detect ultimately periodic fair traces where they exist.

3 Bounded Compositional Non-termination Analysis

Rather than incrementally searching for non-terminating executions by bounding the
length of the considered stems and lassos, our discovery strategy bounds the num-
ber of thread contexts in the considered stems and lassos; this strategy is justified by
the hypothesis that many interesting bugs are likely to occur within few contexts per
thread [21, 17]. Notice, for instance, that the non-terminating executions of each of the
programs in Figure 1 require only one context-switch per thread during their repeat-
ing sequences of actions. Formally for k ∈ N, we say a trace π = a0a1 . . . is k context-
bounded when there exist j1, j2, . . . , jk ∈ N and jk+1 = |π| such that π = π1π2 . . .πk

is a sequence of k thread contexts πi = a ji . . .a ji+1−1; we refer to each ji as a context-
switch point. Though we expect many ultimately periodic traces to exhibit few con-
text switches per period, context-bounding is anyhow complete in the limit as context-
bounds approach infinity.

Remark 1. For every ultimately periodic trace µ ·νω there exists k1,k2 ∈ N such that µ
and ν are, resp., k1 and k2 context-bounded.

In what follows, we show that for given stem and lasso context-bounds, resp., k1 ∈ N
and k2 ∈ N, the fair periodic non-termination problem reduces to the state-reachability
problem in sequential programs; the salient feature of this reduction is compositionality:
the resulting sequential program considers each thread independently, without explicitly
representing thread-product states. The general idea is to show that all ultimately peri-
odic executions can be decomposed into stem and lasso such that during each period of
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the given lasso, each thread reencounters the same global valuations at context-switch
points, and reencounters the same topmost stack-frame valuation; since each procedure
stack must be non-decreasing over each lasso iteration, there must be some frame during
each period which is never returned from. We show that detecting these repeated global
valuations and topmost stack frames over a single lasso iteration implies periodicity.

To begin, we show that the existence of an ultimately periodic trace µ · νω implies
the existence of an ultimately periodic trace µ′ · ν′ω in which the sequence of global
valuations (and topmost procedure-stack frames) of each thread at context-switch points
repeat in each iteration of the lasso ν′.

3.1 Annotated Traces

For a configuration c = 〈g,σ〉 of a program P, we write c[g := g′] to denote the
configuration c = 〈g′,σ〉. An annotated trace π̄ of a program P is a sequence π̄ =
〈gi,τi,πi,g′i,τ′i〉i=1...k—where each gi,g′i ∈ Vals are global valuations, τi,τ′i ∈ Tids→
(Locs×Vals) are thread-to-frame mappings, and πi is a thread context—for which
there exist local-state maps σ1,σ′1, . . . ,σk,σ′k : Tids→ (Locs×Vals)+ of configurations
c1,c′1, . . . ,ck,c′k where for each 1≤ i≤ k:

– ci = 〈gi,σi〉 and c′i = 〈g′i,σ′i〉,
– σi(t) = τi(t) ·wi and σ′i(t) = τ′i(t) ·w′i for each thread t ∈ Tids, for some wi,w′i,
– each c′i is reachable from ci via the trace πi, and
– ci+1 = c′i[g := gi+1] for i< k.

We say the annotated trace π̄ is valid when ci+1 = c′i for 1 ≤ i < k. The definitions
applying to traces are lifted naturally to annotated traces.

Lemma 1. There exists an ultimately periodic trace µ · νω from a configuration c in a
program P iff there exists a valid annotated ultimately periodic trace µ̄ · ν̄ω from c in P.

As we are mainly concerned with annotated traces, we usually drop the bar-notation,
writing, e.g., π to denote an annotated trace π̄, and use “trace” to mean “annotated
trace.”

3.2 Compositional Detection of Periodic Traces

In the following we reduce the detection of valid ultimately periodic traces to the detec-
tion of ultimately periodic traces for each individual thread t ∈ Tids. Let π = µ · νω

be a valid ultimately periodic trace which divides µ and ν, resp., into k1 ∈ N and
k2 ∈ N contexts, indexed by Iµ ⊆ N and Iν ⊆ N, as µ = 〈gi,τi,µi,g′i,τ′i〉i∈Iµ and ν =
〈gi,τi,νi,g′i,τ′i〉i∈Iν . We construct an ultimately periodic trace πt in which only t is ac-
tive. Roughly speaking, the constructed trace πt corresponds to the projection of π on
the set of t-labeled transitions. Given the global values gi and g′i seen at the beginning
and end of each context i of thread t, the trace πt can be computed in complete isolation:
we simply resume the ith context of thread t with the global value gi, and ensure g′i is
encountered at the end of the ith context. Supposing thread t executes in the contexts
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indexed by Iµ
t ⊆ Iµ, along the stem µ, and in the contexts indexed by Iν

t ⊆ Iν along the
lasso ν, we define the thread-periodic trace for t as πt

def
= µt ·νω

t , where

µt =
〈
gi,τi(t),µi,g

′
i,τ
′
i(t)
〉

i∈Iµ
t

νt =
〈
gi,τi(t),νi,g

′
i,τ
′
i(t)
〉

i∈Iν
t

For the thread-periodic trace πt of t, we associate two sequences SI(πt) = 〈gi,g′i〉i∈Iµ
t

and LI(πt) = 〈gi,g′i〉i∈Iν
t

of global valuation pairs encountered at the beginning and end
of each context, called, resp., the stem and lasso interfaces; the sizes of interfaces are
bounded by the number of contexts: |SI(πt)| ≤ k1 and |LI(πt)| ≤ k2.

We define the shuffle of a sequence set S inductively as shuffle({ε}) = {ε}, and
shuffle(S) =

⋃{s1 · shuffle(S′) : s1s2 . . . s j ∈ S and S \ {s1 . . .s j}∪{s2 . . . s j}= S′}; for
instance, shuffle({s1s2,s3}) = {s1s2s3,s1s3s2,s3s1s2}. We say the thread interface sets
S and L are compatible when there exists s1 . . . sk1 ∈ shuffle(S) and sk1+1 . . . sk1+k2 ∈
shuffle(L) where each si = 〈gi,g′i〉, and g′i = gi+1 for 0< i< k1+k2, and g′k1+k2

= gk1+1.
Extending this definition, we say a set {πt : t ∈ Tids} of thread-periodic traces is com-
patible if and only if {SI(πt) : t ∈ Tids} and {LI(πt) : t ∈ Tids} are compatible.

Lemma 2. If there exists a compatible set of thread-periodic traces {πt : t ∈ Tids} of a
program P, then there exists a valid ultimately periodic trace π = µ ·νω of P. Moreover,
µ and ν are, resp., ∑t∈Tids |SI(πt)| and ∑t∈Tids |LI(πt)| context-bounded.

Lemma 2 suggests a compositional algorithm to detect ultimately periodic valid
traces. As each trace is constructed from a straight-forward composition of thread-
periodic traces, we need simply to compute a compatible set of thread-periodic
traces. We thus reduce the detection of valid ultimately periodic traces to com-
puting (finite) compatible thread interface sets {St : t ∈ Tids and |St | ≤ k1} and
{Lt : t ∈ Tids and |Lt | ≤ k2}, and ensure the existence of, for each thread t ∈ Tids, a
thread-periodic trace πt such that SI(πt) = St and LI(πt) = Lt .

3.3 From Thread-Periodic Traces to Sequential Reachability

Section 3.2 reduced the problem of finding periodic executions to that of computing
thread interfaces. Now we demonstrate that thread interfaces can be computed by state-
reachability in sequential programs. For the remainder of this section we fix an initial
configuration c0 of a program P, and a thread-periodic trace πt = µt ·νω

t of a thread t.
We know that the thread period trace πt repeats the same sequence of actions per

period over and over indefinitely. It follows that although during each period the size
of t’s frame stack may increase and decrease due to procedure calling and returning,
the net size of t’s frame stack must not be decreasing—otherwise t cannot repeat νt

indefinitely. This implies that there exists a sequence f1 f2 . . . of t’s procedure frames—
each fi ∈ (Locs×Vals) encountered in the ith period—which are never returned from;
we call these frames the keyframes of t. Since we repeat the same sequence of calls
and returns along each period, we can assume w.l.o.g. that each keyframe fi is the
procedure frame encountered at the beginning of the same context shift in νt with
0 ≤ shift < |LI(πt)|. Furthermore, we know that these keyframes correspond to the
same procedure frame f (from definition of value annotated traces).
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In order to check that f is a keyframe (i.e., never removed from the stack), we check
that from a configuration where the stack contains only the frame f , we can reach a
configuration with topmost frame f after executing the trace νt (modulo rotation). We
know also that executing the trace µt followed by the first shift contexts in νt will
result in a configuration with topmost frame f . This is exactly what is defined below:

Feasibility: Let SI(πt) = 〈gi,g′i〉i∈Iµ
t

and LI(πt) = 〈gi,g′i〉i∈Iν
t

be the given stem and
lasso interfaces. We say that 〈SI(πt),LI(πt)〉 is feasible if there are a frame f ,
a natural number shift with 0 ≤ shift < k1, and a sequence of configurations
c1,c′1, . . .cm,c′m with m = (k1 + k2 +shift) such that, for every 1≤ j ≤ m:

– c′j is reachable from c j via a trace of the thread t.
– The global valuation in c j and c′j are gi and g′i with i = j(mod k1+k2)+k2+1.
– The stack in c′j−1 and c j are the same when j �= (k2 +shift+1) with c′0 = c0.
– The stack in ck2+shift+1 contains only the frame f . Moreover, the topmost

frame in c′k2+shift and c′m is precisely f .

Lemma 3. If the thread trace πt is periodic, then 〈SI(πt),LI(πt)〉 is feasible.

Now, we can show if there is a thread trace π′t of t from a configuration containing the
keyframe f , satisfying the interface Lt , and reaching a configuration whose topmost
frame is precisely f , then this thread trace can be executed infinity often. This means
that π′t can be considered as a lasso trace of t whose lasso interface is precisely Lt . On
the other hand, if there is a thread trace π′′t of t from the initial configuration to a con-
figuration whose topmost keyframe is precisely f while respecting the stem interface S′t
(which is the concatenation of St and the first (shift)-elements of Lt ) then π′′t ·π′t can
be considered as a stem trace for the lasso trace π′t .

Lemma 4. Given a compatible interface sets {St : t ∈ Tids} and {Lt : t ∈ Tids} such
that 〈St ,Lt〉 is feasible for each t ∈ Tids, we can construct compatible thread-periodic
traces {πt : t ∈ Tids} such that |SI(πt)|= |St |+ |Lt | and |LI(πt)|= |Lt | for each t ∈Tids.

The lemmata above suggest the following procedure: first, guess compatible interfaces
{St ,Lt : t ∈ Tids}, then check feasibility of each 〈St ,Lt〉. Observe that checking the fea-
sibility of each given pair 〈St ,Lt〉 boilds down to solving reachability problems in the
sequential program describing the behavior of the thread t. Section 4 concretizes this
algorithm in a code-to-code reduction to sequential program analysis.

3.4 Encoding Fairness

By our definitions in Section 2 any blocked thread must be waiting to acquire a held
lock. This leads to the following characterization of strongly fair ultimately periodic
traces: for each thread t ∈ Tids, either

Case 1. The lasso contains at least one transition of t, or
Case 2. The thread t is blocked throughout the lasso, waiting to acquire some lock

x ∈ Locks; this further implies that
Cond. 1 the lock x may not be released during the lasso by any thread,
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Cond. 2 the lock x must be held by another thread at the beginning of the lasso,
and

Cond. 3 t remains at the control location of the acquire of x throughout the lasso.

These conditions characterize strongly fair ultimately periodic computations. We ensure
these conditions are met by extending the notion of interfaces to include the set X ⊆
Locks of locks which are held throughout the lasso. Then, we must ensure locally per
thread that any x ∈ X is not released during the lasso (Cond. 1), and that some thread
holds x when entering the lasso (Cond. 2); additionally, we allow any thread attempting
to acquire some x∈ X to execute no further action. (Observe that if the lock x is released
during the lasso by any thread (see Cond. 1 of Case 2) then the resulting ultimately
periodic computation is not strongly-fair since the thread t is infinitely often enabled
and does not infinity often fire a transition.) Weak fairness can be similarly characterized
using a set Y ⊆ Locks of locks which are held at some point during the lasso; we then
ensure that each y ∈ Y is either held at the beginning of the lasso, or acquired at some
point during the lasso.

4 Reduction to Sequential Program Analysis

The compositional analysis outlined in Section 3 reduces (context-bounded) fair peri-
odic non-termination to state-reachability in sequential programs. Given thread stem
and lasso interfaces, and the set of locks held throughout the lasso, the feasibility of
each interface is computed separately, per thread. In this section we describe how to
implement this reduction by a code-to-code translation to sequential programs with an
assertion which fails exactly when the source program has a strongly fair ultimately
periodic execution whose stem and lasso satisfy a given context bound.2 Figure 2 lists
our translation in full.

Essentially, we introduce a Main procedure for the target program which executes
each thread one-by-one using an initially-guessed sequence of global valuations stored
in Stem0 and Lasso0. For each thread t, we guess the number—stored in shift—of
contexts following the k1st context until t’s keyframe is encountered on Line 18, and
begin executing t’s main procedure Main[t] on Line 21. Initially, the values stored in
Stem and Lasso are the values seen at the beginning of each context of the first thread
during, resp., the stem and repeating lasso. After execution of the ith thread, the values
of Stem and Lasso are the values seen at the end of each context of the ith thread, and
at the beginning of each context of the (i+1)st thread. Accordingly, after the execution
of the final thread, the values seen at the end of each context must match the values
guessed at the beginning of the following contexts of the first thread, according to the
round-robin order; the assumptions on Lines 22–27 ensure these values match.

The execution of each thread thus acts simply to compute its interface. As the
keyframes of different threads may be encountered at different points along the lasso,

2 Technically we consider bounded round-robin thread schedules rather than bounded context
switch. Though in principle the two notions are equivalent for a fixed number of threads—
i.e., any k-context execution takes place within k rounds, and any k-round n-thread execution
takes place in kn contexts [15]—ensuring interface compatibility is simpler assuming round-
robin.
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the length of each thread’s stem varies. Our translation computes for each thread a
stem long enough (at most k1 + k2− 1 contexts) to cover the stem of any thread. Since
each thread’s repeating sequence may begin as soon as the k1st context, the stem and
lasso computation may overlap. Our translation maintains the invariant that the Stem

(resp., Lasso) values are active exactly when k1 �=⊥ (resp., k2 �=⊥). Reads and writes
to shared variables (on Lines 47–57) read and write to both Stem and Lasso as they are
active.

Our translation also adds code at every potential context switch point (Lines 71–
96). Initially, the context counters k1 and k2 are incremented nondeterministically and
synchronously (the block starting at Line 74). Then, at Line 78, we check whether the
thread’s keyframe has been encountered for the first time, and if so make a snapshot of
the local valuation and program location, and activate the lasso; later along, at Line 90,
we validate the snapshot when returning to the same keyframe (perhaps with a larger
procedure stack). At some point in between, at Line 86, the stem becomes inactive.
We ensure using the local variable bottom that the keyframe in which a thread begins
repeating is never returned from.

We ensure strong fairness using an auxiliary vector of Boolean constants waited,
one per lock x ∈ Locks, indicating the set of locks which are held throughout the lasso.
According to Section 3.4, we ensure each waited lock is held at the beginning of the
lasso (Lines 28–30) and not released during the lasso (Line 68), and allow attempted
acquires to abort (Line 63).

Lemma 5. The program ((P))k1,k2 violates its assertion if P has a strongly-fair ulti-
mately periodic round-robin execution with k1 ∈ N and k2 ∈ N, resp., stem and lasso
rounds; if ((P))k1,k2 violates its assertion then P has a strongly-fair ultimately periodic
round-robin execution with k1 + k2 and k2, resp., stem and lasso rounds.

5 Experimental Evaluation

We have implemented our analysis, based on the code-to-code translation presented
in Section 4. Our prototype tool, called MUTANT3, takes as input a program writ-
ten in the BOOGIE intermediate verification language [2]. Though normally a rich se-
quential language with recursive procedures, integers, maps, and algebraic datatypes,
we have extended BOOGIE with thread-creation and atomic blocks, which we use to
model shared-memory multithreaded programs with synchronization operations. Given
a bound K ∈ N (where K = k1 + k2), MUTANT outputs an assertion-annotated sequen-
tial BOOGIE program. We feed the resulting program to our SMT-based bounded model
checker CORRAL [14]. MUTANT has support for strong fairness, and does not falsely
detect nonterminating executions in the program of Figure 1a, for instance.

As an initial example to demonstrate MUTANT’s effectiveness, we consider a try-
lock based algorithm for the dining philosophers problem. This program involves N
locks and N threads, each of which executes the code shown in Figure 3a. Each philoso-
pher tries to acquire two locks. TryLock is a non-blocking synchronization operation
that returns true when the lock is successfully acquired, otherwise it returns false. If

3 MUTANT stands for MUltiThreAded Non Termination.
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// translation of
// var g: T
var Stem[k1+k2-1]: T
var Lasso[k2]: T

5 var Local: T
var Location: Locs

var shift: N
<k2 ∪{⊥}

const waited[Locks]: B

var k1: N∪{⊥}
10 var k2: N∪{⊥}

proc Main ()
const Stem0 := ";
const Lasso0 := ";

15 Stem := Stem0;
Lasso := Lasso0;
foreach t in Tids do

shift := ";
k1 := 0;

20 k2 := ⊥;
call Main[t] ();

assume
Stem[0..k1+k2-3]
= Stem0[1..k1+k2-2];

25 assume
Lasso[0..k2-2]
= Lasso0[1..k2-1];

assume ∀x ∈ Locks·
x(Lasso[0])

30 ⇔ waited[x];
assert false;
return

// translation of
// proc p (var l: T) s

35 proc p (var l: T,
bottom: B) s

// translation of
// call x := p e

40 call x := p (e,")

// translation of
// return e
assume !bottom;

45 return e

// translation of shared
// variable read x := g
assume Stem[k1]

50 = Lasso[k2];
x := Stem[k1]
x := Lasso[k2];

// translation of shared
55 // variable write g := e
Stem[k1] := e;
Lasso[k2] := e

// translation of
60 // acquire x

if shift = ⊥ ∧ "
∧ waited[x] then
abort;

acquire x

65

// translation of
// release x
assume k2 ⇒ !waited[x];
release x

70

// translation of
// (implicit) yield
// at location ‘loc’
while " do

75 k1 := k1 + 1;
k2 := (k2+1) mod k2;

if k1 = k1+shift
∧ k2 = ⊥ then

80 // begin the lasso
assume bottom;
k2 := shift;
Local := l;
Location := loc;

85

if k1 ≥ k1+k2-1 then
// end the stem
k1 := ⊥;

90 if k2 = shift
∧ k1 = ⊥ then
// end the lasso
assume Local = l;
assume Location = loc;

95 // exit to main
abort;

Fig. 2. The sequential translation ((P))k1,k2 of a multithreaded program P. We assume that state-
ments which evaluate undefined expressions (i.e., using ⊥ in arithmetic or array indexing) are
simply skipped, and that no statement both reads and writes to g. The expression " nondetermin-
istically evaluates to any well-typed value, and the assume e statement proceeds only when e
evaluates to true. The abort statement discards the procedure stack and returns control to Main.

a philosopher acquires the left lock but is not able to acquire the right lock, then he
releases the left lock and tries again. A philosopher terminates when he is able to ac-
quire both locks (Line 10). This program has a fair non-terminating execution for each
N ≥ 2, namely where each philosopher first acquires their left lock, then upon seeing
their right lock unavailable, they release their left lock. MUTANT is able to automat-
ically detect this execution for each value of N with K = 2; we report running times
in Figure 3d. Note that while this execution requires all N threads to participate, each
thread only uses a fixed number of context switches in each period of the lasso. Though
the state-space of the program grows exponentially with N, Figure 3d demonstrates
that MUTANT scales sub-exponentially. Though the program has unfair non-terminating
executions—e.g., where one philosopher acquires a lock and ceases to participate fur-
ther, while the others continuously spin waiting to acquire both their locks—MUTANT

correctly does not report any such unfair non-terminating executions.
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1 // An array of N locks
2 var Lock[N]: mutex
3

4 proc Philosopher(n: int)
5 var left := Lock[n];
6 var right := Lock[(n+1)%N];
7 while true do
8 if TryLock(left)
9 if TryLock(right)
10 break
11 else
12 ReleaseLock(left);
13 ReleaseLock(right);
14 ReleaseLock(left);
15 return

(a)

1 proc Thread1()
2 var v1 := ";
3 add(v1);
4 flag := false;
5 return
6

7 proc Thread2()
8 while flag do
9 var v2 := ";
10 if " then
11 add(v2)
12 else
13 remove(v2);
14 return

(b)

1 while e1 do
2 timeout := false;
3 if " and e2 then
4 timeout := true;
5 break

(c)

N=2 3 4 5 6
2.1s 3.43s 6.13s 8.94s 21.91s

N=7 8 9 10
15.79s 30.77s 31.66s 43.54s

(d)

Fig. 3. (a) TryLock based dining phisophers. (b) A concurrent client operating on an Optimisti-
cList. (c) Modeling timeout. (d) Running time of MUTANT on the dining philosophers example.
As our verifier is based on the Z3 SMT solver, running times may increase non-uniformly with
N due to Z3’s internal heuristics, which may vary widely across different instances.

As a second example we consider the concurrent OptimisticList algorithm from
Section 9.6 of Herlihy and Shavit [9], supporting concurrent insertions and deletions on
sorted lists using optimistic concurrency control. Our BOOGIE encoding spans roughly
250 lines. In order to determine whether each operation is guaranteed to terminate in
the presence of an environment performing arbitrary list operations, we wrote the two-
thread driver of Figure 3b. While the first thread tries to insert an element, the second
thread continuously fires add and remove operations with arbitrary arguments. The
shared variable flag ensures that the second thread terminates when the first thread
does. Though not shown, the driver also initializes the list with a few arbitrary elements.

This program has the following fair non-terminating execution, similar in spirit to
that in Figure 1c: first, the add operation of Thread1 selects a position in the (sorted) list
where to insert a value v1, say between consecutive nodes with values a and b (i.e., such
that a < v1 < b). Then the second thread picks a value v2, such that a < v2 < b, and
inserts. When the first thread then sees that list has been modified at the position it was
about to insert, it retries the add operation. Meanwhile, the second thread fires a remove
operation and deletes v2. This program then reencounters the initial configuration, and
the add operation has not succeeded. MUTANT finds this execution with three contexts
per thread in 44 seconds. Interesting to note is that even though this program may use
infinite-domain data values, there remains nevertheless an execution that loops back
exactly to the configuration. One slightly tricky aspect of this example is modeling
memory allocation: because the second thread allocates and removes a list node in each
period, we must explicitly free the removed node in order to reencounter the same
configuration at the end of the lasso. As future work, using a more abstract notion of
heap equality could simplify this aspect.

As a third example we consider a algorithm developed by our colleagues [20] that en-
ables programmers to write assertions which are checked continuously and concurrently
with the actual program, in similar spirit to asynchronous assertions [1]. One salient
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feature of this algorithm is that it is non-blocking, i.e., the evaluation of the asserted ex-
pressions does not block other threads from making progress. We coded the algorithm,
and two variations with possible non-termination bugs, in roughly 230 lines of BOOGIE

code. In each of the potentially-buggy variations we found a non-terminating execution
where incorrect assertion evaluations led to livelock. To our surprise, we also found a
non-terminating execution in our supposedly-correct variation. After consulting with
the developers, the problem turned out to be in our modeling. To understand the prob-
lem, consider the code in Fig. 3c. MUTANT detected non-termination by skipping the
then-branch in each iteration of the lasso. (The actual non-termination found by MU-
TANT required concurrent reasoning, even though the lasso only involved one thread.)
However, the intention of the designers was that this branch represents an actual time
out reflecting a timer running down to zero. We corrected this modeling by ensuring that
the above choice must evaluate to true at least once within the lasso. This is similar to
enforcing Condition 1, Case 2 of strong fairness in Section 3. Nonetheless, MUTANT’s
output is still valuable: it says that if the time out is not implemented correctly, then the
program may enter a livelock.

MUTANT is able to determine the absence of periodic nontermination bugs in the
corrected variation with up to 3 contexts per thread in 402 seconds. MUTANT also de-
tects nonterminating executions in the three buggy variations in 11, 21, and 36 seconds.
These experiments demonstrate that MUTANT is effective on real-world algorithms.

6 Related Work

Our work follows the line of research on compositional reductions from concurrent
to sequential programs. The initial so-called “sequentialization” [22] explored multi-
threaded programs up to one context-switch between threads. Following Qadeer and
Rehof [21]’s generalization of context-bounding to an arbitrary number of context
switches, Lal and Reps [15] later proposed a sequentialization to handle a parameter-
ized amount of context-switches between a statically-determined set of threads execut-
ing in round-robin order. La Torre et al. [12] extended the approach to handle programs
parameterized by an unbounded number of statically-determined threads, and shortly
after, Emmi et al. [6] further extended these results to handle an unbounded amount of
dynamically-created tasks. Bouajjani et al. [3] pushed these results even further to a se-
quentialization which attempts to explore as many behaviors as possible within a given
analysis budget. The compositional analyses resulting from each of these sequential-
izations however only consider finite executions, and are thus incapable of establishing
liveness properties.

Although much previous work has been done for proving termination and detecting
non-termination in sequential programs—for instance, Cook et al. [4] discover ranking
functions to prove termination of sequential programs, and Gupta et al. [8] use concolic
execution to detect non-terminating executions in sequential programs—relatively little
attention has been paid to multithreaded programs, where interesting non-terminating
executions often have little to do with possible divergence of data values. Though Cook
et al. [5] have extended TERMINATOR to multithreaded programs, their analysis is ori-
ented to proving termination; failure to prove termination does not generally indicate the
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existence of a non-terminating execution. More recently Popeea and Rybalchenko [19]
have developed compositional techniques to prove termination in multithreaded pro-
grams, though again, their approach does not certify the existence of non-terminating
executions. Because both of these techniques focus on establishing a proof of termina-
tion, they necessarily consider over-approximations of concurrent programs, whereas
our technique looks at an under-approximation to find counterexamples faster.

Musuvathi and Qadeer [18] consider liveness properties in multithreaded programs,
but their approach is based on systematic testing, and thus behavioral coverage is lim-
ited by test harnesses and concrete input values. Moreover, their approach is stateless
(i.e., they never store states during the execution of the program), hence they can only
detect possible non-termination by identifying lengthy executions.

In the most closely related work of which we are aware, Morse et al. [16] pro-
pose a compositional LTL model checking technique for multithreaded programs based
on context-bounding. As far as we can tell, their technique (a) does not ensure non-
terminating executions are fair, (b) does not consider lassos in which multiple recursive
threads interfere, and (c) requires very high context-bounds to capture synchronized
interaction between the program and a monitor Büchi automaton.

7 Conclusion
We have developed a compositional algorithm for detecting fair ultimately periodic
executions in recursive multithreaded programs by bounding the number of context-
switches in each repeating period. Our approach reveals a simple-to-implement code-to-
code translation, which reduces the problem to finding assertion violations in recursive
sequential programs; consequently we leverage existing sequential analysis algorithms.

Our approach can be used to encode other linear temporal logic conditions besides
non-termination, e.g., response properties. Though for specific classes of formulae/prop-
erties efficient encodings are possible, a sequentialization parameterized by arbitrary
linear temporal logic formulae must essentially construct the product of the input pro-
gram with an arbitrary Büchi automaton; the encoding of this (synchronous) product as
a sequential program may not be as succinct.

In this work, discovering ultimately periodic executions is done by detecting repeated
state valuations. This notion of repeatability is complete for programs manipulating fi-
nite data, but is not complete in general. Still, this notion is actually relevant in many
practical cases, since non-termination bugs in concurrent programs are often due to
non-state-changing retry mechanisms. In the case of infinite data domains periodic ex-
ecutions may exhibit, for instance, ever increasing counter values; there a notion of
repeatability more relaxed than state-equality may be necessary. This notion however,
contrary to the one we consider here, would have to account for the actions encountered
during the lasso. Ensuring repeatability may be complex to define and check, depending
on the data domains and the nature of program operations.
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Abstract. We propose a trace-based concurrent program analysis to soundly re-
move redundant synchronizations such as locks while preserving the behaviors
of the concurrent computation. Our new method is computationally efficient in
that it involves only thread-local computation and therefore avoids interleaving
explosion, which is known as the main hurdle for scalable concurrency analysis.
Our method builds on the partial-order theory and a unified analysis framework;
therefore, it is more generally applicable than existing methods based on simple
syntactic rules and ad hoc heuristics. We have implemented and evaluated the
proposed method in the context of runtime verification of multithreaded Java and
C programs. Our experimental results show that lock removal can significantly
speed up symbolic predictive analysis for detecting concurrency bugs. Besides
runtime verification, our new method will also be useful in applications such as
debugging, performance optimization, program understanding, and maintenance.

1 Introduction

Concurrent programs are notoriously difficult to analyze due to their behavioral com-
plexity resulting from the often extremely large number of thread interleavings. This
renders comprehending all the possible ways in which threads interact a difficult prob-
lem. As a result, programmers often take a defensive stance and label large sections of
code as critical sections. This may result in the addition of redundant locks, both degrad-
ing performance and making program modeling, analysis, and understanding difficult.
The situation is particularly severe in trace-based concurrent program analysis. When
focusing on a concrete execution trace rather than the entire program, we often find
significantly more redundant locks, i.e. locks that are not completely redundant in the
whole program may become redundant when the analysis is restricted to a trace.

Although there exist some methods for identifying redundant synchronizations in
Java and C programs [3,4,6,22,1,30], e.g. as part of the compiler’s performance opti-
mization, they are all based on very simple syntactic rules and ad hoc heuristics. Since
these methods are based on matching patterns rather than analyzing the program seman-
tics, they do not lead to a generally applicable framework. Indeed, most of them handle
only the simple case of effectively thread-local objects, i.e. locks that are declared as
globally visible but are accessed only by one thread throughout the execution. For the
many truly shared but still redundant locks, these existing methods are not effective.

We address this limitation by introducing a new and more generally applicable lock
removal algorithm. Our method is generally applicable since it can remove not only the
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effectively thread-local locks but also the truly shared redundant locks. Our method is
also efficient since it is based on a compositional analysis that involves only thread-local
computation. Our method is sound in that it can guarantee preservation of the behavior
of the original computation.

In formulating our lock removal strategy, we start from the classical notion of a con-
current computation as a happens-before relation on the shared variable accesses or,
equivalently, as a set of partial orders. Two interleavings are equivalent if they induce
the same partial order of shared variable accesses. Since removing locks lifts the corre-
sponding mutual exclusion constraints, some previously infeasible thread interleavings
may become feasible. Thus there is a danger for lock removal to introduce new program
behaviors. To address this problem, we make sure that new interleavings are added by
lock removal only if they do not add new partial orders. This leads to the formulation
of the behavior preservation theorem, which is a main contribution of this paper.

Another main contribution is the set of efficiently checkable conditions under which
the behavior preservation is guaranteed. They reduce the semantic check of behavior
preservation to a simple static check of the feasibility of transitions between global
control states. This is significant because it allows us to avoid enumerating the often
astronomically large number of thread interleavings. Our method is thread-modular in
that it does not require inspecting the interleaved parallel composition of threads. In
addition, our focus on a concrete execution trace is also crucial in keeping the method
scalable. The concrete execution trace provides the exact memory addresses that are
accessed by each thread, thereby giving us the precise points-to information of lock
pointers, together with information about the actual array fields accessed, etc.

Trace-based concurrent program analysis has obvious applications not only in run-
time verification, but also in debugging, just-in-time (JIT) optimization, program un-
derstanding, and maintenance. An important feature of trace-based analysis is that the
trace program has finitely many threads and a fixed set of named locks. Although the
whole program may have pointers, loops, recursion, and dynamic thread creation, in
the trace program, each thread is reduced to a bounded straight-line path. Most of the
complications common to static program analysis are avoided because, during the con-
crete execution, branching decisions at if-else statements have been made, function calls
have been inlined, loops have been unrolled, and recursions have been applied. The only
remaining source of nondeterminism comes from thread interleaving.

We have implemented the proposed method in a runtime verification platform called
Fusion, where the underlying bug detection algorithm uses an SMT-based symbolic
analysis. Since redundant locks can introduce a large set of synchronization constraints
during the modeling and checking phases, their presence often significantly increases
the cost of the symbolic analysis. Our lock removal method has been used to remove
these redundant locks. Our experiments on a set of public Java and C programs showed
a significant reduction in the number of locks, which in turn led to a significant speedup
in the subsequent symbolic analysis.

To sum up, this paper has made the following two contributions: (1) formulating
the general framework of behavioral preservation to soundly remove redundant locks;
and (2) proposing a set of efficiently checkable conditions based on the thread-local
computation of lock access patterns.
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The remainder of this paper is organized as follows. In Section 2, we use two ex-
amples to illustrate both the benefit and challenges of lock removal. In Section 3, we
illustrate our main ideas. In Section 4, we present a set of efficiently checkable con-
ditions. In Section 5, we demonstrate the application of our algorithm on the running
example. Our experimental results are presented in Section 6. We review the related
work in Section 7 and give our conclusions in Section 8.

2 Motivation

The main driving application in this paper is runtime predictive analy-
sis [12,25,5,11,23,29,19], which is a promising method for detecting concurrency bugs
by analyzing an execution trace. In other words, even if the given test execution is
not erroneous, but if an alternative interleaving of the events of that trace can trigger
a failure, runtime predictive analysis will be able to detect it. Since a concurrent
program often has a very large number of sequential paths and thread interleavings,
statically analyzing the whole program is often extremely difficult. In such cases,
runtime predictive analysis offers a good compromise between runtime monitoring and
full-fledged model checking.

Runtime predictive analysis typically has three steps: (1) run a test of the concurrent
program to obtain an execution trace; (2) run a sound static analysis of the trace to
compute all the potential violations, e.g. deadlocks and race conditions; (3) for each
potential violation, build a precise predictive model to decide whether the violation is
feasible. The main scalability bottleneck is step 3 wherein the feasibility check needs to
explore all possible interleavings of the trace events. Although the problem in step 3 can
be solved by an efficient symbolic analysis [29,19], redundant locks in the trace program
can unnecessarily increase the cost of this analysis, since they can lead to a large number
of locking constraints that need to be modeled and checked. Our lock removal method
can cut down on the number of unnecessary locking constraints, therefore resulting in
significant performance improvement in the subsequent analysis.

T1() {

0a: —-;
1a: lock(A);
2a: a[1]++;
3a: unlock(A);
4a: a[2]++;
5a: lock(A);
6a: lock(B);
7a: a[3]++;
8a: unlock(B);
9a: unlock(A);
10a: sh++;

}

T2() {

0b: —-;
1b: a[10]++;
2b: a[11]++;
3b: lock(A);
4b: lock(B);
5b: a[12]++;
6b: unlock(B);
7b: unlock(A);
8b: sh++;

}

T ′
1() {

0a: —–;
1a: lock(A);
2a: —-;
3a: unlock(A);
4a: —-;
5a: lock(A);
6a: lock(B);
7a: —-;
8a: unlock(B);
9a: unlock(A);
10a: sh++;

}

T ′
2() {

0b: —-;
1b: —-;
2b: —-;
3b: lock(A);
4b: lock(B);
5b: —-;
6b: unlock(B);
7b: unlock(A);
8b: sh++;

}

T ′′
1 () {

0a: —-;
1a: —-;
2a: —-;
3a: —-;
4a: —-;
5a: —-;
6a: —-;
7a: —-;
8a: —-;
9a: —-;
10a: sh++;

}

T ′′
2 () {

0b: —-;
1b: —-;
2b: —-;
3b: —-;
4b: —-;
5b: —-;
6b: —-;
7b: —-;
8b: sh++;

}

(a) original (b) intermediate (c) final

Fig. 1. Example: removing redundant lock statements from a concurrent trace program
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Consider the concurrent trace program in Fig. 1 (a), which has two straight-line paths
in threads T1 and T2, respectively. The global variables are sh and array a. Suppose that
the goal is to check whether locations 10a and 8b are simultaneously reachable (e.g. a
data race), we need to decide whether there exists a valid interleaving of these trace
statements along which T1 and T2 can reach 10a and 8b, respectively.

First, note that precise knowledge of the memory accesses is available since the trace
program is derived from a concrete execution. The knowledge can be used to cut down
the number of shared accesses that need to be interleaved. For example, although a[i]
is a global variable, the entries of a accessed by the two threads in this particular trace
program are all disjoint and can be treated as thread-local. In other words, we can use
the runtime information to slice away the redundant statements. This can reduce the
trace program in Fig. 1 (a) to the one in Fig. 1 (b).

Next, consider the program in Fig. 1 (b). Since locks A and B now protect only
thread-local statements, some of these lock statements may be redundant. We shall
show in later sections that, for this particular example, these lock statements are all
redundant and therefore can be removed while preserving the original program behav-
ior. This reduction yields the simple trace program shown in Fig. 1 (c) with only the
shared variable accesses. Consequently, it becomes easy to decide the simultaneous
reachability of 10a and 8b.

Challenges in Lock Removal. The example in Fig. 1 may give a false impression
that locks protecting only thread-local operations can always be removed. This is not
true, as demonstrated by Fig. 2. In this example, variable sh=0 initially. The assertion
at b7 holds because, to get value 2, one has to execute b1...b3 → a1...a6 → b4...b7,
which is impossible since lock A is held by thread T2 at b3, which prevents thread T1
from acquiring the same lock at location a2. However, if we remove the lock/unlock
statements at a2 and a4 – since they protect only thread-local operations – the assertion
at b7 may fail because the aforementioned interleaving is now allowed. This example
highlights the fact that locks may play a key role in defining the set of allowed program
behaviors even if they do not guard any global operation. It also shows that, without a
rigorous concurrency analysis, ad hoc heuristics are often susceptible to subtle errors.
We address this problem by proposing a generally applicable lock removal framework.

T1() { T2() {

a1 : sh ++; b1 : ......
a2 : lock(A) b2 : lock(A)
a3 : ...... b3 : sh=0;
a4 : unlock(A) b4 : x=sh;
a5 : ...... b5 : unlock(A)
a6 : sh ++; b6 : ......
a7 : ...... b7 : assert(x!=2);
} }

a6: sh++

b1: ......

b3: sh=0

b4: x=sh

b7: assert(x!=2)

a1: sh++

Fig. 2. Example: Assuming that sh=0 initially. The lock statements at a2 and a4 cannot be re-
moved despite that they do not protect any shared access. Otherwise, assertion at b7 may fail.
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3 Lock Removal: The Core Idea

We say that a program P ′ results from another program P via lock removal if P ′ is
obtained from P by converting some of the lock statements to nop. A lock statement
in P is considered as redundant if removing that statement does not alter the program
behavior. Here the program behavior is defined as the set of interleaved computations
that are allowed by the program semantics. Since lock statements impose mutual ex-
clusion constraints, they restrict the thread interactions. By removing lock statements
from P , in general, we may allow the new program P ′ to have more interleavings; on
the other hand, it is impossible to remove any previously allowed interleavings in P .
Therefore, to preserve the program behavior, we only need to ensure that every newly
added interleaving (allowed in P ′ but not in P) is equivalent, in some sense, to an exist-
ing interleaving in P . In other words, lock removal is sound as long as it does not add
new equivalence classes (of interleavings).

3.1 The Lock Removal Strategy

Since characterizing interleavings directly is cumbersome and computationally expen-
sive, we rely on the standard notion of concurrent computations as happens-before re-
lations on the shared variable accesses [20,14]. That is, executing two operations from
different threads that update the same memory location in different orders may lead to
different results. Therefore, instead of preserving interleavings of all the statements, we
focus on preserving the partial orders of shared variable accesses (reads and writes).

For a program P comprised of the n threads T1, ..., Tn, a global control state s is a
tuple (c1, ..., cn) where ci is a control location of Ti for all i ∈ [1..n]. In contrast to
a concrete program state, denoted s ∈ s, the global control state s is more abstract in
that it tracks only the program counters but not the values of the program variables.
Therefore s can be viewed as a set of concrete states. Since thread-local operations are
invisible to the other threads, in the sequel we shall assume without loss of generality
that the locations in (c1, ..., cn) are all starting points of global operations, i.e. either
shared reads/writes or lock acquisitions. This restriction can drastically cut down the
number of global control states that need to be considered during our analysis. Note
that if a thread is at location ci, it means that the operation at ci has not been executed
yet.

Definition 1 (Visible Successor). For global control states s, s′ in program P , we say
that s′ is a visible successor of s iff there exist states s ∈ s and s′ ∈ s′ such that

– s′ is reachable from s via a valid concurrent computation, and
– along this computation, the first operation is the only global operation.

Our lock removal strategy can be phrased as follows: Removing all lock statements such
that no new visible successor is introduced to any global control state that is reachable
from the initial state in P . In other words, for each s, if we can preserve the set of global
control states that s can transit to, the program behavior will be preserved.

Consider Fig. 2 as an example. For all transitions between two global control loca-
tions, e.g. from (a2, b3) to (a6, b3), our lock removal strategy says that, if the transition
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is not allowed by P before lock removal, it should not be allowed by P ′ either. Based
on this strategy, the lock statements at a2 and a4 will be preserved, because removing
them would make the infeasible transition in P from (a2, b3) to (a6, b3) feasible in P ′.

3.2 Conservative Static Check

Although the lock removal strategy proposed so far is sound as well as generally appli-
cable, computing the visible successors of a global control state is a challenging task,
because the conditions in Definition 1 are semantic conditions. Checking the reachabil-
ity between two concrete states s and s′ would be too expensive in practice. To avoid
this bottleneck, we introduce a set of checks based on the notion of static or control-
state reachability.

Let s = (c1, . . . , cn) and s′ = (c′1, ..., c
′
n) be two global control states, where for

each i ∈ [1..n], the local path xi of Ti leads from location ci to c′i. We say that s′ is
statically reachable from s if and only if there exists an interleaving of x1, ..., xn that
obeys the scheduling constraints imposed by the locks while ignoring data (which is the
consistency between shared variable accesses).

Definition 2 (Static Visible Successor). For global control states s, s′ in program P ,
we say that s′ is a static visible successor of s iff

– s is statically reachable from s via some interleaved computation, and
– along this computation, at most one global operation is present.

Here the second condition ensures that s′ can be immediately reached from s (hence a
successor). Let SuccP(s) be the set of static visible successors of s in program P . Our
static lock removal strategy is stated as follows.

Theorem 1 (Behavior Preservation). Let program P ′ result from program P via lock
removal. If for each global control state s of P , we have SuccP(s) = SuccP′(s), then
the two programs have the same behavior as defined by the partial orders of global
operations.

Intuitively, if no new global control state becomes reachable from the initial state, then
there is certainly no new program behavior. For brevity, we omit the proof. A crucial
property of Theorem 1 is that the static reachability check can be turned into a concep-
tual lock removal procedure as follows:

1. Enumerate the set S of global control states of the given trace program.
2. For each s ∈ S, compute the set SuccP(s)of static visible successors.
3. For each lock statement lk-stmt in thread Ti, if there exists a global control location

s such that, removing lk-stmt would add a new successor s′ that is not in SuccP(s),
we must retain lk-stmt else lk-stmt is removed.

There are two remaining problems. First, given two global control states s, s′, how to
efficiently decide whether s′ is a static visible successor of s. Second, how to efficiently
compute the set of static visible successors of s while avoiding the naive enumeration
of all global control states. We will address these two problems in the next section.
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4 Compositional Lock Removal

We present a compositional analysis for static lock removal to avoid the exponential
blowup incurred by naively enumerating the global control states. Our method is thread-
modular in that the lock removal computation involves only thread-local reasoning, and
therefore has a linear worst-case time complexity in the program size.

4.1 Deciding Static Reachability

We leverage an existing procedure [18] to decide the static reachability between two
global control states. The procedure is both sound and complete for 2-threaded pro-
grams with nested locks. For programs with more than two threads, the procedure re-
mains sound but is not complete. This is acceptable because, as long as it shows that s′

is statically unreachable from s, the unreachability is guaranteed to hold.

c1

c′1

c2

c′2

s

s′

x1 x2

T1 T2

The procedure in [18] can be viewed as a generalization of the
standard lockset analysis [24]. The key insight is that, to decide
whether s′ = (c′1, c

′
2) is statically reachable from s = (c1, c2),

for example, in a 2-threaded program, merely checking the dis-
jointness of the set of locks held by T1 and T2 at c′1 and c′2 is
not enough (see the figure on the right). Although overlapping
locksets prove that s′ is not reachable from s, the disjointness of
the locksets is not sufficient to prove that s′ is reachable from
s. Instead, reachability can be decided more accurately by first
computing a lock access pattern (LAP) for each path from ci to
c′i, where i ∈ [1..2], and then checking whether the LAPs are
consistent.

Definition 3 (Lock Access Pattern). The lock access pattern for path xi from ci to c′i
in thread Ti, denoted LAP(ci, c

′
i), is a tuple (L1, L2, bah, fah, Held, Acq) where

– L1 and L2 are the set of locks held by Ti at ci and c′i, respectively;
– bah and fah are the backward and forward acquisition histories, respectively:

• for each lock l ∈ L2 held at c′i, bah(l) is the set of locks acquired (and possibly
released) after the last acquisition of l along path xi from ci to c′i;

• for each lock l ∈ L1 held at ci, fah(l) is the set of locks released (and possibly
acquired) since the last release of l in traversing xi backward from c′i to ci.

– Held is the set of locks that are held in every state along path xi from ci to c′i;
– Acq is the set of locks that are acquired (and possibly released) along path xi.

A key feature of this LAP-based static analysis procedure is that all computations are
local to each individual thread, which is crucial in ensuring scalability.

Decomposition Result. The static reachability from s to s′ can be decided by checking
whether the corresponding lock access patterns are consistent. For ease of exposition,
we present the result for programs with two threads. However, the result, as well as all
the other subsequent results, is applicable to programs with n threads.

Let s = (c1, c2) and s′ = (c′1, c
′
2) be two global control states, and

LAP(c1, c
′
1) = (L1

1, L
1
2, bah1, fah1, Held1, Acq1) and LAP(c2, c

′
2) = (L2

1, L
2
2,
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bah2, fah2, Held2, Acq2) be the lock access patterns. Then s′ is statically reachable
from s iff

1. L1
1 ∩ L2

1 = ∅, and L1
2 ∩ L2

2 = ∅;
2. there do not exist locks l ∈ L1

1 and l′ ∈ L2
1 such that l ∈ fah2(l′) and l′ ∈ fah1(l);

3. there do not exist locks l ∈ L1
2 and l′ ∈ L2

2 such that l ∈ bah2(l′) and l′ ∈ bah1(l);
4. Acq1 ∩Held2 = ∅, and Acq2 ∩Held1 = ∅.

For n-threaded programs, the only significant difference would be in conditions 2 and
3, wherein one has to account for the cases in which n threads form a cyclic dependency
that may span multiple threads instead of just two.

4.2 Compositional Analysis

To avoid the expensive enumeration of global control states as described in Theorem 1,
we compute for each individual thread, all pairs of local control states that may cor-
responds to some static visible successors. More specifically, a pair (ci, c′i) of control
locations in thread Ti is called a pair of interest (POI) iff

– ci and c′i correspond to either shared variable accesses or lock acquisitions, and
– there exists a local path xi in Ti from ci to c′i such that no other shared variable

access or lock acquisition occurs between ci and c′i.

Our compositional lock removal procedure is given in Algorithm 1. After computing
the POIs of each thread Ti, it traverses that thread to collect the lock access patterns for
all POIs. Let LPi denote the set of all lock access patterns in Ti. Note that LPi can be
computed via a single traversal pass of thread Ti (step 4).

Algorithm 1. Compositional Lock Removal
1: Input: Threads T1, T2

2: for each thread Ti do
3: Enumerate all pairs of interest POI(Ti).
4: Traverse the local path in Ti to compute LAP(ci, c

′
i) for each pair (ci, c′i) ∈ POI(Ti).

5: Let LPi be the set of lock access patterns of all POIs in Ti.
6: end for
7: for each pair (lap1, lap2) where lapi ∈ LPi for all thread index i ∈ [1..2] do
8: if lap1, lap2 are inconsistent then
9: Identify the set of lock statements that are the root causes of inconsistency.

10: end if
11: end for
12: Remove lock statements that are not the root causes of inconsistency for any pair.

Instead of iterating through the set of all global control states, Algorithm 1 considers
all pairs (lap1, lap2) of lock access patterns that are inconsistent (step 7). Note that
lapi corresponds to some pair (ci, c′i) ∈ POI(Ti) and the inconsistency of lap1 and
lap2 means that there exist some lock statements that prevent (c1, c2) from reaching
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(c′1, c
′
2). In this case, we need to identify a minimum subset of lock statements that are

sufficient to establish this inconsistency, and retain these lock statements. Finally any
lock statement that is not responsible for causing an inconsistency between any pair of
lock access patterns does not impact the reachability between any pair of global control
states, and is therefore removed.

It is worth pointing out that the lock statements (to be retained) can be identified
from the lock access patterns (lap1 and lap2) alone, without considering the global
control states or the POIs that generate these lock access patterns. In other words, we
can implicitly isolate the set of non-reachable pairs of global control states without
explicitly enumerating them. The algorithm can also be extended to programs with n
threads, by changing step 7 to check for inconsistent tuples of the form (lap1, ..., lapn),
as opposed to the inconsistent pair (lap1, lap2).

4.3 Identifying the Locks to Be Retained

If s′ is not statically reachable from s in the original program P , according to Sec-
tion 4.1, at least one of the conditions in the decomposition result must be violated.
From these conditions, we can isolate the root causes that prevent s from reaching s′

statically. Our observation is that if s′ is not statically reachable from s in P , then we
need to make sure that s′ is not reachable from s in the transformed program P ′. The
behavior preservation can be guaranteed if we retain at least some (but not all) of the
lock statements that prevent s from reaching s′.

Given an inconsistent pair lap1 and lap2 of lock access patterns, we can define a
reachability barrier by isolating the locks causing the inconsistency. To this end, for
each pair (s, s′) of global control states where s = (c1, c2) and s′ = (c′1, c

′
2), we define

a reachability barrier, denoted RB(s, s′), which is the set of all locksets (L) for which
at least one of the following conditions holds:

– L = {l}, where l is held at both c1 and c2 or at both c′1 and c′2 (violating condition
1 of the decomposition result);

– L = {l, l′}, where l and l′ are held at c1 and c2, respectively, such that l ∈ fah(l′)
and l′ ∈ fah(l) (violation of condition 2);

– L = {l, l′}, where l and l′ are held at c′1 and c′2, respectively, such that l ∈ bah(l′)
and l′ ∈ bah(l) (violation of condition 3);

– L = {l}, where l is held throughout x1 (or x2) and is acquired along x2 (or x1)
(violation of condition 4).

Note that in order to ensure that s′ remains unreachable from s, it suffices to retain
the locks belonging to some lockset in RB(s, s′) as that will ensure that at least one
condition of the decomposition result is violated.

5 Applying Lock Removal to the Running Example

We now use our new method to remove all locks in the trace program shown in Fig. 1 (b)
while preserving the program behavior.



236 V. Kahlon and C. Wang

We start by identifying the pairs of interest. In the path x1 shown in Fig. 1 (b), there
are three lock acquisition statements, i.e. locations 1a, 5a and 6a, and two shared vari-
able accesses, i.e., 0a and 10a (the initial state is always treated as a shared variable
access). This leads to the pairs of interest POI(x1) = {(0a, 0a), (0a, 1a), (1a, 1a),
(1a, 5a), (5a, 5a), (5a, 6a), (6a, 6a), (6a, 10a)}. Similarly, POI(x2) = {(0b, 0b),
(0b, 3b), (3b, 3b), (3b, 4b), (4b, 4b), (4b, 8b), (8b, 8b)}.

Next, we compute the lock access patterns generated by all pairs of interest in paths
x1 and x2. Toward that end, we compute the lap2POI function for x2 that maps each
lock access pattern lap that is encountered to the set of POIs of x2 that generate that
pattern. For each (c2, c

′
2) in the set {(0b, 0b), (0b, 3b), (3b, 3b), (8b, 8b)}, no lock is

held at either c2 or c′2 and no lock is acquired along the sub-sequence of x2 from c2 to
c′2. Thus all the entries in the lock access pattern tuples for these pairs are empty (note
that if a thread is at location 3b it means that the statement at 3b hasn’t been executed
yet, i.e., lock held at location 3b is ∅).

Consider now the pair of interest (4b, 8b). We show that LAP(4b, 8b) = ({A}, ∅,
{(A, {B})}, ∅, ∅, {B}). The first two entries in the tuple are the locksets held at 4b
and 8b which are {A} and ∅, respectively. Since no lock is held at the final state 8b, the
forward acquisition histories, i.e., the fourth entry of the tuple is empty. On the other
hand, lock A is held at the initial state 4b. This lock is released at 7b. However before it
is released T2 also releases B at 6b. ThusB is in the backward acquisition history of A
which is reflect in the third entry of the tuple. Also, since lock B is acquired at location
4b, we have Acq = {B} (6th entry). Finally, since there exists no lock that is held at
all states, we have Held = ∅ (5th entry). Similarly, we may compute the lock access
patterns for the remaining pairs of interest (see Fig. 3 (b)). Similarly, we compute the
lap2POI function for x1 (see Fig. 3 (a)).

From Fig. 3 (a) and 3 (b), we compute the inconsistent pairs (p1, p2) of lock access
patterns where

1. p1 = ({A}, {A}, ∅, ∅, {A}, ∅), p2 = (∅, {A}, ∅, {(A, {})}, ∅, {A}): Held and Acq fields
of p1 and p2, respectively, have the common lock A.

2. p1 = (∅, ∅, ∅, ∅, ∅, {A}) and p2 = ({A}, {A}, ∅, ∅, {A}, ∅): Acq and Held fields of p1
and p2, respectively, have the common lock A.

3. p1 = (∅, {A}, ∅, {(A, {})}, ∅, {A}) and p2 = ({A}, {A}, ∅, ∅, {A}, ∅): Acq and Held
fields of p1 and p2, respectively, have the common lock A

4. p1 = ({A}, {A}, ∅, ∅, {A}, ∅) and p2 = ({A}, {A}, ∅, ∅, {A}, ∅): L1 fields have the
common lock A

5. p1 = ({A}, {A}, ∅, ∅, {A}, ∅) and p2 = ({A}, ∅, {(A, {B})}, ∅, ∅, {B}): L1 fields have
the common lock A

6. p1 = ({A}, ∅, {(A, {B})}, ∅, ∅, {B}) and p2 = ({A}, {A}, ∅, ∅, {A}, ∅): L1 fields have
the common lock A

7. p1 = ({A}, ∅, {(A, {B})}, ∅, ∅, {B}) and p2 = ({A}, ∅, {(A, {B})}, ∅, ∅, {B}): L1

fields have the common lock A
8. p1 = (∅, {A}, ∅, {(A, {})}, ∅, {A}) and p2 = (∅, {A}, ∅, {(A, {})}, ∅, {A}): L2 fields

have the common lock A.

Note that in each of the above cases, the only lock occurring in the reachability barriers
of the non-reachable pairs of global control states is A. Since lock B does not occur
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in any of the reachability barriers, in the first iteration, we can remove all statements
locking/unlockingB.

Now we repeat the lock removal procedure again on the trace program in Fig. 1 (b),
by converting statements 6a, 8a, 4b and 6b to nop. These new traces generate the
lap2POI functions shown in Figs. 3 (c) and (d). Note that now all pairs of access
patterns are mutually consistent. Thus the reachability barriers for all pairs of global
control states are empty. Hence all locks in the original traces can now be removed
giving us the traces with no lock statements.

(∅, ∅, ∅, ∅, ∅, ∅) → {(0a, 0a), (0a, 1a), (1a, 1a), (5a, 5a), (10a, 10a)}
(∅, ∅, ∅, ∅, ∅, {A}) → {(1a, 5a)}
(∅, {A}, ∅, {(A, {})}, ∅, {A}) → {(5a, 6a)}
({A}, {A}, ∅, ∅, {A}, ∅) → {(6a, 6a)}
({A}, ∅, {(A, {B})}, ∅, ∅, {B}) → {(6a, 10a)}

(a)

(∅, ∅, ∅, ∅, ∅, ∅) → {(0b, 0b), (0b, 3b), (3b, 3b), (8b, 8b)}
(∅, {A}, ∅, {(A, {})}, ∅, {A}) → {(3b, 4b)}
({A}, {A}, ∅, ∅, {A}, ∅) → {(4b, 4b)}
({A}, ∅, {(A, {B})}, ∅, ∅, {B}) → {(4b, 8b)}

(b)

(∅, ∅, ∅, ∅, ∅, ∅) → {(0a, 0a), (0a, 1a), (1a, 1a), (5a, 5a), (10a, 10a)}
(∅, ∅, ∅, ∅, ∅, {A}) → {(1a, 5a), (5a, 10a)}

(c)

(∅, ∅, ∅, ∅, ∅, ∅) → {(0b, 0b), (0b, 3b), (3b, 3b), (8b, 8b)}
(∅, ∅, ∅, ∅, ∅, {A}) → {(3b, 8b)}

(d)

Fig. 3. The lap2POI function for x1 (left) and x2 (right)

Generalizations. So far, for ease of exposition, we have presented all the algorithms
using concurrent trace programs with two threads. However, our results can be extended
to programs with an arbitrary but fixed number of threads. This generalizations do not
require additional insights. The only difference from the 2-thread case is that we need
an efficient technique to decide static reachability between global control states which
are now n-tuples of the form (c1, ...cn), where each ci is either a shared variable access
or a lock acquisition in thread Ti. This is achieved via a straightforward extension of the
decomposition result in Section 4.1. That is, for each pair of threads, we check whether
their lock access patterns (LAPs) are consistent.

So far we have discussed only mutex locks. A typical real-world concurrent program
in Java or C (with POSIX threads) may have additional concurrency primitives such as
thread creation and join operations, wait/notify/notifyall, as well as reentrant locks. The
presence of these synchronization primitives does not affect the soundness of our lock
removal algorithm. The reason is that, if s′ is statically unreachable from s according
to locks (while ignoring data and other concurrency primitives), it is guaranteed to be
unreachable when more synchronization constraints are considered. At the same time,
if there is a way to incorporate the causality constraints imposed by other concurrency
primitives, one can more accurately determine the reachability between global control
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states, therefore leading to the identification and removal of potentially more redundant
lock statements. To this end, we have incorporated the universal causality graph based
analysis in [19] during our implementation of the proposed lock removal method. How-
ever, we note that this UCG-based analysis is orthogonal to lock removal, and can be
carried out once in the beginning of the computation.

6 Experiments

We have evaluated the lock removal method in the context of an SMT-based runtime
predictive analysis [28,29], to quickly remove the lock statements that are redundant
and therefore ease the burden of modeling and checking by the SMT solvers.

We now provide a brief overview of the symbolic predictive analysis. Given a multi-
threaded Java or C program and a user-defined test case, the predictive analysis pro-
cedure first instruments the program code to add self-logging capability, and then uses
stress tests to detect concurrency failures. However, due to the scheduling nondetermin-
ism and the astronomically large number of interleavings, it is often difficult to uncover
the concurrency bugs. If testing fails to detect any bug, we start a post-mortem analysis
of the logged execution trace.

In this subsequent analysis, first we use a simple control flow analysis to compute the
potential bugs. Consider the one-variable three-access atomicity violation [21,11] as an
example. In this case, a potential bug is a sequence tc...tr...tc′ of program statements
such that: (1) tc and tc′ are intended to be executed atomically by one thread, (2) tr is in
another thread and is data dependent with both tc and tc′ . Then we use a more precise
static analysis based on the universal causality graph (UCG [19]) to prune away the
obviously bogus violations.

For each remaining potential violation, we call the SMT-based symbolic procedure
to decide if there exists a valid interleaving under which the violation is feasible. In this
context, an interleaving is feasible if it satisfies both the synchronization consistency
(e.g. locks) and the shared memory consistency. Please refer to [28,29,26] for more
information about the symbolic encoding. Here we assume the sequential consistency
(SC) memory model. We have used the YICES solver from SRI [8] in our experiments.
Since having more lock statements generally leads to more logical constraints and there-
fore a higher cost for SMT solving, we have used lock removal before the SMT-based
analysis, to remove the redundant lock statements.

We conducted experiments using the following benchmarks1. The Java programs
come from various public benchmarks [16,17,15,27]. The C programs are the PThreads
implementation of two sets of known bug patterns. The first set (At) mimics an atomicity
violation in the Apache web server code (c.f. [21]), where At1 is the original program,
while At1a and At2a are generated by adding code to the original programs to remove
the atomicity violations. The second set (bank) is a parameterized version of the bank
example [10], where the original program bank-av has a well-known atomicity viola-
tion and the remaining two are various attempts of fixing it All our experiments were
conducted on a PC with 1.6 GHz Intel processor and 2GB memory running Fedora.

1 The benchmarks are available at http://www.nec-labs.com/∼chaowang/pubDOC/LnW.tar.gz
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Table 1 shows the results. The first five columns show the statistics of the trace pro-
gram, including the name, the number of threads, the total number of events, the num-
ber of lock/unlock events, and the number of named locks. The next nine columns show
the statistics of the lock removal computation. In particular, Columns 6-9 show the total
number of pairs of interest (POI), the number of POIs without any held lock (POI-e), the
number of POIs with non-trivial lock acquisition histories (POI-h), and the maximum
nesting depths of locks (max-h). The fact that max-h is often zero helps to make our
analysis scale to real-life programs. Columns 10-11 show the total number of relevant
pairs of global control states, and the number of pairs wherein one state is unreachable
from the other. Columns 12 and 13 show the number of critical sections (pairs of lock-
unlock statements) in the original and transformed programs, respectively. Column 14
shows the total time (in seconds) taken for the lock removal computation.

Table 1. Results: Using lock removal to improve symbolic analysis. mem means memory-out.

Concurrent Trace Program Lock Removal Computation Symbolic Analysis
name thrds events lk-evs lk-v POI POI-e POI-h max-h vis-ne vis-ch lk-r rm-r time(s) p-avs r-avs pre(s) post(s)

ra.Main 3 55 12 3 23 7 0 0 65 0 5 3 0.0 2 0 0.0 0.0
connect 4 97 16 1 43 29 0 0 1526 0 8 0 0.0 6 0 0.1 0.1
hedcex 1 122 35 7 1 0 0 0 0 0 0 0 0.0 0 0 0.0 0.0
liveness 7 283 44 9 105 68 0 0 10272 0 15 0 0.2 36 0 0.4 0.4
BarrierB1 10 653 108 2 307 168 0 0 69498 0 35 14 0.9 102 0 10.5 3.0
BarrierB2 13 805 136 2 409 217 0 0 120659 0 49 21 1.6 87 0 54.5 7.4
account1 11 902 146 21 230 134 0 0 43690 0 72 30 0.7 140 2 1.8 0.9
philo 6 1141 126 6 433 260 0 0 147294 0 63 10 2.2 81 0 42.5 19.4
account2 21 1747 282 41 442 260 0 0 171400 0 140 60 2.6 280 3 8.7 2.4
Daisy1 3 2998 422 10 843 105 29 1 17249 141 204 175 0.3 7 0 mem 21.3
Elevator1 4 3004 370 11 893 28 0 0 1453 0 184 174 0.1 4 0 29.6 0.7
Elevator2 4 5001 610 11 1992 116 0 0 25435 0 304 257 0.7 8 0 mem 4.3
Elevator3 4 8004 1128 11 2369 214 0 0 81890 0 563 468 1.9 12 0 mem 28.2
Tsp 4 45653 20 5 87 4 0 0 20 0 8 6 0.0 0 0 0.0 0.0

At1 3 88 6 1 14 7 0 0 60 0 3 0 0.0 3 0 1.0 0.0
At1a 3 100 8 1 17 10 0 0 126 0 4 0 0.0 4 0 1.0 0.0
At2a 3 462 126 2 156 149 32 1 38208 9216 52 16 0.6 52 16 2.0 0.6
Bank-av 3 748 20 3 160 104 0 0 28776 0 40 8 0.4 40 8 8.0 0.4
Bank-sav 3 852 28 3 195 139 0 0 51510 0 56 8 0.7 56 8 8.0 0.7
Bank-fix 3 856 32 3 204 147 16 1 57612 12540 64 8 0.8 64 8 9.0 0.8

Finally, the last four columns in Table 1 show the impact of lock removal on the
performance of a runtime verification procedure. Recall that, for each of the potential
atomicity violations, we use symbolic analysis to decide whether it is a real atomicity
violation. Here we first show the total number of potential atomicity violations (p-avs)
that are collected by a simple static analysis, and then show the number of real atom-
icity violations found by the precise symbolic analysis (r-avs). Please refer to [29,19]
for more details on predicting atomicity violation. The last two columns compare the
runtime of symbolic analysis with and without lock removal. The results clearly show
that lock removal has made the predictive verification step more efficient. Note that for
Daisy1 (which is file system) and Elevator2, without lock removal, symbolic execution
would run out of the 2GB memory limit, whereas after lock removal, they were able to
finish in short time.
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7 Related Work

Existing work on automatically removing unnecessary synchronizations has con-
centrated mostly on performance optimization and on eliminating thread-local
locks [3,4,6,30], i.e. locks that have been acquired or released by a single thread or
used to protect an object accessed by a single thread. The difference among these meth-
ods lies in how they identify shared/escaped objects. For example, Blanchet [3] uses a
flow-insensitive escape analysis both to allocate thread-local objects on the stack and
to eliminate synchronization from stack-allocated objects. Bogda et. al. [4] also use a
flow-insensitive escape analysis to eliminate synchronization from thread local objects,
but the analysis is limited to thread-local objects that are only reachable by paths of one
or two references from the stack. Choi et al. [6] perform an inter-procedural points-to
analysis to classify objects as globally escaping, escaping via an argument, and not es-
caping. When synchronizing, the compiler eliminates synchronizations for thread-local
objects, while preserving Java semantics by flushing the local processor cache.

Ruf [22] combines a thread behavior analysis with a unification based alias analysis
to removal unnecessary synchronizations. Aldrich et al. [1] propose three analysis to
optimize the synchronization opportunities: lock analysis, unshared field analysis, and
multithreaded object analysis. Lock analysis computes a description of the monitors
held at each synchronization point so that reentrant locks and enclosed locks can be
eliminated. Unshared field analysis identifies unshared fields so that lock analysis can
safely identify enclosed locks. Finally, multithreaded object analysis identifies which
objects may be accessible by more than one thread. This enables the elimination of all
synchronization on objects that are not multi-threaded. Zee and Rinard [30] present a
static program analysis for removing unnecessary write barriers in Java programs that
use generational garbage collection.

In contrast, the focus of our work is not to identify which objects are effectively
thread-local, which objects are shared, or when they are shared, by multiple threads,
but to identify more optimization opportunities on the truly shared objects and yet re-
dundant locks. To the best of our knowledge, this is the first such lock removal algo-
rithm. It is generally applicable, based on a rigorous and unified concurrency analysis
framework. It is also practically efficient, due to the use of lock access patterns, which
involves only thread-local computation.

In the formulation of our efficient check for behavior preservation, we have leveraged
the lock access patterns [18], since our trace program has a fixed number of threads
interacting with only nested locks. To extend the method from trace programs to whole
programs, one might need to leverage the more advanced machinery in [13,9] to deal
with locks interacting with dynamic thread creation.

In the literature, there has also been some work on reducing the run-time cost of
synchronizations, e.g. by making their implementation more efficient (e.g. [2]) rather
than removing the unnecessary ones. These techniques complement ours. Our local
removal algorithm is also different from lock coarsening [7], which optimizes the nec-
essary synchronizations, e.g. those arising from acquiring and releasing a lock multiple
times in succession. Converting multiple lock operations into one, in general, changes
the program behavior, and therefore one must take care not to introduce deadlock.
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8 Conclusions

In this paper, we have presented an efficient and fully automatic lock removal technique
for concurrent trace programs. A key feature of our method is that it is compositional
in nature, i.e., hinges on a thread local analysis, which makes it applicable to large,
realistic programs. Furthermore, our technique guarantees the preservation of program
behaviors, i.e., partial orders induced on shared variable accesses. These features make
it a standalone utility with many wide ranging applications, including performance op-
timization as well as improving the efficacy of concurrent program analysis like run-
time verification, model checking and dataflow analysis. As a concrete application, we
demonstrated the use of our lock removal technique in enhancing the scalability of pre-
dictive analysis in the context of runtime verification of concurrent programs.
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Abstract. Linearisability is the standard correctness criterion for concurrent data
structures. In this paper, we present a sound and complete proof technique for
linearisability based on backward simulations. We exemplify this technique by
a linearisability proof of the queue algorithm presented in Herlihy and Wing’s
landmark paper. Except for the manual proof by them, none of the many other
current approaches to checking linearisability has successfully treated this intri-
cate example. Our approach is grounded on complete mechanisation: the proof
obligations for the queue are verified using the interactive prover KIV, and so is
the general soundness and completeness result for our proof technique.

1 Introduction

The advent of multi- and many-core processors will see an increased usage of concur-
rent data structures. These are implementations of data structures like queues, stacks or
hashtables which allow for concurrent access by many processes at the same time. Li-
braries such as java.util.concurrent offer a vast number of such concurrent
data structures. To increase concurrency, these algorithms often completely dispose
with locking, or only lock small parts of the structure. This inevitably leads to race
conditions. Indeed, the designers of such algorithms do not aim at race-free but at lin-
earisable algorithms. Linearisability [14] requires that fine-grained implementations of
access operations (e.g., insertion or removal of an element) appear as though they take
effect “instantaneously at some point in time” [14], thereby achieving the same effect
as an atomic operation.

Recently, a number of new approaches to proving linearisability have appeared, some
supported by theorem provers (like our own), some automatic based on user-annotated
algorithms and some manual (see Section 7). Looking at these approaches, one finds
that a number of techniques (including our own so far) get adapted every time a new
type of algorithm is treated. Every new “trick” designers build into their algorithms to
increase performance (e.g., like a mutual push and pop elimination for stacks, or lazy
techniques) requires an extension of the verification approach.

In this paper, we propose a proof technique which can be used to prove linearisability
of every linearisable algorithm: Our method is sound and complete for linearisability.
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The approach is based on backward simulations - a technique borrowed from data re-
finement. More precisely, we show that a fine-grained implementation is linearisable
with respect to an abstract atomic specification of the data structure if and only if there
is a backward simulation between the specification and the implementation. The use of
simulations for showing linearisability is not new; however, current refinement-based
approaches (e.g. [9]) are based on both backward and forward simulations. We exem-
plify our approach on the queue implementation of Herlihy and Wing [14]. None of
the current other works on linearisability have treated this algorithm; and it is also not
clear whether the many approaches tailored towards heap usage (like separation logic or
shape analysis based techniques) can successfully verify the queue, as the complexity
in the interaction between concurrent processes in the queue is not due to a shared heap
(there is no heap involved at all). Along with this queue example we also show how to
systematically construct the backward simulations needed in the linearisability proofs.

Last but not least we have a complete mechanisation of our approach. It is complete
in the sense that we both carry out the backward simulation proofs for our examples
(here, the queue) with an interactive prover (which is KIV [23]), and have verified
within KIV that the general soundness and completeness proof of our technique is cor-
rect. In summary, this paper thus contains three contributions: (1) the proof of sound-
ness and completeness of backward simulations for linearisability, (2) the linearisability
proof for the Herlihy and Wing queue, and (3) the full mechanisation of both the exam-
ple and the general theory.

The next section gives the algorithms for the example. Section 3 defines linearisabil-
ity as a specific form of refinement. Section 4 gives our main theorem, that linearisabil-
ity can always be proven with a backward simulation, and Section 5 derives one for the
example, showing that this can be done systematically. Section 6 gives some informa-
tion on the KIV prover, and sketches how the proof obligations for backward simulation
could be verified. Full details of all proofs are online [17]. Section 7 gives related work
and Section 8 discusses possible improvements and concludes.

2 Example

The queue of [14], which serves as our running example, is a data structure with two
operations: enqueue appends new elements (of some type T) to the end of the queue
and dequeue removes elements from the front of the queue. The implementation of the
queue uses a shared array AR of unbounded length. All slots of the array are initialised
with a value null, signalling ‘no element present’. A back pointer back into the array
stores the current upper end of the array where elements are enqueued. Dequeues oper-
ate on the lower end of the array. The pseudocode of the queue operations is as follows:

E0 enq(lv : T) D0 deq(): T
E1 /* increment */ D1 lback := back; k := 0; lv := null;

(k, back) := D2 if k < lback goto D3 else goto D1;
(back,back+1); D3 (lv, AR[k]) := (AR[k], lv); /* swap */

E2 /* store */ D4 if lv �= null then goto D6 else goto D5;
AR[k]:= lv; D5 k := k + 1; goto D2;

E3 return D6 return(lv)
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The enq operation simply gets a local copy of back, increments back (these two steps are
executed as an atomic “fetch & increment”) and then stores the element to be enqueued
in the array.

The deq operation proceeds in several steps: first, it gets a local copy of back and ini-
tialises a counter k and a local variable, lv, which is used to store the dequeued element.
It then walks through the array trying to find an element to be dequeued. Steps D2 and
D5 of the code are a loop consecutively visiting the array elements. At every position
k visited, the array contents AR[k] is swapped with variable lv (i.e., the assignment at
D3 is executed in parallel). If the dequeue finds a proper non-null element this way
(lv �= null), this will be returned, otherwise the search is continued. In the case where
no element can be found in the entire array, deq restarts the search. Note that if no enq
operations occur, deq will thus run forever.

The complete specification consists of a number of processes p ∈ P, each capable of
executing its queue operations on the shared data structure. For the concrete implemen-
tation, therefore, these two algorithms can be executed concurrently by any number of
processes - where the individual steps (i.e., the statements in locations E0 to D6) in the
operations are taken to be atomic, but crucially can be interleaved. That is, a process
may start an enq operation (say doing E0 and E1) but then another process may execute
its own atomic step (e.g., start a deq). Verification that the concrete implementation is
somehow correct with respect to abstract, atomic enqueue and dequeue operations is
the crux of the problem and linearisability is the proof obligation.

Our proof of linearisability proceeds by showing that the concurrent implementation is
a backward simulation of an atomic abstract specification of the queue, i.e. that every
step of the implementation can be simulated by the abstract specification in a backward
fashion. To this end, we phrase both abstract specification and implementation in terms
of data types. A data type consists of a state State (set of variables) and operations on
the state Op ⊆ State×State (e.g. enqueue or dequeue, or operations like D1, D2, . . .). In
addition, an initialisation operation Init : State specifies constraints on the initial state
and a finalisation operation Fin ⊆ State × F relates states to global result values from
some set F. Intuitively, Fin fixes those parts of the state that we are interested in and
want to observe when comparing the data types. A data type is written as

(State, Init, (Opp,i)p∈P,i∈I,Fin)

Note that we have incorporated processes in here. We take a relational view on opera-
tions, and use o

9 for composition of relations. Primed variables in operations refer to the
after state. Sequences of operations are written as Op∗.

For the abstract queue (omitting Fin for the moment), we for instance have A =
(AState,AInit,Enqp∈P,Deqp∈P) given by

AState =̂ [q : seq T]

AInit =̂ [q = 〈 〉]
Enqp(x? : T) =̂ [q′ = q � 〈x?〉]
Deqp(x! : T) =̂ [x! = first(q) ∧ q′ = rest(q)]

Here, the variable x? is an input to and x! an output of the operation.
The data type C = (CState,CInit, (COpp,j)p∈P,j∈J) for the concurrent implemen-

tation is more complex. The state consists of the two global variables back : IN and
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AR : IN → T to represent the array with elements of type T. Additionally, the local vari-
ables of processes are part of the state, e.g. lback : P → IN represents the values of the
local variable lback for all the processes. Finally, pc : P → {N,E1,E2,E3,D1, . . . ,D6}
defines a program counter for all processes, pc(p) = N means that process p is currently
running no operation. Initial states CInit : CState have an empty array, back = 0 and
pc(p) = N for all p ∈ P.

The operations of this concrete data type are made up of the steps of the algorithm:
every line in the algorithm becomes one operation1. We thus for instance have an oper-
ation called enq1p (line E1 in the enqueue of process p) which is specified as

enq1p =̂ [pc(p) = E1 ∧ pc′(p) = E2 ∧ k′(p) = back ∧ back′ = back + 1]

Here, we use the convention of not mentioning variables of the state which remain un-
changed. In a similar way we can define operations for all other steps of the algorithm.

Our goal for the next section is to show that all concurrent runs of the algorithm given
here faithfully implement queue operations. E.g., a concrete run might start with the
sequence enq03 o

9 enq13 o
9 enq01 o

9 deq02. Does this represent a possible implementation
of an abstract run? Formally, we have to prove linearisability and we will do so by
showing that the concurrent implementation is (a particular type of) refinement of the
abstract atomic specification.

3 Linearisability and Refinement

Linearisability is defined by comparing histories created by the atomic queue opera-
tions and those created by the concurrent implementation. Histories are sequences of
invoke and return events of particular operations (out of some index set I) by particular
processes p ∈ P with certain input or output values. For example, a possible history of
our queue implementation is

h = 〈inv(3, enq, a), inv(1, enq, b), inv(2, deq, ), inv(4, enq, c), ret(3, enq, ), ret(4, enq, )〉
In this history, process 3 first invokes an enqueue operation with argument a. Next, pro-
cess 1 invokes an enqueue for element b. While these two processes are running, process
2 starts a dequeue, and process 4 invokes an enqueue of c. At the end, first process 3
returns from its enqueue and finally process 4. These histories are thus abstracting the
algorithm into just its start and end given by the invokes and returns of the operations.
In a legal history, a return event of process p from operation i is always preceded by
a matching (i.e., corresponding) invoke event with the same p and i, while an invoke
event may or may not be followed by a matching return. In the latter case, the operation
has not yet finished, and the invoke is a member of the set pi(h) of pending invokes of
history h. For the given history pi(h) = {inv(1, enq, b), inv(2, deq, )}. In the following,
Event denotes the set of all events, and we write Ret for the set of all return events.

The first step in our proof technique is to add the history created by the algorithms
to the data types: We construct history enhanced data types collecting histories. The
enhancement we define is not specific to the queue example but applies to all concrete

1 In the KIV specification of the algorithm we split IF-statements into a true and false case.
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and abstract data types for which we want to show linearisability. The history enhanced
concrete data type HC = (HCState,HCInit, (HCOpp,j)p∈P,j∈J,HCFin) gets HCState =̂
CState ∧ [h : Event∗]. As in the example above, the invoking steps of operations op
of processes p (like enq0p and deq0p for the queue corresponding to lines E0 and D0)
add an event inv(p, op, a) (where a is the input value of op) to the history. Similarly
the returning operations add return events, all others leave the history unchanged. Now
we can also define a meaningful finalisation operation: HCFin ⊆ HCState × F for
F = Event∗ extracts the collected history by defining HCFin((cs, h),H) iff H = h.

On the abstract data type we perform a slightly different form of enhancement which
is also motivated by our objective of wanting to prove linearisability. Informally, lin-
earisability means that all histories created by the implementation could also be pro-
duced by working with an abstract atomic queue. As Herlihy and Wing formulate it:
we want the concurrent implementation to “provide the illusion that each operation
. . . takes effect instantaneously at some point between its invocation and return”. This
point in time is usually called the linearisation point. The formal
definition given in [14], however, is based on comparing concurrent and sequential
histories (where the latter are sequences of matching invocation and return pairs). Al-
ready [14] note that this definition is not suitable for proofs, therefore like most re-
lated work (see Section 7) we prefer an alternative definition that directly formalises
the idea of a linearisation point. In the enhancement of the abstract data type HA =
(HAState,HAInit, {Invp,i, Linp,i,Retp,i}p∈P,i∈I},HAFin) we thus add histories plus we
also split operations in three: an invocation, a linearisation point and a return.

HAState =̂ AState ∧ [h : Event∗,R : PRet]

HAInit =̂ AInit ∧ [h = 〈 〉 ∧ R = ∅]

Invp,i(in? : In) =̂ [(¬ ∃ i′, in′ • inv(p, i′, in′) ∈ pi(h)) ∧
as′ = as ∧ R′ = R ∧ h′ = h � 〈inv(p, i, in?)〉]

Linp,i =̂ [∃ in, out • inv(p, i, in) ∈ pi(h) ∧ (¬ ∃ out2 • ret(p, i, out2) ∈ R) ∧
AOpp,i(in, as, as′, out) ∧ h′ = h ∧ R′ = R ∪ {ret(p, i, out)}]

Retp,i(out! : Out) =̂ [ret(p, i, out!) ∈ R ∧ h′ = h � 〈ret(p, i, out!)〉 ∧
R′ = R \ {ret(p, i, out!)} ∧ as′ = as]

HAFin =̂ [H : Event∗ | H = h]

As we see here we do not only add a variable h collecting histories but also a variable
R, a set of return events. The role of R is to collect return events for those operations
which have already taken effect, i.e., which are past the linearisation point but have not
yet returned. Abstract execution of operations now consists of three steps: the invocation
operation Invp,i just adds an invoke event to the history, the linearisation operation Linp,i

changes the state according to the original definition of the operation in A, adds a return
event to R (now the effect has taken place) and keeps the history. The return operation
Retp,i adds the return event to the history and – now that it is present in h – has to remove
it from R. Finalisation again gives the current history.

Note that HA is concurrent in the sense that operations of processes are interleaved.
However, the “effect” operation Lin is still atomic and thus faithfully reflects the original
abstract data type. These two abstractions HA and HC can thus be compared.
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Definition 1. The reachable states of HA are called possibilities. Writing HAOp for the
union of all operations of HA, we define

Poss(as, h,R) =̂ (HAInit o
9 HAOp∗)(as, h,R)

Our definition of possibilities is essentially the same as the one in Herlihy and Wing’s
paper [14], p. 486f. The notation given there is (as,P,R) ∈ Poss(h), with a redundant
set P, that contains those invokes in pi(h) with no matching return in R. Axioms S, I, C
and R correspond one-to-one to our operations HAInit, Inv, Lin and Ret: the premise and
conclusion are the pre- and post-state of the operations (our side conditions guarantee
legal histories in conclusions, left implicit in [14]).

Lynch [18], Sec. 13.1.2, gives a similar definition of linearisability using the “canon-
ical wait-free automaton for atomic objects”. States of this automaton are essentially
(as,P,R) (P is called inv-buffer), traces of the IO automaton correspond to our history.
Theorems 9 and 10 of [14] state that possibilities are equivalent to linearisability:

Theorem 1. An implementation data type C is linearisable with respect to some ab-
stract data type A if and only if for every history h created by C there exists a possibility
Poss(as, h,R).

This theorem seems to be universally accepted, and informal arguments for its validity
appear in many papers. However, to relate the results given here to the original definition
of linearisability, we have mechanised the proof in KIV. The proof is rather complex. It
shows that a forward simulation exists between the type HA given here and the abstract
data type we have used in [7] for the original linearisability definition. This provided
a hint that backward simulation could be a complete proof procedure for the definition
given here.

The theorem gives us the option to prove linearisability by showing the existence of
possibilities, which can be viewed as a form of a refinement, given next.

Definition 2. Let A = (AState,AInit, (AOpp,i)p∈P,i∈I,AFin) and C = (CState, CInit,
(COpp,j)p∈P,j∈J, CFin) be abstract and concrete data types respectively.
A program is a sequence of operation (indices) Prg = j1 . . . jn; and running a program
on the data type C gives the execution

Prg(C) =̂ CInit o
9 COpj1

o
9 . . . o

9 COpjn
o
9 CFin

C is a data refinement of A, denoted2 C $ A, if for all programs Prg, Prg(C) ⊆ AInit o
9

AOp∗ o
9 AFin. An empty concrete program must refine the empty abstract program.

Note that this is a very weak form of refinement as it assumes that the effect of a par-
ticular program in C can be achieved with some arbitrary program (AOp∗) in A. This is
crucial for our approach since for complex linearisable algorithms – such as the one we
consider in this paper – one concrete step in the implementation may correspond to the
execution of several linearisation steps in the abstract data type. This type of refinement
applied on the enhanced data types coincides with linearisability.

2 Note that the literature on refinement usually writes the notation the other way round.
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Theorem 2. HC $ HA iff C linearisable wrt. A.

Proof: The concrete histories h are the values returned by finalisation of HC. Refine-
ment implies that there is an abstract run which also produces h. This run reaches a
state (as, h,R) in HA before finalisation, i.e. Poss(as,H,R) holds, and linearisability
follows by Theorem 1. On the other hand, if linearisability holds, and h is a concrete
history, then there is a possibility Poss(as, h,R) by Theorem 1, so refinement holds,
since finalisation will give h. �

4 Proving Linearisability with Backward Simulation

Data refinement is the process of adding implementation detail to an initial abstract
algorithm, and standard results show that forward and backward simulations are sound
and jointly complete for verifying refinements (see [6] for an overview).

The fact that linearisability can be expressed in terms of refinement also underlies
the work of Doherty, Groves et al. [9,12]. However, their work as well as many others
assume that linearisability needs both backward and forward simulation to be complete
(and, e.g., [9] uses both). Here, we show that in fact backward simulation alone is
already complete for proving linearisability.

Definition 3 (Backward simulation). Let A = (AState,AInit, (AOpp,i)p∈P,i∈I,AFin)
and C = (CState, CInit, (COpp,j)p∈P,j∈J, CFin) be two data types. A relation BS ⊆
CState×AState is a backward simulation from C to A, denoted C ,BS A, if the following
conditions hold:

– Initialisation: CInit o
9 BS ⊆ AInit,

– Finalisation: CFin ⊆ BS o
9 AFin,

– Correctness: ∀ p ∈ P, j ∈ J • COpp,j
o
9 BS ⊆ BS o

9 AOp∗.

The correctness condition is weaker than usual (to match the weak data refinement) in
that it only requires a concrete operation to be matched by an arbitrary sequence of
abstract operations. Note that BS is often called abstraction relation: given a concrete
state one has to define what the possible corresponding abstract states are.

The main result of this paper is that backward simulations are sufficient and we can
avoid forward simulations entirely when verifying linearisability. The proof relies on
the following two observations.

Proposition 1. ([14], p. 487) Possibilities are prefix-closed: If Poss(as, h0
� h,R) for

some histories h0, h, set of returns R and abstract state as, then there are as0 and R0,
such that Poss(as0, h0,R0) and HAOp∗((as0, h0,R0), (as, h0

� h,R)).

Proof: Simple induction over the number of operation executions necessary to reach
the final state (as, h0

� h,R), since every operation adds at most one event and we start
with the empty history. �

Proposition 2. The reachable states (as, h,R) of HA satisfy an invariant called
retsforpis(h,R) (returns for pending invokes only) which says that all return events
in R have a process p with a corresponding invoke event in pi(h).
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Again the proof is by induction on the number of operation executions. This now lets us
formulate and prove our main theorem which shows that backward simulation is sound
and complete for linearisability.

Theorem 3. Let C, A be a concrete and an abstract data type, and HC,HA their history
enhancements as defined above. Then HC ,BS HA iff C linearisable wrt. A.

Proof: The easy direction from left to right just combines soundness of backward sim-
ulation and Theorem 2. For the other direction, assume C is linearisable wrt. A. We
define a relation BS as

BS((cs, h), (as,H,R)) =̂ h = H ∧ Poss(as,H,R)
∧ (H = 〈 〉 ⇒ AInit(as))

and prove the three proof obligations which show backward simulation.

– For Initialisation, we must prove that HCInit(cs, h) implies HAInit(as,H,R) when
BS holds. Since h = 〈〉, we have H = h = 〈〉 and ASInit(as). It remains to show
that R = ∅. This follows from Proposition 2, since pi(〈〉) = ∅.

– Finalisation requires to find an abstract (as,H,R) for every (cs, h), such that BS
holds. Since C is linearisable, there is a state (as, h,R) with Poss(as, h,R). If h is
nonempty, this state is already sufficient. Otherwise, state (as, h,R) was reached
from an initial state (as0, h0,R0) ∈ HAInit with h0 = 〈〉, R0 = ∅ and ASInit(as).
Therefore we can choose (as,H,R) := (as0, h0,R0).

– For Correctness, assume that both BS((cs′,H′), (as′,H′,R′)) and
HCOpp,j((cs,H), (cs′,H′)) hold. We have to find (as,H,R) with
BS((cs,H), (as,H,R)) and HAOp∗((as,H,R), (as′,H′,R′)). Now for all concrete

operations H is a prefix of H′: either H′ = H or H′ = H � 〈e〉 for invoking
and returning operations that add an event e. Prefix closedness of possibili-
ties (Prop. 1) gives a reachable state (as,H,R) for the prefix H of H′ with
HAOp∗((as,H,R), (as′,H′,R′)). Again, if H �= 〈〉, this state already satisfies BS.
Otherwise, like for finalisation, we have to choose the initial state. �

The theorem gives a backward simulation which matches an invoke operation COpp,j

to a sequence Lin∗ o
9 Invp,abs(j)

o
9 Lin∗, where Lin =

⋃
Linp,i. Similarly, return operations

match a sequence of linearisation steps with one return in the middle (since only such
sequences add the right event to H). Other steps are matched to an empty sequence of
abstract steps.

Theorem 3 specialises general completeness results, which imply that backward sim-
ulations and history variables are jointly complete for data refinement (these can be
adapted to our formalism from [1], or more directly from [19], Theorem 5.6). However,
all general completeness proofs add history variables, which record the full history of
all concrete states. Theorem 3 shows, that for linearisability, the only history variable
ever needed is the history needed to define linearisability (i.e. possibilities) itself.

5 Backward Simulation for the Case Study

The theory given in the last section ensures that any linearisable algorithm can be ver-
ified using a backward simulation BS. However, it does not tell us how to find such a



How to Prove Algorithms Linearisable 251

a

c

c

a

b

c

b

ccc

a

c

b

c

a

b

a

b

PE1(b)

PE1(b)PD2

PD2

NDeq(0)

NDeq(0)

PEnq1
PDeq2(2)

NDeq(1)

PD2

PE1(b)

PD2

PDeq2(1)
NDeq(2)

PDeq2(1)

PD2

PDeq2(2)NDeq(2)

PD2

NDeq(2)

NDeq(0)

PDeq2(1)

PD2

(〈b, a, c〉, {ret(enq, 1, )})

PEnq1

NDeq(1)

PD2
PD2

PEnq1

NDeq(2)

PE1(b)

(〈a, c〉,∅)
PE1(b)

NDeq(0)

PDeq2(2)

PE1(b)

PE1(b)

(〈c, a〉,∅)

NDeq(1)

NDeq(0)

(〈a, c, b〉, {ret(enq, 1, )}) (〈c, a, b〉, {ret(enq, 1, )})(〈a, b, c〉, {ret(enq, 1, )})

Fig. 1. Observation tree for an example state cs

relation between concrete states (cs, h) and abstract states (as,H,R). As the abstract
state in our case study consists of the queue variable q only, we also write (q,H,R) for
the state of HA. As a first observation, the finalisation condition requires h = H and
thus we can split BS into the part relating state spaces and that of relating histories.

BS((cs, h), (q,H,R)) =̂ B(cs, q,R) ∧ h = H

The key insight we now need is that for finding backward simulations one has to analyse
the observations made by future behaviours.

To explain the approach consider the example state (the history for this state was
given at the start of Section 3) cs shown at the top of Figure 1. The state shows a
situation where the array has been filled with two elements, AR(0) = a and AR(2) = c.
Furthermore process 1 is running an enqueue operation that tries to enqueue the element
b at position 1, which has reached pc(1) = E2, but then has been preempted. We call
such an operation with pc(1) = E2 a pending enqueue, and write PE1(b) in the figure
to indicate it. Note that the “gap” in the array is due to this enqueue: it has increased
the global back pointer before the enqueue of c, but has not executed statement E2 yet.
In addition there is a pending dequeue of process 2 (PD2) currently looking at position
1 as well. Such a dequeue operation has already initialised its lback (pc �= D1), but has
not yet successfully retrieved an element (pc �= D6, and if pc = D4 then still lv = null).

To define B we now have to find out what possible abstract queue states this concrete
state could correspond to. For this we look at observations made about this state when
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proceeding with executions on it. The observation tree shows all future executions from
this state when new observers are started. An observer gives us information about the
elements in the data structure, most often by extracting data from it. For our queue, the
observers are dequeue operations. Processes currently running (like the enqueue) might
or might not be continued.

First, consider the leftmost branch. It describes the following steps: (1) the pending
enqueue of process 1 runs to completion (PEnq1), then (2) the pending dequeue runs
to completion and returns the element in position 1 which is b (PDeq2(1)), (3) a new
dequeue is started (of whatever process), runs to completion and returns the element
stored in position 0 which is a (NDeq(0)), and (4) another new dequeue starts, com-
pletes and returns the element in position 2 which is c. Hence from the point of view of
these dequeues the queue contents has been 〈b, a, c〉. Note that we do not start any new
enqueues, we just observe the existing state of the queue.

The rightmost branch executes pending operations in a different order (first the de-
queue and then the enqueue) and again runs two observing dequeues. Here, we see that
the queue is 〈c, a, b〉. Different future executions thus give different orderings of queue
elements. Still, the order is not arbitrary: for instance 〈b, c, a〉 is impossible. We see that
it is not only the current state of the array which determines the queue content, but also
the pending enqueues and dequeues, and their current position into the array. Hence we
cannot define B as a function from concrete to abstract state since this would contradict
one or the other run. In summary, the backward simulation we look for must relate the
current state cs to any queue that is possible in a future observation.

We still have to determine the R-components B relates concrete states to. Recall that
R collects linearisation points. Again, general advice on finding a backward simulation
is to defer decisions as far as possible to the future (this observation is not specific to
linearisability or concurrency, see [3]). For our case, we delay any linearisation point
that still can be executed to the future, i.e. we do not add it to set R. This is possible for
pending dequeues. These can linearise at the time they swap the element: they have a
definite linearisation point in the sense that we can attach it to line D3 when they swap a
non-null element. However, enqueue operations cannot linearise in the future, since they
would put the element in the wrong place in the queue. We find, that enqueue already
potentially linearises when it executes E1, but only if the future run considered executes
the operation to the end. In other runs, linearisation will happen when the element is
actually inserted at line E2.

These considerations now help us towards defining B. We write NDeq(n)(cs, cs′)3 to
mean that a new (observer) dequeue is started, returns the element in array position
n and brings the concrete state from cs to cs′. Similarly, we write PDeqp(n)(cs, cs′)
to say the same for an already running (pending) dequeue of process p, and finally
PEnqp(cs, cs′) for the completion of a pending enqueue. The actual definition of B
recursively follows the paths of the tree and has to consider four cases:

– The array is empty. Then the queue is empty as well and the set R consists of re-
turn events for those processes which have definitely achieved their effect (denoted
outs(cs)). In our case, these are all the enqueues after their store (at E3), and the
dequeues after the non-null swap (at D6 or at D4, when lv �= null).

3 The web presentation [17] gives a formal definition.



How to Prove Algorithms Linearisable 253

– An observing dequeue (newly started) returns the element in position n of the array.
All elements below n must be null . The corresponding abstract queue thus has
AR[n] as its first element. The rest of the queue (and of B) is defined by recursion.

– A pending dequeue finishes and returns the element in position n of the array. Thus
again one of the corresponding abstract queues has AR[n] as first element. The rest
of the queue (and B) is defined by recursion.

– A pending enqueue finishes and the corresponding return event is already in R.
Then the effect on the abstract queue has already taken place, i.e., ret(p, enq, ) ∈ R.
B is defined by recursion using the same queue q, but removing the return event
from R.

Putting into one definition (and taking as abstract state as the queue state q) we get

B(cs, q,R) := (∀ i : IN • AR[i] = null) ∧ q = 〈〉 ∧ R = outs(cs))

∨ (∃ q′, n • q = 〈AR[n]〉� q′ ∧ (NDeq(n) o
9 B)(cs, q′,R))

∨ (∃ q′, p, n • q = 〈AR(n)〉� q′ ∧ (PDeqp(n) o
9 B)(cs, q′,R))

∨ (∃ p • ret(enq, p, ) ∈ R ∧ (PEnqp
o
9 B)(cs, q,R \ {ret(enq, p, )}))

Applying this technique to our example state cs in the root of Figure 1 gives a total
of six pairs (q,R) with B(cs, q,R). These are written with shaded background at those
nodes of the tree where the array is empty.

Note that the definition of B is well-founded: PEnq removes a pending enqueue pro-
cess (and adds one element to the array), PDeq and NDeq each remove an array element.
The corresponding well-founded order<B plays a central role in the correctness proofs
of the next section.

6 Verification with KIV

KIV [23] is an interactive verifier, based on structured algebraic specifications using
higher-order logic (simply typed lambda-calculus). Crucial features of KIV used in the
proofs here are the following.

– Proofs in KIV are explicit proof trees of sequent calculus which are graphically
displayed and can be manipulated by pruning branches, or by replaying parts of
proofs after changes. This is of invaluable help to analyse and efficiently recover
from failed proof attempts due to incorrect theorems, which is typically the main
effort when doing a case study like the one here.

– KIV implements correctness management: lemmas can be freely used before be-
ing proved. This allows to focus on difficult theorems first, which are subject to
corrections. Changing a lemma invalidates those proofs only, that actually used it.

– KIV uses heuristics (e.g. for quantifier instantiation and induction) together with
conditional higher-order rewrite rules to automate proofs. The rules are compiled
into functional code, which runs very efficiently even for a large number of rules:
the case study here uses around 2000 rules, 1500 of these were inherited from KIV’s
standard library of data types.
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KIV was used to verify the completeness result for backward simulation as well as to
prove the resulting proof obligations for the queue case study. A web presentation of all
specifications and proofs can be found online [17]. The completeness proof follows the
proof given in Section 4, the difficult part is Theorem 1.

The correctness of the queue implementation is proved by instantiating the backward
simulation relation B with the concrete operations of the Herlihy-Wing queue which
were sketched in Section 2. This results in proof obligations that are instances of the
backward simulation as given in Definition 3.

The interesting proof obligations for the case study are the correctness conditions for
each operation. These can be written as4

(HCOpp,j
o
9 BS)((cs,H), (q′,R′,H′))⇒

∃ q,R • BS((cs,H), (q,R,H)) ∧ HAOp∗((q,R,H), (q′,R′,H′))

A suitable sequence of abstract operations HAOp∗ that fixes q and R is easy to determine
in most cases: for invoking and returning operations it is just the corresponding abstract
invoke and return. For all other operations, except enq1p, enq2p and deq3tp (the case
of deq3, where the swap is with a non-null element), the sequence is empty. These
correspond to cases where the observation tree for the current state cs is not changed by
the operation. For deq3tp and and enq2p the sequence is the linearisation step Lindeq,p

resp. Linenq,p. These two operations reduce the observation tree to one of its branches.
The only difficult case is when COpp,j is enq1p which is explained below. The choice
of HAOp∗ simplifies the proof obligation to

(COpp,j
o
9 B)(cs, q′,R′)⇒ B(cs, q,R)

The simplicity of the changes to the observation tree is then reflected by the simplic-
ity of the proofs: they all are proven by well-founded induction over <B, followed by
a case split over the definition of B. This gives a trivial base case and three recursive
cases for each PN ∈ {PDeqq(n),PEnqq,NDeq(n)}. The resulting goals can be closed
immediately with the induction hypothesis by noting that COPp,j and PN always com-
mute. The only exception is deq3tp which needs an auxiliary lemma that PEnqq

o
9 deq3fp

commutes with every PN. This case crucially relies on the obvious invariant that there
may be no more than one pending enqueue process for each array element.

The difficult case is enq1p which adds a new pending enqueue process, and has to
deal with a potential linearisation point. To see what happens, consider the example
shown in Fig. 2. It shows a situation on the left where an element a is in the array and
process 2 is pending with element b, together with the possible observations (q,R) re-
turned by the simulation B. Process 1 then executes enq11(cs, cs′) and becomes pending
too with element c. This is shown on the right, together with the possible pairs (q′,R′)
such that B(cs′, q′,R′).

The pairs (q,R) before the operation are exactly the subset of those pairs (q′,R′)
where ret(1, enq, ) �∈ R′, i.e., the potential linearisation point has not been executed.
For this case simulation is trivial, choosing the empty sequence as HAOp∗. The difficult
cases have ret(1, enq, ) ∈ R′. As the last result with q′ = 〈a, c, b〉 shows, the element

4 For easier readability, we leave out the invariants of the two data types.
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PE1(c) possible pairs (q′,R′):

〈a〉,∅
〈a, b〉, {ret(2, enq, )}
〈a, c〉, {ret(1, enq, )}
〈a, b, c〉, {ret(1, enq, ), ret(2, enq, )}
〈a, c, b〉, {ret(2, enq, ), ret(1, enq, )}

Fig. 2. Results of B before and after executing enq12

c may be observed to be not the last element of the queue. This demonstrates that one
linearisation step with c is not sufficient on the abstract level. Instead the right choice
for (q,R) is (〈a〉,∅), and both linearisation steps Lin1,enq

o
9 Lin2,enq are necessary as

HAOp∗. This exploits the fact that the potential linearisation of process 2 may not have
been executed, and can still be executed after the one for process 1.

In general, the element c enqueued by some process p may be observed in any place
behind the current elements of the array: we have q′ = q � 〈c〉 � q2, where q2 only

consists of elements that pending enqueues will add in the future. Adding 〈c〉 � q2

corresponds to a sequence of abstract linearisation steps LinEp,r := Linp,enq; Linr1,enq
o
9

. . . o
9 Linrn,enq. For the last result of the example, r = 〈2〉 and q2 = 〈a〉. Therefore we

strengthen the proof obligation for enq1p to

(enq1p
o
9 B)(cs, q′,R′) ∧ ret(p, enq, ) ∈ R′ ⇒

∃ q, q2,R, r • B(cs, q,R) ∧ LinEp,r((q,R,H), (q′,R′,H))

Again the proof follows the standard well-founded induction scheme over <B. The
difficult case occurs when unfolding B executes PEnqp for the same process p. This
case requires another induction to prove that enq1p

o
9PEnqp commutes with all PN. This

works except for a new dequeue process that removes the element just added by process
p, which can only happen for an empty array. We finally complete the proof of enq1p

by showing that the observable queues for an empty array consist of some (or none) of
the elements of pending enqueues (in any order).

7 Related Work

Our work gives a general and practically applicable method for proving linearisability.
It should be contrasted with other methods of proving linearisability which fall into
several classes.

First, there is work on model checking linearisability, e.g. [5] for checking a spe-
cific algorithm or [4] for a general strategy. These approaches are very good at finding
counter examples when linearisability is violated. However, these methods only check
short sequences of (usually two or three) operations by exploring all possibilities of lin-
earisation points, so they do not give a full proof. They also do not yield any explanation
of why a certain implementation is indeed linearisable.

Work on full proofs has analysed several classes of increasing complexity, where
figuring out simulations (in particular thread-local ones, that exploit the symmetry of
all processes executing the same operations) becomes increasingly difficult.
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The simplest standard class of algorithms has an abstraction function, and all lin-
earisation points can be fixed to be specific instructions of the code of an algorithm
(often atomic compare-and-swap (CAS) instructions are candidates). A variety of ap-
proaches for such algorithms have been developed: [12] uses IO-Automata refinement
and interactive proofs with PVS, [27] executes abstract operations as “ghost-code” at
the linearisation point, arguing informally that linearisability is implied. Proof obliga-
tions for linearisability have also been verified using shape analysis [2].

Our own work in [7] gave step-local forward simulation conditions for this standard
case. Conditions were optimised for the case where reasoning about any number of pro-
cesses can be reduced to thread-local reasoning about one process and its environment
abstracted to one other process. It mechanised proofs that these are indeed sufficient to
prove linearisability.

A second, slightly more difficult class are algorithms where the linearisation point is
non-deterministically one of several instructions, the Michael-Scott queue ([20]) being
a typical example. [9] has given a solution using backward and forward simulation,
Vafeiadis [27] uses a prophecy variable as additional ghost code. Our work here shows
that backward simulation alone is sufficient.

A third, even more difficult class are algorithms that use observer operations that do
not modify the abstract data structure. Such algorithms often have no definite linearisa-
tion point in the code. Instead steps of other processes linearise. The standard example
for this class is Heller et al’s “lazy” implementation of sets [13]. There, the contains
algorithm that checks for membership in the set has no definitive linearisation point.
Based on the idea that linearisation of such operations can happen at any time during
its execution, [28] develops the currently most advanced automated proof strategy for
linearisability in the Cave tool.

Our work in [8] gives thread-local, step-local conditions for this class, and verifies
Heller et al’s lazy set. Mechanised proofs that these conditions can be derived from the
general theory given here are available on the Web too [16].

All these three classes, where mechanised proofs have been attempted, had an ab-
straction function, so different possibilities for one concrete state could only differ in the
possible linearisation points that have been executed (our set R of return events). How-
ever, the Herlihy-Wing queue is just the simplest example that falls outside of these
classes. We have chosen it here since it is easy to explain, not because it is practically
relevant. One of the practically relevant examples is the elimination queue [21], which
to our knowledge is currently the most efficient lock-free queue implementation. This
example has some striking similarities to the case study considered here. Verifying this
case study is future work, however it seems clear that it can be verified using exactly
the same proof strategy as shown here.

For this most complex class only pencil-and-paper approaches exist to proving lin-
earisability, so our proof of the Herlihy-Wing queue is the first that mechanises such a
proof (and even a full proof, not just the verification of proof obligations justified on
paper) for this algorithm. Our proof is step-local in considering stepwise simulation.
Even for simpler classes many proof approaches so far have resorted to global argu-
ments about the past, either informally e.g. [13], [20], [29], using explicit traces [22] or
with temporal past operators [11].
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Herlihy and Wing’s own proof in [14] also uses such global arguments: first, it adds
a global, auxiliary variable to the code. The abstraction relation based on this variable
is not a simulation. Therefore they have to use global, queue-specific lemmas (Lemmas
11 and 12) about normalised derivations to ensure that it is possible to switch from one
(q,R) to another (q′,R′) in the middle of the proof.

8 Conclusion and Future Work

In this paper, we have presented a sound and complete proof technique for linearisability
of concurrent data structures. We have exemplified our technique on the Herlihy and
Wing queue which is one of the most complex examples of a linearisable algorithm.
Except for pen-and-paper proofs no-one has treated this example before, in particular
none of the partially or fully automatic approaches to proving linearisability. Both the
linearisability proof for the queue and the general soundness and completeness proof
for our technique have been mechanised within an interactive prover.

The proof strategy given here is complete, but still not optimal in terms of reduction
of proof effort: in particular, we have to encode the algorithms as operations, and just
like in Owicki-Gries style proofs we require specific assertions for every particular
value of the program counter. Rely-Guarantee reasoning [15] can help to reduce the
number of necessary assertions and we have already developed an alternative approach
based on Temporal Logic that used Relys and Guarantees. That approach can currently
handle the standard class of algorithms for linearisability, though it has advantages for
proving the liveness property of lock-freedom [24] and has been used to verify the hard
case-study of Hazard pointers [25]. Integrating both approaches remains future work.

Our approach is also not fully optimal for heap-based algorithms, where the use
of concurrent versions of separation logic (e.g. RGSep [28] or HLRG [11]) helps to
avoid disjointness predicates between (private) portions of the heap, and gives heap-
local reasoning.

Finally, there is a recent trend to generalise linearisability to general refinement of
concurrent objects [10], [26], where the abstract level is not required to execute one ab-
stract operation. We have not yet studied these theoretically interesting generalisations,
since they are not needed for our examples. This – as well as techniques for optimising
our approach with respect to proof effort – is left for future work.
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Abstract. We study a class of concurrent pushdown systems commu-
nicating by both global synchronisations and reversal-bounded counters,
providing a natural model for multithreaded programs with procedure
calls and numeric data types. We show that the synchronisation-bounded
reachability problem can be efficiently reduced to the satisfaction of an
existential Presburger formula. Hence, the problem is NP-complete and
can be tackled with efficient SMT solvers such as Z3. In addition, we
present optimisations to make our reduction practical, e.g., heuristics for
removing or merging transitions in our models. We provide optimised al-
gorithms and a prototypical implementation of our results and perform
preliminary experiments on examples derived from real-world problems.

1 Introduction

Pushdown systems (PDS) are a popular abstraction of sequential programs with
recursive procedure calls. Verification problems for these models have been ex-
tensively studied (e.g. [7, 17]) and they have been successfully used in the model
checking of sequential software (e.g. [3, 5, 37]).

However, given the ubiquity and growing importance of concurrent software
(e.g. in web-servers, operating systems and multi-core machines), coupled with
the inherent non-determinism and difficulties in anticipating all concurrent inter-
actions, the verification of concurrent programs is a pressing problem. In the case
of concurrent pushdown systems, verification problems quickly become undecid-
able [33]. Because of this, much research has attempted to address the undecid-
ability, proposing many different approximations, and restrictions on topology
and communication behaviour (e.g. [29, 8–10, 35, 34, 21, 25]). A technique that
has proved popular in the literature is that of bounded context-switches [34].

Bounded context-switching uses the observation that many real-world bugs
require only a small number of inter-thread communications. It is known that, if
the number of communications is bounded to a fixed k, reachability checking of
pushdown systems becomes NP-complete [26]. The utility of this approach has
been demonstrated by several successful implementations (e.g. [4, 30, 36]).

In addition to recursive procedure calls, numeric data types are an important
feature of programs. By adding counters to pushdown systems one can accu-
rately model integer variables and, furthermore, abstract certain data structures
– such as lists – by tracking their size. It is well known that finite-state machines
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augmented even with only two counters leads to undecidability of the simplest
verification problems. One way to retain decidability of reachability is to im-
pose an upper bound r on the number of reversals between incrementing and
decrementing modes for each counter (cf. [12, 23]).

This restriction can be viewed in at least two ways (cf. [12, 24]). First, in
the spirit of bounded-context switches, it provides a generalisation of bounded
model checking – a successful verification technique which exploits the fact that
many bugs occurring in practice are “shallow” (cf. [14]). Secondly, many counting
properties — such as checking the existence of a computation where the number
of calls to the functions f1, f2, f3, and f4 are the same — require no reversals
(e.g. the number of memory allocations equals the number of frees). Similar
counting properties (and their model checking problems) have been studied in
many other contexts (cf. [27] and references therein).

In this paper, we study the problem of verifying reachability over a program
model incorporating concurrency, numeric data types, and recursions. Our con-
tributions are as follows:

1. We propose a concurrent extension of pushdown systems with reversal-
bounded counters that communicate through shared counters and global
synchronisations, and prove that the notion of global synchronisations sub-
sumes context-bounded model checking.

2. We show that reachability checking for these systems is in NP, by reduction
to existential Presburger, handled by efficient SMT solvers such as Z3 [13].

3. We provide several new optimisation techniques, including a minimisation
routine for pushdown systems, that are crucial in making our reductions
feasible in practice. These techniques keep the size of the computation objects
small throughout reduction, while also producing smaller output formulas.

4. Finally, we provide two optimised, prototypical tools using these techniques.
The first translates a simple programming language into our model, while
the second performs our reduction to existential Presburger.We demonstrate
the efficacy of our tools on several real-world problems.

The full version of this paper and tool implementations and benchmarks can be
obtained from the authors’ homepages.

Related Work. In recent work [20], we showed that reachability analysis for
pushdown systems with reversal-bounded counters is NP-complete. We provided
a prototypical implementation of our algorithm and obtained encouraging results
on examples derived from Linux device drivers.

Over reversal-bounded counter systems (without stack), reachability is NP-
complete but becomes NEXP-complete when the number of reversals is given
in binary [22]. On the other hand, when the numbers of reversals and counters
are fixed, the problem is solvable in P [19]. The techniques developed by [19,
22], which reason about the maximal counter values, are very different to our
techniques, which exploit the connection to Parikh images of pushdown automata
(first explicated in Ibarra’s original paper [23] though not in a way that gives
optimal complexity or a practical algorithm).
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Context-bounded model checking was introduced in 2005 by Qadeer and Re-
hof [34, 8, 32]. It has then been used in many different settings and many differ-
ent generalisations have been proposed. For example, one may consider phase-
bounds [38], ordered multi-stack machines [1], bounded languages [18], dynamic
thread creation [2] and more general approaches [28].

In recent, independent work, Esparza et al. used a reduction to existential
Presburger to tackle a generalisation of context-bounded reachability checking
for multithreaded programs without counters [15]. Their work, however, does not
allow the use of counters and it is not clear whether our global synchronisation
conditions can be simulated succinctly in their framework.

Organisation. In §2, we define the models that we study. We prove decidabil-
ity of the synchronisation-bounded reachability problem in §3. In §4 we show
that synchronisation-bounded model checking subsumes context-bounded model
checking. Our optimisations are presented in §5. In §6 we describe our imple-
mentation and experimental results. Finally, we conclude in §7.

2 Model Definition

In this section, we define the models that we study. For a vector v = (v1, . . . , vn),
we write v (i) to access vi. For a formula θ over variables (x1, . . . , xn) we write
θ(v1, . . . , vn) to substitute the values v1, . . . , vn for the variables x1, . . . , xn re-
spectively. Given an alphabet Γ = {γ1, . . . , γm} and a word w ∈ Γ ∗, we write
P(w) to denote a tuple with |Γ | entries where the ith entry counts the number
of occurrences of γi in w. Given a language L ⊆ Γ ∗, we write P(L) to denote
the set { P(w) | w ∈ L }. We say that P(L) is the Parikh image of L.
Pushdown Automata. A pushdown automaton P is a tuple (Q, Σ, Γ,Δ, q0,F)
where Q is a finite set of control states, Σ is a finite stack alphabet with a special
bottom-of-stack symbol ⊥, Γ is a finite output alphabet, q0 ∈ Q is an initial
state, F ⊆ Q is a set of final states, and Δ ⊆ (Q×Σ) × Γ ∗ × (Q×Σ∗) is a
finite set of transition rules. We will denote a transition rule ((q, a),γ, (q′, w′))

using the notation (q, a)
γ
↪−→ (q′, w′). Note that γ ∈ Γ ∗ is a sequence of output

characters. This is for convenience, and optimisation. We can reduce this to
single output characters using intermediate control states or stack characters.
Note, a pushdown system is a pushdown automaton without a set of final states.

A configuration of P is a tuple (q, w), where q ∈ Q and w ∈ Σ∗ are the control
state and stack contents. We say that a configuration (q, aw) has a head q, a.

There exists a transition (q, aw)
γ−→ (q′, w′w) of P whenever (q, a)

γ
↪−→ (q′, w′) ∈

Δ. We call a sequence c0
γ1−→ c1

γ2−→ · · · γm−−→ cm a run of P . It is accepting if
c0 = (q0,⊥) and cm = (q, w) with q ∈ F . Let L(P) be the set of words labelling
accepting runs. Finally, we write c→∗ c′ if there is a run from c to c′.

Pushdown Systems with Counters. A pushdown system with counters is a
pushdown system which, in addition to the control states and the stack, has a
number of counter variables. These counters may be incremented, decremented
and compared against constants (given in binary).
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An atomic counter constraint on counter variable X = {x1, . . . , xn} is an ex-
pression of the form xi ∼ c, where c ∈ Z and ∼∈ {<,>,=}. A counter constraint
θ(x1, . . . , xn) on X is a boolean combination of atomic counter constraints on
X . Let ConstX denote the set of counter constraints on X .

A pushdown system with n counters (n-PDS) P is a tuple (Q, Σ, Γ,Δ,X)
where Q is a finite set of control states, Σ is a finite stack alphabet, Γ is a
finite output alphabet, X = {x1, . . . , xn} is a set of n counter variables, and
Δ ⊆ (Q×Σ × ConstX)×Γ ∗× (Q×Σ∗ × Zn) is a finite set of transition rules.

We will denote a rule ((q, a, θ),γ, (q′, w′,u)) using (q, a, θ)
γ
↪−→ (q′, w′,u).

A configuration of P is a tuple (q, w,v), where q ∈ Q is the current control
state, w ∈ Σ∗ is the current stack contents, and v = (v1, . . . , vn) ∈ Nn gives the
current valuation of the counter variables x1, . . . , xn respectively. There exists a

transition (q, aw,v)
γ−→ (q′, w′w,v′) of P whenever

1. (q, a, θ)
γ
↪−→ (q′, w′,u) ∈ Δ, and

2. θ(v (1) , . . . ,v (n)) is true, and
3. v′ (i) = v (i) + u (i) ≥ 0 for all 1 ≤ i ≤ n.

Communicating Pushdown Systems with Counters. Given Q1, . . . ,Qm,
let Y = {y1, . . . , ym, y′1, . . . , y′m} be a set of control state variables such that,
for each i, yi, y

′
i range over Qi. Then, an atomic state constraint is of the form

yi = q for some yi ∈ Y and q ∈ Qi. A synchronisation constraint, written
δ(y1, . . . , ym, y

′
1, . . . , y

′
m), is a boolean combination of atomic state constraints.

For example, let n = 3 and consider the constraint

(y1 = q1 ∧ (y′1 = q1 ∧ y′2 = q2 ∧ y′3 = q3)) ∨
(y1 = r1 ∧ (y′1 = r1 ∧ y′2 = r2 ∧ y′3 = r3)) .

This allows synchronisations where, whenever the first process has control state
q1, the other processes can simultaneously move to qi (for all 1 ≤ i ≤ 3), whereas,
if process one has control state r1, the processes move to states ri instead. Let
StateConsQ1,...,Qm be the set of synchronisation constraints for Q1, . . . ,Qm.

Definition 1 (n-SyncPDSr). Given a finite output alphabet Γ and set of n
counter variables X, a system of communicating pushdown systems with n coun-
ters C is a tuple (P1, . . . ,Pm, Δg, X, r) where, for all 1 ≤ i ≤ m, Pi is a push-
down system (Qi, Σi, Γ,Δi, X) with n counters, and Δg ⊆ StateConsQ1,...,Qm×
ConstX×Zn is a finite set of synchronisation constraints, and r ∈ N is a natural
number given in unary.

Notice that a system of communicating pushdown systems share a set of coun-
ters. A configuration of such a system is a tuple (q1, w1, . . . , qm, wm,v) where

each (qi, wi,v) is a configuration of Pi. We have (q1, w1, . . . , qm, wm,v)
γ
=⇒

(q′1, w
′
1, . . . , q

′
m, w

′
m,v

′) whenever,

1. for some 1 ≤ i ≤ m, we have (qi, wi,v)
γ−→ (q′i, w

′
i,v

′) is a transition of Pi
and qj = q′j and wj = w′

j for all j �= i, or
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2. γ = ε and wi = w′
i for all 1 ≤ i ≤ m and (δ, θ,u) ∈ Δg with

(a) δ(q1, . . . , qm, q
′
1, . . . , q

′
m) is true, and

(b) θ(v (1) , . . . ,v (n)) is true, and
(c) v′ (i) = v (i) + u (i) ≥ 0 for all 1 ≤ i ≤ n.

We refer to these two types of transition as internal and synchronising respec-

tively. A run of C is a run c0
γ1
=⇒ c1

γ2
=⇒ · · · γm

==⇒ cm.

Bounding Runs. During a run, the counter is in a non-decrementing mode if
the last value-changing operation on that counter was an increment. Similarly, a
counter may be in a non-incrementing mode. The number of reversals of a counter
during a run is the number of times the counter changes from an incrementing
to a decrementing mode, and vice versa. For example, if the values of a counter
x in a path are 1, 1, 1, 2, 3, 4, 4, 4, 3, 2, 2, 3, then the number of reversals of x is
2 (reversals occur in between the overlined positions). This sequence has three
phases (i.e. subpaths interleaved by consecutive reversals or end points): non-
decrementing, non-incrementing, and finally non-decrementing.

Definition 2 (r-Reversal-Bounded). A run c0
γ1
=⇒ c1

γ2
=⇒ · · · γm

==⇒ cm is r-
reversal-bounded whenever we can partition c0c1 . . . cm into C1 . . . Cr such that
for all 1 ≤ p ≤ r, there is some ∼∈ {≤,≥} such that for all cjcj+1 appearing
together in Cp, we have cj = (. . .,vj), cj+1 = (. . .,vj+1), and for all 1 ≤ i ≤ n,
vj (i) ∼ vj+1 (i).

Finally, we define the notion of synchronisation-bounded. We show in Section 4
that this notion subsumes context-bounded model checking.

Definition 3 (k-Synchronisation-Bounded). A run π is k-synchronisation-
bounded whenever π uses k or fewer synchronising transitions.

3 Synchronisation-Bounded Reachability

The r-reversal and k-synchronisation-bounded reachability problem for a given
C, bound r and k asks, for given configurations c and c′ of C, is there a k-
synchronisation-bounded run of C from c to c′ using up to r reversals. We prove:

Theorem 1. For two bounds r and k given in unary, the r-reversal and k-
synchronisation-bounded reachability problem for n-SyncPDS is NP-complete.

The proof extends the analogous theorem for r-reversal-bounded n-PDS [20]. We
will construct, for each Pi in C, an over-approximating pushdown automaton P ′

i

and use Verma et al. [40]1 to obtain an existential Presburger formula Imagei
giving the Parikh image of P ′

i. Finally, we add additional constraints such that
a solution exists iff the reachability problem has a positive answer.

1 It is well known that [40] contains a small bug, fixed by Barner [6]. See the full
version for more details.



Synchronisation- and Reversal-Bounded Analysis 265

The encoding presented here is one of two encodings that we developed. This
encoding is both simpler to explain and seems to be handled better by Z3 for al-
most all of our examples than the second encoding. However, the second encoding
results in a smaller formula. Hence, we include both reductions as contributions,
and present the second reduction in the full version of the paper.

The key difference between the encodings is where we store the number of
synchronisations performed so far. In the first encoding, we keep a component g
in each control state; thus, from each P we build P ′ with |Q| ×Nmax × (k + 1)
control states, where Q is set of control states of P and Nmax is the number of
mode vectors (where modes are defined below).

In the alternative encoding we put the number of synchronisations in the
modes, resulting in |Q| × (Nmax + k + 1) control states. This is important since
our reduction is quadratic in the number of controls. Hence, if k = 2, the alterna-
tive results in pushdown automata a third of the size of the encoding presented
here. However, the resulting formulas seem experimentally more difficult to solve.

Let c =
(
q01 , w1, . . . , q

0
m, wm,v0

)
and c′ = (f1, w

′
1, . . . , fm, w

′
m,vf ). By hard-

coding the initial and final stack contents, we can assume that all wi = w′
i =⊥.

Unfortunately, we cannot use the reduction for r-reversal-bounded n-PDS as
a completely black box; hence, we will recall the relevant details and highlight
the new techniques required. We refer the reader to the article [20] for further
details. The correctness of the reduction is given in the full version of the paper.

The final formula HasRun will take the shape

∃m1, . . . ,mNmax∃z1 . . . zm

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Init(m1) ∧ GoodSeq (m1, . . . ,mNmax)
∧

∧
1≤i≤m

Imagei (zi)

∧ Respect
(∑

1≤i≤m zi,m1, . . . ,mNmax

)
∧ OneChange

(∑
1≤i≤m zi

)
∧ EndVal

(∑
1≤i≤m zi

)
∧ Syncs

(∑
1≤i≤m zi

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
where the formulas OneChange

(∑
1≤i≤m zi

)
and Syncs

(∑
1≤i≤m zi

)
are the

main differences with the single thread case. In addition, further adaptations
need to be made within other aspects of the formula. We remark at this point
that the user may add to HasRun an additional constraint on the Parikh images
of runs — such as restricting to runs where the number of characters γ output
is greater than the number of γ′.

The Mode Vectors. We begin with the vectors m1, . . . ,mNmax , which are
unchanged from the case of r-reversal-bounded n-PDS. Let d1 < . . . < dh denote
all the numeric constants appearing in an atomic counter constraint as a part of
the constraints in the Pi. Without loss of generality, we assume that d1 = 0 for
convenience. Let REG = {ϕ1, . . . , ϕh, ψ1, . . . , ψh} be a set of formulas defined as
follows. Note that these formulas partition N into 2h pairwise disjoint regions.

ϕi(x) ≡ x = di, ψi(x) ≡ di < x < di+1 (1 ≤ i < h), ψh(x) ≡ dh < x .
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We call a vector in REGn × [0, r]n × {↑, ↓}n a mode vector. Given a path π from
configurations c to c′, we may associate a mode vector to each configuration
in π. This vector records for each counter, which region its value is in, how
many reversals it’s used, and whether its phase is non-decrementing (↑) or non-
incrementing (↓). Consider a sequence of mode vectors. A crucial observation is,
once a change occurs to the mode information of a counter, the same information
will not recur for that counter. For example, returning to the same region will
incur an increase in the number of reversals. Thus, there are at most Nmax :=
|REG| × (r + 1)× n = 2hn(r + 1) distinct mode vectors in any sequence.

Constructing P ′
i. We define the pushdown automata

P ′
i =

(
Q′
i, Σi, Γ

′, Δ′
i,
(
q0i , 1, 1

)
, {fi} × [1, Nmax]× [1, k + 1]

)
for each Pi in C. Note that each P ′

i has the same output alphabet Γ ′. We assume
that all Qi are pairwise disjoint. There are two main aspects to each P ′

i. First, we
remove the counters. To replace them, we have P ′

i output any counter changes
or tests that would have been performed. E.g. where Pi would increment a
counter, P ′

i will output a symbol (ctrj , 1, . . .) indicating (amongst other things)
that counter ctrj should be increased by 1. Furthermore, P ′

i guesses when, and
keeps track of when, mode changes would have occurred. Secondly, we allow P ′

i

to non-deterministically make synchronisations (instead of communicating, the
effect of external threads is guessed). In this case, the control state change, along
with the number of synchronisations performed thus far, will be output. In this
way, P ′

i makes “visible” the counter tests, counter updates and synchronisations
that would have been performed by Pi on the same run. Constraints described
later in HasRun ensure these operations are valid.

More formally, let Q′
i = Qi × [1, Nmax]× [1, k + 1] (that is, we add to Qi the

current mode and synchronisation number). We define Γ ′ implicitly from the
transition relation. In fact, Γ ′ is a (finite) subset of

Γ ∪ { (ctrj , u, e, l) | j ∈ [1, n], u ∈ Z, e ∈ [1, Nmax], l ∈ {0, 1} }
∪ (ConstX × [1, Nmax])

∪
⋃

1≤i≤m
(StateConsQ1,...,Qm ×Qi ×Qi × [1, Nmax]× [1, k + 1]× {0, 1}) .

Characters (ctrj , u, e, l) mean to add u to ctrj , in mode e, where l indicates
whether the counter action changes the mode vector. Characters (θ, e) indicate
a counter test in mode e. Finally, characters (δ, q, q′, e, g, l) indicate a use of
synchronisation rule δ, changing Pi from control state q to q′, in mode e with g
synchronisations performed so far.

We define Δ′
i to be the smallest set such that, if (q, a, θ)

γ
↪−→ (q′, w,u) ∈ Δi

where u = (u1, . . . , un) then for each e ∈ [1, Nmax] and g ∈ [1, k+1], Δ′
i contains

((q, e, g), a)
γ(θ,e)(ctr1,u1,e,l)...(ctrn,un,e,l)
↪−−−−−−−−−−−−−−−−−−−−−→ ((q′, e+ l, g), w)

for all l ∈ {0, 1} if e ∈ [1, Nmax) and l = 0 otherwise. Thus, l = 1 signifies a
mode changing transition.
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These rules are the rules required in the single thread case. We need additional
rules to reflect the multi-threaded environment. In particular, an external thread
may change the mode, or a synchronising transition may occur. To account for
this Δ′

i also has for each q ∈ Qi, a ∈ Σi, e ∈ [1, Nmax), and g ∈ [1, k + 1],

((q, e, g), a)
ε
↪−→ ((q, e+ 1, g), a) (∗)

and, to model synchronisations, we have for all q, q′ ∈ Qi, e ∈ [1, Nmax], g ∈
[1, k + 1) and (δ, θ,u) ∈ Δg, when i > 1,

((q, e, g), a)
(δ,q,q′,e,g,l)
↪−−−−−−−→ ((q′, e+ l, g + 1), a)

and when i = 1 and u = (u1, . . . , un),

((q, e, g), a)
(δ,q,q′,e,g,l)(θ,e)(ctr1,u1,e,l)...(ctrn,un,e,l)
↪−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ((q′, e+ l, g + 1), a)

for all l ∈ {0, 1} when e ∈ [1, Nmax) and l = 0 otherwise. That is, P ′
i guesses

the effect of non-internal transitions and P ′
1 is responsible for performing the

required counter updates. Note that the information in the output character
(δ, q, q′, e, g, l) allows us to check that synchronising transitions take place in the
same order and in the same modes across all threads.

Constructing The Formula. Fix an ordering γ1 < . . . < γl on Γ
′. By f we

denote a function mapping γi to i for each i ∈ [1, l]. Let z denote a vector of
l variables. The formula is HasRun given above, where Init, GoodSeq, Respect,
and EndVal are defined as in the single thread case (using only variables which
are unchanged from [20]); therefore, we describe them informally here, referring
the reader to the full version of the paper for the full definitions. We convert
each P ′

i to a context-free grammar (of cubic size) and use [40] to obtain Imagei
such that for each n ∈ Nl we have n ∈ P(L(P ′

i)) iff Imagei (n) holds. Informally,

– Init ensures the initial mode vector m1 respects the initial configuration c;
– GoodSeq ensures that the sequence of mode vectors m1, . . . ,mNmax is valid.

For example, if the direction of a counter changes, then an extra reversal is
incurred on that counter;

– Respect requires that the counter tests and actions fired within a mode are
allowed. For example, a subtraction may not occur on a counter in a non-
decreasing phase, only one mode change action may occur per mode, and
that counter tests only occur in sympathetic regions; and

– EndVal checks that the counter operations applied during the run leave each
counter in the correct value, as given in the final configuration c′.

It remains for us to define OneChange and Syncs. We use OneChange to assert
that only one thread may be responsible for firing the transition that changes a
given mode of the counters to the next. That is,

OneChange (z) ≡
∧

(ctrj ,u,e,1)
(ctrj ,u

′,e,1)
u′ �=u

zf(ctrj ,u,e,1) > 0⇒
(

zf(ctrj ,u,e,1) = 1
∧ zf(ctrj ,u′,e,1) = 0

)
.
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The role of Syncs is to ensure that the synchronising transitions taken by
P ′
1, . . . ,P ′

m are valid. Note that, by design, each P ′
i will only output at most

one character of the form (δ, q, q′, e, g, l) for each g ∈ [1, k]. We assert, if one
thread uses a global transition with condition δ, all do, and δ is satisfied. That
is,

Syncs (z) ≡
∧

1≤g≤k

∨
1≤e≤Nmax

(δ,θ,u)∈Δg

l∈{0,1}

(
Fired(δ,e,g,l) (z)⇒(

Sync(δ,e,g,l) (z) ∧ AllFired(δ,e,g,l) (z)
))

where Sync(δ,e,g,l) (z) is δ (z) with each atomic state constraints replaced as
below.

(yi = q) ≡
∨

(δ,q,q′,e,g,l)

zf(δ,q,q′,e,g,l) > 0 and (yi = q′) ≡
∨

(δ,q,q′,e,g,l)

zf(δ,q,q′,e,g,l) > 0 .

Finally, Fired(δ,e,g,l) (z) ≡
∨

(δ,q,q′,e,g,l)
zf(δ,q,q′,e,g,l) > 0, and

AllFired(δ,e,g,l) (z) ≡
∧

1≤i≤m

∨
q,q′∈Qi

zf(δ,q,q′,e,g,l) > 0 .

We remark upon a pleasant corollary of our main result. Consider a sys-
tem of pushdown systems communicating only via reversal-bounded counters.
Since such a system cannot use any synchronising transitions, all runs are
0-synchronisation-bounded; hence, their reachability problem is in NP .

4 Comparison with Context-Bounded Model Checking

Global synchronisations can be used to model classical context-bounded model
checking. We present a simple encoding here. We begin with the definition.

Definition 4 (n-ClPDS). A classical system of communicating pushdown
systems with n counters C is a tuple (P1, . . . ,Pm, G,X) where, for all 1 ≤ i ≤ m,
Pi is a PDA with n counters (Qi, Σi, Γ,Δi, X), X is a finite set of counter vari-
ables and Qi = G×Q′

i for some finite set Q′
i.

A configuration of a n-ClPDS is a tuple (g, q1, w1 . . . , qm, wm,v) where g ∈ G
and (g, qi) ∈ Qi for all i. We have a transition (g, q1, w1, . . . , qm, wm,v)

γ
=⇒

(g′, q′1, w
′
1, . . . , q

′
m, w

′
m,v

′) when, for some 1 ≤ i ≤ m, we have ((g, qi), wi,v)
γ−→

((g′, q′i), w
′
i,v

′) is a transition of Pi and qj = q′j and wj = w′
j for all j �= i.

A run of C is a sequence c0
γ1
=⇒ c1

γ2
=⇒ · · · γm

==⇒ cm. A k-context-bounded run is

a run c0
γ1
=⇒ c1

γ2
=⇒ · · · γm

==⇒ cm that can be divided into k phases C1, . . . , Ck such
that during each Ci only transitions from a unique Pj are used. By convention,
the first phase contains only transitions from P1.
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We define an n-SyncPDS simulating any given n-ClPDS. It uses the synchro-
nisations to pass the global component g of the n-ClPDS between configurations
of the n-SyncPDS, acting like a token enabling one process to run. Since there
are k global synchronisations, the run will be k-context-bounded.

Definition 5. Given a n-ClPDS C = (P1, . . . ,Pm, G,X). Let # be a symbol
not in G. We define from each Pi = (Qi, Σi, Γ,Δi, X) with Qi = G × Q′

i the
pushdown system PS

i =
(
QS
i ∪ {fi} , Σi, Γ,Δ

S
i , X

)
where QS

i = Qi × (G ∪ {#})
and ΔS

i is the smallest set containing Δi and ((g, q), a, tt)
ε
↪−→ (fi, w,0) for all

q, a appearing as a head in the final configuration with g = # or with g also in
the final configuration.

Finally, let CS =
(
PS
1 , . . . ,PS

m, Δg, X
)
, where Δg = {(δ, tt,0)} such that

the formula δ(q11 , . . . , q
1
n, q

2
1 , . . . , q

2
n) holds only when there is some g ∈ G and

1 ≤ i �= j ≤ n such that

1. q1i = (g, q) and q2i = (#, q) for some q, and
2. q1j = (#, q) and q2j = (g, q) for some q, and

3. for all i′ �= i and i′ �= j, q1i′ = (#, q) and q2i′ = (#, q) for some q.

We show in the full version of this paper that an optimised version of this
simulation — discussed in Section 5 — is correct. That is, there is a run of C
to the final configuration (g, q1, w1, . . . , qm, wm,v) iff there is a run of CS to
(f1, w1, . . . , fm, wm,v) using the same number of reversals.

5 Optimisations

Our experiments suggest that without further optimisations our reduction from
Section 3 is rather impractical. In this section, we provide several optimisations
which considerably improve the practical aspect of our reduction. We discuss
improving the encoding of the context-bounded model checking, identifying and
eliminating “removable” heads from our models, and minimising the size of the
CFG produced during the reduction using reachability information. The gist
behind our optimisation strategies is to keep the size of the models (pushdown
automata, CFG, etc.) as small as possible throughout our reduction, which can
be achieved by removing redundant objects as early as possible. For the rest of
this section, we fix an initial and a final configuration.

Context-Bounded Model Checking. The encoding context-bounded model
checking encoding given in Section 4 allows context-switches to occur at any
moment. However, we can observe that context-switches only need to occur when
global information needs to be up-to-date. This restriction led to improvements
in our experiments. We describe the positions where context-switches may occur
informally here, and give a formal definition and proof in the long version.

In our restricted encoding, context-switches may occur when an update to
global component g occurs; the value of g is tested; an update to the counters
occurs; the values of the counters are tested; or the control state of the active
thread appears in the final configuration. Intuitively, we delay context-switches
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as long as possible without removing behaviours — that is, until the status of
the global information affects, or may be affected by, the next transition.

Minimising Communicating Pushdown Systems with Counters. We de-
scribe a minimisation technique to reduce the size of the pushdown systems. It
identifies heads q, a of the pushdown systems that are removable. We collapse
pairs of rules passing through the head q, a into a single combined rule. Thus,
we build a pushdown system with fewer heads, but the same behaviours. In the
following definition, sink states will be defined later. Intuitively it means when
q is reached, q cannot be changed in one local or global transition.

Definition 6. A head q, a is removable whenever

1. q, a is not the head of the initial or final configuration, and

2. it is not a return location, i.e. there is no rule (q1, b1, θ)
γ
↪−→ (q2, b2w

′,u) with
a appearing in w′ and a does not appear below the top of the stack in the
initial configuration, and

3. it is not a loop, i.e. there is no rule (q, a, θ)
γ
↪−→ (q, aw′,u), and

4. it is not a synchronisation location, i.e. for all (q2, b, θ)
γ
↪−→ (q1, aw

′,u) or ini-
tial configuration containing q1 and a, we have either, (i) for all (δ, θ′,u′) ∈
Δg and q11 , . . . , q

1
m, q

2
1 , . . . , q

2
m such that δ(q11 , . . . , q

1
m, q

2
1 , . . . , q

2
m) holds we

have qji �= q1 for all i, j, or (ii) q1 is a sink state, and

5. it is not a counter access location, i.e. there is no rule (q, a, θ)
γ
↪−→ (q′, w′,u)

such that θ depends on a counter or u contains a non-zero entry, and there

is no rule (q′, b, θ)
γ
↪−→ (q, aw′,u) such that u contains a non-zero entry.

Definition 7. A state q is a sink state when for all rules (q, a, θ)
γ
↪−→ (q′, w′,u)

we have q′ = q and for all (δ, θ′,u′) ∈ Δg and q11 , . . . , q
1
m, q

2
1 , . . . , q

2
m with q1i = q

for some i such that δ(q11 , . . . , q
1
m, q

2
1 , . . . , q

2
m) holds we have q2i = q.

Removable heads can be eliminated by merging rules passing through them.
In general, this may increase the number of rules, but in practice it leads to
significant reductions (see Table 1). We show, in the full version of this paper,
that this optimisation preserves behaviours of the systems.

Definition 8. Given a n-SyncPDS with global rules Δg and a pushdown system
P with n counters (Q, Σ, Γ,Δ,X) and a removable head q, a, we define Pq,a to
be (Q, Σ, Γ,Δ′, X) where Δ′ = Δ if Δ1 is empty and Δ′ = Δ1 ∪Δ2 otherwise,
where

Δ1 =

⎧⎪⎨⎪⎩ (q1, b, θ)
γ1,γ2
↪−−−→ (q2, w,u1 + u2)

∣∣∣∣∣∣∣
(q1, b, θ1)

γ1
↪−→ (q, aw1,u1) ∈ Δ ∧

(q, a, θ2)
γ2
↪−→ (q2, w2,u2) ∈ Δ ∧

θ = (θ1 ∧ θ2) ∧ w = w2w1

⎫⎪⎬⎪⎭
and Δ2 = Δ \

⎛⎝{ (q1, b, θ)
γ
↪−→ (q2, w

′,u) | q1, b = q, a
}
∪{

(q1, b1, θ)
γ
↪−→ (q2, b2w

′,u) | q2, b2 = q, a
}⎞⎠.
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Minimising CFG Size via Pushdown Reachability Table. Recall that
our reduction to existential Presburger formulas from an n-SyncPDS makes
use of a standard language-preserving reduction from pushdown automata to
context-free grammars (CFGs). Unfortunately, the standard translations from
PDAs to CFGs incur a cubic blow-up. More precisely, if the input PDA is
P =

(
Q, Σ, Γ,Δ, q0, F

)
, the output CFG has size O(|Δ|×|Q|2). Our experiments

suggest that this cubic blow-up is impractical without further optimisation, i.e.,
the naive translation failed to terminate within a couple of hours for most of
our examples. Note that the complexity of translating from PDA to CFG is very
much related to the reachability problem for pushdown systems, for which the
optimal complexity is a long-standing open problem (the fastest algorithm [11]
to date has complexity O(n3/ logn) under certain assumptions).

We will now describe two optimisations to improve the size of the CFG that is
produced by our reduction in the previous section, the second optimisation gives
better performance (asymptotically and empirically) than the first. Without loss
of generality, we assume that: (A1) the PDA empties the stack as it accepts an

input word, (A2) the transitions of the input PDA are of the form (p, a)
γ
↪−→ (q, w)

where p, q ∈ Q, γ ∈ Γ ∗, a ∈ Σ, and w ∈ Σ∗ with |w| ≤ 2. [It is well-known
that any input PDA can be translated into a PDA in this “normal form” that
recognises the same language while incuring only a linear blow-up.] The gist
behind both optimisations is to refrain from producing redundant CFG rules by
looking at the reachability table for the PDA. Keeping the CFG size low in the
first place results in algorithms that are more efficient than removing redundant
rules after the CFG is produced.

Let us first briefly recall a standard language-preserving translation from PDA
to CFG. Given a PDA P =

(
Q, Σ, Γ,Δ, q0, F

)
, we construct the following CFG

with nonterminals N = {S} ∪ {Ap,a,q : p, q ∈ Q, a ∈ Σ}, terminals Γ , starting
nonterminal S, and the following transitions:

(1) For each (p, a)
γ
↪−→ (q, ε) ∈ Δ, the CFG has Ap,a,q → γ.

(2) For each (p, a)
γ
↪−→ (p′, b) ∈ Δ and q ∈ Q, the CFG has Ap,a,q → γAp′,b,q.

(3) For each (p, a)
γ
↪−→ (p′, cb) ∈ Δ and r, q ∈ Q, the CFG has Ap,a,q →

γAp′,c,rAr,b,q.
(4) Add S → Aq0,⊥,qF for each qF ∈ F .

Note that Ap,a,q generates all words that can be output by P from configuration
(p, a) ending in configuration (q, ε). Both of our optimisations refrain from gen-
erating: (i) CFG rules of type (2) above in the case when (p′, b) �→∗ (q, ε), and
(ii) CFG rules of type (3) in the case when (p′, c) �→∗ (r, ε) or (r, b) �→∗ (q, ε),
and (iii) CFG rules of type (4) in the case when

(
q0,⊥

)
�→∗ (qF , ε).

It remains to describe how to build the reachability lookup table for P with
entries of the form (p, a, q) witnessing whether (p, a) →∗ (q, ε). The first op-
timisation achieves this by directly applying the pre∗ algorithm for pushdown
systems described in [16], which takes O(|Q|2 × |Δ|) time. This optimisation
holds for any input PDA and, hence, does not exploit the structure of the PDA
that we generated in the previous section. Our second optimisation improves



272 M. Hague and A.W. Lin

the pre∗ algorithm for pushdown systems from [16] by exploiting the structure
of the PDA generated in the previous section, for which each control state is of
the form (p, i, j), where i, j ∈ Z>0. The crucial observation is that, due to the
PDA rules of type (*) generated from the previous section, the PDA that we are
concerned with satisfy the following two properties:

(P0) ((p, i, j), v)→∗ ((q, i′, j′), w) implies i′ ≥ i and j′ ≥ j.
(P1) ((p, i, j), v) →∗ ((q, i′, j′), w)) implies for each d1, d2 ∈ N that we have

((p, i+ d1, j + d2), v)→∗ ((q, i′ + d1, j
′ + d2), w) .

(P2) for each nonempty v ∈ Σ∗: ((p, i, j), av)→∗ ((q, i′, j′), v) implies we have
((p, i, j), av)→∗ ((q, i′′, j′), v) for each i′′ ≥ i′.

Properties (P0) and (P1) imply it suffices to keep track of the differences in the
mode indices and context indices in the reachability lookup table, i.e., instead of
keeping track of all values ((p, i, j), a)→∗ ((q, i′, j′), ε), each entry is of the form
(p, a, q, d, d′) meaning that ((p, i, j), a) →∗ ((q, i+ d, j + d′), ε) for each i, j ∈
Z>0. Property (P2) implies that if (p, a, q, d, d′) is an entry in the table, then so is
(p, a, q, d+i, d′) for each i ∈ N. Therefore, whenever p, a, q, d′ are fixed, it suffices
to only keep track of the minimum value d such that (p, a, q, d, d′) is an entry
in the table. We describe the adaptation of the pre∗ algorithm for pushdown
systems from [16] for computing the specialised reachability lookup table in
the full version. The resulting time complexity for computing the specialised
reachability lookup table becomes linear in the number of mode indices.

6 Implementation and Experimental Results

We implemented two tools: Pushdown Translator and SynPCo2Z3.

Pushdown Translator. The Pushdown Translator tool, implemented in C++,
takes a program in a simple input language and produces an n-SyncPDS. The
language supports threads, boolean variables (shared between threads, global to
a thread, or local), shared counters, method calls, assignment to boolean vari-
ables, counter increment and decrement, branching and assertions with counter
and boolean variable tests, non-deterministic branching, goto statements, locks,
output, and while loops. The user can specify the number of reversals and
context-switches and specify a constraint on the output performed (e.g. find
runs where the number of γ characters output equals the number of γ′s). The
full syntax is given in the full version of this paper. The translation uses the
context-switch technique presented in Definition 5 and the minimisation tech-
nique of Definition 8. Furthermore, the constructed pushdown systems only con-
tain transitions for reachable states of each thread (assuming counter tests always
pass, and synchronising transition can always be fired).

SynPCo2Z3. Our second tool SynPCo2Z3 is implemented in SWI-Prolog. The
input is an n-SyncPDS, reversal bound r, and synchronisation-bound k. Due
to the declarative nature of Prolog, the syntax is kept close to the n-SyncPDS
definition. The output is an existential Presburger formulas in SMT-LIB format,



Synchronisation- and Reversal-Bounded Analysis 273

supported by Z3. Moreover, the tool implements all the different translations
that have been described in this paper (including appendix) with and without
the optimisations described in the previous section. The user may also specify a
constraint on the output performed by the input n-SyncPDS.

Experiments. We tested our implementation on several realistic benchmarks.
One benchmark concerns the producer-consumer examples (with one producer
and one consumer) from [31]. We took two examples from [31]: one uses one
counter and is erroneous, wherein both producer and consumer might be both
asleep (a deadlock), and the other uses two counters and is correct. The n-
SyncPDS models of these examples were hand-coded since they use synchroni-
sations rather than the context-switches of Pushdown Translator.

The remaining benchmarks were adapted from modules found in Linux kernel
3.2.1, which contained list- and memory-management, as well as locks for concur-
rent access. These modules often provided “register” and “unregister” functions
in their API. We tested that, when register was called as many times as unreg-
ister, the number of calls to malloc was equal to the number of calls to free.
Furthermore, we checked that the module did not attempt to remove an item
from an empty list. In all cases, memory and list management was correct. We
then introduced bugs by either removing a call to free, or a lock statement. Note
the translation from C to our input language was by hand, and an automatic
translation is an interesting avenue of future work.

The results are shown in Table 1. All tests were run on a 2.8GHz Intel machine
with 32GB of RAM. Each benchmark had two threads, two context-switches,
one counter and one reversal. The size fields give the total number of pushdown
rules in the n-SyncPDS, both before and after removable heads minimisation.
Tran. Time gives the time it took to produce the SMT formula, Solve Time is
the time taken by Z3 (v. 3.2, Linux build). Each cell contains two entries: the
first is for the instance with a bug, the second for the correct instance.

Table 1. Results of experimental runs

File Size Min. Size Tran. Time Solve Time

prod-cons.c 22/13 -/- 0.8s/1.8s 4.2s/6.8s
api.c (rtl8192u) 654/660 202/208 28s/28s 4m19s/4m32s
af alg.c 506/528 174/204 18s/21s 10m2s/4m47s
hid-quirks.c 557/559 303/303 47s/47s 18m41s/12m5s
dm-target.c 416/436 254/278 27s/29s 36m43s/10m1s

7 Conclusions and Future Work

We have studied the synchronisation-bounded reachability problem for a class
of pushdown systems communicating by shared reversal-bounded counters and
global synchronisations. This problem was shown to be NP-complete via an
efficient reduction to existential Presburger arithmetic, which can be analysed
using fast SMT solvers such as Z3. We have provided optimisation techniques for
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the models and algorithms and a prototypical implementation of this reduction
and experimented on a number of realistic examples, obtaining positive results.

There are several open problems. For instance, one weakness we would like to
address is that we cannot represent data symbolically (using BDDs, for example).
This prevents us from being competitive with tools such as Getafix [39] for
context-bounded model-checking of pushdown systems without counters.

Furthermore, although we can obtain from the SMT solver a satisfying assign-
ment to the Presburger formula, we would like to be able to construct a complete
trace witnessing reachability. Additionally, the construction of a counter-example
guided abstraction-refinement loopwill require the development of new techniques
not previously considered. In particular, heuristics will be needed to decide when
to introduce new counters to the abstraction.

We may also consider generalisations of context-bounded analysis such as
phase-bounds and ordered multi-stack automata. A further challenge will be to
adapt our techniques to dynamic thread creation, where each thread has its own
context-bound, rather than the system as a whole.
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Abstract. IC3 is a recently proposed verification technique for the analysis of
sequential circuits. IC3 incrementally overapproximates the state space, refut-
ing potential violations to the property at hand by constructing relative inductive
blocking clauses. The algorithm relies on aggressive use of Boolean satisfiability
(SAT) techniques, and has demonstrated impressive effectiveness.

In this paper, we present the first investigation of IC3 in the setting of software
verification. We first generalize it from SAT to Satisfiability Modulo Theories
(SMT), thus enabling the direct analysis of programs after an encoding in form of
symbolic transition systems. Second, to leverage the Control-Flow Graph (CFG)
of the program being analyzed, we adapt the “linear” search style of IC3 to a tree-
like search. Third, we cast this approach in the framework of lazy abstraction with
interpolants, and optimize it by using interpolants extracted from proofs, when
useful.

The experimental results demonstrate the great potential of IC3, and the effec-
tiveness of the proposed optimizations.

1 Introduction

Aaron Bradley [6] has recently proposed IC3, a novel technique for the verification of
reachability properties in hardware designs. The technique has been immediately gen-
erating strong interest: it has been generalized to deal with liveness properties [5], and
to incremental reasoning [7]. A rational reconstruction of IC3, referred to as Property
Driven Reachability (PDR), is presented in [12], together with an efficient implemen-
tation: an experimental evaluation shows that IC3 is superior to any other single solver
used in the hardware model checking competition.See also [23] for an overview.

The technique has several appealing aspects. First, different from bounded model
checking, k-induction or interpolation, it does not require unrolling the transition rela-
tion for more than one step. Second, reasoning is highly localized to restricted sets of
clauses, and driven by the property being analyzed. Finally, the method leverages the
power of modern incremental SAT solvers, able to efficiently solve huge numbers of
small problems.

In this paper, we investigate the applicability of IC3 to software model checking.
We follow three subsequent steps. We first generalize IC3 from the purely Boolean
case [6], based on SAT, to the case of Satisfiability Modulo Theory (SMT) [1]. The
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characterizing feature of the generalization is the computation of (underapproximations
of) the preimage of potential bug states. This allows us to deal with software modeled
as a (fully) symbolic transition system, expressed by means of first order formulae.

The second step is motivated by the consideration that the fully symbolic represen-
tation does not exploit the control flow graph (CFG) of the program. Thus, we adapt
IC3, that is “linear” in nature, to the case of a tree, which is the Abstract Reachability
Tree (ART) resulting from the unwinding of the CFG. This technique, that we refer to
as TREE-IC3, exploits the disjunctive partitioning of the software, implicit in the CFG.

The third step stems from the consideration that TREE-IC3 can be seen as a form
of lazy abstraction with interpolants [18]: the clauses produced by IC3 are in fact in-
terpolants at the various control points of the ART. From this, we obtain another opti-
mization, by integrating interpolation within IC3. With proof-based interpolation, once
the path being analyzed is shown to be unfeasible with one SMT call, it is possible to
obtain interpolants for each control point, at a low cost. The key problem with interpo-
lation is that the behaviour is quite “unstable”, and interpolants can sometimes diverge.
On the other hand, IC3 often requires a huge number of individual calls to converge,
and may be computationally expensive, especially in the SMT case, although it rarely
suffers from a memory blow-up. The idea is then to obtain clause sets for IC3 from
proof-based interpolation, in the cases where this is not too costly.

We carried out a thorough set of experiments, evaluating the merits of the three
approaches described above, and comparing with other techniques for software model
checking. The results show that the explicit management of the CFG is often superior to
a symbolic encoding, and that the hybrid computation of clauses can sometimes yield
significant speed-ups. A comparison with other approaches shows that TREE-IC3 can
compete with mature techniques such as predicate abstraction, and lazy abstraction with
interpolants.

This work has two key elements of novelty. The seminal IC3 [6] and all the exten-
sions we are aware of [12,7,5] address the problem for fully symbolic transition systems
at the bit level. This paper is the first one to lift IC3 from SAT to SMT, and also the first
one to adapt IC3 to exploit the availability of the CFG.

This paper is structured as follows. In Sec. 2 we present some background. In Sec. 3
we describe the SMT generalization of IC3. In Sec. 4 we present TREE-IC3, and in
Sec. 5 TREE-IC3+ITP, the hybrid approach using interpolants extracted from proofs.
In Sec. 6 we experimentally evaluate the approach. In Sec. 7 we discuss related work.
Finally, in Sec. 8 we draw some conclusions and outline lines of future research.

2 Background and Notation

Our setting is standard first order logic. We use the standard notions of theory, satisfi-
ability, validity, logical consequence. We denote formulas with ϕ, ψ, I, T, P , variables
with x, y, and sets of variables with X , Y . Unless otherwise specified, we work on
quantifier-free formulas, and we refer to 0-arity predicates as Boolean variables, and
to 0-arity uninterpreted functions as (theory) variables. A literal is an atom or its nega-
tion. A clause is a disjunction of literals, whereas a cube is a conjunction of literals.
If s is a cube l1 ∧ . . . ∧ ln, with ¬s we denote the clause ¬l1 ∨ . . . ∨ ¬ln, and vice
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versa. A formula is in conjunctive normal form (CNF) if it is a conjunction of clauses,
and in disjunctive normal form (DNF) if it is a disjunction of cubes. With a little abuse
of notation, we might sometimes denote formulas in CNF C1 ∧ . . . ∧ Cn as sets of
clauses {C1, . . . , Cn}, and vice versa. If X1, . . . , Xn are a sets of variables and ϕ is
a formula, we might write ϕ(X1, . . . , Xn) to indicate that all the variables occurring
in ϕ are elements of

⋃
iXi. For each variable x, we assume that there exists a corre-

sponding variable x′ (the primed version of x). If X is a set of variables, X ′ is the set
obtained by replacing each element x with its primed version. Given a formula ϕ, ϕ′

is the formula obtained by adding a prime to each variable occurring in ϕ, and ϕ〈n〉 is
the formula obtained by adding n primes to each of its variables. Given a theory T , we
write ϕ |=T ψ (or simply ϕ |= ψ) to denote that the formula ψ is a logical consequence
of ϕ in the theory T . Given a first-order formula ϕ, we call the Boolean skeleton of
ϕ the propositional formula obtained by replacing each theory atom in ϕ with a fresh
Boolean variable.

We represent a program by a control-flow graph (CFG). A CFG A = (L,G) con-
sists of a set L of program locations, which model the program counter pc, and a
set G ⊆ L × Ops × L of control-flow edges, which model the operations that are
executed when control flows from one program location to another. The set of vari-
ables that occur in operations from Ops is denoted by X . We use first-order formulas
for modeling operations: each operation o ∈ Ops has an associated first-order for-
mula To(X,X ′) modeling the effect of performing the operation o. A program Π =
(A, pc0, pcE) consists of a CFG A = (L,G), an initial program location pc0 ∈ L (the
program entry), and a target program location pcE ∈ L (the error location). A path π
is a sequence (pc0, op0, pc1), (pc1, op1, pc2), . . . , (pcn−1, opn−1, pcn), representing a

syntactical walk through the CFG. The path π is feasible iff the formula
∧
i Topi

〈i〉 is
satisfiable. When π is not feasible, we say it is spurious. A program is safe when all the
paths leading to pcE are not feasible.

Given a program Π , an abstract reachability tree (ART) for Π is a tree A over
(V,E) such that: (i) V is a set of triples (pc, ϕ, h), where pc ∈ L is a location in the
CFG of Π , ϕ is a formula over X , and h ∈ N is a unique identifier; (ii) the root of
A is (pc0,�, 1); (iii) for every non-leaf node v

def
= (pci, ϕ, h) ∈ V , for every control-

flow edge (pci, op, pcj) ∈ G, v has a child node (pcj , ψ, k) such that ϕ ∧ Top |= ψ′

and k > h. In what follows, we might denote with pci � pcj any path in an ART
from a node (pci, ϕ, h) to a descendant node (pcj , ψ, k). Intuitively, an ART represents

an unwinding of the CFG of a program performed in an abstract state space. If v
def
=

(pci, ϕ, h) is a node, ϕ is the abstract state formula of v. A node v1
def
= (pci, ψ, k) in

an ART A is covered if either: (i) there exists another node v2
def
= (pci, ϕ, h) in A such

that h < k, ψ |= ϕ, and v2 is not itself covered; or (ii) v1 has a proper ancestor for
which (i) holds. A is complete if all its leaves are either covered or their abstract state
formula is equivalent to ⊥. A is safe if and only if it is complete and, for all nodes
(pcE , ϕ, h) ∈ V , ϕ |= ⊥. If a program Π has a safe ART, then Π is safe [16,18].

Given a set X of (state) variables, a transition system S over X can be described
symbolically with two formulas: IS(X), representing the initial states of the system,
and TS(X,X ′), representing its transition relation. Given a program Π , a correspond-
ing transition system SΠ can be obtained by encoding symbolically the CFG (L,G)
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of Π . This can be done by: (i) adding one special element xpc, with domain L, to

the set X of variables; (ii) setting ISΠ

def
= (xpc = pc0); and (iii) setting TSΠ

def
=∨

(pci,op,pcj)∈G(xpc = pci) ∧ Top ∧ (x′
pc = pcj).

Given SΠ , the safety of the program Π can be established by proving that all the
reachable states of SΠ are a subset of the states symbolically described by the formula
P

def
= ¬(xpc = pcE). In this case, we say that SΠ satisfies the invariant property P .

3 IC3 with SMT

High-Level Description of IC3. Let X be a set of Boolean variables, and let S be
a given Boolean transition system described symbolically by I(X) and T (X,X ′). Let
P (X) describe a set of good states. The objective is to prove that all the reachable
states of S are good. (Conversely, ¬P (X) represents a set of “bad” states, and the
objective is to show that there exists no sequence of transitions from states in I(X)
to states in ¬P (X).) The IC3 algorithm tries to prove that S satisfies P by finding a
formula F (X) such that: (i) I(X) |= F (X); (ii) F (X) ∧ T (X,X ′) |= F (X ′); and
(iii) F (X) |= P (X).

In order to construct F , which is an inductive invariant, IC3 maintains a sequence of
formulas (called trace, following [12]) F0(X), . . . , Fk(X) such that:

– F0 = I;
– for all i > 0, Fi is a set of clauses;
– Fi+1 ⊆ Fi (thus, Fi |= Fi+1);
– Fi(X) ∧ T (X,X ′) |= Fi+1(X

′);
– for all i < k, Fi |= P ;

The algorithm proceeds incrementally, by alternating two phases1: a blocking phase,
and a propagation phase. In the blocking phase, the trace is analyzed to prove that no
intersection between Fk and ¬P (X) is possible. If such intersection cannot be dis-
proved on the current trace, the property is violated and a counterexample can be re-
constructed. During the blocking phase, the trace is enriched with additional clauses,
that can be seen as strengthening the approximation of the reachable state space. At the
end of the blocking phase, if no violation is found, Fk |= P .

The propagation phase tries to extend the trace with a new formula Fk+1, moving
forward the clauses from precedingFi. If, during this process, two consecutive elements
of the trace (called frames) become identical (i.e. Fi = Fi+1), then a fixpoint is reached,
and IC3 can terminate with Fi being an inductive invariant proving the property.

