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Preface

This volume contains the proceedings of the 24th International Conference on
Computer-Aided Verification (CAV) held in Berkeley, USA, July 7-3, 2012.

The Conference on Computer-Aided Verification (CAV) is dedicated to the
advancement of the theory and practice of computer-aided formal methods for
the analysis and synthesis of hardware, software, and other computational sys-
tems. Its scope ranges from theoretical results to concrete applications, with
an emphasis on practical verification tools and the underlying algorithms and
techniques.

The conference included two workshop days, a tutorial day, and three and
a half days for the main program. We received 185 submissions (140 regular
papers and 45 tool papers, a record number) and selected 38 regular and 20 tool
papers. We appreciate the diligence of our Program Committee and our external
reviewers, and thank them for their hard work; all papers received at least four
reviews, and there was intense discussion on papers after the author response
period.

This year CAV had four special tracks highlighted in the program: Computer
Security, Embedded Systems, Hardware Verification, and SAT & SMT. We thank
our Special Track Chairs for their effort in attracting papers in these areas and
coordinating the review process for those papers.

The conference was preceded by seven affiliated workshops: The 5th Inter-
national Workshop on Numerical Software Verification (NSV 2012); The First
International Workshop on Memory Consistency Models (REORDER 2012); The
5th International Workshop on Exploiting Concurrency Efficiently and Correctly
(EC2 2012); The Second International Workshop on Intermediate Verification
Languages (BOOGIE 2012); The First Workshop on Logics for System Analysis
(LfSA 2012); The First Workshop on Synthesis (SYNT 2012); The First Work-
shop on Applications of Formal Methods in Systems Biology (AFMSB 2012).

In addition to the presentations for the accepted papers, the conference also
featured three invited talks and four invited tutorials.

— Invited talks:

e Wolfgang Thomas (RWTH, Aachen): “Synthesis and Some of Its Challenges”

e David Dill (Stanford University): “Model Checking Cell Biology”

e J. Alex Halderman (University of Michigan): “On Security of Voting
Machines”

— Invited tutorials:

e Ras Bodik (University of California, Berkeley): “Synthesizing Programs with
Constraint Solvers”

e Aaron Bradley (University of Colorado at Boulder): “IC3 and Beyond:
Incremental, Inductive Verification”
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e Chris Myers (University of Utah): “Formal Verification of Genetic Circuits”
e Michal Moskal (Microsoft) “From C to Infinity and Back: Unbounded
Auto-active Verication with VCC”

We thank all our invited speakers!

We also thank the members of the CAV Steering Committee—Michael Gor-
don, Orna Grumberg, Bob Kurshan, and Ken McMillan—for their advice on
various organizational matters. Shuvendu Lahiri, our Workshop Chair, smoothly
handled the organization of the workshops. Miyoko Tsubamoto played an invalu-
able role in handling local arrangements. We thank Bryan Brady for his service as
Publicity Chair and Edgar Pek for maintaining the website. Special thanks go to
the Past Chairs, Ganesh Gopalakrishnan and Shaz Qadeer, for their advice and
guidance throughout the process. We thank Alfred Hofmann and Anna Kramer
of Springer for publishing the paper and USB proceedings for CAV 2012. We are
grateful to Andrei Voronkov and his team for the use of the EasyChair system
for tracking reviews and preparing the final camera-ready version. We gratefully
acknowledge the donations provided by our corporate sponsors—Microsoft Re-
search, IBM Research, Coverity, NEC Labs, and Intel. And last, but not the
least, we thank the office staff of EECS Department at the University of Cali-
fornia, Berkeley, and the Department of Computer Science at the University of
Ilinois at Urbana-Champaign, for providing critical administrative assistance in
organizing the conference.

May 2012 P. Madhusudan
Sanjit A. Seshia
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Synthesis and Some of Its Challenges

Wolfgang Thomas

RWTH Aachen University, Lehrstuhl Informatik 7, 52056 Aachen, Germany
thomas@informatik.rwth-aachen.de

Keywords: Infinite games, winning strategies, uniformization problem,
model-checking.

The advent of a methodology of automatic synthesis (of state-based systems)
adds a number of interesting facets to the setting of model-checking. In this
talk we focus on some conceptual aspects arising from the basic scenario of
strategy synthesis in infinite-duration two-player games, as a natural extension
of model-checking. The starting point is the simple observation that model-
checking asks about the (non-) emptiness of sets while synthesis asks for a certain
kind of uniformization of relations by functions. This raises a large number of
questions on the classification of (word-) functions (which serve as strategies in
games). We discuss basic results and recent progress, emphasizing two aspects:
the definability of strategies and their ” complexity” in various dimensions. These
results are as yet preliminary, and we end by listing unresolved problems, for
example on the logic-representation of strategies.

P. Madhusudan and S.A. Seshia (Eds.): CAV 2012, LNCS 7358, p. 1, 2012.
© Springer-Verlag Berlin Heidelberg 2012



Model Checking Cell Biology

David L. Dill

Stanford University
dill@cs.stanford.edu

Abstract. Mathematical models of real biological systems have pre-
dominantly been deterministic or stochastic continuous models. However,
there are reasons to believe that at least some processes can be modeled
in a “digital” way. Once we do that, we enter the domain of concur-
rent and reactive systems, where model checking has been an important
tool. Perhaps techniques from the verification community could lead to
insights about the systems principles that allow biological systems us-
ing very low energy (and high noise) components to function dynamic
environments.

I will explore some past and future research directions in this area, as
well as some of the non-computational challenges that arise in this kind
of research.

P. Madhusudan and S.A. Seshia (Eds.): CAV 2012, LNCS 7358, p. 2, 2012.
© Springer-Verlag Berlin Heidelberg 2012



Synthesizing Programs with Constraint Solvers

Rastislav Bodik and Emina Torlak

University of California, Berkeley

Abstract. Classical synthesis derives programs from a specification.
We show an alternative approach where programs are obtained through
search in a space of candidate programs. Searching for a program that
meets a specification frees us from having to develop a sufficiently com-
plete set of derivation rules, a task that is more challenging than merely
describing the syntactic shape of the desired program. To make the search
for a program efficient, we exploit symbolic constraint solving, lifted to
synthesis from the setting of program verification.

We start by describing the interface to the synthesizer, which the pro-
grammer uses to specify the space of candidate programs P as well as
the desired correctness condition ¢. The space P is defined by a program
template whose missing expressions are described with a grammar. The
correctness condition is a multi-modal specification, given as a combina-
tion of assertions, input / output pairs, and traces.

Next, we describe several algorithms for solving the synthesis problem
3P Vx ¢(x, P(x)). The key idea is to reduce the problem from 2QBF to
SAT by sampling the space of inputs, which eliminates the universal
quantification over x.

Finally, we show how to encode the resulting SAT problem in re-
lational logic, and how this encoding can be used to solve a range of
related problems that arise in synthesis, from verification to program
state repair. We will conclude with open problems on constraint-based
synthesis.

P. Madhusudan and S.A. Seshia (Eds.): CAV 2012, LNCS 7358, p. 3, 2012.
© Springer-Verlag Berlin Heidelberg 2012



IC3 and beyond:
Incremental, Inductive Verification

Aaron R. Bradley

ECEE Department, University of Colorado at Boulder
bradleya@colorado.edu

IC3, a SAT-based safety model checking algorithm introduced in 2010 [I} 2],
is considered among the best safety model checkers. This tutorial discusses its
essential ideas: the use of concrete states, called counterexamples to induction,
to motivate lemma discovery; the incremental application of induction to gener-
ate the lemmas; and the use of stepwise assumptions to allow dynamic shifting
between inductive lemma generation and propagation of lemmas as predicates.

Two perspectives on IC3 are offered: IC3 as proof finder, which highlights its
ability to find mutually inductive lemmas, a crucial element of its robustness;
and IC3 as bug finder, which shows that IC3’s choices with respect to proof
obligations result in a heuristically guided search. The latter perspective casts
lemmas as refinements of estimates of states’ proximities to initial states. These
estimates guide the backward construction of potential counterexample traces.

IC3’s context is then discussed: its evolution from earlier work and how it
compares to other algorithms. Finally, the broader idea of incremental, induc-
tive verification (IIV), of which IC3 is just one example, is explored. The IIV
perspective has motivated new algorithms for analyzing w-regular properties [4]
and CTL properties [5].

A recent tutorial paper [3] provides a conceptual exposition of IC3, while an
earlier tutorial paper [6] illustrates IC3’s workings through detailed examples.

References

[1] Bradley, A.R.: k-step relative inductive generalization. Technical report, CU Boul-
der (March 2010), http://arxiv.org/abs/1003.3649

[2] Bradley, A.R.: SAT-Based Model Checking without Unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70-87. Springer, Heidel-
berg (2011)

[3] Bradley, A.R.: Understanding IC3. In: SAT (June 2012)

[4] Bradley, A.R., Somenzi, F., Hassan, Z., Zhang, Y.: An incremental approach to
model checking progress properties. In: FMCAD (November 2011)

[5] Hassan, Z., Bradley, A.R., Somenzi, F.: Incremental, Inductive CTL Model Check-
ing. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, p. 4.
Springer, Heidelberg (2012)

[6] Somenzi, F., Bradley, A.R.: IC3: Where monolithic and incremental meet. In: FM-
CAD (November 2011)
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Formal Verification of Genetic Circuits*

Chris J. Myers

University of Utah
myers@ece.utah.edu

Abstract. Researchers are beginning to be able to engineer synthetic
genetic circuits for a range of applications in the environmental, medical,
and energy domains [I]. Crucial to the success of these efforts is the de-
velopment of methods and tools to verify the correctness of these designs.
This verification though is complicated by the fact that genetic circuit
components are inherently noisy making their behavior asynchronous,
analog, and stochastic in nature [2]. Therefore, rather than definite re-
sults, researchers are often interested in the probability of the system
reaching a given state within a certain amount of time. Usually, this
involves simulating the system to produce some time series data and
analyzing this data to discern the state probabilities. However, as the
complexity of models of genetic circuits grow, it becomes more difficult
for researchers to reason about the different states by looking only at
time series simulation results of the models. To address this problem,
techniques from the formal verification community, such as stochastic
model checking, can be leveraged [3/4]. This tutorial will introduce the
basic biology concepts needed to understand genetic circuits, as well as,
the modeling and analysis techniques currently being employed. Finally,
it will give insight into how formal verification techniques can be applied
to genetic circuits.
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From C to Infinity and Back:
Unbounded Auto-active Verification with VCC
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Abstract. In this tutorial I'll show how to prove deep functional prop-
erties of tricky sequential and concurrent C programs using VCC. T’ll
get into induction, termination, algebraic data types, infinite maps, and
lemmas, all unified as ghost data and C-like code manipulating it. Once
these are provided, verification is automatic, but the development pro-
cess of such annotations tends to be very interactive, thus “auto-active
verification” using C as a proof language.

VCC [1] is an industrial-strength verification environment for low-level
concurrent systems code written in C. VCC takes a program (annotated
with function contracts, state assertions, and type invariants) and at-
tempts to prove the correctness of these annotations. VCC’s verification
methodology [3] allows global two-state invariants that restrict update of
shared state and enforces simple, semantic conditions sufficient for check-
ing those global invariants modularly. VCC works by translating C, via
the Boogie intermediate verification language, to verification conditions
handled by the Z3 SMT solver.

The environment includes tools for monitoring proof attempts and
constructing partial counterexample executions for failed proofs and has
been used to verify functional correctness of tens of thousands of lines of
Microsoft’s Hyper-V virtualization platform and of SYSGO’s embedded
real-time operating system PikeOS.

VCC is available with sources for non-commercial use at
http://vcc.codeplex.com/, and online at http://rise4fun.com/Vccl
A tutorial [2] is also provided.
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Abstract. When dealing with linear temporal logic properties in the
setting of e.g. games or probabilistic systems, one often needs to express
them as deterministic omega-automata. In order to translate LTL to de-
terministic omega-automata, the traditional approach first translates the
formula to a non-deterministic Biichi automaton. Then a determiniza-
tion procedure such as of Safra is performed yielding a deterministic
w-automaton. We present a direct translation of the (F,G)-fragment of
LTL into deterministic w-automata with no determinization procedure
involved. Since our approach is tailored to LTL, we often avoid the typ-
ically unnecessarily large blowup caused by general determinization al-
gorithms. We investigate the complexity of this translation and provide
experimental results and compare them to the traditional method.

1 Introduction

The w-regular languages play a crucial role in formal verification of linear time
properties, both from a theoretical and a practical point of view. For model-
checking purposes one can comfortably represent them using nondeterministic
Biichi automata (NBW), since one only needs to check emptiness of the in-
tersection of two NBWs corresponding to the system and the negation of the
property, and NBWs are closed under intersection. However, two increasingly
important problems require to represent w-regular languages by means of de-
terministic automata. The first one is synthesis of reactive modules for LTL
specifications, which was theoretically solved by Pnueli and Rosner more than
20 years ago [PRS8S]|, but is recently receiving a lot of attention (see the refer-
ences below). The second one is model checking Markov decision processes (see
e.g. [BKOS]), where impressive advances in algorithmic development and tool
support are quickly extending the range of applications.

It is well known that NBWs are strictly more expressive then their deter-
ministic counterpart, and so cannot be determinized. The standard theoretical
solution to this problem is to translate NBW into deterministic Rabin automata
(DRW) using Safra’s construction [Saf88] or a recent improvement by Piterman

* The author is a holder of Brno PhD Talent Financial Aid and is supported by the
Czech Science Foundation, grant No. P202/12/G061.
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[Pit06]. However, it is commonly accepted that Safra’s construction is difficult
to handle algorithmically due to its “messy state space” [Kupl2]. Many pos-
sible strategies for solving this problem have been investigated. A first one is
to avoid Safra’s construction altogether. A Safraless approach that reduces the
synthesis problem to emptiness of nondeterministic Biichi tree automata has
been proposed in [KV05], [KPV06]. The approach has had considerable success,
and has been implemented in [JBO6]. Another strategy is to use heuristics to
improve Safra’s construction, a path that has been followed in [KB06, [KB0T7]
and has produced the lt12dstar tool [Kle]. Finally, a third strategy is to search
for more efficient or simpler algorithms for subclasses of w-regular languages.
A natural choice is to investigate classes of LTL formulas. While LTL is not as
expressive as NBW | the complexity of the translation of LTL to DRW still has
929t complexity [KR10]. However, the structure of NBWs for LTL formulas
can be exploited to construct a symbolic description of a deterministic parity
automaton [MS08]. Fragments of LTL have also been studied. In [AT04], single
exponential translations for some simple fragments are presented. Piterman et
al. propose in [PPS06] a construction for reactivity(1) formulas that produces
in cubic time a symbolic representation of the automaton. The construction has
been implemented in the ANZU tool [JGWB07].

Despite this impressive body of work, the problem cannot yet be considered
solved. This is particularly so for applications to probabilistic model checking.
Since probabilistic model checkers need to deal with linear arithmetic, they profit
much less from sophisticated symbolic representations like those used in [PPS06,
MS08], or from the Safraless approach which requires to use tree automata. In
fact, to the best of our knowledge no work has been done so far in this direction.
The most successful approach so far is the one followed by the ltl2dstar tool,
which explicitly constructs a reduced DRW. In particular, the 1t12dstar has been
reimplemented in PRISM [KNP11], the leading probabilistic model checker.

However, the work carried in [KB06, [KB07] has not considered the devel-
opment of specific algorithms for fragments of LTL. This is the question we
investigate in this paper: is it possible to improve on the results of ltl2dstar
by restricting attention to a subset of LTL? We give an affirmative answer by
providing a very simple construction for the (F,G)-fragment of LTL, i.e., the
fragment generated by boolean operations and the temporal operators F and G.
Our construction is still double exponential in the worst case, but is algorithmi-
cally very simple. We construct a deterministic Muller automaton for a formula
o of the fragment with a very simple state space: boolean combinations of for-
mulas of the closure of ¢. This makes the construction very suitable for applying
reductions based on logical equivalences: whenever some logical rule shows that
two states are logically equivalent, they can be merged. (This fact is also crucial
for the success of the constructions from LTL to NBW.) Since the number of
Muller accepting sets can be very large, we also show that the Muller condition
of our automata admits a compact representation as a generalized Rabin accep-
tance condition. We also show how to efficiently transform this automaton to a
standard Rabin automaton. Finally, we report on an implementation of the
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construction, and present a comparison with Itl2dstar. We show that our con-
struction leads to substantially smaller automata for formulas expressing typi-
cal fairness conditions, which play a very important réle in probabilistic model
checking. For instance, while ltl2dstar produces an automaton with over one
million states for the formula /\le(GFai — GFb;), our construction delivers
an automaton with 1560 states.

2 Linear Temporal Logic

This section recalls the notion of linear temporal logic (LTL) [Pnu77].

Definition 1 (LTL Syntax). The formulae of the (F,G)-fragment of linear
temporal logic are given by the following syntax:

pu=al-aloNp|leVe|Fo| Gy
where a ranges over a finite fixed set Ap of atomic propositions.

We use the standard abbreviations tt := a V —a, ff;= a A —a. We only have
negations of atomic propositions, as negations can be pushed inside due to the
equivalence of Fp and -G—.

Definition 2 (LTL Semantics). Let w € (247)% be a word. The ith letter of

w is denoted wli], i.e. w = w[0|w[1] - - . Further, we define the ith suffiz of w as
w; = wlilwli4+1]---. The semantics of a formula on w is then defined inductively
as follows:

wEa < a € w[0]

wE -a <= a ¢ w|0]

wEeAY = wkEypadwEP

Y = wkporwEy

wEFp <— JkeN:wy Egp

wE Gy — VkeN:w, Egp

We define a symbolic one-step unfolding 4l of a formula inductively by the fol-
lowing rules, where the symbol X intuitively corresponds to the meaning of the
standard next operator.

H(a) =a
U(—a) = —a
U A ) = 4(p) ALUY)
U(p Vh) = th(p) V U()
U(Fp) = U(p) VXFyp
U(Gyp) = U(p) A XGop

Ezample 3. Consider ¢ = FaAGFb. Then U(p) = (aVXFa)A(bVXFb)AXGFb.
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3 Deterministic Automaton for the (F,G)-Fragment

Let ¢ be an arbitrary but fixed formula. In the following, we construct a deter-
ministic finite w-automaton that recognizes the words satisfying ¢. The definition
of the acceptance condition and its variants follow in the subsequent sections.
We start with a construction of the state space. The idea is that a state cor-
responds to a formula that needs to be satisfied when coming into this state.
After evaluating the formulae on the propositions currently read, the next state
will be given by what remains in the one-step unfold of the formula. E.g. for
Example [ and reading a, the successor state needs to satisfy Fb A GFb.

In the classical syntactic model constructions, the states are usually given by
sets of subformulae of . This corresponds to the conjunction of these subformu-
lae. The main difference in our approach is the use of both conjunctions and also
disjunctions that allow us to dispose of non-determinism in the corresponding
transition function. In order to formalize this, we need some notation.

Let F and G denote the set of all subformulae of ¢ of the form Fi and
G1), respectively. Further, all temporal subformulae are denoted by a shorthand
T := FUG. Finally, for a set of formulae ¥, we denote X¥ := {X1) | ¢ € ¥}.

We denote the closure of ¢ by C(p) := ApU{-a | a € Ap}UXT. Then () is
a positive Boolean combination over C(y). By states(p) we denote the set 2277,
Each element of states(y) is a positive Boolean function over C(y) and we often
use a positive Boolean formula as its representative. For instance, the definition
of 4l is clearly independent of the choice of representative, hence we abuse the
notation and apply  to elements of states(¢). Note that |states(p)| € O(QQM)
where |¢| denotes the length of .

Our state space has two components. Beside the logical component, we also
keep track of one-step history of the word read. We usually use letters ¢, x when
speaking about the former component and «, S for the latter one.

Definition 4. Given a formula ¢, we define A(p) = (Q,14,9) to be a determin-
istic finite automaton over X = 24P given by

— the set of states Q = {i} U (states(cp) X 2A”)

— the initial state i;
— the transition function

§={(i, o, (U(p), ) |« € ZYU{((¥,q), B, (succ(v, ), B)) | (¥,a) € Q, B € X}

where succ(y, o) = U(next(yPa — tt, Ap\ o — fE]) where next(v)') removes

Xs from )" and [T — tt, F — ff] denotes the equivalence class of formulae
where in ¥ we substitute tt for all elements of T and ff for all elements of
F.

Intuitively, a state (¢, &) of @ corresponds to the situation where ¢ needs to be
satisfied and « is being read.
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Ezample 5. The automaton for Fa with Ap = {a} is depicted in the following
figure. The automaton is obviously unnecessarily large, one can expect to merge
e.g. the two states bearing the requirement tt as the proposition a is irrelevant
for satisfaction of tt that does not even contain it. For the sake of simplicity, we
leave all possible combinations here and comment on this in Section [

The reader might be surprised or even annoyed by the fact that the logical
structure of the state space is not sufficient to keep enough information to decide
whether a run p is accepting. In order to ensure this, we remember one-step
history in the state. Why is that? Consider ¢ = GF(a A Fb). Its unfold is then

XGF(a A Fb) A (XF(a AF) V (a A (bV XF))) (+)

Then moving under {a} results into the requirement GF(aAFb)A (F(aAFb) VFb)
for the next step where the alternative of pure Fb signals progress made by not
having to wait for an a. Nevertheless, the unfold of this formula is propositionally
equivalent to (). This is indeed correct as the two formulae are temporally
equivalent (i.e. in LTL semantics). Thus, the information about the read a is not
kept in the state and the information about this partial progress is lost! And
now the next step under both {b} and @ again lead to the same requirement
GF(a A Fb) A F(a A Fb). Therefore, there is no information that if b is read,
then it can be matched with the previous a and we already have one satisfaction
of (infinitely many required satisfactions of) F(a A Fb) compared to reading .
Hence, the runs on ({a}{b})* and ({a}0)* are the same while the former should
be accepting and the latter rejecting. However, this can be fixed by remembering
the one-step history and using the acceptance condition defined in the following
section.

4 Muller Acceptance Condition

In this section, we introduce a Muller acceptance condition. In general, the num-
ber of sets in a Muller condition can be exponentially larger than the size of the
automaton. Therefore, we investigate the particular structure of the condition. In
the next section, we provide a much more compact whilst still useful description
of the condition. Before giving the formal definition, let us show an example.
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Ezample 6. Let ¢ = F(GaV Gb). The corresponding automaton is depicted be-
low, for clarity, we omit the initial state. Observe that the formula stays the same
and the only part that changes is the letter currently read that we remember
in the state. The reason why is that ¢ can neither fail in finite time (there is
always time to fulfill it), nor can be partially satisfied (no progress counts in this
formula, only the infinite suffix). However, at some finite time the argument of
F needs to be satisfied. Although we cannot know when and whether due to Ga
or Gb, we know it is due to one of these (or both) happening. Thus we may shift
the non-determinism to the acceptance condition, which says here: accept if the
states where a holds are ultimately never left, or the same happens for b. The
commitment to e.g. ultimately satisfying Ga can then be proved by checking
that all infinitely often visited states read a.

{0} {a,b}

We now formalize this idea. Let ¢ be a formula and A(y) = (Q, 4, d) its corre-
sponding automaton. Consider a formula x as a Boolean function over elements
of C(y). For sets T, F' C C(y), let x[T" — tt, F' — ff] denote the formula where tt
is substituted for elements of T', and ff for F'. As elements of C(¢p) are considered
to be atomic expressions here, the substitution is only done on the propositional
level and does not go through the modality, e.g. (a VXGa)[a — ff] = ff V XGa,
which is equivalent to XGa in the propositional semantics.

Further, for a formula xy and « € ¥ and I C T, we put I |=, x to denote that

X[aUTI = tt, Ap \ a — fI]

is equivalent to tt in the propositional semantics. We use this notation to describe
that we rely on a commitment to satisfy all formulae of I.

Definition 7 (Muller acceptance). A set M C @ is Muller accepting for a
set I C T if the following is satisfied:

1. for each (x,) € M, we have XI =4 X,
2. for each Fip € I there is (x, ) € M with I =4 v,
3. for each G € I and for each (x,a) € M we have I =4 9.

A set F C @Q is Muller accepting (for ¢) if it is Muller accepting for some I C T.
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The first condition ensures that the commitment to formulae in I being ulti-
mately satisfied infinitely often is enough to satisfy the requirements. The second
one guarantees that each F-formula is unfolded only finitely often and then sat-
isfied, while the third one guarantees that G-formulae indeed ultimately hold.
Note that it may be impossible to see the satisfaction of a formula directly and
one must rely on further promises, formulae of smaller size. In the end, promising
the atomic proposition is not necessary and is proven directly from the second
component of the state space.

4.1 Correctness

Given a formula ¢, we have defined a Muller automaton A(y) and we let the
acceptance condition M(p) = {Mjy, ..., My} be given by all the Muller accepting
sets M; for ¢. Every word w : N — 247 induces a run p = A(p)(w) : N = Q
starting in ¢ and following ¢. The run is thus accepting and the word is accepted
if the set of states visited infinitely often Inf(p) is Muller accepting for ¢. Vice
versa, a run p = i(x1,@1)(x2, @2) - - - induces a word Ap(p) = ayag - --. We now
prove that this acceptance condition is sound and complete.

Theorem 8. Let ¢ be a formula and w a word. Then w is accepted by the
deterministic automaton A(p) with the Muller condition M(p) if and only if

w E .

We start by proving that the first component of the state space takes care of all
progress or failure in finite time.

Proposition 9 (Local (finitary) correctness). Let w be a word and
A(p)(w) = i(xo,@0)(x1,01) - the corresponding run. Then for all n € N,
we have w = ¢ if and only if wy, = Xn-

Proof (Sketch). The one-step unfold produces a temporally equivalent (w.r.t. LTL
satisfaction) formula. The unfold is a Boolean function over atomic propositions
and elements of XT. Therefore, this unfold is satisfied if and only if the next
state satisfies next(1)) where 1) is the result of partial application of the Boolean
function to the currently read letter of the word. We conclude by induction. O

Further, each occurrence of satisfaction of F must happen in finite time. As a
consequence, a run with y; # ff is rejecting if and only if satisfaction of some
F1 is always postponed.

Proposition 10 (Completeness). If w = ¢ then Inf(A(p)(w)) is a Muller
accepting set.

Proof. Let us show that M := Inf(A(p)(w)) is Muller accepting for
I={yeF|uk Gy} U Y G uk Py}

As a technical device we use the following. For every finite Boolean combination
1 of elements of the closure C, there are only finitely many options to satisfy
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it, each corresponding to a subset of C. Therefore, if w; = 4 for infinitely many
1 € N then at least one of the options has to recur. More precisely, for some subset
a C Ap there are infinitely many ¢ € N with w; ¢y UaU{-a | a € Ap\ a}.
For each such o we pick one subset I, o € T such that for infinitely many 4,
after reading w* = w[0] - - - w[i] we are in state (y, @) and w; | ¢ UXI, o, and
I o F=a ¥. We say that we have a recurring set I, o modelling ¢ (for a state
(x, @) ). Obviously, the recurring sets for all states are included in I, i.e. I, o C I
for every (y,a) € Q.

Let us now proceed with proving the three conditions of Definition [1 for M
and [.

Condition 1. Let (x,a) € M. Since w = ¢, by Proposition[@w; = x whenever
we enter (, «) after reading w?, which happens for infinitely many i € N. Hence
we have a recurring set I, , modelling x. Since I, o o X, We get also I =4 X
by Iy,o CI.

Condition 2. Let F¢p € I, then w = GF. Since there are finitely many
states, there is (x,a) € M for which after infinitely many entrances by w’ it
holds w; [= 1 by Proposition @ hence we have a recurring set I, o modelling ¢
and conclude as above.

Condition 3. Let Gy € I, then w = FG. Hence for every (x,a) € M
infinitely many w' leading to (x, a) satisfy w; |= 1 by Proposition [ hence we
have a recurring set I, o modelling ) and conclude as above. a

Before proving the opposite direction of the theorem, we provide a property of
Muller accepting sets opposite to the previous proposition.

Lemma 11. Let p be a run. If Inf(p) is Muller accepting for I then Ap(p) E G
for each ¢ € INTF and Ap(p) E Fi for each v € ING.

Proof. Denote w = Ap(p). Let us first assume ¢ € I NF and w; = ¢ for
all j > i € N. Since v € I NT, for infinitely many j, p passes through some
(x, ) € Inf(p) for which I =, . Hence, there is 1)1 € I which is a subformula
of ¢ such that for infinitely many 4, w; & ¢1. If )1 € F, we proceed as above;
similarly for ¥; € G. Since we always get a smaller subformula, at some point
we obtain either ¢,, = Ff3 or ¢, = G with 8 a Boolean combination over Ap
and we get a contradiction with the second or the third point of Definition [7,
respectively. O

In other words, if we have a Muller accepting set for I then all elements of I
hold true in w; for almost all 3.

Proposition 12 (Soundness). If Inf(A(p)(w)) is a Muller accepting set then
w E .

Proof. Let M := Inf(A(p)(w)) be a Muller accepting set for some I. There is
i € N such that after reading w’ we come to (x, ) and stay in Inf(A(¢)(w)) from
now on and, moreover, w; = 1 for all ) € I by Lemma [I1l For a contradiction,
let w £~ . By Proposition @ we thus get w; [~ x. By the first condition of
Definition [ we get I |, x. Therefore, there is ¢ € I such that w; (= ¥, a
contradiction. O
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5 Generalized Rabin Condition

In this section, we investigate the structure of the previously defined Muller
condition and propose a new type of acceptance condition that compactly, yet
reasonably explicitly captures the accepting sets.

Let us first consider a fixed I C T and examine all Muller accepting sets for I.
The first condition of Definition [7] requires not to leave the set of states {(x, « |
I =4 x)}- Similarly, the third condition is a conjunction of |I NG| conditions not
to leave sets {(x, ) | I o ¥} for each Gy € I. Both conditions thus together
require that certain set (complement of the intersection of the above sets) is
visited only finitely often. On the other hand, the second condition requires to
visit certain sets infinitely often. Indeed, for each F the set {(x, @) | I Euo ¥}
must be visited infinitely often.

Furthermore, a set is accepting if the conditions above hold for some set I.
Hence, the acceptance condition can now be expressed as a positive Boolean
combination over Rabin pairs in a similar way as the standard Rabin condition
is a disjunction of Rabin pairs.

Ezample 13. Let us consider the (strong) fairness constraint ¢ = FGa vV GFb.
Since each atomic proposition has both F and G as ancestors in the syntactic
tree, it is easy to see that there is only one reachable element of states(p) and
the state space of A is {i} U 2{®®} ie. of size 1 4+ 22 = 5. Furthermore, the
syntactic tree of U(¢) = XFGaV (XGaAa)V (XGFbA (XFbVb)) immediately
determines possible sets I. These either contain Ga (possibly with also FGa or
some other elements) or GFb, Fb. The first option generates the requirement to
visit states with —a only finitely often, the second one to visit b infinitely often.
Thus the condition can be written as

({glqgFE—a},Q) Vv (0,{q]qF0b})

and is in fact a Rabin acceptance condition.
We formalize this new type of acceptance condition as follows.

Definition 14 (Generalized Rabin Automaton). A generalized Rabin au-
tomaton is a (deterministic) w-automaton A = (Q,i,06) over some alphabet X,
where QQ is a set of states, i is the initial state, 6 : Q X X — Q is a transition
function, together with a generalized Rabin condition GR € BT (29 x 29). A run
p of A is accepting if Inf(p) = GR, which is defined inductively as follows:

Inf(p) =AY < Inf(p) = ¢ and Inf(p) =+
Inf(p) E @ Vo <~ Inf(p) E ¢ or Inf(p) E ¢
Inf(p) E (F, 1) < FnNnnf(p) =0 and I NInf(p) # 0

The generalized Rabin condition corresponding to the previously defined Muller
condition M can now be formalized as follows.
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Definition 15 (Generalized Rabin Acceptance). Let ¢ be a formula. The
generalized Rabin condition GR(p) is

V| ({ea) [THEaxn A wh@)n A (040ca) |1 Faw))

ICT Guyel Fwel

By the argumentation above, we get the equivalence of the Muller and the gen-
eralized Rabin conditions for ¢ and thus the following.

Proposition 16. Let ¢ be a formula and w a word. Then w is accepted by the
deterministic automaton A(p) with the generalized Rabin condition GR(p) if

and only if w = .

Ezample 17. Let us consider a conjunction of two (strong) fairness constraints
v = (FGa vV GFb) A (FGc vV GFd). Since each atomic proposition is wrapped
in either FG or GF, there is again only one relevant element of states(y) and
the state space of Ais {i}U olab.eid} e of size 14 2% = 17. From the previous
example, we already know the disjunctions correspond to (—a, @) V (0,b) and
(=¢,Q) V (0,d). Thus for the whole conjunction, we get a generalized Rabin

condition
t (Ca@v@n)a(Cevea)

6 Rabin Condition

In this section, we briefly describe how to obtain a Rabin automaton from A(¢p)
and the generalized Rabin condition GR(y) of Definition [[5 For a fixed I, the
whole conjunction of Definition [I5] corresponds to the intersection of automata
with different Rabin conditions. In order to obtain the intersection, one has first
to construct the product of the automata, which in this case is still the original
automaton with the state space @), as they are all the same. Further, satisfying

Gn N ©F)

feF:=INF

amounts to visiting G only finitely often and each F infinitely often. To check
the latter (for a non-empty conjunction), it is sufficient to multiply the state
space by F with the standard trick that we leave the fth copy once we visit F
and immediately go to the next copy. The resulting Rabin pair is thus

(fo,Ff-x {f})

for an arbitrary fixed f € F.

As for the disjunction, Rabin condition is closed under it as it simply takes
the union of the pairs when the two automata have the same state space. In our
case, one can multiply the state space of each disjunct corresponding to I by all
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JNT for each J € 2T\ {I} to get the same state space for all of them. We thus
get a bound for the state space

[T1nF-Q

ICT
Example 18. The construction of Definition [IH] for the two fairness constraints
Example [I7] yields

(maV =e,Q)V (ma,d) V (=e,b) v ((0,0) A (0,d))

where we omitted all pairs (F, I) for which we already have a pair (F’,I") with
F C F'and I D I'. One can eliminate the conjunction as described above at the
cost of multiplying the state space by two. The corresponding Rabin automaton
thus has 2+ 1-|{i} U24P| = 34 states. (Of course, for instance the initial state
need not be duplicated, but for the sake of simplicity of the construction we
avoid any optimizations.)

For a conjunction of three conditions, ¢ = (FGa vV GFb) A (FGc vV GFd) A
(FGeVGEF f), the right components of the Rabin pairs correspond to tt, b, d, f, bA
d,bA f,dN f,bAdA f. The multiplication factor to obtain a Rabin automaton
is thus 2223 = 24 and the state space is of the size 24 - 1 - (1 + 25) = 1560.

7 Complexity

In this section, we summarize the theoretical complexity bounds we have ob-
tained.

The traditional approach first translates the formula ¢ of length n into a non-
deterministic automaton of size O(2™). Then the determinization follows. The
construction of Safra has the complexity m©("™) where m is the size of the input
automaton [Saf88]. This is in general optimal. The overall complexity is thus

gn-0(2") _ 9O(2"H1oEm)

The recent lower bound for the whole LTL is 227 [KR10]. However, to be more

precise, the example is of size less than 2°("). Hence, there is a small gap. To

the authors’ best knowledge, there is no better upper bound when restricting to

automata arising from LTL formulae or from the full (F,G)-fragment. (There

are results on smaller fragments [AT04] though.) We tighten this gap slightly as

shown below. Further, note that the number of Rabin pairs is O(m) = O(2").
Our construction first produces a Muller automaton of size

IT|

02* - 2|A10|) =O(22" ") C 200"

which is strictly less than in the traditional approach. Moreover, as already
discussed in Example [I3] one can consider an “infinitary” fragment where every
atomic proposition has in the syntactic tree both Fand Gas some ancestors.
In this fragment, the state space of the Muller/generalized Rabin automaton
is simply 24P (when omitting the initial state) as for all @« C Ap, we have
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succ(yp, a) = . This is useful, since for e.g. fairness constraints our procedure
yields exponentially smaller automaton.

Although the size of the Muller acceptance condition can be potentially expo-
nentially larger than the state space, we have shown it can be compactly written
as a disjunction of up to 2™ of conjunctions each of size at most n.

Moreover, using the intersection procedure we obtain a Rabin automaton with
the upper bound on the state space

|F|2|T\ ) |Q| c nQn ) 20(2”) _ 2(’)(10gn~2”) _ 20(21L+loglogn) g 20(21L+logn)

thus slightly improving the upper bound. Further, each conjunction is trans-
formed into one pair, we are thus left with at most 2!Tl € ©(2") Rabin pairs.

8 Experimental Results and Evaluation

We have implemented the construction of the state space of A(p) described
above. Further, Definition [I5l then provides a way to compute the multiplication
factor needed in order to get the Rabin automaton. We compare the sizes of this
generalized Rabin automaton and Rabin automaton with the Rabin automaton
produced by ltl2dstar. Ltl2dstar first calls an external translator from LTL to
non-deterministic Biichi automata. In our experiments, it is LTL2BA [GOO01]
recommended by the authors of 1t12dstar. Then it performs Safra’s determiniza-
tion. Ltl2dstar implements several optimizations of Safra’s construction. The
optimizations shrink the state space by factor of 5 (saving 79.7% on average on
the formulae considered here) to 10 (89.7% on random formulae) [KB06]. Our
implementation does not perform any ad hoc optimization, since we want to eval-
uate whether the basic idea of the Safraless construction is already competitive.
The only optimizations done are the following.

— Only the reachable part of the state space is generated.

— Only atomic propositions relevant in each state are considered. In a state
(x, @), a is not relevant if x[a — tt] = x[a — ff], i.e. if for every valuation,
x has the same value no matter which value a takes. For instance, let Ap =
{a, b} and consider xy = U(Fa) = Fa V a. Then instead of having four copies
(for 0,{a},{b},{a,b}), there are only two for the sets of valuations {0, {b}}
and {{a},{a,b}}. For its successor tt, we only have one copy standing for
the whole set {0, {a}, {b}, {a,b}}.

— Definition [I5] takes a disjunction over I € 2T. If I C I’ but the set of states
(x, ) with I |, x and I' =, x are the same, it is enough to consider
the disjunct for I only. E.g. for ${(G(Fa Vv Fb)), we only consider I either
{G(FaV Fb),Fa} or {G(FaV Fb),Fb}, but not their union.

This is an instance of a more general simplification. For a conjunction of
pairs (F1,I1) A (Fy, Iy) with I; C I, there is a single equivalent condition
(Fl U Fy, Il)

Table [l shows the results on formulae from BEEM (BEnchmarks for Explicit
Model checkers)[Pel07] and formulae from [SB00] on which 1tl2dstar was origi-
nally tested [KBOG]. In both cases, we only take formulae of the (F,G)-fragment.
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In the first case this is 11 out of 20, in the second 12 out of 28. There is a
slight overlap between the two sets. Further, we add conjunctions of strong
fairness conditions and a few other formulae. For each formula ¢, we give the
number |states(y)| of distinct states w.r.t. the first (logical) component. The
overall number of states of the Muller or generalized Rabin automaton follows.
The respective runtimes are not listed as they were less than a second for all
listed formulae, with the exception of the fifth formula from the bottom where
it needed 3 minutes (here 1t12dstar needed more than one day to compute the
Rabin automaton). In the column GR-factor, we describe the complexity of the
generalized Rabin condition, i.e. the number of copies of the state space that are
created to obtain an equivalent Rabin automaton, whose size is thus bounded
from above by the column Rabin. The last column states the size of the state
space of the Rabin automaton generated by 1t12dstar using LTL2BA.

Table 1. Experimental comparison to lt12dstar on formulae of [Pel07], [SB0OQ], fairness
constraints and some other examples of formulae of the “infinitary” fragment

Formula states Muller/GR GR-factor Rabin ltl12dstar
G(a Vv Fb) 2 5 1 5 4
FGaV FGbV GFc 1 9 1 9 36
F(aV b) 2 4 1 4 2
GF(a V b) 1 3 1 3 4
G(aVbVe) 2 4 1 4 3
G(a V Fb) 2 5 1 5 4
G(aVF(bVc) 2 5 1 5 4
FaVv Gb 3 7 1 7 5
G(aVF(bAc) 2 5 1 5 4
(FGa V GFb) 1 5 1 5 12
GF(aVb) AGF(bVc) 1 5 2 10 12
(FFa A G—a) V (GG-a A Fa) 2 4 1 4 1
(GFa) A FGb 1 5 1 5
(GFa A FGb) V (FG-a A —b) 1 5 1 5 14
FGa A GFa 1 3 1 3 3
G(Fa A Fb) 1 5 2 10 5
Fa AFb 4 8 1 8 4
(G(bV GFa) A G(cV GF-a))VGbV Ge 4 18 2 36 26
(G(bV FGa) A G(cVFG-a)) VGbYV Ge 4 18 118 29
(F(bAFGa) V F(c AFG-a)) A Fb A Fe 4 18 118 8
(F(bA GFa)V F(cAGF-a)) AFbAFc 4 18 1 18 45
(FGa vV GFb) 1 5 1 5 12
(FGa V GFb) A (FGe V GFd) 1 17 2 34 17527
3_ (GFa; — GFb,) 1 65 24 1560 1304706
(A>_, GFa;) — GFb 1 65 1 65 972
GF(FaGFbFG (a Vb)) 1 5 1 5 159
FG(FaV GFbV FG(a Vb)) 1 5 1 5 2018
FG(FaV GFbV FG(a V)V FGb) 1 5 1 5 4516
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While the advantages of our approach over the general determinization are
clear for the infinitary fragment, there seem to be some drawbacks when “fini-
tary” behaviour is present, i.e. behaviour that can be satisfied or disproved after
finitely many steps. The reason and the patch for this are the following. Consider
the formula Fa and its automaton from Example[Bl Observe that one can easily
collapse the automaton to the size of only 2. The problem is that some states
such as (a V XFa,{a}) are only “passed through” and are equivalent to some
of their successors, here (tt, {a}). However, we may safely perform the following
collapse. Whenever two states (x, «), (x/, ) satisfy that x[a — tt, Ap \ a — ff]
is propositionally equivalent to x'[a +— tt, Ap\ a — ff] we may safely merge the
states as they have the same properties: they are bisimilar with the same set of
atomic propositions satisfied. Using these optimizations, e.g. the automaton for
Fa A Fb has size 4 as the one produced by ltl2dstar.

Next important observation is that the blow-up from generalized Rabin to
Rabin automaton (see the column GR-factor) corresponds to the number of
elements of I that have a descendant or an ancestor in G and are combined with
conjunction. This follows directly from the transformation described in Section
and is illustrated in the table.

Thus, we may conclude that our approach is competitive to the determiniza-
tion approach and for some classes of useful properties such as fairness con-
straints or generally the infinitary properties it shows significant advantages.
Firstly, the state space of the Rabin automaton is noticeably smaller. Secondly,
compact generalized Rabin automata tend to be small even for more complex
formulae. Thirdly, the state spaces of our automata have a clear structure to be
exploited for further possible optimizations, which is more difficult in the case
of determinization. In short, the state space is less “messy”.

9 Discussion on Extensions

Our approach seems to be extensible to the (X,F,G)-fragment. In this setting,
instead of remembering the one-step history one needs to remember n last steps
(or have a n-step look-ahead) in order to deal with formulae such as GF(a AXDb).
Indeed, the acceptance condition requires to visit infinitely often a state provably
satisfying a A Xb. This can be done by remembering the last n symbols read,
where n can be chosen to be the nesting depth of Xs. We have not presented
this extension mainly for the sake of clarity of the construction.

Further, one could handle the positive (X,U)-fragment, where only atomic
propositions may be negated as defined above. These formulae are purely “fini-
tary” and the logical component of the state space is sufficient. Indeed, the
automaton simply accepts if and only if tt is reached and there is no need to
check any formulae that we had committed to.

For the (U,G)-fragment or the whole LTL, our approach would need to be
significantly enriched as the state space (and last n symbols read) is not sufficient
to keep enough information to decide whether a run p is accepting only based on
Inf(p). Indeed, consider a formula ¢ = GF(aAbUc). Then reading {a, b} results
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in the requirement GF(a A bUc) A (F(a A bUc) V (bUc)) which is, however,
temporally equivalent to ¢ (their unfolds are propositionally equivalent). Thus,
runs on ({a,b}{c}0)* and ({a,b}0{c})“ have the same set of infinitely often
visited states. Hence, the order of visiting the states matters and one needs the
history. However, words such as ({a, b}{b}"{c})¥ vs. ({b}"{c})* show that more
complicated structure is needed than last n letters. The conjecture that this
approach is extensible to the whole LTL is left open and considered for future
work.

10 Conclusions

We have shown a direct translation of the LTL fragment with operators F and
G to deterministic automata. This translation has several advantages compared
to the traditional way that goes via non-deterministic Biichi automata and then
performs determinization. First of all, in our opinion it is a lot simpler than the
determinization and its various non-trivial optimizations. Secondly, the state
space has a clear logical structure. Therefore, any work with the automata or
further optimizations seem to be conceptually easier. Moreover, many optimiza-
tions are actually done by the logic itself. Indeed, logical equivalence of the
formulae helps to shrink the state space with no further effort. In a sense, the
logical part of a state contains precisely the information that the semantics of
LTL dictates, see Proposition @l Thirdly, the state space is—according to the
experiments—not much bigger even when compared to already optimized de-
terminization. Moreover, very often it is considerably smaller, especially for the
“infinitary” formulae; in particular, for fairness conditions. Furthermore, we have
also given a very compact deterministic w-automaton with a small and in our
opinion reasonably simple generalized Rabin acceptance condition.

Although we presented a possible direction to extend the approach to the
whole LTL, we leave this problem open and will focus on this in future work.
Further, since only the obvious optimizations mentioned in Section [§ have been
implemented so far, there is space for further performance improvements in this
new approach.

Acknowledgement. Thanks to Andreas Gaiser for pointing out to us that
It12dstar constructs surprisingly large automata for fairness constraints and the
anonymous reviewers for their valuable comments.
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Abstract. We introduce consumption games, a model for discrete interactive
system with multiple resources that are consumed or reloaded independently.
More precisely, a consumption game is a finite-state graph where each transition
is labeled by a vector of resource updates, where every update is a non-positive
number or w. The w updates model the reloading of a given resource. Each vertex
belongs either to player O or player &, where the aim of player O is to play so
that the resources are never exhausted. We consider several natural algorithmic
problems about consumption games, and show that although these problems are
computationally hard in general, they are solvable in polynomial time for every
fixed number of resource types (i.e., the dimension of the update vectors) and
bounded resource updates.

1 Introduction

In this paper we introduce consumption games, a model for discrete interactive systems
with multiple resources that can be consumed and reloaded independently. We show that
consumption games, despite their rich modeling power, still admit efficient algorithmic
analysis for a “small” number of resource types. This property distinguishes consump-
tion games from other related models, such as games over vector addition systems or
multi-energy games (see below), that are notoriously intractable.

Roughly speaking, a consumption game is a finite-state directed graph where each
state belongs either to player 0O (controller) or player ¢ (environment). Every transition
s —t is labeled by a d-dimensional vector ¢ such that each component (i) is a non-
positive integer (encoded in binary) or w. Intuitively, if 6({) = —n, then the current load
of the i-th resource is decreased by n while performing s — 7, and if 6(i) = w, then
the i-th resource can be “reloaded” to an arbitrarily high value greater than or equal to
the current load. A configuration of a consumption game is determined by the current
control state and the current load of all resources, which is a d-dimensional vector of
positive integers. A play of a consumption game is initiated in some state and some
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initial load of resources. The aim of player O is to play safely, i.e., select transitions in
his states so that the vector of current resource loads stays positive in every component
(i.e., the resources are never exhausted). Player ¢ aims at the opposite.

The resources may correspond to fuel, electricity, money, or even more abstract enti-
ties such as time or patience. To get a better intuition behind consumption games and the
abstract problems studied in this paper, let us discuss one particular example in greater
detail.

The public transport company of Brno cit maintains the network of public trams,
buses, trolleybuses, and boats. Due to the frequent failures and breakdowns in electri-
cal wiring, rails, railroad switches, and the transport vehicles, the company has several
emergency teams which travel from one accident to another according to the directives
received from the central supervisory office. Recently, the company was considering
the possibility of replacing their old diesel vans by new cars equipped with more eco-
logical natural gas engines. The problem is that these cars have smaller range and can
be tanked only at selected gas stations. So, it is not clear whether the cars are usable at
all, i.e., whether they can always visit a gas station on time regardless where and when
an accident happens, and what are the time delays caused by detours to gas stations.
Now we indicate how to construct the associated consumption game model and how to
rephrase the above questions formally.

We start with a standard graph G representing the city road network, i.e., the nodes
of G correspond to distinguished locations (such as crossings) and the edges correspond
to the connecting roads. Then we identify the nodes corresponding to gas stations that
sell natural gas, and to each edge (road) we assign two negative numbers corresponding
to the expected time and fuel needed to pass the road. Every morning, a car leaves a
central garage (where it is fully tanked) and returns to the same place in the evening.
The maximal number of accidents serviced per day can be safely overestimated by 12.
Our consumption game C has two resource types modeling the fuel and time in the
expected way. The fuel is consumed by passing a transition (road), and can be reloaded
by the outgoing transitions of gas stations. The time is also consumed by passing the
roads, and the only node where it can be reloaded is the central garage, but only after
completing the 12 jobs. In the states of C we remember the current job number (from 1
to 12) and the current target node. At the beginning, and also after visiting the current
target node, the next target node is selected by player ¢. Technically, the current target
node belongs to player ¢, and there is a transition for every (potential) next target node.
Performing such a transition does not consume the resources, but the information about
the next target node is stored in the chosen state, job index is increased, and the control
over the play is given back to player O who models the driver. This goes on until the job
index reaches 12. Then, player ¢ makes no further choice, but it is possible to reload
the time resource at the node corresponding to the central garage, and hence player O
aims at returning to this place as quickly as possible (without running out of gas). Note
that C has about 12 - n? states, where 7 is the number of states of G.

The question whether the new cars are usable at all can now be formalized as fol-
lows: Is there is safe strategy for player O in the initial configuration such that the fuel
resource is never reloaded to a value which is higher than the tank capacity of the car?

! DPMB, Dopravni Podnik Mésta Brna.
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In the initial configuration, the fuel resource is initialized to 1 because it can be immedi-
ately reloaded in the central garage, and the time resource is initialized to a “sufficiently
high value” which is efficiently computable due to the finite reload property formulated
in Corollary[Z} Similarly, the extra time delays caused by detours to gas stations can be
estimated by computing the minimal initial credit for the time resource, i.e., the min-
imal initial value sufficient for performing a safe strategy, and comparing this number
with the minimal initial credit for the time resource in a simplified consumption game
where the fuel is not consumed at all (this corresponds to an ideal “infinite tank capac-
ity”’). Similarly, one could also analyze the extra fuel costs, or model the consumption
of the material needed to perform the repairs, and many other aspects.

An important point of the above example is that the number of resources is relatively
small, but the number of states is large. This motivates the study of parameterized
complexity of basic decision/optimization problems for consumption games, where the
parameters are the following:

e d, the number of resources (or dimension);
e {, the maximal finite |6(i)| such that 1 < i < d and ¢ is a label of some transition.

Main Results. For every state s of a consumption game C, we consider the following
sets of vectors (see Section 2] for precise definitions):

o Safe(s) consists of all vectors a of positive integers such that player O has a safe
strategy in the configuration (s, @). That is, Safe(s) consists of all vectors describing
a sufficient initial load of all resources needed to perform a safe strategy.

o Cover(s) consists of all vectors @ of positive integers such that player O has a safe
strategy o in the configuration (s, @) such that for every strategy m for player ¢ and
every configuration (¢, 8) visited during the play determined by o and 7 we have that
B < a. Note that physical resources (such as fuel, water, electricity, etc.) are stored in
devices with finite capacity (tanks, batteries, etc.), and hence it is important to know
what capacities of these devices are sufficient for performing a safe strategy. These
sufficient capacities correspond to the vectors of Cover(s).

Clearly, both Safe(s) and Cover(s) are upwards closed with respect to component-wise
ordering. Hence, these sets are fully determined by their finite sets of minimal elements.
In this paper we aim at answering the very basic algorithmic problems about Safe(s) and
Cover(s), which are the following:

(A) Emptiness. For a given state s, decide whether Safe(s) = 0 (or Cover(s) = 0).

(B) Membership. For a given state s and a vector @, decide whether @ € Safe(s)
(or a € Cover(s)). Further, decide whether « is a minimal vector of Safe(s) (or
Cover(s)).

(C) Compute the set of minimal vectors of Safe(s) (or Cover(s)).

Note that these problems subsume the questions of our motivating example. We show
that all of these problems are computationally hard, but solvable in polynomial time
for every fixed choice of the parameters d and ¢ introduced above. Since the degree of
the bounding polynomial increases with the size of the parameters, we do not provide
fixed-parameter tractability results in the usual sense of parameterized complexity (as it
is mentioned in Section[3] this would imply a solution to a long-standing open problem
in study of graph games). Still, these results clearly show that for “small” parameter
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values, the above problems are practically solvable even if the underlying graph of C is
very large. More precisely, we show the following for game graphs with n states:

e The emptiness problems for Safe(s) and Cover(s) are coNP-complete, and solvable
in O(d! - ™) time.

e The membership problems for Safe(s) and Cover(s) are PSPACE-hard and solvable
in time |a| - (d - £ - n)°@ and O(A? - n?), respectively, where || is the encoding size
ofaand A = Hl.dzla(i).

e The set of minimal elements of Safe(s) and Cover(s) is computable in time
(d-€-n)°9 and (d - € n)°@?), respectively.

Then, in Section 4, we show that the complexity of some of the above problems can
be substantially improved for two natural subclasses of one-player and decreasing con-
sumption games by employing special methods. A consumption game is one-player if
all states are controlled by player O, and decreasing if every resource is either reloaded
or decreased along every cycle in the graph of C. For example, the game constructed in
our motivating example is decreasing, and we give a motivating example for one-player
consumption games in Section[dl In particular, we prove that

o the emptiness problem for Safe(s) and Cover(s) is solvable in polynomial time both
for one-player and decreasing consumption games;

o the membership problem for Safe(s) is PSPACE-complete (resp. NP-complete) for
decreasing consumption games (resp. one-player consumption games).

e Furthermore, for both these subclasses we present algorithms to compute the mini-
mal elements of Safe(s) by a reduction to minimum multi-distance reachability prob-
lem, and solving the minimum multi-distance reachability problem on game graphs.
Though these algorithms do not improve the worst case complexity over general con-
sumption games, they are iterative and potentially terminate much earlier (we refer
to Section[4.3] and Section .4 for details).

Related Work. Our model of consumption games is related but incomparable to en-
ergy games studied in the literature. In energy games both positive and non-positive
weights are allowed, but in contrast to consumption games there are no w-weights. En-
ergy games with single resource type were introduced in [3], and it was shown that the
minimal initial credit problem (and also the membership problem for Safe(s)) can be
solved in exponential time. Further, it follows from the results of [5]] that the empti-
ness problem for Safe(s), which was shown to be equivalent to two-player mean-payoft
games [2]], lies in NP N coNP.

Games over extended vector addition systems with states (€VASS games), where
the weights in transition labels are in {—1,0, 1, w}, were introduced and studied in
[4]. In [4], it was shown that the question whether player O has a safe strategy in a
given configuration is decidable, and the winning region of player O is computable in
(d — )-EXPTIME, where d is the eVASS dimension, and hence the provided solution
is impractical even for very small d’s. A closely related model of energy games with
multiple resource types (or multi-energy games) was considered in [7]. The minimal
initial credit problem (and also the membership problem for Safe(s)) for multi-energy
games can be reduced to the corresponding problem over eVASS games with an expo-
nential reduction to encode the integer weights into weights {—1, 0, 1}. Thus the minimal
initial credit problem can be solved in d-EXPTIME, and the membership problem is
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EXPSPACE-hard (the hardness follows from the classical result of Lipton [12]). The
emptiness problem for Safe(s) is coNP-complete for multi-energy games [7]. Thus the
complexity of the membership and the minimal initial credit problem for consump-
tion games is much better (it is in EXPTIME and PSPACE-hard and can be solved
in polynomial time for every fixed choice of the parameters) as compared to eVASS
games or multi-energy games (EXPSPACE-hard and can be solved in d-EXPTIME).
For eVASS games with fixed dimensions, the problem can be solved in polynomial time
for d = 2 (see [6]), and it is open whether the complexity can be improved for other con-
stants. Moreover, for the important subclasses of one-player and decreasing consump-
tion games we show much better bounds (polynomial time algorithms for emptiness
and optimal complexity bounds for membership in Safe(s)).

The paper is organized as follows. After presenting necessary definitions in Sec-
tion 2] we present our solution to the three algorithmic problems (A)-(C) for general
consumption games in Section 3 In Section @] we concentrate on the two subclasses
of decreasing and one-player consumption games and give optimized solutions to some
of these problems. Finally, in Section [5] we give a short list of open problems which,
in our opinion, address some of the fundamental properties of consumption games that
deserve further attention. Due to the lack of space, the proofs are ommited. They can be
found in the full version of this paper [3].

2 Definitions

In this paper, the set of all integers is denoted by Z. For a given operator < € {>, <, <, >},
we use Zyg to denote the set {i € Z | i = 0}, and Z" ) to denote the set Z,o U {w}, where
w ¢ Z is a special symbol representing an “infinite amount” with the usual conventions
(in particular, ¢ + w = w + ¢ = w and ¢ < w for every ¢ € Z). For example, Z is the
set of all negative integers, and z%, is the set Z.o U {w}. We use Greek letters @, 83, . .. to
denote vectors over Z,q or Z2 and 0 to denote the vector of zeros. The i-th component
of a given « is denoted by «(i). The standard component-wise ordering over vectors is
denoted by <, and we also write @ < S to indicate that a(i) < B(i) for every i.

Let M be a finite or countably infinite alphabet. A word over M is a finite or infinite
sequence of elements of M. The empty word is denoted by &, and the set of all finite
words over M is denoted by M*. Sometimes we also use M* to denote the set M* \ {&}.
The length of a given word w is denoted by len(w), where len(g) = 0 and the length of
an infinite word is co. The individual letters in a word w are denoted by w(0), w(1), ...,
and for every infinite word w and every i > 0 we use w; to denote the infinite word
w(i), w(i+1),.. ..

A transition system is a pair 7 = (V, — ), where V is a finite or countably infinite
set of vertices and — C V X V atransition relation such that for every v € V there is at
least one outgoing transition (i.e., a transition of the form v — u). A path in 7 is a finite
or infinite word w over V such that w(i) - w(i+1) for every 0 < i < len(w). We call a
finite path a history and infinite path a run. The sets of all finite paths and all runs in 7~
are denoted by FPath(7") and Run(7"), respectively.

Definition 1. A (2-player) game is a triple G = (V,—,(Vg, Vo)) where (V,—) is a
transition system and (Va, V) is a partition of V. If Vo = 0, then G is a 1-player game.
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A game G is played by two players, O and ¢, who select transitions in the vertices of
Vo and Vi, respectively. Let © € {O, ¢}. A strategy for player © is a function which
to each wv € V*V,, assigns a state v/ € V such that v — V'. The sets of all strategies
for player O and player ¢ are denoted by 2 and I1; (or just by 2 and /7 if G is
understood), respectively. We say that a strategy 7 is memoryless if T(wv) depends just
on the last state v, for every w € V*. Strategies that are not necessarily memoryless are
called history-dependent. Note that every initial vertex v and every pair of strategies
(o, m) € 2’ II determine a unique infinite path in G initiated in v, which is called a play
and denoted by Play, ,(v).

Definition 2. Ler d > 1. A consumption game of dimension d is a tuple C =
(S,E,(Sa,S), L) where S is a finite set of states, (S, E) is a transition system, (Sq, S o)
is a partition of S, and L is labelling which to every (s,t) € E assigns a vector
0 = (6(1),...,6(d)) such that 6(i) € Z%, for every 1 < i < d. If s € So, we require
that 5(i) # w forall 1 < i < d. We write s 2t to indicate that (s,1) € E and L(s,1) = 6.

We say that C is one-player if S, = 0, and decreasing if for every n > 1, every
1 <i<d, and every path s) —> 51 —> - - N s, such that so = s, there is some j < n
where 6;(i) # 0.

Intuitively, if s 2,1, then the system modeled by C can move from the state s to the
state ¢ so that its resources are consumed/reloaded according to §. More precisely, if
0(i) < 0, then the current load of resource i is decreased by |0(7)|, and if 6(i) = w, then
the resource i can be reloaded to an arbitrarily high positive value larger than or equal to
the current load. The aim of player O is to play so that the resources are never exhausted,
i.e., the vector of current loads stays positive in every component. The aim of player ¢
is to achieve the opposite.