Let us now consider the lower level details of IC3. For i > 0, Fi represents an
over-approximation of the states of S reachable in i transition steps or less. The dis-
tinguishing feature of IC3 is that such sets of clauses are constructed incrementally,
starting from cubes representing sets of states that can reach a bad state in zero or more

1 We follow the formulation of IC3 given in [12], which is slightly different from the original
one of Bradley given in [6]. Moreover, for brevity we have to omit several important details,
for which we refer to the two papers cited above.
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bool IC3-prove(I , T , P ):
1. trace = [I] # first elem of trace is init formula
2. trace.push() # add a new frame to the trace
3. while True:

# blocking phase
4. while there exists a cube c s.t. trace.last() ∧ T ∧ c is satisfiable and c |= ¬P :
5. recursively block the pair (c, trace.size() − 1)
6. if a pair (p, 0) is generated:
7. return False # counterexample found

# propagation phase
8. trace.push()
9. for i = 1 to trace.size() − 1:
10. for each clause c ∈ trace[i]:
11. if trace[i] ∧ c ∧ T ∧ ¬c′ is unsatisfiable:
12. add c to trace[i+1]
13. if trace[i] == trace[i+1]:
14. return True # property proved

Fig. 1. High-level description of IC3 (following [12])

transition steps. More specifically, in the blocking phase, IC3 maintains a set of pairs
(s, i), where s is a cube representing a set of states that can lead to a bad state, and
i > 0 is a position in the current trace. New clauses to be added to (some of the frames
in) the current trace are derived by (recursively) proving that a set s of a pair (s, i) is
unreachable starting from the formula Fi−1. This is done by checking the satisfiability
of the formula:

Fi−1 ∧ ¬s ∧ T ∧ s′. (1)

If (1) is unsatisfiable, and s does not intersect the initial states I of the system, then ¬s
is inductive relative to Fi−1, and IC3 strengthens Fi by adding ¬s to it2, thus blocking
the bad state s at i. If, instead, (1) is satisfiable, then the overapproximationFi−1 is not
strong enough to show that s is unreachable. In this case, let p be a cube representing
a subset of the states in Fi−1 ∧ ¬s such that all the states in p lead to a state in s′ in
one transition step. Then, IC3 continues by trying to show that p is not reachable in one
step from Fi−2 (that is, it tries to block the pair (p, i − 1)). This procedure continues
recursively, possibly generating other pairs to block at earlier points in the trace, until
either IC3 generates a pair (q, 0), meaning that the system does not satisfy the property,
or the trace is eventually strengthened so that the original pair (s, i) can be blocked.
Figure 1 reports the pseudo-code for the full IC3 algorithm, including more details on
the propagation phase.

Extension to SMT. In its original formulation, IC3 works on finite-state systems,
with Boolean state variables and propositional logic formulas, using a SAT solver as
its reasoning engine. However, for modeling programs it is often more convenient to
reason at a higher level of abstraction, using (decidable) fragments of first-order logic
and SAT modulo theories (SMT).

2 In fact, ¬s is actually generalized before being added to Fi. Although this is quite important
for the effectiveness of IC3, here for simplicity we shall not discuss this.
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Most of the machinery of IC3 can be lifted from SAT to SMT in a straightforward
way, by simply replacing the underlying SAT engine with an SMT solver. From the
point of view of IC3, in fact, it is enough to reason at the level of the Boolean skeleton
of formulas, simply letting the SMT solver cope with the interpretation of the theory
atoms. There is, however, one crucial step in which IC3 must be made theory-aware,
as reasoning at the Boolean-skeleton level does not work. This happens in the blocking
phase, when trying to block a pair (s, i). If the formula (1) is satisfiable, then a new pair
(p, i − 1) has to be generated such that p is a cube in the preimage of s wrt. T . In the
purely-Boolean case, p can be obtained from the model μ of (1) generated by the SAT
solver, by simply dropping the primed variables occurring in μ.3 This cannot be done in
general in the first-order case, where the relationship between the current state variables
X and their primed version X ′ is encoded in the theory atoms, which in general cannot
be partitioned into a primed and an unprimed set.

A first (and rather naı̈ve) solution would be to consider the theory model for the state
variablesX generated by the SMT solver. However, for infinite-state systems this would
lead IC3 to exclude only a single point at a time. This will most likely be impractical:
being the state space infinite, there would be a high chance that the blocking phase will
diverge.

For theories admitting quantifier elimination, a better alternative is to compute an
exact preimage of s. This means to existentially quantify the variables X ′ in (1), elimi-
nate the quantifiers, and then convert the result in DNF. This will generate a set of cubes
{pj}j which in turn generate a set of pairs {(pj , i − 1)}j to be blocked at i − 1. The
drawback of the second solution is that for many important theories, even when it is
possible, quantifier elimination may be a very expensive operation.

We notice that the two solutions above are just the two extremes of a range of pos-
sibilities: in fact, any procedure that is able to compute an under-approximation of the
exact preimage can be used. Depending on the theory, several trade-offs between pre-
cision and computational cost can be explored, ranging from single points in the state
space to a precise enumeration of all the cubes in the preimage. In what follows, we
shall assume that we have a procedure APPROX-PREIMAGE for computing such under-
approximations, and present our algorithms in a general context. We shall discuss our
current implementation, which uses the theory of Linear Rational Arithmetic, in §6.

Discussion. We conclude this Section by pointing out that the ideas underlying IC3
are nontrivial even in the Boolean case. At a very high level, the correctness is based
on the invariants ensured by the blocking and propagation phases. Termination follows
from the finiteness of the state space being analyzed, and from the fact that at each step
at least one more new state is explored. A more in depth justification is out of the scope
of this paper. The interested reader is referred to [6,23,12].

In the case of SMT, we notice that the invariants of the traces also hold in the SMT
case, so that the argument for the finite case can be applied. This ensures partial correct-
ness. On the other hand, the reachability problem being undecidable for infinite-state
transition systems, it is impossible to guarantee termination. This might be due to the

3 For efficiency, the result has to be generalized by dropping irrelevant variables, but this is not
important for the discussion here.
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failure in the blocking phase to eliminate all the counterexamples, for the given trace
length, or to the failure to reach a fixpoint in the propagation phase.

4 Tree-Based IC3

We now present an adaptation of IC3 from symbolic transition systems to a CFG-
represented program. The search proceeds in an “explicit-symbolic” approach, simi-
larly to the lazy abstraction approach [16]. The CFG is unwound into an ART (Abstract
Reachability Tree), following a DFS strategy. Each node of the tree is associated with a
location, and a set of clauses.

The algorithm starts by finding an abstract path to the error location. Then, it applies
a procedure that mimics the blocking phase of IC3 on the sets of clauses of the path.

There are three important differences. First, the clauses associated to a node are im-
plicitly conditioned to the corresponding control location: the clause ¬(xpc = pci) ∨ c
in the fully symbolic setting simply becomes c in a node associated with control loca-
tion pci. This also means that the logical characterization of a node being unreachable,
expressed by the clause ¬(xpc = pcE) in the fully symbolic setting, is now the empty
clause. Second, in each formula Ti characterizing a transition, the start and end control
locations are not explicitly represented, but rather implicitly assumed. Finally, the most
important difference is in the inductiveness check performed when constructing the IC3
trace. When checking whether a cube c is blocked by a set of clauses Fi−1, we cannot
use the relative inductiveness check of (1). This is because that would not be sound in
our setting, since we are using different transition formulas Ti at different i steps (cor-
responding to the edge formulas in the abstract error path). Therefore, we replace (1)
with the weaker check

Fi−1 ∧ Ti−1 |= ¬c′ (2)

which allows us to construct a correct ART (satisfying points (i)–(iii) of the definition on
page 279.) We observe that, because of this difference, the requirement that Fi+1 ⊆ Fi
is not enforced in TREE-IC3.

With this adaptation, the blocking phase tries to produce the clauses necessary to
refute the abstract path. When the blocking phase is successful, it must generate an
empty clause at some point. In case of failure to refute the path, the property is violated
and a counterexample is produced4. If sufficient information can be devised to refute
the abstract path to the error location, the algorithm backtracks to the deepest node that
is not inconsistent (i.e. is not associated with the empty clause). The pseudo-code of
this modified blocking phase, which we call TREE-IC3-BLOCK-PATH, is reported in
Figure 2.

Then, a new node is selected and expanded, with a process that is similar in nature
to the forward propagation phase of IC3. For each expanded node, the clauses of the
ancestor are tested for forward propagation, in order to ensure the invariant that the
clauses of an abstract node overapproximate the image of the predecessor clauses. More
specifically, for each clause c, we check whether Fi ∧ (xpc = pci) → c ∧ Top entails
(x′

pc = pci+1) → c′.

4 The counterexample has exactly the same length as the abstract path. This is a key difference
with respect to the case of the fully symbolic IC3.
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procedure TREE-IC3-BLOCK-PATH (π
def
= (pc0,�, 1) � . . . (pci, ϕi, ·) . . . � (pcE , ϕn, ·)):

# T1 . . . Tn−1 are the edge formulas of π
# initialize the trace with the clauses attached to the nodes in π

1. F = [�, . . ., ϕi, . . ., ϕn−1]
2. while not exists j in 1 . . . n− 1 s.t. F [j]∧ Tj |= ⊥:
3. q = []
4. for each bad in APPROX-PREIMAGE (ϕn−1 ∧ Tn−1):
5. q.push((bad, n− 1)) # bad is a cube in the preimage of Tn−1

6. while q is not empty:
7. c, j = q.top()
8. if j = 0: compute and return a counterexample trace # π is a feasible error trace
9. if F [j − 1] ∧ Tj−1 |= ¬c′:
10. q.pop() # c is blocked, discard the proof obligation
11. g = generalization of ¬c s.t. F [j − 1] ∧ Tj−1 |= g′
12. F [j] = F [j]∧ g
13. else:
14. for each p in APPROX-PREIMAGE (F [j − 1] ∧ Tj−1 ∧ c′):
15. q.push((p, j − 1))
16. return F # π is blocked

Fig. 2. Modified blocking phase of TREE-IC3 for refuting a spurious error path

A significant difference with respect to IC3 is in the way the fix point is handled.
In IC3 the fix point is detected globally, by comparing two subsequent formulae in
the trace. Here, as standard in lazy abstraction, we close each path of the ART being
generated.

Whenever a new node v′ is expanded, it is checked against previously generated
nodes v having the same location. If the set of states of v′ is contained in the states of
some previously generated node v, then v′ is covered, and it can be closed5.

In order to maximize the probability of coverage, the IC3-like forward propagation
phase is complemented by another form of forward propagation: whenever a loop is en-
countered (i.e. the node v′ being expanded has the same location of one of its ancestors
v), then each of the clauses of v is tested to see if it also holds in v′. Let v, v1, . . . , vk, v′

be the path from v to v′. For each clause c in v, we check if the symbolic encoding of
the path v � v′, strengthened with the clauses in each vi, entails c in v′.

It is easy to see that this may result in a stronger set of clauses for v′, because the
analysis is carried out on the concrete path from v to v′, that retains all the available
information. Simple forward propagation would not be able to achieve the same result,
because of the limited strength of the clauses on the intermediate nodes vi. Intuitively,
this means that the clauses in vi may be compatible with (too weak to block) the paths
that violate the clauses of v that also hold in v′. Thus, simply strengthening v′ would
break the invariant that, in each node, the abstract state formula overapproximates the
image of the abstract state formula of its parent node (point (iii) in the definition of
ART, §2). In order to restore the situation, the vi nodes must be strengthened. Let Cv,v′

5 In fact, it is also required that there will be no cycles in the covering-uncovering interplay. This
requirement is a bit technical, and discussed in detail in [18]. In the definition of covered node,
in §2, identifiers to nodes are intended to enforce this requirement.
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ART UNWINDING:
if v

def
= (pci, ϕ, h) is an uncovered leaf:

for all edges (pci, op, pcj) in the CFG:

add vj
def
= (pcj ,�, k) with k > h as a

child
of v in the ART

NODE COVERING:
if v1

def
= (pci, ψ, k) is uncovered, and there exists

v2
def
= (pci, ϕ, h) with k > h and ψ |= ϕ, then:

mark v1 as covered by v2

uncover all the nodes vj
def
= (pci, ψj , kj) covered

by v1

PATH BLOCKING:
if vE

def
= (pcE , ϕ, h) is a leaf with ϕ �|= ⊥:

apply TREE-IC3-BLOCK-PATH (Fig. 2) to

the ART path π
def
= (pc0,�, 1) � vE

if IC3 returns a counterexample: return UN-
SAFE

otherwise:
let F1, . . . , FE be the sets of clauses
computed by IC3 for the formulas

Top1 , . . . , TopE of π

for each node vi
def
= (pci, ϕi, hi) ∈ π,

for each clause cj in the corresponding Fi:

if ϕi �|= cj , then:
add cj to ϕi

uncover all the nodes covered by vi

STRENGTHENING:
let v1

def
= (pci, ϕ, h1) and v2

def
= (pck, ψ, h2) be two

uncovered nodes s.t. there is a path π
def
= v1 � v2,

and let φπ
def
=

∧n
j=0 Topj

〈j〉 be the formula for π
let Cv1,v2 = ∅
for each cj ∈ ϕ:

if ψ �|= cj and ϕ〈0〉 ∧ φπ |= ci
〈n〉:

add cj to Cv1,v2

if Cv1,v2 �= ∅:
refute ¬Cv1,v2 using TREE-IC3-BLOCK-PATH along

π
for each node vj

def
= (pcj , ϕj , hj) ∈ π:

add all the clauses c ∈ Fj computed by IC3 s.t.
ϕj �|= c

if ϕj changes, uncover all the nodes covered by vj
add Cv1,v2 to ψ, and uncover all the nodes covered

by v2

Fig. 3. High-level description of the basic building blocks of TREE-IC3

be the set of clauses of v that also hold in v′. Before adding Cv,v′ to v′, we strengthen
the vi nodes with the information necessary to block the violation of Cv,v′ in v′. This
is done by “tricking” the blocking phase, using the negation of Cv,v′ as conjecture: the
clauses deduced in the process of refuting ¬Cv,v′ can be added to strengthen each vi.
After this, Cv,v′ is added to v′.

Notice that whenever a node v is strengthened, then each node v′ that had been
covered by v must be re-opened. In fact, after the strengthening, the set of states of v
shrinks, thus the set of states of v′, that was previously covered, might no longer be
contained.

A high-level view of the basic steps of TREE-IC3 is reported in Figure 3. We shall
describe the actual strategy that we have implemented for applying these steps in §6.
(Notice that the forward propagation that is performed when a node is expanded is just
a special case of the more general strengthening procedure, in which the path between
the two nodes involved consists of a single edge, and as such does not require a call to
IC3 for strengthening the intermediate nodes.)

Comparison with IC3. When the fully symbolic IC3 analyzes a program (in form of
symbolic transition system), some literals represent the location in the control flow that
is “active”. This information, that is implicit in the position in the ART, becomes direct
part of the clauses. There is the possibility for clauses to be present at frames where
the corresponding location can not be reached, and that are thus irrelevant. Another
advantage of the TREE-IC3 approach is that the program is disjunctively partitioned,
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transition by transition, and thus the SMT solver is manipulating simpler and smaller
formulae. On the other hand, the symbolic representation gives the ability to implicitly
“replicate” the same clause over many control locations – in particular, when no con-
trol location is relevant in the clause, it means that it holds for all the control locations.
Moreover, using a symbolic representation of the program as a transition formula allows
to exploit relative inductiveness, which is crucial for the performance of the original IC3
(on hardware designs). As already mentioned above, relative inductiveness cannot be
directly applied in our setting, because we use a disjunctively-partitioned representa-
tion. In our experiments (§6), we show that the benefits of a CFG-guided exploration
significantly outweigh this drawback in the verification of sequential programs.

5 Hybrid Tree IC3

It can be observed that the sequence of sets of clauses generated by the Tree-based IC3
for refuting a spurious abstract error path can be seen as an interpolant for the path,
in the sense used by McMillan in his “lazy abstraction with interpolants” algorithm
[18].6 Recalling the definition of [18], given a sequence of formulas Γ

def
= ϕ1, . . . , ϕn,

an interpolant is a sequence of formulas I0, . . . , In such that: (i) I0 ≡ � and In ≡ ⊥;
(ii) for all 1 ≤ i ≤ n, Ii−1 ∧ ϕi |= Ii; (iii) for all 1 ≤ i ≤ n, Ii contains only variables
that are shared between ϕ1∧ . . .∧ϕi and ϕi+1∧ . . .∧ϕn. Consider now a program path
pc0 � pcn, and its corresponding sequence of edge formulas Top1 , . . . , Topn (where
Topi is the formula attached to the edge (pci−1, opi, pci)). Then, it easy to see that the
trace F0, . . . , Fn generated by IC3 in refuting such path immediately satisfies points (i)
and (ii) above by definition, and, if we consider the sequence Top1

〈0〉, . . . , Topn
〈n−1〉,

then F0
〈0〉, . . . , Fn

〈n〉 satisfies also point (iii).
Under this view, the TREE-IC3 algorithm described in the previous section can be

seen as an instance of the lazy abstraction with interpolants algorithm of [18], in which
however interpolants are constructed in a very different way. In the algorithm of [18],
interpolants are constructed from proofs of unsatisfiability generated by the SMT solver
in refuting spurious error paths; as such, the generated interpolants might have a com-
plex Boolean structure, which depends on the structure of the proof generated by the
SMT solver. Moreover, they are typically large and possibly very redundant. In the iter-
ative process of expanding and refining ART nodes, it is often the case that interpolants
become larger and larger, causing the algorithm to diverge. In fact, in our experiments
we have seen several cases in which the interpolant-based algorithm quickly runs out
of memory. On the other hand, when the interpolants are “good”, the algorithm is quite
fast, since interpolants can be quickly generated using a single call to the SMT solver
for each spurious error path.

Consider now the case of TREE-IC3. Here, the interpolants generated, being sets of
clauses, have a very regular Boolean structure, and experiments have shown that they
are often more compact than those generated from proofs, and as such do not cause
blow-ups in memory. Furthermore, another important advantage of having interpolants
(that is, abstract state formulas in the ART) in the form of sets of clauses is that this al-
lows to perform strengthening of nodes (see §4) at the level of granularity of individual

6 In fact, a similar observation has been done already for the fully-symbolic IC3 [12,23].
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clauses. In [18], strengthening (called “forced covering” there) is an “all or nothing”
operation: either the whole abstract state formula ϕP holds at a descendant node ϕN ,
or no strengthening is performed. As our experimental evaluation in §6 will show, the
capability of performing clause-by-clause strengthening is very important for perfor-
mance.

A drawback of TREE-IC3 is that the construction of the interpolants is typically
more expensive than with the proof-based approach, since it requires many (albeit
simpler) calls to the SMT solver for each spurious path, and it also requires many
potentially-expensive calls to the APPROX-PREIMAGE procedure needed for general-
izing IC3 to SMT (see §3). As a solution, we propose a hybrid approach that combines
TREE-IC3 with proof-based interpolant generation, in order to get the benefits of both.
The main idea of this new algorithm, which we call TREE-IC3+ITP, is that of gener-
ating the sets of clauses in the trace of TREE-IC3 starting from the proof-based inter-
polants, when such interpolants are “good”. More specifically, given an abstract error
path pc0 � pcE , before invoking IC3 on it, we generate an interpolant I0, . . . , In (for
the corresponding edge formulas Top1 , . . . , Topn) with the efficient proof-based pro-
cedures available in interpolating SMT solvers (see e.g. [9]); then, we try to generate
clauses from each Ii by converting them to CNF, using an equivalence-preserving pro-
cedure (and not, as usual, a satisfiability-preserving one), aborting the computation if
this process generates too many clauses. Only when this procedure fails, we fall back
to generating sets of clauses with the more expensive IC3. This allows us to keep the
performance advantage of the proof-based interpolation method when the generated
interpolants are “good”, while still benefiting from the advantages of a clause-based
representation of abstract states outlined above. Despite its simplicity, in fact, this hy-
brid algorithm turns out to be quite effective in practice, as our experiments in the next
section show.

6 Implementation and Experiments

We have implemented the algorithms described in the previous sections on top of the
MATHSAT5 SMT solver [14] and the KRATOS software model checker [8]. In this
section, we experimentally evaluate their performance.

6.1 Implementation Details

Generalization of IC3 to SMT. Our current implementation uses the theory of Linear
Rational Arithmetic (LRA) for modeling program operations. LRA is well supported by
MATHSAT5, which implements efficient algorithms for both satisfiability checking and
interpolation modulo this theory [11,9]. Moreover (and more importantly), using LRA
allows us to implement a simple and not-too-expensive APPROX-PREIMAGE procedure
for computing under-approximations of preimages, as required for generalizing IC3
to SMT (see §3). Given a bad cube s and a transition formula T (X,X ′), the exact
preimage of s wrt. T can be computed by converting s′ ∧ T to a DNF

∨
imi and

then projecting each of the cubes mi over the current-state variables X :
∨
i ∃X ′.(mi).

Then, an under-approximation can be constructed by simply picking only a subset of
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the projections of the cubes mi of the DNF. In our implementation, we use the All-
SMT-based algorithm of [20] to construct the DNF lazily, and in order to keep the cost
of the computation relatively low we under-approximate by simply stopping after the
first cube.

Implementation of IC3. In general, our implementation of IC3 follows the description
given in [12] (called PDR there). In order to be implemented efficiently, IC3 requires a
very tight integration with the underlying SAT (or SMT) solver, and the details of such
integration are sometimes crucial for performance. Therefore, here we precisely outline
the differences wrt. the description given in [12]. In particular, besides the obvious one
of using an SMT solver instead of a SAT solver, the two main differences are:

– For simplicity, we use a single solver rather than a different solver per frame, as
suggested in [12]. Moreover, since MATHSAT5 supports both an incremental in-
terface, through which clauses added and removed in a stack-based manner, and
an assumptions-based interface, we use a mixture of both for efficiently querying
the solver: we use assumptions for activating and deactivating the clauses of the
initial states, transition relation, bad states and those of the individual frames, as
described in detail in [12], whereas we use the push/pop interface for temporarily
adding a clause to the solver for checking whether such clause is inductive (relative
to the previously-generated ones). This allows us to avoid the need of periodically
cleaning old activation literals as described in [12].

– For reducing bad cubes that must be blocked during the execution of IC3, we ex-
ploit the dual-rail encoding typically used in Symbolic Trajectory Evaluation [22].
We do not apply ternary simulation through the transition relation, as suggested in
[12] for the Boolean case, as we found the former to be much more efficient than
the latter. This is possibly because the data structures that we use for representing
formulas are relatively naı̈ve and inefficient.

Implementation of Tree-Based IC3. We adopt the “Large-Block” encoding [3] of the
control-flow graph of the program under analysis, which collapses loop-free subparts
of the original CFG into a single edge, in order to take full advantage of the power of
the underlying SMT solver of efficiently reasoning with disjunctions. Currently, we do
not handle pointers or recursive functions, and we inline all the function calls so as to
obtain a single CFG.

For the construction of the abstract reachability tree, we adopt the “DFS” strategy
described by McMillan in [18]. When constructing the ART, we apply strengthening
systematically to each uncovered node n which has a proper ancestor p tagged with the
same program location, by adding to n all the clauses of p that hold after the execution
of the path p � n, and strengthening the intermediate nodes accordingly.

Finally, in the “hybrid” version, we use a threshold on the size of the CNF conversion
for deciding whether to use interpolants for computing the sets of clauses for refuting
a spurious path: we compute the sequence of interpolants, and we try to convert them
to CNF, aborting the process when the formulas become larger than k times the size of
the interpolants (k being a configurable parameter set to 5 in the experiments).7

7 We remark that here we need an equivalent, and not just equisatisfiable, CNF representation.
Therefore, such conversion might result in an exponential blow-up in the size of the formula.
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6.2 Benchmarks and Evaluation

For our evaluation, we use a set of 98 benchmark C programs from the literature, origi-
nating from different domains (e.g. device drivers, communication protocols, SystemC
designs, and textbook algorithms), most of which have been used in several previous
works on software model checking, The set includes the benchmarks used in the first
software verification competition (http://sv-comp.sosy-lab.org) that can be
handled by our implementation. About one third of the programs contain bugs.

All the benchmarks, tools and scripts needed for reproducing the experiments are
available at http://es.fbk.eu/people/griggio/papers/cav12-
-ic3smt.tar.bz2 The experiments have been run on a Linux machine with a
2.6GHz CPU, using a time limit of 1200 seconds and a memory limit of 2GB.

For our evaluation, we tested the following algorithms/configurations:

IC3 is the fully symbolic version of IC3, in which the CFG is encoded symboli-
cally in the transition relation using an auxiliary variable representing the program
counter;8

TREE-IC3 is the CFG-based version of IC3, as described in §4;
TREE-IC3+ITP is the hybrid algorithm of §5, in which “good” interpolants are used

for computing sets of inductive clauses;
TREE-IC3+ITP-MONO is a variant of TREE-IC3+ITP in which strengthening of

nodes is performed “monolithically” by checking whether all the clauses of an
ancestor node p hold at a descendant node n, instead of checking the clauses indi-
vidually. This configuration mimics the forced coverage procedure applied in the
lazy abstraction with interpolants algorithm of [18];

TREE-ITP is an implementation of the lazy abstraction with interpolants algorithm
of [18];

KRATOS is an implementation of lazy predicate abstraction with interpolation-based
refinement, the default algorithm used by the KRATOS software model checker [8].
(We recall that the difference with TREE-ITP is that in standard lazy predicate ab-
straction interpolants are used only as a source of new predicates, and abstract states
are computed using Boolean abstraction rather than using interpolants directly.)

All the implementations use the same front-end for parsing the C program and comput-
ing its CFG, and they all use the same SMT solver (MATHSAT5 [14]) as a back-end
reasoning engine for all satisfiability checks and interpolation queries. Moreover, all the
tree-based algorithms use the same depth-first strategy for constructing the ART, and all
the IC3-based ones use the same settings for IC3. This makes it possible to compare the
merits of the various algorithms (over the benchmark instances) without being affected
by potential differences in the implementation of other parts of the systems which are
orthogonal to the evaluation.

Moreover, in addition to comparing the different algorithms within the same imple-
mentation framework, we also compared our best algorithm with the following software
model checkers:

8 More precisely, we encode the program counter variable using �log2 n� Boolean variables,
where n is the number of locations in the CFG.

http://sv-comp.sosy-lab.org
http://es.fbk.eu/people/griggio/papers/cav12-ic3smt.tar.bz2
http://es.fbk.eu/people/griggio/papers/cav12-ic3smt.tar.bz2
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CPACHECKER [4], which uses an algorithm based on lazy predicate abstraction [16]
(like KRATOS). CPACHECKER was the winner of the first software verification
competition.9

WOLVERINE [17], an implementation of the lazy abstraction with interpolants algo-
rithm [18] (like TREE-ITP). 10

6.3 Results

The results of the evaluation are summarized in Figure 4. The scatter plots in the top
row show the comparisons of the various configurations of IC3 proposed in the previous
Sections: first, we compare the fully-symbolic IC3 with TREE-IC3, in order to evaluate
the benefits of exploiting the CFG of the program; then, we evaluate the effect of us-
ing interpolants for computing sets of inductive clauses (TREE-IC3+ITP) wrt. “plain”
TREE-IC3; third, we evaluate the impact of the fine-grained strengthening that is pos-
sible when using a conjunctively-partitioned representation for abstract states, by com-
paring TREE-IC3+ITP with TREE-IC3+ITP-MONO. The rest of the plots show instead
the comparison of our best configuration, TREE-IC3+ITP, with alternative algorithms
and implementations. A summary of the performance results for all the algorithms/-
configurations is reported in the table, showing the number of instances successfully
checked within the timeout, and the total execution time for the solved instances.

From the plots and the table of Figure 4, we can draw the following conclusions:

– All the techniques proposed in this paper lead to significant improvements to IC3,
with TREE-IC3 solving 17 more instances than IC3 (and being up to two orders of
magnitude faster), and TREE-IC3+ITP solving 11 more instances than TREE-IC3;

– On relatively-easy problems, the IC3-based algorithms are generally more expen-
sive than the alternative techniques; in particular, the tools based on predicate ab-
straction (KRATOS and CPACHECKER) perform very well in terms of execution
time. However, on harder benchmarks TREE-IC3+ITP seems to be more robust
than the competitors. This is particularly evident for TREE-ITP and CPACHECKER,
which run out of memory in 25 and 34 cases respectively, 11 whereas this never hap-
pens with KRATOS and TREE-IC3+ITP.

– The ability to perform clause-by-clause strengthening is very important for the
performance of TREE-IC3+ITP: when using a “monolithic” approach, TREE-
IC3+ITP (TREE-IC3+ITP-MONO) is not only almost always slower, but it also
solves 13 instances less. However, we notice that even without it, TREE-IC3+ITP-
MONO behaves better than TREE-ITP, and in particular it is significantly more
robust in terms of memory consumption.

7 Related Work

Besides all the IC3-related approaches in the hardware domain [6,5,7,12], as already
stated in §5 the work that is most closely-related to ours is the “lazy abstraction with

9 See http://sv-comp.sosy-lab.org/results/index.php
10 It would have been interesting to include also the IMPACT tool of [18] in the comparison;

however, the tool is no longer available.
11 Notice that with CPACHECKER this happens even when increasing the memory limit to 4GB.

http://sv-comp.sosy-lab.org/results/index.php


Software Model Checking via IC3 291

T
R

E
E

-I
C

3

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

 

 

 

T
R

E
E

-I
C

3+
IT

P

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

 

 

 

T
R

E
E

-I
C

3+
IT

P

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

 

 

 

IC3 TREE-IC3 TREE-IC3+ITP-MONO

T
R

E
E

-I
T

P

 0.01

 0.1

 1

 10

 100

 1000

 0.01  0.1  1  10  100  1000

 

 

 

K
R

A
T

O
S

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

 

 

 

W
O

L
V

E
R

IN
E

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000
 

 

 

TREE-IC3+ITP TREE-IC3+ITP TREE-IC3+ITP

C
PA

C
H

E
C

K
E

R

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

 

 

 

Algorithm/Tool # solved Tot time
TREE-IC3+ITP 74 7654
KRATOS 66 1898
CPACHECKER 63 988
TREE-IC3 63 5548
TREE-IC3+ITP-MONO 61 7727
TREE-ITP 55 1934
IC3 46 7166
WOLVERINE 37 6160

TREE-IC3+ITP

Fig. 4. Experimental results

interpolants” technique of McMillan [18]. Both TREE-IC3 and TREE-IC3+ITP, in
fact, can be seen as instances of the “lazy abstraction with interpolants” algorithm, in
which however interpolants are computed using the IC3 algorithm and approximate
preimage computations, rather than proofs of unsatisfiability produced by the SMT
solver. This in turn leads to interpolants that can be easily partitioned conjunctively,
which allows to significantly improve their usefulness in pruning the number of ab-
stract paths that need to be explored (see §5 and §6).

Another approach based on interpolation and explicit exploration of CFGs is de-
scribed in [19]. In this approach, the search in the CFG is guided by symbolic execution;
moreover, a learning procedure inspired by DPLL-based SAT solvers is applied in or-
der to generate new annotations that prevent the exploration of already-visited portions
of the search space. Such annotations are obtained from interpolants, generated from
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proofs. In principle, it should be possible to apply IC3-based ideas similar to those that
we have presented also in that context.

Some analogies between the present work and the “DASH” approach described in
[2,13], which analyzes programs with a combination of testing and verification, can
be seen in the use of approximate preimages and of highly-incremental SMT queries.
However, in another sense DASH is somewhat orthogonal to IC3-based techniques, in
that the latter could be used as a verification engine for the former. (In fact, although in
[2] an approach based on weakest preconditions is used, interpolation is suggested as a
potential alternative.)

Finally, the use of a clause-based representation for abstract states bears some simi-
larities with the work in [15]. However, the exploration of the CFG and the whole ver-
ification approach is very different, and the two approaches can be considered largely
orthogonal. In [15], the CFG is treated as a Boolean formula, whose satisfying assign-
ments, enumerated by a SAT solver, correspond to path programs that are checked with
different verification oracles. The invariants computed by such oracles are then used
to construct blocking clauses that prevent re-exploration of already-covered parts of
the program. Both the fully-symbolic and the tree-based versions of IC3 that we have
presented could be used as oracles for checking the path programs and generating in-
variants for the blocking clauses.

8 Conclusions and Future Work

We have presented an investigation on the application of IC3 to the case of software.
We propose three variants: the first one, generalizing IC3 to the case of SMT, provides
for the analysis of fully symbolically represented software; the second one, TREE-IC3,
relies on an explicit treatment of the CFG; the third one is a hybrid appraoch based on
the use of interpolants to improve TREE-IC3.

IC3 is a radically new verification paradigm, and has a great potential for future
developments in various directions. First, we intend to investigate further IC3 in the
setting of SMT, devising effective procedures for APPROX-PREIMAGE in other relevant
theories, and adding low-level optimization techniques, similarly to the highly tuned
techniques used in the Boolean case. Second, we intend to investigate the extraction
of CFG’s from hardware designs, in the same spirit as the transition-by-transition ap-
proach [21], and to apply IC3 directly to descriptions in high-level languages such as
Verilog or VHDL. Finally, we intend to extend IC3 to richer theories such as bit vectors
and arrays, and to the case of networks of hybrid systems [10].

Acknowledgements. We would like to thank Ken McMillan and the anonymous refer-
ees for their very helpful comments on early versions of the paper.
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Călin C. Guet, Ashutosh Gupta, Thomas A. Henzinger,
Maria Mateescu, and Ali Sezgin

IST Austria, Klosterneuburg, Austria

Abstract. Continuous-time Markov chains (CTMC) with their rich the-
ory and efficient simulation algorithms have been successfully used in
modeling stochastic processes in diverse areas such as computer science,
physics, and biology. However, systems that comprise non-instantaneous
events cannot be accurately and efficiently modeled with CTMCs. In
this paper we define delayed CTMCs, an extension of CTMCs that al-
lows for the specification of a lower bound on the time interval between
an event’s initiation and its completion, and we propose an algorithm for
the computation of their behavior. Our algorithm effectively decomposes
the computation into two stages: a pure CTMC governs event initiations
while a deterministic process guarantees lower bounds on event comple-
tion times. Furthermore, from the nature of delayed CTMCs, we obtain
a parallelized version of our algorithm. We use our formalism to model
genetic regulatory circuits (biological systems where delayed events are
common) and report on the results of our numerical algorithm as run
on a cluster. We compare performance and accuracy of our results with
results obtained by using pure CTMCs.

1 Introduction

Due to the Brownian motion of molecules inside cells, biological systems are
inherently stochastic. The stochastic effects are negligible when all species are
present in large numbers, but can be significant when some of the species
are present only in low numbers. In particular, when modeling genetic regu-
latory circuits (GRCs), where different molecules (such as DNA) are present in
low numbers, one needs to take stochasticity into account. Indeed, systems biol-
ogy has been shifting its focus from deterministic models that capture the mean
behavior of GRCs to stochastic models that capture their stochastic behavior [9].

One of the most general modes of gene regulation is self-regulation in the
form of a negative feedback loop [19], where a DNA molecule encodes a repressor
protein R with which it interacts according to the following reactions:

DNA −→ DNA+R, R −→ ∅, DNA+R −→ DNA.R, DNA.R −→ DNA+R,
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(a) Delayed
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(b) Immediate
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(c) Cascade

Fig. 1. Probability distribution of the levels of repressor protein over time in three
different models of the negative feedback loop. (a) an overshoot is observed in the
delayed CTMC model; (b) steady state is reached rapidly in the immediate CTMC; (c)
the model is intractable in the cascade CTMC and thus we present only the distribution
up to time 7.2s.

that correspond to the production, degradation, binding, and unbinding of pro-
tein. Due to biological aspects, the production of proteins behaves as a process
with high latency and high throughput. Therefore, if at time t = 0 the system
contains a single DNA molecule, the production of a large number of proteins
is initiated because, before the completion of any of the protein production pro-
cesses, nothing inhibits the production of proteins (Fig. 1(a)). Consequently, the
observed behavior of the system is crucially dependent on the presence of delays,
a well known phenomenon in biological systems [5,9,11].

A classic modeling formalism for GRCs is offered by continuous-time Markov
chains (CTMCs) as proposed by Gillespie [7]. Under the assumptions that the
solution is well-stirred, at constant temperature and volume, and that reactions
happen instantaneously, the CTMC model considers (i) that the state of the sys-
tem is given by a population vector whose elements represent the copy number
for each molecule type, and (ii) that reactions are triggered at times that follow
an exponential distribution, with a rate that depends on the quantum mechan-
ical properties of molecules and on the likelihood of their collision. A popular
technique for analyzing this type of models is probability propagation [12], which
computes the transient probabilities of the Markov chain over time by pushing
probability distribution through the state space of the model.

In the classical CTMC model of the negative feedback system each state of
the model has three variables that denote the number of DNA (0 or 1), DNA.R
(0 or 1) and R (a natural number) molecules. Each state has up to four suc-
cessors, one for each of the enabled reactions (production, degradation, binding
and unbinding of repressor protein). Because reactions happen instantaneously,
without any latency, with some strictly positive probability proteins are available
at any t > 0, and thus can inhibit further production of proteins immediately.
The overshooting behavior that is normally present in the negative feedback
loop is thus not observed in this immediate CTMC model (Fig. 1(b)). In order
to overcome this problem, a pure CTMC model needs to use additional auxil-
iary variables that encode the age of a molecule, and thus produce a delay-like
behavior. This increase in the number of variables leads however to a state space
explosion that makes even simple models intractable (Fig. 1(c)). We call such a
CTMC, extended with auxiliary variables, a cascade CTMC.
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In this paper, we introduce delayed CTMCs, a formalism that we argue to be
more natural and more efficient than pure CTMCs when modeling systems that
comprise non-instantaneous reactions. In a delayed CTMC with delay Δ, each
species x has an associated age α(x) that specifies that (α(x)− 1) ·Δ time units
must pass between the moment when a reaction that produces x is triggered and
the moment when x is available as a reactant of a new reaction.

Natural. Delayed CTMCs naturally express non-instantaneous reactions be-
cause both the throughput and the latency of a reaction have direct correspon-
dents in the rate of the reaction and the delay of the reaction, respectively. Even
though one can try to model both the latency and throughput of reactions in a
pure CTMC by adding auxiliary reactions, the determination of the number and
parameters of such reactions involve the manipulation of complex functions. Fur-
thermore, one cannot simply approximate the computation of these parameters
because it is not clear how such approximations affect the qualitative behavior
of the model.

Efficient. Delayed CTMC have two important performance advantages with
respect to cascade CTMCs. First, by decoupling the waiting times of molecules
in the process of being produced from the dynamics of the currently available
molecules, we reduce the size of the state space on which to run a pure CTMC
computation. Second, since no probability can flow between states with differ-
ent number of waiting molecules (molecules that are not yet “mature”), our
probability transition matrix accepts a simple partitioning, which is efficiently
parallelizable.

The algorithm that we propose for the computation of the probability propa-
gation of the delayed CTMC consists of alternating rounds of pure CTMC com-
putation and aging steps. Each pure CTMC computation can be parallelized due
to the absence of interactions between subspaces of the model, and thus we are
able to solve delayed CTMC models that have large state spaces. For example,
we solve the negative feedback example for parameters that generate a state
space of up to 112 million states. The result of these experiments (see Figure 1)
show that the delayed CTMC model of the negative feedback system indeed
matches the experimental evidence of an initial overshoot in the production of
protein [9], while the pure CTMC models do not.

Reaction delays have already been embedded in stochastic simulation tools
for GRCs [18], but we are not aware of any work that embeds such delays in a
probability propagation algorithm. The probability propagation problem relates
to stochastic simulations as verification relates to testing. Due to the advantages
of probability propagation algorithms over simulation based approaches (when
computing the transient probabilities of a system) [3], it is valuable to provide
such algorithms. As probability propagation of stochastic systems is analogous
to solving reachability problems in the non-stochastic setting, we use techniques
such as discretization of a continuous domain and on-the-fly state space explo-
ration, which are standard techniques for verification problems.
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Related Work. There has been a wide interest in defining formalisms for ge-
netic regulatory circuits [2,7,15,17]. In particular, using delays within stochastic
simulations has recently drawn interest (see [18] for a review of these models).
Delayed CTMCs differ from these models in that they discretize the delay time
as opposed to having continuous delays.

There has also been much work on the transient analysis of pure CTMCs
coming especially from the field of probabilistic verification [8,10,13,14], but
none of these methods consider reaction delays.

Recent efforts [1,20] have parallelized the transient analysis of CTMCs by
applying parallel algorithms for sparse matrix multiplication. Since the data de-
pendencies flow across the entire state space, they have achieved limited speed-
ups. Our work is orthogonal to these approaches. Due to the nature of delayed
CTMCs, the probability transition matrix of the model is amenable to being
partitioned into disconnected sub-matrices, and thus we obtain a highly paral-
lelizable algorithm. This can lead to large speed-ups (hundreds of times for our
examples). The techniques presented in these related works can be used for fur-
ther parallelization of our algorithm by using them in the computation of each
disconnected part of the matrix.

Delayed CTMCs are a subclass of generalized Markov processes (GMPs).
Our extension of CTMCs is limited as compared to GMPs, in that our single
extension is in capturing the property of latent reactions. However, we are able
to find efficient probability propagation algorithms for delayed CTMCs.

2 Delayed CTMC

For a set A, let f |A denote the function obtained by restricting the domain of f
to A ∩Dom(f). Pow(A) denotes the powerset of A.

Continuous-Time Markov Chain (CTMC). A probability distribution ρ
over a countable set A is a mapping from A to [0, 1] such that

∑
a∈A ρ(a) = 1.

The set of all probability distributions over A is denoted by PA. The support Fρ
of a probability distribution ρ over A is the subset of A containing exactly those
elements of A mapped to a non-zero value. Formally, Fρ = {a ∈ A | ρ(a) �= 0}.

A CTMC M is a tuple (S,Λ), where S is the set of states, and Λ : S×S �→ R

is the transition rate matrix. We require that for all s, s′ ∈ S, Λ(s, s′) ≥ 0 iff
s �= s′, and

∑
s′∈S Λ(s, s

′) = 0.
The behavior of M = (S,Λ) is a mapping pM from R to a probability distri-

bution over S satisfying the Kolmogorov differential equation

d

dt
pM (t) = pM (t) · Λ

If the value of pM (0) is known, the above differential equation has the unique
solution

pM (t) = pM (0) · eΛt
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In the case where |S| < ∞, the series expansion for eΛt yields
∑∞

i=0(Λt)
i/i! for

which analytic solutions can be derived only for special cases. In general, finding
the probability distribution pM as a symbolic function of time (t) is not possible.

We will let M(ρ, t), the behavior of M initiated at ρ, denote the value of
pM (t) with pM (0) = ρ.

Aging Boundary, Configurations. An aging boundary is a pair (X,α), where
X is a finite set of variables, α : X �→ N is an age function. The expansion of
the aging boundary (X,α), is the set [X,α] = {(x, a) |x ∈ X, 0 ≤ a ≤ α(x)}, the
elements of which are called aged variables. For an expansion [X,α], we define
the sets of immediate, new and waiting variables as [X,α]i = ∪x∈X{(x, 0)},
[X,α]n = ∪x∈X{(x, α(x))}, and [X,α]w = {(x, a) |x ∈ X, 0 < a < α(x)},
respectively.

A configuration c over an expansion [X,α] is a total function from [X,α] to
N. We will also write ((x, a), n) ∈ c whenever c(x, a) = n. A sub-configuration
cF of c relative to F ⊆ [X,α] is the restriction of c to F ; formally, cF (x) is
defined to be equal to c(x) iff x ∈ F . For any F ⊆ [X,α], CF denotes the set
of all sub-configurations over F . For any configuration c ∈ C[X,α], let ci, cn and
cw denote the sub-configurations of c relative to [X,α]i, [X,α]n and [X,α]w,
respectively. Intuitively, in the context of gene expression, an aged variable will
represent a molecule with a time stamp denoting the delay until the molecule is
produced, and configurations will represent a a collection of molecules with time
stamps. In what follows, we will be exclusively working on CTMCs having con-
figurations as states, and thus will use the two terms, states and configurations,
interchangeably.

Delayed CTMCs. Let (X,α) be an aging boundary. A CTMC M = (C[X,α], Λ)
is α-safe, if Λ(c, c′) �= 0 implies that c′w = cw and also, c′(x, α(x)) < c(x, α(x))
implies α(x) = 0. Intuitively, α-safe means that the waiting variables cannot
change and only the value of immediate variables can decrease.

Definition 1 (Delayed CTMC). A delayed CTMC D is a tuple (X,α,Λ,Δ),
where (X,α) is an aging boundary, MD = (C[X,α], Λ) is α-safe, and Δ ∈ R

+ is
the delay.

A behavior of a delayed CTMCD = (X,α,Λ,Δ) is a finite sequence ρ0ρ1ρ2 . . . ρN
of probability distributions over C[X,α] that satisfies

ρi+1 = Tick(MD(ρi, Δ)) for 0 ≤ i < N (1)

The definition of Tick is given as

Tick(ρ)(c′)
def
=

∑
c+1=c′

ρ(c), c+1(x, a) =

⎧⎨⎩
c(x, a+ 1) , if 0 < a < α(x)
c(x, a+ 1) + c(x, a) , if a = 0
0 , if a = α(x)

Intuitively, a behavior of a delayed CTMC D is an alternating sequence of run-
ning the CTMC MD for Δ units of time, deterministically decrementing the age
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of each variable in every configuration (i.e. propagating probability from c to
c+1), and computing the new probability distribution (Tick).

A continuous behavior of D = (X,α,Λ,Δ) is given as

bD(t)
def
= MD(ρq, z)

where t = q ·Δ+ z for some 0 ≤ z < Δ, and ρ0 . . . ρq is a behavior of D.

3 Genetic Regulatory Circuits

In this section, we will first give a simple formalism for defining genetic regulatory
circuits. We will then provide three different semantics for genetic regulatory
circuits using delayed CTMCs.

3.1 Specifying Genetic Regulatory Circuits

A genetic regulatory circuit (GRC) G is a tuple (X,α,R), where

– (X,α) is an aging boundary,
– R is a set of reactions.

Each reaction r ∈ R is a tuple (ir, τ, or), where ir and or, the reactant and
production list, respectively, are mappings from X to N, and τ , the reaction rate,
is a positive real-valued number. For reactions, we will use the more familiar
notation

a1x1 + . . .+ anxn
τ−→ b1x1 + . . .+ bnxn

where aj = ir(j), and bj = or(j). Intuitively, each reaction represents a chemical
reaction, and variables of X represent the molecular species that take part in
at least one reaction of the system. Each reaction defines the necessary number
of each molecular species that enables a chemical reaction, the base rate of
the reaction, and the number of produced molecular species as a result of this
chemical reaction.

Overall, a reaction can be seen as a difference vector r = [r1 r2 . . . rn],
where ri = or(xi) − ir(xi) is the net change in the number of molecule xi. We
will assume that the difference vector of each r is unique. In writing down a
reaction, we will leave out the molecular species that are mapped to 0.

3.2 Dynamics in Terms of Delayed CTMCs

In this section, we will give the semantics of a GRC G = (X,α,R) in terms of
a delayed CTMC. A computation framework for G is parameterized over delay
values. For the following, we fix a delay value, Δ.

A reaction r ∈ R is enabled in a configuration c, if for all xi ∈ X , c(xi, 0) ≥
ir(xi) holds. In other words, reaction r is enabled in c if the number of reac-
tants that r requires is at most as high as the number of immediately available
reactants in c. Let En(c) ⊆ R denote the set of reactions enabled in c.

For configurations c, c′, and reaction r ∈ R, we say that c can go to c′ by firing
r, written c

r−→ c′, if r ∈ En(c), and there exists a configuration ĉ such that



300 C.C. Guet et al.

– c and ĉ are the same except for all xi ∈ X , ĉ(xi, 0) = c(xi, 0)− ir(xi), and
– c′ and ĉ are the same except for all xi ∈ X , c′(xi, α(xi)) = ĉ(xi, α(xi)) +

or(xi).

Informally, to move from configuration c to c′ via reaction r, c must have at
least as many immediate molecules as required by the reactant list of r, and c′

is obtained by removing all immediate molecules consumed by r and adding all
the new molecules produced by r.

Delayed Semantics. For G = (X,α,R), we define the delayed CTMC DG =
(X,α,Λ,Δ). We only need to give the definition of Λ.

G induces the transition rate matrix Λ defined as Λ(c, c′) = Fire(c, r) only

when c
r−→ c′ holds. Fire(c, r) is given as

Fire(c, r) =
∏
xi∈X

τr

(
c(xi, 0)

ir(xi)

)

where
(
n
r

)
= n!/(n − r)! represents the choose operator. Λ(c, c′) is well-defined

because there can be at most one reaction that can satisfy c
r−→ c′ since we

assumed that the difference vector of each reaction is unique. Observe also that
no changes to waiting variables can happen in any transition with non-zero rate,
and only the number of immediate variables can decrease. Hence,MDG as defined
is α-safe.

Immediate Semantics. Given a GRC G = (X,α,R), we define the immediate
version of G, written G↓ as the GRC (X,α′, R), where α′(x) = 0, for all x ∈ X .
Intuitively, G↓ ignores all the delays, and treats the reactions as instantaneously
generating their products. Note that, a delayed CTMC with an age function
assigning 0 to all the variables is a pure CTMC. The immediate semantics for
G are given by the behavior of the (delayed) CTMC constructed for G↓.

Cascade Semantics.Given a GRCG = (X,α,R), we define the cascade version
of G, written as G∗, as the GRC (X ′, α′, R′), where X ′ = [X,α], α′(x) = 0, for
all x ∈ X ′, and R′ = Rtrig ∪Rage, where

– Rtrig is the set of reactions of R re-written in a way that all the reactants
have age 0, and all the products have their maximum age. Formally, for
each reaction r =

∑
i aixi

τ−→
∑
i bixi ∈ R, we define r̃ =

∑
i ai(xi, 0)

τ−→∑
i bi(xi, α(xi)) and let Rtrig = {r̃ | r ∈ R}.

– Rage is the representation of delays in terms of a sequence of fictitious events
intended to count down the necessary number of stages. Formally, Rage =

{(x, a) Δ−1

−−−→ (x, a− 1) | a > 0, (x, a) ∈ X ′}.

Cascade semantics for G are given by the behavior of the (delayed) CTMC
constructed for G∗.

Remark. A protein generated by a GRC has two dynamic properties: the rate
of its production and the delay with which it is produced, both of which are
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intuitively captured by delayed semantics. The immediate semantics keeps the
rate intact at the expense of the production delay which is reduced to 0. On the
other hand, the cascade semantics approximates the delay, by a chain of events
with average delay Δ, while increasing the overall variance of the production
time. In Section 4.1, we show that a close approximation of the mean and the
variance of a delayed CTMC by cascade semantics causes a blow-up of the state
space of the former by O(α(x)2τr), where r is a reaction producing protein x.

4 Comparison of Different Semantics for GRCs

In this section, we will do a comparative analysis of the delayed CTMC model.
First, we will derive the probability distribution expression for the three different
semantics we have given in the previous section. We will show that delayed
CTMCs are more succinct than cascade CTMCs. We will then give two examples
which demonstrate the qualitative differences between the immediate, cascade
and delayed semantics for the same GRC.

4.1 Probability Distributions for Delayed Reactions

Let G = (X,α,R) be a GRC, and let x ∈ X be such that α(x) = k, for
some k > 0. We would like to analyze the probability distribution of the time
of producing x due to a reaction r ∈ R with or(x) > 0 in the three different
semantics we have given in the previous section. We use Pr(tp(x) ≤ T ) to denote
the probability of producing x at most T time units after the reaction r took
place.

For immediate semantics, the cumulative distribution is simply a step func-
tion, switching from 0 to 1 at time 0 since the initiation and completion times of
a reaction in immediate semantics are equal. In other words, we have Pr(tp(x) ≤
T ) = 1, for all T ≥ 0.

For cascade semantics, we have k intermediate reactions, each with an iden-
tical exponential distribution. This means that the probability density function
for producing x at exactly t units of time is given by the (k − 1) convolution
of the individual probability density functions. This is known as the Erlang dis-

tribution, and has the closed form fk,Δ(t) =
tk−1

(k−1)!Δk e
−t/Δ. The mean and the

variance of this distribution are given as kΔ and kΔ2, respectively. This implies
that as k increases, both the mean and the variance of the distribution increase,
a fact which we show has an important consequence in terms of model size.

For delayed semantics, we know that for x at time nΔ to have, for the first
time, age 0 which makes it immediate (and produced), the reaction r producing x
must have occurred during the (half-open) interval ((n−k)Δ, (n−k+1)Δ]. Since
this means that the production time of x cannot be greater than kΔ and cannot
be less than (k − 1)Δ, the probability density function of the production time
of x due to r is non-zero only in the interval [(k − 1)Δ, kΔ). Let us denote this
interval with p+(x, r). Let δ range over the real numbers in the interval p+(x, r).
Then, the probability of x being produced by r in (k − 1)Δ + δ units of time
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is equal to the probability of r taking place at Δ− δ units of time given that r
takes place in the interval (0, Δ]. As the calculation of the transition rate matrix
Λ has shown, the probability of reaction r firing depends on configurations; the
base rate τr defines a lower bound on the actual rate of r. Since the lower the
actual rate the higher the variation is, we are going to compute the distribution
for the base rate. Then, the probability expression for p+(x, r) becomes

Pr(tp(x) ≤ (k − 1)Δ+ δ) = 1− 1− e−τr(Δ−δ)

1− e−τrΔ
, δ ∈ [0, Δ]

This expression shows that with increasing values of reaction rate τr, the prob-
ability of the production of x taking time close to α(x) also increases. This is
expected since as the rate of the reaction r producing x gets higher, the proba-
bility of r taking place close to the beginning of the interval in which it is known
to happen also gets higher. In other words, it is possible to generate a probability
distribution for the production time of x such that

Pr(α(x) − δ ≤ tp(x) ≤ α(x)) = 1− ε

for arbitrary δ and ε, which we consider further in the rest of this subsection.

Quasi-periodicity of Delayed CTMCs. Previously, we have given three al-
ternative semantics for GRCs. In giving cascade semantics, the intuition was to
replace each deterministic aging step of the delayed CTMC with an interme-
diate fictitious aging reaction. For each intermediate reaction, we have chosen
the rates to be the inverse of Δ so that the collective cascading behavior has a
mean delay equal to the age of the produced element. As we shall see in the next
section, this conversion leads to different qualitative behaviors.

We will now compare delayed CTMC to what we call cascade CTMCs, a
generalization of the cascade semantics, and show that preserving a property
called quasi-periodicity requires a blow-up in the state space while converting a
delayed CTMC into a cascade CTMC.

Let b be a continuous behavior of a delayed CTMC D. Recall that b is
a mapping from R, representing time, to a probability distribution over some
C[X,α]. We will call b quasi-periodic with (ε, δ, p, l) at configuration c if for all
t ≤ l, b(t)(c) ≥ 1 − ε implies that there exists a number k ∈ N such that
t ∈ [kp, kp+ δ], and if t /∈ [kp, kp+ δ] for any k < l, then b(t)(c) ≤ ε. Intuitively,
if the behavior b is quasi-periodic with (ε, δ, p, l) at c, then the probability of
visiting c is almost 1 (ε is the error margin) only at multiples of the period p
within δ time units. In all other times, the probability of being in c is almost
0 (less than ε). The parameter l gives the period of valid behavior; nothing
is required of b for times exceeding l. Typically, we will want to maximize l,
the length of the behavior displaying the desired behavior, and minimize ε and
δ, the uncertainty in periodic behavior. Because periodicity is crucial during
biological processes such as embryo development [16] or circadian clocks [5],
quasi-periodicity defines an important subclass of behaviors.

For a set S, totally ordered by ≺, and elements s, s′ ∈ S, let s′ = s+ 1 hold
only when s′ is the least element greater than s in S according to ≺. Let smin
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(c) Cascade Semantics

Fig. 2. Behaviors of the GRC ConvDiv. Due to intractability of the immediate and cas-
cade models, (b) depicts the probability distribution up to time 0.3s and (c) represents
the probability distribution up to time 6s.

denote the minimal element in the totally ordered set S. If S is finite, then for
the maximal element smax of S, we let smin = smax + 1.

A CTMC M = (S,Λ) is called a cascade CTMC if S is totally ordered, and
Λ(s, s′) > 0 iff s′ = s+1. A cascade CTMC is λ-homogenenous if Λ(s, s′) > 0 iff
Λ(s, s′) = λ or s = smin. In other words, a cascade CTMC is λ-homogeneous if
all the state transitions have the same rate λ with the possible exception of the
transition out of the minimal state.

Theorem 1. There exists a class of delayed CTMCs Mi that are quasi-periodic
such that there is no corresponding class of λ-homogeneous cascade CTMCs M ′

i

with |M ′
i | = O(|Mi|).

4.2 Examples Demonstrating Qualitatively Different Behavior

The first example GRC, ConvDiv, is given as

A
l−→ B + C B + C

vh−→ 2B + C B
l−→ ∅

α : A �→ 0, B �→ 1, C �→ 2

The symbols l, h, vh, represent low, high and very high rates, respectively. At
t = 0 the model contains a single molecule, of type A. After the first reaction
produces one B and one C, observe that the number of B molecules will increase
only if the second reaction fires, which requires for both B and C to be present
in the system. In immediate semantics, the expected behavior is divergence: the
number of B molecules should increase without bound. However, when the delay
values are taken into account, we see that B and C molecules with different ages
are unlikely to be present in the system simultaneously. Thus, a stable behavior
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(c) Cascade Semantics

Fig. 3. The behaviors of the GRC Periodic

should be observed for delayed semantics. Since cascade semantics still allow for
non-zero probability of producing B and C, albeit at a lower probability, diver-
gence should also be observed for cascade semantics. The computed behaviors
given in Figure 2 are in accordance with our explanations.

The second example GRC, Periodic, is given as

A
h−→ B +A B

vh−→ ∅ 3B
vh−→ C C

vh−→ ∅
α : A �→ 0, B �→ 1, C �→ 0

We observe that the production rate of B from the first reaction is slower than
the degradation rate of B, which means that in immediate semantics, it is very
unlikely to have 3 B’s at any time, which in turn implies that C is not likely
to be produced at all. However, in delayed semantics, A will keep producing B
during Δ time units, which are likely to be more than 3 in the beginning of the
next step. This increases the probability of producing C considerably. In fact, C
must be exhibiting quasi-periodic behavior. The computed behaviors are given
in Figure 3. As expected from the arguments of the previous section, cascade
semantics, even though does not stabilize at C = 0 like the immediate semantics,
still can not exhibit a discernible separation between the times where C = 0 and
the times where C > 0.

Remark. The examples of this section illustrate the impact of incorporating
delay into models. As for representing a given biological system in a GRC, some
of the encoding issues pertain to a natural extension of the syntax. For instance,
having different production delays for the same molecular species in different
reactions or allowing more than one reaction with the same difference vector are
simple extensions to our formalism. Another issue is that the (delayed) molecular
species are produced at exact multiples of Δ; this can be modified by using

additional reactions. For instance, a reaction A
k−→ B with α(B) = 1 can be
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function ComputeBehavior

input
D = (X,α,Λ,Δ) : delayed CTMC
ρ0 : initial probability distribution
n : time count
W : number of workers
C1, . . . , CW ⊆ C[X,α]

assume
C1 � · · · � CW = C[X,α]

∀c, c′ ∈ C[X,α]∃i. (cw = c′w ⇒ {c, c′} ⊆ Ci)
output
ρ1, . . . , ρn : probability distributions
begin
for each i ∈ 1..W do

ρi0 := ρ0|Ci

done
LaunchAndWait(Worker,W )
for each k ∈ 1..n do

ρk := ρ1k ∪ · · · ∪ ρWk
done

end

function Worker

input (local)
i : worker index
locals
k, j : N
ρ : probability distribution
begin
k := 0
while k < n do

ρ := RunCTMC(ρik,MD, Δ)
for each c ∈ Dom(ρ) do
j such that c+1 ∈ Cj

atomic{
ρjk+1(c

+1) := ρjk+1(c
+1) + ρ(c)

}
done
SyncWorkers()
k := k + 1

done
TerminationSignal()
end

Fig. 4. A parallel algorithm for computing the behavior of a delayed CTMC. The call
of LaunchAndWait starts W processes each running the function Worker and waits
for the execution of TerminationSignal call in all worker processes. SyncWorkers

synchronizes all worker processes. We assume that all variables are global (including
the input parameters of ComputeBehavior) except for the explicitly declared locals.

replaced with two reactions A
k−→ ZB and ZB

kz−→ B with α(ZB) = 1, α(B) = 0,
and where ZB is a fictitious molecular species. Then, adjusting the value of kz
will define a distribution for the production of the molecule B.

5 Behavior Computation of Delayed CTMC

In this section we present an algorithm for computing the behavior of a delayed
CTMC given an initial state of the model. Since this behavior cannot be com-
puted analytically, we propagate the probability distribution over time using
Equation (1).

The configuration space of the delayed CTMC can be divided into subspaces
such that, between two consecutive tick instants, probability is not propagated
from one subspace to another. Let c and c′ be two configurations with different
values of their waiting variables, i.e. cw �= c′w. Due to the α-safe property of the
delayed CTMC, there can be no propagation of probability from c to c′ between
two consecutive tick instants. Therefore, the behaviors corresponding to each
subspace can be computed independently for this time period, which has length
Δ. For this computation we can use any pure CTMC behavior computation
algorithm. Furthermore, these independent computations can be executed in
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function spaceId(s)
begin
i := 1, idx := 0
for each (x, a) ∈ Dom(cw) do // (x, a) with larger a is chosen first

idx := idx+ 4isw((x, a))
i := i+ 1

done
return (i%W ) + 1

end

Fig. 5. In our implementation, spaceId is used to divide the state space in partitions
for the worker processes

parallel. In the case of pure CTMC, a similar parallelization is not possible
because the behavior dependencies flow through the full configuration space.

In Figure 4 we illustrate our parallel algorithm ComputeBehavior that
computes the behavior of a delayed CTMC D = (X,α,Λ,Δ) starting from initial
distribution ρ0. The algorithm computes the behavior ofD until n time steps, i.e.,
ρ1, . . . , ρn. ComputeBehavior uses W number of worker processes to compute
the probability distributions. Each of the W works is assigned a subspace of
C[X,α], as decided by the input partitions C1, . . . , CW . These partitions must
ensure that if two configurations have equal values of waiting variables then
both configurations are assigned to the same worker.

ComputeBehavior divides ρ0 into the sub-distributions ρ10, . . . , ρ
W
0 accord-

ing to the input partitions. Then, it launches W number of workers who oper-
ate using these initial sub-distributions. Workers operate in synchronized rounds
from 0 to n−1. At the k-th round, they compute the probability sub-distributions
of the k + 1-th time step ρ1k+1, . . . ρ

W
k+1. The i-th worker first runs a standard

CTMC behavior computation algorithm RunCTMC on ρik that propagates the
probability distribution until Δ time and the final result of the propagation is
stored in ρ. Then, the inner loop of the worker applies Tick operation on ρ. For
each configuration c in Dom(ρ), Tick adds ρ(c) to the probability of c+1 in the
appropriate sub-distribution decided by the configuration space partitions. Note
that a configuration c may be the successor of many configurations, i.e., there
may exist two configurations c1 and c2 such that c+1

1 = c+1
2 = c. and multiple

workers may access ρjk+1(c), where j is such that c ∈ Cj . Therefore, we require
this update operation to be atomic. After the Tick operation, workers move to
next round synchronously. After all workers terminate their jobs, ComputeBe-

havior aggregates the sub-distributions into full distributions for each time step
and produces the final result.

6 Implementation and Results

Implementation. We extended the Sabre-toolkit [4], a tool for probability
propagation of pure CTMCs, to solve delayed CTMCs. We implemented Com-

puteBehavior as a multi-process system with an inter-process
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Semantics Example Figure Time
Horizon

Run Time Avg.
Space

Qualitative
Behavior

Delayed
CTMC

ConvDiv 2(a) 10s 23s 695 converge
Periodic 3(a) 10s < 1s 13 periodic
Feedback 1(a) 7.2s 23m 9× 105 overshoot
Feedback 1(a) 100s 7.65h×200∗ 3.2 × 107 overshoot

Cascade
CTMC

ConvDiv 2(c) 6s 311m 119344 diverge
Periodic 3(c) 10s 3s 351 uniform
Feedback 1(c) 7.2s 21h 5.00 × 106 intractable

Immediate
CTMC

ConvDiv 2(b) 0.3s 40m 4007 diverge
Periodic 3(b) 10s 1s 26 decay
Feedback 1(b) 100s 9s 96 fast stable

Fig. 6. Performance results for computing the behaviors corresponding to the exam-
ples presented earlier in this paper. We computed the behaviors until the time horizons
within the run times. The avg. space column shows the configuration space with signif-
icant probabilities during the computation. In the Feedback example we use the follow-
ing reaction rates: production = 1, binding = 1, unbinding=0.1, degradation=0.2. We
assume that R remains latent 9 seconds after its production. We use multiple workers
only for the Feedback example (*run time × number of workers). The last column
provides an intuitive description of the observed qualitative behavior.

communication implemented using MPI [6]. We use an implementation of the
fast adaptive uniformization method [13] for RunCTMC. Furthermore, we use
function spaceId, shown in the Figure 5, to define the partitions on the space:
Ci = {c ∈ C[X,α]|spaceId(c) = i}. In our examples, this policy leads to fairly
balanced partitions of configurations among processes.

Experiments. In Figure 6 we present performance results for the behavior com-
putation of the three discussed examples under the three semantics that we have
introduced. We observe that delayed CTMCs offer an efficient modeling frame-
work of interesting behaviors such as overshooting, convergence and periodicity.

We applied our implementation of ComputeBehavior on Feedback with
delayed CTMC semantics using 200 workers. We were able to compute the
behaviour until 100 seconds in 7.65 hours. ComputeBehavior with a single
worker was able to compute the behaviour of Feedback until 7.2 seconds in 23
minutes, and for the same time horizon the behavior computation of Feedback
under cascade semantics using sequential RunCTMC took 21 hours to com-
plete. Since the cascade CTMCs cannot be similarly parallelized, they suffer
from a state space blowup and the negative impact on the performance can-
not be avoided. In the case of immediate CTMC semantics, even if computing
the behavior is relatively faster (except for ConvDiv, which has diverging be-
havior under the immediate CTMC semantics) the observed behavior does not
correspond to the expectations of the model.

We also ran ComputeBehavior on Feedback for different values of Δ. Since
the reaction rates in the real time remain the same, α(R) changes with varyingΔ.
In Figure 7(a), we plot expected values of R at different times for three values of
α(R). We observe that with increasing precision, i.e. smaller Δ and higher α(R),



308 C.C. Guet et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 10  20  30  40  50  60  70

E
xp

ec
te

d 
va

lu
e 

of
 R

time(s)

α(R) = 9 (~07h)
α(R) = 7 (~45m)
α(R) = 3 (~35s)

(a)

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100 120 140 160 180 200

S
pe

ed
 u

p

Number of workers

(b)

Fig. 7. (a) Expected numbers of molecules of protein R with varying α(R) in Feedback.
We show the run time for computing each behavior in the legends. (b) Speed up vs.
number of workers (negative feedback with α(R) = 5).

the computed behaviors are converging to a limit behavior, but the running
time of the computation increases rapidly, which is due to the the increase in
number of aged variables causing an exponential blowup in configuration space.
In Figure 7(b), we show the speed of computing the behaviour of Feedback with
α(R) = 5 for different number of workers. We observe that up to 100 workers
the performance improves linearly, and there is no significant speedup after 100
workers. This is because each worker, when there are many of them, may not have
significant computations per round, and communication and synchronization
costs become the dominating factor.

7 Conclusion

Much like the introduction of time by time automata into a frame which was
capable of representing ordering patterns without the ability to quantify these
orderings more directly and accurately, we extended the widely used CTMC
formalism by augmenting it with a time component in order to capture the be-
havior of biological systems containing reactions of relatively different durations,
e.g. DNA transcription versus molecule bindings. We argue that our formalism
achieves a more natural way to model such systems than CTMC (possibly ex-
tended with auxiliary reactions). We show that our approach also provides an
efficient way of parallelizing the behaviour computation of the model.

As a continuation of this work, we are currently developing synthetic biology
experiments meant to validate our predictions for the behavior of the Periodic
example introduced in this paper.
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Abstract. We describe an automated technique for assume-guarantee
style checking of strong simulation between a system and a specifica-
tion, both expressed as non-deterministic Labeled Probabilistic Transi-
tion Systems (LPTSes). We first characterize counterexamples to strong
simulation as stochastic trees and show that simpler structures are insuf-
ficient. Then, we use these trees in an abstraction refinement algorithm
that computes the assumptions for assume-guarantee reasoning as con-
servative LPTS abstractions of some of the system components. The
abstractions are automatically refined based on tree counterexamples
obtained from failed simulation checks with the remaining components.
We have implemented the algorithms for counterexample generation and
assume-guarantee abstraction refinement and report encouraging results.

1 Introduction

Probabilistic systems are increasingly used for the formal modeling and analysis
of a wide variety of systems ranging from randomized communication and se-
curity protocols to nanoscale computers and biological processes. Probabilistic
model checking is an automatic technique for the verification of such systems
against formal specifications [2]. However, as in the classical non-probabilistic
case [7], it suffers from the state explosion problem, where the state space of a
concurrent system grows exponentially in the number of its components.

Assume-guarantee style compositional techniques [18] address this problem
by decomposing the verification of a system into that of its smaller components
and composing back the results, without verifying the whole system directly.
When checking individual components, the method uses assumptions about the
components’ environments and then, discharges them on the rest of the system.
For a system of two components, such reasoning is captured by the following
simple assume-guarantee rule.

1 : L1 ‖ A � P 2 : L2 � A

L1 ‖ L2 � P
(ASym)
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Here L1 and L2 are system components, P is a specification to be satisfied
by the composite system and A is an assumption on L1’s environment, to be
discharged on L2. Several other such rules have been proposed, some of them
involving symmetric [19] or circular [8,19,16] reasoning. Despite its simplicity,
rule ASym has been proven the most effective in practice and studied exten-
sively [19,4,11], mostly in the context of non-probabilistic reasoning.

We consider here the automated assume-guarantee style compositional verifi-
cation of Labeled Probabilistic Transition Systems (LPTSes), whose transitions
have both probabilistic and non-deterministic behavior. The verification is per-
formed using the rule ASym where L1, L2, A and P are LPTSes and the con-
formance relation � is instantiated with strong simulation [20]. We chose strong
simulation for the following reasons. Strong simulation is a decidable, well studied
relation between specifications and implementations, both for non-probabilistic
[17] and probabilistic [20] systems. A method to help scale such a check is of a
natural interest. Furthermore, rule ASym is both sound and complete for this
relation. Completeness is obtained trivially by replacing A with L2 but is essen-
tial for full automation (see Section 5). One can argue that strong simulation is
too fine a relation to yield suitably small assumptions. However, previous suc-
cess in using strong simulation in non-probabilistic compositional verification [5]
motivated us to consider it in a probabilistic setting as well. And we shall see
that indeed we can obtain small assumptions for the examples we consider while
achieving savings in time and memory (see Section 6).

The main challenge in automating assume-guarantee reasoning is to come up
with such small assumptions satisfying the premises. In the non-probabilistic
case, solutions to this problem have been proposed which use either automata
learning techniques [19,4] or abstraction refinement [12] and several improve-
ments and optimizations followed. For probabilistic systems, techniques using
automata learning have been proposed. They target probabilistic reachability
checking and are not guaranteed to terminate due to incompleteness of the
assume-guarantee rules [11] or to the undecidability of the conformance rela-
tion and learning algorithms used [10].

In this paper we propose a complete, fully automatic framework for the com-
positional verification of LPTSes with respect to simulation conformance. One
fundamental ingredient of the framework is the use of counterexamples (from
failed simulation checks) to iteratively refine inferred assumptions. Counterex-
amples are also extremely useful in general to help with debugging of discovered
errors. However, to the best of our knowledge, the notion of a counterexample
has not been previously formalized for strong simulation between probabilistic
systems. As our first contribution we give a characterization of counterexamples
to strong simulation as stochastic trees and an algorithm to compute them; we
also show that simpler structures are insufficient in general (Section 3).

We then propose an assume-guarantee abstraction-refinement (AGAR) algo-
rithm (Section 5) to automatically build the assumptions used in compositional
reasoning. The algorithm follows previous work [12] which, however, was done
in a non-probabilistic, trace-based setting. In our approach, A is maintained as
a conservative abstraction of L2, i.e. an LPTS that simulates L2 (hence, premise
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2 holds by construction), and is iteratively refined based on tree counterexam-
ples obtained from checking premise 1. The iterative process is guaranteed to
terminate, with the number of iterations bounded by the number of states in
L2. When L2 itself is composed of multiple components, the second premise
(L2 � A) is viewed as a new compositional check, generalizing the approach to
n ≥ 2 components. AGAR can be further applied to the case where the specifi-
cation P is instantiated with a formula of a logic preserved by strong simulation,
such as safe-pCTL.

We have implemented the algorithms for counterexample generation and for
AGAR using JavaTM and Yices [9] and show experimentally that AGAR can
achieve significantly better performance than non-compositional verification.

Other Related Work. Counterexamples to strong simulation have been char-
acterized before as tree-shaped structures for the case of non-probabilistic sys-
tems [5] which we generalize to stochastic trees in Section 3 for the probabilistic
case. Tree counterexamples have also been used in the context of a composi-
tional framework that uses rule ASym for checking strong simulation in the
non-probabilistic case [4] and employs tree-automata learning to build deter-
ministic assumptions.

AGAR is a variant of the well-known CounterExample Guided Abstraction
Refinement (CEGAR) approach [6]. CEGAR has been adapted to probabilistic
systems, in the context of probabilistic reachability [13] and safe-pCTL [3]. The
CEGAR approach we describe in Section 4 is an adaptation of the latter. Both
these works consider abstraction refinement in a monolithic, non-compositional
setting. On the other hand, AGAR uses counterexamples from checking one
component to refine the abstraction of another component.

2 Preliminaries

Labeled Probabilistic Transition Systems. Let S be a non-empty set.
Dist(S) is defined to be the set of discrete probability distributions over S. We
assume that all the probabilities specified explicitly in a distribution are ratio-
nals in [0, 1]; there is no unique representation for all real numbers on a computer
and floating-point numbers are essentially rationals. For s ∈ S, δs is the Dirac
distribution on s, i.e. δs(s) = 1 and δs(t) = 0 for all t �= s. For μ ∈ Dist(S), the
support of μ, denoted Supp(μ), is defined to be the set {s ∈ S|μ(s) > 0} and for
T ⊆ S, μ(T ) stands for

∑
s∈T μ(s). The models we consider, defined below, have

both probabilistic and non-deterministic behavior. Thus, there can be a non-
deterministic choice between two probability distributions, even for the same
action. Such modeling is mainly used for underspecification and moreover, the
abstractions we consider (see Definition 8) naturally have this non-determinism.
As we see below, the theory described does not become any simpler by disallow-
ing non-deterministic choice for a given action (Lemmas 4 and 5).

Definition 1 (LPTS). A Labeled Probabilistic Transition System (LPTS) is
a tuple 〈S, s0, α, τ〉 where S is a set of states, s0 ∈ S is a distinguished start
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Fig. 1. Four reactive and fully-probabilistic LPTSes

state, α is a set of actions and τ ⊆ S × α×Dist(S) is a probabilistic transition

relation. For s ∈ S, a ∈ α and μ ∈ Dist(S), we denote (s, a, μ) ∈ τ by s
a−→ μ

and say that s has a transition on a to μ.
An LPTS is called reactive if τ is a partial function from S × α to Dist(S)

(i.e. at most one transition on a given action from a given state) and fully-
probabilistic if τ is a partial function from S to α × Dist(S) (i.e. at most one
transition from a given state).

Figure 1 illustrates LPTSes. Throughout this paper, we use filled circles to
denote start states in the pictorial representations of LTPSes. For the distribu-

tion μ = {(s1, 0.1), (s2, 0.9)}, L2 in the figure has the transition s1
output−−−−→ μ. All

the LPTSes in the figure are reactive as no state has more than one transition
on a given action. They are also fully-probabilistic as no state has more than
one transition. In the literature, an LPTS is also called a simple probabilistic
automaton [20]. Similarly, a reactive (fully-probabilistic) LPTS is also called a
(Labeled) Markov Decision Process (Markov Chain). Also, note that an LPTS
with all the distributions restricted to Dirac distributions is the classical (non-
probabilistic) Labeled Transition System (LTS); thus a reactive LTS corresponds
to the standard notion of a deterministic LTS. For example, L1 in Figure 1 is
a reactive (or deterministic) LTS. We only consider finite state, finite alphabet
and finitely branching (i.e. finitely many transitions from any state) LPTSes.

We are also interested in LPTSes with a tree structure, i.e. the start state is
not in the support of any distribution and every other state is in the support of
exactly one distribution. We call such LPTSes stochastic trees or simply, trees.

We use 〈Si, s0i , αi, τi〉 for an LPTS Li and 〈SL, s0L, αL, τL〉 for an LPTS L.
The following notation is used in Section 5.

Notation 1 For an LPTS L and an alphabet α with αL ⊆ α, Lα stands for the
LPTS 〈SL, s0L, α, τL〉.

Let L1 and L2 be two LPTSes and μ1 ∈ Dist(S1), μ2 ∈ Dist(S2).

Definition 2 (Product [20]). The product of μ1 and μ2, denoted μ1 ⊗ μ2, is
a distribution in Dist(S1 × S2), such that μ1 ⊗ μ2 : (s1, s2) �→ μ1(s1) · μ2(s2).

Definition 3 (Composition [20]). The parallel composition of L1 and L2,
denoted L1 ‖ L2, is defined as the LPTS 〈S1 × S2, (s

0
1, s

0
2), α1 ∪ α2, τ〉 where

((s1, s2), a, μ) ∈ τ iff
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Fig. 2. Explaining μ1 �R μ2 by means of splitting (indicated by arrows) and matching
(indicated by solid lines) the probabilities

1. s1
a−→ μ1, s2

a−→ μ2 and μ = μ1 ⊗ μ2, or
2. s1

a−→ μ1, a �∈ α2 and μ = μ1 ⊗ δs2 , or

3. a �∈ α1, s2
a−→ μ2 and μ = δs1 ⊗ μ2.

For example, in Figure 1, L is the composition of L1 and L2.

Strong Simulation. For two LTSes, a pair of states belonging to a strong
simulation relation depends on whether certain other pairs of successor states
also belong to the relation [17]. For LPTSes, one has successor distributions
instead of successor states; a pair of states belonging to a strong simulation
relation R should now depend on whether certain other pairs in the supports
of the successor distributions also belong to R. Therefore we define a binary
relation on distributions, �R, which depends on the relation R between states.
Intuitively, two distributions can be related if we can pair the states in their
support sets, the pairs contained in R, matching all the probabilities under the
distributions.

Consider an example with sRt and the transitions s
a−→ μ1 and t

a−→ μ2 with
μ1 and μ2 as in Figure 2(a). In this case, one easy way to match the probabilities
is to pair s1 with t1 and s2 with t2. This is sufficient if s1Rt1 and s2Rt2 also
hold, in which case, we say that μ1 �R μ2. However, such a direct matching may
not be possible in general, as is the case in Figure 2(b). One can still obtain a
matching by splitting the probabilities under the distributions in such a way that
one can then directly match the probabilities as in Figure 2(a). Now, if s1Rt1,
s1Rt2, s2Rt2 and s2Rt3 also hold, we say that μ1 �R μ2. Note that there can be
more than one possible splitting. This is the central idea behind the following
definition where the splitting is achieved by a weight function. Let R ⊆ S1 × S2.

Definition 4 ([20]). μ1 �R μ2 iff there is a weight function w : S1 × S2 →
Q ∩ [0, 1] such that

1. μ1(s1) =
∑
s2∈S2

w(s1, s2) for all s1 ∈ S1,
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2. μ2(s2) =
∑
s1∈S1

w(s1, s2) for all s2 ∈ S2,
3. w(s1, s2) > 0 implies s1Rs2 for all s1 ∈ S1, s2 ∈ S2.

μ1 �R μ2 can be checked by computing the maxflow in an appropriate network
and checking if it equals 1.0 [1]. If μ1 �R μ2 holds, w in the above definition is
one such maxflow function. As explained above, μ1 �R μ2 can be understood
as matching all the probabilities (after splitting appropriately) under μ1 and
μ2. Considering Supp(μ1) and Supp(μ2) as two partite sets, this is the weighted
analog of saturating a partite set in bipartite matching, giving us the following
analog of the well-known Hall’s Theorem for saturating Supp(μ1).

Lemma 1 ([21]). μ1 �R μ2 iff for every S ⊆ Supp(μ1), μ1(S) ≤ μ2(R(S)).

It follows that when μ1 ��R μ2, there exists a witness S ⊆ Supp(μ1) such that
μ1(S) > μ2(R(S)). For example, if R(s2) = ∅ in Figure 2(a), its probability 1

2
under μ1 cannot be matched and S = {s2} is a witness subset.

Definition 5 (Strong Simulation [20]). R is a strong simulation iff for every

s1Rs2 and s1
a−→ μa1 there is a μa2 with s2

a−→ μa2 and μa1 �R μa2.
For s1 ∈ S1 and s2 ∈ S2, s2 strongly simulates s1, denoted s1 � s2, iff there

is a strong simulation T such that s1Ts2. L2 strongly simulates L1, also denoted
L1 � L2, iff s01 � s02.

When checking a specification P of a system L with αP ⊂ αL, we implicitly
assume that P is completed by adding Dirac self-loops on each of the actions
in αL \ αP from every state before checking L � P . For example, L � P in
Figure 1 assuming that P is completed with {send, ack}. Checking L1 � L2 is
decidable in polynomial time [1,21] and can be performed with a greatest fixed
point algorithm that computes the coarsest simulation between L1 and L2. The
algorithm uses a relation variableR initialized to S1×S2 and checks the condition
in Definition 5 for every pair in R, iteratively, removing any violating pairs from
R. The algorithm terminates when a fixed point is reached showing L1 � L2 or
when the pair of initial states is removed showing L1 �� L2. If n = max(|S1|, |S2|)
and m = max(|τ1|, |τ2|), the algorithm takes O((mn6 + m2n3)/ logn) time and
O(mn + n2) space [1]. Several optimizations exist [21] but we do not consider
them here, for simplicity.

We do consider a specialized algorithm for the case that L1 is a tree which we
use during abstraction refinement (Sections 4 and 5). It initializes R to S1 × S2

and is based on a bottom-up traversal of L1. Let s1 ∈ S1 be a non-leaf state
during such a traversal and let s1

a−→ μ1. For every s2 ∈ S2, the algorithm checks
if there exists s2

a−→ μ2 with μ1 �R μ2 and removes (s1, s2) from R, otherwise,
where R is the current relation. This constitutes an iteration in the algorithm.
The algorithm terminates when (s01, s

0
2) is removed from R or when the traversal

ends. Correctness is not hard to show and we skip the proof.

Lemma 2 ([20]). � is a preorder (i.e. reflexive and transitive) and is compo-
sitional, i.e. if L1 � L2 and α2 ⊆ α1, then for every LPTS L, L1 ‖ L � L2 ‖ L.
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Finally, we show the soundness and completeness of the rule ASym. The rule
is sound if the conclusion holds whenever there is an A satisfying the premises.
And the rule is complete if there is an A satisfying the premises whenever the
conclusion holds.

Theorem 1. For αA ⊆ α2, the rule ASym is sound and complete.

Proof. Soundness follows from Lemma 2. Completeness follows trivially by re-
placing A with L2. ��

3 Counterexamples to Strong Simulation

Let L1 and L2 be two LPTSes. We characterize a counterexample to L1 � L2 as
a tree and show that any simpler structure is not sufficient in general. We first
describe counterexamples via a simple language-theoretic characterization.

Definition 6 (Language of an LPTS). Given an LPTS L, we define its
language, denoted L(L), as the set {L′|L′ is an LPTS and L′ � L}.

Lemma 3. L1 � L2 iff L(L1) ⊆ L(L2).

Proof. Necessity follows trivially from the transitivity of� and sufficiency follows
from the reflexivity of � which implies L1 ∈ L(L1). ��

Thus, a counterexample C can be defined as follows.

Definition 7 (Counterexample). A counterexample to L1 � L2 is an LPTS
C such that C ∈ L(L1) \ L(L2), i.e. C � L1 but C �� L2.

Now, L1 itself is a trivial choice for C but it does not give any more useful
information than what we had before checking the simulation. Moreover, it is
preferable to have C with a special and simpler structure rather than a general
LPTS as it helps in a more efficient counterexample analysis, wherever it is
used. When the LPTSes are restricted to LTSes, a tree-shaped LTS is known to
be sufficient as a counterexample [5]. Based on a similar intuition, we show that
a stochastic tree is sufficient as a counterexample in the probabilistic case.

Theorem 2. If L1 �� L2, there is a tree which serves as a counterexample.

Proof. We only give a brief sketch of a constructive proof here. Counterexample
generation is based on the coarsest strong simulation computation from Section
2. By induction on the size of the current relation R, we show that there is a
tree counterexample to s1 � s2 whenever (s1, s2) is removed from R. We only
consider the inductive case here. The pair is removed because there is a transition
s1

a−→ μ1 but for every s2
a−→ μ, μ1 ��R μ i.e. there exists Sμ1 ⊆ Supp(μ1) such that

μ1(S
μ
1 ) > μ(R(Sμ1 )). Such an Sμ1 can be found using Algorithm 1. Now, no pair

in Sμ1 × (Supp(μ) \ R(Sμ1 )) is in R. By induction hypothesis, a counterexample
tree exists for each such pair. A counterexample to s1 � s2 is built using μ1 and
all these other trees. ��
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Algorithm 1. Finding T ⊆ S1 such that μ1(T ) > μ(R(T )).

Given μ1 ∈ Dist(S1), μ ∈ Dist(S2), R ⊆ S1 × S2 with μ1 ��R μ.

1: let f be a maxflow function for the flow network corresponding to μ1 and μ
2: find s1 ∈ S1 with μ1(s1) >

∑
s2∈S2

f(s1, s2) and let T = {s1}
3: while μ1(T ) ≤ μ(R(T )) do
4: T ← {s1 ∈ S1|∃s2 ∈ R(T ) : f(s1, s2) > 0}
5: end while
6: return T
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Fig. 3. C is a counterexample to L1 	 L2

For an illustration, see Figure 3 where C is a counterexample to L1 � L2.
Algorithm 1 is also analogous to the one used to find a subset failing Hall’s
condition in Graph Theory and can easily be proved correct. We obtain the
following complexity bounds.

Theorem 3. Deciding L1 � L2 and obtaining a tree counterexample takes
O(mn6 + m2n3) time and O(mn + n2) space where n = max(|SL1 |, |SL2 |) and
m = max(|τ1|, |τ2|).

Note that the obtained counterexample is essentially a finite tree execution of
L1. That is, there is a total mapping M : SC → S1 such that for every transition
c
a−→ μc of C, there exists M(c)

a−→ μ1 such that M restricted to Supp(μc) is an
injection and for every c′ ∈ Supp(μc), μc(c

′) = μ1(M(c′)). M is also a strong
simulation. We call such a mapping an execution mapping from C to L1. Figure
3 shows an execution mapping in brackets beside the states of C. We therefore
have the following corollary.

Corollary 1. If L1 is reactive and L1 �� L2, there is a reactive tree which serves
as a counterexample.

The following two lemmas show that (reactive) trees are the simplest structured
counterexamples.

Lemma 4. There exist reactive LPTSes R1 and R2 such that R1 �� R2 and no
counterexample is fully-probabilistic.

Thus, if L1 is reactive, a reactive tree is the simplest structure for a counterex-
ample to L1 � L2. This is surprising, since the non-probabilistic counterpart of a
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fully-probabilistic LPTS is a trace of actions and it is known that trace inclusion
coincides with simulation conformance between reactive (i.e. deterministic) LT-
Ses. If there is no such restriction on L1, one may ask if a reactive LPTS suffices
as a counterexample to L1 � L2. That is not the case either, as the following
lemma shows.

Lemma 5. There exist an LPTS L and a reactive LPTS R such that L �� R
and no counterexample is reactive.

4 CEGAR for Checking Strong Simulation

Now that the notion of a counterexample has been formalized, we describe a
CounterExample Guided Abstraction Refinement (CEGAR) approach [6] to
check L � P where L and P are LPTSes and P stands for a specification of
L. We will use this approach to describe AGAR in the next section.

Abstractions for L are obtained using a quotient construction from a partition
Π of SL. We let Π also denote the corresponding set of equivalence classes and
given an arbitrary s ∈ S, let [s]Π denote the equivalence class containing s. The
quotient is an adaptation of the usual construction in the non-probabilistic case.

Definition 8 (Quotient LPTS). Given a partition Π of SL, define the quo-
tient LPTS, denoted L/Π, as the LPTS 〈Π, [s0L]Π , αL, τ〉 where (c, a, μl) ∈ τ iff
(s, a, μ) ∈ τL for some s ∈ SL with s ∈ c and μl(c

′) =
∑

t∈c′ μ(t) for all c′ ∈ Π.

As the abstractions are built from an explicit representation of L, this is not
immediately useful. But, as we will see in Sections 5 and 6, this becomes very
useful when adapted to the assume-guarantee setting.

Figure 4 shows an example quotient. Note that L � L/Π for any partition Π
of SL, with the relation R = {(s, c)|s ∈ c, c ∈ Π} as a strong simulation.

CEGAR for LPTSes is sketched in Algorithm 2. It maintains an abstraction A
of L, initialized to the quotient for the coarsest partition, and iteratively refines
A based on the counterexamples obtained from the simulation check against
P until a partition whose corresponding quotient conforms to P w.r.t. � is
obtained, or a real counterexample is found. In the following, we describe how
to analyze if a counterexample is spurious, due to abstraction, and how to refine
the abstraction in case it is (lines 4 − 6). Our analysis is an adaptation of an
existing one for counterexamples which are arbitrary sub-structures of A [3];
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Algorithm 2. CEGAR for LPTSes: checks L � P

1: A ← L/Π , where Π is the coarsest partition of SL

2: while A �	 P do
3: obtain a counterexample C
4: (spurious,A′) ← analyzeAndRefine(C,A,L) {see text}
5: if spurious then
6: A ← A′

7: else
8: return counterexample C
9: end if
10: end while
11: return L 	 P holds

while our tree counterexamples have an execution mapping to A, they are not
necessarily sub-structures of A.

Analysis and Refinement (analyzeAndRefine(·)). Assume that Π is a par-
tition of SL such that A = L/Π and A �� P . Let C be a tree counterexample
obtained by the algorithm described in Section 3, i.e. C � A but C �� P . As
described in Section 3, there is an execution mapping M : SC → SA which
is also a strong simulation. Let RM ⊆ SC × SL be {(s1, s2)|s1M [s2]Π}. Our
refinement strategy tries to obtain the coarsest strong simulation between C
and L contained in RM , using the specialized algorithm for trees described in
Section 2 with RM as the initial candidate. Let R and Rold be the candidate
relations at the end of the current and the previous iterations, respectively, and
let s1

a−→ μ1 be the transition in C considered by the algorithm in the current
iteration. (Rold is undefined initially.) The strategy refines a state when one of
the following two cases happens before termination and otherwise, returns C as
a real counterexample.

1. R(s1) = ∅. There are two possible reasons for this case. One is that the states
in Supp(μ1) are not related, by R, to enough number of states in SL (i.e.
μ1 is spurious) and (the images under M of) all the states in Supp(μ1) are
candidates for refinement. The other possible reason is the branching (more
than one transition) from s1 where no state in RM (s1) can simulate all the
transitions of s1 and M(s1) is a candidate for refinement.

2. M(s1) = [s0L]Π , s0L ∈ Rold(s1)\R(s1) and R(s1) �= ∅, i.e. M(s1) is the initial
state of A but s1 is no longer related to s0L by R. Here, M(s1) is a candidate
for refinement.

In case 1, our refinement strategy first tries to split the equivalence class M(s1)
into Rold(s1) and the rest and then, for every state s ∈ Supp(μ1), tries to split
the equivalence class M(s) into Rold(s) and the rest, unless M(s) = M(s1) and
M(s1) has already been split. And in case 2, the strategy splits the equivalence
class M(s1) into Rold(s1)\R(s1) and the rest. It follows from the two cases that
if C is declared real, then C � L with the final R as a strong simulation between
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C and L and hence, C is a counterexample to L � P . The following lemma
shows that the refinement strategy always leads to progress.

Lemma 6. The above refinement strategy always results in a strictly finer par-
tition Π ′ < Π.

5 Assume-Guarantee Abstraction Refinement

We now describe our approach to Assume-Guarantee Abstraction Refinement
(AGAR) for LPTSes. The approach is similar to CEGAR from the previous
section with the notable exception that counterexample analysis is performed
in an assume guarantee style: a counterexample obtained from checking one
component is used to refine the abstraction of a different component.

Given LPTSes L1, L2 and P , the goal is to check L1 ‖ L2 � P in an assume-
guarantee style, using rule ASym. The basic idea is to maintain A in the rule
as an abstraction of L2, i.e. the second premise holds for free throughout, and
to check only the first premise for every A generated by the algorithm. As in
CEGAR, we restrict A to the quotient for a partition of S2. If the first premise
holds for an A, then L1 ‖ L2 � P also holds, by the soundness of the rule.
Otherwise, the obtained counterexample C is analyzed to see whether it indicates
a real error or it is spurious, in which case A is refined (as described in detail
below). Algorithm 3 sketches the AGAR loop.

For an example, A in Figure 5 shows the final assumption generated by AGAR
for the LPTSes in Figure 1 (after one refinement).

Algorithm 3. AGAR for LPTSes: checks L1 ‖ L2 � P

1: A ← coarsest abstraction of L2

2: while L1 ‖ A �	 P do
3: obtain a counterexample C
4: obtain projections C �L1 and C �A
5: (spurious, A′) ← analyzeAndRefine(C �A, A, L2)
6: if spurious then
7: A ← A′

8: else
9: return counterexample C
10: end if
11: end while
12: return L1 ‖ L2 	 P holds

Analysis and Refinement. The counterexample analysis is performed com-
positionally, using the projections of C onto L1 and A. As there is an execution
mapping from C to L1 ‖ A, these projections are the contributions of L1 and A
towards C in the composition. We denote these projections by C �L1 and C �A,
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respectively. In the non-probabilistic case, these are obtained by simply project-
ing C onto the respective alphabets. In the probabilistic scenario, however, com-
position changes the probabilities in the distributions (Definition 2) and alphabet
projection is insufficient. For this reason, we additionally record the individual
distributions of the LPTSes responsible for a product distribution while perform-
ing the composition. Thus, projections C �L1 and C �A can be obtained using
this auxiliary information. Note that there is a natural execution mapping from
C �A to A and from C �L1 to L1. We can then employ the analysis described in
Section 4 between C �A and A, i.e. invoke analyzeAndRefine(C �A, A, L2) to de-
termine if C �A (and hence, C) is spurious and to refine A in case it is. Otherwise,
C �A� L2 and hence, (C �A)α2 � L2. Together with (C �L1)

α1 � L1 this implies
(C �L1)

α1 ‖ (C �A)α2 � L1 ‖ L2 (Lemma 2). As C � (C �L1)
α1 ‖ (C �A)α2 , C is

then a real counterexample. Thus, we have the following result.

Theorem 4 (Correctness and Termination). Algorithm AGAR always ter-
minates with at most |S2| − 1 refinements and L1 ‖ L2 �� P if and only if the
algorithm returns a real counterexample.

Proof. Correctness: AGAR terminates when either Premise 1 is satisfied by the
current assumption (line 12) or when a counterexample is returned (line 9). In
the first case, we know that Premise 2 holds by construction and since ASym
is sound (Theorem 1) it follows that indeed L1‖L2 � P . In the second case, the
counterexample returned by AGAR is real (see above) showing that L1 ‖ L2 �� P .

Termination: AGAR iteratively refines the abstraction until the property
holds or a real counterexample is reported. Abstraction refinement results in
a finer partition (Lemma 6) and thus it is guaranteed to terminate since in the
worst case A converges to L2 which is finite state. Since rule ASym is trivially
complete for L2 (proof of Theorem 1) it follows that AGAR will also terminate,
and the number of refinements is bounded by |S2| − 1. ��

In practice, we expect AGAR to terminate earlier than in |S2| − 1 steps, with
an assumption smaller than L2. AGAR will terminate as soon as it finds an as-
sumption that satisfies the premises or that helps exhibit a real counterexample.
Note also that, although AGAR uses an explicit representation for the individual
components, it never builds L1 ‖ L2 directly (except in the worst-case) keeping
the cost of verification low.

Reasoning with n ≥ 2 Components. So far, we have discussed compositional
verification in the context of two components L1 and L2. This reasoning can be
generalized to n ≥ 2 components using the following (sound and complete) rule.

1 : L1 ‖ A1 � P 2 : L2 ‖ A2 � A1 ... n : Ln � An−1

‖ni=1 Li � P
(ASym-N)

The rule enables us to overcome the intermediate state explosion that may be
associated with two-way decompositions (when the subsystems are larger than
the entire system). The AGAR algorithm for this rule involves the creation of
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n− 1 nested instances of AGAR for two components, with the ith instance com-
puting the assumption Ai for (L1 ‖ · · · ‖ Li) ‖ (Li+1 ‖ Ai+1) � P . When the
AGAR instance for Ai−1 returns a counterexample C, for 1 < i ≤ n − 1, we
need to analyze C for spuriousness and refine Ai in case it is. From Algorithm
3, C is returned only if analyzeAndRefine(C �Ai−1 , Ai−1, Li ‖ Ai) concludes that
C �Ai−1 is real (note that Ai−1 is an abstraction of Li ‖ Ai). From analyzeAn-
dRefine in Section 4, this implies that the final relation R computed between the
states of C �Ai−1 and Li ‖ Ai is a strong simulation between them. It follows
that, although C �Ai−1 does not have an execution mapping to Li ‖ Ai, we can
naturally obtain a tree T using C �Ai−1 , via R, with such a mapping. Thus, we
modify the algorithm to return T �Ai at line 9, instead of C, which can then be
used to check for spuriousness and refine Ai. Note that when Ai is refined, all
the Aj ’s for j < i need to be recomputed.

Compositional Verification of Logical Properties. AGAR can be further
applied to automate assume-guarantee checking of properties φ written as for-
mulae in a logic that is preserved by strong simulation such as the weak-safety
fragment of probabilistic CTL (pCTL) [3] which also yield trees as counterex-
amples. The rule ASym is both sound and complete for this logic (|= denotes
property satisfaction) for αA ⊆ α2 with a proof similar to that of Theorem 1.

1 : L1 ‖ A |= φ 2 : L2 � A

L1 ‖ L2 |= φ

A can be computed as a conservative abstraction of L2 and iteratively refined
based on the tree counterexamples to premise 1, using the same procedures as
before. The rule can be generalized to reasoning about n ≥ 2 components as
described above and also to richer logics with more general counterexamples
adapting existing CEGAR approaches [3] to AGAR. We plan to further investi-
gate this direction in the future.

6 Implementation and Results

Implementation.We implemented the algorithms for checking simulation (Sec-
tion 2), for generating counterexamples (as in the proof of Lemma 2) and for
AGAR (Algorithm 3) with ASym and ASym-N in JavaTM . We used the front-
end of PRISM’s [15] explicit-state engine to parse the models of the components
described in PRISM’s input language and construct LPTSes which were then
handled by our implementation.

While the JavaTM implementation for checking simulation uses the greatest
fixed point computation to obtain the coarsest strong simulation, we noticed
that the problem of checking the existence of a strong simulation is essentially a
constraint satisfaction problem. To leverage the efficient constraint solvers that
exist today, we reduced the problem of checking simulation to an SMT problem
with rational linear arithmetic as follows. For every pair of states, the constraint
that the pair is in some strong simulation is simply the encoding of the condition
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in Definition 5. For a relevant pair of distributions μ1 and μ2, the constraint for
μ1 �R μ2 is encoded by means of a weight function (as given by Definition 4)
and the constraint for μ1 ��R μ2 is encoded by means of a witness subset of
Supp(μ1) (as in Lemma 1), where R is the variable for the strong simulation.
We use Yices (v1.0.29) [9] to solve the resulting SMT problem; a real variable in
Yices input language is essentially a rational variable. There is no direct way to
obtain a tree counterexample when the SMT problem is unsatisfiable. Therefore
when the conformance fails, we obtain the unsat core from Yices, construct
the sub-structure of L1 (when we check L1 � L2) from the constraints in the
unsat core and check the conformance of this sub-structure against L2 using the
JavaTM implementation. This sub-structure is usually much smaller than L1 and
contains only the information necessary to expose the counterexample.

Results. We evaluated our algorithms using this implementation on several ex-
amples analyzed in previous work [11]. Some of these examples were created
by introducing probabilistic failures into non-probabilistic models used earlier
[19] while others were adapted from PRISM benchmarks [15]. The properties
used previously were about probabilistic reachability and we had to create our
own specification LPTSes after developing an understanding of the models. The
models in all the examples satisfy the respective specifications. We briefly de-
scribe the models and the specifications below, all of which are available at
http://www.cs.cmu.edu/~akomurav/publications/agar/AGAR.html.

CS1 and CSN model a Client-Server protocol with mutual exclusion having
probabilistic failures in one or all of the N clients, respectively. The specifi-
cations describe the probabilistic failure behavior of the clients while hiding
some of the actions as is typical in a high level design specification.

MER models a resource arbiter module of NASA’s software for Mars Explo-
ration Rovers which grants and rescinds shared resources for several users.
We considered the case of two resources with varying number of users and
probabilistic failures introduced in all the components. As in the above ex-
ample, the specifications describe the probabilistic failure behavior of the
users while hiding some of the actions.

SN models a wireless Sensor Network of one or more sensors sending data and
messages to a process via a channel with a bounded buffer having proba-
bilistic behavior in the components. Creating specification LPTSes for this
example turned out to be more difficult than the above examples, and we
obtained them by observing the system’s runs and by manual abstraction.

Table 1 shows the results we obtained when ASym and ASym-N were compared
with monolithic (non-compositional) conformance checking. |X | stands for the
number of states of an LPTS X . L stands for the whole system, P for the speci-
fication, LM for the LPTS with the largest number of states built by composing
LPTSes during the course of AGAR, AM for the assumption with the largest
number of states during the execution and Lc for the component with the largest
number of states in ASym-N. Time is in seconds and Memory is in megabytes.
We also compared |LM | with |L|, as |LM | denotes the largest LPTS ever built

http://www.cs.cmu.edu/~akomurav/publications/agar/AGAR.html
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Table 1. AGAR vs monolithic verification.1 Mem-out during model construction.

Example ASym ASym-N Mono
(param) |L| |P | |L1| |L2| Time Mem |LM | |AM | |Lc| Time Mem |LM | |AM | Time Mem
CS1(5) 94 16 36 405 7.2 15.6 182 33 36 74.0 15.1 182 34 0.2 8.8
CS1(6) 136 19 49 1215 11.6 22.7 324 41 49 810.7 21.4 324 40 0.5 12.2
CS1(7) 186 22 64 3645 37.7 49.4 538 56 64 out – – – 0.8 17.9
CSN (2) 34 15 25 9 0.7 7.1 51 7 9 2.4 6.8 40 25 0.1 5.9
CSN (3) 184 54 125 16 43.0 63.0 324 12 16 1.6k 109.6 372 125 14.8 37.9
CSN (4) 960 189 625 25 out – – – 25 out – – – 1.8k 667.5
MER (3) 16k 12 278 1728 2.6 19.7 706 7 278 3.6 14.6 706 7 193.8 458.5
MER (4) 120k 15 465 21k 15.0 53.9 2k 11 465 34.7 37.8 2k 11 out –
MER (5) 841k 18 700 250k – out1 – – 700 257.8 65.5 3.3k 16 – out1

SN (1) 462 18 43 32 0.2 6.2 43 3 126 1.7 8.5 165 6 1.5 27.7
SN (2) 7860 54 796 32 79.5 112.9 796 3 252 694.4 171.7 1.4k 21 4.7k 1.3k
SN (3) 78k 162 7545 32 out – – – 378 7.2k 528.8 1.4k 21 – out

by AGAR. Best figures, among ASym, ASym-N and Mono, for Time, Memory
and LPTS sizes, are boldfaced. All the results were taken on a Fedora-10 64-bit
machine running on an Intel R© CoreTM2 Quad CPU of 2.83GHz and 4GB RAM.
We imposed a 2GB upper bound on Java heap memory and a 2 hour upper
bound on the running time. We observed that most of the time during AGAR
was spent in checking the premises and an insignificant amount was spent for the
composition and the refinement steps. Also, most of the memory was consumed
by Yices. We tried several orderings of the components (the Li’s in the rules)
and report only the ones giving the best results.

While monolithic checking outperformed AGAR for Client-Server, there are
significant time and memory savings for MER and Sensor Network where in
some cases the monolithic approach ran out of resources (time or memory).
One possible reason for AGAR performing worse for Client-Server is that |L|
is much smaller than |L1| or |L2|. When compared to using ASym, ASym-N
brings further memory savings in the case of MER and also time savings for
Sensor Network with parameter 3 which could not finish in 2 hours when used
with ASym. As already mentioned, these models were analyzed previously with
an assume-guarantee framework using learning from traces [11]. Although that
approach uses a similar assume-guarantee rule (but instantiated to check prob-
abilistic reachability) and the results have some similarity (e.g. Client-Server is
similarly not handled well by the compositional approach), we can not directly
compare it with AGAR as it considers a different class of properties.

7 Conclusion and Future Work

We described a complete, fully automated abstraction-refinement approach for
assume-guarantee checking of strong simulation between LPTSes. The approach
uses refinement based on counterexamples formalized as stochastic trees and
it further applies to checking safe-pCTL properties. We showed experimentally
the merits of the proposed technique. We plan to extend our approach to cases
where the assumption A has a smaller alphabet than that of the component
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it represents as this can potentially lead to further savings. Strong simulation
would no longer work and one would need to use weak simulation [20], for which
checking algorithms are unknown yet. We would also like to explore symbolic
implementations of our algorithms, for increased scalability. As an alternative
approach, we plan to build upon our recent work [14] on learning LPTSes to
develop practical compositional algorithms and compare with AGAR.
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Abstract. Statistical model checking avoids the exponential growth of
states associated with probabilistic model checking by estimating proba-
bilities from multiple executions of a system and by giving results within
confidence bounds. Rare properties are often important but pose a par-
ticular challenge for simulation-based approaches, hence a key objective
for statistical model checking (SMC) is to reduce the number and length
of simulations necessary to produce a result with a given level of confi-
dence. Importance sampling can achieves this, however to maintain the
advantages of SMC it is necessary to find good importance sampling
distributions without considering the entire state space.

Here we present a simple algorithm that uses the notion of cross-
entropy to find an optimal importance sampling distribution. In contrast
to previous work, our algorithm uses a naturally defined low dimensional
vector of parameters to specify this distribution and thus avoids the in-
tractable explicit representation of a transition matrix. We show that our
parametrisation leads to a unique optimum and can produce many or-
ders of magnitude improvement in simulation efficiency. We demonstrate
the efficacy of our methodology by applying it to models from reliability
engineering and biochemistry.

1 Introduction

The need to provide accurate predictions about the behaviour of complex sys-
tems is increasingly urgent. With computational power becoming ever-more
affordable and compact, computational systems are inevitably becoming in-
creasingly concurrent, distributed and adaptive, creating a correspondingly in-
creased burden to check that they function correctly. At the same time, users
expect high performance and reliability, prompting the need for equally high
performance analysis tools and techniques.

The most common method to ensure the correctness of a system is by testing
it with a number of test cases having predicted outcomes that can highlight
specific problems. Testing techniques have been effective discovering bugs in
many industrial applications and have been incorporated into sophisticated tools
[9]. Despite this, testing is limited by the need to hypothesise scenarios that may
cause failure and the fact that a reasonable set of test cases is unlikely to cover
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all possible eventualities; errors and modes of failure may remain undetected and
quantifying the likelihood of failure using a series of test cases is difficult.

Model checking is a formal technique that verifies whether a system satisfies a
property specified in temporal logic under all possible scenarios. In recognition of
non-deterministic systems and the fact that a Boolean answer is not always use-
ful, probabilistic model checking quantifies the probability that a system satisfies
a property. In particular, ‘numerical’ (alternatively ‘exact’) probabilistic model
checking offers precise and accurate analysis by exhaustively exploring the state
space of non-deterministic systems and has been successfully applied to a wide
variety of protocols, algorithms and systems. The result of this technique is the
exact (within limits of numerical precision) probability that a system will satisfy
a property of interest, however the exponential growth of the state space limits
its applicability. The typical 108 state limit of exhaustive approaches usually
represents an insignificant fraction of the state space of real systems that may
have tens of orders of magnitude more states than the number of protons in the
universe (∼ 1080).

Under certain circumstances it is possible to guarantee the performance of
a system by specifying it in such a way that (particular) faults are impossible.
Compositional reasoning and various symmetry reduction techniques can also be
used to combat state-space explosion, but in general the size, unpredictability
and heterogeneity of real systems [2] make these techniques infeasible. Static
analysis has also been highly successful in analysing and debugging software and
other systems, although it cannot match the precision of quantitative analysis of
dynamic properties achieved using probabilistic and stochastic temporal logic.

While the state space explosion problem is unlikely to ever be adequately
solved for all systems, simulation-based approaches are becoming increasingly
tractable due to the availability of high performance hardware and algorithms.
In particular, statistical model checking (SMC) combines the simplicity of testing
with the formality and precision of numerical model checking; the core idea being
to create multiple independent execution traces of the system and individually
verify whether they satisfy some given property. By modelling the executions as
a Bernoulli random variable and using advanced statistical techniques, such as
Bayesian inference [14] and hypothesis testing [27], the results are combined in
an efficient manner to decide whether the system satisfies the property with some
level of confidence, or to estimate the probability that it does. Knowing a result
with less than 100% confidence is often sufficient in real applications, since the
confidence bounds may be made arbitrarily tight. Moreover, SMC may offer the
only feasible means of quantifying the performance of many complex systems.
Evidence of this is that SMC has been used to find bugs in large, heterogeneous
aircraft systems [2]. Notable SMC platforms include APMC [11], YMER [28]
and VESTA [23]. Moreover, well-established numerical model checkers, such as
PRISM [17] and UPPAAL [3], are now also including SMC engines.

A key challenge facing SMC is to reduce the length (steps and cpu time) and
number of simulation traces necessary to achieve a result with given confidence.
The current proliferation of parallel computer architectures (multiple cpu cores,
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grids, clusters, clouds and general purpose computing on graphics processors,
etc.) favours SMC by making the production of multiple independent simulation
runs relatively easy. Despite this, certain models still require a large number of
simulation steps to verify a property and it is thus necessary to make simulation
as efficient as possible. Rare properties pose a particular problem for simulation-
based approaches, since they are not only difficult to observe (by definition) but
their probability is difficult to bound [10].

The term ‘rare event’ is ubiquitous in the literature, but here we specifi-
cally consider rare properties defined in temporal logic. This distinguishes rare
states from rare paths that may or may not contain rare states. In what follows
we consider discrete space Markov models and present a simple algorithm to
find an optimal set of importance sampling parameters, using the concept of
minimum cross-entropy [16,25]. Our parametrisation arises naturally from the
syntactic description of the model and thus constitutes a low dimensional vector
in comparison to the state space of the model. We show that this parametrisa-
tion has a unique optimum and demonstrate its effectiveness on reliability and
(bio)chemical models. We describe the advantages and potential pitfalls of our
approach and highlight areas for future research.

2 Importance Sampling

Our goal is to estimate the probability of a property by simulation and bound
the error of our estimation. When the property is not rare there are standard
bounding formulae (e.g., the Chernoff and Hoeffding bounds [4,12]) that relate
absolute error, confidence and the required number of simulations to achieve
them, independent of the probability of the property. As the property becomes
rarer, however, absolute error ceases to be useful and it is necessary to consider
relative error, defined as the standard deviation of the estimate divided by its
expectation. With Monte Carlo simulation relative error is unbounded with in-
creasing rarity [21], but it is possible to bound the error by means of importance
sampling [24,10].

Importance sampling is a technique that can improve the efficiency of simu-
lating rare events and has been receiving considerable interest of late in the field
of SMC (e.g., [5,1]). It works by simulating under an (importance sampling) dis-
tribution that makes a property more likely to be seen and then uses the results
to calculate the probability under the original distribution by compensating for
the differences. The concept arose from work on the ‘Monte Carlo method’ [18]
in the Manhattan project during the 1940s and was originally used to quantify
the performance of materials and solve otherwise intractable analytical prob-
lems with limited computer power (see, e.g., [15]). For importance sampling to
be effective it is necessary to define a ‘good’ importance sampling distribution:
(i) the property of interest must be seen frequently in simulations and (ii) the
distribution of the paths that satisfy the property in the importance sampling
distribution must be as close as possible to the distribution of the same paths
in the original distribution (up to a normalising factor). The literature in this
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field sometimes uses the term ‘zero variance’ to describe an optimal importance
sampling distribution, referring to the fact that with an optimum importance
sampling distribution all simulated paths satisfy the property and the estimator
has zero variance. It is important to note, however, that a sub-optimal distri-
bution may meet requirement (i) without necessarily meeting requirement (ii).
Failure to consider (ii) can result in gross errors and overestimates of confidence
(e.g. a distribution that simulates just one path that satisfies the given property).
The algorithm we present in Section 3 addresses both (i) and (ii).

Importance sampling schemes fall into two broad categories: state dependent
tilting and state independent tilting [6]. State dependent tilting refers to im-
portance sampling distributions that individually bias (‘tilt’) every transition
probability in the system. State independent tilting refers to importance sam-
pling distributions that change classes of transition probabilities, independent of
state. The former offers greatest precision but is infeasible for large models. The
latter is more tractable but may not produce good importance sampling distri-
butions. Our approach is a kind of parametrised tilting that potentially affects
all transitions differently, but does so according to a set of parameters.

2.1 Estimators

Let Ω be a probability space of paths, with f a probability density function
over Ω and z(ω) ∈ {0, 1} a function indicating whether a path ω satisfies some
property φ. In the present context, z is defined by a formula of an arbitrary
temporal logic over execution traces. The probability γ that φ occurs in a path
is then given by

γ =

∫
Ω

z(ω)f(ω) dω (1)

and the standard Monte Carlo estimator of γ is given by

γ̃ =
1

NMC

NMC∑
i=1

z(ωi)

NMC denotes the number of simulations used by the Monte Carlo estimator and
ωi is sampled according to f . Note that z(ωi) is effectively the realisation of
a Bernoulli random variable with parameter γ. Hence Var(γ̃) = γ(1 − γ) and
for γ → 0, Var(γ̃) ≈ γ. Let f ′ be another probability density function over Ω,
absolutely continuous with zf , then Equation (1) can be written

γ =

∫
Ω

z(ω)
f(ω)

f ′(ω)
f ′(ω) dω

L = f/f ′ is the likelihood ratio function, so

γ =

∫
Ω

L(ω)z(ω)f ′(ω) dω (2)
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We can thus estimate γ by simulating under f ′ and compensating by L:

γ̃ =
1

NIS

NIS∑
i=1

L(ωi)z(ωi)

NIS denotes the number of simulations used by the importance sampling esti-
mator. The goal of importance sampling is to reduce the variance of the rare
event and so achieve a narrower confidence interval than the Monte Carlo esti-
mator, resulting in NIS 4 NMC. In general, the importance sampling distribution
f ′ is chosen to produce the rare property more frequently, but this is not the
only criterion. The optimal importance sampling distribution, denoted f∗ and
defined as f conditioned on the rare event, produces only traces satisfying the
rare property:

f∗ =
zf

γ
(3)

This leads to the term ‘zero variance estimator’ with respect to Lz, noting that,
in general, Var(f∗) ≥ 0.

In the context of SMC f usually arises from the specifications of a model
described in some relatively high level language. Such models do not, in general,
explicitly specify the probabilities of individual transitions, but do so implic-
itly by parametrised functions over the states. We therefore consider a class of
models that can be described by guarded commands [7] extended with stochas-
tic rates. Our parametrisation is a vector of strictly positive values λ ∈ (R+)n

that multiply the stochastic rates and thus maintain the absolutely continuous
property between distributions. Note that this class includes both discrete and
continuous time Markov chains and that in the latter case our mathematical
treatment works with the embedded discrete time process.

In what follows we are therefore interested in parametrised distributions and
write f(·, λ), where λ = {λ1, . . . , λn} is a vector of parameters, and distinguish
different density functions by their parameters. In particular, μ is the original
vector of the model and f(·, μ) is therefore the original density. We can thus
rewrite Equation (2) as

γ =

∫
Ω

L(ω)z(ω)f(ω, λ) dω

where L(ω) = f(ω, μ)/f(ω, λ). We can also rewrite Equation (3)

f∗ =
zf(·, μ)
γ

and write for the optimal parametrised density f(·, λ∗). We define the optimum
parametrised density function as the density that minimises the cross-entropy
[16] between f(·, λ) and f∗ for a given parametrisation and note that, in general,
f∗ �= f(·, λ∗).
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2.2 The Cross-Entropy Method

Cross-entropy [16] (alternatively relative entropy or Kullback-Leibler divergence)
has been shown to be a uniquely correct directed measure of distance between
distributions [25]. With regard to the present context, it has also been shown to
be useful in finding optimum distributions for importance sampling [22,6,19].

Given two probability density functions f and f ′ over the same probability
space Ω, the cross-entropy from f to f ′ is given by

CE(f, f ′) =

∫
Ω

f(ω) log
f(ω)

f ′(ω)
dω =

∫
Ω

f(ω) log f(ω)− f(ω) log f ′(ω) dω

= H(f)−
∫
Ω

f(ω) log f ′(ω) dω (4)

where H(f) is the entropy of f . To find λ∗ we minimise CE( z(ω)f(ω,μ)γ , f(ω, λ)),

noting that H(f(ω, μ)) is independent of λ:

λ∗ = argmax
λ

∫
Ω

z(ω)f(ω, μ) log f(ω, λ) dω (5)

Estimating λ∗ directly using Equation (5) is hard, so we re-write it using
importance sampling density f(·, λ′) and likelihood ratio function L(ω) =
f(ω, μ)/f(ω, λ′):

λ∗ = argmax
λ

∫
Ω

z(ω)L(ω)f(ω, λ′) log f(ω, λ) dω (6)

Using Equation (6) we can construct an unbiased importance sampling estimator
of λ∗ and use it as the basis of an iterative process to obtain successively better
estimates:

λ̃∗ = λ(j+1) = argmax
λ

Nj∑
i=1

z(ω
(j)
i )L(j)(ω

(j)
i ) log f(ω

(j)
i , λ) (7)

N j is the number of simulation runs on the jth iteration, λ(j) is the jth set of
estimated parameters, L(j)(ω) = f(ω, μ)/f(ω, λ(j)) is the jth likelihood ratio

function, ω
(j)
i is the ith path generated using f(·, λ(j)) and f(ω

(j)
i , λ) is the

probability of path ω
(j)
i under the distribution f(·, λ(j)).

3 A Parametrised Cross-Entropy Algorithm

We consider a system of n guarded commands with vector of rate functions
η = (η1, . . . , ηn) and corresponding vector of parameters λ = (λ1, . . . , λn). We
thus define n classes of transitions. In any given state x, the probability that
command k ∈ {1 . . . n} is chosen is given by

λkηk(x)

〈η(x), λ〉
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where η is parametrised by x to emphasise its state dependence and the notation
〈·, ·〉 denotes a scalar product. For the purposes of simulation we consider a space
of finite paths ω ∈ Ω. Let Uk(ω) be the number of transitions of type k occurring
in ω. We therefore have

f(ω, λ) =

n∏
k

⎛⎝(λk)
Uk(ω)

Uk(ω)∏
s=1

ηk(xs)

〈η(xs), λ〉

⎞⎠
The likelihood ratios are thus of the form

L(j)(ω) =

n∏
k

⎛⎝( μk

λ
(j)
k

)Uk(ω) Uk(ω)∏
s=1

〈η(xs), λ(j)〉
〈η(xs), μ〉

⎞⎠
We substitute these expressions in the cross-entropy estimator Equation (7) and
for compactness substitute zi = z(ωi), ui(k) = Uk(ωi) and li = L(j)(ωi) to get

argmax
λ

N∑
i=1

lizi log

n∏
k

⎛⎝λui(k)
k

ui(k)∏
s=1

ηik(xs)

〈ηi(xs), λ〉

⎞⎠ (8)

= argmax
λ

N∑
i=1

n∑
k

liziui(k)

⎛⎝log(λk) +

ui(k)∑
s=1

log(ηik(xs))−
ui(k)∑
s=1

log(〈ηi(xs), λ〉)

⎞⎠
We partially differentiate with respect to λk and get the non-linear system

∂F

∂λk
(λ) = 0⇔

N∑
i=1

lizi

⎛⎝ui(k)
λk

−
|ωi|∑
s=1

ηik(xs)

〈ηi(xs), λ〉

⎞⎠ = 0 (9)

where |ωi| is the length of the path ωi.

Theorem 1. A solution of Equation (9) is almost surely a maximum, up to a
normalising scalar.

Proof. Using a standard result, it is sufficient to show that the Hessian matrix
in λ is negative semi-definite. Consider fi:

fi(λ) =
∑
k

ui(k)

⎛⎝log(λk) +

ui(k)∑
s=1

log(ηik(xs))−
ui(k)∑
s=1

log(〈ηi(xs), λ〉)

⎞⎠
The Hessian matrix in λ is of the following form with v

(s)
k = ηk(xs)

〈η(xs),λ〉 and vk =

(v
(s)
k )1≤s≤Uk(ω):

Hi = G−D
where G = (gkk′ )1≤k,k′≤n is the following Gram matrix

gkk′ = 〈vk, vk′ 〉
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and D is a diagonal matrix such that

dkk =
uk
λ2k
.

Note that asymptotically dkk = 1
λk

∑N
s=1 v

(s)
k . We write 1N = (1, . . . , 1) for the

vector of N elements 1, hence

dkk =
1

λk
〈vk,1N〉.

Furthermore, ∀s,
∑n

k=1 λkv
(s)
k = 1. So,

∑n
k′=1 λk′vk′ = 1N . Finally,

dkk =

n∑
k′=1

λk′

λk
〈vk, vk′〉.

Let x ∈ Rn. To prove the theorem we need to show that −xtHx ≥ 0.

− xtHx = xtDx− xtGx (10)

=
∑
k,k′

λk′

λk
〈vk, vk′〉x2k −

∑
k,k′
〈vk, vk′〉xkxk′

=
∑
k<k′

([
λk′

λk
x2k +

λk
λk′

x2k′ − 2xkxk′

]
〈vk, vk′ 〉

)

=
∑
k<k′

(√
λk′

λk
xk −

√
λk
λk′

xk′

)2

〈vk, vk′ 〉

≥ 0

The Hessian matrix H of f is of the general form

H =

N∑
i=1

liziHi

which is a positively weighted sum of non-positive matrices. ��
The Hessian is negative semi-definite because if λ is a solution then xλ, x ∈ R+,
is also a solution. The fact that there is a unique optimum, however, makes it
conceivable to find λ∗ using standard optimising techniques such as Newton and
quasi-Newton methods. To do so would require introducing a suitable normalis-
ing constraint in order to force the Hessian to be negative definite. In the case of
the cross-entropy algorithm of [19], this constraint is inherent because it works
at the level of individual transition probabilities that sum to 1 in each state.
We note here that in the case that our parameters apply to individual transi-
tions, such that one parameter corresponds to exactly one transition, Equation
(12) may be transformed to Equation (9) of [19] by constraining 〈K,λ〉 = 1.
Equation (9) of [19] has been shown in [20] to converge to f∗, implying that
under these circumstances f(·, λ∗) = f∗ and that it may be possible to improve
our parametrised importance sampling distribution by increasing the number of
parameters.
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3.1 The Algorithm

Equation (9) leads to the following expression for λk:

λk =

∑N
i=1 liziui(k)∑N

i=1 lizi
∑|ωi|

s=1
ηi
k(xs)

〈ηi(xs),λ〉

(11)

In this form the expression is not useful because the right hand side is dependent
on λk in the scalar product. Hence, in contrast to update formulae based on
unbiased estimators, as given by Equation (7) and in [19,6], we construct an
iterative process based on a biased estimator but having a fixed point that is the
optimum:

λ
(j+1)
k =

∑Nj

i=1 liziui(k)∑Nj

i=1 lizi
∑|ωi|

s=1
ηi
k(xs)

〈ηi(xs),λ〉

(12)

Equation (12) can be seen as an implementation of Equation (11) which uses
the previous estimate of λ in the scalar product, however it works by reducing
the distance between successive distributions, rather than by explicitly reducing
the distance from the optimum. To show that the algorithm works, we first
recall that Theorem 1 proves that there is a unique optimum (λ∗) of Equation
(9) which is therefore the unique solution of Equation (11). By inspection and
comparison with Equation (11), we see that any fixed point of Equation (12)
is also a solution of Equation (11). Since Equation (11) has a unique solution,
Equation (12) has a unique fixed point that is the optimum.

Initial Distribution. The algorithm requires an initial simulation distribution
(f(·, λ(0))) that produces at least a few traces that satisfy the property (‘success-
ful’ traces) within N0 simulation runs. Finding f(·, λ(0)) for an arbitrary model
may seem to be an equivalently difficult problem to estimating γ, but this is
not in general the case: the rareness of the property in trace space does not
imply that good parameters are rare in parameter space. In particular, when a
property (e.g., failure of the system) is semantically linked to an explicit feature
of the model (e.g, a command for component failure), good initial parameters
can be found relatively easily by heuristic methods such as failure biasing [24].
The choice of λ(0) and N0 is dependent on the model and the rarity of the
property, but when the number of parameters is small and the property is very
rare, an effective strategy is to simulate with random parameters until a suit-
able trace is observed. Alternatively, if the model and property are similar to
a previous combination for which parameters were found, those parameters are
likely to provide a good initial estimate. Increasing the parameters associated to
obviously small rates may help (along the lines of failure biasing), however the
rareness of a property expressed in temporal logic may not always be related to
low transition probabilities. The reliability of finding good initial distributions
for arbitrary systems and temporal properties is the subject of ongoing work.
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Smoothing. It is conceivable that certain guarded commands play no part in
traces that satisfy the property, in which case Equation (12) would make the
corresponding parameter zero with no adverse effects. It is also conceivable that
an important command is not seen on a particular iteration, but making its pa-
rameter zero would prevent it being seen on any subsequent iteration. To avoid
this it is necessary to adopt a ‘smoothing’ strategy [19] that reduces the signif-
icance of an unseen command without setting it to zero. Smoothing therefore
acts to preserve important but as yet unseen parameters. It is of particular im-
portance when the parametrisation is close to the level of individual transition
probabilities, since only a tiny fraction of possible transitions are usually seen
on an individual simulation run. Typical strategies include adding a small frac-
tion of the initial or previous parameters to every new parameter estimate. We
have found that our parametrisation is often insensitive to smoothing strategy
since each parameter typically governs many transitions and a large fraction of
parameters are touched by each run. The smoothing strategy adopted for the
examples shown below was to divide the parameter of unseen commands by two
(a compromise between speed of convergence and safety). The effects of this
can be seen clearly in Figure 6. Whatever the strategy, since the parameters
are unconstrained it is advisable to normalise them after each iteration (i.e.,∑

k λk = const.) in order to judge progress.

Convergence. Given a sufficient number of successful traces from the first
iteration, Equation (12) should provide a better set of parameters. In practice
we have found that a single successful trace is sufficient to initiate convergence.
This is in part due to the existence of a unique optimum and partly to the fact
that each parameter generally governs a large number of semantically-linked
transitions. The expected behaviour is that on successive iterations the number
of traces that satisfy the property increases, however it is important to note that
the algorithm optimises the quality of the distribution and that the number of
traces that satisfy the property is merely emergent of that. As has been noted, in
general f(·, λ∗) �= f∗, hence it is likely that fewer than 100% of traces will satisfy
the property when simulating under f(·, λ∗). One consequence of this is that an
initial set of parameters may produce more traces that satisfy the property than
the final set (see, e.g., Figure 4).

Once the parameters have converged it is then possible to perform a final set
of simulations to estimate the probability of the rare property. The usual as-
sumption is that Nj 4 NIS 4 NMC, however it is often the case that parameters
converge fast, so it is expedient to use some of the simulation runs generated
during the course of the optimisation as part of the final estimation.

4 Examples

The following examples are included to illustrate the performance of our algo-
rithm and parametrisation. The first is an example of a chemical system, often
used to motivate stochastic simulation, while the second is a standard repair
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model. In both cases, initial distributions were found by the heuristic of per-
forming single simulations using parameters drawn from a Dirichlet distribution
(i.e., drawn uniformly from parameter space) and using the first set of parame-
ters that produce a path satisfying the property. For the chosen examples fewer
than 500 attempts were necessary; a value less than Nj and considerably less
than 1/γ, the expected number of simulations necessary to see a single success-
ful trace. All simulations were performed using our statistical model checking
platform, PLASMA [13].

4.1 Chemical Network

Following the success of the human genome project, with vast repositories of
biological pathway data available online, there is an increasing expectation that
formal methods can be applied to biological systems. The network of chemical
reactions given below is abstract but typical of biochemical systems and demon-
strates the potential of SMC to handle the enormous state spaces of biological
models. In particular, we demonstrate the efficacy of our algorithm by applying
it to quantify two rare dynamical properties of the system.

We consider a well stirred chemically reacting system comprising five reactants
(molecules of type A,B,C,D,E), a dimerisation reaction (13) and two decay
reactions (14,15):

A+B
k1→ C (13)

C
k2→ D (14)

D
k3→ E (15)

Under the assumption that the molecules move randomly and that elastic colli-
sions significantly outnumber unreactive, inelastic collisions, the system may be
simulated using mass action kinetics as a continuous time Markov chain [8]. The
semantics of Equation (13) is that if a molecule of type A encounters a molecule
of type B they will combine to form a molecule of type C after a delay drawn
from an exponential distribution with mean k1. The decay reactions have the
semantics that a molecule of type C (D) spontaneously decays to a molecule of
type D (E) after a delay drawn from an exponential distribution with mean k2
(k3). The reactions (13,14,15) are modelled by three guarded commands having
importance sampling parameters λ1, λ2 and λ3, respectively. A typical simula-
tion run is illustrated in Figure 1, where the x-axis is steps rather than time to
aid clarity. A and B combine rapidly to form C which peaks before decaying
slowly to D. The production of D also peaks while E rises monotonically.

With an initial vector of molecules (1000, 1000, 0, 0, 0), corresponding to types
(A,B,C,D,E), the state space contains ∼ 1015 states. We know from a static
analysis of the reactions that it is possible for the numbers of molecules of C
and D to reach the initial number of A and B molecules (i.e., 1000) and that
this is unlikely. To find out exactly how unlikely we consider the probabilities of
the following rare properties defined in linear temporal logic: (i) ♦C ≥ x, x ∈
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Fig. 1. A typical stochastic simulation
trace of reactions (13-15)
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Fig. 2. (i) Pr[♦C ≥ x] (ii) Pr[♦D ≥ y]

{970, 975, 980, 985, 990, 995} and (ii) ♦D ≥ y, y ∈ {460, 465, 470, 475, 480, 485}.
The results are plotted in Figure 2.

Having found an initial set of parameters by the heuristic means described
above, the algorithm (Equation (12)) was iterated 20 times using Nj = 1000.
Despite the large state space, this value of Nj was found to be sufficient to pro-
duce reliable results. The convergence of parameters for the property ♦D ≥ 470
can be seen in Figure 3. Figure 4 illustrates that the number of paths satisfy-
ing a property can actually decrease as the quality of the distribution improves.
Figure 5 illustrates the convergence of the estimate and sample variance using
the importance sampling parameters generated during the course of running
the algorithm. The initial set of parameters appear to give a very low variance,
however this is clearly erroneous with respect to subsequent values. Noting that
the variance of standard Monte Carlo simulation of rare events gives a variance
approximately equal to the probability and assuming that the sample variance
is close to the true variance, Figure 5 suggests that we have made a variance
reduction of approximately 107.

4.2 Repair Model

To a large extent the need to certify system reliability motivates the use of formal
methods and thus reliability models are studied extensively in the literature. The
following example is taken from [19] and features a moderately large state space
of 40,320 states that can be investigated using numerical methods to corroborate
our results.

The system is modelled as a continuous time Markov chain and comprises
six types of subsystems (1, . . . , 6) containing, respectively, (5, 4, 6, 3, 7, 5) com-
ponents that may fail independently. The system’s evolution begins with no
failures and with various probabilistic rates the components fail and are re-
paired. The failure rates are (2.5ε, ε, 5ε, 3ε, ε, 5ε), ε = 0.001, and the repair rates
are (1.0, 1.5, 1.0, 2.0, 1.0, 1.5), respectively. Each subsystem type is modelled by
two guarded commands: one for failure and one for repair. The property under
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investigation is the probability of a complete failure of a subsystem (i.e., the
failure of all components of one type), given an initial condition of no failures.
This can be expressed in temporal logic as Pr[X(¬init U failure)].

Figure 6 shows the convergence of parameters (dashed/solid lines) and high-
lights the effects of the adopted smoothing strategy (circles). Parameters λ2 and
λ4 (the parameters for repair commands of types 1 and 2, respectively) are at-
tenuated from the outset by the convergence of the other parameters (because
of the normalisation). Once their values are small relative to the normalisation
constant (12 in this case), their corresponding commands no longer occur and
their values experience exponential decay as a result of smoothing (division by
two at every subsequent step). Parameters λ6 and λ10 (the parameters for repair
commands of types 3 and 5, respectively) converge for 12 steps but then also
decay. The parameters for the repair commands of types 4 and 6 (solid lines)
are the smallest of the parameters that converge. The fact that the repair tran-
sitions are made less likely by the algorithm agrees with the intuition that we
are interested in direct paths to failure. The fact that they are not necessarily
made zero reinforces the point that the algorithm seeks to consider all paths to
failure, including those that have intermediate repairs.
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Figure 7 plots the number of paths satisfying X(¬init U failure) and suggests
that for this model the parametrised distribution is close to the optimum. Figure
8 plots the estimated probability and sample variance during the course of the
algorithm and superimposes the true probability calculated by PRISM [26]. The
long term average agrees well with the true value (an error of -1.7%, based on an
average excluding the first two estimates), justifying our use of the sample vari-
ance as an indication of the efficacy of the algorithm: our importance sampling
parameters provide a variance reduction of more than 105.
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Fig. 7. Convergence of number of paths
satisfying X(¬init U failure) in the re-
pair model using Nj = 10000
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5 Conclusions and Future Work

Statistical model checking addresses the state space explosion associated with
exact probabilistic model checking by estimating the parameters of an empirical
distribution of executions of a system. By constructing an executable model,
rather than an explicit representation of the state space, SMC is able to quantify
and verify the performance of systems that are intractable to an exhaustive
approach. SMC trades certainty for tractability and often offers the only feasible
means to certify real-world systems. Rare properties pose a particular problem to
Monte Carlo simulation methods because the properties are difficult to observe
and the error in their estimated probabilities is difficult to bound. Importance
sampling is a well-established means to reduce the variance of rare events but
requires the construction of a suitable importance sampling distribution without
resorting to the exploration of the entire state space.

We have devised a natural parametrisation for importance sampling and have
provided a simple algorithm, based on cross-entropy minimisation, to optimise
the parameters for use in statistical model checking. We have shown that our
parametrisation leads to a unique optimum and have demonstrated that with
very few parameters our algorithm can make significant improvements in the
efficiency of statistical model checking. We have shown that our approach is
applicable to standard reliability models and to the kind of huge state space
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models found in systems biology. We therefore anticipate that our methodology
has the potential to be applied to many complex natural and man-made systems.

An ongoing challenge is to find ways to accurately bound the error of re-
sults obtained by importance sampling. Specifically, the sample variance of the
results may be a very poor indicator of the true variance (i.e. with respect to
the unknown true probability). Recent work has addressed this problem using
Markov chain coupling applied to a restricted class of models and logic [1], but
a simple universal solution remains elusive. A related challenge is to find precise
means to judge the quality of the importance sampling distributions we cre-
ate. Our algorithm finds an optimum based on an automatic parametrisation
of a model described in terms of guarded commands. Linking the importance
sampling parametrisation to the description of the model in this way gives our
approach an advantage when the rare property is related to semantic features ex-
pressed in the syntax. Potentially confounding this advantage is the fact that the
syntactic description is likely optimised for compactness or convenience, rather
than consideration of importance sampling. As a result, there may be alterna-
tive ways of describing the same model that produce better importance sampling
distributions. Applying existing work on the robustness of estimators, we hope
to adapt our algorithm to provide hints about improved parametrisation.
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Abstract. In this paper, we define timed relational abstractions for verifying
sampled data control systems. Sampled data control systems consist of a plant,
modeled as a hybrid system and a synchronous controller, modeled as a discrete
transition system. The controller computes control inputs and/or sends control
events to the plant based on the periodically sampled state of the plant. The cor-
rectness of the system depends on the controller design as well as an appropriate
choice of the controller sampling period.

Our approach constructs a timed relational abstraction of the hybrid plant by
replacing the continuous plant dynamics by relations. These relations map a state
of the plant to states reachable within the sampling time period. We present tech-
niques for building timed relational abstractions, while taking care of discrete
transitions that can be taken by the plant between samples. The resulting ab-
stractions are better suited for the verification of sampled data control systems.
The abstractions focus on the states that can be observed by the controller at the
sample times, while abstracting away behaviors between sample times conser-
vatively. The resulting abstractions are discrete, infinite-state transition systems.
Thus conventional verification tools can be used to verify safety properties of
these abstractions. We use k-induction to prove safety properties and bounded
model checking (BMC) to find potential falsifications. We present our idea, its
implementation and results on many benchmark examples.

1 Introduction

We present techniques for verifying safety properties of sampled data control systems
using timed relational abstractions. Sampled data control systems consist of a discrete
controller that periodically senses the state of a continuous physical plant, and actuates
by setting inputs or sending control commands to the plant. Sampled data control sys-
tems are quite common in practice. Complex (network) control systems often involve
many control tasks that are scheduled periodically, with each task controlling a different
aspect of the plant. The cadencing of these tasks to enforce the safety and stability of
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the system is an important problem. The choice of sampling period is crucial: a small
sampling time can place infeasible constraints on the scheduling policy, whereas large
sampling times can cause instabilities or safety violations.

In this paper, we consider a simple and natural model of a sampled data control
system. The controller is modeled by an infinite state (linear) transition system. It com-
municates synchronously with a plant modeled by an affine hybrid automaton. The
controller runs periodically with a fixed sampling period Ts > 0. At each time period,
the controller senses the state of the plant and performs controller actions that may in-
clude (a) setting control input signals for the plant, and (b) “commanding” the plant to
execute a controlled discrete transition, resulting in an instantaneous jump and a mode
change in the plant.

Our verification approach uses the idea of timed relationalization, extending the idea
of untimed relational abstractions [35]. A timed relational abstraction considers the set
of states of the plant that are potentially observable by the controller at the sample times,
while safely abstracting away all the intermediate states. To this end, we build relations
that map a state of the plant at the beginning of a sampling period to states that can be
reached at the end. Using these relations, the entire plant can be safely abstracted away
by a discrete, infinite-state transition system. This system is composed together with the
controller to yield an overall discrete system that can be analyzed by existing tools such
as k-induction [36], bounded model-checking [5] and abstract interpretation [10,22],
while exploiting advances in abstract domains, SAT and SMT solvers.

There are two key challenges in constructing the timed abstraction: (a) dealing with
the continuous dynamics inside a mode, and (b) handling autonomous transitions that
can be taken by the plant between two sampling periods. For systems with affine dy-
namics the former problem is solved by computing a matrix exponential for the matrices
defining the dynamics in each mode [27]. However, the numerical exponential compu-
tation is potentially unsound due to round-off and truncation errors. Likewise, solving
for autonomous transitions involves computing a symbolic matrix exponential to deal
with the unknown switching times for each transition. To solve both problems, we ex-
ploit advances in interval arithmetic to compute guaranteed enclosures to the matrix
exponential [28,29,18,6]. This yields interval linear relations. We then use a template-
based mechanism using SMT solvers to abstract the resulting interval linear relations in
terms of relations expressible in linear arithmetic.

We have implemented our approach to relationalization and present an extensive
evaluation over a set of benchmark systems. Our evaluation performs a relational ab-
straction of the plant using the techniques described in this paper. The resulting abstrac-
tion is analyzed using the SAL tool-set from SRI [32,40]. The results of our evaluation
are quite promising: we show that our techniques can successfully handle complex sam-
pled data control systems efficiently and soundly. We compare our approach with the
SpaceEx tool that implements symbolic model checking for affine hybrid automata us-
ing support functions [16]. Our approach compares quite favorably with the various
options available in SpaceEx: providing safety proofs in many cases where SpaceEx
fails to prove safety over finite time horizons. On the other hand, we note that the finite
time horizon bounds on the reachable state-space established by SpaceEx can some-
times be used as strengthenings for k-induction in our approach to obtain significant
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speedups. Our implementation, the data from our experiments along with an extended
version of the paper will be available online 1

Motivating Examples: We discuss two simple motivating examples that clearly illus-
trate the need for verification of sampled data control systems.

Consider a proportional-integral (PI) controller defined by u′ := −30x− y com-
posed with a plant defined by ẋ = 5x + u, ẏ = x. With a period Ts = 0.1s, the
controller is able to stabilize the plant but fails to do so with a period Ts = 0.5s.

Consider an inverted pendulum controller:

u′ :=

⎧⎨⎩−16, y ≥ 2 ∨ 16x− y ≤ −10
16, y ≤ −2 ∨ 16x− y ≥ 10
u, otherwise

.

The linearized plant has the dynamics ẋ = y ẏ = 20x+ 16y + 4u. If the controller is
implemented in the continuous domain, it results in a stable system. However, a digital
implementation, regardless of the sampling period, is unable to stabilize the pendulum.

We now discuss the related work.

Relational Abstractions: Relational abstractions have been used primarily for check-
ing liveness properties [4,30]. There are many subtle distinctions between the various
forms of relational abstractions used. Transition invariants [30], used in termination
proofs, relate the current state to any previous state at a given program location. Like-
wise, progress invariants relate the current state and the immediately previous state at a
given location [20]. Podelski and Wagner provide a verification procedure for (region)
stability properties of hybrid systems [31], wherein they derive binary reachability re-
lations over trajectories of a hybrid system, similar in spirit to a relational abstraction.
Note that Podelski and Wagner use a hybrid system reachability tool to compute their
abstractions in the first place. The techniques in this paper and our previous work [35]
are meant to solve the reachability problem using these relations.

Our previous work explored the idea of abstracting the dynamics inside each discrete
mode of a hybrid automaton by an untimed relational abstraction [35]. The relational
abstractions presented here capture the relationship between the current state at time
t = t0 and any state reachable at time t = t0 + Ts units. The consideration of the
sampling time Ts is essential for verifying sampled data control systems. Furthermore,
it is also important to note that unlike untimed relational abstraction, it is essential for
the abstraction presented here to account for the plant’s discrete transitions that can be
taken in the time interval t ∈ [t0, t0 + Ts].

Abstractions of Hybrid Systems: Discrete abstractions have been widely stud-
ied and applied for verifying safety properties of hybrid systems [1,39]. The use of
counterexample-guided abstraction refinement has also been investigated in the past
[1,8]. In this paper, the proposed abstraction yields a discrete but infinite state system.
Hybridization is a technique for converting nonlinear systems into affine hybrid sys-
tems by subdividing the invariant region into numerous subregions and approximating

1 http://systems.cs.colorado.edu/
research/cyberphysical/relational

http://systems.cs.colorado.edu/research/cyberphysical/relational
http://systems.cs.colorado.edu/research/cyberphysical/relational
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the dynamics as a hybrid system by means of a linear differential inclusion in each re-
gion [23,3,11]. However, such a subdivision is expensive as the number of dimensions
increases and often infeasible if the invariant region is unbounded.

Flowpipe Construction: Reasoning about the reachable set of states for flows of
affine hybrid systems through flowpipe approximation has long been dominant ap-
proach for checking safety properties [37], using various representations for sets of
states including ellipsoids [25], zonotopes [17], template polyhedra [33], and support
functions [19]. The tool SpaceEx implements numerous improvements to these tech-
niques with impressive performance on some benchmarks with a large number of sys-
tem variables [16].

Synchronous Systems: Techniques for verifying synchronous system models, with
piecewise constant continuous dynamics, have been studied in the past, notably by
Halbwachs et al. [22] and as part of the NBAC tool by Jeannet et al. [24]. Our work
considers a synchronous controller with affine hybrid plants. Furthermore, we consider
the idea of an up front relationalization of the plant dynamics, enabling a verification
procedure to focus purely on discrete systems.

2 Sampled Data Control Systems

Let R denote the set of real numbers. We use a, . . . , z with subscripts to denote (col-
umn) vectors and A, . . . , Z to denote matrices. For a m × n matrix A, the row vector
Ai, for 1 ≤ i ≤ m, denotes the ith row.

Controller
(Program)

Plant
(Hybrid Aut.)

Sample Clock Ts

actuate

sense

Fig. 1. Schematic for a Sampled Data Control System

We discuss models for sampled
data control systems. Figure 1 shows
the schematic diagram for such a
control system consisting of a dis-
crete controller communicating with
a hybrid plant. The controller has
a time period Ts > 0. Every Ts
time units, the controller “senses”
the state of the hybrid plant and syn-
chronizes to change the mode of the
plant. The commands can take the
form of (a) events enabling a discrete
transition of the plant, or (b) values
for control inputs that are assumed to be held constant throughout the sample time pe-
riod. We model the controller as a discrete transition system [26].

Definition 1 (Discrete Transition System). A discrete transition system Π is a tuple
〈L,x, T , �0, Θ〉 wherein, L is a finite set of discrete locations; x : (x1, . . . , xn) is a set
of variables with variable xi of type type(xi); T is a set of discrete transitions; �0 ∈ L
is the initial location; and Θ[x] is an assertion capturing the initial values for x.

Each transition τ ∈ T is of the form 〈�,m, ρτ 〉, wherein � is the pre-location of the
transition and m is the post-location. The relation ρτ [x,x′] represents the transition
relation over current state variables x and next state variables x′.
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We now discuss the overall model for the plant as a hybrid automaton with controlled
and uncontrolled transitions.

Definition 2 (Plant Model). A plant P is an extended hybrid automaton described by
a tuple 〈x,u, Q,F ,X , T , q0, X0〉, wherein,

– x : (x1, . . . , xn) denotes the continuous state variables, and u : (u1, . . . , um) the
control inputs,

– Q is a finite set of discrete modes. q0 ∈ Q is the initial mode and X0 the initial set
of states.

– F maps each discrete mode q ∈ Q to an ODE dx
dt = Fq(x,u, t).

– X maps each discrete mode q ∈ Q to a mode invariant X (q) ⊆ Rn.
– T represents a set of discrete transitions. Each transition τ ∈T is a tuple 〈s, t, γ, U〉

wherein s, t represent the pre- and post- mode respectively. γ[x] is the transition
guard assertion, and U maps each variable xi ∈ x to an update function Ui(x).
The transition relation for τ is defined as ρτ (x,x′) : γ(x) ∧ x′ = U(x).

– We partition the transitions in T as autonomous transitions Taut and con-
trolled transitions Tctrl. Autonomous transitions can be taken by the plant non-
deterministically, whenever enabled. On the other hand, controlled transitions are
taken upon an explicit command by the controller.

The state of the plant is a tuple (q,x,u) consisting of the current mode q, state values
x and controller input u. Note that the control input is set at the beginning of a time
period, and is assumed to remain constant throughout the period.

The overall sampled data control system is a tuple 〈C,P , μ, Ts〉 of a discrete con-
troller transition system C, a hybrid plant model P and a mapping μ from variables in
C to control inputs u of P . A given sampling time Ts > 0 specifies the periodicity
of the controller execution. The state of the system is represented by the joint state of
the plant σP and σC of the controller. We assume that the computations of the con-
troller take zero (or negligible time) compared to the sampling period. Furthermore,
we assume that the commands issued by the controller are in the form of an input u
for the next time period, and/or a command to execute a discrete transition . Finally, to
avoid considering improbable “race conditions”, we assume that the plant itself may not
execute autonomous discrete transitions at sample time instances when the controller
executes 2. The overall system evolves in one of two ways:

1. At sample times t = nTs for n ∈ Z, a controlled transition is taken based on the
current state of the plant and the controller. The transition updates the controller
state, the values of the plant inputs and can also command the plant to execute a
discrete transition out of its current mode.

2. Between two sample times t ∈ (nTs, (n+ 1)Ts), the state of the plant evolves ac-
cording to its current mode q, continuous variables x and input u. If an autonomous
transition τ ∈ Taut is enabled, then it may be non-deterministically executed by the
plant, possibly changing the plant’s state instantaneously.

2 This assumption can be relaxed to allow such simultaneous executions, provided the plant and
the controller do not attempt to update the same state variable.
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A plant is affine iff (a) for each discrete mode q, the dynamics are of the form dx
dt =

Aqx + Bqu + bq , (b) the initial condition Θ and guards γτ for each transition τ , are
linear arithmetic formulae, and (c) the update functions Uτ are affine.

Why Autonomous Transitions? The ability to model autonomous transitions is quite
important in practice. Real life plants are often multi modal with mode changes that
can be effected by exogenous user inputs, disturbance inputs, system failures and other
exceptional situations. Examples include pump failures or occlusion events observed in
models of drug administration using infusion pumps [2,34], failsafe models of spacecraft
control systems, wherein exogenous disturbance inputs can cause mode changes [7].
Another reason for autonomous transitions includes the modeling of actuation delays.
Autonomous transitions can be used to model delays between controller commands and
their actuation in networked control systems.

3 Relationalization

In this section, we discuss the notion of timed relationalizations for plants in a sam-
pled data control system. The basic idea behind relationalization is to build a relation
RP (q

′,x′, q,x,u) of all possible pairs of states (q′,x′) and (q,x) such that (a) the
plant is in the state (q,x) at the start time t = t0, (b) it reaches the state (q′,x′) at time
t = t0+Ts, and (c) u is the constant controller input for t ∈ (t0, t0+Ts]. Note that the
discrete modes q, q′ may be different, depending on whether an autonomous transition
is taken by the plant between two samplings.

Let us suppose a relation RP can be built that can characterize all pairs (q′,x′)
that a controller can observe at the next time step, given that (q,x) was observed at
the current time step and u was the control input. As a result, we may construct a
purely discrete abstraction of the sampled data control system wherein the behavior of
the plant between two samplings is entirely captured by RP . Therefore, the resulting
discrete transition system can be verified using a host of approaches for verification of
discrete programs. Furthermore, since our goal is to perform safety verification, we do
not need to compute the exact relation RP , but only an over-approximation of it.

We will now describe techniques for constructing timed relational abstractions.

Example 1. Consider the hybrid plant model shown in Figure 2 with two state variables
x, y and no control inputs. The matrices defining the dynamics are

A1 :

(
−1.5 1.2
1.3 0.2

)
b1 :

(
1.0
−0.5

)
A2 :

(
2 1.2
0.1 −3.6

)
b2 :

(
−0.6
−0.6

)
.

There are two modes n0 and n1 with an autonomous transition τ1 from n0 to n1 and
a controlled transition τ2 from n1 back to n0. Relationalization of this automaton will
need to consider 3 cases: (a) the automaton remains entirely inside the mode n0 dur-
ing a sample interval, (b) the automaton remains entirely inside mode n1 and (c) the
automaton switches from mode n0 to n1 sometime during a sampling interval.

We first discuss relational abstraction for the case when the plant remains in some mode
q during a sampling period without any autonomous transitions taken in between. This
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n0 : dx
dt

= A1x+ b1start

n1 : dx
dt

= A2x+ b2

τ1 :
1 ≤ x ≤ 2
1 ≤ y ≤ 2

τ2 :

⎡
⎣ (|x| >= 10

∨ |y| >= 10)
x′ ∈ [8, 12],
y′ ∈ [−0.5, .5]

⎤
⎦

−4 −2 0 2 4 6 8 10 12

−1

−0.5

0

0.5

1

1.5

2

2.5

n0 trajectories
n1 trajectories

Fig. 2. A simple affine hybrid automaton with an autonomous transition τ1 and controlled tran-
sition τ2. Some sample trajectories of the automaton are shown with the autonomous transition
being taken. The red colored trajectories belong to mode n0 and the blue colored trajectories to
mode n1. The guard set is shown in thick lines.

situation is abstracted by a relation Rq(x,u,x
′) that relates all plant states (q,x) at

some time t and state (q,x′) at time t + Ts with control input u. The resulting Rq for
each q ∈ Q will form a disjunct in the overall relation RP for the plant.

Definition 3 (Timed Relational Abstraction). Consider a continuous system specified
by a time invariant ODE dx

dt = f(x,u) for x ∈ X and control inputs u ∈ U .
A relation R(x,u,x′) is a timed relational abstraction with sample time Ts of the

continuous system iff for all time trajectories x(t) of the ODE with constant control
input u(t) = u, we have (x(0),u,x(Ts)) ∈ R.

Since we assume that the dynamics are time invariant, the starting time of the observa-
tion can be arbitrarily set to t0 = 0. Time varying dynamics can be treated by lifting this
assumption and specifying the value of the time t as part of the state x of the system.

We now consider the timed relational abstraction for a system with affine dynamics
given by dx

dt = Ax + Bu + b. We note that the solution of the ODE can be written

as x(t) = etAx(0) +
∫ t
s=0

e(t−s)A(Bu(s) + b) ds. If the matrix A is invertible and
u(s) = u for s ∈ [0, Ts), we may write the resulting relation as

x(Ts) = eTsAx(0) +A−1(eTsA − I)(Bu + b) .

For general A, we write the result as

x(Ts) = eTsAx(0) + P (A, Ts)(Bu + b), wherein P (A, t) =
∞∑
j=0

Ajtj+1

(j + 1)!
.

In theory, given Ts andA, we may compute the matrices eTsA and P (A, Ts) to arbitrary
precision. This yields an affine expression for x(Ts) in terms of x(0),u.

In practice, however, arbitrary precision computation of the exponential map is often
impractical, unless the matrix A is known to be diagonalizable with restrictions on its
eigenvalues, or nilpotent. Therefore, for a general matrix A, we resort to error-prone
numerical computations of eTsA and P (A, Ts).
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The loss of soundness can be alleviated by using sophisticated numerical approxi-
mation schemes [27]. In particular, we can estimate both matrices using interval arith-
metic calculations as eTsA ∈ [Es, Es] and P (A, Ts) ∈ [Ps, Ps] by taking into account
the arithmetic and truncation errors of the resulting power series expansions [6,29,18].
Therefore, the resulting relationalization obtained is interval linear of the form x′ ∈
[Es, Es]x− [Ps, Ps](Bu + b) which stands for the logical formula

R(x,u,x′) : (∃ E ∈ [Es, Es], P ∈ [Ps, Ps]) x
′ = Ex− P (Bu+ b) .

As such, the relation above cannot be expressed in linear arithmetic. We will expand
upon the treatment of interval linear relations later in this section.

Example 2. Going back to the system in Ex. 1, we find relational abstractions for mode
n0 when the system does not take an autonomous transition within the sampling period
of 0.2 time units. Using a numerically computed matrix exponential, we obtain the

relation x′ =

(
0.7669 0.214
0.232 1.07

)
x+

(
0.1635
−0.079

)
. On the other hand, using the interval

arithmetic based method described by Goldsztejn [18], we obtain the relation

x′ ∈
(

[0.7669282852020186, 0.7669282852020187] [0.2139643726426075, 0.2139643726426076]
[0.2317947337083272, 0.2317947337083273] [1.0700444963848672, 1.0700444963848673]

)
x

+

(
[0.1635149326785402, 0.1635149326785403]

[−0.0789845829507958,−0.0789845829507957]

)
.

While pathological cases for matrix exponential computation are known (Cf. Gold-
sztejn [18]), the rather tight interval bounds for the exponential seem to be quite com-
mon in our benchmarks, and therefore, the use of numerically computed matrix
exponentials may be quite satisfactory for many applications, wherein the dynamics
are obtained as an approximation of the physical reality in the first place.

Applying the same for mode n2, we obtain the relation x′ =

(
1.5245 0.2181
0.0182 0.4885

)
x+(

−0.1626
−0.0867

)
. Once again, an interval computation yields intervals of width 10−16 or

less centered around the numerically computed value.

3.1 Dealing with Autonomous Transitions

Thus far, we have described a simple relationalization scheme under the assumption
that no autonomous transitions were taken by the plant during a sampling time period.
We will now describe the treatment of autonomous transitions that can be taken by the
plant between two successive samplings. In general, there is no a priori bound on the
number of such transitions that a plant can take in any given period (nTs, (n + 1)Ts).
Even if the plant is assumed to be non-Zeno, any relationalization has to capture the
effects of the plant executing a finite but unbounded number of transitions. We remedy
this situation by making two assumptions regarding the plant: (a) There is a minimum
dwell time TD > 0 for each mode q of the plant. In other words, whenever a run of
the plant enters some mode q, it remains there for at least TD time units before an
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autonomous transition is enabled. (b) No autonomous transitions can be taken precisely
at the time instant t = jTs for j ∈ Z.

The first assumption provides a bound N =
⌈
Ts

TD

⌉
on the maximum number of au-

tonomous transitions taken inside a sampling interval. For this paper, we will assume
that N = 1 to simplify the presentation, i.e., the controller is assumed to sample the
plant fast enough to restrict the number of autonomous transitions in any sample pe-
riod to at most 1. The second assumption allows us to use the standard interleaving
semantics when the relationalization of the plant and the system are composed. This
assumption fails if the execution time of the controller is not negligible compared to
the time scale of the plant dynamics, as is sometimes the case. However, if bounds are
known on the execution times, we may compute relationalizations of the plant for two
time steps, one for the controller step and the other for the sampling period. Likewise,
the basic ideas presented here extend to more sophisticated task execution schedules for
control tasks.

τ

(q,x)

(q′,x′)

0

Ts

(q,y)

(q′,y′)

Fig. 3. Schematic for relational abstraction
of a single autonomous transition

Let us assume that a single autonomous
transition τ : 〈q1, q2, ρ〉 is taken during the
time t ∈ (0, Ts). Our goal is to derive a re-
lation Rτ ((q1,x),u, (q2,x

′)) characterizing
all possible pairs of states (q1,x) and (q2,x

′)
so that the plant may evolve from continu-
ous state x in mode q1 at time t = 0 to the
state (q2,x

′) at time t = Ts with the transi-
tion τ taken at some time instant 0 < t < Ts.
The resulting Rτ for each τ ∈ Taut will form
a disjunct of the overall relation RP for the
plant.

Figure 3 summarizes the situation dia-
grammatically. We let y be the valuation to
continuous variables just prior to τ being
taken and y′ be the valuation just after τ is
taken. Let t be the time instant at which τ is taken. Let the dynamics in mode qi for
i = 1, 2 be given by dx

dt = Aix+Biu+bi. Therefore,x = e−tA1y−P (A1,−t)(B1u+

b1) ∧ x′ = e(Ts−t)A2y′ − P (A2, Ts − t)(B2u+ b2). The overall relation is given by

Rτ (x,u,x
′) : (∃ t,y,y′)

⎛
⎝x = e−tA1y − P (A1,−t)(B1u+ b1)

x′ = e(Ts−t)A2y′ − P (A2, Ts − t)(B2u+ b2)
0 < t < Ts ∧ ρτ (y,y

′)

⎞
⎠ . (1)

Note that we have chosen to encode x = e−tA1y instead of encoding the dynamics in
the forward direction y = etA1x. This seemingly arbitrary choice will be seen to make
the subsequent quantifier elimination problem easier.

Eliminating Quantifiers: The main problem with the relation Rτ derived in Eqn. (1)
is that the matrices etAi andP (Ai, t) are, in general, transcendental functions of time. It
is computationally intractable to manipulate these relations inside decision procedures.
To further complicate matters, the variable t is existentially quantified. Removing this
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quantifier poses yet another challenge. However, our goal will be to derive an over-
approximation of Rτ expressible in linear arithmetic.

To this end, the main challenge is to construct a good quality and linear over-
approximationRa

τ (x,u,x
′) of the relationRτ . We address this challenge using interval

arithmetic techniques.

Interval over-approximation We subdivide the interval [0, Ts] into M > 0 subin-
tervals each of width δ = Ts

M . Next, we consider each subinterval of the form t ∈
[iδ, (i+ 1)δ) and use interval arithmetic evaluation for the functions etAi and P (Ai, t)
to obtain a conservative approximation valid for the subinterval. In effect, we over-
approximateRτ as a disjunction

RI
τ :

∨
0≤i<M

(∃y,y′)

⎛⎝x ∈ [Ei,1, Ei,1]y − [Pi,1, Pi,1](B1u+ b1) ∧
x′ ∈ [Ei,2, Ei,2]y

′ − [Pi,2, Pi,2](B2u+ b2) ∧
ρτ (y,y

′)

⎞⎠ , (2)

wherein [Ei,1, Ei,1] is a safe interval enclosure of e(−(i+1)δ,−iδ]A1 while [Ei,2, Ei,2] is

an enclosure of e(Ts−[iδ,(i+1)δ])A2 . Likewise, [Pi,1, Pi,1] and [Pi,2, Pi,2] are safe enclo-
sures of P (A1, [−(i+ 1)δ,−iδ]) and P (A2, (Ts − [iδ, (i+ 1)δ])), respectively.

The resulting over-approximation is a disjunction of M interval linear relations. In
effect, the transcendental relation Rτ in Eq. (1) is over-approximated by an algebraic
(bilinear) relation RI

τ . The over-approximation error be made as small as necessary by
increasing the number of subdivisionsM , and by using a more expensive procedure for
deriving a better approximation of the exponentials by intervals. The problem of eval-
uating safe interval enclosures to the matrices e[t1,t2]A and P (A, [t1, t2]) uses the idea
of scaling and squaring with Horner’s rule for evaluating the truncated power series,
precisely as described by Goldsztejn [18]. A convenient trick used in our implementa-
tion folds the computation of eA,[t1,t2] and P (A, [t1, t2])(Bu + b) into a single matrix

exponential computation for a block matrix of the form

(
A B b
0 0 0

)
.

Example 3. Consider the hybrid automaton described in Ex. 1. We wish to consider
the relational abstraction when τ1 is taken sometime during the sampling period of 0.2
seconds. To this end, we will choose M = 2 and consider two possible intervals for
the switching time t when the transition τ1 is taken J1 : [0, 0.1] and J2 : [0.1, 0.2].
Considering interval J1, we obtain the following relation (intervals are rounded to 2
significant digits for presentation):

Rτ,J1 : (∃ y)

⎡
⎢⎢⎣
x ∈

(
[0.99, 1.17] [−0.13, 0.01]
[−0.14, 0.0] [0.98, 1.01]

)
y +

(
[−0.11, 0]

[−0.01, 0.05]

)
∧

x′ ∈
(
[1.23, 1.53] [0.09, 0.25]
[0.0, 0.02] [0.48, 0.7]

)
y +

(
[−0.16,−0.07]
[−0.1,−0.04]

)
∧ y ∈ Gτ1

⎤
⎥⎥⎦ .

Templatization. The next step is to use a templatization technique to effectively
eliminate the quantifiers y,y′ from the relation RI

τ in Equation (2) while, at the same
time, over-approximating the result by means of a linear arithmetic over-approximation.
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Recall that each disjunct in Equation 2 is an interval linear assertion of the form

RI
j : (∃y,y′)

(
x ∈ [Ej,1, Ej,1]y − [Pj,1, Pj,1](B1u+ b1) ∧
x′ ∈ [Ej,2, Ej,2]y

′ − [Pj,2, Pj,2](B2u+ b2) ∧ ρτ (y,y
′)

)
,

An interval linear constraint of the form
∑n

j=1 Ijxj + I0 ≤ 0 is a place holder for a
bi-linear constraint

∑n
j=1 wjxj +w0 ≤ 0, wherein, w0, . . . , wn are freshly introduced

variables and each wj is constrained by requiring that wj ∈ Ij .
In order to eliminate y,y′ from this relation, a technique for eliminating quanti-

fiers for real arithmetic such as Cylindrical Algebraic Decomposition (CAD) [9], or a
more efficient version for quadratic polynomials is called for [41,13,38]. However, the
downside of using such complex techniques include (a) it is well known that QE over
non-linear constraints is a hard problem with limited scalability, and (b) the result after
elimination will, in general, be a set of polynomial inequalities (semi-algebraic con-
straint). Therefore, the resulting relationalization may not be easy to reason with for
existing tools.

We present a more efficient alternative that side steps the elimination altogether,
relying instead on the use of templates and optimization:

1. We choose a set of template expressions ek(x,x′,u) involving the variables x, u
and x′. We discuss a natural choice for these templates subsequently.

2. For each ej , we carry out the optimization: min ek s.t. RI
j (x,y,u,y

′,x′). If the
problem is feasible and bounded, the ak allows us to conclude that

RI
j (x,y,u,y

′,x′) ⇒ ek(x,u,x
′) ≥ ak .

As a result by choosing some K > 0 templates e1, . . . , eK , we obtain an assertion

e1(x,u,x
′) ≥ a1 ∧ e2 ≥ a2 ∧ · · · ∧ eK(x,u,x′) ≥ aK .

This assertion serves as an over-approximation toRI
j with the quantified variables y,y′

eliminated through optimization. We now provide a natural scheme for the choice of
templates, and then discuss how the optimization problem for each template expression
can be solved.

The overall relationalization of the plant RP is the disjunction of the relations Rq ,
for each mode, and RI

τ , for each autonomous transition τ .

Theorem 1. For any pairs of states σ : (q,x) and σ′ : (q′,x′) such that x′ is reach-
able from x in Ts seconds for constant control input u, the computed relational ab-
straction RP satisfies RP (σ, σ

′,u).

Choosing Template Expressions. A natural choice for template expression presents
itself in our setup by considering the midpoints of the intervals used in the matrix ex-
ponential computations. We note that y is the state obtained starting from x and evolv-
ing in mode 1 for time [iδ, (i + 1)δ). Likewise, x′ is obtained by evolving according
to the state y′ for time [Ts − (i + 1)δ, Ts − iδ). Finally, y′ = U(y), wherein U is
the affine update map for transition τ . In practice, δ is chosen to be small enough to



354 A. Zutshi, S. Sankaranarayanan, and A. Tiwari

yield tight enclosures to etAi and P (Ai, t) matrices. Therefore, a natural choice of tem-
plate expression is obtained by considering the midpoints of the time intervals involved.
Specifically, we consider the affine expressions defined by

x′ − e(Ts−tm)A2U(etmA1x), where tm = (i+
1

2
)δ .

Example 4. In Ex. 3, we showed the interval linear relation obtained by considering
switching times in the interval t ∈ [0.0, 0.1]. The midpoint of this interval is tm = 0.05.
Therefore, we consider the mode n0 taken for time 0.05 units followed by 0.15 units
of mode 1 for generating a suitable template. These template expressions are given by
e1 : x′−1.31x−0.25y and e2 : y′−0.05x−0.6y. We seek to bound these expressions
to obtain a linear arithmetic over-approximation.

Encoding Optimization. Next, we turn our attention to setting up the optimization
problem for a given template expression cx + dx′. The intermediate states y,y′ are
related by interval linear expressions of the form

x′ ∈ [E2, E2]y
′ + [P2, P2], x ∈ [E1, E1]y + [P1, P1] .

To set up the optimization problem, we substitute these expressions for x,x′ in the
template to obtain c([E1, E1]y + [P1, P1]) + d([E2, E2]y

′ + [P2, P2]). This is, in fact,
an interval linear expression involving y,y′. The overall optimization problem reduces
to: min [c, c]y + [d,d]y′ + [c0, c0] s.t. ρτ (y,y′). Here [c, c] = c[E1, E1] , [d,d] =
d[E2, E2] and [c0, c0] = c[P1, P1] + d[P2, P2]. The problem has an interval linear
objective and linear constraints. We now show that the constraints can be encoded into
a disjunctive linear program.

Theorem 2. The optimization of an interval linear objective w.r.t linear constraints

min [c, c]× z s.t. Az ≤ b ,

can be equivalently expressed as a linear program with disjunctive constraints:

min cz+ − cz− s.t. Az+ −Az− ≤ b, z+, z− ≥ 0, z+i = 0 ∨ z−i = 0

where z = z+ − z−.

Proof. We may decompose any vector z as z = z+ − z−, where z+, z− ≥ 0, and
enforce z+i z

−
i = 0. Next, consider the objective [c, c]×(z+−z−). Since correspondent

entries in z+, z− cannot be positive at the same time, we may write the objective as a
linear expression cz+ − cz−. Finally, the complementarity condition z+i z

−
i = 0 is

rewritten as z+i = 0 ∨ z−i = 0.

A simple approach to solve the optimization problem for disjunctive constraints is to
use a linear arithmetic SMT solver to repeatedly obtain feasible solutions z+, z−. For
a given feasible solution output by the SMT solver, we fix a minimal set of the values
for z+, z− to zero to enforce the complementarity constraints z+i z

−
i = 0, leaving the
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remaining variables as unknowns. An LP solver is then used to compute an optimal
value f∗ for the objective function f , based on the remaining constraints. This yields a
potential optimum. Next, we add a blocking constraint f > f∗ to the SMT solver and
search for a different solution. The process is carried out until the SMT solver returns
UNSAT. At this point, we output the last optimal solution as the final value.

Example 5. Continuing with the examples worked out in Ex. 3, we perform the opti-
mization of the template expressions chosen in Ex. 4 to obtain the relational abstraction:

Rτ1,J1 : −1.0 ≤ 1.31x+ 0.25y − x′ ≤ 1.24 ∧ −0.32 ≤ 0.05x+ 0.6y − y′ ≤ 0.51 .

Likewise, considering the time interval J2 : [0.1, 0.2] for the switching time, we obtain
the abstraction:

Rτ1,J2 : −1 ≤ 0.94x+0.25y−x′ ≤ 0.88 ∧ −0.54 <= 0.17x+0.9y−y′ <= 0.7708 .

The overall timed relational abstraction for the sampling period where τ1 can be taken
sometime in between is Rτ1 : Rτ1,J1 ∨ Rτ1,J2 .

4 Experimental Evaluation

We first briefly describe our implementation of the relational abstractor using the tech-
niques presented here.

Implementation: The relational abstractor takes in a plant description including the
sample time Ts, and outputs the relation as a SAL transition system [32]. The relational-
ization is performed for the continuous dynamics in each mode by computing a matrix
exponential. A numerical approximation of the matrix exponential function is obtained
using Pade’s approximation [27]. We have also implemented a procedure that provides
a sound interval enclosure of the exponential function over interval matrices using the
ideas described by Goldsztejn [18]. However, this procedure is used solely for dealing
with autonomous transitions.

Autonomous transition between modes are handled using the algorithms presented
so far. We implicitly assume minimum dwell time greater than or equal to the sampling
time for the controller. The optimization problems encountered for autonomous transi-
tions are solved using the SMT solver Z3 [12]. SAL provides a k-induction and BMC
engine using the solver Yices [14]. This was used for analyzing the resulting composed
transition system for our evaluations.

Benchmarks: Table 1 shows the benchmarks used in our evaluation along with
their sources. The benchmarks vary in dimensionality (column #Var) and number of
transitions (column #Trs). Note that many benchmarks do not contain autonomous
transitions. For each benchmark, we performed the relational abstraction for different
sampling times Ts, and used SAL to analyze safety properties (column Prop.).

The NAV benchmarks, due to Ivancic and Fehnker [15], model a particle traveling
through many 2D cells that each have a different dynamics. We consider two versions
of this benchmark (a) the transitions in the benchmark are all interpreted as controlled,
commanded by a controller, or (b) transitions are autonomous in nature. Starting with
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Table 1. The benchmarks used in our experiments at a glance

Model Description # Var # Mode # Trs Prop. Description
InvPen Inverted Pendulum Control 5 1 1 θb(0.05) Angle θ ∈ [−0.05, 0.05]

SNCS Network Control System [42] 2 1 2 P1 (x, y) ∈ [−100, 100]2

P2 (x, y) ∈ [−104, 104]2

ACC Adaptive Cruise Control [21] 4 1 2 SAFE No collision between cars.
ACC-T ACC + transmission [21] 3 20 24 SAFE No collision between cars.
Heat-x Room heater [15] 9 8 20 LB Lower bounds on temp.

Cf. [15]
Nav-y NAV benchmarks [15] 4 [7,16] [9,16] RA Cell A is unreachable

RB Cell B is unreachable
Toy Example 1 2 2 5 bnd(k) n1 ⇒ |x| ≤ k

Ring(n,m) Cf. Section 4 n m+1 m+1 bnd(k) n4 ⇒ |x| ≤ k

all controlled transitions, we introduce uncontrolled transitions incrementally into these
benchmarks.

Ring Benchmarks: We created a set of sampled data control systems with autonomous
transitions. We consider a plant with k + 1 modes, wherein modes m1, . . . ,mk are
governed by stable dynamics, while mode mk+1 is an unstable mode. The controller
seeks to stabilize this mode by periodically sensing the plant’s state and applies a control
that reverts it back to modem1.

The benchmark instance Ring(n,k) consists of n state variables and k+1 modes.
The autonomous transitions are added from mode i to mode i + 1 for i ≤ k, while the
controlled transition leads from mode k + 1 to mode 1. The dynamics in each mode is
of the form dx

dt = Ai(x−bi), wherein, for the stable modesAi is a Hurwitz matrix and
bi is a designated equilibrium for mi. For the unstable mode, we ensure that Ai has a
positive eigenvalue. The switch frommi tomi+1 takes place inside a box [bi−ε, bi+ε].
The controller periodically senses the plant and whenever |x| > c for some fixed c, it
brings the dynamics back into the box |x| < c while transitioning to modem1. We wish
to check whether all trajectories lie inside a box |x| ≤ c + d, for varying tolerances d.

Results: Table 2 shows the experimental results on benchmarks that do not have au-
tonomous transitions. Our experiments are attempted using numerous values of sample
times (Ts) for each property until either a proof is obtained for the controller or the
SAL tool fails due to a timeout. In the absence of autonomous transitions, the relation-
alization time for all these benchmarks was well under 1 second. We also note that the
counterexamples generated by SAL can be concretized, since the timed abstractions
involving matrix exponentials are seen to be quite precise.

Table 3 shows the results for systems with controlled and autonomous transitions.
These include the system from Ex. 1, the Ring(n,k) systems for varying n and the
NAV benchmark instances as we increase the number of autonomous transitions. We
observe that making all the transitions autonomous leads to a counterexample. This
counterexample may potentially be an artifact of the precision loss due to relation-
alization of autonomous transitions. Future work will consider the refinement of these
counterexamples by subdividing the transition switching time intervals further based on
spurious counterexamples. We note that the time for relationalization remains a small
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Table 2. Results on benchmarks without autonomous transitions. All timings were measured in
seconds on a laptop running Intel Core i7-2820Q 2.30GHz processor (x86 64 arch) with 8GB
RAM running Ubuntu 11.04 Linux 2.6.38-13. Legend: CE indicates true counter-example, P
indicates proofs, F indicates failure due to timeout.

Model Prop Ts Result Depth Time
InvPen θb(0.05) 0.1 CE 1 0.1

0.05 P 12 0.9
SNCS P1 1.7 P 2 0.1

P2 1.8 CE 93 5.6
ACC SAFE 0.1 P 7 0.1

gap(100) 0.1 P 4 0.1
ACC-T SAFE 1 P 14 2.2

Nav 1-7 RB 1 P <11 <5
RA 1 CE <13 <2

Nav 8 RB 1 CE 7 0.27
RB 0.2 F 25 > 1h

Nav 9 RB 1 P 19 213.05
RA 1 CE 9 0.37

Nav 10 RB 1 CE 19 28.37
RB 0.5 F 25 > 1h

Model Prop Ts result depth time
Heat1 LB 1 CE 4 0.1

.2 CE 8 0.1
0.1 P 37 1967

Heat2 LB 1 CE 4 0.1
0.2 P 17 160

Heat3 LB 1 CE 2 0.1
0.2 CE 17 27
0.1 F 30 > 1h

Heat4 LB 1 CE 2 0.1
0.1 CE 10 1.22
0.02 F 25 > 1h

fraction of the time needed to check the system. The relationalization scheme can be
improved further if SMT solvers such as Z3 can be modified to support the optimization
of objective functions.

Comparison with SpaceEx: We now compare the results obtained for our approach
with the SpaceEx tool over the same set of benchmarks [16]. While performing the com-
parison with SpaceEx, we reiterate two key points of difference: (a) SpaceEx handles
general hybrid systems with support for synchronous time-triggered semantics as well
as the standard event-triggered semantics given by guards and resets. Our technique is
specialized to sampled data control systems. (b) SpaceEx attempts to characterize the
reachable sets for all time instances, whereas our approach focuses on proving proper-
ties at the periodic sampling times.

Typically, running the benchmarks in SpaceEx required choosing from a range of pa-
rameters including template domains, underlying implementation, flowpipe tolerances,
error tolerances, local and global time horizons and limits on the number of iteration.
We ran SpaceEx for each benchmark using multiple option sets, choosing the option
that provided the “best answer” with as few warnings as possible. However, it may be
possible to obtain qualitatively different results using choices for the parameters that
were unexplored in our experiments. A detailed table summarizing our experiences is
available upon request.

Table 4 presents a summary of the results obtained by running SpaceEx on our bench-
marks. We note that in many cases, SpaceEx did not reach a fixed point. Therefore,
whenever a property proof was obtained, we report if the proof was obtained over a
finite time horizon. Likewise, for cases where the property was not proved, we ran
SpaceEx for the minimum number of iterations until a potential violation is observed.
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Table 3. Results on systems with autonomous transitions. For the NAV benchmarks, autonomous
transitions between cells were incrementally enabled over the controlled transitions until all tran-
sitions were autonomous. Tsal refers to running time for SAL and Trel the running time for the
relationalization.

Model Prop result depth Tsal Trel

Toy bnd(8) P 2 0.1 < .1
bnd(6) P 2 0.1
bnd(5.5) P 2 0.3
bnd(5) CE 70 204

Ring(3,4) bnd(20) P 10 5.2 0.8
bnd(15) P 30 451

Ring(5,4) bnd(25) P 10 34.7 2.8
bnd(20) P 10 56.2
bnd(15) F 20 > 1h

Ring(7,4) bnd(25) P 10 157 11.9
bnd(20) P 10 357
bnd(15) F 20 >1h

Ring(9,4) bnd(25) P 10 515 19.1
bnd(20) P 10 2929

Ring(11,4) bnd(25) F 10 > 1h 150

Model Prop Ts # Aut. result depth time
Nav1 RB 0.2 6 P 9 199

14 P 9 72
21 P 9 96
24 F 9 169
All CE 9 161

Nav2 RB 0.2 20 P 9 92
21 F 9 160
All CE 7 151

Nav3 RB 0.2 22 P 9 83
All CE 6 13

Nav4 RB 0.2 9 P 18 1305
20 F 18 >1h
All CE 6 7

Table 4. Results of SpaceEx tool on the benchmark. Legend: A: All transitions were Au-
tonomous, C: All transitions were controlled Autonomous, Prop: property, F: Found potentially
spurious counter-example (our approach proves model+property), P: Proved, FT: proof valid
over a finite time horizon, Time: Running time in seconds.

Model Prop Ts Result Time
InvPen θb(0.05) 0.05 F 6
SNCS P1 1.7 F 371
Heat1 LB 0.1 F 557
Ring(3,4) bnd(20) 0.2 P (FT) 3475
Ring(5,4) bnd(25) 0.2 P (FT) 2051
Ring(7,4) bnd(25) 0.2 F 6323
Ring(9,4) bnd(25) 0.2 F 709

Model Prop Ts Result Time
Nav 4(A) RB − P (FT) 1501
Nav 6(A) RB − F 1223
Nav 7(A) RB − P (FT) 615
Nav 9(A) RB − F 619

Nav 4(C) RB 1 P (FT) 109
Nav 6(C) RB 1 P (FT) 167
Nav 7(C) RB 1 P 7
Nav 9(C) RB 1 F 6

The comparison between our approaches clearly showcases some of the relative
merits and demerits of our approach vis-a-vis SpaceEx. There are many benchmarks
wherein our approach is able to establish the property over an infinite time horizon
using k-induction, whereas SpaceEx either proves the property over a finite time hori-
zon or fails. On the other hand, the NAV benchmarks are an interesting case where
SpaceEx’s performance is at par or clearly superior to that of our approach.

For some of the Ring examples, we observed that using the bounds obtained by
SpaceEx as inductive strengthenings enabled the k-induction technique to prove the
property for a smaller value of k, leading to improved running times.
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Our future work will focus on an integration of the approaches considered here in
combination with tools such as SpaceEx to achieve infinite horizon safety property
proofs. Another important area of future research will be to extend our approach to
analyze non linear hybrid systems, which are much more challenging.
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16. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard,
A., Dang, T., Maler, O.: SpaceEx: Scalable Verification of Hybrid Systems. In: Gopalakrish-
nan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg
(2011)

http://yices.csl.sri.com/tool-paper.pdf


360 A. Zutshi, S. Sankaranarayanan, and A. Tiwari

17. Girard, A.: Reachability of Uncertain Linear Systems Using Zonotopes. In: Morari, M.,
Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidelberg (2005)

18. Goldsztejn, A.: On the exponentiation of interval matrices. Preprint (Working Paper) # hal-
00411330, version 1. Cf (2009),
http://hal.archives-ouvertes.fr/hal-00411330/fr/

19. Guernic, C.L., Girard, A.: Reachability analysis of linear systems using support functions.
Nonlinear Analysis: Hybrid Systems 4(2), 250–262 (2010)

20. Gulwani, S., Jain, S., Koskinen, E.: Control-flow refinement and progress invariants for
bound analysis. In: PLDI (2009)

21. Gulwani, S., Tiwari, A.: Constraint-Based Approach for Analysis of Hybrid Systems. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 190–203. Springer, Heidelberg
(2008)

22. Halbwachs, N., Proy, Y.-E., Roumanoff, P.: Verification of real-time systems using linear
relation analysis. Formal Methods in System Design 11(2), 157–185 (1997)

23. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: Algorithmic analysis of nonlinear hybrid systems.
IEEE Transactions on Automatic Control 43, 540–554 (1998)

24. Jeannet, B., Halbwachs, N., Raymond, P.: Dynamic Partitioning in Analyses of Numerical
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Abstract. Symbolic approaches to control hybrid systems construct a
discrete approximately-bisimilar abstraction of a continuous control sys-
tem and apply automata-theoretic techniques to construct controllers
enforcing given specifications. For the class of digital control systems
(i.e., whose control signals are piecewise constant) satisfying incremental
input-to-state stability (δ-ISS), existing techniques to compute discrete
abstractions begin with a quantization of the state and input sets, and
show that the quantized system is approximately bisimilar to the original
if the sampling time is sufficiently large or if the Lyapunov functions of
the system decrease fast enough. If the sampling time is not sufficiently
large, the former technique fails to apply. While abstraction based on
Lyapunov functions may be applicable, because of the conservative na-
ture of Lyapunov functions in practice, the size of the discrete abstraction
may be too large for subsequent analyses.

In this paper, we propose a technique to compute discrete
approximately-bisimilar abstractions of δ-ISS digital control systems.
Our technique quantizes the state and input sets, but is based on multiple
sampling steps: instead of requiring that the sampling time is sufficiently
large (which may not hold), the abstract transition system relates states
multiple sampling steps apart.

We show on practical examples that the discrete state sets computed
by our procedure can be several orders of magnitude smaller than exist-
ing approaches, and can compute symbolic approximate-bisimilar models
even when other existing approaches do not apply or time-out. Since the
size of the discrete state set is the main limiting factor in the application
of symbolic control, our results enable symbolic control of larger systems
than was possible before.

1 Introduction

Many cyber-physical systems involve the complex interplay between continuous
controlled dynamical systems and discrete controllers. Correctness requirements
for these systems involve temporal specifications about the evolution of the dy-
namics, which are not easily amenable to classical continuous controller synthesis
techniques. As a result, in recent years, a lot of research has focused on symbolic
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models of systems involving both continuous and discrete components (so called
hybrid systems). A symbolic model is a discrete approximation of the continu-
ous system such that controllers designed for the approximation can be refined
to controllers for the original system. Symbolic models are interesting because
they allow the algorithmic machinery for controller synthesis of discrete systems
w.r.t. temporal specifications [5,22,14] to be used to automatically synthesize
controllers for hybrid systems.

The key to this methodology is the existence of finite-state symbolic mod-
els that are bisimilar to the original system. When the continuous time model
has very simple dynamics, such as clocks, one can show that finite-state bisim-
ilar models exist and can be effectively computed [2]. Unfortunately, even for
very simple dynamics such as stopwatches, finite-state bisimilar models may not
exist [12]. The insight, developed over the past five years, is that for control
of dynamical systems where there is a natural metric on the states, one can
use ε-approximations of classical equivalence relations [8,9] to relate the origi-
nal system and the symbolic model. An ε-approximate bisimulation relaxes the
condition of bisimulation by requiring that two bisimilar states are within ε dis-
tance of each other, and guarantees that for each trajectory starting at one state,
there is a trajectory starting at the other that is always within ε distance away.
For many continuous dynamical systems, ε-approximate bisimulation relations
of finite index have been shown to exist [20,10,17,18].

We focus on digital control systems, in which there is a fixed sampling time τ
and the control action is chosen from a compact set and held constant for τ time
units. Current approaches to building the symbolic model, such as [17,18,10],
proceed as follows. First, they choose discretizations of the state and input sets.
Then, they use either the incremental stability assumption or incremental Lya-
punov functions to show that if the discretizations are sufficiently small, and the
sampling time τ is sufficiently big, then the resulting discrete abstraction is ε-
approximate bisimilar to the original system. If the sample time, which is usually
not under the control of the verification engineer, is not sufficiently large, the
technique will not apply. Even if the method applies, the resulting state space
is often prohibitively large. This is usually the case for symbolic models built
using conservative Lyapunov functions [10].

We show a construction of approximately bisimilar models for digital control
systems that improves upon known algorithms. The insight in our construction
is to consider a number of sampling steps instead of only one step. That is,
we dilate the quantum of time of the control system and observe the system
only every k steps, for some parameter k. Then, instead of requiring that the
sampling time is sufficiently big, we only require that the number of steps is
chosen sufficiently large, so that the technique is always applicable. Further,
we demonstrate experimentally that our technique can give symbolic models
that require a much coarser discretization of the state and input sets, resulting
in symbolic models with many fewer states, while guaranteeing ε-approximate
bisimulation with the original system.
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We have implemented our algorithm on top of Pessoa [16], a tool that com-
putes symbolic models and then performs controller synthesis on the symbolic
models. We show on a set of benchmark examples that our technique produces
symbolic models whose state sets are orders of magnitude smaller than previ-
ous approaches, and can finish computing the symbolic model and performing
controller synthesis in seconds, when previous techniques either do not apply, or
time-out after several hours.

2 Systems and Approximate Equivalences

Preliminaries: The symbols N, Z, R, R+, and R+
0 denote the set of natural,

integer, real, positive, and non-negative real numbers, respectively. A metric
space (Y, d) consists of a set Y and a metric d : Y ×Y → R+

0 on Y . Given a vector
x ∈ Rn, we denote by xi the ith element of x, and by ‖x‖ the infinity norm of x,
namely, ‖x‖ = max{|x1|, |x2|, . . . , |xn|}. Given a matrixM = {mij} ∈ Rn×m, we
denote by ‖M‖ the infinity norm of M , namely, ‖M‖ = max1≤i≤n

∑m
j=1 |mij |.

The symbol In denotes the identity matrix in Rn×n. The closed ball centered at
x ∈ Rn with radius ε is defined by Bε(x) = {y ∈ Rn | ‖x− y‖ ≤ ε}.

Given a measurable function f : R+
0 → Rn, the (essential) supremum (sup

norm) of f is denoted by ‖f‖∞; we recall that ‖f‖∞ = (ess) sup {‖f(t)‖, t ≥ 0}.
A continuous function γ : R+

0 → R+
0 is said to belong to class K if it is strictly

increasing and γ(0) = 0; γ is said to belong to class K∞ if γ ∈ K and γ(r)→∞
as r → ∞. A continuous function β : R+

0 × R+
0 → R+

0 is said to belong to class
KL if, for each fixed s, the map β(r, s) belongs to class K∞ with respect to r
and, for each fixed nonzero r, the map β(r, s) is decreasing with respect to s and
β(r, s)→ 0 as s→∞.

A set B ⊆ Rn is called a box if B =
∏n

i=1[ci, di], where ci, di ∈ R
with ci < di for each i ∈ {1, . . . , n}. The span of a box B is defined as
span(B) = min {|di − ci| | i = 1, . . . , n}. For a box B and η ≤ span(B), de-
fine the η-approximation [B]η = {b ∈ B | bi = kiη for some ki ∈ Z, i = 1, . . . , n}.
Note that [B]η �= ∅ for any η ≤ span(B). Geometrically, for any η ∈
R+ with η ≤ span(B) and λ ≥ η the collection of sets {Bλ(p)}p∈[B]η

is a finite covering of B, i.e., B ⊆
⋃
p∈[B]η

Bλ(p). By defining [Rn]η =

{a ∈ Rn | ai = kiη, ki ∈ Z, i = 1, · · · , n}, the set
⋃
p∈[Rn]η

Bλ(p) is a countable

covering of Rn for any η ∈ R+ and λ ≥ η/2. We extend the notions of span

and approximation to finite unions of boxes as follows. Let A =
⋃M
j=1 Aj , where

each Aj is a box. Define span(A) = min {span(Aj) | j = 1, . . . ,M}, and for any

η ≤ span(A), define [A]η =
⋃M
j=1[Aj ]η.

Digital Control Systems: We now define digital control systems, which are con-
tinuous time controlled dynamical systems with piecewise-constant inputs of a
fixed duration.

Definition 1. A (digital) control system is a tuple Σ = (Rn, τ,U,Uτ , f) where:

– Rn is the state space;
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– τ ∈ R+ is the sampling time;
– U ⊆ Rm is the input set, which is assumed to be a finite union of boxes

containing the origin;
– Uτ contains curves piecewise constant of duration τ , i.e.,

Uτ =
{
υ : R+

0 → U | υ(t) = υ((l − 1)τ), t ∈ [(l − 1)τ, lτ [, l ∈ N
}
;

– f : Rn × U→ Rn is a continuous map satisfying the following Lipschitz as-
sumption: for every compact set Q ⊂ Rn, there exists a constant L ∈ R+ such
that for all x, y ∈ Q and all u ∈ U, we have: ‖f(x, u)− f(y, u)‖ ≤ L‖x− y‖.

A curve ξ :]a, b[→ Rn is said to be a trajectory of Σ if there exists υ ∈ Uτ
satisfying:

ξ̇(t) = f (ξ(t), υ(t)) , (1)

for almost all t ∈ ]a, b[. We also write ξxυ(t) to denote the point reached at time
t under the input υ from initial condition x = ξxυ(0); this point is uniquely
determined, since the assumptions on f ensure existence and uniqueness of tra-
jectories [19]. Although we have defined trajectories over open domains, we shall
refer to trajectories ξxυ :[0, τ ]→ Rn and input curves υ : [0, τ [→ U, with the
understanding of the existence of a trajectory ξ′xυ′ :]a, b[→ Rn and input curve
υ′ :]a, b[→ U such that ξxυ = ξ′xυ′ |[0,τ ] and υ = υ′|[0,τ [. Note that by continuity
of ξ, we have that ξxυ(τ) is uniquely defined as the left limit of ξxυ(t) with t→ τ .

A control system Σ is said to be forward complete if every trajectory is defined
on an interval of the form ]a,∞[. Sufficient and necessary conditions for a system
to be forward complete can be found in [4].

Stability: As in [17,18,10], we assume incremental input-to-state stability of the
control system.

Definition 2. [3] A control system Σ is incrementally input-to-state stable (δ-
ISS) if it is forward complete and there exist a KL function β and a K∞ function
γ such that for any t ∈ R+

0 , any x, x
′ ∈ Rn, and any υ, υ′ ∈ Uτ the following

condition is satisfied:

‖ξxυ(t)− ξx′υ′(t)‖ ≤ β (‖x− x′‖ , t) + γ (‖υ − υ′‖∞) . (2)

Remark 1. For linear control systems, the functions β and γ in Definition 2
can be explicitly computed as follows. It can be readily verified that any linear
control system:

ξ̇ = Aξ +Bυ, ξ(t) ∈ Rn, υ(t) ∈ U ⊆ Rm, (3)

is δ-ISS if and only if A is globally asymptotically stable, i.e., every eigenvalue
of A has strictly negative real part. Then, the functions β and γ can be chosen
as:

β(r, t) =
∥∥eAt∥∥ r; γ(r) =

(
‖B‖

∫ ∞

0

∥∥eAs∥∥ ds) r, (4)

where ‖eAt‖ denotes the infinity norm of eAt.
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The assumption of δ-ISS does not restrict the class of digital control systems
significantly. If a control system Σ is not δ-ISS, one can design an internal
control loop rendering Σ δ-ISS. Assume there exists a smooth controller k(ξ, υ)
rendering control system Σ δ-ISS with respect to the input υ. Note that by using
the results in [21], there exists a positive number τ∗ such that for any τ < τ∗,
the digitized version of k makes the system Σ δ-ISS with respect to the input υ.
Now, one can drive υ by designing another controller on top of k to satisfy some
desired specifications, e.g., using the symbolic abstraction techniques explained
in Section 3.

If Σ is a linear control system, one can use the results in control theory [13] to
design a state feedback gain k rendering Σ globally asymptotically stable and,
hence, δ-ISS. If Σ is a nonlinear control system, one can use the results in [23]
to design controllers rendering Σ δ-ISS.

Metric Systems and Approximate Relations: We now recall the notions of met-
ric systems that we will use as abstract models for control systems as well as
approximate bisimulation relations on metric systems that will be central to our
abstractions.

Definition 3. A metric system S is a quintuple S = (X,U,→, (Y, d), H) con-
sisting of a (possibly infinite) set of states X; a set of inputs U ; a transition
relation →⊆ X ×U ×X; an output metric space (Y, d); and an output function
H : X → Y .

A transition (x, u, x′) ∈→ is written by x
u−→ x′. If x

u−→ x′, state x′ is called a
u-successor, or simply, successor, of state x. A metric system is countable (resp.
finite) if X is countable (resp. finite). A metric system is deterministic if for any
state x ∈ X and any input u ∈ U , there exists at most one u-successor (there
may be none).

Metric systems capture the dynamics of a system through the transition rela-
tion: for states x, x′ ∈ X and u ∈ U , if x u−→ x′ then it is possible to evolve from
state x to state x′ under the input labeled by u. Given a control system Σ =
(Rn, τ,U,Uτ , f), define the metric system S(Σ) = (Rn,Uτ ,→, (Rn, ‖ · ‖), λx.x)
where x

u−→ x′ if there is a trajectory ξxu : [0, τ ]→ Rn such that x′ = ξxu(τ), and
(with abuse of notation) we define the metric ‖ · ‖ : Rn × Rn → R+

0 as ‖x− y‖
for any x, y ∈ Rn.

Intuitively, the metric system captures all the behaviors of the original control
system. The notion of capturing all behaviors is formalized using (approximate)
bisimulation relations [15,9], that we define below.

Definition 4. Let S = (X,U,→, (Y, d), H) and S′ = (X ′, U ′,→′, (Y ′, d′), H ′) be
metric systems with the same output metric spaces (Y, d) = (Y ′, d′). For each
ε ≥ 0, a binary relation R ⊆ X ×X ′ is said to be an ε-approximate simulation
relation from S to S′, if the following three conditions are satisfied:

(i) for every x ∈ X, there exists x′ ∈ X ′ with (x, x′) ∈ R;
(ii) for every (x, x′) ∈ R we have d(H(x), H ′(x′)) ≤ ε;
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(iii) for every (x, x′) ∈ R and u ∈ U , if x
u−→ y in S then there exists some

u′ ∈ U ′ such that x′
u′
−→ ′y′ and (y, y′) ∈ R.

System S is ε-approximately simulated by S′, denoted by S ,ε S′, if there exists
an ε-approximate simulation relation from S to S′.

An ε-approximate simulation relation R ⊆ X×X ′ is an ε-approximate bisim-
ulation relation between S and S′ if R is an ε-approximate simulation relation
from S to S′ and R−1 is an ε-approximate simulation relation from S′ to S.

System S and S′ are ε-approximate bisimilar, denoted by S ∼=ε S′, if there
exists an ε-approximate bisimulation relation R between S and S′.

When ε = 0, the condition (ii) above becomes (x, x′) ∈ R if and only if
H(x) = H ′(x′), and R becomes an exact simulation relation [15]. Similarly,
a 0-approximate bisimulation relation R is an exact bisimulation relation.

We next consider constructing countable abstractions that are ε-approximate
bisimilar to the time discretization of Σ for a given parameter ε ∈ R+.

3 Symbolic Models for Control Systems

3.1 Main Construction

This section contains the main contribution of the paper. We show that a δ-
ISS digital control system Σ admits a countable symbolic abstraction. First, we
consider a variant of the metric system S(Σ) which relates two states if the
second is reached from the first in k · τ time for a parameter k ∈ N.

Given a constant k ∈ N and a digital control system Σ = (Rn, τ,U,Uτ , f),
define the metric system Skτ (Σ) = (Rn,Uτ ,→, (Rn, ‖ · ‖), λx.x) where x

u−→
x′ if there exists a trajectory ξxu : [0, kτ ]→ Rn of Σ satisfying ξxu(kτ) = x′.
Although the metric system Skτ (Σ) relates states of Σ that are k sampling
steps apart, this system is not less accurate than S(Σ) relating states of Σ one
sampling time apart in the sense that for any initialized run with k transitions
in the latter there is one transition in the former and vice versa.

Now, assume that Σ is δ-ISS. Consider a triple q = (η, μ, k), where η ∈ R+ is
the state space quantization which determines a discretization of the state space,
μ ∈ R+ is the input set quantization which determines a discretization of the
inputs, and k ∈ N is a design parameter. Given Σ and q, consider the following
metric system:

Sq(Σ) =

(
[Rn]η,

k∏
i=1

[U]μ,→, (Rn, ‖ · ‖), H ′

)
, (5)

where x
u−→ x′ if there is a trajectory ξxu : [0, kτ ]→ Rn such that ‖ξxu(kτ)−x′‖ ≤

η/2 and H ′ : [Rn]η → Rn is the natural inclusion map mapping x ∈ [Rn]η to
itself. We have abused notation by identifying v ∈ [U]μ with the constant input

curve with domain [0, τ [ and value v and identifying u ∈
∏k

i=1[U]μ with the
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concatenation of k control inputs vi ∈ [U]μ (i.e., u(t) = vi for any t ∈ [(i−1)τ, iτ [)
for i = 1, . . . , k. The set of states of Sq(Σ) is countable in general, and finite
when the set of states of Σ is restricted to a compact set.

The transition relation of Sq(Σ) is well defined in the sense that for every

x ∈ [Rn]η and every u ∈
∏k

i=1[U]μ there always exists x′ ∈ [Rn]η such that

x
u−→ x′. This can be seen by noting that by definition of [Rn]η, for any x̂ ∈ Rn

there always exists a state x̂′ ∈ [Rn]η such that ‖x̂ − x̂′‖ ≤ η/2. Hence, for
ξxu(kτ) there always exists a state x′ ∈ [Rn]η satisfying ‖ξxu(kτ) − x′‖ ≤ η/2.

We can now present the main result of the paper.

Theorem 1. Let Σ = (Rn, τ,U,Uτ , f) be a δ-ISS digital control system, and let
functions β and γ satisfy (2). For any ε ∈ R+ and any triple q = (η, μ, k) of
quantization parameters, we have Sq(Σ) ∼=ε Skτ (Σ) if μ ≤ span(U) and

β(ε, kτ) + γ(μ) + η/2 ≤ ε. (6)

Before giving the proof, we point out that if Σ is δ-ISS, there always exists a
triple q = (η, μ, k) satisfying condition (6). Since β is a KL function, there exists
sufficiently large k ∈ N such that β(ε, kτ) < ε/2; for this value of k, by choosing
sufficiently small values of η and μ, condition (6) can be fulfilled.

Proof. For notational simplicity, fix Skτ (Σ) = (Xkτ , Ukτ ,→kτ , (Rn, ‖ · ‖), Hkτ )
and Sq(Σ) = (Xq, Uq,→q, (Rn, ‖ · ‖), Hq).

We start by proving Skτ (Σ) ,ε Sq(Σ). Consider the relation R ⊆ Xkτ ×Xq

defined by (xkτ , xq) ∈ R if and only if ‖Hkτ (xkτ )−Hq(xq)‖ = ‖xkτ − xq‖ ≤ ε.
SinceXkτ ⊆

⋃
p∈[Rn]η

Bη/2(p) and by (6), for every xkτ ∈ Xkτ there always exists
xq ∈ Xq such that:

‖xkτ − xq‖ ≤ η/2 ≤ ε. (7)

Hence, (xkτ , xq) ∈ R and condition (i) in Definition 4 is satisfied. Now consider
any (xkτ , xq) ∈ R. Condition (ii) in Definition 4 is satisfied by the definition of
R. Let us now show that condition (iii) in Definition 4 holds.

Consider any υkτ ∈ Ukτ of duration kτ . Choose an input uq ∈ Uq satisfying:

‖υkτ |[(l−1)τ),lτ [ − uq|[(l−1)τ),lτ [‖∞ = ‖υkτ ((l − 1)τ)− uq((l − 1)τ)‖ ≤ μ, (8)

for any l = 1, . . . , k. Note that the existence of such uq is guaranteed by the
special shape of U, described in Definition 1, and by the inequality μ ≤ span(U)
which guarantees that U ⊆

⋃
p∈[U]μ

Bμ(p). Now, we have:

‖υkτ − uq‖∞ = max
l=1,...,k

∥∥∥υkτ ∣∣[(l−1)τ),lτ [
− uq

∣∣
[(l−1)τ),lτ [

∥∥∥
∞
≤ μ. (9)

Consider the unique transition xkτ
υkτ−−→kτ x

′
kτ = ξxkτυkτ

(kτ) in Skτ (Σ). It fol-
lows from the δ-ISS assumption on Σ and (9) that the distance between x′kτ and
ξxquq(kτ) is bounded as:

‖x′kτ − ξxquq(kτ)‖ ≤ β (‖xkτ − xq‖, kτ) + γ (‖υkτ − uq‖∞) ≤ β (ε, kτ) + γ (μ) .
(10)
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Since Xkτ ⊆
⋃
p∈[Rn]η

Bη/2(p), there exists x′q ∈ Xq such that:

‖ξxquq(kτ) − x′q‖ ≤ η/2, (11)

which, by the definition of Sq(Σ), implies the existence of xq
uq−→q x

′
q in Sq(Σ).

Using the inequalities (6), (10), (11), and triangle inequality, we obtain:

‖x′kτ − x′q‖ ≤ ‖x′kτ − ξxquq(kτ) + ξxquq(kτ) − x′q‖
≤ ‖x′kτ − ξxquq(kτ)‖ + ‖ξxquq(kτ)− x′q‖
≤ β(ε, kτ) + γ (μ) + η/2 ≤ ε.

Therefore, we conclude (x′kτ , x
′
q) ∈ R and condition (iii) in Definition 4 holds.

Now we prove Sq(Σ) ,ε Skτ (Σ) implying thatR−1 is a suitable ε-approximate
simulation relation. Consider the relation R ⊆ Xkτ ×Xq, defined in the first part
of the proof. For every xq ∈ Xq, by choosing xkτ = xq, we have (xkτ,xq) ∈ R
and condition (i) in Definition 4 is satisfied. Now consider any (xkτ , xq) ∈ R.
Condition (ii) in Definition 4 is satisfied by the definition of R. Let us now
show that condition (iii) in Definition 4 holds. Consider any uq ∈ Uq. Choose
the input υkτ = uq and consider the unique x′kτ = ξxkτυkτ

(kτ) in Skτ (Σ). Using
δ-ISS assumption for Σ, we bound the distance between x′kτ and ξxquq(kτ) as:

‖x′kτ − ξxquq(kτ)‖ ≤ β (‖xkτ − xq‖, kτ) ≤ β(ε, kτ). (12)

Using the definition of Sq(Σ), the inequalities (6), (12), and the triangle inequal-
ity, we obtain:

‖x′kτ − x′q‖ ≤‖x′kτ − ξxquq(kτ) + ξxquq(kτ) − x′q‖
≤‖x′kτ − ξxquq(kτ)‖ + ‖ξxquq(kτ) − x′q‖
≤β(ε, kτ) + η/2 ≤ ε.

Therefore, we conclude that (x′kτ , x
′
q) ∈ R and condition (iii) in Definition 4

holds. ��

Remark 2. Although we assume the set U is infinite, Theorem 1 still holds when
the set U is finite, with the following modifications. First, the system Σ is re-
quired to satisfy the property (2) for υ = υ′. Second, take Uq =

∏k
i=1 U in the

definition of Sq(Σ). Finally, in the condition (6), set μ = 0.

A concern that arises when using Sq(Σ) is the inter-samples behavior: can a
specification be violated for t ∈]0, kτ [ even though it is satisfied at t = 0 and
t = kτ? This concern arises already in existing approaches to compute discrete
abstractions [17,18,10] (setting k = 1).

In the absence of any bounds on inter-samples behaviors, the results of con-
troller synthesis on Sq(Σ) can be interpreted in the following way. If there is
no controller satisfying a safety or co-Büchi specification on Sq(Σ), respectively,
then we can conclude that there is no controller satisfying the same safety or
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co-Büchi specification on Σ, respectively. Dually, if there is a controller satis-
fying a reachability or Büchi specification on Sq(Σ), respectively, then we can
conclude that the refinement of that controller satisfies the same reachability or
Büchi specification on Σ, respectively.

In practice, the parameter τ is chosen to be sufficiently small, and if k ∈ N
is also small, the specification is directly verified against Sq(Σ) ignoring inter-
samples behaviors. If it is important to include the effects of inter-samples be-
haviors, e.g., when τ or k are large, there is a naive way to solve the inter-samples
behaviors, especially in terms of synthesizing a controller. In the process of con-
structing abstract transition system Sq(Σ), every transition can be labeled not
only with the input but also with the sequence of the states visited at times
τ, 2τ, . . . , (k − 1)τ . Now, one can find a symbolic controller for the constructed
abstract transition system with the knowledge of what is happening in the inert-
samples. By doing this, we shrink the inter-samples behaviors in only one sample
time ]0, τ [.

Furthermore, one can over-approximate the reachable states between two
sample points using techniques incorporating zonotopes [7,20] or support func-
tions [11,6]. We illustrate the bounding technique using zonotopes. A transition

xq
uq−→q x

′
q in Sq(Σ) implies the existence of a trajectory ξxquq of Σ satisfying

‖ξxquq(kτ)−x′q‖ ≤ η/2. We can thus enclose xq in a zonotope Z1, enclose Bη/2(x′q)
in a different zonotope Z2, and use results in [7] (see also Proposition 7.31 in
[20]) for a given uq ∈ Uq to obtain another zonotope Zkτ (xq, uq, x

′
q) containing

all the states ξxquq(t) for t ∈ [0, kτ ].
Fix an ε and q such that Sq(Σ) ∼=ε Skτ (Σ). Let Z be the smallest zonotope

enclosing Z1 and Z2. Let ε0(xq, uq, x
′
q) be an upper bound on the Hausdorff

distance between Z and Zkτ (xq, uq, x
′
q), and let ε0 be the supremum over all

choices of xq
uq−→q x

′
q. Then, if Sq(Σ) ∼=ε−ε0 Skτ (Σ), then we know that any

trajectory of Sq(Σ) is at most ε away from a trajectory of S(Σ). If ε0 > ε,
then one needs to reduce the original precision ε and compute a new q, and
iterate. This represents the tradeoff between choosing larger k’s and bounding
the deviations of inter-samples behaviors: choosing a larger k makes satisfying
(6) easier, but can make ε0 larger.

Remark 3. For linear control systems and safety (or co-Büchi) specifications, we
can compute bounds on inter-samples behaviors in the following way. Assume
W ∈ Rn is a compact and convex polyhedron with h vertices x1, . . . , xh. Assume
Σ is a globally asymptotically stable linear control system, defined in (3), with a
compact input set U and Sq(Σ) is its symbolic abstraction. Assume there exists
a symbolic controller on Sq(Σ) satisfying1 �W . What can we say about the
existence of a controller on S(Σ)? It can be readily verified that there exists

a controller satisfying �Ŵ on S(Σ), where Ŵ is the polyhedron with vertices
x̂1, . . . , x̂k, defined by:

x̂i = eAl
∗τxi+A−1

(
eAτ − In

) [
eA(l∗−1)τBu∗1 + . . .+ eAτBu∗l∗−1 +Bu∗l∗

]
, (13)

1 Note that the semantics of LTL would be defined over the output behaviors of Sq(Σ).
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where l∗ and u∗ are computed by:

(l∗, u∗1, . . . , u
∗
l∗) = arg max

l=1,...,k−1
min

u1,...,ul∈U
‖x̃i‖W , (14)

where the symbol ‖ · ‖W denotes the point-to-set distance, viz. ‖x‖W =
minw∈W ‖x− w‖, and

x̃i = eAlτxi +A−1
(
eAτ − In

) [
eA(l−1)τBu1 + . . .+ eAτBul−1 +Bul

]
. (15)

If Ŵ ⊆W , then no new states are introduced through inter-samples behaviors.
A similar analysis can be performed for co-Büchi objectives.

3.2 Comparison with Previous Techniques

We now compare our result (Theorem 1) with existing results on computing
ε-approximate bisimilar discrete abstractions for δ-ISS digital control systems.

The construction in Pola, Girard, and Tabuada [17] essentially fixes k =
1. That is, it computes the metric system S(Σ) and shows that Sq(Σ) is ε-
approximate bisimilar to it if μ ≤ span(U) and β(ε, τ) + γ(μ) + η/2 ≤ ε. This
inequality may not hold for a choice of τ and in that case, the technique fails to
construct an ε-approximate bisimilar abstraction. In contrast, we are guaranteed
that for every given ε and τ , we can choose parameters η, μ, and k such that
Sq(Σ) is ε-approximate bisimilar to Skτ (Σ).

Next, we compare with the construction in Girard, Pola, and Tabuada [10].
First, we need the notion of δ-ISS Lyapunov functions.

Definition 5. [3] Fix a control system Σ. A smooth function V : Rn×Rn → R+
0

is called a δ-ISS Lyapunov function for Σ if there exist K∞ functions α, α, and
σ, and a positive real κ ∈ R+ such that:

(i) for any x, x′ ∈ Rn, α(‖x− x′‖) ≤ V (x, x′) ≤ α(‖x− x′‖);
(ii) for any x, x′ ∈ Rn and for any u, u′ ∈ U,

∂V

∂x
f(x, u) +

∂V

∂x′
f(x′, u′) ≤ −κV (x, x′) + σ(‖u− u′‖).

The following result characterizes δ-ISS in terms of δ-ISS Lyapunov functions.

Theorem 2. [3] Consider the digital control system Σ = (Rn, τ,U,Uτ , f). If U
is convex, compact, contains the origin, and f(0, 0) = 0, then Σ is δ-ISS iff it
admits a δ-ISS Lyapunov function.

The results in [10] additionally assume:

|V (x, y)− V (x, z)| ≤ γ̂(‖y − z‖), (16)

for any x, y, z ∈ Rn, and some K∞ function γ̂. As explained in [10], this as-
sumption is not restrictive provided V is smooth and we are interested in the
dynamics of Σ on a compact subset of Rn, which is often the case in practice.
The main result of [10] is as follows.
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Table 1. Parameters of Sq(Σ) and overall required time for constructing Sq(Σ) and
synthesizing controllers. The notation N/A means not applicable. We use the notation
∞ to indicate that the size of Sq(Σ) is too large for Pessoa to finish constructing the
abstraction.

Parameters of Sq(Σ) Time
Control τ ε μ=0.5
Systems [17] [10] Our approach [17] [10] Our approach

η η (η, k)

DC motor 0.02 1 N/A 0.012 (0.5, 2) N/A ∞ 1.42s

Robot 0.002 0.075 0.0027 0.0022 (0.01, 4) ∞ ∞ 45.29s

Pendulum 0.02 0.25 N/A 0.0007 (0.1, 2) N/A ∞ 33s

Theorem 3. [10] Let Σ be a δ-ISS digital control system admitting a δ-ISS
Lyapunov function V . For any ε ∈ R+ and parameters q = (η, μ, 1), we have
Sq(Σ) ∼=ε S(Σ) if μ ≤ span(U) and

η/2 ≤ min

{
γ̂−1

((
1− e−κτ

)
α(ε)− 1

κ
σ(μ)

)
, α−1 (α(ε))

}
, (17)

For a given sampling time τ ∈ R+, there always exist η, μ ∈ R+ satisfying the
condition (17). However, it can be readily verified that if the sampling time τ
is very small, the right hand side of the inequality (17) is very small as well.
Therefore, the upper bound on η will be very small, resulting in a large symbolic
abstraction. On the other hand, we can always choose k ∈ N in (6) appropriately,
to control the size of the symbolic model, justifying advantage of our proposed
approach in comparison with the approach in [10]. In the next section, we demon-
strate experimentally that our approach can result in discrete abstractions with
orders of magnitude fewer states than the abstractions using Theorem 3.

4 Examples

We now experimentally demonstrate the effectiveness of our new construction. In
the examples below, the computation of the abstractions Sq(Σ) was performed
using the tool Pessoa [16] on a laptop with CPU Intel Core 2 Duo @ 2.4GHz. We
assume that control inputs are piecewise constant of duration τ and that Uτ is
finite and contains curves taking values in [U]0.5. Hence, as explained in Remark
2, μ = 0 in the conditions (6) and (17). In the examples below, all constants
and variables use SI units. Controllers enforcing the specifications were found by
using standard algorithms from game theory, see e.g. [14,20], as implemented in
Pessoa. Table 1 summarizes the experimental results.



Approximately Bisimilar Symbolic Models for Digital Control Systems 373

Fig. 1. Upper and central panels: evolution of ξ1 and ξ2 with initial condition (0, 0).
Lower panel: input signal.

4.1 DC Motor

Model: Consider a linear DC motor (from [1]) described by:

Σ :

{
ξ̇1 = − b

J ξ1 +
K
J ξ2,

ξ̇2 = −K
L ξ1 −

R
L ξ2 +

1
Lυ,

(18)

where ξ1 is the angular velocity of the motor, ξ2 is the current through the
inductor, υ is the source voltage, b = 10−4 is the damping ratio of the mechanical
system, J = 10−4 is the moment of inertia of the rotor, K = 5 × 10−2 is the
electromotive force constant, L = 2× 10−3 is the electric inductance, and R = 1
is the electric resistance. Using Remark 1, it is readily seen that Σ is δ-ISS.

Abstraction: We assume that U = [−1, 1]. We work on the subset D =
[−10, 10] × [−10, 10] of the state space of Σ. For a sampling time τ = 0.02,
the function β in (4) is given by β(ε, τ) = 1.26ε. Hence, the results in [17] can-
not be applied because the condition (6) of Theorem 1 cannot be fulfilled when
k = 1. On the other hand, by choosing k = 2, we have β(ε, kτ) = 0.73ε imply-
ing that the condition (6) of Theorem 1 can be fulfilled. For a precision ε = 1,
we construct a symbolic model Sq(Σ). The parameters of Sq(Σ) based on the
results in this paper as well as the construction in [10] are given in Table 1. The
proposed state space quantization parameter in [10] is roughly 42 times smaller
than our quantization parameter. Since Σ is a 2 dimensional system, the size of
our abstraction is 422 times smaller than the one in [10].

Example control problem: Consider the objective to design a controller forcing the
trajectories of Σ to reach and stay within W = [9, 10]× [−1, 1] thereafter while
always remaining within Z = [−10, 10]× [−1, 1], that is, the LTL specification

��W ∧�Z. Using the result in Remark 3, we compute Ẑ and Ŵ and note that
in this case, Ẑ ⊆ Z and Ŵ ⊆ W . Hence, the existence of a symbolic controller
on Sq(Σ) satisfying ��W ∧ �Z implies the existence of a controller satisfying
��W ∧ �Z on Σ. In Figure 1, we show the closed-loop trajectory stemming
from the initial condition (0, 0) as well as the evolution of the input signal. It
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Fig. 2. Evolution of the robot and the input signals with initial condition (0.9, 0.9)

is readily seen that the specifications are satisfied in the sense that trajectories
of Σ reach and stay within W ε = [9 − ε, 10]× [−1 − ε, 1 + ε] thereafter while
always remaining within Zε = [−10, 10]× [−1− ε, 1 + ε].

4.2 Motion Planing

Model: Consider a linear model of a robot described by:

Σ :

{
ξ̇1 = −10ξ1 − ξ2 + 10υ1,

ξ̇2 = −ξ1 − 10ξ2 + 10υ2.
(19)

The position of the robot is given by the pair (ξ1, ξ2). The pair (υ1, υ2) are
the control inputs, expressing the velocity of the wheels. Using Remark 1, it is
readily seen that Σ is δ-ISS.

Abstraction: We assume that (υ1, υ2) ∈ U = [−1, 1] × [−1, 1]. We work on
the subset D = [−1, 1]× [−1, 1] of the state space of Σ. For a sampling time
τ = 0.002, the function β in (4) is given by β(ε, τ) = 0.982ε. Hence, the results
in [17] can be applied. On the other hand, by choosing k = 4, we have β(ε, kτ) =
0.93ε implying that the condition (6) of Theorem 1 can also be fulfilled. For a
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q1

a

q2

a

q3

u

q4

u

Fig. 3. Finite system describing the schedulability constraints. The lower part of the
states are labeled with the outputs a and u denoting availability and unavailability of
the microprocessor, respectively.

precision ε = 0.075, we construct a symbolic model Sq(Σ). The parameters of
Sq(Σ) based on the results in this paper and those from [17,10] are given in
Table 1. The state space quantization parameters in [17,10] are roughly four
times smaller than our η. Therefore, the size of our abstraction is roughly 42

times smaller than the ones in [17,10].

Example control problem: Consider the problem of designing a controller navigat-
ing the robot to reach the target set W = [−1, − 0.9]× [−0.1, 0.1], indicated
with a target box in the far left hand side in Figure 2, while avoiding the ob-
stacles, indicated as rectangular boxes in Figure 2, and then remain indefinitely
inside W . If we denote by φ and ψ the predicates representing the target and
obstacles, respectively, this specification can also be expressed by the LTL for-
mula ��φ∧�¬ψ. If we express the non-obstacle area in Figure 2 as the union of
l polyhedra Zi, for i = 1, . . . , l, then using the result in Remark 3, we compute
Ẑi and Ŵ , and note that for this example, Ẑi ⊆ Zi, for each i = 1, . . . , l, and
Ŵ ⊆ W . Hence, a symbolic controller on Sq(Σ) satisfying ��φ ∧ �¬ψ implies
there exists a controller satisfying the specification on Σ. In Figure 2, we show
the closed-loop trajectory stemming from the initial condition (0.9, 0.9) and the
evolution of the input signals. It is readily seen that the specification is satisfied.

4.3 Pendulum with Resource Constraints

Model: Consider a nonlinear model of a pendulum on a cart (from [17]) described
by:

Σ :

{
ξ̇1 = ξ2,

ξ̇2 = − g
l sin (ξ1)−

h
mξ2 + υ,

(20)

where ξ1 and ξ2 are the angular position and velocity of the point mass, υ is the
torque applied to the cart, g = 9.8 is acceleration due to gravity, l = 5 is the
length of the rod, m = 0.5 is the mass, and h = 3 is the coefficient of friction.
As shown in [17], Σ is δ-ISS.

Abstraction: We assume that U = [−1.5, 1.5]. We work on the subset D =
[−1, 1] × [−1, 1] of the state space of Σ. As shown in [17], the function β
in (2) is given by β(ε, τ) = 6.17e−2.08τε, so for a sampling time τ = 0.5, we
have β(ε, τ) = 2.18ε. Hence, the results in [17] cannot be applied because the
condition (6) of Theorem 1 cannot be fulfilled when k = 1. On the other hand,
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Fig. 4. Upper and central panels: evolution of ξ1 and ξ2 with initial condition (−0.9, −
1). Lower panel: input signal.

by choosing k = 2, we have β(ε, kτ) = 0.77ε, so the condition (6) of Theorem
1 is fulfilled. For a precision ε = 0.25, we construct a symbolic model Sq(Σ).
The parameters of Sq(Σ) based on the results in this paper and [10] are given
in Table 1. The state space quantization parameter in [10] is roughly 147 times
smaller than our quantization parameter. Therefore, the size of the symbolic
model computed by our algorithm is roughly 1472 ∼ 2× 104 times smaller than
the one in [10].

Example control problem: Suppose our objective is to design a controller forcing
the trajectories of the system to reach the target setW = [−0.7, −0.6]× [−1, 1]
and to remain indefinitely insideW . Furthermore, to add a discrete component to
the problem, we assume that the controller is implemented on a microprocessor,
executing other tasks in addition to the control task. We consider a schedule
with epochs of four time slots in which the first two slots are allocated to the
control task and the rest of them to other tasks. The expression time slot refer
to a time interval of the form [k′τ, (k′ + 1)τ [ with k′ ∈ N and where τ is the
sampling time. Therefore, the microprocessor schedule is given by:

|aauu|aauu|aauu|aauu|aauu|aauu|aauu| . . . ,

where a denotes a slot available for the control task and u denotes a slot allot-
ted to other tasks. The symbol | separates each epoch of four time slots. The
schedulability constraint on the microprocessor can be represented by the finite
system in Figure 3. Initial states of the finite system are distinguished by being
the target of a sourceless arrow. In Figure 4, we show the closed-loop trajectory
stemming from the initial condition (−0.9, − 1), and the evolution of the input
signal, where the finite system initialized from state q3.
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Abstract. Formal verification and validation is a fundamental step for the certifi-
cation of railways critical systems. Many railways safety standards (e.g. the CEN-
ELEC EN-50126, EN-50128 and EN-50129 standards implement the mandatory
safety requirements of IEC-61508-7 standard for Functional and Safety) currently
mandate the use of formal methods in the design to certify correctness.

In this paper we describe an industrial application of formal methods for the
verification and validation of “Logica di Sicurezza” (LDS), the safety logic of a
railways ERTMS Level 2 system developed by Ansaldo-STS. LDS is a generic
control software that needs to be instantiated on a railways network configuration.
We developed a methodology for the verification and validation of a critical sub-
set of LDS deployed on typical realistic railways network configurations. To show
feasibility, effectiveness and scalability, we have experimented with several state
of the art symbolic software model checking techniques and tools on different
network configurations. From the experiments, we have successfully identified
an effective strategy for the verification and validation of our case study. More-
over, the results of experiments show that formal verification and validation is
feasible and effective, and also scales reasonably well with the size of the config-
uration. Given the results, Ansaldo-STS is currently integrating the methodology
in its internal Development and Verification & Validation Flow.

1 Introduction
The verification of industrial safety critical systems is paramount. It is a particularly dif-
ficult activity because of the size and complexity of the systems. The most frequently
used methods, simulation and testing, can increase the reliability of the systems, but,
since they are not exhaustive, they cannot show the absence of errors. Failure in detect-
ing an error in a safety critical system can lead to a catastrophic situation.

Formal verification has proved to provide a complete coverage. Particularly for rail-
ways critical systems, formal verification is becoming fundamental for the certification
of such systems. The CENELEC EN-50126, EN-50128 and EN-50129 standards, that
implement the mandatory safety requirements of the IEC-61508-7 standard for Func-
tional and Safety, require the use of formal verification techniques to certify the cor-
rectness of the design. Despite their importance, the application of such techniques
in industrial settings is by no means trivial. First, a proper verification and validation
methodology has to be designed to allow for an efficient handling of the size of the
system under verification. Second, the verification and validation techniques should in-
tegrate smoothly in the company internal Development, Verification & Validation Flow.
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In this paper we describe an industrial application of formal methods for the verifi-
cation and validation of a fragment of railways critical software. The software is called
Logica di Sicurezza (LDS), which is a realization of the safety logic of a Level 2 Euro-
pean Railways Train Management System (ERTMS) developed by Ansaldo-STS. LDS
is a generic distributed complex control software, which is designed to manage and con-
trol the train spacing in an ERTMS. LDS also guarantees the safety of the controlled
railway network, e.g., no train collisions and proper distance among the trains. LDS is
programmable and scalable, in the sense that, different train spacing control systems can
be developed by instantiating the generic controller to a specific railway network config-
uration. For our case study, we have focused on radio block sections (RBS), which are
a critical fragment of LDS that controls routes in railways. We consider instantiations
of RBS on typical realistic railways network configurations.

The verification of the RBS application, carried out by Ansaldo-STS, has been rely-
ing on manual inspections and on simulations, where the simulation vectors were man-
ually designed based on the experience of the engineers. Achieving full coverage was
considered a very challenging task. We show in this paper a methodology that we have
identified for applying formal verification to the considered application. This method-
ology is a result of a thorough evaluation of the state-of-the-art verification techniques
that have shown to be highly effective in the verification of large systems. In particular,
we focus on symbolic model checking for software as it is exhaustive and completely
automatic, and thus allows for an easy integration within the Development and Verifi-
cation & Validation Flow.

We have devised a verification flow for the verification of the considered application.
We first translate the specifications of the case study, written in the VELOS language,
a restricted version of the C++ language developed and used by Ansaldo-STS, into
forms that can be verified by existing tools. In particular we translate such specifica-
tions into NUSMV models and sequential C programs. The translation into NUSMV
models allows us to use the portfolio of advanced verification techniques, like bounded
model checking [7], temporal induction [19], and CEGAR [15], that have been imple-
mented in an extended version of the NUSMV model checker [12] developed within
Fondazione Bruno Kessler (FBK). The translation into sequential C programs allows us
to experiment with advanced software model checking techniques, like the eager and
lazy predicate abstractions [17,4], and enables the use of off-the-shelf software model
checkers for C, like CBMC [16], BLAST [4], SATABS [17], CPACHECKER [5], and
KRATOS [14] (developed by FBK). We have further customized KRATOS and have ex-
tended its analysis to achieve the verification needs identified during the project.

We have carried out experiments with the above mentioned verification tools on a
significant set of benchmarks obtained from the critical subset of the considered ap-
plication. The experiment results allow us to devise an effective strategy, based on a
combination of verification approaches, that greatly improves the efficiency of the veri-
fication. The results also provide evidence that formal verification in our industrial set-
ting is feasible and effective. Given these results, Ansaldo-STS is currently integrating
the methodology and tools in its Development and Verification & Validation Flow.

This paper is organized as follows. In Section 2 we describe LDS application. In
Section 3 we present an overview of formal verification techniques. In Section 4 we
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Fig. 1. The application and its environment

describe the verification methodology, along with the extensions to KRATOS. In Sec-
tion 5 we show the results of our experimental evaluation. In Section 6 we discuss
related work. Finally, in Section 7 we draw some conclusion, including the lessons
learned, and discuss future work.

2 The Application: Logica Di Sicurezza
The work in this paper is concerned with the verification of a complex real-world safety
critical application developed by Ansaldo-STS. The application is used to manage and
control the train spacing in an ERTMS railway system. Figure 1 shows a high-level
architecture of the application and its environment. Our work has focused on Logica
di Sicurezza (LDS), a software subsystem that controls train movements and track-side
equipment that is connected to track-side units, e.g., track circuits, signals and switches.
LDS also implements the logical functions that can be requested by human operators,
e.g., preparing the tracks for moving trains.

LDS is highly programmable and scalable: it is possible to program the modalities
under which the requested logical functions are performed; and to program various con-
figurations of track-side units. Such a distinguishing feature is achieved by means of a
logical architecture composed of a scheduler controlling the activation of application-
dependent processes. LDS is designed by specifying the processes controlled by the
scheduler, which are then converted into executable code. In general, LDS can be
thought of as a reactive system, acting along the following loop: read status from track-
side units and input from the operator, run the processes through the scheduler to apply
the control law of the logic, and write commands to actuators of the units.

The specification of processes in this architecture is non-trivial. Indeed, a railway
station can have a large number of physical devices, and processes of many differ-
ent kinds are required to take into account the relations and interconnections among
physical devices. Moreover, although the software is completely deterministic and the
possible external events (e.g. faults of peripheral devices) have been exhaustively clas-
sified, there is still a high degree of non-determinism. The software does not know if
and when external events will happen, e.g., certain tasks can be requested at any time.
Furthermore, the physical devices will typically react to controls with (unpredictable)
delays, and may even show faulty behaviors.
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Fig. 2. A radio block section fragment of LDS and the railway layout that the fragment controls

Currently, the specification is validated by means of traditional techniques, such as
simulation. Designing test cases that ensure high code coverage, as well as stimulate
the whole specification to exercise all the critical functionalities, as mandated by the
standards, is non-trivial. This is typically done manually, and thus often miss some
critical functionalities.

2.1 The Radio Block Section

In this paper, we focus on the radio block section (RBS) fragment of LDS, a critical
subsystem responsible for the allocation of logical routes to trains. In particular, as a
case study, we consider the configuration corresponding to the physical layout of the
railways depicted in the lower part of Figure 2 with thick dark lines. Some entities in
this fragment correspond to physical entities, while some others to logical ones. A com-
ponent is a logical reservation for a segment of line. A point is a logical controller for
a switch. For example, the component Ci and the point Pi correspond, respectively,
to the segment Ci and the switch Pi in Figure 2. A radio block section (RBS) corre-
sponds to a logical route through the physical displacement. An RBS is composed of
several components and points, and enclosed by an initial and final end-of-authority
(EOA). In Figure 2 EOAI0, EOAI1, and EOAI2 are the initial EOA, while EOAF1 and
EOAF2 are the final EOA. Figure 2 shows the ten RBS’s of the physical layout in dif-
ferent dashed/dotted (colored) lines; each route in the figure denotes two RBS’s, for
left-to-right and right-to-left directions.

Figure 2 (upper part) shows the fragment of LDS that we have focused on in this ac-
tivity. The (light blue) rectangle represents the scheduler, the (green) cone is the whole
set of processes in LDS, the dark (blue) triangles represent the RBS’s, and the light
(pink) triangles represent the call graphs of the “underlying” processes. Each process
consists of data and functions to modify the data. Processes are organized hierarchically
according to the call graph of the whole logic of LDS, e.g., RBS processes can call the
functions of sub-processes illustrated in Figure 2 by the light (pink) triangles.



382 A. Cimatti et al.

2.2 Verification Properties of the RBS

Ansaldo-STS has identified five parametric properties for the RBS fragment: one for
each component and four for each RBS. These properties correspond to the safety re-
quirements of the considered application, and are formulated as invariants that have to
hold at every read-scheduler-output cycle. For the case study in Figure 2, there are 12
components and 10 RBS’s, and this amounts to have 52 properties. An example of a
property is “no two different trains occupy the same track”. An additional property is
introduced to test the consistency of the physical layout configuration, so in total we
have 53 properties.

Since the focus of the analysis is on the RBS’s, along with the processes that they in-
duce, we abstract away non-RBS processes, and use an abstracted scheduler that repeat-
edly chooses one of the ten RBS’s, depending on a certain condition, starts its process
by executing one of its functions, until some exiting condition is met. To avoid having
a too coarse abstraction, we specified a number of assumptions, e.g., constraints over
signals, that have to be satisfied by the abstracted parts. The assumptions have been
thoroughly discussed, refined, and approved by Ansaldo-STS.

2.3 The VELOS Specification

A specification of LDS consists of (1) an entity description of the physical and logical
entities of LDS, and (2) a configuration describing a particular physical layout (relation
between the entities). The entity description is specified in a structured programming
language, called the VELOS language, that resembles the C++ language. It contains
classes that define component, point, EOA, and RBS. Like typical C++ classes, each of
these classes contains member variables and member functions. The values of member
variables constitute the states of the corresponding entity, while the member functions
are used to modify the states of the entity. In particular, the functions of the RBS class
define the logic of RBS. Member functions can contain loops that can statically be un-
rolled. They are also non-recursive, and thus can be inlined. Operations in these func-
tions only involve data of types Boolean, bounded integers, or enumerations, with no
pointers and no dynamic memory allocations. (These restrictions are standard for this
kind of applications.) The properties to verify are expressed in a temporal logic, and are
attached to the corresponding classes in the entity description.

The configuration specifies instances of the classes in the entity description as well
as the relation between these instances. In particular, it describes the RBS’s and entities
that constitute them. Currently, both the entity descriptions and the configurations are
created manually by the design engineers. The actual assembly code deployed on the
physical devices is automatically generated from the specifications.

3 Verification Techniques and Tools
The problem of selecting the right techniques and tools for the verification of LDS
is non-trivial. First, the techniques and tools must scale to industrial-sized designs. In
particular, the chosen techniques should address the state explosion problem that is very
common in such applications. Second, the right techniques are often not apparent due
to a representational issue. The product development team have their own specification
language that is far from the languages assumed by most verification techniques or
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tools. Third, the high-efficiency demand from the development team often cannot be
met by existing techniques and tools. Customizations of and extensions to the existing
techniques and tools, as well as a good strategy in combining them, are required to
boost the performance.

In this work we appeal to symbolic (software) model checking techniques. Being
completely automatic, model checking techniques can easily be integrated into the
development cycle. Moreover, symbolic techniques are known to be effective in com-
bating the state explosion problem. In what follows, we review some state of the art
symbolic software model checking techniques: bounded model checking (BMC) [7]
and counter-example guided abstraction refinement (CEGAR) [15]. We focus on model
checking safety properties in the form of program assertion. Although, they are often
used to represent requirements, they can also be used to generate execution traces that
help the generation of test cases for automatic test pattern generation [22].

Software model checking has proved to be an effective technique for verifying se-
quential programs. In particular advances in solvers for satisfiability modulo theory
(SMT) [2] have enabled for efficient Boolean reasoning and abstraction computation,
which in turn have enabled SMT-based software model checkers to efficiently verify
large programs with significant improvements in precision and accuracy.

In the BMC approach one verifies the program by specifying some bounds to guar-
antee termination. The bounds can be the number of executed statements, the depth of
recursions, or the number of loop unwindings. This approach can only be used to dis-
prove assertions (or bug finding). The seminal work on temporal induction [19] uses
BMC, not only to disprove properties, but also to prove invariants.

In the CEGAR paradigm one checks if an abstraction (or over-approximation) of
the program has an abstract path leading to an assertion violation. If such a path does
not exist, then the program is safe. When such a path exists and is feasible in the con-
crete program, then the path is a counter-example witnessing the assertion violation.
Otherwise, the unfeasible path is analyzed to extract information needed to refine the
abstraction. For the CEGAR approach, two predicate abstraction based techniques have
proved to be effective: the eager abstraction [17] and the lazy abstraction [4]. Predicate
abstraction [23] is a technique for extracting a finite-state program from a potentially
infinite one by approximating possibly infinite sets of states of the latter by Boolean
combinations of some predicates. In each CEGAR iteration of the eager abstraction,
one verifies a Boolean program extracted from the input program based on a set of
predicates. The Boolean program consists only of Boolean variables, each of which cor-
responds to a predicate used in the abstraction. The lazy predicate abstraction is based
on the construction and analysis of an abstract reachability tree (ART). The ART repre-
sents an over-approximation of reachable states obtained by unwinding the control-flow
graph (CFG) of the program. An ART node typically consists of a location in the CFG,
a call stack, and a formula representing a region or a set of data states. The formula in
an ART node is obtained by means of predicate abstraction.

4 Verification Approach

We explore two directions for the verification of a VELOS specification: translation into
a behaviorally equivalent NUSMV model, and translation into a behaviorally equivalent
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C program. The translation into a NUSMV model enables the use of a rich portfolio
of verification techniques, e.g., BMC [7], temporal induction [19], CEGAR [15], all
available in an extended version of the NUSMV model checker [12]. The translation
into a sequential C program enables the use of mature off-the-shelf software model
checking techniques and tools. Figure 3 shows our verification and validation flow.

To support our approach, we have implemented a translator, called the VELOS tool,
that takes a VELOS specification as an input, and outputs a NUSMV model or sequen-
tial C programs. Independently of the final output, the VELOS tool always starts with
parsing and type checking. During this phase all the syntactic and semantic errors, if
any, are detected and reported to the user. The remaining steps deal with the specific
target verification language. In what follows we describe the details of the translation,
as well as some issues related to verifying multiple assertions using existing software
model checkers. We also explain a customization of and an extension to our C model
checker, KRATOS, to efficiently prove multiple assertions simultaneously.

4.1 From VELOS Specifications to NUSMV Models

To verify the VELOS specification, we have to model the application-environment loop.
We model such an interaction in the NUSMV model using the synchronous semantics
of NUSMV. That is, each transition in the model corresponds to a complete iteration of
the loop. Note that this loop may contain an inner loop induced by the scheduler. This
latter loop (also called the scheduler loop), however, is expected to be finite, and often
its termination can be proved by means of simple syntactic criteria. For our case study,
we are able to unroll completely the scheduler loop.

The translation of a VELOS specification to a NUSMV model is a complex trans-
formation because of the difference between the paradigm of the two languages. A
VELOS specification is in an imperative sequential language with control flow branches
and variables assignments. NUSMV language is a transition-based data-flow language,
where, for each variable, it is necessary to specify the precise transition relation between
the current and next time step variables, including the frame conditions. Moreover, the
flow of control in the sequential language has to be encoded explicitly in the NUSMV
model using a program-counter variable.

The translation into NUSMV models first removes loops and function calls by, re-
spectively, unrolling and inlining them. Such removals are possible due to the restriction
in the VELOS specification, as described in Section 2.3. Finally, the resulting sequen-
tial program is translated into its static single assignment (SSA) [18] form, where each
variable can be assigned at most once. Such a form reflects the final transition relation
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if (a > b) a += 2;
else b = a;

a_1 = a_0 + 2;
b_1 = a_0;
a_2 = (a_0 > b_0) ? a_1 : a_0;
b_2 = (a_0 > b_0) ? b_0 : b_1;

Fig. 4. Fragment of code (left), and corresponding SSA (right)

in the current and next time steps. For example, for the fragment of code on the left of
Figure 4, the SSA conversion would generate the code on the right. In this translation
we assumed the initial value of variables a and b are a 0 and b 0, respectively. After
the SSA conversion, the final value of every variable V is always V i with the highest
index i. This corresponds to the “ASSIGN next(V) := V_i;” NUSMV statement.
In terms of the application, the value of V i is the value of V after a complete iteration
of the application-environment loop. All others V j only hold values of intermediate
expressions, and thus we can use the “DEFINE V j := expression;” construct to
avoid the introduction of explicit variables for their representation, which in turn enable
NUSMV to inline them with the defined expressions.

The invariant properties in the VELOS specification are output directly as
INVARSPEC NUSMV statements [11]. The translation also maintains a one-to-one
correspondence between variables in the NUSMV model and the variable in the VE-
LOS specification, e.g., for a class instance I of class C having class member variable V,
a NUSMV variable I V is declared. Such a correspondence is important for examining
counter-examples when some invariants fail to hold, and also for certification purposes.

To obtain NUSMV models that are amenable to be checked by NUSMV, we apply
several optimizations in the VELOS tool. In particular, we reduce the number of vari-
ables and perform range analysis over possible values for variables. After this analysis,
only the Boolean and enumeration types remain, and both are supported by the NUSMV
language. For instance, if a variable has an initial value and is never re-assigned, than
the variable can be removed completely by converting it into a constant.

4.2 From VELOS Specifications to C Programs

The translation from VELOS specifications into C programs is simpler than the transla-
tion into NUSMV models because the language of VELOS and C are both imperative
and have a lot in common. In particular, the VELOS tool converts member variables
and member functions of class instances into C global variables and functions. Similar
to the translation into NUSMV models, the translation into C programs also keeps a
one-to-one correspondence between the variables in the resulting C programs and the
variables in the VELOS specification.

The C program consists of a top-level main loop that models the application-
environment loop. At the beginning of the loop body, the inputs are read and latched. As
a common practice in software model checking, we use an extension of C that includes
constructs to model non-deterministic data acquisition. The body performs computa-
tions according to the logic of the applications. It contains loops that are expected to be
finite, and thus in principle can be unrolled. But in general, the unrolling may depend
on the input acquired and on the computations performed within the loop. In particular,
an inner loop of the top-level main loop corresponds to the scheduler loop.
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int b1 = 0, b2 = 0;
assert(b1 != 0);
assert(b2 != 0);

trueϕ ¬ϕ ¬ϕ

(a) (b) (c)
Fig. 5. Fragment of code (a), and assertions as branches in the control-flow graph: standard se-
mantics (b) and assertion-as-property semantics (c)

All properties specified in the VELOS specification are translated into program as-
sertions, and are positioned after all the function calls in the top-level loop body.

4.3 Model Checking Sequential Software with Multiple Assertions

The resulting C programs contain many program assertions. Here, we are interested in
checking if each assertion in the set can be violated. However, if we put all assertions in
a single C program, then it might be the case that some violated assertions can prevent
other assertions violation from being detected. Indeed, given an assertion assert(ϕ),
the standard semantics requires that the execution of an assertion will pass if ϕ holds;
otherwise a violation is detected and the execution quits. For instance, in the small
program on the left of Figure 5 the second assertion violation can never be detected
because the first one is always violated.

We explore two directions in addressing the problem of multiple assertions. First,
for each property in the specification, we invoke the VELOS tool to generate a single
separate C program such that the only assertion in the program is the property. Second,
we invoke the VELOS tool to generate a single C program that contains all properties (or
assertions) in the specification, but, during the analysis, we give a different semantics
to the assertions such that it allows the execution to escape from assertion violations.

In the first direction, most existing software model checkers for C are readily ap-
plicable to verify the generated C programs. However, for a single specification, these
model checkers have to be run many times, one run for each of the generated C pro-
grams. This bounds to be inefficient. Particularly for the CEGAR-based tools, as the
generated C programs come from the same specification, these tools might perform the
same abstraction-refinements on these programs.

To overcome these problems, in the second direction, we have extended the sequen-
tial analysis of KRATOS to analyze multiple assertions. First, we treat assertions as prop-
erties: given an assertion assert(ϕ), the execution of the assertion can pass whether
or not ϕ holds, but can also quit when ϕ does not hold. To support this semantics, we
customize KRATOS to translate the assertion assert(ϕ) into a different kind of branch
in the CFG such that the branch follows the new semantics. That is, instead of translat-
ing the assertion into the (b) branch of Figure 5, KRATOS translates the assertion into
the (c) branch. With the new translation, checking for an assertion violation can still be
reduced to the reachability analysis of the error node (dark node in Figure 5).

Second, we have implemented two different sequential analyses for checking multi-
ple properties simultaneously: all-in-one-go and one-at-a-time. The all-in-one-go anal-
ysis is basically the standard lazy predicate abstraction, but instead of quitting the
analysis on finding an assertion violation, the analysis continues the search for other
violations. The known violated assertions are no longer considered in the successive
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searches. The one-at-a-time analysis, unlike the all-in-one-go, in one run checks one
assertion at a time, but uses the ART constructed for checking the previous assertions
to prove the subsequent assertions. On finding that an assertion assert(ϕ) cannot
be violated, the corresponding CFG branch is strengthened by turning it into the (b)
branch of Figure 5. The one-at-a-time analysis allows for performing an on-the-fly slic-
ing with respect to the checked assertion. Such a slicing can reduce the size of symbolic
expressions involved in the abstraction computations, and can also exclude predicates
irrelevant to the assertion being checked. The analysis also allows for partitioning the
predicates used to prove each assertion, and collecting loop invariants from the con-
structed ART that will be used to strengthen the successive searches.

5 Experimental Evaluation
5.1 Benchmarks

In our evaluation we consider the 10-RBS case study described in Section 2. To eval-
uate the scalability of the considered techniques, we create a set of benchmarks by
varying the number of RBS’s that can be chosen by the scheduler. The RBS’s that can
be chosen are called active RBS’s. Given the 10-RBS case study, in total we have 1023
benchmarks with at least one active RBS.

The experiments have been carried out on all of the benchmarks. For presentation,
in this paper we report only the statistics obtained from the experiments on two fam-
ilies of 10-RBS benchmarks: one family with one active RBS, subsequently called 1-
active-RBS, and the other with all ten active RBS’s, subsequently called 10-active-RBS.
Experiments on other N -active-RBS families, for 1 < N < 10, exhibit patterns of
statistics that are similar to either that of the 1-active-RBS or that of the 10-active-RBS.
The 1-active-RBS family consists of 10 benchmarks and the 10-active-RBS family con-
sists of only 1 benchmark. As explained in Section 2, each benchmark has 53 assertions.

To experiment with NUSMV, the VELOS tool generates an NUSMV model for each
of the benchmarks. Each of 1-active-RBS NUSMV models consists of about 7 KLOC
and has about 350 elementary Boolean variables. The 10-active-RBS NUSMV model
consists of about 60 KLOC and has about 625 elementary Boolean variables.

To evaluate the software model checking approach, as explained in Section 4.3, the
VELOS tool has to generate a single C program for each of the assertions. Thus, for the
1-active-RBS family, we have 530 C programs, and, for the 10-active-RBS family, we
have 53 C programs. Each of the generated C program is of size 40 KLOC.

5.2 Setup and Configurations

For evaluating the software model checking approach, we experimented with KRATOS,
BLAST-2.7 [8], and CPACHECKER [5] for the lazy predicate abstraction, with SATABS-
3.0 [17] (with CADENCE SMV as the back-end) for the eager predicate abstraction, and
with CBMC-4.0 [16] for the BMC approach. For SATABS, BLAST, and CPACHECKER,
we used the configurations that the tools used in the TACAS 2012 software verification
competition. For CBMC, the loop unwinding was limited to the least value sufficient for
detecting all assertion violations. For the direction via translation into NUSMV models,
we experimented with the BMC algorithm implemented in NUSMV. (We disabled
the counter-example generation and we set the bound to five steps.) To prove/disprove



388 A. Cimatti et al.

the assertions we ran all the software model checkers but CBMC. For CBMC and
NUSMV, we focused on detecting assertion violations using BMC techniques.

We set the time limit to 500s and the memory limit to 2Gb for the experiments with
the 1-active-RBS family, and we increased the time limit to one hour and the memory
limit to 10Gb for the 10-active-RBS family. All experiments have been performed on a
machine equipped with a 2.5GHz Intel Xeon E5420 running Scientific Linux.

5.3 Results of Experiments

The 1-active-RBS Case. The following table shows the results of experiments with
the software model checkers on the 1-active-RBS family:

All Properties KRATOS BLAST SATABS CPACHECKER

Solved 530 0 244 312
Safe 436 0 244 218

Unsafe 94 0 0 94
Time out 0 56 286 2

Memory out 0 474 0 216
Total time 27m:26s - 3h:58m:30s 1h:48m:30s
Max time 6.7s - 221.3s 40.3s
Avg. time 3.1s - 58.6s 20.8s

Max space 147.7Mb - 454.6Mb 1.3Gb
Avg. space 74.8Mb - 168.1Mb 985.5Mb

The row “Solved” indicates the number of benchmarks (or the number of assertions)
that can be proved/disproved. The rows “Safe” and “Unsafe” indicate the number of,
respectively, safe and unsafe benchmarks out of the solved ones. The rows “Time out”
and “Memory out” indicate the number of benchmarks on which the tools went out of
time and out of memory, respectively. The rows “Total time”, “Max time”, and “Avg.
time” indicate, respectively, the total, the maximum, and the average time that the tools
used for the solved benchmarks. Similarly for the rows “Max space” and “Avg. space”.

Only KRATOS was able to solve all assertions. BLAST was unable to verify any as-
sertion; it either went out of time/memory, experienced failure in refinement, or crashed.
SATABS proved some assertions, but failed to disprove any. As mentioned before, SA-
TABS employs the eager predicate abstraction that requires it to create a Boolean pro-
gram at each CEGAR iteration. Although SATABS generates such a Boolean program
efficiently, given that each benchmark is reasonably big, along with a large number of
predicates in some cases, the resulting Boolean program is often too big for the back-
end model checker, and thus SATABS spends a lot of time in model checking the gener-
ated Boolean programs. Moreover, unlike KRATOS that employs large-block encoding
(LBE) [3] on the CFG, SATABS uses basic-block encoding (BBE). As shown in [3],
LBE tackles the problem of exploring a huge number of paths in the CFG.

Compared to CPACHECKER, KRATOS showed a better performance on the 1-active-
RBS family. Unlike CPACHECKER, KRATOS performs aggressive, but cheap, static
program optimizations (e.g., constant propagation, dead-code and unreachable-code
eliminations) before analyzing the input program using the lazy predicate abstraction.
These optimizations turns out to boost considerably the abstraction computations and
the path feasibility analysis. KRATOS can even prove some assertions by simply relying
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on these static optimizations and without performing the lazy predicate abstraction at
all. CPACHECKER employs a flexible LBE on the CFG called adjustable-block encod-
ing (ABE) [6]. The lazy predicate abstraction with ABE often suffers from memory
problem because it has to keep track of the results of symbolic evaluations on the CFG
paths in the ART nodes.

Focusing on bug hunting, the following table shows the performance of the model
checkers in detecting assertion violations:

Unsafe Properties KRATOS BLAST SATABS CPACHECKER CBMC NUSMV

Solved 94 0 0 94 94 94
Time out 0 56 94 0 0 0

Memory out 0 38 0 0 0 0
Total time 6m:4s - - 42m:6s 22m:58s 59s
Max time 4.9s - - 38.9s 18.1s -
Avg. time 3.9s - - 26.9s 14.7s 0.6s

Max space 145.7Mb - - 1.2Gb 257.9Mb 30Mb
Avg. space 121.5Mb - - 1.1Gb 246.8Mb 25.7Mb

The above table shows that the BMC algorithm in NUSMV performs the best in terms
of run time and memory usage. Both CBMC and NUSMV are able to find all assertion
violations. However, NUSMV handles enumerative types using a logarithmic encoding
(see [12] for details) that turns out to reduce significantly the size of state space.

The 10-active-RBS Case. We now consider the most complex case, i.e. the 10-active-
RBS family. The table below contains the accumulated results

All properties KRATOS BLAST SATABS CPACHECKER

Solved 53 0 0 8
Safe 33 0 0 8

Unsafe 20 0 0 0
Time out 0 2 52 0

Memory out 0 43 0 45
Total time 2h:36m:46s - - 17m:7s
Max time 553.4s - - 208.3s
Avg. time 177.5s - - 128.5s

Max space 5.2Gb - - 8.4Gb
Avg. space 4.5Gb - - 7.9Gb

while the following table focuses only on the case of unsafe properties:

Unsafe properties KRATOS BLAST SATABS CPACHECKER CBMC NUSMV

Solved 20 0 0 0 20 20
Time out 0 2 19 0 0 0

Memory out 0 10 0 20 0 0
Total time 26m:45s - - - 2h:41m:22s 129s
Max time 85.7s - - - 8m:26s -
Avg. time 80.3s - - - 8m:4s 6s

Max space 5.2Gb - - - 728.1Mb 176Mb
Avg. space 5.2Gb - - - 684.3Mb 176Mb
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To a large extent, the above results emphasize the pattern discussed for the 1-active-
RBS case (and for the intermediate n-active-RBS cases, not reported here for lack of
space). Although the state-of-the-art software model checking techniques and tools are
feasible for dealing with our case study, they are still far from being efficient in verifying
our industrial-sized benchmarks. On the one hand, the CEGAR-based software model
checking techniques can readily be used to prove or disprove assertions, but they are far
less efficient than the BMC approach via the translation into NUSMV models in bug
hunting. On the other hand, the BMC approach is known to be ineffective in proving
assertions because one needs to know the diameter of the state space.

We also consider the impact of the new multiple-assertion analyses implemented
in KRATOS. The effectiveness of these two new analyses depends heavily on the predi-
cates used or discovered in the abstraction-refinements. In the all-in-one-go analysis, the
predicates can simultaneously rule out some assertions violations, but can also clutter
the search. The one-at-a-time analysis can benefit from the smaller size of the program
resulting from the on-the-fly slicing, and possibly from a small number of predicates
resulting from predicate partitioning. However, due to the slicing, the predicates used
for solving previous assertions are often not sufficient for discharging the remaining
ones. Thus, for solving the remaining assertions, the one-at-a-time analysis needs to
further refine the abstraction. Overall, both techniques yield substantial speed-ups of
about 80%.

Multiple assertions KRATOS One-Per-File KRATOS One-At-A-Time KRATOS All-In-One-Go

Total time 2h:36m:46s 28m:46s 33m:36s
Max space 5.2Gb 6.3Gb 7.9Gb

Following the above results, we experimented with a simple strategy to further speed
up the overall verification process. The idea is to combine several approaches by using
cheap techniques to solve as many assertions as possible, and then use expensive ones
to prove or disprove the remaining assertions. In particular, we first ran the BMC of
NUSMV with a short time limit, to find as many assertion violations as possible, and
then used the multiple-assertion analyses of KRATOS to solve the remaining assertions.
The results are reported in the following table:

NUSMV + One-At-A-Time NUSMV + All-In-One-Go

NUSMV time 129 sec 129 sec
KRATOS time 560 sec 289 sec

Total time 11m:29s 6m:58s
Max space 5.4Gb 5.7Gb

Compared to using multiple-assertion analyses alone, in terms of run time, we further
gained a speed-up of up to 80%. We also observe a positive impact on memory usage,
with a reduction of up to 28%.

5.4 Remarks on other Experiments

The translation into NUSMV models allows for proving assertions by means of tempo-
ral induction. We experimented with the temporal induction implemented in NUSMV
to first prove or disprove as many assertions as possible in the 10-active-RBS bench-
mark, and then use the multiple-assertion analyses to solve the rest. For this experiment,
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we only tried with induction of length 10. In this experiment, in addition to detecting all
assertion violations as before, NUSMV was able to prove eight assertions. The follow-
ing table shows that the induction slows down the verification but, with less properties
to prove, KRATOS, with the all-in-one-go analysis, consumes considerably less memory
than before, i.e., up to 74% of reduction.

NUSMV + One-At-A-Time NUSMV + All-In-One-Go

NUSMV time 196 sec 196 sec
KRATOS time 620 sec 254 sec

Total time 13m:36s 7m:30s
Max space 5.4Gb 0.9Gb

Finally, we remark that we also did experiments with explicit-state model check-
ing techniques. Besides model checking, KRATOS is able to encode C programs into
PROMELA models that can be checked by the SPIN model checker [25]. However, it
turned out that the size of the resulting PROMELA models is beyond the capability of
SPIN: SPIN failed to translate the models into pan protocol analyzers.

6 Related Work
There have been numerous works that attempt to apply model checking for the verifica-
tion of industrial software. A comprehensive survey can be found in [20]. Particularly
for the verification of ERTMS, the work closely related to ours includes [1,13,24]. The
work in [13] covers the whole safety logic of the interlocking application via manual
translations into PROMELA, the language of the SPIN model checker. Besides verify-
ing safety-related properties, the work also verifies liveness properties of the scheduler.
Unlike our work, this work creates an under-approximation of the non-deterministic
environment, and thus cannot show the absence of bugs.

Similar to [13], the work in [24] considers the whole safety logic, but only verifies
bounded safety properties. The work relies on the translation into the target language
accepted by the Verus model checker [10]. Both approaches in [13,24] showed poor
scalability: they were applied only to small configurations with at most three processes.

The work in [1] shows the use of BMC approaches, via CBMC, to automatically
generate test suites for the coverage analysis of safety-critical ERTMS. The problem
of generating test suite can be reduced to the problem of verifying multiple assertions.
However, due to the bound in loop unwindings, achieving full coverage is hard.

Other works related to the verification of ERTMS include [21,26,27]. The work
in [27] applies theorem proving techniques to prove properties in European Train Con-
trol System specifications by means of manual encodings into Keymaera. The work
in [21] adopts model-based testing, complemented with abstract interpretation tech-
niques, for the verification of a railway signaling system. The work in [26] validates
ERTMS specifications via translations into UML, and then uses Petri Nets models to
generate test scenario.

Related to the multiple-assertion analysis, the work in [4] describes a technique sim-
ilar to the all-in-one-go analysis in this paper. However, instead of targeting the verifica-
tion of multiple properties, the goal of that work is to generate a test suite guaranteeing
target predicate coverage.
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7 Conclusions and Future Work

We have presented an application of model checking techniques to the verification of
a significant fragment of Logica di Sicurezza, the safety logic of an ERTMS Level-2
system developed by Ansaldo-STS. We have developed a verification approach, and
performed an evaluation of different verification techniques and tools. From this evalu-
ation, we have learned two main lessons. First, even though existing verification tech-
niques and technologies are readily applicable in the industrial settings, they might
be neither efficient nor effective in verifying benchmarks coming from these settings.
Moreover, a single approach alone is often not sufficient to handle the benchmarks or
to satisfy the high-efficiency demand from the product development team. Second, an
appropriate combination of approaches/techniques/technologies can dramatically im-
prove the verification of industrial benchmarks. But such a combination can only be
obtained by a thorough experimental evaluation on existing or new techniques.

In this work we have extended the KRATOS software model checker with two anal-
yses that allow for checking multiple assertions simultaneously. We have successfully
found a strategy that can handle our case study effectively. That is, we benefit from
the efficiency of BMC for ruling out as many assertion violations as possible, and then
check the rest of the assertions using the above KRATOS analyses. This strategy has
proved to greatly reduce the verification effort.

For future work, given the very promising results, Ansaldo-STS is currently collabo-
rating with FBK to integrate the methodology and approach in its internal Development
and V&V Flow in order to verify the whole safety logic, with a possibility to verify the
correctness regardless of the configuration.

We also plan to evaluate new model checking techniques, like Property Driven
Reachability [9]. Moreover, by exploiting the functionality of NUSMV to dump verifi-
cation problems in AIGER format, we plan to experiment with other model checkers.

Finally, for the certification of the application, as mandated by the standards, we will
work on the certification and qualification of KRATOS and NUSMV.
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Abstract. Aminimum satisfying assignment of a formula is a minimum-
cost partial assignment of values to the variables in the formula that
guarantees the formula is true. Minimum satisfying assignments have
applications in software and hardware verification, electronic design au-
tomation, and diagnostic and abductive reasoning. While the problem
of computing minimum satisfying assignments has been widely studied
in propositional logic, there has been no work on computing minimum
satisfying assignments for richer theories. We present the first algorithm
for computing minimum satisfying assignments for satisfiability modulo
theories. Our algorithm can be used to compute minimum satisfying as-
signments in theories that admit quantifier elimination, such as linear
arithmetic over reals and integers, bitvectors, and difference logic. Since
these richer theories are commonly used in software verification, we be-
lieve our algorithm can be gainfully used in many verification approaches.

1 Introduction

A minimum satisfying assignment (MSA) σ of a formula φ, relative to a cost
function C that maps variables to costs, is a partial variable assignment that
entails φ while minimizing C. For example, consider the following formula in
linear integer arithmetic:

ϕ : x+ y + w > 0 ∨ x+ y + z + w < 5 (∗)

and suppose that the cost function C assigns cost 1 to each variable in the
formula. A partial satisfying assignment to this formula is x = 1, y = 0, w = 0.
This partial assignment has cost 3, since it uses variables x, y, w, each with cost 1.
Another satisfying partial assignment to this formula is z = 0; this assignment
has cost 1 since it only uses variable z. Furthermore, z = 0 is a minimum
satisfying assignment of the formula since z = 0 |= ϕ and no other satisfying
partial assignment assignment of ϕ has lower cost than the assignment z = 0.

Minimum satisfying assignments have important applications in software and
hardware verification, electronic design automation, and diagnostic and abduc-
tive reasoning [1–3, 6, 4, 5]. For example, in software verification, minimum
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satisfying assignments are useful for classifying and diagnosing error reports [6],
for finding reduced counterexample traces in bounded model checking [1], and
for minimizing the number of predicates required in predicate abstraction [3].

Some applications, such as [1] have used minimal rather than minimum sat-
isfying assignments (in the context of propositional logic). A minimal satisfying
assignment is one from which no variable can be removed while still guaranteeing
satisfaction of the formula. Minimal assignments have the advantage that they
can be computed greedily by simply removing variables as long as the formula is
implied by the remaining assignment. However, a minimal satisfying assignment
can be arbitrarily far from optimal, as the following example shows:

Example 1. Consider again the formula ϕ from (∗). The assignment x = −1, y =
−1, w = −1, z = 5 is minimal, with cost 4. That is, removing the assignment to
any one variable allows the formula to be false. However, as observed above, the
minimum cost is 1.

In this paper, we consider the more difficult problem of computing true minimum-
cost assignments. This problem has been studied in propositional logic, where it
is commonly known as the minimum prime implicants problem [4, 5]. However,
there has been no work on computing minimum satisfying assignments in the
context of satisfiability modulo theories (SMT).

In this paper, we present the first algorithm for computing minimum satisfy-
ing assignments for first-order formulas modulo a theory. The algorithm applies
to any theory for which full first-order logic, including quantifiers, is decidable.
This includes all theories that admit effective quantifier elimination, such as
linear arithmetic over reals, linear integer arithmetic, bitvectors, and difference
logic. Since these theories and their combinations are commonly used in software
verification, we believe an algorithm for computing minimum satisfying assign-
ments in these theories can be gainfully used in many verification approaches.

This paper makes the following key contributions:

– We define minimum satisfying assignments modulo a theory and discuss
some useful properties of minimum satisfying assignments.

– We present a branch-and-bound style algorithm for computing minimum
satisfying assignments of SMT formulas.

– We consider improvements over the basic branch-and-bound approach that
effectively prune parts of the search space.

– We show how to use and compute theory-satisfiable propositional implicants
to obtain a good variable order and initial cost bound.

– We describe how to obtain and use a special class of implicates of the original
formula to further prune the search space.

– We present an experimental evaluation of the performance of our algorithm.

2 Minimum Satisfying Assignments and Their Properties

To begin with, let us precisely define the notion of MSA for a formula in first-
order logic, modulo a theory. This definition is a bit subtle because, to speak of
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an assignment of values to variables in first-order logic, we must specify a model
of the theory.

For a given theory T , we have a fixed signature S of predicate and function
constants of specified arity. The theory T is a set of first-order sentences over
signature S. A first-order model M is a pair (U , I) where the set U is the
universe, and I is the interpretation that gives a semantics to every symbol
in S. We assume a countable set of variables V , distinct from S. Given a model
M , a valuation σ is a partial map from V to U . We write free(φ) for the set of
variables occurring free in formula φ. If σ is a valuation in free(φ)→ U , we write
M,σ |= φ to indicate that formula φ is true, according to the usual semantics of
first-order logic, in model M , with σ giving the valuation of the free variables in
φ. We say M is model of theory T when every sentence of T is true in M .

Definition 1. (Satisfying assignment) Formula φ is satisfiable modulo T
when there exists a model M = (U , I) of T and an assignment σ ∈ free(φ)→ U
such that M,σ |= φ. We say the pair (M,σ) is a satisfying assignment for φ.

Our intuition behind an MSA for φ is that it gives a valuation for a minimum-
cost subset of the free variables of φ, such that φ is true for all valuations of the
remaining variables. We capture this idea with satisfying partial assignments :

Definition 2. (Satisfying partial assignment) A satisfying partial assign-
ment for formula φ is a pair (M,σ), where M = (U , I) is a model, σ is a
valuation over M such that dom(σ) ⊆ free(φ), and such that for every valuation
ρ ∈ (free(φ) \ dom(σ))→ U , (M,σ ∪ ρ) is a satisfying assignment for φ.

The following is an alternate statement of this definition:

Proposition 1. A satisfying partial assignment for formula φ is a satisfying
assignment for the formula ∀X. φ, for some X ⊆ free(φ).

Now, in order to define a minimum partial assignment, we introduce a cost
function over partial assignments. For a given function C ∈ V → N, the cost
of a set of variables X is C(X) = Σv∈XC(v) and the cost of a valuation σ is
C(σ) = C(dom(σ)). Minimum satisfying assignments are now defined as follows:

Definition 3. (Minimum satisfying assignment) Given a cost function C ∈
V → N, a minimum satisfying assignment (MSA) for formula φ is a partial
satisfying assignment (M,σ) for φ minimizing C(σ).

As observed in Proposition 1, a partial satisfying assignment (M,σ) for φ is
just a satisfying assignment for ∀X.φ. We observe that the free variables in this
formula are free(φ) \X , therefore dom(σ) = free(φ) \X . Minimizing the cost of
σ is thus equivalent to maximizing the cost of X such that ∀X. φ is satisfiable.
We can formalize this idea as follows:

Definition 4. (Maximum universal subset) A universal set for formula φ
modulo theory T is a set of variables X such that ∀X.φ is satisfiable. For a given
cost function C ∈ V → N, a maximum universal subset (MUS) is a universal
set X ⊆ free(φ) maximizing C(X).
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MUS’s and MSA’s are related by the following theorem:

Theorem 1. An MSA of formula φ for a given cost function C is precisely a
satisfying assignment of ∀X. φ for some MUS X.

Proof. By Proposition 1, a set X ⊆ free(φ) is a universal set exactly when there
is a partial satisfying assignment (M,σ) for φ such dom(σ) = free(φ) \X , and
therefore C(σ) = C(free(φ))−C(X). It follows that X is maximum-cost exactly
when σ is minimum-cost. ��

The following corollary follows immediately from Theorem 1:

Corollary 1. Let σ be an MSA for formula φ, and let X be an MUS of φ for
cost function C. Then,

C(σ) =

⎛⎝ ∑
v∈free(φ)

C(v)

⎞⎠− C(X)

Universal sets have some useful properties, derived from the properties of uni-
versal quantifiers that will aid us in maximizing their cost. First, as stated by
Proposition 2, universal sets are downward-closed. Second, as stated by Propo-
sition 3, universal sets are closed under implications:

Proposition 2. Given a universal set X for formula φ, every X ′ ⊆ X is also
a universal set of φ.

Proposition 3. If X is a universal set for φ and φ implies ψ, then X is a
universal set for ψ.

3 A Branch-and-Bound Algorithm for Computing MSAs

To compute minimum satisfying assignments, we first focus on the problem of
finding maximum universal subsets. Since we cannot compute MUSs using a
greedy approach, we apply a recursive branch-and-bound algorithm for finding
maximum universal sets, shown in Figure 1. This algorithm relies on the down-
ward closure property of universal sets (Proposition 2) to bound the search.

The algorithm find mus of Figure 1 takes as input a formula φ, a cost func-
tion C, a set of candidate variables V , and a lower bound L, and computes a
maximum-cost universal set for φ that is a subset of V , with cost greater than L.
If there is no such subset, it returns the empty set. The lower bound allows us
to cut off the search in cases where the best result thus far cannot be improved.

At each recursive call, the algorithm evaluates at line 1 whether the given
lower bound can be improved using the available candidate variables. If not, it
gives up and returns the empty set. Otherwise, if there are remaining candidates,
it chooses a variable x from the candidate set V (line 3) and decides whether the
cost of the universal subset containing x is higher than the cost of the universal
subset not containing x (lines 4-10).

At lines 4− 7, the algorithm determines the cost of the universal subset con-
taining x. Before adding x to the universally quantified subset, we test whether
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Requires: φ is satisfiable

find mus(φ, C, V , L) {
1. If V = ∅ or C(V ) ≤ L return ∅ /* cannot improve bound */

2. Set best = ∅
3. choose x ∈ V

4. if(SAT(∀x.φ)) {
5. Set Y = find mus(∀x.φ, C, V \ {x}, L−C(x));
6. Int cost = C(Y ) + C(x)
7. If (cost > L) { best = Y ∪ {x}; L = cost }

}
8. Set Y = find mus(φ,C,V \ {x},L);
9. If (C(Y ) > L) { best = Y }

10. return best;

}
Fig. 1. Algorithm to compute a maximum universal subset (MUS)

the result is still satisfiable. If not, we give up, since adding more universal
quantifiers cannot make the formula satisfiable (the downward closure property
of Proposition 2). The recursive call at line 5 computes the maximum universal
subset of ∀x.φ, adjusting the cost bound and candidate variables as necessary.
Finally, we compute the cost of the universal subset involving x, and if it is
higher than the previous bound L, we set the new lower bound to cost.

Lines 8 − 9 consider the cost of the universal subset not containing x. The
recursive call at line 8 computes the maximum universal subset of φ, but the
current variable x is removed from the candidate variable set. The algorithm
compares the costs of the universal subsets with and without x, and returns the
subset with the higher cost.

Finally, the algorithm in Figure 2 computes an MSA of φ by using find mus.
Here, we first test whether φ is satisfiable. If so, we compute a maximum universal
subset X for φ, and return a satisfying assignment for ∀X. φ, as described in
Theorem 1. This algorithm potentially needs to explore an exponential number
of possible universal subsets. However, in practice, the recursion can often be cut
off at a shallow depth, either because a previous solution cannot be improved, or
because the formula ∀x. φ becomes unsatisfiable, allowing us to avoid branching.
Of course, the effectiveness of these pruning strategies depend strongly on the
choice of the candidate variable at line 4 as well as the initial bound L on the cost
of the MUS. In the following sections, we will describe some heuristics for this
purpose that dramatically improve the performance of the algorithm in practice.

find msa(φ, C) {
1. If φ is unsatisfiable, return ‘‘UNSAT’’

2. Set X = find mus(φ, C, free(φ), 0)
3. return a satisfying assignment for ∀X. φ.
}

Fig. 2. Algorithm to compute minimum satisfying partial assignment
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4 Variable Order and Initial Cost Estimate

The performance of the algorithm described in Section 3 can be greatly improved
by computing a good initial lower bound L on the cost of the MUS, and by
choosing a good variable order. A good initial cost bound L should be as close
as possible to the actual MUS cost in order to maximize pruning opportunities
at line 1 of the algorithm from Figure 1. Furthermore, a good variable order
should first choose variables x for which ∀x.φ is unsatisfiable at line 4 of the
find mus algorithm, as this choice avoids branching early on and immediately
excludes large parts of the search space.

Thus, to improve the algorithm of Section 3, we need to compute a good initial
MUS cost estimate as well as a set of variables for which the test at line 4 is
likely to be unsatisfiable. Observe that computing an initial MUS cost estimate
is equivalent to computing an MSA cost estimate, since these values are related
as stated by Corollary 1. Furthermore, observe that if x is not part of an MSA,
∀x.φ is guaranteed to be satisfiable and the check at line 4 of the algorithm will
never avoid branching. Thus, if we choose variables likely to be part of an MSA
first, there is a much greater chance we can avoid branching early on.

Therefore, our goal is to compute a partial satisfying assignment σ that is a
reasonable approximation for an MSA of the formula. That is, σ should have
cost close to the minimum cost, and the variables that are part of σ should
largely overlap with variables part of an MSA. If we can compute such a partial
assignment σ in a reasonably cheap way, we can use it to both compute the
initial lower bound L on the cost of the MUS, and choose a good variable order
by considering variables part of σ first.

4.1 Using Implicants to Approximate MSAs

One very simple heuristic to approximate MSAs is to greedily compute aminimal
satisfying assignment σ for φ, and use σ to approximate both the cost and the
variables of an MSA. Unfortunately, as discussed in Section 1, minimal satisfying
assignments can be arbitrarily far from an MSA and, in practice, do not yield
good cost estimates or good variable orders (see Section 7).

In this section, we show how to exploit Proposition 3 to find partial satisfying
assignments that are good approximations of an MSA. Recall from Proposition 3
that, if φ′ implies φ (is an implicant of φ), then a universal set of φ′ is also a
universal set of φ. In other words, if φ′ is an implicant of φ, then a partial
satisfying assignment of φ′ is also a partial satisfying assignment of φ. Thus, if
we can compute an implicant of φ with a low-cost partial satisfying assignment,
we can use it to approximate both the cost as well as the variables of an MSA.

The question then is, how can we cheaply find implicants of φ with high-
cost universal sets (correspondingly, low-cost partial satisfying assignments)?
To do this, we adapt methods for computing “minimum prime implicants” of
propositional formulas [4, 5], and consider implicants that are conjunctions of
literals. We define a T -satisfiable implicant as a conjunction of literals that
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propositionally implies φ and is itself satisfiable modulo T . We say a cube is a
conjunction of literals which does not contain any atom and its negation.

Definition 5. (T -satisfiable implicant) Let Bφ be a bijective function from
each atom in T -formula φ to a fresh propositional variable. We say that a cube
π is a T -satisfiable implicant of φ if (i) Bφ(π) is a propositional implicant of
Bφ(φ) and (ii) π is T -satisfiable.

Of course, for an implicant to be useful for improving our algorithm, it not
only needs to be satisfiable modulo theory T , but also needs to have a low-cost
satisfying assignment. It would defeat our purpose, however, to optimize this
cost. Instead, we will simply use the cost of the free variables in the implicant
as a trivial upper bound on its MSA. Thus, we will search for implicants whose
free variables have low cost.

Definition 6. (Minimum T -satisfiable implicant) Given a cost function
C ∈ V → N, a minimum T -satisfiable implicant of formula φ is a T -satisfiable
implicant π of φ minimizing C(free(π)).

Example 2. Consider the formula

(a+ b ≥ 0 ∨ 2c+ d ≤ 10) ∧ (a− b ≤ 5)

For this formula, a + b ≥ 0 ∧ a − b ≤ 5 and 2c + d ≤ 10 ∧ a − b ≤ 5 are both
T -satisfiable implicants. However, only a + b ≥ 0 ∧ a − b ≤ 5 is a minimum
T -satisfiable implicant (with cost 2).

To improve the algorithm from Section 3, what we would like to do is to com-
pute a minimum T -satisfiable implicant for formula φ, and use the cost and
variables in this implicant as an approximation for those of an MSA of φ. Unfor-
tunately, the problem of finding true minimum T -satisfiable implicants subsumes
the problem of finding minimum propositional prime implicants, which is already
Σp

2 -complete. For this reason, we will consider a subclass of T -satisfiable impli-
cants, called monotone implicants, whose variable cost can be optimized using
SMT techniques.

To define monotone implicants, we consider only quantifier-free formulas in
negation-normal form (NNF) meaning negation is applied only to atoms. If φ is
not originally in this form, we assume that quantifier elimination is applied and
the result is converted to NNF.

Definition 7. (Minimum T -satisfiable monotone implicant) Given a bi-
jective map Bφ from literals of φ to fresh propositional variables, let φ+ denote
φ with every literal l in φ replaced by Bφ(l). We say a cube π is a monotone
implicant of φ if π+ implies φ+. A minimum T -satisfiable monotone implicant
of φ is a monotone implicant that is T -satisfiable and minimizes C(free(π)) with
respect to a cost function C.

To see how monotone implicants differ from implicants, consider the formula
φ = p ∨ ¬p. Clearly True is an implicant of φ. However, it is not a monotone
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implicant. That is, suppose that Bφ maps literals p and ¬p to fresh propositional
variables q and r respectively, thus φ+ = q ∨ r. This formula is not implied by
True. In fact, the only monotone implicants are p and ¬p. In general, every
monotone implicant is an implicant, but not conversely.

4.2 Computing Minimum T -satisfiable Monotone Implicants

Our goal is to use minimum T -satisfiable monotone implicants to compute a con-
servative upper bound on MSA cost and guide variable selection order. In this
section, we describe a practical technique for computing minimum T -satisfiable
monotone implicants. Our algorithm is inspired by the technique of [4] and for-
mulates this problem as an optimization problem.

The first step in our algorithm is to construct a boolean abstraction φ+ of φ as
described in Definition 7. Observe that this boolean abstraction is different from
the standard boolean skeleton of φ in that two atoms A and ¬A are replaced
with different boolean variables. We note that a satisfying assignment for φ+

corresponds to a monotone implicant of φ, provided it is consistent, meaning
that it does not assign true to both A and ¬A for some atom A.

After we construct the boolean abstraction φ+, we add additional constraints
to ensure that any propositional assignment to φ+ is T -satisfiable. Let L be the
set of literals occurring in φ. We add a constraint Ψ encoding theory-consistency
of the implicant as follows:

Ψ =
∧
l∈L

(Bφ(l)⇒ l)

Note that in particular, this constraint guarantees that any satisfying assignment
is consistent. Moreover, it guarantees that the satisfying assignments modulo T
correspond to precisely the T -satisfiable monotone implicants.

Finally, we construct a constraint Ω to encode the cost of the monotone
implicant. To do this, we first introduce a fresh cost variable cx for each variable
x in the original formula φ. Intuitively, cx will be set to the cost of x if any literal
containing x is assigned to true, and to 0 otherwise. We construct Ω as follows:

Ω =
∧
l∈L

⎛⎝Bφ(l)⇒
⎛⎝ ∧
x∈free(l)

cx = C(x)

⎞⎠⎞⎠ ∧
∧

x∈free(φ)

(cx ≥ 0)

The first conjunct of this formula states that if the boolean variable representing
literal l is assigned to true, then the cost variable cx for each variable in l is
assigned to the actual cost of x. The second conjunct states that all cost variables
must have a non-negative value.

Finally, to compute a minimum T -satisfiable monotone implicant, we solve
the following optimization problem:

Minimize:
∑

k ck subject to (φ+ ∧ Ψ ∧Ω)

This optimization problem can be solved, for example, using the binary search
technique of [7], and the minimum value of the cost function yields the cost
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of the minimum T -satisfiable monotone implicant. Similarly, the minimum T -
satisfiable monotone implicant can be obtained from an assignment to (φ+∧Ψ ∧
Ω) minimizing the value of the cost function.

5 Using Implicates to Identify Non-universal Sets

Another useful optimization to the algorithm of Section 3 can be obtained by
applying the contrapositive of Proposition 3. That is, suppose that we can find
a formula ψ that is implied by φ (that is, an implicate of φ). If Y is not a
universal set for ψ then it cannot be a universal set for φ. This fact can allow
us to avoid the satisfiability test in line 4 of Algorithm find mus, since as soon
as our proposed universal subset X contains Y , we know that ∀X. φ must be
unsatisfiable. To use this idea, we need a cheap way to find implicates of φ that
have small non-universal sets.

To make this problem easier, we will consider only theories T that are com-
plete. This means that all the models of T are elementarily equivalent, that is,
they satisfy the same set of first-order sentences. Another way to say this is that
T entails every sentence or its negation. An example of a complete theory is
Presburger arithmetic, with signature {0, 1,+,≤}. Given completeness, we have
the following proposition:

Proposition 4. Given a complete theory T , and formula ψ, if ¬ψ is satisfiable
modulo T , then ∀free(ψ). ψ is unsatisfiable modulo T .
Proof. Let V be the set of free variables in ψ. Since ¬ψ is satisfiable modulo T ,
there is a model M of T such that M |= ∃V.¬ψ. Since T is complete, it follows
that ∃V.¬ψ is true in all models of T , hence ∀V. φ is unsatisfiable modulo T . ��
This means that if we can find an implicate ψ of φ, such that ¬ψ is satisfiable,
then we can rule out any candidate universal subset for φ that contains the free
variables of ψ. To find such non-trivial implicates, we will search for formulas
of the form ψ = ψ1 ⇒ ψ2, where ψ1 and ψ2 are built from sub-formulas of φ.
The advantage of considering this special class of implicates is that they can be
easily derived from the boolean structure of the formula.

Specifically, to derive these implicates, we first convert φ to NNF and compute
a so-called trigger Π for each subformula of φ. Triggers of each subformula are
defined recursively as follows:

1. For the top-level formula φ, Π(φ) = true.
2. For a subformula φ′ = φ1 ∧ φ2, Π(φ1) = Π(φ′), and Π(φ2) = Π(φ′).
3. For a subformula φ′ = φ1 ∨ φ2, Π(φ1) = Π(φ′) ∧ ¬φ2, and
Π(φ2) = Π(φ′) ∧ ¬φ1.

Example 3. Consider the formula x �= 0∨ (x+ y < 5∧ z = 3). Here, the triggers
for each literal are as follows:

Π(x+ y < 5) = ¬(x �= 0)
Π(z = 3) = ¬(x �= 0)
Π(x �= 0) = ¬(x + y < 5 ∧ z = 3)



Minimum Satisfying Assignments for SMT 403

It is easy to see that if l is a literal in formula φ with trigger Π(l), then φ
implies Π(l) ⇒ l. Thus, Π(l) ⇒ l is always a valid implicate of φ. However, it
is not the necessarily the case that ¬(Π(l) ⇒ l) is satisfiable. To make sure we
only obtain implicates where ¬(Π(l) ⇒ l) is satisfiable, we first convert φ to a
simplified form defined in [8]. This representation guarantees that for any trigger
Π(l) of l, ¬(Π(l)⇒ l) is satisfiable. Thus, once a formula φ has been converted
to simplified form, implicates with satisfiable negations can be read off directly
from the boolean structure of the formula without requiring satisfiability checks.

If ψ = Π(l)⇒ l is an implicate obtained as described above, we know that no
universal subset for φ contains free(ψ). Thus, when the last variable in free(ψ)
is universally quantified, we can backtrack without checking satisfiability.

6 Implementation

We have implemented the techniques described in this paper in our Mistral
SMT solver available at www.cs.wm.edu/˜tdillig/mistral.tar.gz. Mistral
solves constraints in the combined theories of linear integer arithmetic, theory
of equality with uninterpreted functions, and propositional logic. Mistral solves
linear inequalities over integers using the Cuts-from-Proofs algorithm described
in [9], and uses the MiniSAT solver as its SAT solving engine [10].

While the algorithm described in this paper applies to all theories that admit
quantifier elimination, our implementation focuses on computing minimum sat-
isfying assignments in Presburger arithmetic (linear arithmetic over integers).
To decide satisfiability of quantified formulas in linear integer arithmetic, we use
Cooper’s technique for quantifier elimination [11]. However, since we expect a
significant portion of the universally quantified formulas constructed by the al-
gorithm to be unsatisfiable, we perform a simple optimization designed to detect
unsatisfiable formulas: In particular, before we apply Cooper’s method, we first
instantiate universally quantified variables with a few concrete values. If any
of these instantiated formulas are unsatisfiable, we know that the universally
quantified formula must be unsatisfiable.

The algorithm presented in this paper performs satisfiability checks on many
similar formulas. Since many of these formulas are comprised of the same set of
atoms, the SMT solver typically relearns the same theory conflict clauses many
times. Thus, to take advantage of the similarity of satisfiability queries, we reuse
theory conflict clauses across different satisfiability checks whenever possible.

For computing minimum T -satisfiable implicants, we have implemented the
technique described in Section 4, and used the binary search technique described
in [7] for optimizing the cost function. However, since finding the actual mini-
mum monotone implicant can be expensive (see Section 7.1), our implementation
allows terminating the search for an optimal value after a fixed number of steps.
In practice, this results in implicants that are not in fact minimum, but “close
enough” to the minimum. This approach is sound because the underlying opti-
mization procedure hill climbs from an initial solution towards an optimal one,
and the solution at any step of the optimization procedure can be used as a
bound on the cost of a minimum T -satisfiable implicant.
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7 Experimental Results

To evaluate the performance of the algorithm proposed in this paper, we com-
puted minimum satisfying assignments for approximately 400 constraints
generated by the program analysis tool Compass [6, 12]. In this application,
minimum satisfying assignments are used to compute small, relevant queries
that help users diagnose error reports as real bugs or false alarms [6]. In this set-
ting, the number of variables in the satisfying partial assignment greatly affects
the quality of queries presented to users. As a result, the time programmers take
to diagnose potential errors depends greatly on the number of variables used in
the satisfying assignment; thus, computing true minimum-cost assignments is
crucial in this setting. The benchmarks we used for our evaluation are available
from www.cs.wm.edu/˜tdillig/msa-benchmarks.tar.gz.

We chose to evaluate the proposed algorithm on the constraints generated
by Compass rather than the standard SMTLIB benchmarks for two reasons:
First, unlike the constraints we used, SMTLIB benchmarks are not taken from
applications that require computing minimum satisfying assignments. Second,
the large of majority of benchmarks in the QF LIA category of the SMTLIB
benchmarks contain uninteresting MSAs (containing all or almost all variables
in the original formula), making them inappropriate for evaluating an algorithm
for computing MSAs.

The constraints we used in our experimental evaluation range in size from a
few to several hundred boolean connectives, with up to approximately 40 vari-
ables. In our evaluation, we measured the performance of all four versions of
the algorithm. The first version, indicated with red in Figures 3 and 4, corre-
sponds to the basic branch-and-bound algorithm described in Section 3. The
second version, indicated with green on the graphs, uses the minimum impli-
cant optimization of Section 4. However, as mentioned earlier, since computing



Minimum Satisfying Assignments for SMT 405

0

5

10

15

20

25

30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ti
m

e 
(s

)

MSA size / # vars

Basic (no opt)
Basic + min. implicants

Basic + non-univ-subsets
Both optimizations

Fig. 4. (# variables in MSA/# of variables in formula) vs. time in seconds

the true minimum implicant can be expensive (see Section 7.1), we only use an
approximate solution to the resulting optimization problem. The third version
of the algorithm is indicated with blue lines and corresponds to the basic algo-
rithm from Section 3 augmented with the technique of Section 5 for identifying
non-universal sets. Finally, the last version of the algorithm using both of the
optimizations of Sections 4 and 5 is indicated in the graphs with pink lines.

Figure 3 plots the number of variables in the original formula against running
time in seconds for all four versions of the algorithm. As this figure shows,
the performance of the basic algorithm is highly sensitive to the number of
variables in the original formula and does not seem to be practical for formulas
containing more than ∼ 18 variables. Fortunately, the improvements described in
Sections 4 and 5 have a dramatic positive impact on performance. As is evident
from a comparison of the blue, green, and pink lines, the two optimizations
of Section 4 and Section 5 complement each other, and we obtain the most
performant version of the algorithm by combining both of these optimizations.
In fact, the cost of the algorithm using both optimizations seems to grow slowly
in the number of variables, indicating that the algorithm should perform well in
many settings. However, even using both optimizations, computing MSAs is still
much more computationally expensive than deciding satisfiability. On average,
computing MSAs is about 25 times as expensive as computing satisfiability on
our benchmarks.

Figure 4 plots the fraction

χ =
#of variables in MSA

#of variables in formula

against running time in seconds. As this figure shows, if χ is very small (i.e.,
the MSA is small compared to the number of variables in the formula), the
problem of computing minimum satisfying assignments is easy, particularly for



406 I. Dillig et al.

0

10

20

30

40

50

60

70

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 p

ru
ne

d 
du

e 
to

 c
os

t

MSA size / # vars

Basic (no opt)
Basic + min. implicants

Basic + non-univ-subsets
Both optimizations

(a) χ vs. % paths pruned due to cost

0

10

20

30

40

50

60

70

80

90

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 p

ru
ne

d 
du

e 
to

 u
ni

ve
rs

al
 te

st

MSA size / # vars

Basic (no opt)
Basic + min. implicants

Basic + non-univ-subsets
Both optimizations

(b) χ vs. % paths pruned due to Prop. 2

Fig. 5. Effectiveness of pruning strategies

the versions of the algorithm using the minimum implicant optimization. Dually,
as χ gets close to 1 (i.e., MSA contains almost all variables in the formula, thus
few variables can be universally quantified), the problem of computing minimum
satisfying assignments again becomes easier. As is evident from the shape of all
four graphs in Figure 4, the problem seems to be the hardest for those constraints
where χ is approximately 0.6. Furthermore, observe that for constraints with
χ < 0.6, the minimum implicant optimization is much more important than the
optimization of Section 5. In contrast, the non-universal sets optimization seems
to become more important as χ exceeds the value 0.7. Finally, observe that
the fully optimized version of the algorithm often performs at least an order of
magnitude better than the basic algorithm; at χ = 0.6, the optimized algorithm
takes an average of 2.7 seconds, while the basic algorithm takes 28.2 seconds.

Figure 5 explores why we observe a bell-shaped curve in Figure 4. Figure 5(a)
plots the value χ against the percentage of all search paths pruned because the
current best cost estimate cannot be improved. As this figure shows, the smaller
χ is, the more paths can be pruned due to the bound and the more important it
is to have a good initial estimate. This observation explains why the minimum
implicant optimization is especially important for small values of χ.

In contrast, Figure 5(b) plots the value of χ against the percentage of paths
pruned due to the formula φ becoming unsatisfiable (i.e., due to Proposition 2).
This graph shows that, as the value of χ increases, and thus the MUS’s become
smaller, more paths are pruned in this way. This observation explains why all
versions of the algorithm from Figure 4 perform much better as χ increases.

7.1 Other Strategies to Obtain Bound and Variable Order

In earlier sections, we made the following claims:

1. Computing true minimum-cost implicants is too expensive, but we can ob-
tain a very good approximation to the minimum implicant by terminating
the optimizer after a small number of steps

2. Minimal satisfying assignments are not useful for obtaining a good cost
estimate and variable order
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In this section, we give empirical data to justify both of these claims.
Figure 6 compares the performance of the algorithm using different strategies

to obtain a cost estimate and variable order. As before, the x-axis plots the
value of χ and the y-axis is running time in seconds. The red line in this figure
shows the total running time of the MSA algorithm using the true minimum-
cost monotone implicant. In contrast, the green line shows the total running
time of the algorithm using an approximation of the minimum-cost monotone
implicant, obtained by terminating the search for the optimum value after a
fixed small number of steps. As is evident from this figure, the performance of
the algorithm using the true-cost minimum implicant is much worse than the
approximately-minimum implicant. This observation is explained by considering
the pink line in Figure 6, which plots the time for computing the true minimum-
cost monotone implicant. As can be seen by comparing the red and pink lines, the
time to compute the true minimum implicant completely dominates the time for
the total MSA computation. In contrast, the time to compute the approximate
minimum implicant (shown in blue) is negligible, but it is nearly as effective for
improving the running time of the MSA algorithm.

We now consider the performance of the algorithm (shown in orange in Fig-
ure 6) when we use a minimal satisfying assignment to bound the initial cost
estimate and choose a variable order. The brown line in the figure shows the
time to compute a minimal satisfying assignment. As is clear from Figure 6,
the overhead of computing a minimal satisfying assignment is very low, but
the performance of the MSA computation algorithm using minimal satisfying
assignments is very poor. One explanation for this is that minimal satisfy-
ing assignments do not seem to be very good approximations for true MSAs.
For instance, on average, the cost of a minimal satisfying assignment is 30.6%
greater than the cost of an MSA, while the cost of the approximately minimum
monotone implicant is only 7.7% greater than the MSA cost. Thus, using min-
imal satisfying assignments to bound cost and choose a variable order does not
seem to be a very good heuristic.
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8 Related Work

The problem of computing minimum satisfying assignments in propositional
logic is addressed in [4, 13, 5]. All of these approaches formulate the problem of
computing implicants as integer linear programming and solve an optimization
problem to find a satisfying assignment. Our technique for computing minimum
T -satisfiable monotone implicants as described in Section 4 is similar to these ap-
proaches. However, we are not aware of any algorithms for computing minimum
satisfying assignments in theories richer than propositional logic.

Minimum satisfying assignments have important applications in program anal-
ysis and verification. One application of minimum satisfying assignments is
finding concise explanations for potential program errors. For instance, recent
work [6] uses minimum satisfying assignments for automating error classification
and diagnosis using abductive inference. In this context, minimum satisfying as-
signments are used for computing small, intuitive queries that are sufficient for
validating or discharging potential errors. Similarly, the work described in [1]
uses minimal satisfying assignments to make model checking tools more under-
standable to users. In this context, minimal satisfying assignments are used to
derive small, reduced counterexample traces that are easily understandable.

Another important application of minimum satisfying assignments in verifica-
tion is abstraction refinement. One can think of minimum satisfying assignments
in this context as an application of Occam’s razor: the simplest explanation of
satisfiability is the best; thus, minimum satisfying assignments can be used as a
guide to choose the most relevant refinements. For instance, the work of Amla
and McMillan [14] uses an approximation of minimal satisfying assignments, re-
ferred to as justifications, for abstraction refinement in SAT-based model check-
ing. Similarly, the work presented in [3] uses minimal satisfying assignments
for obtaining a small set of predicates used in the abstraction. However, the
results presented in [3] indicate that using minimum rather than minimal satis-
fying assignments might be more beneficial in this context. In fact, the authors
themselves remark on the following: “Another major drawback of the greedy
approach is its unpredictability . . . Clearly, the order in which this strategy tries
to eliminate predicates in each iteration is very critical to its success.”

9 Conclusion

In this paper, we have considered the problem of computing minimum satisfying
assignments for SMT formulas, which has important applications in software
verification. We have shown that MSAs can be computed with reasonable cost
in practice using a branch-and-bound approach, at least for a set of benchmarks
obtained from software verification problems. We have shown that the search
can be usefully bounded by computing implicants with upper-bounded MSAs
and implicates with upper-bounded MUS’s, provided the cost of obtaining these
is low. While our optimizations seem effective, we anticipate that significant
improvements are possible, both in the basic algorithm and the optimizations.

Expanding the approach to richer theories is also an interesting research direc-
tion. The problem of finding MSA modulo T is decidable when the satisfiability
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modulo T is decidable in the universally quantified fragment of the logic. This
is true for a number of useful theories, including Presburger and bitvector arith-
metic. While our approach does not apply to theories that include uninterpreted
functions, arrays or lists, this problemmay be solved or approximated in practice.
In this case, it could be that the notion of partial assignment must be refined,
so that the cost metric can take into account the complexity of valuations of
structured objects such as arrays and lists.

In summary, we believe that the problem of finding MSAs modulo theories
will have numerous applications and is a promising avenue for future research.
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Abstract. Recent research on Boolean satisfiability (SAT) reveals mod-
ern solvers’ inability to handle formulae in the abundance of parity (xor)
constraints. Although xor-handling in SAT solving has attracted much
attention, challenges remain to completely deduce xor-inferred impli-
cations and conflicts, to effectively reduce expensive overhead, and to
directly generate compact interpolants. This paper integrates SAT solv-
ing tightly with Gaussian elimination in the style of Dantzig’s simplex
method. It yields a powerful tool overcoming these challenges. Experi-
ments show promising performance improvements and efficient derivation
of compact interpolants, which are otherwise unobtainable.

1 Introduction

For over a decade of intensive research, Boolean satisfiability (SAT) solving [2] on
conjunctive normal form (CNF) formulae has become a mature technology en-
abling pervasive applications in hardware/software verification, electronic design
automation, artificial intelligence, and other fields. The maturity on the other
hand sharpens the boundary between what can and what cannot be achieved
by the state-of-the-art solving techniques [23,22,10]. One clear limitation is their
poor scalability in solving formulae that in part encode parity (xor) constraints,
which arise naturally in real-world applications such as cryptanalysis [21], model
counting [11], decoder synthesis [14], arithmetic circuit verification, etc.

To overcome this limitation, there are prior attempts integrating special xor

handling into SAT solving [27,4,15,6,7,25,16,26,17]. Two different strategies have
been explored. Non-interactive xor handling, on the one hand, as pursued in
[27,6,7] performs xor reasoning and SAT solving in separate phases. Interac-
tive xor handling, on the other hand, as pursued in [4,15,25,16,26,17] invokes
xor reasoning on-the-fly during SAT solving. Despite the expensiveness of xor

handling compared to CNF handling, positive results on conquering tradition-
ally difficult problems have been demonstrated especially by the latter strategy,
which is taken in this paper. Prior interactive methods can be further classified
into two categories: inference-rule based [4,15,16,17] and linear-algebra based
[25,26] xor reasoning. The latter tends to be simpler in realization, and can be
faster in performance as suggested by the empirical results in [17]. This paper
adopts linear-algebra based computation [25,26].
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Regardless of the recent progress in xor-reasoning, several challenges remain
to be further addressed. Firstly, the deductive power of xor-reasoning should be
enhanced. To the best of the authors’ knowledge, no current solver guarantees
complete propagation/conflict detection for a given set of xor-constraints with
respect to some variable assignment. Secondly, the overhead of xor-reasoning
should be reduced, and the synergy between CNF solving and xor-reasoning
should be further strengthened. Thirdly, Craig interpolant generation is not
supported by any current solver equipped with the xor-reasoning capability.
As interpolation becomes an indispensable tool for verification [19] and synthe-
sis [13], compact interpolant derivation from combined CNF and xor reasoning
should be solicited.

The efforts of combining CNF and xor reasoning share a common connection
to Satisfiability Modulo Theories (SMT) [24]. There is, however, a subtle differ-
ence that makes these efforts distinct. The underlying CNF and xor handlers
encounter the same variables, whereas most, if not all, current SMT solvers with
capability of producing Craig interpolants [8] assume the considered theories are
of disjoint signatures. This difference makes recent advances in SMT solving and
interpolation [20,28,5] not immediately helpful to alleviate the aforementioned
challenges.

This paper tackles the above three challenges with the following results.
Gauss-Jordan elimination (GJE) (in contrast to prior Gaussian elimination (GE)
[25,26]) is proposed for xor-constraint processing in a matrix form. It admits
complete detection of xor-inferred propagations and conflicts. As the matrix is
in the reduced row echelon form, the two-literal watching scheme fits in naturally
for fast propagation/conflict detection, and for lazy and incremental matrix up-
date in the style of Dantzig’s simplex algorithm [9]. This simple data structure
effectively reduces computation overhead and tightens the integration between
CNF and xor reasoning. Moreover, interpolant derivation rules are obtained for
direct and compact interpolant generation. Experimental results suggest strong
benefit of the proposed method in accelerating SAT solving. Promising improve-
ments over the prior state-of-the-art solver [26] are observed. Moreover the results
show efficient derivation of compact interpolants, which are otherwise unobtain-
able.

This paper is organized as follows. Preliminaries are given in Section 2. Sec-
tion 3 presents our framework on SAT solving and xor-reasoning; Section 4
covers interpolant generation in our framework. Experimental results and dis-
cussions are given in Section 5. Detailed comparison with the closest related work
is performed in Section 6. Finally, Section 7 concludes this paper and outlines
future work.

2 Preliminaries

We define terminology and notation to be used throughout this paper. Symbols
∧, ∨, ¬, and ⊕ stand for Boolean and, or, not, and exclusive or (xor) oper-
ations, respectively. A literal is either a variable (i.e., in the positive phase) or
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the negation of a variable (i.e., in the negative phase). A (regular) clause is a
disjunction of a set of literals. A Boolean formula is in conjunctive normal form
(CNF) if it is expressed as a conjunction of a set of clauses. For a literal l, its
corresponding variable is denoted as var (l). Also since a clause is viewed as a
set of literals, expression l ∈ C denotes that l is a constituent literal of clause
C, and C′ ⊆ C denotes C′ is a subclause of C.

2.1 XOR Constraints

An xor-clause is a series of xor operations over a set of literals and/or Boolean
constants {0, 1}. It equivalently represents a linear equation over GF(2), the
Galois field of two elements. An xor-clause is in the standard form if all of its
literals appear in the positive phase. E.g., the xor-clause (x1⊕¬x2⊕x3) can be
written in the standard form as (x1 ⊕x2⊕x3⊕1), which equivalently represents
the linear equation x1 ⊕ x2 ⊕ x3 = 0. Note that an xor-clause consisting of
n variables translates into a conjunction of 2n−1 clauses with n literals each.
E.g., the xor-clause (x1 ⊕ ¬x2 ⊕ x3) can be clausified to the equivalent CNF
(¬x1∨¬x2∨¬x3)∧(¬x1∨x2∨x3)∧(x1∨¬x2∨x3)∧(x1∨x2∨¬x3). To avoid such
exponential translation, an n-element xor-clause (l1 ⊕ · · · ⊕ ln) can be divided
into two xor-clauses (l1 ⊕ · · · ⊕ lk ⊕ y) and (¬y⊕ lk+1 ⊕ · · · ⊕ ln) by introducing
a new fresh variable y. Some modern SAT solvers, e.g., CryptoMiniSat [26],
can extract xor-clauses from a set of regular clauses.1

A set of m xor-clauses over n variables x = {x1, . . . , xn} can be considered as
a system of m linear equations over n unknowns. Hence the xor-constraints can
be represented in a matrix form as Ax = b, where A is an m×n matrix and b is
an m×1 constant vector of values in {0, 1}. In the sequel, Ax = b is alternatively
represented as a single Boolean matrix M = [A|b], where separation symbol “ |”
denotes matrix concatenation of A and b, that is, matrix A is augmented with
one more column b.

Example 1. The three xor-clauses c1: (x1 ⊕ ¬x4), c2: (x2 ⊕ x4), and c3: (x1 ⊕
¬x2 ⊕ ¬x3) correspond to the linear equations with the following matrix form.

⎛⎝
x1 x2 x3 x4 b

c1 1 0 0 1 0
c2 0 1 0 1 1
c3 1 1 1 0 1

⎞⎠
A matrix M can be reduced by Gaussian or Gauss-Jordan elimination to remove
linearly dependent equations. Without loss of generality, we shall assume that
matrix M has been preprocessed and is of full rank. In our treatment a matrix is
often underdetermined, namely, there are more columns (unknowns) than rows
(constraints). In the sequel, a matrix is also viewed as a set of rows.

This paper is concerned with the Boolean satisfiability of a formula given as
a conjunction of regular clauses and/or xor-clauses. Thus a formula is viewed
1 Our implementation adopts the xor extraction computation of CryptoMiniSat.
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as a set of (xor-)clauses. (In practice, the xor-clauses can be given as part
of the formula or deduced from the regular clauses.) In the sequel, a formula
φ (respectively a system of linear equations [A|b]) over variables x subject to
some truth assignment α : x′ → {0, 1} on variables x′ ⊆ x is denoted as φ|α
(respectively [A|b]|α). That is, φ|α (respectively [A|b]|α) is the induced formula of
φ (respectively linear equations [A|b]) with variable xi substituted with its truth
value α(xi). We represent α with a characteristic function. E.g., α = ¬x1x2¬x3

denotes α(x1) = 0, α(x2) = 1, and α(x3) = 0.

2.2 Resolution Refutation and Craig Interpolation

Assume literal l is in clause C1 and ¬l in C2. A resolution of clauses C1 and C2 on
var(l) yields a new clause C containing all literals in C1 and C2 except for l and
¬l. The clause C is called the resolvent of C1 and C2. For an unsatisfiable CNF
formula, there always exists a resolution sequence, referred to as a resolution
refutation, leading to an empty-clause resolvent. Resolution refutation has a
tight connection to Craig interpolants.

Theorem 1 (Craig Interpolation Theorem). [8]
For two Boolean formulae φA and φB with φA ∧ φB unsatisfiable, there exists a
Boolean formula IA referring only to the common variables of φA and φB such
that φA → IA and IA ∧ φB is unsatisfiable.

The Boolean formula IA is referred to as the interpolant of φA with respect to
φB. When φA and φB are in CNF, a refutation proof of φA ∧ φB is derivable
from a SAT solver such as MiniSat [10]. Further, an interpolant circuit IA can
be constructed from the refutation proof in linear time [20].

3 Satisfiability Solving under XOR Constraints

Modern SAT solvers are based on the conflict-driven clause learning (CDCL)
mechanism. Our proposed decision procedure is built on top of the modern
solvers. Figure 1 sketches the pseudo code, where lines 2 and 13-16 are inserted
for special xor-handling. In line 2, xor-clauses are extracted from the input
formula φ. Let Ax = b be a system of linearly independent equations derived
from these xor-clauses. ThenM = [A|b]. If M is empty, lines 13-16 take no effect
and the pseudo code works the same as the standard CDCL procedure. On the
other hand, when M contains a non-empty set of linear equations, the procedure
Xorplex in line 13 deduces implications or conflicts whenever they exist from M
with respect to a given variable assignment α. In the process, matrix M may be
changed along the computation. When implication (or propagation) happens,
α is expanded to include newly implied variables. If any implication or conflict
results from Xorplex, in line 15 essential information is added to φ in the form
of learnt clauses, which not only reduces search space but also facilitates future
conflict analysis.
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SatSolve
input: Boolean formula φ
output: Sat or Unsat
begin
01 α := ∅;
02 M := ObtainXorMatrix(φ);
03 repeat
04 (status, α) := PropagateUnitImplication(φ, α);
05 if status = conflict
06 if conflict at top decision level
07 return Unsat;
08 φ := AnalyzeConflict&AddLearntClause(φ, α);
09 α := Backtrack(φ, α);
10 else
11 if all variables assigned
12 return Sat;
13 (status, α) := Xorplex(M , α);
14 if status = propagation or conflict
15 φ := AddXorImplicationConflictClause(φ, M , α);
16 continue;
17 α := Decide(φ, α);
end

Fig. 1. Algorithm: SatSolve

3.1 XOR Reasoning

Before elaborating our xor-reasoning technique, we show an example motivating
the adoption of Gauss-Jordan elimination.

Example 2. Consider the following matrix triangularized by Gaussian elimina-
tion.

[A|b] =

⎛⎜⎜⎝
1 1 1 1 1 0
0 1 1 1 1 0
0 0 1 1 1 1
0 0 0 1 1 1

⎞⎟⎟⎠
No implication can be deduced from it. With Gauss-Jordan elimination, however,
it is reduced to the following diagonal matrix.

[A′|b′] =

⎛⎜⎜⎝
1 0 0 0 0 0
0 1 0 0 0 1
0 0 1 0 0 0
0 0 0 1 1 1

⎞⎟⎟⎠
The values of the first three variables can be determined from the four equa-
tions. Therefore Gaussian elimination (as is used by CryptoMiniSat) is strictly
weaker than Gauss-Jordan elimination in detecting implications and conflicts.
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The efficacy of xor-handling in the pseudo code of Figure 1 is mainly de-
termined by the procedure Xorplex. In essence, two factors, deductive power
and computational efficiency, need to be considered in realizing Xorplex. We
show how the two-literal watching scheme in unit propagation [22] fits incre-
mental Gauss-Jordan elimination in a way similar to the simplex method to
support lazy update. Consequently, Xorplex can be implemented efficiently and
has complete power deducing implications and conflicts whenever they exist.

In the simplex method, the variables of the linear equations Ax = b are
partitioned into m basic variables and (n − m) nonbasic variables assuming
that the m × (n + 1) matrix [A|b] is of full rank and m < n. Matrix [A|b] is
diagonalized to [I|A′|b′], where I is an m × m identity matrix and A′ is an
m × (n − m) matrix, by Gauss-Jordan elimination such that the m basic and
(n−m) nonbasic variables correspond to the columns of I and A′, respectively.
Note that diagonalizing [A|b] to [I|A′|b′] may incur column permutation, which
is purely for the ease of visualization to make the columns indexed by the basic
variables adjacent to form the identity matrix. In practice, such permutation
is unnecessary and not performed. By the simplex method, a basic variable
and a nonbasic variable may be interchanged in the process of searching for
a feasible solution optimal with respect to some linear objective function. The
basic variable to become nonbasic is called the leaving variable, and the nonbasic
variable to become basic is called the entering variable. Although the simplex
method was proposed for linear optimization over the reals, the matrix operation
mechanism works for our considered xor-constraints, i.e., linear equations over
GF(2).

The problem of xor-constraint solving is formulated as follows. Given a sys-
tem of linear equations Ax = b and a partial truth assignment α to variables
x′ ⊆ x, if the induced linear equations [A|b]|α with respect to α are consistent,
derive all implications to the non-assigned variables x\x′. Otherwise, detect a
conflicting assignment to x′ that leads to the inconsistency. In fact, Gauss-Jordan
elimination achieves this goal as the following proposition asserts.

Proposition 1. Given a set of xor-constraints Ax = b and a partial truth
assignment α : x′ → {0, 1} for x′ ⊆ x, Gauss-Jordan elimination on the induced
linear equations [A|b]|α detects all implications to the non-assigned variables
x\x′ if [A|b]|α is consistent, or detects a conflict if [A|b]|α is inconsistent.

Proof. The proposition follows from the soundness and completeness of GJE for
solving a system of linear equations.

To equip complete power in deducing implications and conflicts, procedure Xor-
plex of Figure 1 maintains M |α in a reduced row echelon form. Since Xorplex
is repeatedly applied under various assignments α during SAT solving, Gauss-
Jordan elimination needs to be made fast. A two-literal2 watching scheme is
proposed to make incremental updates on M in a lazy fashion, thus avoiding

2 Since the variables in M are of positive phases, there is no need to distinguish “two-
literal” or “two-variable” watch.
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wasteful computation. Essentially, the following invariant is maintained for M
at all times.

Invariant: Given a partial truth assignment α to the variables of matrix M =
[A|b], for each row r of M two non-assigned variables are watched. Particu-
larly, the first watched variable (denoted w1(r)) must be a basic variable and
the second watched variable (denoted w2(r)) must be a nonbasic variable.

Note that, by this invariant, we assume each row of A contains at least three
1-entries. The reason is that a row without any 1-entry corresponds to either a
tautological or conflicting equation, a row with one 1-entry corresponds to an
immediate implication, and a row with two 1-entries asserts the equivalence or
complementary relation between two variables and is handled specially. Note
also that the number of 1-entries in some row of A can possibly be reduced to
two later due to incremental Gauss-Jordan elimination. In this situation this row
is removed from M and handled specially.

To maintain the invariant, when the two watched variables of some row in
M are non-assigned, no action needs to be taken on this row for Gauss-Jordan
elimination. On the other hand, actions need to be taken for the following two
cases. For the first case, when variable w2(r) is assigned, another non-assigned
nonbasic variable in row r is selected as the new second watched variable. No
other rows are affected by this action. For the second case, when w1(r) is as-
signed and thus becomes the leaving variable, a non-assigned nonbasic variable
in row r needs to be selected as the entering variable. The column c of the enter-
ing variable then undergoes the pivot operation, which performs row operations
(additions) forcing all entries of c to be 0 except for the only 1-entry appearing
at row r. Note that the pivot operation may possibly cause the vanishing of
variable w2(r′) from another row r′. In this circumstance a new non-assigned
nonbasic variable needs to be selected for the second watched variable in row r′,
that is, the first case. Note that the process of maintaining the invariant always
terminates because for every row r the update of w1(r) can occur at most once,
and thus a row is visited at most m times for M of m rows.

When the invariant can no longer be maintained on some row r of M under
α, either of the following two cases happens. Firstly, all variables of r are as-
signed. In this case the linear equation of r is either satisfied or unsatisfied. For
the former, no further action needs to be applied on r; for the latter, Xorplex
returns the detected conflict. Secondly, only variable w1(r) (respectively variable
w2(r)) is non-assigned. In this case, the value of w1(r) (respectively w2(r)) is
implied. Accordingly, α is expanded with w1(r) (respectively w2(r)) assigned to
its implied value.

Upon termination, procedure Xorplex leads to one of the four results: 1) prop-
agation, 2) conflict, 3) satisfaction, and 4) indetermination. Only the first two
cases yield useful information for CDCL SAT solving. The information is pro-
vided by procedure AddXorImplicationConflictClause in line 15 of the pseudo
code in Figure 1. In the propagation case, the corresponding rows in M that
implications occur are converted to learnt clauses. In the conflict case, the con-
flicting row in M is converted to a learnt clause. For example, a propagation
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(respectively conflict) occurs at a row corresponding to the linear equation
x1 ⊕ x2 ⊕ x3 = 0 under α(x1) = 0, α(x2) = 1 (respectively α(x1) = 0, α(x2) =
1, α(x3) = 0). Then the learnt clause (x1 ∨ ¬x2 ∨ x3) is produced.

3.2 Implementation Issues

In our actual realization, an m× (n+ 1) matrix M is implemented with a one-
dimensional bit array, similar to [26]. Thereby matrix row addition is performed
by bitwise xor operation; a row addition operation translates to n/k bitwise xor

operations, where k is the bit width of a computer word. Moreover, similar to [26],
if two xor-constraint sets have disjoint support variables, they are represented
by two individual matrices rather than a single matrix for the sake of memory
and computational efficiency.

To support two-literal (or two-variable) watch on M , a watch list is main-
tained, which provides fast lookup for which rows of M to update when a vari-
able is assigned. To maintain the invariant of two-literal watching, the most
costly computation occurs when the basic variable of some row is assigned. It
may incur in the worst case O(m) row additions to set a new basic variable for
the row. Nevertheless notice that this action cannot make the basic variables
of other rows be assigned, and therefore no chain reaction is triggered. For an
entire Gauss-Jordan elimination, the time complexity is O(m2n).

4 Refutation and Interpolation

This section shows how Craig interpolants can be compactly constructed under
the framework of SatSolve, which combines CDCL-based clause reasoning and
GJE-based xor-constraint solving. Although interpolants for combined proposi-
tional and linear arithmetic theories are available under the framework of SMT
[20,28,5], they are not directly applicable in our context due to the underlying
assumption of most SMT solvers that requires the considered theories to be of
disjoint signatures. On the other hand, although theoretically xor-constraints
can always be expressed in CNF and thus propositional interpolation is suffi-
cient, practically such CNF formulae are hard to solve and even if solvable their
interpolants can be unreasonably large. A new method awaits to be uncovered.

4.1 Interpolant Generation

For problem formulation, consider interpolant generation for a given unsatisfiable
formula φ = φA ∧ φB with the set VA of variables of φA, VB of φB , and VAB of
common variables shared by φA and φB . Let φA = ϕA ∧ψA and φB = ϕB ∧ψB ,
where ϕA and ϕB are CNF formulae and ψA and ψB are xor-constraints. Let
MA (respectivelyMB) be the matrix form of the set of linear equations expressed
by ψA (respectively ψB). Then the union of the rows of MA and MB corresponds
to the matrix M denoted in the previous section.3

3 For an xor-constraint whose constituent clauses are not all implied by φA or by φB,
it is not included in M when interpolant derivation is concerned.
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If ϕA∧ϕB is already unsatisfiable, the following clause interpolation rules [20]
suffice to produce the interpolant.

Cls-A C ∈ ϕA
C: 〈 ∨

l∈C,var(l)∈VAB
l 〉

Cls-B C ∈ ϕB
C: 〈 1 〉

C1 ∨ l: 〈 I1 〉 C2 ∨ ¬l: 〈 I2 〉
Cls-ResA var (l) ∈ VA\VAB

C1 ∨C2: 〈 I1 ∨ I2 〉

C1 ∨ l: 〈 I1 〉 C2 ∨ ¬l: 〈 I2 〉
Cls-ResB var (l) ∈ VB

C1 ∨ C2: 〈 I1 ∧ I2 〉
Similarly, if ψA ∧ ψB is already unsatisfiable, the inequality interpolation rules
[20] suffice for interpolant derivation. They are modified in our context for linear
equations over GF(2) in the following.

Xor-A [aT |b] ∈MA[aT |b]: 〈 [aT |b] 〉
Xor-B [aT |b] ∈MB

[aT |b]: 〈 [0T |0] 〉

[a1
T |b1]: 〈 [a∗

1
T |b∗1] 〉 [a2

T |b2]: 〈 [a∗
2

T |b∗2] 〉
Xor-Sum

[a1
T |b1] + [a2

T |b2]: 〈 [a∗
1

T |b∗1] + [a∗
2

T |b∗2] 〉
In the above rules, a partial interpolant, shown in the angle brackets, is associ-
ated to each linear equation. Superscript “T ” and operator “+” denote matrix
transpose and (modulo 2) matrix addition, respectively. The correctness of these
derivation rules is immediate from prior results [20].

Complication arises, however, in interpolant generation when the refutation
proof of φ involves both clausal resolution and xor linear arithmetic. Essentially
the partial interpolant of a constituent clause of a linear equation is needed. Let
C be a constituent clause of equation aT x = b, whose partial interpolant is
a∗T x = b∗. Then the following derivation rule applies.

XorToCls C ∈ [aT |b]: 〈 [a∗T |b∗] 〉
C: 〈 C∗ ∨ (a∗T x = b∗)|¬C 〉

where C∗ ⊆ C with C∗ = {l ∈ C | var(l) ∈ VAB ∩ Var(a∗T x = b∗)} for Var(E)
denoting the variable set involved in equation E.

Example 3. Consider two equations [1 0 1 1 1 1] ∈ MA and [0 1 0 1 1 1] ∈ MB

in matrix form over variables {x1, . . . , x5} with VAB = {x3, x4, x5}, where the
underlined variables are watched. Assume x1 and x2 are the basic variables.
Under assignment (x1 = 0, x2 = 1), the first and second equations are updated
to [1 0 1 1 1 1] and [1 1 1 0 0 0], respectively, with new basic variables x2 and
x4. The partial interpolant of [1 1 1 0 0 0], i.e., equation x1 ⊕ x2 ⊕ x3 = 0, is
derived as follows.
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[1 0 1 1 1 1]: 〈 [1 0 1 1 1 1] 〉 [0 1 0 1 1 1]: 〈 [0 0 0 0 0 0] 〉
[1 1 1 0 0 0]: 〈 [1 0 1 1 1 1] 〉

Since implication occurs with x3 = 1, a learnt clause (x1∨¬x2∨x3) is generated,
which is a constituent clause of the clause set {(¬x1 ∨ ¬x2 ∨ ¬x3), (¬x1 ∨ x2 ∨
x3), (x1 ∨ ¬x2 ∨ x3), (x1 ∨ x2 ∨ ¬x3)} defined by x1 ⊕ x2 ⊕ x3 = 0. By rule
XorToCls, the partial interpolant of the learnt clause equals

x3 ∨ (x1 ⊕ x3 ⊕ x4 ⊕ x5 = 1)|¬x1x2¬x3

= x3 ∨ (x4 ⊕ x5).

Note that any clause implied by φA (respectively φB) can be considered as a
clause of φA (respectively φB). Similarly any linear equation derivable from MA

(respectively MB) can be viewed as a linear equation of MA (respectively MB).
With this observation, one can verify that the partial interpolant derivation for
a constituent clause of a linear equation in MA (respectively MB) reduces to
McMillan’s clause interpolation rule for clauses of φA (respectively φB). The
general correctness of rule XorToCls is asserted by the following proposition.

Proposition 2. The partial interpolant derived from rule XorToCls for C ∈
[aT |b] is consistent with that derived from the clause interpolantion rules applied
on the clauses clausified from xor-constraints.

Proof. Observe that every linear equation E = [aT |b] derivable from M can
always be expressed as a summation of two equations, one, EA, derived from a
linear combination of equations in MA and the other, EB , from MB. (In fact
EA is the partial interpolant of E.) For C be a constituent clause of E, we show
that its partial interpolant derived by XorToCls is the same as that derived
by the clause interpolation rules applied on the resolution sequence leading to
C from the clauses of EA and EB.

Let the variables appearing in EA and EB be divided into five disjoint (pos-
sibly empty) subsets: V1 for those in EA but not in EB and VAB , V2 for those in
EA and VAB but not in EB, V3 for those in both EA and EB (surely in VAB),
V4 those in EB and VAB but not in EA, and V5 for those in EB but not in EA

and VAB . Then the variable set of C must be V1 ∪ V2 ∪ V4 ∪ V5.
Because the system consisting of two linear equations EA|¬C and EB|¬C must

be unsatisfiable (due to the fact C being a clause of the summation of EA

and EB), by the completeness of resolution, C can be derived by resolution on
variables V3 from the clauses of EA and EB, more precisely, those clauses whose
literals are consistent with C. Since the clauses of EA and EB can be considered
as clauses in φA and φB , respectively, by rule Cls-A the partial interpolants for
EA clauses are subclauses with V1 variables being removed, and by rule Cls-B
the partial interpolants for EB clauses equal constant 1. Since only V3 variables
are resolved, the partial interpolants are built from pure conjunction operation.
As can be verified, the so-derived partial interpolant of C is the same as that of
XorToCls regardless of the detailed resolution steps.
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In essence rule XorToCls provides a short cut in generating interpolants. The
xor-constraint reasoning circumvents unnecessary complex fine-grained resolu-
tions and, perhaps more importantly, enforces its equivalent clausal resolution
steps being performed within φA and φB locally whenever possible. These ad-
vantages make compact interpolants derivable from simple generation rules.

4.2 Implementation Issues

For an xor-equation derived as a summation of rows R ⊆ M , its partial inter-
polant is simply the summation of rowsR∩MA. To derive the partial interpolant,
the m× (n+ 1) matrix M is augmented to M∗ = [M |M∗

A] by concatenating M
with another m× n matrix M∗

A, which is derived from M by removing the last
column and replacing every row belonging to MB with a row of 0’s. Essentially
the sub-matrix M∗

A of M∗ maintains the partial interpolants at any moment
of Gauss-Jordan elimination on M∗. More precisely, in [M |M∗

A], a row in the
sub-matrix M∗

A corresponds to the partial interpolant of the same row in the
sub-matrix M .