The above intuition is formally captured by defining the associated infinite-state
game G¢ for C. The vertices of G¢ are configurations of C, i.e., the elements of S X Z‘io
together with a special configuration F' (which stands for “fail”’). The transition relation
— of G¢ is determined as follows:

o ' F.
e For every configuration (s, @) and every transition s 2 ¢ of C such that a()+6(0) >0
forall 1 <i < d, there is a transition (s, @) — (f, @+y) for every v € Z? such that
— y(@@) = 6(i) for every 1 < i < d where 6(i) # w;
— y(i) 2 0 forevery 1 <i <d where 6(i) = w.
e If (s, @) is a configuration and s 2 ¢ a transition of C such that a(@) + 6(i) < 0 for
some 1 < i < d, then there is a transition (s, @) — F.
o There are no other transitions.

A strategy o for player O in G¢ is safe in a configuration (s, @) iff for every strategy
n for player & we have that Play, (s, @) does not visit the configuration F'. For every
s €S, weuse

e Safe(s) to denote the set of all @ € Z‘io such that player O has a safe strategy in (s, @);

e Cover(s) to denote the set of all @ € Zio such that player O has a safe strategy o in
(s, @) such that for every strategy n for player ¢ and every configuration (¢, 8) visited
by Play, (s, @) we have that 8 < a.



Consumption Games 29

If @ € Safe(s), we say that « is safe in s, and if @ € Cover(s), we say that a covers s.
Obviously, Cover(s) C Safe(s), and both Safe(s) and Cover(s) are upwards closed w.r.t.
component-wise ordering (i.e., if @ € Safe(s) and @ < a’, then @’ € Safe(s)). This means
that Safe(s) and Cover(s) are fully described by its finitely many minimal elements.

Intuitively, Safe(s) consists of all vectors describing a sufficiently large initial amount
of all resources needed to perform a safe strategy. Note that during a play, the resources
can be reloaded to values that are larger than the initial one. Since physical resources are
stored in “tanks” with finite capacity, we need to know what capacities of these tanks
are sufficient for performing a safe strategy. These sufficient capacities are encoded by
the vectors of Cover(s).

3 Algorithms for General Consumption Games

In this section we present a general solution for the three algorithmic problems (A)-(C)
given in Section[Il

We start by a simple observation that connects the study of consumption games to a
more mature theory of Streett games. A Streett game is a tuple S = (V, -, (Vg, Vo), A),
where (V,—,(Vg, Vy)) is a 2-player game with finitely many vertices, and A =
{(G1,R)),..., (G, Ry}, where m > 1 and G;,R; C +— forall 1 < i < m, is a Streett
(or strong fairness) winning condition (for technical convenience, we consider G;, R;
as subsets of edges rather than vertices). For an infinite path w in S, let inf(w) be the
set of all edges that are executed infinitely often along w. We say that w satisfies A iff
inf(w) N G; # 0 implies inf(w) N R; # @ for every 1 < i < m. A strategy o € Xg is
winning in v € V if for every m € Iis we have that Play, ,(v) satisfies A. The problem
whether player O has a winning strategy in a vertex v € V is coNP-complete [9]], and
the problem can be solved in O(m! - V™1 time [13].

For the rest of this section, we fix a consumption game C = (S, E, (Sg,S¢), L) of
dimension d, and we use ¢ to denote the maximal finite |6()| such that 1 <i < d and 6
is a label of some transition.

Lemma3. Let S¢ = (S,E,(Sg,S¢), A) be a Streett game where A
{(G1,R1),..., (G4, Rp)}, Gi = {(s,t) € E | L(s,pi) < 0}, and R, =
{(s,1) € E| L(s,1)(i) = w} for every 1 < i < d. Then for every s € S the following
assertions hold:

1. If Safe(s) # 0, then player O has a winning strategy in s in the Streett game Sc.
2. If player O has a winning strategy in s in the Streett game Sc, then
@' -1S|1-€¢+1,...,d!'-|S|- €+ 1) € Safe(s) N Cover(s).

An immediate consequence of Lemma[3is that Safe(s) = @ iff Cover(s) = 0. Our next
lemma shows that the existence of a winning strategy in Streett games is polynomially
reducible to the problem whether Safe(s) = 0 in consumption games.

Lemmad. Let S = (V,>,(Vg, Vo), A) be a Streett game where A =
{(G1,R1), ..., (G, Ry)}. Let Cs = (V,—,(Vg, Vo), L) be a consumption game of di-
mension m where L(u,v)(i) is either —1, w, or 0, depending on whether (u,v) € G;
(u,v) € R;, or (u,v) ¢ G; UR,, respectively. Then for every v € V we have that player O
has a winning strategy in v (in S) iff Safe(v) # 0 (in Cgs).
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A direct consequence of Lemma[3land Lemma[is the following:

Theorem 5. The emptiness problems for Safe(s) and Cover(s) are coNP-complete and
solvable in O(d! - |S|*") time.

Also observe that if managed to prove that the emptiness problem for Safe(s) or
Cover(s) is fixed-parameter tractable in d for consumption games where ¢ is equal to
one (i.e., if we proved that the problem is solvable in time F(d)-n?? where n is the size
of the game and F a computable function), then due to Lemma H] we would immedi-
ately obtain that the problem whether player O has a winning strategy in a given Streett
game is also fixed-parameter tractable. That is, we would obtain a solution to one of the
long-standing open problems of algorithmic study of graph games.

Now we show how to compute the set of minimal elements of Safe(s). A key obser-
vation is the following lemma whose proof is non-trivial.

Lemma 6. For every s € S and every minimal a € Safe(s) we have that a(i) < d-€-|S|
foreveryl <i<d.

Observe that Lemmal[6] does not follow from Lemma[3] (2.). Apart from Lemmal 6 pro-
viding better bound, Lemma [3] (2.) only says that if all resources are loaded enough,
then there is a safe strategy. However, we aim at proving a substantially stronger result
saying that no resource needs to be reloaded to more than d - € - |S | regardless how large
is the current load of other resources.

Intuitively, Lemmal@lis obtained by a somewhat tricky inductive argument where we
first consider all resources as being “sufficiently large” and then bound the components
one by one. Since a similar technique is also used to compute the minimal elements of
Cover(s), we briefly introduce the main underlying notions and ideas.

An abstract load vector u is an element of (Z‘;’O)d . The precision of u is the number
of components different from w. The standard componentwise ordering is extended also
to abstract load vectors by stipulating that ¢ < w for every ¢ € Z. Given an abstract load
vector y and a vector & € (Z»o)?, we say that & matches u if a(j) = u(j) foralll1 < j<d
such that u(j) # w. Finally, we say that u is compatible with Safe(s) (or Cover(s)) if
there is some @ € Safe(s) (or a € Cover(s)) that matches .

The proof of Lemmal[f]is obtained by showing that for every minimal abstract load
vector ¢ with precision i compatible with Safe(s) we have that u(j) <i-€-|S| for every
1 < j < d such that u(j) # w. Since the minimal elements of Safe(s) are exactly the
minimal abstract vectors of precision d compatible with Safe(s), we obtain the desired
result. The claim is proven by induction on i. In the induction step, we pick a minimal
abstract vector u with precision i compatible with s, and choose a component j such that
u(j) = w. Then we show that if we replace u(j) with some k whose value is bounded by
(i+1)-¢-|S|, we yield a minimal compatible abstract vector with precision i + 1. The
proof of this claim is the very core of the whole argument, and it involves several subtle
observations about the structure of minimal abstract load vectors. The details are given
in [3]].

An important consequence of Lemmal6]is the following:

Corollary 7 (Finite reload property). If @ € Safe(s) and 8(i) = min{a(i),d - € -|S|} for
every 1 <i<d, then 8 € Safe(s).
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Due to Corollary [7, for every minimal @ € Safe(s) there is a safe strategy which never
reloads any resource to more than d - € - |S|. Thus, we can significantly improve the
bound of Lemmal[3](2.).

Corollary 8. If Safe(s) # 0, then (d- € -|S|,...,d - €-|S|) € Safe(s) N Cover(s).

Another consequence of Corollary [7] is that one can reduce the problem of comput-
ing the minimal elements of Safe(s) to the problem of determining a winning set in a
finite-state 2-player safety game with at most S| - d? - ¢¢ - |S|¢ + 1 vertices, which is
obtained from C by storing the vector of current resource loads explicitly in the states.
Whenever we need to reload some resource, it can be safely reloaded to d-£-|S |, and we
simulate this reload be the corresponding transition. Since the winning set in a safety
game with n states and m edges can be computed in time linear in n + m [10/1], we
obtain the following:

Corollary 9. The sets of all minimal elements of all Safe(s) are computable in time
d-t- |S|)0(d)_

The complexity bounds for the algorithmic problems (B) and (C) for Safe(s) are given
in our next theorem. The proofs of the presented lower bounds are given in [3]].

Theorem 10. Let € Z¢ and s € S.

o The problem whether a € Safe(s) is PSPACE-hard and solvable in time
lal- (d-€-|S))°D, where |a| is the encoding size of .

o The problem whether « is a minimal vector of Safe(s) is PSPACE-hard and solvable
in time |a| - (d - € - |S)°D, where |a| is the encoding size of .

o The set of all minimal vectors of Safe(s) is computable in time (d - € - |S O,

Now we provide analogous results for Cover(s). Note that deciding the membership
to Cover(s) is trivially reducible to the problem of computing the winning region in
a finite-state game obtained from C by constraining the vectors of current resource
loads by «@. Computing the minimal elements of Cover(s) is more problematic. One
is tempted to conclude that all components of the minimal vectors for each Cover(s)
are bounded by a “small” number, analogously to Lemmal@l In this case, we obtained
only the following bound, which is still polynomial for every fixed d and £, but grows
double-exponentially in d. The question whether this bound can be lowered is left open,
and seems to require a deeper insight into the structure of covering vectors.

Lemma 11. For every s € S and every minimal a € Cover(s) we have that a(i) <
(d-€-1SD forevery1 <i<d.
The proof of Lemma [Tl is given in [3]. It is based on re-using and modifying some

ideas introduced in [4] for general eVASS games. The following theorem sums up the
complexity bounds for problems (B) and (C) for Cover(s).

Theorem 12. Let @ € Z¢ and s € S.

e The problem whether a € Cover(s) is PSPACE-hard and solvable in O(A? -|S %)
time, where A = Hi‘]:la(i).

o The problem whether « is a minimal element of Cover(s) is PSPACE-hard and solv-
able in O(d - A* - |S|?) time, where A = IYidzla(i).

e The set of all minimal vectors of Cover(s) is computable in (d - € - |S )04 time.
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4 Algorithms for One-Player and Decreasing Consumption Games

In this section we present more efficient algorithms for the two subclasses of decreas-
ing and one-player consumption games. Observe that these special classes of games can
still retain a rich modeling power. In particular, the decreasing subclass is quite natural
as systems that do not decrease some of the resources for a long time most probably
stopped working completely (also recall that the game considered in Section [I]is de-
creasing). One-player consumption games are useful for modeling a large variety of
scheduling problems, as it is illustrated in the following example.

Consider the following (a bit idealized) problem of supplying shops with goods such
as, e.g., bottles of drinking water. This problem may be described as follows: Imagine
a map with c cities connected by roads, n of these cities contain shops to be supplied,
k cities contain warehouses with huge amounts of the goods that should be distributed
among the shops. The company distributing the goods owns d cars, each car has a
bounded capacity. The goal is to distribute the goods from warehouses to all shops
in as short time as possible. This situation can be modeled using a one-player con-
sumption game as follows. States would be tuples of the form (cy,...,c4,A) where
each ¢; € {1,...,c} corresponds to the city in which the i-th car is currently located,
A C {1,...,n} lists the shops that have already been supplied (initially A = @ and the
goal is to reach A = {1,...,n}). Loads of individual cars and the total time would be
modelled by a vector of resources, (£(1), ..., €(d), ), where each £(i) models the current
load of the i-th car and # models the amount of time which elapsed from the beginning
(this resource is steadily decreased until A = {1, ..., n}). Player O chooses where each car
should go next. Whenever the i-th car visits a city with a warehouse, the corresponding
resource £(i) may be reloaded. Whenever the i-th car visits a city containing a shop,
player O may choose to supply the shop, i.e. decrease the resource £(i) of the car by the
amount demanded by the shop. Now the last component of a minimal safe configuration
indicates how much time is needed to supply all shops. A cover configuration indicates
not only how much time is needed but also how large cars are needed to supply all
shops. This model can be further extended with an information about the fuel spent by
the individual cars, etc.

As in the previous section, we fix a consumption game C = (S, E, (S, S o), L) of di-
mension d, and we use ¢ to denote the maximal finite |6(i)| such that 1 <i<danddisa
label of some transition. We first establish the complexity of emptiness and membership
problem, and then present an algorithm to compute the minimal safe configurations.

4.1 The Emptiness and Membership Problems

We first establish the complexity of the emptiness problem for decreasing games by a
polynomial time reduction to generalized Biichi games. A generalized Biichi game is
atuple B = (V, >, (Vg, Vy), B), where (V, -, (Vg, Vo)) is a 2-player game with finitely
many vertices, and B = {Fy,...,F,}, where m > 1l and F; C — forall 1 < i < m.
We say that infinite path w satisfies the generalized Biichi condition defined by B iff
inf(w) N F; # 0 for every 1 < i < m. A strategy o € 2g is winning in v € V if for
every 7 € Ilg we have that the Play,, ,(v) satisfies the generalized Biichi condition. The
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problem whether player O has a winning strategy in state s can be decided in polynomial
time, with an algorithm of complexity O(|V|-| + | - m) (see [8]).
We claim that the following holds:

Lemma 13. IfC is a decreasing game, then Safe(s) # 0 if and only if the player O has
winning strategy in generalized Biichi game Bc = (S, E, (S, S o), {R1,. .., R4}), where
foreach 1 <i<dwehaveR; ={(s,t) € E | L(s,0)({) = w}.

Previous lemma immediately gives us that the emptiness of Safe(s) in decreasing games
is decidable in time O(|S| - |E| - d). We now argue that the emptiness of Safe(s) for
one-player games can also be achieved in polynomial time. Note that from Lemma 3]
we have that Safe(s) # 0 if and only if player O has a winning strategy in state s of
one-player Streett game S¢. The problem of deciding the existence of winning strategy
in one-player Streett game is exactly the nonemptiness problem for Streett automata
that can be solved in time O((|S| - d + |E|) - min{|S |, d}) [11]].

Theorem 14. Given a consumption game C and a state s, the emptiness problems of
whether Safe(s) = 0 and Cover(s) = 0 can be decided in time O(|S| - |E| - d) if C is
decreasing, and in time O((|S| - d + |E|) - min{|S |, d}) if C is a one-player game.

We now study the complexity of the membership problem for Safe(s). We prove two key
lemmas that bound the number of steps before all resources are reloaded. The key idea
is to make player O reload resources as soon as possible. Formally, we say that a play
Play, (s, @) induced by a sequence of transitions so %y . % s reloads i-th resource
in j-th step if 6;(i) = w. We first present a lemma for decreasing games and then for
one-player games.

Lemma 15. Consider a decreasing consumption game C and a configuration (s, a)
such that a € Safe(s). There is a safe strategy o for player O in (s, @) such that every
Play, (s, @) reloads all resources in the first d - |S| steps.

Now let us consider one-player games. As player < has only one trivial strategy, w, we
write only Play, (s, @) instead of Play, (s, ).

Lemma 16. Consider a one-player consumption game C and a configuration (s, a)
such that a € Safe(s). There is a safe strategy o for player O in (s, @) such that for the
Play_(s,@) and every 1 <i < d we have that either the i-th resource is reloaded in the
first d - |S| steps, or it is never decreased from the (d - |S| + 1)-st step on.

As a consequence of Lemma Lemma [16] and the hardness results presented in [3]]
we obtain the following:

Theorem 17. The membership problem of whether a € Safe(s) is NP-complete for
one-player consumption games and PSPACE-complete for decreasing consumption
games. The problem whether « is a minimal element of Safe(s) is DP-complete for
one-player consumption games and PSPACE-complete for decreasing consumption
games.
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4.2 Minimal Safe Configurations and Multi-distance Reachability

In the rest of the paper we present algorithms for computing the minimal safe con-
figurations in one-player and decreasing consumption games. Both algorithms use the
iterative algorithm for multi-distance reachability problem, which is described below,
as a subprocedure. Although their worst-case complexity is the same as the complexity
of generic algorithm from Section[3] we still deem them to be more suitable for practical
computation due to some of their properties that we state here in advance:

e The generic algorithm always constructs game of size (|S| - d - £)°“. In contrast,
algorithms based on solving multi-distance reachability construct a game whose size
is linear in size of C for every fixed choice of parameter d.

e The multi-distance reachability algorithms iteratively construct sets of configurations
that are safe but may not be minimal before the algorithm stops. Although the time
complexity of this iterative computation is (|S|- d - £)°“ at worst, it may be the case
that the computation terminates much earlier. Thus, these algorithms have a chance
to terminate earlier than in (IS |- d - £)%@ steps (unlike the generic algorithm, where
the necessary construction of the “large” safety game always requires this number of
steps).

e Moreover, the algorithm for one-player games presented in Section 4.3 decomposes
the problem into many parallel subtasks that can be processed independently.

Let O denote a d-dimensional consumption game with transitions labeled by vectors
over Z (i.e. there is no w in any label). Also denote D the set of states of game D. We
say that vector « is a safe multi-distance (or just safe distance) from state s to state r if
there is a strategy o for player O such that for any strategy n for player ¢ the infinite
path Play, (s, @) visits a configuration of the form (r, 8). That is, « is a safe distance
from s to r if player O can enforce reaching r from s in such a way that the total decrease
in resource values is less than a.

We denote by Safeq (s, r) the set of all safe distances from s to r in D, and by Ap(s, r)
the set of all minimal elements of Safe, (s, r). If Safe,(s, r) = 0, then we set Ap(s, r) =
{(co,...,00)}, where the symbol oo is treated accordingly with the usual conventions
(for any ¢ € Z we have co — ¢ = oo, ¢ < o0; we do not use the w symbol to avoid
confusions).

We present a simple fixed-point iterative algorithm which computes the set of min-
imal safe distances from s to r. Apart from the standard set operations, the algorithm
uses the following operations on sets of vectors: for a given set M and a given vector a,
the operation min-set(M) returns the set of minimal elements of M, and M — a returns
the set {8 — a | B € M}. Further, given a sequence of sets of vectors My, ..., M,, the

operation cwm(My, ..., M,,) returns the set {a; V --- Va,, | @1 € My,...,an € My},
where each @ V- - - Va,, denotes a component-wise maximum of the vectors j, .. ., @y,.
Technically, the algorithm iteratively solves the following optimality equations: for
any state g with outgoing transitions g N qis---»q L, gm we have that
A1) min-set (Ap(q1,7r) =61 U -+ U Ap(Gm, F) — Om) if g € Dg
)= .
2D \nin-set (cum(An(qr,r) = O1v- .., An(@ms ) = 62)) if g € Do

The algorithm iteratively computes the k-step approximations of Ap(gq,r), which
are denoted by /lz)(q, r). Intuitively, each set /l’b(q, r) consists of all minimal safe
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distances from g to r over all plays with at most k steps. The set /l%(q, r) is initialized to
{(co,...,00)} for g # r, and to {(1,..., 1)} for g = r. Each /l’gl(q, r) is computed from
/l’é)(q, r) using the above optimality equations until a fixed point is reached. In [3] we
show that this fixed point is the correct solution for the minimal multi-distance problem.

Since the algorithm is based on standard methods, we omit its presentation (which
can be found in [3]]) and state only the final result. We call branching degree of D the
maximal number of transitions outgoing from any state of D.

Theorem 18. There is an iterative procedure Min-dist(D, s,r) that correctly com-
putes the set of minimal safe distances from s to r in time O<|D| ca-b- Nz), where
b is the branching degree of D, a is the length of a longest acyclic path in D and
N = maxoci<q [A%)(q, 7).

Moreover, the procedure requires at most a iterations to converge to the correct so-
lution and thus the resulting set Ap(s, r) has size at most N. Finally, the number N can
be bounded from above by (a - ).

Note that the complexity of the procedure Min-dist(D, s, r) crucially depends on param-
eter N. The bound on N presented in the previous theorem follows from the obvious fact
that components of all vectors in /llé)(s, r) are either all equal to co or are all bounded
from above by k - £. However, for concrete instances the value of N can be substantially
smaller. For example, if the consumption game 9 models some real-world problem,
then it can be expected that the number of k-step minimal distances from states of D
to r is small, because changes in resources are not entirely independent in these mod-
els (e.g., action that consumes a large amount of some resource may consume a large
amount of some other resources as well). This observation forms the core of our claim
that algorithms based on multi-distance reachability may terminate much earlier than
the generic algorithm from Section[3

4.3 Computing Safe(s) in One-Player Consumption Games

Now we present an algorithm for computing minimal elements of Safe(s) in one-player
consumption games. The algorithm computes the solution by solving several instances
of minimum multi-distance reachability problem. We assume that all states s with
Safe(s) = 0 were removed from the game. This can be done in polynomial time us-
ing the algorithm for emptiness (see Theorem [14).

We denote by 71(d) the set of all permutations of the set {1,...,d}. We view each
element of 71(d) as a finite sequence «; ...7m4, €.2., [1(2) = {12,21}. We use the stan-
dard notation 7 for permutations: confusion with strategies of player ¢ should not arise
since S, = 0 in one-player games.

We say that a play Play,(s, @) matches a permutation r if forevery 1 <i < j<d
the following holds: If the n;-th resource is reloaded along Play, (s, @), then the n;-th
resource is also reloaded along this play and the first reload of m;-th resource occurs be-
fore or at the same time as the first reload of x;-th resource. A configuration (s, @)
matches 7 if there is a strategy o that is safe in (s,@) and Play, (s, @) matches .
We denote by Safe(s, m) the set of all vectors a such that (s, @) matches 7. Note that

Safe(s) = Urenna) Safe(s, n).
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As indicated by the above equality, computation of safe configurations in C reduces
to the problem of computing, for every permutation x, safe configurations that match .
The latter problem, in turn, easily reduces to the problem of computing safe multi-
distances in specific one-player consumption games C(xr). Intuitively, each game C(rr)
simulates the game C where the resources are forced to be reloaded in the order specified
by 7. So the states of each C(rr) are pairs (s, k) where s corresponds to the current state
of the original game and k indicates that the first k resources, in the permutation ,
have already been reloaded. Now the crucial point is that if the first k resources have
been reloaded when some configuration ¢ = (s, ) of the original game is visited, and
there is a safe strategy in ¢ which does not decrease any of the resources with the index
greater than k, then we may safely conclude that the initial configuration is safe. So,
in such a case we put a transition from the state (s, k) of C(r) to a distinguished target
state » (whether or not to put in such a transition can be decided in polynomial time
due to Theorem [I4). Other transitions of C(xr) correspond to transitions of C except
that they have to update the information about already reloaded resources, cannot skip
any resource in the permutation (such transitions are removed), and the components
indexed by 7y, .. ., m are substituted with O in transitions incoming to states of the form
(g, k) (since already reloaded resources become unimportant as indicated by the above
observation).

A complete construction of C(n) is presented in [3] as a part of a formal proof of the
following theorem:

Theorem 19. For every permutation ©t there is a polynomial time constructible con-
sumption game C(7) of size O(|S| - d) and branching degree O(|S|) such that for every
vector @ we have that « € Safe(s,n) in C iff « is a safe distance from (s, 0) to r in C(r).

By the previous theorem, every minimal element of Safe(s) is an element of
Acay((s,0), r) for at least one permutation . Our algorithm examines all permuta-
tions m € II(d), and for every permutation it constructs game C(r) and computes
Aca((s, 0), r) using the procedure Min-dist from Theorem[I8] The algorithm also stores
the set of all minimal vectors that appear in some A ((s, 0), ). In this way, the algo-
rithm eventually finds all minimal elements of Safe(s). The pseudocode of the algorithm
is presented in [3]].

From complexity bounds of Theorems[I4] and [I8] we obtain that the worst case run-
ning time of this algorithm is d! - (|S| - £ - ). In contrast with the generic algorithm
of Section [3 that constructs an exponentially large safety game, the algorithm of this
section computes d! “small” instances of the minimal multi-distance reachability prob-
lem. We can solve many of these instances in parallel. Moreover, as argued in previous
section, each call of Min-dist(C(n), (s, 0), r) may have much better running time than
the worst-case upper bound suggests.

4.4 Computing Safe(s) in Decreasing Consumption Games

We now turn our attention to computing minimal elements of Safe(s) in decreasing
games. The main idea is again to reduce this task to the computation of minimal multi-
distances in certain consumption game. We again assume that states with Safe(s) = 0
were removed from the game.
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The core of the reduction is the following observation: if C is decreasing, then @ €
Safe(s) iff player O is able to ensure that the play satisfies these two conditions: all
resources are reloaded somewhere along the play; and the i-th resource is reloaded for
the first time before it is decreased by at least (i), for every 1 < i < d. Now if we
augment the states of C with an information about which resources have been reloaded
at least once in previous steps, then the objective of player O is actually to reach a state
which tells us that all resources were reloaded at least once.

So the algorithm constructs a game C by augmenting states of C with an information
about which resources have been reloaded at least once, and by substituting updates
of already reloaded resources (i.e., the corresponding components of the labels) with
zeros. Note that the construction of C closely resembles the construction of games C(r)
from the previous section. However, in two-player case we cannot fix an order in which
resources are to be reloaded, because the optimal order depends on a strategy chosen
by player ¢. Thus, we need to remember exactly which resources have been reloaded
in the past (we only need to remember the set of resources that have been reloaded, but
not the order in which they were reloaded).

The formal construction of C can be found in [3] along with a proof of the following
theorem.

Theorem 20. There is a consumption game C of size O(2¢-1S), branching degree o)
and with maximal acyclic path of length O(|S| - d), with the following properties: C is
constructible in time OQ% - (S| + |E))) algfifor every vector @ we have a € Safe(s) in C
iff a is a safe distance from (s,0) to r in C.

The previous theorem shows that we can find minimal elements of Safe(s) with a single
call of procedure Min-dist(C, (s, 0), r). Straightforward complexity analysis reveals that
the worst-case running time of this algorithm is (S| - d - £)°@. However, the game C
constructed during the computation is still smaller than the safety game constructed by
the generic algorithm of Section [3 Moreover, the length of the longest acyclic path
in C is bounded by |S| - d, so the procedure Min-dist does not have to perform many
iterations, despite the exponential size of C. Finally, let us once again recall that the
procedure Min-dist(C, (s, 0), r) may actually require much less than (IS |- d - £)°@ steps.

5 Conclusions

As itis witnessed by the results presented in previous sections, consumption games rep-

resent a convenient trade-off between expressive power and computational tractability.

The presented theory obviously needs further development before it is implemented in

working software tools. Some of the issues are not yet fully understood, and there are

also other well-motivated problems about consumption games which were not consid-

ered in this paper. The list of important open problems includes the following:

o Improve the complexity of algorithms for Cover(s). This requires further insights
into the structure of these sets.

o Find efficient controller synthesis algorithms for objectives that combine safety with
other linear-time properties. That is, decide whether player O has a safe strategy such
that a play satisfies a given LTL property no matter what player ¢ does.
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Find algorithms for more complicated optimization problems, where the individual
resources may have different priorities. For example, it may happen that fuel con-
sumption or the price of batteries with large capacity are much more important than
the time spent, and in that case we might want to optimize some weight function over
the tuple of all resources. It may happen (and we have concrete examples) that some
of these problems are actually solvable even more efficiently than the general ones
where all resources are treated equally w.r.t. their importance.

The above list is surely incomplete. The problem of optimal resource consumption is
rather generic and appears in many different contexts, which may generate other inter-
esting questions about consumption games.
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ACTL N LTL Synthesis*

Riidiger Ehlers
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Abstract. We study the synthesis problem for specifications of the common frag-
ment of ACTL (computation tree logic with only universal path quantification)
and LTL (linear-time temporal logic). Key to this setting is a novel construction
for translating properties from LTL to very-weak automata, whenever possible.
Such automata are structurally simple and thus amenable to optimizations as well
as symbolic implementations.

Based on this novel construction, we describe a synthesis approach that inher-
its the efficiency of generalized reactivity(1) synthesis [27]], but is significantly
richer in terms of expressivity.

1 Introduction

Synthesizing reactive systems from functional specifications is an ambitious challenge.
It combines the correctness assurance that systems obtain after model checking with
the advantage to skip the manual construction step for the desired system. As a conse-
quence, a rich line of research has emerged, witnessed by the fact that recently, off-the-
shelf tools for this task have become available.

A central question in synthesis is: what is the right specification language that allows
us to tackle the synthesis problem for its members efficiently, while still having enough
expressivity to capture the specifications that system designers want to write?

Some recent approaches focused on supporting full linear-time temporal logic as the
specification language. While the synthesis problem for such specifications was shown
to be 2EXPTIME-complete, by focusing on specifications of the form that engineers
tend to write, significant progress could recently be obtained for full LTL [[17413]). Still,
it is not hard to write small specifications that cannot be tackled by such tools.

At the same time, there are numerous techniques that trade the high expressivity of
logics such as LTL against the computational advantages of only having to deal with
structurally simpler specifications. A prominent approach of this kind is generalized
reactivity(1) synthesis [27]. It targets specifications that consist of some set of assump-
tions (which we can assume the environment of the system to fulfill) and some set of
guarantees that the system needs to fulfill. Both assumptions and guarantees can contain
only safety properties that relate the input and output in one computation cycle with the
input and output in the next computation cycle and basic liveness properties over current
input and output. In order to encode more complex properties, the output of the system
to be designed can be widened and the additional bits can be used to stitch together

* This work was supported by the DFG as part of the Transregional Collaborative Research
Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS).

P. Madhusudan and S.A. Seshia (Eds.): CAV 2012, LNCS 7358, pp. 39-54] 2012.
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more complex properties. Getting such an encoding right and efficient is manual and
cumbersome work, which is why Somenzi and Sohail coined the term “pre-synthesis”
for such an operation [28I11]].

It is apparent that there is a desperate need for a sweet spot between the high ex-
pressivity but low performance that full LTL synthesis approaches offer, and fast but
low-level synthesis approaches such as generalized reactivity(1) synthesis, where cur-
rently, pre-synthesis is crucial to its performance.

In this paper, we present ACTL N LTL synthesis as a solution to this problem. Our ap-
proach targets specifications of the form A . Assumptions @ — A g€ Guarantees §» Where
all assumptions and guarantees are written in LTL, with the restriction that they must
also be representable in ACTL, i.e., computation tree logic with only universal path
quantification. We reduce the synthesis problem for such specifications to solving sym-
bolically represented three-color parity games, which is the reasoning framework from
which also generalized reactivity(1) synthesis takes its good efficiency. In particular,
such games can be solved in time quadratic in the number of positions (see, e.g., [[1]).

The reason why ACTL N LTL is such an interesting fragment for synthesis is the
fact that the fragment has universal very-weak automata as the characterizing automa-
ton class. These automata do not only allow the application of simple, yet effective
minimization algorithms, but give rise to a straight-forward efficient symbolic encod-
ing into binary decision diagrams (BDDs), without the need for pre-synthesis. Alterna-
tively, other symbolic data structures such as anti-chains [[16] can also be used, but for
the simplicity of the initial evaluation of the approach in this paper, we use BDDs.

For best performance in solving the parity games that we build in our approach, we
present a novel construction that defers choosing the assumption and guarantee parts
to be satisfied next to the system player and the environment player, respectively. This
keeps the number of iterations that need to be performed in the fixed-point based game
solving process small and leads to short computation times of the game solving process.

The contribution of this paper is threefold. First of all, it describes a new efficient
synthesis workflow for the common fragment of ACTL and LTL. Secondly, it describes
the first algorithm for translating an LTL formula that lies in this common fragment
into its characterizing automaton class, i.e., universal very-weak automata. As a corol-
lary, we obtain a translation algorithm from LTL to ACTL, whenever possible. Third,
we introduce a technique to speed up the game solving process for generalized reactiv-
ity(1) games by letting the two players in the game choose the next obligation for the
respective other player instead of using counters as in previous approaches.

We start with preliminaries in Sect.[2] where we discuss the basic properties of very-
weak automata. Then, we describe the construction to obtain universal very-weak au-
tomata from LTL formulas that are also representable in ACTL. Afterwards, we present
the smart reduction of our synthesis problem to three-color parity games in Sect.dl Sec-
tion [3] then discusses the twists and tricks for solving parity games symbolically in an
efficient way and describes how a winning strategy that represents an implementation
satisfying the specification can be extracted. Finally, Sect. [0 contains an experimen-
tal evaluation of the approach using a prototype toolset for the overall workflow. We
conclude in Sect.[7}
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2 Preliminaries

Basics: Given a (finite) alphabet 3, we denote the sets of finite and infinite words of X
as X* and X, respectively. Sets of words are called languages. A useful tool for repre-
senting languages over finite words are regular expressions, and w-regular expressions
are regular expressions that are enriched by the (-)* operator, which denotes infinite
repetition. This way, languages over infinite words can be expressed.

Given some monotone function f : 2X — 2% for some finite set X, we define
pl.f = 0,0°.f = X and for every i > 0, set pu'.f = (f o p'~t.f) and v'.f =
(f o v*=L.f). For a monotone function f and finite X, it is assured that the series
pO f, ut f, . f ... and V0. f, vl f, L2 f ... converge to some limit functions, which
we denote by p. f and v. f, respectively.

Automata: For reasoning about (w-)regular languages, automata are a suitable tool. In
this paper, we will be concerned with deterministic, non-deterministic, non-determinis-
tic very-weak and universal very-weak automata over finite and infinite words. For all
of these types, the automata are described by tuples A = (Q, X, Qo, 0, F') with the set
of states (Q, the alphabet X, the set of initial states Q9 C @, and the transition function
6:Qx X — 29 For non-deterministic or deterministic automata, F' C Q is called
the set of accepting states, whereas for universal automata, /' C () denotes the set of
rejecting states. For deterministic automata, we require that |Qo| = 1 and that for every
(¢,z) € Q x X, we have |§(g, )| < 1. For very-weak automata, we require them to
have an order f : () — IN on the states such that for every transition from a state g to a
state ¢’ for some some z € X' (i.e., ¢’ € d(q,x)),if ¢’ # g, then f(¢') > f(q). Figure[ll
contains examples of very-weak automata. Intuitively, the order requires the automaton
to be representable in a figure such that all non-self-loop transitions lead from top to
bottom.

Given a word w = wowyws ... w, € X*, we say that m = w7y ... T4 1 a finite
run for A and w if my € Qg and for 0 < ¢ < n, ;41 € 6(m;, w;). Likewise, for a word
w = wowiws ... € X, we say that 7 = 7oy ... is an infinite run for A and w if
7o € Qp and forall i € IN, w11 € §(m;, w;).

A non-deterministic (NFA), non-deterministic very-weak (NVWF) or deterministic
(DFA) automaton over finite words accepts all finite words that have some run that ends
in an accepting state. A universal automaton over finite words accepts all finite words
for which all runs do not end in a rejecting state. A non-deterministic automaton over
infinite words accepts all infinite words that have some run that visits accepting states
infinitely often. A universal very-weak automaton over infinite words (UVW) accepts
all infinite words for which all runs visit rejecting states only finitely often.

We say that two automata are equivalent if they accept the same set of words. This
set of words is also called their language. We define the language of a state q to
mean the language of the automaton that results from setting the initial states to {¢}.
The functions 6 : 29 x 2X — 29 and 6* : 29 x 2¥ — 29 with 6(Q',X) =
Uigeqrzexy 0(d',2) and 6°(Q", X) = {¢' € Q | 3k € N, w1, 29,..., 23 € X,
41,92, qe+1 € Q. (1 € Q" ANge = ¢ ANV1 <@ < k.git1 € 0(¢i, x;))} will sim-
plify the presentation in Sect. Bl Deterministic automata over finite words also appear
as distance automata in this paper. The only difference to non-distance automata is the
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fact that for these, we have § : @ x X — 2Qx{0,1} We assign with each of their runs
the accumulated cost, obtained by adding all of the second components of the transition
target tuples for the transitions along the run. The cost of a word is the minimal cost of
an accepting run.

Labeled parity games: A parity game is defined as a tuple G = (Vp, V1, Yo, X1, Eo,
E1, vy, ¢) with the game position sets Vj and V; for player 0 and player 1, respectively,
the action sets Xy and X1, the edge functions Fy : Vy x Xy — Viand By : V) x X —
Vb, the initial position vy € Vj, and the coloring function ¢ : (Vo W V) — IN.

A decision sequence in G is a sequence p = pdpiplpt ... such that for all i €

IN, o9 € Xy and p} € X. A decision sequence p induces an infinite play 7 =

momgmdmt ... if 7} = vg and foralli € Nand p € {0,1}, E, (77, p?) = w;_:;’.
Given a play 7 = w0m}n{n] ..., we say that 7 is winning for player 1 if max{c(v) |

v € VoW Vi,v € inf(m)} is even for the function inf mapping a sequence onto the
set of elements that appear infinitely often in the sequence. If a play is not winning for
player 1, it is winning for player 0.

Given some parity game G = (Vp, V1, X, X1, Eo, E1, vo, ¢), a strategy for player
0 is a function fy : (Yo x X1)* — Xo. Likewise, a strategy for player 1 is a func-
tion f1 : (Xo x X1)* x Xy — X1. In both cases, a strategy maps prefix decision
sequences to an action to be chosen next. A decision sequence p = pQpipipi... is
said to be in correspondence to f, for some p € {0, 1} if for every ¢ € IN, we have
Pt = fo(pdps ... p;;)fl). A strategy is winning for player p if all plays in the game
that are induced by some decision sequence that is in correspondence to f;, are winning
for player p. It is a well-known fact that for parity games, there exists a winning strategy
for precisely one of the players (see, e.g., [26/122]]).

Labeled parity games for synthesis: Parity games are a computation model for systems
that interact with their environment. For the scope of this paper, let us assume that
player O represents the environment of a system that we want to synthesize, and player
1 represents the system itself. The action set of player O corresponds to the inputs to
the system and the action set of player 1 corresponds to the output. Given a language L
over infinite words for the desired properties of a system, the main idea when building
a parity game for synthesis is to ensure that the decision sequences that induce winning
plays are the ones that, when read as words, are in L. If the game is then found to be
winning for the system player, we can take a strategy for that player to win the game
and read it as a Mealy automaton that is guaranteed to satisfy the specification. Note that
all constructions in this paper can equally be used for a Moore automaton computation
model. The two players then swap roles in this case.

Linear-time temporal logic: Linear-time temporal logic (LTL) is a popular formalism to
describe properties of systems to be synthesized or verified. LTL formulas are built in-
ductively from atomic propositions in some set AP and sub-formulas using the Boolean
operators =, V, A, and the temporal operators X, F, G, and U. Given an infinite word
w = Wwowiws € (QAP)‘”, a LTL formula over AP either holds on w or not. The words
for which an LTL formula holds are also called its models. A full definition of LTL can
be found in [1216.18]].
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Properties of Very-Weak Automata

As foundation for the constructions of the sections to come, we discuss some properties
of very-weak automata over finite and infinite words here. Given two automata, we call
computing a third automaton that represents the set of words that are accepted by both
automata taking their conjunction, while taking their disjunction refers to computing
a third automaton that accepts all words that are accepted by either of the two input
automata.

Proposition 1. Universal and non-deterministic very-weak automata over infinite and
finite words are closed under disjunction and conjunction. Given two very-weak au-
tomata A and A’ with state sets Q) and Q)', we can compute their disjunctions and
conjunctions in polynomial time, with the following state counts of the results:

1. for universal automata and taking the conjunction: |Q| + |Q’| states,

2. for non-deterministic automata and taking the disjunction: |Q| + |Q’| states,
3. for universal automata and taking the disjunction: |Q| - |Q’| states, and

4. for non-deterministic automata and taking the conjunction: |Q| - |Q’| states.

Proof. For the first two cases, the task can be accomplished by just merging the state
sets and transitions. For cases 3 and 4, a standard product construction can be applied,
with defining those states in the product as rejecting/accepting for which both corres-
ponding states in the factor automata are rejecting/accepting, respectively [20]. a

Proposition 2. Every very-weak automaton has an equivalent one of the same type
for which no accepting/rejecting state has a non-self-loop outgoing edge (called the
separated form of the automaton henceforth).

Proof. Duplicate every accepting/rejecting state in the automaton and let the dupli-
cate have the same incoming edges. Then, mark the original copy of the state as non-
accepting/non-rejecting. The left part of Fig. [Il shows an example of such a state
duplication. a

The fact that every automaton has a separated form allows us to decompose it into a set
of so-called simple chains:

Definition 1. Given an alphabet X, we call a subset Q' of states of an automaton over

X a simple chain if there exists a transition order on @', i.e., a bijective function f :
Q' — {1,...,|Q'|} such that:

— only the state q with f(q) = 1 is initial,

— only the state q with f(q) = |Q’| is accepting/rejecting,

— there is no transition in the automaton between a state in Q' and a state not in @Q’,
— for every transition from q to ¢’ in the automaton, f(q) < f(¢') < f(q) + 1.

Furthermore, regular expressions that are an unnested concatenation of elements of the
form A, A*, and A% for A C X are called vermicelli.

As an example, the right-most sequence of states in Fig.[Ilis a simple chain and can
equivalently be represented as the vermicelli X *a(b)*b(c)*. Note that every vermicelli
can be translated to a language-equivalent set of simple chains.
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Fig. 1. Example for converting a UVW into separated form and subsequently decomposing it
into simple chains. The automata in this example are equivalent to the LTL formula G(a —
XF(b A XFc)). We use Boolean combinations of atomic propositions and their negation as edge
labels here. For example, b refers to all elements 2 € X = 2 for which b ¢ x. Rejecting states
are doubly-circled.

Proposition 3. Every very-weak automaton can be translated to a form in which it only
consists of simple chains.

Proof. Convert the very-weak automaton into separated form and enumerate all paths
to leaf nodes along with the self-loops that might possibly be taken. For every of these
paths, construct a simple chain. O

3 Translating LTL Formulas into UVWs

Universal very-weak automata (UVW) were identified as a characterizing automaton
class for the intersection of ACTL and LTL by Maidl [235]. She also described an algo-
rithm to check for a given ACTL formula if it lies in the intersection. For the LTL case,
Maidl defined a syntactic fragment of it, named LTLAt, whose expressivity coincides
with that of ACTL N LTL. However, she did not show how to translate an LTL formula
into this fragment whenever possible, and the fragment itself is cumbersome to use, as
it essentially requires the specifier to describe the structure of a UVW in LTL, and is
not even closed under disjunction, although UVW are. Thus, for all practical means,
the question how to check for a given LTL formula if it is contained in ACTL N LTL
remained open.

When synthesizing a system, the designer of the system specifies the desired se-
quence of events, for which linear-time logics are more intuitive to use than branching-
time logics. Thus, to use the advantage of universal very-weak automata in actual syn-
thesis tool-chains, the ability to translate from LTL to UVW is highly desirable.

Recently, Bojaiczyk [4] gave an algorithm for testing the membership of the set of
models of an LTL formula in ACTL N LTL after the LTL formula has been translated
to a deterministic parity automaton. However, the algorithm cannot generate a universal
very-weak automaton (UVW) from the parity automaton in case of a positive answer.
The reason is that the algorithm is based on searching for so-called bad patterns in the
automaton. If none of these are present, the deterministic parity automaton is found
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to be convertible, but we do not obtain any information about how a UVW for the
property might look like. Here, we reduce the problem of constructing a UVW for a
given w-regular language to a sequence of problems over automata for finite words.
We modify a procedure by Hashiguchi [19] that builds a distance automaton to check
if a given language over finite words can be decomposed into a set of vermicelli (see
Def.[I). Our modification adds a component to keep track of vermicelli already found.
This way, by iteratively searching for vermicellis of increasing length in the language,
we eventually find them all and obtain a full language decomposition.

Since Maidl [25, Lemma 11] described a procedure to translate a UVW to an equiv-
alent ACTL formula, we obtain as a corollary also a procedure to translate from LTL to
ACTL, whenever possible.

3.1 The Case of Automata over Infinite Words

We have seen that every UVW can be translated to a separated UVW. In a separated
UVW, we can distinguish rejecting states by the set of alphabet symbols for which the
states have self-loops. If two rejecting states have the same set, we can merge them
without changing the language of the automaton. As a corollary, we obtain thata UVW
can always be modified such that it is in separated form and has at most 2!/*! rejecting
states. We will see in this section that obtaining a UVW for a given language L over
some alphabet X' can be done by finding a suitable decomposition of the set of words
that are not in L among these up to 2!/ rejecting states, and then constructing the rest of
the UVW such that words that are mapped to some rejecting state in the decomposition
induce runs that eventually enter that rejecting state and stay there forever.

Definition 2. Given a language L over infinite words from the alphabet X, we call
a function f : 2¥ — 2% an end-component decomposition of L if L = X% \
Uxcs(f(X) - X¥). We call f a maximal end-component decomposition of L if for
every X C X, f(X)={we X*|w-X“NL=0}

Definition 3. Given a separated UVYW A = (Q, X, Qo, 9, F') and an end-component
decomposition f, we say that f corresponds to A if for (q1,X1), ..., (qm, Xm) being
the rejecting states and alphabet symbols under which they have self-loops, we have:

— foralli # j, X; # X;;
- foralll <i<m: f(X;) = {wow;...wy € X* | q; € 5(...5(6(Qo, {wo}),...),

{we})}
— forall X C X with X ¢ {X1,..., X}, we have f(X) = 0.

As an example, the end-component decomposition that corresponds to the UVW in the
middle part of Fig.[Ilis a function f with f(b) = X*a(b)*, f(c) = X*a(b)*b(c)*, and
f(X) =0for X # band X # c. The decomposition is not maximal as, for example,
the word {a}()* is not in the language of the automaton, but we have {a} ¢ f({0}) = 0.

By the definition of corresponding end-components, every separated UVW has one
unique corresponding end-component decomposition. On the other hand, every lan-
guage has one maximal end-component decomposition. The key result that allows us
to reduce finding a UVW for a given language to a problem on finite words combines
these two facts:
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Lemma 1. Let L be a language that is representable by a universal very-weak au-
tomaton. Then, L is also representable as a separated UVW whose corresponding end-
component decomposition is the maximal end-component decomposition of L.

Proof. Let a UVW be given whose end-component decomposition f is not maximal.
The decomposition can be made maximal by taking f'(X) = |J .5y f(X') for every
X C X, without changing the language. Building a corresponding UVW only requires
taking disjunctions of parts of the original UVW. Since we know that UVW are closed
under disjunction, it is assured that there also exists a UVW that corresponds to f/. 0O

Thus, in order to obtain a UVW for a given language L. C X, we can compute the
maximal end-component decomposition f” of L, and for every end component X C X,
compute a non-deterministic very-weak automaton over finite words for f'(X).

Starting with an LTL formula, we can thus translate it to a UVW (if possible) as
follows: first of all, we translate the LTL formula to a deterministic Biichi automata
(see, e.g., [9] for an overview). Note that as the expressivities of LTL and deterministic
Biichi automata are incomparable, this is not always possible. If no translation exists,
we however know that there also exists no UVW for the LTL formula, as all languages
representable by UVW are also representable by deterministic Biichi automata. After
we have obtained the Biichi automaton, we compute for every possible end-component
X C X from which states S in the automaton every word ending with X* is rejected.
This is essentially a model checking problem over an automaton with Biichi acceptance
condition. This way, for each end component, a deterministic automaton over finite
words with S as the set of accepting states then represents the prefix language.

3.2 Decomposing a Language over Finite Words into a Non-deterministic
Very-Weak Automaton

This problem of deciding whether there exists a non-deterministic very-weak automa-
ton for a language over finite words is widely studied in the literature. However, con-
structive algorithms that compute such an automaton are unknown. Hashiguchi studied
a more general version of the problem in [19]]. His solution is based on computing the
maximal distance of an accepted word in a distance automaton. Bojanczyk [4] recently
gave a simpler algorithm.

Here, we build on the classical construction by Hashiguchi and modify it in order
to be constructive. We describe an iterative algorithm that successively searches for
vermicelli in the language to be analyzed. In a nutshell, this is done by searching for
accepting words of minimal distance in a distance automaton. Whenever a new vermi-
celli is found, the automaton is modified in order not to accept words that are already
covered by vermicelli that have been found before. At the same time, the new vermi-
celli can be read from the state sequence in the accepting run. The distance automaton
is built as follows.

Definition 4. Givena DFA A = (QA, X, Q()“, 54, FA)for the language to be analyzed
and a NVWF B = (QB,%,Q8,65, FB) for the vermicelli already found, the non-
deterministic vermicelli-searching distance automaton over finite words D = (Q, X,
Qo, 0, F) is defined as follows:
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Q=29 x 2% x B x 29°
Qo = {(Q7',0, false, QF) }
F={(8,X,b,R)|SCF* (RNFB) =0}
5((S,X,b,R),x) = {((S,X,b,R"),0) | R = 65(R,{z}),z € X,b = true}
U {((8", X', true, R'),1) | R' = 65(R, {z}),z € X', 8" = 6**(5,X")}
U {((S', X' false, R'),1) | R = 65(R, {z}),z € X', 8" = 6*(S, X")}
forall (S,X,b,R) € Q,z € &

The states in a vermicelli-searching automaton D are four-tuples (S, X, b, R) such that
X and b represent an element in a vermicelli, where b tells us if the current vermicelli
element X is starred. During a run, we track in S in which states in A we can be in
after reading some word that is accepted by a vermicelli represented by the vermicelli
elements observed in the X and b state components along the run of D so far. Whenever
we have S C FA, then we know that all these words are accepted by .A. At the same
time, the R component simulates all runs of the NVWF B, and the definition of F’
ensures that no word that is in the language of B is accepted by D. Thus, D can only
find vermicelli that contain some word that is not accepted by B in their language.
Transitions with cost 1 represent moving on to the next vermicelli element.

Theorem 1. Let A be an DFA, B be a NVWF and D be the corresponding vermicelli-
searching distance automaton. We have:

- L(D) = L(A) \ £(B)

— Let L(A) contain a vermicelli V- = A; ... Ay, where every A; is either of the form
X* or X for some X C X.IfV is not covered by L(B), then D accepts some
word w that is a model of V with a run of distance k. Along this run, the first three
state components only change during transitions with a cost of 1, and the second
and third component in between changes describe the alphabet symbol sets in the
vermicelli and whether the vermicelli elements are starred or not.

As a consequence, since every UVW of size n can be described by a set of vermicelli
in which each vermicelli is of length at most n, we can compute a UVW representation
of A by using Algorithm [l Note that the algorithm does not terminate if .4 cannot be
represented as a very-weak automaton. Since we can however apply the algorithm by
Bojariczyk [4]] beforehand to verify the translatability, this imposes no problem.

4 Reduction of the Synthesis Problem to Parity Games

In this section, we explain how to reduce the synthesis problem for specifications of
the form A . Assumptions ¢ A 9€Guarantees 9 (OF shorter, in assumptions— guarantees
form), for which each of the assumptions and guarantees is in the common fragment of
ACTL and LTL, to solving a parity game. We have discussed in the previous section
how one assumption or guarantee can be converted to a UVW. As the conjunction of
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Algorithm 1. Translating a DFA A into a non-deterministic very-weak automaton /3
1: B=(0,%,0,0,0)
2: repeat

3: D = vermicelli searching automaton for A and

4 r = accepting run of minimal distance in D

5:  if r was found then

6 Add r as vermicelli to B

7 end if

8: until £(D) =0

two UVW can be taken by just merging the state sets and the initial states, we also
know how to compute one UVW for all of the assumptions and one UVW for all of the
guarantees. So it remains to be discussed how we combine these two UVW into a game
that captures the overall specification.

Bloem et al. [1]] describe a way to translate a specification of the assumptions— gua-
rantee form, in which all assumptions and guarantees are in form of deterministic Biichi
automata, into a three-color parity game. Essentially, the construction splits the process
by converting the assumptions and guarantees to a so-called generalized reactivity(1)
game, and then modifying the game structure and adjusting the winning condition to
three-color parity. When converting the game, assumption and guarantee pointers rep-
resent which assumption and guarantee is observed next for satisfaction. The pointers
increment one-by-one, which makes the game solving process a tedious task; for ex-
ample, if it is the last guarantee (in some assumed order) that the system cannot satisfy,
then during the game solving process, this information has to be propagated through all
the other pointer values before the process can terminate.

As a remedy, we describe an improved construction here, and let the two players set
the pointers. This way, the winning player can set the assumption or guarantee pointer
to the problematic assumption or guarantee early in the play, which reduces the time
needed for game solving. The game only has colors other than 0 for positions of the
environment player, and the states are described as six-tuples. The first two tuple com-
ponents describe in which states the assumption and guarantee UVW are, followed by
the assumption and guarantee pointers that are updated by the system and environment
players, respectively. The last two components are Boolean flags that describe whether
recently, the assumption (guarantee) state that the respective pointer points to has been
left, or the system (environment) player has changed her pointer value, respectively,
which is then reflected in the color of the game position. On a formal level, the parity
game is built as follows:

Definition 5. Ler A° = (Q4, X, Q4,64 F4) and A% = (Q%, %,Q§,6%, F) be
two UVW that represent assumptions and guarantees, and X1 and Yo be sets such
that X = X1 x Xo. Without loss of generality, let furthermore F4 = {1,...,m}

and F¢ = {1,...,n}. We define the induced synthesis game as a parity game G =
(‘/07 ‘/'17 ZIv 207 E07 Ela Vo, C) with:

Vo = 29" x 2@° x{1l,....m}x{l,...,n} xBxB
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Vi=Vox Xy

Eo = {((S4,89,d*,d%, v*,b%),z) — (84,59, d*,d'C false,v'C  z) | x € Xy,
(d9 =d'C) v (VS =true)}

Ey = {((84,89,d*,d% b4, b% z),y) — (84, 8'C d4,d% b4, 0% |y € Yo,
S =454, (2,9)), §'9 =695, (x,v)),
b = (b v (A% ¢ §C) v (a9 ¢ 69(d°, (x,1)))),
b4 = ((a* #d) v (dh ¢ SY) vt ¢ 6% (dd, (z,y)}

vy = (QOA, g, 1,1, false, false)

c={Viu{(¢?,¢% d*, d% b2, b%) | b2 A =0} = 0, {(¢?, ¢%, d*, d°,

b2, 09) | b A=Y = 1, {(¢?, ¢%,d?, d% b2, b%) | bCY - 2}

For the central correctness claim of this construction, we need some more notation.
Given aplay m = w{mimimi ... for a decision sequence p = pYpjpipi . . . in the game,
we say that a state ¢ € Q is left at position k& € IN if for T = (S, S, dt, dS, b,
b, pY_y) and mh, = (S5, SF,ds',dS b3, b ), we have ¢ ¢ St or q ¢ (g, (p},
p1))- The construction of G assures that this is the case whenever any run of the assump-
tion automaton corresponding to the first k choice pairs in the decision sequence leaves
state ¢ in the k£ + 1th round or is not in state ¢ in the kth round. The case for the guar-
antee automaton is analogous. We say that a player rotates through the possible pointer
values if whenever the state that the pointer refers to is left, the player increases it to the

next possible value. In case the highest value is reached, the pointer is set to 1 instead.

Theorem 2. Let A and A9 be two UVWs over the alphabet X = X1 X X, and G be
the induced synthesis game by Def.[3l The winning strategies for player 1 ensure that
along any decision sequence that corresponds to the strategy and in which the input
player rotates though the guarantee pointer values, either the sequence is not accepted
by A%, or the sequence is accepted by A9. Furthermore, every Mealy machine with the
input X1 and output X for which along any of its runs, the run is either rejected by A*
or accepted by A9 induces a winning strategy in G by having player 1 rotate through
the possible assumption pointer values.

The main message of Theorem[2lis that the games built according to Def.[3are suitable
for solving the synthesis task. Note that there are plays in the game that are winning for
the system player, but do not correspond to words that are models of the specification.
The reason is that the environment player is not forced to iterate infinitely often over
every possible pointer value for the final states of the guarantee automaton. Thus, a
winning strategy for the system player in this game does not correspond one-to-one to
a Mealy machine that satisfies the specification. For obtaining an implementation for
the specification, we need to apply some post-processing to a system player’s winning
strategy in the parity game.

The post-processing step is however not difficult: observe that the worst case for
the system player is that the environment player cycles through the guarantee pointer
values. This way, the system player can only win if the decision sequence in the game
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represents a model of the guarantees, or the system player is able to eventually point out
arejecting state of the assumption automaton that is never left again. In both cases, the
specification is met. Thus, if we attach a round-robin counter for the assumption pointer
to a system player’s strategy, we obtain a valid result for our synthesis problem.

5 Solving Parity Games Symbolically

For an efficient implementation of the synthesis approach in this paper, the ability to
perform the symbolic solution of the parity game built according to the construction of
the previous section is imperative.

For the scope of this paper, we use a simple parity game solving algorithm that is
based on a fixed-point characterization of the winning set of positions in the game,
i.e., the positions from which, if the game is started there, the system player can win
the game. This approach has three advantages over the classical parity game solving
algorithms by Jurdzinski [22]] or McNaughton [26]. First of all, it is simpler. Second,
it allows applying a nested fixed-point computation acceleration method by Browne
et al. [5] that essentially reduces the solution complexity to quadratic time (in the
number of game positions), which speeds up the game solving process in contrast to
McNaughton’s algorithm. Finally, the three-color parity game acceleration method for
Jurszinski’s algorithm by de Alfaro and Faella [§] is in some sense included for free.
Their technique searches for gaps in counter values for visits to positions with color 1.
These counters are an artifact that is introduced by Jurzinski’s algorithm. The gaps wit-
ness the case that the game solving process can be terminated before the convergence of
the counter values. As we do not need such counters here, our algorithm can terminate
early automatically without the need to search for such gaps. At the same time, we still
have a quadratic complexity of the game solving process. This advantage would also
generalize to more than three colors, which the acceleration method in [8]] does not.

For the special case of the games in this paper (with only player 0 having colors
other than 0 and having only three colors in total), a characterization of the winning
positions in a parity game by Emerson and Jutla [[14]] reduces to the following fixed-
point equation:

Wo = VXQ.,U,Xl.I/XO.(V1ﬂQX())U(VbﬂComDXU)U(VE)ﬂC1mDXﬂU(VbﬂCQmDXQ)

In this formula, C; represents the set of positions with color ¢ (for every 0 < i < 2),
and Y and QY describe, for every Y C V/, the set of positions of player O/player 1
from which player 1 can ensure that after the next move, a position in Y is reached,
respectively. All of the operations needed to evaluate this formula can be performed
symbolically [6]. Also, encoding the state space of the game into BDDs is not difficult:
we can simply assign one bit to every state in the assumption and guarantee automata,
one bit for every input or output atomic proposition, two bits for the “recently visited”
flags in the game, and [log, m] + [log, 1] bits for the pointers.

It remains to be discussed how a winning strategy can be computed symbolically
after the sets of winning positions for the two players have been identified. First of all,
for ¢ = (‘/1mOXU)U(‘/[)ﬂC[)QDX())U(%mClﬂDXl)U(%mCQQDXQ),
we compute a sequence of prefixed points Y; = vX.u'X;.vX¢.9) for i € IN. Then,
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we take the transition function F; of the game and restrict it such that only actions that
result in ensuring that the successor position is in the set Y; for the lowest possible value
of ¢ are taken. Any positional strategy that adheres to the restricted transition function
is guaranteed to be winning for the system player.

6 Experimental Results

To evaluate the new synthesis approach presented in this paper, it has been implemented
in a prototype tool-chain, written in C++ and Python. For the symbolic computation
steps, the BDD library CUDD v.2.4.2 [29] was employed. The first step in the tool-
chain is to apply the LTL-to-Biichi converter 1t12ba v.1.1 [18] to the negation of
all assumptions and guarantees of the specification. If the result happens to be very-
weak, we already have a UVW for the specification part. All remaining assumptions
and guarantees are first converted to deterministic Rabin automata using 1t12dstar
v.0.5.1[23], then translated to equivalent deterministic Biichi automata (if possible),
and finally, after a quick check with the construction by Bojariczyk [4] that they repre-
sent languages in the common fragment of ACTL and LTL, translated to sets of vermi-
celli using the construction from Sect. [3l Whenever one of these translations is found
to be not possible for some assumption or guarantee, the specification is known not to
lie in the supported specification fragment and rejected. The construction from Sect. 3]
is performed symbolically, using BDDs and dynamic variable reordering for the BDD
variables. The UVW for the individual assumptions and guarantees are then merged and
some simulation-based automaton minimization steps are applied. In contrast to gene-
ral bisimulation-based minimization techniques for non-deterministic Biichi automata
(see, e.g., [15]]), we make use of the fact that the automata are very-weak, which allows
applying more optimizations. The optimization steps are:

— States that are reached by the same set of prefix words are merged (unless this
would introduce a loop).

— States with the same language are merged.

— For every pair of states (g, ¢’) in the automaton, if g is reached by at least as many
prefix words as ¢’, but ¢’ has a greater language than ¢, we remove ¢’.

Finally, we perform symbolic parity game solving for the synthesis game build using the
minimized UVW for the assumptions and guarantees as described in Sect.[dand Sect.
In case of realizability, we use an algorithm by Kukula and Shiple [24] to compute a
circuit description of the implementation. The prototype tool also checks for which
input/output bits it makes sense to encode the last values into the game as an additional
component. This can happen if there are many states in the UVW for which it only
depends on the last input and output whether we are in that state at a certain time. Then,
we can save the BDD bits for these states. For checking the resulting implementations
for correctness, we use NusMv v.2.5.4 [7].

All computation times given in the following were obtained on an Intel Core 2 Duo
(1.86 Ghz) computer running Linux. All tools considered are single-threaded. We re-
stricted the memory usage to 2 GB and set a timeout of 3600 seconds. We compare
our new approach against Acacia+ v.1.2 [16l17] and Unbeast v. 0.6 [13]], both
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using 1t12ba. Both synthesis tools implement semi-algorithms, i.e., we need to test
for realizability and unrealizability separately and only give the computation time of the
invocation that terminated for comparison. We could not compare against tools that im-
plement generalized reactivity(1) synthesis such as Anzu [21]] as due to the non-standard
semantics (see [[L1], p.4 for details) used there, the results would not be meaningful.

Benchmarks

First of all, we consider the load balancer from [10]. This benchmark is for synthesis
tools that are capable of handling full LTL, and consists of 10 scalable specifications.
Out of these, we found 6 to be contained in the supported fragment by our approach,
including the final specification of the load balancer. Table [Tl summarizes the results. It
can be observed that the two synthesis tools for full LTL are clearly outperformed on
the supported specifications.

As a second benchmark, we use the non-pre-synthesized AMBA high performance
bus arbiter specification described in [2], which is again scalable in the number of clients.
Here, our tool-chain is able to synthesize the two-client versionin 151 seconds, while the
three-client version takes 1422 seconds. In both cases, most of the time is spent on the
symbolic game solving step. Neither Unbeast nor Acacia+ can handle any of these
two cases within 1 hour of computation time. According to [3], with the pre-synthesized
version of the specification of [2]], the generalized reactivity(1) tool used in the experi-
mental evaluation of [3]] could only handle up to four clients. Thus, our approach comes
close in terms of efficiency, but without the need of pre-synthesis. For completeness,
it must be added, however, that a (manual) rewriting of the specification was later able
boost the generalized reactivity(1) synthesis performance [3]] on this benchmark.

Table 1. Running times of the synthesis tools Acacia (“A”), Unbeast (“U”) and a prototype tool
for the approach presented in this paper (“B”) for the load balancer benchmark, using setting
labels from [10]]. For each combination of assumptions and guarantees, it is reported whether the
specification was realizable (+/-) and how long the computation took (in seconds).

Tool Setting / # Clients 2 3 4 5 6 7 8 9
B +03 +04 +04 +04 +05 +05 + 06 + 06
U 1 +00 +00 +06 +00 +00 +00 +01 +02
A +03 +03 +03 +03 + 04 + 04 + 04 +05
B +04 +04 +04 +05 + 06 + 09 +22 +69
U 1A2 + 07 +00 +01 + 0.1 + 0.1 + 0.1 +02 +03
A +03 +04 +12 +03 + 04 + 07 + 18 +55
B -05-06 -07 -09 - 1.2 - 17 - 34 - 176
U 1A2A3 - 00 -00-01 - 0.1 - 02 - 13 - 115 - 1454
A -03-03-04 -29 timeout timeout timeout timeout
B +06 +08 +09 + 12 + 16 + 22 +40 + 97
U 6AT—1A2A5A8 + 01 +04 + 14 + 399 timeout timeout timeout timeout
A + 2.1 + 1.3 timeout timeout timeout timeout timeout timeout
B - 07 -09 -12 - 16 - 21 - 32 - 55 - 115
U 6AT—=>1A2ABA8A9 -00-01-02 - 14 - 285 - 886.4 timeout timeout
A - 04 - 04 - 26 timeout timeout timeout timeout timeout
B +08 +10 +13 +23 +25 +33 +57 + 118
U 6ATAI0 - 1A2ABA8A9 + 03 + 22 + 237 + 632.5 timeout timeout timeout timeout
A + 09 + 0.8 + 16.3 timeout timeout timeout timeout timeout
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7 Conclusion

In this paper, we have proposed ACTL N LTL as a specification fragment that com-
bines expressivity and efficiency for the synthesis of reactive systems. We gave novel
algorithms and constructions for the individual steps in the synthesis workflow. In par-
ticular, we gave the first procedure to obtain universal very-weak automata from LTL
formulas (if possible) and described a novel procedure for building a parity game from
assumption and guarantee properties that speeds up the game solving process by letting
the two players choose the next obligations to the respective other player in the game.

We did not fully exploit the favorable properties of UVW in the paper, and only see
the experimental evaluation herein as a start. For example, since in the structure of the
game built from UVWs, we keep track of in which assumption and guarantee states we
could be in, the game lends itself to the symbolic encoding of the prefixed points in the
game solving process using anti-chains [[16].

Also, the approach can easily be extended to support properties whose negation is in
the common fragment of ACTL and LTL. This would allow using persistence properties
like “the system must eventually signal readiness forever”. We recently described in
[[12]] how generalized reactivity(1) synthesis can be extended to handle such properties,
resulting in five-color parity games. The constructions in this paper are easy to extend
accordingly.
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Learning Boolean Functions Incrementally*
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Abstract. Classical learning algorithms for Boolean functions assume that un-
known targets are Boolean functions over fixed variables. The assumption pre-
cludes scenarios where indefinitely many variables are needed. It also induces
unnecessary queries when many variables are redundant. Based on a classical
learning algorithm for Boolean functions, we develop two learning algorithms
to infer Boolean functions over enlarging sets of ordered variables. We evaluate
their performance in the learning-based loop invariant generation framework.

1 Introduction

Algorithmic learning is a technique for inferring a representation of an unknown target
in a specified instance space. When designing a learning algorithm, one formalizes
intended scenarios as a learning model. In Boolean function learning, for instance, we
are interested in finding a representation (such as a Boolean formula [3]]) of an unknown
target amongst Boolean functions over fixed variables. The goal of a learning algorithm
is to generate a representation of the unknown target under the learning model [[1/13]].

Inferring unknown targets over fixed variables however is not realistic in applications
such as loop invariant generation [[11114/12], or contextual assumption synthesis [5}4]. In
loop invariant generation, one considers a loop annotated with pre- and post-conditions.
The instance space hence consists of quantifier-free formulae over a given set of atomic
predicates. We are interested in finding a quantifier-free formula which establishes the
pre- and post-conditions in the specified instance space [L1/14J12]. Note that the given
set of atomic predicates may not be able to express any loop invariant. If the current
atomic predicates are not sufficiently expressive, more atomic predicates will be added.
Hence the set of atomic predicates is not fixed but indefinite. Yet classical learning pre-
sumes a fixed set of variables for unknown targets. It does not consider scenarios where
new variables can be introduced on the fly. The classical learning model therefore do
not really fit the scenario of loop invariant generation.

Another drawback in classical learning algorithms for Boolean functions is their in-
efficiency in the presence of redundant variables. In contextual assumption generation,
one considers the problem of verifying a system composed of two components. We
would like to replace one of the components by a contextual assumption so as to verify
the system more efficiently. The instance space therefore consists of transition relations
over model variables. We are interested in finding the transition relation of a contex-
tual assumption that solves the verification problem [5/4]. Observe that a contextual
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assumption is synthesized for a specific verification problem. If a model variable is not
relevant to the problem, contextual assumptions can safely ignore it. Thus we are look-
ing for an unknown transition relation over a subset of model variables. One would
naturally expect a learning algorithm to perform really well when many model vari-
ables are irrelevant. Yet the complexity of classical learning algorithms depends on the
number of given variables, not relevant ones. Classical learning can be unexpectedly
inefficient when many given variables are redundant.

We propose to infer Boolean functions over indefinitely many variables by incremen-
tal learning. Instead of Boolean functions over a fixed number of variables, we infer the
unknown target by enlarging sets of ordered variables incrementally. At iteration ¢, we
try to infer the unknown target as a Boolean function over the first ¢ variables. Our
incremental learning algorithm terminates if it infers the target. Otherwise, it proceeds
to the next iteration and tries to infer the unknown target as a Boolean function over
the first £ + 1 variables. Since the unknown target is over finitely many variables, our
incremental learning algorithm will infer the target after finitely many iterations.

A naive approach to incremental learning is to apply the classical CDNF learning
algorithm for Boolean functions at each iteration. The simple approach however does
not work. Note that the complexity of the CDNF algorithm depends on the formula size
of the unknown target. When targets are arbitrary, their formula sizes are exponential in
the number of variables. Since £2(2¢) queries are needed to infer an arbitrary target over
£ variables in the worst case, the naive algorithm has to make as many queries before it
gives up the iteration ¢. Subsequently, the naive algorithm would require an exponential
number of queries for every unknown target and could not be efficient.

To solve this problem, we develop a criterion to detect failures at each iteration dy-
namically. At iteration ¢, our incremental algorithm checks whether the unknown target
is a Boolean function over the first ¢ variables during the course of inference. If the
incremental algorithm detects that the target needs more than the first ¢ variables, the
iteration ¢ is going to fail. Hence the incremental learning algorithm should abort and
proceed to the next iteration. We propose two incremental learning algorithms with
dynamic failure detection. In our simple incremental learning algorithm CDNF+, the
classical learning algorithm is initialized at each iteration. Information from previous it-
erations hence is lost. Our more sophisticated incremental learning algorithm CDNF++
retains such information and attains a better complexity bound. Under a generalized
learning model, both of our incremental algorithms require at most a polynomial num-
ber of queries in the formula size and the number of ordered variables in the target.
Incremental learning on certain Boolean functions is still feasible.

To attest the performance of our incremental learning algorithms for Boolean func-
tions, we compare with the classical algorithm in the learning-based loop invariant gen-
eration framework [11J14412]]. To evaluate the performance of incremental learning in
typical settings, we consider a simple heuristic variable ordering from the application
domain. Our incremental learning algorithms achieve up to 59.8% of speedup with
the heuristic ordering. To estimate the worst-case performance of incremental learn-
ing, we adopt random variable orderings instead of the heuristic ordering. Excluding
one extreme case, the incremental learning algorithms perform slightly better than the
classical algorithm with random orderings. Since a sensible variable ordering can often
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be chosen by domain experts in most applications, the artificial worst-case scenario is
unlikely to happen. We therefore expect our new algorithms to prevail in practice.

In the classical CDNF learning algorithm for Boolean functions, unknown targets
are Boolean functions over fixed variables [3]]. It is not applicable to scenarios where
unknown targets are over indefinitely many variables. Combining with predicate ab-
straction and decision procedures, the CDNF algorithm is used to generate invariants
for annotated loops [[L1114/12], and transition invariants for termination analysis [16].
The classical algorithm is also deployed in assume-guarantee reasoning to infer con-
textual assumptions automatically [5l4]. In these applications, the CDNF algorithm is
used as a black box. We propose a new learning model and develop incremental algo-
rithms under the new model. We do not know of any learning algorithm for Boolean
functions over indefinitely many variables. Abstraction techniques in regular language
learning are seemingly relevant [8l2/10]. Recall that the L* algorithm does not apply
when queries are answered nondeterministically. It is necessary to bring the learning
algorithm to consistent states upon nondeterministic answers induced by abstraction.
Incremental queries can introduce inconsistencies. We also have to bring the incre-
mental learning algorithms back to consistent states. Since this work is about learning
Boolean functions, it is related to [8I2/10]] only in spirits. Many applications of the L*
algorithm for regular languages have been proposed (see [9], for example).

This paper is organized as follows. After Introduction, preliminaries and notations
are given in Section Pl We then review the CDNF algorithm (Section [3). Section @
presents our technical contribution. It is followed by experimental results in Section [3
Finally, Section[6] concludes our presentation.

2 Preliminary

Let B = {L, T} be the Boolean domain and x = {x1,22,...,Zy,...} an infinite
set of ordered Boolean variables. We write x, for the subset {z1, zo,...,2¢} of x. A
valuation over X, is a function from x, to B. The set of all valuations over x, is denoted
by Val,. For any valuation u € Valy, x € x¢41, and b € B, define

o) = {3 V7S

Note that u[zsy1 +— b] € Valyyq forevery u € Valy. Let 1Ly € Val, be the valuation
mapping every x € x, to L, and the valuation Ty € Val, mapping every x € xyto T.
The projection of a valuation v on X, is the valuation v € Val, such that u(x) = v(z)
for every = € x,. The symbol @ stands for the component-wise exclusive-or operator.
Thus u @ 1Ly = u forevery u € Valy. If R C Valy is a set of valuations and u € Valy,
wedefine ROu={r®u:r € R}. Thus R® L, = R forevery R C Valy,. A
Boolean function over x; is a mapping from Val, to B. Let f be a Boolean function.
For any valuation u € Valy, the notation f(u) denotes the Boolean function obtained
by assigning x to u(x) in f. Particularly, f(u) is the Boolean outcome of f on any
valuation v € Val, when f is a Boolean function over xy. Moreover, we say u is
a satisfying valuation of the Boolean function f if f(u) = T; it is an unsatisfying
valuation of f if f(u) = L. When there is a satisfying valuation of a Boolean function
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f, we say f is satisfiable. A Boolean formula F' over x; represents a Boolean function
[F]¢ defined as follows. On any valuation u € Valy, [F]¢(u) is obtained by evaluating
F under the valuation u. For example, [z; = x2]2(1lls) = T.

A literal is a Boolean variable or its negation. A ferm is a conjunction of literals.
A clause is a disjunction of literals. A Boolean formula is in disjunctive normal form
(DNF) if it is a disjunction of terms. A Boolean formula is in conjunctive normal form
(CNF) if it is a conjunction of clauses. A formula in CNF (DNF) is a CNF (DNF,
respectively) formula. A Boolean formula is in conjunctive disjunctive normal form
(CDNF) if it is a conjunction of DNF formulae. A formulain CDNF is a CDNF formula.

3 The CDNF Algorithm

The CDNF algorithm is an exact learning algorithm for Boolean functions over x,, [3]].
Suppose f is an unknown target Boolean function over x,. The learning algorithm
infers a CDNF formula representing f by interacting with a teacher. The teacher is
responsible for answering two types of queries.

— Membership queries MEM ,,(v) with v € Val,. If f(v) = T, the teacher answers
YES'; otherwise, she answers NO.

— Egquivalence queries EQ,,(F') with a Boolean formula F' over x,, as the conjecture.
If [F],, = f, the teacher answers YES. Otherwise, the teacher returns a counterex-
ample v € Val,, such that [F],,(v) # f(v).

Letv € Val,, be a valuation and F' a Boolean formula over x,,. We write MEM ,,(v) —
Y and EQ,,(F) — Z to denote that Y and Z are the answers to the membership query
on v and equivalence query on F', respectively.

1t+0;

2 EQ, (true) — v;

3 if vis YES then return true;

4 t+—t+1;

5 H;, Ry, as < false, (0, v ; // assert MEM,(a;) — NO
6 EQH(/\LlH@-) — V;

7 if v is YES then return A‘_; H.;

8 I+ {i:[Hi]n(v) =1}

9 if I = () then goto[&}

10 foreach i € I do

11 r < walkTo(n, a;,v) ; // assert MEM,(r) — YES
12 R+ R, U{r}

13 end

14 foreachi =1,... ¢t do H; + Mpnr(Ri  ai)(Xn ® as);

15 goto[@

Algorithm 1. The CDNF Algorithm
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We reprint the CDNF algorithm in Algorithm [II In the algorithm, conjectures in
equivalence queries are always CDNF formulae. The variable ¢ maintains the number
of DNF formulae in the current conjecture. Initially, the variable ¢ is set to 0. The con-
jecture is hence degenerated to true (line[2] Algorithm[T).

Three variables keep track of each DNF formula in the conjecture. For the i-th DNF
formula, the variable a; is a valuation over x,,, the variable R; is a set of valuations over
X, and the variable H; is a DNF formula over x,,. The ¢-th DNF formula H; is derived
from a; and R; by Mpxr (line[14] Algorithm[T)):

/\ ZT; if s 75 JLH, \/ MDNF(S) if S 74— @
MDNF(S) = s(xi)=T MDNF(S) = ses
true otherwise false otherwise

For instance, MDNF({JJ_27 Tg}) = MDNF(JLQ) \Y MDNF(—H—Q) = true V (Sﬂl AN 1'2).
When a new DNF formula is added to the conjecture, the variable R; is the empty
set and the variable H; is set to false accordingly (line 5} Algorithm[I]). Conjectures in
equivalence queries are conjunctions of H;’s.
In order to understand our extensions to the CDNF learning algorithm, we give
a new characterization of variables associated with the i-th DNF formulae in Algo-
rithm [Il Note that a; was defined when the i-th DNF formula was created and added
to the conjecture (line B Algorithm [)). It is not hard to see that a; is a valuation
with MEM ,,(a;) — NO. First, a; was a counterexample to the equivalence query
EQ,,(true). We have MEM ,,(a1) — NO. For i > 1, observe that a; was the coun-
terexample to the equivalence query £Q,, (/\;';11 H;) (linef6l Algorithm[I)). Furthermore,
a; was added when the set {j < ¢ : [H;],(a;) = L} was empty (line[0 Algorithm [IJ).
Since [A'Z} Hjln(ai) = T and EQ,,(N'Z] H;) — a;, we have MEM ,,(a;) — NO.
The valuations in R; can be characterized as easily. When the counterexample v
to the equivalence query EQ,, (Al_, H;) is returned (line [l Algorithm [I), the CDNF
algorithm checks if the set {i : [H;],(v) = L} is empty (line [0 Algorithm[I). If not,
we have [A!_; H;],(v) = L. Thus MEM ,,(v) — YES for v is a counterexample to
EQ,,(A:_, H;). For each i such that [H;],(v) = L, the result of walkTo(n,a;,v) is
added to R; (line[T2] Algorithm[I). Algorithm [l gives the details of walkTo(¢, a, v).
The algorithm walkTo(¢, a,v) finds an x € x; with v(z) # a(x) and flips the value
of v(x). If the new valuation yields YES on a membership query, it continues flipping
other values of v different from a. Otherwise, the algorithm reverts to the old value of
v(x) and flips another value. Roughly, walkTo (¢, a,v) computes a valuation r € Val,
closest to a such that MEM ,,(r) — YES. Define

Ny(a,r) ={w € Val; : w = r[z — a(z)] where z € x; and r(x) # a(x)}.

Each valuation in Ny(a, ) is obtained by flipping the value of exactly one « € xy on r
with 7(z) # a(x). Each valuation in Ny(a, r) is thus closer to a than r. The following
lemma summaries Algorithm 2

Lemma 1. Let a,v € Valy (1 < ¢) be that MEM ¢(a) — NO and MEM ;(v) —
YES. Assume r = walkTo(¢,a,v) (Algorithm [2). Then MEM ¢(r) — YES, and
MEM ¢(w) — NO for every w € Ny(a,r).
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Input: € N: 1< {;a € Val,: MEM¢(a) - NO;v € Val, : MEM ;(v) — YES
Output: r € Val, : MEM(r) — YES
T4 v
k<« 1;
while k£ < 7/ do
ifr(zr) = a(zy) then k < k+ 1;
else
r(zk) < a(zk);
if MEM ¢(r) — NO then
r(zk) « —a(zk);
k<« k+1;
10 else k£ <+ 0;
11 end
2 return r;

e NN S N R W N

-

Algorithm 2. walkTo (¢, a,v)

Recall that R; consists of the result of walkTo(n, a;,v) where MEM ,,(a;) — NO and
MEM ,,(v) — YES. Thus MEM ,(r) — YES for every r € R; MEM ,(w) — NO
forevery r € Rand w € N,(a;,r) (Lemmall). We characterize the pairs (a, R)’s
maintained in the learning algorithm with the following definition:

Definition 1. For a € Val,, and R C Val,, define the property I'(a, R) by

1. MEM ,(a) — NO;
2. MEM,(r) — YES for everyr € R; and
3. MEM ,(w) — NO foreveryr € Rand w € Ny (a,r).

Suppose [—z1 V —z3]s is the target Boolean function over x2 as an example. Let
r(z1) = L and r(zg) = T. We have I'(TT 3, {r}) butnot I'(T 2, { LLo}).

The following lemma states that I'(a;, R;) holds for 1 < ¢ < ¢ in the CDNF algo-
rithm. We call (a, R) a speculative support when I'(a, R) holds.

Lemma 2. At linel6lof Algorithm[l] I'(a;, R;) holds for every 1 < i < t.

The size of a DNF formula is the number of terms in the formula; the size of a CNF
formula is the number of clauses in it. Let f be a Boolean function over x,,. The DNF
size of f (denoted by |f|pnr) is the minimal size over all DNF formulae representing
f; the CNF size of f (denoted by |f|cnr) is the minimal size of all CNF formulae
representing f. The number of speculative supports and the size of R in each speculative
support (a, R) give the following bounds.

Theorem 1 ([3]). Let f be an unknown target Boolean function over X,. The
CDNF algorithm (Algorithm 1) infers f within O(n?|f|cnr|f|pnr) membership and
O(|f|cnr| f|pNF) equivalence queries.

Note that the complexity of the CDNF algorithm is a polynomial in the size of the
variable set x,,. If all but one variables in x,, are redundant, the learning algorithm still
requires O(n?) membership queries to infer the target.
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4 Incremental Learning

The CDNF algorithm infers an unknown target among Boolean functions over a fixed
number of variables. It is not applicable to scenarios where targets are Boolean func-
tions over indefinitely many variables. Moreover, the complexity of the CDNF algo-
rithm is a polynomial in the number of given variables. It can be unexpectedly
inefficient when many variables are redundant in the unknown target.

It appears that these issues could be resolved by invoking the CDNF algorithm itera-
tively. A naive incremental learning algorithm adopts the classical learning algorithm to
infer the unknown target as a Boolean function over x, at iteration /. If it succeeds, the
naive algorithm reports the inferred result. Otherwise, the naive algorithm increments
the number of variables and invokes the CDNF algorithm to infer the unknown target
as a Boolean function over x4 1. The naive approach however has two problems.

The first problem is to answer queries. Recall that the teacher knows a target Boolean
function over, say, X,,. At iteration ¢, the naive incremental algorithm infers the un-
known target as a Boolean function over x,. It thus makes queries on valuations and
conjectures over Xy. Yet the target Boolean function is over x,,. It is unclear how the
teacher answers queries at iteration £ when ¢ # m. A new learning model where the
teacher answers such queries is necessary for learning Boolean functions incrementally.

The other problem of the naive approach is its inefficiency. Recall that the complex-
ity of the CDNF algorithm depends on the CNF and DNF sizes of the unknown target.
Since targets are arbitrary, £2(2¢) queries are needed to decide whether the learning al-
gorithm fails to infer the target at iteration ¢. Deciding failures of inference requires an
exponential number of queries at each iteration. Naively adopting the CDNF algorithm
would be very inefficient compared to the classical learning algorithm. A more sophis-
ticated mechanism to identify failures of inference at each iteration is indispensable.

For the first problem, we generalize the classical learning model to enable the teacher
answering queries at all iterations (Section[d.T). To address the second problem, we de-
velop a criterion for determining failures of inference dynamically and use it in our
simple incremental learning algorithm (Section[£.2). A sophisticated incremental algo-
rithm with an economical management of information is presented in Section 4.3

4.1 Incremental Teacher

Assume a target Boolean function f over a finite subset of x. In our incremental learning
model, an incremental teacher should answer the following queries:

— Incremental membership queries MEM ¢(u) with u € Val,. If f(u) is satisfiable,
the incremental teacher answers YES'; otherwise, she answers NO.

— Incremental non-membership queries MEM ;(u) with u € Val,. If = f (u) is satis-
fiable, the incremental teacher answers YES; otherwise, NO.

— Incremental equivalence queries EQ,(G) with a Boolean formula G over x,. If
[G]e = f, the incremental teacher answers YES. Otherwise, she returns the pro-
jection of a valuation v € Valy on x¢ where [G]¢(v) # f(v) € B.

Example. Let f = x1 ® x2. On incremental queries MEM (L) and MEM4(1L,),
the incremental teacher answers YES. Similarly, the incremental teacher answers YES
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on incremental queries MEM (T 1) and MEM (T 1). On incremental equivalence
queries FQ, (true) or EQ, (false), T is a counterexample.

Incremental queries allow a learning algorithm to acquire (incomplete) information
about the unknown target function. Intuitively, the answer to an incremental member-
ship query on a valuation reveals whether a completion of the valuation gives a satis-
fying valuation; the answer to an incremental non-membership query shows whether
a completion gives an unsatisfying valuation. Incremental equivalence queries check
whether the target is equivalent to a Boolean formula over specified variables. If not, a
valuation differentiates the conjecture and the target. The projection of such a valuation
on specified variables is returned as a counterexample. The following lemma is useful.

Lemma 3. Assume a target Boolean function over X, and 1 < £ < m.

1. For any valuation v € Valy,, MEM ,,(v) — YES iff MEM ,,,(v) — NO.

2. For any Boolean formula G and valuation u over xy, [G]¢(u) = L and EQ,(G) —
wimply MEM y(u) — YES.

3. For any Boolean formula G and valuation u over xy, [G]¢(u) = T and EQ,(G) —
wimply MEM y(u) — YES.

4.2 The CDNF+ Algorithm

Suppose that the CDNF algorithm is inferring an unknown target as a Boolean function
over x; at iteration £. We check if the classical algorithm will fail at this iteration. If
so, we abort and re-instantiate the CDNF algorithm to infer the unknown target as a
Boolean function over x,4; at the next iteration. To determine failures of inference,
recall that the CDNF algorithm is exact. If the unknown target is indeed a Boolean
function over x, the classical algorithm will infer it. It suffices to check whether the
target is a Boolean function over x; to determine whether the iteration ¢ will fail.

In order to detect whether the unknown target is a Boolean function over x;, observe
that a function cannot have two different outcomes on one input. When the target is a
Boolean function over x¢, MEM ¢(u) — YES if and only if MEM ;(u) — NO for
every u € Valy, (Lemma[3). Therefore, the unknown target is not a Boolean function
over xg if MEM ¢(u) — YES and MEM ;(u) — YES for some v € Valy. This simple
observation motivates the following definition:

Definition 2. A valuation v € Valy (1 < ¢) is conflicting if MEM ¢(u) — YES and
MEM ;(u) — YES.

The following lemma follows immediately from Lemma[3l

Lemma 4. For any target Boolean function over a finite subset of X, the target Boolean
function is not over Xy if there is a conflicting valuation over xy.

Example (continued). Recall that L is a counterexample to both FQ),(false) and
EQ,(true). By Lemmal3l MEM (L) — YES and MEM (L) — YES. Hence the
unknown target is not a Boolean function over x;.

Our first incremental learning algorithm is now clear. We parameterize the CDNF
algorithm by the number of ordered variables. At iteration ¢, we apply the parameter-
ized CDNF algorithm and infer the unknown target as a Boolean function over x,. If a
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conflicting valuation is observed, we increment ¢ and move to the next iteration. Algo-
rithm [3] shows the parameterized CDNF algorithm. Note that incremental equivalence
queries are invoked in the parameterized algorithm. Similarly, incremental membership
queries are used in the algorithm walkTo (¢, a,v) (Algorithm 2)).

Input: e N: 1</
t <+ 0;
EQ,(true) — v;
if vis YES then return true;
t+—t+1;
Hi, Ry, a; < false, (), v ; // assert MEM(a:) — YES
EQ,(Ni=1 Hi) — v;
if v is YES then return Al_, H;;
I+ {Z : HHZ]][(’U) = J_};
if I = () then goto[4
foreach : € I do
r < walkTo({,a;,v) ; // assert MEM,(r) — YES
if a; = r then raise conflict-found,
R; + R;U{r};

R I B L B L

- e
W N = 2

14 end
15 foreachi =1,... ¢t do H; + Mpnr(Ri @ ai)(Xe ® ai);
16 goto[@

Algorithm 3. oCDNF (/)

We give a parameterized generalization of I"(a, R) in Definition[Bl
Definition 3. For a € Val, (1 <¥) and R C Valy, define Ay(a, R) by

1. MEM (a) — YES;
2. MEM(r) — YES foreveryr € R;
3. MEM¢(w) — NO for everyr € Rand w € Ny(a,r).

The following lemma states that A;(a;, R;) holds for 1 < 4 < ¢ in the parameterized
CDNF algorithm. Its proof is a generalization of those in Lemma[2l We call (a, R) a
speculative support with parameter ¢ when Ay (a, R) holds.

Lemma 5. At linelfl of Algorithm3l Ay(a;, R;) holds for every 1 < i < .

In order to decide conflicting valuations, recall that (a;, R;)’s are speculative supports
with parameter . We have MEM (a;) — YES and MEM (r) — YES for every
r € R; (Lemmal[3and[d). If furthermore a; = r, a; is conflicting. By Lemma [l the
unknown target is not a Boolean function over x,. We abort the parameterized algorithm
by raising an exception (line[12] Algorithm[3)).

AlgorithmMlgives our simple incremental learning algorithm. The CDNF+ algorithm
starts from the variable £ equal to one. At iteration ¢, it invokes the parameterized algo-
rithm pCDNF with parameter ¢ to infer the unknown target as a Boolean function over
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{+ 1
while T do
try
G = pCDNF(¥)
with conflict-found = { < ¢ + 1;
end
return G,

N R W N =

Algorithm 4. The CDNF+ Algorithm

x¢. If the parameterized algorithm infers the target, our simple algorithm terminates suc-
cessfully. If the parameterized learning algorithm raises the exception conflict-found,
the simple algorithm increments the variable ¢ and reiterates. The complexity of the
CDNF+ algorithm follows from Theorem[I] and the number of iterations.

Theorem 2. Let f be an unknown target Boolean function over a finite subset of x.
The CDNF+ algorithm (AlgorithmH) infers f in O(m3| f|cnr| f|pnr) incremental mem-
bership and O(m| f|cnr|f|pnrF) incremental equivalence queries where m. is the least
number such that f is a Boolean function over X,.

The CDNF+ algorithm does not presume a fixed set of variables. It is hence applicable
to scenarios where unknown targets are over indefinitely many variables. Moreover, the
complexity of the CDNF+ algorithm depends on the number of ordered variables in the
unknown target. If the target is a Boolean function over x;, the CDNF+ algorithm will
infer the target within O(| f|cnr|f|pnr) incremental membership queries. The classical
learning algorithm in contrast needs O(n?|f|cnr| f|png) membership queries if it infers
the unknown target as a Boolean function over x,,. The performance of the CDNF+
algorithm however depends on variable orderings and how incremental membership
queries are resolved in practice. Section[3levaluates these issues.

4.3 The CDNF++ Algorithm

We can actually do better than the CDNF+ algorithm. Observe that the simple incre-
mental learning algorithm restarts the learning process at each iteration. All information
from previous iterations known to the incremental algorithm is lost. The parameterized
CDNPF+ algorithm has to infer the unknown target from scratch. This is apparently not
an economical management of information.

To retain the information obtained in previous iterations, we reuse parameterized
speculative supports in each iteration. Each speculative support (a, R) with parameter ¢
satisfies the property A;(a, R) at iteration £ (Lemmal[3)). We compute a speculative sup-
port (a*, R") with parameter £ + 1 from a speculative support (a, R) with parameter .
After new parameterized speculative supports are constructed, we initiate the parame-
terized CDNF algorithm with the extended parameterized speculative supports and the
conjecture derived from them. Information from previous iterations is thus retained.

Consider a speculative support (a, R) with parameter ¢ and a speculative support
(a™, R™) with parameter £ + 1. We have a € Val, and a™ € Valy, . Similarly,
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R C Valy and RT C Valy, 1. Each valuation in a speculative support with parameter
¢ is only short of the Boolean assignment to the variable 1. To construct (a*, RT)
from (a, R), it suffices to extend the valuation a and every valuation over x; in R by an
assignment to 2,y 1. To simplify the notation, we use the shorthand u ™ for u[zsy1 + b]
where u € Val, and b € B. The following lemma follows from the definition.

Lemma 6. Ler u € Val, (1 < ¢) be a valuation over x,.

1. If MEM (u) — YES, MEM y1(u*t) = YES or MEM ¢4 (u* ") — YES.
2. If MEM y(u) — NO, MEM ¢y (u*L) — NO and MEM p1(u*T) — NO.
3. If MEM y(u) — YES, MEM ¢4y (u*+) — YES or MEM p41(u* ") — YES.

Algorithm[3lexplicates the construction of (a™, R™) from (a, R) where A¢(a, R) holds.
It starts by extending a. Recall that MEM ;(a) — YES. We can always find an exten-
sion a™ with MEM ¢, 1(a™) (Lemmal6). For the set R™ C Valy, 1, the construction is
not more difficult. We simply extend every valuation in R so that the extension yields
YFES on an incremental membership query.

Imput: £ e N:1 < /¢;a € Valyg: MEM¢(a) — YES; R C Valg: MEM,(r) — YES
foreveryr € R
Output: a™ € Valgr1 : MEMyi1(a™) — YES; R C Valeyr :
MEM ¢ 1(rt) — YES forevery r™ € Rt
// assert Ay(a,R)

b« if MEM¢y1(a™) — YES then | else T;

at —at?;

RY « 0

foreach r € R do
¢ if MEM1(r") — YES then b else —b;
Rt « RTuU{rte};

end

// assert Agii(a™,RT)

8 return (at, RT);

NS N R W N

Algorithm 5. extendSupport(¢, a, R)

The following lemma states that the construction in Algorithm [3]is indeed correct.
The only non-trivial part is to show that Ny1(a™,7") consists of valuations yielding
NO on incremental membership queries for every r* € R*.

Lemma 7. Let a € Valy (1 < ¢), R C Valy, and (a™, RT) = extendSupport(¢, a, R)
(Algorithm). If Ay(a, R), then Agy1(a™, RT).

With extended parameterized speculative supports, it is now straightforward to design
our incremental learning algorithm (Algorithm [6). Similar to the simple incremental
algorithm, the CDNF++ algorithm infers unknown target Boolean functions iteratively.
At each iteration, it first proceeds as the parameterized CDNF algorithm. If the param-
eterized algorithm is able to infer the unknown target at iteration ¢, our incremental
algorithm terminates successfully and reports the result.
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When the CDNF++ algorithm detects a conflicting valuation, it constructs extended
parameterized speculative supports with Algorithm 3] (line [I4, Algorithm[6). After ex-
tended parameterized speculative supports are obtained, the CDNF++ algorithm de-
rives a new conjecture from them and enters the next iteration (line Algorithm [6)).
The following theorem is proved by bounding the number of parameterized speculative
supports and the size of R in each parameterized speculative support (a, R).

1 4+ 1;
2t 0;

3 EQ,(true) — v;

4 if vis YES then return true;

5t t+1;

6 Hi, Ri,a; < false,(,v; // assert MEM(a:) — YES
7 EQ,(Ni1 H;) — v;

s if vis YES then return A‘_, H;;

9 I+ {i:[HiJe(v) =1L}

10 if I = () then goto[3}

11 foreach i € I do

12 r < walkTo({,a;,v) ; // assert MEM,(r) — YES
13 if a; = r then

14 foreachi =1,...,tdo (a;, R;) + extendSupport(a;, R;);

15 L+ 04+1;

16 goto[19]

17 R+ R; U {7"};

18 end

19 foreach i = 1,...,td0 H; +— MDNp(Ri@ai)(ng@ai);

20 goto[Z}

Algorithm 6. The CDNF++ Algorithm

Theorem 3. Let f be an unknown target Boolean function over a finite subset of x. The
CDNF++ algorithm (Algorithm[6) infers f in O(m?|f|cnr|f|pyr) incremental mem-
bership, O(m| f|cnr) incremental non-membership, and O(| f|cnr|f|pnr) incremental
equivalence queries where m is the least number that f is a Boolean function over X,,.

Compared with the simple incremental learning algorithm, the CDNF++ algorithm im-
proves linearly in the numbers of incremental membership and equivalence queries.
In exchange, the sophisticated algorithm makes non-membership queries to extend pa-
rameterized speculative supports. Again, the performance of the CDNF++ algorithm
depends on the order of variables and the efficiency of incremental query resolution.
We give an assessment in the next section.



Learning Boolean Functions Incrementally 67

5 Experiments

We apply our incremental learning algorithms to the learning-based framework for loop
invariant generation [[I1]]. Let { 6 } while x do S { € } be an annotated loop with the
pre-condition §, the post-condition €, and the loop guard k. A loop invariant . verifying
the annotated loop is a quantifier-free formula such that § = 1,1 = €V K, and
t Nk = wp(S, ), where wp(S, ¢) denotes the weakest precondition of ¢ for S.

The learning-based framework for loop invariant generation applies predicate
abstraction [17)7] and adopts the CDNF algorithm [3] to infer the abstraction of a
loop invariant for a given annotated loop. Using an SMT solver [6/15]], a randomized
mechanical teacher is devised to answer queries from the learning algorithm. Sup-
pose n atomic predicates are used in the abstraction. Consider a membership query
MEM ,,(v) withv € Val,. If the quantifier-free formula corresponding to the valuation
v is stronger than §, it must be stronger than any loop invariant ¢ for § = . The me-
chanical teacher hence answers YES to the membership query MEM ,,(v). Similarly,
if the the corresponding formula of v is not stronger than € V &, it is not included in
any loop invariant ¢ for ¢ == € V k. The mechanical teacher thus answers NO to
the membership query MEM ,,(v). In other cases, the mechanical teacher simply gives
a random answer. Observe that random answers may yield different loop invariants in
different runs. A multitude of loop invariants are exploited by the randomized teacher.

For predicate abstraction, atomic predicates are extracted from program texts heuris-
tically [[L1]. If many irrelevant atomic predicates are extracted, the performance of clas-
sical learning will be impeded. We therefore apply incremental learning to improve the
efficiency of the learning-based framework.

Two minor modifications derived from the domain knowledge are needed for this
application. First, recall that any loop invariant must be stronger than the disjunction
of the loop guard and the post-condition. An inferred loop invariant is likely to have
atomic predicates from them. We hence start with these atomic predicates and infer loop
invariants incrementally. This can be achieved by putting the atomic predicates of the
loop guard and the post-condition in front of the variable set, and initializing the variable
¢ with the number of such predicates. Second, observe that random answers from the
mechanical teacher may induce conflicting valuations. A conflict does not necessarily
imply the lack of variables. To give the learning algorithm more chances to infer a loop
invariant over the first ¢ atomic predicates, the variable ¢ is incremented only when
the number of conflicts is greater than [¢*-?]. Otherwise, we restart the parameterized
CDNF algorithm to infer a loop invariant over the first £ atomic predicates.

We compare the average performance of 1000 runs in five test cases. Data are col-
lected from an Intel Core2 Quad Processor Q8200 running 64-bit Linux 2.6.32 with
4GB memory. Figure [I] shows our experimental results. Three learning algorithms
(CDNF, CDNF+, and CDNF++) are compared in the same test cases from [11]. The
number of atomic predicates is reported in the column “vars.” For the CDNF algorithm,
it indicates the number of atomic predicates extracted from program texts. For the in-
cremental learning algorithms, it indicates the average number of atomic predicates in
a loop invariant. The column “cflcts” shows the average number of conflicting valua-
tions induced by random answers or lack of variables. The columns “MEM”, “MEM”,
and “EQ” are respectively the average numbers of membership, non-membership,



68 Y.-F. Chen and B.-Y. Wang

test case vars cficts MEM MEM EQ MEMg MEMg EQg time
CDNF 6.0 0.0 162 - 4.8 40 - 0.3 0.046s
ide-ide-tape CDNF+ 3.0 0.0 1.0 - 3.0 00 - 0.0 0.015s
CDNF++ 3.0 0.0 1.0 0.0 3.0 00 0.0 0.0 0.015s
CDNF 8.0 1.6 855 - 329 149 - 7.8 0.237s
ide-wait-ireason CDNF+ 4.0 0.0 8.0 - 9.5 1.0 - 0.0 0.044s
CDNF++ 4.0 0.0 19.0 0.0 29.0 00 0.0 0.0 0.088s
CDNF 20.0 20.5 10203.9 - 1286.9 1306.6 -  44.9 41.044s
parser CDNF+ 9.0 0.0 97.3 - 324 368 - 0.0 0.501s
CDNF++ 9.0 00 3048 00 91.0 85 0.0 0.0 1.006s
CDNF 10.0 0.0 21.1 - 6.8 1.0 - 0.0 0.097s
usb-message CDNF+ 5.0 0.0 195 - 6.6 22 - 0.0 0.065s
CDNF++ 5.0 0.0 609 0.0 217 9.6 0.0 0.0 0.147s
CDNF 7.0 09 46 - 64 201 - 3.4 0.070s
vpr CDNF+ 5.1 0.8 40 - 59 177 - 3.0 0.057s

CDNF++ 5.0 0.1 56 3.0 92 219 00 2.0 0.064s

Fig. 1. Experimental Results — Heuristic Variable Ordering

and equivalence queries answered conclusively. The columns “MEMg”, “MEMg”, and
“EQg” show the average numbers of random membership, non-membership, and equiv-
alence queries respectively. The column “time” indicates average running time.

With our simple heuristic variable ordering, the CDNF+ algorithms performs bet-
ter than the classical learning algorithm in all test cases. The more sophisticated
CDNF++ algorithm is outperformed by the classical algorithm in only one test case
(usb-message). Both incremental learning algorithms improve the most complicated
case parser significantly. The classical learning algorithm takes about 41 seconds to
infer a loop invariant in this test case. The CDNF+ and CDNF++ algorithms use about
.5 and 1 second respectively in the same test case. Across the five test cases, the CDNF+
and CDNF++ algorithms have expected speedups of 59.8% and 36.9% respectively.

We now evaluate the worst-case performance of the incremental learning algorithms.
To this end, we randomly order the set of atomic predicates extracted from program
texts at each run. Starting from the first variable in a random variable ordering, our
incremental learning algorithms are invoked to infer loop invariants. Similarly, we in-
voke the classical CDNF algorithm on all randomly ordered variables at each run. We
compare the average of 1000 runs in each test case. Figure 2] gives the results.

With random variable orderings, the incremental learning algorithms perform com-
parably to the classical learning algorithm in all test cases but usb-message. For
this particular case, conflicts are negligible when all atomic predicates are used. In-
cremental learning, on the other hand, needs to enlarge the set of atomic predicates 8
times. Subsequently, both incremental learning algorithms make lots of useless queries
before a loop invariant is inferred. Also note that the CDNF algorithm performs signif-
icantly better with random variable orderings in the test case parser. Yet the classical
algorithm still requires about 12 seconds to infer a loop invariant. In comparison, our
incremental algorithms are an order of magnitude faster with our heuristic variable or-
dering (cf Figure[l)). Using random variable orderings, we observe 19.4% and 18.5% of
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test case vars cficts MEM MEM EQ MEMg MEMg EQg time
CDNF 6.0 0.1 13.0 - 50 3.6 - 0.4 0.048s
ide-ide-tape CDNF+ 2.7 25 4.1 - 10.5 0.9 - 0.0 0.028s
CDNF++ 2.8 2.7 52 00 132 1.6 0.0 0.1 0.037s
CDNF 80 16 87.8 - 32.0 142 - 7.6 0.247s
ide-wait-ireason CDNF+ 69 7.6 764 - 51.7 12.6 - 5.1 0.236s
CDNF++ 6.8 74 83.0 34 560 17.5 04 4.5 0.256s
CDNF 20.0 5.6 29484 - 405.6 563.7 - 12.6 11.961s
parser CDNF+ 19.0 31.1 4343.5 - 942.0783.0 - 8.9 18.143s
CDNF++ 19.1 31.5 3365.1 19.3 572.8 757.1 0.4 9.1 13.504s
CDNF 10.0 00 214 - 73 1.0 - 0.0 0.094s
usb-message CDNF+ 8.1 8.1 472 - 4.1 3.1 - 0.0 0.205s
CDNF++ 84 84 398 35 351 5.0 0.0 0.0 0.181s
CDNF 7.0 1.6 95 - 9.4 33.0 - 6.3 0.112s
vpr CDNF+ 44 44 73 - 16.4 16.2 - 6.4 0.082s

CDNF++ 5.1 56 159 14 225 240 1.0 65 0.119s

Fig. 2. Experimental Results — Random Variable Orderings

slowdowns respectively from the CDNF+ and CDNF++ algorithms across the five test
cases. Note that the test case usb-message alone registers a slowdown of more than
90%. The incremental learning algorithms in fact perform slightly better than the clas-
sical algorithm for the other four test cases on average (5.3% for CDNF+ and 0.1% for
CDNF++). Also recall that this is the worst-case scenario for incremental learning. As
in loop invariant inference, heuristics for choosing sensible variable orderings are often
available for most applications. Our incremental learning algorithms should outperform
the classical algorithm with the domain knowledge in practice.

6 Conclusion

Classical learning algorithms for Boolean functions assume a fixed number of variables
for unknown targets. The assumption precludes applications where indefinitely many
variables are needed. It can also be unexpectedly inefficient at the presence of irrele-
vant variables. We address the problem by inferring unknown targets through enlarging
numbers of ordered variables. Our experiments show that incremental learning attains
significant improvement with a simple heuristic variable ordering. They also suggest
manageable slowdowns in the worst-case scenario with random variable orderings.
Applications of incremental learning in formal verification are under investigation.
Particularly, problems in program verification inherently have indefinitely many vari-
ables in unknown targets. Applying incremental learning to program verification will be
interesting. We are working on applications in automated assume-guarantee reasoning.
Domain knowledge about contextual assumptions will be essential in this application.
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Abstract. We show how interpolants can be viewed as classifiers in
supervised machine learning. This view has several advantages: First,
we are able to use off-the-shelf classification techniques, in particular
support vector machines (SVMs), for interpolation. Second, we show
that SVMs can find relevant predicates for a number of benchmarks.
Since classification algorithms are predictive, the interpolants computed
via classification are likely to be invariants. Finally, the machine learning
view also enables us to handle superficial non-linearities. Even if the
underlying problem structure is linear, the symbolic constraints can give
an impression that we are solving a non-linear problem. Since learning
algorithms try to mine the underlying structure directly, we can discover
the linear structure for such problems. We demonstrate the feasibility of
our approach via experiments over benchmarks from various papers on
program verification.

Keywords: Static analysis, interpolants, machine learning.

1 Introduction

Problems in program verification can be formalized as learning problems. In
particular, we show how interpolants [4JI7J1T] that are useful heuristics for com-
puting “simple” proofs in program verification can be looked upon as classifiers
in supervised machine learning. Informally, an interpolant is a predicate that
separates good or positive program states from bad or negative program states
and a set of appropriately chosen interpolants forms a program proof. Our main
technical insight is to view interpolants as classifiers that distinguish positive
examples from negative examples. This view allows us to make the following
contributions:

— We are able to use state-of-the-art classification algorithms for the purpose
of computing interpolants. Specifically, we show how to use support vector
machines (SVMs) [21] for binary classification to compute interpolants.

* This work was supported by NSF grant CCF-0915766 and the Army High Perfor-
mance Computing Research Center.
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— Since classification algorithms are predictive, the interpolants we compute
are relevant predicates for program proofs. We show that we can discover
inductive invariants for a number of benchmarks. Moreover, since SVMs are
routinely used in large scale data processing, we believe that our approach
can scale to verification of practical systems.

— Classification based interpolation also has the ability to detect superficial
non-linearities. As shown in Section[d] even if the underlying problem struc-
ture is linear, the symbolic constraints can give an impression that we are
solving a non-linear problem. Since our algorithm mines the underlying struc-
ture directly, we can discover the linear structure for such problems.

The rest of the paper is organized as follows. We informally introduce our tech-
nique by way of an example in Section [[LJl In Section [2], we describe necessary
background material including a primer on SVMs. Section [3] describes the main
results of our work. We first introduce a simple algorithm BASIC that uses an
SVM as a black box to compute a candidate interpolant and we formally char-
acterize its output. SVMs rely on the assumption that the input is linearly
separable. Hence, we give an algorithm SVM-I (which makes multiple queries
to an SVM) that does not rely on the linear separability assumption and prove
correctness of SVM-I. We augment BAsSIC with a call to SVM-I; the output of
the resulting algorithm is still not guaranteed to be an interpolant. This algo-
rithm fails to output an interpolant when we do not have a sufficient number
of positive and negative examples. Finally, we describe an algorithm INTER-
POLANT that generates a sufficient number of positive and negative examples
by calling BASIC iteratively. The output of INTERPOLANT is guaranteed to be
an interpolant and we formally prove its soundness. In Section [ we show how
our technique can handle superficial non-linearities via an example that previous
techniques are not capable of handling. Section [ describes our implementation
and experiments over a number of benchmarks. Section [0l places our work in the
context of existing work on interpolants and machine learning. Finally, Section [1]
concludes with some directions for future work.

1.1 An Overview of the Technique

We show an example of how our technique for interpolation discovers invariants
for program verification. Consider the program in Fig. [[l This program executes
the loop at line 2 a non-deterministic number of times. Upon exiting this loop,
the program decrements x and y until x becomes zero. At line 6, if y is not 0 then
we go to an error state. To prove that the error () statement is unreachable, we
need invariants for the loops. We follow the standard verification by interpolants
recipe and try to find invariants by finding interpolants for finite infeasible traces
of the program. The hope is that the interpolants thus obtained will give us
predicates that generalize well. In particular, we aim to obtain an inductive loop
invariant. For example, = y is a sufficiently strong loop invariant for proving
the correctness of Fig. [l

Suppose we consider a trace that goes through all the loops once. Then we
get the following infeasible trace: (1, 2, 3, 2, 4, 5, 4, 6, 7). We decompose this
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{

1: x=y=0;

2 while (%)

3: { x++; y++; }
4: while ( x '=0)
5 {x—-; y—— }
6: if (y !=0)
7 error() ;

Fig. 1. Motivating example for our technique

trace into two parts A and B and thereby find interpolants for this infeasible
trace. A represents the values of x and y obtained after executing lines 1, 2, and
3. B represents the values of x and y such that if we were to execute lines 4, 5,
6, and 7 then the program reaches the error () statement. Now, we have (4, B)
where ANB = 1:

A=z1=0Ayp1=0Adte(bc=x1 ANy=y,z=x1+1Ay=y1 +1)
B=ite(x =020 =z Ay =y, o= —1Aya=y—1) Aza =0A ~(y2 =0)

Here ite stands for if-then-else. As is evident from this example, A is typically
the set of reachable states and B is the set of states that reach error(). An
interpolant is a proof that shows A and B are disjoint and is expressed using
the common variables of A and B. In this example, z and y are the variables
common to A and B. Our technique for finding an interpolant between A and
B operates as follows: First, we compute samples of values for (z,y) that satisfy
the predicates A and B. Fig. 2] plots satisfying assignments of A as +’s (points
(0,0) and (1,1)) and of B as o’s (points (1,0) and (0, 1)). Next, we use an SVM
to find lines separating the o’s from the +’s.

Yy
0,1)p +(1,1)
« T » X
(00), U

Fig. 2. Finding interpolants using an SVM

We consider the o points one by one and ask an SVM to find a line which
separates the chosen o point from the +’s. On considering (0,1), we get the
line 2y = 22 4+ 1 and from (1,0) we obtain 2y = 2z — 1. Using these two lines,
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we obtain the interpolant, 2y < 2x 4+ 1 A 2y > 2x — 1. It can be checked that
this predicate is an invariant and is sufficient to prove the error () statement of
Fig. [l unreachable.

We will see in Section 2] that we can easily obtain the stronger predicate
x = y. Intuitively, we just have to translate the separating lines as close to the
+’s as possible while ensuring that they still separate the +’s from the o’s.

2 Preliminaries

Let A and B be two formulas in the theory of linear arithmetic:
¢ =wlz+d>0|true|false |¢p NG| OV ¢ | o

w = (wi,...,w,)T € R" is a point: an n-dimensional vector of constants; x =
(21,...,2,)T is an n-dimensional vector of variables. The inner product (w, z) of
wand zis w'z = wizy + ...+ w,x,. The equation w” x4+ d = 0 is a hyperplane
in n-1 dimensions. Each hyperplane corresponds to two half-spaces: w” x+d >0
and w”z 4+ d < 0. A half-spaces divides R" into two parts: variable values that
satisfy the half-space and those which do not. For example, z —y = 0 is a 1-
dimensional hyperplane, x —y+2z = 0 is a 2-dimensional hyperplane, and > y
and x < y are half-spaces corresponding to the hyperplane z = y.

Suppose A A B = 1, i.e., there is no assignment to variables present in the
formula AA B that makes the formula true. Informally, an interpolant is a simple
explanation as to why A and B are disjoint. Formally, it is defined as follows:

Definition 1 (Interpolant [17]). An interpolant for a pair of formulas (A, B)
such that AN B = 1 is a formula I satisfying A= I, INB = 1, and I refers
only to variables common to both A and B.

Let Vars(A, B) denote the common variables of A and B. We refer to the val-
ues assigned to Vars(A, B) by satisfying assignments of A as positive examples.
Dually, negative examples are values assigned to Vars(A, B) by satisfying assign-
ments of B. Sampling is the process of obtaining positive and negative examples
given A and B. For instance, sampling from (A =y < z) and (B =y > ) with
common variables z and y, can give us a positive example (1,0) and a negative
example (0, 1).

A well studied problem in machine learning is binary classification. The input
to the binary classification problem is a set of points with associated labels. By
convention, these labels are I €{41,-1}. The goal of the binary classification
problem given points with labels is to find a classifier C : point — {true, false}
s.t. C(a) = true for all points a with label 41, and C(b) = false for all points b
with label —1. This process is called training a classifier and the set of labeled
points is called the training data. The goal is to find classifiers that are predictive,
i.e., even if we are given a new labeled point w with label [ not contained in the
training data then it should be very likely that C(w) is true iff I = +1.

Our goal in this paper is to apply standard binary classification algorithms
to positive and negative examples to obtain interpolants. We will assign positive
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examples the label +1 and the negative examples the label -1 to obtain the
training data. We are interested in classifiers, in the theory of linear arithmetic,
that classify correctly.

Definition 2 (Correct Classification). A classifier C classifies correctly on
training data X if for all positive examples a € X, C(a) = true, and for all
negative examples b € X, C(b) = false. If there exists a positive ezample a such
that C(a) = false (or a negative example b such that C(b) = true), then C is
said to have misclassified a (orb).

There are classification algorithms that need not classify correctly on training
data [I0]. These are useful because typically the data in machine learning is
noisy. A classifier that misclassifies a training example is definitely not an inter-
polant. Hence we focus on classifiers that classify correctly on training data. In
particular, we use optimal margin classifiers generated by SVMs.

2.1 SVM Primer

We provide some basic background on SVMs in the context of binary classifica-
tion using half-spaces. Let us denote the training data by X, the set of positive
examples by X1, and the set of negative examples by X .

Let us assume that the training data X is linearly separable: there exists
a hyperplane, called a separating hyperplane, w'xz + d = 0 such that Va €
Xt . wla+d>0and Vb€ X~. w'b+ d < 0. For linearly separable training
data, an SVM is guaranteed to terminate with a separating hyperplane. To use
a separating hyperplane to predict the label of a new point z we simply compute
sgn(w? z 4+ d). In other words, if w” 2z +d > 0 then we predict the label to be +1
and -1 otherwise.

An interesting question to consider is the following: If there are multiple sep-
arating hyperplanes then which one is the best? If a point is away from the
separating hyperplane, say w”x + d >> 0, then our prediction that x is a pos-
itive example is reasonably confident. On the other hand, if x is very close to
the separating hyperplane then our prediction is no longer confident as a minor
perturbation can change the predicted label. We say such points have a very
low margin. The optimal margin classifier is the separating hyperplane that
maximizes the distance from the points nearest to it. The points closest to the
optimal margin classifier are called support vectors. An SVM finds the optimal
margin classifier and the support vectors given linearly separable training data
efficiently [21] by solving a convex optimization problem.

An example of SVM in action is shown in Fig. Bl The positive examples are
shown by +’s and negative examples by o’s. Line 4 is a separating hyperplane
and we can observe that several points of training data lie very close to it and
hence its predictions are not so confident. Line 2 is the optimal margin classifier.
The points on the dotted lines are closest to the optimal margin classifier and
hence are the support vectors.

We observe that using SVMs provides us with a choice of half-spaces for the
classifier. We can return the half-space above line 2 as a classifier. All positive
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\

Fig. 3. Line 2 and line 4 are separating hyperplanes. The support vectors for optimal
margin classifier (line 2) lie on dotted lines.

examples are contained in it and all negative examples are outside it. Or we can
return the half-space above line 1 and that will be a stronger predicate. Or we
can return the negation of the half-space below line 3 and that will be a weaker
predicate. Or any line parallel to line 2 and lying between line 1 and line 3
will work. The choice of predicate depends on the application (i.e., the program
verification tool that consumes these predicates) and all these predicates can be
easily generated by taking a linear combinations of the support vectors.

3 Classification Based Algorithms for Interpolation

We now discuss an algorithm for computing interpolants using an SVM as a
black box. We start with a basic version as described in Fig. @l BAsIC takes as
input two predicates A and B over the theory of linear arithmetic and generates
as output a half-space h over the common variables of A and B. BASIC also
has access to (possibly empty) sets of already known positive examples X ™ and
negative examples X .

Basic(A, B)

Vars := Common variables of A and B
Add Samples(A,XT) to X+

Add Samples(B,X~) to X~

SV = SVM(X™*, X7)

h := Process(SV, Xt X7);

return h

Fig. 4. The basic algorithm for computing a separating hyperplane
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BAsIC first computes the variables common to both A and B and stores them
in the set Vars. It then computes the positive examples X by repeatedly asking
a theorem prover for satisfying assignments of A not already present in X (by
calling Samples(A, XT)). The values assigned to variables in Vars by these sat-
isfying assignments are stored in X +. The negative examples X ~ are computed
from B in a similar fashion (by calling Samples(B, X ~)). Let us assume that X *
and X~ are linearly separable. Next, we compute the support vectors (SV of
Fig. d) for X+ and X~ by calling an off-the-shelf SVM to generate the optimal
margin classifier. The result is then processed via the call to procedure Process
which takes a linear combination of support vectors in SV to obtain the classifier
h=wlz+d>0st wlez+d=0 is the optimal margin classifier between X+
and X, and Va € X*. h(a) > 0 and Vb € X~. h(b) < 0. This half-space h is
returned as output after correction for minor numerical artifacts (say rounding
4.9996 to 5). Process can be modified to produce stronger or weaker predicates
(Section [Z]). The output of BASIC is characterized by the following lemma:

Lemma 1 (Correctness of SVM). Given positive examples X which are

linearly separable from negative examples X, SVM and Process compute a half-
space h s.t. Ya € X*. h(a) >0 and VYa € X~. h(z) <O0.

Proof. The lemma follows from the fact that SVM returns an optimal margin
classifier under the assumption that X and X~ are linearly separable, and
that rounding performed by Process does not affect the predicted label of any
example in X+ or X~.

However, the algorithm BASIC has two major problems:

1. SVM will produce a sound output only when X+ and X~ are linearly sep-
arable.

2. BASIC computes a separator for Xt and X~ which might or might not
separate all possible models of A from all possible models of B.

We will now provide partial solutions for both of these concerns.

3.1 Algorithm for Intersection of Half-spaces

Suppose BasIC samples X+ and X~ which are not linearly separable. If we
denote x1,...,x, as the variables contained in Vars then there is an obvious
(albeit not very useful) separator between X and X~ given by the following
predicate:

P= \/((11,___7%)6)(4r T1=a1 N...\NTp = an

Observe that Va € X*. P(a) = true and Vb € X . P(b) = false. The predicate P
is a union (or disjunction) of intersection (or conjunction) of half-spaces. To avoid
the discovery of such specific predicates, we restrict ourselves to the case where
the classifier is either a union or an intersection of half-spaces. This means that
we will not be able to find classifiers in all cases even if they exist in the theory
of linear arithmetic. We will now give an algorithm which is only guaranteed
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to succeed if there exists a classifier which is an intersection of half-spaces. We
only discuss the case of intersection here as finding union of half-spaces can be
reduced to finding intersection of half-spaces by solving the dual problem.

Definition 3 (Problem Statement). Given X+ and X~ such that there exist
a set of half-spaces H = {h1,...,h,} classifying X+ and X~ correctly (i.e.,
Vae XT. Nl hi(a) and Vb e X~. =\, hi(a)) find H.