5 Experimental Results

The proposed SAT solving method, named SimpSat, was implemented in the
C++ language based on CryptoMiniSat 2.9.1 (CMS) [26], a state-of-the-art
solver equipped with Gaussian elimination. All experiments were conducted on
a Linux workstation with a 3.3 GHz Intel Xeon CPU and 64 GB memory. Bench-
mark examples with many xor-constraints were taken for experiments.

The first experiment compares our method with CMS on cryptanalysis bench-
marks [26]. Four ciphers, Bivium, Trivium, HiTag-2, and Grain, were included
with 100 instances each. For fair comparison, same parameters were applied on
CMS and SimpSat. The results are shown in Table 1, where three methods
were applied, namely, CMS− (CMS with GE disabled), CMS+ (CMS with GE
enabled), and SimpSat. The total CPU time averaging over the 100 instances
is reported in the second, third, and seventh columns; the portion spent on GE
is reported in the fourth and eighth columns; the number of invoked GE calls
averaging over the 100 instances is shown in the fifth and ninth columns; the
utility of GE, defined as the ratio of the number of useful GE calls (where im-
plication or conflict happened) to that of all GE calls, is listed in the sixth and
tenth columns; the speedup of SimpSat over CMS+ in terms of the average
total CPU time (the ratio of that spent by CMS+ to that spent by SimpSat) is
displayed in the eleventh column; the speedup of SimpSat over CMS+ in terms
of the average CPU time taken per GE call (the ratio of that spent by CMS+ to
that spent by SimpSat) is calculated in the last column. To summarize, Simp-

Sat exhibited stronger deductive power (as seen by comparing the sixth and
tenth columns) in shorter computation time (as seen from the last column) com-
pared with CMS+. Thereby SimpSat achieved average speedup of 1.69x, 2.00x,
1.21x, and 1.11x for Bivium, Trivium, HiTag-2, and Grain, respectively. Figure 2
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Table 1. Performance Comparison on Cryptanalysis Benchmarks

Instance

CMS− CMS+ SimpSat
Time GE Time GE Spdup GE

Time Time GE #GE Util Time GE #GE Util over Spdup
(sec) (sec) (sec) (%) (sec) (sec) (%) CMS+ per call

Bivium-45 58.39 65.59 14.70 392200.37 38.39 30.65 9.86 545247.52 63.51 2.14 2.07
Bivium-46 29.47 26.75 8.09 214578.71 40.99 17.28 5.89 317329.83 64.09 1.55 2.03
Bivium-47 18.80 17.99 5.79 157721.70 42.39 10.53 4.01 216342.67 65.52 1.71 1.97
Bivium-48 12.50 11.48 3.91 109732.89 43.74 7.43 2.85 151763.17 66.12 1.55 1.90
Bivium-49 6.51 6.40 2.70 77970.24 46.91 3.55 1.51 80411.71 66.83 1.80 1.85
Bivium-50 5.89 4.76 1.97 59077.97 47.25 2.51 1.23 61643.62 67.55 1.90 1.68
Bivium-51 2.79 2.43 1.13 36940.35 48.48 1.32 0.65 34248.57 67.64 1.84 1.59
Bivium-52 1.15 1.31 0.66 23139.51 49.88 0.77 0.36 18385.35 68.02 1.71 1.46
Bivium-53 0.73 0.72 0.40 17602.80 52.45 0.44 0.22 10868.63 69.03 1.63 1.14
Bivium-54 0.59 0.58 0.27 11318.58 50.98 0.38 0.13 7248.02 68.99 1.51 1.29
Bivium-55 0.42 0.40 0.22 10905.49 53.43 0.26 0.11 5540.11 69.54 1.52 0.98
Bivium-56 0.24 0.23 0.12 5958.18 54.16 0.16 0.06 2842.08 71.29 1.40 0.94

Trivium-151 264.88 2314.04 60.81 1221568.44 36.19 131.14 32.21 1721026.43 60.69 1.76 2.66
Trivium-152 156.83 140.32 39.95 801775.05 38.31 70.59 19.88 1100015.00 61.63 1.99 2.76
Trivium-153 72.97 64.18 22.36 437299.75 41.06 30.76 9.91 581075.51 63.13 2.09 3.00
Trivium-154 57.76 45.57 16.20 316464.91 42.57 20.48 6.50 408162.70 63.38 2.23 3.21
Trivium-155 31.68 25.90 9.57 190731.45 42.65 13.38 4.57 268314.49 63.09 1.93 2.94
Trivium-156 15.39 16.72 6.56 133200.84 44.45 8.47 3.06 186959.82 64.14 1.97 3.01
Trivium-157 15.15 14.56 5.85 124892.01 45.36 7.14 2.63 164411.23 64.66 2.04 2.93
HiTag2-9 313.58 308.30 2.29 355291.70 7.39 235.89 5.50 1436229.45 22.34 1.31 1.69
HiTag2-10 146.93 143.32 1.40 208920.52 7.40 115.45 3.18 860728.62 22.13 1.24 1.81
HiTag2-11 60.87 61.02 0.71 104612.13 7.20 49.63 1.56 425575.32 21.85 1.23 1.86
HiTag2-12 27.50 27.03 0.40 57723.48 7.49 23.17 0.84 230317.78 21.21 1.17 1.90
HiTag2-13 14.02 13.63 0.26 38584.40 7.21 11.64 0.48 131037.02 21.31 1.17 1.82
HiTag2-14 6.24 6.27 0.13 17048.46 6.94 5.37 0.26 68325.91 20.73 1.17 2.02
HiTag2-15 2.93 2.90 0.07 10649.43 5.77 2.52 0.15 37043.91 20.55 1.15 1.72
Grain-106 688.50 712.27 35.23 841125.77 8.62 690.27 57.17 3347468.01 30.00 1.03 2.45
Grain-107 269.72 242.70 17.15 373763.02 8.48 211.73 24.24 1429181.91 29.79 1.15 2.71
Grain-108 1114.20 119.86 11.41 227777.96 9.33 112.99 14.32 872262.35 31.50 1.06 3.05
Grain-109 68.83 85.55 8.80 171188.65 9.87 70.54 9.63 592547.87 32.43 1.21 3.16

compares the performance of SimpSat and CMS+ on all of the cryptanalysis
benchmarks. The CPU times spent by SimpSat and CMS+ are shown on the
y-axis and x-axis, respectively. As can be seen, SimpSat steadily outperformed
CMS+.

Under a similar setting, experiments were performed on equivalence check-
ing benchmarks for Altera CRC (cyclic redundancy check) circuits [1].4 Table 2
compares the performances of ABC cec command [3], CMS−, CMS+, and Simp-

Sat.5 As can be seen, SimpSat is the most robust among the four methods.
It is intriguing that SimpSat outperforms CMS+ by a substantial margin on
several examples. Taking the extreme case crc32-dat48 for example, SimpSat

finished within 3 seconds while all other methods timed out at 7,200 seconds.
A close investigation revealed that SimpSat was able to deduce from Gaussian
elimination many more powerful short xor-clauses (with lengths less than or
equal to 2) than CMS+ as seen from columns six and nine, where the numbers
4 A benchmark was prepared by creating a miter structure comparing a design against

its synthesized version using a script of ABC commands dc2, dch, balance -x.
5 The cec command of ABC exploits circuit structure similarities and logic synthesis

methods for efficient equivalence checking [18].
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Fig. 2. Rumtimes on cryptanalysis benchmarks

of xor-clauses of lengths less than or equal to 2, denoted “#2xcl,” are shown.
These short xor-clauses contributed to the effectiveness of SimpSat.

Another experiment on the benchmarks from randomly generated 3-regular
graphs [12] is shown in Table 3. The number of instances of each benchmark
suite is shown in the second column; the number of solved instances (within a
7,200-second limit) is shown in the third, fifth, and seventh columns; the entire
runtime for solving solvable instances is shown in the fourth, sixth, and eighth
columns. SimpSat and CMS+ achieved similar results.

To study interpolant generation, a prototype, named MiniSat-GE, was built
upon MiniSat-p 1.14 [10] (for which proof logging is supported) with xor-
constraint solving integrated as the pseudo code sketched in Figure 1. Bench-
marks were created from a subset of the unsatisfiable instances of Table 3 by
evenly assigning clauses to φA and φB for interpolation. Table 4 compares the
interpolants generated from the refutation proofs of MiniSat using McMillan’s
clause interpolation rules and those generated from MiniSat-GE using our
derivation rules. A 300-second limit was imposed on SAT solving, and inter-
polants were synthesized using ABC script dc2, dc2, balance. The so gener-
ated interpolants were compared in terms of their number of inputs, number of
AIG (and-inverter graph) nodes, and number of logic levels. The reported run-
time includes SAT solving time and interpolant synthesis time. In the table, an
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Table 2. Performance Comparison on Equivalence Checking of CRC Circuits

Instance

ABC cec CMS− CMS+ SimpSat
GE GE Spdup Spdup

Time Time Time Util GE Time Util GE over over
(sec) (sec) (sec) (%) #2xcl (sec) (%) #2xcl ABC CMS+

crc16-dat16 0.11 0.04 0.02 23.37 1 0.02 33.03 15 6.88 1.38
crc16-dat24 0.53 0.17 0.16 26.79 1 0.04 49.53 16 12.93 4.00
crc16-dat32 1.44 1.77 2.05 10.58 2 0.11 33.27 15 12.97 18.48
crc24-dat64 4667.42 >7200 >7200 0.27 0 360.64 3.36 18 12.94 -

crc24-dat64-only-flat 31.52 >7200 >7200 0.17 0 4.71 36.30 22 6.69 -
crc24-zer64-flat 0.62 >7200 29.10 9.39 5 17.13 13.08 11 0.04 1.70

crc24-zer64x2-flat 0.51 498.17 633.49 3.47 0 0.73 16.42 19 0.69 863.20
crc24-zer64x3-flat 0.45 26.84 49.07 0.54 0 0.65 15.31 19 0.70 75.85

crc32c-dat32 596.94 >7200 >7200 22.34 0 0.22 47.95 35 2713.78 -
crc32c-dat64 >7200 >7200 >7200 0.00 7 3386.20 0.14 32 - -

crc32c-dat64-only 1055.18 >7200 >7200 33.10 3 486.81 20.57 32 2.17 -
crc32c-zer64 0.86 101.39 102.70 4.93 5 0.54 28.78 34 1.59 190.21
crc32-dat16 0.91 7.21 6.88 10.56 1 0.49 56.18 31 1.85 14.02
crc32-dat24 2.51 64.94 10.70 30.86 3 0.93 63.11 32 2.71 11.56
crc32-dat32 385.73 >7200 2153.89 3.38 1 0.49 63.17 32 792.18 4423.46
crc32-dat40 6666.37 >7200 >7200 6.67 0 0.59 48.28 32 11339.10 -
crc32-dat48 >7200 >7200 >7200 17.01 4 2.23 57.09 32 - -
crc32-dat56 >7200 >7200 >7200 23.36 0 146.22 1.12 32 - -
crc32-dat8 0.21 0.40 0.40 0.00 0 0.40 0.00 0 0.52 1.00

Table 3. Performance Comparison on 3-Regular Graph Benchmarks

Instance #inst
CMS− CMS+ SimpSat

Time Time Time
#solved (sec) #solved (sec) #solved (sec)

mod2-rand3bip-sat 165 103 136064.80 165 6.98 165 7.13
mod2-rand3bip-unsat 75 75 72.46 75 15.65 75 15.66
mod2c-rand3bip-unsat 75 75 962.40 75 871.05 75 862.89

mod2-3cage-unsat 23 23 18.00 23 15.93 23 15.95
mod2c-3cage-unsat 23 23 115.44 23 106.27 23 102.06

entry “-” indicates data unavailable due to timeout, or due to large interpolant
sizes not practically synthesizable by ABC. As can be seen, xor-constraint solv-
ing is effective in reducing SAT solving time and admits compact interpolant
generation.

6 Related Work

Prior efforts [4,15,16,17] deployed inference rules for xor-reasoning. In [4],
the authors proposed a framework integrating xor-reasoning with the DPLL
procedure using Gauss resolution rules. However there was no implementation
provided. In [15], the author focused on recognizing binary and ternary xor-
clauses for equivalence reasoning. Several inference rules were integrated into
the DPLL search procedure for literal substitution. Based on the framework of
[4], prior work [16,17] proposed some lightweight inference rules for practical
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Table 4. Results on Interpolant Generation

Instance

MiniSat MiniSat-GE
Time Time Time Time

#in #node #level SAT Syn #in #node #level SAT Syn
(sec) (sec) (sec) (sec)

mod2-rand3bip-unsat-105-1 45 32106 2273 4.32 23.58 45 132 14 0.01 0.1
mod2-rand3bip-unsat-120-1 - - - 88.93 - 44 129 12 0.01 0.12
mod2-rand3bip-unsat-135-1 - - - 280.31 - 54 159 14 0.01 0.09
mod2-rand3bip-unsat-150-1 - - - 53.45 - 50 147 14 0.01 0.09
mod2-rand3bip-unsat-90-1 34 111625 9730 0.63 388.28 34 99 12 0.01 0.09

mod2c-rand3bip-unsat-105-15 - - - 63.15 - 57 105 12 0.01 0.1
mod2c-rand3bip-unsat-90-15 30 105500 9375 1.56 175.32 31 5405 538 0.03 25.02

mod2c-3cage-unsat-11 - - - >300 - 70 1857 137 0.01 1.55
mod2-3cage-unsat-9-1 - - - 74 - 26 75 12 0.01 0.09
mod2-3cage-unsat-10-1 - - - >300 - 29 84 12 0.01 0.05

xor-reasoning and supported with conflict-driven learning for xor-clauses. The
DPLL and xor-reasoning procedures were integrated in a way similar to SMT
solvers.

Compared to the closest prior work [26], our approach is similar but with the
following main differences. For matrix representation, ours is in a reduced row
echelon form, in contrast to the prior row echelon form. For matrix update, ours
uses two-variable watching for incremental matrix update, in contrast to the
prior column search and row swap. For matrix size, ours maintains a single-sized
matrix for propagation/conflict detection, in contrast to the prior doubled-sized
matrix. On the other hand, interpolant generation is supported in this work but
not previously.

7 Conclusions and Future Work

Boolean satisfiability solving integrated with Gauss-Jordan elimination has been
shown powerful in solving hard real-world instances involving xor-constraints.
With two-variable watching and simplex-style matrix update, Gauss-Jordan elim-
ination has been made fast for complete detection of xor-inferred implica-
tions/conflicts. Moreover, Craig interpolation has been made straight for
compact interpolant generation, thus bypassing blind and unnecessarily detailed
resolutions. For future work, extension to three-variable watching is planned for
variable (in)equivalence, in addition to implication and conflict, detection.
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Abstract. Consider a sequential programming language with control
flow constructs such as assignments, choice, loops, and procedure calls.
We restrict the syntax of expressions in this language to one that can be
efficiently decided by a satisfiability-modulo-theories solver. For such a
language, we define the problem of deciding whether a program can reach
a particular control location as the reachability-modulo-theories problem.
This paper describes the architecture of Corral, a semi-algorithm for
the reachability-modulo-theories problem. Corral uses novel algorithms
for inlining procedures on demand (Stratified Inlining) and abstraction
refinement (Hierarchical Refinement). The paper also presents an evalu-
ation of Corral against other related tools. Corral consistently out-
performs its competitors on most benchmarks.

1 Introduction

The reachability problem, with its roots in the classical theory of finite state
machines [20], asks the following question: given a (control flow) graph over a
set of nodes and edges, an initial state, and an error state, does there exist a path
from the initial to the error state? Subsequent to the recognition that a large
class of computer systems can be modeled as finite state machines, this problem
received a lot of attention from researchers interested in formal verification of
computer systems [19,7]. Over the years, many variations of this problem have
been proposed to model increasingly complex systems. For example, finite control
is augmented by a stack to model procedure calls in imperative programs or by
a queue to model message passing in concurrent programs. Along a different
dimension, researchers have proposed annotating the nodes and edges of the
graph by a finite alphabet to enable specification of temporal behavior [30].

We are concerned with the problem of reasoning about programs written
in real-world imperative programming languages such as C, C#, and Java.
Because such programs routinely use unbounded data values such as integers
and the program heap, the framework of finite-state machines is inadequate for
modeling them. We propose that the semantic gap between the programming
languages and the intermediate modeling and verification language should be
reduced by allowing modeling constructs such as uninterpreted functions and
program variables with potentially unbounded values, such as integers, arrays,
and algebraic datatypes. We refer to the reachability problem on such a mod-
eling language as reachability-modulo-theories. Even though this generalization
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immediately leads to a reachability problem that is undecidable, we feel that
this direction is a promising one for the following reasons. First, the increased
expressiveness dramatically simplifies the task of translating imperative software
to the intermediate language, thus making it much easier to quickly implement
translators from languages. In our own work, we have developed high-fidelity
translators both for C and .NET bytecode with a relatively modest amount of
engineering effort. The presence of an intermediate modeling and verification
language simplifies the construction of end-to-end verification systems by decou-
pling the problem of model construction from the problem of solving reachability
queries on the model. Second, our generalization leads to an intermediate ver-
ification language whose expression language is expressible in the framework
of satisfiability-modulo-theories (SMT) and decidable efficiently using the ad-
vanced solvers [15,12] developed for this framework. Therefore, reachability on
bounded program fragments can be decided by converting them into verification
conditions [14,4]. The ability to decide bounded reachability in a scalable fashion
can be of tremendous value in automated bug-finding and debugging.

This paper describes Corral, a solver for a restricted version of the
reachability-modulo-theories problem, in which the depth of recursion is bounded
by a user-supplied recursion bound (we assume that loops are converted to recur-
sive procedures).1 As discussed earlier, recursion-bounded reachability-modulo-
theories is decidable if the expression language of programs is decidable. In fact,
the simplest method to solve this problem is to statically inline all procedures
up to the recursion bound, convert the resulting program into a verification con-
dition (VC), and present the VC to an SMT solver. While this approach may
work for small programs, it is unlikely to scale because the inlined program
may be exponentially large. To make this point concrete, consider the restricted
case of recursion-free (and loop-free) programs. For these programs, a recursion
bound of 0 suffices for full verification; However, it is still a nontrivial prob-
lem to solve because the inlined program could be exponential in the size of
the original program. This complexity is fundamental, in fact, the reachability-
modulo-theories for recursion-free programs becomes PSPACE-hard even if we
allow just propositional variables. If we add other theories such as uninterpreted
functions, arithmetic, or arrays that are decidable in NP, reachability-modulo-
theories for recursion-free programs is decidable in NEXPTIME; however, we
conjecture that the problem is NEXPTIME-hard. Since the efficient (in prac-
tice) subset of theories decided by an SMT solver are in the complexity class
NP, it is likely that that the exponential complexity of inlining is unavoidable in
the worst case; Corral provides a solution to avoid (or delay) this exponential
complexity.

1.1 The Corral Architecture

Corral embodies a principled approach to tackling the complexity of recursion-
bounded reachability-modulo-theories (RMT). Its overall architecture is shown

1
Corral can also be used in a loop where the recursion bound is increased iteratively,
it which case it is a semi-algorithm to the reachability-modulo-theories problem.
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Fig. 1. Corral’s architecture

in Figure 1. Corral uses Boogie [3] as the modeling language for encoding
reachability queries. The Boogie language already supports the essential re-
quirements of RMT: it has the usual control-flow constructs (branches, loops,
procedures), unbounded types (integers and maps) and operations such as arith-
metic and uninterpreted functions. Moreover, the Boogie framework [3] comes
equipped with verification-condition generation algorithms that can convert a
call-free fragment of code with an assertion to an SMT formula such that the
latter is satisfiable if and only if there is an execution of the code that violates
the assertion. This formula can then be fed to various solvers, including Z3 [12].
Thus, the Boogie framework can solve the loop-free call-free segment of RMT.

Corral has a two-level counterexample-guided abstraction refinement [9]
(CEGAR) loop. The top level loop performs a localized abstraction over global
variables [9,23]. Given a set of tracked variables T , it abstracts the input pro-
gram using T ; the initial set of tracked variables is empty. Next, it feeds the
abstracted program to the module denoted Stratified Inlining (§2) to look for
a counterexample. Since VC generation is quadratic in the number of program
variables, performing variable abstraction before stratified inlining can improve
the latter’s performance significantly. If stratified inlining finds a counterexam-
ple, it is checked against the entire set of global variables. If the path is feasible,
then it is a true bug; otherwise, we call the module denoted Hierarchical Refine-
ment (§3.1) to minimally increase the set of tracked variables, and then repeat
the process. Besides the outer loop that increases T , both the stratified inlin-
ing and hierarchical refinement algorithms have their own iterative loops that
require multiple calls to Z3.

Stratified Inlining. For a single procedure program, we simply generate its VC
and feed it to Z3. In the presence of multiple procedures, instead of inlining all
of them up to a given bound, we only inline a few, generate its VC and ask Z3
to decide reachability. If it finds a counterexample, then we’re done. Otherwise,
we replace every non-inlined call site with a summary of the called procedure.
This results in a VC that over-approximates the program, which is fed to Z3. A
counterexample in this case (if any) tells us which procedures to inline next. By
default, Corral uses a summary that havocs all variables potentially modified
by the procedure, but more precise summaries can be obtained from any static
analysis. In our experiments, we used Houdini [17] to compute summaries.
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Hierarchical Refinement. This algorithm takes a divide-and-conquer ap-
proach to the problem of discovering a minimal set of variables needed to refute
an infeasible counterexample. Suppose n is the total number of variables. In the
common case when the number of additional variables needed to be tracked is
small compared to n, our algorithm makes only O(log(n)) path queries to Z3,
as compared to a previous algorithm [23] that makes O(n) queries.

We have evaluated Corral on a large collection of benchmarks to measure its
robustness and performance (§4). To demonstrate robustness, we ranCorral on
programs obtained from multiple sources; they are either sequential C programs,
or concurrent C programs sequentialized using the Lal-Reps algorithm [25]. To
demonstrate good performance, we compare against existing methods: hierar-
chical refinement is compared against the Storm refinement algorithm, strati-
fied inlining is compared against static inlining, and the entire Corral system
is compared against a variety of software verification tools such as Slam [2],
Yogi [29], Cbmc [8], and Esbmc [11]. Our evaluation shows that Corral per-
forms significantly better than existing tools. Moreover, every tool other than
Corral had a difficult time on some benchmark suite (i.e., the tool would run
out of time or memory on most programs in that suite).

Contributions. In summary, this paper makes the following contributions:

– The stratified inlining algorithm.
– The hierarchical refinement algorithm for refining variable abstraction.
– The design and implementation of Corral, a novel architecture that com-

bines summaries, variable abstraction, and stratified inlining to solve the
reachability-modulo-theories problem.

– Extensive experimental evaluation to demonstrate the robustness and per-
formance of Corral.

2 Stratified Inlining

We consider a simple imperative programming language in which each program
has a vector of global variables denoted by g and a collection of procedures,
each of which has a vector of input parameters denoted i and a vector of output
parameters denoted by o. Given such a program F (possibly with recursion, but
no loops), a procedure m in the program, an initial condition ϕ(i, g) over i and
g, and a final condition ψ(o, g) over o and g, the goal is to determine whether
there is an execution of m that begins in a state satisfying ϕ and ends in a state
satisfying ψ. The pseudo-code of our algorithm is shown in Fig. 2.

Stratified inlining uses under- and over-approximation of procedure behaviors
to inline procedures on demand. To underapproximate a procedure, we sim-
ply block all executions through it, i.e., we replace it with “assume false”. To
overapproximate a procedure, we use a summary of the procedure, i.e., a valid
over-approximation of the procedure’s behaviors. The default summary of a pro-
cedure havocs all variables potentially modified by it and leaves the output value
completely unconstrained. One may use any static analysis to compute better
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summaries. In some of our experiments (§4.2), we used Houdini [17] to compute
summaries, which improved the performance of Corral over using the default
summaries. We call the overapproximation of a procedure p as summary(p).

The algorithm maintains a partially-inlined program P starting from the pro-
cedure m (line 1). It also maintains the set C of non-inlined (or open) call-sites
in P . A call-site is defined as a dynamic instance of a procedure call, i.e., the
procedure call along with the runtime stack of unfinished calls. For instance, the
call-site c = [m; foo1; foo2] refers to a call to foo2 from foo1, which is turn was
called from m.

We define the cost of a call-site c to be the number of occurrences of the top-
most procedure in c. For instance, if c = [m; foo1; foo2; foo1; foo2; foo1] then
cost(c) is 3 because foo1 occurs thrice in c. In other words, the cost of a call-site
c reflects the number of recursive calls necessary to reach c. Given a set C of
call-sites, the function split-on-cost(C, r) partitions C into two disjoint sets C1

and C2, where the latter has all those call-sites whose cost is r or greater.

Input: Program F and its starting procedure m
Input: An initial condition ϕ and a final condi-

tion ψ
Input: Maximum recursion depth MAX
Output: Correct, Bug(τ), or NoBugFound

1: P := {assume ϕ; m; assert ¬ψ}
2: C := open-call-sites(P )
3: for r = 1 to MAX do
4: while true do
5: //Query-type 1
6: P ′ = P [∀c∈C c ← assume false]
7: if check(P ′) == Bug(τ) then
8: return Bug(τ)
9: C1, C2 := split-on-cost(C, r)
10: //Query-type 2
11: P ′ = P [∀c∈C1c ← summary(c),

∀c∈C2 c ← assume false]

12: ret := check(P ′)
13: if ret == Correct ∧ C2 == ∅ then
14: return Correct

15: if ret == Correct ∧ C2 �= ∅ then
16: break
17: let Bug(τ) = ret
18: P := P + {inline(c) | c ∈ C, c ∈ τ}
19: C := open-call-sites(P )
20: return NoBugFound

Fig. 2. The stratified inlining algorithm

Each iteration of the loop at line
3 looks for a bug (a valid execution
of m that violates ψ) within the cost
r. The loop at line 4 inlines proce-
dures on-demand. Each of its itera-
tions comprise of two main steps. In
the first step, each open call-site in P
is replaced by its underapproximation
(line 6) to obtain a closed program
P ′, which is checked using a theo-
rem prover (line 7). The routine check
takes a bounded program as input and
feeds it to the theorem prover to de-
termine satisfiability of the assertion
in the program. If a satisfying path is
found, the algorithm terminates with
Bug (line 8).

The second step involves overap-
proximation. Line 11 replaces each
call-site c that has not reached the
bound r (i.e., c ∈ C1) with the sum-
mary of the called procedure. Other
call-sites c ∈ C2 are still blocked be-

cause their cost is r or more. If the resulting program is correct and C2 was
empty, then all open call-sites were overapproximated. Thus, the original pro-
gram F has no bugs (line 14). If C2 was not empty, then r is not sufficient to
conclude any answer, thus we break to line 3 and increment r. If the check on
line 11 found a trace τ , then τ must pass through some call-sites in C (because
line 8 was not taken). All open calls on τ are inlined and the algorithm repeats.
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Iteratively increasing the recursion bound ensures that in the limit (when
MAX approaches ∞), stratified inlining is complete for finding bugs.

The main advantages of the stratified inlining algorithm are:

1. The program provided to the automated theorem prover is generated in-
crementally. Eager static inlining (which inlines all procedures upfront up
to the recursion bound) creates an exponential explosion in the size of the
program. Stratified inlining delays this exponential explosion.

2. Stratified inlining inlines only those procedures that are relevant to ruling
out spurious counterexamples. Thus, it can often perform the search while
inlining few procedures. This ability makes the search property-guided. Be-
cause of the use of over-approximations, stratified inlining can be faster than
static inlining even for correct programs.

3. If the program is buggy, then a bug will eventually be found, assuming that
the theorem prover always terminates and MAX =∞.

3 Variable Abstraction and Refinement

It is often the case that a majority of program variables are not needed for
proving or disproving reachability of a particular goal. In this case, abstracting
away such variables can help the stratified inlining algorithm because: (1) The
VC construction is quadratic in the number of variables [4]; and (2) the theorem
prover does not get distracted by irrelevant variables. However, abstraction can
lead to an over-approximation of the original program and lead to spurious
counterexamples. In this case, we use a refinement procedure to bring back some
of the variables that were removed.

We apply variable abstraction to only global variables. At any point in time,
the set of global variables that are retained by the abstraction are called tracked
variables. Note that Boogie programs always have a finite number of global
variables; unbounded structures in real programs such as the heap are modeled
using a finite number of maps. Thus, the refinement loop always terminates.

Variable abstraction, also known as localization reduction [9], has been used
extensively in hardware verification. We now briefly describe the variable ab-
straction algorithm implemented in Corral (Fig. 3); this algorithm was previ-
ously implemented in the Storm checker [23]. Later, we present a new refinement
algorithm called hierarchical refinement (§3.1) that significantly out-performs
the refinement algorithm in Storm [23].

Let IsGlobalVar be a predicate that is true only for global variables. Let Glob-
alVars be a function that maps an expression to the set of global variables that
appear in that expression. Let T be the current set of tracked variables. Variable
abstraction is carried out as a program transformation, applied statement-by-
statement, as shown in Fig. 3. Essentially, assignments to variables that are not
tracked are completely removed (replaced by “assume true”). Further, expres-
sions that have an untracked global variable are assumed to evaluate to any
value. Consequently, assignments whose right-hand side have such an expression
are converted to non-deterministic assignments (havoc statements).



A Solver for Reachability Modulo Theories 433

v := e

�→

⎧⎨
⎩

assume true IsGlobalVar(v) ∧ v �∈ T
havoc v GlobalVars(e) �⊆ T
v := e otherwise

assume e

�→
{

assume true GlobalVars(e) �⊆ T
assume e otherwise

assert e

�→
{

assert false GlobalVars(e) �⊆ T
assert e otherwise

havoc v

�→
{

assume true v �∈ T
havoc v otherwise

Fig. 3. Program transformation for variable abstraction, with tracked variables T

3.1 Hierarchical Refinement

In Corral, we abstract the program using variable abstraction and then feed
it to the stratified inlining routine. If it returns a counterexample, say τ , which
exhibits reachability in the abstract program, then we check to see if τ is feasible
in the original program by concretizing it, i.e., we find the corresponding path in
the input program. If this path is infeasible, then τ is a spurious counterexample.
The goal of refinement is to figure out a minimal set of variables to track that
rule out the spurious counterexample.2 Storm’s refinement algorithm already
computes a minimal set, but the algorithms presented in this section find such
a set much faster.

Let us define two subroutines: Abstract takes a path and a set of tracked
variables and carries out variable abstraction on the path. The subroutine check
takes a path (with an assert) and returns Correct only when the assert cannot
be violated on the path. We implement check by simply generating the VC of
the entire path and feeding it to Z3.

Let G be the entire set of global variables and T be the current set of tracked
variables. Storm’s refinement algorithm requires about |G−T | number of itera-
tions, and each iteration requires at least one call to check. In our experience, we
have found that most spurious counterexamples can be ruled out by tracking one
or two additional variables. We leverage this insight to design faster algorithms.

Alg. 1 uses a divide-and-conquer strategy. It has best-case running time when
only a few additional variables need to be tracked, in which case the algorithm
requires log(|G− T |) number of calls to check. In its worst case, which happens
when all variables need to be tracked, it requires at most 2|G−T | number of calls
to check. As our experiments show, most refinement queries tend to be towards
the best case, which is an exponential improvement over Storm.

Alg. 1 uses a recursive procedure hrefine that takes three inputs: the set of
tracked variables (T ), the set of do-not-track variables (D, initially empty), and
a path P . It assumes that P , when abstracted with G − D, is correct (i.e.,
assertion in Abstract(P,G − D) cannot be violated). We refer to Alg. 1 as the
top-level call hrefine(T, ∅, P ). Note that while hrefine is running, the arguments
T and D can change across recursive calls, but P remains fixed to be the input
counterexample.

2 We do not attempt to find the smallest set of variables to track; not only might that
be very hard to compute, but a minimal set already gives good overall performance
for Corral.
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Procedure hrefine(T,D, P )

Input: A correct path P with global variables G
Input: A set of variables T ⊆ G that must be

tracked
Input: A set of variables D ⊆ G that definitely

need not be tracked, D ∩ T = ∅
Output: The new set of variables to track

1: if T ∪D = G then
2: return T
3: P ′ := Abstract(P , T )
4: if check(P ′) == Correct then
5: return T
6: if |G− (T ∪D)| = 1 then
7: return G−D
8: T1, T2 := partition(G − (T ∪D))
9: S1 := hrefine(T ∪ T2, D, P )
10: S′

1 := S1 ∩ T1

11: return hrefine(T ∪ S′
1, D ∪ (T1 − S′

1), P )

Procedure vcrefine(T,D, P )

Input: A program P with special Boolean con-
stants B

Input: A set of Boolean constants T ⊆ B that
must be set to true

Input: A set of Boolean constants D ⊆ B that
must be set to false

Output: The set of Boolean constants to set to
true

1: if T ∪D = B then
2: return T
3: ψ = (

∧
b∈T b) ∧ (

∧
b∈B−T ¬b)

4: if check(VC(P ) ∧ ψ) == Correct then
5: return T
6: if |B − (T ∪D)| = 1 then
7: return B −D
8: T1, T2 := partition(B − (T ∪D))
9: S1 := vcrefine(T ∪ T2, D, P )
10: S′

1 := S1 ∩ T1

11: return vcrefine(T ∪S′
1, D∪ (T1 −S′

1), P )

(a) Algorithm 1: hrefine(T, ∅, P ) (b) Algorithm 2: vcrefine(T, ∅, P )

Fig. 4. Hierarchical refinement algorithms

Alg. 1 works as follows. If T ∪D = G (line 1) then we already know that P
is correct while tracking T (because the precondition is that P is correct while
tracking G−D). Lines 3 to 5 check if T is already sufficient. Otherwise, in line 6,
we check if only one variable remains undecided, i.e., |G− (T ∪D)| = 1, in which
case the minimal solution is to include that variable in T (which is the same as
returning G−D). Lines 8 to 11 form the interesting part of the algorithm. Line
8 splits the set of undecided variables into two equal parts randomly. Because
of the check on line 6, we know that each of T1 and T2 is non-empty. Next, the
idea is to use two separate queries to find the set of variables in T1 (respectively,
T2) that should be tracked. The first query is made on line 9, which tracks all
variables in T2. The only remaining undecided variables for this query is the set
T1. Thus, the answer S1 of this query will include T ∪T2 along with the minimal
set of variables in T1 that should be tracked. We capture this in S′

1 and then all
variables in T1−S′

1 should not be tracked. Thus, the second query includes S′
1 in

the set of tracked variables and (T1−S′
1) in the set of do-not-track variables. The

procedure hrefine is guaranteed to return a minimal set of variables to track.

Theorem 1. Given a path P with global variables G, and sets T,D ⊆ G, such
that T and D are disjoint, suppose that Abstract(P,G − D) is correct. If R =
hrefine(T,D, P ) then T ⊆ R ⊆ G −D, and Abstract(P,R) is correct, while for
each set R′ such that T ⊆ R′ ⊂ R, Abstract(P,R′) is buggy.

Proof of this theorem can be found in our techreport [24]. The following Lemma
describes the running time of the algorithm.

Lemma 1. If the output of Alg. 1 is a set R, then the number of calls to check
made by the algorithm is (a) O(|R− T | log(|G− T |)), and (b) bounded above by
max(2|G− T | − 1, 0).
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if(¬Tracked(v)) {
assume true;

} else if(¬Tracked(e)) {
havoc v;

} else {
v := e;

}

if(¬Tracked(e)) {
assume true;

} else {
assume e;

}

if(¬Tracked(e)) {
assert false;

} else {
assert e;

}

(a) (b) (c)

Fig. 5. Program transformation for parameterized variable abstraction: (a) Transfor-
mation for v := e; (b) assume e; (c) assert e. Other statements are left unchanged.

Both Alg. 1 and Storm’s refinement share a disadvantage: they spend a sig-
nificant amount of time outside the theorem prover. Each iteration of Alg. 1
needs to abstract the path with a different set of variables, and then generate
the VC for that path. In order to remove this overhead, the next algorithm that
we present will require VC generation only once and the refinement loop will be
carried out inside the theorem prover.

First, we carry out a parameterized variable abstraction of the input path as
follows: for each global variable v, we introduce a Boolean constant bv and carry
out the program transformation shown in Fig. 5. The transformed program has
the invariant: if bv is set to true then the program behaves as if v is tracked,
otherwise it behaves as if v is not tracked. The transformation uses a subroutine
Tracked, which takes an expression e as input and returns a Boolean formula:

Tracked(e) =
∧
v∈GlobalVars(e) bv

Thus, Tracked(e) returns the condition under which e is tracked.
If PI was the input counterexample and T the current set of tracked variables,

then we transform PI to P using parameterized variable abstraction. Next, we
set each bv, v ∈ T to true. Let B be the set of Boolean constants bv, v �∈ T . The
refinement question now reduces to: what is the minimum number of Boolean
constants in B that must be set to true so that P is correct, given that setting
all constants in B to true makes P correct? We solve this using Alg. 2, which
takes P as input.

Alg. 2 is exactly the same as Alg. 1 with the difference that instead of operating
at the level of programs and program variables, it operates at the level of formulae
and Boolean constants. This buys us a further advantage: the queries made to
the theorem prover on line 6 are very similar. One can save VC(P ) on the
theorem prover stack and only supply ψ for the different queries. This enables
the theorem prover to reuse all work done on VC(P ) across queries.

4 Evaluation

We have implemented Corral as a verifier for programs written in Boogie. It
is supported by a front-end each for compiling C and .NET bytecode to Boogie.
The translation from C to Boogie uses several theories for encoding the seman-
tics of C programs. Linear arithmetic is used for modeling pointer arithmetic
and a subset of integer operations; uninterpreted functions are used for mod-
eling any other operation not modeled by linear arithmetic; arrays are used to



436 A. Lal, S. Qadeer, and S.K. Lahiri

Name LOC Vars Procs Conc? Correct? Iter Time (sec)

Total R(%) S(%)

daytona 660 114 40 Yes Yes 8 26.9 50 35
daytona bug2 660 114 40 Yes No 6 27.0 56 27
kbdclass read 978 212 48 Yes Yes 12 194.4 52 29
kbdclass ioctl 978 212 48 Yes Yes 6 63.9 43 38
mouclass read 818 179 44 Yes Yes 13 185.7 53 28
mouclass bug3 818 179 44 Yes No 15 245.5 53 30
ndisprot write 907 122 46 Yes Yes 6 24.8 41 44
pcidrv bug1 661 109 49 No No 11 37.4 49 37
serial read 1601 378 77 Yes Yes 13 1151.7 41 51
mouser sdv a 3311 225 131 No No 4 35.4 33 45
mouser sdv b 3898 252 143 No Yes 12 990.8 15 81
fdc sdv 5799 421 180 No Yes 11 659.8 11 85
serial sdv a 7373 466 149 No Yes 6 139.2 47 34
serial sdv b 7396 439 168 No No 6 289.1 46 40

Fig. 6. Running times of Corral on driver benchmarks

model the heap memory split into multiple maps based on fields and types [10].
The translation of .NET bytecode uses the aforementioned theories in a similar
way but also uses two other theories: (1) algebraic datatypes to model object
types and delegate values, and (2) generalized array theory [13] to model hash-
sets and .NET events. It is important to note that Corral is agnostic to the
source language used and depends only on the compiled Boogie program.

4.1 Evaluating Components of Corral

The first set of experiments show: (1) how the various components of Corral

contribute to its overall running time; (2) a comparison of stratified inlining
against static inlining; and (3) a comparison of different refinement algorithms.
These experiments were conducted on a collection of Windows device drivers in C
(compiled to Boogie usingHavoc [10]). For each driver, we had various different
harnesses that tested different functionalities of the driver. Some of the harnesses
were concurrent, in which case the sequential program was obtained using a
concurrent-to-sequential source transformation described elsewhere [16,25]. Such
sequentialized programs are often quite complicated (because they simulate a
limited amount of concurrency using non-determinism in data) and form a good
test bench for Corral. These drivers also had planted bugs denoted by the
suffix “bug” in the name of the driver.

A summary of these drivers and Corral’s running time is shown in Fig. 6.
We report: the number of non-empty C source lines (LOC), the number of global
variables in the generated Boogie file (Vars), the number of procedures (Procs),
whether the driver is concurrent (Conc?), whether it has a planted bug or not
(Correct), the number of iterations of the refinement loop (Iter), the total run-
ning time of Corral (Total), the fraction of time spent in abstraction and
refinement (R%) and the fraction of time spent in checking using the stratified
inlining algorithm (S%). The refinement algorithm used was Alg. 2. Corral

fares reasonably well on these programs. A significant fraction of the time is
spent refining, thus, justifying our investment into faster refinement algorithms.
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Static Inlining. For the above-described run of Corral, we collected all pro-
grams that were fed to stratified inlining and ran static inlining on them, i.e.,
we inlined all procedures (up to the recursion bound) upfront and then fed it
to Z3. This did not work very well: static inlining ran out of memory (while
creating the VC) on each of the six largest programs, with a recursion bound
of 1 or 2. Even when the VC did fit in memory, Z3 timed out (after 1 hour) in
many cases. For the rest, stratified inlining was still three times faster. A more
detailed comparison can be found in our techreport [24].

Hierarchical Refinement. For the above-described run of Corral, we col-
lected all the spurious counterexamples and ran each of the three refinement al-
gorithms on them: Storm’s refinement algorithm, Alg. 1, and Alg. 2. All three
algorithms returned the same answer on each counterexample. Alg. 2 was a
clear winner with very little variation in its running time. The average speedup
of Alg. 2 over Alg. 1 was 2.8X and that over Storm was 13.2X. A more detailed
comparison can be found in our techreport [24].

4.2 SDV Benchmarks

For our next experiment, we compare Corral against state-of-the-art verifica-
tion tools Slam [2] and Yogi [29]. Both these tools are run routinely by the
Static Driver Verifier (SDV) team against a comprehensive regression suite con-
sisting of multiple (real) drivers and properties. The suite consists of a total of
2274 driver-property pairs, of which 1886 are correct (i.e., the property is satis-
fied by the driver) and 388 are incorrect (i.e., there is an execution of the driver
that violates the property). We compare Corral against Yogi. (The compar-
ison against Slam is similar in nature.) We compare the running times of the
tools as well as evaluate the effectiveness of recursion bounding. We will use the
term program to refer to a driver instrumented with a particular property.

First, note that Yogi does full verification unlike Corral that requires a
recursion bound to cut-off search. Thus,Yogi has to do more work thanCorral

for correct programs. Moreover, both these tools use slightly different modeling
of C semantics, leading to different answers for a few programs. It was difficult
to remove these differences.

We ran Corral with a recursion bound of 2. The natural question to ask
is: how many bugs did Corral miss? It turns out that only on 9 programs
Yogi found a bug, but Corral was not able to find one (out of a total of 388
buggy programs). We investigated these 9 programs and they turned out to be
instances of just two loops. The first loop required a recursion bound of 3, and
Corral was able to find the bugs with this bound. The second loop was of the
form for(i = 0; i < 27; i + +), and thus, required a bound of 27 for Corral

to explore the code that came after this loop. We are currently investigating
techniques to deal with such constant-bounded loops.

Aggregating over all programs on which Yogi and Corral returned the
same answer, Yogi took 55K seconds to produce an answer for all of them,
whereas Corral required only 27K seconds, a speedup of about 2X. The scatter
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Fig. 7. A comparison of running times of Corral against Yogi on buggy programs

plot comparing the running times of Yogi and Corral on buggy programs is
shown in Fig. 7. Both tools took around the same amount of total time on these
programs (about 10K seconds). However, the total running time is dominated by
many programs with a trivial running time, on which Corral is slightly slower.
The distribution of points in the scatter plot show a more interesting trend.
For instance, there is a larger distribution of points around the X-axis, meaning
that Corral did very well on programs on which Yogi was having a hard
time. Aggregating over buggy instances on which Yogi took at least a minute,
Corral was twice as fast as Yogi. There is also a smaller distribution of points
around the Y-axis on which Yogi did much better. Manual inspection of these
programs revealed that the main reason for Yogi’s success was summarization
of procedures using predicate abstraction. The next subsection equips Corral

with a simple summarization routine.
We tried using other bounded-model checkers (Cbmc [8] and Esbmc [11]) on

these programs but they did not perform well. They either ran out of time or
memory on most programs, possibly because they use static inlining to deal with
procedures. Moreover, both Slam andYogi do not work well on “sequentialized”
versions of concurrent programs (i.e., they would often time out). On the other
hand, Corral is able to uniformly work on all these programs.

In conclusion, this experiment shows: (1) the practical applicability of recur-
sion bounding in practice for real-world bug hunting, and (2) that Corral is
competitive with state-of-the-art software model checkers.
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Fig. 8. A comparison of running times of Corral augmented with Houdini against
Yogi on buggy programs

Using Summaries. We now demonstrate the ability of Corral to leverage
abstraction techniques by using Houdini [17]. Houdini is a scalable modu-
lar analysis for finding the largest set of inductive invariants from amongst a
user-supplied pool of candidate invariants. Houdini works as a fixpoint proce-
dure; starting with the entire set of candidate invariants, it tries to prove that
the current candidate set is inductive. The candidates that cannot be proved
are dropped and the procedure is repeated until a fixpoint is reached. Our us-
age of Houdini is restricted to inferring post-conditions of procedures, where a
post-condition is simply a predicate on the input and output vocabulary of a
procedure. The inferred post-conditions act as procedure summaries.

The drivers in our suite do not have recursion (but may have loops). In this
setting, if we generate n candidate summaries per procedure, and there are P
procedures, then Houdini requires at most O(nP ) number of theorem prover
queries, where each query has the VC of at most one procedure only.

For SDV, we generated candidates using two different sources of predicates:
first, we used Yogi’s internal heuristics, which compute an initial set of pred-
icates for Yogi’s iterative refinement loop; and second, we manually inspected
some properties and wrote down predicates that captured the typestate of the
property. Because we never looked at the drivers themselves, this process re-
quired minimal manual effort. We now briefly illustrate this process.

A driver goes through two instrumentation passes that are important to un-
derstand for generating Houdini candidates. The first pass instruments the
driver with a property. For illustration, consider a property which asserts that
for a given lock, acquire and release operations must occur in strict alternation.
A driver is instrumented with this property by introducing a new variable s of
type int that is initialized to 0 in the beginning of main. A lock acquire opera-
tion first asserts that s == 0 and then sets s to 1. A lock release operation first
asserts that s == 1 and then sets s to 0. It is easy to see that if the instrumented
driver does not fail any assertion then the acquire and release operations happen
in strict alternation.

The second instrumentation is carried out internally inside Corral as a pre-
processing step. Because the stratified inlining algorithm only checks for a con-
dition at the end of main, Corral introduces a new Boolean variable error,
initialized to false, and replaces each assertion assert e with:
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error := ¬e; if(error) return;
And after each procedure call, Corral inserts:

if(error) return;
Then Corral simply asserts that error is false at the end of main.

Houdini candidates are derived from predicates that capture the property
typestate. For the lock acquire-release property, the typestate predicates are
s == 0 and s == 1. These are used to generate the following 6 candidates to
capture either (a) how the typestate can be modified by a procedure; or (b)
conditions under which error is not set:

old(s) == 0⇒ s == 0 old(s) == 1⇒ s == 0
old(s) == 0⇒ s == 1 old(s) == 1⇒ s == 1
old(s) == 0⇒ ¬error old(s) == 1⇒ ¬error

Here, old(s) refers to the value of s at the beginning of a procedure and s refers
to its value at the end of a procedure.

The generated candidates are fed to Houdini and valid ones form procedure
summaries. These summaries not only help proving correctness of certain pro-
grams, but also help in finding bugs faster: when a part of a program is proved
correct, no further inlining is required in that region. A scatter plot on the buggy
instances is shown in Fig. 8. The running time of Houdini is included in the
running time of Corral. For simple instances, this adds extra overhead: the
distribution of points around the origin are in favor of Yogi. However, as run-
ning time increases, Corral +Houdini is almost always faster. On programs
with non-trivial running times, Corral + Houdini was six times faster than
Yogi (up from 2X without Houdini).

Computing Proofs. Corral can prove correctness regardless of the recursion
bound when the over-approximation used in stratified inlining is UNSAT. Sur-
prisingly, this simple over-approximation (along with partial inlining) suffices in
many cases. Of the 1886 correct programs, Corral was actually able to prove
1574 of them correct irrespective of the recursion bound: a proof rate of 83%.
With the use of Houdini, this number goes up to 1715: a proof rate of 91%.

4.3 SV-COMP Benchmarks

For the next experiment, we looked for external sources of benchmarks that are
already accessible to other tools. We found a rich source of such benchmarks
from the recently-held competition on software verification [6]. Unfortunately,
the benchmarks are CIL-processed C files, most of which do not compile using our
(Windows-based) front end. Thus, we picked all programs in only two categories
and manually fixed their syntax. The first category consists of 36 programs in
the ssh folder and the second category consists of 9 programs in the ntdrivers
folder. Roughly half of these programs are correct, and half are buggy. We ran
Corral with a recursion bound of 10, which is the same used by other bounded
model checkers in the competition. We did not attempt to set up the tools that
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participated in the competition on our machine. Instead, we compare Corral

against the running times reported online. Although it is unfair to compare
running times on different machines (and operating systems), we only show the
numbers to illustrate Corral’s robustness, and a ball-park estimate of how it
competes against many tools on a new set of benchmarks.

For each program, Corral returned the right answer well within the time
limit of 900 seconds. In the ssh category, Corral takes a total of 168 sec-
onds to finish. This is in comparison to 525.8 seconds taken by the best tool
in the category (CPAChecker). In the ntdrivers category, Corral took a
total of 447.5 seconds, but in this case, the best tool (again CPAChecker)
performed better—it took only 105.2 seconds. No tool other than Corral and
CPAChecker was able to return right answers on all programs in ntdrivers

(they either ran out of time or memory or returned an incorrect answer).

4.4 .NET Benchmarks

We downloaded an open-source .NET implementation of the Tetris game and set
it up with a harness that clicks random buttons and menus to drive the game.
We compiled this program to Boogie using Bct [5]. The original program is
around 1550 lines of source code (excluding type definitions and comments); it
compiles to roughly 23K lines of Boogie code and has 357 procedures. We cre-
ated a collection of 570 queries, one for each target of each branch in the program
as well as the beginning of each procedure. We ran Corral with a recursion
bound of 1. Within a budget of 600 seconds per query, Corral was able to
resolve 243 queries as reachable, 204 as unreachable, and the rest (123) timed
out. These results, together with results described earlier on C programs, demon-
strate Corral’s robustness in dealing with queries from different programming
languages.

5 Related Work

Stratified inlining is most closely related to previous work on structural abstrac-
tion [1], inertial refinement [31] and scope bounding [27,21]. However, structural
abstraction is based entirely on overapproximations; it does not have the analog
of underapproximating by blocking certain calls. Inertial refinement uses both
over and under approximations to iteratively build a view of the program that
is a collection of regions and uses the notion of minimal correcting sets [26] for
the refinement. The scheme in stratified inlining appears to be much simpler
because, first, it abstracts only calls and not arbitrary program regions. Second,
the refinement is based on a simple analysis of the counterexample from the over-
approximate query. Scope bounding refers to limiting the scope of an analysis to
a program fragment and has been used previously, for instance, in verifying null-
dereference safety of Java programs [27]. In their context, fragments need not
contain the entry procedure and may grow backwards (i.e., callers get inlined,
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instead of callees), which is in contrast to stratified inlining. Moreover, the pro-
cess of growing fragments is not based on abstract counterexamples. Addition-
ally, none of these previous techniques attempt to perform variable abstraction,
whereas Corral effectively orchestrates it along with stratified inlining.

The idea of introducing Boolean variables for doing optimization inside a
theorem prover, which we use in Alg. 2, has been used previously, for instance
in error localization [22].

A variety of methods have been proposed for software verification based on
predicate abstraction and interpolation [2,18,29,28]. The focus of these methods
is to infer predicates in order to create a finite vocabulary for invariants and
summaries. These techniques are complementary to our work; summaries gener-
ated by them could be used to speed up Corral as shown by our experiments
with Houdini.

Bounded model checkers such as CBMC [8], ESBMC [11], and LAV [32] per-
form bounded program verification similar to Corral. However, their focus
is on efficient VC generation and modeling of program semantics; they use a
technique similar to static inlining and do not use variable abstraction.
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Abstract. In this paper, we propose an at least as fast as relation be-
tween two timed automata states and investigate its decidability. The
proposed relation is a prebisimulation and we show that given two pro-
cesses with rational clock valuations it is decidable whether such a pre-
bisimulation relation exists between them. Though bisimulation relations
have been widely studied with respect to timed systems and timed au-
tomata, prebisimulations in timed systems form a much lesser studied
area and according to our knowledge, this is the first of the kind where we
study the decidability of a timed prebisimulation. This prebisimulation
has been termed timed performance prebisimulation since it compares
the efficiency of two states in terms of their performances in performing
actions. s � t if s and t are time abstracted bisimilar and every possible
delay by s and its successors is no more than the delays performed by t
and its successors where the delays are real numbers. The prebisimilarity
defined here falls in between timed and time abstracted bisimilarity.

Keywords: Timed automata, timed bisimulation, time abstracted bisim-
ulation, prebisimulation, timed transition system.

1 Introduction

Bisimulation [17] is an important relation to establish the equivalence between
two reactive systems. The concept has been extended to timed systems as well.
The common form of bisimulations used to compare two timed systems are
timed and time abstracted bisimulations. While timed bisimulation is too strong
a relation where time delays have to match exactly, time abstracted bisimulation
does not compare exact timing requirements. Both timed and time-abstracted
bisimulations have been proved to be decidable for timed automata [6][16][21].

Timing requirements, in real time systems in particular, increasingly affect
design decisions and implementation procedure. We propose a prebisimulation
relation between two timed automata states which establishes an at least as fast
as relation between them. Using action hiding or action abstraction, the pro-
posed bisimulation relation will be useful in comparing functionally equivalent
systems in terms of their relative performance. We call this timed performance
prebisimulation as it distinguishes two states based on their performance for
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Fig. 1. Example: A preorder relation

doing each action they are capable of doing. This relation will be useful for ver-
ifying the correctness of implementations of systems with multiple blocks where
each individual block needs to finish execution within a specified time. The ver-
ification will conclude whether the timing requirement for each individual block
as mentioned in the specification is satisfied in the implementation. An impor-
tant consideration here is that both the states should be capable of performing
the same set of actions at any point in time and hence they should be time
abstracted bisimilar. Thus timed performance prebisimulation is stronger than
time abstracted bisimulation but weaker than timed bisimulation. The automata
shown in figure 1 illustrate the idea. The automaton in the left is at least as fast
as the automaton on the right, since the second a action should be performed
within a time interval of one time unit after the first a action whereas in the sec-
ond timed automaton, the second a can be performed within an interval of two
time units after the first action. Some speed sensitive preorder relations have
been defined in process algebraic framework [7][18][15], though each of these
relations is significantly different from our timed performance prebisimulation
which is defined for timed automata states. In [12] too a similiar relation based
on traces is proposed. In our approach we can capture non-determinism in terms
of both time and action and the relation captures branching in time as in bisim-
ulation rather than traces. Also, our relation is particular to the widely studied
timed automata formalism whereas the formalism used in [12] is timed actor in-
terfaces. As in the work in [12], in our approach too, a smaller nondeterministic
delay against a greater constant time delay is considered to be a refinement. Our
main contribution is proving the decidability of timed performance prebisimu-
lation using a zone [4][9] based construction. This approach can also be used to
prove the decidability of timed bisimulations. For timed bisimulation, our con-
struction can lead to a simpler proof than the product construction technique
used on regions in [6] or the zone based technique used in [21]. In section 2,
we give a brief description of timed automata. In section 3, we describe strong
timed and time-abstracted bisimulations while in section 4, we introduce timed
performance prebisimulation. In section 5, we briefly describe zone and zone
graph [14][22]. Our algorithm for proving decidability uses zone valuation graph
which is a zone graph starting from a specific timed state and satisfies certain
properties as described later. We describe a method for creating zone valuation
graph in section 5 and provide an algorithm for deciding this prebisimulation
and a proof of correctness for it. We conclude in section 6 where we give an ex-
ample comparing two complex systems using this performance prebisimulation.
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We also mention about another timed prebisimulation which we consider to be
of significant importance and whose decidability we would like to investigate in
future.

2 Timed Automata

Timed automata [2] is an approach to model time critical systems where the
system is modeled with clocks that track elapsed time. Timing of actions and
time invariants on states can be specified using this model.

A timed automaton is a finite-state structure which can manipulate real-
valued clock variables. Corresponding to every transition, a subset of the clocks
can be specified that can be reset to zero. In this paper, the clocks that are
reset in a transition are shown as being enclosed in braces. Clock constraints
also specify the condition for actions being enabled. If the constraints are not
satisfied, the actions will be disabled. Constraints can also be used to specify
the amount of time that may be spent in a location. The clock constraints B(C)
over a set of clocks C is given by the following grammar:

g ::= x < c | x ≤ c | x > c | x ≥ c | g ∧ g

where c ∈ N and x ∈ C. A timed automaton over a finite set of clocks C and
a finite set of actions Act is a quadruple (L, l0, E, I) [1] where L is a finite set
of locations, ranged over by l, l0 ∈ L is the initial location, E ⊆ L × B(C) ×
Act × 2C × L is a finite set of edges, and I : L→ B(C) assigns invariants to
locations.

2.1 Semantics

The semantics of a timed automaton can be described with a timed labeled
transition system(TLTS). Let A = (L, l0, E, I) be a timed automaton over a set
of clocks C and a set of visible actions Act. The timed transition system T (A)

generated by A can be defined as T (A) = (Proc, Lab, { α−→ |α ∈ Lab}), where
Proc = {(l, v) | (l, v) ∈ L × (C → R≥0) and v |= I(l)}, i.e. states are of the form
(l, v), where l is a location of the timed automaton and v is a valuation that
satisfies the invariant of l. We use the terms process and state interchangeably
in this text. Lab = Act ∪ R≥0 is the set of labels; and the transition relation is

defined by (l, v)
a−→ (l′, v′) if for an edge (l

g,a,r−→ l′) ∈ E, v |= g, v′ = v[r] and

v′ |= I(l′), where an edge (l
g,a,r−→ l′) denotes that l is the source location, g is

the guard, a is the action, r is the set of clocks to be reset and l′ is the target

location. (l, v)
d−→ (l, v + d) for all d ∈ R≥0 such that v |= I(l) and v + d |= I(l)

where v+ d is the valuation in which every clock value is incremented by d. Let
v0 denote the valuation such that v0(x) = 0 for all x ∈ C. If v0 satisfies the
invariant condition of the initial location l0, then (l0, v0) is the initial state or
the initial configuration of T (A).
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3 Bisimulations for Timed Systems

We discuss here only the strong form of the bisimulations.

Definition 1. Timed bisimilarity: A binary symmetric relation R over the
set of states of a TLTS is a timed bisimulation relation if whenever s1Rs2, for
each action a ∈ Act and time delay d ∈ R≥0

if s1
a→ s′1 then there is a transition s2

a→ s′2 such that s′1 R s′2, and

if s1
d→ s′1 then there is a transition s2

d→ s′2 such that s′1 R s′2.
Timed bisimilarity ∼t is the largest timed bisimulation relation.

Timed automata A1 and A2 are timed bisimilar if the initial states in the corre-
sponding TLTS are timed bisimilar. Matching each time delay in one automaton
with identical delays in another automaton may be too strict a requirement.
Time abstracted bisimilarity is the relation obtained by a relaxation of this re-
quirement and the second clause of definition 1 is replaced by

if s1
d→ s′1 then there is a transition s2

d′→ s′2, such that s′1Rs′2. The delay d can
be different from d′.

Timed automata A1 and A2 are time abstracted bisimilar if the initial states
in the corresponding TLTS are time abstracted bisimilar.

4 Timed Performance Prebisimulation

Deciding whether one automaton is at least as fast as another is interesting when
they can perform the same visible actions at every stage. Thus they should
be time abstracted bisimilar. This prebisimulation is similar to efficiency pre-
order [3] where the efficiency of two systems is compared using the number of
internal moves made by them.

Definition 2. Timed performance prebisimilarity: A binary relation B
over the set of states of a TLTS is a timed performance prebisimulation re-
lation if whenever s1Bs2, for each action a and time delay d

if s1
a→ s′1 then there is a transition s2

a→ s′2 such that s′1Bs′2, and
if s2

a→ s′2 then there is a transition s1
a→ s′1 such that s′1Bs′2, and

if s1
d→ s′1 then there is a transition s2

d′→ s′2 for d ≤ d′ such that s′1Bs′2 ,and

if s2
d→ s′2 then there is a transition s1

d′→ s′1 for d ≥ d′ such that s′1Bs′2.
Timed performance prebisimilarity � is the largest timed performance prebisim-
ulation relation.

Clearly ∼t ⊂ � ⊂ ∼u. In this paper, for brevity, we use the term timed perfor-
mance prebisimilarity and performance prebisimilarity interchangeably.

5 Zone Valuation Graph and Deciding Prebisimulation

We present a zone graph based algorithm which, given two timed automata states
s1 and s2 with rational clock valuations, decides whether or not (s1, s2) ∈�.
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(a) A timed automaton with guards
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x < 2 ∧ y < x + 1

x > 2 ∧ y ≥ 3 x ≥ 2 ∧ y < 3

ε

ε

(b) Zone graph as produced by
minim

Fig. 2. A timed automaton in (a) and its zone valuation graph corresponding to process
〈l1, (0, 0.6)〉 in (b)

We first discuss the definition of a zone graph and the properties that must
hold for it to be applicable in our algorithm. A zone graph that satisfies these
properties is referred to as a zone valuation graph. The concept is introduced in
subsection 5.1 and is used in subsection 5.2 to prove that the prebisimulation
relation is decidable. In subsection 5.3, we give an algorithm for constructing zone
valuation graphs and discuss its complexity. After this we present an algorithm
in subsection 5.4 which uses this zone valuation graph to check the existence of
a performance prebisimulation relation between two states of timed automata.

5.1 Zone Valuation Graph

The following two definitions are from [21].

Definition 3. zone: The characteristic set of a linear formula φ, a clock con-
straint of the form x ) c or a diagonal constraint of the form x− y ) c, where
x, y ∈ C, is the set of all valuations for which φ holds. A zone is a finite union
of characteristic sets.

A zone graph is similar to a region graph[1] with the difference that each node
consists of a timed automaton location and a zone.

Definition 4. zone graph: For a timed automaton P = (L, l0, E, I), a zone
graph is a transition system (S, s0, Lep,→), where Lep = Act∪{ε}, ε is an action
corresponding to delay transitions of the processes of the zone, S ⊆ L × Φ∨(C)
is the set of nodes, s0 = (l0, φ0(C)), →⊆ S×Lep×S is connected, φ0(C) is the
formula where all the clocks in C are 0 and Φ∨(C) denotes the set of all zones.

Definition 5. Bisimulation between zone graphs
For two zone graphs, Z1 = (S1, s1, Lep,→1) and Z2 = (S2, s2, Lep, →2), Z1

is strongly bisimilar[17] to Z2, denoted as Z1 ∼ Z2, iff the nodes s1 and s2
are strongly bisimilar, denoted by s1 ∼ s2. While checking strong bisimulation
between the two zone graphs, ε is considered visible similar to an action in Act.

It is possible to have more than one zone graph corresponding to a timed automa-
ton. For a timed automaton A = (L, l0, E, I) and a process r = (lj , vlj ) ∈ T (A),
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Fig. 3. An automaton in (a) with its infinite zone graph in (b)

we are interested in a particular form of zone graph Z(A,r)=(S, sr, Lep,→) which
satisfies the following properties:

1. set S is finite.
2. For every node s ∈ S the zone corresponding to the constraints φs is convex.
3. vlj |= φsr . Note that vlj may or may not satisfy φ0(C).
4. For any two processes p, q ∈ T (A), if their valuation satisfies the formula φr

for the same node r ∈ S then p ∼u q, i.e. p is time abstracted bisimilar to q.
5. For two timed automata A1, A2 and two processes p ∈ T (A1) and q ∈ T (A2),
Z(A1,p) ∼ Z(A2,q) ⇔ p ∼u q.

6. It should be minimal to the extent of preserving convexity of the zones and
gives a canonical form for checking performance prebisimulation.

Zone graph created with the algorithm given in section 5.3 of [20] satisfies most of
these properties. It is finite by construction and does not require any abstraction
mechanism to ensure finiteness of the zone graph. All the zones are convex and
any two processes satisfying the same zone formula in the same node are time
abstracted bisimilar. The algorithm described there has been implemented in the
tool minim. Though for most of the timed automata the zone graph constructed
byminim preserves all the properties mentioned above, we found that it does not
produce the minimal graph preserving time abstracted bisimulations for certain
timed automata where all locations are not reachable. This is due to the fact
that in minim the zones are split based on canonical decomposition of the guards
on the outgoing edges. For example, let us look at the automaton in figure 2(a).
Due to the guards on the outgoing edges the initial zone of location l0 is split
into sub-zones by minim as shown in figure 2(b). However, no valuation in l0
can satisfy the guard and therefore cannot make an a transition. Therefore a
zone graph algorithm producing the minimal graph should not split the zone.

While minim uses a backward method, in our approach, while generating
the zone valuation graph, we use a combination of both forward and backward
analysis. One must note that forward analysis may cause a zone graph to become
infinite [10]. Let us consider the automaton in figure 3(a). Since clock y is reset
while x keeps increasing, the number of zones becomes infinite as shown in figure
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3(b). To ensure finiteness of the zone graph, we require an abstraction on the
zones. Several zone abstractions have been suggested in the literature [8][10][11].
We consider location dependent maximal constants abstraction [10]. For each
clock x ∈ C and each location l ∈ L, a maximum constant maxlx is determined
beyond which the actual value of x in l is irrelevant. For a location l and a clock
x, maxlx ≤ cx, the global maximal constant with which clock x is compared.
This reduces the number of zones compared to the one obtained using region
graph abstraction.

Our algorithm constructs a zone graph whose nodes are the time abstracted
bisimulation classes of the automaton preserving the convexity of zones. Thus it
is possible to have two or more nodes in the zone graph which are time abstracted
bisimilar to each other. Similar to minim [20], we use the guards on transitions to
split a zone corresponding to a location but unlike minim, it is split only when it
is found to be reachable from the initial location using a forward analysis [10][5]
approach. One location can be reached through multiple paths and thus a split
of a zone in a location also causes its ancestors to be split accordingly. This is
done using the backward method as in minim. Like minim, the notion of stability
is used for the purpose of splitting a zone. We present below a brief description
of stability as given in [20]. Given an edge v → u, where v and u are zones in
a zone graph, v is a predecessor of u and u is a successor of v where u and v
are nodes in a zone graph. Function preds(v) (resp. succs(v)) denotes the set of
predecessors (resp. successors) of v.

Definition 6. Stable partitions: Given two classes C1, C2 ∈ C, C1 is said to
be pre-stable with respect to C2 if either C1 ⊆ preds(C2) or C1∩preds(C2) = ∅.
C2 is said to be post-stable with respect to C1 if either C2 ⊆ succs(C1) or
succs(C1)∩C2 = ∅. In this paper, we use the term stability which implies either
pre-stability or post-stability depending on the particular situation. We say that
C1 and C2 are stable with respect to each other if C1 is pre-stable with respect
to C2 and C2 is post-stable with respect to C1.

Figure 4(a) shows the zone graph after using abstraction with location dependent
maximal constants for the timed automaton of figure 3(a). The nodes in the
polygonal enclosures are strongly bisimilar to each other such that their union
gives a convex zone. Such nodes in the enclosures are combined in the next phase
to obtain the canonical form of the zone graph shown in figure 4(b). The nodes
in the canonical zone graph represent the time abstracted bisimilar classes of the
zones preserving convexity.

5.2 Decidability of Timed Performance Prebisimulation

We now discuss how zone valuation graph can be used in checking the existence
of timed performance prebisimulation relation between two TLTS states. For
this purpose, we first introduce a few notations and definitions which will be
used in proving the correctness of our approach.

For timed automaton A and process p ∈ T (A), let Z(A,p) = (S, s0, Lep,→) be
the zone valuation graph of p. For any state q ∈ T (A), let N (q) represent the
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Fig. 4. (a) Zone abstraction for automaton in 3(a) and its canonical representation in
(b)

node of the same location as that of q and whose clock valuation range includes
the valuation of q. Similarly, for any node s ∈ S, let G(s) represent the set of
all processes reachable from p with the same location as that of s and whose
valuations are satisfied by φs.

Based on the clock constraints of the nodes in the zone valuation graph, we
define span as below,

Definition 7. Span: For a given node s ∈ S and a clock x ∈ C, minx(s)
and maxx(s) represent the minimum and the maximum clock valuations of a
clock x across all processes in the node s. For x ≥ c, minx(s) = c, for x > c,
minx(s) = c + δ. For x ≤ c, maxx(s) = c, for x < c, maxx(s) = c − δ,
where δ is a symbolic value representing an infinitesimally small value. We define
range(x, s) as maxx(s) − minx(s). The span of a node s ∈ S is defined as
M(s) = min{range(x, s) | x ∈ C}, i.e. minimum of all clocks’ ranges. We
define a clock y belonging to the set {y | range(y, s) = M(s)} to be a critical
clock.

It is to be noted that for a given node s, range(x, s) is the same for all clock
variables x ∈ C if the zone corresponding to node s is not abstracted with respect
to any clock variable. If the zone corresponding to s is abstracted with respect to
one or more clock variables then for each such variable x ∈ C, range(x, s) =∞.
For example, in a zone valuation graph with two clocks x and y, the span for a
node s with φs = x > 3 and y < 1 is min(∞, 1− δ) = 1− δ whereas span for a
node with φs = x > 1 and y = 2 is min(∞, 0) = 0.

Definition 8. Flip in delay: For timed automata A1 and A2 and processes p ∈
T (A1), q ∈ T (A2), let Z(A1,p) = (S1, s1, Lep,→1) and Z(A2,q) = (S2, s2, Lep,
→2) be the corresponding zone valuation graphs. If Z(A1,p) ∼ Z(A2,q) then flip in
delay, denoted by FID(Z(A1,p), Z(A2,q)) is true iff there does not exist any strong
bisimulation relation B between Z(A1,p) and Z(A2,q), such that the following hold,
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– ∀(s, t) ∈ B : s ∈ S1, t ∈ S2, M(s) ≤M(t) or
– ∀(s, t) ∈ B : s ∈ S1, t ∈ S2, M(s) ≥M(t)

i.e. in none of the bisimulation relations, all bisimilar nodes maintain the same
relation (less or greater or equal) between their spans.

Definition 9. Given a timed automaton A, let Z(A,p) be the zone valuation
graph corresponding to process p ∈ T (A). Let p′ ∈ T (A) be a process reachable
from p and s be the node of Z(A,p) such that p′ ∈ G(s). Let x be a critical clock of
s and vp′(x) denote the valuation of clock x for process p′. We define maximum
admissible delay for p′ in s as maxx(s)− vp′(x).

For example, for the process 〈l0, 3〉 in 5, the maximumadmissible delay is 5−3 = 2.
Now we are ready to prove the decidability of checking prebisimilarity. In-

tuitively, the approach consists of checking the strong bisimilarity between two
zone valuation graphs and simultaneously checking for the flip in delay between
bisimilar nodes. If zone valuation graphs are strongly bisimilar and no flip in
delay is found then the processes are prebisimilar, otherwise they are not pre-
bisimilar. The following lemmas prove this intuition.

Lemma 1. For p ∈ T (A1) and q ∈ T (A2), FID(Z(A1,p), Z(A2,q)) ∧ p ∼u q ⇒
(p �� q ∧ q �� p)

Proof. p ∼u q and FID(Z(A1,p), Z(A2,q)) imply that in each strong bisimulaton
relation B ⊆ S1×S2, such that (sp1 , sq1) ∈ B and (sp2 , sq2) ∈ B, where sp1, sp2 ∈
Z(A1,p) and sq1, sq2 ∈ Z(A2,q), either

– M(sp1) >M(sq1) and M(sp2) <M(sq2), or
– M(sp1) <M(sq1) and M(sp2) >M(sq2).

We first show that p ∼u q andM(sp1) >M(sq1)⇒ p �� q. Consider the process
p1 ∈ G(sp1 ) reachable from p such that vp1(x) = minx(sp1), where x is a critical

clock of sp1 . Consider the delay p1
M(sp1)−→ p′1. So p

′
1 ∈ G(sp1 ). There does not

exist a q1 ∈ G(sq1 ) such that q1
d−→ q′1 where d >M(sp1) and q

′
1 ∈ G(sq1). This

implies that there does not exist a process q1 such that p1 � q1 implying p �� q.
Similarly, we can show that M(sp2) <M(sq2) implies q �� p.

For the second case too we can similarly show that neither p � q nor q � p
holds. ��

Lemma 2. For p ∈ T (A1) and q ∈ T (A2), p ∼u q ∧ ¬FID(Z(A1,p), Z(A2,q))
⇒ p � q ∨ q � p.

Proof. Without loss of generality, say in a strong bisimulation relation B ⊆
S1 × S2, span of all nodes in Z(A2,q) is less than the span of their corresponding
bisimilar nodes in Z(A1,p). We show that this implies q � p. Consider some node
sq1 of Z(A2,q). Let sp1 be a node of Z(A1,p) such that sp1 ∼ sq1 and q1 be any
process in G(sq1 ) reachable from q. We will show that there exists a process
p1 ∈ G(sp1 ) reachable from p such that q1 � p1.
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Let d1 = vq1 (x) − minx(sq1), where x is a critical clock of sq1 and d2 =
d1 × (M(sp1)/M(sq1)). If y is a critical clock of sp1 , then we define p1 ∈ G(sp1)
to be a process such that vp1(y) = miny(sp1) + d2. It is easy to see that there
exists such a p1 reachable from p and q1 � p1.

Now consider a node sp2 in Z(A1,p). Let sq2 be a node in Z(A2,q) reachable
from q such that sq2 ∼ sp2 and let p2 ∈ G(sp2 ) be a process reachable from
p. Let d3 = vp2(z) − minz(sp2), where z is a critical clock of sp2 and d4 =
d3× (M(sq2)/M(sp2)). If w be a critical clock of sq2 , then we define q2 ∈ G(sq2)
to be a process such that vq2(w) = minw(sq2) + d4. It is easy to see that there
exists such a q2 reachable from q such that q2 � p2.

So we have proved that if there is a strong bisimulation relation in which the
span of each node of Z(A2,q) is less than the span of its corresponding bisimilar
node of Z(A1,p), then q � p. Similarly, we can also show that if there exists a
strong bisimulation relation in which if the span of each node of Z(A1,p) is smaller
than the span of its corresponding bisimilar node in Z(A2,q) then p � q. Thus for
p ∈ T (A1) and q ∈ T (A2), p ∼u q ∧ ¬FID(Z(A1,p), Z(A2,q)) ⇒ p � q ∨ q � p.

��

Corollary 1. For p ∈ T (A1) and q ∈ T (A2), q � p or p � q ⇒ p ∼u q and
¬FID(Z(A1,p), Z(A2,q))

Proof. Immediate from the contrapositive of lemma 1. ��

Theorem 1. For p ∈ T (A1) and q ∈ T (A2), q � p or p � q ⇔ p ∼u q and
¬FID(Z(A1,p), Z(A2,q))

Proof. From lemma 2 and corollary 1. ��

5.3 Generating Zone Valuation Graph

Algorithm 1 describes the construction of the zone valuation graph for a timed
automaton process. It uses a combination of both forward and backward traversal
of the timed automata locations to create stable partitions of the zones. Initially
the timed automaton is traversed so as to find maxlx for each clock x ∈ C
and location l ∈ L. This step is used for abstraction purposes. The algorithm
then splits a convex polyhedron [20] defined by all clocks with valuations R≥0

into multiple convex polyhedra according to the clock constraints in the timed
automaton. To achieve this, the algorithm traverses the timed automaton in a
breadth-first manner using the queue Q. Corresponding to each location l of the
timed automaton, a height balanced sorted tree Tl is maintained that stores the
locations whose zone splitting effect, based on a certain canonical decomposition
of clock constraints as described below, have already been propagated to l. In
other words, zones of l are stable with respect to the outgoing transitions from
the locations present in Tl. Stability checking considers zones of those locations
which are either in preds or in succs relation with zones in l. These relations
are dynamically updated as edges are inserted between the nodes of the zone
valuation graph. In the algorithm, lp denotes the latest location added to Tl and
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the zones of l are split so as to make them stable with respect to the zones of lp.
A reachable location l is added to Q only if its zones are stable with respect to
zones of all locations in Tlp . Function elements(Ll) returns the set of all elements
present in Ll.

For each location l dequeued from Q, its zones are split based on a canon-
ical decomposition of certain clock valuations. The canonical decomposition is
obtained from the guards on the outgoing edges of l, the invariant on l and the
invariant on the destination location corresponding to each outgoing transition.
The splitting of zones of l is further propagated to zones of other locations in
Tl. Each lj ∈ Tl is also added to the queue since the split of the zones of lj can
cause splits of zones of its descendants as well. The abstraction, if necessary, is
done simultaneously during the creation of the zone. A location li which is a
descendant or ancestor of location l is not added to the queue if its zones are
stable with respect to the zones of all locations in Tl. This phase of the algorithm
terminates when the queue becomes empty. While constructing zone valuation
graph, after phase 1, we are left with a set of nodes in the zone valuation graph.
The aim of the next phase is to identify the nodes that are strongly bisimilar
to each other and then to combine them. Given a finite graph (labeled transi-
tion system), the Paige-Tarjan algorithm [19] produces the largest bisimulation
relation. The nodes that are identified to be bisimilar are merged to produce a
single node as long as the merged node preserves convexity. In the algorithm, to
avoid clutter, we have not specifically mentioned how to add edges. Figure 5 (e)
shows the zone valuation graph for the state 〈l0, 0〉 corresponding to the timed
automaton shown in figure 5 (a). All loops in the zone valuation graph have an
implicit self loop labeled with ε.

Complexity: In the worst case, corresponding to the timed automaton for which
region equivalence matches time abstracted bisimulation, the zone graph created
is the same as the region graph. Hence the worst case complexity for zone graph
creation is exponential in the number of clocks. We consider the complexity of
zone graph creation in terms of a specific input automaton to be of particular
interest and thus present the complexity in terms of the number of locations,
transitions and clock variables of the automaton and the size of zone valuation
graph created after abstraction.

For the purpose of abstraction, a preprocessing step is required to identify
maxlx for each clock x ∈ C and each location l ∈ L. From [10], the complexity is
O(t3) where t = |C|×n and n is the number of locations in the timed automaton.
Since each node can be added to Q a maximum of n times, the total number of
additions to and deletions from Q is bounded by O(n2). Let |S| and m denote
the number of zones and edges respectively in the zone valuation graph produced
after abstraction. For each dequeue operation we list the sub-operations below
and find their complexity. Let l = dequeue(Q).

– For subsequent splits of zones of l, it is required to find the zones of the
locations in Tl with respect to which, the zones of l are unstable. This can
be done in O(|E|) time.
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Algorithm 1. Construction of Zone Valuation Graph
Input: Process p ∈ T (A) and description of a timed automaton A
Output: Zone valuation graph corresponding to p

1: Calculate maxl
x for each location l ∈ L and each clock x ∈ C. This is required for

abstraction to ensure finite number of zones in the zone graph.
2: Initialize Q to an empty queue. For each location l, create a zone N with clock

valuations for each clock R≥0.
3: Associate a height balanced tree Tl with each location l of A and initialize Tl to be

empty.
4: Let l0 be the initial location of A.
5: Enqueue(Q, l0).
6: while Q not empty do
7: l = dequeue(Q)
8: if Tl is not empty then,
9: Let lp be the latest location added to Tl. /* parent of l in current path */
10: Split current zones of l in order to make them stable with respect to the

zones of lp. /* Forward method */
11: Abstract each of the newly created zones if necessary.
12: end if
13: if l /∈ Tl then
14: Find the canonical decomposition of constraint based on the guards of the

outgoing transitions of l along with the invariant of l and invariant of destination
location of each transition.

15: Split l further based on this canonical decomposition mentioned above.
16: Abstract each of the newly created zones if necessary.
17: Add l to Tl

18: end if
19: for all location lj ∈ Tl do
20: If zones of lj are unstable with respect to zones of l, then split zones of lj

to make them stable with respect to zones of l.
21: Abstract each of the newly created zones if necessary.
22: if l /∈ Tlj then Add l to Tlj

23: end if
24: if elements(Tlj )\elements(Tl) �= ∅ then
25: Enqueue(Q, lj) /* An ancestor is enqueued: backward method */
26: end if
27: end for
28: for all successor li of l do /* Successor in timed automaton */
29: if li is reachable from any of the current set of zones of l then
30: if l /∈ Tli then Add l to Tli

31: end if
32: if elements(Tli)\elements(Tl) �= ∅ then
33: Enqueue(Q, li) /* A successor is enqueued */
34: end if
35: end if
36: end for
37: end while
38: Obtain canonical form of the zone valuation graph by merging time abstracted

bisimilar nodes of the zone graph while preserving convexity. /* Phase 2 */
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– For all locations in Tl, the number of zones that are unstable with respect to
the zones of l and hence will be split are of order O(|S|). Hence finding such
zones, which will be split due to split of l based on the guards on outgoing
edges of l, requires O(|S| × |C|) time, where the multiplier |C| arises from
the fact that each zone is defined by |C| clocks. Abstraction of each zone
also requires the same complexity.

– The complexity of split of l based on canonical decomposition is O(|S|×|C|).
– The number of locations that can be reached using the outgoing edges from
l is of order O(n). Before each such location li is enqueued to Q, its stability
is checked with respect to the zones of all locations appearing in Tl which
requires a set difference operation between elements(Tli) and elements(Tl)
that can be done in O(n log n). If the corresponding zones are already stable
with respect to zones belonging to all locations in Tl, then it is not added to
Q. This condition along with the abstraction ensures termination of the zone
graph construction procedure. As the number of locations in Tl is O(n), for
O(n) operations this step has complexity of order O(n2 × log n).

Corresponding to every dequeue operation, the cost incurred is O(|E| + |S| ×
|C|+ n2 × log n) = O(|S| × |C| + n2 × log n). Thus considering O(n2) dequeue
operations, the total computation cost of phase 1 including the preprocessing
phase to identify maxlx for each clock x ∈ C is O(|S| × |C| × n2 + n4 × log n).
Phase 2: Here we compute the complexity of the phase where the nodes in the
zone graph obtained after phase 1 that are time abstracted bisimilar to each
other are merged to produce the minimal zone graph preserving convexity of
zones. We use Paige-Tarjan [19] partition refinement algorithm which has a cost
of O(|S| × log m). This gives us the set of nodes that are bisimilar to each other
and hence can be merged. The initial partition is decided in a way so as to ensure
that nodes having non-convex zones are not merged.

Thus the total cost of computation for construction of the zone valuation
graph is O(n2(|C|3n+ |S| × |C|+ n2 × log n) + |S| × log m).

An Example of Generating the Zone Valuation Graph through Stages:
A timed automaton is shown in part (a) of figure 5. Parts (b) through (e) show
steps in the generation of the corresponding zone valuation graph. The queue Q
is initialized with location l0, the initial location of the timed automaton. The
zone valuation of location l0 is split according to the canonical decomposition of
the outgoing clock conditions of location l0. After this split, Tl0 is initialized to
{l0} and l1 is enqueued to Q. Following a dequeue operation, l1 zones are split
to make it stable with respect to the zones of l0. l1 is also split according to the
canonical decomposition of its outgoing transition. The effect of this split is again
propagated to l0 backwards which too is accordingly split. The process continues
until the zones of the locations cannot be further split. We note here that the
split happens in both forward and backward direction. The sequence of enqueue
and dequeue operations for this particular example according to algorithm 1 are
as follows:
enqueue(l0), dequeue(l0), enqueue(l1), dequeue(l1), enqueue(l0), enqueue(l2),
dequeue(l0), dequeue(l2), enqueue(l1), enqueue(l0), dequeue(l1), dequeue(l0).
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l0

x > 2

a b

x > 5
l1 l2{x}

c
x > 8

l0
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l0

2 < x ≤ 5

ε

x ≤ 2

l1 ←− dequeue(Q)

Tl0 = {l0, l1}, Tl1 = {l0, l1}, Tl2 = {l0, l1}
Q = l2, null

l0 ε l0

x > 5

2 < x ≤ 5

l1 ε l1

x > 5

a a
l0

2 < x ≤ 5

ε

x ≤ 2

l2 ←− dequeue(Q)

Tl0 = {l0, l1, l2}, Tl1 = {l0, l1}, Tl2 = {l0, l1, l2}
Q = l1, l0, null

l0 ε l0

x > 5

2 < x ≤ 5

l1 ε l1
x > 5

a a

l2 l2l2

x = 00 < x ≤ 8x > 8

b

εε

(a)

(b)

(c)

(d)

l0 ←− dequeue(Q)

l0

2 < x ≤ 5

ε

x ≤ 2

l0 ←− dequeue(Q)

Tl0 = {l0, l1, l2}, Tl1 = {l0, l1, l2}, Tl2 = {l0, l1, l2} Q = null

l0 ε l0

5 < x ≤ 8

2 < x ≤ 5 l1 ε l1

5 < x ≤ 8

a a

l2 l2l2

x = 00 < x ≤ 8

x > 8

b

εε

ε l0

x > 8

ε l1

x > 8

a

c (e)

b

l1 ←− dequeue(Q)

Fig. 5. Timed automaton in part (a) and successive steps in creation of its zone valu-
ation graph

The diagram shows the dequeue operations above each of the figures. Below each
figure, the state of the queue is described after the operation shown in the figure
gets completed. In part (e), the boxes enclose the strongly bisimilar zones that
are combined in phase 2 to create the canonical zone valuation graph.

5.4 Algorithm: Deciding Timed Performance Prebisimulation Using
Zone Valuation Graph

In algorithm 2, we present a method to decide if two states p ∈ T (A) and
q ∈ T (B) are timed performance prebisimilar. After creating the zone valua-
tion graphs for p and q, it invokes checkTimedPrebisim method with the ini-
tial nodes sp and sq of these zone valuation graphs and the binary comparison
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Algorithm 2. Algorithm for deciding timed performance prebisimulation
Inputs: i) Two timed automata states p and q ii) description of the timed au-
tomata.
Output: Decision whether p and q are timed performance prebisimilar.

1: Create zone valuation graphs for p and q
2: Let sp and sq be the initial nodes in these zone valuation graphs
3: if M(sp) ≤ M(sq) and checkTimedPrebisim(sp,sq,≤) then
4: Declare sp � sq
5: else
6: if M(sp) ≥ M(sq) and checkTimedPrebisim(sp,sq,≥) then
7: Declare sq � sp
8: else
9: Declare p and q are not timed performance prebisimilar
10: end if
11: end if

12: procedure checkTimedPrebisim(sp, sq, Rel)
13: if (sp, sq) ∈ Lpbisim then return true
14: end if
15: if (sp, sq) ∈ Lnotpbisim then return false
16: end if
17: A := sort(sp); B := sort(sq);
18: if A �= B then Add (sp, sq) to Lnotpbsim; return false
19: end if
20: Add (sp, sq) to Lpbsim

21: for all successors s′p of sp do

22: if sp
α→ s′p then /* Here α ∈ Act∪ {ε} */

23: r := false
24: for all s′q such that sq

α→ s′q and (M(p′) Rel M(q′)) do
25: r := checkTimedPrebisim (s′p, s

′
q, Rel)

26: If r then break; else continue EndIf
27: end for
28: if not(r) then
29: Remove (sp, sq) from Lpbsim; Add (sp, sq) to Lnotpbsim; return false
30: else continue
31: end if
32: end if
33: end for
34: for all successors s′q of sq do

35: if sq
a→ s′q then

36: r := false
37: for all s′p such that sp

a→ s′p and (M(p′) Rel M(q′)) do
38: r := r ∨ checkTimedPrebisim (s′p, s

′
q, Rel)

39: If r then break; else continue EndIf
40: end for
41: if not(r) then
42: Remove (sp, sq) from Lpbsim; Add (sp, sq) to Lnotpbsim; return false
43: else continue
44: end if
45: end if
46: end for
47: return true
48: end procedure
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operator Rel. Passing ≤ as Rel is equivalent to checking if p � q and similarly
passing ≥ is equivalent to checking if q � p. If both calls return false then the
states p and q are declared not timed performance prebisimilar. If either of them
returns true then the states p and q are declared timed performance prebisimilar.
It can be shown that by passing = operator as Rel, we can check timed bisim-
ilarity between p and q [13]. The function checkTimedPrebisim checks strong
bisimilarity between two nodes whose spans are in the relations Rel with each
other. Function sort(sp) returns the set of actions that can be performed by the
node sp. Two search data structures Lpbsim and Lnotpbsim are maintained by
this function. All pairs of nodes which have been proved not to be prebisimilar
are kept in Lnotpbsim. Lpbsim maintains all those pair of nodes that have been
encountered so far and either have been assumed to be prebisimilar or have been
proved to be prebisimilar. These data structures are used to avoid checking the
same pair of nodes repeatedly for prebisimilarity. They also make sure that the
function checkTimedPrebisim is invoked at most n1n2 times where n1 and n2
represent the number of nodes in the zone valuation graphs of p and q respec-
tively. Complexity of one such invocation, because of two nested for loops, is
O(m1m2|C|) where m1 and m2 represent the number of edges in the zone val-
uation graphs of p and q respectively. The factor for C appears because of the
complexity of checking the span. Similarly the complexity of searching, inserting
and removing the elements from search data structures Lpbsim and Lnotpbsim is
bounded by O(n1n2log(n1n2)). Therefore the total complexity of this algorithm
is O(n1n2m1m2|C|)×O(n1n2log(n1n2)) = O(n21n

2
2.m1m2|C|log(n1n2)).

Theorem 2. Algorithm 2 determines whether a timed performance prebisimu-
lation relation exists between two processes p and q, i.e. if p � q or q � p.

Proof. The algorithm declares two processes to be performance prebisimilar if
there exists a strong bisimulation relation between their zone valuation graphs
with no flip in delay otherwise the algorithm declares them as not performance
prebisimilar. The correctness of the algorithm thus follows from theorem 1. ��

6 Conclusion and Future Work

In the technical report [13], we show how timed performance prebisimulation can
be used for showing that one system is at least as fast as another. We consider
two protocols for reliable data transfer, alternating bit protocol and Stop-and-
Wait ARQ and show that alternating bit protocol is ‘at least as fast as’ stop-
and-wait ARQ. Each protocol model consists of a sender, receiver and a lossy
channel. Each of sender, channel and receiver is modeled with timed automata
and both the systems consist of the parallel composition of the three. Using
this prebisimulation relation, we formally prove that Alternating bit protocol is
at least as fast as Stop-and-Wait ARQ. We cannot provide the details of the
examples due to space constraint. The interested reader is referred to [13] for
details of modeling of the two systems using timed automata.
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Though bisimulation is a standard notion of program equivalence, prebisim-
ulations have not been studied much in the literature on timed automata. How-
ever we do believe that“faster than” preorders are important in real time systems
where “responsiveness” is an important aspect of the specification and in the im-
plementation. In this paper, we have defined timed performance prebisimulation
and proved its decidability using zone valuation graph for two timed automata
states. We also show the use of zone valuation graph for checking timed bisimilar-
ity between two processes. In future, we plan to define a weaker prebisimulation
relation in which one state can be defined to be at least as fast as the other state
if the time elapsed is compared over sequence of actions instead of comparing
delays at every stage as in timed performance prebisimulation. We also look
forward to investigate the closure properties of these relations.
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Abstract. In formal verification of hybrid systems, a big challenge is to incorpo-
rate continuous flow dynamics in a discrete framework. Our previous work pro-
posed to use nonstandard analysis (NSA) as a vehicle from discrete to hybrid; and
to verify hybrid systems using a Hoare logic. In this paper we aim to exemplify
the potential of our approach, through transferring static analysis techniques to
hybrid applications. The transfer is routine via the transfer principle in NSA. The
techniques are implemented in our prototype automatic precondition generator.

1 Introduction

Hybrid systems exhibit both discrete (digital) jump and continuous (physical) flow dy-
namics. They are of paramount importance now that so many physical systems—cars,
airplanes, etc.—are controlled with computers. For an approach to hybrid systems from
the formal verification community, the challenge is: 1) to incorporate flow-dynamics;
and 2) to do so at the lowest possible cost, so that the discrete framework smoothly
transfers to hybrid situations. A large body of existing work uses differential equations
explicitly in the syntax; see the discussion of related work below.

In [22], instead, we proposed to introduce a constant dt for an infinitesimal (i.e.
infinitely small) value, and turn flow into jump. With dt, the continuous operation of in-
tegration can be represented by a while-loop, to which existing discrete techniques such
as Hoare-style program logics readily apply. For a rigorous mathematical development
we employed nonstandard analysis (NSA) beautifully formalized by Robinson [16].

Concretely, in [22] we took the common triple of a WHILE-language, a first-order
assertion language and a Hoare logic (e.g. in the textbook [23]); and added a constant dt
to obtain a modeling and verification framework for hybrid systems. Its three compo-
nents are called WHILEdt, ASSNdt and HOAREdt. These are connected by denotational
semantics defined in the language of NSA. We proved soundness and relative complete-
ness of the logic HOAREdt. Underlying the technical development is the idea of what
we call sectionwise execution, illustrated by the following example.

Example 1.1 Let celapse be the program on the right. The value
of dt is infinitesimal; therefore the while loop will not terminate
within finitely many steps. Nevertheless it is somehow intuitive to
expect that after an “execution” of this program, the value of t
should be infinitesimally close to 1.

t := 0 ;
while t ≤ 1 do

t := t+ dt

P. Madhusudan and S.A. Seshia (Eds.): CAV 2012, LNCS 7358, pp. 462–478, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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t := 0 ;
while t ≤ 1 do
t := t+ 1

i+1

Our idea is to think about sectionwise execution. For each nat-
ural number i we consider the i-th section of the program celapse,
denoted by celapse|i and shown on the right. Concretely, celapse|i is
obtained by replacing the infinitesimal dt in celapse with 1

i+1 . Infor-
mally celapse|i is the “i-th approximation” of the original celapse.

A section celapse|i does terminate within finite steps and yields 1 + 1
i+1 as the value

of t. Now we collect the outcomes of sectionwise executions and obtain a sequence

( 1 + 1, 1 + 1
2 , 1 +

1
3 , . . . , 1 +

1
i , . . . ) (1)

which is thought of as a progressive approximation of the actual outcome of the original
program celapse. Indeed, in the language of NSA, the sequence (1) represents a hyperreal
number r that is infinitesimally close to 1.

We note that a program in WHILEdt is not executable in general: the program celapse
executes infinitely many iterations. It is however a merit of static approaches to veri-
fication, that programs need not be executed to prove their correctness. Instead, well-
defined mathematical semantics suffices and supports deductive reasoning. This is what
we do, with the denotational semantics of WHILEdt exemplified in Example 1.1.

This paper is a first step towards serious use of our framework of [22]. We em-
ploy various discrete strategies for reasoning about programs—in Hoare-style logics,
the concern is mostly invariant discovery—and verify small, but nontrivial, examples.
Such discrete techniques are actively pursued in program verification, or, in the static
analysis community. This paper aims to exemplify our framework’s potential for trans-
ferring static analysis techniques to hybrid applications. In it we rely on nonstandard
analysis; hence our venture is called nonstandard static analysis. We have implemented
a prototype that generates a precondition, given a program and a postcondition.

In what follows we present the strategies for simplification and invariant/precondition
discovery that we implemented, and prove their correctness. In fact we only present the
strategies’ standard version—i.e. for WHILE and HOARE, as opposed to the nonstan-
dard version that is for WHILEdt and HOAREdt. This is because the transfer from the
former to the latter is routine work. Soundness of the nonstandard version follows from
that of the standard one, almost trivially via the sectionwise lemmas. We will demon-
strate this process using one of the strategies, in §4.2.

A related issue is the legitimacy of use of Mathematica for symbolic computation
in our prototype. What we prove in Mathematica are formulas about real numbers, not
hyperreals; and this needs justification. In §5.2 we address this issue and show that
proofs in Mathematica indeed prove formulas about hyperreal numbers. The key is the
transfer principle, a celebrated result in NSA (see §2 later).

We defer most of the proofs to the extended version [11].

Related Work. There have been extensive research efforts towards hybrid systems from
the formal verification community. Unlike the current work where we turn flow into
jump via dt, most of them feature acute distinction between flow- and jump-dynamics.

Model-checking approaches to hybrid systems have been studied for quite a while,
with the successful formalism of hybrid automaton [1], on the one hand. On the other
hand, deductive approaches have seen great advancement through a recent series of
work by Platzer and his colleagues (including [13, 15]), resulting in the automated
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prover KeYmaera. Our nonstandard static analysis approach currently falls much short
of theirs in scalability and sophistication. However some of their techniques can be
translated into the techniques in our framework; one example is the differential invari-
ant strategy (§5.3). Interestingly in [15] it is argued that: being hybrid imposes no addi-
tional burden to verification in principle. This concurs with our claim.

Research in static analysis resulted in a huge number of verification techniques—
[4, 7, 19] to name just a few. Some of them have been already used for hybrid ap-
plications (modeled with explicit differential equations) [17, 18, 20]. Our thesis is that
these discrete techniques can be transferred to hybrid applications as they are, via NSA.
In §4.1 we transfer the phase split technique in [21].

The use of NSA as a foundation of hybrid system modeling is not proposed for the
first time; see e.g. [3, 5, 8]. Compared to this existing work, we claim our novelty is the
use of NSA machinery (notably the transfer principle) in actual, automatic verification.

One recent research program (resulting e.g. in [6]) aims to employ continuous
techniques—from the theory of dynamical systems—in purely discrete programs and
applications. This is opposite to our approach (discrete techniques applied to continu-
ous applications). We believe, however, that the two directions are not contending ones.
It is not at all our intention here to champion the superiority of discrete techniques; our
point instead is that the collection of available discrete techniques has much wider ap-
plicability. It is indeed our future work to combine discrete and continuous techniques.

2 Preliminaries

We summarize our previous work [22], focusing on providing intuitions. We denote the
syntactic equality by ≡.

Nonstandard Analysis. For detailed expositions see e.g. [9, 12].
We fix an ultrafilter F ⊆ P(N) that extends the cofinite filter Fc := {S ⊆ N |

N \S is finite}. Its properties to be noted: 1) for any S ⊆ N, exactly one of S and N \S
belongs to F ; 2) if S is cofinite (i.e. N \ S is finite), then S belongs to F .

Definition 2.1 (Hypernumber d ∈ ∗D) For a set D (typically it is N or R), we define
the set ∗D by ∗D := DN/ ∼F . It is the set of infinite sequences on D modulo the
following equivalence∼F : we define (d0, d1, . . . ) ∼F (d′0, d

′
1, . . . ) by

{i ∈ N | di = d′i} ∈ F , for which we say “di = d′i for almost every i.”

Therefore, given that two sequences (di)i and (d′i)i coincide except for finitely many
indices i, they represent the same hypernumber. Other predicates (such as<) are defined
in the same way. For example a hyperrealω−1 := [ (1, 12 ,

1
3 , . . . ) ] is positive (0 < ω−1)

but is smaller than any (standard) positive real r = [(r, r, . . . )].

The Framework of WHILEdt, ASSNdt and HOAREdt. We take the standard combina-
tion (e.g. in [23]) of a while-style programming language WHILE, a first-order assertion
language ASSN and a Hoare-style program logic HOARE (we equip them with constants
for all real numbers). Then we augment the framework with a constant dt that denotes
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a specific infinitesimal ω−1 = [ (1, 12 ,
1
3 , . . . ) ], and obtain the nonstandard framework

consisting of WHILEdt, ASSNdt and HOAREdt.

Definition 2.2 (WHILEdt, WHILE, ASSNdt, ASSN) The syntax of WHILEdt is:

AExp % a ::= x | r | a1 aop a2 | dt
where x ∈ Var, r is a constant for r ∈ R, and aop ∈ {+,−, ·, /, �  }

BExp % b ::= true | false | b1 ∧ b2 | ¬b | a1 < a2

Cmd % c ::= skip | x := a | c1; c2 | assert b | if b then c1 else c2 | while b do c

Here AExp is the set of arithmetic expressions; BExp and Cmd are those of Boolean
and command expressions. The operator �r� denotes the smallest natural number which
is larger than or equal to the real number r. We will use this operator in §5.4. The com-
mand assert b amounts to skip if b is true; an infinite loop (divergence) otherwise.

Our first-order assertion language1 ASSNdt consists of the following formulas.

Fml 5 A ::= true | false | A1 ∧ A2 | ¬A | a1 < a2 |
∀x ∈ ∗N. A | ∀x ∈ ∗R. A where x ∈ Var and ai ∈ AExp

By WHILE, we denote the fragment of WHILEdt without the constant dt.
By ASSN we designate the language obtained from ASSNdt by: 1) dropping the

constant dt; and 2) replacing the quantifiers ∀x ∈ ∗N and ∀x ∈ ∗R with ∀x ∈ N and
∀x ∈ R, respectively, i.e. with those which range over standard numbers.

It is essential that in ASSNdt we allow only hyperquantifiers ∀x ∈ ∗R and not standard
ones ∀x ∈ R. This is much like with the transfer principle in NSA [12, Thm. II.4.5].

Definition 2.3 (Section e|i) Let e be an expression of WHILEdt or ASSNdt, and i ∈ N.
The i-th section of e, denoted by e|i, is obtained by: 1) replacing every occurrence of
dt with the constant 1/(i+ 1); and 2) replacing every hyperquantifier ∀x ∈ ∗D with
∀x ∈ D. Here D ∈ {N,R}. Obviously a section e|i is an expression of WHILE or ASSN.

Definition 2.4 (HOAREdt,HOARE) HOAREdt is a system that derives Hoare triples
{A}c{B} (a triple of ASSNdt formulas A,B and a WHILEdt command c) using the
following rules. The rules are the same for HOARE.

{A} skip {A}
(SKIP) {

A[a/x]
}
x := a {A}

(ASSIGN)

{A} c1 {C} {C} c2 {B}
{A} c1; c2 {B} (SEQ)

{A ∧ b} c1 {B} {A ∧ ¬b} c2 {B}
{A} if b then c1 else c2 {B} (IF)

{A ∧ b} c {A}
{A} while b do c {A ∧ ¬b}

(WHILE)
|= A ⇒ A′ {A′} c {B′} |= B′ ⇒ B

{A} c {B}
(CONSEQ)

{b ⇒ A} assert b {A}
(ASSERT)

We write 6 {A}c{B} if the triple {A}c{B} can be derived using the above rules.

1 The term assertion language has little to do with the command assert b in WHILEdt.
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We turn to semantics. Denotational semantics of WHILEdt is defined following the
intuition in Example 1.1. There the semantics �c� of a command c is a hyperstate trans-
former that maps a hyperstate σ (a state that stores hypernumbers) to a hyperstate �c�σ.

Semantics of an assertion A ∈ Fml is defined in the usual way; we write |= A and
say A is valid if σ |= A for each hyperstate σ. A Hoare triple is valid (|= {A}c{B})
if, for any hyperstate σ such that σ |= A, we have �c�σ |= B.

Three sectionwise lemmas play central roles in our framework. They correspond to
Łoś’s theorem in NSA. We only present the following one, that is the most relevant to
the current paper. Recall the meaning of “for almost every i” via an ultrafilter (§2).

Lemma 2.5 (Sectionwise validity of Hoare triples) Let A,B be ASSNdt formulas,
and c ∈ Cmd be a WHILEdt command. We have

|= {A}c{B} ⇐⇒ |=
{
A|i
}
c|i
{
B|i
}

for almost every i. ��

Definition 2.6 (∗-transform) Let A be an ASSN formula. We define its ∗-transform,
denoted by ∗A, to be the ASSNdt formula obtained from A by replacing every occur-
rence of a standard quantifier ∀x ∈ D with the corresponding hyperquantifier ∀x ∈ ∗D.

Proposition 2.7 (Transfer principle) 1. For each ASSN formula A, |= A iff |= ∗A.
2. For any dt-free ASSNdt formulaA, the following are equivalent: 1) |= A|i for each
i ∈ N; 2) |= A|i for some i ∈ N; 3) |= A. ��

3 A Leading Example: ETCS

We use verification of (a simplified version of) the European Train Control System
(ETCS) as a leading example—this is done also in many chapters of [14]. We go step
by step, introducing the strategies as the need arises. while (v > 0) {

if m - z < s
then a := -b
else a := a0;

t := 0;
while (t < eps && v > 0) {

z := z + v * dt;
v := v + a * dt;
t := t + dt }}

(: z < m :)

Fig. 1. The original program
ETCS0

Our target program ETCS0 is shown on the right. It
contains small fragments of the European Train Control
System (ETCS). Here a, t, v, and z are variables that
represent acceleration rate, time, velocity, and position,
respectively. The symbols m, s, b, a0, eps are all con-
stants, all of which are assumed to be (strictly) positive.
Here, m is the position beyond which the train must not
run (“a wall”); s is the safety distance such that, once
the train’s distance from the wall is less than s, it starts
braking; b is the rate used in braking; a0 is the (positive) acceleration rate used unless
the train is braking. The check if m− z < s occurs once every eps seconds.

The (post)condition to be guaranteed after the execution of ETCS0 is the safety prop-
erty z < m; it is inserted in Fig. 1 as an annotation, between (: and :). We set out to
calculate a precondition—a relationship among constants as well as (the initial values
of) the variables—that ensures this postcondition.

The program ETCS0 is itself a while-loop; thus to calculate a precondition we need
to discover a (loop) invariant. However the loop is a complicated one with an if branch
and another while-loop inside. We first preprocess ETCS0 and simplify it, employing
some program transformation strategies studied in the field of static analysis.
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4 Program Simplification Strategies

4.1 Phase Split

Looking at ETCS0 (Fig. 1), we can imagine that once the train starts braking, it never
starts to accelerate. That is, we could transform the outer loop in ETCS0 into two succes-
sive loops, with the former loop solely for accelerating and the latter loop for braking.

while bg do . . . (if . . . ) . . .

into

⎡
⎢⎣ while bg ∧ ¬bs do . . . ;

while bg ∧ bs do . . .

⎤
⎥⎦

It is the program transformation technique proposed
in [21] (closely related to those in [2, 10]) that makes
the above intuition rigorous. It eliminates an if-branch
inside a while loop using a phase splitter predicate bs, as
is shown on the right. This simplification strategy shall
be referred to as phase split.

First we follow [21] and describe the strategy formalized in WHILE and HOARE.
In §4.2 we use the sectionwise lemmas and show that the nonstandard framework
(WHILEdt and HOAREdt), too, admits the same strategy.

Definition 4.1 (Holed command, pre-hole fragment) The set Cmd[ ] of holed com-
mands of WHILE—those which contain exactly one hole [ ] for a guard of if—is de-
fined by the BNF expression below. Here c, c1, c2 ∈ Cmd are commands (without
holes). The result of replacing [ ] with b ∈ BExp in h ∈ Cmd[ ] is denoted by h[b].

Cmd[ ] % h ::= if [ ] then c1 else c2 | h; c | c;h |
if b then h else c | if b then c else h

if [ ] then c1 else c2 :≡ skip h; c :≡ h c; h :≡ c; h

if b then h else c :≡ assert b ;h if b then c else h :≡ assert ¬b ;h

For each holed command h, its pre-hole fragment h is defined inductively as above.
Intuitively, it is the fragment of h that is executed before hitting the hole [ ].

Lemma 4.2 (Phase split [21]) If a Boolean expression bs ∈ BExp satisfies

|= {bs} h {bc} , |= {¬bs} h {¬bc} , and |=
{
bg ∧ bs

}
h[bc]

{
¬bg ∨ bs

}
, (2)

then we have �c0� = �c1� between the commands

c0 :≡ while bg do h[bc] , and
c1 :≡

[
while (bg ∧ ¬bs) do h[false] ; while (bg ∧ bs) do h[true]

]
.

(3)
��

while (v > 0 && m - z >= s) {
a := a0; t := 0;
while (t < eps && v > 0) {

z := z + v * dt;
v := v + a0 * dt;
t := t + dt }};

while (v > 0 && m - z < s) {
a := -b; t := 0;
while (t < eps && v > 0) {

z := z + v * dt;
v := v - b * dt;
t := t + dt }}

(: z < m :)

Fig. 2. The program ETCS1

Such bs is called a phase splitter predicate. In applying
this lemma to ETCS0, an obvious candidate for a phase
splitter predicate is m− z < s, the guard of the if-branch
itself. (Its negation m − z ≥ s is a candidate too; but the
side conditions (2) cannot be discharged.)

To discharge the side conditions (2) is not hard: in
its course we use the differential invariant strategy de-
scribed later in §5.3. We further apply obvious simplifi-
cations, such as �if true then c1 else c2� = �c1�
and constant propagation; consequently we are led to the
program ETCS1 (on the right) that is equivalent to ETCS0.
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4.2 From Standard to Nonstandard I: Modular Transfer

As stated in the introduction, the current paper presents strategies (for simplifica-
tion and invariant/precondition discovery) only for the standard framework (WHILE

and HOARE), leaving out the corresponding nonstandard strategies (for WHILEdt and
HOAREdt). This is because the transfer from the former to the latter is straightforward.
Here we describe the process of such transfer, with the phase split strategy (§4.1) as an
example. Here the sectionwise lemmas (in particular Lem. 2.5) play the key role.

The syntactic notions of holed command and pre-hole fragment are defined in
WHILEdt, in the exactly the same way as in WHILE (Def. 4.1).

Lemma 4.3 (Nonstandard phase split) Assume bs ∈ BExp satisfies, in HOAREdt,

|= {bs} h {bc} , |= {¬bs} h {¬bc} , and |=
{
bg ∧ bs

}
h[bc]

{
¬bg ∨ bs

}
.

Let c0 and c1 be as in (3), now in WHILEdt. We have �c0� = �c1�. ��

Proof. Let σ ∈ HSt be a hyperstate; and (σ|i)i∈N be its arbitrary sequence represen-
tation. By the definition of hypernumbers, it suffices to show that

�c0|i�(σ|i) = �c1|i�(σ|i) for almost every i. (4)

By the assumptions and Lem. 2.5, each one of the following holds for almost every i.

|= {bs|i} h|i {bc|i} |= {(¬bs)|i} h|i {(¬bc)|i} |=
{
(bg ∧ bs)|i

}
h[bc]|i

{
(¬bg ∨ bs)|i

}
.

Therefore, by the definition of ultrafilter, all three of the above hold simultaneously, for
almost every i. That is, for almost every i, we have all of the following three hold:

|= {bs|i} h|i {bc|i} |= {¬(bs|i)} h|i {¬(bc|i)} |=
{
bg|i ∧ bs|i

}
h|i[bc|i]

{
¬(bg|i) ∨ bs|i

}
where we also used an obvious fact h |i ≡ (h|i). To each such i we apply the standard
version of the strategy (Lem. 4.2) and obtain, for almost every i,

�
while bg|i do h|i[bc|i]

�
(σ|i)

=
�
while (bg|i ∧ ¬bs|i) do h|i[false] ; while (bg|i ∧ bs|i) do h|i[true]

�
(σ|i)

Using another obvious fact that h[bs] |i ≡
(
h|i
)
[bs|i], this is equivalent to (4). ��

Note the modularity in the proof: the standard version’s proof (Lem. 4.2) is completely
hidden. For any other (standard) strategy presented in this paper, its nonstandard version
follows in the same way via sectionwise arguments.

4.3 Superfluous Guard Elimination

In ETCS1 each while-loop has its guard consisting of two atomic inequalities. This
causes problems with our toolkit for invariant/precondition discovery, especially with
the counting iterations strategy (§5.4). In fact, some of the conditions are seemingly
superfluous: for example, in the second (internal) while-loop, m− z < s is an invariant.
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Lemma 4.4 (Superfluous guard elimination) For commands

c0 :≡ while (b ∧ bsf) do c , and
c1 :≡ if bsf then

(
while b do c

)
else skip ,

if we have |= {b ∧ bsf} c {bsf}, then �c0� = �c1�. ��

This strategy, together with some straightforward simplifications, transforms ETCS1 into
ETCS2 shown below. For each of the three instances of the strategy, the side condition
is easily discharged using the differential invariant strategy (§5.3).

The program
ETCS2:

if (v > 0)
then

while (m - z >= s) {
a := a0; t := 0;
while (t < eps) {
z := z + v * dt;
v := v + a0 * dt;
t := t + dt }}

else skip;

while (v > 0) {
a := -b; t := 0;
while (t < eps && v > 0) {

z := z + v * dt;
v := v - b * dt;
t := t + dt }}

(: z < m :)

4.4 Time Elapse

The challenge in verifying WHILE programs is in while-loops. The second half of
ETCS2 is a loop with another loop inside; we wish to simplify this.

A close look reveals that the inside loop is vacuous: since the inside guard and the
outside guard share the same condition v > 0, the condition t < eps has in fact no
effect.2 We often encounter this situation in the verification of WHILEdt programs—
other simplification strategies easily lead to such vacuous nested loops.

Lemma 4.5 (Time elapse) Let t be a variable that does not occur in b ∈ BExp or
c ∈ Cmd; ε be a positive constant; and

c0 :≡ while b do
(
t := 0; while t < ε do (t := t+ dt; c)

)
,

c1 :≡ while b do c .

Then the denotations �c0� and �c1� coincide on all variables but t. ��

Lem. 4.5 allows several straightforward generalizations. Currently we do not need them.
Since t does not occur in the postcondition z < m, Lem. 4.5 ensures that time elapse

is a sound transformation. It simplifies the second half of ETCS2 into ETCS3 below.

The program
ETCS3:

if (v > 0)
then

while (m - z >= s) {
a := a0; t := 0;
while (t < eps) {
z := z + v * dt;
v := v + a0 * dt;
t := t + dt }}

else skip;

while (v > 0) {
a := -b;
z := z + v * dt;
v := v - b * dt }

(: z < m :)

2 This is not the case with the first half of ETCS2: it might be m − z < s but still the train can
accelerate for eps seconds. Therefore the nested loops cannot be suppressed so easily.
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5 Precondition/Invariant Discovery Strategies

We now describe three strategies aimed at the discovery of suitable precondi-
tions/invariants for while-loops. In fact they return directly a precondition (when they
succeed).

We desire their output to be quantifier-free, since quantifiers often incur prohibiting
performance penalties. This is what we do in our prototype: quantifiers appear only in
the Mathematica backend. In what follows several quantifiers do occur; but they are in
the correctness proofs of the strategies, i.e. on the meta level.

5.1 Invariant via Quantifier Elimination

We now compute a precondition precond1 that, after the execution of the last while-
loop in ETCS3 (which we denote by cbrake), ensures the postcondition z < m hold.

Recall our thesis: via nonstandard analysis, we can represent continuous flow by dis-
crete jumps, so that (discrete) verification techniques readily apply. However, once we
cast a continuous look at cbrake, it obviously represents a simple flow dynamics gov-
erned by the differential equations v̇(t) = z̈(t) = −b. In this “continuous” perspective,
one would solve the current question in the following way.

– First the differential equations are solved analytically, obtaining v(t) = v0− bt and
z(t) = z0 + v0t− 1

2bt
2. Here v0 and z0 are initial values.

– Using these analytic solutions, the desired precondition is nothing other than

∀t ∈ R.
(
v0 − bt > 0 ∧ t ≥ 0 =⇒ z0 + v0t−

1

2
bt2 < m

)
. (5)

One would then apply quantifier elimination and obtain a quantifier-free formula
that is equivalent to (5). Some algorithms are known including cylindrical algebraic
decomposition (CAD). In Mathematica Resolve offers this functionality; it returns

v0 ≤ 0 ∨ ( z0 < m ∧ 2bm− v20 − 2bz0 ≥ 0 ) .

This procedure of “first solve differential equations, then eliminate quantifiers” is com-
mon in the deductive verification of hybrid systems, such as in Platzer’s [14].

The next strategy (Lem. 5.2) is a discrete variation of this procedure, where differen-
tial equations are replaced with difference equations (also called recurrence relations).

We need preparation. In Lem. 5.2 we need to have a formula A

y times︷ ︸︸ ︷
[a/x][a/x] · · · [a/x]

as a formula with y as a free variable. This is not automatic—note that substitution
[a/x] and the number y live on the meta level. However, let us say that A is a formula
A ≡ (x > 0) and a ≡ x+ 1. Then we have, for any y ∈ N,

|=
(
x > 0

)
[x+ 1/x] [x+ 1/x] · · · [x+ 1/x] ⇔ x+ y > 0 ,

where substitution is repeated y times. Thus the formula x+y > 0 effectively represents
the formula (x > 0 ) [x+ 1/x] [x+ 1/x] · · · [x+ 1/x]. In other words, x+ y > 0 is a
homogeneous representation of substitutions x > 0, x+ 1 > 0, (x+ 1) + 1 > 0, . . . .
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The general definition is as follows. ThereArs corresponds to x+y > 0 in the above
example; it is a formula that must be discovered somehow. In our prototype it is done
by solving a recurrence relation.

Definition 5.1 (Repeated substitution) Let x be a variable, A be a ASSN formula, a
be an arithmetic expression, and y be a variable not occurring in A, a or x. A formula
Ars is said to be a homogeneous representation of A and [a/x] if the following holds.

|= Ars[0/y]⇔ A ∧ ∀u ∈ N.
(
Ars[u+ 1/y]⇔

(
Ars[u/y]

)
[a/x]

)
(6)

We abuse notations by denoting such Ars by A[a/x]y .

Lemma 5.2 (QE invariant)

|=
{

(¬b ⇒ A) ∧
∀y ∈ N.

(
( b[a/x]y ∧ ¬b[a/x]y+1 ) ⇒ A[a/x]y+1

) }
while b do x := a

{
A
}

.

The lemma is presented in the simplest form: it is straightforward to allow a sequence
x1 := a1; . . . ;xn := an of assignments inside the loop.

Proof. Let P be the precondition (¬b⇒ A) ∧ ∀y ∈ N.
( (
b[a/x]y ∧ ¬b[a/x]y+1

)
⇒

A[a/x]y+1
)
. By the (WHILE) rule of HOARE, it suffices to show that: 1) P is a loop

invariant, that is, |= {P ∧b}x := a{P}; and 2) P is strong enough, i.e. |= P ∧¬b⇒ A.
To prove 1), assume σ |= P ∧ b. The goal is �x := a�σ |= P , which is equivalent to

σ |= P [a/x], since P [a/x] is the weakest precondition for x := a and the postcondition
P . This is further reduced to: σ |= b[a/x]n+1 ∧ ¬b[a/x]n+2 ⇒ A[a/x]n+2 for any
n ∈ N (which follows from σ |= P ); and σ |= ¬b[a/x]⇒ A[a/x] (which follows from
σ |= b and σ |= ( b ∧ ¬b[a/x] )⇒ A[a/x]).

The condition 2) is obvious since |= P ⇒ (¬b⇒ A). This concludes the proof. ��
In our prototype, we first compute homogeneous representations b[a/x]y and A[a/x]y

by solving recurrence relations in y such as A[a/x]y+1 =
(
A[a/x]y

)
[a/x]. Using this

we form the precondition in Lem. 5.2. Then we further eliminate the quantifier ∀y ∈ N
and obtain a quantifier-free precondition.

For example, in the case of cbrake in ETCS3, we discover a homogeneous represen-
tation A[−→a /−→x ]y :≡ 1

2 (bdt
2y + 2dtvy − bdt2y2 + 2z) < m. As a quantifier-free

precondition we obtain the following, which is henceforth denoted by P1.

P1 :≡ (v > 0 ∨m > z) ∧
(
b2dt2 + 4bdtv + 8bz + 4v2 < 8bm ∨ bdtv + 2bz + v2 ≤ 2bm

)
(7)

This strategy (Lem. 5.2) has the merit of having no side conditions. But in our ex-
perience it is computationally expensive: a slightly complicated postcondition (say, a
combination of a few inequalities) makes the quantifier elimination step infeasible. In
fact it does not currently work for the loops in ETCS3 other than the last one cbrake.

5.2 From Standard to Nonstandard II: The Transfer Principle and Symbolic
Computation in Mathematica

Here again we demonstrate how a standard strategy can be transferred to a nonstan-
dard one. The strategy QE invariant (Lem. 5.2) employs Mathematica in two stages:
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solving recurrence relations and eliminating quantifiers, both done over standard num-
bers (instead of hyperreals). Our focus is therefore on how this can be justified.

Definition 5.3 (Repeated substitution in ASSNdt) Let x,A, a, y be as in Def. 5.1, but
now in ASSNdt. A formula A′

rs is said to be a homogeneous representation of A and
[a/x], and is denoted by A[a/x]y , if the following holds.

|= A′
rs[0/y]⇔ A ∧ ∀u ∈ ∗N.

(
A′

rs[u+ 1/y]⇔
(
A′

rs[u/y]
)
[a/x]

)
(8)

The sole difference from Def. 5.1 is the quantifier (ranging over hypernatural numbers).
How do we find A′

rs that satisfies (8)? We rely on the following lemma.

Lemma 5.4 In the setting of Def. 5.3, let A′ and a′ be the expressions obtained from
A and a by replacing the constant dt by a fresh variable d (and also by making hy-
perquantifiers standard). If Ars is a homogeneous representation A′[a′/x]y in ASSN

(Def. 5.1), then ∗Ars[dt/d] is a homogeneous representationArs[a/x]
y in ASSNdt. ��

Therefore it essentially suffices to prove (6). This is in ASSN hence Mathematica is
capable of proving it.

Lemma 5.5 (Nonstandard QE invariant) We have, in HOAREdt,

|=
{

(¬b ⇒ A) ∧
∀y ∈ ∗N.

( (
b[a/x]y ∧ ¬b[a/x]y+1

)
⇒ A[a/x]y+1

) }
while b do x := a

{
A
}

.

Proof. By Lem. 2.5, the following suffices: in HOARE,

|=
{(

(¬b⇒ A) ∧
∀y ∈ ∗N.

( (
b[a/x]y ∧ ¬b[a/x]y+1

)
⇒ A[a/x]y+1

))∣∣∣∣
i

}
while b|i do
x := a|i

{
A|i
}

holds for almost every i ∈ N. By Def. 5.3, Def. 5.1 and [22, Lem. 4.5], it is easy that
|=
(
A[a/x]y

)
|i ⇔ A|i[a|i/x]y for almost every i ∈ N. Therefore it suffices to show

|=
{
(¬b|i ⇒ A|i) ∧
∀y ∈ N.

( (
b|i[a|i/x]y ∧ ¬b|i[a|i/x]y+1

)
⇒ A|i[a|i/x]y+1

)} while b|i do
x := a|i

{
A|i

}
for almost every i. The last statement (in HOARE) is Lem. 5.2 itself. ��

The second use of Mathematica—in quantifier elimination—is justified much like in
Lem. 5.4, via the transfer principle.

5.3 Differential Invariant

Most of the simplification strategies in §4 come with side conditions to be discharged. In
many such cases, the postcondition to be established is itself an invariant. An example
is the condition v > 0 in the first half of ETCS1.

The following lemma provides an efficient method for proving such Hoare triples.3

3 The name is taken from Platzer’s extensive treatment of a similar notion [14]. The correspon-
dence is as follows: when the while-loop below represents continuous dynamics, the condition
ac[a/x] < ac means that the first derivative of ac is negative.
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Lemma 5.6 (Differential Invariant) Assume that an arithmetic expression ac satisfies
|= b ⇒ ac[a/x] < ac. Then |= {ac < 0} while b do x := a {ac < 0}. ��

In our current prototype a candidate for the invariant ac < 0 is chosen simply out of the
disjuncts of the postcondition. More sophisticated candidate generation methods—such
as in [14]—are left as future work.

5.4 Iteration Count

Verification of the leading example ETCS (§3) has been reduced, in §5.1, to the situation
below on the left. Here postcondition P1 is as in (7). Our prototype further simplifies
the situation into the one on the right.

if (v > 0)
then

while (m - z >= s) {
a := a0; t := 0;
while (t < eps) {
z := z + v * dt;
v := v + a0 * dt;
t := t + dt }}

else skip
(: P_1 :)

while (m - z >= s) {
a := a0; t := 0;
while (t < eps) {
z := z + v * dt;
v := v + a0 * dt;
t := t + dt }}

(: P_2 :)

where P2 :≡ b2dt2 + 4bdtv + 8bz +
4v2 < 8bm ∨ bdtv + 2bz + v2 ≤ 2bm

(9)

We now face a nested loop to which none of the previous strategies applies. Our last
strategy estimates the number of iterations in each loop—such as eps/dt for the in-
ner loop4—and approximates commands by repeated applications of assignments. The
strategy involves nontrivial side conditions but we experienced its wide applicability.

The formalization of the full iteration count strategy is cumbersome and buries its
idea in overwhelming details. Here we only present the following restricted version that
deals with a single loop. The full version that applies to nested loops is deferred to [11].

Lemma 5.7 Let ai be an arithmetic expression. Assume the following conditions.

1. |= ¬b[a/x]ai

2. For some fresh variable y, |=
{
¬b[a/x]y+1

}
c
{
¬b[a/x]y

}
3. |= ∀u, v ∈ R.

( (
ai ≤ u < v < ai + 1 ∧ ¬b[a/x]u

)
⇒ ¬b[a/x]v

)
4. For some fresh variable y, |=

{
A[a/x]y+1

}
c
{
A[a/x]y

}
5. |= ∀u, v ∈ R.

( (
u < v ∧A[a/x]v

)
⇒ A[a/x]u

)
Then we have

|=
{
A[a/x]ai+1 ∧ ai ≥ 0

}
while b do c {A} . (10)

��

Here are some intuitions. The expression ai denotes an estimated number of iterations:
for example, ai ≡ eps/dt for the inner loop on the right in (9). The estimation is done
by solving the equation ai · dt = eps. We are also simulating execution of c by a

4 Note that the number eps/dt makes sense in NSA: it means (i+ 1) · eps in the i-th section.
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substitution [a/x]; the conditions 2. and 4. assert that this simulation is sound. Note that
these conditions are trivially satisfied if c is an assignment command x := a.

The conditions 3. and 5. impose suitable monotonicity requirements on the guard b
and the postcondition A. Such monotonicity is needed for the following reason. The
estimated number ai of iterations need not be exactly some (hyper)natural number—it
can lie between two (hyper)natural numbers, i.e. �ai� − 1 < ai < �ai�. This is why
we are conservative in (10); we use ai + 1, instead of ai, as a number of iterations. The
monotonicity conditions (3. & 5.) ensure that this conservative approximation is sound.

The full version of this iteration count strategy (Lem. 5.7) succeeds in the remaining
bit of the leading example (on the right in (9)). Its output is a Boolean combination of
inequalities; we denote this formula by P3. It is complicated—not least due to occur-
rences of dt—and we would rather not write it down explicitly.

5.5 Cast to Shadow

We have established that |= {P3} ETCS0 {z < m}. As the last step, we wish to
eliminate the occurrences of dt in the precondition P3. This results in a much simpler
precondition. The intuition is: the condition ε + dt < 0 is implied by ε < 0 if ε is a
constant denoting a standard real number. To put it in rigorous terms:

Lemma 5.8 (Cast to Shadow) Let a be an arithmetic expression in WHILEdt, d be a
fresh variable, and a[d/dt] be the expression in WHILE obtained by substituting d for
dt in a. Assume the following.

1. The expression a is closed, that is, it has no occurrences of variables.
2. Let σ be a (standard) state that is not ⊥; it determines a function5 fσ : R → R

by r �→ �a[d/dt]�(σ[d �→ r]
)
. We assume that fσ is continuous at r = 0 for any

given σ �= ⊥. Here �a[d/dt]� is defined by denotational semantics [22, §3.2]; and
σ[d �→ r] is an updated state.

Then |=
(
a[d/dt]

)
[0/d] < 0 =⇒ a < 0. ��

Note that, by the definition of a[d/dt], the expression
(
a[d/dt]

)
[0/d] is the result of

replacing dt in a with 0—i.e. of “eliminating dt.” In using the lemma, the closed-
ness assumption (Cond. 1.) can be enforced by setting the initial values of variables as
constants (that necessarily represent standard reals by the definition of WHILEdt). The
continuity assumption (Cond. 2.) in the lemma is most of the time satisfied since the
arithmetic operations of WHILE are all continuous except for zero-division.

In nonstandard analysis, a hyperreal number r′ that is not infinite has a unique (stan-
dard) real number r that is infinitesimally close to r′ (we write r 7 r′). Such r is called
the shadow of r′; hence the name of the strategy.

This strategy can be used for simplifying the precondition P3 (or, more generally, a
Boolean combination of inequalities) in the following way.

– First, P3 is converted to CNF (or DNF; it does not matter): |= P3 ⇔
∧
i

∨
j Li,j .

Note that every literal Li,j occurs positively.

5 In general a partial function since zero-division might occur.
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– Among all the literals Li,j , the negative ones (like Li,j ≡ ¬(ai,j < bi,j)) is turned
into a positive one (like ai,j ≥ bi,j), by reversing inequalities.

– Each inequality is turned into the form of either ci,j < 0 or ci,j ≤ 0. For
example: we turn ai,j ≥ bi,j into bi,j − ai,j ≤ 0. Thus we have obtained
|= P3 ⇔

∧
i

∨
j ci,j �i,j 0 , where each �i,j is either < or ≤.

– Obviously |= ci,j < 0⇒ ci,j �i,j 0; thus |=
∧
i

∨
j ci,j < 0⇒ P3.

– Finally, to each inequality ci,j < 0 we apply Lem. 5.8 (given that the side condi-
tions are discharged). This establishes |=

∧
i

∨
j

(
ci,j [d/dt]

)
[0/d] < 0⇒ P3; thus

we obtain a “simplified” precondition that has no occurrences of dt.

We note that thus obtained precondition
∧
i

∨
j

(
ci,j [d/dt]

)
[0/d] < 0 is not necessarily

equivalent to P3, but is stronger (i.e. less general). In our experience, however, the lost
generality is most of the time marginal.

After all, the following is the (core part of the long and extensive) outcome of our
prototype when it is fed with ETCS0.

a0
(
2ε
√

2a0(m− s− z0) + v20 + bε2 + 2m− 2s− 2z0
)

+ 2bε
√

2a0(m− s− z0) + v20 + a20ε
2 + v20 < 2bs

Here v0 and z0 are constants that designate the initial values of v and z, respectively.

6 Implementation and Experiments

Our prototype implementation takes a WHILEdt program and a postcondition as its in-
put, and tries to calculate a precondition. The tool consists of the following components.

– A native verification condition generator implemented in OCaml. It combines the
standard verification condition generation for Hoare-type logics (such as in [23])
and the previously described strategies. It relies on the Mathematica backend for
most of the strategies as well as for (symbolic) arithmetic proofs.

– A Mathematica backend that provides functions for the strategies in §4–5. It also
implements some proof strategies for arithmetic formulas.

– A Perl script that serves as an interface between the above two.

Our prototype employs the standard backward reasoning for Hoare-type logics. When
it encounters a while loop, it tries the precondition discovery strategies in §5. If one
or more of those strategies succeed and produce preconditions P1, . . . , Pn, then our
prototype continues with the disjunction P1 ∨ · · · ∨ Pn of those preconditions. If not,
our prototype tries simplification strategies in §4; the order is phase split, superfluous
guard elimination and then time elapse. If the simplification succeeds, it again tries the
precondition discovery strategies. If not, our prototype reports failure.

Although we sometimes use numeric computations for finding counterexamples, the
proofs are established in purely symbolic means. This is a crucial fact for the correctness
guarantee via the transfer principle.



476 I. Hasuo and K. Suenaga

We have tested our prototype against the following WHILEdt programs:

– etcs.while: the ETCS example used throughout the paper, and
– zeno.while: the behavior of a bouncing ball.

We conducted both experiments on Fujitsu HX600 with Quad Core AMD Opteron
2.3GHz CPU and 32GB memory. We used Mathematica 7.0 for Linux x86 (64-bit).6

The current implementation is premature. The goals of the experiments have been:
1) the feasibility test of our methodology of nonstandard static analysis, and 2) to drive
theoretical development of static analysis strategies suited for hybrid applications. En-
hancing scalability and efficiency of the prototype is left as future work.

etcs.while. Our prototype completed precondition generation for etcs.while in
40.96 seconds (31.97 seconds in the user process and 8.99 in the kernel process), gen-
erating the precondition described in §5.5 as an outcome.

zeno.while. We have modeled the behavior of a bouncing ball in WHILEdt and run
our prototype on the program. This program includes the following three parameters:

– t0: ending time of the system;
– b: elastic coefficient between the ground and the ball;
– h0 : safety height—the ball should not reach higher than this height.

The postcondition is that the peak height of the last bounce is not higher than h0.
Although the current prototype does not fully succeed to compute a precondition,

it manages to simplify the program substantially. For example, the ascending and
descending phases in the movement of the ball are discovered automatically, using
Lem. 4.2. With a manual insertion of one condition (an inequality), our prototype runs
through and outputs a symbolic precondition (which is too long to present here).

Though this bouncing ball example was not fully-automatic, we still find its result
interesting and encouraging. The example exhibits the Zeno behavior, a big challenge
for many verification techniques (see e.g. [14, Section 3.3.3]). We expect our framework
to be useful in Zeno-type examples, since: 1) it does not distinguish flow dynamics from
jump dynamics (dynamics is always “discrete,” or “all flow dynamics is Zeno”); and 2)
we do not have a governing notion of time (t is a variable just like others).

Discussion. Efficiency or speed of verification is currently not our primary concern;
still we noticed several methods for speeding up. For example, calls to the four precon-
dition discovery strategies could be parallelized. Another performance drawback of the
current prototype is that the OCaml program and Mathematica communicate via a file
written to storage, which takes time. A tighter connection via the script mode usage of
Mathematica, or Mathlink, is currently looked at.

6 The source code of our precondition generator and the input WHILEdt programs are available
at http://www-mmm.is.s.u-tokyo.ac.jp/∼ichiro/papers/vcgen.tgz
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Abstract. A recent technique used in falsification methods for hybrid
systems relies on distance-based heuristics for guiding the search towards
a goal state. The question is whether the technique can be carried over
to reachability analyses that use regions as their basic data structure. In
this paper, we introduce a box-based distance measure between regions.
We present an algorithm that, given two regions, efficiently computes the
box-based distance between them. We have implemented the algorithm
in SpaceEx and use it for guiding the region-based reachability analysis
of SpaceEx. We illustrate the practical potential of our approach in a
case study for the navigation benchmark.

1 Introduction

The theory of hybrid systems provides a rich and popular framework for the
representation of systems which incorporate both continuous and discrete be-
havior [2,29]. This framework has been utilized for the purpose of modeling and
analyzing a large range of practically relevant systems. In particular, hybrid
systems have been used for the analysis of automotive controllers [4], real-time
circuits [30], and biological systems [5,1,28,35,6,18,7,21,20].

An important problem in the context of hybrid systems is the problem to
determine whether a given set of bad states can be reached from an initial state.
If such a set cannot be reached, the hybrid system is called safe. Unfortunately,
this reachability analysis problem is decidable only for a restricted class of hybrid
systems [2,22]. In order to be able to prove safety for richer classes of hybrid
systems, state-of-the-art reachability tools such as SpaceEx [16] make use of
over-approximations [34,10,16]. Furthermore, a lot of attention has recently been
devoted to falsification based on testing techniques. Testing techniques are tuned
to find unsafe behaviors rather than to prove safety [9,8,19,11,33,31]. In general,
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falsification techniques are of great interest in industrial applications especially
in the early phases of system development. The majority of these techniques are
inspired from motion planning, and construct in a numeric execution-based way
a rapidly exploring random tree (RRT). If the tree ends up in an unsafe state,
then one has found an unsafe behavior.

In this work, we propose a best-first symbolic-reachability analysis algorithm
(GBFS) which combines safety analysis and falsification. This algorithm has been
added as an alternative to the current DFS algorithm of SpaceEx. GBFS pro-
duces the same result, in similar amount of time as DFS, if the bad states of the
system cannot be reached from its initial states, despite SpaceEx inherent over-
approximations. However, GBFS is much faster than DFS on our benchmarks
in producing a symbolic counterexample if the system is potentially unsafe. The
heuristic used to guide the search is based on an appropriate cost measure for
hybrid systems based on dwell times.

For a given state s, the cost measure estimates the search effort to reach
an error state from s. The search preferably explores states with smaller esti-
mated costs, and thus avoids exploring unnecessary states. Obviously, to obtain
an overall efficient model checking approach, cost measures are both supposed
to guide the search accurately and to be efficiently computable. Guided search
has recently been successfully applied in the context of discrete and timed sys-
tems [13,32,25,24,27,12,36,26]. In those contexts, the costs of a state s have been
defined as the smallest number of transitions in the state space to reach a nearest
error state from s. Overall, guided search has shown to be able to significantly
improve the efficiency of model checking for these classes of systems.

While measuring the costs of states in terms of transitions in the state space
is an appropriate method for discrete and timed systems, the situation becomes
slightly more complex for the more general class of hybrid systems. In the context
of hybrid systems, the overall model checking time specifically depends on the
operations to compute the continuous post of states because this operation is
most expensive during the exploration of the state space. Moreover, in contrast
to discrete and timed systems, the costs of the post operation depend on the
dwell time, i. e., the amount of time spent in the corresponding location. This
dependence occurs, at least in practice, because common tools like SpaceEx
compute the post operation based on iteratively computing the continuous image
of the region in intermediate points. Therefore, in the context of hybrid systems,
it is desirable to explore traces with low accumulated dwell time.

We theoretically show that, for a certain class of hybrid systems, our cost
measure provides desired search behavior. Moreover, although hard to compute
exactly, the representation of our cost measure lends itself to an accurate (box-
based) cost measure as an approximation. This approximation turns out to be
efficiently computable and, although surprisingly simple, to accurately guide the
search in the state space. Our experiments with SpaceEx show the practical
potential on challenging benchmarks.

The paper is organized as follows. In Sec. 2, we introduce the preliminaries
for the paper. Sec. 3 introduces the main contribution of this work based on a
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trajectory-based cost measure. This cost measure is experimentally evaluated in
Sec. 4. Finally, we conclude the paper in Sec. 5.

2 Preliminaries

In this section, we give the preliminaries for this paper. In Sec. 2.1, we introduce
our computational model. In Sec. 2.2, we present a basic reachability algorithm
for the state space exploration. Based on the reachability algorithm, guided
search and cost measures are introduced in Sec. 2.3.

2.1 Notation

In this paper, we consider models that can be represented by hybrid systems.

Definition 1 (Hybrid System). A hybrid system is formally a tuple H =
(Loc,Var , Init ,Flow ,Trans , Inv) defining

– the finite set of locations Loc,
– the set of continuous variables Var = {x1, . . . , xn} from Rn,
– the initial condition, given by the constraint Init(�) for each location �,
– the continuous transition relation, given by the expression Flow (�)(v) for

each continuous variable v and each location �. We assume Flow (�) to be of
the form

ẋ(t) = Ax(t) + u(t), u(t) ∈ U ,
where x(t) ∈ Rn, A is a real-valued n × n matrix and U ⊆ Rn is a closed
and bounded convex set.

– the discrete transition relation, given by a set Trans of discrete transitions;
a discrete transition is formally a tuple (�, g, ξ, �′) defining
• the source location � and the target location �′,
• the guard, given by a linear constraint g,
• the update, given by a affine mapping ξ,

– the invariant, given by the linear constraint Inv(�) for each location �.

A state of the hybrid system H is a tuple (�,x) consisting of a location � ∈ Loc
and a point x ∈ Rn, i. e., x is an evaluation of the continuous variables in Var .

The semantics of a hybrid system is defined in terms of its trajectories. Let
T = [0, Δ] for Δ ≥ 0. A trajectory of a hybrid system H from state s = (�,x)
to state s′ = (�′,x′) is defined by a tuple ρ = (L,X), where L : T → Loc and
X : T → Rn are functions that define for each time point in T the location
and values of the continuous variables, respectively. For a given trajectory ρ, we
define a sequence of time points where location switches happen by (τi)i=0...k ∈
T k+1. In such case we say that the trajectory ρ has discrete length |τ | = k.
Trajectories ρ = (L,X) (and the corresponding sequence (τi)i=0...k) have to
satisfy the following conditions:

• τ0 = 0, τi < τi+1, and τk = Δ – the sequence of switching points increases,
starts with 0 and ends with Δ
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• L(0) = �, X(0) = x, L(Δ) = �′, X(Δ) = x′ – the trajectory starts in
s = (�,x) and ends in s′ = (�′,x′)

• ∀i ∀t ∈ [τi, τi+1) : L(t) = L(τi) – the location is not changed during the
continuous evolution

• ∀i ∀t ∈ [τi, τi+1) : X(t) ∈ Flow (L(τi)), i.e. Ẋ(t) = AX(t) + u(t) holds and
thus the continuous evolution is consistent with the differential equations of
the corresponding location

• ∀i ∀t ∈ [τi, τi+1) : X(t) ∈ Inv(L(τi)) – the continuous evolution is consistent
with the corresponding invariants

• ∀i ∃(L(τi), g, ξ, L(τi+1)) ∈ Trans : Xend(i) = limτ→τ−
i+1

X(τ)∧Xend(i) ∈ g∧
X(τi+1) = ξ(Xend(i)) – every continuous transition is followed by a discrete
one, Xend(i) defines the values of continuous variables right before the dis-
crete transition at the time moment τi+1 whereas Xstart(i) = X(τi) denotes
the values of continuous variables right after the switch at the time mo-
ment τi.

We say that s′ is reachable from s if a trajectory from s to s′ exists. The reachable
state space R(H) of H is defined as the set of states such that a state s is
contained in R(H) iff s is reachable from Sinit . In this paper, we also refer to
symbolic states. A symbolic state s = (�, R) is defined as a tuple, where � ∈ Loc,
andR is a convex and bounded set consisting of points x ∈ Rn. The symbolic part
of a symbolic state is also called region. The symbolic state space of H is called
the region space. The initial set of states Sinit of H is defined as

⋃
�(�, Init(�)).

In this paper, we assume there is a given set of error states that violate a
given property. Our goal is to find a trajectory from Sinit to an error state. A
trajectory that starts in a state s and leads to an error state is called an error
trajectory ρe(s). As already outlined in the introduction, the time to compute an
error trajectory ρe(s) can significantly depend on the accumulated dwell times
of the locations in ρe(s). Therefore, we define the costs of a state s as

cost(s) := min
ρe(s)

|τ |−1∑
i=0

δi,

i. e., as the minimal sum of dwell times ranged over the error traces that start
in s, where δi = τi+1 − τi. Error trajectories can be found by searching in the
state space. We will give a short introduction to this search-based approach in
the next section.

2.2 Finding Error States through Search

We introduce a standard basic reachability algorithm along the lines of the reach-
ability algorithm used by SpaceEx. It works on the region space of a given hybrid
system. The algorithm checks if a symbolic error state in a given set Serror is
reachable from a given set of symbolic initial states Sinit. We define a symbolic
state s in the region space of H to be an error state if there is a symbolic state
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Algorithm 1. Basic reachability algorithm

Input: Set of initial symbolic states Sinit, set of error states Serror

Output: Can a symbolic state in Serror be reached from a symbolic state in Sinit ?
1: Push (Lpassed , Sinit)
2: Push (Lwaiting , Sinit)
3: i ← 0
4: while (Lwaiting �= ∅ ∧ i < imax) do
5: scurr = GetNext (Lwaiting)
6: i ← i+ 1
7: if scurr ∈ Serror then
8: return ”Error state reached”
9: end if
10: S′ ← ComputeSuccessors(scurr)
11: for all s′ ∈ S′ do
12: if s′ /∈ Lpassed then
13: Push (Lpassed , s

′)
14: Push (Lwaiting , s

′)
15: end if
16: end for
17: end while
18: return ”Error state not reachable”

se ∈ Serror such that s and se agree on their discrete part, and the intersection
of the regions of s and se is not empty.

Starting with the set of initial symbolic states from Sinit , the algorithm ex-
plores the region space of a given hybrid system by iteratively computing sym-
bolic successor states until an error state is found, no more states remain to be
considered, or a (given) maximum number of iterations imax is reached.

In the following, we explain Alg. 1 in more detail. Symbolic states for which
the successor states have been computed are called explored, whereas symbolic
states that have been computed but not yet explored are called visited. Both
visited and explored states are stored in a dedicated data structure Lpassed .
Symbolic states in Lpassed are used to detect cycles in the region space (see
below). Moreover, there is a data structure Lwaiting that contains visited states
that have not necessarily been explored yet. An iteration of the algorithm consists
of several steps. First, a symbolic state s is taken from Lwaiting and checked if s
is an error state. If this is the case, the algorithm terminates. If s is not an error
state, the symbolic successor states of s are computed (which in turn is a 2-
step operation consisting of the computation of the discrete and continuous post
state; we omit a more detailed description here). To avoid exploring cycles in
the region space, symbolic successor states that are already contained in Lpassed

are not considered again; the others are stored in Lwaiting .
The order in which the region space is explored by Alg. 1 depends on the

implementation of Lwaiting (e. g., a queue-based implementation corresponds to
breadth-first search). Specifically, guided search preferably explores states that
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appear to be more promising according to a cost measure. We will describe this
approach in more detail in the next section.

2.3 Guided Search

Guided search is an instantiation of the basic reachability algorithm that has
been introduced in the previous section. As a first characteristic of guided search
algorithms, Lwaiting is implemented as a priority queue. Therefore, the Push

function additionally requires a priority (cost) value for the pushed state, and the
GetNext function (line 5 in Alg. 1) returns a state with best priority according
to the cost measure. In the following, we discuss a desirable property of cost
measures in the context of guided search. As already outlined, we intend to
design a cost measure that guides the search well in the region space. To achieve
good guidance, the relative error of a cost measure h to the cost function as
defined in the previous section is not necessarily correlated to the accuracy of
h. In other words, h may accurately guide the search although the relative error
of h’s cost estimations is high. This is because it suffices for h to always select
the “right” state to be explored next.1 Based on this observation, we give the
definition of order-preserving.

Definition 2 (Order-Preserving). Let H be a hybrid system. A cost measure
h is order-preserving if for all states s and s′ with cost(s) < cost(s′), then also
h(s) < h(s′).

Cost measures that are order-preserving lead to perfect search behavior with
respect to the cost function. Therefore, it is desirable to have cost measures that
satisfy this property. We will come back to this point in the next section.

3 The Box-Based Distance Measure

In this section, we present the main contribution of this work. In Sec. 3.1, we
provide a conceptual description of an idealized distance measure based on the
length of trajectories. This idealized distance measure is used as the basis for
our box-based distance measure which is presented in Sec. 3.2.

3.1 A Trajectory-Based Distance Measure

In this section, we formulate a distance measure dist that can be expressed in
terms of the length of trajectories (see below for a justification of the name). For
states s and s′, the distance measure dist(s, s′) is defined as the minimal length
of a trajectory ρ that is obtained from the continuous flow and discrete switches

1 As a simple example, consider two states s and s′ with real costs 100 and 200,
respectively. Furthermore, consider a cost measure that estimates the costs of these
states as 1 and 2, respectively. We observe that the relative error is high, but the
better state is determined nevertheless.
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of trajectories that lead from s to s′. To define this more formally, we denote
the set of trajectories that lead from s to s′ with T (s, s′). Moreover, disteq(x,x

′)
denotes the Euclidean distance between points x and x′. Using this notation, we
give the definition of our trajectory-based distance measure.

Definition 3 (Trajectory-Based Distance Measure). Let H be a hybrid
system, let s and s′ be states of H. We define the distance measure

dist(s, s′) := min
ρ∈T (s,s′)

|τ |−1∑
i=0

(∫ τi+1

τi

√
ẋ21(t) + · · ·+ ẋ2n(t) dt+ disteq(i, i+ 1)

)
,

where ρ = (L,X), X(t) = (x1(t), . . . , xn(t)), and disteq(i, i+ 1) is a short-hand
for disteq(Xend(i),Xstart(i + 1)).

Informally speaking, the distance between states s and s′ is defined as the length
of a shortest trajectory ρ from s to s′ induced by the differential equations and
discrete updates of the visited locations L(τi) in ρ. Obviously, the trajectory-
based distance measure can be applied to error states in a straight-forward way
by setting s′ to an error state. We call the trajectory-based error distance mea-
sure distE(s) := minse dist(s, se), where se ranges over the set of given error
states of H.

In the following, we show that for a certain class of hybrid systems H, dist(s)
is indeed correlated to the costs of s for all states s of H. In fact, this correlation
can be established for hybrid systems such that

1. all differential equations inH are of the form ẋi(t) = ±ci for every continuous
variable xi ∈ Var and a constant ci ∈ N, and

2. all guards in H do not contain discrete updates.

We call hybrid systems that satisfy the above requirements restricted systems.
Specifically, we observe that a necessary condition for hybrid system H to be a
restricted system is that for every continuous variable xi in H, there is a global
constant ci ∈ N such that all differential equations in H that talk about xi only
differ in the sign. It is not difficult to see that for the class of restricted systems,
the length of the obtained flow is linearly correlated with the time. Therefore,
the error distance measure distE is order-preserving.

Proposition 1. For restricted systems H, distE is order-preserving.

Proof. We show that from cost(s) < cost(s′), it follows that distE(s) < distE(s
′).

As H is a restricted system, the square root of ẋ21(t)+ · · ·+ ẋ2n(t) is constant and
disteq(i, i + 1) is equal to zero. Therefore, distE(s) = minse minρ∈T (s,se) c

∑
δi,

which is equal to c · cost(s). This proves the claim.

Prop. 1 leads to an interesting and important observation. Roughly speaking, we
have reduced the problem of computing (dwell time) costs in the state space to
the problem of computing “shortest” flows between regions. Therefore, Prop. 1
shows that under certain circumstances, we can choose between cost and dist
without loosing precision. However, although still hard to compute, the repre-
sentation of dist based on lengths of flows lends itself to an approximation based
on estimated flow lengths. This approximation is presented in the next section.



486 S. Bogomolov et al.

3.2 The Box-Based Approximation

In the following, we propose an effective approximation of the dist function that
we have derived in the last section. While the dist measure has been defined for
concrete states, our box-based approximation is defined for symbolic states. The
approximation is based on the following two ingredients.

1. Instead of computing the exact length of trajectories between two points x
and x′ (as required in Def. 3), we use the Euclidean distance between x and
x′.

2. As we are working in the region space, we approximate a given region R
with the smallest box B such that R is contained in B. This corresponds to
the well-known principle of Cartesian abstraction.

In the following, we will discuss these ideas and make them precise. As stated, we
define the estimated distance between points x and x′ as the Euclidean distance
between x and x′. Unfortunately, the Euclidean distance is not order-preserving
for restricted systems, but only for even more restricted systems that allow
even less behavior. This is formalized in the following proposition. For a state
s = (�,x), we define disteqE (s) := minse disteq(x,xe), where se = (�e,xe) ranges
over the error states, and disteq is the Euclidean distance function as introduced
earlier.

Proposition 2. For restricted systems H with ẋi(t) = ci, i. e., for restricted
systems where all locations have the same continuous behavior, disteqE is order-
preserving.

Proof. We show that from cost(s) < cost(s′), it follows that disteqE (s) < disteqE (s′).
By assumption, H is a restricted system where every location has the same con-
tinuous dynamics. Therefore, the Euclidean distance disteq(s, se) is equal to∫ τk
0

√
ẋ21(t) + · · ·+ ẋ2n(t) dt, where τk is equal to the accumulated dwell time of

the trajectory from s to se. Furthermore, the square root of ẋ21(t)+ · · ·+ ẋ2n(t) is
some constant c. Thus disteqE (s) = minse disteq(s, se) = minse c · τk = c ·minse τk
which in turn is equal to c · cost(s).

The above proposition reflects that the Euclidean distance is a coarse approx-
imation of the trajectory-based distance measure because it is effectively only
order-preserving for systems that allow behavior that corresponds to systems
with only one location. Indeed, it is the coarsest approximation one can think
of on the one hand. However, on the other hand, we have shown that there exist
systems for which it is order-preserving, which suggests (together with Prop. 1)
that the Euclidean distance could be a good heuristic to estimate distances also
for richer classes of hybrid systems. Moreover, it is efficiently computable which
is particularly important for distance heuristics that are computed on-the-fly
during the state space exploration. (Obviously, one can think of arbitrary more
precise approximations based on piecewise linear functions; however, such ap-
proximations also become more expensive to compute. We will come back to this
point in the conclusions.)
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For our distance heuristic, we approximate a given symbolic state s = (�, R)
with the smallest box B(s) that contains R. Formally, this corresponds to the
requirement

R ⊆ B(s) = [x1, x
′
1]× . . . [xn, x′n] ⊆ Rn ∧ ∀B′ �= B(s) : R ⊆ B′ ⇒ B(s) ⊆ B′.

In order to be efficiently computable, it is essential that tight over-approximating
boxes can be computed efficiently. This can be achieved using linear program-
ming techniques. Our distance heuristic heq is defined as the Euclidean distance
between the center of two boxes. Formally, for a symbolic state s = (�, R), we
define

heq(s) := minsedisteq(Center(B(R)),Center(B(Re))),

where se = (�e, Re) ranges over the set of error states ofH, disteq is the Euclidean
distance metric, and Center(B) denotes the central point of box B. Obviously,
central points of boxes can be computed efficiently as the arithmetic average of
its lower and upper bounds for every dimension.

Overall, our distance heuristic heq determines distance estimations for sym-
bolic states s = (�, R) by first over-approximating R with the smallest box B
that contains R, and then computing the minimal Euclidean distance between
B’s center and the center of an error state. This procedure is summed up by
Alg. 2.

Algorithm 2. Compute Distance Heuristic heq

Input: State s = (
,R)
Output: Estimated distance to a closest error state in Serror

1: dmin ← ∞
2: B ← B(R)
3: for all s′ = (
′, R′) ∈ Serror do
4: B′ ← B(R′)
5: dcurr ← disteq(Center(B),Center(B′))
6: if dcurr < dmin then
7: dmin ← dcurr
8: end if
9: end for
10: return dmin

4 Experiments

We have implemented our box-based distance heuristic heq in SpaceEx and com-
pare the resulting guided search algorithm to the standard depth-first search
(DFS) algorithm of SpaceEx. The experiments have been performed on a ma-
chine with an Intel Core i3 2.40GHz processor and with 4 GB of memory. For
both search settings (i. e., for guided search as well as for uninformed DFS),
SpaceEx has been run with the same parameters (see Sec. 4.2).
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In the following, we first introduce our benchmark problems in Sec. 4.1. Af-
terwards, the experimental results are presented and discussed in Sec. 4.2.

4.1 Case Studies

For the evaluation of our approach, we used several problem instances of the two
case studies Navigation benchmark and System of Tanks.

Navigation Benchmark. As a first case study, we apply the navigation bench-
mark that has been proposed in the literature [14]. In the scope of this bench-
mark, we consider an object moving in the plane. The plane is divided into the
grid of squares where some initial state is given (i. e., region, velocity in direction
x and velocity in direction y). Furthermore, for each square, some differential
equations are defined which govern the system in the considered square. Finally,
some square A which should be reached and some square B which is to be
avoided are defined. We will look for a path from the initial state to square A.
We consider different problem instances of this benchmark with different sizes
of the grid.

System of Tanks. As a second benchmark which is similar to the one presented
by Frehse and Maler [17], we consider a network of tanks which are connected
by channels. Tanks have a fixed capacity, channels are characterized by their
throughputs. We have several kinds of tanks with different functionality, namely
production, buffer, delivery buffer, and reactor. The functionality of these tanks is
as follows. Liquid can be delivered from the production to one of the buffers B1,
B2 or B3. In particular, liquid can be stored in those buffers for some time.
Furthermore, liquid is forwarded to reactors R1, R2 and R3. Liquid can be
transferred only from Bi to Ri. Finally, liquid is transferred from the reactors
to the delivery buffer BD from which it is directly delivered to the customer.

For a given control strategy, it must be ensured that the delivery buffer BD

never gets empty according to this strategy (i. e., requirements of the customer
are satisfied). For a fixed i ∈ {1, 2, 3}, we have equal throughput vi from pro-
duction to Bi, from Bi to Ri, and from Ri to BD. Finally, the transmission rate
from BD to the customer is defined by vout.

We will investigate the behavior of the following controller. The controller has
the following phases which are characterized by constant m defining the length
of the time period when liquid is transferred between tanks:

1. time = 0: open(Production,Bi) - transfer of liquid from Production to Bi

starts
2. time ∈ [0,m]: Production→ Bi - buffer Bi is filled
3. time = m: close(Production,Bi) - stop filling Bi

4. time = m: open(Bi, Ri) - start transfer to Ri

5. time ∈ [m, 2m]: Bi → Ri - liquid is transferred from the buffer Bi to the
reactor Ri
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Table 1. Experimental results of SpaceEx for the navigation benchmark with unin-
formed depth-first search and guided search. Abbreviations: DFS: depth-first search,
DTime: overall accumulated dwell time for all explored states, time in s: overall search
time of SpaceEx in seconds.

Benchmark instance DFS Guided search
#iterations DTime time in s #iterations DTime time in s

NAV25 200 245.7 160.157 43 111.1 44.891
NAV26 200 391.5 327.66 44 110.2 57.95
NAV27 200 539.6 366.621 49 121.4 59.212
NAV28 47 96.3 63.176 34 99.8 50.528
NAV29 162 410.5 217.521 42 133.1 66.479
NAV30 174 308.6 176.457 40 129.4 69.779

6. time = 2m: close(Bi, Ri) - stop transferring to Ri

7. time = 2m: open(Ri, BD) - start transfer to BD

8. 2m sec - 3m sec: Ri → BD - liquid is transferred from the reactor Ri to the
delivery buffer BD, i.e. delivery buffer is refilled.

9. time = 3m: close(Ri, BD) - stop refilling BD. After this phase the controller
goes back to the phase 1.

The controller can non-deterministically choose which buffer (and reactor) to
use in each iteration. Thus the number of trajectories grows exponentially with
time. We assume the consumption to be constant. Thus it is essential to transfer
to the delivery buffer enough liquid so it does not get empty within phases in
which the level of liquid in the delivery buffer sinks.

Our goal is to check whether the presented controlled may fail, i. e., may lead
to the drainage of the production buffer, and to discover the possible failure as
soon as possible. For our test, we set v1, v2, v3 such that v3 > v1 > v2, and vout
such that the delivery buffer will get empty no matter which buffer is chosen
by the controller. However, choosing B2 with the smallest throughput (and thus
refillment) rate v2 will obviously lead to the faster drainage of the delivery buffer
and therefore to the faster discovery of the controller failure. Contrarily, the
unfortunate choice of v3 will lead to the delay in the controller failure discovery.

4.2 Experimental Results

The experimental results for the largest problem instances in the navigation
benchmark (NAV25, . . . , NAV30) are provided in Table 1. The results have
been obtained using the LGG support function scenario of SpaceEx. Template
polyhedra are represented using 32 uniform directions. Furthermore, the max-
imal number of iterations is set to 200, and the continuous sampling time is
set to 0.1 seconds. Finally, the local time horizon for the continuous post op-
eration is set to 40. We compare the number of iterations, the search time, as
well as the overall accumulated dwell time during the exploration of the state
space of SpaceEx. The accumulated dwell time serves as an additional measure
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to compare the “quality” of the search guidance because, as argued in the previ-
ous sections, this time is correlated with overall search effort, and our distance
heuristic tries to minimize it.

First, we observe that in all these problem instances, the guided search al-
gorithm with our box-based distance heuristic could significantly improve the
overall performance of the model checking process. Specifically, we observe that
the overall accumulated dwell time is reduced when guiding the search, which
apparently results in a lower search effort. Furthermore, the number of itera-
tions of SpaceEx reduces. As a side remark, for NAV25, NAV26 and NAV27, the
standard depth-first search did not find a solution after the maximal number of
200 iterations.