SVM-I(X*,X™)
H := true
Misclassified := X~
while |Misclassified |# 0
Arbitrarily choose b from Misclassified
h := Process(SVM(X ™, {b}), X, X™)
Vb € Misclassified s.t. h(b') < 0 : remove b’ from Misclassified
H:=HAh
end while
return H

Fig. 5. Algorithm for classifying by intersection of half-spaces

We find such a classifier using the algorithm of Fig. Bl We initialize the classifier
H to trueor 0 < 0. Next we compute the set of examples misclassified by H. Va €
X7T.H(a) = true and hence all positive examples have been classified correctly.
Vb € X~ .H(b) = true and hence all negative examples have been misclassified.
Therefore we initialize the set of misclassified points, Misclassified, by X . We
consider a misclassified element b and find the support vectors between b and X +.
Using the assumption that a classifier using intersection of half-spaces exists for
X T and X, we can show that b is linearly separable from X . Using Lemma/[I]
we will obtain a half-space h = w’z + d > 0 for which h(b) < 0. We will add h
to our classifier and remove the points which h classifies correctly from the set
of misclassified points. In particular, b is no longer misclassified and we repeat
until all examples have been classified correctly. A formal proof of the following
theorem can be developed along the lines of the argument above:

Theorem 1 (Correctness of SVM-I). If there exists an intersection of half-
spaces, H, that can correctly classify X and X~ then SVM-I is a sound and
complete procedure for finding H.

We make the following observations about SVM-I:

— The classifier found depends on the order by which the misclassified element
b is chosen and different choices can lead to different classifiers.

— In the worst case, it is possible that SVM-I will find as many half-spaces
as the number of negative examples. But since optimal margin classifiers
generalize well, the worst case behavior does not usually happen in practice.
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— SVM-I is related to the problem of “learning intersection of half-spaces”.
In the latter problem, given positive and negative examples, the goal of the
learner is to output an intersection of half-spaces which classifies any new
example correctly with high probability. There are several negative results
about learning intersection of half-spaces. If no assumptions are made re-
garding the distribution from which examples come from, we cannot learn
intersection of even 2 half-spaces in polynomial time unless RP=NP [2I[I]].

SVM-I can be incorporated into BASIC by replacing the calls to SVM and Pro-
cess with SVM-I in Fig. @ Now Basic with SVM-I can find classifiers when
X1+ and X~ are not linearly separable but can be separated by an intersection
of half-spaces.

3.2 A Sound Algorithm

We observe that BAsic, with or without SVM-I, only finds classifiers between
Xt and X~. The way BAsIC is defined, these candidate interpolants are over
the common variables of A and B. But if we do not have enough positive and
negative examples then a classifier between X and X~ is not necessarily an
interpolant. When this happens, we need to add more positive and negative
examples refuting the candidate interpolant.

INTERPOLANT(A, B)
XT, X" :=0
while true
H :=Basic(A, B) // Basic with SVM-I
if SAT(AN-H)
Add satisfying assignment to X+ and continue
if SAT(BAH)
Add satisfying assignment to X~ and continue
break
return H

Fig. 6. A sound algorithm for interpolation

The algorithm INTERPOLANT computes a classifier H which classifies X and
X~ correctly i.e., Va € X*. H(a) = true and Vb € X . H(b) = false by calling
Basic with SVM-I. If H is implied by A and is unsatisfiable in conjunction
with B then we have found an interpolant and we exit the loop. Otherwise we
update X and X~ and try again. We have the following theorem:

Theorem 2 (Soundness of INTERPOLANT). INTERPOLANT (A,B) terminates
if and only if the output H is an interpolant between A and B.

Proof. The output H is defined over the common variables of A and B (follows
from the output of BAsIC).
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only if : Let INTERPOLANT(A, B) terminate. This means that both conditions
BAH =1 and AA—-H = 1 must be satisfied (these are conditions for
reaching break statement), which in turn implies that A = H holds and
therefore H is an interpolant of A and B.

if : Let H be an interpolant of A and B. This means that A = H and hence
AN-H = 1. BANH = 1 holds because H is an interpolant and therefore,
the break statement is reachable and INTERPOLANT(A, B) terminates.

4 Handling Superficial Non-linearities

Most program verification engines do not reason about non-linear arithmetic
directly. They try to over-approximate non-linear functions, say by using unin-
terpreted function symbols. In this section, we discuss how to use our technique
to over-approximate non-linear arithmetic by linear functions.

Suppose AA B = 1 and A is a non-linear predicate. If we can find a linear in-
terpolant I between A and B then A = I. Hence [ is a linear over-approximation
of the non-linear predicate A. We discuss, using an example, how such a predicate
I can be useful for program verification.

Suppose we want to prove that line 5 is unreachable in Fig. [l There are
some lines which are commented. These will be considered later. This program
assigns z non-deterministically and does some non-linear computations. If we
can show that an over-approximation of reachable states after line 3 is disjoint
from x = 2 Ay # 2 then have a proof that error() is unreachable.

foo()

{

// do{

1: z = nondet();

2: x = 4 * sin(z) * sin(z);
3: y = 4 * cos(z) * cos(z);
// } while (%);

4: if (x==28& y!=2)
5: error() ;

}

Fig. 7. A contrived example with superficial non-linearities

We use our technique for computing interpolants over the non-linear predicates
to construct an easy to analyze over-approximation of this program. We want to
find an interpolant of the following predicates (corresponding to the infeasible
trace (1, 2, 3, 4, 5)):

A= =4sin®(2) Ay = 4cos?(2)
B=x=2Ny#2

Observe that SVMs consume examples and are agnostic to how the examples are
obtained. Since A is non-linear, we can obtain positive examples by randomly
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substituting values for z in A and recording the values of x and y. Since B
is linear, we can ask an SMT solver [19] for satisfying assignments of B to
obtain the negative examples. We have plotted one possible situation in Fig. [§ -
the positive and negative examples are represented by +’s and o’s respectively.
Running SVM-I and choosing the stronger predicate from the available choices
(Section [Z]) generates the predicate P = (z +y = 4). We remark that to
obtain this predicate, we only need one negative example above, one negative
example below, one positive example to the left, and one positive example to the
right of (2,2). Adding more examples will leave P unaffected, due to the way
optimal margin classifier is defined (Section [ZT]). This shows the robustness of
the classifier. That is, once a sufficient number of samples have been obtained
then the classifier is not easily perturbed by changes in the training data.

Now we need to verify that P is actually an interpolant. We use an SMT
solver to show that P A B = 1. To show A = P can be hard. For this example,
any theorem prover with access to the axiom sin?(z) 4 cos?(x) = 1 will succeed.
But we would like to warn the reader that the verification step, where we check
A= 1T and I \NB = 1, can become intractable for arbitrary non-linear formulas.

Using the interpolant P, we can replace Fig. [ by its over-approximation
given in Fig. [ for verification. A predicate abstraction engine using predicates
{x+y =4, = 2,y = 2} can easily show the correctness of the program of
Fig.[@ Moreover, suppose we uncomment the lines which have been commented
out in Fig. [l To verify the resulting program we need a sufficiently strong loop
invariant. To find it we consider a trace executing the loop once and try to find
the interpolant. We do the exact same analysis we did above and obtain the
interpolant (x 4+ y = 4). This predicate is an invariant and is sufficient to prove
the unreachability of error ().

Other techniques for interpolation fail on this example because either they
replace sin and cos by uninterpreted functions [I3l24] or because of the re-
stricted expressivity of the range of interpolants computed (e.g. combination
of boxes [I5]). We succeed on this example because of two reasons:

1. We are working with examples and hence we are not over-approximating the
original constraints.
2. SVM succeeds in computing a predicate which generalizes well.

Fig. 8. Positive and negative examples for Fig. [l The lines show classifiers.
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foo()
{
assume ( x +y == 4 );
if (x==2¢8&y!=2)
error() ;
}

Fig. 9. An over-approximation of Fig. [

5 Experiments

We have implemented a prototype version of the algorithm described in this
paper in 1000 lines of C++ using LIBSVM [3] for SVM queries and the Z3 theorem
prover [19]. Specifically, we use the C-SVC algorithm with a linear kernel for
finding the optimal margin classifier. C-SVC is parametrized by a cost parameter
c. A low value of ¢ allows the generated classifier to make errors on the training
data. Since we are interested in classifiers that classify correctly, we assign a very
high value to ¢ (1000 in our experiments). The input to our implementation is two
SMT-LIB formulas and the output is also obtained as an SMT-LIB formula. We
try to sample for at most ten distinct positive and negative examples each before
BaAsIC makes a call to LIBSVM. In these experiments, the classifier is described
by the hyperplane parallel to the optimal margin classifier and passing through
the positive support vectors. We consider the half-space, corresponding to this
hyperplane, such that the negative examples lie outside the half-space. Hence
we are considering the strongest predicate from the options provided to us by
SVM (Section 21]).

We have tried our technique on small programs and our results are quite
encouraging (see Table[I]). The goal of our experiments was to verify the imple-
mentability of our approach. We consider traces that go through the loops once
and manually generate A and B in SMT-LIB format for input to our tool. These
programs contain assertions that can be discharged using loop invariants that
are a conjunction of linear inequalities.

First, let us consider the left half of the table. The programs fla, ex1, and
£2 are adapted from the benchmarks used in [6]. The programs necl to nech
are adapted from NECLA static analysis benchmarks [12]. The program fse06
is from [7] and is an example on which Yoar [7] does not terminate because it
cannot find the invariant > 0 Ay > 0. The program p1di08, adapted from [9],
requires a disjunction of half-spaces as an invariant. We obtain that by solving
the dual problem: we interchange the labels of positive and negative examples
and output the negation of the interpolant obtained.

For these examples, we were generating at most ten positive and negative
examples before invoking SVM. Hence we expect the column “Total Ex” to
have entries less than or equal to 20. Most entries are strictly less than twenty
because several predicates have strictly less than ten satisfying assignments. This
is expected for A as it represents reachable states and we are considering only
one iteration of the loops. So very few states are reachable and hence A has
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Table 1. File is the name of the benchmark, LOC is lines of code, Interpolant is the
computed interpolant, Total Ex is the sum of the number of positive and negative
examples generated for the first iteration of INTERPOLANT. For the second part, Iters
represents the number of iterations of INTERPOLANT.

File LOC  Interpolant  Total Ex Time (s) Interpolant  Iters Time (s)

fla 20 X =y 12 0017 x=y&y>0 4 0.017
ex1 22 xa + 2%ya >= 0 13 0.019 =xa + 2xya >= 0 4 0.02
£2 18 3xx >=y 13 0.021 3xx >=y 12 0.022
necl 17 x <=8 19 0.015 x <=8 9 0.02
nec2 22 x <y 12 0.014 x <y 2 0.019
nec3 15 y <=9 11 0.014 y <=9 1 0.012
nec4 22 X =y 20 0.019 X =y 4 0.017
necb 9 s >= 0 11 0.013 s >= 0 1 0.016
pldio8 10 x <0 |y >0 17 0.02 6xx <y 1 0.013
fse06 8 y > 0& x>0 11 0014 y>0&x>0 2 0.015

very few satisfying assignments. Nevertheless, 11 to 20 examples are sufficient
to terminate INTERPOLANT in a single iteration for all the benchmarks.

To get more intuition about INTERPOLANT, we generate the second part of the
table. Here we start with one positive and one negative example. If the classifier
is not an interpolant then we add one new point that the classifier misclassifies.
The general trend is that we are able to find the same classifier with a smaller
number of samples and few iterations. In fla we generate a predicate with
more inequalities. This demonstrates that the generated classifier from SVM-I
might be sensitive to the order in which misclassified examples are traversed
(Fig.B)). For p1di08, when we found the classifier between the first positive and
negative example generated by Z3 then we found that it was an interpolant. Since
the classifier has been generated using only two examples, the training data is
insufficient to reflect the full structure of the problem, and unsurprisingly we
obtain a predicate that does not generalize well. These experiments suggest that
the convergence of INTERPOLANT is faster and the results are better if we start
with a reasonable number of samples.

Finally, we compare with the interpolation procedure implemented within
OPENSMT [16] in Table 2l OPENSMT fails to find the predicate representing
the loop invariant for f1a, p1di08, and fse06, whereas our technique succeeds
for these examples; this is in line with our claim that machine learning algo-
rithms can provide relevant predicates. OPENSMT fails on necl because this
benchmark contains non-linear multiplications. It turns out that the program
has a linear interpolant, found by our technique, which is sufficient to discharge
the assertions in the program. Finally, the timing measurements show that we
are competitive with OPENSMT.
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Table 2. File is the name of the benchmark and Interpolant is the interpolant computed
by the interpolation procedure implemented within OPENSMT. SAME refers to the
benchmarks for which interpolants computed by OPENSMT were identical to those
computed by our technique.

File  Time(s) Interpolant
fla 0022 ((y=11x<=0&x=1) | (y=0& (y=11x<=0))

ex1 0.021 xa + 2%ya >= 0 | xa + 2%ya >= 5 | xa + 2%ya >= 5
f2 0020 y <=3*x | y<=3*x + 1 | y <= 3%x + 1

necl NA FAIL

nec2 0.018 x < y (SAME)

nec3 0.016 y <= 9 (SAME)

nec4 0021 (x=yly=0)1Cy=x)1 (Cy=x)

nech 0.018 s >= 0 (SAME)

pldio8 0.017 y > x

fse06 0017 y+x>0&y>0&y>0&y>0

6 Related Work

In this section, we place our work in the context of existing work on interpolation
and machine learning. Our philosophy of computing interpolants from samples
is similar to Daikon [5]; Daikon computes likely invariants from program tests.
Whereas, we compute sound interpolants statically.

We have considered interpolation only over the quantifier free theory of linear
arithmetic. Extension to richer theories, such as the theory of arrays, is left for
future work. The interpolants found by our technique are limited to conjunctions
of linear inequalities. To handle programs requiring interpolants which are a
combination of disjunctions and conjunctions of linear inequalities, we propose to
use the existing techniques for control flow refinement [1J8126]. These techniques
perform source to source semantics preserving transformations so that the loops
in the resulting program require only disjunction-free invariants.

Extending the work of [T4)22], McMillan [I7] computed interpolants of (A, B),
where A and B are in the quantifier free theory of linear arithmetic, in a linear
scan of the proof of unsatisfiablity of A A B. This method requires an explicit
construction of the proof of unsatisfiability. In a recent work, Kupferschmid
et al. [I5] gave a proof based method for finding Craig interpolants for non-
linear predicates. The proof based methods like these are generally not scalable:
Rybalchenko et al. [24] remark that “Explicit construction of such proofs is a
difficult task, which hinders the practical applicability of interpolants for ver-
ification.” Like our approach, their method for interpolation is also not proof
based. They apply linear programming to find separating hyperplanes between
A and B. In contrast to their approach, we are working with samples and not
symbolic constraints. This allows us to use mature machine learning techniques
like SVMs as well as gives us the ability to handle superficial non-linearities.

We selected SVM for classification as they are one of the simplest and
most widely used machine learning algorithms. There are some classification
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techniques which are even simpler than SVM [I0]. We discuss them here and
give the reasons behind not using them for classification. In linear regression, we
construct a quadratic penalty term for misclassification and find the hyperplane
which minimizes the penalty. Unfortunately the classifiers obtained might err
on the training data even if it is linearly separable. Another widespread tech-
nique, logistic regression, is guaranteed to find a separating hyperplane if one
exists. But the output of logistic regression depends on all examples and hence
the output keeps changing even if we add redundant examples. The output of
SVMs, on the other hand, is entirely governed by the support vectors and is not
affected by other points at all. This results in a robust classifier which is not
easily perturbed and leads to better predictability in results.

There has been research on finding non-linear invariants [25[20023]. These
techniques aim at finding invariants which are restricted to polynomials of vari-
ables. In contrast, we are not generating non-linear predicates. We are finding
linear over-approximations of non-linear constraints and hence our technique
only generates linear predicates. On the other hand, unlike [25/20/23] we are not
restricted to non-linearities resulting only from polynomials and have demon-
strated our technique on an example with transcendental functions.

7 Conclusion

We have shown that classification based machine learning algorithms can be
profitably used to compute interpolants and therefore are useful in the context
of program verification. In particular, we have given a step-by-step account of
how off-the-shelf SVM algorithms can be used to compute interpolants in a
sound way. We have also demonstrated the feasibility of applying our approach
via experiments over small programs from the literature. Moreover, we are also
able to compute interpolants for programs that are not analyzable by existing
approaches — specifically, our technique can handle superficial non-linearities.
As future work, we would like to extend our algorithms to compute inter-
polants for non-linear formulas. We believe that SVMs are a natural tool for this
generalization as they have been extensively used to find non-linear classifiers.
We would also like to integrate our SVM-based interpolation algorithm with a
verification tool and perform a more extensive evaluation of our approach.
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Abstract. An algorithmic-learning-based termination analysis technique
is presented. The new technique combines transition predicate abstrac-
tion, algorithmic learning, and decision procedures to compute transition
invariants as proofs of program termination. Compared to the previous
approaches that mostly aim to find a particular form of transition invari-
ants, our technique does not commit to any particular one. For the exam-
ples that the previous approaches simply give up and report failure our
technique can still prove the termination. We compare our technique with
others on several benchmarks from literature including POLYRANK exam-
ples, SNU realtime benchmark, and Windows device driver examples. The
result shows that our technique outperforms others both in efficiency and
effectiveness.

1 Introduction

Termination is a critical property of functions in program libraries. Invoking a
non-terminating library function may result in system lagging or even freezing.
Because of its importance, termination analysis has been studied extensively [2—
4, 18, 1014, 17, 22, 124-27] for the last decade and advanced to the level of
industrial uses |1, [13].

Among various strategies for proving termination, we are most interested
in the transition invariant-based technique. A transition invariant for a transi-
tion relation is an over-approximation to the reachable transitive closure of the
transition relation |13, 125, 26]. Podelski and Rybalchenko [25] have shown that
the termination of a program amounts to the existence of a disjunctively well-
founded transition invariant for its transition relation. We therefore aim to find
a disjunctively well-founded transition invariant for the transition relation of a
program.

Though transition invariants can be defined as a fixpoint, they are not neces-
sarily computed by costly fixpoint iterations. Observe that it suffices to find one
disjunctively well-founded over-approzimation to the least reachable transition
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invariant. If there are lots of such over-approximations, we have only to design
an efficient algorithm to compute one. Indeed, several such algorithms have been
proposed to compute reachable transition invariants efficiently [2, 8, [22, [27)].

In this paper, we report the first algorithmic-learning-based technique for ter-
mination analysis. Recently, algorithmic learning is successfully applied to avoid
the costly fixpoint iteration in the context of loop invariant generation [19-21]. In
the same spirit, the technique we propose in this paper finds disjunctively well-
founded transition invariants without the excessive cost of fixpoint iterations by
combining algorithmic learning, transition predicate abstraction, decision proce-
dures, and well-foundedness checkers. Through transition predicate abstraction,
we adopt a learning algorithm for Boolean formulae to infer transition invariants
over given atomic predicates. Using an SMT solver and well-foundedness checker,
we design a mechanical teacher to guide the learning algorithm to find a disjunc-
tively well-founded transition invariant. Randomness is moreover employed to
exploit the multitude of transition invariants.

The advantage of our technique is that it can be both efficient and effective,
compared to the previous works [2,18,122,127]. The key innovation of our technique
is that we decouple the construction of transition invariants from the transition
predicate generation. In previous works, the transition predicate generation is
tightly coupled with the transition invariant inference and the whole process
is optimized by committing to a particular form of transition invariants, which
might hurt the effectiveness. However, the following intuition from the years of
research on termination analysis teaches us that this is not necessarily the case;
termination arguments, or transition predicates, are evident in most cases [21],
but it is not so obvious how to combine those predicates to get a disjunctively
well-founded transition invariant |2]. To solve the “not-so-obvious” problem effi-
ciently, we use algorithmic learning which was proven to work well in a different
domain, inferring loop invariants out of atomic predicates. Being trained by me-
chanical teachers, learning algorithms become an efficient engine for exploring
possible combinations of predicates. For the atomic transition predicate genera-
tion, we employ a simple heuristic, which is turned out to be effective for most
of examples in the experiments. We can further improve the effectiveness with
additional predicates.

Example. Consider the following nested loop. We found that this simple nested
loop cannot be proven by any of the existing termination analysis tools |8,22,127]:

while i < 10 do {j < 0;while j < 10do {i',j' < i+ 1,5+ 1}}

Our simple heuristic finds the set {i < 10,5 < 10,7 < ¢/,j < j'} of atomic
transition predicates. Then, our randomized technique first computes a transition
invariant for the inner loop, say, j < 10 A j < j'. Since the transition invariant is
well-founded, it proves the termination of the inner loop. Next, we replace the
inner loop by its transition invariant and proceed to find a transition invariant
for the following simple loop:

while i < 10 do {j < O;assume(j < 10Aj < j');}
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Since its loop body does not update the variable 4, it is impossible to prove the
termination of the loop. This is exactly what happens in some of the existing
tools [8, 127]; after they compute j < 10 A j < j' as a transition invariant of the
inner loop, they simply report possible non-termination of the outer loop. The
other tool [22] fails because it uses a even more imprecise transition invariant,
true, as the summary of the inner loop; the tool unrolls and unions the transition
relation of a loop body until it reaches a transition invariant and when it unrolls
the outer loop, the tool can only assume that the inner loop can change variables
arbitrarily. However, there exists another transition invariant j < 10Aj < j'Ai <
7/ which are both expressible with the given predicates and precise enough to
prove the termination of the outer loop. As long as a transition invariant is
expressible with the given predicates, our randomized algorithm for termination
analysis can find it. Let us say our technique returns j < 10Aj < j' A4 < ¢’ this
time. The new transition invariant is again well-founded. We proceed to replace
the inner loop by the new transition invariant:

while 1 < 10 do {j < O;assume(j < 10N j < j' ANi<i);}

Our termination analysis algorithm is now able to infer the transition invariant
1 < 10 A% < ¢’ for the simple loop. Since the transition invariant 1 < 10 A7 < ¢/
is well-founded, we conclude that the outer loop is terminating as well. O

Contributions.

— We design and implement an algorithmic-learning-based termination ana-
lyzer. As far as we know, our work is the first to apply the algorithmic
learning to termination analysis problem.

— We empirically show that the prototype implementation of our technique
outperforms the previous tools [g,122,127] both in efficiency and effectiveness.

Organization. Section 2 reviews termination analysis via transition invariants
and presents our formalism of transition invariants in intentional representation.
Section 3 explains algorithmic-learning-based inference approach and how to ap-
ply it to the problem of inferring disjunctively well-founded transition invariants.
Section 4 presents our experiment results. Section 5 discusses related work and
Section 6 concludes.

2 Termination Analysis via Transition Invariants

This section explains the termination analysis technique based on transition
invariants. The technique was first introduced by Podelski and Rybalchenko [25]
and later implemented on top of the SLAM model checker |13]. We first review
the original theory of transition invariants in an extensional view [18]. We then
present our formalism of transition invariants in an intensional view which we
compute via algorithmic-learning-based approach.



Termination Analysis with Algorithmic Learning 91

2.1 Program Termination and Transition Invariant

A program P = (Wp,Ip, Rp) consists of a set Wp of states, a set Ip C Wp of
initial states, and a transition relation Rp C Wp x Wp.

A program P terminates if there is no infinite sequence s1, s, -+ of states
such that s; € Ip and (s;,8;+1) € Rp. This condition is equivalent to the well-
foundedness of Rp N Reach(P) x Reach(P). Here, the set Reach(P) denotes the
set of reachable states.

Instead of showing Rp N Reach(P) x Reach(P) is well-founded, we prove the
termination by finding its disjunctively well-founded transition invariant [25]. A
transition invariant T" of P is a relation that contains a reachable portion of the
transitive closure of Rp:

R} N Reach(P) x Reach(P) CT.

Furthermore, we say the transition invariant 7" is disjunctively well-founded when
it is a union of a finite number of well-founded relations T4, --- ,Tx.

Theorem 1 ([|25]). A program P terminates if and only if there exists a dis-
junctively well-founded transition invariant T of P.

Thanks to Theorem[I] the problem of program termination now becomes finding
a disjunctively well-founded transition invariant for a given program P.

Cook et al. |[13] showed that transition invariants can be reduced to reachabil-
ity analysis. The authors named the relation R}, N Reach(P) x Reach(P) binary
reachability relation, which is the least fixpoint of the following functional Fp
starting from the relation 1 p.

Zd(g)(X) = {(V271/2) eWp x Wp: E|V1.(V1, V2) S X}
XoY 2 {(v,v3) € Wp x Wp : Jvo.(v1,12) € X and (vo,13) € Y}
1lp2 {(v1,12) € Wp X Wp 1171 € Ip and (v1,12) € Rp}

In the next subsection, we show how to compute an over-approximation of this
binary reachability relation via intensional representations of transition invari-
ants.

2.2 Intensional Transition Invariants

Simple Loop Programs. For presentation, we consider a simple loop program
P with the following abstract syntax.

P ::={l} whilel do S

S:u=v<e|v+ nondet|assume!l | S[S|S; S
luo=e<n|IAL|lVI

ex=nlv|nxel|lete|e—e (veV,neZ)

where V and Z is a set of variables and integers respectively, and [ represents
quantifier-free formulae over integer affine predicates. A loop with a loop guard
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is annotated with a formula specifying a precondition. We write xp for the loop
guard and dp for the precondition. In the syntax, we have non-deterministic
assignments (v < nondet) to emulate the behaviors of unsupported features
such as arrays or function calls. For brevity, we use choice (S [ §) and assume
statements (assume [) instead of traditional if statements.

A program state v € Wp of the program P is a map from V to Z. Given a
formula I, we write v |Egat | when v satisfies [. We write =gqt [ if there exists a
state that satisfies [. When the formula is satisfied by all states, we write |= .
We define the set W(I) to be {v € Wp : v =4 [}. For a simple loop program
P, the set Ip of initial states is the same as W(dp).

To describe the transition relation Rp for a simple loop program, we define
transition semantics [P] of P. The transition semantics is a quantifier-free for-
mula over sets V and V' describing the current state and the state after the
transition, respectively. The transition semantics is defined as follows:

[{0p} while kp do S] £ kp A [S]
[v<e] 20 =en w =w
weV\{v}
[v ¢ nondet] £ v =v"A A W =w (v" : fresh)
weV\{v}
[assume [] £ I A N w =w
weV\ Vars(l)
[So (I S11 = [So] v [S1]
[So; S1] £ [Sol[V! = V"I A[S1][V = V] (V" : fresh)

where Vars(l) is the set of variables appeared in [ and f[v; — vg] is the formula
obtained by substituting the variable vy for v; in f. Given a formula f over V
and V', we write v,1/ |Esat f when the formula obtained by replacing v € V' in
f with v(v) and v' € V' in f with v/(v') is satisfiable. The notations |=sat f and
= f are defined accordingly. The notation R(f) denotes the relation {(v,v’) €
Wp x Wp @ v,V |=sar f}. Thus the transition relation Rp of a simple loop
program P is R([P]).

In  summary, a simple loop program P defines the program
(Wp,W(ép), R([P]))-

Intensional Transition Invariants. For a simple loop program P, we define
the intensional representations of the functional Fpp and the relation L p (written
F ﬁ-, and Lup respectively) as follows:

FL(f) 2 (f Vidiy (f)) of [P]
idly (f) & fIV = VAV =V (V" : fresh)
fof g2 f[V/ = V"] AglV = V"] (V' : fresh)

15 25 AP

where f[{vi, -, v} = {0], -+ 0L} 2 flor = V] [vn > v)]. The following
lemmas show that F f; and 1_33 correspond to Fp and 1 p respectively.
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Lemma 1. For any simple loop program P, W(ng) =1p.

Lemma 2. Let [ be a quantifier-free formula over V and V'. For any simple
loop program P, R(ES(f)) = Fp(R(f)).

From the properties of F' Iug and ng, we compute a transition invariant of a simple
loop program P by finding a formula 7 that satisfies the following conditions:

LE1L =T
2. ET = kp;
3. EFL(T) = T.

The first condition is to guarantee that 7 subsumes the first iteration starting
from the initial state. The second condition is to guarantee that 7 expresses
only the iterations within the loop. The last condition is to guarantee that 7 is
a fixpoint. Note that this fixpoint is not necessarily a least fixpoint. We call the
formula T intensional transition invariant which is an intensional representation
of a transition invariant.

Lemma 3. LetT be an intensional transition invariant of a simple loop program
P. Then R(T) is a transition invariant; i.e. R(T) 2 RN Reach(P)x Reach(P).

We say T is disjunctively well-founded when R(7T) is disjunctively well-founded.
Disjunctively well-founded intensional transition invariants are proofs of program
termination.

Theorem 2. A simple loop program P terminates if there exists a disjunctively
well-founded intensional transition invariant T of P.

In the rest of the paper, transition invariants mean intensional transition invari-
ants unless stated otherwise.

3 Algorithmic-Learning-Based Inference of Transition
Invariants

The key idea of the algorithmic-learning-based framework [19-21]] is to apply
CDNF algorithm [7] to infer a formula with a mechanical teacher. CDNF algo-
rithm is an exact learning algorithm for Boolean formulae. It infers an arbitrary
Boolean formula over fixed variables by interacting with a teacher. In our case,
we are particularly interested in finding transition invariants over the given set
of atomic transition predicates. In order to apply CDNF algorithm, we will de-
sign a mechanical teacher to guide the learning algorithm to infer a transition
invariant for a simple loop program.

In this section, we explain our design of the mechanical teacher in details. We
first introduce CDNF algorithm for Boolean formulae. Through transition pred-
icate abstraction, the correspondence between Boolean formulae and quantifier-
free formulae over atomic transition predicates is explained. Lastly, we present
our design of the mechanical teacher.
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3.1 CDNF Learning Algorithm

CDNF algorithm is an exact learning algorithm for Boolean formulae. It infers an
unknown target formula by posing queries to a teacher. The teacher is responsible
for answering two types of queries. The learning algorithm may ask if a valuation
satisfies the target formula by a membership query. Or it may ask if a conjectured
formula is equivalent to the target in an equivalence query. According to the
answers to queries, CDNF algorithm will infer a Boolean formula equivalent to
the unknown target within a polynomial number of queries in the formula size
of the target.

In order to apply CDNF algorithm, a mechanical teacher that answers queries
from the learning algorithm is needed. The mechanical teacher consists of two
algorithms. The membership query resolution algorithm (MEM) answers mem-
bership queries; the equivalence query resolution algorithm (EQ) resolves equiv-
alence queries. The algorithm MEM returns YES if the given valuation satisfies
the unknown target and NO otherwise. The algorithm EQ returns YES if the
given conjecture is equivalent to the target and a counterexample otherwise. Let
x be a set of Boolean variables, and BF [x] and Valy be the set of Boolean formu-
lae and valuations over x, respectively. The signatures of these query resolution
algorithms are as follows:

MEM : Valxy — {YES, NO}
EQ : BF[x] — {YES} + Vaix

3.2 Learning Algorithm as an Inference Engine

We establish a connection between Boolean formulae and quantifier-free formu-
lae. The connection enables CDNF algorithm to infer transition invariants. We
consider transition predicate abstraction |26] over a set P of atomic predicates
defined over V and V’. A quantifier-free formula f over P is generated by the
following syntax.
fo=plof L IVIIINS

where p € P. We write QF[P] for the set of quantifier-free formulae over P. The
set QF[P] and the set BF[x] of Boolean formulae, where x = {z,, | p; € P},
establishes the following Galois connection.

QF[P] &= BF[x

From the connection, we know that once the learning algorithm finds a Boolean
formula, then it has a corresponding quantifier-free formula that we want to find.

We now show how to make a mechanical teacher under the transition predi-
cate abstraction. We define the following two functions a and « that translate
valuations over V' and x, respectively.

a(v,')Epsuchthat ul= A 2, A A -1y
N v,V Fsatp v,V fsatp
=N A AN
p(zp)=T p(zp)=1
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The design of the query resolution algorithms MEM and E(@Q amounts to that
of two concrete algorithms MEM*® and EQ* with the following signatures:

MEM?* : QF[P] — {YES, NO}
EQ* : QF[P] — { YES} + Valy x Valy

With the two concrete algorithms and the translation functions a and -, we
derive the query resolution algorithms MEM and EQ as follows:

MEM () = MEM*(y(p))

_ Jar) when EQ*(y(b)) = (v, /)
EQ(b) = { YES otherwise

3.3 Algorithms for Mechanical Teacher

In the rest of this section, we explain how to design the algorithms MEM?*
and EQti for transition invariants. One technical question is how we can make
MEM?* and EQﬁ answer questions on the formula that we do not know yet.
We solve this problem simply by giving random answers when we cannot answer
conclusively. Interesting observation is that as far as those answers are consistent
and algorithm EQ* returns YES when it really finds the one, CDNF algorithm
can still infer the target formula. We exploit the fact that there can exist multiple
formulae that are equivalent to the target.

Membership Query Resolution. In a membership query MEM (u) with pu €
Valx, we would like to know if p is included in an unknown target Boolean
formula that represents a disjunctively well-founded transition invariant. Since
we do not know any disjunctively well-founded transition invariant yet, we can
not answer every membership query conclusively.

To see what amount of answers we can give conclusively, we first consider
the conditions that p should respect. Suppose 7 is a transition invariant. If p
satisfies the target Boolean formula, we have v(u) = 7. Moreover, we have
J_gg = T = kp for T is a transition invariant. Therefore, we have the
following relationship:

L If = y(p) = kp, then [ (u) = T;
2. If =v(p) = J_gg, then = y(p) = T.

In the first case, we can conclusively answer NO. Similarly, we answer YES for
the second case conclusively.

For the others cases, we can give random answers. Since we are looking for dis-
junctively well-founded transition invariants, we heuristically answer NO when
R(y(u)) is not well-founded.

Algorithm [I] summarizes the membership query resolution. The MEM ﬁ( )
algorithm first checks if | f = kp. If not, it returns NO. The algorithm then
checks if R(f) is well-founded. If not, it heuristically returns NO. Finally, the
algorithm checks if F f = J_ﬁp. If so, it returns YES since we know for sure
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Algorithm 1. MEM®(f)
Input: f € QF[P]
Output: YES or NO

1 if st f A —kp then

2 return NO

3 else

4 if R(f) is well-founded then

5 if oot f A L% then

6 return YES or NO randomly
7 else

8 return YES

9 else
10 return NO

Algorithm 2. EQ*(f)

Input: f : a CDNF formula such that f = A, fi
Output: YES or a counterexample (v,v') € Valy x Valy
1 if isTransitionInvariant(f) is (v,v') € Valy x Valy then
return (v,v')
// f is a transition invariant
3 if hasDWFConjunct(f) is YES then
4 return YES
// fi is not disjunctively well-founded for every i
5 if findCounterexample(f) is (v,v’) € Valy x Valy then
6 return (v,v')
7 restart CDNF algorithm

that y~!(f) is the member of the target formula. Otherwise, it gives a random
answer to the learning algorithm.

Equivalence Query Resolution. In an equivalence query EQ(b), we are given
a CDNF formula b over x as the conjecture. The algorithm should check whether
~(b) is a disjunctively well-founded transition invariant for the simple loop pro-
gram P. If not, it returns a valuation over x as a counterexample.

Algorithm [2] presents the equivalence query resolution algorithm EQﬁ( f). The
algorithm first checks if f is a transition invariant. If not, it returns a counterex-
ample. Next, it checks if the formula has a disjunctively well-founded conjunct
fi. If so, we have found a disjunctively well-founded transition invariant. Oth-
erwise, the algorithm tries to find a counterexample that possibly makes the
formula not disjunctively well-founded. If it cannot find a counterexample, the
algorithm simply restarts to find another transition invariant.

Invariance Check. Algorithm [3] shows the procedure to check if f satisfies the
three conditions of transition invariants. If the conjecture f does not satisfy one
of them, the algorithm returns a counterexample.
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Algorithm 3. isTransitionInvariant(f)
Input: f : a CDNF formula
Output: YES or a counterexample (v,v') € Valy x Valy
if =1% — fandf = kp and = F5(f) = f then
return YES
if 1,0 =g L% A —f then
return (v,v')
if v,v Esut f A —kp then
return (v,v’)
if v,V =gu FA(f) A—f then
return (v,v')

o N O ks W N

Algorithm 4. hasDWFConjunct(f)
Input: f : a CDNF formula such that f = Ai_, V2, fi
Output: YES if f; is disjunctively well-founded for some i; NO otherwise

1 foreachi=1,--- ,n do

2 isWellFounded <— T

3 foreach j=1,--- ,m; do

4 if R(fij) is not well-founded then

5 isWellFounded <+ L

6 break

7 if isWellFounded then return YES

8 return NO;

Disjunctively Well-foundedness Check. Algorithm @l checks if f; is disjunctively
well-founded for some i. Recall that f is a CDNF formula such that f = Al fi
and each f; is also a transition invariant since f implies f;. If the algorithm
has found one disjunctively well-founded f;, we have found a disjunctively well-
founded transition invariant. The following lemma states the correctness of the
algorithm.

Lemma 4. Let f = A\_, f; be a CDNF formula. If f is a transition invariant
and f; is disjunctively well-founded for some i, f; is a disjunctively well-founded
transition invariant.

For each DNF formula f;, we check if all of its disjuncts are well-founded. Each
disjunct f;; is a conjunction of atomic transition predicates and we can check
the well-foundedness using existing well-foundness checkers [4, |5, [11, 124].

Counterexample Generation. Conjectures from learning algorithms are some-
times not disjunctively well-founded even if they are a transition invariant.
Those are either containing an idle transition, which does nothing during an
iteration, or the ones that become disjunctively well-founded once proper bound
conditions are added. For example, transition invariant 2’ < x contains an idle
transition and transition invariant 2’ < x becomes well-founded if additional
bound condition = > 0 is added. We implemented an algorithm that generates a
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Algorithm 5. findCounterezample(f)

Input: f : a CDNF formula

Output: a counterexample (v,v") € Valy x Valy or FAIL
1 if (v,V') Ewat f AV =V then return (v,v') as a counterezample
2 return FAIL

Algorithm 6. Pseudo-code of the main loop
Input: set P of transition predicates

1 while there exists a simple loop P in the program do
2 repeat N times to infer d.wf transition invariant 7 € QF[P] using CDNF
algorithm
if T is found then

replace P with assume(kp ATV —kp AV =V');
else

replace P with assume(kp A trueV —kp AV = V');

[ B B )

counterexample for both cases, but for space reason, we present in Algorithm
a simplified procedure that handles only the first case. If the algorithm finds
an idle transition (Fst f AV’ = V), it returns a counterexample. Otherwise
it returns FAIL, hoping that the learning algorithm finds another formula next
time.

4 Experiments

To evaluate our approach, we implemented our algorithm and compared it with
existing tools. In the implementation, we use Z3 SMT solver [16] for satisfiability
check and our own implementation of RANKFINDER algorithm [24] for well-
foundedness check.

Algorithm [6] shows the pseudo-code of the main loop of our analyzer. The
algorithm essentially handles the nested loop in the manner similar to that of |27];
it finds a non-nested simple loop and tries to find a disjunctively well-founded
transition invariant; when it finds one, we can use it as a summary of the loop
and make the outer-loop also non-nested; if the inference fails within the given
limit N, it simply assumes that the loop can change the variable arbitrarily and
uses true as its summary.

In Algorithm [ we make CDNF algorithm repeat only a certain number of
times because the learning algorithm loops indefinitely if a given loop does not
terminate or it does but there is no disjunctively well-founded transition invariant
expressible with the given set of predicates. In practice, CDNF algorithm could
find a disjunctively well-founded transition invariant within several trials.

We implement a simple heuristic that generates atomic transition predicates
using loop guards and branch conditions. First, all loop guards and branch con-
ditions are used as atomic transition predicates. Second, for each loop guard, say
E, > E,, we generate predicates B} — E} < Ey— F5. The intuition is that the gap
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between values of F; and Fs should decrease so that the loop guard would be
eventually violated. According to our experience, even with this simple heuris-
tic we could verify almost all terminating examples (only four predicates are
required to add manually in the whole experiments).

For comparison, we use the following four tools.

LTA) Our prototype algorithmic-Learning-based Termination Analyzer (LTA)
with a simple heuristic for transition predicate generation.

LF) LooPFROG [27], a summary-based termination analyzer. LOOPFROG
can be configured with five different templates of transition invariants
and we use only the template i’ ¢ ¢ where ¢ = {<, >}, which showed the
best performance according to [27].

LR) LINEARRANKTERM |[§], an abstract interpretation-based termination
analyzer.

CTA) Compositional Termination Analyzer (CTA) [22].

All experiments are done on Intel Core i7 3.07 Ghz CPU with 24GB memory
running Linux 2.6.35. The timeout for CTA is set to one hour and LTA is
configured with the retrial limit (N in Algorithm [6]) 100.

In all experiments, we report only the elapsed time for cases that tools could
prove the termination. If there are multiple loops, we report the elapsed time
aggregated only on terminating cases (denoted by '+ after numbers). The reason
is that our technique is semi-algorithm; it is not meaningful to report the elapsed
time to eventually fail since it simply depends on the parameter N. We run each
case 100 times and take the average of them.

We use four sets of example from the literature, which are examples from
Octagon library [23], POLYRANK distribution |4, [6], Windows device drivers [2,
8], and SNU real-time benchmark suite [27]. Since our prototype supports a
fragment of full ANSI-C, some examples are manually translated when they use
unsupported features. The experiment results are given in Figure [l

Figure[[[a) and (b) shows the results on examples from Octagon Library and
POLYRANK distributiorE7 respectively. All examples are known to terminate.
Our tool is the only one that proves all examples from Octagon library (note
that we got a different result from the one in [8]; we tried our best but we could
not make LINEARRANKTERM prove example 3). In terms of efficiency, LTA
outperforms the others except LOOPFROG; since LOOPFROG considers only one
iteration of loops with the pre-defined transition invariant template, it is very
efficient for simple programs. For the examples from POLYRANK distribution,
only LTA and LINEARRANKTERM can prove the first two.

Figure [Ii(c) shows the result on examples from Windows device drivers. Ex-
ample 2, 3, and 9 are known to have termination bugs and the others terminate.
Only LTA and LINEARRANKTERM can prove all the terminating cases and LTA

! We made them available at http://ropas.snu.ac.kr/cavi2/. Windows device
driver examples cannot be made available due to the license issue.

2 As already noted in [2, 1€], there was no example 5 in the original distribution. We
used the same numbering to avoid confusion.
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1

2

4 5 6

LTA 0.01 0.01 0.59 0.12 0.01 0.03
LF 0.01 0.01 0.02 0.03 @ 0.01

LR

0.20 0.16 © 0.32 0.21 0.79

CTA 0.58 0.26 948 © © 048

(a) Results on examples from the Octagon Library

LR

1

2 346789101112

LTA 003045000000 © © @
LF 0 0 0000000 0 0
071034000000 © © ©
CTA 0 0 OOV O © O

(b) Results on examples from the POLYRANK distribution

1

LF © 0000000 © © © o ©

23 4
LTA 0.43 © © 0.02 0.01 0.60 0.30 0.20 @ 0.03

6 7 8 9 10

LR 0.66 ©® © 0.32 0.16 0.34 0.54 0.29 © 0.28
CTA T/O @ © 0.41 0.44 2.04 8.86 8.87 @ T/O

(c) Results on small arithmetic examples taken from Windows device drivers

Example Tool
bs LTA
1 loop LF
1 terminates CTA
fit1k LTA
3 loops LF
3 terminate CTA
fitl LTA
5 loops LF
2 terminate CTA
insertsort LTA
2 loops LF
1 terminates CTA

v' @ Time

H R NDNDNNNDWOO

[y

0
1
1
0
1
1
3
3
3
1
1

1

0.01
N/A
N/A
0.04

0.03+

0.54+
0.03+
0.18+
0.66+
0.01+
0.01+
0.20+

Example

ludemp

11 loops

11 terminate
minver

17 loops

15 terminate
gsort-exam
6 loops

2 terminate
select

4 loops

0 terminates

Tool v @ Time

LTA 11
LF 5
CTA 4
LTA 15
LF 16
CTA 15
LTA 2
LF 0
CTA 0
LTA 0
LF 0
CTA 0

0

6
7
2
1
2
4
6
6
4
4
4

(d) Results on modified examples from SNU real-time benchmark

Fig. 1. Experiment Results. LTA is used to represent algorithmic-learning-based ter-
mination analyzer. LF is used to represent LOOPFROG, summary-based termination
analyzer. LR is used to represent LINEARRANKTERM, abstract interpretation-based
termination analyzer. CTA is used to denote compositional termination analyzer.
Symbol '+’ means that the time is aggregated only when the tool proved the termina-
tion. v'="“termination proven”. @=‘“termination not proven”. N/A=*“not comparable”.

T/O="“time out”. Tool and Time show the name and the runtime of tools.

0.13
0.07+
1.50+
0.23+
0.22+
5.21+
0.66+
N/A
N/A
N/A
N/A
N/A
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shows better performance than LINEARRANKTERM for all examples except ex-
ample 6.

Figure [I(d) is the result on SNU real-time benchmark suitdd. The original
examples in the suite contain many trivial, non-nested loops of form for(i=0;
i<n; ++i){...} (52 out of 107 loops). We leave them out and make suite contain
only non-trivial, nested loops. We show in the figure the number of terminating
loops in each example, which was found manually.

Figure [[d) shows that LTA outperforms LOOPFROG and CTA, both in ef-
ficiency and effectiveness. Note that there is no comparison between LINEAR-
RANKTERM and LTA; we could not compare LTA with LINEARRANKTERM on
the examples that have non-terminating loops since LINEARRANKTERM stops
the analysis as soon as it finds any single termination bug. We report here the
results on the examples with terminating loops only; for three such examples
(bs, fit1k, and ludemp), LINEARRANKTERM tool can prove only one example
(bs) and it takes 0.59 seconds.

Our approach shows a promising result; even by a prototype implementa-
tion with a simple heuristic for atomic transition predicate generation, our tool
outperforms other tools both in efficiency and effectiveness.

5 Related Work

Our work is inspired by the recent success of the algorithmic-learning-based
approach to loop invariant inference [19-21]. In those papers, the problem of
loop invariant generation is formulated as a problem of inferring an unknown
quantifier-free formula. With a simple randomized mechanical teacher, a learning
algorithm is adopted to infer an invariant for the given annotated loop. Instead of
the costly fixpoint iteration, the learning algorithm revises its purported invari-
ants by counterexamples from the teacher. The randomized teacher can guide
the learning algorithm to find a loop invariant very efficiently since there are
usually sufficiently many loop invariants.

TERMINATOR [13] is the most prominent termination analyzer which is suc-
cessfully applied to an industrial practice [1]. Using transition invariants [25],
TERMINATOR decomposes a termination problem of complex loops into easier
ones. However, as reported in [13], the initial approach reveals that most of the
analysis time is spent in reachability analysis that is to check if the current
transition invariant reached a fixpoint.

Our work shares the same goal as several techniques [2, 18,22, 127] which aims to
improve the performance of the initial approach. To compute fixpoints efficiently,
Berdine et al. [2] and Chawdhary et al. [8] use abstract interpretation [15]. We
use in experiments LINEARRANKTERM |[8] which adopts a new abstract domain
tailored for termination proof. The new abstract domain is effective to prove the
termination in most of the practical examples, but it simply gives up when a
transition invariant of a loop is beyond its expressivity. Kroening et al. [22] and

3 The original benchmark suite can be also found at
http://archi.snu.ac.kr/realtime/benchmark/.
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Tsitovich et al. [27] use compositional transition invariants. Compositional tran-
sition invariants are the ones that are closed under composition with themselves.
If a transition invariant covers several iterations of a loop and is compositional,
it covers the entire iterations. Since compositional transition invariants can be
found by considering only several iterations, they are sometimes discovered ear-
lier than the one that covers the entire iterations. However, not all terminating
programs have a compositional transition invariant.

Our technique can be easily extended with more sophisticated ranking func-
tion synthesis algorithms, such as lexicographic linear ranking functions [4] or
bit-vector relations [11]. In this paper we use the ranking function synthesis al-
gorithm for simple linear loops [24], which has been proven to be effective on
realistic programs.

6 Conclusion

In this paper, we present an algorithmic-learning-based termination analysis
technique. By combining transition predicate abstraction, algorithmic learning,
and decision procedures, the technique can efficiently compute transition invari-
ants as proofs of program termination. Compared to the previous approaches,
our technique does not commit to any particular one, thus can prove the termina-
tion of the examples that previous techniques simply give up and report possible
non-termination. We compare our technique with others on several benchmarks
from literature. The result shows that the new technique outperforms the others
both in efficiency and effectiveness.

Although our heuristic for selecting initial atomic transition predicates is ef-
fective, a complete predicate synthesis technique will be useful. Extending our
learning-based framework to support more features such as function calls and
pointers is certainly desirable. Several optimizations under the learning-based
framework are to be explored. A more powerful well-foundedness checker should
make the framework even more effective. An incremental learning algorithm for
Boolean functions [9] should improve the efficiency of our technique as well.
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Abstract. In earlier work, we developed a technique to prove termina-
tion of Java programs automatically: first, Java programs are automat-
ically transformed to term rewrite systems (TRSs) and then, existing
methods and tools are used to prove termination of the resulting TRSs.
In this paper, we extend our technique in order to prove termination of
algorithms on cyclic data such as cyclic lists or graphs automatically. We
implemented our technique in the tool AProVE and performed extensive
experiments to evaluate its practical applicability.

1 Introduction

Techniques to prove termination automatically are essential in program verifi-
cation. While approaches and tools for automated termination analysis of term
rewrite systems (TRSs) and of logic programs have been studied for decades, in
the last years the focus has shifted toward imperative languages like C or Java.
Most techniques for imperative languages prove termination by synthesizing
ranking functions (e.g., [I2J26]) and localize the termination test using Ramsey’s
theorem [2327]. Such techniques are for instance used in the tools Terminator
[4/13] and LoopFrog [22I31] to analyze termination of C programs. To handle the
heap, one can use an abstraction [I4] to integers based on separation logic [24].
On the other hand, there also exist transformational approaches which auto-
matically transform imperative programs to TRSs or to logic programs. They
allow to re-use the existing techniques and tools from term rewriting or logic
programming also for imperative programs. In [I7], C is analyzed by a transfor-
mation to TRSs and the tools Julia [30] and COSTA [2] prove termination of Java
via a transformation to constraint logic programs. To deal with the heap, they
also use an abstraction to integers and represent objects by their path length.
In [6l7)8I25] we presented an alternative approach for termination of Java via
a transformation to TRSs. Like [2I30], we consider Java Bytecode (JBC) to avoid
dealing with all language constructs of Java. This is no restriction, since Java
compilers automatically translate Java to JBC. Indeed, our implementation han-
dles the Java Bytecode produced by Oracle’s standard compiler. In contrast to
other approaches, we do not treat the heap by an abstraction to integers, but
by an abstraction to terms. So for any class C1 with n non-static fields, we use
an n-ary function symbol Cl. For example, consider a class List with two fields
value and next. Then every List object is encoded as a term List(v,n) where

* Supported by the DFG grant GI 274/5-3.

P. Madhusudan and S.A. Seshia (Eds.): CAV 2012, LNCS 7358, pp. 105-[[22] 2012.
© Springer-Verlag Berlin Heidelberg 2012
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v is the value of the current element and n is the encoding of the next element.
Hence, a list “[1,2]” is encoded by the term List(1, List(2, null)). In this way, our
encoding maintains much more information from the original program than a
(fixed) abstraction to integers. Now the advantage is that for any algorithm,
existing tools from term rewriting can automatically search for (possibly differ-
ent) suitable well-founded orders comparing arbitrary forms of terms. For more
information on techniques for termination analysis of term rewriting, see, e.g.,
[16120133]. As shown in the annual International Termination Competitionl] due
to this flexibility, the implementation of our approach in the tool AProVE [19] is
currently the most powerful termination prover for Java.

In this paper, we extend our technique to handle algorithms whose termina-
tion depends on cyclic objects (e.g., lists like “[0,1,2,1,2,...]” or cyclic graphs).
Up to now, transformational approaches could not deal with such programs. Si-
milar to related approaches based on separation logic [4BITOITI28I32], our tech-
nique relies on suitable predicates describing properties of the heap. Like [2§],
but in contrast to several previous works, our technique derives these heap pre-
dicates automatically from the input program and it works automatically for ar-
bitrary data structures (i.e., not only for lists). We integrated this new technique
in our fully automated termination analysis and made the resulting termination
tool available via a web interface [I]. This tool automatically proves termination
of Java programs on possibly cyclic data, i.e., the user does not have to provide
loop preconditions, invariants, annotations, or any other manual pre-processing.

Our technique works in two steps: first, a JBC program is transformed into
a termination graph, which is a finite representation of all program runs. This
graph takes all sharing effects into account. Afterwards, a TRS is generated from
the graph. In a similar way, we also developed techniques to analyze termination
of other languages like Haskell [21] or Prolog [29] via a translation to TRSs.

Of course, one could also transform termination graphs into other formalisms
than TRSs. For example, by fixing the translation from objects to integers, one
could easily generate integer transition systems from the termination graph.
Then the contributions of the current paper can be used as a general pre-proces-
sing approach to handle cyclic objects, which could be coupled with other ter-
mination tools. However, for methods whose termination does not rely on cyclic
data, our technique is able to transform data objects into terms. For such meth-
ods, the power of existing tools for TRSs allows us to find more complex termi-
nation arguments automatically. By integrating the contributions of the current
paper into our TRS-based framework, the resulting tool combines the new ap-
proach for cyclic data with the existing TRS-based approach for non-cyclic data.

In Sect. Pl we consider three typical classes of algorithms which rely on data
that could be cyclic. The first class are algorithms where the cyclicity is irrelevant
for termination. So for termination, one only has to inspect a non-cyclic part
of the objects. For example, consider a doubly-linked list where the predecessor
of the first and the successor of the last element are null. Here, a traversal
only following the next field obviously terminates. To handle such algorithms,

! Seehttp://termination-portal.org/wiki/Termination_Competition
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in Sect. 2] we recapitulate our termination graph framework and present a new
improvement to detect irrelevant cyclicity automatically.

The second class are algorithms that mark every visited element in a cyclic
object and terminate when reaching an already marked element. In Sect. [3 we
develop a technique based on SMT solving to detect such marking algorithms by
analyzing the termination graph and to prove their termination automatically.

The third class are algorithms that terminate because an element in a cyclic
object is guaranteed to be visited a second time (i.e., the algorithms terminate
when reaching a specified sentinel element). In Sect. [, we extend termination
graphs by representing definite sharing effects. Thus, we can now express that by
following some field of an object, one eventually reaches another specific object.
In this way, we can also prove termination of well-known algorithms like the
in-place reversal for pan-handle lists [10] automatically.

We implemented all our contributions in the tool AProVE. Sect. il shows their
applicability by an evaluation on a large benchmark collection (including numer-
ous standard Java library programs, many of which operate on cyclic data). In
our experiments, we observed that the three considered classes of algorithms cap-
ture a large portion of typical programs on cyclic data. For the treatment of (gen-
eral classes of ) other programs, we refer to our earlier papers [6/725]. Moreover,
in [§] we presented a technique that uses termination graphs to also detect non-
termination. By integrating the new contributions of the current paper into our
approach, our tool can now automatically prove termination for programs that
contain methods operating on cyclic data as well as other methods operating on
non-cyclic data. For the proofs of the theorems as well as all formal definitions
needed for the construction of termination graphs, we refer to [9].

2 Handling Irrelevant Cycles

We restrict ourselves to programs without method calls, arrays, exception han-
dlers, static fields, floating point numbers, class initializers, reflection, and multi-
threading to ease the presentation. However, our implementation supports these
features, except reflection and multithreading. For further details, see [6I78].

class L1 { 00: icomst_1 #load 1
L1 p, n; 01: istore_1 #store to r
static int length(L1l x) { 02: aconst_null #load null
int r = 1; 03: aload_O #load x
while (null !'= (x = x.n)) 04: getfield n #get n from x
r++; 07: dup #duplicate n
return r; }} 08: astore_O0 ##tstore to x
Fig. 1. Java Program 09: if_acmpeq 18 #jump if
# x.n == null
In Fig. I L1 is a class for 12: iinc 1, 1 #increment r
(doubly-linked) lists where n and 15: goto 02
p point to the next and previous 18: iload_1 #load r
element. For brevity, we omitted a 19: ireturn #return T

field for the value of elements. The Fig. 2. JBC for length
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method length initializes a variable r for the result and traverses the list until
x is null. Fig. 2 shows the corresponding JBC obtained by the Java compiler.

After introducing program states in Sect. 2.1l we explain how termination
graphs are generated in Sect. Sect. shows the transformation from
termination graphs to TRSs. While this two-step transformation was already
presented in our earlier papers, here we extend it by an improved handling
of cyclic objects in order to prove termination of algorithms like length
automatically.

2.1 Abstract States in Termination Graphs

00|x:01 e We generate a graph of abstract states from STATES = PPos x
orLl(?) 01096 | ,0cVAR x OPSTACK X HEAP X ANNOTATIONS, where PPOS
is the set of all program positions. Fig. Bl depicts the initial
state for the method length. The first three components of a
state are in the first line, separated by “|”. The first component is the program
position, indicated by the index of the next instruction. The second component
represents the local variables as a list of references, i.e., LOCVAR = Rers* B
To ease readability, in examples we denote local variables by names instead of
numbers. So “x:07” indicates that the 0-th local variable x has the value o;.
The third component is the operand stack OPSTACK = REFS” for temporary
results of JBC instructions. The empty stack is denoted by € and “o01,02” is a
stack with top element o;.

Below the first line, information about the heap is given by a function from
HEAP = REFS — INTS U UNKNOWN U INSTANCES U {null} and by a set of
annotations specifying sharing effects in parts of the heap that are not explic-
itly represented. For integers, we abstract from the different types of bounded
integers in Java and consider unbounded integers instead, i.e., we cannot han-
dle problems related to overflows. We represent unknown integers by intervals,
ie, INTs = {{r € Z | a <z <b}|ae€ZU{-x}becZU{x},a<
b}. For readability, we abbreviate intervals such as (—oo,00) by Z and [1,00)
by [>0].

Let CLASSNAMES contain all classes and interfaces in the program. The val-
ues UNKNOWN = CLASSNAMES x {7} denote that a reference points to an un-
known object or to null. Thus, “o1:L1(?)” means that at address o1, we have
an instance of L1 (or of its subclasses) with unknown field values or that oy
is null.

To represent actual objects, we use INSTANCES = CLASSNAMES X (FIELDIDs
— REFS), where FIELDIDS is the set of all field identifiers. To prevent ambi-
guities, in general the FIELDIDS also contain the respective class names. Thus,
“09:L1(p = 03,n = 04)” means that at address oz, we have some object of type
L1 whose field p contains the reference o3 and whose field n contains oy.

Fig. 3. State A

2 To avoid a special treatment of integers (which are primitive values in JBC), we also
represent them using references to the heap.
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In our representation, if a state contains the references 0; and os, then the ob-
jects reachable from o7 resp. oo are disjointE‘ and tree-shaped (and thus acyclic),
unless explicitly stated otherwise. This is orthogonal to the default assumptions
in separation logic, where sharing is allowed unless stated otherwise, cf. e.g. [32].
In our states, one can either express sharing directly (e.g., “01:L1(p = 02,0 =
01)” implies that o, reaches oo and is cyclic) or use annotations to indicate
(possible) sharing in parts of the heap that are not explicitly represented.

The first kind of annotation is the equality annotation o =’ o/, meaning that
o and o’ could be the same. We only use this annotation if h(0) € UNKNOWN or
h(o") € UNKNOWN, where h is the heap of the state. The second annotation is
the joinability annotation o \/ o', meaning that o and o’ possibly have a common

successor. To make this precise, let o1 N 02 denote that the object at o; has
a field £ € FIELDIDS with o9 as its value (i.e., h(01) = (Cl,e) € INSTANCES

and e(f) = o0p). For any m = £; ...f, € FIELDIDS*, 0; = 0,41 denotes that
. . £ £ fao £
there exist 0, ...,0, with 01 =% 05 = ... ' 0, =3 0,41. Moreover, 01 ~ 0

iff 01 = 0. Then 0 \/ o' means that there could be some 0" and some 7 and T
such that 0 5 o” < o/, where 7 # € or 7 # «.

In our earlier papers [6l25] we had another annotation to denote references
that may point to non-tree-shaped objects. In the translation to terms later on,
all these objects were replaced by fresh variables. But in this way, one cannot
prove termination of length. To maintain more information about possibly non-
tree-shaped objects, we now introduce two new shape annotations o and 0O py
instead. The non-tree annotation o{ means that o might be not tree-shaped.
More precisely, there could be a reference o/ with 0 =5 o’ and 0 =3 o where m; is
no prefix of mo and 5 is no prefix of ;. However, these two paths from o to o
may not traverse any cycles (i.e., there are no prefixes 71, 75 of 71 or of 3 where
71 # T2, but 0 = 0’ and 0 = o for some 0"). The cyclicity annotation 0O gy
means that there could be cycles including o or reachable from o. However,
any cycle must use at least the fields in FI C FIELDIDS. In other words, if
05 o 5 o for some T # ¢, then 7 must contain all fields from FI. We often
write O instead of Og. Thus in Fig. Bl 010p 5 means that there may be cycles
reachable from 07 and that any such cycle contains at least one n and one p field.