Let us consider the results for the largest navigation benchmark problem,
NAV30, in more detail. Fig. 1 and Fig. 2 graphically compare the way of the
object in NAV30 while moving over the 25 × 25 grid and searching for the target
state. The initial region of the object is on the left above, the goal region is on
the right below. We observe that, using depth-first-search as shown in Fig. 1,
the object reaches the target state on a trace with a considerable (circle-shaped)
detour on the one hand. On the other hand, using guided search with the heq

distance heuristic as shown in Fig. 2, the way of the object apparently becomes
more straight. As a consequence, with uninformed depth-first search, SpaceEx
needs 174 iterations and over 176 seconds to reach the target state. In contrast,
with guided search, SpaceEx finds the target state within only 40 iterations,
resulting in a remarkable speed-up considering the overall search time.

Considering the experimental results for the benchmark problems based on
the system of tanks, we first report that our heq distance heuristic does not pro-
vide further guidance information for the state space exploration in the classical
search setting. More precisely, for a symbolic state s of that system, all succes-
sor states of s are equally evaluated by heq . This shows that, unsurprisingly,
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Fig. 2. Guided search with heq
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Table 2. Experimental results of SpaceEx for the tank benchmark with uninformed
depth-first search and guided search with look-ahead. Abbreviations: DFS: depth-first
search, DTime: overall accumulated dwell time for all explored states, time in s: overall
search time of SpaceEx in seconds.

Benchmark instance DFS Guided search
#iterations DTime time in s #iterations DTime time in s

TANK01 1396 34900 7.356 207 3850 3.962
TANK02 3712 92800 42.179 526 9850 8.952
TANK03 6034 150850 105.22 846 15850 14.876
TANK04 8349 208750 196.69 1166 21850 21.311

heq does not fire appropriately in all problem domains. However, heq can still
give benefits compared to uninformed depth-first search in the context of look-
aheads in the state space. For a given state s, a look-ahead works by not only
considering heuristic values of the direct successor states of s, but also by con-
sidering heuristic values of successor states in a fixed depth greater than one. In
Table 2, we report experimental results within this search setting. We have used
the PHAVer scenario of SpaceEx. In addition, the maximal number of iterations
is set to 250000, and the continuous sampling time is set to 1 second. Finally, the
local time horizon for the continuous post operation is set to 200. The problems
TANK01, . . . , TANK04 are benchmark instances of increasing complexity that
differ in the initial level of liquid in the delivery buffer.

Considering these results, we again observe that guided search can signifi-
cantly outperform uninformed depth-first search of SpaceEx. In particular, the
number of iterations and the overall search time could be considerably reduced.

We conclude the section with a short discussion for which kind of systems
our approach is suited best. First, we observe that our heuristic is especially
accurate when the system dynamics depends only on the continuous state. In
particular, this is the case for the navigation benchmark. In general, systems
of that kind occur in practice when complex dynamics is approximated with a
simpler one through state space partitioning: For example, the phase portrait
approximations [23], the approximation techniques employed by PHAVer [15]
and hybridization techniques [3] fall into this category. Additionally considering
look-aheads (i. e., considering not only heuristic values of direct successor states,
but also of states in a fixed depth greater than one) is useful when crucial changes
of a system state may arise after performing several steps (as it is the case in
the system of tanks).

5 Conclusions

In this paper we have introduced a best-first symbolic-reachability analysis al-
gorithm (GBFS) for a particular class of hybrid systems, the ones that have
a linear behavior (in the control-theoretic sense) in each mode. The algorithm
has been added as an additional reachability-analysis engine to SpaceEx, the
state-of-the-art reachability-analysis tool for this class of systems [16].
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GBFS takes advantage of the symbolic-computation routines of SpaceEx, and
in particular of its efficient computation of the smallest box enclosing a sym-
bolic region. As a consequence, the algorithm has a similar time-complexity for
reachability analysis as the depth-first search algorithm (DFS) of this tool.

GBFS is tuned for efficient falsification, where it considerably outperforms
DFS on our benchmarks. The improved efficiency is achieved by choosing the
successor region which has the smallest Euclidean distance between the center
of its enclosing box and the center of the box enclosing the bad-region. We have
shown that for a particular class of hybrid systems, this metric is an appropriate
approximation of an idealized trajectory metric. Our experimental evaluation
additionally shows that this metric can serve as an informed cost heuristic even
for richer classes of hybrid systems.

For the future, it will be interesting to further refine our box-based distance
metric. In this paper, we have chosen the most canonical way as an approx-
imation; however, we also have already outlined that arbitrary more precise
approximations based on piecewise linear functions are possible. In this context,
an important topic for future research will be the question how much precision
can be gained while still being efficiently computable.
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Abstract. The growing complexity of hardware optimizations employed
by multiprocessors leads to subtle distinctions among allowed and dis-
allowed behaviors, posing challenges in specifying their memory models
formally and accurately, and in understanding and analyzing the behav-
ior of concurrent software. This complexity is particularly evident in the
IBMR© Power ArchitectureR©, for which a faithful specification was pub-
lished only in 2011 using an operational style. In this paper we present
an equivalent axiomatic specification, which is more abstract and con-
cise. Although not officially sanctioned by the vendor, our results indicate
that this axiomatic specification provides a reasonable basis for reasoning
about current IBMR© POWERR© multiprocessors. We establish the equiva-
lence of the axiomatic and operational specifications using both manual
proof and extensive testing. To demonstrate that the constraint-based
style of axiomatic specification is more amenable to computer-aided ver-
ification, we develop a SAT-based tool for evaluating possible outcomes
of multi-threaded test programs, and we show that this tool is signifi-
cantly more efficient than a tool based on an operational specification.

1 Introduction

Modern multiprocessors employ aggressive hardware optimizations to provide
high performance and reduce energy consumption, which leads to subtle distinc-
tions between the allowed and disallowed observable behaviors of multithreaded
software. Reliable development and verification of multithreaded software (in-
cluding system libraries and optimizing compilers) and multicore hardware sys-
tems requires understanding these subtle distinctions, which in turn demands
accurate and formal models.

The IBM R© Power Architecture R©, which has highly relaxed and complex mem-
ory behavior, has proved to be particularly challenging in this respect. For ex-
ample, IBM R© POWER R© is non-store-atomic, allowing two writes to different
locations to be observed in different orders by different threads; these order vari-
ations are constrained by coherence, various dependencies among instructions,
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and several barrier instructions, which interact with each other in an intricate
way. The ARM architecture memory ordering is broadly similar.

Several previous attempts to define POWER memory consistency mod-
els [CSB93, SF95, Gha95, AAS03, AFI+09, AMSS10] did not capture these sub-
tleties correctly. A faithful specification for the current Power Architecture was
published only in 2011 [SSA+11] using an operational style: a non-deterministic
abstract machine with explicit out-of-order and speculative execution and an
abstract coherence-by-fiat storage subsystem. This specification was validated
both through extensive discussions with IBM staff and comprehensive testing
of the hardware. The operational specification has recently been extended to
support the POWER load-reserve/store-conditional instructions [SMO+12].

This paper presents an alternative memory model specification for POWER
using an axiomatic style, which is significantly more abstract and concise than
the previously published operational model and therefore better suited for some
formal analysis tools. One of the main challenges in specifying an axiomatic
model for POWER is identifying the right level of abstraction. Our goal was to
define a specification that is detailed enough to express POWER’s complexity,
capturing the distinctions between allowed and disallowed behaviors, yet abstract
enough to be concise and to enable understanding and analysis.

Our approach splits instruction instances into multiple abstract events and
defines a happens-before relation between these events using a set of constraints.
The specification presented here handles memory loads and stores; address,
data, and control dependencies; the isync instruction, and the lightweight and
heavyweight memory barrier instructions lwsync and sync. The specification does
not include load-reserve and store-conditional instructions, mixed-size accesses,
or the eieio memory barrier.

We show that this specification is equivalent to the existing POWER op-
erational specification (permitting the same set of allowed behaviors for any
concurrent POWER program) in two ways. First, we perform extensive testing
by checking that the models give the same allowed behaviors for a large suite
of tests; this uses tools derived automatically from the definitive mathemati-
cal statements of the two specifications, expressed in Lem [OBZNS11]. We also
check that the axiomatic specification is consistent with the experimentally ob-
served behavior of current IBM R© POWER6 R©/ IBM R© POWER7 R© hardware. We
then provide a manual proof of the equivalence of the operational and axiomatic
specifications, using executable mappings between abstract machine traces and
axiomatic candidate executions, both defined in Lem. We have checked their cor-
rectness empirically on a small number of tests, which was useful in developing
the proof.

Finally, we demonstrate that this abstract constraint-based specification is
useful for computer-aided verification. The testing described above shows that
it can be used to determine the outcomes of multi-threaded test programs more
efficiently than the operational model. This efficiency enables a tool to calculate
the allowed outcomes of 915 tests for which the current implementation of the
operational tool [SSA+11] does not terminate in reasonable time and space.



An Axiomatic Memory Model for POWER Multiprocessors 497
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Fig. 1. Examples illustrating the POWER memory model

Further, the axiomatic specification lends itself to a SAT/SMT-solving approach:
a hand-coded translation of the axiomatic model using minisat [ES05] reduces
execution time for the full test suite radically, from 82 CPU-days to 3 hours.

The full definitions of our specifications, test suite, test results, and proof are
available in on-line supplementary material [Sup].

2 Background: The POWER Memory Model

This section highlights some of the subtleties of the POWER memory model,
and then overviews its abstract-machine semantics, referring to Sarkar et
al. [SSA+11, SMO+12] for a complete description.

2.1 Subtleties of the POWER Memory Model

Figure 1 shows example candidate executions for several concurrent litmus tests,
MP, WRC+data+addrs, etc. (each test is defined by its assembly source code
and its initial and final register and memory state, which select a particular
execution). For each, the diagram shows a graph with nodes for memory reads
or writes, each with a label (a, b, . . .), location (x, y, . . .), and value (0, 1, . . .).
The edges indicate program order (po), data dependencies from a read to a write
whose value was calculated based on the value read (data), address dependencies
from a read to a read or write whose address was calculated based on the
value read (addr), control dependencies from a read to instructions following
a conditional branch whose condition involved the value read (ctrl), and lwsync



498 S. Mador-Haim et al.

and sync barriers. The reads-from edges (rf) go from a write (or a dot indicating
the initial state) to any read that reads from this write or initial value. Coherence
(co) edges give, for each location, a total order over the writes to that location.
Register-only and branch instructions and are elided.

Relaxed memory behavior in POWER arises both from out-of-order and spec-
ulative execution within a hardware thread and from the ways in which writes
and barriers can be propagated from their originating thread to other threads.
For writes and reads to different addresses, absent any barriers or dependencies,
the behavior is unconstrained. The message-passing MP example illustrates this
behavior: the writes a and b might commit in either order, then propagate to
Thread 1 in either order, and reads c and d can be satisfied in either order. Any of
these effects can give rise to the given execution. To prevent them, a programmer
could add an lwsync or sync barrier between the writes (making their commit or-
der and their propagation order respect program order) and either add a barrier
between the reads or make the second read address-dependent on the first (per-
haps using the result of the first read xor’d with itself to form the address of the
second read, introducing an artificial dependency) thus ensuring that it cannot
be satisfied until the first read is satisfied. For example, test MP+lwsync+addr (a
variation of MP with a lwsync edge in one thread and an addr edge in the other)
is forbidden. A control dependency alone does not prevent reads being satisfied
speculatively; the analogous MP+lwsync+ctrl is allowed. But adding an isync
instruction after a control dependency does: MP+lwsync+ctrlisync is forbidden.

Dependencies have mostly local effects, as shown by the WRC+data+addr
variant of MP, where the facts that b reads from a, and that c is dependent on
b, are not sufficient to enforce ordering of a and c as far as Thread 2 is concerned.
To enforce that ordering, one has to replace the data dependency by an lwsync
or sync barrier. This example relies on the so-called cumulative property of the
barriers, which orders all writes that have propagated to the thread of the barrier
before all writes that occur later in program order, as far as any other thread is
concerned.

The independent-reads-of-independent-writes IRIW+addrs example shows
that writes to different addresses can be propagated to different threads (here
Threads 1 and 3) in different orders; POWER is not store-atomic, and thread-
local reorderings cannot explain all its behaviors. Inserting sync instructions be-
tween the load instructions on Thread 1 and Thread 3 will rule out this behavior.
Merely adding lwsyncs does not suffice.

Returning to thread-local reordering, the PPOCA variant of MP shows a
subtlety: writes are not performed speculatively as far as other threads are
concerned, but here d, e, and f can be locally performed speculatively, before c
has been satisfied, making this execution allowed.

The two final examples illustrate the interplay between the coherence order
and barriers. In test Z6.3+lwsync+lwsync+addr (blw-w-006 in [SSA+11]), even
though c is coherence-ordered after b (and so cannot be seen before b by any
thread), the lwsync on Thread 1 does not force a to propagate to Thread 2
before d is (in the terminology of the architecture, the coherence edge does not
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bring b into the Group A of the Thread 1 lwsync). This test outcome is therefore
allowed. On the other hand, some combinations of barriers and coherence orders
are forbidden. In 2+2W+lwsyncs, for example, there is a cycle among the writes
of coherence and lwsync edges; such an execution is forbidden.

2.2 The Operational Specification

The operational specification of Sarkar et al. [SSA+11, SMO+12] accounts for all
these behaviors (and further subtleties that we do not describe here) with an ab-
stract machine consisting of a set of threads composed with a storage subsystem,
communicating by exchanging messages for write requests, read requests, read
responses, barrier requests, and barrier acknowledgments (for sync). Threads are
modeled with explicit out-of-order and speculative execution: the state of each
thread consists of a tree of in-flight and committed instructions with information
about the state of each instruction (read values, register values etc.) and a set
of unacknowledged syncs. The thread model can perform various types of tran-
sitions. Roughly speaking (without detailing all the transition preconditions), a
thread can:

– Fetch an instruction, including speculative fetches past a branch.
– Satisfy a read by reading values from the storage subsystem or by forwarding

a value from an in-flight write. Reads can be performed speculatively, out-
of-order, and (before they are committed) can be restarted if necessary.

– Perform an internal computation and write registers.
– Commit an instruction (sending write and barrier requests to the storage

subsystem).

The state of the storage subsystem consists of a set of (1) writes that have been
committed by a thread, (2) for each thread, a list of the writes and barriers
propagated to that thread, (3) the current constraint on the coherence graph
as a partial order between writes to the same location, with an identified linear
prefix for each location of those that have reached coherence point, and (4) a set
of unacknowledged syncs. The storage subsystem can:

– Accept a barrier or write request and update its state accordingly.
– Respond to a read request.
– Perform a partial coherence commit, non-deterministically adding to the

coherence graph an edge between two as-yet-unrelated writes to the same
location.

– Mark that a write reached a coherence point, an internal transition after
which the coherence predecessors of the write are linearly ordered and fixed.

– Propagate a write or a barrier to a thread, if all the writes and barriers that
are required to propagate before it have been propagated to this thread.
A write can only be propagated if it is coherence-after all writes that were
propagated to a thread, but the abstract machine does not require all writes
that are coherence-before it have been propagated, thus it allows some writes,
which might never be propagated to some of the threads, to be skipped.

– Send a sync acknowledgment to the issuing thread, when that sync has been
propagated to all other threads.
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3 The Axiomatic Specification

This section introduces our new specification of the POWER memory model
in an axiomatic style. We begin by defining the semantics of a multithreaded
program as a set of axiomatic candidate executions. We then give an overview of
the axiomatic specification, which defines whether a given axiomatic candidate
execution is consistent with the model, show how the examples in Section 2 are
explained using this model, and finally provide the formal specification of the
model.

3.1 Axiomatic Candidate Executions

We adopt a two-step semantics, as is usual in axiomatic memory models, that
largely separates the instruction execution semantics from the memory model
semantics by handling each individually.

We begin with a multithreaded POWER program, or litmus test, in which
each thread consists of a sequence of instructions. Such a program may non-
deterministically display many different behaviors. For example: reads may read
from different writes, conditional branches may be taken or not taken, and
different threads may write to the same address in a different order. During the
execution of a program, any given static instruction may be iterated multiple
times (for example, due to looping). We refer to such an instance of the dynamic
execution of an instruction as an instruction instance.

To account for the differing ways a given litmus test can execute, we define the
semantics of a multithreaded program as set of axiomatic candidate executions.
Informally, an axiomatic candidate execution consists of (1) a set of axiomatic
instruction instances, which are instruction instances annotated with additional
information as described below, and (2) a set of relations among these axiomatic
instruction instances (in what follows, we will refer to instruction instances or
axiomatic instruction instances for load and store instructions as reads and
writes, respectively). An axiomatic candidate execution represents a conceivable
execution of the program and accounts for the effects of a choice of branch
direction for each branch instruction in the program, a possible coherence order
choice, and a reads-from mapping showing which write a given read reads from.

An axiomatic instruction instance is an instruction instance of the program
annotated with a thread id and some additional information based on instruction
type. Axiomatic instruction instances are defined only for reads, writes, memory
barriers (sync, lwsync, isync), and branches. Reads are annotated with the con-
crete value read from memory, while writes are annotated with the value written
to memory. Barriers and branches have no additional information. Other instruc-
tions may affect dependency relationships in the axiomatic candidate execution,
but are otherwise ignored by the model.

An axiomatic candidate execution consists of a set of axiomatic instruc-
tion instances, and the following relations between those axiomatic instruction
instances:
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– A program order relation po, providing a total order between axiomatic
instruction instances in each thread.

– A reads-from relation rf , relating writes to reads to the same address.
– A coherence relation co, providing, for each address, a strict total order

between all writes to that address.

– A data dependency relation from reads to those writes whose value depends
on the value read.

– An address dependency relation from reads to those reads or writes whose
address depends on the value read.

– A control dependency relation from each read to all writes following a con-
ditional branch that depends on the value read.

For each candidate execution of a given program, the following conditions must
hold: (1) for each thread, the sequence of instruction instances ordered by po
agrees with the local thread semantics of that program, when running alone with
the same read values; (2) for each read and write related by rf , the read reads
the value written by the write; and (3) if a read is not associated with any write
in rf , it reads the initial value.

As an example, consider the test MP+lwsync+ctrl, a variation of MP with an
lwsync and a control dependency. The POWER program for this test is listed
below:

Thread 0 Thread 1

(a) li r1,1 (f) lwz r1,0(r2)

(b) stw r1,0(r2) (g) cmpw r1,r1

(c) lwsync (h) beq LC00

(d) li r3,1 LC00:

(e) stw r3,0(r4) (i) lwz r3,0(r4)

Instruction instances are not defined for register-only instructions. Therefore,
there are no instances of instructions a, d and g in this example. The conditional
branch h in the program may be either taken or not taken, but in this case
it jumps to i, so in both cases the axiomatic candidate execution contains a
single instance for each of the instructions: {b,c,e,f,h,i}. The program order
po in all candidate executions of this program is the transitive closure of the
set {(b,c),(c,e),(f,h),(h,i)} and the control dependency is {(f,i)}. The
coherence order co is empty in this example because each write writes to a
different address. Each of the two reads in Thread 1 may either read from the
matching write in Thread 0 or from the initial value. Hence, there are four
possible rf relations, and four axiomatic candidate executions.

3.2 Overview of the Specification

The axiomatic specification defines whether a given axiomatic candidate exe-
cution is consistent or not. This section provides an overview of our axiomatic
POWER memory specification (formally described in Section 3.4).
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For each axiomatic candidate execution, we construct a set of events that
are associated with the axiomatic instruction instances, together with several
relations over those events. These events and relations (as described below)
capture the subtleties of the POWER memory model, including speculative out-
of-order execution and non-atomic stores. The events and relations determine
whether an axiomatic candidate execution is consistent. In more detail:

Uniprocessor Correctness Condition. The relations rf and co must not
violate uniprocessor execution order, in the following sense: a read is allowed
to read a local write only if that write precedes the read in program order,
that write is the most recent (w.r.t. program order) write to that address in
that thread, and there is no program-order-intervening read that reads from a
different write (from another thread). Based on rf and co, we define fr as the
relation from any read to all writes which are coherence-after the write that the
read reads from. We define the communication relation comm as the union of
rf , fr and co. The uniprocessor condition requires that the transitive closure of
comm does not contain any edge which goes against program order.

Local Reordering. The effects of out-of-order and speculative execution in
POWER are observable, as shown by the MP variations in Fig. 1 (including
PPOCA). Reads can be satisfied speculatively and speculative writes can be for-
warded to local reads, although not to other threads. The specification captures
this by defining satisfy read events, initiate write events, and commit events for
both reads and writes: a read is satisfied when it binds its value, and committed
when it cannot be restarted and that value is fixed; a write is initiated when its ad-
dress and value can be (perhaps speculatively) calculated and it can be propagated
to thread-local reads and committed when it can propagate to other threads.

Non-atomic Stores. Writes in POWER need not be propagated to all other
processors in an atomic fashion, as illustrated by WRC+data+addr (the write
to x propagates to Thread 1 before propagating to Thread 2). As in the op-
erational model (and previous axiomatic models [Int02, YGLS03]) to capture
this behavior, we split each write into multiple propagation events. In our model
each thread other than its own has a propagation event, whereas in the oper-
ational model some write propagations can be superseded by coherence-later
propagations. A write propagating to a thread makes it eligible to be read by
that thread.

Barriers and Non-atomic Stores. The semantics of the sync and lwsync
barriers in POWER are quite subtle. As seen in WRC+lwsync+addr, lwsync has a
cumulative semantics, but adding lwsync between every two instructions does not
restore sequential consistency, as shown by IRIW+lwsyncs. As in the operational
model, we capture this behavior by splitting barriers into multiple propagation
events, analogous to those for writes, with the proper ordering rules for these. A
barrier can propagate to a thread when all the writes in the cumulative Group
A of the barrier have propagated to that thread.

Barriers and Coherence. As shown by Z6.3+lwsync+lwsync+addr, coherence
relationships between writes do not necessarily bring them into the cumulative
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Group A of lwsync barriers (or for that matter of sync barriers). We capture this
behavior by allowing writes that are not read by a certain thread to propagate
to that thread later than coherence-after writes. This weakened semantics for
coherence must be handled with caution, and additional constraints are required
to handle certain combinations of barriers and coherence edges, as shown by
example 2+2W+lwsyncs (in Fig. 1).

To summarize, the specification uses the notion of events with possibly mul-
tiple events corresponding to an axiomatic instruction instance to capture these
behaviors. There are four types of events:

1. Satisfy events. There is a single read satisfy event sat(x) for each read
axiomatic instruction instance x, representing the point at which it takes
its value. Unlike in the operational model (in which a read might be satisfied
multiple times on speculative paths), there is exactly one satisfy event for
each read axiomatic instruction instance.

2. Initiate events. Each write has an initiate event ini(x), the point at which
its address and value are computed, perhaps speculatively, and it becomes
ready to be forwarded to local reads.

3. Commit events. Each axiomatic instruction instance x of any type has a
commit event com(x). Reads and writes can commit only after they are
satisfied/initiated. Writes and barriers can propagate to other threads only
after they are committed.

4. Propagation events. For each write or barrier instruction x and for each
thread t which is not the originating thread of x, there is a propagation
event ppt(x), which is the point at which x propagates to thread t.

The main part of our axiomatic model is defined using evord , a happens-before
relation between events, which must be acyclic for consistent executions. Given
an axiomatic candidate execution, evord is uniquely defined using the rules listed
below.

Intra-instruction Order Edges. Our specification provides two ordering rules
that relate events for the same instruction: events-before-commit states that reads
must be satisfied and writes must be initiated before they commit; propagate-
after-commit states that an instruction can propagate to other threads only after
it is committed.

Local Order Edges. The local-order rules for evord relate sat , ini and com
events within each thread. For a pair of events x and y from program-ordered
axiomatic instruction instances (x before y), these events must occur in program
order and cannot be reordered in the following cases:

– x is a read satisfy event and y is a read satisfy or write initiate event of an
instruction with either an address or data dependency on x.

– x and y are read satisfy events separated by lwsync in program order.
– x and y are read or write commit events of instructions that have either

data, address, or control dependency between them.
– x and y are read or write commit events for instructions accessing the same

address.
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– x and y are commit events and at least one of x and y is a barrier.

– x is a conditional branch commit event and y is a commit event.

– x and y are read or write commit events and there is a program-order-
intervening instruction whose address depends on x.

– x is a read commit event, y is a read satisfy event, and both reads accessing
the same address but reading from different non-local writes.

– x is a commit event of sync or isync and y is a read satisfy event.

Communication Order Edges. Communication rules order reads and writes
to the same address from different threads, based on the relations rf , co, and
fr . The read-from rule ensures that a read is satisfied only after the write it
reads from propagates to the reading thread. The coherence-order rule states
that for a write w, any write w′ that is coherence-after w can propagate to w’s
thread only after w commits. The from-read rule defines which writes can be
observed by each read. It states that if a read r reads from w, any write w′ that
is coherence-after w can propagate only to the thread of r after r is satisfied.

One implication of the above definition for the from-read rule is that the
reads in each thread can only observe writes in coherence order, even if they
propagate out-of coherence order. For example, if w1 is coherence-before w2,
and w1 propagates to t after w2, any program-order-later read in t would still
read from w2 and not w1.

Intra-thread Communication Edges. If a read receives a value written by
a local write, this read must be satisfied after the write is initiated. This edge
is the only type of intra-thread communication edge in this specification. There
are no evord edges arising from fr or co edges between events for axiomatic
instruction instances in the same thread.

Before Edges (Barrier Cumulativity). In the operational specification, any
write reaching thread t before a barrier is committed in t must (unless super-
seded by a coherence successor) be propagated to any other thread before that
barrier is propagated, as shown in the WRC test. Our axiomatic specification
expresses the same cumulative property using a before-edge rule, stating that if
a write propagates to a thread before a barrier commits or vice versa (a barrier
propagates before a write commits), then the propagation events for these two
instructions must have the same order between them in any other thread.

Before edges apply both to events associated with instructions from the same
thread and instructions from different threads. For same-thread instructions,
they require writes separated by a barrier to propagate to other threads in
program order. For instructions from different threads, their effect is enforcement
of a global propagation order between writes and barriers that are related by
communication edges.

After Edges (Sync Total Order). Heavyweight syncs are totally ordered.
A sync may commit only after all previously committed syncs in the program
have finished propagating to all threads. We enforce this using the after-edge rule,
which states that if a sync b propagated to a thread after committing a local sync
a, then any event associated with b must be ordered after any event associated
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with a. Note that this is different from (and simpler than) the operational model,
where sync propagations can overlap.

Extended Coherence Order. The extended coherence order, cord , is a rela-
tion between axiomatic instruction instances that includes co, as well as edges
from each write w to each barrier b that commit after w propagates to b’s
thread, and from each barrier b to each write w that commits after b propa-
gates to w’s thread. Extended coherence must be acyclic, which captures the
coherence/lwsync properties of examples such as 2+2W+lwsyncs.

3.3 Examples

We now discuss how the examples in Fig.1 are explained by this model, princi-
pally by looking at the evord relation between the events in each litmus test.

MP. In this example, there is a read-from edge from the pp1 of b to the sat
of c, and a from-read edge from the sat of d to the pp1 of a. Without any
additional dependencies or barriers, there are no additional edges and no cycles.
Adding a dependency between the two reads on Thread 1 would add a local
edge between the sat events of these reads. Adding an lwsync between the writes
in Thread 0 would add local edges from a to the barrier to b and before edges
between the pp1 events of these three instruction instances, forming the cycle:
pp1(a)→ pp1(b)→ sat(c)→ sat(d)→ pp1(a), making this forbidden.

WRC+lwsync+addr. The evord for this test is shown on the right.

Test WRC+lwsync+addr Candidate 4

Thread 0

a:W x=1

Thread 1

b:R x=1

c:Lwsync

d:W y=1

Thread 2

e:R y=1

f:R x=0

ini

com com

pp 1 pp 2

pp 0

sat

com

pp 2

com

com

pp 0

ini

pp 2

sat

sat

com

comm

comm

local

before

before

comm

local

local

before

before

before

before

local

In this example, a is read by
b, leading to a communication
edge between them. As a re-
sult, the pp1 event of a pre-
cedes the lwsync barrier, trig-
gering a before-edge between
them and forcing a to prop-
agate before c in Thread 2.
The result is a cycle: pp2(a) →
pp2(c) → pp2(d) → sat(e) →
sat(f) → pp2(a). Without the
barrier, there would be no be-
fore edges connecting the prop-
agation events of a and c. These
two writes would be allowed to
propagate to Thread 2 in any
order, hence this example would
be allowed.

IRIW+addrs. In this ex-
ample, without barriers there
would be no edges between the
propagation events of a and d
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and therefore they could be observed in any order by Threads 1 and 3. Adding
lwsync between the reads in this example adds before edges from a to the bar-
rier in Thread 1 and from d to the barrier in Thread 3, but there are no edges
connecting the propagation events of the two writes yet. Replacing lwsync with
a heavy-weight sync, however, would add after edges from the propagation event
of the sync in Thread 1 to the sync in Thread 3, as well as as after edges from
the sync in Thread 3 to Thread 1, and therefore there would be a cycle.

PPOCA. In this example, there are local edges between the com events of
Thread 1. For the sat and ini events, there are edges between d and e (intra-
thread communication) and between e and f (local), but control dependency
does not add edges between the satisfying c to the initiate of d, and hence there
is no cycle.

Z6.3+lwsync+lwsync+addr. In this test, the only communication edge con-
necting Thread 0 and Thread 1 is from the com of b to pp0 of c (due to coher-
ence). This edge does not generate any before edges because it does not order
any propagation event of Thread 0 before the barrier in Thread 1. Therefore,
there are no edges between the propagation events of a and d, and hence there
is no cycle.

2+2W+lwsyncs. In this example, there are before edges between a and b and
between c and d, due to the barriers in these threads. Furthermore, the coherence
order between b and c creates a communication edge between the com of b to
the pp0 of c (and similarly for d and a). These edges do not form a cycle in
evord . However, the before-edges and coherence relation form a cycle in cord ,
and therefore this test is forbidden.

3.4 Formal Specification

The formal specification of the model, automatically typeset from the
Lem [OBZNS11] definition, is shown in Figure 2. The following functions de-
fine the edges of evord : local order defines which pairs of instructions form
the local edges; the events before commit and propagate after commit order the
events of the same instruction; communication defines the communication edges;
read from initiated is the intra-thread communication edges; fbefore defines
which instructions are ordered by before-edges, and before evord closure defines
the actual edges; similarly, fafter and after evord closure define the after edges.
The evord relation itself is defined as the least fixed point of evord more, starting
from evord base. Also listed are the uniprocessor correctness rule, uniproc, and
the cord relation, cord of.

4 Experimental Validation

We establish confidence in our axiomatic specification experimentally, by check-
ing that it gives the same allowed and disallowed behaviors as the operational
model [SSA+11], using a large suite of tests designed to expose a wide variety
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let uniproc ace =
(* Uniprocessor correctness condition *)
let comm = communication of ace in
let commr = transitive closure of comm in
(∀(x , y)∈commr . ¬ ((y, x) ∈ ace.ace po))

let local order ace events =
(* local order rules: do not reorder if true *)
{(ex , ey)|∀ex∈events, ey∈events |
(instruction of ex , instruction of ey) ∈ ace.ace po ∧ (
(is sat ex ∧ is ini ey ∧ (instruction of ex , instruction of ey) ∈ ace.ace datadep) ∨
(is sat ex ∧ (is ini ey ∨ is sat ey) ∧ (instruction of ex , instruction of ey) ∈ ace.ace addrdep) ∨
(is com ex ∧ is com ey ∧ same addr ex ey) ∨
(is com ex ∧ is com ey ∧ (instruction of ex , instruction of ey) ∈ ace.ace datadep) ∨
(is com ex ∧ is com ey ∧ (instruction of ex , instruction of ey) ∈ ace.ace addrdep) ∨
(is com ex ∧ is com ey ∧ (instruction of ex , instruction of ey) ∈ ace.ace ctrldep) ∨
(is com ex ∧ is com ey ∧ is fence ex) ∨
(is com ex ∧ is com ey ∧ is fence ey) ∨
(is branch ex ∧ is com ey) ∨
(is com ex ∧ is com ey ∧ (∃ez∈events. (instruction of ex , instruction of ez) ∈ ace.ace po ∧

(instruction of ez , instruction of ey) ∈ ace.ace po ∧ (instruction of ex , instruction of ez) ∈ ace.ace addrdep)) ∨
(is com ex ∧ is read ex ∧ is read ext ace ey ∧

same addr ex ey ∧ ¬ (same read from ace ex ey)) ∨
(is lwsync ex ∧ is read satisfy ey) ∨
(is com ex ∧ is read ex ∧ is read satisfy ey ∧ (∃ez∈events. (instruction of ex , instruction of ez) ∈ ace.ace po ∧
(instruction of ez , instruction of ey) ∈ ace.ace po ∧ is lwsync ez)) ∨

(is com ex ∧ (is sync ex ∨ is isync ex) ∧ is read satisfy ey))}
let events before commit ace events =
{(ex , ey)|∀ex∈events, ey∈events | ((is ini ex ∨ is sat ex) ∧ is com ey ∧ instruction of ex = instruction of ey)}
let propagate after commit ace events =
{(ex , ey)|∀ex∈events, ey∈events | (is com ex ∧ is propagate ey ∧ instruction of ex = instruction of ey)}

let communication ace events comm =
{(ex , ey)|∀ex∈events, ey∈events |
(instruction of ex , instruction of ey) ∈ comm ∧ (
(is read satisfy ex ∧ is propagate ey ∧ propagation thread of ey = Some (thread of ex)) ∨
(is propagate ex ∧ is read satisfy ey ∧ propagation thread of ex = Some (thread of ey)) ∨
(is write commit ex ∧ is propagate ey ∧ propagation thread of ey = Some (thread of ex)))}

let read from initiated ace events =
{(ex , ey)|∀ex∈events, ey∈events |

(is ini ex ∧ is sat ey ∧ thread of ex = thread of ey ∧ (instruction of ex , instruction of ey) ∈ ace.ace rf )}
let fbefore ace events ex ey =
(is write ex ∧ is fence ey) ∨ (is fence ex ∧ is write ey)

let fbefore evord closure ace events evord0 =
{(ex , ey)|∀ex∈events, ey∈events | (∃tid∈ace.ace threads. relevant to thread ex tid ∧ relevant to thread ey tid) ∧
fbefore ace events ex ey ∧
(∃(ex1, ey1

)∈evord0.

relevant to thread ex1 (thread of ey) ∧ relevant to thread ey
1
(thread of ey) ∧

instruction of ex1 = instruction of ex ∧ instruction of ey
1
= instruction of ey)}

let fafter ace events ex ey =
(is sync ex ∧ is sync ey ∧ ex < > ey)

let fafter evord closure ace events evord0 =
{(ex , ey)|∀ex∈events, ey∈events |
(∃tid∈ace.ace threads. relevant to thread ex tid ∧ relevant to thread ey tid) ∧
fafter ace events ex ey ∧
(∃(ex1, ey1

)∈evord0. relevant to thread ex1 (thread of ex) ∧
instruction of ex1 = instruction of ex ∧ instruction of ey

1
= instruction of ey)}

let evord base ace events comm =
local order ace events ∪
read from initiated ace events ∪
events before commit ace events ∪
propagate after commit ace events ∪
communication ace events comm

let evord more ace events evord0 =
fbefore evord closure ace events evord0 ∪
fafter evord closure ace events evord0 ∪
{(ex , ez)|∀(ex , ey)∈evord0, (ey

′

, ez)∈evord0 | ey = ey
′

}
let cord of ace events evord =

let fbefore cord = fbefore cord of ace events evord in
fbefore cord ∪ ace.ace co

Fig. 2. Formal specification of POWER in Lem
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of subtle behaviors. We also check that the model is sound with respect to the
observable behavior of current POWER hardware.

Implementations. For the operational specification, we use the ppcmem

tool [SSA+11], which takes a test and finds all possible execution paths of the
abstract machine. For the axiomatic specification, we adapt the ppcmem front
end to (straightforwardly) enumerate the axiomatic candidate executions of a
test, then filter those by checking whether they are allowed by the definition of
the axiomatic model. The kernel for both tools is OCaml code automatically
generated from the Lem definition of the model, reducing the possibility for
error.

Test Suite. Our test suite comprises 4480 tests, including the tests
used to validate the operational model against hardware [SSA+11].
It includes the VAR3 systematic variations of various families of tests
(http://www.cl.cam.ac.uk/users/pes20/ppc-supplemental/test6.pdf);
new systematic variations of the basic MP, S and LB tests, enumerating se-
quences of intra-thread relations from one memory access to the next, including
address dependencies, data dependencies, control dependencies and identity of
addresses. It also includes the tests of the PHAT experiment, used to validate
the model of [AMSS10]; and hand-written tests by ourselves and from the
literature. Many were generated with our diy tool suite from concise descriptions
of violations of sequential consistency [AMSS11]. The tests and detailed results
are available in the on-line supplementary material.

Results: Comparing the Axiomatic and Operational Models. We ran
all tests with the implementations of both models. The preexisting tool for
evaluating the operational model gives a verdict for only 3565 of the tests; the
remaining 915 tests fail to complete by timing out or reaching memory limits.
In contrast, the implementation of our axiomatic model gives a verdict for all
4480 of the tests. For all those for which the operational implementation gives
a verdict, the operational and axiomatic specifications agree exactly.

Results: Comparing the Model to Hardware Implementations. We
also used the test suite to compare the behavior of the axiomatic specifi-
cation and the behavior of POWER6 and POWER7 hardware implementa-
tions, as determined by extensive experimental data from the litmus tool
(http://diy.inria.fr/doc/litmus.html). In all cases, all the hardware-
observable behaviors are allowed by the axiomatic model. As expected, the model
allows behaviors not observed in current hardware implementations, because our
models, following the POWER architectural intent, are more relaxed in some
ways than the behavior of any current implementation [SSA+11]. This result
covers the 915 tests on which the operational model timed out, which gives evi-
dence that the axiomatic model is not over-fitted to just the tests for which the
operational result was known.

http://www.cl.cam.ac.uk/users/pes20/ppc-supplemental/test6.pdf
http://diy.inria.fr/doc/litmus.html
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5 Proof of Equivalence to the Operational Specification

We establish further confidence in the equivalence of the axiomatic model pre-
sented here and the operational model, by providing a paper proof that the sets
of behaviors allowed for any program are identical for both models: we show
that any outcome allowed by the operational model is allowed in the axiomatic
model and vice versa. In this section we provide an overview of the proof; the
full proof is in the on-line supplementary material [Sup].

5.1 Operational to Axiomatic

The first part of the proof shows that any allowed test in the operational model
is an allowed test in the axiomatic model. We do this by defining a mapping
function O2A from sequences of transitions of the operational model to a pro-
gram execution and evord relations in the axiomatic model, proving that the
resulting evord and cord are always acyclic.

A witness trace W = {tr1, ...trn} is a sequence of operational-model tran-
sitions, from an initial to a final system state. Given a witness W , our O2A
mapping generates a relation evord ′ by iterating over all labeled transitions.
At each step, O2A adds the corresponding events to evord ′, and adds edges to
the new event if they are allowed by evord . Most events correspond directly to
certain transition types in the machine, with two exceptions: (1) initiate-write
events do not correspond directly to any transition type, and are added to evord ′

either before the first forwarded read or before their commit; and (2) irrelevant
write propagation events are write propagation events that do not correspond
to any write propagation transition. These are added to evord′ either before
barriers (when required by before edges), or at end of the execution.

Another difference between the two models is in the handling of sync barriers.
In the axiomatic model, after edges enforce a total order between syncs, effec-
tively allowing syncs to propagate one at a time. In the operational model, a
thread stops after a sync and waits for an acknowledgment that it propagated
to all other threads, but several syncs can propagate simultaneously. When the
mapping encounters a sync-acknowledge transition, it adds after-edges between
this sync and all previously acknowledged syncs.

Theorem 1. Given a witness W = {tr1, ...trn}, the mapping O2A(W ) produces
an axiomatic program execution with co and rf that satisfy the uniproc condition
and acyclic evord and cord relations.

We prove that evord for the axiomatic program execution is acyclic by showing
that the evord relation produced by O2A is both: (1) acyclic and (2) the same
as the evord which is calculated from co and rf .

For all edges except the after edges, the evord produced by the mapping is
acyclic by construction, because each newly added event is ordered after the
previously added events. After edges are added between existing events when an
acknowledge transition is encountered. The following Lemma guarantees that
after edges do not form a cycle:
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Lemma 1 (Sync acknowledge for ordered sync propagations). If b1 and
b2 are two sync instructions and b1 is acknowledged before b2, then there is no
path in evord ′ from an event of b2 to an event of b1.

The mapping adds edges only if the corresponding evord edges are allowed. To
show that all the edges in evord are in O2A(W ), we show that the mapping adds
events in an order than agrees with the direction of the edges in evord . For each
type of edge in evord , we show that the transition rules of the operational model
guarantee this order.

5.2 Axiomatic to Operational

The second part of the proof shows that each allowed execution in the axiomatic
specification is allowed by the operational specification. We define a mapping
that takes the the relations evaluated for the axiomatic specification, includ-
ing rf , co, evord , and cord , and produces a sequence of transitions W for the
operational specification.

Given an axiomatic candidate execution CE = {P, rf , co} accepted by the
axiomatic model, the A2O mapping generates a witness W = {tr1, ...trn} for
the operational model. The mapping takes evord (which is acyclic for allowed
executions), performs a topological sort of the events in evord , and then it
processes these events in that order to produce W .

The A2O mapping translates most events directly into corresponding transi-
tions, with a few notable exceptions: (1) there are no transitions matching write
initiate events; (2) write propagation events are allowed out-of-coherence-order,
whereas write propagation transitions in the operational model must be in co-
herence order but some writes may be skipped, as identified by the mapping;
(3) no event corresponds directly to sync acknowledge transitions (which are
produced after a sync propagates to all threads); and (4) no events correspond
to partial-coherence-commits, which are produced by the mapping according to
co after processing write commit events.

Theorem 2. Given an allowed candidate execution CE, the mapping A2O(CE)
produces a witness for an accepting path in the operational model.

We prove this by induction on W . For each transition in W , we show that each
type of transition is allowed based on the rules of evord as well as cord and the
uniprocessor rule.

6 Evaluating the Axiomatic Specification with a SAT
Solver

One advantage of the constraint-based axiomatic specification presented in this
paper is that it can be readily used by constraint solvers (such as SAT or SMTs).
To investigate this impact, we built a C++ implementation of the axiomatic
specification using the minisat SAT solver [ES05]. Currently, this solver accepts
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Table 1. Test suite runtime in the three checkers

model/tool N mean (s) max (s) effort (s) memory

Operational/ppcmem 3565/4480 3016.19 2.4e+05 8.2e+07 40.0 Gb

Axiomatic/ppcmem 4480/4480 1394.14 2.3e+05 7.1e+06 4.0 Gb

Axiomatic/SAT 4188/4188 2.67 10.26 11170 —

diy sequential-consistency-violation cycles as input (rather than litmus sources),
builds the corresponding tests internally and checks whether the resulting tests
are allowed or forbidden. We ran this solver on the 4188 of the tests that were
built from cycles.

We compare the execution time of this SAT-based tool to the ppcmem checkers
for the operational and axiomatic specifications described in Section 4, which
were built from Lem-derived code, emphasizing assurance (that they are ex-
pressing the models exactly as defined) over performance. They do not always
terminate in reasonable time and space, so we resorted to running tests with
increasing space limits, using 500+ cores in two clusters. In Table 1, N is the
number of tests finally completed successfully in the allocated processor time
and memory limits, w.r.t. the number tried. “mean” shows the arithmetic mean
of the per-test execution time of successful runs; while “max” is the execution
time for the test that took longest to complete successfully. The “effort” col-
umn shows the total CPU time allocated to running the simulators (including
failed runs due to our resource limits). Finally, the “memory” column shows the
maximum memory limit we used.

As shown by the last row of the table, the performance improvement of the
SAT-based checker over either the operational or axiomatic versions of ppcmem
is dramatic: the SAT solver terminates on all 4188 cycle-based tests, taking no
more than about 10 seconds to run any test. The total computing effort is around
3 hours (wall-clock time is about 25 minutes on an 8-core machine) compared
with the 82 CPU-days of the ppcmem axiomatic tool and 950 days of the ppcmem
operational tool. One obtains similar results when restricting the comparison to
the tests common to all three tools.

This efficient SAT-based encoding of the model opens up the possibility of
checking properties of much more substantial example programs, e.g. implemen-
tations of lock-free concurrent data-structures, with respect to a realistic highly
relaxed memory model.
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Abstract. A primary challenge in post-silicon debug is the lack of ob-
servability of on-chip signals. In 2008, we introduced BackSpace, a new
paradigm that uses repeated silicon runs to automatically compute de-
bug traces that lead to an observed buggy state. The original BackSpace,
however, required excessive on-chip overhead, so we next developed TAB-
BackSpace, which uses only pre-existing on-chip debug hardware to com-
pute an abstract debug trace with very low probability of error. With
TAB-BackSpace, we demonstrated root-causing a (previously known)
bug on an IBM POWER7 processor, in actual silicon.

The problem with these BackSpace approaches, however, is the need
to repeatedly trigger the bug via the exact same execution. In prac-
tice, non-determinism makes such exact repetition extremely unlikely.
Instead, what typically arises is an intuitively “equivalent” trace that
triggers the same bug, but isn’t cycle-by-cycle identical. In this paper,
we introduce nuTAB-BackSpace to exploit this observation. The user
provides rewrite rules to specify which traces should be considered equiv-
alent, and nuTAB-BackSpace uses these rules to make progress in trace
computation even in the absence of exact trace matches. We prove that
under reasonable assumptions about the rewrite rules, the abstract trace
computed by nuTAB-BackSpace is concretizable — i.e., it corresponds
to a possible, real chip execution (with the same low possibility of er-
ror as TAB-BackSpace). In simulation studies and in FPGA-emulation,
nuTAB-BackSpace successfully computes error traces on substantial de-
sign examples, where TAB-BackSpace cannot.

1 Introduction

Post-silicon validation/debug is the problem of determining whether the fabri-
cated chip of a new design is correct, and what is wrong if it behaves incorrectly.
The problem lies between pre-silicon validation, which searches for design errors
in models of the design before fabrication, and VLSI test, which searches for
random manufacturing defects on each fabricated chip in high-volume produc-
tion. Naturally, post-silicon validation/debug inherits characteristics from both,

� Supported in part the Natural Sciences and Engineering Research Council of Canada.

P. Madhusudan and S.A. Seshia (Eds.): CAV 2012, LNCS 7358, pp. 513–531, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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but the differences necessitate novel solutions. Like pre-silicon validation, post-
silicon validation focuses on design errors. The difference, however, is that the
validation is of the actual silicon chip, which is roughly a billion times faster
than simulation, can run the real software in the real system at full speed, and
exhibits the true (not simulated) electrical and physical properties. Accordingly,
post-silicon validation catches numerous bugs that escape pre-silicon validation,
due to inadequate coverage, inaccurate models, approximate analyses, and mis-
specified properties and constraints. Unfortunately, like VLSI test, post-silicon
validation shares the problems of limited controllability and observability, as the
internal signals on-chip are essentially inaccessible. Test and debug structures can
be (and are) added on-chip, but any increase of the chip’s area, power, or pins is
expensive. These issues make post-silicon debugging extraordinarily challenging.
Post-silicon debug currently consumes more than half of the total verification
schedule on typical large designs, and the problem is growing worse [1,10].

Post-silicon validation/debug is broad and multi-faceted. To provide context,
we briefly survey the overall debug flow and cite some representative research.
Note that the post-silicon debug process is iterative, just like any other kind of
debugging: at all stages of the process, the debug engineer formulates hypotheses
about what might be going wrong, develops a test for the hypotheses, and then
formulates new hypotheses based on the results. Because the focus is design
errors, debug engineers typically have deep knowledge of the design.

The validation/debug process starts with test planning and stimulus genera-
tion: how to thoroughly exercise the die? This is analogous to simulation test-
benches in pre-silicon validation, except that controllability/observability are
limited to the pins and the test stimuli must be generated quickly. Typical tests
include booting the OS, running applications, random instruction [17,7], and fo-
cused test suites and exercisers for hard-to-verify parts of the design (e.g., [7,2]).
To stress electrical bugs1, these tests are run under a variety of system configu-
rations and operating conditions (frequency, voltage, temperature, etc.).

When testing reveals the presence of a bug, the next step is to get a trace of
what happened on the chip when the bug occurred. The challenge is the lack of
observability, so the basic techniques are on-chip structures to improve observ-
ability, e.g., scan chains [29], trace buffers [27,4], and networks to access signals
to record [23,1]. Typically, one can take a snapshot of many/most latches of
the design at a single cycle (scan), or record tens or hundreds of signals over
a few hundred or thousand cycles (trace buffers), but getting this data off-chip
is extremely slow and completely disrupts the test. Accordingly, the debug en-
gineer has to trigger recording at exactly the right moment, and anecdotally,
many debug engineers describe this as one of the most time-consuming tasks in

1 For bugs that create functional errors, it’s useful to distinguish between logical bugs,
which could be replicated pre-silicon in the RTL, and electrical bugs, which result
from electrical effects such as noise coupling, voltage droop, and timing errors, as
some methods apply to only one or the other. This paper handles both. There are
also electrical and physical bugs detected post-silicon that are not functional errors,
e.g., power consumption, yield, reliability, etc., which we do not consider.
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post-silicon debug. Most research supporting this phase of the debug process has
focused on selecting signals that provide the best observability (e.g., [20,18,22,6])
harkening back to earlier work on observability for test (e.g., [19]). There is also
research on computing debug traces: For example, assuming a deterministic test
that is short enough to be simulated in its entirety on a deterministic fault-
free model of the chip, it is possible to focus the trace buffer only on cycles
where electrical errors are likely, relying on simulation to fill-in the fault-free
cycles [3,30]. Closer to our work, IFRA [21] eliminates the assumptions of short
tests and determinism, allowing a trace to be computed, for example, for a pro-
cessor booting an operating system. The method works even if the error occurs
very rarely, but is only for electrical bugs and is processor-specific. Our work
builds on the BackSpace framework [14,15] (described below), which also com-
putes traces of the full-speed silicon running long tests. The framework handles
non-determinism and both logical and electrical bugs, but requires bugs to be
reasonably repeatable.

Only when bug traces are available can debugging proceed. In a manual de-
bug flow, the debug engineer finally has some insight into what is happening
on-chip and can start ruling out possibilities and forming new hypotheses. Re-
search results to support this process include automatically simplifying the bug
trace [11,16], and using the trace to localize possible explanations [28,31], and
even make layout repairs [10]. All of these methods depend on having traces
showing what is happening on-chip leading up to the bug.

This paper focuses on the central task of deriving such debug traces, showing
on-chip signals for many cycles leading up to an observed bug or crash. Until
the trace is obtained, further debugging is essentially impossible.

1.1 The BackSpace Framework

Our work builds on the BackSpace framework, a novel paradigm that uses re-
peated silicon runs to automatically compute debug traces that lead to an ob-
served buggy state. The core assumption of BackSpace is that the bring-up tests
can be run repeatedly, and the bug being targeted will be at least somewhat
repeatable (e.g., with probability 1/n for reasonably small n). The methods rely
on repetition, which is fast on silicon, to compensate for the lack of observability.

The original BackSpace [14] introduced the basic theory and a proof-of-concept
implementation on a small design. The method relied on some on-chip hardware,
pre-image computations, and repetition to compute a provably correct trace to
the bug. In theory, it solved the problem of computing a trace perfectly: com-
puting arbitrarily long sequences of all signals on-chip, leading up to the bug.
However, this perfect solution came with impractical overhead: correctness relied
on computing breakpoints, signatures, and pre-images over the entire concrete
state of the chip. The hardware overhead was too high to be practical.

Most complex chips, however, already include some on-chip debug hardware.
In TAB-BackSpace [15], we flipped the problem around: instead of adding exces-
sive on-chip hardware for a perfect debug solution, we leveraged the BackSpace
approach to get much more out of the already existing in-silicon debug logic
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Fig. 1. TAB-BackSpacing. Once the bug is observed, we re-run the chip with trace
arrays enabled, i.e., run1; we collect the information from the trace arrays and compute
a new set of triggers for the subsequent run (run2); and we iterate these steps, extending
the length of the computed trace beyond the trace arrays’ depth.

(i.e., trace buffers). Thus, there is no additional hardware cost. TAB-BackSpace
achieves the effect of extending the trace buffer arbitrarily far back in time (as-
suming no spurious traces — more on this below).

Fig. 1 gives an overview of TAB-BackSpace. We assume the trace buffer
records until stopped by a trigger. TAB-BackSpace iterates the following:

1. Run the chip until it “crashes” (hits the bug or the programmed breakpoint).
2. Dump out the state of the trace buffer into a file.
3. Select an entry from the trace dump as the new trigger condition, configuring

the breakpoint circuitry to stop the chip when it hits this breakpoint on the
next run.

The trace-buffer dump of the next run will overlap the most recent trace-dump
by some number of cycles f . If all states in the overlapping region agree, we
join the new trace-dump to the previous trace-dump, extending the length of
the computed trace; if not, we select another state to be the breakpoint and try
again. If the length of each trace-dump is m, then after n iterations, we will have
computed a trace approximately n(m − f) cycles long (approximate because f
may vary between runs). Using TAB-BackSpace, we demonstrated root-causing
a (previously known) bug on an IBM POWER7 processor, in actual silicon.

In theory, the weakness of TAB-BackSpace is the possibility of spurious ab-
stract traces. By practical necessity, a trace buffer can record only a tiny fraction
of on-chip signals. Therefore, the trace computed is an abstract trace. When two
abstract trace dumps agree on the overlap region, TAB-BackSpace joins the two
into a longer abstract trace, implicitly assuming that the underlying concrete
traces agree as well, which might not be true. Empirically, we showed that by
using a reasonably sized overlap region, the possibility of spurious traces could
be made very small.

In practice, the real weakness of TAB-BackSpace is the need to repeatedly
trigger the bug via the same execution. Non-determinism in the hardware and
bring-up environment makes such exact repetition unlikely. The result is that
the new trace-dump doesn’t completely agree with the previous trace over the
entire overlap region, so TAB-BackSpace fails to make progress. Indeed, the
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POWER7 result was achieved only by creating an environment that minimized
non-determinism: running on bare metal, only one core enabled, and using a
specialized post-silicon exerciser [15]. Creating an environment to minimize non-
determinism while still triggering a bug is a difficult and time-consuming task.

We have observed, however, that although an exact match rarely occurs, what
typically happens in practice is that the same bug is triggered by an intuitively
“equivalent” trace, that isn’t cycle-by-cycle identical. How can we formalize the
debug engineer’s informal notion of “equivalent”? And how do we extend TAB-
BackSpace to correctly account for such user-specified equivalences?

This paper is an answer to those questions. The debug engineer provides
rewrite rules to specify which traces should be considered equivalent, and our
new algorithm uses those rules to make progress in trace computation even
in the absence of exact trace matches. Under reasonable assumptions about
the rewrite rules, and about the trace buffer length and signals, we prove that
the abstract trace computed by nuTAB-BackSpace is concretizable — i.e., it
corresponds to a possible, real chip execution. In simulation studies, we show
that nuTAB-BackSpace can indeed compute correct error traces, even when
non-determinism renders TAB-BackSpace infeasible. Finally, we demonstrate
nuTAB-BackSpace successfully computing error traces on an industrial-size SoC
in FPGA-emulation, where TAB-BackSpace cannot.

2 Background

2.1 Trace Buffers

A trace buffer is an on-chip structure for storing limited history of internal events
that occur on-chip during full-speed execution. Because of the importance of
post-silicon debug, most complex chips are now built with trace buffers.

A typical trace buffer consists of a memory array, organized as a FIFO, per-
haps with some simple compression capabilities. A small number (typically tens
to a few hundred) of important signals on the chip are routed to the FIFO. The
signals routed to the trace buffer must be chosen before the chip is fabricated
(although some limited reconfigurability is sometimes provided). The signals can
be recorded in the FIFO in real-time as the chip runs, capturing typically a few
hundred to a few thousand cycles of history. Control logic allows triggering the
starting and stopping of this recording based on the signals that appear, cycle
counters, watchdog timers, etc. There must also be some mechanism to read out
(“dump”) the contents of the trace buffer, for example, by putting the chip into
debug mode. Dumping the trace buffer is slow and radically perturb the execu-
tion of the chip, so debug methodologies avoid trying to continue an execution
after a trace buffer dump.

In this paper, we assume very minimal trace buffer capabilities. We assume
the recording can run continuously (the array treated as a circular buffer), and
that we can set a breakpoint to stop recording when a specified input signal
reaches the trace buffer. The trace buffer can be dumped arbitrarily later. This
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gives the effect recording the last m cycles of the trace buffer signals before the
chip “stops” at the breakpoint, where m is the length of the trace buffer.

2.2 Abstraction

We will reason about both the signals recorded in the trace buffer as well as the
underlying state of the full chip as it runs in actual silicon. Because the signals
recorded in the trace buffer are a subset of the total signals on-chip, we can view
a state in the trace buffer as an abstraction of the state of the chip.

Formally, we model the full chip on-silicon as a finite-state transition system
with state space Sc and (possibly non-deterministic) transition relation δc ∈ Sc×
Sc. This is the concrete system. As is typical in model checking [12], we abstract
away the inputs and consider only signals on-chip as the state. A concrete trace
is a finite sequence of concrete states s1, . . . , sn such that ∀i. (si, si+1) ∈ δc.

The choice of signals to record in the trace buffer defines an abstraction func-
tion α : Sc → Sa that projects away everything but the chosen signals. Sa is the
abstract state space, and the abstract transition relation δa(sa, ta) is defined as
usual (e.g., [13]): ∃sc, tc [δc(sc, tc) ∧ sa = α(sc) ∧ ta = α(tc)]. An abstract trace is
a finite sequence of abstract states s1, . . . , sn such that ∀i. (si, si+1) ∈ δa.

We lift the abstraction function to traces by abstracting each state of the
trace: given a concrete trace σc, we get a unique abstract trace α(σc). In the
opposite direction, an abstract trace σa is said to be concretizable if there ex-
ists a concrete trace σc such that σa = α(σc). Because the abstract transition
relation is conservative, not all abstract traces are concretizable; such traces
are called spurious. In practice, concretizability is a crucial property: a spurious
trace doesn’t correspond to any possible execution of the real hardware, so it is
not only wrong, but it misleads the debug engineer and wastes time.

2.3 Semi-Thue Systems

We will allow the debug engineer to specify intuitive notions of “equivalence” by
providing rewrite rules. This provides ease-of-use, expressiveness, and a rich un-
derlying theory that allows efficient checking of equivalent traces. In particular,
we treat the debug trace and trace buffer dumps as strings whose alphabet is
the abstract state space, and the user-provided rewrite rules produces a string
rewriting system AKA a semi-Thue system. Semi-Thue systems have been ex-
tensively studied; our presentation is based on [9,5].

Definition 1. A semi-Thue system is a tuple (Σ∗,R), where

– Σ is a finite alphabet,
– R is a relation on strings from Σ∗, i.e., R ⊆ Σ∗ ×Σ∗.

Each element (l, r) ∈ R is called a rewrite rule, notated as l → r. Rewrite rules
can be applied to arbitrary strings as follows: for any u, v ∈ Σ∗, u→ v iff there
exists an (l, r) ∈ R such that for some x, y ∈ Σ∗, u = xly and v = xry. The
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notation→∗ is the reflexive and transitive closure of→. We denote the symmetric
closure of →∗ by ↔∗ , which is an equivalence relation on Σ∗.

The question we need to solve is whether two strings x and y are equivalent,
i.e., whether x↔∗ y. This is the standard “word problem” for semi-Thue systems.
In general, the problem is undecidable, but under certain restrictions on the
rewrite rules, the problem can be solved efficiently by reducing each of x and y
to a unique normal form representing the equivalence class.

Definition 2. A semi-Thue system is Noetherian (terminating) if there is no
infinite chain x0, x1, . . . such that for all i ≥ 0, xi → xi+1.

Noetherianness can be established by finding an ordering function (e.g., string
length) that all rewrite rules obey. Under the assumption of Noetherianness, the
two properties in the next definition are equivalent:

Definition 3. A semi-Thue system is confluent if for all w, x, y ∈ Σ∗, the
existence of reductions w →∗x and w →∗y implies there exists a z ∈ Σ∗ such
that x →∗z and y →∗z. A semi-Thue system is locally confluent if for all
w, x, y ∈ Σ∗, the existence of reductions w → x and w → y implies there exists
a z ∈ Σ∗ such that x→∗z and y →∗z.

A key result from rewriting theory is that for a rewriting system that is confluent
and Noetherian, any object can be reduced to a unique normal form by apply-
ing rewrite rules arbitrarily until the object is irreducible (i.e., no rules apply).
Furthermore, two objects are equivalent x↔∗ y iff their unique normal forms are
the same. We will use the notation N(x) to denote the unique normal form for
any string x.

3 nuTAB-BackSpace

3.1 Formalizing the Intuition

Before describing the nuTAB-BackSpace algorithm, we first need to formalize
our assumptions about the user-supplied abstraction and rewrite rules.

The fundamental principle underlying the BackSpace approaches is to use
repetition to compensate for the lack of on-chip observability. The fundamental
challenge, therefore, is how to determine when a new run of the chip is following
“the same” execution as a previous one, so that information from the two physical
runs can be combined.

The first technique is the breakpoint mechanism. We never try to combine
traces unless the new trace breakpoints (i.e., the hardware reaches a specified
state) on a state from the older traces. Because the two traces share an identical
state, we are guaranteed that we can combine the two traces at that state and
have a valid, longer trace — but the guarantee is only valid at the level of
abstraction of the breakpoint state. In the original BackSpace, the breakpoint
was concrete, guaranteeing that the algorithm constructed a valid, concrete trace
leading to the bug. In TAB-BackSpace and nuTAB-BackSpace, the breakpoint
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is only on a partial state, so the guarantee is only that the constructed trace is
a legal, but possibly spurious (non-concretizable), abstract trace.

To reduce the possibility of spurious traces, and since a trace buffer provides
multiple cycles of history anyway, we therefore insist that not only the breakpoint
match, but every abstract state match in a multicycle overlap region between a
new trace buffer dump and the previously computed trace. Intuitively, the longer
the overlap region we require to match, the less likely that we compute spurious
traces. We can formalize the intuition that a large enough overlap eliminates
spurious traces as follows:

Definition 4. Let ldiv (“divergence length”) be the smallest constant such that
for all concrete traces x1y1z1 and x2y2z2 (where the xs, ys, and zs are strings
of concrete states), if α(y1) = α(y2) and the length |α(y1)| > ldiv , then x1y1z2
and x1y2z2 are also valid concrete traces.

In other words, if two concrete executions share a long enough period of ab-
stracting to the same states, then the future concrete execution is oblivious to
what happened before that period, and so the combined abstract trace is not
spurious. Note that the divergence length is specific to the design and also to
the chosen abstraction function.

Although ldiv may not always exist (because, for example, the abstraction
function might abstract away key information from the concrete traces), in the-
ory, it is straightforward to check whether the length of the overlapping region
is longer than ldiv : let f be the length of the overlapping region. Do there ex-
ist two traces σ1=x1y1z1 and σ2 =x2y2z2 such that |xi|=|zi|=1, |y1|=|y2|=f ,
α(y1)=α(y2), and either x1y1z2 or x1y2z2 are not valid traces? If not, we know
that f > ldiv . Otherwise, f ≤ ldiv . Therefore, all we need is to unroll the design
(as in bounded model checking [8]) up to f + 2 cycles and check for a witness.

In practice, it may be unrealistic to unroll the design for f+2 cycles. However,
in [15] and in Section 4.1, we show that we can empirically limit the number of
spurious traces. In particular, if we have trace dumps from different concrete
executions that match on the overlap region, we dub this a “false match”, which
is a necessary (but not sufficient) condition for a spurious trace. Our experiments
show that false matches are rare when the overlap region is reasonably long.

Indeed, as noted earlier, the problem in practice is not too many matches
generating spurious traces, but the lack of exact matches preventing any progress
in trace computation. Empirically, however, we have often observed intuitively
“equivalent” traces that are not cycle-by-cycle matches, e.g., a trace with slightly
different timing, with independent events reordered, etc. These are all differences
that could be manipulated via rewriting, so we propose to allow the debug
engineer to specify rewrite rules to define what “equivalent” means to them, on
a particular design. nuTAB-Backspace will then match overlap regions if they are
equivalent under the specified rewriting, rather than requiring an exact match.

Will this idea produce correct traces? Correctness depends on the rewrite rules
respecting the semantics of the design. Accordingly, we impose a few restrictions
on the rewrite rules. Not surprisingly, we require that the rules be Noetherian and
confluent, which allows efficient equivalence checking via reduction to the unique
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normal form. To capture the notion that the rewrite rules truly reflect equivalent
traces of the underlying concrete chip, we define the concept of concretization
preservation:

Definition 5. Consider a rewrite rule l → r on strings of abstract states. The
rewrite rule is concretization preserving if for all concrete states xc and
zc, the concretizability of the abstract state sequence α(xc)lα(zc) to a concrete
sequence starting with xc and ending with zc implies the concretizability of the
abstract state sequence α(xc)rα(zc) to a concrete sequence starting with xc and
ending with zc, i.e.:

∀concrete states xc, zc

⎡⎣ (∃concrete trace xcylzc . α(yl) = l)
⇒

(∃concrete trace xcyrzc . α(yr) = r)

⎤⎦
Obviously, a rewrite rule should be rejected if it breaks concretizability alto-
gether. This definition is slightly stronger in that it requires that a pre-existing
concretization be preserved, mutatis mutandis the rewriting.

As with ldiv , in theory, it is straightforward to check whether a rule is con-
cretization preserving. There are a finite number of rewrite rules, l → r, each
of which is finite in length. Does there exist a concrete trace xcylzc such that
α(yl) = l, but where no string yr exists such that xcyrzc is a concrete trace
and α(yr) = r? One could, for example, use bounded model checking to enu-
merate all xc and zc that satisfy the antecedent of the definition, and then use
bounded model checking to check that each satisfying xc and zc also satisfies the
consequent.

In practice, depending on the design and abstraction, this check may also not
be realistic. On the other hand, debug engineers have expert design knowledge,
so they are capable of defining rewrite rules that are concretization preserving
(or close enough for their purposes).

3.2 Algorithm

Algorithm 1 presents the nuTAB-BackSpace procedure: starting from a given
crash state and its corresponding trace-buffer, it iteratively computes an arbi-
trarily long sequence of predecessor abstract states by going backwards in time.
This procedure has 4 user-specified parameters: steps bound specifies how many
iterations back the algorithm should go; retries timeout limits the amount of
search for a new trace dump where the overlapping region with the trace com-
puted so far is equivalent; the time bound is a timeout for each chip-run and
is a mechanism to tell whether a chip-run went on a path that does not repro-
duce the crash-state or buggy-state; and, lbindex is the trace buffer’s smallest
index, which defines a region either for the overlapping (TAB-BackSpace) or the
normalization (nuTAB-BackSpace) of two consecutive trace buffers.

This procedure has 2 nested loops. The outer loop, lines 15 – 45, controls
the three termination conditions for the algorithm: we reach the user-specified
number of iterations; we reach the initial states; or the previous iteration was
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unsuccessful. The outer loop is also responsible for joining the new trace buffer
dump onto the successful trace computed so far (line 36), and then selecting a
new state as the breakpoint for the next iteration. The inner loop, lines (20 – 35),
is responsible for controlling the hardware while trying out different candidate-
states, scand, given a retries timeout. The procedure keeps track of time us-
ing the subroutine ElapsedTime() (passing reset as parameter resets the time
counter, otherwise it counts the elapsed time since it was last reset). In each loop
iteration, the procedure loads scand into the breakpoint-circuit (line 22), and runs
the chip. The objective is to collect a new trace-buffer upon matching scand and
match (after rewriting) it with the previous trace-buffer. If ResetAndRun() re-
turns TRUE then the breakpoint circuitry matched scand and we have a new
trace-buffer. Otherwise, the chip-run violates the time bound parameter (line 24)
because the current run took another path (caused by non-determinism). If the
breakpoint occurs, we dump the contents of the trace-buffer for comparison
with the trace computed so far. The NormalizeAndCheck() subroutine (line 28)
computes the unique normal form of the overlapping region of the previously
computed trace as well as the new trace dump, as described in Sec. 2.3, and
then compares them to check equivalence. If the procedure neither breakpoints
nor proves equivalence, PickState() (line 33) selects another candidate-state from
the previous trace using a round-robin scheme while respecting lbindex and the
inner loop iterates. The procedure exits the inner loop when either it success-
fully proves equivalence of the overlapping regions of the two trace-buffers, or
this loop has iterated longer than the specified retries timeout.

3.3 Correctness

The main correctness theorem proves that the trace computed by Algorithm 1
is as informative as one could hope: it concretizes to a trace that leads to the
actual crash state, using reachable states.

Theorem 1 (Correctness of Trace Computation). If the rewriting rules
are Noetherian, confluent, and concretization preserving, and if the size of all
unique normal forms used to prove equivalence of overlapping regions is greater
than ldiv , then the trace produced by Algorithm 1 is concretizable to the suffix of
a concrete trace leading from the initial states Q0 to the crash state s.

Proof: The proof is by induction on the iteration count i at the bottom of the
outer loop. The base case is trivial, as when i = 0, the trace is a single trace
buffer dump that ends at the crash state. Since this trace dump is taken from
the physical chip, it can be concretized to the specific physical execution that
occurred on-chip.

In the inductive case, let uy represent the trace computed so far, and let xv
represent the new trace dump ti, with N(v) = N(u). In other words, u and v are
the overlap region that has been proven equivalent by rewriting. By construction,
x and y are non-empty.

We know that xv is concretizable to a trace with all states reachable from
the initial states, because it is taken directly from the hardware. Therefore,
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Algorithm 1. Crash State History Computation

1: input Q0 : set of initial states,
2: (s, t) : crash-state and trace-buffer
3: steps bound ∈ N+ : user-specified bound on the number of iterations,
4: retries timeout ∈ N+ : user-specified time-bound on retrials,
5: timebound : user-specified time bound for any chip-run
6: lbindex: user-specified lower-bound length of normal region;
7: output trace : equivalent sequence of abstract states;
8: i := 0;
9: // initialize breakpointable candidate-state and current trace-buffer
10: i := 0; scand := s; ti := t;
11: trace := (ti); // i.e., initialize trace with current trace-buffer
12: // initialize variable nindex; nindex gets updated by PickState()
13: // nindex range is [lbindex , |trace -buffer |]
14: nindex := lbindex; succ iteration := TRUE
15: while (i < steps bound) AND (scand /∈ Q0) AND (succ iteration = TRUE) do
16: equivalent := FALSE;
17: matched := FALSE;
18: //Resets retrial elapsed time
19: ElapsedTime(reset)
20: while (!equivalent) AND (ElapsedTime(go) ≤ retries timeout) do
21: // Program the hardware-breakpoint circuitry with scand

22: LoadHardwareBreakpoint (scand);
23: // (Re-)run M’ at full-speed with timeout timebound
24: matched := ResetAndRun(timebound);
25: if matched then
26: // Dump trace-buffer contents ti
27: ti := ScanOut();
28: equivalent := N ormalizeAndCheck(ti, ti−1, nindex);
29: end if
30: if (!matched) OR (!equivalent) then
31: // Pick another state following a round-robin scheme
32: // and updates nindex
33: scand := PickState(nindex, ti−i);
34: end if
35: end while
36: if equivalent = TRUE then
37: // Accumulate trace
38: OverlapConcatenate (ti, trace);
39: // Pick a candidate-state in ti for the next iteration
40: scand := PickState(nindex, ti);
41: i := i+ 1;
42: else
43: succ iteration := FALSE
44: end if
45: end while
46: return trace;
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xN(v) has the same properties, by preservation of concretization. Similarly, uy
is concretizable to a trace that leads to the crash state s, by the inductive hy-
pothesis, and therefore, N(u)y is, too, by preservation of concretization. Let xcvc
be a witness to the concretizability (with additional properties) of xN(v), with
x = α(xc) and N(v) = α(vc). Similarly, let ucyc be a witness to the concretiz-
ability of N(u)y, with N(u) = α(uc) and y = α(yc).

From the hypotheses, |N(u)| = |N(v)| > ldiv , so by the definition of ldiv ,
both xcucyc and xcvcyc are legal concrete traces. By construction, both start
at reachable states, and therefore contain all reachable states. And both end at
the crash state s. Therefore, either is a witness that the new trace computed by
Algorithm 1, xN(u)y, is concretizable to the suffix of a concrete trace leading
from the initial states to the crash state.

4 Experiments

We present two experiments demonstrating the feasibility of nuTAB-BackSpace.
In both, we compare our new method against TAB-BackSpace. We start with a
simulation-based evaluation, where we have more controllability and can identify
false matches. Then, we evaluate nuTAB-BackSpace on a hardware prototype.

4.1 Simulation-Based Evaluation

We use a router design (henceforth, the “Router”), which is an RTL implemen-
tation of a 4x4 routing switch. The Router is typically used by IBM for training
new employees with IBM’s tools. The Router is a non-trivial design, but also not
too complex to be simulated in its entirety. The design has 9958 latches, which
is larger than most open-source design examples (e.g., from [25]).

The Router implements a routing policy, which is programmed beforehand in
configuration registers. The Router routes incoming packets from four distinct
input ports into one of four output ports. The Router recognizes packets in a
pre-defined format containing source and destination addresses, payload, and
bit-parity. In addition to routing the packets, the Router also checks the validity
of incoming packets and rejects bad packets.

To simulate the Router, we use a constrained-simulation environment devel-
oped by IBM, using Cadence’s Incisive Simulator (with Specman Elite) v.09.20-
s016. This proved very helpful when modeling environmental non-determinism.

We claim that when non-determinism cannot be extensively removed from
the environment/design, TAB-BackSpace will either fail to produce a trace or
will require an excessive number of re-trials. To validate this claim, we (1) set
the TAB length to be 50 with no compression; (2) set the TAB width to 75 bits;
(3) abstract three of the Router’s design blocks onto these 75 bits by using our
architectural insight; (4) set a goal of 20 iterations for each “crash” state (setting
steps bound = 20 in Algorithm 1); (5) for each iteration, we set a timeout of 5
hours to allow for a large number of re-trials when necessary (typically, each
simulation-run takes about 10min); (6) and, randomly choose 30 abstract-states
as our “crash” states.
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To make sure the traces produced from these “crash” states are independent,
we first generate a lengthy “crash” trace via constrained-random simulation.
Then, we randomly choose 30 abstract-states, ai, from this trace, with the fol-
lowing properties (Q0 is the initial set of states): ∀i, j.ai, aj /∈ Q0∧ (ai �= aj)∧|i-
j| > 1000. These properties guarantee that the “crash” states in this experiment
are far enough apart so that the computed traces are distinct. In other words,
since steps bound = 20 and each trace dump has 50 cycles, even if the overlap
between two consecutive trace-dumps were one single cycle, the total number
of cycles for each trace would be 20*49+1 < 1000, which is smaller than the
distance between two crash states.

In [15], we have empirically shown that, for the Router, an overlap of 30 cycles
or more would most likely prevent false matches. Thus, in these experiments, we
use 30 cycles as the lower bound for the overlapping region of two consecutive
trace-buffers.

We use the constrained-simulation environment to simulate non-determinism.
This environment provides many parameters to make each simulation run very
different from one another. However, we want to control the non-determinism so
that we have a fair comparison between TAB-BackSpace and nuTAB-BackSpace.
Thus, we simulate non-determinism only affecting the delays on packet arrivals
(a real scenario encountered in bring-up labs). We accomplish this behavior by
changing the simulation environment such that it always uses a fixed random
seed for everything except packet generation. For packet generation, we use an
external and independent random generator to add different delays between
packets in each run.

We need to provide a set of rules for normalizing the non-determinism dur-
ing nuTAB-BackSpace simulations. In practice, defining rewrite rules will follow
the same iterative process as debugging. In this case, we had worked with this
design in [15] and had a good understanding of it. We had been unable to TAB-
BackSpace the Router and this was due to non-determinism in the inter-packet
delays, and so, in these experiments, we develop a set of rules to normalize such
effects of non-determinism.

Recall that our abstract-model is based on 3 design blocks. In particular, three
sets of signals in this abstract-model represent the same state-machine that is repli-
cated across the 3 designblocks. In Fig. 2, we present one suchmachine. Notice that
6 states have self-loops, namely idle, wait buff, wait data, wait idle, wait route,
get rest. In [15], we observed that non-determinism in the inter-packet delays af-
fects all these states with self-loop edges (e.g., a long delay might cause an input
port to remain in idle orwait data states for somenumber of cycles). The exception
is the state get rest. In this state, the Router processes incoming packets without
interruption, that is, the Router does not accept partial packets. Thus, to normal-
ize non-determinism, we define a rewriting system, RouterRS(Σ

∗, R).
Let Proj(·)sm be a projection function that takes in an abstract-state, a, and

projects it onto the set of bits representing the state machine from Fig. 2 and let
P = {idle,wait buff,wait data,wait route,wait idle}. Now, we can define R as
follows:
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idle wait buff wait data get dest

get rest
wait route

pkt end

wait idle

abort

Fig. 2. Router’s Internal Packet-Processing State-Machine

∀a.Proj(a)sm ∈ P . aa→ a (1)

Thus, this rewriting rule creates an equivalence class of traces, treating traces
with different numbers of repetitions of certain states as similar.

Before we can apply nuTAB-BackSpace, we need to show that the rewriting
system, RouterRS(Σ

∗, R), is Noetherian, confluent, and concretization-preserv-
ing. First, note that RouterRS(Σ

∗, R) is a length-reducing rewriting system, and
so it is Noetherian. Next, note that Eq. 1 contains 5 rules (or technically, rule
schema), and no two rules have overlapping left-hand sides. The only possible
critical pairs arise from rewriting a string of the form aaa into aa with two dif-
ferent applications of a single rewrite rule. Obviously, these are locally confluent.
Thus, the entire rewrite system, RouterRS(Σ

∗, R), is confluent. For concretiza-
tion preservation, we have only an informal argument. Based on our knowledge
of the design, any execution of the system that goes through a state that projects
to P can spend more or less time in that state, without impacting the rest of
the execution. This is exactly the property that concretization preservation cap-
tures. In contrast, when the state machine is in the state get rest, the underlying
concrete state tracks the number of cycles for the packet, so a rule that changed
the number of get rest cycles would not be concretization-preserving.

We deem a TAB-BackSpace iteration successful when two consecutive trace-
buffers agree cycle-by-cycle over all 30 cycles, i.e., a full-overlap match; and
a nuTAB-BackSpace is successful when the normalization-region (30 cycles or
more) from the consecutive trace-buffers are equivalent under RouterRS(Σ

∗, R).
The experiments are successful. In Table 1, we show that nuTAB-BackSpace

computes, for all crash-states, longer traces than TAB-BackSpace. Moreover,
TAB-BackSpace could not compute even one iteration for 1/3 of the cases. And,
when TAB-BackSpace is comparable to nuTAB-BackSpace with respect to the
number of successful iterations (e.g., crash states 19, 27-30), nuTAB-BackSpace
requires, for the most cases, an order of magnitude smaller number of runs.

4.2 Case Study: The Leon3 SoC Hardware Prototype

To demonstrate that nuTAB-BackSpace is feasible in practice, we emulate on an
FPGA board [26] a System-on-Chip (SoC) including software. We use a Leon3-
based SoC [24] as our hardware-prototype. This prototype is a full-blown SoC,
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Table 1. TAB-BackSpace vs nuTAB-BackSpace Experiments. We use the same crash
states. “# of Successful Iterations” is the number of iterations before timing out or
reaching the set limit of 20. The timeout per iteration was chosen to be 5h. Each
simulation run averages 10 minutes. “# of Chip Runs” is the total number of iterations
plus the number of retries. Because “# of Chip Runs” is an aggregate, when the number
of iterations for TAB is smaller than the number of iterations for nuTAB, the number
of nuTAB runs may be greater than TAB runs (e.g., 1, 13-15). Crash states with a † are
states that nuTAB-BackSpace computed all 20 iterations, but somewhere during the
computation it deviated from the “expected” trace (in simulation, we can determine if
the run reached the specified “crash” state). Therefore, these might be spurious traces.
We suspect that, at some iteration, the normalized region of two different traces was
too small to discriminate them.

Crash # of Successful # of Chip
State Iterations Runs

TAB nuTAB TAB nuTAB

1 0 11 62 143
†2 0 20 339 21

3 0 20 67 52

4 0 20 77 75

5 0 20 79 24

6 0 20 93 27

7 0 20 283 28
†8 0 20 128 20
†9 0 20 58 23

10 0 20 342 20

11 1 20 173 57

12 2 7 204 137

13 3 15 399 536

14 3 20 134 144

15 4 19 270 661

Crash # of Successful # of Chip
State Iterations Runs

TAB nuTAB TAB nuTAB
†16 4 20 112 27

17 5 20 157 28

18 5 20 199 41

19 6 6 120 58
†20 6 20 60 26

21 6 20 181 24

22 6 20 788 24
†23 7 20 568 22

24 12 20 251 27

25 12 20 308 25

26 15 20 534 20

27 20 20 282 28

28 20 20 403 29

29 20 20 463 52

30 20 20 726 26

with a SPARC V8 compatible core, AMBA bus, video, DDR2, Ethernet, i2c,
and keyboard and mouse controllers. This SoC also has built-in debug features
that can be enabled. In particular, we enable the provided trace buffer, LOGAN,
but with a minimal configuration. The LOGAN has no signal compression. The
signals we monitor are a combination of AMBA bus signals and some signals of
the SPARC V8’s execution-pipeline-stage, totaling 134 signals.

Since one of the goals of demonstrating nuTAB-BackSpace on a hardware-
prototype is to show that it works in a real (or as realistic as possible) debugging
environment, we run non-trivial software on the Leon3. In our experiments, we
are booting Linux (Linux Kernel 2.6.21).

Our debug scenario is as follows: while booting Linux, we want to derive the
sequence of CPU and bus operations leading to the kernel’s function start kernel.
Thus, start kernel is our “crash” state. The boot sequence up to this “crash”
state is more than 20 million cycles deep. Simulating it with a logic simulator is
impractical given this depth. Similarly, model checking it is infeasible.
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The first experiment is to try TAB-BackSpace. We follow the same steps as
Algorithm 1. The main difference is that instead of normalizing the extracted
trace, we try to find an exact match on the overlap region between the current
and previous traces. We set an address within start kernel function as our break-
point and run the chip; when it breakpoints, we extract a trace. From that trace,
we pick a trace-buffer entry as our new crash-state and repeat. In our experi-
ments, we set 2 hours as our retry timeout limit. The result of these experiments
is a total of 207 chip runs, all of which breakpoint successfully, but none overlap
cycle-by-cycle. In other words, we cannot TAB-BackSpace at all because, at each
run, non-determinism changes the path the chip takes and so the probability of
an exact match is too low.

The next experiment is to try nuTAB-BackSpace using the same scenario as
before. However, we need to define the rewrite rules first. In this case, the SoC
was built entirely from third-party IP, so our learning process was from the doc-
umentation and trace buffer dumps from the actual system running. Studying
the trace buffer dumps, we observed that sometimes entire trace-buffers might
have not a single video-controller transaction. Also, we noted that nullified in-
structions, although they vary from run to run, do not affect overall functionality
of a system run. Therefore, for this debug scenario, we hypothesize that traces
may have video-controller activity occurring at essentially arbitrary times, and
that nullified instructions can be ignored. From our understanding of the design,
we can create rewrite-rules easily to formalize the hypotheses and test them. (If
our hypotheses produced uninterested traces, we would start again with a new
hypothesis, creating new rewrite rules to try.)

We define the rewrite rules using the same notation as we used for the Router.
Let Proj(·)ahbm and Proj(·)inst be two projection functions that map abstract-
states, a, onto the subset of AMBA signals, which identify the current bus-master
and onto the subset of signals from the CPU that define whether an instruction
has been nullified. We can define R as follows:

∀a.Proj(a)ahbm = 0x3 . a→ ε (2)

∀a.Proj(a)inst = annul . a→ ε (3)

The rewrite rules ignore AMBA bus transactions from the video-controller and
states where instructions have been nullified in the CPU’s execution pipeline
stage. (Note that the ignored cycles do not get deleted from the generated trace
— the rewriting is solely to establish equivalence on the overlap region. The gen-
erated trace will always consist of actual states taken from trace buffer dumps.)

As in Subsection 4.1, we need to show that Leon3RS(Σ
∗, R) is Noetherian,

confluent, and concretization-preserving. As before, the system is length-
reducing, and hence Noetherian. No two rules have an overlapping left-hand side.
Consequently, there are no critical pairs, so Leon3RS(Σ

∗, R) is locally confluent.
The argument for concretization preservation is again based on insight into the
design. The video controller bus transactions are irrelevant to the boot sequence
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Table 2. nuTAB-BackSpace on Leon3. Trace-Buffer Length is the physical depth of the
trace-buffer. Since we do not use compression, its depth is fixed. Normalization-Region
Length is the number of cycles in the current trace-buffer that we normalize and use as
a reference for the next trace-buffer. New Cycles is the number of new states present
in the current trace-buffer.

Trace # Trace-Buffer Normalization Normalized New Accumulated
Length Region Length Length Cycles new cycles

1 1024 904 354 1024 1024
2 1024 519 137 384 1408
3 1024 781 133 241 1649
4 1024 680 168 514 2163
5 1024 709 168 348 2511
6 1024 892 141 45 2556
7 1024 – – 398 2954

and can be arbitrarily ignored.2 Similarly, nullified instructions have no effect
on the (bus-level) debugging process, so they can be safely ignored as well.
Any concrete execution trace which has these ignorable states corresponds to a
concrete execution trace where those states have been deleted.

We show the results in Table 2. We iterated 7 times, resulting in a trace more
than 2.5x the length of a single trace-buffer. Unlike TAB-BackSpace, the new
technique handles the non-determinism, computing an abstract trace based on
the trace-buffer signals.

5 Conclusion and Future Work

We have presented nuTAB-BackSpace, a novel technique to compute post-silicon
debug traces in the presence of non-determinism. We exploit the observation that
traces that are not cycle-by-cycle equal still share similarities from the debug
engineer’s point-of-view. We let the user provide rewrite rules, and under some
reasonable assumptions, we prove that nuTAB-BackSpace computes an abstract
trace that concretizes to a trace that is reachable and leads to the crash state.
We have demonstrated the effectiveness of nuTAB-BackSpace both in simulation
and in hardware, computing abstract traces even when TAB-BackSpace cannot.

Increasingly, complex chips have many clock-domains and even completely
asynchronous domains. Capturing traces on these designs and reasoning about
them is a major challenge. We believe nuTAB-BackSpace holds promise for this
problem, and this is the direct line of future work.

2 Technically, ignoring video controller transactions is not truly concretization pre-
serving, since any real concrete trace will have the occasional video transaction,
whose timing is determined by state hidden in the video controller and the external
video hardware. What the rewrite rule is really specifying is that that hidden state
is irrelevant for the current debugging scenario. If we were debugging some video
controller timing interaction, we would use different rewrite rules.
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Abstract. A SAT-based incremental, inductive algorithm for model
checking CTL properties is proposed. As in classic CTL model check-
ing, the parse graph of the property shapes the analysis. However, in the
proposed algorithm, called IICTL, the analysis is directed by task states
that are pushed down the parse tree. To each node is associated over- and
under-approximations to the set of states satisfying that node’s property;
these approximations are refined until a proof that the property does or
does not hold is obtained. Each CTL operator corresponds naturally to
an incremental sub-query: given a task state, an EX node executes a SAT
query; an EU node applies IC3; and an EG node applies FAIR. In each
case, the query result provides more general information than necessary
to satisfy the task. When a query is satisfiable, the returned trace is
generalized using forall-exists reasoning, during which IC3 is applied to
obtain new reachability information that enables greater generalization.
When a query is unsatisfiable, the proof provides the generalization. In
this way, property-directed abstraction is achieved.

1 Introduction

Incremental, inductive verification (IIV) algorithms construct proofs by generat-
ing lemmas based on concrete hypothesis states. Through inductive generaliza-
tion, a lemma typically provides significantly more information than is required
to address the hypotheses. A principle of IIV is that each lemma holds relative
to previously generated lemmas, hence the term incremental, so that the diffi-
culty of lemma generation is fairly uniform throughout execution. In this way,
property-directed abstraction is achieved. The safety model checker IC3 [3, 4]
and the model checker FAIR [6] for analyzing ω-regular properties are both in-
cremental, inductive model checkers. IC3 generates stepwise relatively inductive
clauses in response to states that lead to property violations. FAIR generates
inductive information about reachability and SCC-closed sets in response to sets
of states that together satisfy every fairness constraint. This paper describes an
incremental, inductive model checker, IICTL, for analyzing CTL properties of
finite state systems, possibly with fairness constraints.

An investigation into an IIV model checker for CTL properties is important
for several reasons. First, CTL is a historically significant specification language.
Second, some properties like resetability (AGEF p in CTL) require branching time
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semantics. Third, on properties in the fragment common to CTL and LTL, tra-
ditional CTL algorithms are sometimes superior to traditional LTL algorithms.
CTL model checking is inherently hierarchical in that a CTL property can be
analyzed according to its parse DAG. In the context of IIV, the strategy that
IICTL applies to such properties is different than that applied by FAIR. Finally,
CTL offers a conceptual challenge that previous IIV algorithms, IC3 and FAIR,
do not address: branching time semantics. In particular, CTL motivates gener-
alizing counterexample traces in addition to using proof-based generalization.

IICTL builds on traditional parse DAG-based analyses, except that it eschews
the standard global, or bottom-up, approach in favor of a task-directed strategy.
Beginning with the initial states for the root node, task states—which, as in
previous IIV algorithms, are concrete states of the system—are pushed down
the DAG, directing a node to decide whether those states satisfy its associated
subformula. In the process of making a decision, a node can in turn generate a
set of tasks for its children, and so on. Depending on the root operator of the
node, it applies a SAT solver (EX), a safety model checker such as IC3 (EU),
or a fair cycle finder such as FAIR (EG), to investigate the status of the task
states. Once it reaches a conclusion, it generalizes the witness—either a proof or
a counterexample trace—to provide as much new information as possible.

The first approaches to SAT-based CTL model checking [1, 13] were global
algorithms that leveraged the ability of CNF formulae and Boolean circuits to
be reasonably sized in some cases when BDDs are not. They differ from IICTL,
which is an incremental, local algorithm. McMillan [13] first proposed an efficient
technique for quantifier elimination that is related to the algorithm of Section 3.2,
but is not driven by a trace to be generalized. The idea of creating an unsatisfiable
query to generalize a solution to a satisfiable one (used in (15) and (20) in
Section 3.2) comes from [16] and is present also in [7]. A few attempts [20, 19, 14]
have been made to extend bounded model checking to branching time. They are
all restricted to universal properties, though, and they have not received an
extensive experimental evaluation. Their effectiveness thus remains unclear.

After preliminaries in Section 2, Section 3 describes IICTL in detail. Section 4
presents the results of a prototype implementation of IICTL within the IImc
model checker [11].

2 Preliminaries

A finite-state system is represented as a tuple S : (i, x, I(x), T (x, i, , x′), B) con-
sisting of primary inputs i, state variables x, a propositional formula I(x) describ-
ing the initial configurations of the system, a propositional formula T (x, i, x′)
describing the transition relation, and a set B = {B1(x), . . . , B�(x)} of Büchi
fairness constraints.

Primed state variables x′ represent the next state. A state of the system is
an assignment of Boolean values to all variables x and is described by a cube
over x, which, generally, is a conjunction of literals, each literal a variable or
its negation. An assignment s to all variables of a formula F either satisfies the
formula, s |= F , or falsifies it, s �|= F . If s is interpreted as a state and s |= F ,
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then s is an F -state. A formula F implies another formula G, written F ⇒ G,
if every satisfying assignment of F satisfies G.

The transition structure is assumed to be complete. That is, every state has
at least one successor on every input: ∀x, i . ∃x′ .(x, i, x′) |= T . A path in S,
s0, s1, s2, . . ., which may be finite or infinite in length, is a sequence of states
such that for each adjacent pair (si, si+1) in the sequence, ∃i.(si, i, s′i+1) |= T .
If s0 |= I, then the path is a run of S. A state that appears in some run of the
system is reachable. A path s0, s1, s2, . . . is fair if, for every B ∈ B, infinitely
many si satisfy B, si |= B; if s0 |= I then it is a fair run or computation of S.

Computational Tree Logic (CTL [8, 15]) is a branching-time temporal logic.
Its formulae are inductively defined over a set A of atomic propositions. Every
atomic proposition is a formula. In addition, if ϕ and ψ are CTL formulae, then
so are ¬ϕ, ϕ ∧ ψ, EXϕ, EψUϕ, and EGϕ. Additional operators are defined as
abbreviations. In particular, EFϕ abbreviates E(ϕ ∨ ¬ϕ)Uϕ, AXϕ abbreviates
¬EX¬ϕ, AGϕ abbreviates ¬EF¬ϕ, and AFϕ abbreviates ¬EG¬ϕ. A model of
a CTL formula is a pair M = (S,V) of a finite-state system S and a valuation
V of the atomic propositions as subsets of states of S. Satisfaction of a CTL
formula at state s0 of M is then defined as follows:

M, s0 |= a iff s0 ∈ V(a) for a ∈ A
M, s0 |= ¬ϕ iff M, s0 �|= ϕ
M, s0 |= ϕ ∧ ψ iff M, s0 |= ϕ and M, s0 |= ψ
M, s0 |= EXϕ iff ∃ a fair path s0, s1, . . . of S such that M, s1 |= ϕ
M, s0 |= EGϕ iff ∃ a fair path s0, s1, . . . of S such that for i ≥ 0,M, si |= ϕ
M, s0 |= EψUϕ iff ∃ a fair path s0, s1, . . . of S such that there exists i ≥ 0

for which M, si |= ϕ, and for 0 ≤ j < i, M, sj |= ψ.

Then M |= ϕ if ∀s . s |= I ⇒ M, s |= ϕ. That is, M models formula ϕ if all its
initial states do. In model M , the set of states that satisfy ϕ is written [[ϕ]].

That every CTL formula is interpreted as a set of states makes model checking
easier than for the more expressive CTL∗. Working bottom-up on the parse graph
of ϕ, the standard symbolic CTL model checking algorithm [12] annotates each
node with a set of states. Boolean connectives are dealt with in the obvious way,
while temporal operators are handled with fixpoint computations. The bottom-
up approach is also known as global model checking. In contrast, local model
checking [10, 17, 2, 9] proceeds top-down. A local model checker starts from
the goal of proving that initial state s satisfies ϕ and applies inference rules to
reformulate the goal as a list of subgoals in terms of subformulae of ϕ and states
in the vicinity of s. While local model checking can sometimes prove a property
without examining most of a system’s states, in its basic formulation it does
not play to the strengths of symbolic algorithms. For that reason, local model
checkers for finite-state systems tend to employ explicit search.1

1 Some BDD-based model checkers incorporate elements of local algorithms. For in-
stance, the CTL model checker in VIS [18] uses top-down early termination condi-
tions to define conditions that a safe approximation of a set of states must satisfy.
However, it is still fundamentally a bottom-up algorithm.
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Table 1. Initial bounds for IICTL

ψv Lv Uv

a ∈ A V(a) V(a)
¬ψi ¬Ui ¬Li

ψi ∧ ψj Li ∧ Lj Ui ∧ Uj

ψv Lv Uv

EXψi ⊥ �
Eψj Uψi Li Ui ∨ Uj

EGψi ⊥ Ui

3 Algorithm

The input to IICTL consists of a model M = (S,V) and the parse graph of a
CTL formula ϕ. Each node of the parse graph is a natural number v and is la-
beled with a token from ϕ. Node 0 is the root of the DAG. The formula rooted at
v is denoted by ψv, so that, in particular, ψ0 = ϕ. IICTL annotates each node v
with two propositional formulae over the state variables: Uv and Lv, with which
an upper bound formula Uv and a lower bound formula Lv, discussed later, ap-
proximate the satisfying set [[ψv]] of the formula ψv inM . Initial approximations
are computed as shown in Table 1. A global approximation of the states of S
reachable from the initial states is maintained as inductive propositional formula
R. Initially, R = �; that is, all states are presumed reachable.

Throughout execution, IICTL maintains the following invariant:

[[R ∧ Uv ∧ Lv]] ⊆ [[R ∧ ψv]] ⊆ [[R ∧ Uv]] . (1)

All states of the left set definitely satisfy ψv; all states not in the right set
definitely do not satisfy ψv or are unreachable. A state s of the system S such
that s |= R∧Uv but s �|= R∧Uv ∧Lv—together, s |= R∧Uv ∧¬Lv—is undecided
for ψv. The algorithm incrementally refines the approximations by considering
undecided states until either no initial state of S is undecided for ϕ, proving
M |= ϕ, or an initial state ŝ is found such that ŝ �|= U0, proving M �|= ϕ.

Let Lv = R ∧ Uv ∧ Lv designate the lower bound states: those states that
are known to satisfy ψv. Let Uv = R ∧ Uv designate the upper bounds states:
those states that are not known not to satisfy ψv. Invariant (1) is then written
[[Lv]] ⊆ [[R ∧ ψv]] ⊆ [[Uv]]. Finally, let Av = Uv ∧ ¬Lv = R ∧ Uv ∧ ¬Lv designate
the undecided states of node v.

Section 3.1 describes the essential structure of IICTL in detail. Section 3.2
introduces forall-exists generalization, which is applied to counterexample traces.
Then Section 3.3 describes two important refinements to the basic algorithm,
while Section 3.4 describes the additions for handling fairness constraints.

3.1 An Outline of IICTL

If ever I ∧ ¬U0 becomes satisfiable, then IICTL concludes that M �|= ϕ: not
even the over-approximation U0 of ϕ contains all I-states, so neither can ϕ
itself. If instead I ∧ ¬(L0 ∧ U0) becomes unsatisfiable, then M |= ϕ: the under-
approximation L0 of ϕ contains all I-states, so ϕ itself must as well.
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Otherwise, one or more initial undecided states must be decided. At the top
level, a witness s to the satisfiability of I ∧ U0 ∧ ¬L0 is undecided; it is decided
by calling the recursive function decide with arguments s and 0, the root of the
parse tree of ϕ, which eventually returns true if M, s |= ϕ and false otherwise. In
general, decide(t, v) return true iff M, t |= ψv. A call to decide(t, v) can update
Lv or Uv (or both) so that state t becomes decided for ψv; moreover, the call
can trigger a cascade of recursive calls that update the bounds of descendants
of v and, crucially, may decide many states besides t. Within the tree, the over-
approximating reachability set R becomes relevant: a state t is undecided at
node v if it satisfies Av. The pseudocode for decide listed in Figure 1 provides
structure to the following discussion.

Boolean Nodes. According to Table 1, no state can be undecided for a propo-
sitional node because the initial approximations are exact; therefore, in the case
that v is a propositional node, one of the conditions of lines 2–3 holds.

If ψv = ψu ∧ ψw, the following invariant is maintained:

Uv = Uu ∧ Uw and Lv = Lu ∧ Lw . (2)

If t is undecided at entry, then recurring on nodes u and w decides t for v (line
6). The update statement (line 5; also lines 7, 20, and 32) indicates that Lv and
Uv should be updated whenever a child’s bound is updated during recursion. It
does not express an invariant.

If ψv = ¬ψu, the following invariant is maintained:

Uv = ¬(Lu ∧ Uu) and Lv = ¬Uu . (3)

If t is undecided at entry, then recurring on node u decides t for v (line 8).

EX Nodes. If ψv = EXψu, then the undecided question is whether t has a
successor satisfying ψu. IICTL executes two SAT queries in order to answer this
question. First, it executes an upper bound query. Naively, this query is t∧T ∧U ′

u,
which asks whether t has a Uu-successor. However, for better generalization, the
following is used instead (line 10):

t ∧ Uv ∧ T ∧ U ′
u . (4)

If unsatisfiable, the core reveals cube t̄ ⊆ t such that all t̄-states (including t) lack
Uu-successors (and thus ψu-successors) or are unreachable. Uv is then updated
to Uv ∧ ¬t̄ (line 11)—no t̄-state is a ψu-state (or it is an unreachable ψu-state).

However, if query (4) is satisfiable, the witness reveals successor Uu-state s
(line 13). A lower bound query is executed next (line 14):

t ∧ T ∧ L′
u ∧ U ′

u . (5)

If satisfiable, then t itself has been decided: it definitely has a ψu-successor, since
it has a (Uu ∧ Lu)-successor (recall invariant (1)). Forall-exists generalization
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1boo l d e c i d e (t : s t a t e , v : node ) :
2i f t |= R ∧ Uv ∧ Lv : return true { a l ready decided : M, t |= ψv}
3i f t �|= R ∧ Uv : return fa l se { a l ready decided : M, t �|= ψv}
4match ψv with :
5ψu ∧ ψw : [update Lv , Uv := Lu ∧ Lw , Uu ∧ Uw ]
6return d e c i d e (t , u) ∧ d e c i d e (t , w )
7¬ψu : [update Lv , Uv := ¬Uu , ¬(Lu ∧ Uu) ]
8return ¬d e c i d e (t , u)
9EXψu :
10i f t ∧ Uv ∧ T ∧ U ′

u i s unsat : {wi th t̄ ⊆ t from core }
11Uv := Uv ∧ ¬t̄
12return fa l se
13else : {wi th t−succes sor s}
14i f t ∧ T ∧ L′

u ∧ U ′
u i s sat :

15Lv := Lv ∨ g e n e r a l i z e (t)
16return true
17else :
18d e c i d e (s , u)
19return d e c i d e (t , v )
20Eψu Uψw : [update Lv , Uv := Lv ∨ Lw , Uv ∧ (Uu ∨ Uw) ]
21i f ¬(t ∧ Uw i s sat or reach(S, Uu ∧ Uv ∧R ∧ U ′

v, t, Uw)) :
22Uv := Uv ∧ ¬P {wi th proof P }
23return fa l se
24else : {wi th t race s0 = t, s1, . . . , sn}
25i f t ∧ Lw i s sat or reach(S, Lu ∧ Uv ∧ U ′

v, t, Lv ∧ Uv) :
26Lv := Lv ∨ g e n e r a l i z e ( r̄ ) {wi th t race r̄}
27return true
28e l i f d e c i d e (si , u ) , 0 ≤ i < n , and d e c i d e (sn , w ) are true :
29Lv := Lv ∨ g e n e r a l i z e (s0, . . . , sn )
30return true
31else : return d e c i d e (t , v )
32EGψu : [update Uv := Uv ∧ Uu ]
33i f ¬fair(S, Uv ∧ R ∧ U ′

v, t) : {wi th a s s e r t i on P }
34Uv := Uv ∧ ¬P
35return fa l se
36else : {wi th t race s0 = t, . . . , sk, . . . , sn, sk}
37i f fair(S, Lu ∧ Uv ∧R ∧ L′

u ∧ U ′
v, t) : {wi th t race r̄}

38Lv := Lv ∨ g e n e r a l i z e ( r̄ )
39return true
40e l i f d e c i d e (si , u ) , 0 ≤ i ≤ n , are true :
41Lv := Lv ∨ g e n e r a l i z e (s0, . . . , sn )
42return true
43else : return d e c i d e (t , v )

Fig. 1. Basic version of the main recursive function

(Section 3.2) then produces a cube t̄ ⊆ t of states that definitely have ψu-
successors (or are unreachable), and Lv is updated to Lv ∨ t̄ (line 15). If the
query is unsatisfiable (line 17), then apparently state s is undecided for u. In
this case, decide(s, u) is called (line 18), which results in updates to at least one
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of Uu and Lu, which is a form of progress. The entire process iterates until t is
decided (line 19).

EU Nodes. An EU-node maintains the following invariant:

[[Lw]] ⊆ [[Lv]] , [[Lv]] ⊆ [[Lu]] ∪ [[Lw]] , [[Uw]] ⊆ [[Uv]] , [[Uv]] ⊆ [[Uu]] ∪ [[Uw]] . (6)

If ψv = Eψu Uψw, then the undecided question is whether t has a ψu-path to
a ψw-state. To answer this question, it executes two reachability queries using
an engine capable of returning counterexample traces and inductive proofs, such
as IC3 [3, 4]. Let reach(S,C, F,G) be a function that accepts a system S, a set
of constraints C(x, x′) on the transition relation, an initial condition F , and a
target G; and that returns either a counterexample run from an F -state to a
G-state, or an assertion P (x), inductive relative to C, separating F from G.

The upper bound query asks whether t leads to a Uw-state (line 21). First, the
query t∧Uw determines if t is itself a Uw-state. If not, then the following query
determines if it can reach a Uw-state via a Uu-path:

reach(S, Uu ∧ Uv ∧R ∧ U ′
v, t, Uw) . (7)

The transition relation constraint Uu∧Uv∧R∧U ′
v mixes the necessary (Uu) with

the optimizing (Uv∧R∧U ′
v). If the query is unsatisfiable, the returned inductive

proof P shows that no Uw-state can be reached via a potentially reachable Uu ∧
Uv-path, deciding at least t and informing the update of Uv to Uv ∧ ¬P (line
22). If either of the query t ∧ Uw or query (7) is satisfiable, let s0 = t, s1, . . . , sn
be the returned counterexample trace (line 24).

Lower bound queries are executed next (line 25). First, decide asks if t is itself
a ψw-state via the query t ∧ Lw. If not, it asks whether t can reach a known
ψv-state via a known ψu-path:

reach(S, Lu ∧ Uv ∧ U ′
v, t, Lv ∧ Uv) . (8)

In this version, the target set has those states that are known to have ψu-paths
to ψw-states. If either case is satisfiable, t is decided for v: it has a ψu-path to
a ψw-state. Forall-exists generalization (Section 3.2) produces a set of states F ,
including t, that definitely have ψu-paths to ψw-states or are unreachable, with
which Lv is updated (line 26).

However, if the query is unsatisfiable, then attention returns to the trace
s0, . . . , sn of the upper bound query (7) to decide whether its states satisfy the
appropriate subformulae (lines 28–31). Each si, 0 ≤ i < n, is queried for node
u, and sn is queried for node w. If all states of the trace2 are decided positively
(line 28), then t is decided positively for v; therefore, Lv is expanded by the
generalization of the trace (line 29). If one of the states is decided negatively,
the upper and lower bound queries are iterated until t is decided (line 31): either
a trace is found, or the nonexistence of such a trace is proved.

2 Section 3.3 refines this state-by-state treatment to the level of traces.
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EG Nodes. An EG-node maintains the following invariant:

[[Lv]] ⊆ [[Lu]] and [[Uv]] ⊆ [[Uu]] . (9)

If ψv = EGψu, then the undecided question is whether there exists a reachable
fair cycle all of whose states are ψu-states. To answer this question, it executes
two fair cycle queries using an engine capable of returning (1) fair cycles and
(2) inductive reachability information describing states that lack a reachable fair
cycle. FAIR is one such engine [6]. Let fair(S,C, F ) be a function that accepts
a system S, possibly with fairness constraints {B1, . . . , B�}, a set of constraints
C(x, x′) on the transition relation, and an initial condition F ; and that returns
either an F -reachable fair cycle, or an inductive assertion P , where F ⇒ P ,
describing a set of states that lack reachable fair cycles.

The upper bound query asks whether a reachable fair cycle whose states satisfy
Uu exists. The constraint on the transition relation uses Uv because states of a
counterexample should potentially be EGψu states (line 33):

fair(S, Uv ∧R ∧ U ′
v, t) . (10)

If the query is unsatisfiable, the returned inductive assertion P describes states,
including t, that do not have reachable fair cycles (line 33); hence, Uv is updated
to Uv ∧ ¬P (line 34). Otherwise, a reachable fair cycle s0 = t, . . . , sk, . . . , sn, sk
is obtained (line 36).

Before exploring the trace, a lower bound query is executed (line 37) to de-
termine whether a reachable fair Lu-cycle exists3:

fair(S, Lu ∧ L′
u, t) . (11)

If it is satisfiable, the resulting run is generalized (Section 3.2) to a formula F ,
and Lv is updated to Lv ∨ F (line 38).

Otherwise, the reachable fair cycle from query (10) is considered (line 40). If
all si are ψu-states, decide finishes as with a satisfiable lower bound query (lines
41–42). Otherwise, the exploration updates Uv, so that some progress is made,
and the process is iterated (line 43).

Even if generalize were to return what it is given, the sound updates to Lv
(lines 15, 26, 29, 38, 41) and Uv (lines 11, 22, 34), combined with the progress
guaranteed by each call to decide, make the basic version of IICTL correct.

Theorem 1. IICTL terminates and returns true iff M |= ϕ.

Example 1. Consider resetability, ϕ = AGEF p = ¬EF¬EF p, whose parse graph,
with initial upper and lower bounds is shown in Figure 2. Because initial states
are undecided for 0, IICTL chooses some initial state s and calls decide(s, 0),
which in turn calls decide(s, 1). To determine if s is a ψ1-state, decide queries a
safety model checker for the existence of a path from s to U2, i.e., to a ¬p-state.
3 Note that the fair cycle query could potentially be avoided by asking if known ψv-
states are reachable from t via a ψu-path: reach(S, Lu ∧ L′

u, t, Lv).
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If none exist, inductive proof P is returned, and U1 is updated
by ¬P . If counterexample trace s, . . . , t is found, decide asks
whether a path from s to L2 exists, which is currently impos-
sible. The disagreement between U2 and L2 on t triggers calls
to decide(t, 2) and decide(t, 3). With equal bounds for node
4, only one reachability query is needed. If t cannot reach p
(case 1), the inductive proof eliminates t from U3 and adds it
to L2. Then s can reach a ψ2-state, deciding s for 1 positively,
and s, . . . , t are added to L1. Finally, s is removed from node
0, indicating failure of the property.

Otherwise (case 2), the discovered trace at node 3 is gener-
alized to F , included in L3, and eliminated from U2. Then the
upper bound reachability query of node 1 is repeated asking
for the existence of a path from s to a ¬p∧¬F -state. The pro-
cedure continues until either case 1 occurs (failure), or until
this query fails, establishing at least that s |= ψ0. Then decide
is invoked again for node 1 with a remaining undecided initial
state if any exist, or success of the property is declared.

3.2 Forall-Exists Generalization

Proofs from upper bound queries provide generalization in one direction: unsat-
isfiable cores for EX-nodes, inductive unreachability proofs for EU-nodes, and
inductive reachability information from fair cycle queries for EG-nodes. While
there are some techniques that IICTL applies to improve inductive proofs—proof
strengthening, weakening, and shrinking—they have been discussed in the con-
text of FAIR [6]. An essential aspect of making IICTL work in practice is the
ability to generalize from counterexample traces. A first approach, given trace
s0, i0, s1, i1, . . . , sn−1, in−1, sn with interleaved states and primary input values,
is to use the unsatisfiable cores of the query sj ∧ ij ∧T ∧¬s′j+1 to reduce sj to a
subcube, with decreasing j [16, 7]. For greater generalization power, forall-exists
generalization is introduced in this section. While the overall idea is similar for
the three operators EX, EU, and EG, details differ.

The overall idea of forall-exists trace generalization is to (1) select a cube c of
the trace, (2) flip a literal of c to obtain c̄, and (3) decide whether all Av∧c̄-states
are ψv-states. If they are, c can be replaced with the resolvent of c and c̄, that
is, the cube obtained by dropping the literal of step (2). This process continues
until no further literal of the trace can be dropped. During generalization, it
is assumed that all states described by the current trace are Lv-states, so that
an improvement of one cube can lead to improvements of other cubes. Hence,
literals can be tried multiple times.

Selecting the cube (step (1)) and one of its literals (step (2)) can be heuris-
tically guided. The following describes step (3) of the procedure, where c̄ is a
candidate cube obtained by flipping a literal of a cube from the current trace.
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EX Nodes. Let ψv = EXψu, and let c̄ be a cube describing a set of states. If

∀x . c̄(x) ∧ Av(x)→ ∃i, x′ . T (x, i, x′) ∧ Lu(x′) , (12)

then c̄ can be added to Lv while maintaining invariant (1).
The challenge with (12) is quantifier alternation. Rather than using a gen-

eral QBF solver, IICTL adopts a strategy in which two queries are executed
iteratively. The first SAT query is the following:

c̄ ∧Av ∧ T ∧ ¬L′
u . (13)

It asks whether all successors of c̄-states are Lu states. If the query is unsatis-
fiable, then no undecided c̄-state has a successor outside of Lu. The states in
c̄ ∧ ¬Av can be added freely to Lv. Those in c̄ ∧ Av have all their successors in
Lu; hence, they satisfy ψv and can be added to Lv by updating it to Lv ∨ c̄.

If, however, query (13) is satisfiable, then there exists an undecided c̄-state
s with at least one successor outside of Lu. The second SAT query establishes
whether all of s’s successors are ¬Lu-states:

s ∧ T ∧ L′
u . (14)

If the query is satisfiable, then there exists s-successor state t and input j such
that t |= Lu and (s, j, t′) |= T . In this case, the following query is unsatisfiable:

s ∧Av ∧ j ∧ T ∧ ¬L′
u . (15)

The set of literals s that do not appear in the unsatisfiable core can be dropped
from s to obtain cube s̄, which describes the set of states that either are not in
Av or go to Lu under input j; these states can therefore be added to Lv, yielding
Lv ∨ s̄. While query (15) is unsatisfiable even without the conjunction of Av, the
presence of Av allows generalizations of s that include ¬Av-states.

If query (14) is unsatisfiable, s is considered a counterexample to generaliza-
tion (CTG). It explains why c̄ cannot be added to Lv at this time: it is known
that s lacks an Lu-successor and thus undecided whether s has a ψu-successor.
Hence, s remains undecided for v. However, all is not lost: the question remains
whether s is even reachable. Because generalization is unnecessary for correct-
ness but necessary for (practical) completeness, answering this question requires
balancing computational costs against the potential benefits of greater general-
ization. There are three reasonable approaches to addressing the question: (1)
ignore it, obtaining immediate speed at the cost of generalization; (2) apply a
semi-decision procedure for reachability, such as the MIC procedure of FSIS and
IC3 [5, 4]; (3) apply a full reachability procedure such as IC3. In the latter two
cases, proofs of unreachability refine R, which strengthens all IICTL queries, in
addition to making s irrelevant to the current generalization attempt.

With approach (3), even in the case that IC3 finds that s is reachable, the
truly inductive clauses generated during the analysis are added to R, yielding
new information. Furthermore, s is added to a set of states known to be reach-
able. Henceforth, whenever a cube c̄ is considered as part of generalization at



542 Z. Hassan, A.R. Bradley, and F. Somenzi

some node v, s ∈ c̄ is first tested; if so, then query (14) is immediately applied.
If this query is satisfiable, then s is marked as henceforth irrelevant for gener-
alizations at node v. This reuse of known reachable states during generalization
significantly mitigates the cost of approach (3) on some benchmarks.

EU and EG Nodes. Let node v be such that either ψv = Eψu Uψw or ψv =
EGψu. In both cases, the generalization queries are motivated by the following:

∀x . c̄(x) ∧ Av(x)→ Lu(x) ∧ ∃i, x′ . T (x, i, x′) ∧ Lv(x′) . (16)

Any (c̄∧Av)-state must be a ψu-state, motivating the Lu(x) term.4 Additionally,
it must have a ψv-successor, motivating the Lv(x) term.

To address (16) without a QBF solver, several queries are executed iteratively.
First, ¬ψu-states are addressed with the following query:

c̄ ∧ Av ∧ ¬Lu . (17)

If satisfiable, the indicated CTG can be analyzed for reachability. A reachable
CTG ends consideration of c̄. Once query (17) becomes unsatisfiable, focus turns
to the existence of ψv-successors for all relevant c̄-states:

c̄ ∧Av ∧ T ∧ ¬L′
v . (18)

If unsatisfiable, Lv is updated to Lv ∨ c̄, and generalization is complete.
Otherwise, a witness state s exists; it is checked for Lv-successors:

s ∧ T ∧ L′
v . (19)

If the query is satisfiable, then there exists s-successor state t and input j such
that t |= Lv and (s, j, t′) |= T . In this case, the following query is unsatisfiable:

s ∧ Av ∧ j ∧ T ∧ (¬Lu ∨ ¬L′
v) . (20)

Its unsatisfiable core reveals a cube s̄ ⊆ s with which to update Lv to Lv ∨ s̄,
which eliminates s as a counterexample to query (18). If query (19) is unsatisfi-
able, then s is a CTG to be handled as described for EX nodes.

3.3 Refinements

Two refinements are immediate. First, to detect early termination, each time
some node u’s Lu or Uu is updated, its parent v is notified, and the proper
update is made to its Lv and Uv, as explained in Section 3.1. If there is a
(semantic) change in at least one of Lv and Uv, then the upward propagation
continues. If the root node is modified so that a termination criterion is met
(I ∧ ¬U0 is satisfiable or I ∧ ¬L0 is unsatisfiable), then the proof is complete.

4 If v is an EU-node, notice that the term Av in the antecedent excludes considering
Lw-states of c̄, for such states are already decided for node v.
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Consider the property of Example 1. If it fails, there is at least one trace leading
from an initial state to a state s that falsifies EF p. The outer EF node would
direct IICTL to find such a trace, after which the upper bound query of the
inner EF-node would return a proof that s cannot reach a p-state. As soon as
the proof is generated, it is evident that the property is false.

Second, in Section 3.1, individual task states are submitted to nodes. However,
multi-state initial conditions and counterexample traces create sets of task states.
While generalization mitigates the cost of handling each state of a task set
individually, even better is to allow nodes to reason about multi-state tasks. To
do so, a node of the DAG receives a task set T with an associated label. The
label All indicates that all states t ∈ T must satisfy ψv, while the label One
indicates that at least one state t ∈ T must satisfy ψv.

Now function decide takes three arguments: decide(T , �, v), where � ∈
{All,One}. Initially, decide(I, All, 0) is called. A general invocation decide(T ,
�, v) immediately returns false if � = All and T ∧¬Uv is satisfiable, or if � = One
and T ∧ Uv is unsatisfiable; and returns true if � = One and T ∧ Lv is satis-
fiable, or if � = All and T ∧ ¬Lv is unsatisfiable. Otherwise, it updates T to
T ∧ Av—that is, the undecided subset of T—and continues.

If v is a ¬-node, then it switches the label and passes the task onto its child.
If v is a ψu∧ψw-node and � = All, then decide(T , All, u) is called. A return value
of false indicates that some state t ∈ T falsifies ψu, so this call returns false as
well. Otherwise, decide(T , All, w) is called and its return value returned.

If � = One, the situation is more interesting: a state t ∈ T must be identified
that satisfies both ψu and ψw. Therefore, decide(T , One, u) is called. A return
value of false indicates that all states of T falsify ψu, so this call returns false,
too. However, a return value of true indicates that at least one state of T satisfies
ψu, and these states are now included in Lu. Therefore, decide(T ∧ Lu, One, w)
is called to see if any of the identified states also satisfies ψw. If so, this call
returns true. If not, then v’s new bounds exclude some states of T , including the
ones that were found to satisfy ψu. T is consequently set to T ∧ Uv ∧ ¬Lu, and
the process is iterated.

If v is an EX-, EU-, or EG-node and � = One, then its queries are executed
iteratively with T ∧ Uv as the source states until either T ∧ Lv is satisfiable,
in which case true is returned, or T ∧ Uv is unsatisfiable, in which case false is
returned. If � = All, then v’s queries are executed iteratively with T ∧ ¬Lv as
the source states until either T ∧ ¬Uv becomes satisfiable, in which case false is
returned, or T ∧ ¬Lv becomes unsatisfiable, in which case true is returned. The
handling of multiple initial states by the reach and fair queries themselves is the
main advantage of the multi-state refinement of decide.

With the handling of multi-state tasks defined, it remains to define how to
create such tasks. Suppose during analysis of node v, where ψv = Eψu Uψw,
decide discovers a trace s0, . . . , sn in which it must be decided whether states
s0, . . . , sn−1 are ψu-states and state sn is a ψw-state. Then decide({s0, . . . , sn−1},
All, u) and decide({sn}, All, w) are called. Similarly, if ψv = EGψu, the states of
a purported fair cycle s0, . . . , sn are decided with decide({s0, . . . , sn}, All, u).
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3.4 Fairness

Fairness in CTL cannot be handled completely within the logic itself. Instead,
model checkers must be able to handle fairness constraints algorithmically when
deciding whether a state satisfies an EG formula, a task that IICTL accomplishes
by passing the constraints to fair. To show that finite paths computed for other
types of formulae can be extended to fair paths, it suffices to show that they end
in states that satisfy EG�. Hence, it is customary in BDD-based CTL model
checkers to pre-compute the states that satisfy EG� and constrain the targets
of EU and EX computations to them [12].

IICTL instead tries to decide the fairness of as few states as possible. To that
effect, it computes from the given ϕ a modified formula τ(ϕ) recursively defined
as follows:

τ(p) = p τ(EGϕ) = EG τ(ϕ)

τ(¬ϕ) = ¬τ(ϕ) τ(EXϕ) = EX(τ(ϕ) ∧ ψ)
τ(ϕ1 ∧ ϕ2) = τ(ϕ1) ∧ τ(ϕ2) τ(Eϕ1 Uϕ2) = E τ(ϕ1)U(τ(ϕ2) ∧ ψ) ,

where

– p is an atomic proposition, and
– ψ = � if ϕ is a positive Boolean combination of EX, EU and EG formulae;
ψ = EG� otherwise.

For example, τ(AGEF(p ∧ ¬q)) = τ(¬EF¬EF(p ∧ ¬q)) = ¬EF(¬EF((p ∧ ¬q) ∧
EG�) ∧ EG�), while τ(AGAF p) = τ(¬EF EG¬p) = ¬EFEG¬p.

While the definition of τ(ϕ) is closely related to the one implicitly used by
most BDD-based model checkers—the difference is that in the latter, ψ always
equals EG�—it minimizes checks for fairness by taking into account that every
path with a fair suffix is fair.

For instance, in the case of AGAF p, IICTL does not check whether any state
satisfies EG� because the states that satisfy EG p are known to be fair. For the
resetability property AGEF(p ∧ ¬q), however, a state that satisfies p ∧ ¬q is not
assumed to satisfy the inner EF node unless it is proved fair.

4 Results

The IICTL algorithm has been implemented in the IImc model checker [11], and
it has been evaluated on a set of 33 models (mostly from [18]) for a total of
363 CTL properties (278 passing and 85 failing). These properties include only
one invariant, since IICTL delegates invariant checking to IC3. No collection of
branching time properties used in real designs similar to that available for safety
properties is available. This experimental evaluation is therefore preliminary.
The experiments have been run on machines with 2.8 GHz Intel Core i7 CPUs
and 9 GB of RAM. A timeout of 300 s was imposed on all runs.
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In this section the performance of IICTL is compared to that of the BDD-
based CTL model checker in VIS-2.3 [18] (with and without preliminary reach-
ability analysis) and, for the properties that can be expressed in LTL, to the
FAIR and IC3 algorithms [4, 6]. The total run times were: 27613 s for IICTL;
32220 and 31555 s for VIS with and without reachability analysis.

Table 2 shows for each of the three CTL algorithms the numbers of timeouts
(TO) and the numbers of properties that could be solved by only one technique
(US). Only the models for which timeouts occurred are listed. While IICTL

Table 2. Timeouts and Unique Solves (nr = no reachability)

model IICTL VIS VIS-nr
TO US TO US TO US

am2901 1 2 1
am2910 3
CAB 9 9 11

checkers 46 6 52 52
cube 1
gcd 2

newnim 4
palu 5

redCAB 5 5 8
rether 1 1 1

model IICTL VIS VIS-nr
TO US TO US TO US

rgraph 1
tarb16 16 16 16
soap 10 10 10
swap 2
vcordic 1 1 1
viper 1 3
vsa16a 2 2 1 1
vsaR 2
vsyst 1 1 1

total 85 23 98 15 102 1

obtains the lowest number of timeouts and the highest number of unique solu-
tions, it is apparent that the three methods have different strengths and thus
are complementary. This point is further brought out by the plots of Figure 3.

The upper row of Figure 3 shows the comparison of IICTL to VIS in the form
of scatterplots. The lower left plot compares IICTL to FAIR and IC3 for 110
properties expressible in both CTL and LTL. IC3 is used for safety properties,
and FAIR is used for the other ones. Finally, the lower right plot compares the
best of IICTL and IC3/FAIR to the best result obtained by VIS, with or without
reachability. Even with the averaging effect of taking the best results between two
methods, there remain significant differences between the incremental, inductive
approach and the one based on BDDs.

The data shown for IICTL were obtained with a medium level of effort in
trace generalization (option (2) in Section 3.2). This approach proved the most
robust and time-effective, though occasionally, the highest level of effort pays
off. This is more likely to be the case when precise reachability information is
crucial (e.g., with rether, which has very few reachable states).

The comparison of IICTL to the automata-based approach that uses IC3 or
FAIR as decision procedure shows that IICTL is close in performance to tech-
niques that are specialized for one type of property. There are three properties
for which IICTL times out but IC3 does not. (They are all safety properties.)
IICTL gets mired in difficult global reachability queries, because the current
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Fig. 3. Comparing IICTL to competing techniques

implementation does not know that the set of target states will eventually prove
empty. On the the other hand, since the properties are easily strengthened to
inductive, IC3 terminates quickly. These comparisons highlight areas in which
progress should be made by making IICTL’s strategy more flexible and nuanced.

5 Conclusion

Building on the ideas of incremental, inductive verification (IIV) pioneered in IC3
and FAIR, IICTL is a new property-directed abstracting model checker for CTL
with fairness. Although the implementation is preliminary, the experimental re-
sults show that it is competitive in robustness and, importantly, complementary
to the traditional symbolic BDD-based algorithm. IICTL offers a different ap-
proach to model checking that allows it to prove some properties on systems
for which, like checkers, BDDs are unwieldy. The techniques for handling CTL
properties in an IIV style—the task-based algorithm structured around the parse
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graph of the CTL property, and forall-exists generalization of traces—will con-
tribute to the next goal for IIV: CTL∗ model checking.
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Abstract. Stateful security policies—which specify restrictions on be-
havior in terms of temporal safety properties—are a powerful tool for
administrators to control the behavior of untrusted programs. However,
the runtime overhead required to enforce them on real programs can be
high. This paper describes a technique for rewriting programs to incorpo-
rate runtime checks so that all executions of the resulting program either
satisfy the policy, or halt before violating it. By introducing a rewriting
step before runtime enforcement, we are able to perform static analysis
to optimize the code introduced to track the policy state. We developed
a novel analysis, which builds on abstraction-refinement techniques, to
derive a set of runtime policy checks to enforce a given policy—as well as
their placement in the code. Furthermore, the abstraction refinement is
tunable by the user, so that additional time spent in analysis results in
fewer dynamic checks, and therefore more efficient code. We report ex-
perimental results on an implementation of the algorithm that supports
policy checking for JavaScript programs.

1 Introduction

In this paper, we describe a technique that in-lines enforcement code for a broad
class of stateful security policies. Our algorithm takes a program and a policy,
represented as an automaton, and re-writes the program by inserting low-level
policy checks to ensure that the policy is obeyed. Our key insight is that meth-
ods adapted from abstraction-refinement techniques [6] used in software model
checking can be applied to optimize the in-lined code. From a security perspec-
tive, our approach means that some programs cannot be verified entirely a priori,
but it allows us to ensure that any program that is executed will always satisfy
the policy. Additionally, by bounding the size of the abstraction used in the op-
timization phase, the tradeoff between static analysis complexity and optimality
of the in-lined code can be fine-tuned. The simplicity of this approach is attrac-
tive, and allows our algorithm to benefit from advances in the state-of-the-art
in automatic program abstraction and model checking.

We implemented our approach for JavaScript, and applied it to several real-
world applications. We found the abstraction-refinement approach to be effective
at reducing the amount of instrumentation code necessary to enforce stateful
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policies. In many cases, all of the instrumentation code can be proven unneces-
sary after the analysis learns a handful (one or two) facts about the program
through counterexamples. In such cases, the analysis has established that the
program is safe to run as is, and thus there is no runtime overhead. In cases
where the program definitely has a policy violation that the analysis uncovers,
instrumentation is introduced to exclude that behavior (by causing the program
to halt before the policy is violated), again using only a few facts established by
static analysis.

To summarize, our contributions are:

– A language-independent algorithm for weaving stateful policies into pro-
grams, to produce new programs whose behavior is identical to the original
on all executions that do not violate the policy.

– A novel application of traditional software model-checking techniques that
uses runtime instrumentation to ensure policy conformity whenever static
analysis is too imprecise or expensive. The degree to which the analysis relies
on static and dynamic information is tuneable, which provides a trade-off in
runtime policy-enforcement overhead.

– A prototype implementation of our algorithm for JavaScript, called JAM,
and an evaluation of the approach on real JavaScript applications. The eval-
uation validates our hypothesis that additional time spent in static analysis,
utilizing the abstraction-refinement capabilities of our algorithm, results in
fewer runtime checks. For five of our twelve benchmark applications, learn-
ing just four predicates allows JAM to place an optimal number of runtime
checks necessary to enforce the policy.

The rest of the paper is laid out as follows. Section 2 gives an overview of the
algorithm. Section 3 presents the technical details of the analysis and discuss
JAM. Section 4 evaluates the performance of JAM over a set of real applications.
Section 5 discusses related work.

2 Overview

We propose a hybrid approach to enforcing policies over code from an untrusted
source. Our solution is to perform as much of the enforcement as possible stati-
cally, and to use runtime checks whenever static analysis becomes too expensive.
This approach allows us to avoid overapproximations on code regions that are
difficult to analyze statically. Furthermore, varying the degree to which the anal-
ysis relies on runtime information allows us to control the cost of static analysis
at the expense of performing additional runtime checks. While this approach
means that many programs cannot be verified against a policy a priori before
execution, an interpreter provided with the residual information from the static
analysis can prevent execution of any code that violates the policy. In fact, as
we show in Section 3, the target program can often be rewritten to in-line any
residual checks produced by the static analysis, sidestepping the need for explicit
support from the interpreter.
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Fig. 1. Workflow overview of our approach

Figure 1 presents an overview of our approach. The security policy is first
encoded as a temporal safety property over the states of the target program.
The algorithm then begins like other software model checkers by first performing
predicate abstraction [12] over the target code, and checking the resulting model
for a reachable policy-violating state [20]. Our algorithm differs from previous
techniques in how the results of the model checker are used; when the model
checker produces an error trace, there are a few possibilities.

1. If the trace is valid, then our algorithm places a dynamic check in the target
code to prevent it from being executed on any concrete path.

2. If the trace is not valid, then the algorithm can either:
(a) Refine the abstraction and continue model checking.
(b) Construct a dynamic check that blocks execution of the trace only when

the concrete state indicates that it will violate the policy.

Item (1) has the effect of subtracting a known violating trace from the behav-
iors of the program, and in general, some number of similar behaviors, thereby
decreasing the size of the remaining search space. For an individual counterexam-
ple, item (2)(a) follows the same approach used in traditional counterexample-
guided abstraction refinement-based (CEGAR) software model checking. Item
(2)(b) ensures that a potentially-violating trace identified statically is never exe-
cuted, while avoiding the expense of constructing a proof for the trace. However,
the inserted check results in a runtime performance penalty—thus, the choice
corresponds to a configurable tradeoff in analysis complexity versus runtime
overhead.

To illustrate our approach, consider the program listed in Figure 2(a). This
code is a simplified version of the sort of dispatching mechanism that might
exist in a command-and-control server [24] or library, and is inspired by common
JavaScript coding patterns. The function execute takes an instruction code and
data argument, and invokes an underlying system API according to a dispatch
table created by the program’s initialization code.

We will demonstrate enforcement of the policy given in Figure 2(c), which is
meant to prevent exfiltration of file and browser-history data. Observe that we
specify this policy, which corresponds to a temporal safety property, using an
automaton that summarizes all of the “bad” paths of a program that might lead
to a violation. Thus, policies encode properties on individual paths of a program,



Efficient Runtime Policy Enforcement 551

1 api[0] = readFile;
2 api[1] = sendPacket;
3 fun execute(instr, data) {
4 api[instr](data);
5 }
6 while(*) {
7 instr, data = read();
8 execute(instr, data);
9 }

(a) Original code (P ).

1 policy = 0;
2 api[0] = readFile;
3 api[1] = sendPacket;
4 fun execute(instr, data) {
5 if(api[instr] == readFile

6 && policy == 0) policy++;

7 if(api[instr] == sendPacket

8 && policy == 1) halt();
9 api[instr](data);

10 }

(b) Safe code (previously safe parts
ommitted). Shaded lines contain two
checks inserted by our algorithm; our
analysis prevented an additional check

before line 9.

�� �������	

call readFile

��
call readHistory

��

∗

��
�������	 call sendPacket ��

∗

��
�������	
������

(c) Security policy that says “do not read from a file or the
history and subsequently write to the network.”

Fig. 2. Dangerous code example

api[0] = readFile;
api[1] = sendPacket;
instr, data = read();
execute(0, data);
assume{api[0] == readFile}
api[instr](data);
instr, data = read();
execute(1, data);
assume{api[1] == sendPacket}
api[instr](data);

(1)

api[0] = readFile;
api[1] = sendPacket;
instr, data = read();
execute(0, data);
assume{api[0] == readHistory}
api[instr](data);
instr, data = read();
execute(1, data);
assume{api[1] == sendPacket}
api[instr](data);

(2)

Fig. 3. Counterexamples returned from the example in Figure 2. (2) is invalid, and
leads to a spurious runtime check.

and we intuitively think of policy violation as occurring when a subsequence
of statements in a path corresponds to a word in the language of the policy
automaton. The example in Figure 2(c) is representative of the policies used by
our analysis, and meant to convey the important high-level concepts needed to
understand our approach. For more details about specific policies, see Section 3.

To verify this policy against the program, we proceed initially with software
model checking. The first step is to create an abstract model of the program
using a finite number of relevant predicates [12]. We begin with three predi-
cates, corresponding to the states relevant to the policy: @Func = readHistory,
@Func = readFile, and @Func = sendPacket. We assume the existence of a
special state variable @Func, which holds the current function being executed;
each of these predicates queries which function is currently being executed. With



552 M. Fredrikson et al.

these predicates, the software model checker will return the two counterexamples
shown in Figure 3.

(1) is valid — it corresponds to a real policy violation. Our analysis updates
the program’s code by simulating the violating path of the policy automaton
over the actual state of the program. This is demonstrated in Figure 2(b); the
automaton is initialized on line 1, and makes a transition on lines 6 and 8 after
the program’s state is checked to match the labels on the corresponding policy
transitions. When the transition to the final state is taken, the program halts.

(2) is not valid—the assumption that api[0] == readHistory never holds.
However, for the analysis to prove this, it would need to learn a predicate that
encodes this fact, and build a new, refined abstraction on which it can per-
form a new statespace search. If the user deems this too expensive, then the
analysis can simply insert another runtime check before line 7 corresponding to
the first transition in the policy automaton, which increments policy whenever
api[instr] holds readHistory. This approach will result in a secure program,
but will impose an unnecessary runtime cost: every time execute is called, this
check will be executed but the test will never succeed. Alternatively, the analysis
can learn the predicates {api[instr] = readHistory, instr = 0}, and proceed
with software model checking as described above. This will result in the more
efficient code shown in Figure 2(b).

3 Technical Description

Our analysis takes a program P and a policy, and produces a new program P ′

by inserting policy checks at certain locations in P needed to ensure that the
policy is not violated. In this section, we describe the policies that we support,
as well as the algorithm for inserting policy checks. The algorithm we present
has several important properties that make it suitable for practical use:

1. Upon completion, it has inserted a complete set of runtime checks necessary
to enforce the policy: any program that would originally violate the policy
is guaranteed not to violate the policy after rewriting. Runs that violate the
policy must encounter a check, and are halted before the violation occurs.

2. The policy checks inserted will not halt execution unless the current execu-
tion of the program will inevitably lead to a policy violation. In other words,
our approach does not produce any false positives.

3. The running time of the main algorithm is bounded in the size of the program
abstraction, which is controllable by the user. This approach yields a trade-
off between program running time and static-analysis complexity.

4. JAM always terminates in a finite number of iterations.

We begin with a description of our problem, and proceed to describe our
language-independent algorithm for solving it (Section 3.1). The algorithm relies
only on standard semantic operators, such as symbolic precondition and abstract
statespace search. In Section 3.2, we discuss our implementation of the algorithm
for JavaScript.
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3.1 Runtime Checks for Safety Properties

Preliminaries. A run of a program P executes a sequence of statements, where
each statement transforms an element σ ∈ ΣP (or state) of P ’s state space to
a new, not necessarily distinct, state σ′. For the purposes of this section, we do
not make any assumptions about the form of P ’s statements or states. We use
a labeling function ι for each statement s in P , so that ι(s) denotes a unique
integer. Let a state trace be a sequence of states allowed by P , and let TP ⊆ Σ∗

be the complete set of possible state traces of P .
The policies used by our analysis are based on temporal safety properties. A

temporal safety property encodes a finite set of sequences of events that are
not allowed in any execution of the program. We represent these properties
using automata.1 The events that appear in our policies correspond to concrete
program states, and we do not allow non-trivial cycles among the transitions in
the automaton.

Definition 1 (Temporal safety automaton). A temporal safety automaton Φ is
an automaton Φ = (Q,Qs, δ, Qf ,L) where

– Q is a set of states (with Qs ⊆ Q and Qf ⊆ Q the initial and final states,
respectively). Intuitively, each q ∈ Q represents sets of events that have
occurred up to a certain point in the execution.

– δ ⊆ Q × L × Q is a deterministic transition relation that does not contain
any cycles except for self-loops.

– L is a logic whose sentences represent sets of program states, i.e., φ ∈ L
denotes a set �φ� ⊆ Σ.

For a given (q, φ, q′) ∈ δ, the interpretation is that execution of a statement
from a program state σ where φ holds (i.e., σ ∈ �φ�) causes the temporal safety
automaton to transition from q to q′. Self-loops are necessary to cover state-
ments that do not affect the policy state, but other types of cycles can prevent
our algorithm from terminating in a finite number of iterations. This leads to
the definition of property matching: a program P matches a temporal safety
automaton Φ, written P |= φ, if it can generate a state trace that matches a
word in the language of the automaton.

Our problem is based on the notion of property matching. Given a program P
and temporal safety automaton Φ, we want to derive a new program P ′ that: (i)
does not match Φ, (ii) does not contain any new state traces, and (iii) preserves
all of the state traces from P that do not match Φ.

Policy Checks from Proofs. Our algorithm is shown in Algorithm 1, and
corresponds to the workflow in Figure 1. SafetyWeave takes a program P , a
finite set of predicates E from L, a bound on the total number of predicates k,
and a temporal safety automaton policy Φ. We begin by using predicate set E
to build a sound abstraction of P [12] (this functionality is encapsulated by Abs
in Algorithm 1). Note that E must contain a certain set of predicates, namely

1 This formalism is equivalent to past-time LTL.
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Algorithm 1. SafetyWeave(P , E, k, Φ)
Require: k ≥ 0
Require: φ ∈ E for all (q, φ, q′) ∈ δ

repeat
PE ← Abs(P , E) {Build abstraction}
π ← IsReachable(PE, Φ)
if π = NoPath then

return P
else if isValid(π) then

{Build runtime policy check; rewrite P to enforce it}
Ψπ
D ← BuildPolicy(P , π, Φ)

P ← Enforce(P , Ψπ
D)

else
{Refine the abstraction}
if |E| < k then

E ← E ∪ NewPreds(π)
else

{We have reached saturation of the abstraction set E}
{Build runtime policy check; rewrite P to enforce it}
Ψπ
D ← BuildPolicy(P , π, Φ)

P ← Enforce(P , Ψπ
D)

end if
end if

until forever

φi for each (qi, φi, q
′
i) ∈ δΦ. The abstraction is then searched for traces from

initial states to bad states (encapsulated by IsReachable), which correspond to
final states in Φ. If such a trace π is found, it is first checked to see whether it
corresponds to an actual path through P (performed by IsValid). If it does, or if
we cannot build an abstraction that does not contain π, then a runtime policy
check ΨπD is derived (encapsulated by BuildPolicy) and added to P (performed
by Enforce). ΨπD identifies a concrete instance of π.

If π does not correspond to an actual policy-violating path of P , and we
have fewer than k predicates, then the abstraction is refined by learning new
predicates (encapsulated by NewPreds). Otherwise, we add a runtime check to
prevent the concrete execution of π. This process continues until we have either
proved the absence of violating paths (via abstraction refinement), or added a
sufficient set of runtime checks to prevent the execution of possible violating
paths.
Termination. SafetyWeave is guaranteed to terminate in a finite number of
iterations, due to the following properties: (i) the algorithm will stop trying to
prove or disprove the validity of a single trace after a finite number of iterations,
due to the bounded abstraction size (|E| is limited by k). (ii) In the worst case,
it must insert a policy check for each transition in Φ before every statement in
P . Once P is thus modified, IsReachable will not be able to find a violating trace
π, and will terminate.
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Abstracting P (Abs). On each iteration, an abstraction PE is built from
the predicate set E and the structure of P . PE has two components: a control
automaton GC and a data automaton GD. Each automaton is a nested word
automaton (NWA) [2] whose alphabet corresponds to the set of statements used
in P . GC overapproximates the set of all paths through P that are valid with
respect to P ’s control structure (i.e., call/return nesting, looping, etc.), whereas
GD overapproximates the paths that are valid with respect to the data semantics
of P . In GC , states correspond to program locations, and each program location
corresponds to the site of a potential policy violation, so each state is accepting.
In the data automaton, states correspond to sets of program states, and transi-
tions are added according to the following rule: given two data-automaton states
q and q′ representing φ and φ′, respectively, the GD contains a transition from
q to q′ on statement s whenever φ ∧ Pre(s, φ′) is satisfiable, where Pre is the
symbolic precondition operator. We then have that L(GC) ∩ L(GD) represents
an overapproximation of the set of valid paths through P; this is returned by Abs.

Separating the abstraction into GC and GD allows us to provide a straight-
forward, well-defined interface for extending the algorithm to new languages. To
be able to instantiate Algorithm 1 to work on programs written in a different
language, a tool designer need only provide (i) a symbolic pre-image operator for
that language to build GD, and (ii) a generator of interprocedural control-flow
graphs (ICFGs) to build GC .

Proposition 1 L(GD) corresponds to a superset of the traces of P that might
match Φ.

Checking the Abstraction (IsReachable). Given an automaton-based ab-
straction PE = GC ∩ GD, IsReachable finds a path in PE that matches Φ.
This operation is encapsulated in the operator ∩pol specified in Definition 2. In
essence, Definition 2 creates the product of two automata—PE and Φ. However,
the product is slightly non-standard because PE has an alphabet of program
statements, whereas Φ has an alphabet of state predicates. Note that when we
refer to the states of PE in Definition 2, we abuse notation slightly by only us-
ing the program state component from GD, and dropping the program location
component from GC .

Definition 2 (Policy Automaton Intersection ∩pol). Given a temporal safety
automaton Φ = (QΦ, QΦ

s , δ
Φ, QΦ

f ) and an NWA G = (QG, QG
s , δ

G, QG
f ) whose

states correspond to sets of program states, G ∩pol Φ is the nested word au-
tomaton (Q,Qs, δ, Qf), where

– Q has one element for each element of QG ×QΦ.
– Qs = {(φ, qΦ) | qΦ ∈ QΦ

s , φ ∈ QG
s }, i.e., an initial state is initial in both GD

and Φ.
– δ = 〈δin, δca, δre〉 are the transition relations with alphabet S. For all

(qΦ, φ′′, q′Φ) ∈ δΦ, and φ, φ′ ∈ QG such that φ∧Pre(s, φ′ ∧ φ′′) is satisfiable,
we define each transition relation using the transitions in δG = (δGin, δ

G
ca, δ

G
re):

• δin: when (φ, s, φ′) ∈ δGin, we update δin with: ((φ, qΦ), s, (φ′, q′Φ)).
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• δca: when (φ, s, φ′) ∈ δGca, we update δca with: ((φ, qΦ), s, (φ′, q′Φ)).
• δre: when (φ, φ′′′, s, φ′) ∈ δGre, we update δre with: ((φ, qΦ), (q′′′Φ, φ′′′), s,
(φ′, q′Φ)) for all q′′′Φ ∈ QΦ.

– Qf = {(φ, qΦ) | qΦ ∈ QΦ
f , φ ∈ QG

f }, i.e., a final state is final in Φ and G.

The words in L(PE ∩pol Φ) are the sequences of statements (traces) in P that
respect the sequencing and nesting specified in the program, and may lead to
an error state specified by Φ. As long as GC and GD overapproximate the valid
traces in P , we are assured that if an erroneous trace exists, then it will be in
L(PE ∩pol Φ). Additionally, if L(PE ∩pol Φ) = ∅, then we can conclude that P
cannot reach an error state.

Checking Path Validity (IsValid); Refining the Abstraction (NewPreds).
Given a trace π ∈ L(PE), we wish to determine whether π corresponds to a
possible path through P (i.e., whether it is valid). This problem is common
to all CEGAR-based software model checkers [3,16], and typically involves pro-
ducing a formula that is valid iff π corresponds to a real path. We discuss an
implementation of IsValid for JavaScript in Section 3.2.

Because PE overapproximates the error traces in P , two conditions can hold
for a trace π. (i) The sequence of statements in π corresponds to a valid path
through P that leads to a violation according to Φ, or it cannot be determined
whether π is a valid trace or not. (ii) The sequence of statements in π can be
proven to be invalid. In the case (i), a runtime check is added to P to ensure that
the error state is not entered at runtime (see the following section for a discussion
of this scenario). In the case of (ii), PE is refined by adding predicates to GD

(encapsulated in the call to NewPreds). Standard techniques from software model
checking may be applied to implement NewPreds, such as interpolation [25] and
unsatisfiable-core computation [16]; we discuss our JavaScript-specific implemen-
tation in Section 3.2.

Deriving and Enforcing Dynamic Checks. The mechanism for deriving
dynamic checks that remove policy-violating behavior is based on the notion
of a policy-violating witness. A policy-violating witness is computed for each
counterexample trace produced by the model checker that is either known to
be valid, or cannot be validated using at most k predicates. A policy-violating
witness must identify at runtime the concrete instance of the trace π produced
by the model checker before it violates the policy Φ. To accomplish this, we
define a policy-violating witness as a sequence containing elements that relate
statements to assertions from Φ. The fact that a check is a sequence, as opposed
to a set, is used in the definition of Enforce.

Definition 3 (Policy-violating witness). A policy-violating witness ΨπΦ ∈ (N ×
L)∗ for a trace π and policy Φ is a sequence of pairs relating statement elements
in π to formulas in L. We say that π′ |= ΨπΦ (or π′ matches ΨπΦ) if there exists a
subsequence π′′ of π′ that meets the following conditions:

1. The statements in π′′ match those in ΨπΦ : |π′′| = |ΨπΦ |, and for all (i, φi) ∈ ΨπΦ ,
ι−1(i) is in π′′.
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2. Immediately befre P executes a statement s corresponding to the ith entry
of ΨπΦ (i.e. (ι(s), φi)), the program state satisfies φi.

Suppose that Φ = (QΦ, QΦ
i , δ

Φ, QΦ
f ) is a temporal safety automaton, and π is a

path that causes P to match Φ. Deriving ΨπΦ proceeds as follows: because π is
a word in L(PE = GD ∩ GC), there must exist some subsequence si1si2 . . . sim
of π that caused transitions between states in Φ that represent distinct states in
Φ. We use those statements, as well as the transition symbols [φi]i∈{i1,i2,...,im}
from Φ on the path induced by those statements, to build the jth element of ΨπΦ
by forming pairs (ij , φj), where the first component ranges over the indices of
si1si2 . . . sim .

More precisely, for all i ∈ i1, i2, . . . , im, there must exist (qi, φi, q
′
i) ∈ δΦ and

((φ, qi), s, (φ
′, q′i)) ∈ δPE∩polΦ such that φ′ ∧φi is satisfiable (recall the ∩pol from

Definition 2). Then:

ΨπΦ = [(ii1 , φ1), (ii2 , φ2), . . . , (iim , φm)]

Intuitively, ΨπΦ captures the statements in π responsible for causing Φ to take
transitions to its accepting state, and collects the associated state assertions to
form the policy-violating witness.

We now turn to Enforce, which takes a policy-violating witness ΨπΦ , and a
program P , and returns a new program P ′ such that P ′ does not contain a path
π such that π |= ΨπΦ . The functionality of Enforce is straightforward: for each ele-
ment (i, φ) in ΨπΦ , insert a guarded transition immediately before ι−1(i) to ensure
that φ is never true after executing ι−1(i). The predicate on the guarded transi-
tion is just the negation of the precondition of φ with respect to the statement
ι−1(i), and a check that the policy variable (inserted by Enforce) matches the
index of (i, φ) in Φ. When the guards are true, the statement either increments
the policy variable, or halts if the policy variable indicates that all conditions in
ΨπΦ have passed. A concrete example of this instrumentation in Figure 2.

Note that a given occurrence of statement s in P may be visited multiple
times during a run of P . Some subset of those visits may cause Φ to transition
to a new state. In this scenario, notice that our definition of Enforce will insert
multiple guarded transitions before s, each differing on the condition that they
check—namely, each transition (q, φ, q′) of Φ that was activated by s in the
policy-violating witness will have a distinct condition for Pre(s, φ) that either
increments the policy variable or halts the program. Additionally, the check on
the policy variable in each guard prevents the policy variable from being updated
more than once by a single check.

Definition 4 (Functionality of Enforce). Given a program P and a dynamic
check ΨπΦ = {(i1, φ1), . . . , (in, φn)}, Enforce produces a new program P ′. P ′ uses
a numeric variable, policy, which is initialized to zero. Enforce performs the
following steps for each element (i, φ) ∈ ΨπΦ :

1. Let φpre ≡ Pre(ι−1(i), φ) ∧ policy = j, where j is the index of (i, φ) in ΦπΦ.
2. Insert a new statement before ι−1(i) that either:
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– Increments policy whenever φpre is true and policy < |ΨπΦ |.
– Halts the execution of P ′ whenever φpre is true and policy = |ΨπΦ |.

For Enforce to operate correctly, L must be closed under the computation of
pre-images, and pre-images of formulas in L must be convertible to code in the
target language. When Enforce is called on all counterexample paths returned
by Algorithm 1, the resulting program will not match Φ.

3.2 JavaScript Prototype

We implemented our algorithm for JavaScript, in a tool called JAM. There
are four components to Algorithm 1 that must be made specific to JavaScript:
the control (GC) and data (GD) automaton generators (Abs), the path validity
checker (IsValid), and the predicate learner (NewPreds). To build the control
automaton, we used Google’s Closure Compiler [17], which contains methods for
constructing an intraprocedural control flow graph (CFG) for each function in
a program, as well as dataflow analyses for determining some of the targets of
indirect calls. The only language-specific aspect of the data-automaton generator
is the computation of symbolic pre-state for a given statement in P . We use
Maffeis et al.’s JavaScript operational semantics [21], lifted to handle symbolic
term values, and implemented as a set of Prolog rules. Computing a satisfiability
check to build GD in this setting amounts to performing a query over this Prolog
program, with ground state initialized to reflect the initial state of the program.
To learn new predicates (i.e., to compute NewPreds), we apply a set of heuristics
to the failed counterexample trace that we have developed from our experience
of model checking real JavaScript programs. Our heuristics are based on the
statement that made the trace invalid; the predicate they build depends on
the type of that statement (e.g., if the statement is an if statement, the new
predicate will be equivalent to the statement’s guard expression).

Currently, the JAM implementation does not handle programs that contain
dynamically generated code—e.g., generated via language constructs, such as
eval() or Function(), or via DOM interfaces, such as document.write(). JAM
currently only handles a subset of the DOM API that most browsers support.
None of these are fundamental limitations, although supporting dynamically
generated code soundly could cause a large number of runtime checks to be
introduced. Dynamically generated code can be supported by inserting code
that updates the state of the policy variable (Definition 4) by simulating the
policy automaton before each dynamically generated statement, in the manner
of Erlingsson et al. [8]. Additional DOM API functions can be supported by
adding reduction rules to our semantics that capture the behavior of the needed
DOM API.

4 Experimental Evaluation

In this section, we summarize the performance and effectiveness of JAM in ap-
plying realistic security policies to ten JavaScript applications (plus alternative
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versions of two of them that we seeded with policy-violating code). The results,
summarized in Table 1, demonstrate that the time devoted to static analysis dur-
ing the abstraction-refinement stage often leads to fewer runtime checks inserted
into the subject program. Additionally, because the CEGAR process evaluates
the validity of the potentially-violating execution traces found in the abstract
model, time spent during this stage also yields greater confidence that the in-
serted checks are legitimately needed to prevent policy violations during runtime.

The benchmark applications used to measure JAM’s performance are real
programs obtained from the World Wide Web. Consequently, the policies we
developed typically address cross-domain information-leakage issues and data-
privacy issues that are of concern in that domain. Our measurements indicate
that under such realistic circumstances, (i) JAM is able to identify true vulner-
abilities while (ii) reducing spurious dynamic checks, and (iii) is able to do so
with analysis times that are not prohibitive.

4.1 Results

Because the goal of the system is to derive a minimal set of runtime checks
needed to ensure adherence to a policy, we sought to measure the benefits of
refining the program model against the cost of performing such analysis. This
information was gathered by comparing the running time and result of JAM’s
analysis under varying levels of abstraction refinement, achieved by placing a
limit on the number of predicates learned during the CEGAR analysis before
proceeding to the saturation phase. The validation of counterexamples and learn-
ing of new predicates can be disabled altogether, which establishes the baseline
effectiveness of static analysis without abstraction refinement. Measurements of
JAM’s effectiveness and efficiency with different levels of abstraction refinement
are presented in Table 1.

One dimension on which to evaluate the behavior of JAM is the number
of necessary versus spurious checks that it inserts. All checks that are inserted
during the CEGAR phase are known to be necessary, because the abstract coun-
terexample that gave rise to each such check has been proven valid. In contrast,
spurious checks may be inserted in the saturation phase. We inspected the ap-
plications manually to determine the number of necessary checks Columns 5 and
6 of Table 2 classify the checks identified during saturation as valid or spurious
according to our manual classification. A lower number of spurious checks in-
serted under a particular configuration represents a more desirable outcome vis
a vis minimizing runtime overhead.

Reported performance statistics are the averages of multiple runs on a Vir-
tualBox VM running Ubuntu 10.04 with a single 32-bit virtual processor and
4GB memory. The host system is an 8-core HP Z600 workstation with 6GB
memory running Red Hat Enterprise Linux Server release 5.7. Execution time
and memory usage refer to the total CPU time and maximum resident set size
as reported by the GNU time utility version 1.7.

The results for flickr demonstrate the benefit of additional effort spent on
abstraction refinement. Analysis of the unrefined model identifies two potential
violations of the policy, one of which is spurious and the other valid (according
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Table 1. Performance of JAM on selected benchmarks. Learned denotes the number
of predicates learned through abstraction refinement, Total to the number of learned
predicates plus those in the initial state from the policy. CEGAR denotes the number
of checks placed before the abstraction size limit is reached, Saturation to those placed
afterwards.

Predicates Checks
Benchmark Saturation Execution Memory
application Learned Total CEGAR Valid Spurious Total time (s) (KB)

flickr 2 3 1 0 0 1 138.67 60737
flickr 1 2 1 0 1 2 74.49 61472
flickr 0 1 0 1 1 2 24.23 63520

beacon 0 3 2 0 0 2 74.50 62215

jssec 1 2 0 0 0 0 14.04 46591
jssec 0 1 0 0 1 1 7.59 56023

to our manual classification of checks). When allowed to learn a single predicate,
JAM is able to avoid a spurious trace, and identify the valid counterexample. Al-
lowing JAM to learn two predicates causes it to prove the spurious counterexame
invalid, and rule out the un-needed runtime check.

The policy for the beacon benchmark is more involved—using multiple tran-
sition sequences to characterize the policy violation; it states “a cookie should
never be written after the DOM is inspected using document.getElementById

or document.getElementsByTagName.” This policy represents a cross-domain
information-leakage concern that JAM is able to identify and validate in the first
iteration of the analysis. The jssec application is intended to allow a website
user to open and close a section of the page being viewed. The policy for jssec
states that the only allowable change to a DOM element’s style properties is to
the display attribute; otherwise, the code could change the backgroundImage

attribute, thereby initiating an HTTP call to a remote server. JAM successfully
proves that the program is free of violations by learning the prototype of an
object whose member is the target of an assignment.

5 Related Work

In-Lined Reference Monitors. In-lined reference monitors were first discussed by
Erlingsson and Schneider [8,28] who applied the idea to both Java and x86 byte-
code. Their prototype, SASI, supports security policies as finite-state machines
with transitions denoting sets of instructions (i.e., predicates over instructions)
that may be executed by the untrusted program. Note the distinction from the
policy automata used in our work, where transitions have predicates that refer
to the program state, not just restrictions on the next instruction to execute.
SASI works by inserting policy-automaton-simulation code before every instruc-
tion in the program, and then uses local simplification to remove as much of
the added code as possible. This amounts to applying the available local static
information at each location to evaluate the instruction predicate to the greatest
degree possible; the authors opted not to use global static analysis in the interest
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of maintaining a small TCB. In this respect, the primary focus of our work is
quite different from Erlingsson and Schneider’s foundational work.

Since Erlingsson and Schneider’s work, this has been an active area of research.
Nachio [9] is an in-lined-monitor compiler for C, where policies are given as state
machines with fragments of imperative code that execute at each state. The Java-
MOP (Monitor-Oriented Programming) system [5] allows users to choose from a
set of temporal logics, domain-specific logics, and languages in which to express
policies. ConSpec [1] performs in-lined reference monitoring based on policies
similar to those used by Erlingsson and Schneider, and takes the additional step
of formally verifying the in-lined monitor. SPoX [14] built on aspect-oriented
programming to implement in-lined reference monitoring for Java, using as poli-
cies automata whose edges are labeled with pointcut expressions. They define
a formal semantics for their policies, laying the groundwork for future work on
verified implementations of in-lined reference monitors; this feature can also aid
in developing analyses for optimizing the in-lined monitor code, although the
authors do not pursue this idea. Sridhar and Hamlen [29] designed an IRM-
compiler for JavaScript bytecodes, and showed how software model checking can
be applied to verify the compiled in-lined monitor code. Hamlen et al. [15] de-
signed Mobile, an extension to the .NET runtime that supports IRMs with
the advantage that well-typed Mobile code is guaranteed to satisfy the policy
it purports to enforce. The primary difference between these previous efforts
and our own is our focus on optimizing in-lined monitor code, and our use of
abstraction-refinement techniques to do this in a tuneable manner.

Clara [4] is a framework for incorporating static analysis into the reference-
monitor in-lining process. The setting in which Clara operates is similar to ours:
an untrusted program and a security policy, represented by a finite-state ma-
chine, are provided, and the goal is to produce a rewritten program that always
obeys the policy. It works on top of an aspect-weaving framework for Java [18]
by first weaving the policy (represented as an aspect) into the program, and
subsequently applying a modular set of static analyses to remove as many join
points as possible. In this regard, Clara is conceptually similar to our work;
it is conceivable that parts of our work could be combined as a path-sensitive,
semantics-driven static-analysis component inside of Clara’s modular framework.
Otherwise, our work differs from Clara in one important respect: the policies we
use provide direct means to refer to the dynamic state of the program, allow-
ing richer and more concise policies. Clara’s dependence on AspectJ limits the
building blocks of expressible policies to a pre-defined set of pointcuts.

JavaScript Policy Enforcement. Several recent projects attempt to identify sub-
sets of JavaScript that are amenable to static analysis. Two early examples
are ADSafe [7] and FBJS [10], which facilitate “mashups” by removing lan-
guage elements that make it difficult to isolate the effects of distinct Java-
Script programs executing from the same domain. Maffeis et al. explored a sim-
ilar approach [22,23], but took the additional step of formally verifying their
subsets against small-step operational semantics of the ECMAScript specifica-
tion. More recently, Google has released Caja [11], uses the object-capability
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model to provide isolation. Our work differs from efforts to identify secure Java-
Script subsets for isolation primarily in the class of policies we are able to
support. Rather than sandbox-based object-capability policies, JAM can verify
arbitrary safety properties, including flow-sensitive temporal-safety properties.

Guarnieri and Livshits presented Gatekeeper, a “mostly static” JavaScript
analysis based on points-to information that is calculated using Datalog inference
rules [13]. Unlike JAM, Gatekeeper is not capable of checking flow-insensitive
policies, and it is not clear how it can be made flow-sensitive without greatly
increasing cost. Kudzu [27] is a JavaScript bug-finding system that uses forward-
symbolic execution. This functionality stands in contrast to JAM, as dangerous
program paths are reported to the user at analysis time, whereas in JAM they
are rewritten to halt at runtime before the dangerous (policy-violating) pay-
load is executed: JAM always inserts sufficient instrumentation to soundly and
completely enforce a given policy.

Yu et al. proposed a safe browsing framework based on syntax-directed rewrit-
ing of the JavaScript source according to an edit automaton [30]. Their work is
formalized in terms of a JavaScript subset they call CoreScript, which excludes
the same difficult language elements as most other static JavaScript analyses.
While our current implementation does not support the full language either,
this is not a limitation of our approach. The dynamic compoment of our policy-
enforcement method is capable of monitoring the execution of these language
elements. The syntax-directed nature of their rewriting framework effectively re-
stricts the class of policies it can enforce. More recently, Meyerovich and Livshits
presented ConScript [26], which is an in-browser mechanism for enforcing fine-
grained security policies for JavaScript applications. One of the primary contri-
butions of ConScript is a type system for checking policy-instrumentation code
against several different types of attack on the integrity of the policy. Essentially,
ConScript is a system for specifying and implementing advice [19] on JavaScript
method invocations. Thus, ConScript is complementary in function to JAM:
while JAM takes a high-level logical formula that represents a security policy,
and finds a set of program locations to place policy instrumentation, ConScript
is capable of soundly and efficiently enforcing that instrumentation on the client
side, during execution.
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Abstract. The latency gap between caches and main memory has been
successfully exploited for recovering sensitive input to programs, such as
cryptographic keys from implementation of AES and RSA. So far, there
are no practical general-purpose countermeasures against this threat.
In this paper we propose a novel method for automatically deriving
upper bounds on the amount of information about the input that an
adversary can extract from a program by observing the CPU’s cache
behavior. At the heart of our approach is a novel technique for efficient
counting of concretizations of abstract cache states that enables us to
connect state-of-the-art techniques for static cache analysis and quanti-
tative information-flow. We implement our counting procedure on top of
the AbsInt TimingExplorer, one of the most advanced engines for static
cache analysis. We use our tool to perform a case study where we derive
upper bounds on the cache leakage of a 128-bit AES executable on an
ARM processor. We also analyze this implementation with a commonly
suggested (but until now heuristic) countermeasure applied, obtaining a
formal account of the corresponding increase in security.

1 Introduction

Many modern computer architectures use caches to bridge the latency gap be-
tween the CPU and main memory. On today’s architectures, an access to the
main memory (i.e. a cache miss) may imply an overhead of hundreds of CPU cy-
cles w.r.t. an access to the cache (cache hit). While the use of caches is beneficial
for performance reasons, it can have negative effects on security: An observer
who can measure the time of memory lookups can see whether a lookup is a cache
hit or miss, thereby learning partial information about the state of the cache.
This partial information has been used for extracting cryptographic keys from
implementations of AES [12,22,35], RSA [37], and DSA [6]. In particular AES is
vulnerable to such cache attacks, because most high-speed software implemen-
tations make heavy use of look-up tables. Cache attacks are the most effective
known attacks against AES and allow to recover keys within minutes [22].

A number of countermeasures have been proposed against cache attacks. They
can be roughly put in two classes: (1) Avoiding the use of caches for sensitive
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computations. This can be achieved, e.g. by using dedicated hardware imple-
mentations (For example, recent Intel processors offer support for AES), or by
side-stepping the use of caches in software implementations [25]. Both solutions
obviously defeat cache attacks; however they are not applicable to arbitrary
programs, e.g. due to lack of available hardware support, or for reasons of per-
formance. (2) Mitigation strategies for eliminating attack vectors and reducing
leakage. Proposals include disabling high-resolution timers, hardening of sched-
ulers [22], and preloading [12,35] of tables. Such strategies are implemented, e.g.
in the OpenSSL 1.0 [5] version of AES, however, their effectiveness is highly de-
pendent on the operating system and the CPU. Without considering/modeling
all implementation details, such mitigation strategies necessarily remain heuris-
tic. In summary, there is no general-purpose countermeasure against cache at-
tacks that is backed-up by mathematical proof.

In this paper, we propose a novel method for establishing formal security
guarantees against cache-attacks that is applicable to arbitrary programs and a
wide range of embedded platforms. The guarantees we obtain are upper bounds
on the amount of information about the input that an adversary can extract by
observing which memory locations are present in the CPU’s cache after execution
of the program; they are based on the actual program binary and a concrete
processor model and can be derived entirely automatically. At the heart of our
approach is a novel technique for effective counting of concretizations of abstract
states that enables us to connect state-of-the-art techniques for static cache
analysis and quantitative information-flow analysis.

Technically, we build on prior work on static cache analysis [20] that was
primarily used for the estimation of worst-case execution time by abstract inter-
pretation [17]. We also leverage techniques from quantitative-information-flow
analysis that enable establishing bounds for the amount of information that a
program leaks about its input. One key observation is that (an upper bound on)
the number of reachable states of a program corresponds to (an upper bound
on) the number of leaked bits [30, 40]. Such upper bounds can be obtained by
computing super-sets of the set of reachable states by abstract interpretation,
and by determining their sizes [30].

We develop a novel technique for counting the number of cache states repre-
sented by the abstract states of the static cache analyses described above. We
implement this technique in a counting engine which we connect to AbsInt’s
a3 [1], the state-of-the-art tool for static cache analysis. a3 efficiently analyzes
binary code based on accurate models of several modern embedded processors
with a wide range of cache types (e.g. data caches, instruction caches, or mixed)
and replacement strategies. Using this tool-chain, we perform an analysis of a
binary implementation of 128-bit AES from the PolarSSL library [3], based on a
32-bit ARM processor with a 4-way set associative data cache with LRU replace-
ment strategy. We analyze this implementation with and without the preloading
countermeasure applied, with different cache sizes, and for two different adver-
sary models, obtaining the following results.
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Without preloading, the derived upper bounds for the leakage (about the
payload and the key) in one execution exceed the size of the key and are hence
too large for practical use. With preloading and a powerful adversary model,
however, the derived bounds drop to values ranging from 55 to 1 bits, for cache
sizes ranging from 16KB to 128KB. With a less powerful but realistic adversary
model, the bounds drop even further to ranges from 6 to 0 bits, yielding strong
security guarantees. This case study shows that the automated, formal security
analysis of realistic cryptosystems and accurate real processor models is in fact
feasible.

In summary, our contributions are threefold. Conceptually, we show how state-
of-the-art tools for quantitative information-flow analysis and static cache analy-
sis can be combined for quantifying cache side-channels. Technically, we develop
and implement novel methods for counting abstract cache states. Practically,
we perform a formal cache-analysis of a binary AES 128 implementation on a
realistic processor model.

2 Preliminaries

In this section we revisit concepts from quantitative information-flow analysis. In
particular, we introduce measures of confidentiality based on information theory
in Section 2.1, and we present techniques for their approximation in Section 2.2.

2.1 Quantifying Information Leaks

A (deterministic) channel is a function C : S → O mapping a finite set of secrets
S to a finite set of observations O. We characterize the security of a channel in
terms of the difficulty of guessing the secret input from the observation. This
difficulty can be captured using information-theoretic entropy, where different
notions of entropy correspond to different kinds of guessing. In this paper, we
focus on min-entropy as a measure, because it is associated with strong security
guarantees [40].

Formally, we model the choice of a secret input by a random variable X with
range ran(X) = S and the corresponding observation by a random variable Y
with ran(Y ) = O. The dependency between X and Y is formalized as a con-
ditional probability distribution PY |X with PY |X(o, s) = 1 if C(s) = o, and 0
otherwise. We consider an adversary that wants to determine the value of X
from the value of Y , where we assume that X is distributed according to PX .
The adversary’s a priori uncertainty about X is given by the min-entropy [39]

H∞(X) = − log2 max
s
PX(s)

of X , which captures the probability of correctly guessing the secret in one shot.
The adversary’s a posteriori uncertainty is given by the conditional min-entropy
H∞(X |Y ), which is defined by

H∞(X |Y ) = − log2
∑
o

PY (o)max
s
PX|Y (s, o)
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and captures the probability of guessing the value of X in one shot when the
value of Y is known.

The (min-entropy) leakage L of a channel with respect to the input distribu-
tion PX is the reduction in uncertainty about X when Y is observed,

L = H∞(X)−H∞(X |Y ) ,

and is the logarithm of the factor by which the probability of guessing the secret
is reduced by the observation. Note that L is not a property of the channel alone
as it also depends on PX . We eliminate this dependency as follows.

Definition 1 (Maximal Leakage). The maximal leakage ML of a channel C
is the maximal reduction in uncertainty about X when Y is observed

ML(C) = max
PX

(H∞(X)−H∞(X |Y )) ,

where the maximum is taken over all possible input distributions.

For computing an upper bound for the maximal leakage of a deterministic
channel, it suffices to compute the size of the range of C. While these bounds
can be coarse in general, they are tight for uniformly distributed input.

Lemma 1.
ML(C) ≤ log2 |C(S)| ,

where equality holds for uniformly distributed PX .

Proof. The maximal leakage of a (probabilistic) channel specified by the distri-
bution PY |X can be computed by ML(PY |X) = log2

∑
omaxs PY |X(o, s), where

the maximum is assumed (e.g.) for uniformly distributed input [13,31]. For deter-
ministic channels, the number of non-zero (hence 1) summands matches |C(S)|.

2.2 Static Analysis of Channels

In this paper we consider channels of programs, i.e. those that are given by the
semantics of (deterministic, terminating) programs. In this setting, the set of
secrets is a part of the initial state of the program, and the set of observables
is a part of the final state of the program. Due to Lemma 1, computing upper
bounds on the maximal leakage of a program can be done by determining the
set of final states of the program. Computing this set from the program code
requires computation of a fixed-point and is not guaranteed to terminate for
programs over unbounded state-spaces. Abstract interpretation [17] overcomes
this fundamental problem by resorting to an approximation of the state-space
and the transition relation. By choosing an adequate approximation one can
enforce termination of the fixed-point computation after a finite number of steps.
The soundness of the analysis follows from the soundness of the abstract domain,
which is expressed in terms of a concretization function (denoted γ) relating
elements of the abstract domain to concrete properties of the program, ordered
by implication.
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For the purpose of this paper, we define soundness with respect to a channel,
i.e., we will use a concretization function mapping to sets of observables (where
implication corresponds to set inclusion).

Definition 2. An abstract element t	 is sound for a concretization function γ
with respect to a channel C : S → O if and only if C(S) ⊆ γ(t	).

The following theorem is an immediate consequence from Lemma 1; it states
that a counting procedure for γ(t	) can be used for deriving upper bounds on
the amount of information leaked by C.

Theorem 1. Let t	 be sound for γ with respect to C. Then

ML(C) ≤ log2
∣∣γ(t	)∣∣ .

For a more detailed account of the connection between abstract interpretation
and quantitative information-flow, see [30].

3 Cache Channels

In this section, we define channels corresponding to two adversary models that
can only observe cache properties. We also revisit two abstract domains for
reasoning about cache-states and show how they relate to those channels. We
begin with a primer on caching.

3.1 Caches

Typical caches work as follows. The main memory is partitioned into blocks of
size B that are referenced using locations loc. A cache consists of a number of
sets, each containing a fixed number of lines that can each store one memory
block. The size A of the cache sets is called the associativity of the cache. Each
memory block can reside in exactly one cache set, which is determined by the
block’s location. We can formally define a single cache set as a mapping

t : {1, . . . , A} → loc ∪ {⊥} ,

from line numbers to locations, where ⊥ represents an empty line. The mapping t
is injective, which captures that a memory block is stored in at most one line.
A cache is a tuple of independent cache sets. For simplicity of presentation, we
focus on single cache sets throughout the paper, except for the case study in
Section 5.

What happens when a memory block is requested depends on the replacement
strategy. Here we focus on the LRU (Least Recently Used) strategy, which is used
e.g. in the Pentium I processor. With LRU, each cache set forms a queue. When
a memory block is requested, it is appended to the head of the queue. If the
block was already stored in the cache (cache hit), it is removed from its original
position; if not (cache miss), it is fetched from main memory. Due to the queue
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structure of sets, memory blocks age when other blocks are looked up, i.e. they
move towards the tail of the queue and (due to the fixed length of the queue)
are eventually removed. For a formalization of the LRU set update function
see [20]. For a formalization of alternative update functions, such as FIFO (First
In First Out) see [21,38]. Depending on the concrete processor model, data and
instructions are processed using dedicated caches or a common one [20]. Unless
mentioned otherwise (e.g. in the experiments on AES), our results hold for any
cache analysis that is sound.

3.2 Two Adversary Models Observing the Cache

We consider a scenario where multiple processes share a common CPU. We as-
sume that one of these processes is adversarial and tries to infer information
about the computations of a victim process by inspecting the cache after ter-
mination. We distinguish between two adversaries Advprec and Advprob. Both
adversaries can modify the initial state of the cache with memories in their vir-
tual memory space, which we assume is not shared between processes, but they
differ in their ability of observing the final cache state:

Advprec : This adversary can observe which memory blocks are contained in the
cache at the end of the victim’s computation.

Advprob : This adversary can observe which blocks of his virtual memory space
are contained in the cache after the victim’s computation.

Note that neither adversary can observe the actual data that is stored in the
victim’s memory blocks that reside in the cache. The channel corresponding
to the adversary Advprec simply maps the victim’s input to the corresponding
final cache state. The channel corresponding to Advprob can be seen as an ab-
straction of the channel corresponding to Advprec, as it can be described as
the composition of the channel of Advprec with a function blur that maps all
memory blocks not belonging to the adversary’s virtual memory space to one
indistinguishable element. Advprob corresponds to the adversaries encountered
in synchronous “prime and probe” attacks [35], which observe the cache-state
by performing accesses to different locations and use timing measurements to
distinguish whether they are contained in the cache or not.

Considering that our adversary models allow some choice of the initial state,
they formally define families of channels that are indexed by the adversarially
chosen part of the initial cache. To give an upper bound on the leakage of all
channels in those families we would need relational information, which is not
supported by the existing cache analysis tools. One possible solution is to con-
sider an abstract initial state approximating all possible adversary choices, which
leads to imprecision in the analysis. In the particular case of a LRU replacement
strategy, we can use the following property:

Proposition 1. For caches with LRU strategy, the leakage to Advprec (Advprob)
w.r.t. any initial cache state containing only memory locations from the adver-
sary’s memory space is upper-bounded by the leakage to Advprec (Advprob) w.r.t.
an empty initial cache state.
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This result follows from the following observation: for each initial cache state
containing locations disjoint from the victim’s memory space, the first i lines of
the final cache state will contain the locations accessed by the victim, and the
remaining lines will contain the first A− i locations of the initial state shifted to
the right, where i depends on that particular run of the victim. That is, modulo
the adversarial locations, the number of possible final cache states corresponding
to an empty initial state matches the number of final cache states corresponding
to an initial state that does not contain locations from the victim’s memory
space. The assertion then follows immediately from Theorem 1. Proposition 1
will be useful in our case study, since the analysis we use provides a more accurate
final state when run with an empty initial cache.

3.3 Abstract Domains for Cache Analysis

Ferdinand et al. [20] propose abstract interpretation techniques for cache analy-
sis and prove their soundness with respect to reachability of cache states, which
corresponds to soundness w.r.t the channel of Advprec according to Definition 2.
In particular, they present two abstract domains for cache-states: The first do-
main corresponds to a may-analysis and represents the set of memory locations
that possibly reside in the cache. The second domain corresponds to a must-
analysis and represents the set of memory locations that are definitely in the
cache. In both cases, an abstract cache set is represented as a function

t	 : {1, . . . , A} → 2loc

mapping set positions to sets of memory locations, where t	(i)∩ t	(j) = ∅ when-
ever i �= j. In the following we will use t1

	 and t2
	 for abstract sets corresponding

to the may and must analysis respectively.
For the may analysis, the concretization function γ∪ is defined by

γ∪(t1
	) = {t | ∀i ∈ {1, . . . , A} : t(i) ∈

i⋃
j=1

t1
	(j) ∪ {⊥}}

This definition implies that each location that appears in the concrete state
appears also in the abstract state, and the position in the abstract state is a
lower bound for the position in the concrete.

For the must analysis, the concretization function γ∩ is defined by

γ∩(t2
	) = {t | ∀i ∈ {1, . . . , A} : t2	(i) ⊆

i⋃
j=1

{t(j)}}

This definition implies that each location that appears in the abstract state is
required to appear in the concrete, and its position in the abstract is an upper
bound for its position in the concrete.
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Example 1. Consider the following program running on a 4-way fully associa-
tive (i.e. only one set) data cache where . . . x . . . stands for an instruction that
references location x, and let e, a, b are pairwise distinct locations.

if . . . e . . . then . . . a . . . else . . . b . . .

With an empty initial abstract cache before execution, the may- and must-
analyses return the following abstract final states:

t1
	 = [{a, b}, {e}, {}, {}] t2

	 = [{}, {e}, {}, {}]

Both γ∪(t1
	) and γ∩(t2

	) contain the two reachable states [a, e,⊥,⊥] and
[b, e,⊥,⊥] (which is due to the soundness of the analyses) but also unreachable
states such as [⊥, e, a, b] (which is due to the imprecision of the analyses). In
particular, states in which empty cache lines are followed by non-empty cache
lines are artifacts of the abstraction, i.e. they cannot occur according to the
concrete cache semantics from [20]. More precisely, we have

∀i, j ∈ {1, . . . , A} : t(i) =⊥ ∧ j > i =⇒ t(j) =⊥ . (1)

It is hence sufficient to consider only the concrete states that also satisfy (1),
which enables us to derive tighter bounds in Section 4. For simplicity of notation
we will implicitly assume that (1) is part of the definition of γ∪ and γ∩.

To obtain the channel corresponding to the adversary model Advprob, we just
need to apply blur to the concretization of the must and may cache analysis,
which is equivalent to first applying blur to the sets appearing in the abstract
elements and then concretizing.

4 Counting Cache States

We have introduced channels corresponding to two adversaries, together with
sound abstract interpretations. The final step needed for obtaining an auto-
matic quantitative information-flow analysis from Theorem 1 are algorithms for
counting the concretizations of the abstract cache states presented in Section 3.3,
which we present next. As before, we restrict our presentation to single cache
sets. Counting concretizations of caches with multiple sets can be done by taking
the product of the number of concretizations of each set.

4.1 Concrete States Respecting may

We begin by deriving a formula for counting the concretizations of an abstract
may-state t1

	. To this end, let ni =
∣∣t1	(i)∣∣, n∗i =∑i

j=1 nj , for all i ∈ {1, . . . , A}
and n∗ = n∗A. The definition of γ∪(t1

	) informally states that, when reading the
content of t	 and t ∈ γ∪(t1	) from head to tail in lockstep, each non-empty line
in t has appeared in the same or a previous line of t1

	. That is, for filling line
k of t there are n∗k possibilities, of which k − 1 are already used for filling lines
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1, . . . , k− 1. The number of concrete states with a fixed number i of non-empty
lines is hence given by

i∏
k=1

(n∗k − (k − 1)) (2)

As the definition of γ∪ does not put a lower bound on the number i of nonempty
lines, we need to consider all i ∈ {1, . . . , A}. We obtain the following explicit
formula for the number of concretizations of t1

	.

Proposition 2 (Counting May).

∣∣γ∪(t1	)∣∣ = A∑
i=0

i∏
k=1

(n∗k − (k − 1))

Example 2. When applied to the abstract may-state t1
	 = [{a, b}, {e}, {}, {}]

obtained from the analysis of the program in Example 1 we obtain
∣∣γ∪(t1	)∣∣ = 11,

which illustrates that the bounds obtained by Proposition 2 can be coarse.

4.2 Concrete States Respecting must

For counting the concretizations of an abstract must-state t2
	, let mi =

∣∣t2	(i)∣∣,
m∗
i =

∑i
j=1mj , for all i ∈ {1, . . . , A} and m∗ = m∗

A. The definition of γ∩

informally states that when reading the lines of an abstract state t2
	 and a

concrete state t ∈ γ∩(t2	) from head to tail in lockstep, each element of t2
	 has

already appeared in the same or a previous line of t. More precisely, the mj

elements contained in line j of t2
	 appear in lines 1, . . . , j of t, of which m∗

j−1

are already occupied by the must-constraints of lines 1, . . . , j − 1. This leaves(
j−m∗

j−1
mj

)
mj ! possibilities for placing the elements of t2

	(j), which amounts to a

total of
A∏
j=1

(
j −m∗

j−1

mj

)
mj ! (3)

possibilities for placing all elements in t2
	. However, notice that m∗ ≤ A is

possible, i.e. must-constraints can leave cache lines unspecified. The number of
possibilities for filling those unspecified lines is

A∏
k=m∗+1

(�− (k − 1)) , (4)

where � = |loc| is the number of possible memory locations.
Finally, observe that (3) and (4) count concrete states in which each line is

filled. However, the definition γ∩ only mandates that at least m∗ lines of each
concrete state be filled. We account for this by introducing a variable i that
ranges from m∗ to A. We modify (3) by choosing from min(i, j) instead of j
positions1 and we modify (4) by replacing the upper bound by i. This yields the
following for explicit formula for the number of concretizations of t2

	.

1 The index j still needs to go up to A in order to collect all constraints.



Automatic Quantification of Cache Side-Channels 573

Proposition 3 (Counting Must).

∣∣γ∩(t2	)∣∣ = A∑
i=m∗

⎛⎝ A∏
j=1

(
min(i, j)−m∗

j−1

mj

)
mj !

i∏
k=m∗+1

(�− (k − 1))

⎞⎠
Example 3. When applied to the must-state t2

	 = [{}, {e}, {}, {}] and a set of
locations loc = {a, b, c, d, e}, Proposition 3 yields a number of 81 concretizations
of t2

	. This over-approximation stems from the fact that the abstract state re-
quires only the containment of e and that the rest of the lines can be chosen
from loc. We next tackle this imprecision by considering the intersection of may
and must.

4.3 Concrete States Respecting must and may

For computing the number of concrete states respecting both t2
	 and t1

	 we reuse
the notation introduced in Sections 4.1 and 4.2. As in Section 4.2 we use (3) for
counting the cache lines constrained by the must-information. However, instead
of filling the unconstrained lines with all possible memory locations, we now
choose only from the lines specified by the may-information. The counting is
similar to equation (2), the difference being that, as in (4), the product starts
with k = m∗ + 1 because the content of m∗ lines is already fixed by the must-
constraints. The key difference to (4) is that now we pick only from at most n∗k
lines instead of � lines. We obtain the following proposition.

Proposition 4 (Counting May and Must).

∣∣γ∪(t1	) ∩ γ∩(t2	)∣∣ ≤ A∑
i=m∗

⎛⎝ A∏
j=1

(
min(i, j)−m∗

j−1

mj

)
mj !

i∏
k=m∗+1

(n∗k − (k − 1))

⎞⎠
Two comments are in order. First, notice that the inequality in Proposition 4
stems from the fact that the lines unconstrained by the must-information may
be located at positions j < k. Using the constraint n∗j instead of n∗k would lead
to tighter bounds, however, an explicit formula for this case remains elusive.
Second, observe that the rightmost product is always non-negative. For this it is
sufficient to prove that the first factor n∗m∗+1 −m∗ is non-negative, because the
value of subsequent factors decreases by at most 1. Assume that n∗m∗+1−m∗ < 0
(and hence n∗m∗ < m∗). By (1), n∗j < j implies that line j is empty for all concrete
states, which for j = m∗ contradicts the requirement that all states contain at
least m∗ lines.

Example 4. When applied to the abstract cache states t1
	 = [{a, b}, {e}, {}, {}]

and t2
	 = [{}, {e}, {}, {}] from Example 1, Proposition 4 delivers a total of 9

concrete states.

It is easy to see that the expression in Proposition 4 can be evaluated in time
O(A3) because both the factorial and and n∗i can be computed in linear time
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and they are nested in two loops of length at most A. Although efficient, an
approximation using Proposition 4 can be coarse: In Example 4 we computed
a bound of 9 states, although (as is easily verified manually) there are only
4 concrete states respecting the constraints of both abstract states. We have
developed more accurate (but more complex) variants of Proposition 4 that yield
the exact bounds for this example, however, they are also not tight in general.

In the absence of a closed expression for the exact number of concrete states,
one can proceed by enumerating the set of all concrete states respecting may,
and filtering out those not respecting must (see [29] for an implementation).
The price to pay for this brute-force approach is a worst-case time complexity of
O(A!), e.g. if there are no must-constraints and the first location of the abstract
may-state contains A or more locations. This is not a limitation for the small
associativities often encountered in practice (A = 2 or A = 4), however, for fully
associative caches in which A equals the total number of lines of the cache, the
approximation given by Proposition 4 is the more adequate tool.

4.4 Counting for Probing Adversaries

For counting the possible observations of Advprob for arbitrary replacement
strategies, we can apply the techniques presented above to previously blurred
abstract states. For the case of a LRU strategy, we obtain the following better
bounds.

Proposition 5. The number of observations Advprob can make is bounded by

min(n∗, A)−m∗ + 1

The assertion follows from the fact that, after the computation, each cache set
will first contain the victim’s locations (which Advprob cannot distinguish), and
then a fixed sequence of locations from the adversary’s virtual memory whose
length only depends on the number of the victim’s blocks. I.e., when starting
from an empty cache set, the adversary can only observe the length of the final
cache set. This size is at least m∗ (because at least that number of lines must be
filled), and at most min(n∗, A). The additional 1 accounts for the empty state.

5 Case Study

In this section we report on a case-study where we use the methods developed
in this paper for analyzing the cache side-channel of a widely used AES imple-
mentation on a realistic processor model with different cache configurations.

5.1 Tool Support

We have implemented a tool for the static quantification of cache side-channels,
based on the development presented in this paper. Its building blocks are the
AbsInt a3 for static cache analysis, and a novel counting engine for cache-states.
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Static analyzer. The AbsInt a3 [1] is a suite of industrial-strength tools for the
static analysis of embedded systems. In particular, a3 comprises tools (called
aiT and TimingExplorer) for the estimation of worst-case execution times based
on [20]. The tools cover a wide range of CPUs, such as ERC32, M68020, LEON3
and several PowerPC models (aiT), as well as CPU models with freely con-
figurable LRU cache (TimingExplorer). We base our implementation on the
TimingExplorer for reasons of flexibility. The TimingExplorer receives as in-
put a program binary and a cache configuration and delivers as output a control
flow graph in which each (assembly-level) instruction is annotated by the corre-
sponding abstract may and must states. We extract the annotations of the final
state of the program, and provide them as input to the counting engine.

Counting engine. Our counting engine determines the number of concretizations
of abstract cache states according to the development in Section 4. Our language
of choice is Haskell [4], because it allows for a concise representation of sums,
products, and enumerations using list comprehensions. A detailed description
of the routines for exact counting can be found in the extended version of the
paper [29].

5.2 Target Implementations

Code. We analyze the implementation of 128 bit AES encryption from the
PolarSSL library [3], a lightweight crypto suite for embedded platforms. As
is standard for software implementations of AES, the code consists of single
loop (corresponding to the rounds of AES) in which heavy table lookups are
performed to indices computed using bit-shifting and masking. We also ana-
lyze a modified version of this implementation, where we add a loop that loads
the entire lookup table into the cache before encryption. This preloading has
been suggested as countermeasure against cache attacks because, intuitively, all
lookups during encryption will hit the cache.

Platform. We compile the AES C source code into a binary for the ARM7TDMI
CPU [2]. Although the original ARM7TDMI does not have any caches, the Ab-
sInt TimingExplorer supports this CPU with the possibility of specifying arbi-
trary configurations of data/instruction/mixed caches with LRU strategy. For
our experiments we use data caches with sizes of 16-128 KB, associativity of 4
ways, and a line size of 32 Bytes, which are common configurations in practice.

5.3 Improving Precision by Partitioning

The TimingExplorer can be very precise for simple expressions, but loses preci-
sion when analyzing array lookups to non-constant indexes. This source of im-
precision is well-known in static analysis, and abstract interpretation offers tech-
niques to regain precision, such as abstract domains specialized for arrays [18],
or automatic refinement of transfer functions. For our analysis, we use results on
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trace partitioning [32], which consists in performing the analysis on a partition
of all possible runs of a program, each partition yielding more precise results.

We have implemented a simple trace partitioning strategy using program
transformations that do not modify the data cache (which is crucial for the
soundness of our approach). For each access to the look-up table, we introduce
conditionals on the index, where each branch corresponds to one memory block,
and we perform the table access in all branches. As the conditionals cover all
possible index values for the table access, we add one memory access to the index
before the actual table look-up, which does not change the cache state for an
LRU cache strategy, since the indices have to be fetched before accessing the
table anyway. An example of the AES code with trace partitioning can be found
in the extended version of this paper [29].

Note that the same increase in precision could be achieved without program
transformation if the trace partitioning were implemented at the level of the
abstract interpreter, which would also allow us to consider instruction caches
and cache strategies beyond LRU. Given that the TimingExplorer is closed-
source, we opted for partitioning by code transformation.

5.4 Results and Security Interpretation

The results of our analysis with respect to the adversary Advprec are depicted in
Figure 1. For AES without preloading of tables, the bounds we obtained exceed
160 bits for all cache sizes. For secret keys of only 128 bits, they are not precise
enough for implying meaningful security guarantees. With preloading, however,
those bounds drop down to 55 bits for caches sizes of 16KB and to only 1 bit for
sizes of 128KB, showing that only a small (in the 128KB case) fraction of the
key bits can leak in one execution. The results of our analysis with respect to the
(less powerful, but more realistic) adversary Advprob are depicted in Figure 2.
As for Advprec, the bounds obtained without preloading exceed the size of the
secret key. With preloading, however, they remain below 6 bits and even drop
to 0 bits for caches of 128KB, giving a formal proof of noninterference for this
implementation and platform.

Notice that the leakage bounds we derive hold for single executions. For the
case of zero leakage they trivially extend to bounds for multiple executions and
immediately imply strong security guarantees. For the case of non-zero leakage,
the bounds can add up when repeatedly running the victim process with a
fixed key and varying payload, leading to a decrease in security guarantees. See
Section 7 for possible solutions to this problem.

6 Prior Art

Timing attacks against cryptosystems date back to [26]. They can be divided into
those exploiting timing variations due to control-flow [14,26] and those exploiting
timing variations of the execution platform, e.g. due to caches [7,9,12,35,36,37],
or branch prediction units [8]. In this paper we focus solely on caching.
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Fig. 1. Upper bounds for the maximal leakage w.r.t. the adversary Advprec and a
4-way set associative cache with 32B lines of sizes 16KB-128KB

Fig. 2. Upper bounds for the maximal leakage w.r.t. the adversary Advprob and a 4-way
set associative cache with 32B lines of sizes 16KB-128KB

The literature on cache attacks is stratified according to a variety of different
adversary models: In time-driven attacks [9, 12] the adversary can observe the
overall execution time of the victim process and estimate the overall number
of cache hits and misses. In trace-driven attacks [7] the adversary can observe
whether a cache hit or miss occurs, for every single memory access of the victim
process. In access-driven attacks [35,37] the adversary can probe the cache either
during computation (asynchronous attacks) or after completion (synchronous
attacks) of the victim’s computation, giving him partial information about the
memory locations accessed by the victim. Finally, some attacks assume that the
adversary can choose the cache state before execution of the victim process [35],
whereas others only require that the cache does not contain the locations that are
looked-up by the victim during execution [9]. The information-theoretic bounds
we derive hold for single executions of synchronous access-driven adversaries,
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where we consider initial states that do not contain the victim’s data. The deriva-
tion of bounds for alternative adversary models is left future work.

A number of mitigation techniques have been proposed to counter cache at-
tacks. Examples include coding guidelines [16] for thwarting cache attacks on x86
CPUs, or novel cache-architectures that are more resistant to cache attacks [42].
One commonly proposed mitigation technique is preloading of tables [12, 35].
However, as first observed by [12], it is a non-trivial issue to establish the effi-
cacy of this countermeasure. As [35] comments:

[. . . ], it should be ensured that the table elements are not evicted by the
encryption itself, by accesses to the stack, inputs or outputs. Ensuring
this is a delicate architecture-dependent affair [. . . ].”

The methods developed in this paper enable us to automatically and formally
deal with these delicate affairs based on an accurate model of the CPU.

For the case of AES, there are efficient software implementations that avoid
the use of data caches by bit-slicing, and achieve competitive performance by
relying on SIMD (Single Instruction, Multiple Data) support [25]. Furthermore,
a model for statistical estimation of the effectiveness of AES cache attacks based
on sizes of cache lines and lookup tables has been presented in [41]. For programs
beyond AES that are not efficiently implementable using bit-slicing, our analysis
technique enables the derivation of formal assertions about their leakage, based
on the actual program semantics and accurate models of the CPU.

Technically, our work builds on methods from quantitative information-flow
analysis (QIF) [15], where the automation by reduction to counting appears
in [11, 24, 33, 34], and the connection to abstract interpretation in [30]. Prior
applications of QIF to side-channels in cryptosystems [27, 28, 31] are limited to
stateless systems. For the analysis of caches, we rely on the abstract domains
from [20] and their implementation in the AbsInt TimingExplorer [1]. Finally,
our work goes beyond language-based approaches that consider caching [10, 23]
in that we rely on more realistic models of caches and aim for more permissive,
quantitative guarantees.

7 Conclusions and Future Work

We have shown that cache side-channels can be automatically quantified. For
this, we have leveraged powerful tools for static cache analysis and quantitative
information-flow analysis, which we connect using novel techniques for counting
the concretizations of abstract cache states. We have demonstrated the practi-
cality of our approach by deriving information-theoretic security guarantees for
an off-the-shelf implementation of 128-bit AES (with and without a commonly
suggested countermeasure) on a realistic model of an embedded CPU.

Our prime target for future work is to derive security guarantees that hold
for multiple executions of the victim process. One possibility to achieve this
is to extend static cache analysis along the lines of [27]. Another possibility is
to employ leakage-resilient cryptosystems [19], where our work can be used for
bounding the range of the leakage functions. Further avenues are to extend our
quantification to cater for alternative adversary models, such as asynchronous,
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trace-based, and timing-based. Progress along these lines will enable the auto-
matic derivation of formal, quantitative security guarantees for a larger class of
relevant attack scenarios.
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Abstract. Several recent operating systems provide system calls that
allow an application to explicitly manage the privileges of modules with
which the application interacts. Such privilege-aware operating systems
allow a programmer to a write a program that satisfies a strong security
policy, even when it interacts with untrusted modules. However, it is
often non-trivial to rewrite a program to correctly use the system calls
to satisfy a high-level security policy. This paper concerns the policy-
weaving problem, which is to take as input a program, a desired high-
level policy for the program, and a description of how system calls affect
privilege, and automatically rewrite the program to invoke the system
calls so that it satisfies the policy. We present an algorithm that solves
the policy-weaving problem by reducing it to finding a winning mod-
ular strategy to a visibly pushdown safety game, and applies a novel
game-solving algorithm to the resulting game. Our experiments demon-
strate that our algorithm can efficiently rewrite practical programs for a
practical privilege-aware system.

1 Introduction

Developing practical but secure programs remains a difficult, important, and
open problem. Web servers and VPN clients execute unsafe code, and yet are
directly exposed to potentially malicious inputs from a network connection [24].
System utilities such as Norton Antivirus scanner [20], tcpdump, the DHCP
client dhclient [23], and file utilities such as bzip, gzip, and tar [16,21,22]
have contained unsafe code with well-known vulnerabilities that allow them to
be compromised if an attacker can control their inputs. Once an attacker compro-
mises any of the above programs, they can typically perform any action allowed
for the user that invoked the program, because the program does not restrict
the privileges with which its code executes.

Traditional operating systems provide to programs only weak primitives for
managing their privileges [9,18,23,24]. As a result, if a programmer is to ver-
ify that his program is secure, he typically must first verify that the program
satisfies very strong properties, such as memory safety. However, recent work
[9,18,23,24] has produced new operating systems that allow programmers to de-
velop programs that execute unsafe code but still satisfy strong properties, and
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to construct such programs with significantly less effort than fully verifying the
program. Such systems map each program to a set of privileges, and extend
the set of system calls provided by a traditional operating system with security-
specific calls (which henceforth we will call security primitives) that the program
invokes to manage its privileges. We call such systems privilege-aware systems.

This paper concerns the policy-weaving problem, which is to take a program
and a security policy that defines what privileges the program must have, and
to automatically rewrite the program to correctly invoke the primitives of a
privilege-aware system so that the program satisfies the policy when run on
the system. The paper addresses two key challenges that arise in solving the
policy-weaving problem. First, a privilege-aware system cannot allow a program
to modify its privileges arbitrarily, or an untrusted module of the program could
simply give itself the privileges that it requires to carry out an attack. Instead,
the system allows a program to modify its privileges subject to system-specific
rules. In practice, these rules are subtle and difficult to master; the developers
of the Capsicum capability system reported issues in rewriting the tcpdump
network utility to use the Capsicum primitives to satisfy a security policy, while
preserving the original functionality of tcpdump [23].

Second, the notions of privilege often differ between privilege-aware systems,
and thus so too do the primitives provided by each system, along with the rules
relating privileges to primitives. The Capsicum operating system defines priv-
ileges as capabilities [23], the Decentralized Information Flow Control (DIFC)
operating systems Asbestos, HiStar, and Flume [9,18,24] define privileges as the
right to send information, and each provide different primitives for manipulating
information-flow labels [7]. Thus, a policy-weaving algorithm for a specific system
must depend on the privileges and primitives of the system, yet it is undesirable
to manually construct a new policy-weaving algorithm for each privilege-aware
system that has been or will yet be developed.

We address the above challenges by reducing the policy-weaving problem to
finding a winning Defender strategy to a two-player safety game. Each game is
played by an Attacker, who plays program instructions, and a Defender, who
plays system primitives. The game accepts all sequences of instructions and
primitives that violate the given policy. A winning Defender strategy never allows
the Attacker to generate a play accepted by the game, and thus corresponds to
a correct instrumentation of the program, which invokes primitives so that the
policy is never violated. If the rules describing how a system’s primitives modify
privileges can be encoded as an appropriate automaton, then the game-solving
algorithm can be applied to rewrite programs for the system. We argue that
stack-based automata, in particular visibly pushdown automata (VPAs) [5], are
sufficient to model the rules of practical privilege-aware systems. Furthermore,
modular winning strategies exactly correspond to correct instrumentations of
programs for such systems.

Finding a modular winning strategy to a game defined by a VPA is NP-
complete. However, games resulting from policy-weaving problems are con-
structed as products of input automata, and a game will often have a strategy
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whose structure closely matches one of the inputs. Inspired by this observation,
we present a novel algorithm that, given a game, finds a modular strategy with
structure similar to an additional, potentially smaller game called a scaffold.
We show that our scaffolding algorithm generalizes two known algorithms for
finding modular strategies [4,19] — in particular, those algorithms result from
using two (different) “degenerate” scaffolds, and correspond to two ends of a
spectrum of algorithms that can be implemented by our algorithm. We eval-
uated the scaffold-based algorithm on games corresponding to policy-weaving
problems for six UNIX utilities with known vulnerabilities for the Capsicum ca-
pability system, and found that it could rewrite practical programs efficiently,
and that the choice in scaffold often significantly affected the performance of the
algorithm.

Organization §2 motivates by example the policy-weaving problem and our
game-solving algorithm. §3 defines the policy-weaving problem, and reduces the
problem to solving visibly-pushdown safety games. §4 presents a novel algorithm
for solving visibly pushdown safety games. §5 presents an experimental evalua-
tion of our algorithm. §6 discusses related work.

2 Overview

In this section, we motivate the policy-weaving problem. We sketch how the
policy-weaving problem can be reduced to finding a winning strategy to a class
of safety games, and how the structure of games constructed from policy-weaving
problems makes them amenable to our novel game-solving algorithm.

2.1 An Example Policy-Weaving Problem: Filter on MiniCap

We illustrate the policy-weaving problem using an example program Filter that
reads information from an input channel, processes and compresses the data,
and then writes the data to an output channel. Filter is inspired by the UNIX
utilities tcpdump and gzip, which have exhibited security vulnerabilities in the
past, and have previously been rewritten manually for the Capsicum privilege-
aware systems [23]. The executions of Filter are presented as the runs of the
automaton F in Fig. 1(a), where each transition is labeled with a program action.
Intraprocedural transitions are denoted with solid lines. Call transitions, which
place their source node on a stack (see Defn. 3), are denoted with dashed lines.
Return transitions, defined by the top two states of the stack, are denoted with
dash-dot lines, where the transition from the top state of the stack is labeled
with a 0, and the transition from the next state down on the stack is labeled
with a 1. In each figure, doubled circles denote accepting states.

Filter executes a no-op instruction (spin) until it reads data from its desig-
nated input channel (e.g., UNIX stdin) (read), processes a segment of its input
data (proc), and calls a compression function Compress (call). Compress first
opens and reads a configuration file (cnfg), compresses its input data (cmpr),
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(a) (b) (c)

Fig. 1. Automata models of (a) the program Filter (F), (b) Filter’s MiniCap mon-
itor (M), and (c) Filter’s policy for MiniCap (Pol). Executions of Filter are the
runs of the automaton in (a). Filter’s MiniCap monitor allows sequences of privilege-
instruction pairs and primitives accepted by the automaton in (b). Filter’s policy
allows all sequences of privilege-instructions pairs accepted by the automaton in (c).
Notation is explained in §2.1.

and returns the result (ret). After Compress returns, Filter writes the data
to its designated output channel (e.g., UNIX stdout) (wr), and loops to read
another segment of data (loop).

Unfortunately, in practice, much of the code executed by a practical imple-
mentation of functions like Filter and Compress (e.g., tcpdump and gzip [23])
is not memory-safe, and thus allows an attacker to violate the security policy
of a program. Suppose that the programmer wants to ensure that Filter only
interacts with communication channels by opening and reading from its desig-
nated input at read and writing to its designated output at wr, and Compress
only interacts with communication channels by reading from its configuration
files at cnfg. However, suppose also that the data-processing action proc in
Filter and the compression action cmpr in Compress perform memory-unsafe
operations when passed particular inputs. Then an attacker who can control the
inputs to Filter could craft a malicious input that injects code that opens a
communication channel (e.g., a file) and violates the policy.

However, if the programmer correctly rewrites Filter for a suitable privilege-
aware systems, then the rewritten Filter will satisfy such a policy even if it
executes code injected by an attacker. Consider a privilege-aware system Mini-
Cap, which is a simplification of the Capsicum capability system now included
in the “RELEASE” branch of FreeBSD [11,23]. MiniCap maps each executing
process to a two-valued flag denoting if the process has high or low privilege. If a
process has high privilege H, then it can open communication channels, but if it
has low privilege L, then it can only read and write to its designated input and
output channels. A process on MiniCap begins executing with high privilege,
but may invoke the MiniCap primitive dropcap, which directs MiniCap to give



Secure Programming via Visibly Pushdown Safety Games 585

the process low privilege, and never give the process the high privilege again. A
process thus might invoke dropcap after executing safe code that requires high
privilege, but before executing unsafe code that requires only low privilege.

MiniCap also allows one process to communicate with another process via a
remote procedure call (RPC), in which case the called process begins execution
with high privilege, independent of the privilege of the caller. The Capsicum
capability system uses RPC in this way, while DIFC systems allow a process to
call a process with different privileges via an analogous gate call [24].

MiniCap is partially depicted in Fig. 1(b) as an automaton M that accepts
sequences of privilege-instruction pairs and primitives executed by Filter. We
call M the MiniCap monitor of Filter. M accepts a trace of privilege-instruction
pairs and primitives if when Filter executes the sequence of instructions and
primitives, MiniCap grants Filter the privilege paired with each instruction.
The call and return transitions of M are omitted for simplicity; M transitions on
an RPC to the high-privilege state H, and returns from an RPC to the calling
state.

Filter’s policy can be expressed directly in terms of MiniCap’s privileges
by requiring that the instructions read and cnfg execute with high privilege,
while the instructions proc and cmpr execute with low privilege. The policy is
presented as an automaton Pol in Fig. 1(c), where each transition is labeled with
a privilege-instruction pair (the label * denotes any label that does not appear
explicitly on a transition from the same source state). The traces accepted by
Pol are the sequences of instruction-privilege pairs that violate the policy.

For Filter to satisfy its policy when it is run on MiniCap, it must use
the primitives of MiniCap in a way that is only indirectly related to, and sig-
nificantly more complex than, its desired policy. In particular, Filter must
(1) invoke dropcap after executing read but before executing proc, (2) call
Compress via RPC so that Compress executes cnfg with high privilege, (3) in-
voke dropcap after executing cnfg but before executing cmpr. This rewritten
Filter is “modular” across calls and returns, in the sense that the rewritten
Filter and Compress invoke primitives independently of the actions of each
other. On practical privilege-aware systems, a process that can be called via RPC
cannot necessarily trust its caller, and thus cannot trust information passed by
its caller. Thus a practical instrumentation must be modular.

The policy-weaving problem for Filter is to take F, its policy Pol, and Mini-
Cap monitor M, and instrument Filter to use MiniCap’s primitives modularly
to satisfy Pol.

2.2 Policy-Weaving Filter via Safety Games

Each policy-weaving problem can be reduced to finding a winning strategy to a
safety game. A safety game is played by two players, an Attacker and Defender,
and is a transition system in which each state belongs to either the Attacker or
the Defender. The goal of the Attacker is to drive the state of the game to an
accepting state, while the goal of the Defender is to thwart the Attacker. The
game is played in turns: when the game enters an Attacker state, the Attacker
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(a) (b)

Fig. 2. (a) a selection of transitions of the game Gex that is the product of F, Pol, and
M from Fig. 1; (b) a strategy corresponding to a correct instrumentation of Filter

chooses the next transition, and when the game enters a Defender state, the
Defender chooses the next transition. A strategy for the Defender takes as input
a play of the game, and chooses the next transition for the Defender. A winning
strategy chooses Defender transitions that never allow the Attacker to drive the
state of the game to an accepting state.

From program, policy, and monitor automata, we can construct a game that
accepts all policy-violating executions of a version of the program that is instru-
mented to invoke the primitives of the monitor. The game is constructed by (1)
transforming the alphabets of the automata to a common alphabet defined by
the instructions, privileges, and primitives, (2) constructing the product of the
transformed automata, and (3) transforming the alphabet of the resulting prod-
uct game so that all Attacker transitions are labeled with program instructions,
and all Defender transitions are labeled with system primitives.

A subset of the transitions of the game Gex constructed from F, Pol, and M
are shown in Fig. 2(a). Each state of Gex is either an Attacker or Defender state
constructed from a triple of a state of F, state of Pol, and state of M, and each
state in Fig. 2(a) is labeled with its triple. Each Attacker state and Attacker
transition is denoted with a solid circle or line, while each Defender state is de-
noted with a dotted circle or line. The play “read, noop, proc” is accepted by
Gex (i.e., is a winning play for the Attacker) because it is an execution in which
the instrumented Filter does not execute dropcap before executing proc, caus-
ing proc to execute with high-privilege, which violates the policy Pol. However,
the play “read, dropcap, proc” is not accepted by Gex, because it corresponds
to an execution in which Filter invokes dropcap, causing proc to execute with
low privilege, which satisfies the policy.

One winning Defender strategy to Gex, which corresponds to the correct in-
strumentation of Filter given in §2.1, is presented in Fig. 2(b). The strategy is a
transducer that, from its current state, reads an instruction executed by Filter,
outputs the primitive paired with the instruction on the label of a transition t
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(Fig. 2(b) includes a primitive noop that denotes that no MiniCap primitive
is invoked), transitions on t, and reads the next instruction. The strategy is
partitioned into a Filter module that chooses what primitives are invoked dur-
ing an execution of Filter, and a Compress module that chooses primitives
are invoked during the execution of Compress. The modules are independent,
in that the primitives chosen by the Compress module are independent of the
instructions and primitives executed by Filter before the most recent call of
Compress.

Solving games constructed from policy-weaving problems efficiently is a hard
problem. The game Gex is the product of F, Pol, and M, and thus has a state space
whose size is proportional to the product of the sizes of F, Pol, and M (Gex has
128 states). Furthermore, finding modular winning Defender strategies to games
is NP-complete in the size of the game. However, in practice, games constructed
from policy-weaving problems have a winning strategy whose structure closely
matches the structure of one of the input automata. For example, the winning
strategy in Fig. 2(b) closely matches the structure of F. Each execution of Filter
is in state Fn of F when the strategy is in state Sn, and in state Cn of F when
the strategy is in state Tn (see Fig. 1(a) and Fig. 2(b)). To find winning modular
strategies to games efficiently, we apply a novel algorithm that takes a game
and an additional, potentially smaller, game called a scaffold, and searches for
a winning strategy whose structure is similar to that of the scaffold. For Gex, F
serves as such a scaffold.

3 Policy Weaving as a Safety Game

3.1 Definition of the Policy-Weaving Problem

The policy-weaving problem is to take a program, a description of a privilege-
aware system, and a policy that describes what privileges the program must
have as it executes on the system, and to instrument the program so that it
always has the privileges required by the policy. We model a program, policy,
and privilege-aware system each as a Visibly Pushdown Automaton.

Definition 1. A deterministic visibly-pushdown automaton ( Vpa) for internal
actionsΣI , call actionsΣC , and return actionsΣR (alternatively, a (ΣI , ΣC , ΣR)-
Vpa) is a tuple V = (Q, ι,QF , τi, τc, τr), where: Q is the set of states ; ι ∈ Q is
the initial state; QF ⊆ Q is the set of accepting states ; τi : Q × Σi → Q is the
internal transition function; τc : Q × Σc → Q is the call transition function;
τr : Q×Σr ×Q→ Q is the return transition function.

For Σ̂ = ΣI ∪ΣC ∪ΣR, each Vpa accepts a set of traces of (i.e., sequences of
actions in) Σ̂. Let ε denote the empty sequence. Let “.” denote the concatenation
of two sequences; for set X , x ∈ X , and s ∈ X∗, x . s = [x] . s and s . x = s . [x],
where [x] ∈ X∗ is the sequence containing only x. For setsX0 andX1, let X0 . X1

be the set of all sequences x0 . x1 for x0 ∈ X0 and x1 ∈ X1. Let τ : Q∗×Σ̂ → Q∗
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map a sequence of states s ∈ Q (i.e., a stack) and action a ∈ Σ̂ to the stack to
which V transitions from s on a:

τ(q . s, a) = τI(q, a) . s for a ∈ ΣI

τ(q . s, a) = (τC(q, a) . q . s) for a ∈ ΣC

τ((q0 . q1 . s′), a) = τR(q0, a, q1) . s′ for a ∈ ΣR

Let ρ : Σ̂∗ → Q∗ map each trace to the stack that V is in after reading the trace.
Formally, ρ(ε) = ι, and for a ∈ Σ̂ and s ∈ Σ̂∗, ρ(s . a) = τ(ρ(s), a). A trace
t ∈ Σ̂∗ is accepted by V if ρ(t) = q . s with q ∈ QF . In a trace t, an instance c of
a call action is matched by an instance r of a return action if c is before r in t,
and each instance c′ of a call action in t between c and r is matched by a return
action r′ between c and r. A trace is matched if all call and return actions in the
string are matched. Let L(V ) be the set of all traces accepted by V . 	

A program is a language of traces of intraprocedural instructions, calls, and
returns of the program (e.g., for Filter in §2, spin, read, etc.). Let Instrs =
(ΣI , ΣC , ΣR), let Înstrs = ΣI ∪ΣC ∪ΣR, and let a program P be an Instrs-Vpa.

A program policy is a language of traces of program instructions paired with
privileges. A program’s privilege is a system-specific ability (e.g., for MiniCap
in §2, a program may have either the high privilege H or the low privilege L).
Let Privs be a set of privileges, and let the set of privileged executions of P

be (Înstrs × Privs)∗. Let an (Instrs,Privs)-policy for P be a (ΣI × Privs, ΣC ×
Privs, ΣR,×Privs)-Vpa (e.g., Fig. 1(c)) that accepts all privileged executions that
constitute violations.

A privilege-aware monitor is a language of privileged executions interleaved
with primitives. The primitives of a privilege-aware system are the set of security-
specific system calls that the application can invoke to manage its privileges (e.g.,
for MiniCap, the system call dropcap). Let Prims be a set of primitives and let
the instrumented executions of P be (Prims . Înstrs)∗. A privilege-aware monitor
of P reads an instrumented execution of P, and decides what privilege P has as
it executes each instruction. Let an (Instrs,Privs,Prims)-privilege-aware monitor
M be a ((ΣI × Privs) ∪ Prims, ΣC × Privs, ΣR × Privs)-Vpa.

Definition 2. (Policy-Weaving Problem) Let P be a program with internal,
call, and return alphabets Instrs = (ΣI , ΣC , ΣR). For privileges Privs, let Pol be
an (Instrs,Privs)-policy of P. For primitives Prims, let M be an (Instrs,Privs,Prims)-
privilege-aware monitor.
Let an instrumentation function be a function I : Înstrs

∗ → Prims, and
let Itr : Înstrs

∗ → (Prims . Înstrs)∗ map each sequence of instructions to
the instrumentation of the sequence defined by I: Itr(ε) = I(ε), and for
s ∈ Înstrs

∗
and a ∈ Înstrs, Itr(s . a) = Itr(s) . I(s . a) . a. Let PrivExM :

(Prims . Înstrs)∗ → (Înstrs × Privs)∗ map each instrumented execution to the
privileged execution that it induces on M: for primitives pj , instructions ij, and
privileges rj , PrivExM([p0, i0, . . . , pn, in]) = [(p0, r0), . . . , (pn, rn)] if and only if
[p0, (i0, r0), . . . , pn, (in, rn)] ∈ L(M).
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The policy-weaving problem PolWeave(P,Pol,M) is to find an instrumen-
tation function I such that:

1. I instruments P to never violate Pol: PrivExM(Itr(L(P))) ∩ L(Pol) = ∅.
2. I chooses primitives independently of the execution before the most recent

call; i.e., I is modular. Let p0, p1 ∈ Img(Itr), (where for a relation R, Img(R)
is the image of R), and p0 = p0

0 . c . p
0
1 . r0 . p

0
2, p1 = p1

0 . c . p
1
1 . r1 . p

1
2,

where call action c is matched by r0 in p0, and is matched by r1 in p1.
Let p0

1 = a0, b
0
0, a1, b

0
1, . . . , an, b

0
n, and let p1

1 = a0, b
1
0, a1, b

1
1, . . . , an, b

1
n. Then

b0i = b1i for each i in each such p0 and p1. 	

Defn. 2 formalizes the informal policy-weaving problem illustrated in §2. As
discussed in §4.1, if a policy-weaving problem has a solution I, then it has a
solution I∗ that may be represented as a VPA transducer T (i.e., a VPA where
each action is labeled with input and output symbols). The problem of rewriting
program P to satisfy the policy thus amounts to applying T to P, using a standard
product construction from automata theory.

Privilege-aware systems are typically applied to monitor programs that could
run injected code, yet an instrumentation function is defined in Defn. 2 to choose
a primitive after each instruction executed by the program. However, this is not
a fundamental limitation, as if a programmer or static analysis tool determines
that injected code might be run at a particular point in the program, then we can
define the monitor so that no primitive other than a noop can be invoked by the
instrumentation. Conversely, it is not too restrictive to allow an instrumentation
function to invoke only a single primitive after each instruction, as we can rewrite
the program to execute a sequence of security-irrelevant instructions between
which the instrumentation can invoke a sequence of primitives. In [14] App. A,
we describe two different privilege-aware systems as Vpa.

3.2 From Policy Weaving to Safety Games

Each policy-weaving problem PolWeave(P,Pol,M) can be reduced to a single-
entry Vpa (Sevpa [3]) safety game that accepts plays corresponding to instru-
mented executions of P that violate Pol when run on M. A Sevpa safety game is
a Vpa structured as a set of modules with unique entry points whose transitions
are decided in turn by an Attacker and a Defender. The states of the game are
partitioned into modules, where the system transitions to a unique module on
each call transition.

Definition 3. A Sevpa safety game for Attacker internal actions ΣI,A, De-
fender internal actions ΣD, call actions ΣC , and return actions ΣR is a tuple
G = (QA, QD, Q0, ι0, {(Qc, ιc)}c∈ΣC , QF , τI,A, τD, τR), where

– QA ⊆ Q is a finite set of Attacker states.
– QD ⊆ Q is a finite set of Defender states. QA and QD partition the states

of the game Q.
– Q0 is the initial module.



590 W.R. Harris, S. Jha, and T. Reps

– ι0 ∈ Q0 ∩QD is the initial state.
– For c ∈ ΣC , Qc is the module of c. The sets {Qc}c∈ΣC and Q0 are pairwise

disjoint, and partition Q.
– For c ∈ ΣC , ιc ∈ Qc ∩QD is the initial state of c.
– QF ⊆ Q0 ∩QD is the set of accepting states.
– τI,A : QA ×ΣI,A → QD is the Attacker internal transition function.
– τD : QD ×ΣD → QA is the Defender internal transition function.
– τR : QA ×ΣR × (QA ×ΣC) → QD is the return transition function.

The modules are closed under internal transitions: for x ∈ {0}∪ΣC , q ∈ Qx, and
a ∈ ΣI,A, τI,A(q, a) ∈ Qx, and for a ∈ ΣD, τD(q, a) ∈ Qx. A Sevpa safety game
is not defined by using an explicit call transition function, because each call on
an action c pushes on the stack the calling Attacker state and calling action (we
thus call Γ = QA×ΣC the stack symbols of the game), and transitions to ιc. The
modules of a Sevpa safety game are closed under matching calls and returns:
for x ∈ {0}∪ΣC, c ∈ ΣC , qx ∈ Qx, qc ∈ Qc, and r ∈ ΣR, τR(qc, r, (qx, c)) ∈ Qx.

The plays of a Sevpa are defined analogously to the traces of a Vpa. Let
the configurations of G be C = Q× Γ ∗, let the attacker configurations be CA =
C ∩ (QA ×Γ ∗), and let the defender configurations be CD = C ∩ (QD ×Γ ∗). Let
the Attacker actions be ΣA = ΣI,A ∪ΣC ∪ΣR. τA : CA ×ΣA → CD maps each
Attacker configuration and Attacker action to a Defender configuration:

τA((q, s), a) = (τI,A(q, a), s) for a ∈ ΣI,A

τA((q, s), a) = (ιc, (q, a) . s) for a ∈ ΣC

τA((q, s0 . s′), a) = (τR(q, a, s0), s′) for a ∈ ΣR

Because each transition on a Defender action is to an Attacker state and each
transition on an Attacker action is to a Defender state, all plays that transition
to a defined configuration are in (ΣD . ΣA)∗. Let ρ : (ΣD . ΣA)∗ → CD map
each play of alternating Defender and Attacker actions to the Defender config-
uration that the game transitions to from reading the play: ρ(ε) = (ι0, ε), and
ρ(p . a . b) = τA(τD(ρ(p), a), b). A play p ∈ (ΣD . ΣA)∗ is accepted by G if
ρ(p) = (q, ε) with q ∈ QF . Let L(G) be the set of all plays accepted by G. 	

Because all accepting states of a game are in the initial module, a game can only
accept matched plays. Superscripts denote the Vpa or Sevpa game to which
various components belong; e.g., QG are the states of Sevpa game G.

A Defender strategy of a two-player safety game G is a function σ : (ΣG
A)∗ →

ΣG
D that takes as input a sequence of Attacker actions, and outputs a Defender

action. σ is a winning strategy if as long as the Defender uses it to choose his
next transition of the game, the resulting play is not accepted by G: formally,
σtr((ΣG

A)∗)∩L(G) = ∅ (for σtr as defined in Defn. 2). Let σ be modular if it sat-
isfies the condition analogous to a modular instrumentation function (Defn. 2).

Theorem 1. For each policy-weaving problem P = PolWeave(P,Pol,M), there
is a Sevpa safety game G = PolWeaveGame(P,Pol,M) such that each instrumen-
tation function that satisfies P defines a winning modular Defender strategy of
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G, and each winning modular Defender strategy of G defines a satisfying instru-
mentation function of P.

The intuition behind the construction of G from P = PolWeave(P,Pol,M) is
given in §2.2. From P, we construct a game GP that accepts all instrumented
privileged instrumented executions of P. From Pol, we constructed a game GPol

that accepts all instrumented privileged executions that violate Pol. We construct
G as the product of GP, GPol, and GM. Proofs of all theorems stated in §3 and §4
are in [14] App. B.

4 Solving SEVPA Safety Games with Scaffolds

In this section, we present an algorithm ScafAlgo that finds a winning modular
Defender strategy for a given Sevpa safety game. The algorithm uses an addi-
tional, potentially smaller game, which we call a scaffold. We present ScafAlgo as
a non-deterministic algorithm, and demonstrate that a symbolic implementation
builds a formula whose size is decided entirely by the size of the scaffold and
an additional, tunable independent parameter. We describe a known algorithm
for finding modular strategies [4] and a known symbolic algorithm for finding
strategies of bounded size [19] as instances of ScafAlgo.

4.1 Definition and Key Properties of Scaffolds

The key characteristic of our algorithm is that it finds a winning Defender strat-
egy to a given game using an additional game, called a scaffold, and a specified
relation between the states of the scaffold and the states of the game.

Definition 4. (Scaffolds) Let S and G be two Sevpa safety games defined for
Attacker actions ΣI,A, Defender actions ΣD, call actions ΣC , and return actions
ΣR. S is a scaffold of G under R ⊆ QS ×QG if and only if:

1. If qS ∈ QS
F and for qG ∈ QG, R(qS, qG), then qG ∈ QG

F .
2. For c ∈ ΣC , R(ιSc , ι

G
c ).

3. For a ∈ ΣI,A, qS ∈ QS
A, and qG ∈ QG

A, if R(qS, qG), then R(τI,A(qS, a),
τI,A(qG, a)).

4. For a ∈ ΣD, qS ∈ QS
D, and qG ∈ QG

D, if R(qS, qG), then R(τD(qS, a), τD(qG, a)).
5. For c ∈ ΣC , qS

c ∈ QS
c , qG

c ∈ QG
c , qS ∈ QS, qG ∈ QG, if R(qS

c , q
G
c ) and R(qS, qG),

then R(τR(qS, r, (qS
c , c)), τR(qG, r, (qG

c , c))). 	

If so, then R is a scaffold relation from S to G.

Each scaffold relation defines an Attacker bisimulation, with respect to actions,
from configurations of the scaffold to configurations of the game. However, the
bisimulation over configurations need not relate every accepting configuration of
the game to an accepting configuration of the scaffold.

Scaffold relations and modular strategies are connected by the following key
property, which provides the foundation for our algorithm. First, we define an
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(S,R, k)-strategy of a game G, which intuitively is a strategy whose structure
tightly corresponds to a scaffold S, according to a relation R from the states of S
to those of G. For a game G and Q′ ⊆ QG such that {ιc}c∈ΣG

C
⊆ Q′ ⊆ QG, let the

subgame G|Q′ be the game constructed by restricting the states and transition
functions of G to the states in Q′. Each subgame G′ of G defines a strategy σG′

as a Vpa transducer. To compute σG′ (a0, a1, . . . , an), σG′ uses a0, a1, . . . , an as
the Attacker actions for a play of G′. If G′ is in an attacker state p, then σG

transitions on the next unread ai to τI,A(p, ai). If G′ is in a Defender state q,
then σG′ picks the least Defender action d, under a fixed total ordering of ΣD,
such that τD(q, d) ∈ Q′, outputs d, and transitions to τD(q, d). σG′ outputs the
Defender action chosen by G′ after it reads all of a0, a1, . . . , an.

Definition 5. For sets A and B, let a relation R ⊆ A×B be k-image-bounded
if for each a ∈ A, |{b | b ∈ B,R(a, b)}| ≤ k. Let G be a game, let S be a scaffold
of G under R ⊆ QS ×QG, and let k ∈ N. An (S,R, k)-Defender strategy σ′ of G
is a Defender strategy such that for some R′ ⊆ R, R′ ∩ (QS

A ×QG
A) is k-image-

bounded, G′ = G|Img(R′), and σ′ = σG′ . 	

Let game G have a winning Defender strategy, and let S be a scaffold of G under
a scaffold relation R. Then S is a scaffold of some subgame of G′ that defines a
winning strategy of G, under a finer scaffold relation than R.

Theorem 2. Let G have a winning modular Defender strategy, and let S be a
scaffold of G under R ⊆ QS ×QG. Then for some k, there is a winning modular
(S,R, k)-Defender strategy of G.

4.2 An Algorithm Parametrized on Scaffolds

To find modular winning Defender strategies to games, we can apply Thm. 2 to
search for (S,R, k)-strategies. The algorithm ScafAlgo, given in Alg. 1, takes a
game G, scaffold S, relation R ⊆ QS ×QG, and parameter k, and searches for an
(S,R, k)-strategy by searching for an R′ ⊆ R that satisfies the condition given
in Defn. 5.

ScafAlgo searches for such an R′ in three main steps. In the first step, ScafAlgo
non-deterministically chooses a k-image-bounded subrelation of R from the At-
tacker states of S to the Attacker states of G. Specifically, on line [0], ScafAlgo
defines such a relation RA ⊆ QS

A ×QG
A by calling a function nd-bounded-subrel :

(QS
A ×QG

A)× N → (QS
A ×QG

A), where nd-bounded-subrel(R∩ (QS
A ×QG

A), k) is a
k-image-bounded subrelation of QS

A ×QG
A.

In the second step (lines [2]–[5]), ScafAlgo constructs a relation RD ⊆ QS
D×QG

D

such that if there is any R∗ ⊆ QS
D×QG

D such that G|Img(RA∪R∗) defines a winning
strategy of G, then the candidate strategy defined by G|Img(RA∪RD) is a winning
strategy of G. On line [2], ScafAlgo defines RD,ι ⊆ QS

D × QG
D that relates each

module-initial state of S to its corresponding module-initial state in G. On line [3],
ScafAlgo defines RD,i ⊆ QS

D × QG
D that, for each (pA, qA) ∈ RA and internal

Attacker action a ∈ ΣG
I,A, relates the a-successor of pA to the a-successor of qA.

On line [4], ScafAlgo defines RD,r ⊆ QS
D ×QG

D that, for each (pA, qA), (sA, tA) ∈
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Input: G: a VPA safety game.
S: a scaffold of G
R ⊆ QS × QG: a scaffold relation.
Output: If G has a winning (S,R, k)-strategy, then it returns a winning

(S,R, k)-strategy. Otherwise, it returns ⊥.
/* Choose RA: a k-image-bounded subrelation of R that defines

Attacker states of a candidate strategy. */

RA := nd-bounded-subrel(R ∩ (QS
A × QG

A), k);1

/* Construct RD: a relation to Defender states of the candidate

strategy defined by RA. */

RD,ι := {(ιSc, ιGc ) | c ∈ ΣG
C} ;2

RD,i := {(τ S
I,A(pA, a), τG

I,A(qA, a)) | (pA, qA) ∈ RA, a ∈ ΣG
I,A} ;3

RD,r := {(τ S
R(pA, a, sA), τG

R(qA, a, tA)) | (pA, qA), (sA, tA) ∈ RA, a ∈ ΣG
R} ;4

RD := RD,ι ∪RD,i ∪RD,r ;5

/* Check if the candidate strategy defined by RA and RD is a

winning strategy. */

StrWins := ∀(pD, qD) ∈ RD : qD /∈ QF ∧ ∃a ∈ ΣD : (τ S
D(pD, a), τG

D(qD, a)) ∈ RA ;6

if StrWins then return σG|Img(RA∪RD)
else return ⊥7

Algorithm 1: ScafAlgo: non-deterministic algorithm that takes a game G,
scaffold S, and relation R ⊆ QS ×QG, and finds a winning modular Defender
(S,R, k)-strategy of G

RA and return action a ∈ ΣG
R, relates the r-successor of (pA, sA) to the r-

successor of (qA, tA). On line [5], ScafAlgo defines RD ⊆ QS
D ×QG

D as the union
of Rι, RD,i, and RD,r.

In the third step (lines [6] and [7]), ScafAlgo checks if the candidate strategy
defined by G|Img(RA∪RD) is a winning strategy of G. On line [6], ScafAlgo defines
StrWins : B, which is true if and only if for each Defender-state of the candidate
strategy, the state is not an accepting state of the game, and there is some
action that the Defender can take to reach some Attacker-state of the candidate
strategy. On line [7], ScafAlgo returns the strategy defined by G|Img(RA∪RD) if and
only if G|Img(RA∪RD) is a winning strategy. Otherwise, ScafAlgo returns failure.

Theorem 3. Let G be a game, let S be a scaffold of G under R ⊆ QS × QG,
and let k be a positive integer. If σ = ScafAlgo(G, S,R, k), then σ is a winning
Defender strategy for G. If G has a winning Defender strategy, then for each
scaffold S and scaffolding relation R ⊆ QS × QG, there is some k such that
ScafAlgo(G, S,R, k) is a winning Defender strategy of G.

A deterministic implementation of ScafAlgo runs in worst-case time exponen-
tial in the number of Attacker states. However, a symbolic implementation of
ScafAlgo can represent its input problem with a formula whose size depends only
on the scaffold, and the tunable parameter k. Assume that each component of
an input game G is given as interpreted symbolic functions and predicates (i.e.,
states and actions are given as domains, and the transition functions are given
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as interpreted functions), and that the relation R is given as an interpreted re-
lation. Then ScafAlgo can be implemented by reinterpreting its steps to build
a symbolic formula StrWins (line [6]) whose models correspond to values of RA

and RD for which G|Img(RA∪RD) defines a winning strategy.
The size (i.e., the number of literals in) of StrWins is determined by S and k.

The universal quantification on line [6] is bounded, and can thus be encoded as a
finite conjunction; the nested existential quantification can then be Skolemized.
To check the membership (τS

D(pD, a), τG
D(qD, a)) ∈ RA, we can apply the fact

that RA is a k-bounded-image relation to represent the membership check with
k disjuncts. From these observations, the size of the StrWins formula can be
bounded by O(|QS

A|2k3).
Two known algorithms for finding modular strategies can be defined as

ScafAlgo applied to degenerate scaffolds. A naive implementation of the orig-
inal algorithm presented for finding modular strategies [4] can be defined as
ScafAlgo applied to the game itself as a scaffold. A symbolic algorithm for find-
ing strategies of bounded size [19], generalized to Vpa games, can be defined
as ScafAlgo applied to a scaffold with a single Attacker and Defender state for
each module. The known algorithms are thus ScafAlgo applied to scaffolds that
have complete information and no information about their games, respectively.
However, any game defined as a product of “factor” games has as a scaffold
the product of any subset of its factors. In particular, for each policy-weaving
game, we can automatically construct scaffolds from products of any subset of
the program, monitor, and policy automata.

5 Experiments

In this section, we discuss experiments that evaluate the reduction from policy-
weaving problems to safety games presented in §3, and the scaffold-based game-
solving algorithm presented in §4. The experiments were designed to answer two
questions. First, by reducing policy-weaving problems to solving games, can we
efficiently instrument practical programs for a real privilege-aware system so
that they satisfy practical high-level policies? Second, which scaffolds allow our
scaffolding game-solving algorithm to most efficiently solve games constructed
by our policy-weaving algorithm?

To answer these questions, we instantiated our policy-weaving algorithm to a
policy weaver for the Capsicum [23] capability operating system. We collected
a set of six UNIX utilties, given in Tab. 1, that have exhibited critical security
vulnerabilities [16,21,22,23]. For each utility, we defined a policy that describes
the capabilities that the program must have as it executes. The policies were
defined by working with the Capsicum developers, or using general knowledge
of the utility. Detailed descriptions of the policies for each utility are given in
[13].

We applied our Capsicum policy-weaver to each utility and its policy, with
each scaffold defined as a product of some subset of the program, policy, and
monitor. The data from all scaffolds is given in [14] App. D; Tab. 1 presents data
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Table 1. Performance of the Capsicum policy weaver. Column “LoC” contains lines
of C source code (not including blank lines and comments) and “Pol. States” contains
the number of states in the policy. For the trivial scaffold “Triv.”, intermediate scaf-
fold “Prog.-Pol.,” and complete scaffold “Prog.-Pol.-Mon.,” k contains the simulation
bound, “Times” contains the times used to find a strategy, and “Prims.” contains the
number of callsites to primitives inserted. “-” denotes a time-out of 20 minutes.

Name LoC Pol. Scaffolds
States Triv. Prog.-Pol. Prog.-Pol.-Mon.

k Time Prims. k Time Prims. k Time Prims.

bzip2-1.0.6 8,399 12 12 - - 1 0:04 6 1 0:09 6
fetchmail-6.3.19 49,370 12 7 - - 1 1:13 5 1 1:39 5
gzip-1.2.4 9,076 9 12 - - 1 1:47 15 1 - -
tar-1.25 108,723 12 3 3:47 15 1 1:20 15 1 - -
tcpdump-4.1.1 87,593 12 15 - - 1 0:30 6 1 0:45 6
wget-1.12 64,443 21 7 0:43 11 1 0:25 11 1 18:59 11

for several illustrative scaffolds: the trivial scaffold “Triv.” defined in §4.2, the
product of the program and policy “Prog.-Pol”, and the product of all program,
policy, and monitor “Prog.-Pol.-Mon.” For each scaffold, we measured how long
it took our weaver to find a strategy, and with what minimum simulation bound
(i.e., value of k from §4) it either found a strategy or timed out. The results for
each scaffold are in the subcolumns of “Scaffolds” in Tab. 1, with each simulation
bound in subcolumn “k,” and each time in subcolumn “Time.”

The results indicate that while many scaffolds give similar results for some
practical problems, an intermediate scaffold constructed as a product of some but
not all of the inputs, e.g. Prog.-Pol., leads to the best performance. The difference
in performance could be due to the fact that a scaffold with little information
about the structure of its game (e.g., “Triv.”) generates a formula that allows
many transitions between a small set of states in a candidate strategy, while a
scaffold with total information (e.g., Prog.-Pol.-Mon.) generates a formula that
allows few transitions between a large set of states in a candidate strategy. An
intermediate scaffold strikes a balance between the two, generating a formula
that allows a moderate number of transitions between a moderate set of states.
The time taken to find a strategy does not directly depend on the size of the
original program, because we apply several optimizations when constructing a
policy-weaving game that cause the size of the constructed game to depend only
on the size of program modules relevant to a given policy.

For each scaffold, the column “Prims.” contains the number of callsites to
primitives dictated by the strategy. Our current game-solving algorithm does not
minimize the number of such callsites, and as a result, the number of callsites
may be larger than necessary. Moreover, in the current implementation, the
number of callsites does not depend on the scaffold used to find a strategy for
the game.
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6 Related Work

Privilege-aware operating systems: Decentralized Information Flow Control
(DIFC) operating systems such as Asbestos [9], HiStar [24], and Flume [18]
manage privileges describing how information may flow through a system, and
provide primitives that allow an application to direct flows by managing the
labels of each object in the system. Tagged memory systems such as Wedge [6]
enforce similar policies per byte of memory by providing primitives for manag-
ing memory tags. Capability operating systems such as Capsicum [23] track the
capabilities of each process, where a capability is a file descriptor paired with
an access right, and provide primitives that allow an application to manage its
capabilities.

Our work complements privilege-aware operating systems by allowing a pro-
grammer to give an explicit, high-level policy, and automatically rewriting the
program to satisfy the policy when run on the system. Prior work in aiding
programming for systems with security primitives automatically verifies that a
program instrumented to use the Flume primitives enforces a high-level pol-
icy [15], automatically instruments programs to use the primitives of the HiStar
to satisfy a policy [8], and automatically instruments programs [12] to use the
primitives of the Flume OS. However, the languages of policies used in the ap-
proaches presented in [8,12] are not temporal and cannot clearly be applied to
other systems with security primitives, and the proofs of the correctness of the
instrumentation algorithms are ad hoc. The work in [13] describes the approach
in this paper instantiated to a policy weaver for Capsicum. This paper describes
how the work in [13] may be generalized to arbitrary privilege aware systems,
and describes the novel game-solving algorithm applied in [13].

Inlined Reference Monitors: An Inlined Reference Monitor (IRM) [1,10] is code
that executes in the same memory space as a program, observes the security-
sensitive events of the program, and halts the program immediately before it
violates a policy. IRMs have shortcomings that prohibit them from monitoring
many practical programs and policies. Because an IRM executes in the same
process space as the program it monitors, it cannot enforce policies throughout
the system. Furthermore, an IRM must be able to monitor security-sensitive
events of a program throughout the program’s execution, but there are known
techniques to subvert an IRM [1]. Privilege-aware operating systems address
the shortcomings of IRM by monitoring policies in the operating system, and
providing a set of primitives that an application invokes to direct the operating
system. The primitives are distinct from the security-sensitive events of interest.

Safety Games: Automata-theoretic games formalize problems in synthesizing
reactive programs and control mechanisms [2]. Alur et. al. give an algorithm
that takes a single-entry recursive state machine and searches for a strategy
that is modular, as defined in §3, and show that this problem is NP-complete [4].
Recursive state machines are directly analogous to Sevpa [3]. Madhusudan et.
al. give a set of symbolic algorithms that find a winning strategy for a given
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game whose transition relation is represented symbolically [19]. The practical
contribution of our work is that we express the emerging and practical problem of
rewriting programs for privilege-aware operating systems in terms of such games.
We also give an algorithm for finding modular strategies that can be instantiated
to a symbolic implementation of the algorithm of [4], to the “bounded-witness”
algorithm of [19].

Jobstmann et al. [17] consider the problem of rewriting a program to satisfy a
Linear Temporal Logic (LTL) specification, and reduce the problem to an LTL
game. Their reduction constructs Defender actions (i.e., “system choices” [17])
from failure-inducing assignments of expressions in the program, whereas our
work constructs Defender actions from a set of security system calls. Also, they
reduce program repair to finite-state games, while our reduction relies crucially
on modular strategies for Sevpa games. Thus, while the work of Jobstmann et
al., like ours, is formalized in terms of automata games, the approaches differ in
both the meaning of actions performed by players of the game, and the fact that
we require a context-sensitive model of a target program.
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Abstract. Most symbolic bug detection techniques perform search over the pro-
gram control flow graph based on either forward symbolic execution or
backward weakest preconditions computation. The complexity of determining
inter-procedural all-path feasibility makes it difficult for such analysis to judge
up-front whether the behavior of a particular caller or callee procedure is rele-
vant to a given property violation. Consequently, these methods analyze several
program fragments irrelevant to the property, often repeatedly, before arriving at
a goal location or an entrypoint, thus wasting resources and diminishing their
scalability.

This paper presents a systematic and scalable technique for focused bug de-
tection which, starting from the goal function, employs alternating backward and
forward exploration on the program call graph to lazily infer a small scope of pro-
gram fragments, sufficient to detect the bug or show its absence. The method learns
caller and callee invariants for procedures from failed exploration attempts and
uses them to direct future exploration towards a scope pertinent to the violation.

1 Introduction

Even though sophisticated static analysis methods for bug detection exist [6,12,18,16],
the scalability of these methods is restricted. This is somewhat surprising given that
most bugs can be attributed to program behavior in a small set of program regions, i.e.,
a small scope [16,11].

We believe that the common drawback of these methods is that they cannot focus
on a small set of pertinent program regions that trigger the bug. Such focusing is not
easy: a static analysis tool encounters plenty of code irrelevant to a particular bug, but
such code is not obviously irrelevant before it is analyzed. Furthermore, the tool may
repeatedly re-analyze such irrelevant code, thus wasting resources without finding a
witness.

Consider a few examples illustrating the need of focusing. (a) Suppose a goal func-
tion with a potential null dereference makes a virtual call with 100 possible targets, none
of which are relevant to the bug. Exploring all these targets is wasteful, and therefore it
is necessary to restrain the forward search to only a subset of callees. (b) Alternatively,
consider a goal function g invoked in a large number of call contexts (exponential in the
depth of call graph, in the worst case). If the analysis begins from main procedure, it is
likely that many irrelevant program fragments will be encountered and analyzed before
reaching g. Therefore, a goal-driven backward search is necessary for focusing.

Based on above observations, we may conceive of a potentially effective tech-
nique that performs backward expansion from a goal function g in a small scope cen-
tered around g. Effective discovery of such a scope in practice is non-trivial: previous

P. Madhusudan and S.A. Seshia (Eds.): CAV 2012, LNCS 7358, pp. 599–615, 2012.
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work [16] employed a strategy based on breadth-first expansion from the goal func-
tion, but this may be inefficient if callers or callees far away from the goal need to be
explored.

In this paper, we propose a new focused method to perform inter-procedural analysis
for detecting bugs. The strategy performs a systematic search around the goal function
g with the aim of either inferring a small scope which can trigger the bug or, in some
cases, proving the absence of it. Note that finding a witness path to an error location in g
requires finding a feasible call context for g. This call context consists not only of a set
of transitive (backward) callers of g, but also (forward) callees invoked by g on the path
to the error function. Based on this observation, our method alternates between forward
and backward exploration in the call graph to detect a violation and backtracks when-
ever it fails to find a feasible call context. During alternation, forward expansion takes
priority over backward expansion. This is crucial because forward expansion proves in-
feasibility of the error at the current caller level, and avoids further backward expansion
into irrelevant program fragments, thus discovering small program scopes in practice.

The alternating expansion method, despite being lazy, may revisit several irrelevant
program regions (e.g., error-free call contexts), re-analyze them and perform wasteful
backtracks. Such unfocused exploration clearly reduces the efficiency of the analyzer.
Therefore, to improve focus, we propose to learn, on-demand from exploration failures,
caller/callee invariants that over-approximate the caller/callee data values respectively.
These invariants contain specific facts which induced the failure and help avoid similar
failures later by not re-exploring irrelevant callers/callees.

The proposed method may be viewed as an instance of the general DPLL paradigm,
explore-fail-learn-backtrack, applied directly to the program call graph representation
instead of operating at a fine-grained inter-procedural control flow graph level [18]. Be-
cause there may be large number of call contexts to a particular procedure, the backward
search tries to efficiently explore the set of call contexts in a depth-first manner, back-
tracks from failures, and exploits caller/callee invariants inferred from failures to prune
future search. The forward expansion assists the backward search to infer early failures,
akin to how theory propagation assists in finding conflicts during DPLL search.

In our preliminary experiments with industrial Java benchmarks, we found that al-
ternating scope expansion is crucial to get some benchmarks to finish in a reasonable
time. Learning reduced the number of call graph edges visited, but this reduction is not
always able to compensate for the overhead of computing invariants.

The key contributions of the paper are as follows:

– A scalable bug detection method ALTER that performs alternating backward and
forward search (Sec. 4) to lazily infer a small scope around the goal function, suf-
ficient to detect a witness. A symbolic intra-procedural local summary for each
procedure (Sec. 3) forms the basis of efficient inter-procedural alternating expan-
sion.

– A systematic technique to learn a program scope pertinent for bug-detection by
inferring caller and callee invariants for procedures from failed explorations (Sec-
tion 5).

– An experimental evaluation (Sec. 6) that shows the effectiveness of our techniques.
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2 Motivating Examples and Overview

2.1 Alternating Scope Expansion

Consider the program App1 in Fig. 1: here, the goal function is A.init, where a poten-
tial null dereference may occur at line 11 because the class A’s local field this.srcs
(non-null) is shadowed by the local parameter variable srcs.

ALTER first computes the local error condition for the goal at line 11 in A.init: φ
:= (srcsA.init = null), where srcsA.init refers to the srcs parameter of A.init (the
extra constraints arising from the conditional at line 8-10 are simplified away). Now,
ALTER must examine callers of A.init, namely T.T and A.A. Carrying out a backward
expansion for T.T, ALTER composes the local path condition for calling A.init inside
T.T, with φ. This composition yields false, because the srcs parameter of T.T must
be non-null for execution to pass line 16 of T.T. Next, ALTER carries out backward
expansion to include A.A, and another backward expansion to include M.M, which is a
caller of A.A. At this point, it carries out a forward expansion to bring M.makelist in
scope. Now, the side effect summary of M.makelist can prove —the return value of
M.makelist cannot be null— that the call context M.M→ A.A→ A.init cannot lead
to error. Thus, ALTER is able to show the absence of null dereference in A.init by
alternating backward/forward expansion starting from the goal location in A.init.

1 class A implements C {
2 List srcs;
3 A(List srcs, Rect b) {
4 init (srcs, b);
5 }
6 void init(List srcs, Rect b) {
7 this.srcs = new Vector ();
8 if (srcs != null) {
9 this.srcs.addAll (srcs);

10 }
11 if (srcs.size() != 0) {...}
12 }
13 }
14 class T extends A {
15 T(List srcs, Rect b) {
16 if (srcs.isEmpty()) return;
17 init(srcs, b);
18 }
19 }

1 class M extends A {
2 M(C src, C alpha) {
3 List srcs; Rect b;
4 srcs = makeList(src,alpha);
5 b = makeBounds(src,alpha);
6 super(srcs, b);
7 }
8 List makeList(C s1, C s2) {
9 List ret = new ArrayList (2);

10 ret.add(s1);
11 ret.add(s2);
12 return ret;
13 }
14 }
15 class N {
16 void foo(C src, C alpha) {
17 C m = new M(src,alpha);
18 ...
19 }
20 }

Fig. 1. App1 example, based on a fragment of the batik open-source benchmark

Focused Exploration. Note how ALTER performs a focused search by avoiding ex-
ploration of irrelevant program regions which are in the nearby scope, i.e., functions
makeBounds in M.M, isEmpty in T.T, addAll in A.init, add in M.makeList and
other callers of M.M and T.T. See Figure 2. The method names in bold are the only
ones visited in this process. In particular, note how forward expansion of M.makeList
ensures early backtrack and avoids further backward expansion from M.M. Without
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alternating forward and backward expansion, the analysis would expand backward to
callers of M.M, such as N.foo and its callers in Figure 2, which are irrelevant for the
goal.

Fig. 2. Call Graph of App1

1 class App2 {
2 void runA ()
3 {... foo(new A()); ...)
4 void runB ()
5 {... foo(new B()); ...}
6 //classes A, B extend class C

7 int foo (C c) {
8 if (*) return bar(c,1);
9 else return bar(c,2);

10 }

11 int bar (C c, int i) {
12 return c.compute(i);
13 }

14 }

Fig. 3. App2 example

2.2 Learning Pertinent Scopes

In Fig. 3, the function bar contains a potential null dereference if the parameter c is
null; bar is called by foo at two sites, which in turn, is called by runA and runB with
newly allocated objects. Let us denote the local parameter c of foo by cfoo, and of
bar by cbar. ALTER begins analysis by building the local error condition for bar, i.e.,
φ := (cbar = null), which is satisfiable if the parameter c gets the null value under
some call context to bar. To find such a context, ALTER performs backward search
in a depth-first manner among callers of bar. The two call sites in foo for bar are
analyzed individually; suppose the first call site foo1 at line 8 is analyzed first. ALTER

propagates φ backward, resulting in φ′ := (cfoo = null). Here, cfoo is substituted by
the actual called value, which is a heap-allocated object represented as alloc(A); so,
φ′′ = (alloc(A) = null), which is unsatisfiable. Because the current context runA→
foo1 → bar fails to find a witness, ALTER backtracks and tries the other caller runB for
foo. Again, it fails, and backtracks further to try a different call site for bar: (site foo2
at line 9). ALTER continues to try callers runA and runB again; however, no witness is
found and the search terminates.

Focused Exploration. Note, however, that exploring runA and runB for the second
call site foo2 to bar in foo is redundant because we already know from exploring the
first call site foo1 that (cfoo �= null) for all callers to foo and hence no witness is
possible via the callers of foo. A naive exploration technique may therefore explore the
same callers redundantly without success because it does not learn from failed search
attempts. The proposed algorithm therefore incorporates learning from failed explo-
ration (Sec. 5): the learned information helps prune away the irrelevant program scope
and focus search towards relevant regions.
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3 Preliminaries and Intra-procedural Analysis

We refer to the program statement with the violation, e.g., a null dereference, as the goal
location. Also, the procedure having the goal location is called as the goal procedure.
We say that a procedure f in an application is an entrypoint for the application if f is a
public method. An entry point is relevant if it may call the goal procedure g transitively.
Given a set of relevant entrypoints E, our analysis tries to find a (inter-procedural)
feasible path, called witness, to the goal location from some entrypoint in E. We refer
to such a path as a global witness. In contrast, any feasible path which terminates at the
goal location but does not begin at a relevant entrypoint is said to be a local witness.

For a procedure f , the input (output) variables consist of the non-local variables
and fields read (written) by some statement in f ; the output variables also include two
special variables ret and exc denoting the returned data and exception values from
f respectively. A symbolic state s = (ψ, σ) at a location l is a tuple consisting of a
reachability predicate ψ and a map σ from scalar variables, fields and arrays to their
symbolic values (terms). The predicate ψ represents the condition under which l can be
reached via a given set of paths terminating at l. The map σ represents the symbolic
values of variables obtained under the same set of paths. Both fields and arrays are
modeled as mathematical maps from object references (integers) to their values. We do
not distinguish between fields and arrays in our presentation; we use the term fields to
refer to both. Loops are transformed to tail-recursive functions.

Local Summary for a Procedure. Classical inter-procedural program analysis [20,19]
intertwines procedure summary computation with summary composition: the (global)
summary Gf for a function f is obtained after composing f ’s local behaviors with the
summaries of all the callees of f . Such close coupling of summary computation and
composition makes it hard to selectively explore the callees for a given goal location
in f . For selective exploration, our approach decouples summary computation with
composition: we analyze a procedure f in isolation and compute a local summary Lf
for f independent of its callers and callees (referred to as the environment of f ). The
local summary Lf over-approximates the effect of both the callers and the callees of f
and has two benefits: (a) we need not re-analyze f for different call contexts, and (b)
we can utilize summaries from the environment of f to improve the precision of Lf in
a lazy, goal-driven manner, and obtain Gf in the limit. To analyze f independent of its
callees, we resort to structural abstraction [24,1]: all outputs of each potential callee g
of f are modeled using fresh symbolic variables (Skolem constants) denoting arbitrary
values that the call to g may return. These Skolem constants (skolems, in short) over-
approximate the output values of g and hence allow us to conservatively incorporate g’s
behavior in the summary of f .

Formally, the local summaryLf consists of three components: a side effect summary,
a set of call site summaries and a set of error conditions (ECs). The side effect summary
of f is a map from the outputs of f to their symbolic values in terms of inputs of f
and captures the data flow from inputs to outputs along all possible paths of f . Let enf

denote the entry location of f . For each call site fj in f , we compute a call site summary
at fj denoted by a symbolic state s = (ψ, σ), where ψ denotes the all-path reachability
condition of fj from enf and the state σ contains the symbolic values of variables and
fields obtained along each path to fj and expressed in terms of inputs of f . Finally, for
each goal location l in f , the error condition (EC) predicate φ is obtained by conjoining
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the all-paths reachability condition from enf to l with the violation condition, e.g., the
null dereference predicate (v = null) for a variable v.

If f has no callees or all the callees are inlined into f , then all the components of Lf
are precise, i.e., Lf contains the precise symbolic values of outputs along each path and
precise reachability conditions for each error location from enf . However, if we employ
structural abstraction to decouple the callees of f , Lf becomes over-approximate. In
particular, an EC φ may now contain skolems and satisfiability of φ no longer implies
that an actual local witness to l exists. Note that φ may also contain input variables to
f and hence a local witness may not extend to any global witness. Both these sources
of imprecision in Lf are removed on-demand during the inter-procedural exploration
phase (cf. Sec. 4) for finding a global witness.

Summary Computation. We compute the summary for a function f by a forward
all-path analysis algorithm which propagates the symbolic state along all paths of f
precisely starting from enf . We use program expressions to represent symbolic states
precisely and propagate states by employing precise transformers for each statement in
f (structural abstraction is applied at each call location). To avoid path explosion as well
as maintain precision, the algorithm merges symbolic states at join nodes by guarding
the incoming symbolic value along each edge by the corresponding path condition and
representing the merged state using an if-then-else (ite) term compactly. The details of
Java statement transformers can be found in [4] and merge operation in [13,21] and are
omitted in the interest of space. During propagation, we compute the ECs at each goal
location, the call site summaries at each call location and the side effect summary at the
exit location of f .

int p(int x){
if(x < 10)
error();

return x - 10;
}

int q(int y){
if(y > 6){
int z = t(y);

(1)

int a = p(z);
(2)

int b = r(y, z); (3)
return (a + b);

}

return 0;
}

int r(int u, int v){
if(u > v)
return p(u); (1)

else
return p(v); (2)

}

int s(int c){
return r(c, 10);(1)

}

int t(int d){
return d * 2;

}

Fig. 4. Program P
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Fig. 5. Call Graph of Program P

Example. Consider program P in Fig. 4. The summary for the return value of r is
ite((u > v), skp1 , sk

p
2) where u(v) is the initial value for parameter u(v) in r and

skp1(skp2) is the return value of p at call site r1(r2). The call site summary for call
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site r1 in r is (ψ, σ), where, ψ := (u > v) and σ := [u→ u,v→ v]. Then, the error
condition φ for the violation (function error() in p) in p is φ := (x < 10).

4 Backward, Forward and Alternating Expansions

Recall that an EC φ local to f is imprecise because it contains inputs of f and skolems
from callees of f , both of which are unconstrained. Hence even if φ is satisfiable, neither
a local nor a global witness may exist. To search for a global witness, we perform inter-
procedural analysis by expanding the scope around the goal function iteratively using a
combination of forward and backward expansion. Forward expansion replaces skolems
in φ with the actual return values of callees while backward expansion substitutes the
inputs with the actual input values for a calling context of f .

Backward. Consider an EC φ at entry of a procedure f such that the satisfiability of φ
implies a local witness to the goal location from f . To propagate back φ into a particular
caller h of f at site hk, we use the call site summary (ψ, σ) at hk. This summary allows
us to express the inputs in φ directly in terms of inputs of h without re-analyzing h. For
every input i in φ, let Val(i, hk) denote the value of i in the symbolic state σ before the
call at hk. Backward propagation is achieved by computing φ′ := (φ ∧ CC (hk)):

CC (hk) := (
∧

i∈inφ

(i = Val(i, hk)) ∧ ψ)

where CC (hk) consists of constraints expressing each input i in set of inputs inφ of φ,
in terms of actual symbolic values at the call site and the all-path reachability condition
ψ from entry of h to hk1. The procedure EXPANDBWD(hk → f, φ) computes CC (hk).

Forward. Suppose we want to expand a skolem sk at a call site fj in f , where sk
corresponds to an output variable, say ret, in a callee g. We first obtain the summary
expression sumret for ret from the side-effect summary of g and then substitute the
inputs in sumret with the actual values obtained from the call site summary at fj . More
precisely, the forward expansion constraint for sk is SC (sk) := SC 1(sk) ∧ SC 2(sk).
Here, SC 1(sk) contains the summary expression, i.e., SC 1(sk) := (sk = sumret).
Note that sumret depends on the set of inputs In of g and skolems Sk corresponding
to callees of g. So, we raise the inputs In to the caller by using the call site values
Val(i, fj) (defined above) from call site fj , i.e., SC 2(sk) :=

∧
i∈In(i = Val(i, fj)).

In sumret, we also replace each sk ∈ Sk by a fresh value sk′ using a contextualization
scheme which records the fact that sk′ corresponds to the call from fj to g. The details
of the scheme can be found in the full version [23] of this paper and is omitted for
clarity. Note that sk′ may be expanded forward in a similar way as sk. Let the procedure
EXPANDFWD(f, φ) compute the skolem constraints SC (recursively, if required) for the
set of skolems Sk′ in φ, i.e., SC :=

∧
sk∈Sk′ SC (sk).

Example. In Fig. 4, the initial EC in p is φ1 := (x < 10). Suppose, we need to
propagate EC φ1 back to caller q at call site q2. We start by computingCC (q2) := (y >
6∧ x = skt) where skt is skolem for call to t at site q1. On backward propagation and
simplification, EC becomes φ2 := (φ1 ∧ CC (q2)) ≡ (skt < 10 ∧ y > 6). Now, we

1 Similar to [4], we also add constraints for handling virtual calls; described in [23].
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expand forward the skolem skt in φ2 using SC := (skt = d ∗ 2) ∧ (d = y). Finally,
the EC is φ3 := φ2 ∧ SC ≡ (y ∗ 2 < 10 ∧ y > 6), which is unsatisfiable.

In practice, instead of conjoining constraints, we substitute the actual values for in-
puts and summaries for skolems in the error condition φ. This assists simplification
before invoking a constraint solver to check for satisfiability of φ. Note that iterative for-
ward or backward expansion may not terminate due to recursive function calls. There-
fore, we impose fixed bounds to terminate expansion under recursion. Similarly, we
cannot expand a skolem (expand backward) if the source code of the corresponding
callee (caller) is not available to the analyzer.

4.1 Alternating Expansion

Alg. 1 describes the alternating expansion algorithm. The main procedure ALTER takes
the goal function g and an EC φ from summary of g as input and performs a back-
tracking based search over the program call graph. In a particular iteration with EC φ
local to function f , ALTER proceeds as follows. First, ALTER expands the skolems in φ
using EXPANDFWD to obtain the corresponding summary constraints SC . If φ ∧ SC is
satisfiable, ALTER expands all the callers of f (CALLERS(f)) using EXPANDBWD in a
depth-first manner iteratively. Given a caller h with call site hk, EXPANDBWD returns
the call context constraints CC(hk) for hk, which express the inputs of f in terms of
inputs of h. ALTER then recursively proceeds to analyze h with the new error condi-
tion φ′ := (φ ∧ SC ∧ CC(hk)) obtained by conjoining both forward and backward
expansion constraints with the previous φ.

If the EC φ at any moment during alternating expansion is infeasible (UNSAT), it
indicates an exploration failure, i.e., no further backward/forward search will yield a
global witness. In this case, ALTER backtracks to the previous callee c on the recursion
stack and pursues the next caller of c for backward expansion. Backtracking may occur
on obtaining infeasibility after either (a) forward expansion (on conjoining with SC ) or
(b) backward expansion (on conjoining with CC(hk)). As we will see in Sec. 5, ALTER

learns facts responsible for the current failure and uses them to avoid similar failures
during future exploration.

ALTER may terminate with either (a) witness (WIT) or (b) no witness (NOWIT) or (c)
an inconclusive (UNKNOWN) result. During backward exploration, if ALTER encounters
an entrypoint procedure (ENTRYPOINT(f)) and the currentφ is feasible, then a potential
witness exists. If φ is skolem-free, ALTER concludes that a witness exists and returns
the corresponding call context. Otherwise, φmay still contain skolems which cannot be
expanded further, e.g., due to recursion bounds. Consequently, there may exist skipped
callees which affect the feasibility of φ, thus making the witness spurious. In this case,
ALTER returns an UNKNOWN value. Finally, if ALTER finishes exploring all callers
without finding an actual witness or an UNKNOWN result, then ALTER concludes that
no witness to the goal location exists. Note that obtaining an UNKNOWN value for some
call context does not imply that the search is inconclusive; ALTER may go on to find an
actual witness along a different call context. However, ALTER cannot infer no-witness
if an UNKNOWN value is obtained for some context during exploration.

Example. Let us see how ALTER analyzes the program App1 in Fig. 1. The goal func-
tion is A.init, where a potential null dereference may occur at line 11 because the
class A’s local field this.srcs (non-null) is shadowed by the local parameter variable
srcs. A.init has two callers: T.T and A.A where A.A is, in turn, called by M.M.
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ALTER(f , φ)
if φ is UNSAT then

return NOWIT

/* Forward Expansion */
SC := EXPANDFWD(f , φ)
if (φ ∧ SC ) is UNSAT then

return NOWIT

if ENTRYPOINT(f) then
if (φ ∧ SC ) has no skolems then

return (WIT, nil)
else

return UNKNOWN

inconcl := false
foreach hk ∈ CALLERS(f) do

/* Backward Expansion */
CC(hk) := EXPANDBWD(hk → f , φ∧SC )
ans := ALTER(h, φ ∧ SC ∧ CC(hk))
if ans = (WIT, l) then

return (WIT, [hk, l])

if ans = UNKNOWN then
inconcl := true

if inconcl then
return UNKNOWN

return NOWIT

Algorithm 1. Alternating Expansion Algorithm for Bug Detection

1. First ALTER computes a local EC φ for A.init. This φ := φ1 ∧ φ2 where φ1 :=
((srcsA.init �= null) ∧ (this.srcs �= null)) ∨ (srcsA.init = null) and φ2 :=
(srcsA.init = null) and srcsA.init refers to the value of parameter srcs of A.init.
On simplifying φ1 with φ2, we get φ := (srcsA.init = null). Because φ does not
contain any skolems, ALTER proceeds with backward expansion along some caller,
say T.T.

2. ALTER computes the local summary for T.T and employs the call site component,
(ψ, σ) for backward expansion, where the reachability condition ψ := (srcsT.T �=
null ∧ ¬skie) and value map σ = (srcs→ srcsT.T ), where srcsT.T refers to the
value of parameter srcs in T.T and skie corresponds to return value of isEmpty
function. In ψ, (srcsT.T �= null) appears because otherwise the previous call to
isEmptywill throw an exception. After expansion, we obtainφ := (ψ∧(srcsT.T =
null)), which simplifies to false, implying search failure along T.T. ALTER now
backtracks to try the next caller A.A for A.init.

3. For A.A, the call site summary is (true, σ′) where σ′ := (srcs → srcsA.A, b
→ bA.A). On propagation, φ := (srcsA.A = null), which remains satisfiable. So,
ALTER expands further backwards along caller M.M.

4. The call site summary for M.M is (true, σ′′) where σ′′ := (srcs → skml, b →
skmb) where skml and skmb denote the skolems corresponding to the return values
of calls to makeList and makeBounds. Now, φ := (skml = null), which leads
ALTER to perform forward expansion to compute the return value of makeList.

5. The side-effect summary for makeList is computed next: the summary value for
the returned variable (SC 1) is retml := alloc(ArrayList, 2). Because skml =
retml, we get φ := (alloc(ArrayList, 2) = null)which again simplifies to false.

Thus, ALTER is able to show the absence of null dereference in A.init by a combi-
nation of backward and forward expansion starting from the goal location in A.init.
Note how it avoids exploration of irrelevant program regions which are in the nearby
scope, i.e., functions makeBounds in M.M, addAll in A.init, isEmpty in T.T, add in
M.makeList and other callers of M.M and T.T. Also, note how forward expansion of
M.makeList ensures early backtrack and avoids further backward expansion from M.M.
The following theorem proves the correctness of ALTER.
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Theorem 1. Given a goal location l, (a) if ALTER returns a witness (WIT) result then
there must exist a global witness for l, and (b) if ALTER returns no-witness (NOWIT)
then no global witness exists.2

5 Learning for Efficient Expansion

Naı̈ve alternating expansion (Sec. 4.1) may perform redundant analysis by revisiting
the same callers and callees and fail repeatedly. We now present an improved AL-
TER algorithm for efficient exploration based on learning caller and callee invariants
and employing them to prune future search. The caller invariant Ω(f) for a proce-
dure f over-approximates the incoming data values from the callers of f , while the
callee invariant Θ(f) over-approximates the return values (side-effects, in general) of
the callees in f . Both these invariants are learned from expansion failures, i.e., when the
constraints added due to an expansion lead to infeasibility of the error condition. Alg. 2
shows the ALTER algorithm combined with failure-driven learning of caller and callee
invariants.

ALTER initializes Ω(f) and Θ(f) for all procedures f to true and strengthens them
during exploration iteratively. The caller invariant Ω(f) is computed as disjunction of
call edge invariants (ω) which label each incoming call edge to f . When backward
expansion from f to a caller h at a call site hk fails, i.e., ans = (NOWIT, Invh) at
location F2 in Alg. 2, then ALTER learns a call edge invariant ω (L2) along the edge
hk → f using the procedure LEARNω. To this end, it splits the EC into caller- and
callee-specific parts,A andB respectively, whereA∧B is infeasible. The caller-specific
part, A consists of call context constraints CC(hk) and invariants Invh of h (usually,
Ω(h) ∧ Θ(h)) which cause infeasibility. The callee-specific part, B consists of the
original φ in f together with forward constraints SC . Note that A and B only share
the input variables of f . LEARNω now computes an interpolant I of A and B over
the common variables of A and B such that A ⇒ I and I ∧ B is infeasible. I.e.,
I is an expression over input variables of f such that it over-approximates the caller
constraints and is still infeasible with the error condition in f . LEARNω now strengthens
ω(hk → f) with I by conjoining I with the previous value of ω(hk → f). Then,
ALTER backtracks and explores a different caller of f . Note thatΩ(f) is updated when
any of the call edge invariants change.

Similarly, ALTER computes (and updates) the callee invariant for f using LEARNΘ
when forward expansion of φ from f fails (F1). In this case, the constraints are parti-
tioned (L1) again into callee-specific (SC ) and caller-specific (φ ∧Ω(f)) parts, and an
interpolant I of the two formulae is computed which over-approximatesSC . The callee
invariantΘ(f) is then strengthened by conjoining it with the new invariant I .

Note how bothΩ andΘ are employed during exploration. Before forward expansion
at location C1, ALTER first checks the current φ against the conjunction of both the
invariants of f . Note that the invariants over-approximate the values from callers and
callees of f . Hence, if the check with invariants is infeasible, no witness is possible
on further expansion, and ALTER backtracks with NOWIT. Similarly, before backward
expansion along hk → f at location C2, ALTER checks φ against call edge invariants
ω(hk → f), and backtracks if the check is infeasible. Lemma 1 and Theorem 2 prove
the correctness of caller/callee invariants computed by Alg. 2.

2 All proofs are omitted to the full version of this paper [23] due to space constraints.
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INITIALLY,
∀(hk → f), ω(hk → f) := true
∀f , Ω(f) := true, Θ(f) := true

ALWAYS,
Ω(f) :=

∨
(ω(hk → f) | hk ∈

CALLERS(f))

LEARNω(hk → f , a, b)
begin

I := INTERPOLANT (a, b)
ω(hk → f) := ω(hk → f) ∧ I

LEARNΘ(f , a, b)
begin

I := INTERPOLANT (a, b)
Θ(f) := Θ(f) ∧ I

ALTER(f , φ)
[S] if φ is UNSAT then

return (NOWIT, true)

[C1] if φ∧Θ(f)∧Ω(f) is UNSAT then
return (NOWIT, Θ(f) ∧Ω(f))

/* Forward Expansion */
SC := EXPANDFWD(f , φ)

[F1] if φ ∧ SC ∧Ω(f) is UNSAT goto [L1]
if ENTRYPOINT(f) then

if (φ ∧ SC ) has no skolems then
return (WIT, nil)

else
return UNKNOWN

inconcl := false
foreach hk ∈ CALLERS(f) do

[C2] if φ ∧ SC ∧ ω(hk → f) = UNSAT then
continue

/* Backward Expansion */
CC(hk) := EXPANDBWD(hk → f , φ ∧ SC )
ans := ALTER(h, φ ∧ SC ∧ CC(hk))

if ans = (WIT, l) then
return (WIT, [hk , l])

if ans = UNKNOWN then
inconcl := true

[F2] if ans = (NOWIT, Invh) then
[L2] LEARNω(hk → f ,CC(hk)∧Invh,
φ ∧ SC )

if inconcl then
return UNKNOWN

[L1] LEARNΘ(f , SC , φ ∧Ω(f))
[E] return (NOWIT, Θ(f) ∧Ω(f))

Algorithm 2. ALTER with learning caller Ω and callee Θ invariants

Lemma 1. The following invariants hold in Alg. 2. (a) (Ω(h) ∧ Θ(h)) ⇒ Invh (b)
(CC(hk) ∧ Invh ∧ φ ∧ SC ) is unsatisfiable at L2, SC ∧ φ ∧ Ω(f) is unsatisfiable at
L1. (c) (Ω(h) ∧Θ(h) ∧ CC(hk))⇒ ω(hk → f)

Theorem 2. Given a procedure f , (a) the caller invariantΩ(f) over-approximates the
incoming data values from all the callers of f and (b) the callee invariant Θ(f) over-
approximates the side-effects of the callees of f .

Proofs of Non-violation. If the analysis returns NOWIT, then the set of caller and callee
invariants constitute a proof for absence of violation in the goal function g. In other
words, we can conclude that null dereference is not possible at the goal location by using
the caller Ω(g) and callee Θ(g) invariants for g. These invariants are obtained, in turn,
from the invariants of other functions in the scope of the analysis. The undecidability of
program analysis implies we cannot always obtain such a proof; however, in practice,
we obtain proofs for absence of null dereference in several of our benchmarks. Note
that the learned facts can be reused to improve search when checking multiple goals
in the same application (cf. Sec. 6). Further, they are useful for re-validation across
upgrades of an application; we leave investigating the usefulness of learned facts during
incremental verification to a future work.
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5.1 Examples Illustrating the Learning Algorithm

Example 1. Consider the program and its call graph in Fig. 4. Suppose the functions q
and s are the entry points and the call to error() in p is a null dereference. Fig. 6 shows
the ECs and invariants computed by ALTER on this program, starting with true for all
caller and callee invariants. The initial EC is φ0 := (x < 10) in p.

1. ALTER first propagates φ0 to caller q at site q2 to get φ1 (cf. Fig. 6(a)). Then, it
expands forward skt in φ1 to obtain φ2, which is infeasible. ALTER learns the callee
invariantΘ(q) from this failure (location [L1] in Algo. 2): it splits φ2 intoA := SC q ≡
(skt = y ∗ 2) and B := φ1 ∧ Ω(q) ≡ (y > 6 ∧ skt < 10) ∧ (true) and computes
interpolant Θ0 = (skt ≥ y ∗ 2) (cf. Fig. 6 (b)). Then, it updates Θ(q) := Θ0 and
backtracks to p.
2. In p, ALTER now continues to learn a call edge invariant ω(q2 → p) ([L2] in Alg. 2)
based on the previous failure. It partitions φ2 into A := Ω(q) ∧ Θ(q) ∧ CC (q2) ≡
(true) ∧ (skt ≥ y ∗ 2) ∧ (y > 6 ∧ x = skt) and B := φ0, computes interpolant
ω1 := (x ≥ 14) and updates ω(q2 → p) := ω1 (Fig. 6 (b)). Now, ALTER propagates
φ0 back to next caller r of p at call site r1 as φ3 and then to s at s1 as φ4. Here, φ4 is
infeasible. Thus, ALTER backtracks to r and learns ω(s1 → r) = (v ≥ 10).
3. Now, it propagates φ3 to q from r and obtains φ5 which is satisfiable. However,
when φ5 is conjoined with Θ(q), it becomes infeasible [C1]. Therefore, ALTER uses
Θ(q) learned from previous failure in q to backtrack to r and avoid multiple forward
expansions of t in q. On backtracking, it learns ω(q3 → r) := (u ≤ v− 7) and updates
Ω(r) := ω2 ∨ ω3 ≡ (u ≤ v − 7) ∨ (v ≥ 10).
4. As ALTER failed on all callers of r, it backtracks to p and learns ω(r1 → p) :=
ω4 ≡ (x ≥ 11). ALTER now tries the next caller r2 of p to obtain φ7, which is feasible.
Next, all callers of r are tried: ALTER first checks φ7 against current call edge invariant

φ0 INITIAL EC (x < 10) SAT

φ1 EXPANDBWD(φ0, q2) (y > 6 ∧ skt < 10) SAT

φ2 EXPANDFWD(φ1, q) (y > 6 ∧ y ∗ 2 < 10) UNSAT Θ0, ω1

φ3 EXPANDBWD(φ0, r1) (u < 10 ∧ u > v) SAT

φ4 EXPANDBWD(φ3, s1) (c < 10 ∧ c > 10) UNSAT ω2

φ5 EXPANDBWD(φ3, q3) (y > 6 ∧ y < 10 ∧ y > skt) SAT

φ6 CHK(φ5, Θ(q)) (y > 6 ∧ y < 10 ∧ y > skt) ∧ (skt ≥ y ∗ 2) UNSAT ω3, ω4

φ7 EXPANDBWD(φ0, r2) (v < 10 ∧ u ≤ v) SAT

φ8 CHK(φ7, Ω(r)) (v < 10 ∧ u ≤ v) ∧ (u ≤ v − 7 ∨ v ≥ 10) SAT

φ9 CHK(φ7, ω(s1 → r)) (v < 10 ∧ u ≤ v) ∧ (v ≥ 10) UNSAT -
φ10 CHK(φ7, ω(q3 → r)) (v < 10 ∧ u ≤ v) ∧ (u ≤ v − 7) SAT

φ11 EXPANDBWD(φ7, q3) (y > 6 ∧ skt < 10 ∧ y ≤ skt) SAT

φ12 CHK(φ11, Θ(q)) (y > 6 ∧ skt < 10 ∧ y ≤ skt) ∧ (skt ≥ y ∗ 2) UNSAT ω5, ω6

(a)

INV A B INTERPOLANT

Θ0 Θ(q) (skt = y ∗ 2) (y > 6 ∧ skt < 10) skt ≥ y ∗ 2
ω1 ω(q2 → p) (skt ≥ y ∗ 2) ∧ (y > 6 ∧ x = skt) (x < 10) x ≥ 14
ω2 ω(s1 → r) (u = c ∧ v = 10) (u < 10 ∧ u > v) v ≥ 10
ω3 ω(q3 → r) (skt ≥ y ∗ 2) ∧ (y > 6 ∧ u = y ∧ v = skt) (u < 10 ∧ u > v) u ≤ v − 7
ω4 ω(r1 → p) (u ≤ v − 7 ∨ v ≥ 10) ∧ (u > v ∧ x = u) (x < 10) x ≥ 11
ω5 ω(q3 → r) (skt ≥ y ∗ 2) ∧ (y > 6 ∧ u = y ∧ v = skt) (v < 10 ∧ u ≤ v) v ≥ 14
ω6 ω(r2 → p) ((u ≤ v − 7 ∧ v ≥ 14) ∨ (v ≥ 10)) ∧ (u ≤ v ∧ x = v) (x < 10) x ≥ 10

(b)

Fig. 6. Illustration of the Learning Algorithm for Program P in Fig. 4
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value ω(s1 → r), which is infeasible; it next tries ω(q3 → r), which is feasible. So,
φ7 propagates back to q as φ11. In q, however, φ11 becomes unsatisfiable with Θ(q),
forcing backtrack to r while updating ω(q3 → r) := ω3 ∧ ω5 and Ω(r) := ω2 ∨ (ω3 ∧
ω5). Because all callers of r are explored, ALTER further backtracks to pwhile updating
ω(r2 → p) := ω6. Finally, no feasible paths to error in p exist; ALTER returns NOWIT.

Example 2. Recall the example in Fig. 3 where ALTER redundantly explores callers
runA and runB multiple times. Learning solves this problem: after failing with con-
text runA → foo1 → bar, ALTER labels edge runA → foo with predicate ω1 =
(cfoo �= null). Similarly, edge runB → foo is labeled with ω1. Because both callers
of foo have been explored, ALTER now computes a call invariantΩ1 = (cfoo �= null)
for foo by disjoining the incoming edge invariants. This invariant helps to prune back-
ward search in the second iteration: the EC (cfoo = null) for context foo2 → bar is
unsatisfiable immediately on conjoining with Ω1. Hence, ALTER avoids the redundant
exploration of runA and runB for the second call to bar.

6 Evaluation

We implemented the ALTER algorithm using the WALA framework for analyzing Java
programs and applied it to validate the null dereference warnings produced by Find-
Bugs [10], in a manner similar to the earlier Snugglebug work [4], where these bench-
marks were validated using weakest precondition computation. We considered three
open-source Java benchmarks, apache-ant(v1.7), batik(v1.6) and tomcat(v6.0.16), hav-
ing LoC 88k, 157k and 163k, respectively.

Our analysis finds global witnesses with respect to a set of given entrypoints; we ini-
tialized the set of entrypoints to all public methods without any callers. Procedure sum-
marization is done on-demand during forward/backward expansion. We used the CVC3
solver [2] to check the satisfiability of ECs and the MathSAT5 solver [7] to compute
interpolants. A coarse mod-ref analysis is performed on the call graph in the beginning
to compute side-effects. Extensive formula simplification is performed in ALTER using
a pre-defined set of rewrite rules [4]. Forward expansion involves recursive expansion
of skolems as the predominant strategy, with feedback driven expansion for virtual call
skolems [4] (cf. [23]). We also tried lazy expansion strategies [1]; however, recursive
forward expansion outperforms lazy expansion in most cases.

We designed a set of experiments: First, we compare ALTER with a non-alternating
version NOALT which performs forward expansion only after backward expansion ter-
minates at an entrypoint. Next, we evaluate the impact of learning. Finally, since we
consider Snugglebug (SB) to be an ancestor of ALTER (they do share significant amount
of code), we also compare the end-to-end performance of ALTER with SB.

Fig. 7 shows the ALTER results on a set of dereference checks for above benchmarks
(each check corresponds to a single warning reported by FindBugs). All the benchmarks
contain a combination of witness and no-witness instances. 3 We show only the actual
analysis run times; the initial call graph and mod-ref computation times are excluded.
The results also show the number of functions summarized by ALTER and the maximum
error depth for the checks: the alternating expansion by ALTER succeeds in finding a
witness or showing its absence by analyzing a small set of functions around the goal.

3 The table excludes Snugglebug benchmarks on which either ALTER reported inconclusive (due
to recursion), did not finish or the run times of both the tools were very small.
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ALTER outperforms NOALT on most benchmarks: although NOALT performs sim-
ilar to ALTER for bugs where entrypoints are closer to the goal function, it times-out
on deeper goal functions. For example, NOALT performs poorly on tomcat14 because
it redundantly explores a much longer call context that does not lead to an error, and
wastes resources performing many redundant forward expansions. In contrast, ALTER

finds a call context of depth 6 that leads to a witness. This shows the advantage of al-
ternating expansion clearly: expanding forward before backward avoids exploring long
redundant contexts and helps obtain smaller scopes on our benchmarks.

Benchmark WIT? T(SB) #FS(SB) T(NOALT) MaxD(NOALT) #FS(NOALT) T(ALTER) MaxD(ALTER) #FS(ALTER)
ant3 Y >300 >154 0.6 0 1 0.6 0 1
ant4 N 4.17 102 1.9 1 2 1.21 1 2
ant5 N 2.7 66 0.8 0 1 0.87 0 1

batik2 Y 7.6 33 1.0 2 4 0.9 2 4
batik5 Y 11.5 25 18.3 23 91 5.1 9 26
batik7 N 3.5 37 > 300 > 38 > 100 1.3 3 6
batik8 N 4.5 30 2.4 1 3 2.5 1 3
batik9 Y 48.7 89 6.79 3 21 5.6 2 14

batik10 Y 3.8 88 1.7 2 4 1.8 2 4
tomcat9 N 114 26 > 300 > 16 > 74 2.8 0 7

tomcat10 Y 4.9 26 4.1 4 17 3.7 4 17
tomcat11 Y 19.64 7 0.8 0 3 0.86 0 3
tomcat12 N > 300 >50 0.94 1 2 0.9 0 2
tomcat14 Y 6.1 26 > 300 > 17 > 55 1.778 6 7

Fig. 7. Comparison of Snugglebug (SB), NOALT and ALTER on Java benchmarks. WIT? = wit-
ness or not. All times in seconds. MaxD denotes the length of longest call context to the goal
function during exploration, #FS denotes the total number of functions summarized during each
analysis.

Benchmark #Goals Time(NL) Time(L) Time(Itp) Edge(NL) Edge(L) LrnReUse LrnEdge LrnUpdts
ant3 9 4.013 3.996 0 8 8 0 3 3
ant4 6 1.377 1.527 0.214 3 3 0 2 3
ant5 7 1.302 1.36 0 0 0 0 0 0

batik2 20 1.349 1.589 0.183 4 4 0 1 2
batik7 23 9.319 9.529 0.546 50 41 9 6 7
batik8 24 9.113 9.179 0.461 9 9 0 2 3
batik9 32 8.508 9.879 0.931 31 31 0 8 8

batik10 20 2.558 2.45 0.306 13 9 2 2 3
tomcat9 54 24.511 26.736 0.209 68 68 0 2 2

tomcat10 33 9.193 10.542 3.203 105 39 3 23 23
tomcat11 16 2.519 2.573 0 0 0 0 0 0
tomcat12 18 4.771 4.949 0 16 16 0 0 0
tomcat14 4 2.24 1.934 0.23 17 9 4 4 4

Fig. 8. Evaluation of learning in ALTER on Java benchmarks. Time : Time for analysis. L-
learning, NL-No learning, Itp : Interpolant generation during learning. Edge : Number of edges
explored in callgraph. LrnReUse : Number of times previous learning helped in backtracking.
LrnEdges : Number of edges with learning. LrnUpdt : Total number of learning updates. batik5
(multiple goals) does not finish because of bugs in our tool.
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Fig. 8 shows the impact of learning on alternating expansion, both in terms of the
run-time and the edges explored during backward expansion: our experiments primarily
focused on learning and reusing caller invariants. Instead of analyzing a single goal, we
collect multiple null dereferences from the goal function and analyze them in sequence.
This allows the successive runs to take advantage of previously learned invariants. The
results show that learning invariants indeed reduces the number of call graph edges re-
explored (Edge(L) vs Edge(NL)) by reusing invariants learned earlier. In some cases,
e.g., tomcat10, the number of edges explored reduces by almost two-thirds. In con-
trast, the run-time benefits depend on how effectively the invariants are reused: if there
is plenty of reuse, the ALTER run-time is lower. However, if the overhead of computing
invariants is much larger than the reduction due to reuse, ALTER is slower with learn-
ing. For example, although ALTER explores much fewer edges in tomcat10, the time
taken for interpolant generation is also large (3.203 seconds), which annulls the benefits
of learning. However, in such cases, learning provides proofs (at a small cost) which we
believe amounts to long term benefits, e.g. during regression testing across upgrades.
We believe the results will improve further by employing a single solver for both check-
ing infeasibility and interpolant generation (we used two solvers because we wanted to
reuse our existing stable interface to CVC3) and compute interpolants in-memory.

Finally, Fig 7 also shows that ALTER consistently finishes faster than SB. In partic-
ular, on ant3 and tomcat12, ALTER finishes quickly while Snugglebug times out (5
minutes). ALTER and SB are architecturally very different and it is difficult to narrow
down the cause for the large performance difference to a single factor. One factor is that
ALTER computes and reuses local summaries as opposed to SB which may re-analyze
procedures for different call contexts. Another factor is that intraprocedurally, ALTER

merges symbolic states at join points, whereas SB does not, due to which it needs to
propagate a large number of different formulae through a control-flow graph. Finally,
SB does not implement alternating scope expansion or learning.

7 Related Work

Loginov et. al. [16] present a closely-related analysis that expands the scope around the
goal function in a breadth-first fashion, iteratively analyzing larger scopes until it finds a
witness. Breadth-first expansion was also used in the work of Ma et al. [17], which com-
bines forward and backward exploration for testing. In some cases, a strict breadth-first
strategy may lead to excessive analysis of irrelevant code, e.g., when the goal function
has many callees irrelevant to the property. ALTER uses a more sophisticated alternat-
ing search strategy to avoid analyzing such irrelevant code. The probabilistic analysis
of Gulwani and Jojic also combines forward and backward exploration [8], but their
work does not focus on handling of procedure calls in large programs.

Scope-bounded analysis in DC2 [11] bounds the program scope and computes envi-
ronment (caller) constraints and (callee) function stubs for the procedures outside the
scope using a light-weight whole program analysis. However, scope bounding is per-
formed manually, without automatic scope expansion. ALTER could also be extended
to exploit separately-computed caller and callee invariants. Snugglebug (SB) [4] tries
to detect bugs by performing backward weakest precondition computation on the inter-
procedural control flow graph. Unlike ALTER, SB may re-analyze functions for differ-
ent postconditions, and it does not learn facts from failed backward propagation.
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Structural abstraction techniques [1,24,22] focus on heuristics for lazy forward ex-
pansion. CORRAL [15] performs efficient forward expansion in a stratified manner (a
variant of structural abstraction/refinement) together with selective variable abstraction.
CORRAL also uses separately-computed invariants to improve search. Unlike ALTER,
these techniques have no backward expansion, helpful for deep goal functions, and no
automated invariant learning to avoid redundant re-analysis.

Our learning technique is influenced by the DPLL paradigm, in general, and by lazy
annotation [18], in particular. The latter learns program annotations from failed explo-
rations during path-enumeration-based analysis but starts from the main routine, which
may make it hard to locate bugs in deep callees. Also, it performs basic block-level
expansion and fine-grained learning at the intra-procedural level, which may aggra-
vate path explosion when finding long inter-procedural witnesses. In contrast, ALTER

employs local procedure summaries, which avoid re-analysis of procedures as well as
both intra- and inter-procedural path explosion. By expanding a whole procedure in one
step and learning constraints at procedure interfaces, ALTER is able to focus on inter-
procedural exploration without being distracted by repeated intra-procedural analysis.

The SMASH tool [5] employs a combination of may and must summaries obtained
from predicate abstraction and directed symbolic execution, respectively, to avoid re-
dundant re-analysis. Both these summaries are approximations (over- and under-, re-
spectively) of callee side-effects and are useful for forward expansion. Here, we pro-
pose to compute caller invariants to improve backward expansion besides employing
callee invariants for forward search. Call invariants proposed by Lahiri and Qadeer [14]
may be seen as a restricted form of callee invariants which capture the memory footprint
unchanged by a procedure.

More broadly, many recent systems for verification and bug detection have been
based on predicate abstraction (e.g., BLAST [9] and CPACHECKER [3]). Predicate-
abstraction approaches suffer from expensive predicate image computation and, typi-
cally, cannot recover from irrelevant refinements. In contrast, ALTER performs a sort of
lazy annotation [18] at procedure boundaries, which is able to generalize from invari-
ants specific to a particular call context. Also, while predicate abstraction has worked
well on certain kinds of programs (e.g. programs arising from the device-driver do-
main), it has not been shown to work well on general object-oriented programs. A key
challenge with OO programs is heavy use of heap structures, which makes the predicate
space that can adequately abstract a program difficult to identify.

8 Conclusions

We proposed a new scalable method to detect inter-procedural bugs using a focused,
alternating backward and forward expansion strategy, starting from the goal function.
The method iteratively explores the call contexts of the goal function and the callees
thereof in an alternating manner, backtracks from infeasible contexts, and learns caller/-
callee invariants from failed explorations to prune future search. We demonstrated the
effectiveness of our method on large open-source Java programs in terms of faster run
times and lesser analysis scopes. In future, we will investigate better forward expansion
strategies and improve reuse and management of learned facts.
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Abstract. Symmetry reduction is a well-investigated technique to
counter the state space explosion problem for reasoning about a concur-
rent system of similar processes. Here we present a general method for
its application, restricted to verification of safety properties, but without
any prior knowledge about global symmetry. We start by using a notion
of weak symmetry which allows for more reduction than in previous no-
tions of symmetry. This notion is relative to the target safety property.
The key idea is to perform symmetric transformations on state inter-
polation, a concept which has been used widely for pruning in SMTand
CEGAR. Our method naturally favors “quite symmetric” systems: more
similarity among the processes leads to greater pruning of the tree. The
main result is that the method is complete wrt. weak symmetry: it only
considers states which are not weakly symmetric to an already encoun-
tered state.

1 Introduction

Symmetry reduction is a well-investigated technique to counter the state space
explosion problem when dealing with concurrent systems whose processes are
similar. In fact, traditional symmetry reduction techniques rely on an idealistic
assumption that processes are indistinguishable. Because this assumption ex-
cludes many realistic systems, there is a recent trend [7,4,12,14,15] to consider
systems of non-identical processes, where the processes are sufficiently similar
that the original gains of symmetry reduction can still be accomplished. However,
this necessitates an intricate step of detecting symmetry in the state exploration.

We start by considering an intuitive notion of symmetry, which is based on a
standard adaptation of the notion of bisimilarity. We say two states s1 and s2
are symmetric if there is a “permutation” π such that s2 = π(s1), and if each
successor state of s1 can be matched (via π) with a unique successor state of s2
while at the same time each successor state of s2 can be matched (via π−1) with
a unique successor state of s1. In safety verification, we further require that s1
is safe iff s2 is safe.

We refer to this notion as strong symmetry. We mention that all recent works
which deal with heterogeneous systems (processes are not necessarily identical)
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have the desire to capture this type of symmetry in the sense that they attempt,
though not quite successfully, to consider only states which are not strongly
symmetric to any already encountered state.

In this paper, we present a general approach to symmetry reduction for safety
verification of a finite multi-process system, defined parametrically , without any
prior knowledge about its global symmetry. In particular, we explicitly explore
all possible interleavings of the concurrent transitions, while applying pruning
on “symmetric” subtrees. We now introduce a new notion of symmetry: weak
symmetry. Informally, this notion weakens the notion of permutation between
states so that the program counter is the paramount factor in consideration of
symmetry. In contrast, values of program variables are used in consideration of
strong symmetry. The main result is that our approach is complete wrt. weak
symmetry: it only considers states which are not weakly symmetric to an already
encountered state.

More specifically, we address the state explosion problem by employing sym-
bolic learning on the search tree of all possible interleavings. Specifically, our
work is based on the concept of interpolation. Here, interpolation is essentially
a form of backward learning where a completed search of a safe subtree is then
formulated as a recipe for pruning (every state/node is a root associated to some
subtree). There are two key ideas regarding our learning technique: First, each
learned recipe for a node not only can be used to prune other nodes having the
same future (same program point), but also can be transfered to prune nodes
that having symmetric futures (symmetric program points). Second, each recipe
discovered by a node will be conveyed back to its ancestors, which gives rise
to pruning of larger subtree. Another important distinction is that our method
learns symbolically with respect to the safety property and the interleavings.
In Section 5, we will confirm the effectiveness of our method experimentally on
some classic benchmarks.

T

C

t1 : ∀j • pcj �= C t2 : id < 3 ∧ pc3 �= C
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Fig. 1. (a) Modified 3-process reader-writer (b) Full interleaving tree

We conclude this subsection with two examples in order to demonstrate strong
and weak symmetry. First we borrow with modification from [14,15] wherein are
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two “reader” processes (indices 1, 2) and one “writer” process (index 3). We
denote by C and T the local process states which indicate entering the critical
section and in a “trying” state, respectively. See Figure 1(a). Note that pcj is the
local control location of process j and for each process, id is its process identifier.
These concepts will be defined more formally in Section 2.

For each process, there are two transitions from T to C. The first, t1, is exe-
cutable by any process provided that no process is currently in its critical section
(∀j • pcj �= C). The second, t2, is however available to only readers (id < 3), and
the writer must be in a non-critical local state pc3 �= C. This example shows
symmetry between the reader processes, but because of their priority over the
writer, we do not have “full” symmetry [14].

Figure 1(b) shows the full interleaving tree. Transitions are labelled with su-
perscripts to indicate the process to which that transition is associated. Infeasible
transitions are arrows ending with crosses. Note that nodes CTT and TCT are
strongly symmetric, but neither is strongly symmetric with TTC.

sum = 0;

process(id) {

<0> sum += id;

<1>

}

〈0〉

〈1〉

〈0〉

〈1〉

t{1} : sum += id1 t{2} : sum += id2

(a) (b)

〈0,0〉

〈1,0〉 〈0,1〉

〈1,1〉#1 〈1,1〉#2

sum = 0

sum = 1 sum = 2

sum = 3 sum = 3

{sum ≤ 3}

{sum ≤ 3 ∧ sum ≤ 3 − id2} {sum ≤ 3 ∧ sum ≤ 3 − id1}

t
{1}

t
{2}

t
{2}

t
{1}

(c)

Fig. 2. (a) Sum-of-ids system (b) Its 2-process concretization (c) Full interleaving tree

Our second example is the system in Figure 2(a). Initially, the shared vari-
able sum is set to 0. Each process increments sum by the amount of its process
identifier, namely id. The local transition systems for process 1 and process 2
are shown in Figure 2(b). The full interleaving tree is shown in Figure 2(c).

Let π be the function swapping the indices of the two processes. We can see
that the subtrees rooted at states 〈〈1, 0〉; sum = 1〉 and 〈〈0, 1〉; sum = 2〉 share
the same shape. However, due to the difference in the value of shared variable
sum, strong symmetry does not apply (in fact, any top-down technique, such as
[14,15,12], cannot avoid exploring the subtree rooted at 〈〈0, 1〉; sum = 2〉, even
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if the subtree rooted at 〈〈1, 0〉; sum = 1〉 has been traversed and proved to be
safe).

There is however a weaker notion of symmetry that does apply. We explain
this by outlining our own approach, whose key feature is the computation of an
interpolant [10] for a node, by a process of backward learning. Informally, this
interpolant represents a generalization of the values of the variables such that
the traversed tree has a similar transition structure, and also remains safe. In
the example, we require the safety property ψ ≡ sum ≤ 3 at every state, and
interpolants are shown as formulas inside curly brackets.

Using precondition propagation, the interpolant for state 〈〈1, 1〉; sum = 3〉
is computed as sum ≤ 3, and the interpolant for state 〈〈1, 0〉; sum = 1〉 is
computed as φ〈1,0〉 ≡ sum ≤ 3 ∧ sum ≤ 3 − id2. Using this, we can infer that
φ〈0,1〉 ≡ sum ≤ 3∧ sum ≤ 3− id1 (obtained by applying π on φ〈1,0〉) is a sound
interpolant for program point 〈0, 1〉. As 〈〈0, 1〉; sum = 2〉 |= φ〈0,1〉, the subtree
rooted at 〈〈0, 1〉; sum = 2〉 can be pruned.

1.1 Related Work

Symmetry reduction has been extensively studied, e.g. [5,2,8,6]. Traditionally,
symmetry is defined as a transition-preserving equivalence, where an automor-
phism π, other than being a bijection on the reachable states, also satisfies that
(s, s′) is a transition iff (π(s), π(s′)) is. There, this type of symmetry reduction
is enforced by unrealistic assumptions about indistinguishable processes. As a
result, it does not apply to many systems in practice.

One of the first to apply symmetry reduction strategies to “approximately
symmetric” systems is [7], defining notions of near and rough symmetry. Near
and rough symmetry is then generalized in [4] to virtual symmetry, which still
makes use of the concept of bisimilarity for symmetry reduction. Though bisim-
ilarity enables full μ-calculus model checking, the main limitation of these ap-
proaches is that they exclude many systems, where bisimilarity to the quotient
is simply not attainable. Also, these approaches work only for the verification of
fully symmetric properties. No implementation is provided.

The work [12] allows arbitrary divergence from symmetry, and accounts for
this divergence initially by conservative optimism, namely in the form of sym-
metric “super-structure”. Specifically, transitions are added to the structure to
achieve symmetry. A guarded annotated quotient (GAQ) is then obtained from
the super-structure, where added transitions are marked. This approach works
well for programs with syntacticly specified static transition priority. However, in
general, the GAQ needs to be unwound frequently to compensate for the loss in
precision (false positive due to added transitions). This might affect the running
time significantly as this method might need to consider many combinations of
transitions which do not belong to the original structure.

In comparison with our technique, this method has a clear advantage that it
can handle arbitrary CTL∗ property. Nevertheless, our technique is more efficient
both in space and time. Our technique is required to store an interpolant for each
non-subsumed state, whereas in [12], a quotient edge might require multiple
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annotations. Furthermore, ours does not require a costly preprocessing of the
program text to come up with a symmetric super-structure. Also, extending [12]
to symbolic model checking does not seem possible.

The most recent state-of-the-art regarding symmetry reduction, and also clos-
est to our spirit, is the lazy approach proposed by [14,15]. Here only safety verifi-
cation is considered. This approach does not assume any prior knowledge about
(global) symmetry. Indeed, they initially and lazily ignore the potential lack of
symmetry. During the exploration, each encountered state is annotated with in-
formation about how symmetry is violated along the path leading to it. The idea
is that more similarity between component processes entails more compression
is achieved.

In summary, the two main related works which are not restricted a priori
on global symmetry are [12] and [14]. That is, these works allow the system to
use process identifiers and therefore do not restrict the behaviors of individual
processes. This is not the case with the previously mentioned works.

These works, [12] and [14], can be categorized as top-down techniques. Fun-
damentally, they look at the syntactic similarities between processes, and then
come up with a reduced structure where symmetric states/nodes are merged into
one abstract node. When model checking is performed, an abstract node might
be concretized into a number of concrete nodes and each is checked one by one
([12] handles that by unwinding). For them, two symmetric parental nodes are
not guaranteed to have correspondingly symmetric children. For us, by backward
learning, we ensure that is the case. Consequently, and most importantly, they
do not exponentially improve the runtime, only compress the state space.

Consider again the first example above (Figure 1). A top-down approach will
consider TTC as a “potentially” symmetric state of CTT, and all three states CTT,
TCT, and TTC are merged into one abstract state. While having compaction, it
is not the case that the search space traversed is of this compact size. As a non-
symmetric state (TTC) is merged with other mutually symmetric states (CTT
and TCT), in generating the successor abstract state, the parent abstract state

is required to be concretized and both transitions t
{2}
2 (emanating from CTT)

and transition t
{1}
2 (emanating from TCT) are considered (in fact, infeasible

transition t
{3}
2 is also considered). In summary, compaction may not lead to any

reduction in the search space.
We finally mention that we consider only safety properties because we wish

to employ abstraction in the search process. And it is precisely a judicious use
of abstraction that enables us to obtain more pruning in comparison with prior
techniques. We prove this in principle by showing that we are complete wrt. weak
symmetry, and we demonstrate this experimentally on some classic benchmarks.

2 Preliminaries

We consider a parametrically defined n-process system, where n is fixed. In accor-
dance with standard practice in works on symmetry, we assume that the domain
of discourse of the program variables is finite so as to guarantee termination of
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the search process of the underlying transition system. Infinite domains may be
accomodated by some use of abstraction, as we show in one benchmark example
below.

We employ the usual syntax of a deterministic imperative language, and com-
munication occurs via shared variables. Each process has a unique and predeter-
mined process identifier, and this is denoted parametrically in the system by the
special variable id. For presentation purpose, the concrete value of id for each
individual process ranges from 1 to n. We note that the variable id cannot be
changed. Even though the processes are defined by one parameterized system,
their dynamic behaviors can be arbitrarily different. This would depend on how
id is expressed in the parameterized system. Finally, we also allow a blocking
primitive await(b) s; where b is a boolean expression and s is an optional
program statement.

Consider the 2-process parameterized system in Figure 3(a). Note the (local)
program points in angle brackets. Figure 3(b) “concretizes” the processes explic-
itly. Note the use in the first process of the variable id1 which is not writable in
the process, and whose value is 1. Similarly for id2 in the other process.

x = 1;

process(id) {

<0> await(x == id);

<1> x++;

<2>

}

〈0〉

〈1〉

〈2〉

〈0〉

〈1〉

〈2〉

t
{1}
1 : await(x == id1) t

{2}
1 : await(x == id2)

t
{1}
2 : x++ t

{2}
2 : x++

(a) (b)

Fig. 3. (a) A parameterized system (b) Its 2-process concretization

In general, where Pi (1 ≤ i ≤ n) is a process, let Vi be its local variables and
Vshared be the shared variables of entire system. We note here that Vi does not
include the special local variables which represent the process identifiers. Let
pci ∈ Vi be a special variable represent the local program counter, and the tuple
〈pc1, pc2 · · · , pcn〉 represent the global program point. Let State be the set of all
global states of the given program where s0 ∈ State is the initial state. A state
s ∈ State comprises of three parts: its program point pc(s), which is a tuple of
local program counters, its valuation over the program variables val(s), and its
valuation over the process identifiers pids. In other words, we denote a state s by
〈pc(s); val(s); pids〉. Note that all states from the same parameterized system
share the same valuation of the individual process identifiers. Therefore, when
the context is clear, we omit the valuation pids of a state.

We consider the transitions of states induced by the program. A transition t{i}

pertains to some process Pi. It transfers process Pi from control location l1 to l2.
In general, the application of t{i} is guarded by some condition cond (condmight
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be just true). At some state s ∈ State, when the ith component of pc(s), namely
pc(s)[i], equals l1, we say that t{i} can be scheduled at s. And when the valuation
val(s); pids satisifies the guard cond, denoted by val(s); pids |= cond, we say
that t{i} is enabled at s. Furthermore, we call the enabling condition of t{i}

the formula: (pc(s)[i] == l1) ∧ cond. For each state s, let Scheduled(s) and
Enabled(s) denote the set of transitions which respectively can be scheduled at
s and are enabled at s. Without further ado, we assume that the effect of applying
an enabled transition t{i} on a state s to arrive at state s′ is well-understood.

This is denoted as s
t{i}−→ s′.

Again consider in Figure 3 with two processes P1 and P2 with variables id1 = 1
and id2 = 2 respectively. In the system, it is specified parametrically that each
process awaits for x == id. In P1, this is interpreted as await(x == id1) while
P2, this is interpreted as await(x == id2). Each process has 2 transitions: the
first transfers it from control location 〈0〉 to 〈1〉, whereas the second transfers
it from control location 〈1〉 to 〈2〉. Initially we have x = 1, i.e. the initial state

s0 is 〈〈0, 0〉;x = 1; id1 = 1, id2 = 2〉. We note that at s0, both t
{1}
1 and t

{2}
1 can

be scheduled. However, among them, only t
{1}
1 is enabled. By taking transition

t
{1}
1 , P1 moves from control location 〈0〉 to 〈1〉, and the whole system moves from
state 〈〈0, 0〉;x = 1; id1 = 1, id2 = 2〉 to state 〈〈1, 0〉;x = 1; id1 = 1, id2 = 2〉.
We note that here the transition t

{2}
1 is still disabled. From now on, let us omit

the valuation of process identifiers. The whole system then takes the transition

t
{1}
2 and moves from state 〈〈1, 0〉;x = 1〉 to state 〈〈2, 0〉;x = 2〉. Now, t

{2}
1

becomes enabled. Subsequently, the system takes t
{2}
1 and t

{2}
2 to move to state

〈〈2, 1〉;x = 1〉 and finally to state 〈〈2, 2〉;x = 3〉.

Definition 1 (Safety). We say a given concurrent system is safe wrt. a safety
property ψ if ∀s ∈ State • s is reachable from s0 implies s |= ψ.

2.1 Symmetry

Given an n-process system, let I = [1 · · ·n] denote its indices, to be thought of
as process identifiers. We write Sym I to denote the set of all permutations π
on index set I. Let Id be the identity permutation and π−1 the inverse of π.

For an indexed object b, such as a program point, a variable, a transition,
valuation of program variables, or a formula, whose definition depends on I, we
can define the notion of permutation π acting on b, by simultaneously replacing
each occurrence of index i ∈ I by π(i) in b to get the result of π(b).

Example 1. Consider the system in Figure 3(b). Let the permutation π swap
the two indices (1 �→ 2, 2 �→ 1). Applying π to the valuation x = 1 gives us
π(x = 1) ≡ x = 1, as x is a shared variable. Applying π to the formula x =
id1 ∧ id1 = 1 gives us π(x = id1 ∧ id1 = 1) ≡ (x = id2 ∧ id2 = 1). On the

other hand, applying π to the transition t
{1}
1 ≡ await(x = id1) will result in

π(t
{1}
1 ) ≡ t{2}1 ≡ await(x = id2).
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Definition 2. For π ∈ Sym I and state s ∈ State, s ≡ 〈pc(s); val(s); pids〉,
the application of π on s is defined as 〈π(pc(s));π(val(s)); pids〉,

In other words, permutations do not affect the valuation of process identifiers.

Example 2. Consider again the system in Figure 3(b). Assume the π is the per-
mutation swapping the 2 indices (1 �→ 2, 2 �→ 1). We then can have π(〈〈1, 0〉;x =
1; id1 = 1, id2 = 2〉) ≡ 〈〈0, 1〉;x = 1; id1 = 1, id2 = 2〉. Please note that while π
has no effect on shared variable x and valuation of process identifiers id1, id2, it
does permute the local program points.

Definition 3. For π ∈ Sym I, a safety property ψ is said to be symmetric wrt.
π if ψ ≡ π(ψ).

We next present a traditional notion of symmetry.

Definition 4 (Strong Symmetry). For π ∈ Sym I, and a safety property ψ,
for s, s′ ∈ State, we say that s is strongly π-similar to s′ wrt. ψ, denoted by

s
π,ψ
≈ s′ if ψ is symmetric wrt. π and the following conditions hold:

• π(s) = s′

• for each transition t such that s
t−→ d we have s′

π(t)−→ d′ and d
π,ψ
≈ d′

• for each transition t′ such that s′
t′−→ d′ we have s

π−1(t′)−→ d and d
π,ψ
≈ d′.

One of the strengths of this paper is to allow symmetry by disregarding the
values of the program variables.

Definition 5 (Weak Symmetry). For π ∈ Sym I, and a safety property ψ,
for s, s′ ∈ State, we say that s is weakly π-similar to s′ wrt. ψ, denoted by

s
π,ψ∼ s′ if ψ is symmetric wrt. π and the following conditions hold:
• π(pc(s)) = pc(s′)
• s |= ψ iff s′ |= π(ψ)

• for each transition t such that s
t−→ d we have s′

π(t)−→ d′ and d
π,ψ∼ d′

• for each transition t′ such that s′
t′−→ d′ we have s

π−1(t′)−→ d and d
π,ψ∼ d′.

We note here that, from now on, unless otherwise mentioned, symmetry means
weak symmetry while π-similar means weakly π-similar. Also, it trivially follows
that if s is π-similar to s′ then s′ is π−1-similar to s. Consequently, if s is
symmetric with s′, then s′ is symmetric with s too.

2.2 State Interpolation

State-based interpolation was first described in [10] for finite transition systems.
The essential idea was to prune the search space of symbolic execution, informally
described as follows. Symbolic execution is usually depicted as a tree rooted
at the initial state s0 and for each state si therein, the descendants are just
the states obtainable by extending si with an enabled transition. Consider one
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particular feasible path represented in the tree: s0
t1→ s1

t2→ s2 · · · tm→ sm. We
adapt the usual notion of program point, characterizing a point in the reachability
tree in terms of all the remaining possible transitions. Now, this particular path
is safe wrt. to safety property ψ if for all i, 0 ≤ i ≤ m, we have si |= ψ. A
(state) interpolant at program point j, 0 ≤ j ≤ m is simply a set of states Sj

containing sj such that for any state s′j ∈ Sj , s′j
tj+1−→ s′j+1

tj+2−→ s′j+2 · · ·
tm→ s′m,

it is also the case that for all i, j ≤ i ≤ m, we have s′i |= ψ. This interpolant
was constructed at point j due to the one path. Consider now all paths from
s0 and with prefix t1, · · · , tj−1. Compute each of their interpolants. Finally, we
say that the interpolant for the subtree of paths just considered is simply the
intersection of all the individual interpolants. This notion of interpolant for a
subtree provides a notion of subsumption because we can now prune a subtree
in case the root of this subtree are within the interpolant computed for some
previously encountered subtree of the same program point.

Definition 6 (Safe Root). Let si be a state which is reachable from the initial
state s0, we say that si is a safe root, denoted by 8(si), if for all state s′i
reachable from si, si is safe.

Definition 7 (State Coverage). Let si and sj be two states which are reach-
able from the initial state s0 such that pc(si) ≡ pc(sj). We say that si covers
sj, denoted by si 9 sj, if 8(si) implies 8 (sj).

During the traversal of the reachability tree, if we detect that si 9 sj while si
has been proved to be a safe root, the traversal of the subtree rooted at sj can
be avoided. We thus reduce the search space.

Definition 8 (Sound Interpolant). Let pp be a global program point. We say
a formula φ is a sound interpolant for pp if for all state s reachable from the
initial state s0, pc(s) ≡ pp ∧ s |= φ implies that s is a safe root.

In practice, in order to determine state coverage, during the exploration of sub-
tree rooted at si we compute an interpolant of pc(si), denoted as SI(pc(si), ψ),
where ψ is the target safety property. Note that trivially, we should have si |=
SI(pc(si), ψ). We assume that this condition is always ensured by any implemen-
tation of our state-based interpolation. Furthermore, SI(pc(si), ψ) ensures that
∀sj ∈ State • pc(sj) ≡ pc(si) ∧ sj |= SI(si, ψ), then for all t ∈ Scheduled(si) 1,
the two following conditions must be satisfied:

– if t was disabled at si, it also must be disabled at sj
– if t was enabled at sj (by the above condition, it must be enabled at si) and

sj
t→ s′j and si

t→ s′i, then s
′
i must cover s′j .

This observation enables us to determine the coverage relation as the form of
backward learning in a recursive manner. Our symmetry reduction algorithm
presented in Section 4 will implement this idea of state interpolation.

1 Since pc(sj) ≡ pc(si), we have Scheduled(sj) ≡ Scheduled(si).
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3 Motivating Examples

Figure 4 shows a parameterized system and its 2-process concretization. The
shared array x contains 2 elements, initially 0. For convenience, we assume that
array index starts from 1. Process 1 assigns id1 (whose value is 1) to x[1] while
process 2 assigns id2 (2) to x[2].

x[1] = x[2] = 0;

process(id) {

<0> x[id] = id;

<1>

}

〈0〉

〈1〉

〈0〉

〈1〉

t{1} : x[id1] = id1 t{2} : x[id2] = id2

(a) (b)

s0

s1 s′1

s2

t{1} t{2}

t{2}

x[1] = 0, x[2] = 0

x[1] = 1, x[2] = 0

x[1] = 1, x[2] = 2

x[1] = 0, x[2] = 2

φ2 ≡ ψ ≡ {x[id1] + x[id2] ≤ 3}

φ1 ≡ {ψ ∧ x[id1] + id2 ≤ 3}

(c)

Fig. 4. (a) An example (b) Its 2-process concretization (c) Traversed tree

Consider the safety property ψ ≡ x[1] + x[2] ≤ 3, interpreted as ψ ≡ x[id1] +
x[id2] ≤ 3. The reachability tree explored is in Figure 4(c). Circles are used to
denote states, while double-boundary circles denote subsumed/pruned states.

From the initial state s0 ≡ 〈〈0, 0〉;x[1] = 0, x[2] = 0; id1 = 1, id2 = 2〉 process
1 progresses first and moves the system to the state s1 ≡ 〈〈1, 0〉;x[1] = 1, x[2] =
0; id1 = 1, id2 = 2〉. From s1, process 2 now progresses and moves the system to
the state s2 ≡ 〈〈1, 1〉;x[1] = 1, x[2] = 2; id1 = 1, id2 = 2〉. Note that s0, s1, and s2
are all safe wrt. ψ. As there is no transition emanating from s2, the interpolant for
s2 is computed as φ2 ≡ ψ ≡ x[id1]+x[id2] ≤ 3. The pair 〈〈1, 1〉;φ2〉 is memoized.
The interpolant for s1 can be computed as a conjunction of two formulas. One
concerns the safety of s1 itself, and the other concerns the safety of the successor
state from t{2}. In other words, we can have φ1 ≡ ψ ∧ pre(x[id2] = id2;ψ),
where pre(t;φ) denotes a precondition wrt. to the program transition t and the
postcondition φ. Consequently, we can have φ1 ≡ ψ ∧ x[id1] + id2 ≤ 3. The pair
〈〈1, 0〉;φ1〉 is memoized.

Now we arrive at state s′1 ≡ 〈〈0, 1〉;x[1] = 0, x[2] = 2; id1 = 1, id2 = 2〉. This
is indeed a symmetric image of state s1 which we have explored and proved to
be safe before. Here, we discover the permutation π to transform the program
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x = 0;
process(id) {

<0> if (id == 1) x++;

<1>
}

〈0〉

〈1〉

t
{2}
2 : id2!=1 t

{2}
1 : id2==1, x++

〈0〉

〈1〉
t
{1}
2 : id1!=1 t

{1}
1 : id1==1, x++

〈0〉

〈1〉

t
{3}
2 : id3!=1 t

{3}
1 : id3==1, x++

(a) (b)

s0

s1
s′1 s′′1

s2 s′2 s′′2 s′′′2

s3
s′3

X

X

X X X

X X X

X

t
{1}
1

t
{1}
2 t

{2}
1

t
{2}
2 t

{3}
1

t
{3}
2

t
{2}
1 t

{2}
2 t

{3}
1 t

{3}
2 t

{1}
1 t

{1}
2 t

{3}
1 t

{3}
2

t
{3}
1 t

{3}
2 t

{1}
1

t
{1}
2

x = 0

x=1 x=0 x=0

x=1 x=1 x=0

x=1
x=1

φ1 ≡ {x < 2 ∧ id3 �= 1 ∧ id2 �= 1}

φ2 ≡ {x < 2 ∧ id3 �= 1}

φ3 ≡ {ψ ≡ x < 2}

Note: φ′
1 ≡ {x < 1 ∧ id1 = 1 ∧ id3 �= 1}

(c)

Fig. 5. (a) An example (b) Its 3-process concretization (c) Traversed tree

point 〈1, 0〉 to program point 〈1, 0〉. Clearly π simply swaps the two indices. We
also observe that the safety property ψ is symmetric wrt. this π, i.e. π(ψ) ≡ ψ (ψ
is invariant wrt. π). In the next step, we check whether val(s′1) conjoined with
pids implies the transformed interpolant π(φ1). We have π(φ1) ≡ π(x[id1] +
x[id2] ≤ 3 ∧ x[id1] + id2 ≤ 3 ≡ x[id2] + x[id1] ≤ 3 ∧ x[id2] + id1 ≤ 3. As
val(s′1); pids |= x[id2] + x[id1] ≤ 3∧ x[id2] + id1 ≤ 3, we do not need to explore
s′1 any further. In other words, the subtree rooted at s′1 is pruned.

Another example is Figure 5. We are interested in safety property ψ ≡ x < 2.
As x is a shared variable, ψ is symmetric wrt. all possible permutations.

The reachability tree is depicted in Figure 5(c). From the initials state s0 we
arrive at states s1, s2, and s3, where:

s0 ≡ 〈〈0, 0, 0〉;x = 0; id1 = 1, id2 = 2, id3 = 3〉
s1 ≡ 〈〈1, 0, 0〉;x = 1; id1 = 1, id2 = 2, id3 = 3〉
s2 ≡ 〈〈1, 1, 0〉;x = 1; id1 = 1, id2 = 2, id3 = 3〉
s3 ≡ 〈〈1, 1, 1〉;x = 1; id1 = 1, id2 = 2, id3 = 3〉.

At s3 we compute its interpolant φ3 ≡ ψ ≡ x < 2. In a similar manner as
before, we compute the interpolant for s2, which is φ2 ≡ x < 2 ∧ id3 �= 1. When
we are at state s′2 ≡ 〈〈1, 0, 1〉;x = 1; id1 = 1, id2 = 2, id3 = 3〉, we look for a
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permutation π1 such that π1(〈1, 1, 0〉) = 〈1, 0, 1〉. Clearly we can have π1 as the
permutation which fixes the first index and swaps the last 2 indices. Moreover,
val(s′2); pids ≡ x = 1; id1 = 1, id2 = 2, id3 = 3 |= π1(φ2) ≡ x < 2 ∧ id2 �= 1.
Therefore, s′2 is pruned.

Similarly, the interpolant for s1 is computed as φ1 ≡ x < 2∧ id2 �= 1∧ id3 �= 1.
When at state s′1 ≡ 〈〈0, 1, 0〉;x = 0; id1 = 1, id2 = 2, id3 = 3〉, we look for
a permutation π2 such that π2(〈1, 0, 0〉) = 〈0, 1, 0〉. Clearly we can have π2 as
the permutation which fixes the third index and swaps the first two indices.
However, val(s′1); pids ≡ x = 0; id1 = 1, id2 = 2, id3 = 3 �|= π2(φ1) ≡ x <
2 ∧ id1 �= 1 ∧ id3 �= 1. Thus the subtree rooted at s′1 cannot be pruned and it
requires further exploration. After s′1 has been traversed, the intepolant for s′1 is
computed as φ′1 ≡ x < 1∧id1 = 1∧id3 �= 1. Next we arrive at s′′1 ≡ 〈〈0, 0, 1〉;x =
0; id1 = 1, id2 = 2, id3 = 3〉. We can find a permutation π3 which fixes the first
index and swaps the last 2 indices (π3 ≡ π1). We have π3(〈0, 1, 0〉) = 〈0, 0, 1〉.
Also val(s′′1 ); pids ≡ x = 0; id1 = 1, id2 = 2, id3 = 3 |= π3(φ

′
1) ≡ x < 1 ∧ id1 =

1 ∧ id2 �= 1. As a result, we can avoid considering the subtree rooted at s′′1 .
In the two examples above, we have shown how the concept of interpolation

can help capture the shape of a subtree. More importantly, computed inter-
polants can be transformed in order to detect the symmetry as well as the
non-symmetry (mainly due to the use of id) between candidate subtrees.

4 Symmetry Reduction Algorithm

Our algorithm, presented in Figure 6, naturally performs a depth first search of
the interleaving tree. It assumes the safety property to be known as ψ. Initially,
we explore the initial state s0 with an empty history. During the search process,
the function Explore will be recursively called. Note that termination is ensured
due to the finite domain of discourse.

Base Cases: The first base case is when the current state does not conform
to the safety property ψ (line 2). We then immediately report an error and
terminate. The second base case applies when the current state (subtree) has a
symmetric image (subtree) which has already been traversed and proved to be
safe before (line 3). We have well exemplified such scenarios in previous sections.

The third base case requires some elaboration. Using the history h, we detect
a cycle (line 4). Specifically, there is a cyclic path θ from s back to s. We note this
down and return true. Later, after the descendants of s have been traversed, we
require a fix-point computation of the interpolant for s, as shown in line 17-18.
The function FIX-POINT computes an invariant interpolant for s, wrt. the initial
value φ and the set of cyclic paths Θ. Essentially, this function involves com-
puting, for each cyclic path, a path invariant. Such a computation is performed
backwards, using a previously computed invariant at the bottom of the cyclic
path, and then extracting a new invariant for s. Then each computed path in-
variant is fed into other paths in order to compute a new invariant. The process
terminates at a fix-point. Termination is guaranteed because of monotonicity of
the path invariant computation and the fact that there are only finitely many
possible invariants (the state s itself is an invariant). Finally, the interpolant for
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〈1〉 Intially : Explore(s0, ∅)
function Explore(s, h)
〈2〉 if s �|= ψ then Report Error and TERMINATE

〈3〉 if ∃π • π(ψ) ≡ ψ ∧ ∃pp • pc(s) ≡ π(pp) ∧ ∃φ • memoed(pp, φ) ∧ s |= π(φ) then
return π(φ)

〈4〉 if s ∈ h /* We hit a cycle */
〈5〉 let θ be the cyclic path

〈6〉 Assert(Cyclic(s, θ))
〈7〉 return true /* Initial value for fix-point computation */

else
〈8〉 h ← h ∪ {s}

endif
〈9〉 φ ← ψ

〈10〉foreach t ∈ Scheduled(s) do
〈11〉 if t ∈ Enabled(s)
〈12〉 s′ ← successor of s after t /* Execute t */
〈13〉 φ′ ← Explore(s′, h)
〈14〉 φ ← φ ∧ pre(t; φ′)

else
〈15〉 φ ← φ ∧ pre(t; false)

endif
〈16〉endfor
〈17〉let Θ be {θ | Cyclic(s, θ)}
〈18〉if Θ �= ∅ then φ ← FIX-POINT(s, Θ, φ)

/* s is a looping point, so we ensure φ is an invariant along the paths Θ */
〈19〉Retractall(Cyclic(s, θ))
〈20〉h ← h \ {s}
〈21〉memo(pc(s), φ) and return φ

end function

Fig. 6. Symmetry Reduction Algorithm (DFS)

each state appearing in these cyclic paths are now updated appropriately. This
is in light of now having an invariant for all of them simultaneously.