2.2 Constructing the Termination Graph

Our goal is to prove termination of length for all doubly-linked lists without
“real” cycles (i.e., there is no cycle traversing only n or only p fields). Hence,
A is the initial state when calling the method with such an input listl From
A, the termination graph in Fig. dis constructed by symbolic evaluation. First,
iconst 1 loads the constant 1 on the operand stack. This leads to a new state
connected to A by an evaluation edge (we omitted this state from Fig. @ for

3 An exception are references to null or INTS, since in JBC, integers are primitive
values where one cannot have any side effects. So if h is the heap of a state and
h(o1) = h(o2) € INTS or h(o1) = h(0o2) = null, then one can always assume o1 = 0s.

* The state A is obtained automatically when generating the termination graph for a
program where length is called with an arbitrary such input list, cf. Sect.
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Fig. 4. Termination Graph for length

reasons of space). Then istore 1 stores the constant 1 from the top of the
operand stack in the first local variable r. In this way, we obtain state B (in
Fig. @ we use dotted edges to indicate several steps). Formally, the constant 1 is
represented by some reference ¢ € REFS that is mapped to [1,1] € INTS by the
heap. However, we shortened this for the presentation and just wrote r : 1.

In B, we load null and the value of x (i.e., 01) on the operand stack, result-
ing in C. In C, the result of getfield depends on the value of 0. Hence, we
perform a case analysis (a so-called instance refinement) to distinguish between
the possible types of 01 (and the case where 07 is null). So we obtain D where
01 is null, and E where 01 points to an actual object of type L1. To get single
static assignments, we rename o1 to oo in E and create fresh references o3 and
o4 for its fields p and n. We connect D and E by dashed refinement edges to C.

In F, our annotations have to be updated. If 0; can reach a cycle, then this
could also hold for its successors. Thus, we copy Ofpn} to the newly-created
successors o3 and o4. Moreover, if 03 (01 under its new name) can reach itself,
then its successors might also reach oy and they might also reach each other.
Thus, we create \/ annotations indicating that each of these references may
share with any of the others. We do not have to create any equality annotations.
The annotation o2 =’ 03 (and o9 =’ 04) is not needed because if the two were
equal, they would form a cycle involving only one field, which contradicts O n}-
Furthermore, we do not need o3 =7 04, as 01 was not marked with ¢.

D ends the program (by an exception), indicated by an empty box. In F, get-
field n replaces o2 on the operand stack by the value o4 of its field n, dup dupli-
cates the entry o4 on the stack, and astore 0 stores one of these entries in x,
resulting in F'. We removed o0 and o3 which are no longer used in local variables
or the operand stack. To evaluate if acmpeq in F', we branch depending on the
equality of the two top references on the stack. So we need an instance refinement
and create G where o4 is null, and H where o4 refers to an actual object. The
annotations in H are constructed from F' just as E was constructed from C.
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G results in a program end. In H, r’s value is incremented to 2 and we jump
back to instruction 02, resulting in I. We could continue symbolic evaluation,
but this would not yield a finite termination graph. Whenever two states like
B and I are at the same program position, we use generalization (or widening
[14]) to find a common representative B’ of both B and I. By suitable heuristics,
our automation ensures that one always reaches a finite termination graph after
finitely many generalization steps [8]. The values for references in B’ include all
values that were possible in B or I. Since r had the value 1 in B and 2 in I, this
is generalized to the interval [>0] in B’. Similarly, since x was UNKNOWN in B
but a non-null list in I, this is generalized to an UNKNOWN value in B’.

We draw instance edges (depicted by thick arrows) from B and I to B/,
indicating that all concrete (i.e., non-abstract) program states represented by B
or I are also represented by B’. So B and I are instances of B’ (written B C B’,
I C B’) and any evaluation starting in B or I could start in B’ as well.

From B’ on, symbolic evaluation yields analogous states as when starting in B.
The only difference is that now, r’s value is an unknown positive integer. Thus,
we reach I’, where r’s value i, is the incremented value of 7; and the edge from
F'" to I' is labeled with “i9 = i; + 1”7 to indicate this relation. Such labels are
used in Sect. 23] when generating TRSs from termination graphs. The state I’
is similar to I, and it is again represented by B’. Thus, we can draw an instance
edge from I' to B’ to “close” the graph, leaving only program ends as leaves.

A sequence of concrete states ¢1, ¢a, . . . is a computation path if ¢;11 is obtained
from ¢; by standard JBC evaluation. A computation sequence is represented by
a termination graph if there is a path si,..., s’fl, s3., 572“2, ... of states in the
termination graph such that ¢; C s}, ..., ¢; C sf for all 7 and such that all labels
on the edges of the path (e.g., “ia = i1 + 17) are satisfied by the corresponding
values in the concrete states. Thm. [I] shows that if a concrete state c¢; is an
instance of some state s; in the termination graph, then every computation
path starting in c; is represented by the termination graph. Thus, every infinite
computation path starting in ¢; corresponds to a cycle in the termination graph.

Theorem 1 (Soundness of Termination Graphs). Let G be a termination
graph, s1 some state in G, and ¢y some concrete state with ¢y E s1. Then any
computation sequence ¢y, ca, ... is represented by G.

2.3 Proving Termination via Term Rewriting

From the termination graph, one can generate a TRS with built-in integers [18]
that only terminates if the original program terminates. To this end, in [25] we
showed how to encode each state of a termination graph as a term and each edge
as a rewrite rule. We now extend this encoding to the new annotations ¢ and O
in such a way that one can prove termination of algorithms like length.

To encode states, we convert the values of local variables and operand stack
entries to terms. References with unknown value are converted to variables of
the same name. So the reference i1 in state B’ is converted to the variable ;.

The null reference is converted to the constant null and for objects, we use
the name of their class as a function symbol. The arguments of that function
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correspond to the fields of the class. So a list x of type L1 where x.p and x.n are
null would be converted to the term L1(null, null) and o2 from state E would be
converted to the term L1(o03,04) if it were not possibly cyclic.

In [25], we had to exclude objects that were not tree-shaped from this transla-
tion. Instead, accesses to such objects always yielded a fresh, unknown variable.
To handle objects annotated with {, we now use a simple unrolling when trans-
forming them to terms. Whenever a reference is changed in the termination
graph, then all its occurrences in the unrolled term are changed simultaneously
in the corresponding TRS. To handle the annotation Oy, now we only encode a
subset of the fields of each class when transforming objects to terms. This subset
is chosen such that at least one field of FI is disregarded in the term encoding
Hence, when only regarding the encoded fields, the data objects are acyclic and
can be represented as terms. To determine which fields to drop from the encod-
ing, we use a heuristic which tries to disregard fields without read access.

In our example, all cyclicity annotations have the form Oy 5y and p is never
read. Hence, we only consider the field n when encoding Li-objects to terms.
Thus, o0y from state E would be encoded as L1(04). Now any read access to p
would have to be encoded as returning a fresh variable.

For every state we use a function with one argument for each local variable
and each entry of the operand stack. So E is converted to fg(L1(04), 1, L1(04), null).

To encode the edges of the termination graph as rules, we consider the different
kinds of edges. For a chain of evaluation edges, we obtain a rule whose left-hand
side is the term resulting from the first state and whose right-hand side results
from the last state of the chain. So the edges from F to F result in

fr(L1(04),1,L1(04), null) = fr (04, 1, 04, null).

In term rewriting [3], a rule £ — r can be applied to a term ¢ if there is a
substitution o with o = ¢’ for some subterm ¢’ of . The application of the
rule results in a variant of ¢ where ¢’ is replaced by ro. For example, consider a
concrete state where x is a list of length 2 and the program counter is 04. This
state would be an instance of the abstract state E and it would be encoded by the
term fg(L1(L1(null)),1,L1(L1(null)), null). Now applying the rewrite rule above
yields fg(L1(null), 1, L1(null), null). In this rule, we can see the main termination
argument: Between E and F, one list element is “removed” and the list has
finite length (when only regarding the n field). A similar rule is created for the
evaluations that lead to state F’, where all occurrences of 1 are replaced by ;.

In our old approach [25], the edges from E to F would result in fg(L1(04), 1,
L1(o4), null) = fr(of, 1, 0}, null). Its right-hand side uses the fresh variable o}, in-
stead of o4, since this was the only way to represent cyclic objects in [25]. Since 0/,
could be instantiated by any term during rewriting, this TRS is not terminating.

For refinement edges, we use the term for the target state on both sides of the
resulting rule. However, on the left-hand side, we label the outermost function

5 Of course, if FI = @, then we still handle cyclic objects as before and represent any
access to them by a fresh variable.
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symbol with the source state. So for the edge from F' to H, we have the term
for H on both sides of the rule, but on the left-hand side we replace fg by fg:

fr(L1(o7),1,L1(07), null) = fz(L1(o7), 1,L1(07), null)

For instance edges, we use the term for the source state on both sides of the
resulting rule. However, on the right-hand side, we label the outermost function
with the target state instead. So for the edge from I to B’, we have the term for
I on both sides of the rule, but on the right-hand side we replace f; by fg::

f[(L1(07), 2) — 'FB/(L].(O7)7 2)

For termination, it suffices to convert just the (non-trivial) SCCs of the termi-
nation graph to TRSs. If we do this for the only SCC B’,...,I',..., B’ of our
graph, and then “merge” rewrite rules that can only be applied after each other
[25], then we obtain one rule encoding the only possible way through the loop:

{:B/(l_].(|_]_(07))7 7,1) — fB/(L1(07), i1+ 1)

Here, we used the information on the edges from F’ to I’ to replace i3 by 73 + 1.
Termination of this rule is easily shown automatically by termination provers like
AProVE, although the original Java program worked on cyclic objects. However,
our approach automatically detects that the objects are not cyclic anymore if
one uses a suitable projection that only regards certain fields of the objects.

Theorem 2 (Proving Termination of Java by TRSs). If the TRSs result-
ing from the SCCs of a termination graph G are terminating, then G does not
represent any infinite computation sequence. So by Thm.[1, the original JBC pro-
gram is terminating for all concrete states ¢ where ¢ C s for some state s in G.

3 Handling Marking Algorithms on Cyclic Data

public class L2 { 00: aload_O #load x
int v; 01: getfield v #get v from x
L2 n; 04: istore_1 #store to e
static void visit (L2 x){ 05: aload_0 #load x
int e = x.v; 06: getfield v #get v from x
while (x.v == e) { 09: iload_1 #load e
X.v = e + 1; 10: if_icmpne 28 #jump if x.v != e
Xx = x.n; }}r} 13: aload_O #load x
Fig. 5. Java Program 14: iload_1 #load e
15: iconst_1 #load 1

We now regard lists with a “next”

16: iadd #add e and 1
field n where every element has 7. putfield v #store to x.v
an integer value v. The method 20: aload_o0 #load x
visit stores the value of the first 21: getfield n  #get n from x
list element. Then it iterates over 24: astore_0 #store to x

the list elements as long as they 25: goto 5
have the same value and “marks” 28: return
them by modifying their value. If Fig. 6. JBC for visit
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Fig. 7. Termination Graph for visit

all list elements had the same value initially, then the iteration either ends with
a NullPointerException (if the list is non-cyclic) or because some element is
visited for the second time (this is detected by its modified “marked” value) & we
illustrate the termination graph of visit in Sect. [3.1] and extend our approach
in order to prove termination of such marking algorithms in Sect.

3.1 Constructing the Termination Graph

When calling visit for an arbitrary (possibly cyclic) list, one reaches state A in
Fig. [[ after one loop iteration by symbolic evaluation and generalization. Now
aload 0 loads the value 07 of x on the operand stack, yielding state B.

To evaluate getfield v, we perform an instance refinement and create a
successor C' where 07 is null and a successor D where o0; is an actual instance
of L2. As in Fig. dl we copy the cyclicity annotation to o3 and allow o and o3 to
join. Furthermore, we add oy =" 03, since oy could be a cyclic one-element list.

In C, we end with a NullPointerException. Before accessing os’s fields, we
have to resolve all possible equalities. We obtain E and F' by an equality re-
finement, corresponding to the cases 02 # 03 and 0o = 03. F' needs no anno-
tations anymore, as all reachable objects are completely represented in the state.

In FE we evaluate getfield, retrieving the value i3 of the field v. Then we load
e’s value i1 on the operand stack, which yields G. To evaluate if icmpne, we
branch depending on the inequality of the top stack entries 71 and io, resulting
in H and I. We label the refinement edges with the respective integer relations.

In I, we add 1 to i1, creating i3, which is written into the field v of 0. Then,
the field n of o0y is retrieved, and the obtained reference o3 is written into x,
leading to J. As J is a renaming of A, we draw an instance edge from J to A.

6 While termination of visit can also be shown by the technique of Sect. @ which
detects whether an element is visited twice, the technique of Sect.Hlfails for analogous
marking algorithms on graphs which are easy to handle by the approach of Sect. B}
cf. Sect. [l So the techniques of Sect. [3] and @] do not subsume each other.
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The states following F' are analogous, i.e., when reaching if icmpne, we create
successors depending on whether i; = i5. In that case, we reach K, where we
have written the new value 74 = 7; + 1 into the field v of 0. Since K is also an
instance of A, this concludes the construction of the termination graph.

3.2 Proving Termination of Marking Algorithms

To prove termination of algorithms like visit, we try to find a suitable marking
property M C REFS x STATES. For every state s with heap h, we have (o, s) € M
if 0 is reachabld in s and if h(o) is an object satisfying a certain property. We add
a local variable named c); to each state which counts the number of references in
M. More precisely, for each concrete state s with “cps : 4”7 (i.e., the value of the
new variable is the reference 4), h(i) € INTS is the singleton set containing the
number of references o with (0,s) € M. For any abstract state s with “cas : ¢”
that represents some concrete state s’ (i.e., s’ C s), the interval A(7) must contain
an upper bound for the number of references o with (o,s’) € M.

In our example, we consider the property L2.v = iy, i.e., cps counts the refer-
ences to L2-objects whose field v has value ;. As the loop in visit only continues
if there is such an object, we have cp; > 0. Moreover, in each iteration, the field
v of some L2-object is set to a value i3 resp. i4 which is different from i;. Thus,
¢y decreases. We now show how to find this termination proof automatically.

To detect a suitable marking property automatically, we restrict ourselves to
properties “C1.f x14”, where C1 is a class, f a field in C1, ¢ a (possibly unknown)
integer, and > an integer relation. Then (o, s) € M iff h(o) is an object of type
C1l (or a subtype of C1) whose field f stands in relation i to the value i.

The first step is to find some integer reference ¢ that is never changed in the
SCC. In our example, we can easily infer this for i, automatically@

The second step is to find C1, £, and > such that every cycle of the SCC
contains some state where cp; > 0. We consider those states whose incoming
edge has a label “/ > ...” or “... = ¢". In our example, I’s incoming edge is
labeled with “i; = i5” and when comparing i, and is in G, i2 was the value of
02’s field v, where 05 is an L2-object. This suggests the marking property “L2.v
= 41”. Thus, cps now counts the references to L2-objects whose field v has the
value i1. So the cycle A,... , F,... A contains the state I with cp; > 0 and one
can automatically detect that A,..., F,..., A has a similar state with c;; > 0.

In the third step, we add c¢js as a new local variable to all states of the SCC.
For instance, in A to G, we add “cps : ¢” to the local variables and “i : [> 0]”
to the knowledge about the heap. The edge from G to I is labeled with “i > 0”
(this will be used in the resulting TRS), and in I we know “i : [> 0]”. It remains
to explain how to detect changes of cps. To this end, we use SMT solving.

A counter for “C1l.f >1¢” can only change when a new object of type C1 (or
a subtype) is created or when the field C1.f is modified. So whenever “new C1”

" Here, a reference o is reachable in a state s if s has a local variable or an operand
stack entry o’ such that o’ = o for some 7 € FIELDIDS".

8 Due to our single static assignment syntax, this follows from the fact that at all
instance edges, 41 is matched to i.
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(or “new C1”” for some subtype C1l’) is called, we have to consider the default
value d for the field C1.f. If the underlying SMT solver can prove that —d <4
is a tautology, then cj; can remain unchanged. Otherwise, to ensure that cps is
an upper bound for the number of objects in M, cps is incremented by 1.

If a putfield replaces the value u in C1.f by w, we have three cases:

(i) IfumiA—wriis a tautology, then ¢y may be decremented by 1.
(ii) If uxi <> w i is a tautology, then cps remains the same.
(iii) In the remaining cases, we increment cps by 1.

In our example, between I and J one writes i3 to the field v of 0. To find out
how cps changes from I to J, we create a formula containing all information
on the edges in the path up to now (i.e., we collect this information by going
backwards until we reach a state like A with more than one predecessor). This
results in 47 = 42 Aig = 41 + 1. To detect whether we are in case (i) above,
we check whether the information in the path implies u > i A —w > ¢. In our
example, the previous value u of 02.v is 71 and the new value w is i3. Any SMT
solver for integer arithmetic can easily prove that the resulting formula

i1 =12Ni3=11+1 — 11 =11 A—-ig =1

is a tautology (i.e., its negation is unsatisfiable). Thus, cps is decremented by 1
in the step from I to J. Since in I, we had “cps : 47 with “i : [> 0]”, in J we have
“epr 4" with “¢ ¢ [> 0]”. Moreover, we label the edge from I to J with the
relation “¢' =4 —1” which is used when generating a TRS from the termination
graph. Similarly, one can also easily prove that cp; decreases between F and K.
Thm. [ shows that Thm. [l still holds when states are extended by counters cjy.

Theorem 3 (Soundness of Termination Graphs with Counters for
Marking Properties). Let G be a termination graph, s1 some state in G,
c1 some concrete state with ¢y C s1, and M some marking property. If we ex-
tend all concrete states ¢ with heap h by an extra local variable “cpr : i” such
that h(i) = {|{(0,¢) € M}|} and if we extend abstract states as described above,

then any computation sequence c1,ca, ... is represented by G.

We generate TRSs from the termination graph as before. So by Thm. 2] and [3]
termination of the TRSs still implies termination of the original Java program.

Since the new counter is an extra local variable, it results in an extra argument
of the functions in the TRS. So for the cycle A, ..., E, ... A, after some “merging”
of rules, we obtain the following TRS. Here, the first rule may only be applied
under the condition i > 0. For A, ..., F,... A we obtain similar rules.

FAoeiy ) = il ) |i>0 fr(ooiy ) > fr(im1,...)
fr(yil ) = fal i)

Termination of the resulting TRS can easily be be shown automatically by stan-
dard tools from term rewriting, which proves termination of the method visit.
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4 Handling Algorithms with Definite Cyclicity
public class L3 { 00: aload_O #load this
L3 n; 01: getfield n #get n from this
void iterate() { 04: astore_1 #store to x
L3 x = this.n; 05: aload_1 #load x
while (x != this) 06: aload_0 #load this
x = x.n; }} 07: if_acmpeq 18 #jump if x == this
Fig. 8. Java Program 10: aload_1 #load x
. . 11: getfield n #get n from x
The metlrhlod. in F1g. '[8] traver- 4., ctore 1 #store x
ses a cyclic list until it reaches 15, goto 05
the start again. It only ter- 18. return

minates if by following the n

field, we reach null or the
first element again. We illustrate iterate’s termination graph in Sect. A1l and
introduce a new definite reachability annotation for such algorithms. Afterwards,

Sect. shows how to prove their termination.

4.1

Fig. 9. JBC for iterate

Constructing the Termination Graph

Fig. shows the termination graph when calling iterate with an arbitrary
list whose first element is on a cycleEIn contrast to marking algorithms like
visit in Sect. B iterate does not terminate for other forms of cyclic lists.
State A is reached after evaluating the first three instructions, where the value

05|t:01,x:02]€
01:L3(n=02) 02:L3(7)
01,020

01\/02

?
01 =" 02
n} |
02 =-3 01

07 |t:01,x:02]01,02
01:L3(n=02) 02:L3(7)
01,020

01\/02

?
01 = 02

ny |
02 528 01

T
|

07\t:01,x:02 ‘01,02
01:L3(n=02) 02:L3(7)
01,020

o1\/o2 02 (o, 01

11|t:01,x:02]| 02

01:L3(n=02) 02:L3(7)
01,020 G
01\/Jo2  02--% 01

C
07 |t:01,x:01 |01, 01 D 07 |t:01,x:04 |01, 04 I
A 01:L3(n=01) " 01:L3(?7) 04:L3(7)
L7 01,040 ?4}:" o
P n} | n}
P 40104 01=-%"04 043 01
\/%OS\t:ol,x:oﬂa T
-7 01:L3(7) 04:L3(7) o L
B 01,040 o04='o01 < 07 |t:01,x:04|01,04 7
01\/ o1 o1 {ad 04 01:L3(?7) 04:L3(7)
ik 01,040 {a} 1 {n} 1
04 ! 01\/04 01--+ 04 04--% 01
05|t:01,x:04]€
D 01:L3(n=o03) G 11]t:01,x:04 |04 K
03:L3(n=04) 04:L3(7) 01:L3(?)  04:L3(?7)
01,03,040  04="o01 01,040
{n} {n}1 {n}1
01\ /o4 04\ Joz 043 01 0104 01-3"04 043 01
T
N3
11|t:01,x:03]| 03 11]t:01,x:05]| 05
E 01:L3(n=o03) F 01:L3(?) o05:L3(n=0¢) L
_____ Jo3:L3(n=04) 04:L3(7) 06:L3(?)  01,05,060
° ?
01,03,040 04 :{0}1 06 {: o1 01\,\/05} 06\\/01
01\/os 0i\/o3 04 "> 01 01" o5 06" 01

Fig. 10. Termination Graph for iterate

9 The initial state of iterate’s termination graph is obtained automatically when
proving termination for a program where iterate is called with such lists, cf. Sect.
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09 of this IE is copied to x. In A, o1 and o are the first elements of the list,
and 0; =" 0y allows that both are the same. Furthermore, both references are
possibly cyclic and by 01 \/ 02, 02 may eventually reach o; again (i.e., 03 = 01).

Moreover, we added a new annotation oo {n,! 01 to indicate that oo definitely
reaches 01 All previous annotations =7, \/, 0, ) extend the set of concrete
states represented by an abstract state (by allowing more sharing). In contrast,
a definite reachability annotation o T1,! of with FI C FIELDIDS restricts the set
of states represented by an abstract state. Now it only represents states where
0 5 o holds for some 7 € FI*. To ensure that the FI-path from o to o is unique
(up to cycles), FI must be deterministic. This means that for any class C1, FI
contains at most one of the fields of C1 or its superclasses. Moreover, we only
use 0 45! o if h(0) € UNKNOWN for the heap h of the state.

In A, we load the values 0o and 07 of x and this on the stack. To evaluate
if acmpeq in B, we need an equality refinement w.r.t. o, =’ 0y. We create C'
for the case where 01 = 0o (which ends the program) and D for o1 # 0.

In D, we load x’s value 02 on the stack again. To access its field n in F, we
need an instance refinement for os. By 02 fal,! 01, 09’s value is not null. So there
is only one successor F' where we replace o2 by 03, pointing to an L3-object. The
annotation og EIN 01 is moved to the value of the field n, yielding o4 LN 01.

In F', the value o4 of 03’s field n is loaded on the stack and written to x. Then
we jump back to instruction 05. As G and A are at the same program position,
they are generalized to a new state H which represents both G and A. H also
illustrates how definite reachability annotations are generated automatically: In
A, this reaches x in one step, i.e., 0 — 0y. Similarly in G, this reaches x
in two steps, i.e., 01 — 04. To generalize this connection between this and x in
the new state H where “this : 0;” and “x : 04”, one generates the annotation
o1 h! o, in H. Thus, this definitely reaches x in arbitrary many steps.

From H, symbolic evaluation continues just as from A. So we reach the states
I,J, K, L (corresponding to B, D, E, F, respectively). In L, the value og of x.n
is written to x and we jump back to instruction 05. There, o5 is not referenced
anymore. However, we had o; {nl,! 05 in state L. When garbage collecting os,
we “transfer” this annotation to its n-successor og, generating oy {n,! 0g. Now
the resulting state is just a variable renaming of H, and thus, we can draw an
instance edge to H. This finishes the graph construction for iterate.

4.2 Proving Termination of Algorithms with Definite Reachability

The method iterate terminates since the sublist between x and this is short-
ened in every loop iteration. To extract this argument automatically, we proceed
similar to Sect. [l i.e., we extend the states by suitable counters. More precisely,
any state that contains a definite reachability annotation o T o' is extended
by a counter c r, representing the length of the FI-path from o to o'.

10 Tn the graph, we have shortened this to t.
1 This annotation roughly corresponds to Is(02, 01) in separation logic, cf. e.g. [A5].
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So H is extended by two counters ¢ (,;, andc ;, . Information about
01--*04 04--%"01

their value can only be inferred when we perform a refinement or when we
. FI ~ . . FI | A
transfer an annotation o ==+* 0’ to some successor 6 of o' (yielding o ==+ 6).

If a state s contains both o <2 o/ and o =7 o', then an equality refinement

o
according to o =’ o’ yields two successor states. In one of them, o and o’ are

identified and o £75! ¢ is removed. In the other successor state s’ (for o # o),
any path from o to o’ must have at least length one. Hence, if “c r , 4" in s
0--+0

and s’, then the edge from s to s’ can be labeled by “i > 0”. So in our example,
if “¢ (, :4”in I and J, then we can add “i > 0” to the edge from I to J.
04--%"01
Moreover, if s contains o F1,' o/ and one performs an instance refinement on

. . FI .
o, then in each successor state s’ of s, the annotation o ==+ ¢’ is replaced by

0 ¥151 o/ for the reference 6 with 0.f = 6 where £ € FI. Instead of © Coriy i
o

in s we now have a counter ° c R ©"” in s'. Since FI is determlmstlc the
FI-path from 6 to o’ is one step shorter than the FI-path from o to o'. Thus,
the edge from s to s is labeled by “i’ =4 —17. So if we have “c p, :4"in K
04--+"01
and KR /7 in L, then we add “' =i —1” to the edge from K to L.
6-=* 01

When a reference o’ has become unneeded in a state s’ reached by evaluation
: FI ~
from s, then we transfer annotations of the form o ==»' ¢’ to all successors 6 of

o with o’ 56 Where FI' = {f} U FT is still deterministic. This results in a new

FI’
annotation o ==»' 6 in s’. For “c . +1" in §', we know that its value is exactly

0--+0
one more than ¢ c LR i” in s and hence, we label the edge by “' =i+ 1”. In
our example, this happens between L and H. Here the annotation oq LIN o5 is
transferred to o5’s successor og when o5 is garbage collected, yielding oy {n)y! 06.-

Thm. @ adapts Thm. [Il to definite reachability annotations.

Theorem 4 (Soundness of Termination Graphs with Definite Reacha-
bility). Let G be a termination graph with definite reachability annotations, s1 a
state in G, and c1 a concrete state with c1 C s1. As in Thm. [, any computation
sequence cy, ca, . .. is represented by a path si,.. s’fﬂs%, .. 512“"’7 .. in G.

Let G' result from G by extending the states by counters for their definite
reachability annotations as above. Moreover, each concrete state c; in the compu-

tation sequence is extended to a concrete state c; by adding counters “c p ,  :1”
o0--*"0

for all annotations “o T o7 i, sjl, cee S?j. Here, the heap of c; maps i to the
singleton interval containing the length of the FI-path between the references cor-

responding to o and o' in ;. Then the computation sequence ci,ch, ... of these

extended concrete states is represented by the termination graph G'.

The generation of TRSs from the termination graph works as before. Hence by
Thm. Zland @ termination of the resulting TRSs implies that there is no infinite
computation sequence ¢}, c5, ... of extended concrete states and thus, also no
infinite computation sequence c1, co, . .. Hence, the Java program is terminating.
Moreover, Thm. [ can also be combined with Thm. [3] i.e., the states may also
contain counters for marking properties as in Thm. Bl
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As in Sect. Bl the new counters result in extra argument of the function
symbols in the TRS. In our example, we obtain the following TRS from the only
SCC I,...,L,...,I (after “merging” some rules). Termination of this TRS is
easy to prove automatically, which implies termination of iterate.

f[(...,i,...)—>fK(...,i,...)|i>0 fK(...,i,...)—)fL(...,i—l,...)
T UUR U B AN T

5 Experiments and Conclusion

We extended our earlier work [6I7U825] on termination of Java to handle methods
whose termination depends on cyclic data. We implemented our contributions
in the tool AProVE [19] (using the SMT Solver Z3 [15]) and evaluated it on a
collection of 387 JBC programs. It consists of allld 268 Java programs of the
Termination Problem Data Base (used in the International Termination Com-
petition); the examples length, visit, iterate from this paper a variant of
visit on graphs 3 well-known challenge problems from [I0]; 57 (non-termina-
ting) examples from [8]; and all 60 methods of java.util.LinkedList and
java.util.HashMap from Oracle’s standard Java distribution[[§ Apart from list
algorithms, the collection also contains many programs on integers, arrays, trees,
or graphs. Below, we compare the new version of AProVE with AProVE '11 (im-
plementing [6I7I825], i.e., without support for cyclic data), and with the other
available termination tools for Java, viz. Julia [30] and COSTA [2]. As in the
Termination Competition, we allowed a runtime of 60 seconds for each example.
Since the tools are tuned to succeed quickly, the results hardly change when in-
creasing the time-out. “Yes” resp. “No” states
how often termination was proved resp. dis- YN FT R
proveg, ‘iiﬁ}l”t Htldl(iiltes failure in 1eTs tlhznt 60 AProVE 26781 1128 95
Time-ont, and “R° gives the average Runtime APOVE 11 22581 4556114
in second; for each example. Julia 19122174 0 4.7
Our experiments show that AProVE is sub- COSTA 160 018146 11.0
stantially more powerful than all other tools. In particular, AProVE suc-
ceeds for all problems of [1() and for 85 % of the examples from
LinkedList and HashMap. There, AProVE '11, Julia, resp. COSTA can
only handle 38 %, 53 %, resp. 48 %. See [I] to access AProVE via a
2 For reasons of space, we only depicted the argument for the counter o4 (638 o1.
13 We removed one controversial example whose termination depends on overflows.
4 Qur approach automatically infers with which input length, visit, and iterate
are called, i.e., we automatically obtain the termination graphs in Fig. @ [7 and [0
5 Here, the technique of Sect. Bl succeeds and the one of Sect. H fails, cf. Footnote
6 Following the regulations in the Termination Competition, we excluded 7 methods
from LinkedList and HashMap, as they use native methods or string manipulation.
7 We are not aware of any other tool that proves termination of the algorithm for
in-place reversal of pan-handle lists from [10] fully automatically.
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web interface, for the examples and details on the experiments, and for
[67I8I9I25)].
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Abstract. Proving programs terminating is a fundamental computer
science challenge. Recent research has produced powerful tools that can
check a wide range of programs for termination. The analog for prob-
abilistic programs, namely termination with probability one (“almost-
sure termination”), is an equally important property for randomized
algorithms and probabilistic protocols. We suggest a novel algorithm
for proving almost-sure termination of probabilistic programs. Our algo-
rithm exploits the power of state-of-the-art model checkers and termi-
nation provers for nonprobabilistic programs: it calls such tools within
a refinement loop and thereby iteratively constructs a “terminating pat-
tern”, which is a set of terminating runs with probability one. We report
on various case studies illustrating the effectiveness of our algorithm.
As a further application, our algorithm can improve lower bounds on
reachability probabilities.

1 Introduction

Proving program termination is a fundamental challenge of computer science.
Termination is expressible in temporal logic, and so checkable in principle by
LTL or CTL model-checkers. However, recent research has shown that special
purpose tools, like Terminator and ARMC [I8/4], and techniques like transition
invariants, can be dramatically more efficient [I7/20/19].

The analog of termination for probabilistic programs is termination with prob-
ability one, or almost sure termination, abbreviated here to a.s.-termination.
Since a.s.-termination is as important for randomized algorithms and probabilis-
tic protocols as termination is for regular programs, the question arises whether
the very strong advances in automatic termination proving termination can be
exploited in the probabilistic case. However, it is not difficult to see that, with-
out further restricting the question, the answer is negative. The reason is that
termination is a purely topological property of the transition system associated
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to the program, namely absence of cycles, but a.s.-termination is not. Consider
for instance the program

k = 1; while (0 < k) { if coin(p) k++ else k-- }

where coin(p) yields 1 with probability 0 < p < 1, and 0 with probability
(1 — p). The program has the same executions for all values of p (only their
probabilities change), but it only terminates a.s. for p < 1/2. This shows that
proving a.s.-termination requires arithmetic reasoning not offered by termination
provers.

The situation changes if we restrict our attention to weakly finite probabilis-
tic programs. Loosely speaking, a program is weakly finite if the set of states
reachable from any initial state is finite. Notice that the state space may be infi-
nite, because the set of initial states may be infinite. Weakly finite programs are
a large class, which in particular contains parameterized probabilistic programs,
i.e., programs with parameters that can be initialized to arbitrary large values,
but are finite-state for every valuation of the parameters. One can show that a.s.-
termination is a topological property for weakly finite programs. If the program
does not contain nondeterministic choices, then it terminates a.s. iff for every
reachable state s there is a path leading from s to a terminating state, which cor-
responds to the CTL property AG EF end. (In the nondeterministic case there
is also a corresponding topological property.) As in the nonprobabilistic case,
generic infinite-state model checkers perform poorly for these properties because
of the quantifier alternation AG EF. In particular, CEGAR approaches usually
fail, because, crudely speaking, they tend to unroll loops, which is essentially
useless for proving termination.

In [1], Arons, Pnueli and Zuck present a different and very elegant approach
that reduces a.s.-termination of a probabilistic program to termination of a non-
deterministic program obtained with the help of a Planner. A Planner occasion-
ally and infinitely often determines the outcome of the next k£ random choices
for some fixed k, while the other random choices are performed nondeterminis-
tically. The planner approach is based on the following simple proof rule, with
P a probabilistic program and R a measurable set of runs of P:

PriR)| =1 Every r € R is terminating
P terminates a.s.

In this paper we revisit and generalize this approach, with the goal of profiting
from recent advances on termination tools and techniques not available when []
was published. While we also partially fix the outcome of random choices, we
do so more flexibly with the help of patterns. A first advantage of patterns is
that we are able to obtain a completeness result for weakly finite programs,
which is not the case for Planners. Further, in contrast to [I], we show how to
automatically derive patterns for finite-state and weakly finite programs using
an adapted version of the CEGAR approach. Finally, we apply our technique to
improve CEGAR-algorithms for quantitative probabilistic verification [ZUSITOI5].

In the rest of this introduction we explain our approach by means of examples.
First we discuss finite-state programs and then the weakly finite case.
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Finite-state programs. Consider the finite-state program FW shown on the left of
Fig.[l It is an abstraction of part of the FireWire protocol [12]. Loosely speaking,

cl =7; c2 = 2;

k =0;
k = 0; while (k < 100) {
while (k < 100) { old_x = x;
old_x = x; if (c1 > 0) { x = nondet(); ci1-- }
x = coin(p); elseif (c2 =2 ) { x=0; c2-- }
if (x !'= old_x) k++ elseif (c2=1) {x=1; c2-- }
3 else /* c1 =0 and c2 =0 */ { cl =7; c2 =21}

if (x != old_x) k++
}

Fig. 1. The programs FW and FW’

FW terminates a.s. because if we keep tossing a coin then with probability 1 we
observe 100 times two consecutive tosses with the opposite outcome (we even
see 100 times the outcome 01). More formally, let C' = {0, 1}, and let us identify
a run of FW (i.e., a terminating or infinite execution) with the sequence of 0’s
and 1’s corresponding to the results of the coin tosses carried out during it.
For instance, (01)°! and (001100)%° are terminating runs of FW, and 0% is a
nonterminating run. FW terminates because the runs that are prefixes of (C*01)%
have probability 1, and all of them terminate. But it is easy to see that these
are also the runs of the nondeterministic program FW’ on the right of Fig. [
where ¢ = 7 nondeterministically sets ¢ to an arbitrary nonnegative integer.
Since termination of FW’ can easily be proved with the help of ARMC, we have
proved a.s.-termination of FW.

We present an automatic procedure leading from FW to FW’ based on the
notion of patterns. A pattern is a subset of C“ of the form C*w;C*wsC*ws . . .,
where wy,ws,... € C*. We call a pattern simple if it is of the form (C*w)¥.
A pattern @ is terminating (for a probabilistic program P) if all runs of P that
conform to @, i.e., that are prefixes of words of @, terminate. In the paper we
prove the following theorems:

(1) For every pattern @ and program P, the @-conforming runs of P have prob-
ability 1.
(2) Every finite-state program has a simple terminating pattern.

By these results, we can show that FW terminates a.s. by finding a simple termi-
nating pattern &, taking for P’ a nondeterministic program whose runs are the
@-conforming runs of P, and proving that P’ terminates. In the paper we show
how to automatically find @ with the help of a finite-state model-checker (in our
experiments we use SPIN). We sketch the procedure using FW as example. First
we check if some run of FW conforms to @&y = C¥, i.e., if some run of FW is infi-
nite, and get v; = 0“ as answer. Using an algorithm provided in the paper, we
compute a spoiler wy of v1: a finite word that is not an infix of v1. The algorithm
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yields wy = 1. We now check if some run of FW conforms to &; = (C*w;)*, and
get vo = 1¥ as counterexample, and construct a spoiler wy of both vy and vs:
a finite word that is an infix of neither v$ nor v§. We get we = 01, and check
if some run of FW conforms to @3 = (C*wz)¥. The checker finds no counterex-
amples, and so @ is terminating. In the paper we prove that the procedure is
complete, i.e., produces a terminating pattern for any finite-state program that
terminates a.s.

Weakly finite programs. We now address the main goal of the paper: proving
a.s.-termination for weakly finite programs. Unfortunately, Proposition (2) no
longer holds. Consider the random-walk program RW on the left of Fig. Bl where
N is an input variable. RW terminates a.s., but we can easily show (by setting N

K=2; cl=7; c2=Kj;
k=1;
while (0 < k < N) {
if (c1 > 0) {
if nondet() k++ else k--; cl-—-

k=1;
while (0 <k < N) {
if coin(p) k++ else k--

} }

elseif (c2 > 0) { k——; c2-- }
else { K++; c1 = 7; c2 =K }
}

Fig. 2. The programs RW and RW’

to a large enough value) that no simple pattern is terminating. However, there is
a terminating pattern, namely ¢ = C*00C*000C*0000...: every @-conforming
run terminates, whatever value N is set to. Since, by result (1), the #-conforming
runs have probability 1 (intuitively, when tossing a coin we will eventually see
longer and longer chains of 0’s), RW terminates a.s. In the paper we show that
this is not a coincidence by proving the following completeness result:

(3) Every weakly finite program has a (not necessarily simple) terminating pat-
tern.

In fact, we even prove the existence of a universal terminating pattern, i.e., a
single pattern @, such that for all weakly finite, a.s.-terminating probabilistic
programs all @,-conforming runs terminate. This gives a universal reduction of
a.s.-termination to termination, but one that is not very useful in practice. In
particular, since the universal pattern is universal, it is not tailored towards
making the proof of any particular program simple. For this reason we propose
a technique that reuses the procedure for finite-state programs, and extends it
with an extrapolation step in order to produce a candidate for a terminating
pattern. We sketch the procedure using RW as example. Let RW; be the program
RW with IV = 4. Since every RW; is finite-state, we can find terminating patterns
&, = (C*u;)¥ for a finite set of values of ¢, say for i = 1,2,3,4,5. We obtain
up = ug = €, uz = 00, ug = 000, us = 000. We prove in the paper that &@; is
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not only terminating for RW;, but also for every RW; with j < 4. This suggests to
extrapolate and take the pattern @ = C*00C*000C*0000... as a candidate for
a terminating pattern for RW. We automatically construct the nondeterministic
program RW’ on the right of Fig. Bl Again, ARMC proves that RW’ terminates,
and so that RW terminates a.s.

Related work. A.s.-termination is highly desirable for protocols if termination
within a fixed number of steps is not feasible. For instance, [3] considers the
problem of reaching consensus within a set of interconnected processes, some of
which may be faulty or even malicious. They succeed in designing a probabilistic
protocol to reach consensus a.s., although it is known that no deterministic al-
gorithm terminates within a bounded number of steps. A well-known approach
for proving a.s.-termination are Pnueli et al.’s notions of extreme fairness and
a-fairness [I5/16]. These proof methods, although complete for finite-state sys-
tems, are hard to automatize and require a lot of knowledge about the con-
sidered program. The same applies for the approach of Mclver et al. in [11]
that offers proof rules for probabilistic loops in pGCL, an extension of Dijk-
stra’s guarded language. The paper [I3] discusses probabilistic termination in
an abstraction-interpretation framework. It focuses on programs with a (single)
loop and proposes a method of proving that the probability of taking the loop k
times decreases exponentially with k. This implies a.s.-termination. In contrast
to our work there is no tool support in [13].

Organization of the paper. Sections 2 contains preliminaries and the syntax and
semantics of our model of probabilistic programs. Section 3 proves soundness
and completeness results for termination of weakly finite programs. Section 4
describes the iterative algorithm for generating patterns. Section 5 discusses
case studies. Section 6 concludes. For space reasons, a full discussion of nonde-
terministic programs and some proofs are omitted. They can be found in the full
version of the paper in [0].

2 Preliminaries

For a finite nonempty set X, we denote by X* and X“ the sets of finite and
infinite words over X, and set XJ*° = X* U X¥.

Markov Decision Processes and Markov Chains. A Markov Decision Pro-
cess (MDP) is a tuple M = (Qa,Qp,Init, —,Laba, Labp), where Q4 and Qp
are countable or finite sets of action nodes and probabilistic nodes, Init C QAUQ p
is a set of initial nodes, and Labs and Labp are disjoint, finite sets of action
labels and probabilistic labels. Finally, the relation — is equal to —4 U —p,
where -4 C Qa X Labas x (Qa U Qp) is a set of action transitions, and
—p CQp x (0,1] x Labp x @ is a set of probabilistic transitions satisfying the
following conditions: (a) if (¢,p,,q¢") and (¢,p’,1, ¢’) are probabilistic transitions,
then p = p’; (b) the probabilities of the outgoing transitions of a probabilistic
node add up to 1. We also require that every node of Q4 has at least one suc-
cessor in —4. If @4 = 0 and Init = {gr} then we call M a Markov chain and
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Fig. 3. Example MDP

write M = (Qp,qr,—,Labp). We set Q@ = Q4 UQp and Lab = Laby U Labp.
We write ¢ KN q for (q,1,q') € =4, and ¢ Le, q for (¢,p,1,¢') € —p (we skip p
if it is irrelevant). For w = lily...1, € Lab®, we write ¢ — ¢ if there exists a
path ¢ = qo =5 g1 = ... 2 ¢, = ¢'.

Example 1. Figure Bl shows an example of a Markov Decision Process M =
({¢a},{q1, g2, g3}, Init, —,Lab 4, Labp), with action labels ag,a;, probabilistic
labels 7, cg, c1, and a single initial node .

Runs, Paths, Probability Measures, Traces. A run of an MDP M is an
infinite word r = golog1l1 ... € (QLab)“ such that for all ¢ > 0 either g; LN Qi1

for some p € (0,1] or ¢; L, Gi+1- We call the run initial if go € Init. We denote
the set of runs starting at a node ¢ by Runs™ (¢), and the set of all runs starting
at initial nodes by Runs(M).

A path is a proper prefix of a run. We denote by Paths™ (¢) the set of all paths

starting at g. We often write r = qo Lo, Q1 L, Q2 L, . instead of r = qoloqi - ..
for both runs and paths, and skip the superscripts of Runs(+) and Paths(+) if the
context is clear.

We take the usual, cylinder-based definition of a probability measure Pry, on
the set of runs of a Markov chain M starting at a state gy € Init (see e.g. [2] or
[6]) for details). For general MDPs, we define a probability measure Pr(f0 with
respect to a strategy S. We may drop the subscript if the initial state is irrelevant
or understood.

The trace of a run r = gy ~% ¢ —% ... € Runs(M), denoted by 7, is the
infinite sequence aga ... € Lab of labels. Given X C Lab, we define 7|5 as the
projection of 7 onto Y. Observe that 7|y can be finite.

2.1 Probabilistic Programs

We model probabilistic programs as flowgraphs whose transitions are labeled
with commands. Since our model is standard and very similar to [I0], we give
an informal but hopefully precise enough definition. Let Var be a set of variable
names over the integers (the variable domain could be easily extended), and let
Val be the set of possible valuations of Var, also called configurations. The set
of commands contains

— conditional statements, i.e., boolean combinations of expressions e < ¢,
where e, €’ are arithmetic expressions (e.g, z +y <5 Ay > 3);
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— deterministic assignments = := e and nondeterministic assignments x :=
nondet() that nondeterministically assign to « the value 0 or 1;

— probabilistic assignments x := coin(p) that assign to x the value 0 or 1 with
probability p or (1 — p), respectively.

A probabilistic program P is a tuple (£, I, <, label, L, T), where L is a finite set
of control flow locations, I C Val is a set of initial configurations, — C L x L is
the flow relation (as usual we write [ — [’ for (I,1’) € <, and call the elements
of — edges), label is a function that assigns a command to each edge, L is
the start location, and T is the end location. The following standard conditions
must hold: (¢) the only outgoing edge of T is T < T; (it) either all or none
of the outgoing edges of a location are labeled by conditional statements; if all,
then every configuration satisfies the condition of exactly one outgoing edge; if
none, then the location has exactly one outgoing edge; (ii7) if an outgoing edge
of a location is labeled by an assignment, then it is the only outgoing edge of
this location. A location is nondeterministic if it has an outgoing edge labeled
by a nondeterministic assignment, otherwise it is deterministic. Deterministic
locations can be probabilistic or nonprobabilistic. A program is deterministic if
all its locations are deterministic.

Program Semantics. The semantics of a probabilistic program is an MDP.
Let P be a probabilistic program (L,I,<,label, L, T), and let Lp, L4 denote
the sets of deterministic and nondeterministic locations of P. The semantics of
P is the MDP Mp := (Q4,Qp, Init,—,Laby,Labp), where Q4 = L4 x Val is
the set of nondeterministic nodes, @p = ((£L\ L4) x Val) U{T} is the set of
deterministic nodes, Init = { L} x I is the set of initial nodes, Labas = {ao, a1}
is the set of action labels, Labp = {7,0, 1} is the set of probabilistic labels, and
the relation — is defined as follows: For every node v = ([, o) of Mp and every
edge l < I’ of P

— if label(l,l') = (x := coin(p)), then v Op, (', olz — 0]) and v 1Li—p
(', olz = 1]);
— if label( Y = (z := nondet()), then v 2% (I/,ofz + 0]) and v

(', olz = 1]);

— if label(l,1") = (x := e), then v SN (I',olx — e(0)]), where o[z — e(0)]
denotes the configuration obtained from o by updating the value of z to the
expression e evaluated under o;

— if label(l, ") = ¢ for a conditional ¢ satisfying o, then v RN (', o).

For each node v = (T,0),v = Tand T =5 T. O
A program P = (£, I,<,label, L, T) is called

— a.s.-terminating if Pr?[{r € Runs(Mp) | r reaches T}| =1 for every strat-
egy S and every initial state ¢ of Mp;

— finite if finitely many nodes are reachable from the initial nodes of M p;

— weakly finite if Py is finite for all b € I, where P, is obtained from P by
fixing b as the only initial node.
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Assumption. We assume in the following that programs to be analyzed are de-
terministic. We consider nondeterministic programs only in Section 311

3 Patterns

We introduce the notion of patterns for probabilistic programs. A pattern re-
stricts a probabilistic program by imposing particular sequences of coin toss
outcomes on the program runs. For the rest of the section we fix a prob-
abilistic program P = (L, I, label, L, T) and its associated MDP Mp =
(QA, Qp,Init,— Lab4, Labp).

We write C' := {0,1} for the set of coin toss outcomes in the following. A
pattern is a subset of C* of the form C*w; C*woC*ws . . ., where wy, wa, ... € X*.
We say the sequence wi,ws, ... induces the pattern. Fixing an enumeration
x1,Ta,...of C* we call the pattern induced by 1, xs, ... the universal pattern.
For a pattern @, a run r € Runs(M p) is @-conforming if there is v € @ such that
T|c is a prefix of v. We call a pattern @ terminating (for P) if all @-conforming
runs terminate, i.e., reach T. We show the following theorem:

Theorem 2.

(1) Let @ be a pattern. The set of -conforming runs has probability 1. In par-
ticular, if © is terminating, then P is a.s.-terminating.

(2) If P is a.s.-terminating and weakly finite, then the universal pattern is ter-
minating for P.

(3) If P is a.s.-terminating and finite with n < oo reachable nodes in Mp, then
there exists a word w € C* with |w| € O(n?) such that C*wC* is terminating
for P.

Part (1) of Theorem [2is the basis for the pattern approach. It allows to ignore
runs that are not ¢-conforming, because they have probability 0. Part (2) states
that the pattern approach is “complete” for a.s.-termination and weakly finite
programs: For any a.s.-terminating and weakly finite program there is a termi-
nating pattern; moreover the universal pattern suffices. Part (3) refines part (2)
for finite programs: there is a short word such that C*wC* is terminating.

Proof (of Theorem[3).

Part (1) (Sketch): We can show that the set of runs = that visit infinitely many
probabilistic nodes and do not have the form C*w;C% is a null set. This result
can then easily be generalized to C*wi;C*ws ...C*w,C*. All runs conforming
@ can then be formed as a countable intersection of such run sets.

Part (2): Let 01, 02,... be a (countable or infinite) enumeration of the nodes
in I. With Part (3) we obtain for each ¢ > 1 a word w; such that C*w;C¥ is
a terminating pattern for P, if the only starting node considered is ;. By its
definition, the universal pattern is a subset of C*w;C% for every ¢ > 1, so it is
also terminating.

Part (3) (Sketch): Since P is a.s.-terminating, for every node ¢ there exists a
coin toss sequence wy, |wy| < n, with the following property: a run that passes
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r=y?

A

L l l U
z=nondet() = y:i=coin(p) = x#y? 9

Fig. 4. Nondeterministic a.s.-terminating program without terminating pattern

through ¢ and afterwards visits exactly the sequence w, of coin toss outcomes is
terminating. We build a sequence w such that for every state ¢ every run that
passes through ¢ and then visits exactly the sequence w is terminating. We start
with w = w, for an arbitrary ¢ # T. Then we pick a ¢’ # T such that for ¢" # ¢,
runs starting in ¢’ and visiting exactly the probabilistic label sequence w lead
to ¢'. We set w = wqwg; after visiting w, all runs starting from ¢ and ¢’ end
in T. We iterate this until no more ¢’ can be found. We stop after at most n
steps and obtain a sequence w of length < n?2. O

3.1 Nondeterministic Programs

For nondeterministic a.s.-terminating programs, there might not exist a termi-
nating pattern, even if the program is finite. Figure [d] shows an example. Let @
be a pattern and cicacs ... € @. The run

Qcg

(L,00) =5 (11, 01) 2 (I, 01) D (L,01) =25 (I, 02) 25 (lo, 08) D> (L, 05) —2

in Mp is @-conforming but nonterminating.

We show that the concept of patterns can be suitably generalized to nonde-
terministic programs, recovering a close analog of Theorem 2l Assume that the
program is in a normal form where nondeterministic and probabilistic locations
strictly alternate. This is easily achieved by adding dummy assignments. Writing
A :={ap,a1}, every run r € Mp satisfies r|auc € (AC)™>.

A response of length n encodes a mapping A™ — C™ in an “interleaved” fash-
ion, e.g., {agl,a10} is a response of length one, {ag0agl, ag0ai1, a;0apl, a10a11}
is a response of length two. A response pattern is a subset of (AC)* of the form
(AC)*R1(AC)*Ro(AC)* ..., where Ry, Ra,... are responses. If we now define
the notions of universal and terminating response patterns analogously to the
deterministic case, a theorem very much like Theorem [2] can be shown. For in-
stance, let & = (AC)*{aopl,a10}(AC)*. Then every @-conforming run of the
program in Fig. @ has the form

(L,U()}—>...—>qa—t>q’i>q”—>'l'—>... for an i € {0,1}.
This implies that the program is a.s.-terminating. See [6] for the details.
4 Owur Algorithm

In this section we aim at a procedure that, given a weakly finite program P,
proves that P is a.s.-terminating by computing a terminating pattern. This
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approach is justified by Theorem [2 (1). In fact, the proof of Theorem [ (3)
constructs, for any finite a.s.-terminating program, a terminating pattern. How-
ever, the construction operates on the Markov chain M p, which is expensive
to compute. To avoid this, we would like to devise a procedure which operates
on P, utilizing (nonprobabilistic) verification tools, such as model checkers and
termination provers.

Theorem [ (2) guarantees that, for any weakly finite a.s.-terminating pro-
gram, the universal pattern is terminating. This suggests the following method
for proving a.s.-termination of P: (i) replace in P all probabilistic assignments by
nondeterministic ones and instrument the program so that all its runs are con-
forming to the universal pattern (this can be done as we describe in Section [l
below); then (ii) check the resulting program for termination with a termina-
tion checker such as ARMC [18]. Although this approach is sound and complete
(modulo the strength of the termination checker), it turns out to be useless in
practice. This is because the crucial loop invariants are extremely hard to catch
for termination checkers. Already the instrumentation that produces the enu-
meration of C* requires a nontrivial procedure (such as a binary counter) whose
loops are difficult to analyze.

Therefore we devise in the following another algorithm which tries to com-
pute a terminating pattern C*wyC*ws ... It operates on P and is “refinement”-
based. Our algorithm uses a “pattern checker” subroutine which takes a sequence
w1, Wa, . . ., and checks (or attempts to check) whether the induced pattern is ter-
minating. If it is not, the pattern checker may return a lasso as counterexample.
Formally, a lasso is a sequence

(l1,01) = (l2,02) = ... = (lmyom) = oo = (In,00)  with (L, 00) = (I, om)

and (l1,01) € Init. We call the sequence (I, 0m) = ... = (I, 0p) the lasso loop
of the lasso. Note that a lasso naturally induces a run in Runs(Mp). If P is
finite, pattern checkers can be made complete, i.e., they either prove the pattern
terminating or return a lasso.

We present our pattern-finding algorithms for finite-state and weakly finite
programs. In Section 1] we describe how pattern-finding and pattern-checking
can be implemented using existing verification tools.

Finite Programs. First we assume that the given program P is finite. The
algorithm may take a base word so € C* as input, which is set to so = € by
default. Then it runs the pattern checker on C*sqC*sq ... If the pattern checker
shows the pattern terminating, then, by Theorem [ (1), P is a.s.-terminating.
Otherwise the pattern checker provides a lasso (l1,01) = ... = (ln,0m) —

. = {ln,0n). Our algorithm extracts from the lasso loop a word u; € C*,
which indicates a sequence of outcomes of the coin tosses in the lasso loop. If uy =
€, then the pattern checker has found a nonterminating run with only finitely
many coin tosses, hence P is not a.s.-terminating. Otherwise (i.e., u3 # €), let
s1 € C* be a shortest word such that sy is a prefix of s; and s; is not an infix
of u¥. Our algorithm runs the pattern checker on C*s1C*s; ... If the pattern
checker shows the pattern terminating, then P is a.s.-terminating. Otherwise
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the pattern checker provides another lasso, from which our algorithm extracts
a word us € C* similarly as before. If uy = €, then P is not a.s.-terminating.
Otherwise, let so € C* be a shortest word such that sg is a prefix of so and so
is neither an infix of u{ nor an infix of u§. Observe that the word s; is an infix
of u§ by construction, hence s3 # s1. Our algorithm runs the pattern checker
on C*s9C*ss ... and continues similarly. More precisely, in the i — th iteration
it chooses s; as a shortest word such that s; is a prefix of s;_1 and s; is not an
infix of any of the words uf, ..., ¥, thus eliminating all lassos so far discovered.
The algorithm is complete for finite and a.s.-terminating programs:

Proposition 3. Let P be finite and a.s.-terminating. Then the algorithm finds
a shortest word w such that the pattern C*wC*w ... is terminating, thus proving
termination of P.

In each iteration the algorithm picks a word s; that destroys all previously
discovered lasso loops. If the loops are small, then the word is short:

Proposition 4. We have |s;| <|so| + 1+ logy (Ju1] + -+ + |uj]).
The proofs for both propositions can be found in [6].

Weakly Finite Programs. Let us now assume that P is a.s.-terminating
and weakly finite. We modify our algorithm. Let b1, bs,... be an enumeration
of the set I of initial nodes. Our algorithm first fixes b; as the only initial
node. This leads to a finite program, so we can run the previously described
algorithm, yielding a word w; such that C*w;C*wy ... is terminating for the
initial node b;. Next our algorithm fixes by as the only initial node, and runs the
previously described algorithm taking w; as base word. As before, this establishes
a terminating pattern C*wsC*ws ... By construction of ws, the word w; is a
prefix of ws, so the pattern C*w;C*wyC*wsy ... is terminating for the initial
nodes {b1,b2}. Continuing in this way we obtain a sequence wi,ws,... such
that C*w;C*ws . .. is terminating. Our algorithm may not terminate, because it
may keep computing wi, wa, . ... However, we will illustrate that it is promising
to compute the first few w; and then guess an expression for general w;. For
instance if w; = 0 and wy = 00, then one may guess w; = 0'. We encode
the guessed sequence wi,ws, ... in a finite way and pass the obtained pattern
C*w1C*ws . .. to a pattern checker, which may show the pattern terminating,
establishing a.s.-termination of the weakly finite program P.

4.1 Implementing Pattern Checkers

Finite Programs. We describe how to build a pattern checker for finite pro-
grams P and patterns of the form C*wC*w... We employ a model checker
for finite-state nonprobabilistic programs that can verify temporal properties:
Given as input a finite program and a Biichi automaton A, the model checker
returns a lasso if there is a program run accepted by A (such runs are called
“counterexamples” in classical terminology). Otherwise it states that there is no
counterexample. For our case studies, we use the SPIN tool [9].
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true c=2 c=2 c=2

Fig. 5. Biichi automaton A(w), for w = cic2...cn € C*. Note that the number of
states in A(w) grows linearly in |w|.

Given a finite probabilistic program P and a pattern ® = C*wC*w . . ., we first
transform P into a nonprobabilistic program P’ as follows. We introduce two
fresh variables ¢ and term, with ranges {0, 1,2} and {0, 1}, respectively, and add
assignments term = 0 and term = 1 at the beginning and end of the program,
respectively. Then every location [ of P with label(l,1") = x = coin(p) for a label
I’ is replaced by a nondeterministic choice and an if-statement as follows:

x = nondet();

if (x=0) {c=0;c=2%}else{c=1; c=213% end if;
In this way we can distinguish coin toss outcomes in a program trace by
inspecting the assignments to ¢. Now we perform two checks on the non-
probabilistic program P’: First, we use SPIN to translate the LTL formula
G —term A FG(c ¢ {0,1}) into a Biichi automaton and check whether P’ has a
run that satisfies this formula. If there is indeed a lasso, our pattern checker re-
ports it. Observe that by the construction of the LTL formula the lasso encodes
a nonterminating run in P that eventually stops visiting probabilistic locations.
So the lasso loop does not contain any coin tosses (and our algorithm will later
correctly report that P is not a.s.-terminating). Otherwise, i.e., if no run satisfies
the formula, we know that all nonterminating runs involve infinitely many coin
tosses. Then we perform a second query: We construct a Biichi automaton A(w)
that represents the set of infinite @-conforming runs, see Fig. Bl We use SPIN
to check whether P’ has run that is accepted by A(w). If yes, then there is an
infinite @-conforming run, and our pattern checker reports the lasso. Otherwise,
it reports that @ is a terminating pattern.

Weakly Finite Programs. Recall that for weakly finite programs, the pat-
tern checker needs to handle patterns of a more general form, namely & =
C*w1C*ws ... Even simple patterns like C*0C*00C*000... cannot be repre-
sented by a finite Blichi automaton. Therefore we need a more involved instru-
mentation of the program to restrict its runs to @-conforming ones. Now our
pattern checker employs a termination checker for infinite-state programs. For
our experiments we use ARMC.

Given a weakly finite program P and a pattern @ = C*w,C*ws . . ., we trans-
form P into a nonprobabilistic program P?® as follows. We will use a command
x = 7, which nondeterministically assigns a nonnegative integer to x. Further
we assume that we can access the k-th letter of the i-th element of (w;);en
by wli][k], and |w;| by length(wl[i]). We add fresh variables ctr, next and pos,
where ctr is initialized nondeterministically with any nonnegative integer and
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x = nondet();

if (ctr <= 0)
if (pos > length(w[next])) { ctr = ?; pos = 1; next = next+l }
else { x = w[next] [pos]; pos = pos+1 }

else ctr = ctr-1

Fig. 6. Code transformation for coin tosses in weakly finite programs

next and pos are both initialized with 1. If a run r is @-conforming, 7|c is a
prefix of viwyvowsvzws ..., with v; € C*. The variable ctr is used to “guess”
the length of the words v;; the individual letters in v; are irrelevant. We replace
every command ¢ = coin(p) by the code sequence given in Fig.

The runs in the resulting program P? correspond exactly to the #-conforming
runs in P. Then P? is given to the termination checker. If it proves termination,
we report “@ is a terminating pattern for P”. Otherwise, the tool might either
return a lasso, which our pattern checker reports, or give up on P?, in which
case our pattern checker also has to give up.