We remark here that this fix-point task, though seemingly complicated, is in
fact routine. We refer interested readers to [9] for more details regarding this
matter. We also remark that for many concurrent protocols, where involved
operations are mainly “set” and “re-set” operations, a fix-point is achieved just
after one iteration.

Recursive Traversal and Computing the Interpolants: Our algorithm
recursively explores the successors of the current state by the recursive call in
line 13. The interpolant φ for the current state is computed as from line 9-
18. As mentioned above, cyclic paths are handled in line 17-18. The operation
pre(t;φ) denotes the precondition computation wrt. the program transition t and
the postcondition φ. In practice, we implement this as an approximation of the
weakest precondition computation [3].

Theorem 1 (Soundness). Our symmetry reduction algorithm is sound.



A Complete Method for Symmetry Reduction in Safety Verification 629

Here, by soundness, we mean that all pruning performed in line 3 will not affect
the verification result.

Proof (Outline). Let the triple {φ} 〈〈pc1, pc2, · · · , pcn〉;P1||P2|| · · · ||Pn〉 {ψ}
denote the fact that φ is a sound interpolant for program point 〈pc1, pc2, · · · , pcn〉
wrt. the safety property ψ and the concurrent system P1||P2|| · · · ||Pn. Due to
space limit, we will not prove that our interpolant computation (line 9-18) is a
sound computation. Instead, we refer interested readers to [10,9]. Let us assume
that the soundness of that triple is witnessed by a proof P . By consistently
renaming P with a renaming function π ∈ Sym I, we can derive a new sound
fact (i.e. a proof), which is:

{π(φ)} π(〈〈pc1, pc2, · · · , pcn〉;P1||P2|| · · · ||Pn〉) {π(ψ)} ≡
{π(φ)} 〈〈pcπ(1), pcπ(2), · · · , pcπ(n)〉;Pπ(1)||Pπ(2)|| · · · ||Pπ(n)〉 {π(ψ)}

Since P1, P2, · · ·Pn come from the same parameterized system and π is a bijection
on I, we have:
Pπ(1)||Pπ(2)|| · · · ||Pπ(n) ≡ P1||P2|| · · · ||Pn

Therefore, {π(φ)} 〈〈pcπ(1), pcπ(2), · · · , pcπ(n)〉;P1||P2|| · · · ||Pn〉 {π(ψ)}must hold
too. In the case that ψ is symmetric wrt. π, we have π(ψ) ≡ ψ. Thus π(φ) is
a sound interpolant for program point 〈pcπ(1), pcπ(2), · · · , pcπ(n)〉 wrt. the same
safety property ψ and the same concurrent system P1||P2|| · · · ||Pn. As a result,
the use of interpolant π(φ) at line 3 in our algorithm is sound. ��

Definition 9 (Symmetry Preserving Precondition Computation). Given
a parametrically defined n-process system and a safety property ψ, the pre-
condition computation pre used in our algorithm is said to be symmetry pre-
serving if for all π ∈ Sym I, for all transition t and all postcondition φ •
π(pre(t;φ)) ≡ pre(π(t);π(φ)).

This property means that our precondition computation is consistent wrt. to
renaming operation. In other words, the implementation of pre is independent of
the naming of variables containted in its inputs. A reasonable implementation
of pre can easily ensure this.

Definition 10 (Monotonic Precondition Computation). Given a para-
metrically defined n-process system and a safety property ψ, the precondition
computation pre used in our algorithm is said to be monotonic if for all transi-
tion t and all postconditions φ1, φ2 • φ1 → φ2 implies pre(t;φ1)→ pre(t;φ2).

We emphasize here that the weakest precondition computation [3] does possess
the monotonicity property. As is well-known, computing the weakest precon-
dition in all the cases is very expensive. However, in practice (and in particu-
lar in the experiments we have performed), we often observe this monotonicity
property with the implementation of our precondition computation. Incidentally,
some possible implementations for this operation are discussed in [11,10,9,1].

Definition 11 (Completeness). In proving a parametrically defined n-process
system with a global state space State and a safety property ψ, an algorithm which
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traverses the reachability tree is said to be complete wrt. a symmetry relation R
iff for all s, s′ ∈ State, s R s′ implies that the algorithm will avoid traversing
either the subtree rooted at s or the subtree rooted at s′.

We remark here that our definition of completeness does not concern with the
power of an algorithm in giving the answer to a safety verification question.
This definition of completeness, however, is about the power of an algorithm in
exploiting symmetry for search space reduction.

Theorem 2 (Completeness). Our symmetry reduction algorithm is complete
wrt. the weak symmetry relation if our operation pre is both monotonic and
symmetry preserving.

Proof (Outline). Assume that s, s′ ∈ State and s is weakly π-similar to s′.
W.l.o.g. assume we encounter s first. If the subtree rooted at s is pruned (due
to subsumption), the theorem trivially holds. The theorem also trivially holds if
s is not a safe root. Now we consider that the subtree rooted as s is proved to
be safe and the returned interpolant is φ. We will prove by structural induction
on this interpolated subtree that s′ will indeed be pruned, i.e. s′ |= π(φ).

For simplicity of the proof, we will prove for loop-free programs only. In other
words, we ignore our loop handling mechanism (line 4-7,17-18). Note that our
theorem still holds for the general case. However, to prove this, we will require
another induction on our fix-point computation in line 18.

For the base case that φ is ψ (when there is no schedulable transition from s)
due to the definition of weak symmetry relation, there is no schedulable transition
from s′ and s′ |= π(ψ). Therefore, traversing the subtree rooted at s′ is avoided.

As the induction hypothesis, assume now that the theorem holds for all the
descendants of state s. Let assume that φ ≡ ψ ∧φ1 ∧φ2 ∧ · · · ∧φk ∧φk+1 ∧ · · · ∧
φm, where φ1 · · ·φk are the interpolants contributed by enabled transitions in
s and φk+1 · · ·φm are the interpolants contributed by schedulable but disabled
transitions in s (line 14 and 15). Now assume the contrary that s′ �|= π(φ).
We will show that this would lead to a contradiction. Using the first condition
of weak symmetry relation, obviously s′ |= π(ψ). As such, there must exist
some 1 ≤ j ≤ m such that s′ �|= π(φj). There are two possible cases: (1) φj is
contributed by an enabled transition; (2) φj contributed by a disabled, but can
be scheduled, transition.

Let us consider case (1) first. Assume φj corresponds to transition t ∈
Enabled(s) and s

t→ d. By definition we have s′
π(t)→ d′ and d is weakly π-

similar to d′. Let φd be interpolant for the subtree rooted at d. By induction
hypothesis, we have d′ |= π(φd). Obviously, we have s′ |= pre(π(t); d′), by mono-
tonicity of pre, we deduce s′ |= pre(π(t);π(φd)). As pre is symmetry preserving,
s′ |= pre(π(t);π(φd)) ≡ π(pre(t;φd)) ≡ π(φj). Consequently we arrive at the fact
that s′ |= π(φj) which is a contradiction.

For case (2), by using the symmetry preserving property of pre and the fact
that π(false) ≡ false, we also derive a contradiction. ��
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5 Experimental Evaluation

We used a 3.2 GHz Intel processor and 2GB memory running Linux. Unless
otherwise mentioned, timeout is set at 5 minutes, and ‘-’ indicates timeout. In
this section, we benchmark our proposed approach, namely Complete Symmetry
Reduction (CSR), against current state-of-the-arts.

Table 1. Experiments on Dining Philosophers

CSR RSR NSR
# Phil Visited Subsumed T(s) Visited Subsumed T(s) Visited Subsumed T(s)

3 68 29 0.02 67 27 0.02 191 79 0.06
4 230 134 0.09 328 184 0.13 1246 702 0.81
5 662 446 0.28 1509 981 0.71 7517 4893 4.93
6 1778 1304 0.85 7356 5216 4.18 43580 30908 34.53
7 4584 3552 2.55 35079 26335 28.83 − − −
8 11526 9281 7.54 − − − − − −
9 28287 23432 22.6 − − − − − −
10 67920 57504 58.07 − − − − − −
11 159738 137609 226.86 − − − − − −

Our first example is the classic dining philosophers problem. As commonly
known, it exhibits rotational symmetry. However, and more importantly, we ex-
ploit far more symmetry than that. More specifically, at any program point, ro-
tational symmetry is applicable. Nevertheless, for certain program points, when
some transitions have been taken, the system exhibits more symmetry than just
rotational symmetry. With this benchmark, we demonstrate the power of our
complete symmetry reduction (CSR) algorithm. Here, we verify a tight safety
property that ‘no more than half the philosophers can eat simultaneously’.

Table 1 presents three variants: Complete Symmetry Reduction (CSR), Ro-
tational Symmetry Reduction (RSR), and No Symmetry Reduction (NSR). The
number of stored states is the difference between the number of visited states
(Visisted column) and subsumed states (Subsumed column). Note that although
RSR achieves linear reduction compared to NSR, it does not scale well. CSR sig-
nificantly outperforms RSR and NSR in all the instances.

Next consider the Reader-Writer Protocol from [14,15]. Here we highlight
the aspect of search space size as compared to top-down techniques, of which
the most recent implementation of Lazy Symmetry Reduction [15] is chosen as a
representative 2. Table 2 shows that although lazy symmetry reduction has ag-
gressively compressed the state space (which now grows roughly in linear com-
plexity), the running time is still exponential. In other words, the number of
abstract states is not representative of the search space. In contrast, the running
time of our method is significantly better. In the instance of 8 readers and 4
writers, we extended the timeout for [15] to finish; and it takes almost 1 day.

2 We receive this implementation from the authors of [15].
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Table 2. Experiments on Reader-Writer Protocol

Complete Symmetry Reduction Lazy Symmetry Reduction

# Readers # Writers Visisted Subsumed T(s) Abstract States T(s)

2 1 35 20 0.01 9 0.01
4 2 226 175 0.19 41 0.10
6 3 779 658 0.93 79 67.80
8 4 1987 1750 3.23 165 81969.00
10 5 4231 3820 9.21 − −

Table 3. Experiments on sum-of-ids Example

Complete Symmetry Reduction SPIN-NSR

# Processes Visited Subsumed T(s) Visited Subsumed T(s)

10 57 45 0.02 6146 4097 0.03
20 212 190 0.04 11534338 9437185 69.70
40 822 780 0.37 − − −
60 1832 1770 1.91 − − −
80 3242 3160 7.62 − − −
100 5052 4950 22.09 − − −

Next we experiment with the ‘sum-of-ids’ example mentioned earlier. To the
best of our knowledge, there is no symmetry reduction algorithm which can
detect and exploit symmetry here. Table 3 shows we have significant symmetry
reduction. In term of memory (stored states), we enjoy linear complexity. For
reference, we also report the running time of this example, without symmetry
reduction, using SPIN 5.1.4 [13].

Table 4. Experiments on Bakery Algorithm

Complete Symmetry Reduction SI
# Processes Visited Subsumed T(s) Visited Subsumed T(s)

3 65 31 0.10 265 125 0.43
4 182 105 0.46 1925 1089 5.89
5 505 325 2.26 14236 9067 74.92
6 1423 983 11.10 − − −

In the fourth and last example, we depart slightly from our finite domain to
allow infinite domain variables and loops. We choose the well-known Bakery Al-
gorithm to perform the experiments, and we use the well-known abstraction of
using an inequality to describe each pair of counters to close the loops. Again, as
far as we are aware of, there has been no symmetry reduction algorithm which
can detect and exploit symmetry for this example. Table 4 shows the signifi-
cant improvements due to our symmetry reduction, compared to just symbolic
execution with interpolation, denoted as SI.
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6 Conclusion

We presented a method of symmetry reduction for searching the interleaving
space of a concurrent system of transitions in pursuit of a safety property. The
class of systems considered, by virtue of being defined parametrically, is com-
pletely general; the individual processes may be at any level of similarity to each
other. We then enhanced a general method of symbolic execution with interpo-
lation for traditional safety verification of transition systems, in order to deal
with symmetric states. We then defined a notion of weak symmetry, one that
allows for more symmetry than the stronger notion that is used in the litera-
ture. Finally, we showed that our method, when employed with an interpolation
algorithm which is monotonic, can exploit weak symmetry completely.
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Abstract. Numbers are one of the most widely used data type in pro-
gramming languages. Number transformations like formatting and
rounding present a challenge even for experienced programmers as they
find it difficult to remember different number format strings supported
by different programming languages. These transformations present an
even bigger challenge for end-users of spreadsheet systems like Microsoft
Excel where providing such custom format strings is beyond their exper-
tise. In our extensive case study of help forums of many programming
languages and Excel, we found that both programmers and end-users
struggle with these number transformations, but are able to easily ex-
press their intent using input-output examples.

In this paper, we present a framework that can learn such number
transformations from very few input-output examples. We first describe
an expressive number transformation language that can model these
transformations, and then present an inductive synthesis algorithm that
can learn all expressions in this language that are consistent with a given
set of examples. We also present a ranking scheme of these expressions
that enables efficient learning of the desired transformation from very
few examples. By combining our inductive synthesis algorithm for num-
ber transformations with an inductive synthesis algorithm for syntactic
string transformations, we are able to obtain an inductive synthesis al-
gorithm for manipulating data types that have numbers as a constituent
sub-type such as date, unit, and time. We have implemented our algo-
rithms as an Excel add-in and have evaluated it successfully over several
benchmarks obtained from the help forums and the Excel product team.

1 Introduction

Numbers represent one of the most widely used data type in programming lan-
guages. Number transformations like formatting and rounding present a chal-
lenge even for experienced programmers. First, the custom number format
strings for formatting numbers are complex and take some time to get accus-
tomed to, and second, different programming languages support different format
strings, which makes it difficult for programmers to remember each variant.
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Number transformations present an even bigger challenge for end-users: the
large class of users who do not have a programming background but want to cre-
ate small, often one-off, applications to support business functions [4]. Spread-
sheet systems like Microsoft Excel support a finite set of commonly used number
formats and also let users write their own custom formats using a number for-
matting language similar to that of .Net. This hard-coded set of number formats
is often insufficient for the user’s needs and providing custom number formats
is typically beyond their expertise. This leads them to solicit help on various
online help forums, where experts typically respond with the desired formulas
(or scripts) after few rounds of interaction, which spans over a few days.

In an extensive case study of help forums of many programming languages and
Excel, we found that even though both programmers and end-users struggled
while performing these transformations, they were able to easily express their
intent using input-output examples. In fact, in some cases the initial English
description of the task provided by the users on forums was inaccurate and
only after they provided a few input-output examples, the forum experts could
provide the desired code snippet.

In this paper, we present a framework to learn number formatting and round-
ing transformations from a given set of input-output examples. We first describe
a domain-specific language for performing number transformations and an in-
ductive synthesis algorithm to learn the set of all expressions that are consistent
with the user-provided examples. The key idea in the algorithm is to use the
interval abstract domain [2] to represent a large collection of consistent format
expressions symbolically, which also allows for efficient intersection, enumera-
tion, and execution of these expressions. We also present a ranking mechanism
to rank these expressions that enables efficient learning of the desired transfor-
mation from very few examples.

We then combine the number transformation language with a syntactic string
transformation language [6] and present an inductive synthesis algorithm for
the combined language. The combined language lets us model transformations
on strings that represent data types consisting of number as a constituent sub-
type such as date, unit, time, and currency. The key idea in the algorithm is
to succinctly represent an exponential number of consistent expressions in the
combined language using a Dag data structure, which is similar to the Bdd [1]
representation of Boolean formulas. The Dag data structure consists of program
expressions on the edges (as opposed to Boolean values on Bdd edges). Simi-
lar to the Bdds, our data structure does not create a quadratic blowup after
intersection in practice.

We have implemented our algorithms both as a stand-alone binary and as
an Excel add-in. We have evaluated it successfully on over 50 representative
benchmark problems obtained from help forums and the Excel product team.

This paper makes the following key contributions:

– We develop an expressive number transformation language for performing
number formatting and rounding transformations, and an inductive synthesis
algorithm for learning expressions in it.
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– We combine the number transformation language with a syntactic string
transformation language to manipulate richer data types.

– We describe an experimental prototype of our system with an attractive
user interface that is ready to be deployed. We present the evaluation of our
system over a large number of benchmark examples.

2 Motivating Examples

We motivate our framework with the help of a few examples taken from Excel
help forums.

Example 1 (Date Manipulation). An Excel user stated
that, as an unavoidable outcome of data extraction
from a software package, she ended up with a series
of dates in the input column v1 as shown in the table.
She wanted to convert them into a consistent date
format as shown in the output column such that
both month and day in the date are of two digits.

Input v1 Output

1112011 01/11/2011

12012011 12/01/2011

1252010 01/25/2010

11152011 11/15/2011

It turns out that no Excel date format string matches the string in input
column v1. The user struggled to format the date as desired and posted the
problem on a help forum. After a few rounds of interactions (in which the user
provided additional examples), the user managed to obtain the following formula
for performing the transformation:

TEXT(IF(LEN(A1)=8,DATE(RIGHT(A1,4),MID(A1,3,2),LEFT(A1,2)),

DATE(RIGHT(A1,4),MID(A1,2,2),LEFT(A1,1))),"mm/dd/yyyy")

In our tool, the user has to provide only the first two input-output examples from
which the tool learns the desired transformation, and executes the synthesized
transformation on the remaining strings in the input column to produce the
corresponding outputs (shown in bold font for emphasis).

We now briefly describe some of the challenges involved in learning this trans-
formation. We first require a way to extract different substrings of the input date
for extracting the day, month, and year parts of the date, which can be performed
using the syntactic string transformation language [6]. We then require a number
transformation language that can map 1 to 01, i.e. format a number to two dig-
its. Consider the first input-output example 1112011 -> 01/11/2011. The first
two characters in the output string can be obtained by extracting 1 from the in-
put string from any of the five locations where it occurs, and formatting it to 01

using a number format expression. Alternatively, the first 0 in the output string
can also be a constant string or can be obtained from the 3rd last character in
the input. All these different choices for each substring of the output string leads
to an exponential number of choices for the complete transformation. We use an
efficient data structure for succinctly representing such exponential number of
consistent expressions in polynomial space.
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Example 2 (Duration Manipulation). An Excel user
wanted to convert the “raw data” in the input col-
umn to the lower range of the corresponding “30-min
interval” as shown in the output column. An expert
responded by providing the following macro, which
is quite unreadable and error-prone.

Input v1 Output

0d 5h 26m 5:00

0d 4h 57m 4:30

0d 4h 27m 4:00

0d 3h 57m 3:30

FLOOR(TIME(MID(C1,FIND(" ",C1)+1,FIND("h",C1)- FIND(" ",C1)-1)+0,

MID(C1,FIND("h",C1)+2,FIND("m",C1)-FIND("h",C1)-2)+0,0)*24,0.5)/24

Our tool learns the desired transformation using only the first two examples.
In this case, we first need to be able to extract the hour and minute components
of the duration in input column v1, and then perform a rounding operation on
the minute part of the input to round it to the lower 30-min interval.

3 Overview of the Synthesis Approach

In this section, we define the formalism that we use in the paper for developing
inductive synthesizers [8].

Domain-Specific Language: We develop a domain-specific language L that is
expressive enough to capture the desired tasks and, at the same time, is concise
for enabling efficient learning from examples.

Data Structure for Representing a Set of Expressions: The number of
expressions that are consistent with a given input-output example can potentially
be very large. We, therefore, develop an efficient data structure D that can
succinctly represent a large number of expressions in L.

Synthesis Algorithm: The synthesis algorithm Synthesize consists of the
following two procedures:

– GenerateStr: The GenerateStr procedure learns the set of all expressions in
the language L (represented using the data structure D) that are consistent
with a given input-output example (σi, si). An input state σ holds values for
m string variables v1, . . ., vm (denoting m input columns in a spreadsheet).

– Intersect: The Intersect procedure intersects two sets of expressions to
compute the common set of expressions.

The synthesis algorithm Synthesize takes as input a set of input-output

Synthesize((σ1, s1), . . . , (σn, sn))

P := GenerateStr(σ1, s1);
for i = 2 to n:

P ′ := GenerateStr(σi, si);
P := Intersect(P, P ′);

return P;

examples and generates a set of expres-
sions in L that are consistent with them.
It uses GenerateStr procedure to gener-
ate a set of expressions for each individ-
ual input-output example and then uses the
Intersect procedure to intersect the corre-
sponding sets to compute the common set of expressions.

Ranking: Since there are typically a large number of consistent expressions for
each input-output example, we rank them using the Occam’s razor principle that
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states that smaller and simpler explanations are usually the correct ones. This
enables users to provide only a few input-output examples for quick convergence
to the desired transformation.

4 Number Transformations

In this section, we first describe the number transformation language Ln that can
perform formatting and rounding transformations on numbers. We then describe
an efficient data structure to succinctly represent a large number of expressions
in Ln, and present an inductive synthesis algorithm to learn all expressions in
the language that are consistent with a given set of input-output examples.

4.1 Number Transformation Language Ln

The syntax of the number transformation language Ln is shown in Figure 1(a).
The top-level expression en of the language denotes a number formatting ex-
pression of one of the following forms:

• Dec(u, η1, f): formats the number u in decimal form (e.g. 1.23), where η1
denotes the number format for the integer part of u (Int(u)), and f represents
the optional format consisting of the decimal separator and the number format
for the fractional part (Frac(u)).

• Exp(u, η1, f, η2): formats the number u in exponential form (e.g. 1.23E+2). It
consists of an additional number format η2 as compared to the decimal format
expression, which denotes the number format of the exponent digits of u.

Expr. en := Dec(u, η1, f)

| Exp(u, η1, f, η2)

| Ord(u)

| Word(u)

| u

Dec. Fmt. f := (', η) | ⊥
Number u := vi

| Round(vi, r)

Round Fmt. r := (z, δ,m)

Mode m := ↓ | ↑ | *
Num. Fmt. η := (α, β, γ)

[[Dec(u, η1, f)]]σ = [[(Int([[u]])R, η1)]]
Rσ ! [[f ]]σ

[[Exp(u, η1, f, η2)]]σ = [[(Int([[u]])R, η1)]]
Rσ !

[[f ]]σ ! [[(E([[u]])R, η2)]]
Rσ

[[Ord(u)]]σ = numToOrd([[u]]σ)

[[Word(u)]]σ = numToWord([[u]]σ)

[[(', η)]]σ = [[']]σ ! [[(Frac([[u]]), η)]]σ

[[⊥]]σ = ε

[[vi]]σ = σ(vi)

[[Round(vi, r)]]σ = RoundNumber(σ(vi), z, δ,m)

where r = (z, δ,m)

[[(d, η)]]σ = FormatDigits(d, α, β, γ)

where η = (α, β, γ)

(a) (b)

Fig. 1. The (a) syntax and (b) semantics of the number transformation language
Ln. The variable vi denotes an input number variable, z, δ, α, β, and γ are integer
constants, and ! denotes the concatenation operation.
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RoundNumber(n,z,δ,m)

1 n′ :=
[n− z

δ

]
× δ + z;

2 if (n = n′) return n;
3 if (m =↑) return n′ + δ;
4 if (m =↓) return n′;
5 if (m =* ∧ (n− n′)× 2 < δ)

return n′;
6 if (m =* ∧ (n− n′)× 2 ≥ δ)

return n′ + δ;

FormatDigits(d,α,β,γ)

1 if (len(d) ≥ β)
2 return significant(d, β);
3 else if (len(d) ≥ α)
4 {z := 0; s := 0;}
5 else {s := Min(γ, α− len(d));
6 z := α− len(d)− s;}
7 return concat(d, 0z,

′ ′
s);

(a) (b)

Fig. 2. The functions (a) RoundNumber for rounding numbers and (b) FormatDigits

for formatting a digit string

• Ord(u): formats the number u in ordinal form, e.g. it formats the number 4
to its ordinal form 4th.

• Word(u): formats the number u in word form, e.g. it formats the number 4 to
its word form four.

The number u can either be an input number variable vi or a number obtained
after performing a rounding transformation on an input number. A rounding
transformation Round(vi, z, δ,m) performs the rounding of number present in vi
based on its rounding format (z, δ,m), where z denotes the zero of the rounding
interval, δ denotes the interval size of the rounding interval, and m denotes one
of the rounding mode from the set of modes {upper(↑), lower(↓), nearest(:)}.

We define a digit string d to be a sequence of digits with trailing whitespaces.
A number format η of a digit string d is defined by a 3-tuple (α, β, γ), where α
denotes the minimum number of significant digits and trailing whitespaces of d
in the output string, β denotes the maximum number of significant digits of d in
the output string, and γ denotes the maximum number of trailing whitespaces in
the output string. A number format, thus, maintains the invariant: γ ≤ α ≤ β.

The semantics of language Ln is shown in Figure 1(b). A digit string d is for-
matted with a number format (α, β, γ) using the FormatDigits function shown
in Figure 2(b). The FormatDigits function returns the first β digits of the digit
string d (with appropriate rounding) if the length of d is greater than the maxi-
mum number of significant digits β to be printed. If the length of d is lesser than β
but greater than the minimum number of significant digits α to be printed, it re-
turns the digits itself. Finally, if the length of d is less than α, it appends the digit
string with appropriate number of zeros (z) and whitespaces (s) as computed in
Lines 5 and 6. The semantics of the rounding transformation is to perform the
appropriate rounding of number denoted by vi using the RoundNumber function
shown in Figure 2(a). The function computes a number n′ which lies on the
number line defined by zero z with unit separation δ as shown in Figure 3. It
returns the value n′ or (n′ + δ) based on the rounding mode m and the distance
between n and n′ as described in Figure 2(a).

The semantics of a decimal form formatting expression on a number u is
to concatenate the reverse of the string obtained by formatting the reverse of
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zz − δ z + δ

n

n′ n′ + δ

δ

Fig. 3. The RoundNumber function rounding-off number n to n′ or n′ + δ

integral part Int(u) with the string obtained from the decimal format f . Since
the FormatDigits function adds only trailing zeros and whitespaces to format
a digit string, the formatting of the integer part of u is performed on its reverse
digit string and the resulting formatted string is reversed again before performing
the concatenation. The semantics of decimal format f is to concatenate the
decimal separator ; with the string obtained by formatting the fractional part
Frac(u). The semantics of exponential form formatting expression is similar to
that of the decimal form formatting expression and the semantics of ordinal form
and word form formatting expressions is to simply convert the number u into its
corresponding ordinal form and word form respectively.

We now present some examples taken from various help forums that can be
represented in the number transformation language Ln.

Example 3. A python programmer posted a query on
the StackOverflow forum after struggling to print
double values from an array of doubles (of different
lengths) such that the decimal point for each value
is aligned consistently across different columns. He
posted an example of the desired formatting as shown
on the right. He also wanted to print a single 0 after
the decimal if the double value had no decimal part.

Input v1 Output

3264.28 3264.28

53.5645 53.5645

235 235.0

5.23 5.23

345.213 345.213

3857.82 3857.82

536 536.0

The programmer started the post saying “This should be easy”. An expert replied
that after a thorough investigation, he couldn’t find a way to perform this task
without some post-processing. The expert provided the following python snippet
that pads spaces to the left and zeros to the right of the decimal, and then
removes trailing zeros:

ut0 = re.compile(r’(\d)0+$’)

thelist = textwrap.dedent(

’\n’.join(ut0.sub(r’\1’, "%20f" % x) for x in a)).splitlines()

print ’\n’.join(thelist)

This formatting transformation can be represented in Ln as Dec(v1, η1,
(“.”, η2)), where η1 ≡ (4,∞, 4) and η2 ≡ (4,∞, 3).

Example 4. This is an interesting post taken from a help
forum where the user initially posted that she wanted to
round numbers in an excel column to nearest 45 or 95,
but the examples later showed that she actually wanted
to round it to upper 45 or 95.

Input v1 Output

11 45

32 45

46 95

1865 1895
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Some of the solutions suggested by experts were:

=Min(Roundup(A1/45,0)*45,Roundup(A1/95,0)*95)

=CEILING(A1+5,50)-5

=A1-MOD(A1,100)+IF(MOD(A1,100)>45,95,45)

This rounding transformation can be expressed in our language as:
Dec(Round(v1, (45, 50, ↑)), (0,∞, 0),⊥).

4.2 Data Structure for a Set of Expressions in Ln

Figure 4 describes the syntax and semantics of the data structure for succinctly
representing a set of expressions from language Ln. The expressions ẽn are now
associated with a set of numbers ũ and a set of number formats η̃. We represent
the set of numbers obtained after performing rounding transformation in two
ways: Round(vi, r̃) and Round(vi, np), which we describe in more detail in sec-
tion 4.3. The set of number formats η̃ are represented using a 3-tuple (i1, i2, i3),
where i1, i2 and i3 denote a set of values of α, β and γ respectively using an
interval domain. This representation lets us represent O(n3) number of number
format expressions in O(1) space, where n denotes the length of each interval.

The semantics of evaluating the set of rounding transformations Round(vi, r̃)
is to return the set of results of performing rounding transformation on vi for all
rounding formats in the set r̃. The expression Round(vi, (n1, n

′
1)) represents an

infinite number of rounding transformations (as there exists an infinite number
of rounding formats that conform to the rounding transformation n1 → n′1).
For evaluating this expression, we select one conforming rounding format with
z = 0, δ = n′1 and an appropriate m as shown in the figure. The evaluation of a
set of format strings η̃ = (i1, i2, i3) on a digit string d returns a set of values, one
for each possible combination of α ∈ i1, β ∈ i2 and γ ∈ i3. Similarly, we obtain
a set of values from the evaluation of expression ẽn.

4.3 Synthesis Algorithm

Procedure GenerateStrn: The algorithm GenDFmt in Figure 5 takes as input
two digit sequences d1 and d2, and computes the set of all number formats η̃
that are consistent for formatting d1 to d2. The algorithm first converts the digit
sequence d1 to its canonical form d′1 by removing trailing zeros and whitespaces
from d1. It then compares the lengths l1 of d′1 and l2 of d2. If l1 is greater
than l2, then we can be sure that the digits got truncated and can therefore set
the interval for i2 (the maximum number of significant digits) to be [l2, l2]. The
intervals for α and γ are set to [0, l2] because of the number format invariant. On
the other hand if l1 is smaller than l2, we can be sure that the least number of
significant digits need to be l2, i.e. we can set the interval i1 to be [l2, l2]. Also,
we can set the interval i2 to [l2,∞] because of the number format invariant. For
interval i3, we either set it to [ξ, ξ] (when l2−ξ �= l1) or [ξ, l2] (when l2−ξ = l1)
where ξ denotes the number of trailing spaces in d2. In the former case, we can
be sure about the exact number of trailing whitespaces to be printed.
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ẽn := Dec(ũ, η̃1, f̃)

| Exp(ũ, η̃1, f̃ , η̃2)

| Ord(ũ)

| Word(ũ)

| ũ

f̃ := (�, η̃) | ⊥

ũ := vi

| Round(vi, r̃)

| Round(vi, np)

Pair np := (n1, n
′
1)

η̃ := (i1, i2, i3)

Interval i := (l, h)

[[Dec(ũ, η̃1, f̃)]] = {Dec(u, η1, f) | u ∈ ũ, η1 ∈ η̃1, f ∈ f̃}

[[Exp(ũ, η̃1, f̃ , η̃2)]] = {Exp(u, η1, f, η2) | u ∈ ũ, η1 ∈ η̃1,

f ∈ f̃ , η2 ∈ η̃2}

[[Ord(ũ)]] = {Ord(u) | u ∈ ũ}

[[Word(ũ)]] = {Word(u) | u ∈ ũ}

[[(�, f̃)]] = {(�, f) | f ∈ f̃}

[[⊥]] = ε

[[vi]] = {vi}

[[Round(vi, r̃)]] = {Round(vi, (z, δ,m)) | (z, δ,m) ∈ r̃}

[[Round(vi, np)]] = {Round(vi, (0, n′
1,m)) | np ≡ (n1, n

′
1),

if (n1 ≤ n
′
1) m ≡ ↑ else m ≡ ↓}

[[(d, (i1, i2, i3))]] = {(d, α, β, γ) | α ∈ i1, β ∈ i2, γ ∈ i3}

(a) (b)

Fig. 4. The (a) syntax and (b) semantics of a data structure for succinctly representing
a set of expressions from language Ln.

The GenerateStrn algorithm in Figure 5 learns the set of all expressions
in Ln that are consistent with a given input-output example. The algorithm
searches over all input variables vi to find the inputs from which the output
number n′ can be obtained. It first converts the numbers σ(vi) and n′ to their
canonical forms nc and n′c respectively in Line 3. We define canonical form of
a number to be its decimal value. If the two canonical forms nc and n′c are not
equal, the algorithm tries to learn a rounding transformation such that nc can
be rounded to n′c. We note that there is not enough information present in one
input-output example pair to learn the exact rounding format as there exists an
infinite family of such formats that are consistent. Therefore, we represent such
rounding formats symbolically using the input-output example pair (nc, n

′
c),

which gets concretized by the Intersect method in Figure 6. The algorithm
then normalizes the number σ(u) with respect to n′ using the Normalizemethod
in Line 6 to obtain n = (ni, nf , ne) such that both n and n′ are of the same form.
For decimal and exponential forms, it learns a set of number formats η̃ for each of
its constituent digit strings from the pairs (nRi , n

′R
i ), (nf , n

′
f ), and (nRe, n

′R
e ) where

nRi denotes the reverse of digit string ni. As noted earlier, we need to learn the
number format on the reversed digit strings for integer and exponential parts.
For ordinal and word type numbers, it simply returns the expressions to compute
ordinal and word forms of the corresponding input number respectively.

Procedure Intersectn: The Intersectn procedure for intersecting two sets of
Ln expressions is described as a set of rules in Figure 6. The procedure computes
the intersection of sets of expressions by recursively computing the intersection of
their corresponding sets of sub-expressions. We describe below the four cases of
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GenDFmt(d1: inp digits, d2: out digits)

1 d′1 := RemoveTrailingZerosSpaces(d1);
2 l1 := len(d′1); l2 := len(d2);
3 ξ := numTrailingSpaces(d2);
4 if (l1 > l2)
5 (i1, i2, i3) := ([0, l2], [l2, l2], [0, l2]);
6 else if (l1 < l2) {
7 i1 := [l2, l2]; i2 := [l2,∞];
8 if(l2 − ξ = l1) i3 := [ξ, l2];
9 else i3 := [ξ, ξ];}

10 else (i1, i2, i3) := ([0, l2], [l2,∞], [0, l2]);
11 return η̃(i1, i2, i3);

Normalize(n: inp number, n′: out number)
n1 = n = (ni, nf , ne);
if(Type(n) = ExpNum ∧ Type(n′) �= ExpNum)

n1 := n× 10ne;

if(Type(n) �= ExpNum ∧ Type(n′) = ExpNum)

{n′ = (n′
i, n

′
f , n

′
e); n1 := n/10n

′
e;}

return n1;

GenerateStrn(σ: inp state, n′: out number)

1 Sn := ∅;
2 foreach input variable vi:
3 nc = Canonical(σ(vi)); n′

c = Canonical(n′);
4 if (nc �= n′

c) u := Round(vi, (nc, n
′
c));

5 else u := vi;
6 (ni, nf , ne) := Normalize(σ(u), n′);
7 match n′ with

8 DecNum(n′
i, n

′
f ,�) →

9 η̃1 := GenDFmt(nR
i, n

′R
i );

10 if (� = ε) Sn := Sn ∪ Dec(u, η1,⊥);
11 else {η̃2 := GenDFmt(nf , n

′
f );

12 Sn := Sn ∪ Dec(u, η̃1,�, η̃2);}
13 ExpNum(n′

i, n
′
f , n

′
e,�) →

14 η̃1 := GenDFmt(nR
i, n

′R
i );

15 η̃3 := GenDFmt(nR
e, n

′R
e );

16 if (� = ε) Sn := Sn ∪ Exp(u, η̃1,⊥, η̃3);
17 else { η̃2 := GenDFmt(nf , n

′
f );

18 Sn := Sn ∪ Exp(u, η̃1,�, η̃2, η̃3);}
19 OrdNum(n′

i) →
20 Sn := Sn ∪ Ord(u);
21 WordNum(n′

i) →
22 Sn := Sn ∪ Word(u);
23 return Sn;

Fig. 5. The GenerateStrn procedure for generating the set of all expressions in lan-
guage Ln that are consistent with the given set of input-output examples

intersecting rounding transformation expressions. The first case is of intersecting
a finite rounding format set r̃ with another finite set r̃′. The other two cases
intersect a finite set r̃ with an input-output pair np, which is performed by
selecting a subset of the finite set of rounding formats that are consistent with
the pair np. The final case of intersecting two input-output pairs to obtain a
finite set of rounding formats is performed using the IntersectPair algorithm
shown in Figure 7.

IntersectPair((n1, n
′
1),(n2, n

′
2))

z := n′1;

δ̃ := Divisors(‖n′2 − n′1‖);
S := ∅;
foreach δ ∈ δ̃:

if(δ ≥ Max(‖n1 − n′1‖, ‖n2 − n′2‖))
if(2× Max(‖n1 − n′1‖, ‖n2 − n′2‖) ≤ δ)
S := S ∪ (z, δ, :);

if(n1 > n′1 ∧ n2 > n′2)
S := S ∪ (z, δ, ↓);

if(n1 < n′1 ∧ n2 < n′2)
S := S ∪ (z, δ, ↑);

return S;

Fig. 7. Intersection of Round expressions

Consider the example of rounding
numbers to nearest 45 or 95 for which
we have the following two examples:
32 → 45 and 81 → 95. Our goal is
to learn the rounding format (z, δ,m)
that can perform the desired rounding
transformation. We represent the infi-
nite family of formats that satisfy the
rounding constraint for each example
as individual pairs (32, 45) and (81, 95)
respectively. When we intersect these
pairs, we can assign z to be 45 with-
out loss of generality. We then compute
all divisors δ̃ of 95− 45 = 50. With the
constraint that δ ≥ (Max(45 − 32, 95 − 81) = 14), we finally arrive at the set
δ̃ = {25, 50}. The rounding modes m are appropriately learned as shown in
Figure 7. For decimal numbers, we compute the divisors by first scaling them
appropriately and then re-scaling them back for learning the rounding formats.
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Intersectn(Dec(ũ, η̃1, f̃), Dec(ũ
′, η̃′1, f̃

′)) = Dec(Intersectn(ũ, ũ
′), Intersectn(η̃1, η̃′1),

Intersectn(f̃ , f̃
′))

Intersectn(Exp(ũ, η̃1, f̃ , η̃2), Exp(ũ, η̃
′
1, f̃

′, η̃′2)) = Exp(Intersectn(ũ, ũ
′), Intersectn(η̃1, η̃′1),

Intersectn(f̃ , f̃
′), Intersectn(η̃2, η̃′2))

Intersectn(Ord(ũ), Ord(ũ
′)) = Ord(Intersectn(ũ, ũ

′))

Intersectn(Word(ũ), Word(ũ
′)) = Word(Intersectn(ũ, ũ

′))

Intersectn(vi, vi) = vi

Intersectn((�, η̃), (�′, η̃′)) = (Intersectn(�,�′), Intersectn(η̃, η̃′))

Intersectn(Round(vi, r̃), Round(vi, r̃
′)) = Round(vi, Intersectn(r̃, r̃

′))

Intersectn(Round(vi, r̃), Round(vi, np)) = Round(vi, Intersectn(r̃, np))

Intersectn(Round(vi, np), Round(vi, r̃)) = Round(vi, Intersectn(np, r̃))

Intersectn(Round(vi, np), Round(vi, n
′
p)) = Round(vi, IntersectPair(np, n

′
p))

Intersectn((i1, i2, i3), (i
′
1, i

′
2, i

′
3)) = (Intersectn(i1, i

′
1), Intersectn(i2, i

′
2),

Intersectn(i3, i
′
3))

Intersectn((l, h), (l
′, h′)) = (Max(l, l′), Min(h, h′))

Fig. 6. The Intersectn function for intersecting sets of expressions from language Ln.
The Intersectn function returns φ in all other case not covered above.

In our data structure, we do not store all divisors explicitly as this set might
become too large for big numbers. We observe that we only need to store the
greatest and least divisors amongst them, and then we can intersect two such
sets efficiently by computing the gcd of the two corresponding greatest divisors
and the lcm of the two corresponding least divisors.

Ranking: We rank higher the lower value for α in the interval i1 (to prefer
lesser trailing zeros and whitespaces), the higher value of β in i2 (to minimize
un-necessary number truncation), the lower value of γ in i3 (to prefer trailing
zeros more than trailing whitespaces), and the greatest divisor in the set of
divisors δ̃ of the rounding format (to minimize the length of rounding intervals).
We rank expressions consisting of rounding transformations lower than the ones
that consist of only number formatting expressions.

Theorem 1 (Correctness of Learning Algorithm for Ln).
(a) The procedure GenerateStrn is sound and complete. The complexity of
GenerateStrn is O(|s|), where |s| denotes the length of the output string.
(b) The procedure Intersectn is sound and complete.

Example 5. Figure 8 shows a range of number formatting transformations and
presents the format strings that are required to be provided in Excel, .Net,
Python and C, as well as the format expressions that are synthesized by our
algorithm. An N.A. entry denotes that the corresponding formatting task cannot
be done in the corresponding language.
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Formatting of Doubles

Input Output Excel/C# Python/C Synthesized format
String String Format String Format String Dec(u, η1, (“.”, η2)) or

Exp(u, η1, (“.”, η2), η3)

123.4567 123.46
#.00 .2f

η1 ≡ ([0, 3], [3,∞], [0, 3])
123.4 123.40 η2 ≡ ([2, 2], [2, 2], [0, 0])

123.4567 123.46
#.## N.A.

η1 ≡ ([0, 3], [3,∞], [0, 3])
123.4 123.4 η2 ≡ ([0, 1], [2, 2], [0, 1])

123.4567 123.46
00.00 05.2f

η1 ≡ ([2, 2], [3,∞], [0, 0])
3.4 03.40 η2 ≡ ([2, 2], [2, 2], [0, 0])

123.4567 123.46
00.## N.A.

η1 ≡ ([2, 2], [3,∞], [0, 0])
3.4 03.4 η2 ≡ ([0, 1], [2, 2], [0, 1])

9723.00 9.723E+03
#.### E 00 N.A.

η1 ≡ ([0, 1], [1,∞], [0, 1])
η2 ≡ ([0, 3], [3,∞], [0, 3])

0.823 8.23E-01 η3 ≡ ([2, 2], [2,∞], [0, 0])

243 00243
00000 05d η1 ≡ ([5, 5], [5,∞], [0, 0])

12 00012

1.2 1.2
#.?? N.A.

η1 ≡ ([0, 1], [2,∞], [0, 1])
18 18. η2 ≡ ([2, 2], [2,∞], [2, 2])

1.2 1.2
???.??? N.A.

η1 ≡ ([3, 3], [3,∞], [2, 3])
18 18. η2 ≡ ([3, 3], [3,∞], [3, 3])

1.2 1.20
???.00? N.A.

η1 ≡ ([3, 3], [3,∞], [2, 3])
18 18.00 η2 ≡ ([3, 3], [3,∞], [1, 1])

Fig. 8. We compare the custom number format strings required to perform formatting
of doubles in Excel/C# and Python/C languages. An N.A. entry in a format string
denotes that the corresponding formatting is not possible using format strings only.
The last column presents the corresponding Ln expressions ( denotes whitespaces).

5 Combining Number Transformations with Syntactic
String Transformations

In this section, we present the combination of number transformation language
Ln with the syntactic string transformation language Ls [6] to obtain the com-
bined language Lc, which can model transformations on strings that contain
numbers as substrings. We first present a brief background description of the
syntactic string transformation language and then present the combined lan-
guage Lc. We also present an inductive synthesis algorithm for Lc obtained by
combining the inductive synthesis algorithms for Ln and Ls respectively.

Syntactic String Transformation Language Ls (Background) Gulwani [6] intro-
duced an expression language for performing syntactic string transformations.
We reproduce here a small subset of (the rules of) that language and call it
Ls (with es being the top-level symbol) as shown in Figure 9. The formal se-
mantics of Ls can be found in [6]. For completeness, we briefly describe some
key aspects of this language. The top-level expression es is either an atomic
expression f or is obtained by concatenating atomic expressions f1,. . .,fn using
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es := Concatenate(f1, . . . , fn) | f
Atomic expr f := ConstStr(s) | vi | SubStr(vi,p1,p2)

Position p := k | pos(r1, r2, c)
Integer expr c := k | k1w + k2

Regular expr r := ε | T | TokenSeq(T1, . . . ,Tn)

Fig. 9. The syntax of syntactic string transformation language Ls

the Concatenate constructor. Each atomic expression f can either be a con-
stant string ConstStr(s), an input string variable vi, or a substring of some
input string vi. The substring expression SubStr(vi, p1, p2) is defined partly by
two position expressions p1 and p2, each of which implicitly refers to the (sub-
ject) string vi and must evaluate to a position within the string vi. (A string
with � characters has � + 1 positions, numbered from 0 to � starting from left.)
SubStr(vi, p1, p2) is the substring of string vi in between positions p1 and p2. A
position expression represented by a non-negative constant k denotes the kth po-
sition in the string. For a negative constant k, it denotes the (�+1+k)th position
in the string, where � = Length(s). pos(r1, r2, c) is another position expression,
where r1 and r2 are regular expressions and integer expression c evaluates to
a non-zero integer. pos(r1, r2, c) evaluates to a position t in the subject string
s such that r1 matches some suffix of s[0 : t], and r2 matches some prefix of
s[t : �], where � = Length(s). Furthermore, if c is positive (negative), then t is
the |c|th such match starting from the left side (right side). We use the expres-
sion s[t1 : t2] to denote the substring of s between positions t1 and t2. We use
the notation SubStr2(vi, r, c) as an abbreviation to denote the cth occurrence of
regular expression r in vi, i.e., SubStr(vi, pos(ε, r, c), pos(r, ε, c)).

A regular expression r is either ε (which matches the empty string, and there-
fore can match at any position of any string), a token T, or a token sequence
TokenSeq(T1, . . . ,Tn). The tokens T range over a finite extensible set and typi-
cally correspond to character classes and special characters. For example, tokens
CapitalTok, NumTok, and WordTok match a nonempty sequence of uppercase
alphabetic characters, numeric digits, and alphanumeric characters respectively.

A Dag based data structure is used to succinctly represent a set of Ls expres-
sions. The Dag structure consists of a node corresponding to each position in the
output string s, and a mapW maps an edge between node i and node j to the set
of all Lc expressions that can compute the substring s[i..j]. This representation
enables sharing of common subexpressions amongst the set of expressions and
represents an exponential number of expressions using polynomial space.

Example 6. An Excel user wanted to modify the delimiter in dates present
in a column from “/” to “-”, and gave the following input-output example
“08/15/2010”→ “08-15-2010”. An expression in Ls that can perform this trans-
formation is: Concatenate(f1, ConstStr(“ − ”), f2, ConstStr(“ − ”), f3), where
f1 ≡ SubStr2(v1, NumTok, 1), f2 ≡ SubStr2(v1, NumTok, 2), and f3 ≡ SubStr2(v1,
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NumTok, 3). This expression constructs the output string by concatenating the
first, second, and third numbers of input string with constant strings “-”.

5.1 The Combination Language Lc

f := ConstStr(s) | vi
| SubStr(vi, p1, p2) | en

u := g | Round(g, r)
g := vi | SubStr(vi, p1, p2)

The grammar rules Rc for the combined lan-
guage Lc are obtained by taking the union of
the rules for the two languages Rn and Rs

with the top-level rule es. The modified rules
are shown in the figure on the right. The com-
bined language consists of an additional expression rule g that corresponds to
either some input column vi or a substring of some input column. This expression
g is then passed over to the number variable expression u for performing num-
ber transformations on it. This rule enables the combined language to perform
number transformations on substrings of input strings. The top-level expression
of the number language en is added to the atomic expr f of the string language.
This enables number transformation expressions to be present on the Dag edges
together with the syntactic string transformation expressions.

The transformation in Example 1 is represented in Lc as: Concatenate(f1,
ConstStr("/"), f2, ConstStr("/"), f3), where f1 ≡ Dec(g1, (2,∞, 0),⊥),
g1 ≡ SubStr(v1, 1,−7), f2 ≡ SubStr(v1,−7,−5), and f3 ≡ SubStr(v1,−5,−1).
The transformation in Example 2 is represented as: Concatenate(f1, ":", f2),
where f1 ≡ SubStr2(v1, NumTok, 2), f2 ≡ Dec(u1, (2,∞, 0),⊥), and
u1 ≡ Round(SubStr2(v1, NumTok, 3), (0, 30, ↓)).

5.2 Data Structure for Representing a Set of Expressions in Lc

Let R̃n and R̃s denote the set of grammar rules for the data structures that
represent a set of expressions in Ln and Ls respectively. We obtain the grammar
rules R̃c for succinctly representing a set of expressions of Lc by taking the union
of the two rule sets R̃n and R̃s with the updated rules as shown in Figure 10(a).
The updated rules have expected semantics and can be defined as in Figure 4(b).

f̃ := · · · | ẽn
ũ := g̃ | Round(g̃, r̃)
g̃ := vi | SubStr(vi, p̃1, p̃2)

GenerateStrc(σ: Inp, s: Out)

η̃ = {0, · · · , Length(s)};
ηs = 0;
ηt = Length(s);

ξ̃ = {〈i, j〉 | 0 ≤ i < j < Length(s)};
foreach substring s[i..j] of s:

W [〈i, j〉] = ConstStr(s[i..j])
∪ GenerateStrs(σ, s[i..j])
∪ GenerateStr′

n(σ, s[i..j])

return Dag(η̃, ηs, ηt, ξ̃,W );
(a) (b)

Fig. 10. (a) The data structure and (b) the GenerateStrc procedure for Lc expressions
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5.3 Synthesis Algorithm

Procedure GenerateStrc:
We first make the following two modifications in the GenerateStrn procedure

to obtain GenerateStr′n procedure. The first modification is that we now search
over all substrings of input string variables vi instead of just vi in Line 2 in
Figure 5. This lets us model transformations where number transformations are
required to be performed on substrings of input strings. The second modification
is that we replace each occurence of vi by GenerateStrs(σ, vi) inside the loop
body. This lets us learn the syntactic string program to extract the correspond-
ing substring from the input string variables. The GenerateStrc procedure for
the combined language is shown in the Figure 10(b). The procedure first creates
a Dag of (Length(s)+1) number of nodes with start node ηs = 0 and target node
ηt = Length(s). The procedure iterates over all substrings s[i..j] of the output
string s, and adds a constant string expression, a set of substring expressions
(GenerateStrs) and a set of number transformation expressions (GenerateStr′n)
that can generate the substring s[i..j] from the input state σ. These expres-
sions are then added to a map W [〈i, j〉], where W maps each edge 〈i, j〉 of the
dag to a set of expressions in Lc that can generate the corresponding substring
s[i..j].

Procedure Intersectc: The rules for Intersectc procedure for intersecting
sets of expressions in Lc are obtained by taking the union of intersection rules
of Intersectn and Intersects procedures together with corresponding inter-
section rules for the updated and new rules.

Ranking: The ranking scheme of the combined language Lc is obtained by
combining the ranking schemes of languages Ln and Ls. In addition, we pre-
fer substring expressions corresponding to longer input substrings that can be
formatted or rounded to obtain the output number string.

Theorem 2 (Correctness of Learning Algorithm for combined
language).
(a) The procedure GenerateStrc is sound and complete with complexity O(|s|3l2),
where |s| denotes the length of the output string and l denotes the length of the
longest input string.
(b) The procedure Intersectc is sound and complete.

6 Experiments
We have implemented our algorithms in C# as an add-in to the Microsoft Excel
spreadsheet system. The user provides input-output examples using an Excel
table with a set of input and output columns. Our tool learns the expressions in
Lc for each output column separately and executes the learned set of expressions
on the remaining entries in the input columns to generate their corresponding
outputs. We have evaluated our implementation on over 50 benchmarks obtained
from various help forums, mailing lists, books and the Excel product team. More
details about the benchmark problems can be found in [22].
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Fig. 11. (a) Number of examples required and (b) the running time of algorithm (in
seconds) to learn the desired transformation

The results of our evaluation are shown in Figure 11. The experiments were
run on an Intel Core-i7 1.87 Ghz CPU with 4GB of RAM. We evaluate our
algorithm on the following two dimensions:

Ranking: Figure 11(a) shows the number of input-output examples required
by our tool to learn the desired transformation. All benchmarks required at
most 3 examples, with majority (76%) taking only 2 examples to learn the de-
sired transformation. We ran this experiment in an automated counter-example
guided manner such that given a set of input-output examples, we learned the
transformations using a subset of the examples (training set). The tool itera-
tively added the failing test examples to the training set until the synthesized
transformation conformed to all the remaining examples.

Performance: The running time of our tool on the benchmarks is shown in
Figure 11(b). Our tool took at most 3.5 seconds each to learn the desired trans-
formation for the benchmarks, with majority (94%) taking less than a second.

7 Related Work

The closest related work to ours is our previous work on synthesizing syntactic
string transformations [6]. The algorithm presented in that work assumes strings
to be a sequence of characters and can only perform concatenation of input
substrings and constant strings to generate the desired output string. None of
our benchmarks presented in this paper can be synthesized by that algorithm as
it lacks reasoning about the semantics of numbers present in the input string.

There has been a lot of work in the HCI community for automating end-user
tasks. Topes [20] system lets users create abstractions (called topes) for different
data present in the spreadsheet. It involves defining constraints on the data to
generate a context free grammar using a GUI and then this grammar is used to
validate and reformat the data. There are several programming by demonstra-
tion [3] (PBD) systems that have been developed for data validation, cleaning
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and formatting, which requires the user to specify a complete demonstration or
trace visualization on a representative data instead of code. Some of such sys-
tems include Simultaneous Editing [18] for string manipulation, SMARTedit [17]
for text manipulation and Wrangler [15] for table transformations. In contrast
to these systems, our system is based on programming by example (PBE) – it
requires the user to provide only the input and output examples without provid-
ing the intermediate configurations which renders our system more usable [16],
although at the expense of making the learning problem harder. Our expression
languages also learns more sophisticated transformations involving conditionals.
The by-example interface [7] has also been developed for synthesizing bit-vector
algorithms [14], spreadsheet macros [8] (including semantic string manipula-
tion [21] and table layout manipulation [12]), and even some intelligent tutoring
scenarios (such as geometry constructions [10] and algebra problems [23]).

Programming by example can be seen as an instantiation of the general pro-
gram synthesis problem, where the provided input-output examples constitutes
the specification. Program synthesis has been used recently to synthesize many
classes of non-trivial algorithms, e.g. graph algorithms [13], bit-streaming pro-
grams [26,9], program inverses [27], interactive code snippets [11,19], and data-
structures [24,25]. There are a range of techniques used in these systems including
exhaustive search, constraint-based reasoning, probabilistic inference, type-based
search, theorem proving and version-space algebra. A recent survey [5] explains
them in more details. Lau et al. used the version-space algebra based technique
for learning functions in a PBD setting [17], our system uses it for learning
expressions in a PBE setting.

8 Conclusions

We have presented a number transformation language that can model number
formatting and rounding transformations, and an inductive synthesis algorithm
that can learn transformations in this language from a few input-output exam-
ples. We also showed how to combine our system for number transformations
with the one for syntactic string transformations [6] to enable manipulation of
data types that contain numbers as substrings (such as date and time). In addi-
tion to helping end-users who lack programming expertise, we believe that our
system is also useful for programmers since it can provide a consistent number
formatting interface across all programming languages.
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Abstract. We present Acacia+, a tool for solving the LTL realizability and syn-
thesis problems. We use recent approaches that reduce these problems to safety
games, and can be solved efficiently by symbolic incremental algorithms based
on antichains. The reduction to safety games offers very interesting properties in
practice: the construction of compact solutions (when they exist) and a composi-
tional approach for large conjunctions of LTL formulas.

Keywords: Church problem, LTL synthesis, antichains, safety games, Moore
machines.

1 Introduction

LTL realizability and synthesis are central problems when reasoning about specifica-
tions for reactive systems. In the LTL realizability problem, the uncontrollable input
signals are generated by the environment whereas the controllable output signals are
generated by the system which tries to satisfy the specification against any behav-
ior of the environment. The LTL realizability problem can be stated as a two-player
game as follows. Let φ be an LTL formula over a set P partitioned into O (output sig-
nals controlled by Player O, the system) and I (input signals controlled by Player I ,
the environment). In the first round of the play, Player O starts by giving a subset
o1 ⊆ O and Player I responds by giving a subset i1 ⊆ I . Then the second round
starts, Player O gives o2 ⊆ O and Player I responds by i2 ⊆ I , and so on for an
infinite number of rounds. The outcome of this interaction is the infinite word w =
(i1 ∪ o1)(i2 ∪ o2) . . . (ik ∪ ok) . . . Player O wins the play if w satisfies φ, otherwise
Player I wins. The realizability problem asks to decide whether Player O has a win-
ning strategy to satisfy φ. The LTL synthesis problem asks to produce such a winning
strategy when φ is realizable.

Due to their high worst-case complexities (2ExpTime-Complete), the LTL realiz-
ability and synthesis problems have been considered for a long time only of theoretical
interest. Only recently, several progresses on algorithms and efficient data structures

� This work has been partly supported by the ESF project GASICS, the ARC project Game
Theory for the Automatic Synthesis of Computer Systems and the ERC Strarting Grant inVEST.

P. Madhusudan and S.A. Seshia (Eds.): CAV 2012, LNCS 7358, pp. 652–657, 2012.
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showed that they can also be solved in practice. It follows a renewed interest in these
problems and a need for tools solving them. We participate to this research effort by
providing a new tool, called Acacia+, that implements recent ideas that offer very
interesting properties in practice: efficient symbolic incremental algorithms based on
antichains, synthesis of small winning strategies (when they exist), compositional ap-
proach for large conjunctions of LTL formulas. This tool can be downloaded or simply
used via a web interface. While its performances are better or similar to other exist-
ing tools, its main advantage is certainly the generation of compact strategies that are
easily usable in practice. This aspect of Acacia+ is very useful in several application
scenarios, like synthesis of control code from high-level LTL specifications, debugging
of unrealizable specifications by inspecting compact counter strategies, and generation
of small deterministic automata from LTL formulas (when they exist).

2 Underlying Approach

LTL realizability and synthesis problems have been first studied in the seminal work
[2,3]. The proposed solution is based on the costly Safra’s procedure for the
determinization of Rabin automata [4]. The LTL realizability problem is 2ExpTime-
Complete and finite-memory strategies suffice to win the realizability game [5,2]. In [6],
a so-called Safraless procedure avoids the determinization step by reducing the LTL re-
alizability problem to Büchi games. It has been implemented in the tool Lily [7,8].
Another Safraless approach has been recently given in [9] for the distributed LTL syn-
thesis problem. It is based on a novel emptiness-preserving translation from LTL to
safety tree automata. In [10,11,12], a procedure for LTL synthesis problem is proposed
and implemented in the tool Unbeast, based on the approach of [9] and symbolic game
solving with BDDs.

Our tool Acacia+ is based on several work by some authors of this paper [13,14].
In [13], a construction similar to [9] is proposed for LTL realizability and synthesis by
a reduction to safety games. In this approach, the formula φ is first translated into an
equivalent universal coBüchi word automaton, and then into an equivalent universalK-
coBüchi automaton providedK is taken large enough (for which any infinite word w is
accepted iff all runs labeled byw visit at mostK accepting states). The latter automaton
can be easily determinized with a variant of the classical subset construction, and the
LTL synthesis problem is then solved on the fly as a safety gameG(φ,K).

This approach offers very interesting properties in practice. (1) Checking the exis-
tence of a winning strategy for PlayerO in the gameG(φ,K) can be done incrementally
in the gamesG(φ, k), with k = 0, 1, 2, . . . (when φ is realizable, k ≤ 5 is often enough
in practice). (2) When φ is unrealizable, by the determinacy of ω-regular games [15],
Player I has a winning strategy for ¬φ. Therefore checking the existence of a winning
strategy for Player O is done incrementally in both games G(φ, k) and G(¬φ, k), with
k = 0, 1, 2, . . . (3) The structure ofG(φ, k) presents a partial-order on its states that can
be used to represent compactly, with antichains, the set of all winning strategies. These
three observations lead to an efficient antichain-based symbolic algorithm for the LTL
realizability and synthesis problems, such that the antichain of the winning strategies
for each player is obtained by a backward fixpoint computation from the safe configura-
tions ofG(φ, k) [13]. Moreover when φ is realizable, the computed antichain allows the
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construction of a compact Moore machine representing a winning strategy for PlayerO
(for Player I when φ is unrealizable). This algorithm is called monolithic in this paper.

In [13], the authors also propose two compositional algorithms for LTL formulas of
the form φ = φ1 ∧ · · · ∧ φn. The LTL realizability and synthesis problems are solved
by first solving them separately for each conjunct φi, and then by composing the solu-
tions according to the parenthesizing of φ. The first algorithm follows a compositional
backward approach such that at each stage of the parenthesizing, the antichains Wi of
the subformulae φi are computed backward and the antichain of the formula φ itself
is also computed backward from the Wi’s. In this approach, all the winning strategies
for φ (for a fixed k) are computed and compactly represented by the final antichain. This
backward approach is optimized by considering relevant input signals only, called criti-
cal signals [14]. The second algorithm follows a compositional forward approach such
that at each stage of parenthesizing, antichains are computed backward as explained be-
fore, except at the last stage where a forward algorithm seeks for one winning strategy
by exploring the game arena on the fly in a forward fashion.

While the approaches detailed above ([13,14]) have been first implemented in a Perl
prototype [16], we have reimplemented them from scratch in a new tool, Acacia+,
now made available to the research community. This tool has been developed in Python
and C, with emphasis on modularity, code efficiency, and usability. We hope that this
will motivate other researchers to take up the available code and extend it. This new
tool is detailed in Sect. 3 and typical scenarios of usage are presented in Sect. 4.

3 Tool Description

Programming Choices. Acacia+ is written in Python and C. The C language is used for
all the low level operations, while the orchestration is done with Python. The binding
between these two languages is realized by the ctypes library of Python.

This separation presents two main advantages. (1) Due to the reduction to k-coBüchi
automata and their determinization, we need to manipulate counting functions Q →
{−1, 0, . . . , k, k + 1} in a way to know if a state q ∈ Q of the k-coBüchi automaton is
reached or not (value −1), and to know the maximal number of visits to an accepting
state of runs that end up in q [13]. These counting functions are implemented as bit
arrays, together with specific efficient operations implemented in C. Indeed, our algo-
rithms manipulate antichains of counting functions, and operations like membership or
intersection are not standard and cannot be implemented using existing libraries on bit
arrays. (2) The simplicity of Python increases scalability and modularity and it reduces
the risk of errors. Unfortunately, using Python also presents some drawbacks. Indeed,
interfacing Python and C leads to light performance overhead. Nevertheless, we believe
that the overhead is a small price to pay in comparison with the gain of simplicity.

Our implementation does not use BDDs, as they do not seem to be well adapted
in this context, and might be outperformed by the use of antichains [17,18]. We have
instead developed a library with a generic implementation of antichains that can easily
be reused in another context.

Tool Download and User Interface. Acacia+ can be downloaded at http://lit2.
ulb.ac.be/acaciaplus . It can be installed under a single command-line version

http://lit2.ulb.ac.be/acaciaplus/
http://lit2.ulb.ac.be/acaciaplus/
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working both on Linux and MacOsX, or used directly via a web interface. The source
is licensed under the GNU General Public License. The code is open and can be used,
extended and adapted by the research community. For convenience, a number of exam-
ples and benchmarks have been pre-loaded in the web interface.

Execution Parameters. Acacia+ offers many execution parameters, fully detailed in the
web interface helper.

Formula. Two inputs are required: an LTL formula φ and a partition of the atomic
signals into the sets I and O. The formula can be given as a single specification, or as
a conjunction φ1 ∧ · · · ∧ φn of several specifications (for the compositional approach).
Acacia+ accepts both the Wring and LTL2BA input formats, whatever the tool used to
construct the automata.

Method. Formulas φ are processed in two steps: the first step constructs a universal
co-Büchi automaton from φ, the second step checks for realizability (synthesis follows
when φ is realizable). The automaton construction can be done either monolithically
(a single automaton is associated with φ), or compositionally if the formula is given
as a conjunction φ1 ∧ · · · ∧ φn (an automaton is then associated with every φi). The
realizability check can be either monolithic, or compositional (only if φ is a conjunction
of φi’s). When the automaton construction is compositional and the realizability step is
monolithic, the latter starts with the union of all automata obtained from each φi.

The user can also choose between backward or forward algorithms for solving the
underlying safety game. In the case of a compositional realizability check with forward
option enabled, each intermediate subgame is solved backward and the whole game is
solved forward. The way of parenthesizing φ is totally flexible: the user can specify his
own parenthesizing or use predefined ones. This parenthesizing enforces the order in
which the results of the subgames are combined, and may influence the performances.

Output. The output of the execution indicates if the input formula φ is realizable,
and in this case proposes a winning strategy for the system. A winning strategy for the
environment can also be returned when φ is unrealizable (only in case of a monolithic
automaton construction). The output strategies are written in Verilog. When they are
small (≤ 20 states), the corresponding Moore machines are also drawn in PNG using
PyGraphviz. Many statistics about the execution are also output.

Options. For the automaton construction, the user can choose either LTL2BA [19]
or Wring [20]1. Both tools present advantages and drawbacks: LTL2BA works faster
whereas Wring provides smaller automata. The user can also choose the starting player
for the realizability game2. We recall that the implemented algorithms are incremental;
an upper bound can be imposed on the values of k = 0, 1, 2, . . . used in the safety games
G(φ, k). The user can also choose between either realizability check, or unrealizability
check, or both in parallel. Finally Acacia+ includes several optimizations like surely
losing states detection on the automata, limitation to critical signals, aso . . .. All of them
are enabled by default, but can be turned off.

1 In the latter case, our tool uses the Wring module included in Lily.
2 In the introduction, the realizability game has been described such that Player O, the system,

plays first. A variant is to let Player I , the environment, play first.
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4 Application Scenarios

In this section, we describe three typical scenarios of usage of Acacia+. More details
and examples can be found on the website of Acacia+.

Controller Synthesis from LTL Specifications. A first classical use of Acacia+ is to con-
struct finite-state controllers that enforce LTL specifications. Such specifications are
usually specified by a set of LTL assumptions on the environment, and a set of LTL
guarantees to be fulfilled by the controller. Several benchmarks of synthesis problems
are available for comparison with other tools: the test suite included in the tool Lily [7,8],
a generalized buffer controller from the IBM RuleBase tutorial [21], and the load bal-
ancing system provided with the tool Unbeast [10,12]. The performances of Acacia+
are better or similar to other tools, with the advantage of generating compact solutions.
As an example, for the load balancing system with 4 clients, Acacia+ first builds a
universal coBüchi word automaton with 187 states, and then outputs a winning strategy
as a Moore machine with 154 states. This is in contrast with the worst-case complexity
analysis announcing a size exponential in 187, and with the winning strategy extracted
by Unbeast, whose nuSMV representation is a file of 30MB. As mentioned in [11],
extracting small strategies is a challenging problem.

Debugging of LTL Specifications. Writing a correct LTL specification is error prone
[22]. Acacia+ can help to debug unrealizable LTL specifications as follows. As ex-
plained in Sect. 2, when an LTL specification φ is unrealizable for Player O, then its
negation¬φ is realizable for Player I . A winning strategy of Player I for¬φ can then be
used to debug the specification φ. Again, Acacia+ often offers the advantage to output
readable compact (counter) strategies that help the specifier to correct his specification.

From LTL to Deterministic Büchi automata. As suggested to us by R. Ehlers, following
an idea proposed in [6], LTL synthesis tools can be used to convert LTL formulas into
an equivalent deterministic Büchi automaton (when possible). The idea is as follows.
Let ϕ be an LTL formula over a set of signals Σ and σ be a new signal not in Σ. Let
I = Σ and O = {σ}. Then the formula φ = (ϕ↔ GFσ) is realizable iff there exists a
deterministic Büchi automaton equivalent to ϕ. Indeed if φ is realizable, then the Moore
machine M representing a winning strategy for Player O can be transformed into a
deterministic Büchi automaton equivalent to ϕ, by declaring accepting the states of M
with output σ. Conversely, if there exists a deterministic Büchi automaton equivalent to
ϕ, this automaton, outputting σ on accepting states, realizes φ.

Therefore one can use Acacia+ to construct deterministic automata from LTL for-
mulas (if possible). In [23], the author provides an automated method (together with
a prototype) for the NP-complete problem of minimizing Büchi automata [24]. This
method is based on a reduction to the SAT problem, and it is benchmarked on several
automata obtained from a set of LTL formulas. We use those formulas to benchmark
Acacia+ on the LTL to deterministic Büchi automata problem. We obtain very short
execution times and the size of the constructed automata is very close to that of a min-
imal deterministic Büchi automata. The minimum size is indeed reached for 18 among
26 formulas. This shows again that Acacia+ is able to synthesize compact strategies.
Finally, let us mention that a similar technique can be used to convert LTL formula into
equivalent deterministic parity automata with a fixed number of priorities [6].
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Abstract. MGSyn is a programming toolbox based on game-theoretic notions of
synthesis for generating production code in the domain of industrial automation.
Instead of painstakingly engineering sequences of relatively low-level program
code, the designer selects pre-defined hardware components together with be-
havioral interfaces from a given library, specifies a topology for the interconnec-
tion of components, and specifies the programming/synthesis problem in terms of
what needs to be achieved. Given the model and a problem specification, MGSyn
synthesizes executable C/C++ code for a concrete execution platform and an in-
teractive simulator. The synthesized code is used to control distributed industry-
standard PLCs in a FESTO modular production system.

1 Introduction
Realizing distributed process control systems with their stringent real-time and depend-
ability, in particular safety and security requirements, is a challenging problem. The
prevalent state-of-the-practice, as determined by current industrial standards including
IEC 61131-3, IEC 61804, or IEC 61499, is based on painstakingly engineering se-
quences of relatively low-level control code using standardized libraries of function
blocks. All too often this traditional style of programming leads to inefficiencies in de-
veloping and maintaining industrial production control systems, it has negative impact
on the quality and dependability of the control code itself, and it results in inflexibility
of production processes with prolongated start-up and changeover times.

We are proposing a new style of programming industrial automation plants based
on describing what needs to be achieved instead of how these plants are actually be-
ing controlled. An example of such high-level instructions is “Drill and store red work
pieces if they are facing up.” More precisely, based on capability models of hardware
components and a description of what needs to be achieved, we set up a game between
the hardware component controllers and the observable (sensor) environment, and syn-
thesize a control algorithm based on a winning strategy for the controllers. MGSyn
(Model, Game, Synthesis) is a tool for automating this high-level style of programming
industrial automation plants by, first, synthesizing code for embedded control systems
and, second, executing this code to control a distributed industrial programming logic
control system.1

� The first two authors contributed equally to this work.
1 MGSyn is freely available under the GPLv3 license, including a step-by-step tutorial, at
http://www.fortiss.org/formal-methods

P. Madhusudan and S.A. Seshia (Eds.): CAV 2012, LNCS 7358, pp. 658–664, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Concerning related work, there is an ongoing interest in program synthesis; some re-
cent works include [12,15,13,9,10,14]. For automation, models based on state-transition-
diagrams have previously been used and synthesis is performed on a generalized Petri
net models with input-output preservation [8,16,7,2]. In MGSyn, a developer provides
a high-level specification for the desired behavior and the synthesis engine automati-
cally creates a program (i.e., the state-transition-diagram) that fulfills the specification.
In addition, MGSyn includes an automated deployment of such a high-level control
program to lower-level executables.

We first illustrate the general modeling concepts of MGSyn in Section 2 . In Sec-
tion 3, we describe the deployment of executable code for our FESTO modular pro-
duction2 demonstrator depicted in Figure 1. This industrial automation plant is built
from a set of rearrangeable hardware modules including processing stations, conveyer
belts, and storage facilities, similar to the ones used in large-scale production facilities.
Finally, in Section 4, we describe how the back-end synthesis engine as well as the
mapping to a concrete execution platform is implemented.

2 Modeling Industrial Automation Processes with Games

Given a description of the plant and a high-level problem specification, the two-player
game of program synthesis for industrial automation is played between Controller and
Environment. The moves of Controller correspond to (i) processing actions of the plant
and (ii) sensor triggering actions, whereas Environment’s moves determine the plant’s
sensor inputs, and hence uncertainty and non-determinism within the system. Winning
conditions of the game are specified in terms of a subset of linear temporal logic (LTL).
A particularly simple winning condition, e.g., is a set of states, which are regarded as
goals for encoding what needs to be achieved. In this case Controller wins the (reach-
ability) game if it succeeds in driving the plant towards these goals irrespective of the
moves (sensor inputs) chosen by Environment. Such a game is specified in MGSyn
from models of the hardware modules, the topology of these modules and the oper-
ational behavior for specifying Controller and Environment moves; see Section 3 for
a representative model. From these ingredients, the synthesis engine of MGSyn cre-
ates intermediate, platform independent control code, which may be validated through
platform-independent simulation. The deployment of executable code is based on a de-
scription of execution units and their interconnection.

Plant Modules. An industrial production plant is built up from hardware modules in-
cluding conveyor belts, robot arms, or rotary plates. The key is to specify each of these
components together with clearly defined behavioral interfaces, which may also be
viewed as contracts; these contracts are respected by realizations of the interface spec-
ifications. Behavioral interfaces model the players’ available moves. They consist of a
list of preconditions (i.e., “When is the move legal?”) as well as effects of the move
(i.e., “How does the move change the state of the system?”). Preconditions and effects
make statements on predicates that in turn model the overall system state. An according
set of predicates has to be added to the model when new moves are added.

2 http://www.festo-didactic.com/int-en/learning-systems/mps-the-modular-production-system/
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Fig. 1. The FESTO MPS demonstrator (left) and its abstract model (right)

Plant Topology. Work pieces are typically transferred between plant modules in an au-
tomation system. Therefore, we associate each hardware module with a set of operating
positions and the topology of a plant is specified as the overlapping of positions among
different hardware modules (see Section 3 for an example).

Plant Behavior. The so-called problem specification describes the desired behavior of
the composed system (i.e., the goal or winning condition for Controller). MGSyn is
restricted to specifications where controller strategies can be synthesized symbolically
in time polynomial to the size of the translated game graph, ranging from reachability
to generalized reactivity-1 (GR-1) conditions [15].

Execution Platform and Networking. For generating executable program code from
the intermediate, platform-independent representation as generated by the core MGSyn
synthesis algorithms, it is necessary to specify the hardware setup, namely (i) the elec-
tronic control units (ECUs) that are attached to the hardware modules and (ii) the com-
munication infrastructure.

MGSyn is implemented using the Eclipse Modeling Framework (EMF) [1]) and
includes an extensible library of predefined plant modules, topologies, and behavioral
interfaces. Therefore, a design engineer may specify control problems by selecting
modules from this library and interconnecting them in a suitable way; the correspond-
ing game is created automatically by the MGSyn backend engine. The synthesis engine
of MGSyn is based on an extension of the GAVS+ solver library [5].

3 Example: Synthesizing Executable Code for FESTO MPS

We demonstrate the use of MGSyn for modeling and synthesizing executable code
for the FESTO modular production system (MPS) in Figure 1 by means of a concrete
example; see also [3]. This plant consists of the modules RobotArmStorage (RAS),
ConveyorBelt (CB), Lever, RotaryPlate (RP), HeightSensor (HS), and Drill.

Modeling Hardware Modules. For example, conveyor belt CB01 specifies the follow-
ing properties (compare Figure 2(a)):

• Two operating positions CB01-from and CB01-to.
• Initial state belt-connected CB01-from CB01-to, where belt-connected is a

predicate.
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• Behavioral interface belt-move-b (see Figure 2(b) for formal semantics). Intu-
itively, the interface enables to move a work piece from position ?from to position
?to if the hardware supports the transmission (belt-connected ?from ?to). Hence,
CB01 is modeled as a unidirectional belt. at and occupied are further predicates
defined in the model.

We also specify ECUs and their controlled hardware modules in the model. For exam-
ple, as depicted in the left part of Figure 1, FESTO FEC PLCs control the storage and
processing units, while the conveyor belts are controlled by Siemens LOGO! PLCs.

Topology Specification via Overlapping Positions. Once modules are specified, the
second step is to specify their topology. For instance, for the system in Figure 1, the
destination of CB04 is linked with the source of CB03. This spatial overlapping is
characterized in the model (see Figure 2(d)). Similarly, the source of Lever1 overlaps

 (:action belt-move-b
    :parameters  (?obj - unit ?from ?to - position)
    :precondition (and (P0TRAN) (belt-connected ?from ?to)
                             (at ?obj ?from) (not (occupied ?to)))
    :effect (and (P0TRAN) (not (occupied ?from))
                 (not (at ?obj ?from))(at ?obj ?to)(occupied ?to))
  )

(b)

(c)

(and
(or (face wp1  up) (face wp1 down))   ;; Height of work piece is known
(and 

(or   ;; a → b ≡ ¬a ˅ b
(not face wp1 up))   ;; If wp1 is facing up, then...
(and 

(drilled wp1)   ;; ...ensure it is drilled and sort by color:
(and

(or (not (color wp1 red)) (at wp1 L1_a)) ;; Red → L1_a
(or (not (color wp1 white)) (at wp1 L2_a)) ;; White → L2_a
(or (not (color wp1 black)) (at wp1 L3_a)) ;; Black → L3_a

)
(or   ;; Color of work piece is known

(color wp1 red) (color wp1 white) (color wp1 black)
)

)
           )

(or   ;; a → b ≡ ¬a ˅ b
(not (face wp1 down))   ;; If wp1 is facing down, then...
(and  (not (drilled wp1)) (at wp1 CB03-from))   ;; ...do not drill

)
)

)

(d)

(e)

Generate executable code

Generate synthesis model (PDDL-like)

Generate architecture script from model

Generate synthesis model (PDDL-like)
Synthesize strategy in high-level control format

(a)

Fig. 2. (a) Unidirectional conveyor belt modeled in MGSyn. (b) Behavioral interface of belt-
move-b. (c) Sample specification (goal). (d) Unification of two belt positions (CB04-to and
CB03-from). (e) Execution of MGSyn from within Eclipse with the list of synthesis and code
generation steps.
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with CB03-to while its destination overlaps with RP-a, implying Lever1 is able to
push work pieces from the belt to the rotary plate.

Synthesis, Architecture Mapping and Code Generation. The third step is to describe
the winning condition and perform synthesis. For instance, assume that an operator (or
a robot) is located at position CB03-from and feeds work pieces to the system. Due to
space limits, Figure 2(c) shows only a simple specification, which is to drill and store
a work piece based on its color (words after ;; are comments). It also contains basic
error handling: if the object is not facing up, it shall not be drilled and shall be returned
back to the operator (position CB03-from).

To perform synthesis and code generation, the designer simply right-clicks on the
EMF model to invoke MGSyn from the popup menu (Figure 2(e)). Our engine first
creates a unified synthesis model by renaming overlapping positions to unique identi-
fiers. Then the model is fed into the synthesis engine and the engine reports a winning
strategy whenever possible. Synthesis for the specification in Figure 2(c) only takes
seconds.

MGSyn uses a template-based approach to generate code (e.g., state variables, pred-
icate functions, actions) from the model which is described in detail in Section 4.

4 Back-end Engine and Execution Platform Mapping

(Engine) The back-end engine first translates the EMF model to an intermediate for-
mat, which is based on PDDL [11] extended with game semantics [4]. As PDDL is very
appropriate to specify behavioral interfaces, such a translation is very intuitive. How-
ever, to create a single model from multiple components, the engine needs to perform an
automatic renaming over operating positions that physically overlap. Then the engine
performs synthesis based on the intermediate model under the user-provided specifica-
tion of the winning condition (also in a PDDL-like format). The output of the engine
is a sequential program with of Controller’s moves, where each move is executed only
if a set of conditions on the system state is true. The conditions encode the dynamic
adaptation of Controller’s strategy to win the game in reaction to Environment’s moves.

The synthesis engine handles a subset of LTL properties such as GR-1 (known to be
able to capture practical specifications in reactive synthesis [15]), where the complexity
of game solving is polynomial in the size of the game arena, which itself is exponential
in the number of Boolean variables used in system modeling. Useful optimizations for
speeding up synthesis rely on analyzing the specification and identifying relevant parts
of the game arena, thereby significantly reducing the number of Boolean variables in
game encoding [4]. Overall, the synthesis engine of MGSyn incorporates well-known
techniques for optimizing programs and bring them to assist optimizations in synthesis,
such as constant propagation and cone-of-influence computations, as described in [4].
Experiments in GAVS+ confirm that the optimization techniques described in [4] often
yield performance increase of at least an order of magnitude. These optimizations may
also be useful as preprocessing steps for other reactive synthesis frameworks.

(Execution Platform Mapping) After the synthesis engine has generated a winning
strategy for Controller, the strategy has to be mapped to an executable representation.
This is done in two steps: First, an API matching the modeled plant modules, topology
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and behavior is generated from a code template written in Xpand language using EMF
tooling. Second, the synthesized solution is transformed so that it calls the functions
from the API. This second step is a simple text replacement that ensures that naming
conventions of the C++ programming language are enforced. The code finally compiles
to a console application, which covers both simulation and execution on real hardware.
For the latter scenario, the API code is based on a thin manually implemented device
driver layer for triggering the respective actions on the hardware.

The presented two-step approach has the advantage that the API is independent from
the actually executed strategy; it may be generated once and re-used for different win-
ning conditions as long as the plant model remains the same.

The model elements are mapped to API code as follows: Entities (e.g., operating
positions, work pieces, colors) are mapped to enumerations and made available as data
types. Predicates are transformed into state variables and predicate functions for retriev-
ing and modifying the system state. For each of Controller’s moves, a function with the
following behavior is generated: If execution on real hardware should be performed, it
calls the device driver library functions to trigger the respective control action(s). It then
updates the state variables according to the action’s effects specified in the model. For
each of Environment’s moves, a function is generated as follows: If execution on real
hardware should be performed, it calls the device driver library functions to retrieve the
respective sensor reading(s). If simulation should be performed, it prints a list of pos-
sible sensor readings extracted from the model and asks the operator to make a choice.
Finally, it updates the state variables according to the (simulated) sensor reading(s).

Lastly, the main program is generated as follows: When the program starts, the device
drivers are initialized if execution on real hardware should be performed. Moreover, the
state variables are set to their initial values according to the respective specification
in the model. Then, a function representing the synthesized strategy is called, which
contains the synthesis result to which the following transformations have been applied:
Evaluations of predicates within the conditions of an action call predicate functions or
directly evaluate state variables within the API. Invocations of control actions call the
functions representing the respective moves within the API.

5 Concluding Remarks

The strengths of MGSyn show when the automation task (winning condition) needs to
be adapted, as only small changes in the formal model are required to generate correct-
by-construction code compared to hours or days of manual modification. In practice it
is also useful that MGSyn indicates infeasibility, that is, there is no winning strategy
for the specified control problem.

These features set MGSyn apart from traditional programming paradigms in automa-
tion by increasing efficiency and reducing potential sources of error. So far we have
adapted MGSyn to two different FESTO MPS plants with different modules, processors,
and communication protocols. which were designed according to industrial standards.

Several extensions to MGSyn are planned, including the handling of real-time prop-
erties and for incorporating basic fault-tolerance mechanisms. The injection of faults, in
particular, may be modeled by moves of the Environment, and fault-tolerance patterns
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may be incorporated into the synthesis engine as suggested in [6]. Currently, we are in
the process of extending the FESTO MPS demonstrator with capabilities for commu-
nicating with the work pieces to be manufactured, which may then (compare “Internet
of things / Industrie 4.0”), determine how they should be processed by the processing
plant. In this way, work pieces become important new players in the game of industrial
production control.

Acknowledgement. We thank Barbara Jobstmann for evaluating some optimization
techniques in Anzu.

References
1. Eclipse Modeling Framework, http://www.eclipse.org/modeling/emf/
2. Carmona, J., Cortadella, J., Kishinevsky, M.: Genet: A tool for the synthesis and mining of

petri nets. In: ACSD 2009, pp. 181–185. IEEE (2009)
3. Cheng, C.-H., Geisinger, M., Ruess, H., Buckl, C., Knoll, A.: Game solving for industrial

automation and control. In: ICRA (to appear, May 2012)
4. Cheng, C.-H., Jobstmann, B., Geisinger, M., Diot-Girald, S., Knoll, A., Buckl, C., Ruess, H.:

Optimizations for game-based synthesis. Technical Report 12, Verimag (2011)
5. Cheng, C.-H., Knoll, A., Luttenberger, M., Buckl, C.: GAVS+: An Open Platform for the

Research of Algorithmic Game Solving. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS
2011. LNCS, vol. 6605, pp. 258–261. Springer, Heidelberg (2011)

6. Cheng, C.-H., Rueß, H., Knoll, A., Buckl, C.: Synthesis of Fault-Tolerant Embedded Systems
Using Games: From Theory to Practice. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011.
LNCS, vol. 6538, pp. 118–133. Springer, Heidelberg (2011)

7. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Petrify: a tool
for manipulating concurrent specifications and synthesis of asynchronous controllers. IEICE
Transactions on Information and Systems 80(315-325), 182 (1997)

8. Der Jeng, M., DiCesare, F.: A review of synthesis techniques for petri nets with applications
to automated manufacturing systems. IEEE Transactions on Systems, Man and Cybernet-
ics 23(1), 301–312 (1993)

9. Dimitrova, R., Finkbeiner, B.: Synthesis of Fault-Tolerant Distributed Systems. In: Liu, Z.,
Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 321–336. Springer, Heidelberg (2009)

10. Ehlers, R.: Unbeast: Symbolic bounded synthesis. In: Abdulla, P.A., Leino, K.R.M. (eds.)
TACAS 2011. LNCS, vol. 6605, pp. 272–275. Springer, Heidelberg (2011)

11. Ghallab, M., Aeronautiques, C., Isi, C., Penberthy, S., Smith, D., Sun, Y., Weld, D.: PDDL-
the planning domain definition language. Technical Report CVC TR-98003/DCS TR-1165,
Yale Center for Computer Vision and Control (October 1998)

12. Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis. In: FMCAD 2006, pp. 117–124.
IEEE (2006)

13. Jobstmann, B., Galler, S., Weiglhofer, M., Bloem, R.: Anzu: A Tool for Property Synthesis.
In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 258–262. Springer,
Heidelberg (2007)

14. Madhusudan, P.: Synthesizing reactive programs. In: CSL 2011. LIPIcs, vol. 12, pp. 428–
442. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011)

15. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of Reactive(1) Designs. In: Emerson, E.A.,
Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer, Heidelberg
(2005)

16. Uzam, M., Zhou, M.: An iterative synthesis approach to petri net-based deadlock prevention
policy for flexible manufacturing systems. IEEE Transactions on Systems, Man and Cyber-
netics, Part A: Systems and Humans 37(3), 362–371 (2007)

http://www.eclipse.org/modeling/emf/


OpenNWA: A Nested-Word Automaton Library�

Evan Driscoll1, Aditya Thakur1, and Thomas Reps1,2

1 Computer Sciences Department, University of Wisconsin – Madison
{driscoll,adi,reps}@cs.wisc.edu
2 GrammaTech, Inc., Ithaca, NY

Abstract. Nested-word automata (NWAs) are a language formalism
that helps bridge the gap between finite-state automata and push-
down automata. NWAs can express some context-free properties, such as
parenthesis matching, yet retain all the desirable closure characteristics
of finite-state automata.

This paper describes OpenNWA, a C++ library for working with
NWAs. The library provides the expected automata-theoretic operations,
such as intersection, determinization, and complementation. It is pack-
aged with WALi—the W eighted Automaton Library—and interoperates
closely with the weighted pushdown system portions of WALi.

1 Introduction

Many problems in computer science are solved by modeling a component as
an automaton. Traditionally, this means either confronting several undecidable
problems that arise with the use of pushdown automata or giving up expressivity,
and usually precision, by using finite-state automata. Recently, the development
of nested word automata (NWAs) and related formalisms [2,3] has revealed a
fertile middle ground between these two extremes. NWAs are powerful enough
to express some “context-free”-style properties, such as parenthesis matching,
and yet retain the decidability properties that make it convenient to work with
regular languages. In particular, NWAs and their languages are closed under
operations such as intersection and complementation. NWAs have been applied
in areas such as modeling programs and XML documents. When modeling pro-
grams, NWAs can eliminate spurious data flows along paths with mismatched
calls and returns. In XML documents, NWAs can model the matching between
opening and closing tags.

We have created a C++ implementation of NWAs, called OpenNWA. Open-
NWA is packaged with the W eighted Automata Library, WALi [7]. WALi also
provides implementations for weighted finite-state automata and weighted push-
down systems (WPDSs). The OpenNWA library
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– implements (in the terminology of [3]) linearly-accepting, weakly-hierarchical
NWAs, along with standard automata-theoretic operations. (See §3.1.)

– is extensible via a mechanism that allows the user to attach arbitrary client
information to each node in the automaton. (See §3.2.)

– inter-operates with WALi’s WPDS library and allows the user to issue
queries about an NWA’s configuration space. (See §3.3.)

– provides utilities for operating on a textual NWA format [5, §5].
– provides extensive documentation [5] and a test suite.

OpenNWA is currently used by three projects [11,4,6]; see §4. OpenNWA is
available at http://research.cs.wisc.edu/wpis/OpenNWA.

2 NWAs

This section describes nested-word automata [2] and related terms at an intuitive
level, and gives an example of how they are used in program analysis. For the
formal definitions that we use, see our technical report [5, App. A].

A nested word is an ordinary (linear) string of symbols over some alphabet
Σ paired with a nesting relation. The nesting relation describes a hierarchi-
cal relation between input positions, for instance between matched parentheses.
Graphically, a nested word can be depicted

a b c d e f g has illustrated to the right. In this image,
following just the horizontal arrows illustrates the linear word, while the curved
edges (“nesting edges”) indicate positions that are related by the nesting rela-
tion. For a nesting relation to be valid, nesting edges must only point forward
in the word and may not share a position or cross.

Positions in the word that appear at the left end of a nesting edge are called
call positions, those that appear at the right end are called return positions,
and the remaining are internal positions. It is possible to have pending calls and
returns, which are not matched within the word itself. For a given return, the
source of the incoming nesting edge is called that return’s call predecessor.

Nested-word automata (NWAs) are a generalization of ordinary finite-state
automata (FA). An NWA’s transitions are split into three sets—call transitions,
internal transitions, and return transitions. Call and internal transitions are
defined the same as transitions in ordinary FAs, while return transitions also
have a call-predecessor state as an additional element.

To understand how an NWA works, consider first the case of an ordinary FA
M . We can think of M ’s operation as labeling each edge in the input word with

a b c d e
q0 q1 q2

the state that M is in after reading the symbol at
that edge’s source. For instance, shown to the right
is a partial run. To find the next state, M looks for a transition out of q2 with
the symbol c—say with a target of q3—and labels the next edge with q3.

The operation of an NWA proceeds in a fashion similar to a standard FA,
except that the machine also labels the nesting edges. When the NWA reads an
internal position, it chooses a transition and labels the next linear edge the same
way an FA would. When the NWA reads a call position, it picks a matching call

http://research.cs.wisc.edu/wpis/OpenNWA
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1 void main() {
2 f = factorial(5);
3 printf("%d\n", f);
4 }

5 int factorial(int n) {
6 if (n == 0)
7 return 1;
8 f = factorial(n-1);
9 return n * f;
10 }

Fig. 1. An example program, corresponding NWA, and accepted word. State labels
are arbitrary; transition symbols give the line number of the corresponding statement.
Some nodes are elided. Dotted lines indicate call transitions, and dashed lines are return
transitions. The state in parentheses on a return transition is the call predecessor.

transition and labels the next linear edge in the same way, but also labels the
outgoing nesting edge with the state that the NWA is leaving. When the NWA
reads a return position, it looks not only at the preceeding linear state but also
at the state on the incoming nesting edge. It then chooses a return transition
that matches both, and labels the next linear edge with the target state. An
example NWA run is shown in Fig. 1.

OpenNWA supports ε internal transitions, which operate in an analogous way
to ε rules in ordinary FAs. It also supports something we call wild transitions,
which match any single symbol. Wilds can appear on any transition type.

Example 1. NWAs can be used to encode the interprocedural control-flow graph
(ICFG) of a program. Intraprocedural ICFG edges become internal transitions,
interprocedural call edges become call transitions, and interprocedural return
edges become return transitions. For an ICFG return edge (exit-site, return-site),
we use the call site that corresponds to return-site in the call-predecessor position
of the NWA’s transition. The symbols on a transition depend on the application,
but frequently are the corresponding statement.

An example program, the corresponding NWA, and an example word accepted
by that NWA are shown in Fig. 1. Using an NWA allows us to exclude paths such
as 1–2–5–6–7–8–9–... that do not follow a matched path of calls and returns.
Fewer paths can allow a client analysis to obtain increased precision.

3 The OpenNWA library

OpenNWA provides a C++ class called NWA for representing NWAs. For informa-
tion about constructing NWAs and actual API information, see the OpenNWA
documentation [5]. In this section, we briefly describe some things a user can do
with an NWA (or NWAs) once it is built.

3.1 Automata-Theoretic Operations

As mentioned in §1, OpenNWA supports most automata-theoretic operations:

– intersection
– union
– Kleene star

– reversal
– concatenation
– determination

– complement
– emptiness checking
– example word generation
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For the most part, we use Alur and Madhusudan’s algorithms [2,3]; however we
note three exceptions. First, we implemented emptiness checking and example
generation using WPDSs, discussed below. Second, we found and corrected a
minor error in Kleene star [5, §6.4]. Third, we expressed Alur and Madhusudan’s
determinization algorithm using relational operators [5, App. B].

OpenNWA supports determining whether an NWA’s language is empty, and
if it is not, OpenNWA can return an arbitrary word from the NWA’s language.
It is also possible to ask specifically for a shortest accepted word. The library
performs these operations by converting the NWA into a WPDS and running a
post∗ query from the set of initial configurations (see §3.3). To find an example
word, OpenNWA uses a witness-tracing version of post∗ [10, §3.2.1], and extracts
the word from the resulting witness. For the shortest word, we simply use weights
that track the length of the path from the initial state.

The ability to obtain an example word is important in program analysis. It can
show the end user of an analysis tool a program trace that may violate a property.
Moreover, this feature is fundamental to counterexample-guided refinement: in
CEGAR-based model checkers, the counterexample is typically an example word
from the automaton that models the program.

3.2 Client Information

OpenNWA provides a facility that we call client information. This feature allows
the user of the library to attach arbitrary information to each state in the NWA.
For instance, as discussed in §4, McVeto uses NWAs internally, and uses client
information to attach a formula to each state in the NWA.

The library tracks this information as best as it can through each of the
operations discussed in the previous section, and supports callback functions to
compute new client information when it does not have the information it needs.

3.3 Inter-operability with WPDSs

Weighted pushdown systems (WPDSs) can be used to perform interprocedural
static analysis of programs [10]. The PDS proper provides a model of the pro-
gram’s control flow, while the weights on PDS rules express the dataflow trans-
formers. Algorithms exist to query the configuration space of WPDSs, which
corresponds to asking a question about the data values that can arise at a set of
configurations in the program’s state space. A configuration consists of a control
location and a list of items on the stack.

OpenNWA supports converting an NWA into a WALi WPDS. This feature
allows an OpenNWA client to issue queries about the configuration space of
an NWA. The WPDS’s stack corresponds to the states that label the as-yet-
unmatched nesting edges in a prefix of an input nested word. When viewed in
program-analysis terms, the WPDS that results from this conversion reflects
the same control structure as the original NWA. Answers to WPDS queries
tend to have a natural interpretation in the NWA world, as well. For NWA
operations that can be expressed naturally in this way (e.g., emptiness checking
and post∗), OpenNWA employs this conversion. Other NWA operations, such
as determinization, do not have an equivalent WPDS operation.
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NWAs themselves are not weighted, but OpenNWA provides a facility for
determining the weights of the WPDS rules during conversion. The user provides
an instance of class WeightGen, which acts as a factory function. The function is
called with the states in question and returns the weight of the resulting WPDS
rule. (The weight can depend on the client information of the states.)

4 Uses of OpenNWA

I/O Compatibility Checking. We used OpenNWA as the primary component
of a tool called the Producer-Consumer Conformance Analyzer (PCCA) [4].
Given two programs that operate in a producer/consumer relationship over a
stream, PCCA’s goal is to determine whether the consumer is prepared to accept
all messages that the producer can emit, and find a counterexample if not. PCCA
infers a model of the output language of the producer, infers a model of the input
language of the consumer, and determines whether the models are compatible.

PCCA uses NWAs for its models, building them from the ICFG, as discussed
in Ex. 1. Edges corresponding to statements that perform I/O are labeled with
the type of the I/O, and all other internal transitions are labeled with ε. Con-
ceptually what we want to check is whether the producer’s output language is a
subset of the consumer’s input language, which is an operation NWAs and our
library support. In practice, this check is likely to be too strict, and we need an
additional step, detailed in [4, §2.3 and §3.2].

Machine-Code Model Checking. McVeto is a machine-code verification en-
gine [11] that, given a binary and description of a bad target state, tries to find
either (i) an input that forces the bad state to be reached, or (ii) a proof that
the bad state is impossible to reach.

McVeto uses a model of the program called a proof graph, which is an NWA
that overapproximates the program’s behavior. States in a proof graph are la-
beled with formulas; edges are labeled with program statements. McVeto starts
with a very coarse overapproximation, which it then refines. One refinement
technique uses symbolic execution to produce a concrete trace of the program’s
behavior, performs trace generalization [11, §3.1] to convert the trace into an
overapproximating NWA (the “folded trace”), and intersects the current proof
graph with the folded trace to obtain the new proof graph. The formula on a
state in the new proof graph is the conjunction of the formulas on the states
that are being paired from the current proof graph and the folded trace.

McVeto’s implementation uses OpenNWA’s client-information feature to store
the formula for each state. During intersection, the callback functions mentioned
in §3.2 compute the conjunction of the input formulas, which are then used in
the new proof graph.

To determine whether the target state is not reachable in the proof graph (and
thus is definitely not reachable in the actual program), McVeto calls prestar()
(see §3.3). The result of this call is also used to determine which “frontier” to
extend next during directed test generation [11, §3.3].
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JavaScript Security-Policy Checking and Weaving. The JAM tool [6]
checks a JavaScript program against a security policy, either verifying that the
program is already correct with respect to that policy or inserting dynamic
checks into the program to ensure that it will behave correctly. JAM builds
two models of the input program, one that overapproximates the control flow
of the program and one that overapproximates the data flow. The policy is also
expressed as an NWA of forbidden traces. By intersecting the policy automaton
with both program models, JAM obtains an NWA that expresses traces that
possibly violate the policy.

Once JAM has the combined NWA, it asks OpenNWA for a shortest word
in the language. If the language is empty (i.e., there is no shortest word), the
program always respects the policy. If OpenNWA returns an example word w,
JAM checks whether w corresponds to a valid trace through the program. If w is
valid, then JAM inserts a dynamic check to halt concrete executions correspond-
ing to w that would violate the policy. If w is not valid, than JAM can either
refine the abstraction and repeat, or insert a dynamic check to detect and halt
concrete executions corresponding to w for which the policy would be violated.

5 Related work

Alur and Madhusudan each maintain a page giving a significant bibliography of
papers that present theoretical results, practical applications, and tools related to
NWAs and visibly pushdown automata (VPAs) [1,8]. VPAs and their languages
are another formalism which can be seen as an alternative encoding of NWAs
and nested-word languages [3].

VPAlib [9] is a general-purpose library implementing VPAs. However, Open-
NWA’s implementation is far more complete. For instance, VPAlib does not
support concatenation, complementation (although it does support determiniza-
tion), checking emptiness, or obtaining an example word.
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Abstract. In this paper, we present Ufo, a framework and a tool for
verifying (and finding bugs in) sequential C programs. The framework
is built on top of the LLVM compiler infrastructure and is targeted at
researchers designing and experimenting with verification algorithms. It
allows definition of different abstract post operators, refinement strate-
gies and exploration strategies. We have built three instantiations of
the framework: a predicate abstraction-based version, an interpolation-
based version, and a combined version which uses a novel and power-
ful combination of interpolation-based and predicate abstraction-based
algorithms.

1 Introduction

Software model checking tools prove that programs satisfy a given safety prop-
erty by computing inductive invariants that preclude erroneous program states.
Over the past decade, software model checking tools have adopted a number
of different techniques for computing invariants which we categorize as Over-
approximation-Driven (OD) and Under-approximation-driven (UD).

OD tools, e.g., Slam [4], Blast [6], and SATAbs [10], utilize an abstract do-
main based on predicate abstraction [11] to compute an over-approximation of
the set of reachable states of a program. In the case of false positives, such tech-
niques employ an abstraction refinement loop [9] to refine the abstract domain
and eliminate false positives.

UD tools, spearheaded by Impact [15] and Yogi [17], compute invariants by
generalizing from infeasible symbolic program paths, thus bypassing the poten-
tially expensive computation of the abstract post operator. For example, Im-
pact and Wolverine [13] use Craig interpolants, extracted from the proofs
of unsatisfiability of formulas encoding an infeasible path to error, in order to
eliminate a potentially large number of paths to error and prove a program
safe. Whale [2] extends Impact to the interprocedural case by using under-
approximations of functions to compute function summaries. Similarly, Yogi

uses weakest-preconditions (instead of interpolants) along infeasible program
paths, chosen based on concrete test-case executions, in order to strengthen a
partition-graph of the state space of a program.

In this paper, we present Ufo, a framework and a tool for verifying and fal-
sifying safety properties of sequential C programs. The features of Ufo are:

P. Madhusudan and S.A. Seshia (Eds.): CAV 2012, LNCS 7358, pp. 672–678, 2012.
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Fig. 1. The architecture of Ufo

1. It is a framework for building and experimenting with UD, OD, and com-
bined UD/OD verification algorithms. It is parameterized by the abstract post
operator, refinement strategy, and expansion strategy.

2. It comes with a number of instantiations whose novel features are described
in [1]: several predicate abstraction-based OD instantiations, an interpolation-
based UD instantiation, and several combined OD/UD instantiations that use
different forms of predicate abstraction to augment and strengthen interpolation-
based analysis, a technique that we have shown to be quite powerful in [1]. To
the best of our knowledge, Ufo is the first available tool to implement a com-
bined UD/OD algorithm. Moreover, these instantiation of Ufo implement a
novel interpolation-based refinement strategy that computes interpolants (ab-
stractions) for multiple program paths encoded in a single SMT formula. That
is, unlike other tools that enumerate paths explicitly, e.g., [15,13,6], Ufo dele-
gates path enumeration to an SMT solver.

3. It is implemented on top of the open-source LLVM compiler infrastruc-
ture [14]. Since LLVM is a well-maintained, well-documented, and continuously
improving framework, it allows Ufo users to easily integrate program analyses,
transformations, and other tools built on LLVM (e.g., Klee [8]), as they be-
come available. Furthermore, since Ufo analyzes LLVM bitcode (intermediate
language), it is possible to experiment with verifying programs written in other
languages compilable to LLVM bitcode, such as C++, Ada, and Fortran.

The architecture and parameterization of Ufo and the underlying LLVM frame-
work provide users with an extensible environment for experimenting with dif-
ferent software verification algorithms.

Ufo is available at http://www.cs.toronto.edu/~aws/ufo.

http://www.cs.toronto.edu/~aws/ufo
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2 The Implementation and Architecture of Ufo

Ufo is implemented on top of the LLVM compiler infrastructure [14] – see
Figure 1 for an architectural overview. Ufo accepts as input a C program P
with assertions. For simplicity of presentation, let P = (V, T, φI , φE), where V is
the set of program variables, T is the transition relation of the program (over V
and V ′, the set of primed variables), φI is a formula describing the set of initial
states, and φE is a formula describing the set of error states.

First, P goes through a preprocessing phase where it is compiled into LLVM
bitcode (intermediate representation) and optimized for verification purposes, re-
sulting in a semantically equivalent but optimized program P o = (V o, T o, φoI , φ

o
E ).

Then, the analysis phase verifies P o and either outputs a certificate of correct-
ness or a counterexample. A certificate of correctness for P o is a safe inductive
invariant I s.t. (1) φoI ⇒ I, (2) I ∧ T o ⇒ I ′, and (3) I ∧ φoE is UNSAT.

2.1 Preprocessing Phase

We now describe the various components of the preprocessing phase.

C to LLVM. The first step converts the program P to LLVM bitcode using the
llvm-gcc or clang compilers.

Optimizations for Verification. A number of native LLVM optimizations are
then applied to the bitcode, the most important of which are function inlining
(inline) and static single assignment (SSA) conversion (mem2reg). Since Ufo

implements an intraprocedural analysis, it requires all functions to be inlined into
main. In order to exploit efficient SMT program encoding techniques like [12],

int x;

if (x == 0)

func1();

if (x != 0)

func2();

return 1;

Fig. 2. Example pro-
gram.

Ufo expects the program to be in SSA form. A number
of standard program simplifications are also performed at
this stage, with the goal of simplifying verification. The
final result is the optimized program P o. Mapping coun-
terexamples from P o back to the original C program P is
made possible by the debugging information inserted into
the generated bitcode by clang.

Before the above optimizations could be applied, we
had to bridge the gap between the semantics of C assumed
by LLVM (built for compiler construction) and the verification benchmarks.
Consider, for example, the program in Figure 2. After LLVM optimizations, it
is reduced to the empty program: return 1;. LLVM replaces undefined values
by constants that result in the simplest possible program. In our example, the
conditions of both if-statements are assigned to 0, even though they contradict
each other. On the other hand, verification benchmarks such as [5] assume that
without an explicit initialization, the value of x is non-deterministic. To account
for such semantic differences, a Ufo-specific LLVM transformation is scheduled
before optimizations are run. It initializes each variable with a call to an external
function nondet(), forcing LLVM not to make assumptions about its value.
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Cutpoint Graph and Weak Topological Ordering. A cutpoint graph (CG)
is a “summarized” control-flow graph (CFG), where each node represents a cut-
point (loop head) and each edge represents a loop-free path through the CFG.
Computed using the technique presented in [12], the CG is used as the main
representation of the program P o. Using it allows us to perform abstract post
operations on loop-free segments, utilizing the SMT solver (e.g., in the case
of predicate abstraction) for enumerating a potentially exponential number of
paths. A weak topological ordering (WTO) [7] is an ordering of the nodes of the
CG that enables exploring it with a recursive iteration strategy: starting with
the inner-most loops and ending with the outer-most ones.

2.2 Analysis Phase

The analysis phase, which receives the CG and the WTO of P o from the pre-
processing phase, is comprised of the following components:

ARG Constructor. The ARG Constructor is the main driver of the analysis.
It maintains an abstract reachability graph (ARG) [1] of the CG – an unrolling of
the CG, annotated with formulas representing over-approximations of reachable
states at each cutpoint. ARGs can be seen as DAG representations of abstract
reachability trees (ARTs) used in lazy abstraction [15,6]. When the algorithm
terminates without finding a counterexample, the annotated ARG represents
a certificate of correctness in the form of a safe inductive invariant I for P o.
To compute annotations for the ARG, the ARG constructor uses three param-
eterized components : (1) the abstract post, to annotate the ARG as it is being
expanded; (2) the refiner, to compute annotations that eliminate spurious coun-
terexamples; and (3) the expansion strategy, to decide where to restart expanding
the ARG after refinement.
Abstract Post. The abstract post component takes a CG edge and a formula
φpre describing a set of states, and returns a formula φpost over-approximating
the states reachable from φpre after executing the CG edge. Ufo includes two
common implementations of abstract post – Boolean and Cartesian predicate
abstractions [3].
Refiner. The refiner receives the current ARG with potential paths to an error
location (i.e., the error location is not annotated with false). Its goal is either
to find a new annotation for the ARG s.t. the error location is annotated with
false, or to report a counterexample. Ufo includes an interpolation-based im-
plementation of the refiner.
Expansion Strategy. After the refinement, the ARG constructor needs to decide
where to restart expanding the ARG. The expansion strategy specifies this pa-
rameter. Ufo includes an eager strategy and a lazy strategy, both of which are
described in the following section.

SMT Solver Interface. Components of the analysis phase use an SMT solver in
a variety of ways: (1) The ARG constructor uses it to check that the annotations
of the ARG form a safe inductive invariant; (2) abstract post, e.g., using predicate
abstraction, encode post computations as SMT queries, and (3) the refiner can
use it to find counterexamples and to compute interpolants. All these uses are
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handled through a general interface to two SMT solvers: MathSAT5
1 (used for

interpolation) and Z3 [16] (used for quantifier elimination).

3 Instantiations of Ufo

We have implemented the three instantiations of the algorithm of [1] in Ufo:
(1) an interpolation-based UD instantiation, (2) a predicate abstraction-based
OD instantiation, and (3) a combined OD/UD instantiation that uses predicate
abstraction to augment the interpolation-based analysis. In [1], we showed that
the combined instantiation can outperform both the UD and the OD instan-
tiations. All of these instantiations use a novel interpolation-based refinement
strategy where all paths in the ARG are encoded as a single SMT solver for-
mula, delegating path enumeration to the SMT solver instead of enumerating
them explicitly as done by Impact [15] and Yogi [17].

We now show how these instantiations are produced by defining the three
Ufo parameters: abstract post, refiner, and expansion strategy.

UD Instantiation. In the UD case, the abstract post always returns true, the
weakest possible over-approximation. The annotations returned by the refiner
are used as for the ARG; therefore, they can be seen as a guess of the safe
inductive invariant I. If the guess does not hold, i.e., it is not inductive, then
the lazy expansion strategy starts expanding the ARG from the inner-most loop
where the guess fails [1]. The ARG is then extended and a new guess for I is
made by the refiner.

OD Instantiation. In the OD case, the abstract post is based on either Boolean
or Cartesian predicate abstraction. The annotations returned by the refiner are
used to update the set of predicates but not to guess invariants (and thus an-
notate the ARG) as in the UD case. The expansion strategy used is eager :
expansion is restarted from the root of the ARG, i.e., in each iteration Ufo

computes an abstract post fixpoint from the initial states φI , but with a larger
set of predicates from the one used in the previous iteration.

Combined UD/OD Instantiation. In the combined UD/OD case, Ufo uses
Boolean or Cartesian predicate abstraction [3] to improve guesses of I found
through interpolants. In each iteration, Ufo starts with a guess I, that does
not hold, from the previous iteration. A new set of states Ip, where I ⇒ Ip,
is computed by applying an abstract fixpoint computation, based on predicate
abstraction, starting from the set of states I and using the transition relation
T . Technically, this is performed by expanding the ARG where the guess I
fails (as in the UD case). If Ip is not a safe inductive invariant, a new guess
is computed using interpolants, and the process is restarted. The trade-off in
this case is between the potential for computing invariants in fewer refinements
(guesses) using predicate abstraction and the potentially high cost of predicate
abstraction computations.

1 http://mathsat.fbk.eu
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4 Conclusion

In this paper, we have described Ufo, a framework and a tool for software verifi-
cation of sequential C programs. As we have shown, by varying the parameters of
Ufo, it can be instantiated into tools employing varying verification techniques,
including an interpolation-based tool, a predicate abstraction-based one, and a
tool that combines the two techniques.

Ufo’s architecture and the fact that is built on top of LLVM provide verifi-
cation algorithm designers with a flexible and extensible platform to experiment
with a wide variety of verification algorithms.

References

1. Albarghouthi, A., Gurfinkel, A., Chechik, M.: From Under-Approximations to
Over-Approximations and Back. In: Flanagan, C., König, B. (eds.) TACAS 2012.
LNCS, vol. 7214, pp. 157–172. Springer, Heidelberg (2012)

2. Albarghouthi, A., Gurfinkel, A., Chechik, M.: Whale: An Interpolation-Based
Algorithm for Inter-procedural Verification. In: Kuncak, V., Rybalchenko, A. (eds.)
VMCAI 2012. LNCS, vol. 7148, pp. 39–55. Springer, Heidelberg (2012)

3. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and Cartesian Abstraction for
Model Checking C Programs. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS,
vol. 2031, pp. 268–283. Springer, Heidelberg (2001)

4. Ball, T., Rajamani, S.K.: The SLAM Toolkit. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 260–264. Springer, Heidelberg (2001)

5. Beyer, D.: Competition On Software Verification (2012),
http://sv-comp.sosy-lab.org/

6. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The Software Model Checker
Blast. STTT 9(5-6), 505–525 (2007)

7. Bourdoncle, F.: Efficient Chaotic Iteration Strategies with Widenings. In: Pottosin,
I.V., Bjorner, D., Broy, M. (eds.) FMP&TA 1993. LNCS, vol. 735, pp. 128–141.
Springer, Heidelberg (1993)

8. Cadar, C., Dunbar, D., Engler, D.: KLEE: Unassisted and Automatic Generation
of High-Coverage Tests for Complex Systems Programs. In: Proc. of OSDI 2008,
pp. 209–224 (2008)

9. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided Ab-
straction Refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

10. Clarke, E., Kroning, D., Sharygina, N., Yorav, K.: SATABS: SAT-Based Predicate
Abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 570–574. Springer, Heidelberg (2005)
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Abstract. We present SAFARI, a model checker designed to prove
(possibly universally quantified) safety properties of imperative programs
with arrays of unknown length. SAFARI is based on an extension of
lazy abstraction capable of handling existentially quantified formulæ for
symbolically representing states. A heuristics, called term abstraction,
favors the convergence of the tool by “tuning” interpolants and guessing
additional quantified variables of invariants to prune the search space
efficiently.

1 Introduction

Efficient and automatic static analysis of imperative programs is still an open
challenge. A promising line of research investigates the use of model-checking
coupled with abstraction-refinement techniques [2,5,8,10,14,15] including Lazy
Abstraction [3,12] and its later improvements that use interpolants during refine-
ment [13]. An intrinsic limitation of the approaches based on Lazy Abstraction
is that they manipulate quantifier-free formulæ to symbolically represent states.
However, when defining properties over arrays, universal quantified formulæ are
needed, e.g., as in specifying the property “the array is sorted”. The tool we
present, SAFARI, is based on a novel approach [1], in which Lazy Abstraction
is used in combination with the backward reachability analysis behind the Model
Checking Modulo Theories (mcmt) framework [9]. The resulting procedure al-
lows checking safety properties for arrays that require universal quantification
over the indices. Moreover, the presence of quantifiers requires particular care
when computing interpolants. SAFARI comes with an efficient quantifier han-
dling procedure, exploited to retrieve quantifier-free interpolation queries from
instantiations of pairs of inconsistent quantified formulæ.

The paper presents the tool architecture and the implementation details such
as heuristics for abstraction, interpolation tuning, quantifier handling, and syn-
thesis of additional quantified variables in invariants.

Many efficient tools for imperative programs verification have been developed
so far. The main difference between SAFARI and other model-checkers (e.g.,
Blast [3], Impact [13] and Magic [4]) is the ability of handling unbounded

P. Madhusudan and S.A. Seshia (Eds.): CAV 2012, LNCS 7358, pp. 679–685, 2012.
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arrays. Unlike ACSAR [14], SAFARI is able to discover new quantified predi-
cates. Our approach does not require templates for predicate-discovering [16] and
differs from abstract-interpretation techniques (e.g., [6,7,11]) in that it is based
on a declarative framework that allows for identifying classes of array programs
on which the core procedure terminates. For programs not meeting termina-
tion hypothesis user may suggest hints to SAFARI by means of accurate term
abstraction lists as to help the tool to converge.

2 The Tool

The tool architecture is sketched in Fig. 1. SAFARI takes as input a transition
system (v, τ(v,v′)) representing the encoding of an imperative program: v is
the set of state variables among which some are arrays, and it always contains
a variable pc ranging over a finite set {l0, ..., ln} of program locations, among
which we distinguish an initial location lI .

1 A set of formulæ {Uk(v)} represent-
ing unsafe states is also given to the tool; each Uk represents a violation of an
assertion in the code. Next we describe the main modules of the tool.
Symbolic Reachability Analysis - This module implements a classical back-
ward reachability analysis. Starting from the set of unsafe states, it repeatedly
computes the pre-images with respect to the transition relation. It halts once it
finds (the negation of a) safe inductive invariant S for the input system or when
a run from the initial state to an unsafe state is found. The symbolic reachabil-
ity search is based on the safety and the covering tests: the former checks the
violation of an assertion while the latter implements the fix-point condition.
Lazy Abstraction - The search for a safe inductive invariant on the original
(concrete) system may require a lot of resources or it cannot be computed be-
cause of possible divergence. To mitigate this problem, SAFARI relies on the

1 The reader is referred to [1] for details.
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Lazy Abstraction paradigm: in particular it extends it by allowing existentially
quantified formulæ to represent states involving arrays. Moreover, SAFARI is
able to introduce new quantified predicates on the fly, by means of Term Ab-
straction as described later on.
Quantifier Handling - The presence of quantified formulæ imposes particular
attention during the satisfiability tests: available SMT-Solvers might not be able
to automatically find suitable instances for the quantified variables. SAFARI

provides a specific instantiation procedure, adapted from [9] to address this is-
sue. To be effective, this procedure implements caching of information inside
of specific data-structures used to represent formulæ. On one hand the caching
increases the amount of space, on the other hand it cuts the number of instan-
tiations due to constant-time checks. Alternatively, the quantified query may be
passed to the SMT-Solver directly.
Refinement - This module receives an abstract counterexample and it checks
first if the counterexample has a concrete counterpart. If so a feasible execution
violating an assertion Uk is returned to the user. Otherwise the formulæ repre-
senting the states along the abstract execution trace have to be strengthened,
possibly by adding new predicates, in order to rule out spurious executions. In
the current implementation, refinement is performed by means of interpolation:
the Refinement module iteratively interacts with the Interpolation module in
order to retrieve quantifier-free interpolants.
Interpolation - Quantifier-free interpolation for formulæ involving arrays is in
general not possible: in our case this situation is complicated by the presence of
existential quantifiers. However, in [1], we show that the particular structure of
the queries we handle, admits an equisatisfiable formulation at the quantifier-
free level, for which meaningful quantifier-free interpolants can be computed.
Quantifiers can be then reintroduced back, to preserve the original semantic of
the formulæ. This technique, however, may not be sufficient to discover suitable
new quantified predicates. To address this problem, SAFARI combines interpo-
lation with a procedure called Term Abstraction.
Term Abstraction - Term Abstraction is a novel technique applied during the
abstraction phase to select the “right” overapproximation to be computed, and
during the refinement phase to “lift” the concrete infeasible counterexample to a
more abstract level, by eliminating some terms. The effect of Term Abstraction is
that of controlling both the abstraction function and the interpolants produced
during refinement. Term Abstraction is discussed in detail in Section 3.
SMT-Solver - The tool relies on an SMT-Solver to decide satisfiability queries.
An abstract interface provides an API to separate the actual SMT-Solver used
and the services which are requested by SAFARI. This interface allows the
invocation of different engines needed for particular tasks. SAFARI provides
interface for OpenSMT and SMT-LIB v.2.
Implementation - SAFARI is written in C++ and can be downloaded from
http://verify.inf.usi.ch/safari. Information on the usage of the tool
and a full description of all the options can be found on the SAFARI’s website.

http://verify.inf.usi.ch/safari
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3 Discussion

Term Abstraction and Its Benefits. Term Abstraction is the main heuristic
which distinguishes SAFARI from other tools based on abstraction-refinement.
It works as follows. Suppose we are given an unsatisfiable formula of the form
ψ1∧ψ2, and a list of undesired terms t1, . . . , tn (called term abstraction list). The
underlying idea is that terms in this list should be abstracted away for achieving
convergence of the model checker. Iteratively we check if ψ1(ci/ti) ∧ ψ2(di/ti) is
unsatisfiable, for ci and di being fresh constants: if so then we set ψ1 as ψ1(ci/ti)
and ψ2 as ψ2(di/ti). Eventually we are left with an unsatisfiable formula ψ1∧ψ2

where some undesired terms in t1, . . . , tn have been removed: the interpolant of
ψ1 and ψ2, which can be computed with existing techniques, is likely to be free
of the eliminated terms as well. SAFARI retrieves automatically from the input
system a list of terms to be abstracted. The terms to abstract are usually set
to iterators or variables representing the lengths of the arrays or the bounds of
loops. The user can also suggest terms to be added to the list.

1 i = 0;
2 while( i < n )
3 a[i] = 0;
4 i = i+ 1;

Inv: ∀x. (0 ≤ x < n)⇒ a[x] = 0

5 j = 0; f = true;
6 while( j < n )
7 if( a[j]! = 0 ) f = false;
8 j = j + 1;
9 assert ( f );

Fig. 2. Pseudo-code for “init and test”

Synthesis of Quantified Invari-
ants. SAFARI is able to generate new
quantified variables if they are needed
to build the safe inductive invariant.
Consider the pseudocode of Fig. 2: the
first loop initializes all elements of the
array a to 0, while the second loop sets
a Boolean flag to false if a position with
an uninitialized element is found. The
program is clearly safe (the assertion is
always satisfied), but since the length
of the array a is not known, we need
a quantified formula to represent the property Inv reached by every execu-
tion after the first loop. SAFARI is able to infer that formula automatically,
even if the property to check does not contain any quantified variable (see line
9 of Fig.2 where the property involves the flag f only without any reference
to the array a): this process of “synthesis” happens as a consequence of using
of existentially quantified labels and term abstraction when refining a spuri-
ous (abstract) counterexample. The typical situation is that in which term ab-
straction succeeds in removing an iterator j from a concrete label of the form
∃x. (j < n∧x = j∧a[x] �= 0) to obtain ∃x. (x < n∧a[x] �= 0), where 0 can be any
other constant depending on the example. The new label contains no reference to
the original iterator j, it is more abstract, and it resembles the structure of Inv
(once negated: recall that our approach is backward). In short, term abstraction
is used during refinement to lift an infeasible concrete trace (corresponding to a
spurious abstract counterexample) to the most abstract level with respect to a
set of terms. As a side effect, a quantified predicate may be inferred.
Quantifier Handling. The approach behind SAFARI relies on Lazy Abstrac-
tion combined with the mcmt framework [1]. Intuitively, during the backward-
reachability from the set of error states, we keep track of the array index positions



SAFARI: SMT-Based Abstraction for Arrays with Interpolants 683

of interest (the positions that are accessed for read) with existentially quantified
variables. Safety and covering checks can be performed with dedicated instan-
tiation heuristics. Whereas safety tests are decidable [1], covering tests must be
dealt with incomplete algorithms based on clever instantiations (incompleteness
of covering tests do not affect the soundness of the tool, they can only affect
termination chances). In addition, special care is needed when discovering new
predicates via interpolation: quantified queries (expressing trace feasibility) can
be Skolemized and instantiated, thus producing equisatisfiable quantifier-free
queries. These quantifier-free queries belong to a fragment of the theory of ar-
rays enjoying quantifier-free interpolation. Then, quantifier-free interpolants are
computed to refine node labeling, where existential quantifiers are re-introduced
by existentially quantifying the Skolem constants (see [1] for details).

Table 1. Total time, calls to SMT, CEGAR iterations, quantified variables in the
assertion, size of the covering set, quantified variables in the covering set

Benchmark Time (s) SMT-calls Iter. P. vars |S| S vars Status

binary sort∗ 0.3 817 2 2 21 4 SAFE
filter (P1) 0.03 27 0 1 2 1 SAFE
filter (P2) 0.04 28 0 1 2 1 SAFE
filter (all) 0.03 34 0 1 3 1 SAFE
find (v1, P1) 0.6 171 3 1 7 5 SAFE
find (v1, P1, buggy) 0.05 71 1 1 - - UNSAFE
find (v1, P2) 0.06 65 1 1 4 3 SAFE
find (v1, all) 0.8 246 4 1 12 5 SAFE
find (v2) 0.08 50 1 1 3 1 SAFE
init and test 0.3 352 3 0 13 2 SAFE
initialization 0.1 90 1 1 4 4 SAFE
integers 0.02 20 0 0 2 0 SAFE
max in array 0.9 1237 8 1 29 3 SAFE
max in array (buggy) 0.1 235 2 1 - - UNSAFE
partition (v1, P1) 0.05 32 0 1 4 1 SAFE
partition (v1, P2) 0.06 32 0 1 4 1 SAFE
partition (v1, all) 0.08 63 0 1 4 1 SAFE
partition (v2) 0.04 33 0 1 2 2 SAFE
partition (v2, buggy) 0.09 62 0 1 - - UNSAFE
selection sort∗ 0.6 478 4 2 15 3 SAFE
selection sort (buggy) 1.9 1957 8 2 - - UNSAFE
strcmp 0.2 308 4 1 12 2 SAFE
strcpy 0.02 16 0 1 2 2 SAFE
vararg∗ 0.05 48 0 1 3 2 SAFE

4 Experiments

We applied SAFARI to the verification of various problems with arrays. None of
these problems can be solved by SAFARI without abstraction. Table 1 reports
some experimental results (obtained running SAFARI on an Intel i7 @2.66 GHz,
4GB of RAM running OSX 10.7). More statistics can be found on SAFARI web-
site. The benchmarks have been run with the most efficient options, namely with
“Term Abstraction” both for abstraction and refinement. The term abstraction
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list is automatically computed for all the benchmarks but those marked with
a star: in those few cases a user-defined list has been provided. The table re-
ports variations of the same problems (v1,v2) and properties specified (P1,P2).
The benchmarks marked “buggy” were injected with a bug that invalidates the
property. To test the flexibility of SAFARI, we also verified some randomly gen-
erated problems taken from those shipped with the distribution of the ARMC
model-checker (http://www.mpi-sws.org/˜rybal/armc/). They consists
of safety properties of numerical programs without arrays. For those, our tool can
solve 23 out of 28 benchmarks with abstraction, but only 9 without using it. For
all of these problems, SAFARI automatically retrieves a suitable term abstrac-
tion list. For those benchmarks that could be solved even without abstraction,
the overhead of abstraction is generally negligible.
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Abstract. BioModel Analyzer (bma) is a tool for modeling and ana-
lyzing biological networks. Designed with a lightweight graphical user
interface, the tool facilitates usage for biologists with no previous knowl-
edge in programming or formal methods. The current implementation
analyzes systems to establish stabilization. The results of the analysis—
whether they be proofs or counterexamples—are represented visually.
This paper describes the approach to modeling used in bma and also
notes soon-to-be-released extensions to the tool.

Tool location: http://biomodelanalyzer.research.microsoft.com/ 1

1 Introduction

In recent years, the verification community has seen a large increase in usage of
its tools for modeling and analyzing biological systems (e.g. [7–9,13,18], etc.). It
is notable, however, that in almost all cases biologists who want to access these
tools need a proficiency in computer programming or have to rely on help from
computer scientists. The difficulty here is that current tools require sophisticated
knowledge of both modelling and analysis techniques, as well as experience with
how to combine them. This presents a major barrier to the adoption of formal
methods in biology and limits the extent to which its tools can be exploited.

This paper describes BioModel Analyzer (bma – read “bee-ma”), a graphical
tool for the construction and analysis of biological models. The goal of bma is to
support the construction of models using visual notations familiar to specialists
in biology, not computer science. More generally, it is intended to illustrate how
those with an expertise in biology and an interest in biological modeling, namely
biologists, can be given direct access to formal modeling and analysis techniques.

The challenge in this domain is the mismatch between the demands imposed
by formal-verification tools and the ways biologists think about and compose
models. Formal-verification tools require models to be specified using logical for-
malisms, whereas biologists tend to see their models in spatial and temporal
terms, making distinctions between cells, proteins, genes, etc. and tracing the

1 Usage requires Microsoft Silverlight to be installed.

P. Madhusudan and S.A. Seshia (Eds.): CAV 2012, LNCS 7358, pp. 686–692, 2012.
� Springer-Verlag Berlin Heidelberg 2012
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pathways between them. For example, to formally verify/analyze graphical mod-
els we require that they have precise formal semantics, and yet biologists are,
for the most part, unfamiliar with the logical forms giving rise to such formal
semantics. Furthermore, the results of formal analysis (e.g. abstract counterex-
amples, invariants, proofs, etc.) are often presented in ways that are unintuitive
to biologists. With these issues in mind, bma has been purposefully designed to
fit into biologists’ existing ways of understanding and working with biological
models, whilst exploiting the benefits of formal-verification techniques. Further-
more, the tool aims to present the results of analysis so that it is intelligible to
biologists and facilitates their further scientific investigations.

Related Work. There is a large body of work on usage of formal methods in
biological modeling. For example, BioSpice [12] is a repository for many tools
and projects. Here, our focus is to support a very specific level of abstraction and
somewhat limited, so far, analysis. This allows us to focus on the user interface
and connection between formal-verification analysis tools and non-CS experts.

Several attempts have been made to make analysis and modeling tools eas-
ier to use for experimental biologists. For example, an English to formal model
translator has been proposed [6], as well as a notation describing cells through
tables of possible transitions [1]. Graphical notations have also been used for
such purposes (e.g. [5], [4]). Our approach is similar to that in [5], where a
graphical interface is used to create models. However, while their approach re-
quires the biologist to supply state machines that produce the required behavior
and programming in either Java or C++ to, e.g., coordinate execution and start
it, our aim is to protect the non-CS expert from the need in such knowledge.
In our approach the user supplies the rules that govern the behavior and in-
duce the state machines. The distinguishing characteristics of bma are a) its
high-performance analysis engine [3] and b) its focus on improving the interface
between the biologist and the formal-verification/analysis tool.

Motivated by sbml [10], bma supports output to a custom xml format. Thus,
it is possible to interface other analysis tools with bma models.

2 Designing Biological Networks

Bma focuses on a specific domain of modeling. Our models are composed of
one or more cells, cell elements (i.e., proteins), and connections that specify the
relations between these elements. These elements represent the biological com-
ponents very abstractly and at high level. As mentioned, bma is intended to
support the design of models using graphical notations. This notation has been
intentionally designed to be familiar to biologists and match the representations
they commonly use in modeling (e.g., [11, 16, 19]). These graphical models pro-
duce an underlying semantic layer based on Qualitative Networks (QN) [15].
Thus, a drawing gives rise to a model that can be automatically analyzed. All
advanced features of QNs are available to advanced users.

Fig. 1 shows a simple model. On the canvas there is an isolated protein and two
cell membranes, containing proteins. Each cell has two receptors (in green) and
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(
Fig. 1. A small model including two cells, receptors (green shape on the membranes),
cell signalling (red coils), and a protein in the outer cell surrounding (grey coil)

the arrows show a cascade that flows from the cell on the left to the cell on the
right. The arrows and bar-arrows are the usual notation to indicate activation
(positive influence) and inhibition (negative influence) between proteins. In QNs,
these relationships are translated into rules that govern the behavior of proteins
based on the values level of activity of proteins affecting them.

The user constructs the models by dragging and dropping elements onto a
gridded canvas. Cell membranes that are added fill an entire square in the grid.
These have no functional use in the analysis and simply allow the user to pic-
torially represent a cell. Proteins can be placed either in or outside of these
membranes. They can be represented as either receptors, that lie on the cell
membrane, or as stand-alone proteins in or outside cells. Connections in the
form of arrows or bar-arrows can be drawn between proteins.

Each protein can be named and given a finite value range to represent the
protein’s concentration level. For example, a range of [0..3] for a protein might
signify concentration levels “off”, “low”, “medium”, or “high”. In Fig. 2 we see
the additional window in which the name and value ranges are set.

Semantically, a graphical bma model translates to a transition system, which
can be analyzed using existing formal analysis tools. Bma’s current underlying
analysis is designed to prove stabilization [20]. A model is stabilizing if in every
execution all variables (i.e., protein value ranges) eventually reach a single fixed
value and there is no possibility of further change. In addition, all executions
result in the same fixed value for each protein. The user can execute this analysis
and check whether the resulting model is stabilizing by pressing the “proof”
button in the tool. Support of more temporal properties is currently developed.

The output of the test for stabilization is displayed graphically. Proteins that
result in a fixed value are colored green and annotated by their value. Proteins
that do not reach a fixed value are colored red and annotated by their range of
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Fig. 2. Partial view of a more complex model and the window in which the protein
name and value ranges are entered

Fig. 3. Cell from non-stabilizing model (left) and cell from stabilizing model (right)

possible values. With models that fail to stabilize, the user can access details
of the analysis and the individual steps executed by right-clicking on the proof
button and selecting the appropriate contextual menu option. Example results
from stability analysis are given in Fig. 3. The left image shows a cell from a
non-stabilizing model and the right a cell from a stabilizing model.

As sometimes happens with model checking, when properties are proven for
a system, the reasons are not always clear. In biology, and with bma, especially,
this is problematic because why and how stabilization occurs have important
implications for what biologists might do next in their research. To help users
understand why stabilization holds, we are currently working on an animated
visual representation of the proof’s execution.
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3 Analyzing Biological Networks

As we have noted, the graphical models users produce are formally represented
using Qualitative Networks (QN) [15]. The tool automatically translates the
graphical models to a QNs. The QNs include variables representing the con-
centration of proteins as a discrete value in a fixed range. Values of variables
change gradually according to interactions between the proteins. QNs and sim-
ilar formalisms (e.g., genetic regulatory networks [17]) are simple enough to be
represented graphically and expressive enough to capture interesting biological
phenomena (e.g., [2, 14, 15, 17]).

Qualitative Networks. A qualitative network (QN) is Q = (V,T,N), where
V = (v1, v2, . . . , vn) is a set of variables ranging over {0,1, . . .N} and T =
(T1, . . . , Tn) are their respective target functions. A state of the system is an
assignment s ∶ V → {0,1, . . .N}. Let Σ denote the set of all possible states. A
target function Ti ∈ T is Ti ∶ Σ → {0,1, . . .N}. Intuitively, in a given state s, vari-
able vi “would like” to get the value Ti(s). However, values of variables change
by at most 1. The successor of state s is s′, where for every vi ∈ V we have:

s′(vi) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

s(vi) + 1 s(vi) < Ti(s),
s(vi) s(vi) = Ti(s),

s(vi) − 1 s(vi) > Ti(s).
(1)

Thus, a QN defines a transition system over Σ. All variables change their value
synchronously by following their target functions. We abuse notation and write
also T ∶ Σ → Σ as the function that associates with a state s its successor s′.

Each protein in the design corresponds to a variable in the underlying Quali-
tative Network. Perhaps the most complex feature of QNs is the target functions.
In order to enable novice users to bypass the need to define target functions, we
set a default target function induced by the activations and inhibitions applied to
a given protein. Denoted in short as ave(pos) − ave(neg). That is, the weighted
average of the proteins that activate the protein minus the weighted average of
the proteins that inhibit the protein.

Custom Target Functions. In the graphical representation, users can cus-
tomize the target function by clicking on the cog-wheel in a protein’s property
window (see Fig. 2). Target functions are defined using a small language of pos-
sible mathematical operations (e.g. +, −, / max, etc). For example we might use
Ti = N −

v1+v2
2

, which models a situation where v1 and v2 affect vi negatively.
With no negative influence (i.e, when the values of v1 and v2 are 0), vi aims
to settle in its maximal value. When v1 and v2 are high, vi aims to decrease.
This models a situation in which a protein is constitutively produced unless
proteins v1 and v2 inhibit its production. A more complex target function is
Ti =max(0,min(2−v1,1))×v2. In this case if v1 is 0 or 1 then vi aims to follow
v2. However, if v1 is more than 1, then vi aims to decrease to 0. This models
a situation when above a certain threshold protein v1 strongly inhibits vi but
otherwise protein v2 positively influences vi.



Bma: Visual Tool for Modeling and Analyzing Biological Networks 691

Stabilization. We say that a state s is recurring if it is possible to reach s
from itself after a finite number of applications of T . That is, for some i ≥ 1 we
have s = T i(s). We note that the number of states of a QN is finite, hence, the
set of recurring states cannot be empty. A QN is stabilizing if for some state s
we have s = T (s) and no other state is recurring.

bma attempts to prove stabilization using the approach from [3] which com-
bines a search for thread-modular proofs of liveness together with techniques
from abstract interpretation and the intervals domain.

4 Conclusion

In this paper we introduce a new graphical tool for modeling and analyzing
biological networks. The tool is intended for use by biologists. The current im-
plementation analyzes systems to establish stabilization, with support for ad-
ditional temporal properties under development. The results of bma’s analysis
are represented visually: counterexamples are displayed by showing regions of
the network that could take on additional values. In the future, proofs will be
demonstrated by visually displaying the lemmas found during the proof search.
We are currently working on introducing additional types of analysis. On the
one hand, introducing analysis that does not require the user to specify logical
formulas. On the other hand, finding intuitive (and graphical) ways to allow
users to specify logical formulas and feeding back the output of the analysis.
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Abstract.We present APEX, a tool for analysing probabilistic programs
that are open, i.e. where variables or even functions can be left unspec-
ified. APEX transforms a program into an automaton that captures the
program’s probabilistic behaviour under all instantiations of the unspeci-
fied components. The translation is compositional and effectively leverages
state reduction techniques. APEX can then further analyse the produced
automata; in particular, it can check two automata for equivalence which
translates to equivalence of the corresponding programs under all envi-
ronments. In this way, APEX can verify a broad range of anonymity and
termination properties of randomised protocols and other open programs,
sometimes with an exponential speed-up over competing state-of-the-art
approaches.

1 Introduction

APEX is an analysis tool for open probabilistic programs. Such programs are very
well suited to analyse randomised algorithms and, in particular, anonymity in
security protocols: they (i) represent the behaviour of an algorithm succinctly for
a range of inputs, and (ii) allow to differentiate internal behaviour from externally
observable behaviour, so that anonymity can be established by proving that secret
information is not externally observable.

APEX’s key technology is the use of game semantics [2], which provides a com-
positional translation of open probabilistic programs to probabilistic automata.
Probabilistic automata [10] are essentially nondeterministic automata whose tran-
sitions are decorated with probabilities. A theorem [8] guarantees that two open
probabilistic programs are equivalent if and only if the probabilistic automata are
language equivalent, i.e., accept every word with the same probability. Language
equivalence between probabilistic automata reduces to a linear-algebra problem
for which efficient algorithms have been developed, see [5] and the references
therein. APEX performs both the translation from programs to automata and the
language-equivalence check. Thus, given two open probabilistic programs, APEX
either proves them equivalent, or provides a word that separates the programs.

APEX has been applied to a range of case studies [6]: it provides the most
efficient automatic verification of dining cryptographers to date, an analysis of

� Research supported by EPSRC. The first author is supported by a postdoctoral fel-
lowship of the German Academic Exchange Service (DAAD).
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Hibbard’s algorithm for random tree insertion, and of Herman’s self-stabilisation
algorithm.

Example: The Grade Protocol in APEX. We illustrate the use of APEX
by analysing a protocol for a group of students, who have been graded and
would like to find out the sum of their grades (e.g., to compute the average)
without revealing the individual grades. This is accomplished with the follow-
ing randomised algorithm. Let S ∈ N be the number of students, and let
{0, . . . , G − 1} (G ∈ N) be the set of grades. Define N = (G − 1) · S + 1. We
assume that the students are arranged in a ring, as depicted in Figure 1, and
that each pair of adjacent students shares a random integer between 0 and N − 1.

S1 S2

S3

S4S5

S6

Fig. 1.

Thus a student shares a number l with the student on
its left and a number r with the student on its right,
respectively. Denoting the student’s grade by g, the
student announces the number (g + l− r)modN . The
sum of the announced numbers (mod N) is telescop-
ing, so it equals the sum of all grades. We require that
no participant glean anything from the announcements
other than the sum of all grades. This correctness con-
dition can be formalised by a specification in which the
students make random announcements subject to the
condition that the sum of the announcements equals
the sum of their grades.

\\ Implementation

const N := S*(G-1)+1;

grade:int%G, out:var%N |-
var%(S+1) i; i:=0;
var%N first; first:=rand[N];
var%N r; r:=first;
while(i<S) do {

var%N l;
i:=succ(i);
i f (i=S) then

left:=first
else

left:=rand[N];
out:= (grade + l) - r;
r:= l;

} : com

\\ Specification

const N := S * (G-1) + 1;

grade:int%G, out:var%N |-
var%S i;
var%N total;
i:=1;

while(i) do {
total := grade + total;
var%N r;
r := rand[N];
out:=r;
total := total - r;
i:=succ(i)

};
out:= grade + total: com

Fig. 2. Grade protocol: APEX programs

Figure 2 shows two APEX programs: on the left, the implementation of the
grade protocol to be verified against the specification program, given on the right.
The input language of APEX is an imperative sequential programming language
with a C-like syntax and support for procedures and arrays. There are several
constructs to define probability distributions, e.g., the expression rand[N] gives
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a uniform distribution over the numbers {0, . . . , N − 1}, coin is a shorthand for
rand[2], and coin[0:1/4, 1:3/4] a biased coin. Variables are defined over finite
ranges, e.g., var%N total; declares a variable over range {0, . . .N− 1}. There are
internal variables such as the counter i which are defined locally, and externally
observable program variables through which the program communicates with the
outside world. Externally observable variables are declared before the turnstile
symbol |-; in our example, there are two such variables: the individual grades
of students are read from variable grade, while out is an output variable that
announces the random numbers generated by the protocol.

APEX checks whether the programs are equivalent. In this case it finds that
they are, so one can conclude that the grade protocol guarantees anonymity.

2 How APEX Works

APEX is implemented in C and OCaml and consists of approximately 18K lines
of code. Figure 3 shows APEX’s architecture. It has two main components: an
automaton construction routine and an equivalence checker.

Parser

program 1 program 2

AST 1 AST 2

Automata Construction

conditional

while
sequence

...

automaton 1 automaton 2

Equivalence Checker

yes no

word

Fig. 3. APEX architecture

2.1 Automaton Construction

The automaton constructor builds a proba-
bilistic automaton using game semantics. The
construction works at the level of the pro-
gram’s abstract syntax tree (AST). The leaves
of the tree correspond to variables and con-
stants, while internal nodes correspond to se-
mantic operations of the language like arith-
metic expressions, probabilistic choice, condi-
tionals, sequential composition of commands,
and loops. APEX labels each AST node with
the automaton that captures its semantics, by
proceeding bottom-up and composing the au-
tomata of the children. Ultimately, the au-
tomaton computed for the root of the AST
gives the semantics of the entire program.

Figure 4 shows the probabilistic automata
obtained from the programs in Figure 2 (with
S = 2 and G = 2). Transitions in the automaton contain only reads and writes
to observable variables; e.g., label 1 grade means that value 1 has been read from
variable grade and write(2) out means that value 2 has been written to variable
out. Actions on internal variables are hidden. Each transition is also labeled
(comma-separated) with a probability.

2.2 Equivalence Checking

To check equivalence of the input programs, it suffices for APEX to check the
corresponding probabilistic automata for language equivalence. If they are not
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(b) Specification automaton

Fig. 4. Probabilistic automata for the grade protocol

equivalent, APEX presents a counterexample word, which corresponds to a run
which is executed with different probabilities in the two programs. APEX uses ef-
ficient linear-algebra-based algorithms [5] for the equivalence check and the coun-
terexample extraction.

3 Comparison with Other Tools

PRISM [4] is the leading probabilistic model checker with a large collection of case
studies. As regards anonymity, model checking is considerably less convenient than
equivalence checking. In [9], for example, the authors establish anonymity of the
Dining Cryptographers protocol by considering all possible visible behaviours,
and proving for each that the likelihood of its occurrence is the same regardless
of the payer. This leads to exponentially large specifications, and correspondingly
intractable model-checking tasks.1 In practice, a proper verification of the protocol
can only be carried out for a handful of cryptographers [6], while APEX scales to
around 800 cryptographers on a state-of-the-art workstation.

Mage [1] is a software verification tool based on game semantics which applies to
non-probabilistic programs. To our knowledge, APEX is the only game-semantics-
based tool for probabilistic programs.

4 Novel Features

We discuss several new features and algorithmic improvements that have not been
covered in previous publications [5,6,8].

1 The state space of the underlying Markov chain generated by PRISM also grows
exponentially, but this is mitigated by PRISM’s use of symbolic representations in the
form of MTBDDs.
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Variable Binding by Reachability Analysis. Game semantics views a state variable
as an automaton that answers read requests and stores values on writes. The
subprogram in which the variable lives, i.e. its scope, is an open program in
terms of this variable. A variable-binding operator closes this subprogram by
synchronous composition of the subprogram with the automaton of the variable.
At the semantic level, both variable and scope are represented as automata.

The automata semantics of the binding operator is defined in terms of the
synchronous product of the two automata, in which transitions involving reads
and writes of the variable are turned into silent ε-transitions which are to be
removed e.g. using ε-removal algorithms [7] to obtain the ultimate result.

In the previous implementation of APEX, the product automaton was formed
by copying the automaton that represents the scope of the variable k times where k
is the number of potential values of the variable (which coincides with the number
of states of the automaton that represents the variable). In practice, many of the
state-value pairs thus created turn out to be unreachable because the variable
typically only takes on a subset of the potential values in its domain at a certain
program location. In the new version of APEX, the binding operator computes
the automaton by enumerating reachable state-value pairs only. In this way, the
peak number of states of the constructed automata is reduced.

Live-Variable Detection. The reachability analysis for variable binding can be
further optimised by taking into account liveness information. A variable is live
if there is a path to a usage of the variable, and is dead otherwise. At a state in
which a variable is dead, the product construction can lump all state-value pairs
with the same state, as the value of the variable has become irrelevant.

Liveness analysis is collected by a simple procedure that tracks the liveness of
the bound variable with a bit and proceeds backwards from the reading occur-
rences of the variable in an automaton. This information is subsequently used in
the product construction.

Early ε-Removal. In the previous version of APEX, product construction and
ε-removal were two distinct phases. Now linear chains of ε-transitions are imme-
diately removed in the product construction, while branching and cyclical struc-
tures are left to the full ε-removal routine. By eliminating the ‘simple’ cases of
ε-transitions, subsequent steps such as bisimulation and ε-removal run faster.

Lumping Bisimulation. APEX applies lumping bisimulation to reduce automata
size. The bisimulation routine runs frequently during the compositional automata
construction. Hence its performance is crucial. Recently we have improved the
underlying algorithms. APEX now features a signature-based refinement algo-
rithm [3] that computes a strong bisimulation. Key to its efficiency is to leverage
very inexpensive algorithms that compute a coarse pre-partition to which the
precise signature-based partition refinement is subsequently applied to obtain the
final lumping. Pre-partitioning proceeds in two phases: (1) APEX lumps states ac-
cording to their minimal distance from an accepting state; whereby the distance is
computed by a backwards depth-first search from the accepting states. (2) APEX
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runs an approximate version of signature-based refinement which utilises hash
values of signatures to refine the partition, instead of comparing signatures with
each other. Both steps have helped to significantly lower the cost of lumping.

Counterexample generation. The previous version of APEX did not provide diag-
nostic information in case two programs were inequivalent. Now APEX generates
a counterexample word, i.e., a word which the programs accept with a different
probabilities. The new feature is enabled by the techniques presented in [5].

Online Tool Demo. We have implemented an online version of APEX which offers
a convenient user interface and runs on any device with a recent web-browser:

www.cs.ox.ac.uk/apex

The user can either select from existing case studies, load case studies on the
server, or drag & drop into the input window. Automata are displayed as scalable
vector graphics (SVG). The view can be zoomed with the mouse wheel and the
viewing window can be moved by panning. Further the interface has an equiv-
alence checking mode in which counterexamples are shown. Internally, the tool
runs on a server and the dynamic web pages through which the user interacts
with APEX are generated by PHP scripts.
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Abstract. We describe and report upon various substantial extensions
of the CSP refinement checker FDR including (i) the direct ability to han-
dle real-time processes; (ii) the incorporation of bounded model check-
ing technology; (iii) the development of conservative and highly efficient
static analysis algorithms for guaranteeing livelock-freedom; and (iv) the
development of automated CEGAR technology.

1 Introduction

FDR, standing for Failures Divergence Refinement, is the best-known tool sup-
porting CSP [13, 21, 22]. It was originally released in 1991/2 and underwent a
major re-write in 1994/5 to become FDR2. All subsequent developments have
extended FDR2, including those reported in this paper. It is extensively de-
scribed in [21, 22]. Most of its functionality is based around proving or refuting
refinement between finite-state CSP processes, where refinement is over a se-
lection of semantic models with different expressive powers. The best known of
these are traces, which proves partial correctness, failures, which additionally
handles deadlock, and failures-divergences, which captures a wide variety of to-
tal correctness properties. Refinement over one of these models is always reverse
containment between the sets of relevant behaviours representing the processes.

Traditionally it has been an explicit model checker—capable of exploring mil-
lions of states per minute on a modern workstation—supported by state-space
compression techniques and the partial-order compression chase, as described in
[21, 22].

FDR has been widely used in research, teaching and industry [3, 6, 15], and
is well known for its use in security analysis [14]. Until 2007 it was a product of
Formal Systems (Europe) Ltd, but since 2008 it has been developed in Oxford
University under support from EPSRC, ONR and industry. The present paper
summarises the new features added in this latter phase.

In recent years FDR has been used as the back-end of verification engines
aimed at notations other than CSP. Casper (security) and the shared-variable
analyser SVA (see Chapters 18 and 19 of [22]) are examples, as well as a number
of proprietary industrial tools.
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2 New Techniques and Features

Modelling and Verifying Real-Time Systems. Two different timed exten-
sions have been developed for CSP. The first is Timed CSP [20], which is a
real-time interpretation of Hoare’s CSP notation [13]. In its usual form it adds
a single construct to CSP, namely WAIT t which waits t units of time before
terminating successfully. It is possible to express a wide variety of time-based
operations such as time-outs in terms of WAIT t and standard CSP. Timed CSP
generally assumes a continuous clock in the hands of external observers. A sec-
ond form, tock -CSP, was introduced by Roscoe [21] as a medium for verifying
discretely timed systems on FDR, most naturally with an internal clock signal.
A special event tock represents the regular passage of time.

Thanks to the idea of digitisation introduced by Henzinger, Manna and
Pnueli [12] and developed for Timed CSP by Ouaknine [17, 18], it is possible
to establish theoretical connections among continuous Timed CSP, the Timed
CSP language with a discrete semantics, and tock -CSP. It is therefore possible to
model check Timed CSP programs, drawing conclusions about their continuous
semantics by a relatively modest modification to FDR along the lines suggested
in [17, 22]. This modification—described in more detail in [4]—takes the form
of a mode within FDR that instructs it to interpret the syntax inside it as a
Timed CSP process and translate it into semantically equivalent tock -CSP. It is
possible, and frequently very useful, to mix Timed CSP, tock -CSP and ordinary
CSP in the same script and indeed in the same process or refinement check.

We can check Timed CSP processes for refinement against specifications for-
mulated in Timed CSP itself, in tock -CSP, or—when time is suitably abstracted—
in ordinary CSP. As reported in [23], it is possible to check Timed CSP for
noninterference (i.e. information flow) properties and therefore find or prove the
absence of timing channels that pass information between mutual users of a
system.

This Timed CSP mode of FDR is a recent development and we have not yet
had time to try it on serious industrial examples. We have, however, tried it on
several well known benchmarks such as Fischer’s mutual exclusion protocol and
the puzzle in which a number of soldiers have to cross a bridge in pairs using
a torch. In both of these it demonstrated great efficiency: Table 1 shows results
for the first of these in comparison to Uppaal [2] and PAT [1]. Further results
can be found in [4].

Bounded Model Checking and Temporal k-Induction. For the traces
model of CSP, FDR now supports an alternative refinement engine employing
symbolic techniques based on Boolean satisfiability (SAT). In particular, FDR
features bounded model checking (BMC) [7], that can be used for bug detection,
and temporal k-induction [11], which builds upon BMC, aims at establishing
inductiveness of properties and is capable of both bug finding and establishing
the correctness of systems. The symbolic engine [19] adopts FDR’s implicit op-
erational representation based on supercombinators [22], but explores this using
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Table 1. Timed CSP. Times reported are in seconds, with ! denoting memout. Com-
parison against Uppaal 4.0.13 and PAT 3.40. The columns titled PAT-zone and PAT-
digit denote, respectively, PAT using zone abstraction and digitisation as underlying
engines. All experiments were performed on a 2.6 GHz PC with 2 GB RAM running
Linux Fedora.

Benchmark FDR Uppaal PAT-zone PAT-digit

Fischer mutual exclusion-6 0 0 13 7
Fischer mutual exclusion-7 0 0 196 85
Fischer mutual exclusion-8 0 2 ! !
Fischer mutual exclusion-10 2 20 ! !
Fischer mutual exclusion-12 18 312 ! !

SAT rather than explicitly. For both BMC and k-induction, FDR offers config-
urable support for a SAT solver (MiniSAT, PicoSAT or ZChaff, all used in incre-
mental mode), Boolean encoding (one-hot or binary), traversal mode (forward
or backward), etc. The BMC engine sometimes substantially outperforms the
original explicit state-space exploration, especially for complex tightly-coupled
combinatorial problems, as reported in [19]. For k-induction, the completeness
threshold blows up in all cases, due to concurrency, and, therefore, high perfor-
mance depends on whether or not the property is k-inductive for some small
value of k. Thus we have only seen SAT outperform FDR when there are coun-
terexamples.

Static Analysis for Establishing Livelock Freedom. FDR now supports
an alternative back end for establishing livelock freedom. Livelock, also called
divergence, indicates that a process is unresponsive due to being engaged forever
in internal computations. The new back-end relies on static analysis of the syn-
tactic structure of a process rather than explicit state exploration. It employs a
collection of rules to calculate a sound approximation of the fair/co-fair sets of
events of a process [16]. The rules either safely classify processes as livelock-free
or report inconclusiveness, thereby trading accuracy for speed. The algorithms
generate and manipulate various sets of events in a fully symbolic way. The
choice of an underlying symbolic engine is configurable, with support for using
a SAT engine (based on MiniSAT 2.0), a BDD engine (based on CUDD 2.4.2),
or running a SAT and a BDD analyser in parallel and reporting the results of
the first one to finish. Experiments indicate that the static analyser is substan-
tially more efficient than the exhaustive-search approach, outperforming it by
multiple orders of magnitude whilst exhibiting a low rate of inconclusive results.
We experimented with a wide range of benchmarks, including parameterised,
parallelised, and piped versions of Milner’s Scheduler, the Alternating Bit Pro-
tocol, the Sliding Window Protocol, the Dining Philosophers, Yantchev’s Mad
Postman Algorithm, etc., as reported in [16].
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CEGAR. We developed abstraction/refinement schemes for the traces, failures
and failures-divergences models and embedded them into a fully automated and
compositional counterexample-guided abstraction refinement framework (CE-
GAR) [10]. An initially coarse abstraction of the system is iteratively refined
(i.e. made more precise) on the basis of spurious counterexamples until either a
genuine counterexample is derived or the property is proven to hold. We exploit
the compositionality of CSP for the stages of initial abstraction, counterexam-
ple validation and abstraction refinement, extending the framework proposed
in [9, 8]. Generally, we adopt lazy refinement strategies that yield coarser ab-
stractions even though it takes a greater number of iterations to converge. Ex-
periments can show performance enhancement when verifying both safety and
liveness properties, as illustrated in Table 2.

Table 2. CEGAR. Times reported are in seconds, with * denoting a 30-minute timeout.
The last column titled " reports the number of iterations that it takes for CEGAR to
converge. All experiments were performed on a 3.07GHz Intel Xeon processor with
8 GB RAM running Linux Ubuntu.

Property Benchmark FDR CEGAR "

Trace Milner-10 0 0.03 21
(safety), Milner-20 158 0.07 41
holds Milner-30 * 0.16 61

Milner-100 * 4.42 201
Milner-200 * 40.01 401

Deadlock Mad Postman-3 4 0.03 4
(liveness), Mad Postman-5 * 0.22 4

holds Mad Postman-7 * 1.49 4
Mad Postman-9 * 7.13 4

The columns for FDR represent its use with none of its compression functions
used. Compression can be used effectively on these systems, but of course requires
skill in picking the right compression and compression strategy.

New Semantic Models of CSP. While traces, failures and failures-divergences
remain the most generally used models in FDR, it is sometimes useful to have
the expressive power of richer models. FDR now supports the revivals and re-
fusal testing models [22], together with their divergence-strict analogues. We
eventually hope to support almost the full range of models reported in Chapters
10–12 of [22], including some which support non-strict reasoning about diver-
gence. Compositional reasoning about Timed CSP and priority each require one
of these stronger models.

Divergence-Respecting Weak Bisimulation. The range of compression op-
erators is now augmented with divergence-respecting weak bisimulation (DRWB):
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the largest weak bisimulation which does not identify any immediately divergent
node with one that is not. Typically, DRWB does not achieve quite the same
degree of compression as the combination of strong bisimulation and diamond
compression, which is frequently used with FDR. However, it has the great ad-
vantage that it is faithful to all CSP models and also inside the priority operator,
something that is not true of diamond compression (which works for traces and
failures based models only). DRWB compression was, for example, crucial to the
efficiency of the timed noninterference work described above.

A Priority Operator. In [22] Roscoe proposed a priority operator for CSP
that would fit within the general operational semantic framework of CSP and
for which the most refined of the abstract semantic models described in that
book would be compositional. It is a generalisation of the timing priority model
that had been used for some time with tock -CSP models of timed systems,
as discussed above. It is an operator which takes a CSP process in which no
actions are intrinsically prioritised and returns another one of the same type. In
theory, we can take any partial order on the actions of an operational semantics:
ordinary visible actions together with the internal τ and termination signal �,
in which the latter two are both maximal. The priority operator then blocks
any action at an operational state when that state has one of higher priority.
We support orders in which there are a number of distinct priority levels—
sets of equal-priority events—that are linearly ordered, with the first of these
sets of events the possibly empty set at the same priority level as {τ,�}. These
levels need not partition the entire alphabet, with any events outside their union
neither blocking nor being blocked by any other. Thus prioritise(P , {}, {tock})
represents the operator that gives τ and � higher priority than tock , with no
other priorities enforced.

This operator was implemented thanks to industrial funding from Verum after
it was discovered [5] that priority plus other CSP operators such as renaming
could be used to determine whether a system can still diverge when we disallow
some infinite τ sequences in which hidden events from a set M are infinitely
often accompanied by offers of events from some set A. This was required for
important availability checks in Verum’s ASD tool [6], which has FDR embedded
as its verification engine.

3 Technical Details, Availability and Usage

FDR is largely written in C++ and runs on Linux, Mac OS X and Solaris on
SPARC. The binaries, as well as a user manual, are available for download from:

http://www.cs.ox.ac.uk/projects/concurrency-tools/.

There are two ways of using FDR: either through its own GUI or through a
command-line interface that is primarily used by other verification tools which
use FDR as a back end. Details can be found in the user manual. Collections of
CSP scripts can be downloaded from http://www.cs.ox.ac.uk/ucs/CSPM.

http://www.cs.ox.ac.uk/projects/concurrency-tools/
http://www.cs.ox.ac.uk/ucs/CSPM
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Abstract. Real-life systems are usually hard to control, due to their complicated
structures, quantitative time factors and even stochastic behaviors. In this work,
we present a model checker to analyze hierarchical probabilistic real-time sys-
tems. A modeling language called PRTS is used to specify such systems, and
automatic zone-abstraction approach, which is probability preserving, is used to
generate finite state MDP. We have implemented PRTS in model checking frame-
work PAT so that friendly user interface can be used to edit, simulate and verify
PRTS models. Some experiments are conducted to show our tool’s efficiency.

1 Introduction

Real-life systems could be complicated because of hierarchical structures and complex
data operations; real-time behaviors are sometimes essential in such systems due to
the interaction with the real world; in addition, unreliable environments could result in
stochastic behaviors so that probability is necessary. These characteristics present the
difficulty in properly designing and developing such systems. Applying model checking
techniques in this domain is therefore very challenging, due to the requirements of an
expressive enough modeling language as well as efficient model checking algorithms.

In this work, we present a new model checker to analyze complex systems. A model-
ing language Probabilistic Real-time System (PRTS) [16] is used to cover complicated
system structures and data operations, real-time behavior and probability, meanwhile
dynamic zone abstraction [16] is applied to handle the infinite state space caused by
real-time factors. Different from zone abstraction used in other models such as Prob-
abilistic Timed Automata (PTA) [10], our approach guarantees forward analysis after
abstraction is precise. PRTS supports several widely used properties such as reacha-
bility checking, LTL checking and reward checking, with which users could analyze
different aspects of the system. Our tool (public available at [1]) has been developed as
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a stand alone plug-in module in the verification framework PAT [14,11] to support the
editing, simulation and verification of PRTS models with a friendly user interface.

Related Work. There are several model checkers exploring probabilistic real-time sys-
tems based on PTA. UPPAAL [4] supports real-time, concurrency and recently data
operations as well as probability (UPPAAL-PRO), but lacks support for hierarchical con-
trol flow and is limited to maximal probabilistic reachability checking. PRISM [9] is
popular in verifying systems having concurrency, probability and the combination of
real-time and probability. However, it does not support hierarchical systems, but rather
networks of flat finite state systems. Another tool mcpta [6] supports the verification
of PTA by translating models into PRISM and only supports reachability checking. In
addition, these tools only support simple data operations, which could be insufficient in
modeling systems which have complicated structures and complex data operations.

2 Modeling with PRTS

In this section, we briefly introduce our modeling language PRTS, which extends Com-
municating Sequential Processes (CSP) with real-time and probabilistic behaviors.

Syntax. A subset of process constructors of PRTS are listed below to present its mod-
eling abilities. Note that process constructors, like (conditional) choice, sequential and
parallel compositions adopted from CSP for modeling hierarchical concurrent systems,
are skipped due to the space limitation and readers can refer to [16] for details.

P = a{program} → P |Wait [d ]P timeout [d ] Q | P interrupt [d ] Q
| P deadline[d ] | P within[d ] | pcase{pr0 : P0; pr1 : P1; · · · ; prk : Pk}

Data Operation. PRTS supports shared memory models using global variables, which
can be integer, boolean, integer array, and even arbitrary user-defined data struc-
tures. A user-defined data structure can be defined externally using programming
languages like C#, Java, C and so on, and then imported into the model1. Data op-
erations in PRTS are invoked through syntax a{program} → P , which executes
event a and program simultaneously, and behaves as P afterwards.

Real-time. Several timed process constructors are supported in PRTS to capture the
real-time behaviors of the system. Process Wait [d ] idles for d time units, where d
is an integer constant. In P timeout [d ]Q , the first observable event ofP shall occur
before d time units elapse (since the process is activated). Otherwise, Q takes over
control after d time units. P interrupt [d ]Q behaves as P until d time units elapse,
and then Q takes over control. PRTS extends Timed CSP [13] with additional timed
process constructs. P deadline[d ] constrains P to terminate before d time units.
P within[d ] requires that P must perform an observable event within d time units.

Probability. pcase{pr0 : P0; pr1 : P1; · · · ; prk : Pk} is used to model the random-
ized behaviors of a system. Here pri is a positive constant to express the probability
weight. Intuitively, it means that with pri

pr0+pr1+···+prk
probability, the system be-

haves as Pi . Obviously the sum of all the probabilities in one pcase is 1.

1 Details can be found in PAT’s user manual.
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Note that the probabilistic real-time systems modeled in PRTS can be fully hierar-
chical, since P and Q in the above constructors can be any processes. This is different
from PTA based languages which often have the form of a network of flat PTA.

Operational Semantics. The semantic model of PRTS is Markov Decision Processes
(MDP) because of its mixture of non-deterministic and probabilistic choices. Note here
we assume the valuations of variables and the processes reachable from the initial con-
figuration are finite, therefore an MDP can have infinite states only due to its dense time
transitions. In [16], we have defined concrete firing rules and abstract firing rules
respectively. The former describes the operational semantics of PRTS, while the latter
captures the execution behaviors of PRTS models after zone abstraction . This ab-
straction is necessary since it generates finite state space from a PRTS model so that
traditional probabilistic model checking techniques can be used.

Our automatic zone abstraction approach is probability preserving for several prop-
erties such as reachability checking and LTL checking. A proof sketch is as follows:
given a concrete MDP and one of its scheduler, a discrete-time Markov Chain (DTMC)
can be defined; we can always build a corresponding DTMC in the abstract MDP to
guarantee these two DTMC are time-abstract bi-similar, and vice versa [18,16].

We remark that forward reachability of PTA using zone abstraction is not accu-
rate [10]. In PTA, given an abstract DTMC defined by the abstract model and a sched-
uler, it is possible that there is no corresponding concrete DTMC can be defined from
the concrete model. Therefore the maximum (minimum) probability of reachability
property in the abstract model is an upper (lower) bound of the accurate result. Some
approaches such as [8] are used to solve this problem.

3 System Analysis

In our model checker, PRTS models can be analyzed by the built-in editor, simulator
and verifier, through which we could investigate system behaviors of the models. In this
section we briefly present how the simulator and verifier work.

3.1 Simulation

Our tool provides a discrete-event simulator which allows users to interactively and
visually simulate system behaviors. In simulation, PRTS models follow the abstract op-
eration semantics in order to guarantee that each step reflects a meaningful execution
of the system. Users could choose automatic simulation, which means the simulator
will randomly execute the model and generate the random states, or manual simula-
tion, which allows users to choose next event from the current enabled events. Through
simulation, users could visually check how the model executes step by step, which is
very useful in system design and analysis, especially when there are some undesired
executions found in verification. Simulation is a good complement to verification since
users could have an intuitive observation and it makes debugging more convenient.
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3.2 Verification

Compared with simulation, automatic verification plays a more important role in system
analysis since it indicates the accurate result of whether a property is satisfied in a
system. Two aspects are quite significant in verification with a model checker. One is the
properties it can support, and the other is the efficiency of the verification algorithms. In
the following, we review several widely used properties in PRTS, and some techniques
in the verification algorithm to speed up the model checking procedure.

Properties Supported. PRTS supports multiple kinds of useful properties in system de-
sign since they are focusing on different aspects of the system. Because MDP has non-
deterministic choices and (infinite) many schedulers, we consider the maximum and
minimum probability of a specified property and mainly follow the algorithms in [3].

Reachability Checking. The maximum/minimum probability of reaching specific tar-
get states could be checked using numerical iterative method.

Reward Checking. The maximum/minimum accumulated rewards/costs to reach the
target states could be calculated also through the iterative method. In PRTS we just
consider the action reward, that is, assigning each visible action a reward which is
a rational number.

LTL Checking. In PRTS we support LTL-X (LTL without ‘next’ operator) since in
abstract model the semantics of ‘next’ is hard to define. In our setting, LTL formula
can be built from not only atomic state propositions but also events so that it is
called SE-LTL [5]. It is very expressive and suitable for PRTS since our language
is both event-based and state-based. We adopt the Rabin automata-based approach
to calculate the maximum/minimum probability that an SE-LTL is satisfied.

Refinement Checking. A desired property could be defined as a non-probability model
and we can check a trace refinement relation between this model and the system
specification [17].

Efficient Verification Techniques. In our implementation, after zone abstraction we
adopt mainly two techniques to enhance the efficiency of verification.

Counter Abstraction. For some protocols having similar behaviors, we can group
those processes together using counter abstraction [12,15]. Its extension to prob-
abilistic system is still valid, whose proof is similar to work [7]. This approach re-
duces the state space without affecting the probability of specific properties which
are irrelevant with processes identifiers.

Safety Checking via Refinement Checking. LTL formulas can be categorized into ei-
ther safety or liveness [2]. In [17], we have proven that safety property can be
verified via refinement checking. Given an SE-LTL property, our tool supports au-
tomatic safety detection. The experiment results show that sometimes it reduces
verification time significantly compared with Rabin automata approach [17].

4 Implementation and Experiments

PRTS has been integrated into PAT, which is implemented with C# and can run on all
widely-used operating systems. To make our tool more practical, we have developed a
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Table 1. Experiments: Lift System

System
Random Nearest

Result(pmax) States Time(s) Result(pmax) States Time(s)
lift=2; floor=2; user=2 0.21875 20120 1.47 0.13889 12070 1.33
lift=2; floor=2; user=3 0.47656 173729 15.04 0.34722 83026 6.23
lift=2; floor=2; user=4 0.6792 777923 90.66 0.53781 308602 28.31
lift=2; floor=2; user=5 0.81372 2175271 406.29 0.68403 740997 85.29
lift=2; floor=3; user=2 0.2551 72458 5.13 0.18 38593 2.89
lift=2; floor=3; user=3 0.54009 1172800 150.20 0.427 500897 48.05
lift=2; floor=4; user=2 0.27 170808 13.06 0.19898 86442 6.11
lift=3; floor=2; user=2 0.22917 562309 86.88 0.10938 266621 34.25

Table 2. Compared with PRISM

System Result
PAT PRISM

States Time(s) States Iterations Time(s)
FA(10K) 0.94727 1352 0.15 1065 19 1.98
FA(20K) 0.99849 5030 0.13 8663 34 65.08
FA(30K) 0.99994 11023 0.45 34233 45 575.03
FA(300K) >0.99999 726407 30.74 - - -
ZC(100) 0.49934 404 0.15 135 0 0.28
ZC(300) 0.01291 4813 0.65 2129 26 2.73
ZC(500) 0.00027 12840 2.39 10484 44 63.19
ZC(700) 1E-5 24058 5.78 31717 60 427.70

Visual Studio 2010 plug-in (available at [1]) to edit, simulate and verify PRTS models
inside Visual Studio. Next, we demonstrate some experiments2 to show the efficiency
of our tool; the testbed is a PC running Windows XP with Intel P8700 CPU@2.53GHz
and 2GB memory.

First, we use a multi-lift system to demonstrate the effectiveness of PRTS. Such sys-
tem contains different components, e.g. lifts and buttons; it usually has timing require-
ments in service and users may have random behaviors. An interesting phenomena in
such system is that a user presses the button outside the lifts, but one lift on the same
direction passes by without serving him/her. This is possible since the lift which is as-
signed to serve this user is occupied by other users for a long time, and other lifts reach
that user’s floor first and pass by.

The experiments results are listed in Table 1. We analyze two kinds of task assign-
ment mechanisms: assigning to nearest lift and assigning to a random lift. From the
table we could conclude that the first mechanism is better, since it has a smaller proba-
bility to ignore users’ requests and this is consistent with common sense.

Next, we compare our model checker with PRISM on verifying benchmark systems
of probabilistic real-time system. Here we use two PTA models described in [8]. One

2 Due to space constraint, detailed information of the models and properties can be found in [1].
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is the firewire abstraction (FA) for IEEE 1394 FireWire root contention protocol and
the other is zeroconf (ZC ) for Zeroconf network configuration protocol. We build PTA
models using PRISM and PRTS models using PAT, and verify the desired reachability
properties to check the efficiency of these two tools. Here we choose PRISM’s default
verification technique: stochastic games since it usually has the best performance [8].

The results are listed in Table 2. ‘-’ means that experiment takes more than 1 hour.
The parameter of each model is the deadline constrain; for PRISM, Iteration means
how many refinements the stochastic game approach executes to get the precise result.
In these cases we notice PRTS is much faster than PRISM’s PTA since our approach
just uses zone abstraction and theirs must have additional refinement procedure.

5 Conclusion

In this work, we proposed a model checker for hierarchical probabilistic real-time sys-
tems. Its effectiveness and efficiency are demonstrated through several case studies. As
for future work, we are exploring more aspects of probabilistic real-time system such
as zeno-check and digitization, and various properties such as real-time property.
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Abstract. In this paper, we describe SymDiff, a language-agnostic tool
for equivalence checking and displaying semantic (behavioral) differences
over imperative programs. The tool operates on an intermediate verifi-
cation language Boogie, for which translations exist from various source
languages such as C, C# and x86. We discuss the tool and the front-end
interface to target various source languages. Finally, we provide a brief
description of the front-end for C programs.

1 Introduction

An evolving software module undergoes several changes — refactoring, feature
additions and bug fixes. Such changes may introduce compatibility bugs or re-
gression bugs that are detected much later in the life-cycle of the software. There
is a need for tools that can aid the developers understand the impact of changes
faster. Such tools will complement “syntactic diff” tools such as WinDiff and
GNU Diff on one hand, and regression testing based change validation (that
provides limited coverage) on the other.

In this paper, we describe the design of SymDiff (Symbolic Diff), a seman-
tic differencing tool for imperative programs. Unlike most existing equivalence
checking tools for software, the tool operates on an intermediate verification
language called Boogie [1] (and hence language-agnostic). This provides a sep-
aration of concerns — the core analysis algorithms are independent of source
language artifacts (object-orientation, generics, pointer arithmetic etc.) and are
therefore reusable across different languages. To perform scalable equivalence
checking, we leverage the modular program verifier in Boogie that exploits the
Satisfiability Modulo Theories (SMT) solver Z3 [4]. A novel feature of the tool is
that it displays abstract counterexamples for equivalence proofs by highlighting
intra-procedural traces in the two versions (see Figure 1), a semantic extension
to differing source lines highlighted by syntactic diff tools.

Because of the language-agnostic nature of the tool, one only needs a transla-
tor from the source language (such as C) to Boogie (many of which already ex-
ist). We describe the front-end interface required from such translators to target
SymDiff. Finally, we briefly describe the implementation of one such front-end
for C programs.

P. Madhusudan and S.A. Seshia (Eds.): CAV 2012, LNCS 7358, pp. 712–717, 2012.
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Fig. 1. Output of SymDiff for displaying semantic differences for C programs. The
yellow source lines highlight a path, and the gray lines display values of some program
expressions after each statement in the trace.

2 SymDiff

SymDiff operates on programs in an intermediate verification language
Boogie [1]. Boogie is an imperative language consisting of assignments, asser-
tions, control-flow and procedure calls. Variables (globals, locals and procedure
parameters) and expressions can be either of a scalar type τ or a map type [τ ′]τ .
We currently restrict SymDiff to the non-polymorphic subset of Boogie. A Boo-
gie program may additionally contain symbolic constants, functions, and axioms
over such constants and functions.

SymDiff takes as input two loop-free Boogie programs and a configuration file
that matches procedures, globals, and constants from the two programs. Loops,
if present, can be unrolled up to a user-specified depth, or may be extracted
as tail-recursive procedures. The default configuration file matches procedures,
parameters, returns and globals with the same name; the user can modify it to
specify the appropriate configuration. The tool can (optionally) take a list of
procedures that are assumed to be equivalent (e.g. procedures that do not call
into any procedures with modifications). For each pair of matched procedures f1
and f2, SymDiff checks for partial equivalence — terminating executions of f1
and f2 under the same input states result in identical output states. The input
state of a procedure consists of the value of parameters and globals (hereafter
referred to as a single variable gl) on entry, and the output state consists of the
value of the globals and returns on exit.
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procedure Eq.f1.f2(x){

var gl0;

gl0 := gl; //copy the globals

r1 := inline call f1(x);

gl1 := gl; //store output globals

gl := gl0; //restore globals

r2 := inline call f2(x);

gl2 := gl; //store output globals

assert (r1 == r2 && gl1 == gl2);

}

Fig. 2. Procedure for checking equivalence
of f1 and f2

Given two programs P1 and P2 and
a pairing of procedures over the two
programs, the algorithm below checks
for equivalence modularly. For each
pair of paired procedures f1 and f2,
we create a new Boogie procedure
Eq.f1.f2 (Figure 2) that checks par-
tial equivalence of f1 and f2. To en-
able modular checking, the procedure
calls inside Eq.f1.f2 (i.e. callees of f1
and f2) are replaced by uninterpreted
functions that update the modified
globals and the return; the input to
the functions are parameters and the
globals that are read by the proce-

dure. The resulting set of procedures {Eq.fi.fj | fi ∈ P1, fj ∈ P2} (one for
each matched pair fi and fj) are analyzed by the Boogie modular verifier us-
ing verification condition generation [1] and SMT solver Z3. We omit details
of verification condition generation here; it suffices to know that it transforms
a program (a set of annotated procedures) to a single logical formula whose
validity implies that the program does not fail. In our case, if all the Eq.fi.fj
procedures are verified, then the matched procedure pairs in P1 and P2 are par-
tially equivalent. On the other hand, if the assertion in any Eq.fi.fj procedure
cannot be proved by Boogie, we extract a set of intraprocedural paths through
fi and fj and report them to the user. We modified Boogie to produce multiple
(up to a user-specified limit) counterexample traces for the same assertion.

In addition to the purely modular approach, SymDiff offers various options
for inlining callees (to improve precision at the cost of scalability) for the case of
non-recursive programs. There are options for either inlining (a) every callee, (b)
only the callees that can’t be proved equivalent, or (c) only behaviors in callees
that can’t be proved equivalent (differential inlining [8]). These options require
a bottom-up traversal of the call graph of procedures.

3 Interface for Source Languages

In this section, we briefly describe the important considerations for adapting
SymDiff for a source imperative language such as C, C#, or x86. First, one
needs a translator for the language (say C) that performs two tasks: (i) repre-
sents the state of a program (e.g. variables, pointers and the heap) explicitly in
terms of scalar and map variables in Boogie, and (ii) translates each statement
in the source language to a sequence of statements in Boogie. The precision and
soundness of the resulting tool will be parameterized by how faithful the trans-
lator is. Many such translators exist today with various precision and soundness
trade-offs. For example, HAVOC [3] translates C programs to Boogie; Spec# [2]
converts C# programs to Boogie; there have also been translators from binary
(x86) programs to Boogie [5].
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When two procedures cannot be proven equivalent, SymDiff generates coun-
terexample traces on the source programs (Figure 1). The counterexample
contains an intra-procedural trace for each procedure and values of “relevant”
program expressions (of scalar type) for each statement. We have found this to
be the most useful feature of the tool when applied to real examples. This feature
requires two pieces of (optional) additional information in the translated Boogie
programs, for each source line translated:

– The source file and the line number have to be provided as attributes.
– For each scalar valued program expression e to be displayed in the trace

(e.g. e->oper in Line 10 of the first program in Figure 1), associate the
corresponding expression in Boogie.

Note that this requires only a one time change to the translator for the source
language to Boogie.

Non-deterministic Statements. In the presence of non-deterministic state-
ments (such as the Boogie statement havoc x that scrambles a variable x), a
procedure may not be equivalent to itself. Source language translators often use
non-deterministic statements such as havoc to model allocation, effect of I/O
methods such as scanf, calls to external APIs etc. To use SymDiff effectively,
we require that the translators use deterministic statements to model such cases.
We provide an example of deterministic modeling of allocation for C programs
in the next section. SymDiff also models external procedures as deterministic (in
their parameters) transformers using uninterpreted functions.

3.1 C Front End

In this section, we briefly describe the implementation of the front-end for C pro-
grams. The tool takes two directories (for the two versions) containing a set of
.c files and a makefile. We use the HAVOC [3] tool to translate C programs into
Boogie programs. HAVOC uses maps to model the heap of the C program [3],
where pointer and field dereferences are modeled as select or updates of a map.
By default, HAVOC assumes that the input C programs are field safe (i.e. dif-
ferent field names cannot alias) and maintains a map per word-valued (scalar
or pointer) field and type. For example, the statement x->f := *(int*)y; is
modeled as f[x+4] := T int[y]; using two maps f and T int of type [int]int
(assuming offset of f is 4 inside x).

We modified HAVOC to incorporate deterministic modeling of allocation (for
malloc and free) and I/O methods (such as scanf, getc) [8]. Here we sketch the
modeling of allocation: we maintain a (ghost) global variable allocvar, which
can be modified by calls to malloc and free. malloc is modeled as follows
(in Boogie) : malloc(n:int) returns (r:int) {r := allocvar; allocvar

:= newAlloc(allocvar, n);}, where newAlloc is an uninterpreted function.
The specification for free is similar. The modeling ensures that two identi-
cal sequences of malloc and free return the same (but arbitrary) sequence of
pointers. This suffices for many examples, but can be incomplete in the presence
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Table 1. Results on Siemens benchmarks. “Proc” stands for procedures, “Time” is
the time taken by SymDiff to analyze all the “Changed” procedures.

Example #LOC #Proc #Versions #Changed Time (sec) # Paths Enum Time (sec)
procs (Avg) (Avg) (Avg) (Avg)

tcas 173 9 42 1.2 0.64 26.72 1.19
print tokens 727 18 7 1.4 1.30 357.43 2.87
print tokens2’ 569 19 10 1.1 0.90 169.36 1.25
replace 563 21 32 1.1 0.96 20.38 2.11
schedule 412 18 9 1.1 0.94 16.00 1.99
schedule2 373 16 10 1 0.83 10.60 0.99

print tokens2 n4 569 19 1 1 1.13 7560 56.83
print tokens2 n6 569 19 1 1 1.30 >10,000 160.63

print tokens2 e4 569 19 1 1 3.50 4200 24.02
print tokens2 e6 569 19 1 1 32.96 >10,000 150.61

of different allocation orders. We also added an option to generate the infor-
mation required to display the counterexample traces. For each statement, we
generate any pointer or scalar subexpression in the trace. For example, for the
C statement x->f.g->h = y[i] + z.f; we add the expressions {x, x->f.g,

x->f.g->h, y[i], z.f} whose values will be displayed in the trace. For pro-
cedure calls, we add the expressions in the arguments and the return. Figure 1
shows the semantic diff as a pair of traces over two programs. The second pro-
gram performs some refactoring and feature addition (case for MULT). A syntactic
diff tool gets confused by the refactoring and offers little idea about the change
in behavior.

Table 1 describes an evaluation of SymDiff on a set of medium-sized C pro-
grams representing the Siemens benchmarks from the SIR repository [10]. Each
program comes with multiple versions representing injection of real and seeded
faults. The benchmark print tokens2’ represents a slightly altered version of
the print token2 benchmark, where we change a constant loop iterating 80
times to one over a symbolic constant n. The experiments were performed on a
3GHz Windows 7 machine with 16GB of memory. We used a loop unroll depth
of 2 for the examples. The runtime of SymDiff (“Time”) does not include the
time required to generate Boogie files. The number of intraprocedural paths
(“Paths”) correspond to the number of feasible paths inside Eq.f1.f2 that reach
the return statement, and “Enum Time” is the time inside Z3 to enumerate them
using an ALL-SAT procedure. The first few rows indicate that the tool scales
well for finding differences when the number of intraprocedural paths is less than
1000. To investigate the effect of large number of paths, we created two sets of
examples print token2 n<k> and print tokens2 e<k> (with loop unrolling of
k), for semantically different and equivalent procedures respectively. The results
indicate that the tool scales better on semantically different procedures, perhaps
due to the large number of paths leading to a difference. For the equivalent cases
too, the scalability appears to be better than the approach of enumerating paths
outside Z3. In addition to these examples, the tool has been successfully applied
to C programs several thousand lines large.
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4 Conclusion and Related Work

In this paper, we describe the design of a language-agnostic semantic differencing
tool for imperative programs. We have currently developed a front-end for C
programs. We have also built a preliminary front-end for x86 programs that we
have applied to perform compiler validation. We are also developing a front-end
for .NET programs using a variation of the Spec# tool chain. We are currently
working on making a binary release of the tool along with the C front end at
http://research.microsoft.com/projects/symdiff/.

Related Work. There have been a few recent static tools for performing seman-
tic diff for programs. Jackson and Ladd [7] use dependencies between input and
the output variables of a procedure — it does not use any theorem provers. The
approach of regression verification [6] uses SMT solvers to check equivalence of C
programs in the presence of mutual recursion, without requiring all procedures to
be equivalent. This is the work closest to ours1, and the main difference lies in the
language agnostic nature of our tool, generation of abstract counterexamples, and
the modeling of the heap. Differential symbolic execution [9] uses symbolic exe-
cution to enumerate paths to check for equivalence. Our preliminary experience
shows that the use of verification conditions instead of path enumeration often
helps SymDiff scale to procedures with several thousand intraprocedural paths.
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Abstract. Cubicle is a new model checker for verifying safety properties
of parameterized systems. It implements a parallel symbolic backward
reachability procedure using Satisfiabilty Modulo Theories. Experiments
done on classic and challenging mutual exclusion algorithms and cache
coherence protocols show that Cubicle is effective and competitive with
state-of-the-art model checkers.

1 Tool Overview

Cubicle is used to verify safety properties of array-based systems. This is a syntac-
tically restricted class of parametrized transition systems with states represented
as arrays indexed by an arbitrary number of processes [10]. Cache coherence
protocols and mutual exclusion algorithms are typical examples of such systems.
Cubicle model-checks by a symbolic backward reachability analysis on infinite
sets of states represented by specific simple formulas, called cubes.

Cubicle is an open source software based on theoretical work in [1] and [11]. It
is inspired by and closely related to the model checker MCMT [12], from which,
in addition to revealing the implementation details, it mainly differs in a more
friendly input language and concurrent architecture.

Cubicle is written in OCaml. Its SMT solver is a tightly integrated, lightweight
and enhanced version of Alt-Ergo [7]; and its parallel implementation relies on
the Functory library [9]. Cubicle is available at http://cubicle.lri.fr.

2 System Description Language

Cubicle’s input language is a typed version of Murϕ [8] similar to the one of
Uclid [6], rudimentary at the moment, but more user-friendly than mcmt and
sufficiently expressive for typical parameterized systems.

A system is described in Cubicle by: (1) a set of type, variable, and array
declarations; (2) a formula for the initial states; and (3) a set of transitions. It is
parametrized by a set of process identifiers, denoted by the built-in type proc.
Standard types int, real, and bool are also built in. Additionally, the user
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can specify abstract types and enumerations with simple declarations like “type
data” and “type msg = Empty | Req | Ack”. We show the language on the
following Mutex example.

var Turn : proc

array Want[proc] : bool

array Crit[proc] : bool

init (z) {
Want[z] = False && Crit[z] = False

}

unsafe (x y) {
Crit[x] = True && Crit[y] = True

}

transition req (i)

requires { Want[i] = False }
{ Want[j] := case

| i = j : True

| _ : Want[j] }

transition enter (i)

requires { Want[i] = True

&& Crit[i] = False

&& Turn = i }
{ Crit[j] := case

| i = j : True

| _ : Crit[j] }

transition exit (i)

requires { Crit[i] = True }
{ Turn := . ;

Crit[j] := case

| i = j : False

| _ : Crit[j] ;

Want[j] := case

| i = j : False

| _ : Want[j] }

The system’s state is defined by a set of global variables and proc-indexed arrays.
The initial states are defined by a universal conjunction of literals characterizing
the values for some variables and array entries. A state of our example system
Mutex consists of a process identifier Turn and two boolean arrays Want and
Crit; a state is initial iff both arrays are constantly false.

Transitions are given in the usual guard/action form and may be parameter-
ized by (one or more) process identifiers. They define the system’s execution: an
infinite loop that at each iteration: (1) non-deterministically chooses a transition
instance whose guard is true in the current state; and (2) updates state vari-
ables according to the action of the fired transition instance. Guards must be of
the form F ∧ ∀x̄.(Δ ⇒ F ′), where F, F ′ are conjunctions of literals (equations,
disequations or inequations), and Δ says that every x̄-variable is distinct from
every parameter of the transition. Assignments can be non-deterministic, as in
“Turn := .” in transition exit in Mutex. Array updates are coded by a case
construct where each condition is a conjunction of literals, and the default case.

The safety property to be verified is expressed in its negated form as a formula
that represents unsafe states. Each unsafe formula must be a cube, i.e., have the
form ∃x̄.(Δ ∧ F ), where Δ is the conjunction of all disequations between the
variables in x̄, and F is a conjunction of literals. In the code, we leave the Δ
part implicit. Thus in Mutex, the unsafe states are those in which Crit[x] and
Crit[y] are true for two distinct process identifiers x,y.

3 Implementation Details and Optimizations

For a state formula Φ and a transition instance t, let pret(Φ) be the formula
describing the set of states from which a Φ-state can be reached in one t-step.
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Let also pre(Φ) be the union of pret(Φ) for all possible t. In its simplest form,
the backward reachability algorithm constructs a sequence Φ0, Φ1, . . . such that
Φ0 is the system’s unsafe condition and Φi+1 = Φi ∨ pre(Φi). The algorithm
terminates with the first Φn that fails the safety check (consistency with the
initial condition), or passes the fixpoint check Φn 6 Φn−1.

In array-based systems, pret(φ) can be representend as a union (disjunction)
of cubes, for every cube φ and every t. Thus, the Φi above are unions of cubes
too, and the algorithm above can be modified to work only with cubes, as follows.
Maintain a set V and a priority queue Q of visited and unvisited cubes respec-
tively. Initially, let V be empty and let Q contain the system’s unsafe condition.
Then, at each iteration, take the highest-priority cube φ from Q and do the
safety check for it, same as the above. If it fails, terminate with “system unsafe”.
If the safety check passes, proceed to the subsumption check φ 6

∨
ψ∈V ψ. If this

fails, then add φ to V , compute all cubes in pret(φ) (for every t), add them to
Q, and move on to the next iteration. If the subsumption check succeeds, then
drop φ from consideration and move on. The algorithm terminates when a safety
check fails or Q becomes empty. When an unsafe cube is found, Cubicle actually
produces a counterexample trace.

Safety checks, being ground satisfiablity queries, are easy for SMT solvers.
The challenge is in subsumption checks φ 6

∨
ψ∈V ψ because of their size and the

“existential implies existential” logical form. Assuming φ � ∃x̄.F and ψ � ∃ȳ.Gψ

(ψ ∈ V ), the subsumption check translates into the validity check for the ground
formula H � (F ⇒

∨
ψ∈V

∨
σ∈Σ(Gψ)σ), where Σ is the set of all substitutions

from ȳ to x̄. Now, viewing any cube Gψσ as a set of literals, one can make two
useful comparisons with F : (1) if Gψσ is a subset of F , then H is valid; (2) if Gψσ
contains a literal that directly contradicts a literal of F , thenGψσ is redundant in
H (can be removed without logically changingH). Cubicle aggressively attempts
to prove H by building and verifying it incrementally, adding one disjunct to
its consequent at a time. Essentially, it examines all pairs (ψ, σ) one-by-one,
stopping the process when the current overapproximation of H becomes known
to be valid. For each pair (ψ, σ), the cube Gψσ is first checked for redundancy;
if redundant, it is ignored and a new pair (ψ, σ) is processed. If not redundant,
the cube is subject to the subset check for F 6 Gψσ. If this check succeeds, H is
claimed valid; otherwise Gψσ gets added to H (as a disjunct of its consequent)
and the SMT solver checks if the newly obtained (weakened) H becomes valid.

Cubicle’s integration with the SMT solver at the API level is crucial for effi-
cient treatment of the subsumption check. For any such check, a single context
for the SMT solver is used; it just gets incremented and repeatedly verified. To
support the efficient (symmetry-reduced) and exhaustive application of the in-
expensive redundancy and subset checks, cubes are maintained in normal form
where variables are renamed and implied literals removed at construction time.

The strategy for exploring the cube space is also essential. It pays to visit
as few cubes as possible, which suggess giving priority to more “generic” cubes
(those that represent larger sets of states). Thus, neither breadth-first nor depth-
first search are good in their pure form. By default, Cubicle uses BFS (changeable
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with the -search option to DFS or some variants) combined with a heuristically
delayed treatment of some cubes. Currently, a cube is delayed if it introduces
new process variables or does not contribute new information on arrays. Finally,
Cubicle can remove cubes from V when they become subsumed by a new cube.

Following mcmt, Cubicle supports user-supplied invariants and invariant syn-
thesis, both of which can significantly reduce the search. Subsets of visited nodes
that only contain predicates over a unique process variable are used as candidate
invariants. Each of them is verified by starting a new resource limited backward
reachability analysis. Cubicle can also discover “subtyping invariants” (saying
that a variable can take only a selected subset of values) by a static analysis and
these invariants can be natively exploited by the SMT solver which supports
definitions of subtypes for enumerated data-types.

4 Multi-core Architecture

A natural way to scale up model checkers is to parallelize their CPU intensive
tasks to take advantage of the widespread availability of multi-core machines or
clusters [13,4,14]. In our framework, this is achieved by parallelizing the back-
ward reachability loop and the generation of invariants. As mentioned above,
since invariant synthesis is done independently from the main loop, it is straight-
forward to do it in parallel. However, concerning the loop itself, a naive parallel
implementation would lose the precise guidance of the exploration1, and more
importantly, could break the correctness of the tool because of an unsafe use of
some optimizations described in the previous section.

In our setting, the most resource consuming tasks are fixpoints checks which
can be hard problems even for efficient SMT solvers. To gain efficiency, we im-
plemented a concurrent version of BFS based on the observation that all such
computations arising at the same level of the search tree can be executed in par-
allel. Our implementation is based on a centralized master/workers architecture.
The master assigns fixpoints to workers and a synchronization barrier is placed
at each level of the tree to retain a BFS order. The master asynchronously com-
putes the preimages of nodes that are not verified as fixpoints by the workers.
In the meanwhile, the master can also assign invariant generation tasks that will
be processed by available workers. Finally, to safely delete nodes from V , the
master must discard the results about nodes that have been deleted while they
were being checked by a worker.

Cubicle provides a concurrent breadth-first exploration of the search space
using n parallel processes on a multi-core machine with the -j n option. The
implementation is based on Functory [9], an OCaml library with a rich functional
interface which facilitates the execution of parallel algorithms. Functory supports
multi-core architectures and distributed networks; it has also a robust fault-
tolerance mechanism. Concerning a distributed implementation, one of the main
issues is to limit the size of data involved in transactions between the master and

1 Our experiments showed that a non-deterministic parallel exploration can be worse
than a guided sequential search.
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the workers. For instance, the size of V can quickly become a bottleneck in an
architecture based on message passing communications. As future work, we plan
to develop a distributed implementation that will only need to send updates of
data-structures.

5 Experimental Results and Future Works

We have evaluated Cubicle on some classic and challenging mutual exclusion
algorithms and cache coherence protocols. In the table bellow, we compare Cu-
bicle’s performances with state-of-the-art model checkers for parameterized sys-
tems. All benchmarks have been executed on a 64 bits machine with a quad-core
Intel R© Xeon R© processor @ 3.2 GHz and 24 GB of memory. For each tool, we
report the results obtained with the best settings we found. Note that the par-
allel version of Cubicle was run on 4 cores and that we only give its results for
significantly time consuming problems. We denote by X benchmarks that we
were unable to translate due to syntactic restrictions.

Cubicle MCMT [12] Undip [3] PFS [2]
seq 4 cores

bakery 0.01s - 0.01s 0.04s 0.01s
Dijkstra 0.24s - 0.99s 0.04s 0.26s
Distributed Lamport 2.3s - 12.7s unsafe X
Java Mlock 0.04s - 0.06s 0.25s 0.02s
Ricart Agrawala 1.8s - 1m12s 4.3s X
Szymanski at 0.12s - 0.71s 13.5s timeout

Berkeley 0.01s - 0.01s 0.01s 0.01s
flash aggregated [15] 0.01s - 0.02s 0.01s X
German Baukus 25.0s 17.1s 3h39m 9m43s X
German pfs 6m23s 3m8s 11m31s timeout 47m22s
German undip 0.17s - 0.57s 1m32 X
Illinois 0.02s - 0.04s 0.06s 0.06s
Moesi 0.01s - 0.01s 0.01s 0.01s

Our experiments are very promising. They show first that the sequential ver-
sion of Cubicle is competitive. The parallel version on 4 cores achieves speedups
of 1.8 approximately, which is a good result considering the fact that cores cannot
be fully exploited because of the synchronization required to perform a pertinent
search. In practice, we found that the best setting for Cubicle is to use all the
optimizations described in Section 3 (except for invariant synthesis which can be
time consuming). In the table bellow, we show the respective effect of these op-
timizations on the version of the German protocol from [5] (German baukus). In
particular, it is worth noting that the subtyping analysis increases performances
by an order of magnitude on this example.
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Optimizations Real Time (# nodes)
delete nodes subtyping invariant generation sequential 4 cores

No No No 50m8s (22580) 27m13s (20710)
Yes No No 35m16s (20405) 19m39s (19685)
Yes No Yes 20m45s (15089) 13m55s (14527)
Yes Yes No 25.0s (3322) 17.1s (3188)

As future work, we would like to harness the full power of the SMT solver by
sharing its data structures and even more tightly integrating its features in the
model checker. In particular, this would be very useful to discover symmetries
and to simplify nodes by finding semantic redundancies modulo theories. We are
also interested in exploiting the unsat cores returned by the solver to improve
our node deletion mechanism.
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Abstract. This paper describes the HybridSAL relational abstracter
– a tool for verifying continuous and hybrid dynamical systems. The
input to the tool is a model of a hybrid dynamical system and a safety
property. The output of the tool is a discrete state transition system
and a safety property. The correctness guarantee provided by the tool
is that if the output property holds for the output discrete system, then
the input property holds for the input hybrid system. The input is in
HybridSal input language and the output is in SAL syntax. The SAL
model can be verified using the SAL tool suite. This paper describes
the HybridSAL relational abstracter – the algorithms it implements, its
input, its strength and weaknesses, and its use for verification using the
SAL infinite bounded model checker and k-induction prover.

1 Introduction

A dynamical system (X,
a→) with state space X and transition relation

a→ ⊆ X×X
is a relational abstraction of another dynamical system (X,

c→) if the two systems

have the same state space and
c→ ⊆ a→. Since a relational abstraction contains all

the behaviors of the concrete system, it can be used to perform safety verification.
HybridSAL relational abstracter is a tool that computes a relational abstrac-

tion of a hybrid system as described by Sankaranarayanan and Tiwari [8]. A
hybrid system (X,→) is a dynamical system with
(a) state space X := Q × Y, where Q is a finite set and Y := Rn is the n-
dimensional real space, and
(b) transition relation →:=→cont ∪ →disc, where →disc is defined in the usual
way using guards and assignments, but→cont is defined by a system of ordinary
differential equation and a mode invariant. One of the key steps in defining the
(concrete) semantics of hybrid systems is relating a system of differential equa-
tion dy

dt = f(y) with mode invariant φ(y) to a binary relation over Rn, where y
is a n-dimensional vector of real-valued variables. Specifically, the semantics of
such a system of differential equations is defined as:

y0 →cont y1 if there is a t1 ∈ R≥0 and a function F from [0, t1] to Rn s.t.

� Supported in part by DARPA under subcontract No. VA-DSR 21806-S4 under
prime contract No. FA8650-10-C-7075, and NSF grants CSR-0917398 and SHF:CSR-
1017483.

P. Madhusudan and S.A. Seshia (Eds.): CAV 2012, LNCS 7358, pp. 725–731, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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y0 = F (0),y1 = F (t1), and

∀t ∈ [0, t1] :

(
dF (t)

dt
= f(F (t)) ∧ φ(F (t))

)
(1)

The concrete semantics is defined using the “solution” F of the system of differ-
ential equations. As a result, it is difficult to directly work with it.

The relational abstraction of a hybrid system (X,
c→cont ∪ c→disc) is a discrete

state transition system (X,
a→) such that

a→ =
a→cont ∪ c→disc, where

c→cont ⊆
a→cont. In other words, the discrete transitions of the hybrid system are left
untouched by the relational abstraction, and only the transitions defined by
differential equations are abstracted.

The HybridSal relational abstracter tool computes such a relational abstrac-
tion for an input hybrid system. In this paper, we describe the tool, the core
algorithm implemented in the tool, and we also provide some examples.

2 Relational Abstraction of Linear Systems

Given a system of linear ordinary differential equation, dxdt = Ax+b, we describe

the algorithm used to compute the abstract transition relation
a→ of the concrete

transition relation
c→ defined by the differential equations.

The algorithm is described in Figure 1. The input is a pair (A, b), where A is a
(n×n) matrix of rational numbers and b is a (n×1) vector of rational numbers.
The pair represents a system of differential equations dx

dt = Ax+ b. The output
is a formula φ over the variables x,x′ that represents the relational abstraction
of dx

dt = Ax + b. The key idea in the algorithm is to use the eigenstructure of
the matrix A to generate the relational abstraction.

The following proposition states the correctness of the algorithm.

Proposition 1. Given (A, b), let φ be the output of procedure linODEabs in
Figure 1. If →cont is the binary relation defining the semantics of dx

dt = Ax+ b
with mode invariant True (as defined in Equation 1), then →cont ⊆ φ.

By applying the above abstraction procedure on the dynamics of each mode of a
given hybrid system, the HybridSal relational abstracter constructs a relational
abstraction of a hybrid system. This abstract system is a purely discrete infinite
state space system that can be analyzed using infinite bounded model checking
(inf-BMC), k-induction, or abstract interpretation.

We make two important remarks here. First, the relational abstraction con-
structed by procedure linODEabs is a Boolean combination of linear and nonlinear
expressions. By default, HybridSal generates conservative linear approximations
of these nonlinear relational invariants. HybridSal generates the (more precise)
nonlinear abstraction (as described in Figure 1) when invoked using an appro-
priate command line flag. Note that most inf-BMC tools can only handle linear
constraints. However, there is significant research effort going on into extending
SMT solvers to handle nonlinear expressions. HybridSal relational abstracter and
SAL inf-BMC have been used to create benchmarks for linear and nonlinear SMT
solvers.
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linODEabs(A, b): Input: a pair (A, b), where A ∈ Rn×n, b ∈ Rn×1.
Output: a formula φ over the variables x,x′

1. identify all variables x1, . . . , xk s.t. dxi
dt

= bi where bi ∈ R ∀i
let E be {x′

i−xi

bi
| i = 1, . . . , k}

2. partition the variables x into y and z s.t. dx
dt

= Ax+ b can be rewritten as[
dy
dt
dz
dt

]
=

[
A1 A2

0 0

] [
y
z

]
+

[
b1
b2

]

where A1 ∈ Rn1×n1 , A2 ∈ Rn1×n2 , b1 ∈ Rn1×1, b2 ∈ Rn2×1, and n = n1 + n2

3. set φ to be True
4. let c be a real left eigenvector of matrix A1 and let λ be the corresponding real

eigenvalue, that is, cTA1 = λcT

5. if λ == 0 ∧ cTA2 == 0: set E := E ∪ { cT (y′−y)

cT b1
}; else: E := E

6. if λ �= 0: define vector d and real number e as: dT = cTA2/λ and e = (cT b1 +
dTb2)/λ
let p(x) denote the expression cTy+dTz+ e and let p(x′) denote cTy′+dTz′ + e
if λ > 0: set φ := φ∧ [(p(x′) ≤ p(x) < 0)∨(p(x′) ≥ p(x) > 0)∨(p(x′) = p(x) = 0)]
if λ < 0: set φ := φ∧ [(p(x) ≤ p(x′) < 0)∨(p(x) ≥ p(x′) > 0)∨(p(x′) = p(x) = 0)]

7. if there are more than one eigenvectors corresponding to the eigenvalue λ, then
update φ or E by generalizing the above

8. repeat Steps (4)–(7) for each pair (c, λ) of left eigenvalue and eigenvector of A1

9. let c+ ıd be a complex left eigenvector of A1 corresponding to eigenvalue α+ ıβ
10. using simple linear equation solving as above, find c1, d1, e1 and e2 s.t. if p1

denotes cTy + c1
Tz + e1 and if p2 denotes dTy + c2

Tz + e2 then

d

dt
(p1) = αp1 − βp2

d

dt
(p2) = βp1 + αp2

let p′1 and p′2 denote the primed versions of p1, p2
11. if α ≤ 0: set φ := φ ∧ (p21 + p22 ≥ p′1

2
+ p′2

2
)

if α ≥ 0: set φ := φ ∧ (p21 + p22 ≤ p′1
2
+ p′2

2
)

12. repeat Steps (9)–(11) for every complex eigenvalue eigenvector pair
13. set φ := φ ∧

∧
e1,e2∈E e1 = e2; return φ

Fig. 1. Algorithm implemented in HybridSal relational abstracter for computing rela-
tional abstractions of linear ordinary differential equations

Second, Procedure linODEabs can be extended to generate even more precise
nonlinear relational abstractions of linear systems. Let p1, p2, . . . , pk be k (linear
and nonlinear) expressions found by Procedure linODEabs that satisfy the equa-
tion dpi

dt = λipi. Suppose further that there is some λ0 s.t. for each i λi = niλ0
for some integer ni. Then, we can extend φ by adding the following relation to
it:

pi(x
′)njpj(x)

ni = pj(x
′)nipi(x)

nj (2)

However, since pi’s are linear or quadratic expressions, the above relations will
be highly nonlinear unless ni’s are small. So, they are not currently generated
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by the relational abstracter. It is left for future work to see if good and useful
linear approximations of these highly nonlinear relations can be obtained.

3 The HybridSal Relational Abstracter

The HybridSal relational abstracter tool, including the sources, documentation
and examples, is freely available for download [10].

The input to the tool is a file containing a specification of a hybrid system
and safety properties. The HybridSal language naturally extends the SAL lan-
guage by providing syntax for specifying ordinary differential equations. SAL is a
guarded command language for specifying discrete state transition systems and
supports modular specifications using synchronous and asynchronous composi-
tion operators. The reader is referred to [7] for details. HybridSal inherits all the
language features of SAL. Additionally, HybridSal allows differential equations
to appear in the model as follows: if x is a real-valued variable, a differential
equation dx

dt = e can be written by assigning e to the dummy identifier xdot.
Assuming two variables x, y, the syntax is as follows:

guard(x,y) AND guard2(x,x’,y,y’) --> xdot’ = e1; ydot’ = e2

This represents the system of differential equations dx
dt = e1, dydt = e2 with mode

invariant guard(x, y). The semantics of this guarded transition is the binary rela-
tion defined in Equation 1 conjuncted with the binary relation guard2 (x, x′, y, y′).
The semantics of all other constructs in HybridSal match exactly the semantics
of their counterparts in SAL.

Figure 2 contains sketches of two examples of hybrid systems modeled in
HybridSal. The example in Figure 2(left) defines a module SimpleHS with two
real-valued variables x, y. Its dynamics are defined by dx

dt = −y+x, dydt = −y−x
with mode invariant y ≥ 0, and by a discrete transition with guard y ≤ 0. The
HybridSal file SimpleEx.hsal also defines two safety properties. The latter one
says that x is always non-negative. This model is analyzed by abstracting it

bin/hsal2hasal examples/SimpleEx.hsal

to create a relational abstraction in a SAL file named examples/SimpleEx.sal,
and then (bounded) model checking the SAL file

sal-inf-bmc -i -d 1 SimpleEx helper

sal-inf-bmc -i -d 1 -l helper SimpleEx correct

The above commands prove the safety property using k-induction: first we prove
a lemma, named helper, using 1-induction and then use the lemma to prove the
main theorem named correct.

The example in Figure 2(right) shows the sketch of a model of the train-gate-
controller example in HybridSal. All continuous dynamics are moved into one
module (named timeElapse). The train, gate and controllermodules define
the state machines and are pure SAL modules. The observer module is also a
pure SAL module and its job is to enforce synchronization between modules on
events. The final system is a complex composition of the base modules.

The above two examples, as well as, several other simple examples are provided
in the HybridSal distribution to help users understand the syntax and working
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SimpleEx: CONTEXT = BEGIN

SimpleHS: MODULE = BEGIN

LOCAL x,y: REAL

INITIALIZATION

x = 1; y IN {z:REAL| z <= 2}
TRANSITION

[ y >= 0 AND y’ >= 0 -->

xdot’ = -y + x ;

ydot’ = -y - x

[] y <= 0 --> x’ = 1; y’ = 2]
END;

helper: LEMMA SimpleHS |-

G(0.9239*x >= 0.3827*y);

correct : THEOREM

SimpleHS |- G(x >= 0);

END

TGC: CONTEXT = BEGIN

Mode: TYPE = {s1, s2, s3, s4};
timeElapse: MODULE = BEGIN

variable declarations

INITIALIZATION x = 0; y = 0; z = 0

TRANSITION

[mode invariants -->

--> xdot’ = 1; ydot’ = 1; zdot’ = 1]
END;

train: MODULE = . . .
gate: MODULE = . . .
controller: MODULE = . . .
observer: MODULE = . . .
system: MODULE = (observer || (train []

gate [] controller [] timeElapse));

correct: THEOREM system |- G ( ... ) ;

END

Fig. 2. Modeling hybrid systems in HybridSal: A few examples

of the relational abstracter. A notable (nontrivial) example in the distribution is
a hybrid model of an automobile’s automatic transmission from [2]. Users have
to separately download and install SAL model checkers if they wish to analyze
the output SAL files using k-induction or infinite BMC.

The HybridSal relational abstracter constructs abstractions compositionally;
i.e., it works on each mode (each system of differential equations) separately. It
just performs some simple linear algebraic manipulations and is therefore very
fast. The bottleneck step in our tool chain is the inf-BMC and k-induction step,
which is orders of magnitude slower than the abstraction step (Table 1).

4 Related Work and Conclusion

The HybridSal relational abstracter is a tool for verifying hybrid systems. The
other common tools for hybrid system verification consist of (a) tools that iter-
atively compute an overapproximation of the reachable states [5], (b) tools that
directly search for correctness certificates (such as inductive invariants or Lya-
punov function) [9], or (c) tools that compute an abstraction and then analyze
the abstraction [6,1,3]. Our relational abstraction tool falls in category (c), but
unlike all other abstraction tools, it does not abstract the state space, but ab-
stracts only the transition relation. In [8] we had defined relational abstractions
and proposed many different techniques (not all completely automated at that
time) to construct the relational abstraction.

The key benefit of relational abstraction is that it cleanly separates reasoning
on continuous dynamics (where we use control theory or systems theory) and
reasoning on discrete state transition systems (where we use formal methods.)
The former is used for constructing high quality relational abstractions and the
latter is used for verifying the abstract system.
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Table 1. Performance on the 27 navigation benchmarks [4]: The HybridSal models, on
purpose, enumerate all modes explicitly so that it becomes clear that the time (RA) for
constructing relational abstraction grows linearly with the number of modes (modes).
Inf-bmc starts to time out (TO) at 5 minutes at depth (d) 20 for examples with ≥ 25
modes. Ideally, one wants to perform inf-bmc with depth equal to number of modes.
N100 means inf-bmc returned after 100 seconds with no counter-examples and C160
means inf-bmc returned after 160 seconds with a counter-example.

nav 1-5 6 7-8 9 10-11 12 13-15 16-18 19-21 22-24 25-27

modes 9 9 16 16 25 25 42 81 144 225 400
RA 2 2 3 3 5 5 9 20 40 80 180
d=4 N0 N0 N1 N1 N1 C1 N1 N2 N4 N6 N20
d=8 N1 C2 C100 C5 C10 C15 N20 N10 N25 N10 N60
d=12 N5 C3 TO C18 C20 C50 C150 N10 TO N40 T0
d=16 N40 C10 TO C50 C50 C180 TO* 240* TO TO TO
d=20 N100 C80 TO C160 C80 TO TO TO TO TO TO

We note that our tool is the first relational abstracter for hybrid systems and is
under active development. We hope to enhance the tool by improving precision of
the abstraction using mode invariants and other techniques, providing alternative
to inf-bmc, and handling nonlinear differential equations.
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Euler: A System for Numerical
Optimization of Programs�

Swarat Chaudhuri1 and Armando Solar-Lezama2
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2 MIT

Abstract. We give a tutorial introduction to Euler, a system for solv-
ing difficult optimization problems involving programs.

1 Introduction

This paper is a tutorial introduction to Euler, a system for solving uncon-
strained optimization problems of the following form:

Let P be a function that is written in a standard C-like language, and
freely uses control constructs like loops and conditional branches. Find
an input x to P such that the output P (x) of P is minimized with respect
to an appropriate distance measure on the space of outputs of P .

Many problems in software engineering are naturally framed as optimization
questions like the above. While it may appear at first glance that a standard
optimization package could solve such problems, this is often not so. For one,
“white-box” optimization approaches like linear programming are ruled out here
because the objective functions that they permit are too restricted. As for “black-
box” numerical techniques like gradient descent or simplex search, they are ap-
plicable in principle, but often not in practice. The reason is that these methods
work well only in relatively smooth search spaces; in contrast, branches and loops
can cause even simple programs to have highly irregular, ill-conditioned behav-
ior [1] (see Sec. 4 for an example). These challenges are arguably why numerical
optimization has found so few uses in the world of program engineering.

The central thesis of the line of work leading to Euler is that program ap-
proximation techniques from program analysis can work together with blackbox
optimization toolkits, and make it possible to solve problems where programs
are the targets of optimization. Thus, programs do not have to be black boxes,
but neither do they have to fall into the constricted space of what is normally
taken to be white-box optimization. Specifically, the algorithmic core of Euler

is smooth interpretation [1,2], a scheme for approximating a program by a series
of smooth mathematical functions. Rather than the original program, it is these
smooth approximations that are used as the targets of numerical optimization.
As we show in Sec. 4, the result is often vastly improved quality of results.
� This work was supported by NSF Awards #1156059 and #1116362.

P. Madhusudan and S.A. Seshia (Eds.): CAV 2012, LNCS 7358, pp. 732–737, 2012.
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double parallel () {
Error = 0.0;
for(t = 0; t < T; t += dT) {

if (stage==STRAIGHT) { // < −− Drive in reverse
if (t > ??) stage= INTURN; } // Parameter t1

if (stage==INTURN) { // <−− Turn the wheels towards the curb
car .ang = car.ang − ??; // Parameter A1

if (t > ??) stage= OUTTURN; } // Parameter t2
if (stage==OUTTURN) { // <−− Turn the wheels away from the curb

car .ang = car.ang + ??; } // Parameter A2

simulate_car(car ); }
Error = check_destination(car ); // <−− Compute the error as the difference

// between the desired and actual
return Error ; // positions of the car

}
Fig. 1. Sketch of a parallel parking controller

2 Using Euler

Programming Euler: Parallel Parking. Euler can be downloaded from
http://www.cs.rice.edu/~swarat/Euler. Now we show to use the system to
solve a program synthesis problem that reduces to numerical optimization.

The goal here is to design a controller for parallel-parking a car. The pro-
grammer knows what such a controller should do at a high level: it should start
by driving the car in reverse, then at time t1, it should start turning the wheels
towards the curb (let us say at an angular velocity A1) and keep moving in
reverse. At a subsequent time t2, it should start turning the wheels away from
the curb (at velocity A2) until the car reaches the intended position. However,
the programmer does not know the optimal values of t1, t2, A1, and A2, and the
system must synthesize these values. More precisely, let us define an objective
function that determines the quality of a parallel parking attempt in terms of
the error between the final position of the car and its intended position. The
system’s goal is to minimize this function.

To solve this problem using Euler, we write a parameterized program—a
sketch—that reflects the programmer’s partial knowledge of parallel parking.1
The core of this program is the function parallel shown in Fig. 1. For space
reasons, we omit the rest of the program—however, the complete sketch is part
of the Euler distribution.

It is easy to see that parallel encodes our partial knowledge of parallel
parking. The terms ?? in the code are “holes” that correspond, in order, to the
parameters t1, A1, t2, and A2, and Euler will find appropriate values for them.
Note that we can view parallel as a function parallel(t1, A1, t2, A2). This is
the function that Euler is to minimize.
1 The input language of Euler is essentially the same as in the Sketch programming

synthesis system [4].
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Occasionally, a programmer may have some insights about the range of opti-
mal values for a program parameter. These may be communicated using holes
of the form ??(p,q), where (p,q) is a real interval. If such an annotation is
offered, Euler will begin its search for the parameter from the region (p, q).
Note, however, that this is no more than a “hint” to guide the search. Euler per-
forms unconstrained optimization, and it is not guaranteed that the value finally
found for the parameter will lie in this region. We leave the task of extending
Euler to constrained optimization for future work.

Running Euler. Suppose we have built Euler and set up the appropriate
library paths (specifically, Euler requires Gsl—the GNU Scientific Library),
and that our sketch of the parallel parking controller has been saved in a file
parallelPark.sk. To perform our optimization task, we compile the file by is-
suing the command “$ euler parallelPark.sk". This produces an executable
parallelPark.out. Upon running this executable ("$ ./parallelPark.out”),
we obtain an output of the following form:

Parameter #1: -37.0916; Parameter #2: 19.4048;
Parameter #3: -41.1728; Parameter #4: 1.11344;
Optimal function value: 10.6003

That is, the optimal value for t1 is -37.0916, that for A1 is 19.4048, and so on.
As mentioned earlier, Euler uses a combination of smooth interpretation and

a blackbox optimization method. In the present version of Euler, the latter is
fixed to be the Nelder-Mead simplex method [3], a derivative-free nonlinear opti-
mization technique. However, we also allow the programmer to run, without the
support of smoothing, every optimization method available in Gsl. For example,
to run the Nelder-Mead method without smoothing, the user issues the com-
mand “$ ./parallelPark.out -nosmooth -method neldermead." For other
command-line flags supported by the tool, run "$ ./parallelPark.out -help”.

3 System Internals

Now we briefly examine the internals of Euler. First, we recall the core ideas
of smooth interpretation [1,2].

The central idea of smooth interpretation is to transform a program via Gaus-
sian smoothing, a signal processing technique for attenuating noise and discon-
tinuities in real-world signals. A blackbox optimization method is now applied
to this “smoothed” program. Consider a program whose denotational seman-
tics is a function P : R

k → R: on input x ∈ R
k, the program terminates

and produces the output P (x). Also, let us consider Gaussian functions Nx,β

with mean x ∈ R
k and a fixed standard deviation β > 0. Smooth interpreta-

tion aims to compute a function P equaling the convolution of Pβ and Nx,β :
P β(x) =

∫
y∈Rk P (y) Nx,β(y) dy.

For example, consider the program “z := 0; if (x1 > 0 ∧ x2 > 0) then z :=
z − 2” where z is the output and x1 and x2 are inputs. The (discontinuous)
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semantic function of the program is graphed in Fig. 2-(a). Applying Gaussian
convolution to this function gives us a smooth function as in Fig. 2-(b).

As computing the exact convolu-

(a) (b) 

x1 x1

x2 x2

z z

Fig. 2. (a) A discontinuous program (b)
Gaussian smoothing

tion of an arbitrary program is un-
decidable, any algorithm for
program smoothing must introduce
additional approximations. In prior
work, we gave such an
algorithm [1]—this is what Euler

implements.
We skip the details of this algo-

rithm here. However, it is worth
noting that function Pβ is param-
eterized by the standard deviation

β of Nx,β . Intuitively, β controls the extent of smoothing: higher values of β
lead to greater smoothing and easier numerical search, and lower values imply
closer correspondence between P and P β, and therefore, greater accuracy of re-
sults. Finding a “good” value of β thus involves a tradeoff. Euler negotiates this
tradeoff by starting with a moderately high value of β, optimizing the resultant
smooth function, then iteratively reducing β and refining the search results.

β0, β1, β2, . . .

�x0
, �x1

, �x2
, . .

.

Fig. 3. Control flow in Euler

The high-level control flow in the tool is as in Fig. 3. Given an input file
(say parallelPark.sk), the Euler compiler produces an executable called
parallelPark.out. In the latter, the function parallel(x) has been replaced by
a smooth function smoothParallel(β,x). When we execute parallelPark.out,
β is set to an initial value β0, and the optimization backend (Gsl) is invoked on
the function smoothParallel(β = β0,x). The optimization method repeatedly
queries smoothParallel, starting with a random initial input x0 and perturb-
ing it iteratively in subsequent queries, and finally returns a minimum to the
top-level loop. At this point, β is set to a new value and the same process is
repeated. We continue the outer loop until it converges or there is a timeout.
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4 Results

Now we present the results obtained by running Euler on our parallel parking
example. These results are compared with the results of running the Nelder-Mead
method (Nm), without smoothing, on the problem.

As any local optimization al-

Fig. 4. Percentages of runs that lead to specific
ranges of parallel(xmin ) (lower ranges are better)

gorithm starts its search from
a random point x0, the minima
xmin computed by Euler and
Nm are random as well. How-
ever, the difference between the
two approaches becomes appar-
ent when we consider the dis-
tribution of parallel(xmin ) in
the two methods. In Fig. 4, we
show the results of Euler and
Nm on 100 runs from initial
points generated by a uniform
random sampling of the region
−10 < t1, A1, t2, A2 < 10. The

values of parallel(xmin ) on all these runs have been clustered into several in-
tervals, and the number of runs leading to outputs in each interval plotted as a
histogram.

As we see, a much larger percentage of

Fig. 5. Landscape of numerical
search for parallel parking algorithm

runs in Euler lead to lower (i.e., better) val-
ues of parallel(xmin ). The difference ap-
pears starker when we consider the num-
ber of runs that led to the best-case be-
havior for the two methods. The best out-
put value computed by both methods was
10.6003; however, 68 of the 100 runs of Eu-

ler resulted in this value, whereas Nm had
26 runs within the range 10.0-15.0.

Let us now see what these different val-
ues of parallel(xmin ) actually mean. We
show in Fig. 6-(a) the trajectory of a car on
an input x for which the value parallel(x)
equals 40.0 (the most frequent output value,
rounded to the first decimal, identified by Nm). The initial and final positions
of the car are marked; the two black rectangles represent other cars; the arrows
indicate the directions that the car faces at different points in its trajectory.
Clearly, this parking job would earn any driving student a failing grade.

On the other hand, Fig. 6-(b) shows the trajectory of a car parked using
Euler on an input for which the output is 10.6, the most frequent output value
found by Euler. Clearly, this is an excellent parking job.
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The reason why Nm fails becomes apparent when we examine the search space
that it must navigate here. In Fig. 5, we plot the function parallel(x) for dif-
ferent values of t2 and A1 (t1 and A2 are fixed at optimal values). Note that
the search space is rife with numerous discontinuities, plateaus, and local min-
ima. In such extremely irregular search spaces, numerical methods are known
not to work—smoothing works by making the space more regular. Unsurpris-
ingly, similar phenomena were observed when we compared Euler with other
optimization techniques implemented in Gsl.

These observations are not specific to parallel parking—similar effects are
seen on other parameter synthesis benchmarks [1] that involve controllers with
discontinuous switching. Several of these benchmarks—including a model of a
thermostat and a model of a gear shift—are part of the Euler distribution.
More generally, the reason why parallel is so ill-behaved is fundamental: even
simple programs may contain discontinuous if-then-else statements, which can be
piled on top of each other through composition and loops, causing exponentially
many discontinuous regions. Smooth interpretation is only the first attempt from
the software community to overcome these challenges; more approaches to the
problem will surely emerge. Meanwhile, readers are welcome to try out Euler

and advise us on how to improve it.

(a) 

(b) 

Fig. 6. (a) Parallel parking as done by Nm; (b) Parallel parking as done by Euler
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Abstract. We present Spt, a tool that helps programmers write low-
level data-structure manipulations by combining various forms of insights
such as abstract and concrete input-output examples as well as imple-
mentation skeletons. When programmers write such manipulations, they
typically have a clear high-level intuition about how the manipulation
should work, but implementing efficient low-level pointer manipulating
code is error-prone. Our tool aims to bridge the gap between the intuition
and the corresponding implementation by automatically synthesizing the
implementation. The tool frames the synthesis problem as a generaliza-
tion of an abstract-interpretation based shape analysis, and represents
the problem as a set of constraints which are solved efficiently by the
Sketch solver. We report the successful evaluation of our tool on syn-
thesizing several linked list and binary search tree manipulations.

1 Introduction

When programmers write data-structure manipulations, they typically have clear
high-level visual insights about how the manipulation should work, but the trans-
lation of these insights to efficient low-level pointer manipulating code is difficult
and error prone. Program synthesis [1,5,6] offers an opportunity to improve pro-
ductivity by automating this translation. This paper describes our tool Spt

1

(Storyboard Programming Tool) that helps programmers write low-level im-
plementations of data-structure manipulations by combining various forms of
insights, including abstract and concrete input-output examples as well as im-
plementation skeletons.

Our tool is based on a new synthesis algorithm [4] that combines abstract-
interpretation based shape-analysis [2,3] with constraint-based synthesis [5,7,8].
The algorithm uses an abstraction refinement based approach to concisely encode
synthesis constraints obtained from shape analysis.

In this paper, we present a high-level storyboard language that allows pro-
grammers to succinctly express the different elements that make up a storyboard.
The language is more concise than the one described in [4] thanks to the use
of inference to derive many low-level details of the storyboard. The paper also
describes the architecture of the Storyboard Programming Tool and presents
some new results comparing Spt with the Sketch synthesis system.
� Supported by NSF under grant CCF-1116362.
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2 Overview: Linked List Deletion

We present an overview of our tool using linked list deletion as a running exam-
ple. The goal of this manipulation is to delete a node pointed to by a variable y

from an acyclic singly linked list. The manipulation iterates over the list until it
finds the required node and then performs a sequence of pointer assignments to
delete the node. Spt synthesizes an imperative implementation of deletion from
a high-level storyboard in about two minutes.

The storyboard that Spt takes as input is composed of scenarios, inductive
definitions and a loop skeleton. A scenario describes the (potentially abstract)
state of a data-structure at different stages of the manipulation. Each scenario
contains at least two configurations: input and output corresponding to the state
of the data-structure before and after the manipulation; a scenario may also
contain descriptions of the state at intermediate points in the computation.

The scenarios for linked list deletion are shown in Figure 1(a), and the cor-
responding visual description of the scenarios is shown in Figure 1(b). The first
scenario s1 describes an abstract input-output example, where the input list
consists of two summary nodes front and back and a concrete node ly that is to
be deleted. In this case, the summary node serves as an abstract representation
of a list of arbitrary size. In general, a summary node represents an arbitrary set
of nodes; those nodes in the set which are connected to other nodes not in the
set are given concrete names and are called attachment points. The summary
node front contains two attachment points front::f and front::l denoting the
first and last elements of the front list respectively.

The state configurations are defined using a list of state predicates such as
(head -> front::f) which denotes that the head variable points to the attach-
ment point f of front. The other scenarios s2, s3 and s4 correspond to the cases
of deleting the last node, the first node and the only node of the list respectively.
Notice that there is no scenario corresponding to the case where the node to be
deleted is not in the list. That means that the behavior of the synthesized code
will be unspecified in such a case.

In order for the synthesizer to reason about summary nodes, the user needs to
specify their structure. In this case, for example, the user needs to express the fact
that front and back are not just arbitrary sets of nodes; they are lists. In Spt,
this structural information is provided inductively through unfold rules. The
two possible unfold rules for the summary node front and their corresponding
visual description are shown in Figure 2. The rule states that the summary node
front either represents a single node x or a node x followed by another similar
summary node front. The unfold predicate consists of the summary node, the
replacement node, the incoming and outgoing edges, and additional constraints
that hold after the unfold operation. In Spt, the programmer can also provide
fold rules to describe to the system how sets of nodes can be summarized by
a single node. In most cases, such as the example, the synthesizer can reason
about the correctness of a manipulation by using the inverse of the unfold rules
for summarization, but for some tree algorithms, the synthesis process can be
made more efficient by providing explicit fold rules for summarization.
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scenario s1
input: head -> front::f, y -> ly
front::l.next -> ly,
back::l -> null, ly.next -> back::f

output: head -> front::f,
front::l.next -> back::f,
back::l.next -> null

scenario s2
input: head -> front::f, y -> ly
ly.next -> null, front::l.next -> ly

output: head -> front::f,
front::l.next -> null

scenario s3
input: head -> ly,ly.next -> back::f,
y -> ly, back::l.next -> null

output: head -> back::f,
back::l.next -> null

scenario s4
input: head -> ly,ly.next -> null,y -> ly
output: head -> null

f l 
front 

ly 

head 

next 
f l 

back next next 

f l 
front 

head 

next 
f l 

back next 

ly 

head 

next 

head 
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front
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y y 
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Fig. 1. Scenarios describing input and output state descriptions for linked list deletion
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unfold front::f x [in (front::f, x)] [out (front::l, x)] ()
unfold front::f x [in (front::f, x)] [out (front::l, front::l)] (x.next -> front::f)

unfold front::f x [in (front::f, x)] [out (front::l, x)] ()
unfold front::f x [in (front::f, front::f)] [out (front::l, x)] (front::l.next -> x)

Fig. 2. Two possible unfold definitions for summary node front

In addition to the scenario descriptions, Spt also requires users to provide
a loop skeleton of the desired implementation. This helps the synthesizer focus
on implementations that are close to the user’s expectations, and also lets them
specify intermediate state constraints. The loop skeleton for the running exam-
ple is shown in Figure 3(a). It consists of a while loop with a set of unknown
statements before the loop, in the loop body and after the loop. The unknown
statements are denoted by the ??(n) operator, where n represents the maximum
length of the unknown statement block. Spt restricts unknown statements to
be of two forms: i) guarded statements of the form if(**) then ASSIGN, where
** represents a conditional over pointer variables and ASSIGN denotes pointer as-
signments with at most one pointer dereference, and ii) unfold/fold statements
of the form unfold var (resp. fold var) that corresponds to unfolding (folding)
the location pointed to by variable var.
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llDelete(Node head, Node y){
Node temp, prev;
??(2) /* h1 */
while(**){ /* h2 */

??(4) /* h3 */
}
??(2) /* h4 */

}

llDelete(Node head, Node y){
Node temp, prev;
temp = head;
while(temp != y){
// unfold temp1;
prev = temp;
temp = temp.next;
// fold prev;

}
if(prev == null)

head = temp.next;
if(prev != null)

prev.next = temp.next;
}

llinsert(Node head, Node y)
{

Node temp1, temp2;
??(2) /* h1 */
while(**){ /* h2 */
??(4) /* h3 */

}
/* position of y found */
yPosFound:
??(4) /* h4 */

}

(a) (b) (c)

Fig. 3. (a) The loop skeleton and (b) the synthesized implementation for linked list
deletion and (c) the loop skeleton for sorted linked list insertion

Given the scenarios, recursive definitions and the loop skeleton, Spt synthe-
sizes the imperative implementation shown in Figure 3(b). The true conditionals
and skip statements are removed from the code for better readability.

3 Algorithm

The details of the synthesis algorithm used by Spt can be found in [4]. At a
high level, the algorithm first translates the loop skeleton into a set of equations
relating the inputs and outputs of all the unknown blocks of code. Let Fi denote
the unknown transfer function that maps a set of program states to another set
of program states. The relationships between the inputs and outputs of all the
transfer functions is captured by a set of equations of the form:

(t0 = Ink) ∧ ∀vi∈(V \v0) ti = Fi(
⋃

j∈pred(vi)

tj) (1)

where pred(vi) denotes the predecessors of node vi in the cfg. Ink denotes the
input state constraint for the kth scenario, and the goal is to find Fi such that
tN = Outk for each scenario k. The system works by representing the Fi as pa-
rameterized functions and solving for the parameters by using a counterexample
guided inductive synthesis [4].

4 Tool Architecture

The architecture of Storyboard Programming Tool consists of four major com-
ponents as shown in Figure 4:
A. Storyboard Parser: The parser takes as input a storyboard description
(*.sb) written in the storyboard language and translates it into our intermedi-
ate constraint language that consists of a set of prolog predicates (*.pl). The
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Fig. 4. The architecture of Storyboard Programming Tool

storyboard language is more concise than [4] because the parser also performs
some type inference to infer variables, locations, selectors, and summary nodes.
B. Constraint Generator: The constraint generator translates the prolog
predicates into a sketch constraint file (*.sk). Sketch provides an expressive
language to define the shape analysis problem, allowing us to use high-level lan-
guage constructs such as functions, arrays and structures to model the abstract
state, as well as holes to model the unknown transfer functions. The problem is
encoded in a way that leverages the counterexample guided inductive synthesis
algorithm of sketch to avoid having to represent sets of shapes explicitly.
C. Sketch Solver: The Sketch solver solves the sketch constraint file and
produces an output (.out) file where all unknown function choices are resolved.
D. Code Generator: The code generator takes as input the output generated
by the Sketch solver and completes the loop skeleton (.c) by mapping the func-
tion choice values to their corresponding program statements and conditionals
using the intermediate constraint file (*.pl).

5 Experiments and Tool Experiences
We evaluated the tool on several linked list and binary search tree manipu-
lations as well as AIG (And-Inverter Graph) insertion. The details about the
experiments and benchmarks can be found in [4]. We present here a comparison
with the Sketch tool on a small sample of benchmarks.
Comparison with Sketch: Table 1 shows the running times of the Story-
board tool with the Sketch system. We can see that Sketch is faster, but can
only perform bounded reasoning (N=5) and quickly times out for larger values
of N. On the other hand, the storyboard tool performs unbounded analysis us-
ing abstract interpretation. However, the biggest difference we found was in the
usability of the tools. We had to spend almost three hours for writing a spec in
Sketch for these manipulations. For writing a sketch, one has to write a con-
verter (and its inverse) for converting (resp. translating back) an array to that
data structure. Then one has to use quantified input variables for writing tricky
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Table 1. Performance comparison with Sketch

Benchmark Sketch Storyboard
(N=5)

ll-reverse 18s 1m40s
ll-insert 31s 2m3s
ll-delete 25s 2m8s

bst-search 39s 2m51s
bst-insert 3m35s 3m12s

specs. In our storyboard tool, we only have to provide input-output examples
which in our experience was a lot more natural. We now present some of our
other experiences in handling complicated manipulations with the tool.
Intermediate State Configurations: Our tool allows users to write interme-
diate state configurations to reduce the search space and enable the synthesizer
to synthesize more complex manipulations. The user can label a program loca-
tion in the loop skeleton and provide the state description at that point using
the intermediate keyword as part of the scenario description. For example in the
case of insertion in a sorted linked list, we add an additional insight based on
the fact that the loop skeleton for the insertion (Figure 3(c)) is performing two
tasks: first to find a suitable location for inserting the node y and the second task
of inserting y into the list. In the abstract scenario, we provide an intermediate
state configuration at the label yPosFound in which two variables point to the
two locations between which the insertion is to be performed.

The Spt tool illustrates a new approach to synthesis namely Multimodal Syn-
thesis, where the synthesizer takes input specification in many different forms
such as concrete examples, abstract examples, and implementation insights, and
synthesizes code that is provably consistent with all of them. We believe this
idea of multimodal synthesis has applicability in many other domains as well.
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Abstract. We present CSolve, an automated verifier for C programs
based on Liquid Type inference. We show how CSolve verifies memory
safety through an example and describe its architecture and interface.

1 Introduction

Verifying low-level programs is challenging due to the presence of mutable state,
pointer arithmetic, and unbounded heap-allocated data structures. In recent
years, dependent refinement types have emerged as a promising approach to
verification in general [1,7] and low-level software in particular [2]. In a refine-
ment type system, each program variable and expression is given a type of the
form {ν : τ | p} where τ is a conventional type such as int or bool and p
is a logical predicate over the program variables describing the values ν which
belong to the type, called the refinement predicate. To keep type checking de-
cidable, refinement predicates are typically drawn from a quantifier-free logic;
by combining SMT-based logical reasoning and type theory-based data structure
reasoning, refinement type systems are easily able to synthesize and reason using
facts about the contents of unbounded data structures.

While powerful, refinement types have typically been associated with a high
annotation burden on the programmer. We present CSolve, an automated ver-
ifier for C programs based on the Low-Level Liquid Types [6] technique for re-
finement type inference. We show how CSolve accommodates refinement type
checking with little necessary annotation.

2 Architecture, Use, and Availability

Type inference in CSolve is split into four phases. In the first phase, the input
C program is read by CIL [4], which generates an AST. This AST is then simpli-
fied in various ways, the most significant of which is that the code is transformed
to SSA so that local variables are never mutated. The second phase generates
physical types for each declared function and global variable and checks that
the program code respects these types. The third phase walks the CIL AST
and assigns each expression and variable in the program a refinement type with

� This work was supported by NSF grants CCF-0644361, CNS-0720802, CCF-0702603,
and a gift from Microsoft Research.
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a distinct refinement variable representing its as-yet-unknown refinement pred-
icate. The same phase generates subtyping constraints over these refinement
types such that solving for the refinement variables within the constraints yields
a valid typing for the program. The fourth phase attempts to solve the sub-
typing constraints using a fixed-point procedure based on predicate abstraction,
using the Z3 SMT solver [3] to discharge the logical validity queries that arise
in constraint solving.

Input. CSolve takes as input a C source code file and a file specifying the set
of logical predicates to use in refinement inference. Predicates are also read from
a standard library of predicates that have proven to be useful on a large variety
of programs, further easing the programmer’s annotation burden.

Output. If the program is type-safe, CSolve outputs “Safe”. Otherwise, the
program may be type-unsafe, according to either the physical type system or the
refinement type system. In either case, for each error, CSolve prints the name
of the file and line number where the error occurs, as well as a description of
the error. In the case where the error is in refinement type inference, CSolve

prints the subtyping constraints which cannot be solved. Whether the program
typechecks or not, CSolve produces a mapping of program identifiers to their
inferred types which can be viewed using the tag browsing facilities provided by
common editors, e.g. Vim and Emacs.

Compatibility With C Infrastructure. Thanks to the infrastructure pro-
vided by CIL, CSolve is able to work as a drop-in replacement for GCC. Hence,
to check a multi-file program one need only construct or slightly modify a make-
file which builds the program from source.

Availability. The CSolve source code and an online demo are available at
http://goto.ucsd.edu/csolve.

3 Example

In the following, we demonstrate the use of CSolve through a series of functions
which manipulate text containing comma-separated values. We begin by showing
how CSolve typechecks library functions against their stated specifications. We
then show how CSolve infers function types to check an entire program.

We begin with a string library function, strntolower, shown in Figure 1,
which lowercases each letter in a string. Its type signature is a C type augmented
with annotations that are used by the CSolve typechecker. The CHECK TYPE

annotation tells CSolve to check strntolower against its type signature, rather
than attempting to infer its type from its uses.

Type checking strntolower proceeds in two phases. First, because C is un-
typed, a physical type checking pass recovers type information describing heap
layout and the targets of pointer-valued expressions. Next, a refinement type
checking pass computes refinement types for all local variables and expressions.

Physical Type Checking. We begin by describing how the type annota-
tions in the example are used by CSolve to infer enriched physical types. The

http://goto.ucsd.edu/csolve
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void
strntolower (char * STRINGPTR SIZE_GE(n) s,
             int NONNEG n)
CHECK_TYPE {
  for (; n−− && *s != ’\0’; s++)
    *s = tolower (*s);
}

extern char * NNSTRINGPTR LOC(L)
       NNREF(&& [s <= V; V < s + n; InB(s)])
strnchr (char * STRINGPTR LOC(L) SIZE_GE(n) s,
         int NONNEG n,
         char c);
 
typedef struct _csval {
  int                 len;
  char * ARRAY LOC(L) str;
  struct _csval *     next;
} csval;

void lowercase_csvals (csval *v) {
  while (v) {
    strntolower (v−>str, v−>len);
    v = v−>next;
  }
}

csval INST(L, S) *
revstrncsvals (char * ARRAY LOC(S) s,
               int n)
{
  csval *last = NULL;
  while (n > 0) {
    csval *v =
      (csval *) malloc (sizeof (*v));
    v−>next  = last;
    v−>str   = s;
    char *c  = strnchr (s, n, ’,’);

    if (!c) c = s + n − 1;

    *c      = ’\0’;
    v−>len  = c − s;
    n      −= v−>len + 1;
    s       = c + 1;
    last    = v;
  }

  return last;
}

...
1. csval *vs =
     revstrncsvals (line, len);
2. lowercase_csvals (vs);
...

Fig. 1. Running example: splitting a string into comma-separated values

char ∗ STRINGPTR portion of the type ascribed to strntolower’s parameter s

indicates to CSolve that s is a reference to a location l which contains an array
of characters, i.e., a string (and not a single char). Concretely, the type of s is
ref(l, {0 + 1∗}), which indicates that s points into a region of memory named
by l. The notation {0 + 1∗}, which is equivalent to {0, 1, 2, . . .}, indicates that s
may point to any nonnegative offset from the start of the region l, i.e., anywhere
in the array. Based on s’s type, CSolve describes the heap as

l �→ {0 + 1∗} : int(1, {0± 1∗}).

The above heap contains a single location, l, whose elements are offsets
from l in the set {0 + 1∗}, defined as above. Each array element has the type
int(1, {0± 1∗}), which is the type of one-byte integers (chars) whose values are
in the set {. . . ,−1, 0, 1, . . .} (i.e., any char). Similarly, the physical type of n is
int(4, {0± 1∗}).

CSolve then determines, through straightforward abstract interpretation in
a domain of approximate integer values and pointer offsets [6], that the phys-
ical types of s, n, and the heap are preserved by the loop within the body of
strntolower; we note only that the return type of tolower indicates that it
returns an arbitrary char, as above. Thus, physical typechecking succeeds, and
we proceed to refinement type checking.

Refinement Type Checking. We next explain how CSolve typechecks the
body of strntolower—in particular, to verify that strntolower’s type signature
implies the safety of the array accesses in its body.
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We begin by describing how the annotations ascribed to strntolower are
translated to a refinement type by CSolve. The type of s uses the convenience
macros STRINGPTR and SIZE GE, defined as:

STRINGPTR
·
= ARRAY REF(SAFE(ν))

SIZE GE(n)
·
= REF(BE (ν)− ν ≥ n).

In the above, ARRAY indicates that the refined type points to an array, used in
physical type checking. The REF macro is used to attach a refinement predicate
to a type. Refinement predicates can themselves be constructed using macros;
SAFE is a macro defined as the predicate

SAFE(p)
·
= 0 < p ∧ BS (p) ≤ p ∧ p < BE (p).

In this definition, the functions BS (p) and BE (p) indicate the beginning and
end of the memory region assigned to pointer p, respectively. Thus, the SAFE(p)
predicate states that p is a non-NULL pointer that points within the memory
region allocated to p, i.e., p is within bounds. The predicate SIZE GE(n) states
that the decorated pointer points to a region containing at least n bytes; note that
this expresses a dependency between the type of s and the value of the parameter
n. We decorate the type of n with NONNEG, which expands to REF(ν ≥ 0).

We now describe how CSolve uses the given types for s and n to verify the
safety of strntolower. To do so, CSolve infers liquid types [5] for the variables
s and i within the body of strntolower, as well as the contents of the heap. A
liquid type is a refinement type whose refinement predicate is a conjunction of
user-provided logical qualifiers. Logical qualifiers are logical predicates ranging
over the program variables, the wildcard ", which CSolve instantiates with the
names of program variables, and the value variable ν, which stands for the value
being described by the refinement type. Below, we assume the logical qualifiers

Q0
·
= {0 ≤ ν, SAFE(ν), " ≤ ν, ν + " ≤ BE (ν), ν �= 0⇒ InB(ν, ")}

where InB(p, q)
·
= BS (p) = BS (q) ∧ BE (p) = BE (q)

where InB(p, q) means p and q point into the same region of memory.
From the form of the loop and the given type for the parameter n, CSolve

infers that, within the body of the loop, n has the liquid type

n ::{ν : int(4, {0± 1∗}) | 0 ≤ ν}.

Based on the type given for the parameter s and the form of the loop, CSolve

infers that, within the loop, s has the liquid type

s ::{ν : ref(l, {0 + 1∗}) | s ≤ ν ∧ ν + n ≤ BE (ν) ∧ ν �= 0⇒ InB(ν, s)}.
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The predicates s ≤ ν, ν + n ≤ BE (ν), and ν �= 0⇒ InB(ν, s) are instantiations
of qualifiers " ≤ ν, ν + " ≤ BE (ν), and ν �= 0⇒ InB(ν, ") from Q0, respectively,
where the " has been instantiated with s, n, and s, respectively. By using an
SMT solver to check implication, CSolve can then prove that s has the type

s ::{ν : ref(l, {0 + 1∗}) | SAFE(s)}
and thus that the accesses to ∗s within strntolower are within bounds.

External Definitions. If the user specifies a type for a function with the
extern keyword, CSolve will use the provided type when checking the current
source file, allowing the user to omit the body of the external function. This
allows for modular type checking and, by abstracting away the details of other
source files, it permits the user to work around cases where a function may be
too complex for CSolve to typecheck.

In the sequel, we use the library function strnchr, which attempts to find
a character c within the first n bytes of string s, returning a pointer to the
character within s on success and NULL otherwise. Its type, declared in Figure 1,
illustrates two new features of CSolve’s type annotation language. First, macros
that begin with NN are analogous to the versions without the NN prefix, but the
refinement predicates they represent are guarded with the predicate (ν �= 0).
Such macros are used to indicate properties that are only true of a pointer when
it is not NULL. Second, the annotation LOC(L) is used to provide may-aliasing
information to CSolve. The annotation LOC(L) on both the input and output
pointers of strnchr indicates that both point to locations in the same may-alias
set of locations, named L. This annotation is necessary because CSolve assumes
by default that all pointers passed into or out of a function refer to distinct heap
locations. This assumption that pointers do not alias is checked : if the annotation
were not given, CSolve would alert the user that locations that were assumed
distinct may become aliased within the body of strnchr.

Whole-Program Type Inference. The remainder of Figure 1 shows a frag-
ment of a program which reads lines of comma-separated values from the user,
splits each line into individual values (revstrncsvals), and then transforms
each value to lowercase (lowercase csvals). In the following, we describe how
CSolve performs refinement type inference over the whole program to deter-
mine that all of its memory accesses are safe.

The remainder of the program manipulates linked lists of comma-separated
values, described by the structure type csval. Note that the field str is an-
notated with the ARRAY attribute, as before, as well as a may-alias set, L. By
declaring that the str field points to may-alias set L, we parameterize the csval
structure by the location set L that its str field points into. The programmer
can then instantiate the parameterized location set according to context to in-
dicate potential aliasing between the str field and other pointers. For example,
the annotation INST(L, S) in the type of revstrncsvals instantiates csval’s
may-alias set parameter L in that type to the location set S, indicating that the
input string s and the strings stored in the list of csvals reside in heap locations
in the same may-alias set, S.
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In the following, we assume the set of qualifiers is

Q
·
= Q0 ∪ {ν �= 0⇒ " ≤ ν, ν �= 0⇒ ν < "+ ", ν �= 0⇒ ν = BS (ν),

ν �= 0⇒ BE (ν)− BS (ν) = 12, ν = "+ ("− ")}.

At the line marked 1, we assume CSolve has inferred the types

line ::{ν : ref(l, {0 + 1∗}) | SAFE(ν) ∧ SIZE GE(len)}
len ::{ν : int(4, {0± 1∗}) | true}.

From line 1, CSolve infers that argument s of revstrncsvals of has type

s ::{ν : ref(l, {0 + 1∗}) | SAFE(ν) ∧ SIZE GE(n)}.

CSolve infers that this type is a loop invariant, and thus that the call to
strnchr is type-correct. CSolve infers from the type of malloc that v has type

v ::{ν : ref(lv, {0}) | VALPTR(ν)}
VALPTR(p)

·
= ν = BS (ν) ∧ BE (ν) − BS (ν) = 12 ∧ ν > 0,

indicating that v is a non-NULL pointer to a 12-byte allocated region; this allows
CSolve to verify the safety of the indirect field accesses.

Finally, CSolve infers that v and last refer to elements within a set of
run-time locations, collectively named lv. Each location in lv has type

lv �→ 0 : {ν : int(4, {0± 1∗}) | 0 ≤ ν},
4 : {ν : ref(l, {0 + 1∗}) | SAFE(ν) ∧ SIZE GE(@0)},
8 : {ν : ref(lv, {0}) | ν �= 0⇒ VALPTR(ν)}.

Offsets 0, 4, and 8 in the type of lv correspond to the fields len, str, and next,
respectively. The notation @n is used in refinement predicates to refer to the
value stored at offset n within the location; in this case, @0 is used to indicate
that the str field points to an allocated region of memory whose size is at least
the value given in the len field. The type of heap location l is as given earlier.
The type of the next field indicates that it contains a pointer to the location lv,
i.e., that the next field contains a pointer to the same kind of structure. Thus,
CSolve that lists constructed by revstrncsvals satisfy the above invariant.

Because the pointer last is returned from revstrncsvals and due to the call
on line 2, as well as the type of lv given above, CSolve is able to determine that
the array accesses and call to strntolower within lowercase csvals are safe,
and thus prove the program is memory safe.
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Abstract. passert is a new debugging tool for parallel programs which
allows programmers to express correctness criteria using a simple, expres-
sive assertion language. We demonstrate how these parallel assertions
allow the detection and diagnosis of real world concurrency bugs, de-
tecting 14/17 bugs in an independently selected set of bugs from open
source software. We describe a runtime checker which allows automatic
checking of parallel assertions in C and C++ programs, with a geometric
mean of 6.6× overhead on a set of PARSEC benchmarks. We improve
performance by introducing a relaxed timing semantics for parallel asser-
tions, which better reflects real memory models, and exposes more bugs
with less overhead (geometric mean overhead 3.5×).

1 Introduction

passert is a new debugging tool for parallel programs which allows programmers
to express correctness criteria using a simple, expressive assertion language. If a
correctness property is violated during program execution, an automatic runtime
checker will detect the violation.

Such a tool is necessary because the standard assertions that are widely used
for debugging sequential programs are highly limited for parallel programming.
In a sequential program, it is sufficient to check whether a property holds at a
particular point in time. In a parallel program it is possible for a property to be
true when a section of code begins executing, for the code in question to make no
changes that could falsify the property, and yet for the property to be violated
by the actions of a second thread. Checking whether a property holds during
execution through a small code segment potentially requires annotating every
statement of the program with assertions. Even this might not be sufficient: since
assertions are not synchronized with code execution, checking an assertion that
depends on more than one program variable might be impossible to do correctly
without significant code modification.

Parallel assertions, the input language of passert, solve this problem by pro-
viding a simple, understandable set of predicates that allow programmers to
write local assertions which allow testing of multithreaded programs.

� The authors acknowledge the support of the Gigascale Systems Research Center
(GSRC), one of six research centers funded under the Focus Center Research Pro-
gram (FCRP), a Semiconductor Research Corporation (SRC) entity.
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2 The Parallel Assertion Language

2.1 Syntax

A programmer debugging a piece of code wants to know whether a property holds
during the execution of a piece of code. A parallel assertion therefore consists of
two parts: a description of the times when the assertion is expected to be true,
which we call the assertion scope, and the property which is expected to hold,
which we call the assertion condition. Parallel assertions are expressed using
simple, easy to use predicates. More powerful formulations, such as temporal
logic, are possible but are unfamiliar to programmers and provide expressiveness
at the cost of complexity.

Parallel assertions are applicable to many programming languages. This paper
focuses on our C/C++ implementation; a full formal syntax and semantics is
provided in [3].

Assertion Scope. The assertion scope is a block of code which delineates the
time during which the assertion condition must hold. It begins with the keyword
thru and ends with passert(cond).
thru {

... ;

} passert (cond)

Assertion Condition. The assertion condition is a side-effect free Boolean
expression, which can contain Boolean combinations of any of the following sub-
expressions:

Type Description Example

Value Any side effect free boolean expression x > 5

LocalRead(x) True when the asserting thread is reading the variable x LR(x)

LocalWrite(x) True when the asserting thread is writing the variable x LW(x)

RemoteRead(x)
True when a thread other than the asserting thread is
reading the variable x

RR(x)

RemoteWrite(x)
True when a thread other than the asserting thread is
writing the variable x

RW(x)

HasOccurred(expr)
True iff expr has ever been true while the assertion was
active

HO(expr)

2.2 Assertion Semantics

The result of a parallel assertion is defined relative to a program execution i.e.
an observed interleaving of read and write events by the executing threads. We
augment this program execution by adding assertion begin and assertion end
events, which mark the beginning and end of assertion scopes. A timeline is an
observed total ordering of these events for a particular execution of a parallel
program. (Under certain circumstances, discussed in Sec. 6.2, this requirement
for a total ordering can be relaxed).
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An assertion holds, for a particular timeline, if the assertion condition is true
for all times between the beginning and end assertion events. It fails if there is
any time between the begin and end events during which the assertion condition
is not true. Since assertions are checked, not enforced, they can be used for
debugging and then turned off for production.

3 Applicability of Parallel Assertions to Real World Bugs

Assertions have two purposes: to detect unexpected events that may represent
bugs, and to test hypotheses to diagnose the cause of these bugs. We evaluated
the effectiveness of parallel assertions using the University of Michigan Collection
of Concurrency Bugs [4]1, an independently selected collection of real world
concurrency bugs from major open source programs. For each bug, we attempted
to write a parallel assertion to detect its symptoms and diagnose its underlying
cause, without requiring any other code modifications.

Bug Analysis Example MySQL-3.23.56 had a concurrency bug which caused it to
produce a nonsensical log: for example, it could report a successful insert before
the associated table had been created. We identified several possible explanations
for this bug, and wrote a parallel assertion to test each of these.

– Assertion 1 checked for a data-race problem and confirmed that all accesses
to the log are protected by a lock.

– Assertion 2 determined that inserts never occurred while the table was in-
valid.

– Assertion 3 tested whether the log order represents the actual order of events,
i.e. does an operation (such as creating a table), and the logging of that
operation, form a single atomic unit. This seemingly simple test requires the
expressiveness of parallel assertions. It would be incorrect to mark the entire
generate table() function as atomic, because it correctly accesses shared
variables in a non-transactional way. In addition, while conflicting writes to
the logger represent an error, reads may not. This assertion captures these
subtleties, and successfully diagnosed the cause of the error.

These assertions could subsequently be left in the program as regression tests.
int generate_table(...) {
...

thru{
pthread_mutex_lock(&LOCK_open);

// delete the original table

// create a new table

pthread_mutex_unlock(&LOCK_open);

mysql_update_log.write(...);

}passert(!RW(mysql_update_log));
...

}

bool MYSQL_LOG::write(...) {
...

pthread_mutex_lock(&LOCK_log);

// log event

pthread_mutex_unlock(&LOCK_log);

...

}

(Parallel assertion to identify MySql bug 169)

1 Currently maintained at http://www.eecs.umich.edu/~jieyu/bugs.html

http://www.eecs.umich.edu/~jieyu/bugs.html
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Summary of Bug Coverage Almost all (14/17) of the bugs in the University of
Michigan Collection can be detected using parallel assertions (shown in the table
below). Of these, thirteen can also be diagnosed using parallel assertions; one
is a multi-function atomicity violation, which would be difficult to capture in a
single syntactic scope. passert is not designed to detect deadlock and complex
order-violation bugs.

Bug ID Bug Type
Detect

Symptom
Diagnose
Cause

Apache #25520, 21287
MySQL #44, 791, 2011, 3596, 12848
Cherokee Bug1, Aget Bug2

Data Race Yes Yes

Apache #45605
MySQL #169, 12228
Memcached #127

Atomicity Yes Yes

Apache #21285 Atomicity Yes No
Pbzip2 0.9.4, Transmission 1.42 Order Violation No No
Aget Bug1 Deadlock No No

4 Tool Design

passert is a compiler that automatically adds runtime support for parallel as-
sertions in C/C++ programs. It is implemented as an extension to the LLVM
[2] compiler suite, and supports the same programs and language features as
the standard LLVM compiler. At present, passert targets programs using the
pthreads threading library; we expect that it will be easy to extend it to other
threading models, such as Windows threads.

We reduced the impact of assertion evaluation on program execution by de-
coupling execution and checking: as the program executes, relevant loads/stores
are timestamped and logged for subsequent checking.

Logging. To reduce logging overhead, we use alias analysis to determine whether
a load or store may access a variable in a parallel assertion condition. Since static
alias analysis is overly conservative, passert also maintains a hash-table which
records whether accesses to a given memory location need to be logged. Colli-
sions in the hash-table may cause unnecessary logging, but will never cause an
event to be missed from the log.

Checking. Checking can either be done online, using a separate checking thread
and synchronized queues, or offline, in which case no synchronization needs to
be done on the queues. Performance results are discussed in Sec. 7.

Avoiding Stalls. An event can only be processed if all events which occur
before it in the execution trace have already been processed. If a thread stops
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generating events, it becomes impossible to determine the correct sequence of
events, since the checker has no way of distinguishing between “no event” and “a
not-yet-logged event”. The checker must therefore conservatively wait until the
thread resumes generating events. If a thread which is about to stall can gener-
ate a Thread Stalled event, the checker can continue without waiting. passert
automatically generates such events before calls to blocking functions such as
pthread_join(), pthread_barrier_wait() and pthread_cond_wait(). Pro-
grammers writing specialized synchronization libraries can add their own event
annotations. They can also insert Heartbeat Events into code which is unlikely
to generate any logged events, such as calculations on privatized data. As a fu-
ture extension, we hope to introduce heuristics that will automatically add these
events at appropriate points.

5 Response to Assertion Failure

When an assertion fails, passert informs the user and prints out a set of diag-
nostic information. This information includes which memory access caused the
assertion failure (including time, thread id, value, and type of access), as well
as which assertion was triggered. If the user desires, passert can output its full
log to a file. If the program has been compiled with debug symbols, it is possible
to associate the log information with program locations, although this is not
currently implemented. A compiler flag controls whether the executable should
abort or continue after an assertion violation.

In addition, passert provides a feedback function which allows user code to
block until the checker has evaluated all events before the feedback function
call began, and then returns the checker status (i.e. failure or success). The
program can use this mechanism to ensure that a dangerous action only occurs
after correct execution, or to rollback and recover after an assertion failure. As
a convenience, passert can automatically insert a checker feedback call at the
end of each thru block.

6 Timing modes

The semantics of parallel assertions, as introduced in [3], requires a total order-
ing of events during a concurrent execution. However, modern microprocessors
typically have more relaxed semantics, which allow for event sequences which do
not have any consistent total order.

6.1 Strict Timing

In strict timing mode, this total ordering is enforced through the use of locks and
fences around every logged memory access. Timestamps can be acquired either
through a global counter, or through a hardware timestamping mechanism such
as RDTSC [1].
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6.2 Relaxed Timing

Not all parallel assertions require a total order over program events in order to
be correctly evaluated. In some cases, a partial order among certain types of
events is sufficient. In particular, any assertion which either:

– Only contains access predicates (such as RemoteWrite(x)), or

– Contains value predicates, but only references a single variable

requires a partial order between access and assertion begin/end events, but does
not require any further ordering among access events.

Relaxed Timing Mode enforces only these minimal constraints, dramatically
reducing the number of locks and memory fences required. This both reduces
runtime overhead (see Sec. 7), and allows a wider range of bugs to manifest,
since locks prevent certain combinations and orderings of events that would be
legal and possible in the underlying hardware model.

7 Results

We evaluated the runtime performance of passert using the assertion-annotated
PARSEC benchmarks described in [3]. All benchmarks were compiled at opti-
mization level O3, and were executed on a quad core Intel X3440 with 16GB of
RAM. The runtime for each benchmark, normalized to the unmodified bench-
mark compiled using standard gcc, is reported in Fig. 1.

The online checker performs checking in parallel with execution, which speeds
up the checking phase, but requires extra synchronization in the logging phase.
Currently, these two effects roughly cancel each other out; we hope to remove
this overhead with further optimization. Strict timing had a geometric mean
overhead of 6.6×. Relaxed timing was significantly faster, with a geometric mean
overhead of 3.5×.

Fig. 1. Runtime overhead for parsec benchmarks
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8 Conclusion

passert provides programmers with a new tool to identify elusive bugs in par-
allel programs. Until now, parallel programs have been challenging to debug,
because it has been hard to express and check assumptions about program ex-
ecution across multiple threads. Our experience with the Michigan Bug Collec-
tion shows that parallel assertions are sufficiently expressive to capture a range
of real-world bugs. Our performance experiments indicate that checking these
assertions can be done with reasonable overhead. The simple, expressive syn-
tax of passert allows programmers to express correctness conditions to debug
programs with a high degree of efficacy and a minimum of effort.

References

1. Intel Corporation. Intel 64 and IA-32 Architectures Developer’s Manual (2010)
2. Lattner, C.: LLVM: An Infrastructure for Multi-Stage Optimization. Master’s thesis,

Computer Science Dept., University of Illinois at Urbana-Champaign, Urbana, IL
(2002)

3. Schwartz-Narbonne, D., Liu, F., Pondicherry, T., August, D., Malik, S.: Parallel
assertions for debugging parallel programs. In: MEMOCODE 2011, pp. 181–190
(2011)

4. Yu, J., Narayanasamy, S.: A case for an interleaving constrained shared-memory
multi-processor. In: ISCA 2009, pp. 325–336 (2009)



TRACER: A Symbolic Execution Tool for Verification�

Joxan Jaffar1, Vijayaraghavan Murali1, Jorge A. Navas2, and Andrew E. Santosa3

1 National University of Singapore
2 The University of Melbourne

3 University of Sydney

Abstract. We present TRACER, a verifier for safety properties of sequential C
programs. It is based on symbolic execution (SE) and its unique features are in
how it makes SE finite in presence of unbounded loops and its use of interpolants
from infeasible paths to tackle the path-explosion problem.

1 Introduction

Recently symbolic execution (SE) [15] has been successfully proven to be an alternative
to CEGAR for program verification offering the following benefits among others [12,18]:
(1) it does not explore infeasible paths avoiding expensive refinements, (2) it avoids ex-
pensive predicate image computations (e.g., Cartesian and Boolean abstractions [2]),
and (3) it can recover from too-specific abstractions as opposed to monotonic refine-
ment schemes often used. Unfortunately, it poses its own challenges: (C1) exponential
number of paths, and (C2) infinite-length paths in presence of unbounded loops.

We present TRACER, a SE-based verification tool for finite-state safety properties
of sequential C programs. Informally, TRACER attempts at building a finite symbolic
execution tree which overapproximates the set of all concrete reachable states. If the
error location cannot be reached from any symbolic path then the program is reported
as safe. Otherwise, either the program may contain a bug or it may not terminate. The
most innovative features of TRACER stem from how it tackles (C1) and (C2).

In this paper, we describe the main ideas behind TRACER and its implementation as
well as our experience in running real benchmarks.

1.1 State-Of-The-Art Interpolation-Based Verification Tools

SLAM

FSOFT

SATABS

BLAST

HSF/ARMC

YOGI

CPA-CHECKER

KRATOS
IMPACT II

TRACER

Lazy Eager

Weaker

Stronger

Fig. 1. State-of-the-art verifiers

Fig. 1 depicts one possible view of
current verification tools based on two
dimensions: laziness and interpolation
strength. Lazy means that the tool starts
from a coarsely abstracted model and
then refines it while eager is its dual,
starting with the concrete model and then
removing irrelevant facts. CEGAR-based
tools [1,4,7,10,21] are the best examples

� This paper extends the ideas published in [12,13] by describing a method for computing weak-
est preconditions as interpolants as well as a detailed description of the architecture of the tool
and a new experimental evaluation.
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of lazy approaches while SE-based tools [12,18] are for eager methods. Special men-
tion is required for hybrid approaches such as YOGI [20], CPA-CHECKER [3], and
KRATOS [5]. YOGI computes weakest preconditions from symbolic execution of paths
as a cheap refinement for CEGAR. One disadvantage is that it cannot recover from too-
specific refinements (see program diamond in [18]). CPA-CHECKER and KRATOS en-
code loop-free blocks into Boolean formulas that are then subjected to an SMT solver in
order to exploit its (learning) capabilities and avoid refinements due to coarser abstrac-
tions often used in CEGAR. On the other hand, the performance of interpolation-based
verifiers depends on the logical strength of the interpolants1. In lazy approaches, a weak
interpolant may contain spurious errors and cause refinements too often. Stronger in-
terpolants may delay convergence to a fixed point. In eager approaches, weaker inter-
polants may be better (e.g., for loop-free fragments) than stronger ones since they allow
removing more irrelevant facts from the concrete model.

TRACER performs SE computing efficient approximated weakest preconditions as
interpolants. To the best of our knowledge, TRACER is the first publicly available
(paella.d1.comp.nus.edu.sg/tracer) verifier with these characteristics.

2 How TRACER Works

Essentially, TRACER implements classical symbolic execution [15] with some novel
features that we will outline along this section. It takes symbolic inputs rather than
actual data and executes the program considering those symbolic inputs. During the ex-
ecution of a path all its constraints are accumulated in a first-order logic (FOL) formula
called path condition (PC). Whenever code of the form if(C) then S1 else S2 is reached
the execution forks the current symbolic state and updates path conditions along both
the paths: PC1 ≡ PC∧C and PC2 ≡ PC∧¬ C. Then, it checks if either PC1 or PC2

is unsatisfiable. If yes, then the path is infeasible and the execution halts backtracking to
the last choice point. Otherwise, it follows the path. The verification problem consists of
building a finite symbolic execution tree that overapproximates all concrete reachable
states and proving for every symbolic path the error location is unreachable.

The first key aspect of TRACER, originally proposed in [13] for symbolic execution,
is the avoidance of full enumeration of symbolic paths by learning from infeasible paths
computing interpolants [8]. Preliminary versions of TRACER [12,13] computed inter-
polants based on strongest postconditions (sp). Given two formulas A (symbolic path)
and B (last guard where infeasibility is detected) such that A ∧ B is unsat, an inter-
polant was obtained by ∃x · A where x are A-local variables (i.e., variables occurring
only in A). However, unlike CEGAR, TRACER starts from the concrete model of the
program and then deletes irrelevant facts. Therefore, the weaker the interpolant is the
more likely it is for TRACER to avoid exploring other “similar” symbolic paths. This is
the motivation behind an interpolation method based on weakest preconditions (wp).

Example 1. The verification of the contrived program in Fig. 2(a) illustrates the need
for wp as well as the essence of our approach to mitigate the “path-explosion” problem.
Fig. 2(b) shows the first symbolic path explored by TRACER which is infeasible. (*)

1 Given formulas A and B such that A ∧ B is unsatisfiable, a Craig interpolant [8] I satisfies:
(1) A |= I , (2) I ∧ B is unsatisfiable, and (3) its variables are common to A and B. We say
an interpolant I is stronger (weaker) than I ′ if I |= I ′ (I ′ |= I).

paella.d1.comp.nus.edu.sg/tracer
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〈0〉 s=0;
〈1〉 if(*)
〈2〉 s++;

else
〈3〉 s+=2;
〈4〉 if(*)
〈5〉 s++;

else
〈6〉 s+=2;
〈7〉 if(s > 10)
〈8〉 error();
〈9〉
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Fig. 2. Symbolic Trees with Strongest Postconditions or CLP-PROVER (running TRACER on pro-
gram in Fig. 2(a) with options -intp sp or -intp clp)
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Fig. 3. Symbolic Trees with Weakest Preconditions (running TRACER with -intp wp)

means that the evaluation of the guard can be true or false. After renaming we obtain
the unsatisfiable constraints s0 = 0 ∧ s1 = s0 + 1 ∧ s2 = s1 + 1 ∧ s2 > 10. State-
of-the-art interpolation techniques will annotate every location with its corresponding
interpolant: ι1 : s0 ≤ 0, ι2 : s0 ≤ 0, ι4 : s1 ≤ 1, ι5 : s1 ≤ 1, and ι7 : s2 ≤ 2 where
ιk refers to the interpolant at location k. In all figures, interpolants are enclosed in (red)
boxes. Fig. 2(c) shows the tree after the second symbolic path has been explored. At
location 7 of the second path TRACER tests if the current symbolic state s0 = 0 ∧ s1 =
s0 + 1 ∧ s2 = s1 + 2 is subsumed2 by ι7 : s2 ≤ 2, the interpolant at 7. However, this
tests fails since s0 = 0 ∧ s1 = s0 + 1 ∧ s2 = s1 + 2 �|= s2 ≤ 2. Similarly, TRACER

attempts again at location 4 of the third path in Fig. 2(d) if the new symbolic path can
be subsumed by a previous explored path. Here, it tests if s0 = 0∧ s1 = s0 +2 implies
ι4 : s1 ≤ 1 but again it fails. TRACER can prove the program is safe but the symbolic
execution tree built is exponential on the number of program branches. ��

2 A symbolic state σ is subsumed or covered by another symbolic state σ′ if they refer to same
location and the set of states represented by σ is a subset of those represented by σ′. Alterna-
tively, if σ and σ′ are seen as formulas then σ is subsumed by σ′ if σ |= σ′.
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For efficiency, TRACER under-approximates the weakest precondition by a mix of ex-
istential quantifier elimination, unsatisfiable cores, and some heuristics. Whenever an
infeasible path is detected we compute ¬ (∃y ·G), the postcondition that we want to
map into a precondition, where G is the guard where the infeasibility is detected and y
are G-local variables. The two main rules for propagating wp’s are:

(A) wp(x := e, Q) = Q[e/x]
(B) wp(if(C) S1 else S2,Q) = (C ⇒ wp(S1, Q)) ∧ (¬ C ⇒ wp(S2, Q))

Rule (A) replaces all occurrences of x with e in the formulaQ. The challenge is how to
produce efficient (conjunctive) formulas from rule (B) as weak as possible to increase
the likelihood of subsumption. During the forward SE when an infeasible path is de-
tected we discard irrelevant guards by using the concept of unsatisfiable cores (UC)3 to
avoid growing the wp formula unnecessarily. For instance, the formulaC ⇒ wp(S1, Q)
can be replaced with wp(S1, Q) if C �∈ C where C is a (not necessarily minimal) UC.
Otherwise, we underapproximate C ⇒ wp(S1, Q) as follows. Let d1 ∨ . . . ∨ dn be
¬ wp(S1, Q) then we compute

∧
1≤i≤n(¬ (∃ x′ · (C ∧ di))), where existential quan-

tifier elimination removes the post-state variables x′. A very effective heuristic if the
resulting formula is disjunctive is to delete those conjuncts that are not implied by C
because they are more likely to be irrelevant to the infeasibility reason.

Example 2. Coming back to the program in Fig 2(a). Fig. 3(a) shows the same first
symbolic path explored by TRACER but annotated with weakest preconditions: ι1 :
s0 ≤ 8, ι2 : s0 ≤ 8, ι4 : s1 ≤ 9, ι5 : s1 ≤ 9, and ι7 : s2 ≤ 10. In this example, the
wp computations are notably simplified since the guards are clearly irrelevant for the
infeasibility of the path, and hence, only rule (A) is triggered. For instance, ι7 : s2 ≤ 10
is obtained by ¬ (∃V \ {s2} · s2 > 10) ≡ s2 ≤ 10 where V is the set of all program
variables (including renamed variables), and ι6 : s1 ≤ 9 is obtained bywp(s2 = s1+1,
s2 ≤ 10) = s1 ≤ 9. Fig. 3(b) shows the second symbolic path but note that the path
can be now subsumed at location 7 since the symbolic state s0 = 0 ∧ s1 = s0 + 1 ∧
s2 = s1 + 2 |= s2 ≤ 10. Dashed edges represent subsumed paths and are labelled
with “subsumed”. Finally, Fig. 3(c) illustrates how the third symbolic path can be also
subsumed at location 4 since s0 = 0 ∧ s1 = s0 + 2 |= s1 ≤ 9. TRACER proves safety
again but the size of the symbolic tree is now linear on the number of branches. ��
With unbounded loops the only hope to produce a proof is abstraction. In a nutshell,
upon encountering a cycle TRACER computes the strongest possible loop invariants Ψ
by using widening techniques in order to make the SE finite. If a spurious abstract error
is found then a refinement phase (similar to CEGAR) discovers an interpolant I that rules
the spurious error out. After restart, TRACER strengthens Ψ by conjoining it with I and
the symbolic execution checks path by path if the new strengthened formula is loop
invariant. If this test fails for a path π, then TRACER unrolls π one more iteration and
continues with the process. Notice that the generation of invariants is dynamic in the
sense that loop unrolls will expose new constraints producing new invariant candidates.
For lack of space, we refer readers to [12] for technical details. Here, we illustrate how
TRACER handles unbounded loops through the classical example described in Fig 4(a).

3 Given a constraint set S whose conjunction is unsatisfiable, an unsatisfiable core (UC) S′ is
any unsatisfiable subset of S. An UC S′ is minimal if any strict subset of S′ is satisfiable.
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〈0〉 lock=0; new=old+1;
〈1〉 while(new �= old) {
〈2〉 lock=1; old=new;
〈3〉 if(*)
〈4〉 lock=0;new++;
〈5〉 }
〈6〉 if(lock == 0)
〈7〉 error();
〈8〉
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Fig. 4. TRACER execution for an excerpt from a NT Windows driver

Example 3. TRACER executes the program until a cycle is found and checks whether
a certain set of loop candidates holds after the execution of the cycle. We obtain the
symbolic path π1 ≡ lock0 = 0 ∧ new0 = old0 + 1 ∧ (new0 �= old0) ∧ lock1 =
1 ∧ old1 = new0 from executing the else branch, shown in Fig. 4(b). Assume a
widening ∇ defined as c ∇ c′ � c if c′ |= c otherwise true, where c and c′ are the
constraint versions before and after the execution of the cycle corresponding to one
candidate. Then, widening our loop candidates (shown between curly brackets in the
first occurrence of location 1) {lock0 = 0, new0 = old0 + 1} produces an abstracted
symbolic state true ((lock0 = 0) ∇ (lock1 = 1) ≡ true and (new0 = old0 +
1) ∇ (old1 = new0) ≡ true). The path π1 after widening is shown in Fig. 4(c). Note
that the symbolic state at the loop header is true, and as a result, we can stop executing
and avoid unrolling the path π1 forever since the child (second occurrence of location
1) is subsumed by its parent (first occurrence of 1). We then backtrack to a second
path π2 from executing the then branch. For π2, the candidates are indeed invariants
but this is irrelevant since the execution of π1 already determined that they were not
invariant. As a result of the loss of precision of our abstraction, the exit condition of
the loop (new0 = old0) (Fig. 4(d)) is now satisfied and the error location is reachable
by the path π3 ≡ (new0 = old0) ∧ (lock0 = 0). Then, a refinement is triggered.
First, we check that π3 is indeed spurious due to the loop abstraction (i.e., lock0 =
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0 ∧ new0 = old0 + 1 ∧ (new0 = old0) ∧ (lock0 = 0) is unsatisfiable). Second, by
weakest preconditions we infer an interpolant I ≡ new0 �= old0 that suffices to rule
out the counterexample. Third, we strengthen our loop abstraction true with I , record
that I cannot be abstracted further, and restart.

After restart, the execution of π1 shown in Fig. 4(e) cannot be halted at location
labelled with B since (new0 = old0 + 1) ∇ (old1 = new0) is still true but this
abstraction does not preserve new0 �= old0, the interpolant from the refinement phase.
As a result, we are not allowed to abstract the candidate new0 = old0 +1 at locationA
and thus the path must be unrolled one more iteration. However, the unrolled path will
not take the loop body anymore but follow the exit condition propagating the constraints
lock1 = 1∧new1 = old0. Hence, the unrolled path is safe. Finally, we explore π2 from
the then branch shown in Fig. 4(f). Fortunately, we can stop safely the execution of
π2 (as before) since no abstraction is needed for this path and hence, new0 �= old0 is
preserved. As a result, the state of the child C is subsumed by its ancestor A. ��

Remarks. It is known that wp may fail to generalize with some loops as Jhala et al.
pointed out in [14]. TRACER can be fed with other interpolation methods and/or with
inductive invariants from external tools (see Sec. 3). Also, our path invariant technique
via widening is closely related to the widening ”up to”S (∇S) used in [9], whereS con-
tains the constraints inferred by the refinement phase. However, they use it to enhance
CEGAR while SE poses different challenges (see [12] Sec.1, Ex.3). Finally, we would
like to emphasize that abstraction in TRACER differs from CEGAR in a fundamental
way. TRACER attempts at inferring the strongest loop invariants modulo the limitations
of widening techniques while CEGAR, as well as hybrid tools like CPA-CHECKER and
KRATOS, will often propagate coarser abstractions. Although stronger abstractions may
be more expensive they may converge faster in presence of loops (see [12] Sec.1, Ex.4).

3 Usage and Implementation

Loop Inv. Gen

Error

Safe Refinement
Loop Inv.

Abstract
Error

C program

SE Interpreter

C frontend

Alias Analysis

InterProc

Interpolation

Constraint Solving

Interpreter

Frontend

Fig. 5. Implementation of TRACER

Input. TRACER takes as input a C
program with assertions of the form
TRACER abort(Cond), where Cond is a

quantifier-free FOL formula. Then, each path
that encounters the assertion tests whether
Cond holds or not. If yes, the symbolic exe-
cution has reached an error node and thus, it
reports the error and aborts if the error is real,
or refines if spurious. Otherwise, the symbolic
execution continues normally.

Output. If the symbolic execution terminates
and all TRACER abort assertions failed then
the program is reported as safe and the corre-

sponding symbolic execution tree is displayed as the proof object. If the program is
unsafe then a counterexample is shown.
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Implementation. Fig. 5 outlines the implementation of TRACER. It is divided into
two components. First, a C-frontend based on CIL [19] translates the program into a
constraint-based logic program. Both pointers and arrays are modeled using the theory
of arrays. An alias analysis is used in order to yield sound and finer grained indepen-
dent partitions (i.e., separation) as well as infer which scalars’ addresses may have been
taken. Optionally, INTERPROC [17] (option -loop-inv) can be used to provide loop
invariants. The second component is an interpreter which symbolically executes the
constraint-based logic program and it aims at demonstrating that error locations are un-
reachable. This interpreter is implemented in a Constraint Logic Programming (CLP)
system called CLP(R) [11]. Its main sub-components are:

• Constraint Solving relies on the CLP(R) solver to reason fast over linear arithmetic
over reals augmented with a decision procedure for arrays (option -mccarthy).

• Interpolation implements two methods with different logical strength. The first
method uses strongest postconditions [12,13] (-intp sp). The second computes
weakest preconditions (-intp wp) but currently it only supports linear arithmetic
over reals. TRACER also provides interfaces to other interpolation methods such as
CLP-PROVER (-intp clp).

• Loop Invariant Refinement. Similar to CEGAR the effectiveness of the refinement
phase usually relies on heuristics (-h option). But unlike CEGAR tools, SE only
performs abstractions at loop headers. Thus, given a path that reaches an error lo-
cation TRACER only needs to visit those abstraction points in the path and check if
one of the them caused the reachability of the error. If yes, it uses interpolation to
choose which constraints can rule out the error. Otherwise, the error must be real.

• Loop Invariant Generation. If a loop header is found TRACER records a set of loop
invariant candidates by projecting onto the propagated symbolic state. When a cy-
cle π is found it widens the state at the header by c∇c′ where c′ is the candidate c
after the execution of π. Current implementation of widening is c∇c′ � c if c′ |= c
otherwise true. Very importantly, if∇ attempts at abstracting a constraint needed to
exclude an error then it fails and the path is unrolled at least one more iteration. Al-
though our experiments show that our method for discovering loop invariants is fast
and effective, it is incomplete (in the sense that it may cause non-termination) for
several reasons. First, the generation of candidates considers only constraints prop-
agated by SE although TRACER allows enriching this set with inductive invariants
provided by INTERPROC. Second, the implementation of ∇ is fairly naive. Third,
∇ is applied to each candidate individually. By applying∇ to all candidate subsets
we could produce richer invariants, although this process would be exponential.

4 Experience with Benchmarks

We ran TRACER on the ntdrivers-simplified and ssh-simplified benchmarks from
SV-COMP (sv-comp.sosy-lab.org) and compare with two state-of-the-art tools: CPA-
CHECKER [3] and HSF [21]. Fig. 6 shows the results of this comparison including
the impact on TRACER using strongest postconditions (SP) and weakest preconditions
(WP) as interpolants. Columns 2 and 3 compare the number of states of the symbolic
execution tree (#S) explored by TRACER using SP and WP, and columns 4 and 5 com-
pare the number of loop invariant refinements made (#R) using SP and WP. The rest
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#S #R T
Program SP WP SP WP SP WP CPA HSF
cdaudio 4663 2138 0 0 12 10 3 529
diskperf 4565 2829 0 0 14 11 3 513
floppy 1758 1357 0 0 4 4 2 568
kbfiltr 319 230 0 0 2 2 2 5
s3 clnt 1 ∞ 6940 ∞ 33 ∞ 61 7 8
s3 clnt 2 ∞ 9871 ∞ 74 ∞ 115 12 5
s3 clnt 3 ∞ 17617 ∞ 114 ∞ 338 8 9
s3 clnt 4 ∞ 6990 ∞ 46 ∞ 80 5 8
s3 srvr 1 ∞ 5496 ∞ 12 ∞ 33 18 5
s3 srvr 2 ∞ 7295 ∞ 29 ∞ 120 98 11
s3 srvr 3 ∞ 5950 ∞ 14 ∞ 37 13 39
s3 srvr 4 47988 4349 143 12 372 27 25 10

Fig. 6. Comparison between TRACER and state-of-the-art verifiers on Intel 2.33Ghz 3.2GB

of the columns show total time in seconds T (including compilation time) of TRACER

(SP and WP), CPA-CHECKER (CPA), and HSF (HSF). For a fair comparison, TRACER

did not use invariants from INTERPROC.∞ indicates TRACER did not finish within 900
seconds.

Our results indicate that the use of WP pays off with greater gains in programs where
TRACER refines heavily, mainly because loop unrolls are expensive for SE, and hence
subsuming more often is vital. For ssh-simplified benchmarks (s3 clnt and s3 srvr)
TRACER, with SP, was unable to finish for all but one program, where #S, #R and T
were about 10-15 times more compared to WP. Compared with HSF, a “pure” CEGAR

verifier, TRACER out-performed it in the ntdrivers-simplified benchmarks (first 4 rows)
and was out-performed in the rest. This suggests that CEGAR may behave better when
numerous loop unrolls are needed and SE may be more suitable when most of the infea-
sible paths affect safety (where CEGAR would perform many refinements). Comparing
with CPA, a hybrid verifier and winner of SV-COMP’12, TRACER fares almost equally
in the ntdrivers-simplified benchmarks and s3 srvr programs, but is out-performed in the
s3 clnt benchmarks. Nevertheless, our evaluation demonstrates that TRACER is compet-
itive with state-of-the-art verifiers.
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10. Ivančić, F., Yang, Z., Ganai, M.K., Gupta, A., Shlyakhter, I., Ashar, P.: F-SOFT: Software

Verification Platform. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 301–306. Springer, Heidelberg (2005)

11. Jaffar, J., Michaylov, S., Stuckey, P., Yap, R.: The CLP(R) System. TOPLAS (1992)
12. Jaffar, J., Navas, J.A., Santosa, A.E.: Unbounded Symbolic Execution for Program Verifi-

cation. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 396–411. Springer,
Heidelberg (2012); ISBN: 978-3-642-29859-2

13. Jaffar, J., Santosa, A.E., Voicu, R.: An Interpolation Method for CLP Traversal. In: Gent, I.P.
(ed.) CP 2009. LNCS, vol. 5732, pp. 454–469. Springer, Heidelberg (2009)

14. Jhala, R., McMillan, K.L.: A Practical and Complete Approach to Predicate Refinement.
In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 459–473. Springer, Heidelberg
(2006)

15. King, J.: Symbolic Execution and Program Testing. Com. ACM (1976)
16. McMillan, K.L.: An Interpolating Theorem Prover. TCS (2005)
17. Lalire, G., Argoud, M., Jeannet, B.: The Interproc Analyzer,

http://pop-art.inrialpes.fr/people/bjeannet/
bjeannet-forge/interproc

18. McMillan, K.L.: Lazy Annotation for Program Testing and Verification. In: Touili, T., Cook,
B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 104–118. Springer, Heidelberg (2010)

19. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate Language and Tools
for Analysis and Transformation of C Programs. In: CC 2002. LNCS, vol. 2304, p. 213.
Springer, Heidelberg (2002)

20. Nori, A.V., Rajamani, S.K., Tetali, S., Thakur, A.V.: The YOGI Project: Software Property
Checking via Static Analysis and Testing. In: Kowalewski, S., Philippou, A. (eds.) TACAS
2009. LNCS, vol. 5505, pp. 178–181. Springer, Heidelberg (2009)

21. Grebenshchikov, S., et al.: Synthesizing Software Verifiers from Proof Rules. In: PLDI 2012
(2012)

22. Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint Solving for Interpolation. In: Cook,
B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 346–362. Springer, Heidelberg
(2007)

http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc
http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc


Joogie: Infeasible Code Detection for Java

Stephan Arlt1 and Martin Schäf2
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Abstract. We present Joogie, a tool that detects infeasible code in
Java programs. Infeasible code is code that does not occur on feasi-
ble control-flow paths and thus has no feasible execution. Infeasible code
comprises many errors detected by static analysis in modern IDEs such as
guaranteed null-pointer dereference or unreachable code. Unlike existing
techniques, Joogie identifies infeasible code by proving that a particu-
lar statement cannot occur on a terminating execution using techniques
from static verification. Thus, Joogie is able to detect infeasible code
which is overlooked by existing tools. Joogie works fully automatically,
it does not require user-provided specifications and (almost) never pro-
duces false warnings.

1 Introduction

We present Joogie, a static analysis tool to detect infeasible code in Java pro-
grams. Infeasible code is code which does not occur on any feasible control-flow
paths and hence has no feasible execution. That is, infeasible code is either not
forward-reachable or not backward-reachable on a feasible execution. Common
examples of infeasible code are unreachable code, or guaranteed null-pointer
dereference.

Infeasible code tends to occur in a very early stage of development and should
be found at the latest during testing. An intrinsic property of infeasible code is
that it has no feasible execution. That is, a code fragment can be detected to be
infeasible without knowing its full context. Extending its context can only restrict
its feasible executions and thus an infeasible code fragment will remain infeasible
in any larger context. Hence, infeasible code lends itself to be detected by static
analysis: it can be detected for code fragments in isolation using relatively coarse
abstractions of the feasible executions, and with a very low rate of false warnings.

Infeasible code can, e.g., be detected using data-flow analysis tools such as
Findbugs [8] or the built-in static analysis of Eclipse which, among other things,
also detects infeasible code. We claim that, among all static analysis tools, those
detecting infeasible code are some of the most widely used. Programmers do
not suppress Eclipse-warning that an object is always null when dereferenced
or that a particular code fragment is unreachable. That is, improving infeasible
code detection can have a large impact in practice.

In contrast to existing tools that detect infeasible code, Joogie uses techniques
from static verification to prove the presence of infeasible code. This results in
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c© Springer-Verlag Berlin Heidelberg 2012
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a higher precision than pure syntactic analysis. Joogie first translates a given
program into the Boogie language [10] as described in Section 3. Then, a modified
version of the Boogie program verification system [1] is used to prove the presence
of infeasible code as described in Sect. 4. We show the ability of Joogie to detect
infeasible code which is not found using existing tools by applying our tool to
three real world applications in Sect. 5. Joogie works fully automatically, does
not require any user interaction, and is able to detect real errors while almost
never producing false warnings.

2 Joogie Overview

Program Boogie + Z3

Reporting

Soot Boogie Translator

Bytecode

Source code

Jimple
Boogie program

Infeasible Code

Joogie

Fig. 1. Overview of Joogie

Figure 1 gives an overview of Joogie.
Joogie takes a Java program as in-
put. Joogie splits the task of proving
the presence of infeasible code in two
steps. In a first step, the Java pro-
gram is translated into Boogie. Dur-
ing this translation, the type system
and memory model are replaced by
more abstract concepts which facil-
itate the use of existing verification
techniques. The details of this trans-
lation are described in Sect. 3. Note
that this translation is neither sound
nor complete. That is, some feasible executions might be lost which can result in
false warnings, and the translation may add feasible executions which can result
in false negatives.

In a second step, Joogie calls a modified version of the Boogie program verifier
to prove the presence of infeasible code in the Boogie program. The underlying
decision procedure is based on the weakest liberal precondition calculus and uses
a sound abstraction of the given Boogie program. Section 4 gives more details on
the used algorithms. For each infeasible statement in the Boogie program, Joogie
reconstructs the corresponding statement in the Java source code and returns an
error message. Joogie works fully automatically. Joogie does not require specifi-
cation statements, but in general it is possible to further annotate the generated
Boogie program to increase the detection rate or check for additional properties.

3 Bytecode Translation

Joogie translates Java to Boogie using the Java optimization framework Soot [11].
Soot translates the Java program into a 3-address intermediate representation of
the program’s bytecode, which significantly simplifies the translation to Boogie,
as only 15 different kinds of statements have to be considered.

One of the most vital parts of translating an object-oriented language into
an intermediate verification language is the used memory model. For a sound
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infeasible code detection it is sufficient to preserve all feasible executions of
the original program (contrary to partial correctness proofs, where all infeasible
executions have to preserved). Thus, Joogie can use a simple Burstall-Bornat-
style heap-as-array model (see e.g., [4, 10]). The heap is represented by a two-
dimensional array, where the first index refers to the address of an object in
the heap and the second index refers to the field that is to be accessed. Soot
ensures that references to objects are null by default. Assertions to guard the
heap access are introduced automatically by Joogie. For brevity of exposure, we
do not explain this model in detail. Similar approaches can be found, e.g., in
Spec# [2] or ESC/Java [5]. Note that using assertions is not sound, as the Java
program would throw an exception rather than terminate when the exception is
violated.

Integers, Chars, and Bytes are represented using the Boogie built-in type for
unbounded natural numbers. Using an unbounded representation for bounded
variables is an unsound abstraction. Hence, Joogie uses uninterpreted functions
for arithmetic operators, which can be redefined using axioms if a sound han-
dling of primitive types is needed. However, unless the programmer deliberately
makes use of Java’s overflow and underflow handling, this is a feasible abstraction
and, so far, we did not encounter false warnings resulting from this unsound-
ness. String variables are treated like any other object. Doubles and floats are
treated in a similar way as objects. They are represented as arbitrary values
and operators on them are represented as uninterpreted functions. This abstrac-
tion is coarse and certainly leaves room for improvements, but it is sound and
efficient for our purpose of detecting infeasible code. Arrays are represented as
one-dimensional unbounded arrays of an appropriate type. The size of an ar-
ray is stored outside the bounds of the original array. Array-bounds checks are
modeled using assertion statements, which is unsound for the general case, as
out-of-bounds exceptions might be handled in the code. However, this can be
changed easily depending on the user’s preferences.

Exceptions are modeled as multiple return parameters of a method. If an ex-
ception is thrown, the corresponding return parameter is assigned to the instance
of the exception, and the method returns, or, if possible, jumps to an adequate
catch block. After each method call, conditional choices are added to redirect
the control-flow if an exception has been thrown by the called method.

In general, this translation is not sound as it does not consider aliasing of
method parameters and global variables. This unsoundness could be eliminated
by, e.g., modeling the aliasing explicitly which would increase the complexity of
the translated program significantly. However, our experiments show that this
simplification does not introduce false warnings.

4 Infeasible Code Detection

We check for the existence of infeasible code in the Boogie program using the
algorithms described in [7] and [3]. These algorithms are implemented as an
extension to the Boogie program verification system. For each control location
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in a program P , we introduce a statement assigning an auxiliary reachability
variable ri to the constant 1, where i ranges over the number of all program
statements. This allows us to check the existence of an execution that passes
this location, by checking if any terminating execution starting in an initial state
where ri = 0 terminates in a state where it is still 0. If this is the case, then
no terminating execution passes the assignment ri := 1 and hence no execution
passes the considered statement. This check is automated by augmenting the
program P with reachability variables, computing a formula representation of
the weakest-liberal precondition of this program, and then using a SMT solver
(here: Z3) that checks if (ri = 0) |= wlp(P, ri = 0) holds (a similar concept is
used in [6]).

To compute a formula representation of wlp, we first eliminate the loops in
our program P using the abstract loop unwinding from [7]. A loop is replaced by
three unwindings. The first and the last unwinding represent the first and the
last iteration of the loop, respectively. To every entrance and exit of the middle
unwinding, we add non-deterministic assignments to all variables modified inside
the loop body. This abstract unwinding represents all other unwindings. Note
that, for copied locations, we do not create fresh ri variables, and thus, the
abstraction does not remove feasible executions from the program (proof in [7]).

Joogie does not do any inter-procedural analysis. Any procedure call is re-
placed by a non-deterministic assignment to all variables that might be modified
by this procedure. Still, this is a sound abstraction.

For the resulting loop-free program, we compute a formula representation of
the weakest-liberal precondition using standard techniques which are already
provided by Boogie. The algorithm to detect infeasible code in Boogie programs
is sound w.r.t. infeasible code detection under two preconditions: procedure pa-
rameters do not alias, and the program is single-threaded. The first one can be
lifted by adding switch cases. For multithreading, we do not have a sound so-
lution yet. If a statement is only executed on interleaved executions, it will be
reported as infeasible. That is, in general Joogie is not sound. We evaluate its
feasibility in the experiments in the next section.

5 Experiments

Joogie, all experimental data, and additional results can be found on the web-
site1. We apply Joogie on 3 real-world Java applications, TerpWord 4.0, Rachota
2.4, and FreeMind 0.9, to check the performance of Joogie, whether it can find
infeasible code, and whether it does produce false warnings . We also apply Joo-
gie on Joogie itself. All experiments are executed several times on a standard
notebook (Dual Core 1.6 GHz, 2 GB RAM, 5400 rpm HDD). Note that infeasible
code should be detected at the latest during testing, and it should not occur in
any stable release of a program. That is, we expect to find hardly any or even
no infeasible code. For a detailed evaluation including reports on detection rate,
experiments with seeded infeasible code are needed. Table 1 shows the summary

1 http://code.google.com/p/joogie/

http://code.google.com/p/joogie/
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of our experiments, and Figure 2 gives a more detailed view on the computation
time per method.
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Fig. 2. Computation time of Joogie per Java method

Table 1. Results of applying Joogie to the test applications

Program LOC # checked methods # found bugs # false warnings Time (min)

TerpWord 6842 965 4 2 2.95

Rachota 13750 1835 1 0 49.13

FreeMind 40922 8008 12 1 64.41

Joogie 5433 781 0 0 1.37

Observations. Joogie is able to detect infeasible code in the stable releases of 3
applications. Some of it is simple unreachable code, some of it is code that will
cause a run time error when reached. Examples of detected infeasible code are
given on the Joogie website. We did encounter two false warnings in TerpWord:
one is due to a bug when parsing the Java program, the other one is a statement
that is only reachable due to interleaving. Joogie does not deal with interleaving.
The other sources of unsoundness of the translation from Java to Boogie wrt.
infeasible code detection did not cause any false warnings. In Rachota we found
one bug. In FreeMind, we found 12 bugs but also 1 false positive due to bugs in
Joogie which we could not fix until the deadline.

Figure 2 shows, the average computation time per method is way below one
second for most methods. As Joogie is meant to be used incrementally on recently
modified program fragments similar to, e.g., the static analysis in Eclipse, the
computation time can be tolerated. Larger or more complex methods can be
split in smaller parts which are analyzed in isolation.

6 Conclusion

Joogie is useful: it does not require any user interaction, it is fully automatic, it
detects errors, and it does almost never produce false warning. The experiments
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show that Joogie can be applied to real programs and that it does find infeasi-
ble code, even in sufficiently tested code. Our long term goal is to make Joogie
efficient enough to run in the background while the programmer is typing. Until
then, there is still much room for improvements. The complexity of the gen-
erated Boogie program can be further optimized by sharing variables between
independent program fragments, techniques from verification could be used to
infer invariants, or more efficient ways to represent the heap could be applied.

By using Boogie as an intermediate representation, Joogie can be easily ex-
tended by other researchers. E.g., the translation from Java to Boogie could be
modified to identify different classes of errors, or specification statements could
be added to further increase the detection rate.

We observe that it is not always trivial to understand why code is infeasible.
In contrast to, e.g., run-time errors, where a trace counterexample is sufficient
to explain why the error occurs, infeasible code can be witnessed by this way. In
our future work we will explore techniques like e.g., BugAssist [9] that can be
used to explain infeasible control-flow.

Acknowledgements. This work is supported by the projects ARV and COLAB
funded by Macau Science and Technology Development Fund.
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Abstract. We present HECTOR, an observational equivalence checker for a higher-
order fragment of ML. The input language is RML, the canonical restriction of
standard ML to ground-type references. HECTOR accepts programs from a de-
cidable fragment of RML identified by us at ICALP’11, which comprises pro-
grams of short-type (order at most 2 and arity at most 1) that may contain free
variables whose arguments are also of short-type. This is an expressive fragment
that contains complex higher-order types, and includes many examples from the
literature which have proven challenging to verify using other methods. To our
knowledge, HECTOR is the first fully-automated equivalence checker for higher-
order, call-by-value programs. Both sound and complete, the tool relies on the
fully abstract game semantics of RML to construct, on-the-fly, visibly pushdown
automata which precisely capture program behaviour. These automata are then
checked for language equivalence, and if they are inequivalent a counterexample
(in the form of a separating context) is constructed.

1 Introduction

ML-like languages combine the power of higher-order functions with imperative con-
structs and mutable state. We consider the call-by-value language RML, which is es-
sentially the canonical restriction of Standard ML to ground-type references. We are
interested in a notion of program equivalence called observational equivalence. Two
terms Γ 6 M1,M2 are observationally equivalent just if for every program context
C[−] such that Γ 6 C[Mi] : unit, we have that C[M1] converges if and only if C[M2]
converges. This definition says that two programs are equivalent if one can replace one
by the other in any context without affecting the outcome of the computation. Observa-
tional equivalence is extremely useful when refactoring or updating code; if the updated
version of a function is observationally equivalent to the older version then the changes
cannot break any existing code which calls it. This makes observational equivalence
an intuitively natural and practically relevant notion of equivalence. Unfortunately, it is
notoriously difficult to reason about. Take the programs below.

F1 ≡ leta = ref 0 in let r = ref 0 inλf.(r := !r + 1; a := f(!r); r := !r − 1; !a)

F2 ≡ λf.f(1)

It may appear that these two terms should be equivalent, as F1 uses local variables
to return f(1). However, they are separated by the term G ≡ λF.F (λx.F (λy.y)).
This forces a nested call of Fi. In GF1 this call will be performed before r has been

P. Madhusudan and S.A. Seshia (Eds.): CAV 2012, LNCS 7358, pp. 774–780, 2012.
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decremented. Hence, GF1 evaluates to 2 whereas GF2 returns 1. However, the terms
let c = ref 0 inλfunit→unit.(c :=0; f(); c :=1; f(); !c) and λfunit→unit.(f(); f(); 1)
are equivalent. While the context can use nested calls in the same manner to reset the
value of c to 0, any such state changes must be made in a well-bracketed manner and so
the terms cannot be separated.

2 Theory and Implementation

We will make use of the fully abstract game semantics of RML [7]. This model views
program execution as the playing of a game between the program and its environment.
The type sequent Γ 6 θ determines the rules of a two player game �Γ 6 θ� to be played
between P (the program) and O (the environment). Play proceeds by the players taking
it in turn to play a move (which can be either a question or an answer), equipped with
a justification pointer to an earlier move. These pointers model the variable-to-binder
and call-to-return relation within the play. We say a play is complete if every question
has been answered. The denotation of a program Γ 6 M : θ is a strategy �Γ 6 M� for
playing the game �Γ 6 θ�. Strategies are described using a set of plays which form a
playbook telling P how to play. The game model is fully abstract in the sense that two
programs are observationally equivalent if and only if the sets of complete plays of their
denotations are equal [1].

In [7] we identified the O-strict fragment of RML. This is the fragment for which
the justification pointers from O-moves are always uniquely reconstructible from the
underlying move sequence (although those from P-moves can still be ambiguous). This
consists of terms-in-context of the shape x1 : Θ3, · · · , xn : Θ3 6 M : Θ2 where Θ2,
Θ3 are defined as follows.

Θ0 ::= unit | int Θ2 ::= Θ0 | Θ1 → Θ0 | int ref
Θ1 ::= Θ0 | Θ0 → Θ1 | int ref Θ3 ::= Θ0 | Θ2 → Θ3 | int ref

If we let a short type be a type of order at most two and arity at most one, then the
O-strict fragment consists of programs of short types which may contain free identifiers
all of whose argument types are short.

We went on to show that the strategies corresponding to terms of the O-strict frag-
ment of RML (with finite data types) can be precisely captured using visibly pushdown
automata (VPA). VPA are a subclass of pushdown automata in which the stack action
(push, pop, or neither) is determined by the input letter [3]. This gives them highly
desirable closure properties; in particular, language equivalence is decidable in polyno-
mial time. Our translation from strategies to VPA allowed us to show that observational
equivalence for O-strict terms is EXPTIME-complete [7].

We have now implemented our algorithm into a tool called HECTOR (Higher-order
Equivalence Checker for Terms of O-strict RML). Our VPA are constructed inductively
over the normal forms of the language, following [7]. Given two such VPA, using a
product construction [3], it is easy to construct another to accept their symmetric dif-
ference. Then our two programs are equivalent if, and only if, the language accepted by
the resulting automaton is empty. We choose to follow an on-the-fly model checking
approach as this has proved successful for the game semantics based model checker
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MAGE [4]. That is, when constructing our automata, we just return a function from
states to the list of transitions out of that state. This function will build up the transition
relation only as it is called during our exploration of the automaton. This can allow us to
avoid constructing the entire automaton as we can halt the search as soon as a counter-
example is found. On-the-fly reachability for pushdown systems using summary edges
was described by Alur et al. [2] and we follow their approach. This essentially proceeds
as a depth-first search, recording push- and pop-sites so that additional summary edges
can be added when two matching transitions are found.

A web interface for HECTOR can be found at
http://mjolnir.cs.ox.ac.uk/˜davh/cgi-bin/rml/input/. Our
tool allows programs to be compared, can generate separating contexts where appro-
priate, and can display the VPA translation of a given term, which represents its game
semantics.

3 Examples and Experiments

In this section we consider a number of examples that HECTOR can handle. Where
applicable we also compare its performance against HOMER, a game semantics based
equivalence checker [8] for the 3rd-order fragment of Idealized Algol (IA). The main
difference between RML and IA is that IA uses call-by-name evaluation (and block-
allocated variables), which lead to game models that differ significantly [1]. A direct
comparison between the two tools is therefore tricky, but we can attempt to use exam-
ples which have similar behaviour under both call-by-name and call-by-value evalua-
tion. A further difference is that HOMER does not take advantage of on-the-fly construc-
tion but always builds up the entire model.

“Tricky” Examples Several examples in the literature are known to be challenging to
verify. In addition to the first inequivalence in Section 1 due to Stark [12], the following
have been analysed respectively by Pitts and Stark [11], and by Dreyer et al. [6].

(i) let c = ref 0 inλfunit→unit.(c :=1; f(); !c) ∼= λfunit→unit.(f(); 1)
(ii) let c = ref 0 inλfunit→unit.(c :=0; f(); c :=1; f(); !c) ∼= λfunit→unit.(f(); f(); 1)

They are known to be extremely tricky to prove using methods based on logical rela-
tions. All three of these examples are in the O-strict fragment and HECTOR can easily
handle them as seen in the table below.

Example Time to Compare Time to Generate Counter-Example State Space
(i) [11] 180ms N.A. 67
(ii) [6] 130ms N.A. 231

Sec. 1 [12] 150ms 50ms 57

No-Snapback Another non-obvious example is below.

p : (unit → unit) → unit +
letx = ref 0 in p(λy.x := 1); if !x = 1 thenΩ else () ∼= p(λy.Ω)

Here Ω is the term which immediately diverges. In the first term, if p ever applies
its functional argument to anything then x will be assigned the value 1. This ensures

http://mjolnir.cs.ox.ac.uk/~davh/cgi-bin/rml/input/
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that when p terminates, the computation will diverge. Conversely, if p does not use its
argument then x will have the value 0 so when p finishes the computation terminates.
The effect is the same as passing p an argument which will diverge if used. The fact
that they are equivalent shows that there is no term which can undo the side-effects
caused by running its argument. The VPA translations of these programs as produced
by HECTOR are shown below. The reachable states are somewhat different in each case
as the divergence occurs at different points. However, in both cases a final state can only
be reached if p’s argument is never called.

Scope Extrusion Consider the following terms.

M1 ≡ F : (int → int) → int +
letx = ref 0 inF (λy.if !x = 0 thenx := y elsex := y − 1; !x)

M2 ≡ F : (int → int) → int +
F (λy.letx = ref 0 in if !x = 0 thenx := y elsex := y − 1; !x)

M3 ≡ F : (int → int) → int + F (λy.y)

The only difference between the first two terms is the location of the letx = ref 0 in -
binding. However, this makes a big difference to their behaviour. In the first term, the
value of x persists between calls so when F calls its argument a second time the value
in x will be the value of y from the first call. On the other hand, in M2 a new reference
of value 0 is allocated each time the argument is called. Hence, the guard will always
be true and so we have M1 �∼= M2

∼= M3. For the inequivalence, HECTOR generates

( fun f .
l e t = f ( fun g .

l e t = ( g 1)
in l e t z = ( g 0)
in a s s e r t ( ( z = 0 ) ) ;
3 )

in ( ) )
( fun F . [ ] )

a separating context as a counter-example. A readable
version of the context produced is shown on the right.
It can be seen that this binds F to a function which ap-
plies its argument twice, the first time passing it 1 and
the second time 0. It then checks whether the return
value from the second call is 0. When M2 is placed
in the context the check will pass as F ’s argument is
the identity function. However, when M1 is used the check fails and so the terms are
separated.
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All the examples in this section can be checked by HECTOR in less than a second.

Sorting Sorting algorithms are a challenging example for any model checker due to
the complex interplay between control-flow and state. We can use HECTOR to compare
different sorting algorithms for equivalence. The table below compares the length of
time required to check the equivalence of bubble sort and insert sort on lists of length
n containing 3-valued elements. For comparison we include the time taken by HOMER,
as well as the state space of the final automaton and the biggest intermediate automaton
HOMER produces. As can be seen, HECTOR is outperformed by HOMER. We suspect
that this is due to the added complexities of the call-by-value semantics over the call-by-
name. However, we can also check the sorting algorithms when they are parameterised
by a comparison function compare : int → int → int. In this case a malicious context
could pass in a comparison function which does not act as a total order and can use
this function to gain more information about the internals of the algorithm. Hence,
the two programs are no longer equivalent. Due to the added size of the model when
parameterised in this manner, HOMER runs out of memory for lists of length 10. On the
other hand, due to the on-the-fly approach HECTOR finds the counter-example almost
immediately and so does not have to construct the entire model.

n HECTOR to Compare Counter-example States HOMER Final States Max States
5 3s N/A 716 1.5s 496 496
7 1min N/A 5,000 10s 2,800 33,000

10 95min N/A 120,000 7.5min 60,000 900,000
With A Comparison Function

5 220ms 120ms 96 2.25min 75,000 75,000
7 225ms 225ms 132 Time Out Time Out Time Out

10 300ms 500ms 186 Time Out Time Out Time Out
15 400ms 2s 276 Time Out Time Out Time Out

Kierstead Terms An interesting family of higher-order terms are the Kierstead terms.

Kn,i ≡ f : ((unit→ unit)→ unit)→ unit 6 f(λx1.f(λx2. . . . f(λxn.xi()) . . .))

For i �= j, Kn,i �∼= Kn,j . In differentiating these terms the location of justification
pointers from P-moves is critical (HECTOR uses tags on the moves to encode the lo-
cation of these pointers.) We can compare the performance of HECTOR against that
of HOMER on the equivalent call-by-name family of Kierstead terms. Again since this
is an inequivalence, HECTOR outperforms HOMER as we do not have to construct the
entire model. The timing data is shown in the table below.

n HECTOR to Compare Counter-example States HOMER Final States Max States
10 120ms 80ms 150 1s 74 1,400
25 140ms 200ms 366 6s 194 4,000
50 180ms 800ms 576 22s 356 7,000
100 530ms 4.5s 1,600 2min 800 18,000
200 2min 9s 37,000 7min 1,300 42,000
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4 Related Work, Conclusions and Further Directions

We have presented HECTOR, an equivalence checker for a higher-order fragment of
ML. Our algorithm utilises the fully abstract game semantics of RML. We believe this
is the only known procedure for deciding observational equivalence of higher-order ML
programs. As HECTOR is the first implementation of this algorithm, a fair comparison
with existing tools is difficult. Compared with the call-by-name equivalence checker
HOMER, our tool performs much better on inequivalences, thanks to the on-the-fly ap-
proach, but not as well on equivalences (which is not surprising as call-by-value game
models are more complex constructions [7]). The only other game semantics based ver-
ification tool that uses on-the-fly model generation is MAGE [4], which is restricted to
2nd-order, (call-by-name) Idealized Algol programs. MAGE can only check reachabil-
ity. Other tools, notably TRECS [10] and HMC [9], can verify safety properties of ML
programs, but not equivalence.

In future work we hope to expand the language accepted by HECTOR. We know
that observational equivalence is undecidable for most types outside the O-strict frag-
ment but there are still a few remaining types whose decidability is unknown. It is also
possible to introduce a limited form of recursion into the language, although VPA are
no longer sufficiently expressive and we would require the power of DPDA. Addition-
ally, we would like to improve the performance of HECTOR, possibly using predicate
abstraction in the style of [5].
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Abstract. The automatic determination of the quantitative resource
consumption of programs is a classic research topic which has many
applications in software development. Recently, we developed a novel
multivariate amortized resource analysis that automatically computes
polynomial resource bounds for first-order functional programs.

In this tool paper, we describe Resource Aware ML (RAML), a func-
tional programming language that implements our analysis. Other than
in earlier articles, we focus on the practical aspects of the implementa-
tion. We describe the syntax of RAML, the code transformation prior
to the analysis, the web interface, the output of the analysis, and the
results of our experiments with the analysis of example programs.

Keywords: Functional Programming, Static Analysis, Resource Con-
sumption, Quantitative Analysis, Amortized Analysis.

1 Introduction

A quantitative analysis of a program determines the amount of resources, such
as memory and time, that the program consumes during its evaluation. Quanti-
tative analyses are needed to compare different algorithms for the same task, to
design efficient programs, and to identify performance bottlenecks in software.

Sometimes, it is sufficient to determine the asymptotic resource behavior of
a program. However, many applications in embedded systems, hard real-time
systems, and cloud computing require concrete (non-asymptotic) upper bounds
for specific hardware. The manual determination of such bounds is not only cum-
bersome and time consuming but also prone to errors, especially if the analysis
has to be repeated after an iteration of the development cycle. As a result, me-
chanical assistance for the determination of resource bounds is an important and
active area of research.

Classic methods for obtaining bounds on the number of loop iterations and
recursive calls are based on automatically extracting and solving recurrence re-
lations [1,2,3]. However, both, extracting and solving recurrence relations is a
difficult problem. As a result, alternative techniques for the inference of resource
bounds have been studied recently. Gulwani et al. propose counter instrumen-
tation and abstract-interpretation–based invariant generation to obtain bounds
on loop iterations and function calls [4]. To obtain loop bounds from disjunc-
tive invariants one can use size-change abstraction [5] or proof rules that employ
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SMT-solvers [6]. Type-based techniques for automatically inferring bounds on
recursive functions are based on sized types [7,8] or amortized analysis [9,10],
and often restricted to linear bounds.

We have recently developed the first type-based resource analysis system that
automatically computes polynomial resource bounds [11,12,13]. It is inspired by
automatic amortized analysis for linear bounds [9]. In a nutshell, we annotate
function types with a priori unknown, non-negative rational numbers that rep-
resent coefficients of multivariate resource polynomials, a class of functions that
generalizes non-negative linear combinations of binomial coefficients.1 A syntax-
directed static type analysis then derives linear inequalities for the unknown
rational coefficients. Finally, a solution of the resulting linear program with an
off-the-shelf LP solver yields a resource polynomial that bounds the resource
consumption of the corresponding function. Such an automatic amortized anal-
ysis is favorable in the presence of (nested or intermediate) data structures and
function composition. See [13] for a detailed comparison with related approaches.

We implemented our multivariate amortized resource analysis in Resource
Aware ML (RAML), a first-order, functional language with an ML-like syntax.
While one can formalize algorithms and functional programs directly in RAML,
it can also be used as a target of resource-preserving translations from other
programming languages. In particular we have experimented with a translation
from C using the Frama-C framework2.

In this tool paper, we describe the current state of development of RAML
from a user’s point of view. For a description of the analysis technique that
we implemented, please refer to our previous papers [11,12,13,14]. Note that the
prototype implementation has been used in a previous paper for an experimental
evaluation [13]. However, we have never demonstrated the tool at a conference.

2 The Prototype Implementation

The prototype implementation of RAML is written in Haskell and consists of
a parser (546 lines of code), a standard type checker (490 lines of code), an
interpreter (333 lines of code), an LP solver interface (301 lines of code), and
the multivariate analysis system [13] (1637 lines of code). Overall, we needed 4.5
man-months for the implementation of the analysis.

The implementation is well documented and publicly available. The source
code of the latest RAML version can be downloaded on the web site of the
project [15]. Additionally, there is a web form that can be used to evaluate
RAML programs and to compute resource bounds directly on the web.

Extended Syntax. The RAML syntax in the prototype extends the syntax de-
scribed in our previous papers [11,13]. For example, expressions are not restricted
to let normal from. We also have more built-in operators and allow a destructive

1 The user has to provide a maximal degree of the polynomials to limit the number
of unknown coefficients.

2 http://frama-c.com
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pattern matching matchD that deallocates the memory cell associated with the
matched node of the data structure.

Data types τ are binary trees (T (τ)), lists (L(τ)), integers, Booleans, units,
and tuples as defined by the following grammar.

τ ::= int | bool | unit | (τ1, . . . , τn) | L(τ ) | T (τ )

The following EBNF grammar defines expressions e. The reserved function tick
is used in the tick metric which is described later. The argument q of tick denotes
a floating point literal. The operations binop and unop are the usual standard
operations for integers and Booleans.

e ::= () | True | False | n | x | tick(q) | e1 binop e2 | unop e | f(e1, . . . , en)
| let x = e1 in e2 | if e then et else ef | [] | [e1, . . . , en] | (e1, . . . , en)
| match e1 with (x1, . . . , xn) → e2 | let (x1, . . . , xn) = e1 in e2

| nil | cons(eh, et) | (match | matchD) e with
⎪⎪⎪nil → e1

⎪⎪⎪ cons(xh, xt) → e2

| leaf | node(e0, e1, e2) | (match | matchD) e with
⎪⎪⎪leaf → e1

⎪⎪⎪ node(x0, x1, x2) → e2

A RAML program consists of a (possibly empty) list of declarations followed by
a main expression. A declaration is either a type declaration f : τ1 → τ2 or a
function definition f(x1, . . . , xn) = e, where f is a function name, τi are data
types, xi are variables, and e is an expression. There must be exactly one type
declaration for every function definition. For every identifier, at most one type
declaration and at most one function definition is allowed. Note that one has to
provide a monomorphic type for every function in a program. The reason why
we avoid polymorphic functions is that the resource consumption of a function
depends on its type. Alternatively, we could allow polymorphic functions and
analyze a function for each concrete type it is used with in the program.

Destructive Pattern Match. A destructive pattern match—written using
matchD—can be used to deallocate memory cells. For instance, in the evaluation
of the expression matchD x with | nil → e1 | cons(x, xs) → e2 the memory cell
that is referenced in the variable x is deallocated. If memory cells are allocated
during the evaluation of e2 then the deallocated cell may be used to store a new
value. So if a deallocated value is accessed during the evaluation of an expression
then the behavior of the program is undefined. If used carefully, destructive
pattern matches can help to develop and analyze programs that use memory very
efficiently. A typical example is an in-place quick-sort algorithm which destructs
the input list [15].

Transformation to Let Normal Form. To simplify the resource analysis, we
transform the unrestricted RAML expressions of the prototype implementation
into expressions in let normal form as defined in [13]. An expression is in let
normal form if, whenever possible, term formers are applied to variables only.
Furthermore, we make sharing of variables explicit to enable the use of a syntax-
directed type rule for sharing of potential in the type inference.

The transformation to let normal from uses a special form of a let expression—
called freelet—that does not consume any resources. For every expression that
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occurs in a position where only variables are allowed, we introduce a new variable
with a freelet. For technical reasons we also introduce a new variable if the
expression in such a variable only position in the source program is a variable
itself. In this way, it becomes easy to preserve the resource cost of the source
program because we know that all variables in the variable only positions have
been introduced by a freelet.

To make sharing explicit, we add an additional syntactic construct to the
expression each time a variable occurs multiple times. If a free variable x occurs
twice in an expression e, we replace the first occurrence of x with x1 and the
second occurrence of x with x2, obtaining a new expression e′. We then replace e
with share(x, x1, x2) in e

′. In this way, the sharing rule becomes a conventional
syntax directed rule in the type inference.

Resource Metrics. Our analysis is parametric in the resource and can deal
with every quantity whose consumption in an atomic evaluation step is bounded
by a constant. We included three resource metrics in the prototype and it is easy
to define more by instantiating the resource constants for the evaluation steps.

The first included metric is the evaluation-step metric that counts the number
of evaluation steps in the big-step operational semantics described in [13].

The second metric we included is the heap-space metric. The heap-space used
by a node of a data structure depends on the type of the elements of the data
structure. That is why we allow the resource constants to depend on the types of
the respective expressions in the prototype. For instance, we do not simply have
Kcons which defines the resource usage of a cons but rather Kcons(A) where A
is the type of the elements of the list. We define

size(A) =

{
n if A = (A1, . . . , An)
1 otherwise

ThenKcons(A) = size(A)+1 is the number of memory cells that are used to store
a node of a list of type L(A). Similarly, KmatCD

1 (A) = size(A) + 1 memory cells
become available in a destructive pattern match. Since the types L(A) are known
at compile time, it makes no difference for the analysis whether the constants
depend on data types. In principle, the values of these constants could depend
on anything that is statically known about the program. However, the current
implementation limits this dependency to type information.

The third implemented metric measures the number of ticks that occur in an
evaluation. To this end, a programmer can insert expressions such as tick(3.5) or
tick(−4) into the code. Every time the expression tick(q) is evaluated, q resources
are consumed, or −q resources become available if q is negative. The tick metric
can be used to manually model specific resource metrics and is helpful for testing.

A table with the values of the constants in the metrics can be found in [14].

Web Interface. The source code of the prototype is available for download on
the RAML website [15]. Alternatively, programs can be executed directly on the
web with input in a text field or selection of example files from a drop-down
menu. A second text field contains the output of the RAML prototype.
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One can use the web interface to compute resource bounds for a program or
to evaluate the main expression. The following options are available.

1. The resource metric to be used in the analysis. It can either be heap-space
consumption, evaluation steps or ticks.

2. An upper bound on the maximal degree that can occur in the resource
bounds. If the degree is too low then the analysis reports that the linear
program is infeasible.

3. Whether to have verbose output. The verbose output shows for instance the
function definitions in let normal form.

Output of the Analysis. The result of a successful evaluation is the value of
the main expression as well as the number of heap cells, the number of evaluation
steps, and the number of ticks that have been used during the evaluation.

The output of a resource analysis is either a list of symbolic bounds along
with refined typing information—one for each function in the program including
the main expression—or an error message. If the program is type correct then
the only error that can occur is the message the linear program is infeasible. It
indicates that the LP solver finished unsuccessfully and that RAML was thus
not able to compute a bound for the program. This often, but not necessarily,
implies that the resource usage of the given program cannot be bounded by a
polynomial of the given degree.

Of course, as with any static analysis, there also exist polynomially bounded
programs for which RAML cannot compute bounds. For instance, the analysis
often fails if recursion is guarded by a Boolean function as opposed to the con-
structors of a data structure. This is often the case in programs whose resource
consumption depends on the values of integers. Nevertheless, the analysis works
well for recursive functions that use inductive data types and pattern matching.

Below is the output of the analysis with the evaluation-step metric for the
function quicksort in the file quicksort.raml which can be found online [15].

> raml analyse eval-steps 3 quicksort.raml

quicksort: L(int) -> L(int)

Positive annotations of the argument Positive annotations of the result

0 -> 3.0 1 -> 26.0 2 -> 24.0

The number of evaluation steps consumed by quicksort is at most:

12.0*n^2 + 14.0*n + 3.0

where n is the length of the input

It contains the type of the function and the potential annotations of the argu-
ment type and the result type. Finally, the potential annotations are converted
into a usual polynomial for the convenience of the user. This transformation is
a combination of a change of basis from binomial coefficients to the common
basis and the abstraction from sizes of individual inner data structures to their
maximal size. The exact meaning of the type annotations is described in our
earlier work [13]. Note, however, that they may carry more detailed information
then the symbolic bound. Also note that only non-zero annotations are shown
in the output and that the resource annotations of the output type are all zero.
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3 Experiments

We successfully applied the analysis to a wide range of examples from functional
programming such as sorting algorithms, matrix multiplication, breadth-first
search, and longest common subsequence via dynamic programming.

In most cases, the derived evaluation-step and heap-space bounds were asymp-
totically tight. The analysis works efficiently and only needs a few seconds, even
on larger programs. We also compared our computed bounds with the measured
worst-case resource consumption of the programs and found that the constants
factors are often close or even identical to the optimal ones.

The analyzed programs, tables with running times and computed bounds, and
plots that show the bounds and the measured costs are available online [15] and
in the first author’s dissertation [14].
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Krstić, Sava 718
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