In our experiments, a weakly finite program typically has an uninitialized in-
teger variable N whose value is nondeterministically fixed in the beginning. The
pattern C*w,;C* ... C*wynC¥ is then often terminating, which makes next < NV
an invariant in P?. The termination checker ARMC may benefit from this in-
variant, but may not be able to find it automatically (for reasons unknown to the
authors). We therefore enhanced ARMC to “help itself” by adding the invariant
next < N to the program if ARMC’s reachability mode can verify the invariant.

5 Experimental Evaluation

We apply our methods to several parameterized programs taken from the liter-
ature

— firewire: Fragment of FireWire’s symmetry-breaking protocol, adapted
from [12] (a simpler version was used in the introduction). Roughly speaking,
the number 100 of Fig. [lis replaced by a parameter N.

— randomwalk: A slightly different version of the finite-range, one-dimensional
random walk used as second example in the introduction.

— herman: An abstraction of Herman’s randomized algorithm for leader elec-
tion used in [I4]. Tt can be seen as a more complicated finite random walk,
with IV as the walk’s length.

— zeroconf: A model of the Zeroconf protocol taken from [I0]. The protocol
assigns IP addresses in a network. The parameter N is the number of probes
sent after choosing an IP address to check whether it is already in use.

— brp: A model adapted from [I0] that models the well-known bounded re-
transmission protocol. The original version can be proven a.s.-terminating
with the trivial pattern C%; hence we study an “unbounded” version, where
arbitrarily many retransmissions are allowed. The parameter N is the length
of the message that the sender must transmit to the receiver.

! The sources can be found at http://www.model.in.tum.de/~gaiser/cav2012.html
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Name #loc Pattern words for Time  i-th word of Time
N=1,2,3,4 (SPIN) guessed pattern ~ (ARMC)
firewire 19 010 010 010 010 17 sec 010 1 min 36 sec
randomwalk 16 € 0? 0® 0* 23 sec 0 1 min 22 sec
herman 36 010 0(10)% 0(10)® 0(10)* 47 sec 0(10)° 7 min 43 sec
zeroconf 39 0* o 0° 0% 20 sec 0i+2 26 min 16 sec
brp 57 00 00 00 00 19 sec 00 45 min 14 sec

Fig. 7. Constructed patterns of the case studies and runtimes

Proving a.s.-termination. We prove a.s.-termination of the examples using
SPIN [9] to find patterns of finite-state instances, and ARMC [I§] to prove
termination of the nondeterministic programs derived from the guessed pattern.
All experiments were performed on an Intel© i7 machine with 8GB RAM. The
results are shown in Fig. [l The first two columns give the name of the example
and its size. The next two columns show the words w1, . .., w4 of the terminating
patterns C*w;C%, ..., C*wsC¥ computed for N = 1,2,3,4 (see Theorem [2(3)
and Section 1)), and SPIN’s runtime. The last two columns give word w; in the
guessed pattern C*w;C*weC*ws ... (see Section L)), and ARMC’s runtime.
For instance, the entry 0(10)% for herman indicates that the guessed pattern is
C*010C*01010C*0101010.... ..

We derive two conclusions. First, a.s.-termination is proved by very simple
patterns: the general shape is easily guessed from patterns for N = 1,2,3,4,
and the need for human ingenuity is virtually reduced to zero. This speaks in
favor of the Planner technique of [I] and our extension to patterns, compared to
other approaches using fairness and Hoare calculus [I6/T1]. Second, the runtime
is dominated by the termination tool, not by the finite-state checker. So the
most direct way to improve the efficiency of our technique is to produce faster
termination checkers.

In the introduction we claimed that general purpose probabilistic model-
checkers perform poorly for a.s.-termination, since they are not geared towards
this problem. To supply some evidence for this, we tried to prove a.s.-termination
of the first four examples using the CEGAR-based PASS model checker [78]. In
all four cases the refinement loop did not terminated

Improving Lower Bounds for Reachability. Consider a program of the form
if coin(0.8) P1() else P2(); ERROR . Probabilistic model-checkers com-
pute lower and upper bounds for the probability of ERROR. Loosely speaking,
lower bounds are computed by adding the probabilities of terminating runs of P1
and P2. However, since CEGAR-based checkers [TU8/T0I5] work with abstractions
of P1 and P2, they may not be able to ascertain that paths of the abstraction
are concrete paths of the program, leading to poor lower bounds. Information
on a.s.-termination helps: if e.g. P1 terminates a.s., then we already have a lower

2 Other checkers, like PRISM, cannot be applied because they only work for finite-
state systems.
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bound of 0.8. We demonstrate this technique on two examples. The first one is
the following modification of firewire:
N = 1000; k = O0; miss = 0;
while (k < N) {
old_x = x; x = coin(0.5);
if (x = 0ld_x) k++ else if (k < 5) miss = 1
}
For i € {0,1}, let p; be the probability that the program terminates with
miss = i. After 20 refinement steps PASS returns upper bounds of 0.032 for pg
and 0.969 for p;, but a lower bound of 0 for p;, which stays 0 after 300 iter-
ations. Our algorithm establishes that the loop a.s.-terminates, which implies
po + p1 = 1, and so after 20 iterations we already get 0.968 < p; < 0.969.

We apply the same technique to estimate the probabilities p1, po that zeroconf
detects/does-not-detect an unused IP address. For N = 100, after 20 refinement
steps PASS reports an upper bound of 0.999 for pg, but a lower bound of 0 for py,
which stays 0 for 80 more iterations. With our technique after 20 iterations we
get 0.958 < p; < 0.999.

6 Conclusions

We have presented an approach for automatically proving a.s.-termination of
probabilistic programs. Inspired by the Planner approach of [I], we instrument a
probabilistic program P into a nondeterministic program P’ such that the runs
of P’ correspond to a set of runs of P with probability 1. The instrumentation
is fully automatic for finite-state programs, and requires an extrapolation step
for weakly finite programs. We automatically check termination of P’ profiting
from new tools that were not available to [I]. While our approach maintains the
intuitive appeal of the Planner approach, it allows to prove completeness results.
Furthermore, while in [I] the design of the Planner was left to the verifier, we
have provided in our paper a CEGAR-like approach. In the case of parameterized
programs, the approach requires an extrapolation step, which however in our
case studies proved to be straightforward. Finally, we have also shown that our
approach to improve the game-based CEGAR technique of [7I8T0] for computing
upper and lower bounds for the probability of reaching a program location. While
this technique often provides good upper bounds, the lower bounds are not so
satisfactory (often 0), due to spurious nonterminating runs introduced by the
abstraction. Our approach allows to remove the effect of these runs.

In future work we plan to apply learning techniques to pattern genera-
tion, thereby inferring probabilistic termination arguments for large program
instances from small instances.

Acknowledgments. We thank the referees for helping us clarify certain aspects
of the paper, Corneliu Popeea and Andrey Rybalchenko for many discussions
and their help with ARMC, and Bjérn Wachter and Florian Zuleger for fruitful
insights on quantitative probabilistic analysis and termination techniques.
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Abstract. The inference of linear inequality invariants among variables
of a program plays an important role in static analysis. The polyhedral
abstract domain introduced by Cousot and Halbwachs in 1978 provides
an elegant and precise solution to this problem. However, the computa-
tional complexity of higher-dimensional convex hull algorithms makes it
impractical for real-size programs. In the past decade, much attention
has been devoted to finding efficient alternatives by trading expressive-
ness for performance. However, polynomial-time algorithms are still too
costly to use for large-scale programs, whereas the full expressive power
of general linear inequalities is required in many practical cases. In this
paper, we introduce the gauge domain, which enables the efficient infer-
ence of general linear inequality invariants within loops. The idea behind
this domain consists of breaking down an invariant into a set of linear
relations between each program variable and all loop counters in scope.
Using this abstraction, the complexity of domain operations is no larger
than O(kn), where n is the number of variables and k is the maximum
depth of loop nests. We demonstrate the effectiveness of this domain
on a real 144K LOC intelligent flight control system, which implements
advanced adaptive avionics.

1 Introduction

The discovery of numerical relationships among integer variables within a loop
is one of the most fundamental tasks in formal software verification. Without
this piece of information it would be impossible, for example, to analyze pointer
arithmetic as it appears in real C programs. A fully automated solution based on
convex polyhedra has been proposed by Cousot and Halbwachs [11] in what prob-
ably remains the most spectacular application of Abstract Interpretation. The
polyhedral abstraction is precise enough to infer the exact invariants for most
program loops in practice. It is based on the double description method [4, [21],
which requires enumerating all faces of a convex polyhedron in all dimensions, an
operation that has exponential time complexity in the worst case. Unfortunately,
the combinatorial explosion almost always occurs in practice and this analysis
cannot be reasonably applied to codes involving more than 15 or so variables.
Attempts have been made to improve the performance of the polyhedral
domain. They essentially consist in finding more tractable albeit less precise

P. Madhusudan and S.A. Seshia (Eds.): CAV 2012, LNCS 7358, pp. 139-[[54] 2012.
© Springer-Verlag Berlin Heidelberg 2012
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p = &msg; Convex polyhedra: Gauges:
for (i = 0; i < n; i++) {
if(¢p == ...) { {0§i§n—1 {/\gigA
16i < p < 32i 161 < p < 32\
} 1:1;: 16; Additional properties:
- A<n-—1
}p+= 32; {Ae[(),—i—oo]

}

Fig. 1. Loop invariant expressed with convex polyhedra and gauges

alternatives to those domain operations that may exhibit exponential com-
plexity (join, projection) without modifying the expressiveness of the domain
itself |22, [26]. Linear programming techniques are used instead of the double-
description method to compute approximate versions of operations on polyhedra.
The idea is that the Simplex algorithm exhibits better runtime performance in
practice, although still exponential in the worst case. However, available experi-
mental data make it difficult to predict how these techniques would scale to real
applications.

Another and more popular approach consists in identifying a subclass of con-
vex polyhedra that possess better algorithmic properties. Notable domains in-
clude template polyhedra [24], octahedra [5], subpolyhedra [15], simplices [25],
symbolic ranges |23] and the family of two-variables per inequality domains [17-
20, 27). Two members of the latter class, difference-bound matrices [18] and
octagons [19], are particularly important since, to the best of our knowledge,
they are the only general-purpose relational abstract domains that have been
applied to the verification of large applications [, 13, 10, [28].

Among relational domains that can express inequalities, octagons and dif-
ference-bound matrices have the lowest computational complexity: quadratic in
space and cubic in time in the worst case. However, due to the nature of the
closure algorithm employed to normalize their representation, the worst-case
complexity is always attained in practice, which makes this kind of domain un-
usable for codes with more than a few dozen variables |28]. In order to address
this issue, it is necessary to break down the set of program variables into small
groups on which the abstract domain can be applied independently. This variable
packing can be performed statically before analysis using knowledge on the ap-
plication [10], or at analysis time, for example, by using dependency information
computed on the fly [2§].

However, the limited expressiveness of weakly relational domains precludes
the direct analysis of pointer arithmetic, which requires more general forms of
inequality constraints. This issue is addressed in C Global Surveyor [28] by using
templates for access paths in data structures. The parameters appearing in the
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template make up for the lack of expressive power of difference-bound matrices.
Although effective, these techniques substantially complicate the construction of
a static analyzer and they are very dependent on the characteristics of the code
analyzed.

In our experience with analyzing large NASA codes, we have observed that
most of the time, the value of a scalar variable inside a loop nest was entirely
determined by the control structure in terms of symbolic bounds of the form
ap+aiA; +---+apAg, where A\1,..., A\ denote loop counters and ay,...,a; are
integer coefficients. In this paper, we present an abstract interpretation frame-
work in which each variable is approximated by a pair of such symbolic bounds,
which we call a gauge. This abstraction generates far fewer constraints than
weakly relational domains while providing greater expressiveness.

In Fig. [l we have shown a code snippet that reads variable-sized data from a
buffer of bytes, a common pattern in embedded programs. Gauges represent the
implicit loop invariants, which are hard to infer, but do not say anything about
loop bounds. The abstraction shall therefore be complemented with additional
abstractions, like intervals and symbolic constants. The main idea is that it is far
more efficient to combine simpler abstractions rather than have a powerful but
inefficient domain take care of all properties at once. The gauge domain is not
intended as a replacement for convex polyhedra or weakly relational domains, as
it has limitations. However, it provides a simple and efficient way of generating
precise loop invariants for a large swath of code without the need for customizing
the static analyzer.

The paper is organized as follows. In Sect. 2] we formally define the gauge
abstraction and state some of its basic properties. Section [3] introduces the Ab-
stract Interpretation framework in which our analysis is specified. In Sect. [4]
we construct an abstract domain that can infer gauge invariants on programs.
Section Bl reports experimental results on a large NASA flight system. Section
concludes the paper.

2 The Gauge Abstraction

We now give a formal construction of gauges and characterize their natural
ordering. Let A = {A1,..., A\, } be a fixed set of positive counters. Given integer
coefficients ag, ..., a,, we call gauge bound the expression ag +Z?=1 a; ;. Given
a gauge bound g, we define the upper gauge g as

g:{(xallv"wln) €Z X (ZJr)n |x§a0+zaili}
i=1

We define the lower gauge g dually. Now, given two gauge bounds g = ag +
Z?zl a;\; and ¢’ = af + Z?:l a}\;, we would like to characterize the inclusion
of upper gauges g C ¢'. This is equivalent to say that the following system has
no integral solution:
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A >0 7:6{1,...,’1’1,}
S:q¢ z<ag+a i+ Fagh,
x>1+ay+aih +--+a

First, observe that if aj < ag then S has a trivial solution (z = aj, + 1, A\ =
0,..., A, = 0). Assume for now that aj, > ao and S admits a rational solution
(x =u,A\1 =1li,..., A\, =) such that all [; are positive. There exists a nonzero
positive integer p such that pu,ulq,...,ul, are all integers (take the lowest
common multiplier of all denominators for example). We deduce from S the
following inequalities:

pu < pag + a1 (pdi) + - - 4 an(pln)
pu > 1+ ah) + al () + -+ ()

which can be rewritten as:

pu— (pn—1)ag < ag+ar(ply) + -+ an(uly)
pu— (p+ (o= ag) = ap + ay(ply) + - + ap, (pln)

From aj, > ap and p > 1 we deduce that
p+ (p—1)ag > (p —1)ag
and then pu—(p—1)ag > pu—(u+(u—1)ag). Therefore, the variable assignment
(x = pu—(u—1Dag, A\ — ply, .oy A = ply)

is a solution of S. We just proved that if S admits a rational solution, then it
also admits an integral solution. Therefore, S has no integral solution if and only
if it has no rational solution. We can now reason entirely over rationals, which
allows us to use a fundamental result of convex geometry, the Farkas lemma [29]:

Theorem 1 (Farkas Lemma). Let A € Q™*¢ and a column vector z € Q™.
Either there exists a point x € Q? with Ax < z, or there exists a non-null row
vector ¢ € (Q1)™, such that cA =0 and cz < 0.

Note that, although originally established for real numbers, the Farkas lemma
can be proven using only elementary linear algebra [12] and therefore holds on
rationals. We define the matrix A € Q(+2)x(+1) a5 follows:

-1 0 .. 0 0
0 -1
A= 0
0 0 -1 0
—ay —Qp-1 —a, 1

/
n—1 n
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Let x be the (n + 1)-column vector and z the (n + 2)-column vector defined as:

M 0
X = and z =
A 0
T 4o
—ap—1

Then, the system S can be equivalently rewritten as:
Ax <z

According to the Farkas lemma, S has no rational solution if and only if there
exists a non-null (n + 2)-row vector ¢ = (¢ ...cp42) of positive rationals such
that cA = 0 and cz < 0. If we unfold the matrix expression, this is equivalent
to:

—C1 — Cp4101 + Cpg2al =0

—Cp — Cpy1Gn + Cpi2al, =0
Cnt1l — Cn42 =0
Cnt+100 — Cnt2(ap +1) <0

If ¢,41 = 0, then all ¢;’s are equal to zero, which contradicts the fact that c is
non-null. Hence ¢,,+1 # 0. Since ¢y, ..., ¢, each appear in exactly one equation,
we can recast this condition in a much simpler form. The system Ax < z has no
rational solution if and only if there exists a rational number ¢ > 0 such that

clay —a1) >0
c(al, _ an) 2 0
clap — (ap+1)) <0
Since ¢ > 0, this is equivalent to the following condition
Vi €{0,...,n} a; <aj
We can establish a similar result on lower gauges by duality.

Theorem 2. Ifg=ao+ Y ., a;X and ¢’ = aj+ Y i, ai\;, then g C g’ (resp.
9gCy4q )iffvVie{0,....n} a; <a (resp.a; > a}).

By analogy with intervals, we define a gauge as a pair [g, ¢'] of gauge bounds
and its denotation as g N ¢g’. Note that a gauge is not empty if and only if, for
all positive values of A1,...,\,, there is an x € Z such that

ap+ a1 h + -+ agh, <z <aj+ai i +Hapiy
This condition can be equivalenty restated as

ap —ag+ (@) —a)\ + -+ (al, —ap)An, >0



144 A.J. Venet

for all positive values of A1,...,\,. An elementary reasoning shows that this
property holds if and only if a; < a} for all ¢ € {0,...,n}, which is the exact
analogue of the non-emptiness condition for intervals. We denote by g the
empty gauge.

Now, given two non-empty gauges G = [g1, g.] and G’ = [g], g,,], we need to
characterize the inclusion of their denotation. Assume that G C G’. If g, = ag +
St aiX;, then for all (Iv, ..., 1,) € (ZT)™, we have (ag + Y1y aili, b1, ... 1) €
G, because G is not empty. Since G C G', we have (ag + Y iy aili,l1, ..., 1) €
¢.,- By definition of upper gauges, this entails g,, C ¢/,. By duality, we also have
9, < g; . We just proved the following result:

Theorem 3. Given two non-empty gauges

G =lao+ 2y aidibo + iy bi)i]
G' = [ag + 271, aihis by + D0 biAd]

GC G iffVied{0,...,n} a; <a; Nb; <V,. The operation GU G’ defined as

[min(ag, ay) + Z min(a;, al)\;, max(bo, by) + Z maz(b;, bi)\i]
i=1 =1

is the least upper bound of G and G'.

It is quite intriguing that the natural order on gauges defined by the inclusion of
denotations is the pointwise extension of the order on intervals. Gauges define a
relational numerical domain that has the structure of a non-relational domain.
This remarkable property is key to the scalability of the gauge abstraction.

Given a gauge bound g, we denote by [g, +00] the upper gauge g, by [—o0, ¢
the lower gauge g, and by [—oo, +00] the trivial gauge Z x (Z*)". The order
relation and the join operation defined above are readily extended to these gen-
eralized gauges, in the same way as is done for intervals. If we denote by G the
set of all gauges, we have established that:

Theorem 4. (G, C, U, [—o0,+0]) is a U-semilattice. The empty gauge Lg is
the bottom element.

Note that, in general, the intersection of two gauges is not a gauge and the
greatest lower bound cannot be defined.

3 Abstract Interpretation Framework

We construct our static analysis in the theoretical framework of Abstract Inter-
pretation |8, |9]. A program is represented as a control-flow graph and operates
over a set of integer variables X = {x,y,...} and a distinct set of integer non-
negative counters A = {A1,..., A, }. The control-flow graph is given by a set
of nodes N, an initial node start € N and a transition relation n — n’ : emd
labeled by commands. A command is either a sequence s1;- - - ; si of statements,
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1: x = 0; 1—2:2=0;i=0;new(}\)

2: for (i = 0; i < 10; i++) { 2—53:1<9

3:  x += 2; 3=2:z=xz+2;i=1+ 1l;inc()\ 1)
4. %} 2—54:10<1

5: 4 — 5 : forget()\)

Fig. 2. Representation of a simple C program in the language of the analyzer

a condition e; < eq, where e, eo are either variables or integer constants, or a
counter removal operation forget(\), where A € A. The syntax of statements is
defined as follows:

r=erp xe€X
new(\) e
inc(\, k) Ae A keZ"
c ceEZ
T reX

The concrete semantics is defined as a transition system on a set of states .
A state 0 € X' is a pair (n,e), where n is a node of the control-flow graph and
e € Z¥ x (ZT)" is an environment assigning values to variables in X and A.
The semantics [ ] of statements and expressions is defined on environments as
follows:
[z = e]e = e[z — [e]e]
[new(\)]e = e[A — 0]
[inc(\, k)]e = e[A — e(\) + k]

The transition relation over states is defined as follows:

—Ifn—n':s1; 8k, then (n,e) = (n/,[sg] oo [s1]e),
Ifn—n':z<yande(x) <e(y), then (n,e) — (n, &),

Ifn—n':2 <cande(x) <c then (n,e) — (n',e) (and similarly for a
constant on the left-hand side of the condition),

— If n — n’ : forget(\), then, for any [ € ZT, (n,e) — (n/,e[A — 1]).

The last rule simply expresses that the value of a counter that is removed from
scope can be any nonnegative integer. An initial state in the operational seman-
tics is a pair (start,e), where € is any environment, as variables are assumed to
be uninitialized at the beginning of the program. We denote by Z the set of all
initial states. Although simplified, this representation of programs is very close
to the actual implementation of the analysis, which is based on LLVM [16].

In Fig. 2] we show how to translate a simple C program into our language. If
the original program is structured, it is quite straightforward to introduce the
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counter operations, as shown in the figure. In case the input program comes
as a control-flow graph, we need to identify the loops and place the counters
accordingly. This can be readily done using Bourdoncle’s decomposition of a
graph into a hierarchy of nested strongly connected components |2]. This efficient
algorithm can be used to label each node of the control-flow graph with the
sequence of nested strongly connected components in which it belongs. Using this
information, loop counters can be assigned to each component and the counter
operations can be automatically added to the relevant edges of the control-
flow graph. The complexity of Bourdoncle’s algorithm is O(ke) where k is the
maximum depth of loop nests and e is the number of edges in the control-flow
graph.

We are interested in computing a sound approximation of the collecting se-
mantics [6], i.e., the set of all states that are reachable from an initial state.
Following the theory of Abstract Interpretation, the collecting semantics can be
expressed as the least fixpoint of a semantic transformer F. We denote by & the
set Z* x (Z*)” of all environments. Then, the semantic transformer F is the
function defined over (€)Y as follows:

Vn # start € N :F(X)(n)={e €& |3n' € N,3Ie" € X(n') : (W', &) = (n,e)}

with F(X)(start) = Z. In order to obtain a computable approximation of the
least fixpoint Ifp F, we need to construct an abstract semantic specification [9],
ie.,

— An abstract domain (D¥, C) together with a monotone concretization func-
tion  : (D%, ) — (9(€).C),

— An abstract initial state Z* € D* such that Z C ~(Z¥),

— An abstract semantic transformer F# : (D¥)Y — (D*!)¥ such that Fo~ C
v o I,

— A widening operator V : D¥ x D¥ — DF such that, for any sequence (ﬂfg)izo
of elements of D, the sequence (yf )i>o inductively defined as:

{ ﬁyg _ xg) #
Yip1 = Yi V Tip
is ultimately stationary.

Then, it can be shown [9] that the sequence (Fg)izo iteratively defined as follows
using the pointwise extension of V:

]Fg — Tt
FY,, = FY if FH(FF) C
= Fg \Y ]Fﬁ(]Fg) otherwise

is ultimately stationary and its limit is a sound approximation of 1fp F.
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4 The Gauge Domain

In this section we will construct an abstract semantic specification for the gauge
abstraction. We cannot use the gauge semilattice G as is, because gauges are
defined for all values of the counters, whereas in the first steps of the abstract
iteration sequence only isolated counter values are computed. We need an oper-
ation similar to the higher-dimensional convex hull for convex polyhedra, which
can build a convex approximation of a discrete set of points. In order to enable
this type of induction, we need to keep track of constant counter values that are
obtained at the very first steps of the abstract iteration sequence.

We denote by (Z1,C) the semilattice of constants with greatest element T.
For z,y € ZT, 2 C y iff y = T or x = y. We define the domain of sections
S = (Z/T‘, C) ordered by pointwise extension of the order on Zt. We denote by
& = (G¥,C) the set of abstract environments ordered by pointwise inclusion.
A gauge section is a pair (p,c¥), where p € S and * € &, such that only
counters in p~!(T) may appear inside a gauge bound of *. The concretization
v(p,e*) € p(€) of the gauge section is the set of all concrete environments ¢ € £
satisfying the following property:

Ve e X,3(l,. .., 1) € (ZH)A: (e(), 1y, ..., 1) € ()
AVie{l,....n} ipN) AT =>L=pN)AYVie{l,...,n}:e(N) =1;

A gauge section is simply an abstract environment where the value of certain
counters is set. Working on gauge sections instead of gauges will allow us to
construct the invariants incrementally during the abstract iteration sequence. We
denote by (GS, C) the domain of gauge sections ordered by pointwise extension
of the orders on S and &*.

We can now construct an abstract semantic specification for the gauge ab-
straction. We could take GS as the abstract domain of our specification. How-
ever, this choice would yield poor results on nested loops with constant iteration
bounds, a very common construct in flight systems and more generally in embed-
ded applications. In order to keep a good level of precision, we need to maintain
information on the ranges of the counters. We denote by I the standard lattice
of intervals |7]. The abstract domain D? is given by GS x I endowed with the
pointwise extension of the underlying orders. The concretization v((p, ), %)
of an element of the product domain D! is defined in the standard way as
{e € v(p,e*) | Vi € {1,...,n} : e(\;) € £#()\;)} The abstract initial state Z¥ is
trivially given by the element of D! in which all components are set either to T
or to [—oo, +00].

The next thing we need to construct is a widening operator on D!, as it will be
needed to define the abstract semantic function later on. We just need to define a
widening on the domain of gauge sections, since the widening operator on D* can
be obtained by pointwise application of the widenings on the underlying domains.
We first need some auxiliary operations. If G = [ag + Z?:l a; N, bo + Z?zl biXi
is a gauge, j € {1,...,n} and | € Z", we denote by G[)\; =[] the gauge

lao + ajl + Zaz')\z', bo + b;l + Zbi/\i]
i#j i#£]
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where we set the value of one counter. Let G and G’ be two gauges defined as

follows:

G = [ao + 27 aiXiybo + 2o 1b )‘]

G' = lag + 205, ajhi, by + 3001, biA
Now, assume there is ¢ € {1,...,n} such that a, = b, = a, = b = 0. Let
u,v € Z* be two distinct non-negative integers. We want to construct a gauge,
denoted by G Vj, G’ such that

G\ =u],G'\, =v] C GV, &

This operation implements the basic induction step with respect to a counter.
We have two gauges at two different values of the counter A, and we want to
extrapolate a gauge for all possible values of the counter. We choose a simple

approach and perform a linear interpolation. We compute the slope o, = LGE:ZOJ
for the lower gauge (resp. 8, = fbo_bo] for the upper gauge), taking care of
rounding to the lower (resp. upper) nearest integer. This operation introduces
new constants ag = ag — o, u and By = by — S, u into the gauge expression. There
is no guarantee that the slopes and constants calculated from the upper (resp.
lower) gauge will appear on their respective side, i.e., ag < Sy and o, < f,.
Therefore, we define G Vi, G’ as the gauge [co + > cidi,do + D1y diki],
where

— ¢co = min(ao, Bo)

— do = maz(ao, Bo)

— ¢, =min(w, B,)

- d, = max(a,, B,)

— For i # ¢ and i # 0, ¢; = min(a;,al) and d; = maz(b;, b))

This elementary widening can be defined similarly when one bound of the gauges
is +0o. We need a variant of the previous operation when one of the gauges is
defined over A,. We keep the same notations and we now relax the assumptions,
i.e., a) and b} may be nonzero, and v = T. The gauge G’ is already defined for all
values of A,. There is no need to change the slopes a] and ], we simply need to
adjust the constant coefficients. Hence, we set a, = a, and 3, = b/, ag = ag—aju
and By = bp — blu. Using the previous notations, we define G foT G’ as the
gauge [co + 321, cidiydo + 301, diki]

We now construct an interval-like widening V1 on gauges, which extrapolates
unstable bounds. If we denote by L the set {0,...,n}, this widening is defined
as follows:

G ifViGL:aiga;/\bggbi

lao + D00y aidi, +oo] if Fj € L:b; <bjA Vie L:a; <aj
[—00,bo+ Y iy bXg] if Fj €L ay <aj AN Vi€ L:b<b
[—00, +00] otherwise

GViG =

Similarly, given I C A, we define a partial join operation LI; on gauges as follows:
G Ur G’ = [min(ao, ah) + Y1y a;Ai, maz(bo, b)) + > i bi\i], where

[ min(a;,a;) if N €T max(b;,b;) if N\ €l
@i = {ai otherwise and b; = b; otherwise
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The widening and partial join operations on gauges defined above can be ex-
tended pointwise to abstract environments in £*. Now, let (p17s§) and (pg,eg)
be two gauge sections. Let A = {\],..., A} } be the set of counters on which the
sections p; and po disagree, and A = A\ A the set of counters on which they
agree. If A # (), we define the widening of the gauge sections as follows:

# 1 _ ol # A # #
(p1,8) ¥ (p228) = (o1 0o, (++ (5 T3k iy 8) + Vokippmirgy ) Ua €8

If A= (), then p; = p2, and we simply use the interval-like widening as follows:

(p1,6}) V (p2,65) = (01765 Vi 5%)

Note that the definition of the widening depends on the order in which the
counters in A are arranged, as the linear interpolation widening defined above
is commutative but not necessarily associative. In practice, for usual loop con-
structs, which are the main target of our analysis, the order in which the widening
operations are performed has no effect on the result, but this may not always be
the case. This is one limitation of our approach as compared to convex polyhedra
and weakly relational domains.

We are now ready to define the abstract semantic function F#. We first define
the abstract semantics of expressions. Let G and G’ be two gauges defined as
follows:

G =lag + Y071 aidibo + D00y biki]
G’ = lag + 3oy aidis by + 307 bid]

We define G+ G/ = [(an + ap) + 0 (a; + a)Ac, (bo +bp) + 0 (b + B)A]
and G — G' = [(ap — b)) + >oi; (a; — DN, (bo — af) + > iy (b — af)A;]. Since
the gauge abstraction is linear, we cannot compute the multiplication exactly. In
pratice, multiplication mostly occurs in pointer arithmetic when scaling a byte
offset to fit a type of a certain size. Hence, it is sufficient to consider the case
when one of the gauges is a singleton, say G’ = [¢, ¢]. Then we define

GxG = |cag + Z ca; \;, cbg + Z cbi A
i=1 =1

if ¢ is positive, swapping the bounds when c¢ is negative. Other cases when G
is constant, both gauges are constant or one is zero are handled similarly. In
all other cases we just return the trivial gauge [—oo, +0o0]. For brevity, we did
not go over the cases when one of the gauge bounds is infinite as they are
handled similarly. The abstract semantics of expressions is readily defined from
the previous operations on gauges.

Now, let ((p,&?), %) be an element of D*. We define the abstract semantics of
statements as follows. In the case of an assignment operation, we have

[= = el ((p,%), ) = ((p, "z = [e]*eF]), )

For any counter A\, we denote by &f| , the abstract environment in which all
occurences of a gauge where \ appears with a non-zero coefficient have been
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replaced with [—oo, +00]. Then, the abstract semantics of a new(\) operation
can be defined as follows:

[new(N)JF((p,€%), ) = ((p[ = 0,€%|,), €% [A = [0, 0]])

Given a gauge G = [ag + D j aiXi,bo + iy bi\i], a counter \; and k € ZT,
we define the gauge incy, x(G) as follows:

n n

min(ao — kaj,ap — kb;) + Zai/\i7max(a0 —kaj, a0 — kbj) + Zbi)\i
i=1 =1
This operation corresponds to incrementing a counter by a constant. The re-
sulting constant coefficients may not satisfy the consistency condition for a non-
empty gauge, whence the introduction of min and max operations. Cases where
one of the gauge bounds is infinite are handled similarly. We can extend this op-
eration pointwise to abstract environments. Thus, we can define the semantics
of a inc(\, k) operation as follows:

[ine(X, B)]*((p, %), €8) = ((p[\ = p(N) + K], inca k(eF)), (X = (5(X) + K])

Note that for clarity we have overloaded the addition operator, but its semantics
depends on the domain on which it applies.

It now remains to define the abstract semantics of commands. For a sequence
of statements s ... s,, the abstract semantics is obviously given by [s,]fo---o
[s1]*. The abstract semantics of a condition x < y is defined as follows. Assume
that ag + > ., a;\; is the lower gauge bound of ef(x) and bg + i b\ is the
upper gauge bound of £f(y). We denote by C' the linear inequality constraint
ap —bo + Yy (a; — b;)A; < 0. Then we define

[ < yl*((p. %), ) = ((p, ), reducec ()

where reducec(¢f) is the reduction of a collection of variable ranges against
a linear inequality constraint, using the algorithm defined in [13]. Since this
algorithm is based on constraint propagation, we arbitrarily limit the number
of propagation cycles performed (the threshold in our implementation is 5) so
as to maintain an O(|A4]) complexity. No impact on precision has been observed
in our experiments. The other types of conditions are handled similarly. Note
that this operation only affects the loop counter bounds and does not change
the gauge invariants.

Now, consider a gauge G = [ag + Y i @i \i, bo + >, bi\i], a counter \; and
an interval [, u]. We define the operation coalescey 1..)(G) as follows:

coalescey, (1.4 (G) = |ao + a;jl + Z a;iNi,bo + bju + Z bi N
i#£] i#£]
We can extend this operation pointwise on abstract environments. Then, we can
define the semantics of the forget(\) operation as follows:

[forget(A)]((p, %), £) = ((p[A = T], coalesces gs(x) (€°)), EF[X = [0, +oc]])
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The forget(\) operation is used when exiting the scope of a loop. If we did not
inject the range information of the loop counter back into the gauge invariants,
we would incur a major loss of accuracy when analyzing loops with constant
iteration bounds. This points to a major limitation of the gauge abstraction: it
only maintains precise loop invariants inside a loop, but most of this information
is lost when exiting the loop. The polyhedral domain keeps relational information
across loop boundaries and is more precise in this respect.
Finally, we define the abstract semantic transformer F* as follows

Vn # start € N : F*(X)(n) = V{[emd]*(X (n")) | n — n : emd}

with F#(X)(start) = T'. Note that the widening operation is used to merge the
invariants over a join node. We only need to use the interval-like widening V1 and
the widening on I4 when it is the entry node of a strongly connected component,
otherwise we can simply use the join operations, which provide better accuracy.

All elementary domain operations only depend on the number of active loop
counters and the number of variables in the program. Using a sparse implemen-
tation of abstract environments, it is not difficult to see that all operations have
an O(km) time complexity in the worst case, where m is the number of program
variables and k is the maximum depth of loop nests in the program. If we con-
sider k as a constant, which is a realistic assumption in pratice, all operations
are linear in the number of program variables. The gauge domain has a very low
complexity in the worst case and is guaranteed to scale for large programs.

In order to illustrate how the abstract semantics operates, we unroll the first
few steps of the abstract iteration sequence on the program shown in Fig.

Node 1: (({},{}),{})
— Node 2:
(-0 {5283) 200

— Node 3: The reduction operation has no effect on the invariant

(({AHO} {xw{gg}»{/\e[(),()]})

— Node 2 through the back edge:

<({/\r—>1} {f“)ﬁ ?}),{AH[M]})

We perform the linear interpolation widening and we obtain:

(CERB T v AR

This is the limit and convergence will be confirmed at the next iteration.
— Node 3: we perform the reduction operation on intervals and we obtain

({2 RN 2 )

The information on the loop bounds has been recovered thanks to the re-
duction operation.
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Analysis Analysis Time Precision
Intervals + Complete Inlining 41 min 79%
Commercial Tool 5 hours 91%
Octagons > 27 hours N/A
Gauges 10 min 30 sec 91%

Fig. 3. Experimental results

5 Experimental Evaluation

We have implemented the gauge domain described in this paper in a buffer-
overflow analyzer for C programs. The gauge domain is well suited for this kind
of application, as it is good at discovering invariants that hold inside usual
loop constructs. The buffer-overflow analyzer is implemented within an Abstract
Interpretation framework developed at NASA Ames Research Center by the
author and named IKOS (Inference Kernel for Open Static Analyzers). It is
beyond the scope of this paper to describe the design of the buffer-overflow
analyzer. We can just say that it is based on the LLVM front-end |16] and
computes an abstract representation of objects and pointers in a C program.
The analysis is modular and the effect of each function in memory is summarized
by numerical constraints on array indices and pointer offsets that are affixed
to the abstract memory graph. These numerical constraints are represented by
gauges. Symbolic bounds (such as the size of an array passed as an argument to
a function) are represented using an elementary domain of symbolic constants,
which is used in combination with the gauge abstraction.

We have run the analyzer on a large flight system developed at NASA Dryden
Flight Research Center and Ames Research Center. It consists of 144 KLOC of
C and implements advanced adaptive avionics for intelligent flight control. It is
a very pointer intensive application where matrix operations are pervasive. We
have compared the performance of this analyzer with that of (1) a simple interval
analysis running on a version of the program where function calls have been
completely expanded using the LLVM inliner, (2) a leading commercial static
analyzer based on Abstract Interpretation, and (3) a version of our analyzer
in which octagons [19] have been subsituted for gauges. In the latter, we used
Miné’s implementation of the octagon domain from the APRON library [14].
The results of these experiments are presented in Fig. [3l All analyzers ran on a
MacBook Air with a 1.86 Ghz Intel Core 2 Duo and 2 GB of memory, except
the commercial tool, which is installed on a high-end server with 32 CPU cores
and 64 GB of memory. The precision denotes the fraction of all array-bound
operations which could be statically verified by the analyzer. This figure is not
available for the version of our analyzer based on octagons, as we decided to kill
the analysis process after allowing it to run continuously for over 27 hours.
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6 Conclusion

We have constructed a numerical relational domain that is able to infer pre-
cise loop invariants and is guaranteed to scale thanks to tight bounds on the
complexity of the domain operations. An experimental study led on a complex
flight system developed at NASA showed that the gauge abstraction is able to
deliver accurate loop invariants in a consistent way. This domain is not intended
to be a replacement for more costly relational domains like convex polyhedra.
It should be seen as a cheap numerical analysis that is able to discharge many
simple verification properties, so that more powerful and computationally costly
domains can be used to focus on a significantly smaller portion of the program.

Acknowledgement. We are extremely grateful to Tim Reyes for spending
many hours getting the code through the commercial static analyzer.
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Abstract. Abstraction refinement is an effective verification technique
for automatically proving safety properties of software. Application of
this technique in shape analyses has proved impractical as core compo-
nents of existing refinement techniques such as backward analysis, gen-
eral conjunction, and identification of unreachable but doomed states are
computationally infeasible in such domains.

We propose a new method to diagnose proof failures to be used in a
refinement scheme for Separation Logic—based shape analyses. To check
feasibility of abstract error traces, we perform Bounded Model Check-
ing over the traces using a novel encoding into SMT. A subsequent di-
agnosis finds discontinuities on infeasible traces, and identifies doomed
states admitted by the abstraction. To construct doomed states, we give a
model-finding algorithm for “symbolic heap” Separation Logic formulas,
employing the execution machinery of the feasibility checker to search
for concrete counter-examples. The diagnosis has been implemented in
SLAyer, and we present a simple scheme for refining the abstraction of hi-
erarchical data structures, and illustrate its effectiveness on benchmarks
from the SLAYER test suite.

1 Introduction

Abstraction refinement has proven to be an effective technique for verification
of safety properties of software. Iterative refinement of the abstraction allows
the use of a coarse and computationally cheap abstraction that often suffices to
prove the desired property. If the abstraction is not precise enough, it supports
incremental shifting to a potentially very precise and computationally expensive
analysis. This technique has been very successfully applied to predicate abstrac-
tion domains. Not so for shape analyses. The consequence is that the abstractions
used in shape analyses must be very conservative, since any information that is
abstracted away is forever irrecoverable. One solution is to simply choose the
right abstraction in the first place, but while this can be computationally effi-
cient, the choice is sensitive to the property and program, making this approach
difficult to use in tools intended to be somewhat generally applicable.

To explain why a straightforward analogue of traditional counter-example
guided abstract refinement (CEGAR) techniques used for predicate abstraction
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does not work for shape analyses, recall a basic CEGAR procedure. Suppose
that the goal is to prove that some error state is not reachable, and that for
a given abstraction this proof fails. In this context it is common to abstract
traces rather than just states, and failing to find a proof amounts to finding an
abstract trace to error, t. The first question is whether ¢ constitutes a disproof
of the property, or witnesses that the abstraction is too coarse to prove the
property. This question can be answered by checking feasibility of ¢, that is,
whether or not it represents at least one concrete trace. If so, there is nothing
to do; the concrete trace witnesses that the program violates the property. If
t is not feasible, then it must contain a discontinuity where concrete execution
cannot follow the abstract trace. That is, for every concrete trace along ¢t from
an initial state to a state s at the discontinuity, execution would have to “leap
sideways” to some unreachable state s’ that the abstraction does not distinguish
from s, before concrete execution from s’ may proceed to reach error. The aim
of abstraction refinement is to increase the precision of the abstraction in order
to partition the doomed states such as s’ from the others, and thereby avoid
the introduction of ¢t. To perform an effective refinement, a discontinuity and a
characterization of doomed states is found, that is, the failure of abstraction is
diagnosed. One way to do so is to search for a program point ¢ on t such that the
over-approximation () of the reachable states after executing along ¢ to £ and the
weakest precondition with respect to error of the command C' along the suffix
of t from ¢ to error, wp(C, error), are consistent, i.e., @ A wp(C, error) # false.

In this case £ is a discontinuity and the models of the formula Q Awp(C, error)
are doomed states that need to be partitioned from others. There are various
refinement techniques, but the use of precondition computation and conjunction
or similar operations is ubiquitous.

The use of precondition computation and conjunction presents a serious prob-
lem in the context of shape analysis. To get an understanding of why backward
shape analysis is very expensive, consider the weakest precondition of a com-
mand that swings a pointer stored at x from one object to another p resulting in
a state satisfying Q: P = wp(xx = p, @). In the states that satisfy P, there are
many possible aliasing configurations for x, and *x might point to any object at
all, or be any dangling pointer. There are very many such states, and they are
not uniform in a way for which known shape analysis domains provide compact
representations. Additionally, shape analyses based on separation logic use “sym-
bolic heap” fragments of the logic similar to that introduced by Smallfoot [4],
which do not include general conjunction. Reducing a general conjunction to a
symbolic heap formula is theoretically possible, but computationally infeasible.

Therefore, an abstraction failure diagnosis that avoids precondition computa-
tion and general conjunction is a prerequisite for refinement of shape abstractions
in a fashion similar to that applied for predicate abstraction. We propose to refine
based on individual doomed states introduced by abstraction, rather than sym-
bolic representations of all such states, and present a diagnosis technique that
identifies discontinuities on abstract traces obtained from failed separation logic
proofs and fabricates doomed states showing where the abstraction is too coarse.



Diagnosing Abstraction Failure 157

Our procedure starts with a failed separation logic proof in the form of an
abstract transition system and slices out an abstract counter-example. These
abstract counter-examples generally contain loops and hence represent infinitely-
many abstract error traces. A finite subset of these abstract traces is checked
for feasibility using a very precise modeling of memory allocation and a new
technique for encoding bounded model checking (BMC) as a single satisfiability
modulo theories (SMT) problem, using quantified formulas with uninterpreted
functions and bit-vectors.

If a concrete counter-example is not found, then a new algorithm is used
to diagnose the failure of abstraction. This proceeds by searching through the
points on the abstract counter-example for a discontinuity. For each point on the
abstract counter-example, the prefix leading to the point is replaced with code
that generates concrete states represented by the abstract state at that point.
If this new abstract counter-example is feasible, then the program point under
consideration contains a discontinuity, and the generated state is doomed. The
diagnosis algorithm reports the input and output of abstraction and the doomed
state witnessing that the abstraction was too coarse.

It should be emphasized that the state-of-the-art in refinement of shape ab-
stractions is manual. When a shape analysis fails, the reason must be diagnosed
by hand, and the definition of abstraction must be changed by hand. As the size
of analyzed programs increases, the time and effort involved in diagnosing ab-
straction failure becomes a practical bottleneck. Therefore, automatic diagnosis
of abstraction failure by itself represents a significant advance. Additionally, as a
demonstration and quality check of the diagnosis, we present a simple automatic
abstraction refinement scheme which uses the discontinuity and doomed state
to select which “patterns” to use for abstracting hierarchical data structures.

2 Separation Logic—Based Shape Analysis

Before presenting the material on abstraction failure diagnosis, we must pro-
vide some background on shape analysis using separation logic. In particular we
introduce programs, abstract states, abstract transition systems, failed proofs,
and give some description of pattern-based abstraction.

Programs. Assuming some language of pure expressions E, the language of
state-transforming commands is generated by the following grammar:

C ::=x =malloc(F) | free(z) allocate and delete heap memory
| z =nondet() |z =F kill and move (register)
| xx =y |z ==xy store and load (heap)
| assume(F) | assert(F)  assumptions and assertions

| nop | C;C sequential composition
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A program is defined by its control-flow graph (IL, E, ¢y, ), where the vertices IL
are program locations, the program entry point is the root £y € L., and the edges
E CLL x LL are labeled with commands by s : E — C.

Abstract States. Separation logic—based shape analyses represent sets of pro-
gram states using formulas in a “symbolic heaps” fragment [4] of separation
logic’s assertion language [24]. Our diagnosis algorithms are implemented in
SLAYER [5], which uses the following language of formulas:

PQ:=F first-order formulas
|emp |l r|Is(A k,p, f,b,n) atomic heap formulas

|PxQ|PVQ|3z.Q

Apart from emp, which describes the empty part of a heap, atomic heap formulas
are of two forms: points-to or list-segment. A points-to [ — r describes a single
heap object at location [ that contains a value described by record r. A list-
segment Is(A, k, p, f,b,n) describes a possibly-empty, possibly-cyclic, segment
of a doubly-linked list, where the heap structure of each item of the list is given
by A. In particular, Is(A, k, p, f, b, n) is the least predicate satisfying

Is(A, k,p, f,b,n) iff (k=0ANf=nAp=0>)
vz y' . k>0AAlp, f, 2 y’) xI1s(A, k—1,2'",y',b,n) .
See [3] for details on this predicate, but note that p, f,b,n denote vectors of
parameters, which are sometimes empty and written simply as a space.

The set of formulas is closed under separating conjunction P * @, disjunction
PV @, and existential quantification dx.Q). Note the absence of conjunction and
negation of heap formulas. The pure, heap-independent, part of the logic (F') is
essentially passed through to the Z3 SMT solver [I7]. We assume that first-order

formulas are among the expressions, F' C F.
The set of abstract states is QT, where T is the error state.

Pattern-Based Abstraction. The abstraction performed by SLAYER is pa-
rameterized by “patterns”, the A argument formulas of the Is predicate that
describe the shape of hierarchical data structures. See [3] for more detail, but as
an example, consider a pattern for simple singly-linked lists

SLL ENTRY (, front, , next) = (front — [Flink: next])
and a pattern for singly-linked lists where each item carries a data object
SLL OBJS(, front, , next) = 3d’, r.(front — [Data: d’; Flink: next]) x (d' — 1) .
Abstracting the formula, which represents a list of two items carrying data,

3dg,, dy, f',ro,m1.(head = item) A (nd # 0) *
(head ~ [Data: dy; Flink: f']) * (djy — 7o) *
(f' + |Data: d}; Flink: 0]) * (d} + 71)
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using SLL ENTRY results in (a warning about leaked memory and)
Al . (head = item) A (nd # 0) * Is( SLL ENTRY, !, , head, ,0)
while using SLL OBJS results in
3l. (head = item) A (nd # 0) * Is( SLL OBJS,l,, head, ,0) .

Note that abstracting using SLL OBJS produces a logically stronger result than
abstracting using SLL ENTRY. The former preserves the fact that the Data fields
point to valid objects, while the latter loses this information. As a result, ad-
justing the patterns used for abstraction provides an effective mechanism for
abstraction refinement, analogous to the set of predicates used to control preci-
sion of predicate abstraction.

Abstract Transition Systems and Failed Proofs. SLAYER abstracts a pro-
gram to an abstract transition system (ATS). An ATS is a graph (L, E, {o, &, 9),
which is a program where program points are labeled with abstract states by
:L—-QT.

An ATS is constructed by the analysis while exploring the computation tree of
the program under the abstract semantics, creating cycles when abstract states
are covered by existing ones. A fully-expanded ATS where no vertex is labeled
with T induces a proof in separation logic, where for each edge e = (¢;,¢;) € E,
the triple {0 4;} ke {§¢;} is valid.

An ATS where some vertex /. is labeled with T constitutes a failed proof. If
0. = T, then £, is an error vertex, and the ATS restricted to the transitive
predecessors of /. is an abstract counter-example. An abstract counter-example
is either concretely feasible, or it witnesses that the abstraction is too coarse.

Abstract Programs. The CEGAR approach to model checking commonly in-
volves construction of an abstract program. If the abstract program contains an
error, subsequent analysis finds an abstract trace that shows it. If this trace is
infeasible in the abstract program, then it is also infeasible in the concrete pro-
gram, and refinement may be performed based on the explanation for abstract
infeasibility. If it is feasible in the abstract program, then it is checked for feasi-
bility in the concrete program to determine whether it corresponds to a concrete
error or should be refined.

We do not use such a two-staged approach. While we do employ abstraction
functions to obtain an ATS, they are used to abstract sets of program states,
producing abstract states, instead of directly abstracting program transitions,
producing abstract transitions. The ATS is therefore a relation over abstract
states, not an abstracted relation over concrete states. An abstract program
could be obtained from the ATS, however, all error traces in the ATS will be
feasible in the resulting system.
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In short, since we do not use a postcondition computation that loses more pre-
cision than required by the abstractionE there is no need to check if a potential
counter-example is due to imprecision in the postcondition computation.

[Aside: Some theoretical results regarding the complexity of adding arbitrary
Boolean connectives to the fragments of separation logic used in analyzers are
known [I0]. For the simple propositional case with no inductive definitions,
the model checking problem is NP-complete and the validity problem is IT3-
complete. Adding general Boolean conjunction preserves these bounds. General
negation is more problematic, both problems become PSPACE-complete even in
this simple case. Furthermore, performing backward analysis in the known way
requires — [24], which also brings both problems up to PSPACE-complete./

3 Abstraction Failure Diagnosis

Our approach to failure diagnosis is meant to be employed in the context of
abstraction refinement. We therefore give a brief overview using a typical ab-
straction refinement algorithm for presentation purposes. Algorithm [ first runs
an abstract interpreter in analyze and if it succeeds, it returns Safe. If not, we
simplify ATS using slice and then search for a concrete counter-example via
feasible, which is described in Section [ If it has a concrete counter-example,
then we report Unsafe. If it does not have a concrete counter-example, we try to
refine the abstraction. The diagnose procedure searches for doomed states and
is described in Section [l It returns a description of the discontinuity at which
the abstract state was identified as doomed. If such a state is not found, or if
the refinement fails for other reasons, the algorithm terminates with a result of
PossiblyUnsafe. Otherwise it repeats the process using the new abstraction.

We illustrate the behavior of our algorithm on the simple linked list program
depicted in Figure [Il This program creates a list of non-deterministic length
with a heap allocated data object in every element and then deletes the list.
This program is safe.

SLAYER initially fails to prove that the program is safe, the corresponding
ATS is shown in Figure At the transition from vertex 4 to vertex 3, the
abstract interpreter explored the first while loop twice, creating and explicitly
tracking a list of length 2 with points-to predicates. At the third iteration of
the loop, it widens at vertex 2. In doing so, it selects an SLL ENTRY shape,
thereby discarding information that is required to complete the proof. It still
has a dy data object, but it has lost d; and it has lost any connection between
data elements like dy and the list itself. When the abstract interpreter reaches
the last command through the transition from vertex 1 to 0, it no longer knows
if the particular list element points to the beginning of allocated memory or not.
As a result, the proof attempt fails.

Once analyze terminates with a failed proof attempt, feasible attempts to
find a concrete counter-example in the abstract counter-example. Since this pro-
gram is safe, it does not find one, and the algorithm then runs diagnose which

1 With the exception of losing some disequations between deallocated addresses.



Diagnosing Abstraction Failure 161

Algorithm 1. Abstraction refinement algorithm

let abstraction_refinement prog abstraction =
let ats = analyze prog abstraction in
if safe ats
return Safe
else
let abstract_cex = slice ats in
let concrete_cex = feasible abstract_cex bound in
if concrete_cex != None
return Unsafe
else
let failure = diagnose abstract_cex bound in
if failure = None
return PossiblyUnsafe
else
let abstraction’ = refine failure abstraction in
if abstraction’ = None
return PossiblyUnsafe
else
return abstraction_refinement prog abstraction’

searches for a concrete counter-example starting from each widened state in the
abstract counter-example. In this example, the state at vertex 2 is the only
widened state. It then synthesizes a new, temporary ATS shown in Figure
which is constructed to generate all models of the separation logic formula on
the vertex (within bounds). It then continues to check feasibility of counter-
examples in this new ATS, which, in this example, yields a counter-example
that constructs a single element list, where the data pointer is invalid.

Now that a doomed state has been found, the refine procedure attempts to
construct a more precise abstraction. It succeeds only if it is able to find a new
abstraction in which the doomed state is no longer included at the discontinuity.
In this example, the refine procedure implemented in SLAYER (see Section [6)
activates the previously inactive SLL OBJS pattern which preserves information
about the Data objects. Finally, it restarts the abstract interpreter with the new
abstraction, which, in this example, is successful in proving safety of the program.

4 Feasibility Checking

When the abstract interpretation is unable to show that a program is safe, we
obtain an ATS which represents the relevant parts of the program together with
an abstract model (abstract values for every variable at every control location).
To distinguish between actual errors and abstraction failures, we check feasibility
of error traces in the ATS. Note that this is a general verification problem and
that we may employ any of a multitude of Model Checking algorithms to solve



162 J. Berdine et al.

1 typedef struct _SLL_ENTRY { 14 while (head) {

2 voidx Data; 15 item = head;

3 struct _SLL_ENTRY *Flink; 16 head = item—>Flink;
4} SLL_ENTRY, %PSLL_ENTRY ; 17  free(item—>Data):
5 18 free(item);

6 void main(void) { 19 }

7 SLL_0BJS xhead = NULL, xitem; 20 }

8 while (nondet()) {

9 item = (PSLL_ENTRY )malloc(sizeof(SLL_ENTRY));
10 item—>Data = (int*)malloc(sizeof(int));

11 item—>Flink = head;

12 head = item;

13 }

Fig.1. An example program

this problem. Here, we propose a Bounded Model Checker (BMC). For any fixed
unrolling depth, this represents an under-approximation of the ATS. The trade-
off between precision and efficiency is of paramount importance in practice and
we propose to use BMC because it conveniently offers fine-grained control over
the precision through a single parameter.

Recent advances in SMT solving have made it possible to encode BMC in-
stances through a single query to the theorem prover [25] and to solve them by
providing efficient quantifier instantiation and elimination procedures. In par-
ticular, the theory of bit-vectors with uninterpreted functions and quantifiers
(SMT UFBV) has been shown to be a very effective means of analyzing BMC
instances [33]. This theory allows for an encoding that does not require a pre-
determined unrolling depth for every loop, but for the whole system, i.e., the
unrolling bound corresponds to the number of nodes visited in the ATS, but the
SMT solver may freely chose a different bound for each loop in the ATS. This
simplifies the analysis and allows the utilization of powerful heuristics employed
by SMT solvers to increase performance.

4.1 A Memory Model

To encode an ATS into SMT UFBV, a memory model is required. To achieve
maximum precision, we use a flat memory model that implements accurate ex-
ecution semantics. A segmented model might be easier to analyze, but would
introduce unsoundness [18].

This choice is motivated by theparticular interest in detecting four specific
classes of errors: 1) Array out of bounds errors; 2) Dereferencing NULL pointers;
3) Double frees; and 4) Frees of unallocated memory. In a flat memory model,
these four errors can be reduced to two: out of bounds errors and NULL pointer
errors can both be treated as dereferencing unallocated memory; a double free
error corresponds to an attempt to free unallocated memory.
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head = 0;

nd = nondet();

assume (nd != 0);

item = (PSLL_ENTRY)malloc(8);
d0 = malloc(4);

item->Data = dO;

item->Flink = head;

head = item;

nd = nondet();

item = (PSLL_ENTRY)malloc(8);
dl = malloc(4);

item->Data = di1;

item->Flink = head;

whead = item;

dy > 1o * head — [Data : do; Flink : next] x

3do, dy,70,71. head = item A nd # OA

dy — 71 * next — [Data : dy; Flink : 0]

v

3do, 1o, k. head = item And # 0 A dy — 1o *

Is(_.SLL_LENTRY k, , head, ,0)

assume (nd != 0);
item = (PSLL_ENTRY)
malloc(8);

nd = nondet () ; d0 = malloc(4);

item->Data = tmp;
item->Flink = head;
head = item;

3do, 70, k. head = item A dy — 1o *
Is(_SLL_ENTRY, k, , head, ,0)

assume (nd == 0);
assume (head != 0);
item = head;

head = item->Flink;
y free(item->Data);

0: | Error

(a)
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6: emp

k = nondet () ;

assume (head == item);
assume (nd != 0);
d0 = malloc(4);
assume (head == f);
assume (len == k);

v assume (len > 0);

. a = malloc(8);
5: j:)assume(f == a);

f = £->Flink;

1--;
assume (len == 0);
"assume(f == 0);
5 do, 70, k. head = item And # 0 A dy + 1o *

: Is(_SSLL_ENTRY, &, , head, ,0)
assume (nd !'= 0);
item = (PSLL_ENTRY)

malloc(8);
nd = nondet () ; d0 = malloc(4);

item->Data = tmp;
item->Flink = head;
head = item;

Ido, 1o, k. head = item A Ndy — ro *
Is(_.SLL_LENTRY. k, , head, ,0)

assume (nd == 0);
assume (head != 0);
item = head;

head = item->Flink;
{y free (item->Data) ;

0: | Error

(b)

Fig. 2. @ Abstract counter-example prior to refinement and @With prefix of vertex
2 replaced

Memory allocation must be modeled accurately for a flat model to be able to
find errors. If a strategy is chosen similar to a real memory allocator (first fit, best
fit, etc), the objects are packed together and will likely not cause errors when
accessing out of bounds array elements. For this reason we allow the SMT solver
to place the allocated objects. We existentially quantify the starting location
for each allocation, such that, if objects can be rearranged to cause an error to
occur, they will be.

In our encoding, memory is modeled by three arrays: heap, alloc, and objsize.
The first contains a representation of the heap at a given time (execution step):

heap : Time — Address — Value
The alloc array is used to track whether a memory address is allocated or not:

alloc : Time — Address — Bool
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If some address is not allocated at the time of being accessed, this corresponds
to a segmentation fault. The objsize array is used to track the size of allocated
objects at a given time and memory address:

objsize : Time — Address — NatU {1}

Note that this array contains L (encoded as —1) for memory locations that are
allocated, but not at the beginning of an object.

4.2 Encoding to SMT

The procedure feasible ats bound checks for the feasibility of counter-examples
of bounded length in an ATS. If such a counter-example exists, it returns a
mapping p : . — Structures which associates each vertex with a Kripke structure
that provides a concrete interpretation for each variable, function symbol, and
the heap memory. If no such counter-example exists, feasible returns None.

In order to pose the bounded model checking problem as a single SMT prob-
lem, we make use of quantifiers. We constrain the solver to start at some symbolic
set of initial states constructed by init and then for some bounded number of
steps, unroll the transition relation of the ATS. The function tr(ats,t) corre-
sponds to the encoding of the transition relation of the ATS ats from time ¢t — 1
to time t. The top-level check is encoded as

init() AVt. 0 < t < bound — tr(ats,t) .

Our encoding makes use of semantic functions [-], which take a state and con-
tinuations (to work out what to do next in the translation). In what follows, the
encoding of commands is denoted by

[1¢ :St— (St— SMT)— (St - SMT) — SMT ,

which takes a state and two continuations, one for successful transitions and one
for transitions to error. The transition relation tr(ats,t) is encoded as

tr(ats,t) = (at(t — 1) = e — at(t) = Le) A

Natt—1)=0—( \/ [0 o skek)p

teL (€,0")€EE

where L and [E are the sets of vertices and edges of the ATS and the function
at(t) encodes the control vertex at time t.

We use the 4-tuple (vars, heap, alloc, objsize) to represent a state of the sys-
tem, where vars is the set of variables in the ATS. This is used as the source
of generating the corresponding time-stamped variables in the encoding. For ef-
ficiency reasons, the implementation also keeps flags for if and when the state
was last updated. The arrays in the initial environment oy are empty.

The top-level command encoding takes the two continuations, one to signify
a successful transition sk = Ao. STEP(t,£,0) and another for transitions to
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the error ek = Ao. ERR(t,o). If the command completes without error, the
command threads the modified state to sk, otherwise it threads the modified
state to the error continuation. Once the error continuation is followed, the top-
level encoding tr ensures that the system will stay in the error state. These
continuations allow for a clean representation of the ATS that maximizes the
use of if-then-else structures and minimizes general disjunctions. Threading the
state also allowed us to reduce the number of quantifiers used in the problem
by using if-then-else constructs instead of quantified uninterpreted functions, so
long as we are in the same block as previous heap updates.

The initial continuations end with the STEP and FRR predicates which are
defined as follows. STEP(t,{, o) asserts that at(t) = ¢ to ensure the transition
of the vertex to the next time step. (A transition to £ is explicitly disallowed.)
Furthermore, it preserves all the values from the current block that must be
preserved (heap if modified, alloc and objsize if modified, as well as all vari-
ables). Lastly, STEP(t, ¢, o) asserts that pure(d ), the pure consequences of the
Separation Logic assertion at £, hold at time ¢. The ERR(t, o) predicate is like
STEP(t,£,0) except that the transition must be to f. and pure(d £) = true.

We now describe the encoding of commands, concentrating on the memory-
related commands malloc, free and store. A forthcoming tech report [6] gives
a full definition of the encoding for the other commands.

The malloc command produces a new function for the alloc array. It uses
a fresh variable to store the location. We cannot simply constrain the target
variable z, because it may already have been assigned a value and thus is not
unconstrained. By introducing a fresh variable, f, constraining it and updating x
to be equal to f, we achieve the desired effect. The seemingly odd constraint that
f < f+s, given that s > 0 exists because of the modular behavior of arithmetic
in the bit-vector theory. Without this constraint, memory would be allowed
to wrap around past zero. While this behavior should be prohibited by the
constraint from init that location 0 is always deallocated, adding this constraint
provides performance benefits. Formally, the encoding of malloc is defined by

[x := malloc(s)]]C o sk ek = let (vars, heap, alloc, objsize) = o in
let f = gensym() in
let z = ([s]"" o) in
Vi.f <1< f+2z— alloc(i) = false A
Vi.f <i< f+2z— objsize(i) = —1A
let ' = Ma.ite(f <a < f+z, true, alloc a) in
let s = \a.ite(f =a, s, objsize a) in
(sk {(vars @ [z~ f], heap,a’,s")),

where gensym() represents the introduction of a fresh symbol.

The free command is similar to malloc, except that it relies upon the values
in the objsize array instead of the alloc array. It requires that the objsize of the
freed address have a value other than —1, whose value indicates no value in the
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size array. This value in objsize indicates how many successive entries in alloc,
starting at address z, need to be set back to false. Formally,

[free(x)]€ o sk ek = let (vars, heap, alloc, objsize) = o in
let f = gensym() in
let s = (objsize x) in
let ' = Xa.ite(f <a< f+s, false, alloc a) in
let s = Xa.ite(f =a, —1, objsize a) in
let o' = (vars,heap,a’,s’ ) in
ite(x =0, (sk o), ite(s # —1, (sk o'), (ek 0))),

The store command first checks the precondition (alloc x), which is that the
memory at the target address is in fact allocated. If this precondition holds, the
execution is allowed to continue with the updated state where heap has been
assigned to a new function. Conversely, the execution continues at /., assuming
that the state was not updated as required by the command. Formally, we have

[*x = y]© o sk ek = let (vars, heap, alloc, objsize) = o in
let heap’ = Ma.ite(a =z, y, (heap a)) in
ite((alloc x) , (sk (vars, heap',alloc,objsize)), (ek o)) .

5 Doomed State Synthesis

We define the diagnose procedure for identifying doomed states, i.e., for states
for which abstraction was too aggressive, and so can be passed to a refinement
procedure. Our procedure works as follows: It iterates through the edges of the
abstract counter-example, to determine at which of them the widening operator
has abstracted too coarsely. It does this by analyzing a new, temporary ATS in
which the prefix of the cutpoint £ has been replaced with a program fragment
that constructs states which satisfy ¢ £', the formula at that cutpoint. We then
use the feasible procedure to search for a concrete counter-example in this
new ATS. If a counter-example is found, then it returns the discontinuity (¢, ¢")
together with the doomed state obtained by looking up ¢ in the concrete trace
1. The diagnose procedure is depicted in Algorithm

Executing the code generated by prefix () produces states that satisfy Q.
Algorithm [ defines prefix, where the generated pseudo-code is shorthand for
standard control-flow graph construction, and the local v in C form is short for
C[v’/v]; v’= nondet() where v’ is fresh.

The model generation assumes a model finder for first-order logic, so first-
order formulas F' are simply assumed. Existential quantification is synthesized
using non-deterministic assignment, reverse engineering Floyd’s assignment ax-
iom. Disjunction is translated into a non-deterministic branch, that is, disjunc-
tion of commands. Nothing need be done to synthesize emp since it is a sub-heap
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Algorithm 2. Doomed state search

let diagnose (L,E,{,~,d) bound =
for (£,¢') €E do
if widened (£,¢)
let (Ln,E,,ln,k,) = cfg_of ((prefix §¢); goto ¢') in
let mod_ats = (LUL,,EUE., ¢y, kUkn,d U (Ly,x{emp})) in
match feasible mod_ats bound with

| None —>
continue
| n—>

return ((575,), N(ﬂ))
return None

of any heap. Points-to formulas are synthesized by a malloc() call, and sepa-
rating conjunction is mapped to sequential composition. This has the effect of
encoding the core partiality in the semantics of * into the freshness guarantee
and non-determinism provided by allocation, meaning that correctly generating
models relies on an accurate treatment of allocation. Lastly, lists are synthesized
by using a loop to realize induction on the list length. As an example, prefix
Is( SLL ENTRY, k,,D,,q) is realized by, after slight simplification:

local 1,f,a;
1=k £=p;

for (; 1>0; —1) {
a = malloc(sizeof (sll));
assume (f == a);

f = f—>Flink;

Lemma 1. Fvery reachable state of prefiz @ satisfies Q.
Theorem 1. The abstraction_refinement procedure is a sound analysis.

Proof. The procedure only returns Safe when the abstract interpreter in analyze
did in fact find a proof; this result is correct as long as the refine procedure
maintains the fact that the abstraction is in fact a valid abstraction. In case the
procedure returns Unsafe, it has found a concrete counter-example which wit-
nesses the fact that the program is in fact unsafe. In all other cases, the procedure
returns PossiblyUnsafe, which does not harm the soundness of the analysis. 0O

Note that approach for doomed state synthesis has the effect of translating sep-
aration logic formulas to code, and then in the feasibility checker, to first-order
logic formulas. It would be possible to compose these two translations and trans-
late separation logic formulas to first-order logic directly, but the result would
be more difficult to understand, and would impede reuse in the implementation.
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Algorithm 3. Prefix synthesis

let prefix @Q =
match @ with

| F —
assume (F')
| 3z.Q —>

local z in (prefix Q)

| QoV...VQN —>
if nondet () then (prefix Qo)
else (prefix Q1V...VQn)

| emp —>

nop
| @« R —>

(prefix @); (prefix R)
| l—[r;o1:e1;...;on en] —>

local a in

a = malloc(sizeof (typeof (r)));

assume (a=1);

*l.01 = €15 ...; *l.ON = EN

| Is(A k,p, f,b,n) —>

local [, w,z in

L=k w=p; z=Ff;

for (; 1> 0;1=1-1) {
local y,z in
(prefix A(w,z,y,2));
w=y; T=2z2

}

assume (! =0Aw=bAx=mn)

Note that the separation logic formulas are not precisely expressible in first-order
logic due to transitive closure used to interpret the list predicate and second-
order quantification implicit in the semantics of the % connective. So a direct
translation must under-approximate, and the ways that the transitive closure
and second-order quantification interact make this nontrivial. The translation
via the model-construction code avoids eagerly constructing formulas of size ex-
ponential in the bound, unlike a naive “blasting” approach. Additionally, the
translation via code approach potentially allows the solver to unroll loops in the
generation of a model of the separation logic formula guided by the path to error,
where a direct translation would blindly generate the first order logic formula
without any guidance.

6 Experimental Evaluation

There are two motivations in undertaking the work described in this paper. One
is to make precise the notion of abstraction failure diagnosis in separation logic



Diagnosing Abstraction Failure 169

shape analyses. The other, a more practical one, is to use this understanding to
improve the quality of results of SLAYER runs. We implemented feasibility check-
ing and diagnosis in SLAYER. This alone has improved SLAYER regression tests,
in particular turning around two dozen known unsafe tests from PossiblyUnsafe
to definitely Unsafe.

We also implemented a simple pattern refine procedure. SLAYER keeps a set
of active and inactive abstraction patterns. When widening admits a doomed
state s, this diagnosis is fed into SLAYER’s shape discovery module in order to
select a pattern to eliminate the doomed state. The basic algorithm for refine-
ment is to enumerate the inactive patterns, for each one widen to s’ using the
active patterns plus the chosen one, and then check if s entails s’. If not, keep
the chosen pattern active; otherwise it keeps looking. This is a simple automatic
refinement procedure, and we can imagine more sophisticated schemes. For in-
stance, to deal with more complex programs, we could try with all the inactive
patterns and then minimize akin to unsat core minimization in MaxSAT.

Table[ presents some experimental results. The programs are taken from the
SLAYER test suite, and so are biased towards control (rather than data), traver-
sal through linked lists, pointer arithmetic, etc. The table gives the results for
SLAYER without and with this simple pattern refinement scheme. The second
column indicates that these are all tests where SLAYER previously reported an
inconclusive result, in the time indicated in the third column. The fourth column
reports the result using the techniques described here, either Unsafe indicating
a concrete counter-example of memory safety was found, or Safe indicating that
a memory safety proof was found after abstraction refinement, or PossUnsafe
indicating a result that remains inconclusive. The fifth column reports the addi-
tional time taken either for feasibility checking or for diagnosis and refinement,
indicated as the sum of shape analysis and feasibility checking times.

7 Related Work

Counter-Example Guided Abstraction Refinement (CEGAR) inspired this work.
SLAYER’s implementation attempts to mirror the primary steps of the algorithm
without requiring weakest precondition or general conjunction. There have been
many implementations of CEGAR, though it is most popularly used with pred-
icate abstraction as in the SLAM tool [IL2]. Other implementations include one
by Clarke et al [I3] applied to hardware, the BLAST project [23], MAGIC [11]
and SATABS [15]. Obtaining the initial abstraction is not addressed by CE-
GAR, but there are several techniques, including existential abstraction [14] and
predicate abstraction [16L22].

Our feasibility checking algorithm is an implementation of bounded model
checking [7] and is most closely related to the CBMC [12] bounded model checker
for C programs. We implement bounded model checking as a single large problem
and leave the task of determining unrolling to the SMT solver. This differs from
CBMC in that CBMC does explicit unrolling.

Instead of bounding the depth of the search, it is possible to bound the breadth
of the search by using a symbolic or concolic testing technique. Tools like EXE [9],
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Table 1. SLAYER versus SLAYER + Feasibility Checking and Pattern Refinement

Test SLAYER SLAYER + Diagnosis
Disproved/Refined
Result Time Result Time
T2 n-19 PossUnsafe 0.031 Unsafe +0.078
T2 n-1b PossUnsafe 0.016 Unsafe +0.062
T2 n-34 PossUnsafe 0.031 Unsafe +0.140
T2 n-38 PossUnsafe 0.078 Unsafe +0.421
T2 p-38 PossUnsafe 0.515 Unsafe +12.230
T2 p-50 PossUnsafe 0.062 Unsafe +0.562
T2 p-62 PossUnsafe 0.078 Unsafe +0.546
changing truth value PossUnsafe 0.062 Unsafe +1.373
complicated safe PossUnsafe 0.140 PossUnsafe +89.279
complicated unsafe PossUnsafe 0.156 Unsafe +2.309
no loops unsafe PossUnsafe 0.016 Unsafe +0.140
simple loop unsafe PossUnsafe 0.109 Unsafe +0.078
very simple unsafe PossUnsafe 0.000 Unsafe +0.016
csll remove unsafe PossUnsafe 0.499 Unsafe +1.342
cleanup isochresourcedata PossUnsafe 0.796 Unsafe +23.306
array in formal PossUnsafe 0.016 Unsafe +0.094
deref NULL PossUnsafe 0.016 Unsafe +0.031
free free PossUnsafe 0.000 Unsafe +0.016
free local PossUnsafe 0.000 Unsafe +0.047
if pointer PossUnsafe 0.000 Unsafe +0.016
sized arrays PossUnsafe 0.016 Unsafe +0.078
store to 0 PossUnsafe 0.000 Unsafe +0.031
sll copy unsafe PossUnsafe 0.218 Unsafe +2.293
list of objects PossUnsafe 0.140 Safe +0.230+5.975

KLEE [8], DART [20], CUTE [32] and SAGE [21] are well tuned to rapidly search
large code bases looking for memory violations, assertion violations and arith-
metic bugs. They could benefit from the reduction in state-space that searching
an abstract transition system provides, but we preferred the guarantee that all
paths were searched up to a specific depth and thus did not use these techniques.

Instead of bounding the search space using an abstract transition system,
a symbolic testing engine could use a heuristic that guides it to reach certain
program points. Ma, et al [28] explore this approach but do not attempt to use
it to guide another analysis.

Our approach to refinement is complementary to the pattern discovery and
synthesis such as [3], but refinement is not the only way to improve the widening.
By adding more information to the abstraction, such as numerics [29,[30], the
proofs will become more likely to succeed. This does not preclude a refinement
phase, however. This would reduce the number of times refinement was needed,
but widening still loses data values and thus might lose information such as
sortedness of a fixed length list that our counter-example generation would know.
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An abstraction refinement technique applicable to shape analysis has been
proposed [27]. This technique refines the generalization of predicate abstrac-
tion [3I] used by TVLA [26]. Rather than being guided by counter-examples,
refinement is directed by either the syntax of an asserted formula with an inde-
terminate valuation, or by detection of precision loss by the abstraction during
the proof attempt, without an indication that the lost precision is relevant to
the proof failure.

A problem similar to feasibility checking has been investigated in the context
of TVLA [I9]. There, a bounded breadth-first search through program paths
and a bounded model finder for first-order logic is used, in contrast to out sin-
gle search encoded into SMT. It seems likely that this feasibility checker could
be combined with our diagnosis technique to also obtain an abstraction failure
diagnosis for shape analyses based on 3-valued logic.

8 Conclusion

We have presented a method for diagnosing abstraction failure in separation
logic-based analyses. To do this, we use a new algorithm to pinpoint where ab-
straction failed based on a concrete counter-example. We generate this concrete
counter-example with a bounded model checker that precisely analyzes abstract
transition systems. These techniques have been implemented and evaluated using
a pattern-based abstraction refinement scheme in SLAYER, a tool for automated
analysis of low-level C programs, and have become an invaluable aid in debug-
ging failed SLAYER runs and refining the definition of abstraction. With this
contribution, we look forward to finding new automatic refinement algorithms
that significantly improve the capacity and precision of shape analyses.
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Abstract. This paper helps to bridge the gap between (i) the use of
logic for specifying program semantics and performing program analy-
sis, and (ii) abstract interpretation. Many operations needed by an ab-
stract interpreter can be reduced to the problem of symbolic abstraction:
the symbolic abstraction of a formula ¢ in logic £, denoted by a(y),
is the most-precise value in abstract domain A that over-approximates
the meaning of ¢. We present a parametric framework that, given £
and A, implements @. The algorithm computes successively better over-
approximations of @(y). Because it approaches @(y) from “above”, if it
is taking too much time, a safe answer can be returned at any stage.

Moreover, the framework is“dual-use”: in addition to its applications
in abstract interpretation, it provides a new way for an SMT (Satisfiabil-
ity Modulo Theories) solver to perform unsatisfiability checking: given
@ € L, the condition @(¢) = L implies that ¢ is unsatisfiable.

1 Introduction

This paper concerns the connection between abstract interpretation and logic.
Like several previous papers [2987I2T12], our work is based on the insight that
many of the key operations needed by an abstract interpreter can be reduced to
the problem of symbolic abstraction [29).

Suppose that A is an abstract domain with concretization function v : A — C.
Given a formula ¢ in logic £, let [¢] denote the meaning of p—i.e., the set of
concrete states that satisfy . The symbolic abstraction of ¢, denoted by a(y),
is the best A value that over-approximates [¢]: @(y) is the unique value A € A
such that (i) [¢] € v(A), and (ii) for all A" € A for which [p] C y(A"), AC A’

This paper presents a new framework for performing symbolic abstraction,
discusses its properties, and presents several instantiations for various logics and
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abstract domains. In addition to providing insight on fundamental limits, the
new algorithm for & also performs well: our experiments show that it is 11.3
times faster than a competing method [29/2TI12], while finding dataflow facts
(i.e., invariants) that are equally precise at 76.9% of a program’s basic blocks,
better (tighter) at 19.8% of the blocks, and worse (looser) at only 3.3% of the
blocks.

Most-Precise Abstract Interpretation. Suppose that G = C é Ais a
Galois connection between concrete domain C and abstract domain A Then the
“best transformer” [7], or best abstract post operator for transition 7, denoted
by P/O;t[T] : A — A, is the most-precise abstract operator possible, given A, for
the concrete post operator for 7, Post[r] : C — C. P/o\st[T] can be expressed in
terms of «, 7y, and Post[7], as follows [7]: ﬁ)gt[T] = «a o Post[7] o . This equation
defines the limit of precision obtainable using abstraction .A. However, it is non-
constructive; it does not provide an algorithm, either for applying Post[r] or for
finding a representation of the function ﬁ)gt[T]. In particular, in many cases, the
application of v to an abstract value would yield an intermediate result—a set
of concrete states—that is either infinite or too large to fit in computer memory.

Symbolic Abstract Operations. The aforementioned problem with applying
~ can be side-stepped by working with symbolic representations of sets of states
(ie., using formulas in some logic £). The use of £ formulas to represent sets
of states is convenient because logic can also be used for specifying a language’s
concrete semantics; i.e., the concrete semantics of a transformer Post[r] can be
stated as a formula ¢, € L that specifies the relation between input states
and output states. However, the symbolic approach introduces a new challenge:
how to bridge the gap between £ and A [29]. In particular, we need to develop
(i) algorithms to handle interconversion between formulas of £ and abstract
values in 4, and (ii) symbolic versions of the operations that form the core
repertoire at the heart of an abstract interpreter.

1. 5(A4): Given an abstract value A € A, the symbolic concretization of A,
denoted by 7(A), maps A to a formula ¥(A) such that A and 7(A) represent
the same set of concrete states (i.e., v(A) = [Y(A)]).

2. a(y): Given ¢ € L, the symbolic abstraction of ¢, denoted by a(y), maps ¢
to the best value in A that over-approximates [¢] (i.e., a(p) = a([¢])).

3. A@le[(p](fl): Givenyp € Land A € A, Agu?le[go](A) returns the best value
in A that over-approximates the meaning of ¢ in concrete states described
by A. That is, A@ne[@] (A) equals a([¢] Nv(A4)).

4. Creation of a representation of ﬁ)gt[T]I Some intraprocedural [15] and many
interprocedural [3222] dataflow-analysis algorithms operate on instances of
an abstract datatype 7 that (i) represents a family of abstract functions
(or relations), and (ii) is closed under composition and join. By “creation
of a representation of Post [7]”, we mean finding the best instance in 7 that
over-approximates Post[7].

Several other symbolic abstract operations are discussed in g6
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Experience shows that, for most abstract domains, it is easy to write a 7
function (item [) [29]. The other three operations are inter-related. & (item [2))
can be reduced to Assume (item [3]) as follows: a(y) = Agu\me[go](—l—). Ttem [ can
be reduced to item[2 as follows: The concrete post operator Post[7] corresponds
to a formula p, € £ that expresses the transition relation between input states
and output states. An instance of abstract datatype 7 in item [ represents
an abstract-domain element that denotes an over-approximation of [¢.]. &(pr)
computes the best instance in 7 that over-approximates [¢-].

This paper presents a parametric framework that, for some abstract domains,
is capable of performing most-precise abstract operations in the limit. Because
the method approaches its result from “above”, if the computation takes too
much time, it can be stopped to yield a safe result—i.e., an over-approximation
to the best abstract operation—at any stage. Thus, the framework provides
a tunable algorithm that offers a performance-versus-precision trade-off. We
replace “” 7 with “77” to denote over-approximating operators—e.g., a(y),

Assume[g](A), and Post[r](A)[1

Key Insight. In [35], we showed how Stalmarck’s method [33], an algorithm for
satisfiability checking of propositional formulas, can be explained using abstract-
interpretation terminology—in particular, as an instantiation of a more general
algorithm, Stalmarck[A], that is parameterized by a (Boolean) abstract domain
A and operations on A. The algorithm that goes by the name “Stalmarck’s
method” is one instantiation of Stalmarck[.A] with a certain abstract domain.

Abstract value A is a semantic reduction [7] of A with respect to ¢ if (i) v(A")N
[¢] = v(A) N [g], and (ii) A" C A. At each step, Stalmarck[A] holds some
A € A; each of the so-called “propagation rules” employed in Stalmarck’s method
improves A by finding a semantic reduction of A with respect to .

The key insight of the present paper is that there is a connection between
Stalmarck[A] and & 4. In essence, to check whether a formula ¢ is unsatisfiable,
Stalmarck[A] computes & 4(p) and performs the test “a4(p) = L 47 If the test
succeeds, it establishes that [¢] C v(L4) = 0, and hence that ¢ is unsatisfiable.

In this paper, we present a generalization of Stalmarck’s algorithm to richer
logics, such as quantifier-free linear rational arithmetic (QF LRA) and quantifier-
free bit-vector arithmetic (QF BV). Instead of only using a Boolean abstract
domain, the generalized method of this paper also uses richer abstract domains,
such as the polyhedral domain [8] and the bit-vector affine-relations domain [12].
By this means, we obtain algorithms for computing & for these richer abstract
domains. The bottom line is that our algorithm is “dual-use”: (i) it can be used
by an abstract interpreter to compute & (and perform other symbolic abstract
operations), and (ii) it can be used in an SMT (Satisfiability Modulo Theories)
solver to determine whether a formula is satisfiable.

! Post [7] is used by Graf and Saidi [I4] to mean a different state transformer from the
one that POSt[T] denotes in this paper. Throughout the paper, we use Post [7] solely
to mean an over-approximation of Post[r]; thus, our notation is not ambiguous.
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Because we are working with more expressive logics, our algorithm uses sev-
eral ideas that go beyond what is used in either Stalmarck’s method [33] or
in Stalmarck[A] [35]. The methods described in this paper are also quite dif-
ferent from the huge amount of recent work that uses decision procedures in
program analysis. It has become standard to reduce program paths to formu-
las by encoding a program’s actions in logic (e.g., by symbolic execution) and
calling a decision procedure to determine whether a given path through the pro-
gram is feasible. In contrast, the techniques described in this paper adopt—and
adapt—the key ideas from Stalmarck’s method to create new algorithms for
key program-analysis operations. Finally, the methods described in this paper
are quite different from previous methods for symbolic abstraction [29/37I21I12],
which all make repeated calls to an SMT solver.

Contributions. The contributions of the paper can be summarized as follows:

— We present a connection between symbolic abstraction and Stalmarck’s
method for checking satisfiability (§2)).

— We present a generalization of Stalmarck’s method that lifts the algorithm
from propositional logic to richer logics (§3]).

— We present a new parametric framework that, for some abstract domains, is
capable of performing most-precise abstract operations in the limit, includ-
ing a(y) and Agu\me[go](A), as well as creating a representation of P/ogt[r].
Because the method approaches most-precise values from “above”, if the
computation takes too much time it can be stopped to yield a sound result.

— We present instantiations of our framework for two logic/abstract-domain
pairs: QF BV/KS and QF LRA /Polyhedra, and discuss completeness (§4]).

— We present experimental results that illustrate the dual-use nature of our
framework. One experiment uses it to compute abstract transformers, which
are then used to generate invariants; another experiment uses it for checking
satisfiability (§5).

6] discusses other symbolic operations. {7 discusses related work. Proofs can be
found in [36].

2 Overview

We now illustrate the key points of our Stalmarck-inspired technique using two
examples. The first shows how our technique applies to computing abstract trans-
formers; the second describes its application to checking unsatisfiability.

The top-level, overall goal of Stalmarck’s method can be understood in terms
of the operation a(%). However, Stalmarck’s method is recursive (counting down
on a parameter k), and the operation performed at each recursive level is the
slightly more general operation Assume[t](A). Thus, we will discuss Assume.

Example 1. Consider the following x86 assembly code
L1: cmp eax, 2 L2: jz L4 L3:

The instruction at L1 sets the zero flag (zf) to true if the value of register eax
equals 2. At instruction L2, if zf is true the program jumps to location L4 (not
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seen in the code snippet) by updating the value of the program counter (pc)
to L4; otherwise, control falls through to program location L3. The transition
formula that expresses the state transformation from the beginning of L1 to the
beginning of L4 is thus ¢ = (zf < (eax = 2)) A (pc’ = ITE(z£f,1L4,1L3)) A (pc’ =
L4) A (eax’ = eax). (p is a QF BV formula.)

Let A be the abstract domain of affine relations over the x86 registers. Let
Ap = T4, the empty set of affine constraints over input-state and output-state
variables. We now describe how our algorithm creates a representation of the A
transformer for ¢ by computing Assume[](Ap). The result represents a sound
abstract transformer for use in affine-relation analysis (ARA) [27I21T2]. First,
the ITE term in ¢ is rewritten as (zf =(pc’ = L4)) A (-zf =(pc’ = L3)). Thus,
the transition formula becomes ¢ = (zf < (eax = 2)) A (zf =(pc’ = L4)) A
(—zf =(pc’ =L3)) A (pc’ =L4) A (eax’ = eax).

Next, propagation rules are used to compute a semantic reduction with respect
to ¢, starting from Ay. The main feature of the propagation rules is that they
are “local”; that is, they make use of only a small part of formula ¢ to compute
the semantic reduction.

1. Because ¢ has to be true, we can conclude that each of the conjuncts of ¢
are also true; that is, zf < (eax = 2), zf =(pc’ = L4), —zf =(pc’ = L3),
pc’ = L4, and eax’ = eax are all true.

2. Suppose that we have a function pa 4 such that for a literal I € £, A’ =
pnaa(l) is a sound overapproximation of a(l). Because the literal pc’ = L4
is true, we conclude that A’ = pa4(pc’ = L4) = {pc’ — L4 = 0} holds, and
thus 47 = Ag M A’ = {pc’ — L4 = 0}, which is a semantic reduction of Ayg.

3. Similarly, because the literal eax’ = eax is true, we obtain Ay = A; M
puag(eax’ = eax) = {pc’ — L4 = 0, eax’ — eax = 0}.

4. We know that —zf = (pc’ = L3). Furthermore, pa4(pc’ = L3) = {pc’—L3 =
0}. Now {pc’—L3 = 0}MAs is L, which implies that [pc’ = L3]Ny({pc’'—L4 =
0,eax’ — eax = 0}) = (). Thus, we can conclude that —zf is false, and hence
that zf is true. This value of zf, along with the fact that zf < (eax = 2)
is true, enables us to determine that A” = ua4(eax = 2) = {eax — 2 = 0}
must hold. Thus, our final semantic-reduction step produces Az = A,MA" =
{pc’ — L4 =0,eax’ — eax = 0,eax — 2 = 0}.

Abstract value As is a set of affine constraints over the registers at L1 (input-
state variables) and those at L4 (output-state variables), and can be used for
affine-relation analysis using standard techniques (e.g., see [19] or [12 §5]). O

The above example illustrates how our technique propagates truth values to
various subformulas of ¢. The process of repeatedly applying propagation rules
to compute Assume is called 0-assume. The next example illustrates the Dilemma
Rule, a more powerful rule for computing semantic reductions.

Ezample 2. Let £ be QF LRA, and let A be the polyhedral abstract domain [g].
Consider the formula ) = (ag < bo) A (ap < ¢o) A (b < a1 Vg < ar) A (a1 <
b1) A (a1 < c1) A(b1 < ag Vea < ag) A(az < ag) € L (see Fig. [[[a)). Suppose
that we want to compute Assume[t)](T 4).
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(a) (b)
Fig. 1. (a) Inconsistent inequalities in the (unsatisfiable) formula used in Ex. 2l (b)
Application of the Dilemma Rule to abstract value (Po, Ag). The dashed arrows from
(P;, A;) to (P, A}) indicate that (P}, A}) is a semantic reduction of (P;, 4;).

To make the communication between the truth values of subformulas
and the abstract value explicit, we associate a fresh Boolean variable with
each subformula of ¢ to give a set of integrity constraints Z. In this case,
Iw = {u1 =4 /\§:2 U, UD <:>(a0 < bo), us <:>(a0 < C())7 Uy <:>(UQ vV 7.141())7 Us <:>((11 <
bl), Ug <:>(a1 < 01), ur <:>(U11 vV ulg), us <:>(a2 < (l())7 Ug <:,‘>(b0 < a1)7 u10 <:>(CO <
a1),u11 < (b1 < az),u12 <(c1 < az)}. The integrity constraints encode the struc-
ture of ¢ via the set of Boolean variables U = {u1, ua, ..., u12}. When Z is used
as a formula, it denotes the conjunction of the individual integrity constraints.

We now introduce an abstraction over U; in particular, we use the Cartesian
domain P = (4 — {0, 1,*}), in which * denotes “unknown”, and each element
in P represents a set of assignments in P(U — {0,1}). We denote an element of
the Cartesian domain as a mapping, e.g., [u; — 0,u2 — 1,ug — %], or [0,1, %]
if uy, uz, and uz are understood. Tp is the element Au.x. The “single-point”
partial assignment in which variable v is set to b is denoted by Tp[v — b].

The variable u; € U represents the root of 1; consequently, the single-point
partial assignment Tp[u; — 1] corresponds to the assertion that v is satisfiable.
In fact, the models of 3 are closely related to the concrete values in [Z] N
Y(Tp[ur — 1]). For every concrete value in [Z] N v(Tplus — 1]), its projection
onto {a;,bi,c; | 0 < i <1} U {az} gives us a model of ¢; that is, [¢] = ([Z] N
Y(Tplur = 1))l ({a;,bi,esl0<i<1}U{as})- By this means, the problem of computing
Assumel[t)](T 4) is reduced to that of computing Assume[Z]((Tp[u1 — 1], T 4)),
where (Tplus — 1], T 4) is an element of the reduced product of P and A.

Because w; is true in Tplu; — 1], the integrity constraint u1<:>/\§=2 u;
implies that wg...us are also true, which refines Tplu; — 1] to Py =
[1,1,1,1,1,1,1,1, %, %, %, *]. Because ug is true and us <(ag < bg) € Z, T 4 can be
refined using pa4(ap < by) = {ap—bo < 0}. Doing the same for us, us, ug, and us,
refines T 4 to Ag = {ao—bo <0,a0—cog < 0,a1—b1 <0,a1—c1 <0,a3—ag < 0}
These steps refine (Tp[u; — 1], T 4) to (Po, Ag) via 0-assume.

To increase precision, we need to use the Dilemma Rule, a branch-and-merge
rule, in which the current abstract state is split into two (disjoint) abstract
states, O-assume is applied to both abstract values, and the resulting abstract
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values are merged by performing a join. The steps of the Dilemma Rule are
shown schematically in Fig. [[(b) and described below.
In our example, the value of ug is unknown in Py. Let B € P be Tplug — 0];

then B, the abstract complement of B, is Tp|ug — 1]. Note that v(B)Ny(B) = 0,
and v(B) U~ (B) = v(T). The current abstract value (P, Ao) is split into
(PhAl) = (P07A0) I (B7 T) and (P27A2) = (P(), Ao) [ (B, T)

Now consider 0-assume on (P1, A1). Because ug is false, and uy is true, we can
conclude that wuig has to be true, using the integrity constraint us < (ug V u1p).
Because u1g holds and w10 <(co < a1) € Z, Ay can be refined with the constraint
co — a1 < 0. Because ag — ¢y < 0 € Ay, agp — a1 < 0 can be inferred. Similarly,
when performing 0-assume on (Ps, A3), ag — a1 < 0 is inferred. Call the abstract
values computed by 0-assume (P], A}) and (P4, A}), respectively. At this point,
the join of (P;, A}) and (Py, A%) is taken. Because ap — a1 < 0 is present in both
branches, it is retained in the join. The resulting abstract value is (Ps, A3) =
(1,1,1,1,1,1,1, 1, %, %, %, %], {ag — bp < 0,a9 — ¢y < 0,a1 — b1 < 0,a1 —¢c1 <
0,a2 —ag < 0,ap —ay < 0}. Note that although P; equals Py, Az is strictly more
precise than Ay (i.e., A3 T Ap), and hence (Ps, A3) is a semantic reduction of
(Po, Ao) with respect to 1.

Now suppose (Ps, A3) is split using wuj;. Using reasoning similar to that
performed above, a; — as < 0 is inferred on both branches, and hence so is
ag — az < 0. However, ag — as < 0 contradicts as — ag < 0; consequently, the ab-
stract value reduces to (Lp, L 4) on both branches. Thus, Assume[i)](T 4) = LA,
and hence 1) is unsatisfiable. In this way, Assume instantiated with the polyhe-
dral domain can be used to decide the satisfiability of a QF LRA formula. O

The process of repeatedly applying the Dilemma Rule is called 1-assume. That
is, repeatedly some variable u € U is selected whose truth value is unknown,
the current abstract value is split using B = Tplu + 0] and B = Tplu — 1],
0-assume is applied to each of these values, and the resulting abstract values
are merged via join (Fig. [di(b)). Different policies for selecting the next variable
on which to split can affect how quickly an answer is found; however, any fair
selection policy will return the same answer. The efficacy of the Dilemma Rule
is partially due to case-splitting; however, the real power of the Dilemma Rule
is due to the fact that it preserves information learned in both branches when a
case-split is “abandoned” at a join point.

The generalization of the l-assume algorithm is called k-assume: repeatedly
some variable u € U is selected whose truth value is unknown, the current
abstract value is split using B = Tp[u+— 0] and B = Tp[u +— 1]; (k-1)-assume
is applied to each of these values; and the resulting values are merged via join.
However, there is a trade-off: higher values of k give greater precision, but are
also computationally more expensive.

For certain abstract domains and logics, Assume[t)](T 4) is complete—i.e.,
with a high-enough value of k for k-assume, Assume[)](T 4) always computes
the most-precise A value possible for ). However, our experiments show that
Assumel[t)](T 4) has very good precision with k = 1 (see §5)—which jibes with
the observation that, in practice, with Stalmarck’s method for propositional
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Algorithm 1. Assume|y](A)

1 (Z,u,) < integrity(y) Algorithm 3. k-assume[Z]((P, A))
2 P+ Tplu, — 1]
5 (P, A) ¢ keassume[Z]((P, A)) : re(l;f,az,) — (P.A)
4 return A 3 foreach u € U such that P(u) = x do
4 (P(), Ao) — (P, A)
Algorithm 2. O-assume([Z|((P, A)) (B,B) + (Tplurs 0], Tplurs 1))
repeat 6 (Pr, A1) + (Po, Ao) (B, T)
(P, A") + (P, A) 7 (P2, A2) + (Po, Ao) (B, T)
foreach J € Z do 8 (P, A}) « (k-1)-assume[Z]((Pr1, A1))
if J has the form u<{ then 9 (Py, Ab) + (k—1)-assume[Z]((P2, A2))

(P, A) + LeafRule(/, (P, 4)) 10 (P,A)« (P{,A})U (P3, Ab)
else 11 until (P, A) = (P', A")) || timeout
(P, A) < InternalRule(J, (P, A)) 12 return (P, A)
until ((P, A) = (P, A")) || timeout
return (P, A)

© 00 N O Uk W N

validity (tautology) checking “a formula is either [provable with k& = 1] or not a
tautology at alll” [18| p. 227].

3 Algorithm for Assume|[p](A)

This section presents our algorithm for computing Assume|](A) € A, for ¢ € L.
The assumptions of our framework are as follows:

1. There is a Galois connection C & A between A and concrete domain C.

2. There is an algorithm to perform the join of arbitrary elements of A.

3. Given a literal [ € £, there is an algorithm pua to compute a safe (overap-
proximating) “micro-&”—i.e., A" = pa(l) such that v(A") D [I].

4. There is an algorithm to perform the meet of an arbitrary element of A with
an arbitrary element of {ua(l) | ¢ € literal(L)}.

Note that A is allowed to have infinite descending chains; because Assume works
from above, it is allowed to stop at any time, and the value in hand is an over-
approximation of the most precise answer.

Alg. [ presents the algorithm that computes Assume[p](A) for ¢ € £ and
A € A. Line () calls the function integrity, which converts ¢ into integrity
constraints Z by assigning a fresh Boolean variable to each subformula of ¢,
using the rules described in Fig. 2l The variable u, corresponds to formula ¢.
We use U to denote the set of Boolean variables created when converting ¢ to Z.
Alg. [M also uses a second abstract domain P, each of whose elements represents
a set of Boolean assignments in P(U4 — {0, 1}). For simplicity, in this paper P
is the Cartesian domain (U — {0,1,%}),, but other more-expressive Boolean
domains could be used [35].

On line @) of Alg. [0 an element of P is created in which u,, is assigned the
value 1, which asserts that ¢ is true. Alg. [l is parameterized by the value of k
(where k > 0). Let vz((P, A)) denote y((P, A)) N [Z]. The call to k-assume on
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p:=1 £ € literal(L) © 1= 10D P2
EAF INTERNAL
u, Sl €7 Up < (Up, Op Up,) €T
Fig. 2. Rules used to convert a formula ¢ € £ into a set of integrity constraints Z. op
represents any binary connective in £, and literal(£) is the set of atomic formulas and
their negations.

line (@) returns (P, A), which is a semantic reduction of (P, A) with respect to Z;
that is, v2((P, A)) = vz((P, A)) and (P, A) T (P, A). In general, the greater the
value of k, the more precise is the result computed by Alg.[Il The next theorem
states that Alg. [[l computes an over-approximation of Assume[p](A).

Theorem 1 ([36]). For all p € £, A € A, if A = Assume|g](A), then y(A) D
[¢] N y(A), and A C A. |
Alg.Blpresents the algorithm to compute k-assume, for k¥ > 1. Given the integrity
constraints Z, and the current abstract value (P, A), k-assume[Z]((P, A)) returns
an abstract value that is a semantic reduction of (P, A) with respect to Z. The
crux of the computation is the inner loop body, lines [@)—(I0), which implements
an analog of the Dilemma Rule from Stalmarck’s method [33].

The steps of the Dilemma Rule are shown schematically in Fig. [(b). At
line @) of Alg. Bl a Boolean variable u whose value is unknown is chosen. B =
Tplu +— 0] and its complement B = Tplu — 1] are used to split the current
abstract value (P, Ag) into two abstract values (P, A1) = (P, A) M (B, T) and
(P2, A3) = (P,A)M (B, T), as shown in lines (@) and ().

The calls to (k-1)-assume at lines (§) and (@) compute semantic reductions
of (P1, A1) and (P, A2) with respect to Z, which creates (P], A}) and (Pj, A}),
respectively. Finally, at line (I0) (Pf, A}) and (P, A%) are merged by performing
a join. (The result is labeled (P3, A3) in Fig. [di(b).)

The steps of the Dilemma Rule (Fig. [[(b)) are repeated until a fixpoint is
reached, or some resource bound is exceeded. The next theorem states that
k-assume[Z]((P, A)) computes a semantic reduction of (P, A) with respect to Z.

Theorem 2 ([36]). For all P € P and A € A, i (PLA) =
k-assume[Z]((P, A)), then vz((P', A")) = vz((P, A)) and (P',A") C (P,A). O

Alg. 2l describes the algorithm to compute 0O-assume: given the integrity con-
straints Z, and an abstract value (P, A), 0-assume[Z]((P, A)) returns an abstract
value (P’, A’) that is a semantic reduction of (P, A) with respect to Z. It is
in this algorithm that information is passed between the component abstract
values P € P and A € A via propagation rules, like the ones shown in Figs. [
and @ In lines @)—([) of Alg.[2] these rules are applied by using a single integrity
constraint in Z and the current abstract value (P, A).

Given J € Z and (P, A), the net effect of applying any of the propagation
rules is to compute a semantic reduction of (P, A) with respect to J € Z. The
propagation rules used in Alg. 2] can be classified into two categories:
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J = (U1 <=>(UQ \/U3)) (=4 P(U1) =0 ORrl
(Pl_l T[uz — 0,us — 0],14)
J = (U1 <:>('LL2 /\'LLg)) cT P(u1) =

1
AND1
(Pﬂ T[u2 — 1, ug — 1],A)

Fig. 3. Boolean rules used by Alg. Plin the call InternalRule(J, (P, A))

J=(uel)el Pu)=1 J=(usl)el P(u)=0
_ PTOA-1 . PTOA-0
(P, AT paa(l)) (P, AN paa(-l))
J = V4 A ANpaa(l) =L
(uet) € paa(l) = La ATOP-0
(PN T[uw0],A)

Fig. 4. Rules used by Alg. Plin the call LeafRule(J, (P, A))

1. Rules that apply on line (@) when J is of the form p<(q op r), shown in
Fig. Bl Such an integrity constraint is generated from each internal subfor-
mula of formula . These rules compute a non-trivial semantic reduction of
P with respect to J by only using information from P. For instance, rule
AND1 says that if J is of the form p<(¢ Ar), and p is 1 in P, then we can
infer that both ¢ and r must be 1. Thus, PN T[g — 1,7 — 1] is a semantic
reduction of P with respect to J. (See Ex. [ step[l)

2. Rules that apply on line (&) when J is of the form u < ¢, shown in Fig. [l Such
an integrity constraint is generated from each leaf of the original formula ¢.
This category of rules can be further subdivided into
(a) Rules that propagate information from abstract value P to abstract value

A; viz., rules PTOA-0 and PTOA-1. For instance, rule PTOA-1 states
that given J = u< 1, and P(u) = 1, then A M pa(l) is a semantic
reduction of A with respect to J. (See Ex.[I] steps[2and Bl)

(b) Rule ATOP-0, which propagates information from abstract value A to
abstract value P. Rule ATOP-0 states that if J = (u < ¢) and AMua(l) =
1L 4, then we can infer that u is false. Thus, the value of P11 T[u+— 0] is
a semantic reduction of P with respect to J. (See Ex.[I] step )

Alg.Rlrepeatedly applies the propagation rules until a fixpoint is reached, or some
resource bound is reached. The next theorem states that 0-assume computes a
semantic reduction of (P, A) with respect to Z.

Theorem 3 ([36]). For all P € P,A € A, if (P, A") = 0-assume[Z]((P, A)),
then vz ((P', A")) =~vz((P, A)) and (P',A") C (P, A). O
4 Instantiations

In this section, we describe instantiations of our framework for two logical-
language/abstract-domain pairs: QF BV/KS and QF LRA/Polyhedra. We say
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that an Assume algorithm is complete for a logic £ and abstract domain A if it

is guaranteed to compute the best value Agu\me[cp](A) for p € L and A € A.
We give conditions under which the two instantiations are complete.

Bitvector Affine-Relation Domain (QF BV /KS). King and Sgndergaard
[21] gave an algorithm for & for an abstract domain of Boolean affine relations.
Elder et al. [I2] extended the algorithm to arithmetic modulo 2% (i.e., bitvectors
of width w). Both algorithms work from below, making repeated calls on a SAT
solver (King and Sgndergaard) or an SMT solver (Elder et al.), performing joins
to create increasingly better approximations of the desired answer. We call this
family of domains KS, and call the (generalized) algorithm @%S.

Given a literal [ € QF BV, we compute paks(l) by invoking a;s (). That is,

T

we harness aKS in service of Assumegsg, but only for paks, which means that
T

Qg is only applied to literals. If an invocation of a;s does not return an answer
within a specified time limit, we use Tksg.

Alg. [Mis not complete for QF BV/KS. Let x be a bitvector of width 2, and
let ¢ = (x #0Ax # 1Az # 2). Thus, Agu\me[go](TKs) ={z -3 = 0}.
The KS domain is not expressive enough to represent disequalities. For instance,
pa(x # 0) equals Tkg. Because Alg. [Tlconsiders only a single integrity constraint
at a time, we get Assume|y](Tks) = pd(x # 0)Mpua(zr # 1)Nua(z #2) = Tks.

The current approach can be made complete for QF BV/KS by making

0-assume consider multiple integrity constraints during propagation (in the limit,
having to call ua(yp)). For the affine subset of QF BV, an alternative approach
would be to perform a 2%-way split on the KS value each time a disequal-
ity is encountered, where w is the bit-width—in effect, rewriting  # 0 to
(x =1V =2Va=3). Furthermore, if there is a yAssume operation, then the
second approach can be extended to handle all of QF BV: pAssume[¢](A) would
be used to take the current KS abstract value A and a literal ¢, and return an
over-approximation of Assume[¢](A). All these approaches would be prohibitively
expensive. Our current approach, though theoretically not complete, works very
well in practice (see §0).
Polyhedral Domain (QF LRA /Polyhedra). The second instantiation that
we implemented is for the logic QF LRA and the polyhedral domain [8]. Because
a QF LRA disequality ¢ # 0 can be normalized to (¢t < 0Vt > 0), every literal [ in
a normalized QF LRA formula is merely a half-space in the polyhedral domain.
Consequently, i@polyhedra(l) is exact, and easy to compute. Furthermore, because
of this precision, the Assume algorithm is complete for QF LRA/Polyhedra. In
particular, if & = ||, then k-assume is sufficient to guarantee that Assume[y](A)
returns Agu\me[go](A). For polyhedra, our implementation uses PPL [28].

The observation in the last paragraph applies in general: if ua4(l) is exact
for all literals [ € £, then Alg. [ is complete for logic £ and abstract domain .A.

5 Experiments

Bitvector Affine-Relation Analysis (ARA). We compare two methods for
computing the abstract transformers for the KS domain for ARA [21]:
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Prog. Measures of size @' Performance
name instrs CFGs BBs brs WPDS t/o post* query

finger 532 18 298 48 1109 4 0.266 0.015
subst 1093 16 609 74 204.4 4 0.344 0.016
label 1167 16 573103 1489 2 0.344 0.032
chkdsk 1468 18 787119 384.4 16 0.219 0.031
convert 1927 38 1013 161  289.9 9 1.047 0.062
route 1982 40 931 243  562.9 14 1.281 0.046
logoff 2470 46 1145 306 621.1 16 1.938 0.063
setup 4751 67 1862 589 1524.7 64 0.968 0‘047”

Fig. 5. WPDS experiments (@'). The columns show the number of instructions (instrs);
the number of procedures (CFGs); the number of basic blocks (BBs); the number of
branch instructions (brs); the times, in seconds, for WPDS construction with a;s
weights, running post”, and finding one-vocabulary affine relations at blocks that end
with branch instructions (query). The number of basic blocks for which a¢-weight
generation timed out is listed under “t/0”.

— the a'-based procedure described in Elder et al. [12].
— the a-based procedure described in this paper (“a‘”), instantiated for KS.

Our experiments were designed to answer the following questions:

1. How does the speed of &+ compare with that of &'?
2. How does the precision of &* compare with that of a'?

To address these questions, we performed ARA on x86 machine code, computing
affine relations over the x86 registers. Our experiments were run on a single core
of a quad-core 3.0 GHz Xeon computer running 64-bit Windows XP (SP2),
configured so that a user process has 4GB of memory. We analyzed a corpus of
Windows utilities using the WALi [20] system for weighted pushdown systems
(WPDSs). For the baseline a'-based analysis we used a weight domain of a'-
generated KS transformers. The weight on each WPDS rule encodes the KS
transformer for a basic block B of the program, including a jump or branch to a
successor block. A formula ¢p is created that captures the concrete semantics of
B, and then the KS weight for B is obtained by performing a'(pg) (cf. Ex. ).
We used EWPDS merge functions [24] to preserve caller-save and callee-save
registers across call sites. The post” query used the FWPDS algorithm [23].

Fig. [l lists several size parameters of the examples (number of instructions,
procedures, basic blocks, and branches) along with the times for constructing
abstract transformers and running post*E Col. 6 of Fig. Bl shows that the calls
to @' during WPDS construction dominate the total time for ARA.

Each call to @' involves repeated invocations of an SMT solver. Although the
overall time taken by @' is not limited by a timeout, we use a 3-second timeout
for each invocation of the SMT solver (as in Elder et al. [12]). Fig. [l lists the
number of such SMT solver timeouts for each benchmark. In case the invocation

2 Due to the high cost of the &-based WPDS construction, all analyses excluded the
code for libraries. Because register eax holds the return value from a call, library func-
tions were modeled approximately (albeit unsoundly, in general) by “havoc(eax)”.
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Fig. 6. (a) Performance: &* vs. a'. (b) Precision: % of control points at which &* has
as good or better precision as @'; the lighter-color lower portion of each bar indicates
the % of control points at which the precision is strictly greater for a*.
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Fig. 7. (a) Log-log scatter plot of transformer-construction time. (b) Semilog plot of
73 vs. &* on x4 formulas.

of the SMT solver times out, &' is forced to return Tkg in order to be sound.
(Consequently, it is possible for at to return a more precise answer than a'.)

The setup for the a‘*-based analysis is the same as the baseline a'-based
analysis, except that we call a* when calculating the KS weight for a basic block.
We use l-assume in this experiment. Each basic-block formula ¢p is rewritten
to a set of integrity constraints, with ITE-terms rewritten as illustrated in Ex.[Il
The priority of a Boolean variable is its postorder-traversal number, and is used
to select which variable is used in the Dilemma Rule. We bound the total time
taken by each call to &t to a fixed timeout T. Note that even when the call to
at times out, it can still return a sound non-Tkg value. We ran &t using T = 1
sec, T = 0.4 secs, and T = 0.1 secs.
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Fig. [(a) shows the normalized time taken for WPDS construction when us-
ing a* with T = 1 sec, T = 0.4 secs, and T = 0.1 secs. The running time is
normalized to the corresponding time taken by a'; lower numbers are better.
WPDS construction using &+ with T = 1 sec. is about 11.3 times faster than a'
(computed as the geometric mean), which answers question [II

Decreasing the timeout T makes the &+ WPDS construction only slightly
faster: on average, going from T = 1 sec. to T = .4 secs. reduces WPDS construc-
tion time by only 17% (computed as the geometric mean). To understand this
behavior better, we show in Fig. [[a) a log-log scatter-plot of the times taken by
a' versus the times taken by a* (with T = 1 sec.), to generate the transformers
for each basic block in the benchmark suite. As shown in Fig. [[(a), the times
taken by a* are bounded by 1 second. (There are a few calls that take more
than 1 second; they are an artifact of the granularity of operations at which we
check whether the procedure has timed out.) Most of the basic blocks take less
than 0.4 seconds, which explains why the overall time for WPDS construction
does not decrease much as we decrease T in Fig. (a). We also see that the &'
times are not bounded, and can be as high as 50 seconds.

To answer question 2l we compared the precision of the WPDS analysis when
using ot with T equal to 1, 0.4, and 0.1 seconds with the precision obtained using
a'. In particular, we compare the affine relations (i.e., invariants) computed by
the ar*-based and @'-based analyses for each control point—i.e., the beginning of
a basic block that ends with a branch. Fig. [6[(b) shows the percentage of control
points for which the at-based analysis computes a better (tighter) or equally
precise affine relation. On average, when using T= 1 sec, a*-based analysis com-
putes an equally precise invariant at 76.9% of the control points (computed as
the arithmetic mean). Interestingly, the at*-based analysis computes an answer
that is more precise compared to that computed by the &'-based analysis. That
is not a bug in our implementation; it happens because a' has to return Tkg
when the call to the SMT solver times out. In Fig. Bl(b), the lighter-color lower
portion of each bar shows the percentage of control points for which a‘-based
analysis provides strictly more precise invariants when compared to a'-based
analysis; on average, o*-based analysis is more precise for 19.8% of the control
points (arithmetic mean, for T = 1 second). a*-based analysis is less precise at
only 3.3% of the control points. Furthermore, as expected, when the timeout for
at is reduced, the precision decreases.

Satisfiability Checking. The formula used in Ex. 2l is just one instance of a
family of unsatisfiable QF LRA formulas [25]. Let x4 = (aq < ag) A /\glz_o1 ((a; <
bi)A(ai < ¢i) AN((bi < aix1) V(¢ < aix1))). The formula ¢ in Ex. 2lis x2; that is,
the number of “diamonds” is 2 (see Fig.[l(a)). We used the QF LRA /Polyhedra
instantiation of our framework to check whether a(yq) = L for d = 1...25
using l-assume. We ran this experiment on a single processor of a 16-core 2.4
GHz Intel Zeon computer running 64-bit RHEL Server release 5.7. The semilog
plot in Fig. [[(b) compares the running time of &* with that of Z3, version
3.2 [I1]. The time taken by Z3 increases exponentially with d, exceeding the
timeout threshold of 1000 seconds for d = 23. This corroborates the results of a
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similar experiment conducted by McMillan et al. [25], where the reader can also
find an in-depth explanation of this behavior.

On the other hand, the running time of at increases linearly with d taking
0.78 seconds for d = 25. The cross-over point is d = 12. In Ex. B we saw
how two successive applications of the Dilemma Rule suffice to prove that v is
unsatisfiable. That explanation generalizes to x4: d applications of the Dilemma,
Rule are sufficient to prove unsatisfiability of x4. The order in which Boolean
variables with unknown truth values are selected for use in the Dilemma Rule has
no bearing on this linear behavior, as long as no variable is starved from being
chosen (i.e., a fair-choice schedule is used). Each application of the Dilemma
Rule is able to infer that a; < a;41 for some i.

We do not claim that &* is better than mature SMT solvers such as Z3. We do
believe that it represents another interesting point in the design space of SMT
solvers, similar in nature to the GDPLL algorithm [25] and the k-lookahead
technique used in the DPLL(L) algorithm [4].

6 Applications to Other Symbolic Operations

The symbolic operations of ¥ and @ can be used to implement a number of other
useful operations, as discussed below. In each case, over-approximations result
if & is replaced by a.

— The operation of containment checking, A1 C As, which is needed by anal-
ysis algorithms to determine when a post-fixpoint is attained, can be imple-
mented by checking whether a(5(A1) A =7(42)) equals L.

— Suppose that there are two Galois connections G; = C <Z——11> A; and

G, = C <Z_—2> A, and one wants to work with the reduced product of

A; and As [277 §10.1]. The semantic reduction of a pair (A;, As) can be per-
formed by letting ¥ be the formula 71 (A1) A 72(As2), and creating the pair
(@1(v), Qa(1)).

— Given A; € Ay, one can find the most-precise value As € A, that over-
approximates A; in Ay as follows: Ay = a2(71(A1)).

— Given a loop-free code fragment I, consisting of one or more blocks of pro-
gram statements and conditions, one can obtain a representation of its best
transformer by symbolically executing F' to obtain a transition formula ¢,
and then performing a(yr).

7 Related Work

Extensions of Stalmarck’s Method. Bjork [3] describes extensions of
Stalmarck’s method to first-order logic. Like Bjork, our work goes beyond the
classical setting of Stalmarck’s method [33] (i.e., propositional logic) and ex-
tends the method to more expressive logics, such as QF LRA or QF BV. How-
ever, Bjork is concerned solely with validity checking, and—compared with the
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propositional case—the role of abstraction is less clear in his method. Our algo-
rithm not only uses an abstract domain as an explicit datatype, the goal of the
algorithm is to compute an abstract value A’ = Assume|y](A).

Our approach was influenced by Granger’s method of using (in)equation solv-
ing as a way to implement semantic reduction and Assume as part of his tech-
nique of local decreasing iterations [16]. Granger describes techniques for per-
forming reductions with respect to (in)equations of the form 1 X F(z1,...,2y)
and (21 % F(x1,...,2,)) x G(x1,...,2,), where x stands for a single relational
symbol of £, such as =, #, <, <, >, >, or = (arithmetical congruence). Our
framework is not limited to literals of these forms; all that we require is that for a
literal I € L, there is an algorithm to compute an overapproximating value pa(l).
Moreover, Granger has no analog of the Dilemma Rule, nor does he present any
completeness results (cf. §I).

SMT Solvers. Most methods for SMT solving can be classified according to
whether they employ lazy or eager translations to SAT. (The SAT procedure
then employed is generally based on the DPLL procedure [10/9].) In contrast,
the algorithm for SMT described in this paper is not based on a translation to
SAT; instead, it generalizes Stalmarck’s method for propositional logic to richer
logics.

Lazy approaches abstract each atom of the input formula to a distinct propo-
sitional variable, use a SAT solver to find a propositional model, and then check
that model against the theory [I/I3ITT]. The disadvantage of the lazy approach
is that it cannot use theory information to prune the search. In contrast, our
algorithm is able to use theory-specific information to make deductions—in par-
ticular, in the LeafRule function (Fig.H]) used in Alg.[2l The use of theory-specific
information is the reason why our approach outperformed Z3, which uses the lazy
approach, on the diamond example (§5]).

Eager approaches [5l34] encode more of the theory into the propositional
formula that is given to the SAT solver, and hence are able to constrain the
solution space with theory-specific information. The challenge in designing such
solvers is to ensure that the propositional formula does not blow up in size. In
our approach, such an explosion in the set of literals in the formula is avoided
because our learned facts are restricted by the abstract domain in use.

A variant of the Dilemma Rule is used in DPLL(U), and allows the theory
solver in a lazy DPLL-based SMT solver to produce joins of facts deduced along
different search paths. However, as pointed out by Bjgrner et al. [4l, §5], their
system is weaker than Stalmarck’s method, because Stalmarck’s method can
learn equivalences between literals.

Another difference between our work and existing approaches to SMT is the
connection presented in this paper between Stalmarck’s method and the com-
putation of best abstract operations for abstract interpretation.

Best Abstract Operations. Several papers about best abstract operations
have appeared in the literature [TA29/37121I12]. Graf and Saidi [14] showed
that decision procedures can be used to generate best abstract transformers
for predicate-abstraction domains. Other work has investigated more efficient
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methods to generate approximate transformers that are not best transformers,
but approach the precision of best transformers [2J6].

Several techniques work from below [29/2TIT2]—performing joins to incorpo-
rate more and more of the concrete state space—which has the drawback that if
they are stopped before the final answer is reached, the most-recent approxima-
tion is an under-approrimation of the desired value. In contrast, our technique
works from above. It can stop at any time and return a safe answer.

Yorsh et al. [37] developed a method that works from above to perform
Assume[p](A) for the kind of abstract domains used in shape analysis (i.e.,
“canonical abstraction” of logical structures [30]). Their method has a splitting
step, but no analog of the join step performed at the end of an invocation of the
Dilemma Rule. In addition, their propagation rules are much more heavyweight.

Template Constraint Matrices (TCMs) are a parametrized family of linear-
inequality domains for expressing invariants in linear real arithmetic. Sankara-
narayanan et al. [3I] gave a parametrized meet, join, and set of abstract trans-
formers for all TCM domains. Monniaux [26] gave an algorithm that finds the
best transformer in a TCM domain across a straight-line block (assuming that
concrete operations consist of piecewise linear functions), and good transform-
ers across more complicated control flow. However, the algorithm uses quan-
tifier elimination, and no polynomial-time elimination algorithm is known for
piecewise-linear systems.

Cover Algorithms. Gulwani and Musuvathi [I7] defined the “cover problem”,
which addresses approximate existential quantifier elimination: Given a formula
p in logic £, and a set of variables V', find the strongest quantifier-free formula ¢
in £ such that [3V : ¢] C [¢]. They presented cover algorithms for the theories
of uninterpreted functions and linear arithmetic, and showed that covers exist
in some theories that do not support quantifier elimination.

The notion of a cover has similarities to the notion of symbolic abstraction, but
the two notions are distinct. Our technical report [36] discusses the differences
in detail, describing symbolic abstraction as over-approximating a formula ¢
using an impoverished logic fragment, while a cover algorithm only removes
variables V' from the vocabulary of ¢. The two approaches yield different over-
approximations of ¢, and the over-approximation obtained by a cover algorithm
does not, in general, yield suitable abstract values and abstract transformers.
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Abstract. Craig interpolation is a well known method of abstraction
successfully used in both hardware and software model checking. The
logical strength of interpolants can affect the quality of approximations
and consequently the performance of the model checkers. Recently, it was
observed that for the same resolution proof a complete lattice of inter-
polants ordered by strength can be derived. Most state-of-the-art model
checking techniques based on interpolation subject the interpolants to
constraints that ensure efficient verification as, for example, in transition
relation approximation for bounded model checking, counterexample-
guided abstraction refinement and function summarization for software
update checking. However, in general, these verification-specific con-
straints are not satisfied by all possible interpolants.

The paper analyzes the restrictions within the lattice of interpolants
under which the required constraints are satisfied. This enables inves-
tigation of the effect of the strength of interpolants on the particular
techniques, while preserving their soundness. As an additional benefit,
combination of this result with proof manipulation procedures allows the
use of optimized solvers to generate interpolants of different strengths for
various model checking techniques.

1 Introduction

Craig interpolants [4] are commonly used for abstraction in hardware and soft-
ware model checking. Recently, it was shown [5] that for the same resolution
proof a complete lattice of interpolants ordered by the implication relation, i.e.,
strength, can be systematically derived. The strength of the interpolants may
influence speed of convergence of the model checking algorithms as well as the
amount of spurious behaviors that require refinement. The result in [5] shows
that there are interpolants of different strengths to choose from. However, [5]
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opens two new research problems. First, it is not clear how to choose the right
interpolation algorithm for a particular model checking application. Second, if a
concrete application puts additional constraints on the interpolants, it is unclear
if the choice among interpolants of various strengths is restricted and how much.

This paper presents a theoretical solution to the second problem. We iden-
tify two classes of common interpolation-based model checking approaches that
indeed put additional requirements on the interpolants. Then we formally deter-
mine and prove the restrictions for both classes on the choice of the interpolants
strength under which these requirements are satisfied.

The first class of approaches concerns simultaneous abstraction by multiple
interpolants. In this scenario, we have an unsatisfiable formula in the form of a
conjunction of subformulae. From the proof of unsatisfiability, we compute inter-
polants abstracting the different conjuncts. The additional requirement (Req!)
is ensuring unsatisfiability of the original formula with multiple conjuncts re-
placed by the corresponding interpolants. A notable example of this setting is
the approach presented in [§], where the abstract transition relation is itera-
tively refined using interpolants. The authors notice the requirement imposed
on the interpolants, and observe it satisfied while implicitly assuming the use
of the interpolation algorithm of [I1]. However, [§] is restricted to a single in-
terpolant generated by this algorithm. Our solution overcomes this limitation
by showing formally how to generate interpolants of different strength that sat-
isfy the requirement. Interestingly, we discovered that not all interpolants do.
Another application is software update checking, where the formula represents
the original program with different conjuncts representing different functions as,
e.g., in [I7]. When a subset of functions is updated due to code changes and
fixes, this approach checks if the interpolants remain valid abstractions of the
new function bodies. This is a local check to show that a formula representing
the new function body still implies the corresponding interpolant. If the check
succeeds, unsatisfiability of the formula with multiple conjuncts replaced by the
corresponding interpolants (Reql) provides correctness of the updated system
without the need to check the entire formula of the updated system again.

The second class of model checking methods is typical of counterexample-
guided abstraction refinement (CEGAR) [3]. Given a spurious error trace, the
goal is to annotate nodes of an abstract reachability tree with an inductive
sequence of formulae that together rule out the trace. The spurious error trace
is represented by an unsatisfiable path formula, constructed from the SSA form
of the trace. An interpolant is computed from the prefix and suffix of the trace
for every location along the error trace. Here, the additional requirement (Reg2)
is that the resulting sequence of interpolants is inductive, i.e., that for every
location, the current interpolant conjuncted with the precise representation of
the instruction at the location implies the next interpolant along the trace. For
example, this reasoning is crucial for the refinement techniques used in BLAST [I],
IMpACT [I3] and WOLVERINE [9]. In general, however, such a sequence is not
inductive. Therefore, the authors restrict themselves to specific proof systems to
ensure this property [7] ruling out not only the choice of interpolants of varying
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strength but also the possibility of using state-of-the-art solvers. Other authors
even require multiple solver calls to ensure a similar property [6].

Contribution. The main contribution is a theoretical formulation and proof of
the constraints within the lattice of interpolants, such that Reql and Req2 are
satisfied.

In particular, building on [5], this work analyzes a whole family of interpo-
lation procedures from which the lattice is generated. The analysis yields two
interesting results: (1) we prove that every member of the family that produces
interpolants stronger than the ones given by Pudldk’s algorithm [I5] complies
with Reql, and (2) we identify a subset, within the family of procedures (by
means of the logical constraints that characterize it), that satisfies Req2. These
results allow for the systematic study of how interpolants strength affects state-
of-the-art model checking techniques, while preserving their soundness.

Since our results are not limited to the use of an ad-hoc proof system, any
state-of-the-art solver can be chosen to generate proofs (if needed, post-processed
by, e.g., the techniques of [2]) from which the interpolants are computed. Addi-
tionally, proof manipulation procedures, as in [16], can be applied to alter the
size and the strength of interpolants in the various model checking applications.

2 Preliminaries

2.1 Craig Interpolation

Craig interpolants [4], since the seminal work by McMillan [10], have been ex-
tensively applied in SAT-based model checking and predicate abstraction [12].
Formally, given an unsatisfiable conjunction of formulae A A B, an interpolant
I is a formula that is implied by A (i.e., A — I), is unsatisfiable in conjunction
with B (i.e., BAT — 1) and is defined on the common language of A and B.
The interpolant I can be thought of as an over-approximation of A that still
conflicts with B.

Several state-of-the art approaches exist to generate interpolants in an auto-
mated manner; the most successful techniques derive an interpolant for A A B
(in certain proof systems) from a proof of unsatisfiability of the conjunction.
This approach grants two important benefits: the generation can be achieved
in linear time w.r.t. the proof size, and interpolants themselves only contain
information relevant to determine the unsatisfiability of A A B. In particular,
Pudlak [I5] investigates interpolation in the context of resolution systems for
propositional logic, while McMillan [T1] addresses both propositional logic and
a quantifier free combination of the theories of uninterpreted functions and lin-
ear arithmetic. All these techniques adopt recursive algorithms, which initially
set partial interpolants for the axioms. Then, following the proof structure, they
deduce a partial interpolant for each conclusion from those of the premises. The
partial interpolant of the overall conclusion is the interpolant for the formula.
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2.2 Resolution Proofs

Assuming a finite set of propositional variables, a literal is a variable, either with
positive (p) or negative (p) polarity. A clause C' is a finite disjunction of literals;
a formula ¢ in conjunctive normal form (CNF) is a finite conjunction of clauses.
A resolution proof of unsatisfiability (or refutation) of a formula ¢ in CNF is a
tree such that the leaves are the clauses of ¢, the root is the empty clause 1 and
the inner nodes are clauses generated by means of the resolution rule:

Ctvp C~Vp
CcCtvC-

where CT V p and C~ V p are the antecedents, C*t VvV C~ the resolvent and p is
the pivot of the resolution step.

2.3 Strength of Interpolants

D’Silva et al. [5] generalize the algorithms by Pudlédk [I5] and McMillan [I1]
(as well as the approach dual to McMillan’s, which we will call McMillan’) for
propositional resolution systems by introducing the notion of labeled interpo-
lation system, focusing on the concept of interpolant strength (a formula ¢ is
stronger than x whenever ¢ — x). They present an analysis and a comparison
of the systems corresponding to the three algorithms, together with a method
to combine labeled systems in order to obtain weaker or stronger interpolants
from a given proof of unsatisfiability. Throughout the paper we will adopt the
notation of [5], adapted as necessary.

Given a refutation of a formula A A B, a variable p can appear as literal only
in A, only in B or in both conjuncts; p is respectively said to have class A, B or
AB. The authors define a labeling L as a mapping that assigns a color among
{a, b, ab} independently to each variable in each clause (since a variable cannot
have two occurrences in a clause, this is equivalent to coloring literals). The set
of possible labelings is restricted by ensuring that class A variables receive color
a and class B variables receive color b; freedom is left for AB variables to be
colored either a, b or ab.

In [5], a labeled interpolation system is defined as a procedure Itp (shown in
Table[D) that, given A, B, a refutation R of A A B and a labeling L, outputs a
partial interpolant Itpr (A, B, R,C) for any clause C in R; this depends on the
clause being in A or B (if leaf) and on the color of the pivot associated with
the resolution step (if inner node). I'tpy (A, B, R) represents the interpolant for
A A B, that is Itpr (A, B, R) £ Itpp(A, B, R, L) We will omit the parameters
whenever clear from the context.

In Table [ C'| « denotes the restriction of a clause C' to the literals of
color a. p : « indicates that variable p has color a. By C[I] we represent that
clause C has a partial interpolant I. IT, I~ and I are the partial interpolants
respectively associated with the two antecedents and the resolvent of a resolution
step: It 2 Itpr(CT Vv p), I= 2 Itpp,(C~ Vp), I £ Itp, (C+ v C).

A . .. .
1 As customary, we use £ to characterize a definition, while = a correspondence.
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Table 1. Labeled interpolation system Itpr,
Ctvp:allf] C™Vp:B[I7]

Leaf: c] Inner node: ctv e ]
_JCre ifCeA ItviI- ifalB=a
_{ﬂ(CLa) ifCeB I:{I*/\I ifalB =0

(ITVvp)A(I~Vp) ifalUB=ab

Table 2. Pudlék’s interpolation system Itpp

Ctvp:al[lt] C Vp:all]

Leaf: CI Inner node: C+ v e 1]
L ifCceA ITviI~ fa=a
T\ T ifCeB I:{I“‘/\I‘ ifa=b

(Itvp)A(I~Vp) ifa=ab

ItpM/

Fig. 1. Lattice of labeled interpolation systems

An operator LI allows to determine the color of a pivot p, taking into ac-
count that p might have different colors o and ( in the two antecedents: LI is
idempotent, symmetric and defined by a b £ ab, a U ab £ ab, bLlab £ ab.

The systems corresponding to McMillan, Pudldk and McMillan”’s interpola-
tion algorithms will be referred to as Itpys, Itpp, Itpas. Itpr, subsumes Itpyy,
Itpp and Itpy, obtained as special cases by coloring all the occurrences of AB
variables with b, ab and a, respectively (compare, for example, Tables [[] and [2)).

A total order =< is defined over the colors as b =< ab < a, and extended to
a partial order over labeled systems: Itp; =< Itpy. if, for every clause C' and
variable p in C, L(p,C') = L'(p, C). This allows the authors to directly compare
the logical strength of the interpolants produced by two systems. In fact, for any
refutation R of a formula A A B and labelings L, L' such that L < L', we have:
Itpr,(A, B, R) — Itpr/ (A, B, R) and we say that Itpy, is stronger than Itpy,.
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Two interpolation systems Itp; and Itpr, can generate new systems Itprqr/
and Itpryr, by combining the labelings L and L’ in accordance with a re-
lation <: (L f+ L')(p,C) £ max<{L(p,C),L'(p,C)} and (L | L')(p,C) =
min<{L(p,C), L'(p, C)}. The authors remark that the collection of labeled sys-
tems over a refutation, together with the order < and the operators f},}, rep-
resent a complete lattice, where Itpys is the greatest element and Itpys is the
least, with Itpp being in between (see Fig.[I]).

3 Simultaneous Abstraction with Interpolation

This section analyzes simultaneous abstraction of the conjuncts of an unsatis-
fiable formula by means of multiple interpolants. The requirement (Reql) is to
guarantee that the formula obtained by replacing the conjuncts with the re-
spective interpolants remains unsatisfiabldd. We formally describe the problem,
proving that the requirement is satisfied if the interpolants are generated using
Pudlak’s interpolation system, and later generalize the result to any interpola-
tion system which is stronger than Pudlak’s. We conclude by illustrating the
applications to model checking.

3.1 Problem Description

As input, we assume an unsatisfiable formula ¢ in CNF, such that ¢ £ ¢1A. . . Ady,
and each ¢; (a partition) is a conjunction of clauses. Given a refutation R of ¢
and a sequence of labeled interpolation systems Itpy,,, ..., Itpr,, we compute a
sequence of interpolants I,..., I, from R. Viewing ¢ as an unsatisfiable con-
junction of the form A A B, each I; is obtained by setting ¢; to A and all the
other ¢; to B (I; £ Itpr,(¢isd1 A «.. Adi—1 A diz1 A ... A y)). These n ways
of splitting the formula ¢ into A and B will be referred to as configurations. We
prove that I1y A ... AT, — L (requirement Reql), if for each i: Itpy, = Itppﬁ,
and then generalize to any sequence of interpolation systems stronger than Itpp.

3.2 Proof for Pudlak’s System

Pudlék’s system is symmetric, i.e., Itpp(¢1, p2) = —Itpp(pa, ¢1). Thus for n = 2,
I, = —15; it follows that I1 Al — L. We will prove that Reql holds for n = 3 and
can be extended to an arbitrary number of partitions n. Table [B] shows the class
and the color that a variable p assumes in the three configurations, depending
on presence of p in the three partitions.

Lemma 1. For Pudldk’s interpolation system, Iy AN 1o AN Is — L.

2 In [8], a notion of symmetric interpolant overlapping with Reql is used. We avoid
this name for its easy confusion with symmetry of interpolants, a known property
of the interpolants generated by Itpp.

3 Recall that Itpp is applied to n distinct configurations, so it may be associated with
different labelings for different values of i.
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Table 3. Variables coloring in Itpp for n =3

Variable class, color for each configuration

pin? A2 ¢ BL2GsAp3s AL ¢y, BEG1Nps AL s, BL 1 Ao
61 Aa B,b B,b
#2 B,b Aa B,b
b3 B,b B,b A a
¢1,¢2 AB,LLb AB,ab B,b
¢1,¢3 AB,LLb B,b AB,ab
b2, b3 B,b AB, ab AB, ab
¢1,¢2,¢3 AB,LLb AB,ab AB,ab

Proof (by structural induction). We show that for any clause C' in the refutation,
the conjunction of its partial interpolants in the three configurations is unsat-
isfiable. In accordance with Tables [II, 2, we refer to the partial interpolants of
the antecedents as I and I~ with a subscript i to identify the corresponding
configuration.

Base case (leaf). A clause C' can belong either to ¢1, ¢ or ¢3. In each case the
clause belongs to A in one configuration and to B in the other two configura-
tions; this implies that the conjunction of its partial interpolants contains one
1 element (see Table [2), which makes the conjunction unsatisfiable.

Inductive step (inner node). The inductive hypothesis (i.h.) consists of I;" A
LI AL — L) I7 ALy ALy — L. A pivot p can either be local to a partition
or shared by at least two partitions. If local, it has color a in one configuration
and b in all the others; let us assume w.l.o.g. that p is local to ¢1. In Itpp the
partial interpolants for the three configurations are If' VI, I;' ANy, I;' N5

(If VID)ANIF AN NI AT
(IF NLE NI NI ANID)V (I AT ATy AT ALY =5 L
If shared, p has color b in (at most) one configuration and ab in the other ones.

Let us assume w.l.o.g. that p is shared between ¢ and ¢3. The three partial
interpolants are I;* A I7, (IF vV p) A (Iy Vp), (IF Vp) A (I3 Vp):

Vintroduction

LENIT NS Vp) ATy Vp) AL Vp) A (I Vp)

(If vp) NI V) AL V) Ay V) ATV p) AT Vp)
(pV (AL AL A (pV (I A AIT))

)

_>

<~

_>resolut10n
(I NI NIV (IT AN NI —

i.h.

Lemma [Tl can be extended to an arbitrary number of partitions:

Theorem 1. For Pudldk’s interpolation system, Iy A ... NI, — L.
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Proof. Proof by structural induction as in Lemma [T
Base case (leaf). As in the proof of Lemma [Tl with n partitions instead of 3.

Inductive step (inner node). If the pivot p is local to a partition, the same
argumentation of the proof of Lemma [l holds. If p is shared, it might assume
colors b (possibly in several configurations) or ab. Multiple applications of the
Vintroduction rule and one resolution step yield the result. O

3.3 Proof Generalization
Now we generalize Theorem [Tl to a family of sequences of interpolation systems.

Theorem 2. For any sequence of interpolation systems Itpr,,...,Itpr. , s.t.
every Itpy,, is stronger than Itpp, L A ... NI, — L. (see Figure[d).

Proof. Let I; be Itpp(diyd1 Ao . Adic1 Aiy1 A ... A dy); we have that I; — I;
(recall the partial order on systems defined in m) This implies 1 A... AT, —
Iy A ... A I,, which in turn implies L. O

The result does not necessary hold for systems weaker than Itpp. For example,
let us consider Itpys. A simple counterexample shows that I7 A...AI, — L does
not hold even for a trivial formula with only two partitions; let ¢1 = (pV ¢q) A7,

o2 £ (pVT)Ag:

Configuration A £ ¢ , B £ ¢»: Configuration A £ ¢y , B £ ¢;:
pVaqll] pVvrpAr] pValpAg  pVvrll]
gVripAr] r[L] gV ripAdg] r[r]
qlpAr] qlql qllpAg)Vr] q[1]
LilpAr)vdl LilpAg) v

Clearly, the interpolants (p A7)V ¢ and (pAgq) Vr are not mutually unsatisfiable:
a partial model is ¢, r

3.4 Application to Model Checking

We provide two examples of model checking algorithms, where the above setting
occurs. In [§], the authors present an algorithm for iterative refinement of an
abstraction of a transition relation. Initially, a coarse abstraction of the transition
relation Ty = true is used. The abstraction 7} is used to check reachability of
error states represented by a predicate v from initial states represented by a
predicate U. If error states are unreachable using the abstract transition relation,
the system is safe. Otherwise, we have a trace from an initial state to an error
state in T} of length n, for some n. Then, reachability of the error states in n
steps is checked using the precise transition relation 7T'. For this purpose, a precise



Leveraging Interpolant Strength in Model Checking 201

ItpM/

main main
f1 f1

f2'

It
pu assert

Fig.2. The interpolation
systems stronger than Itpp Fig. 3. Update check of a program with functions £2,
(colored area) £4 changed to £27, £4’

assert

bounded model checking formula is constructed and checked for satisﬁabilityﬁ:
U ANTOATE A AT A

If satisfiable, a real error is found and the error trace is extracted from the sat-
isfying assignment. If unsatisfiable, the corresponding interpolants are extracted
from the refutation and used to strengthen the abstraction:

Ti 2T AT ALY A ATSD

The fact that Tz‘+1 — I;7j+1>, for 1 < j < n, and the requirement Reql yield:

~

UONTO AT A AT At 1
So the new transition relation Tz‘+1 does not contain any error trace of length n
and it is a tighter abstraction than T;. For this reason, the algorithm terminates
for finite state systems if Reql holds. Otherwise, termination is not guaranteed.

Another example concerns software update checking. Figure [ depicts a sit-
uation where a program is being updated. Under a suitable encoding (e.g., as
in [I7)), safety of the program (w.r.t. assertion violation) is equivalent to unsatis-
fiability of a formula of the form ¢y,qin AP 1 AP 2 A@ 3 AP ra, where each conjunct
represents one of the functions main, £1, £2, £3, £4. If the original program is
safe, the formula is unsatisfiable and we can generate interpolants Ipain, If1,
Ifo, It3, Iy4. The requirement Reql yields Iqin ALt Ao AIp3 ANlpq — 1 and
thus also Gmain AP 1 Ao Ads3 Alrs — L. Now, to prove safety of the updated
program, it suffices to show that ¢ror — Iyo and ¢rsr — If4. In other words,
that the abstractions Iy» and Iy4 of functions £2 and £4 are still valid abstrac-
tions for the changed functions £2’ and £f4’. Note that this is a local and thus

* In accordance with [8], we expect the transition relation to be a relation over state
variables and their primed versions for the next state values and we use superscript
) to indicate addition of i primes (or removal if i is negative).
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computationally cheap check. Without the requirement Reql, the whole formula
for the entire updated program would have to be constructed and checked again,
which could require many more computational resources.

Theorem [ offers the choice of interpolation systems generating interpolants
of different strength satisfying Reql. In this second example, the benefit of a
stronger interpolant is a tighter abstraction, i.e., the interpolant more closely
reflects the actual behavior of the corresponding function. On the other hand,
a weaker interpolant is more permissive. So it is more likely to remain a valid
abstraction, when the corresponding function gets updated.

4 Inductive Sequence of Interpolants

This section analyzes the generation of a sequence of interpolants from the con-
juncts of an unsatisfiable formula; the requirement (Req2) is to guarantee that
the sequence is inductive [7]. We formally describe the problem, proving that the
requirement is satisfied if the interpolants are produced using Pudlak’s interpo-
lation system, and later generalize the result to a particular family of systems
in the lattice. We conclude by illustrating the applications to model checking.

4.1 Problem Description

As input, we assume an unsatisfiable formula ¢ in CNF, such that ¢ £ ¢; A
...\ ¢n and each ¢; is a conjunction of clauses. Given a refutation R of ¢
and a sequence of labeled interpolation systems Itpyr,,...,Itpr,, we compute a
sequence of interpolants Iy, I1, . .., I,, from R; I; is obtained by setting ¢1A. . . A¢;
to Aand ¢ 1A . .Ady to B (I; = Itpr, (p1A. . . A¢i, iriA...A¢y)), in particular
Iy = Itpr,,(T,¢) = T and I,, = Itp, (¢, T) = L. These ways of splitting the
formula ¢ into A and B will be referred to as configurations.

We prove that Iy, I3, ..., I, is an inductive sequence of interpolants: for every
iy I; A ¢pix1 — Ii41 holds (requirement Req2) if, for every i, Itpr, = Itpp (as in
the previous setting, Itpp can be associated with different labelings for different
values of ¢). Then we generalize to a family of sequences of interpolation systems.

Notice that, for a given 4, only two configurations need to be taken into ac-
count, the first associated with I; (A 2 ¢y A ... A¢i, B2 ¢is1 A...A¢y), the
second with ;41 (A = PL N ... APiy1, B = Giga A ... A (bn), ¢i+1 is the only
subformula shared between A and B.

Since the proof is independent of i, to simplify the notation we will represent
1A NP as X, i1 as S, dipa ... Ay asY (so that the formulais X ASAY),
Iias I, I;11 as Jand [; A piy1 — L1 as INS — J.

4.2 Proof for Pudlak’s System

Theorem 3. For Pudldk’s interpolation system, I NS — J.
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Table 4. Variables coloring for Definition [II

Variable class, color for each configuration

P 42x BASAY A2XAS,B2Y
X A a A a
S Aa B,b
Y B,b B,b
X, S AB,«a € {a,b,ab} Aa
S,Y B,b AB, B € {a,b,ab}

X, Y  AB,y1 € {a,b,ab} AB,vy: € {a,b,ab}
X,S,Y AB,é: € {a,b,ab} AB,d; € {a,b,ab}

Proof. By the above definitions, I = Itp(X,SAY) and J = Itp(X A S|Y) =
—Itp(Y, X AS) (by symmetry of Pudldk’s system). Denoting K = Itp(S, X \Y),
Lemma [M states that I A K A—=J — L. Since S — K, then IASA—J — L, that
isIANS — J. O

4.3 Proof Generalization

We will now prove that I A S — J holds in all the sequences of interpolation
systems that comply with particular coloring restrictions. As shown in Table [l
two configurations are to be considered, which share the conjunct S. By C'; »
and C |2, we denote the restriction of a clause C' to the literals of color o
according to the labeling of configurations 1 and 2, respectively.

To simplify the proofs we initially enforce a set of constraints, so that the
color taken by the occurrence of a variable in a clause in the two configurations
is consistent; we will later show that the result still holds if the constraints are
relaxed.

Definition 1 (Coloring constraints). We define a set of coloring constraints
(CC) over Table[]] as follows: o =a, B =0, 71 = 72, 61 = 0.

Lemma 2. I AS — J, assuming the coloring constraints of Definition [l

Proof (by structural induction). We prove that, for any clause C' in a refutation
of XASAY |, fo NI(C)ANSA-J(C) — L, where f¢ is an additional constraint
(to be determined), dependent on C, that becomes empty at the end of the proof
(fL = T). For simplicity we drop the parameter C' in I, J. I, I~ are defined
as in the previous setting, similarly J* and J~.

Base case (leaf). Case splitting on C' (refer to Table [)):
CeX: I=ClhpandJ=Clay

CeS : I=-(Cli,) and J=Clay
CeY : = —(Cl1,e) and J = =(Cl2,q)

)

We construct fo in order to simultaneously satisfy the following conditions:

CeX : fc/\CLLb/\S/\—'(CLQ,b)—)J_
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ceS :  feA(Clia) NSA=(Clayp) — L
CeY : feA-(Clig) NSAClae— L

The CC constraints yield C|1,, A=(Cl2p) — L and =(Cl1,4) A Cla,q— L; as for
=(Cl1,4) A(Clap), it “counteracts” the literals of S with variables in X, .S and
S,Y and X, S, Y(colored a or b). The literals left are those whose variables are
in S (denoted by C9) and those in X, S,Y colored ab (denoted by C|X5); it
is thus sufficient to set fo = —=(C|* \/CLXSY).

Inductive step (inner node). The inductive hypothesis (i.h.) provides that
f(C”er) ANITASA=JT — 1 and f(C—\/p) AN~ ANSA=T” — L.
Now fo = fic+ve-), that is =((CT Vv CHI) A=((CH v O7)|XSY),
We have:
fo = fer N fo- (1)

since —((CT v C~ éL ) & (CHIS) A=(C~19) and (CT|X5Y) v (C~|X5Y) —
(CTVeHIE™)
Case splitting based on the presence of the pivot p in X/S/Y (see Table [)):

Case 1 (p in X).

foNSATA-T <

feANSAITVIT)YA=JTVIT) <
JcANSAITVIT)A-TT AT &
(FeNSATTA=TT AT )V (fc ASAT A=J” A=JT) —
(fe ANSATFA=TN)V (fe NSAT™ AT )—>(1)

(for ANSATY ATV (fo- NSAT™ A=T7) -3

(Forvpy ASAITA=TNV (fio-vpy ASATT A=T7) =10 L

where (2) holds since p is restricted.
Case 2 (p in 9).

fcANSANITAN-T &
feANSAUITATYAS(JTTVIT) &
fecANSANITANT A=JT AT &

(fe NSATTA=TDYA(fe ANSANT A=

(fer ANSATHA=TY)YA(fe- ANSAT™ A=J™

(fer NASATFA=TE APV (fo- ASAT™A=J " Ap
(fervpy NSANIT ATV (fio—vpy NSATT A=~

NG
INE)
NG
_yihe

)
)
)
)

5 Notice that the inverse of the last implication does not hold; in fact, a variable in
X,8,Y could have, e.g., color ab in C* V C~ because it has color a in CT and
color b in C™ (recall the definition of Ll in §Z3)), which means that it appears in
(C* v )XY but gets restricted both in O+ X% and in ¢~ |X5Y.
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where (2) holds since ¢ A x — (¢ Ap) V (x Ap), (3) since fo, Ap <+ fic,vp)-
Case 3 (p in Y'). Dual to Case 1.

Case 4 (p in X, 5). As for Case 1.

Case 5 (pin S,Y). As for Case 3.

Case 6 (p in X,Y"). As for Case 1 or Case 3 if color is either a or b. If ab:

foNSANIA-T &

fe NSAIFVP)AIT VD) A((JTVP) AT VD)) &

fe NSANITVP)ANI™Vp)A(=(JT V)V —(J7 VD)) —

(fe NSAITVP)A=(TTVP)V (fe NSAITVP)A=(J7 Vp)) ¢
(feANSAITVP)A=TTAD)V (fe NSAI™Vp)A=J™ Ap) —
(fo NSATTA=T)V (fe NSAT A=J7) =D

(fer NASATT ATV (fe- ANSAT A=J7) —

(fietupy ANSATT ATV (fio-vpy ASANTT A=J7) ="

where (2) holds since p is restricted.

Case 7 (pin X, S,Y). As for Case 1 or Case 3 if color is either a or b, since p
is restricted. As for Case 6 if color is ab, but last three lines are replaced by:

(feNSAITVP)A=TT ApAD)V (fe ASAI™Vp)A=J" ApAp) —
(o NSAITA=JTAD)V (fe ANSAT™ A=J Ap) -1
(for ASATTA=TY APV (fe- ANSAT™ A=J” Ap) =3
(fiotvpy ASAIT ATV (fo-vpy AS AT A=T7) =10 1L
where (2) holds since fo, Ap < fic,vp)- 0

Lemma 3. The CC constraints of Definitionl can be relaxed as follows: a < a,
b=XB,7 =72, 01 2 0.

Proof. Let I, J be interpolants generated using interpolation systems according
to the constraints CC in Def. [Il Let us use primed variables to represent the
relaxed constraints of Lemma Blas o/ < o = a (i.e,, any &), b = 5 < f' (i.e,
any 3'), v X v1 = 72 X 75, 0] X 01 = 02 =< 5 and let I’ J’ represent the
corresponding interpolants. Recalling the order b < ab <X a over colors, which
induces a partial order over interpolation systems (see §2.3)), we get I’ — I and
J — J'. Thus, the relaxed constraints yield: I'ASA—=J — IASA—-J — 1. O

The above considerations lead to the following result:

Theorem 4. For any sequence of interpolation systems Itpy,,, ..., Itpr, , which
respects the relaxed constraints of Lemma [3, Iy, I1,...,I, is an inductive se-
quence of interpolants, i.e., I; A ¢;y1 — Lir1, for 0 <i < n.
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Itppy
% o
init ¢ 92 i bn error
Itpar Iy=T L I Liex I Inox In=1

Fig.4. Weakening interpola- Fig.5. Spurious error trace annotated by inter-
tion systems polants

4.4 Application to Model Checking

The above setting occurs, for example, during counterexample-guided abstrac-
tion refinement. Given a spurious error trace, the goal is to annotate nodes of the
abstract reachability tree with an inductive sequence of formulae that together
rule out the trace. The trace is represented as a formula ¢ A. . .A¢,,, which is con-
structed from the SSA form of the trace and which is unsatisfiable if and only if
the error trace is infeasible. If so, a sequence of interpolants I; is created by means
of a sequence of interpolation systems as I; = Itpr, (¢1 A .. A, ir1 Ae .. Adn),
Ip = T, and I, = 1, as depicted in Fig. Bl (along with the partitioning of the
path formula into X, S, and Y for the purposes of Lemma B]). In addition, Req2
requires the sequence of interpolants to be inductive, i.e., I; A ¢;+1 — [;11. In
which case, the error trace is removed from the refined abstraction. However,
such a sequence of interpolants is not inductive in general and thus the same
error trace may remain also in the refined abstraction, should Req2 be violated.
As already mentioned, refinement phases of tools like BLAST [I], IMmPACT [13]
and WOLVERINE [9], as well as some BMC techniques [I8] rely on this fact.
Theorem M ensures that Req2 is satisfied by interpolants derived using in-
terpolation systems weakening towards the end of the error trace (depicted in
Fig. Hl). Tt is thus possible to choose an interpolation system depending on the
instruction at the current position along the error trace (i.e., the current S in
the language of Lemma [2)). As an example, some instructions in the error trace
may trigger generation of weaker interpolants (i.e., a more coarse abstraction).
In practice, this would affect the speed of convergence of the refinement loop.

5 Related Work

In model checking, interpolation is a common means for abstraction. Interpo-
lation is used as an abstract post-image operator in hardware bounded model
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checking [I0]; the interpolant is generated from the proof of unsatisfiability of a
bounded model checking formula so that it represents a superset of states reach-
able from the initial states. Faster convergence of the model checking algorithm
applying this method of abstraction is observed during experiments. Interpola-
tion is also used in concolic execution to propagate reasons of trace infeasibility
backward towards the start of the program [I4]. This allows discarding infea-
sible traces as early as possible and thus saving the effort of evaluating them.
In software bounded model checking, function summaries can be created using
interpolation [I7]; these are employed during analysis of different properties to
represent a function body without the need to process its whole call tree. Inter-
polation also proves to be very useful in refining predicate abstraction based on
spurious counterexamples [7]. Here, interpolation is used to derive new predicates
that rule out the spurious error traces. The listed works describe applications of
interpolation in model checking; see [12] for a comprehensive list. Typically, the
authors limit themselves to either Pudlak’s or McMillan’s algorithms without
considering further variation in the strength of interpolants. We believe that all
these techniques would benefit from choosing among interpolants of appropriate
strengths. The results of this paper provide safe boundaries for such a choice.

Other related work concerns the actual generation of interpolants. Pudlak [I5]
shows that interpolants can be derived in linear time with respect to the given
refutation. McMillan [I1] proposes a different algorithm that produces logically
stronger interpolants and addresses both propositional logic and a quantifier free
combination of the theories of uninterpreted functions and linear arithmetic.
In [2], local proof transformations are presented that (by reordering proofs and
removing so called ab-mixed predicates) can change a refutation produced by
a standard SMT-solver so that it becomes suitable for interpolant generation.
Authors of [5] provide a generalized algorithm for interpolation that subsumes
both Pudlédk’s and McMillan’s algorithms. They also show that a complete lattice
of interpolants ordered by the implication relation can be systematically derived
from a given refutation. However, they do not study the limits with regard to
the actual application of interpolants of differing strength in model checking.
Building upon [5], our work provides this missing connection and defines and
proves these boundaries in the particular model checking settings.

In this paper, we consider two classes of model checking approaches that put
additional requirements on the resulting interpolants. These requirements were
previously formulated in the literature (Reql in [§] and Req2 in [7]). Until now,
however, the conditions under which they hold have not been thoroughly studied,
in particular in the context of different interpolation systems of [5]. Novelty of
our work lies in the fact that we provide constraints on the complete lattice of
interpolants that, when obeyed, ensure satisfaction of the requirements.

6 Conclusion

Interpolants are not unique and may vary in strength. The effects of using in-
terpolants of different strength in model checking can be substantial and are
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yvet to be properly studied. However, common applications of interpolation in
model checking put additional requirements that (as we show) are not satisfied
in general, specifically when interpolants of various strengths are generated by
different interpolation systems. In this paper, for two classes of model checking
techniques employing interpolation, we showed the safe boundaries for varying
the strength of interpolants, proving the limitations under which the require-
ments are satisfied. Our theoretical result enables study of the effects of the
interpolants strength on the model checking algorithms. Since our result is not
limited to an ad-hoc proof system, any state-of-the-art solver can be used to
generate proofs used for interpolation. Strength and size of interpolants can be
also affected by proof manipulation procedures as shown in [I6]. We intend to
address the above questions in our future work.
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Abstract. We develop compositional analysis algorithms for detecting non-
termination in multithreaded programs. Our analysis explores fair and ultimately-
periodic executions—i.e., those in which the infinitely-often enabled threads
repeatedly execute the same sequences of actions over and over. By limiting the
number of context-switches each thread is allowed along any repeating action
sequence, our algorithm quickly discovers practically-arising non-terminating ex-
ecutions. Limiting the number of context-switches in each period leads to a com-
positional analysis in which we consider each thread separately, in isolation, and
reduces the search for fair ultimately-periodic executions in multithreaded pro-
grams to state-reachability in sequential programs. We implement our analysis
by a systematic code-to-code translation from multithreaded programs to sequen-
tial programs. By leveraging standard sequential analysis tools, our prototype tool
MUTANT is able to discover fair non-terminating executions in typical mutual ex-
clusion protocols and concurrent data-structure algorithms.

1 Introduction

Multithreaded programming is the predominant style for implementing parallel and
reactive single-processor software. A multithreaded program is composed of several
sequentially-executing threads who share the same memory address space. As a thread’s
operations on shared memory generally do not commute with the operations of others,
each schedule—i.e., each distinct order on the actions of different threads—Ieads to
distinct program behavior. Generally speaking, the schedule of inter-thread execution
relies on factors external to the program, such as processor utilization and I/O activ-
ity. Though some programming errors are witnessed in many different schedules, and
are thus likely to be discovered by testing, others manifest only in a small number of
rarely-encountered schedules; these Heisenbugs are notoriously difficult to debug.

The correctness criteria for multithreaded programs generally include both safety
and liveness conditions, and ensuring safety can threaten liveness. For instance, to en-
sure linearizability—i.e., the result of concurrently executing operations is equivalent to
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some sequential execution of the same operations—concurrent data structure implemen-
tations often employ a retrying mechanism [[9] (see Figure[Ik for a simple instance): a
validation phase before the effectuation of each operation ensures concurrent modifica-
tions have not interfered; when validation fails, the operation is simply attempted again.
A priori nothing prevents an operation from being retried forever. Retry is also a mech-
anism used in mutual exclusion protocols. For instance, a common solution to the din-
ing philosophers problem proposes that philosophers drop the fork they first picked up
when they cannot obtain the second fork—presumably because a neighboring philoso-
pher already holds the second. Though this scheme avoids deadlock, it also leads to
non-terminating executions in which no philosophers ever eat; particularly when each
philosopher picks up his first fork, finds his neighbor has the other, and then all re-
lease their first fork, repeatedly; Figure [Ib illustrates a simplification of this pattern.
As such retrying raises the possibility that some or all interfering operations are never
completed even under fair schedules—repeatedly failing operations already execute in-
finitely often—one does want to ensure that concurrent operations do always terminate.
Note that unlike in sequential programs, where interesting non-terminating executions
involve ever diverging data values, non-terminating executions in multithreaded pro-
grams also involve repeated inter-thread interference, even over small finite data do-
mains (see Figure[).

Proving the absence of programming errors such as assertion violations, and unin-
tentional non-termination due to inter-thread interference, in multithreaded programs
is difficult precisely because of the enormous number of possible schedules which
need be considered. Automated approaches based on model checking are highly
complex—e.g., computing state-reachability is PSPACE-complete when threads are fi-
nite state [[10], and undecidable when threads are recursive [23]—and are susceptible to
state-explosion; naive approaches are unlikely to scale to realistic programs. Otherwise,
modular deductive verification techniques may apply, though they require programmer-
supplied invariants, which for multithreaded programs are regarded as difficult to divine.
Furthermore, a failed verification attempt may only prove that the supplied invariants
are insufficient, rather than the existence of a programming error.

Instead of exhaustive program exploration, recent approaches to detecting safety vi-
olations (e.g., assertion violations) have focused on exploring only a representative sub-
set of program behaviors by limiting inter-thread interaction [22, 21, [17, |15, 3]; for in-
stance, Qadeer and Rehof [21]] consider only executions with a given number k € N of
context switches between threads. Though techniques like context-bounding are clearly
incomplete for any given k € N, every execution is considered in the limit as k ap-
proaches infinity, and small values of k have proved to provide great coverage [17]
and uncover subtle bugs [[13] in practice. The bounded analysis approach is particularly
attractive since it enables compositional reasoning: each thread can be considered sepa-
rately, in isolation, once the number of environmental interactions is fixed. This fact has
been exploited by the so-called “sequentializations” which reduce multithreaded state-
reachability under an interaction bound to state-reachability in a polynomially-sized
sequential program [15, [11}, [7, 3], leading to efficient analyses. Conveniently these re-
ductions allow leveraging highly-developed sequential program analysis tools for mul-
tithreaded program analysis.
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1// One thread 1 // Both threads // The second thread can forever retry
2// forever 2// can retry ivar g: T 1o proc Thread2 ()
3// spins 3// forever 2var x: B 1 var gi, gf: T
svar g: B svar g: B 3 12 while true do
5 5 aproc Threadl () s gi = g;
s proc Threadl () s proc Threadl () s while x do 14 gf := ...;
7 g := false; 7 while g do 6 acquire x; s acquire x;
s while !g do 8 g := false; ~ g = %; 16 if g = gi then
9 skip; 9 return 8 release x; 17 g = gf;
10 return 10 9 return 18 release x;
1 11 proc Thread2 () 19 return
12 proc Thread2 () 12 while !g do 20 else
13 g := true; 13 g := true; 21 release x
14 return 14 return 22 return

(@) (b) (©

Fig. 1. Three programs with non-terminating executions. (a) Though the first thread may execute
forever if the second never sets g to true, no such execution is fair. (b) Two threads repeatedly
trying to validate their set values of g will keep retrying forever under a schedule which schedules
each loop head just after the opposing thread’s assignment. (c) As long as the first thread executes
an iteration between each of the second thread’s reads and validations of g, the second thread is
never able to finish its operation.

Though these techniques seem promising for the detection of safety violations, they
have been deemed inapplicable for detecting liveness violations, since, for instance, in
any context-bounded execution, only one thread can execute infinitely often; interesting
concurrency bugs such as unintentional yet coordinated non-termination require the par-
ticipation of multiple infinitely-often executing threads. This limitation has effectively
prevented the application of compositional bounded analyses to detecting liveness vio-
lations in multithreaded programs.

In this work we demonstrate that restricting thread interaction also leads to an effec-
tive technique for detecting liveness violations in recursive multithreaded programs—in
particular we detect the presence of fair non-terminating executions. Though in general
the problem of detecting non-terminating executions is very difficult, we restrict our
attention to the simpler (recursively-enumerable yet still undecidable) case of fair ul-
timately periodic executions, which after a finite execution prefix (called the stem) ul-
timately repeat the same sequence of actions (the /asso) over and over again. Many
interesting non-terminating executions occurring in practice are ultimately periodic.
For instance, in the program of Figure [Ib, every non-terminating execution must re-
peat the same sequence of statements on Lines [7] [8] and [L3] Similarly, every fair
non-terminating execution of the program in Figure [Ik must repeat the statements of
Lines GH8I I2HI5] and 20H2I] Thus focusing on periodically repeating executions is
already quite interesting. Furthermore, every ultimately periodic execution is described
with a finite number of thread contexts: those occurring during the stem, and those oc-
curring during each iteration of the lasso; e.g., the non-terminating executions of each
program in Figure [l require just two contexts per thread: one per stem, and one per
lasso.
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By bounding the number of thread contexts we detect ultimately periodic execu-
tions compositionally, without exposing the local configurations of each thread to one
another. We actually detect ultimately periodic executions that repeatedly encounter,
along some lasso, the same sequence of shared global state valuations at thread context-
switch points. Clearly ultimate state-repeatability is a sufficient condition for ultimate
periodicity. We prove that this condition is necessary when the domain of shared global
state valuations is finite. (This is not trivial in the presence of recursion, where threads
access unbounded procedure stacks). Then, supposing each thread executes within ki
contexts during the stem, and within k, contexts during each iteration of this lasso,
its execution is summarized by an interface of k = 2(k; + k;) valuations gg/ ... gx&}:
the shared global state valuations g; and g/, resp., encountered at the beginning and
end of each execution context during the stem and lasso. Given the possible bounded
interfaces of each thread, we infer the existence of ultimately periodic executions by
composing thread interfaces. Essentially, two context summaries g;g} and g>g5 com-
pose when g} = g»; by composing interfaces so that the valuation reached in the last
context of the lasso match both the valuation reached in the last context of the stem,
and the starting valuation of the first context of the lasso, we deduce the existence of a
periodic computation.

We thus reduce the problem of detecting ultimately periodic computations to that of
computing thread interfaces. Essentially, we must establish two conditions on an inter-
face g1g] ... grg) of a thread r: first, the interface describes a valid thread computation,
i.e., beginning from g, t executing alone reaches g’l, and when resumed from the valu-
ation g», ¢ executing alone reaches g’z, etc. Second, the interface is repeatable, i.e., each
time ¢ returns to its first lasso context i, f can again repeat the same sequence of global
valuations g;g’. .. gxg. Though both conditions reduce to (repeated) state-reachability
for non-recursive programs, ensuring repeatability in recursive programs requires estab-
lishing equivalence of an unbounded number of procedure frames visited along each
period of the lasso. An execution in which the procedure stack incurs a net decrease, for
instance, along the lasso is not repeatable. We avoid explicitly comparing stack frames
simply by noticing that along each period of any repeating execution there exists a
procedure keyframe which is never returned from. By checking whether one keyframe
can reach the same keyframe—perhaps with the first keyframe below on the procedure
stack—in the same context number one period later, we ensure repeatability.

Finally, to ensure that the detected non-terminating executions are fair, we expose
a bounded amount of additional information across thread interfaces. For the case of
strong fairness, we observe that any thread ¢ which does not execute during the lasso
must be blocked, i.e., waiting on a synchronization object x which has not been signaled.
Furthermore, in any fair execution, no concurrently executing thread may signal x, since
otherwise t would become temporarily enabled—thus a violation of strong fairness. In
this way, by ensuring thread interfaces agree on the set X of indefinitely waited-on
synchronization objects, each thread can locally ensure no x € X is signaled during the
lasso, and only threads waiting on some x € X are exempt from participating in the
lasso.

As is the case for finding safety violations, the compositional fair non-termination
analysis we describe in Section [3] has a convenient encoding as sequential program
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analysis. In Section ] we describe a code-to-code translation from multithreaded pro-
grams to sequential programs which violate an assertion exactly when the source pro-
gram has a fair ultimately periodic execution with given bounds k; and &, on the num-
ber of stem and lasso contextsﬂ In Section [S we discuss our implementation MUTANT,
which systematically detects fair non-terminating executions in typical concurrent data
structure and mutual exclusion algorithms.

2 Recursive Multithreaded Programs

We consider a simple but general multithreaded program model in which each of a
statically-determined collection Tids of threads concurrently execute as recursive se-
quential programs which access a shared global state. For simplicity we suppose each
program declares a single shared global variable g with domain Vals, and each proce-
dure from a finite set Procs declares only a single parameter 1, also of domain Vals;
furthermore each program statement is uniquely labeled from a set Locs of program
locations. A (procedure) frame f = (¢,v) is a program location £ € Locs along with
a local variable valuation v € Vals, and a configuration ¢ = (g,0) is a shared global
state valuation g € Vals along with a local state map o : Tids — (Locs x Vals)™ map-

ping each thread ¢ to a procedure frame stack o(¢). The transition relation t:(> between
configurations is labelled by the active program location ¢ € Locs and acting thread
t € Tids. We suppose a standard set of inter-procedural program statements, including
assignmentx := e, branching if e then s; else s,, and looping while e do s statements,
lock acquire e and release e, and procedure callx := p e and return e, where e are
expressions from an unspecified grammar, s are labeled sub-statements, and p € Procs.
The definition of the transition relation is standard, as are the following:

Trace, Reachable: A frace m of a program P from a configuration c is a possibly empty
transition-label sequence apaja; . .. for which there exists a configuration sequence
cocicy ... such that ¢o = ¢ and ¢; %p cj+1 forall 0 < j < |r|; each configuration
cj = (g,0) (alternatively, the shared global valuation g) is said to be reachable from
¢ by the finite trace T; = apay ...a;_1.

Context: A context of thread t is a trace T = agpa ... in which for all 0 < j < |r| there
exists £ € Locs such that a; = (¢, £); every trace is a context-sequence concatenation.

Enabled, Blocked, Fair: A thread r € Tids is enabled after a finite trace 7 if and only
if there exists an a labeling a ¢-transition such that 7w - a is also a trace; otherwise ¢ is
blocked. An infinite trace is strongly fair (resp., weakly fair) if each infinitely-often
(resp., continuously) enabled thread makes a transition infinitely often.

Checking typical safety and liveness specifications often reduces to finding whether
certain program configurations are reachable, or determining whether fair infinite traces
are possible. The following two problems are thus fundamental.

Problem 1 (State-Reachability). Given a configuration c¢ of a program P, and a shared
global state valuation g, is g reachable from c in P?

! Technically, our reduction considers round-robin schedules of thread contexts.
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Problem 2 (Fair Non-Termination). Given a configuration c¢ of a program P, does there
exist an infinite strongly (resp., weakly) fair trace of P from ¢?

Even for recursive multithreaded programs accessing finite data, both problems are
undecidable [23]. However, while state-reachability is recursively enumerable by ex-
amining all possible concurrent traces in increasing length, detecting non-terminating
traces is more complex; from Yen [24] one deduces that the problem is not even semi-
decidable. A simpler problem is to detect non-terminating traces which eventually re-
peat the same sequence of actions indefinitely. Formally, an infinite trace 7 is ultimately
periodic when there exists two finite traces u and v, called resp., the stem and lasso,
such that T = - v®. Then a key question is the detection of ultimately periodic traces.

Problem 3 (Fair Periodic Non-Termination). Given a configuration ¢ of a program P,
does there exist an ultimately periodic strongly (resp., weakly) fair trace of P from c?

Periodic non-termination is also undecidable, yet still recursively enumerable—by ex-
amining all possible stems and lassos in increasing length. This implies that not all
non-terminating executions are ultimately periodic. In principle, coordinating threads
can construct phased executions in which each phase consists of an increasingly-longer
sequence of actions, using their unbounded procedure stacks to simulate unbounded in-
teger counters. Still, it is unclear whether non-periodic executions arise in practice. Our
goal is to efficiently detect ultimately periodic fair traces where they exist.

3 Bounded Compositional Non-termination Analysis

Rather than incrementally searching for non-terminating executions by bounding the
length of the considered stems and lassos, our discovery strategy bounds the num-
ber of thread contexts in the considered stems and lassos; this strategy is justified by
the hypothesis that many interesting bugs are likely to occur within few contexts per
thread [21,,117]. Notice, for instance, that the non-terminating executions of each of the
programs in Figure [[l require only one context-switch per thread during their repeat-
ing sequences of actions. Formally for k € N, we say a trace T = agpay ... is k context-
bounded when there exist ji, ja,...,jx € N and ji; = |r| such that T = mm;... 7T
is a sequence of k thread contexts ; = aj,...aj,, ,1; we refer to each j; as a context-
switch point. Though we expect many ultimately periodic traces to exhibit few con-
text switches per period, context-bounding is anyhow complete in the limit as context-
bounds approach infinity.

Remark 1. For every ultimately periodic trace y - v® there exists k1,k, € N such that u
and v are, resp., k; and k context-bounded.

In what follows, we show that for given stem and lasso context-bounds, resp., k1 € N
and kp € N, the fair periodic non-termination problem reduces to the state-reachability
problem in sequential programs; the salient feature of this reduction is compositionality:
the resulting sequential program considers each thread independently, without explicitly
representing thread-product states. The general idea is to show that all ultimately peri-
odic executions can be decomposed into stem and lasso such that during each period of
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the given lasso, each thread reencounters the same global valuations at context-switch
points, and reencounters the same topmost stack-frame valuation; since each procedure
stack must be non-decreasing over each lasso iteration, there must be some frame during
each period which is never returned from. We show that detecting these repeated global
valuations and topmost stack frames over a single lasso iteration implies periodicity.

To begin, we show that the existence of an ultimately periodic trace u - v® implies
the existence of an ultimately periodic trace ¢ - v'® in which the sequence of global
valuations (and topmost procedure-stack frames) of each thread at context-switch points
repeat in each iteration of the lasso V'.

3.1 Annotated Traces

For a configuration ¢ = (g,6) of a program P, we write c[g := g'] to denote the
configuration ¢ = {g’,0). An annotated trace Tt of a program P is a sequence T =
(8i,Ti M, 81, T});_, ,—Where each g;,g; € Vals are global valuations, 1;,7; € Tids —
(Locs x Vals) are thread-to-frame mappings, and 7; is a thread context—for which
there exist local-state maps 61,0},...,0x,0} : Tids — (Locs x Vals)™ of configurations
c1,¢},...,ck, ¢, where foreach 1 <i < k:

Ci = <gi30i> and C? = <g§a02>’

6i(t) =1(t) - w; and 6/(r) = T}() - W} for each thread ¢ € Tids, for some w;, w,
each cg is reachable from c; via the trace m;, and

— Cip1 =c}[g = giy1] fori < k.

We say the annotated trace 7 is valid when ¢y = ¢} for 1 <i < k. The definitions
applying to traces are lifted naturally to annotated traces.

Lemma 1. There exists an ultimately periodic trace p-v® from a configuration c in a
program P iff there exists a valid annotated ultimately periodic trace ji-V® from c in P.

As we are mainly concerned with annotated traces, we usually drop the bar-notation,
writing, e.g., T to denote an annotated trace T, and use “trace” to mean “annotated
trace.”

3.2 Compositional Detection of Periodic Traces

In the following we reduce the detection of valid ultimately periodic traces to the detec-
tion of ultimately periodic traces for each individual thread ¢ € Tids. Let © = u-v®
be a valid ultimately periodic trace which divides ¢ and v, resp., into k; € N and
ky € N contexts, indexed by /* C N and IV C N, as u = (g;,Ti, i, &}, i) ;e and v =
(8T, Vi 81> T)) jepv- We construct an ultimately periodic trace m; in which only 7 is ac-
tive. Roughly speaking, the constructed trace mt; corresponds to the projection of T on
the set of #-labeled transitions. Given the global values g; and g/ seen at the beginning
and end of each context i of thread ¢, the trace 1, can be computed in complete isolation:
we simply resume the ith context of thread ¢ with the global value g;, and ensure g is

encountered at the end of the ith context. Supposing thread ¢ executes in the contexts
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indexed by Ii' C I*, along the stem y, and in the contexts indexed by I C IV along the
lasso v, we define the thread-periodic trace fort as m; o U - v, where

Mt = <giaTl'<t)7,uiag;71§(t)>i61;‘ Vr = <giati<t)7vi7g?aﬂc;(t)>i€1,v

For the thread-periodic trace m, of ¢, we associate two sequences SI(1;) = (gi,8});c Ity

and LI(m;) = (gi,8});c ;v of global valuation pairs encountered at the beginning and end
of each context, called, resp., the stem and lasso interfaces; the sizes of interfaces are
bounded by the number of contexts: |SI(m;)| < k; and |LI(7;)| < k».

We define the shuffle of a sequence set S inductively as shuffle({e}) = {€}, and
shuffle(S) = U{s: - shuffle(S’) : s152...5; € Sand S\ {s1...5;} U{s2...5;} = §'}; for
instance, shuffle({s1s2,53}) = {s15253,515352,535152}. We say the thread interface sets
S and L are compatible when there exists s ...sy, € shuffle(S) and sg, 1.5k, 44, €
shuffle(L) where each s; = (g;, &), and g} = g;1 for 0 <i < ki +k», and g;q+k2 = 8k +1-
Extending this definition, we say a set {m, : ¢ € Tids} of thread-periodic traces is com-
patible if and only if {SI(n;) : ¢ € Tids} and {LI(m;) : r € Tids} are compatible.

Lemma 2. [f there exists a compatible set of thread-periodic traces {m, : t € Tids} of a
program P, then there exists a valid ultimately periodic trace T = u-v® of P. Moreover,
uandv are, resp., Y, ctigs |SI()| and Y ctias |LI(T;)| context-bounded.

Lemma [2] suggests a compositional algorithm to detect ultimately periodic valid
traces. As each trace is constructed from a straight-forward composition of thread-
periodic traces, we need simply to compute a compatible set of thread-periodic
traces. We thus reduce the detection of valid ultimately periodic traces to com-
puting (finite) compatible thread interface sets {S;:r € Tidsand |S;| <k;} and
{L; :r € Tids and |L;| < k2 }, and ensure the existence of, for each thread ¢ € Tids, a
thread-periodic trace m, such that SI(n;) = S; and LI(m;) = L;.

3.3 From Thread-Periodic Traces to Sequential Reachability

Section [3.2] reduced the problem of finding periodic executions to that of computing
thread interfaces. Now we demonstrate that thread interfaces can be computed by state-
reachability in sequential programs. For the remainder of this section we fix an initial
configuration ¢( of a program P, and a thread-periodic trace T, = g, - v° of a thread .

We know that the thread period trace m; repeats the same sequence of actions per
period over and over indefinitely. It follows that although during each period the size
of #’s frame stack may increase and decrease due to procedure calling and returning,
the net size of t’s frame stack must not be decreasing—otherwise ¢ cannot repeat v,
indefinitely. This implies that there exists a sequence fi f> ... of ¢’s procedure frames—
each f; € (Locs x Vals) encountered in the ith period—which are never returned from;
we call these frames the keyframes of t. Since we repeat the same sequence of calls
and returns along each period, we can assume w.l.o.g. that each keyframe f; is the
procedure frame encountered at the beginning of the same context shift in v, with
0 < shift < |LI(m;)|. Furthermore, we know that these keyframes correspond to the
same procedure frame f (from definition of value annotated traces).
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In order to check that f is a keyframe (i.e., never removed from the stack), we check
that from a configuration where the stack contains only the frame f, we can reach a
configuration with topmost frame f after executing the trace v; (modulo rotation). We
know also that executing the trace y; followed by the first shift contexts in v, will
result in a configuration with topmost frame f. This is exactly what is defined below:

Feasibility: Let SI(m,) = (gi,8;);cp and LI(m;) = (gi,8;);c,v be the given stem and
lasso interfaces. We say that (SI(m;),LI(m;)) is feasible if there are a frame f,
a natural number shift with 0 < shift < ki, and a sequence of configurations
c1,¢),...cm, ¢, with m = (ki + kp + shift) such that, forevery 1 < j <m:
- c’j is reachable from c; via a trace of the thread ¢.
The global valuation in c; and ¢’; are g; and g; with i = j(mod ki +k2) +k> + 1.
The stack in ¢;_; and c; are the same when j # (k2 +shift + 1) with ¢j = co.
The stack in ci,4snist+1 contains only the frame f. Moreover, the topmost
frame in ¢j , ;.. and c;, is precisely f.

Lemma 3. [f the thread trace T is periodic, then (SI(m,),LI(T;)) is feasible.

Now, we can show if there is a thread trace m] of ¢ from a configuration containing the
keyframe f, satisfying the interface L;, and reaching a configuration whose topmost
frame is precisely f, then this thread trace can be executed infinity often. This means
that 7] can be considered as a lasso trace of r whose lasso interface is precisely L;. On
the other hand, if there is a thread trace @’ of ¢ from the initial configuration to a con-
figuration whose topmost keyframe is precisely f while respecting the stem interface S|
(which is the concatenation of S; and the first (shift)-elements of L,) then m) - 7t; can
be considered as a stem trace for the lasso trace T,.

Lemma 4. Given a compatible interface sets {S; :t € Tids} and {L; :t € Tids} such
that (S;,L;) is feasible for each t € Tids, we can construct compatible thread-periodic
traces {m; : t € Tids} such that |SI(n;)| = |S;|+ |L¢| and |LI(n;)| = |L;| for eacht € Tids.

The lemmata above suggest the following procedure: first, guess compatible interfaces
{8, L; : t € Tids}, then check feasibility of each (S;,L;). Observe that checking the fea-
sibility of each given pair (S;,L,) boilds down to solving reachability problems in the
sequential program describing the behavior of the thread 7. Section Ml concretizes this
algorithm in a code-to-code reduction to sequential program analysis.

3.4 Encoding Fairness

By our definitions in Section [2] any blocked thread must be waiting to acquire a held
lock. This leads to the following characterization of strongly fair ultimately periodic
traces: for each thread ¢ € Tids, either

Case 1. The lasso contains at least one transition of ¢, or

Case 2. The thread ¢ is blocked throughout the lasso, waiting to acquire some lock
x € Locks; this further implies that
Cond. 1 the lock x may not be released during the lasso by any thread,
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Cond. 2 the lock x must be held by another thread at the beginning of the lasso,
and
Cond. 3 ¢ remains at the control location of the acquire of x throughout the lasso.

These conditions characterize strongly fair ultimately periodic computations. We ensure
these conditions are met by extending the notion of interfaces to include the set X C
Locks of locks which are held throughout the lasso. Then, we must ensure locally per
thread that any x € X is not released during the lasso (Cond. 1), and that some thread
holds x when entering the lasso (Cond. 2); additionally, we allow any thread attempting
to acquire some x € X to execute no further action. (Observe that if the lock x is released
during the lasso by any thread (see Cond. 1 of Case 2) then the resulting ultimately
periodic computation is not strongly-fair since the thread ¢ is infinitely often enabled
and does not infinity often fire a transition.) Weak fairness can be similarly characterized
using a set ¥ C Locks of locks which are held at some point during the lasso; we then
ensure that each y € Y is either held at the beginning of the lasso, or acquired at some
point during the lasso.

4 Reduction to Sequential Program Analysis

The compositional analysis outlined in Section 3] reduces (context-bounded) fair peri-
odic non-termination to state-reachability in sequential programs. Given thread stem
and lasso interfaces, and the set of locks held throughout the lasso, the feasibility of
each interface is computed separately, per thread. In this section we describe how to
implement this reduction by a code-to-code translation to sequential programs with an
assertion which fails exactly when the source program has a strongly fair ultimately
periodic execution whose stem and lasso satisfy a given context bound ] Figure 2l lists
our translation in full.

Essentially, we introduce a Main procedure for the target program which executes
each thread one-by-one using an initially-guessed sequence of global valuations stored
in Stemy and Lassog. For each thread ¢, we guess the number—stored in shift—of
contexts following the kst context until ’s keyframe is encountered on Line [T§] and
begin executing #’s main procedure Main[¢] on Line 2l Initially, the values stored in
Stem and Lasso are the values seen at the beginning of each context of the first thread
during, resp., the stem and repeating lasso. After execution of the ith thread, the values
of Stem and Lasso are the values seen at the end of each context of the ith thread, and
at the beginning of each context of the (i+1)st thread. Accordingly, after the execution
of the final thread, the values seen at the end of each context must match the values
guessed at the beginning of the following contexts of the first thread, according to the
round-robin order; the assumptions on Lines P22H27] ensure these values match.

The execution of each thread thus acts simply to compute its interface. As the
keyframes of different threads may be encountered at different points along the lasso,

2 Technically we consider bounded round-robin thread schedules rather than bounded context
switch. Though in principle the two notions are equivalent for a fixed number of threads—
i.e., any k-context execution takes place within k rounds, and any k-round n-thread execution
takes place in kn contexts [[15]—ensuring interface compatibility is simpler assuming round-
robin.
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the length of each thread’s stem varies. Our translation computes for each thread a
stem long enough (at most k1 + k> — 1 contexts) to cover the stem of any thread. Since
each thread’s repeating sequence may begin as soon as the kst context, the stem and
lasso computation may overlap. Our translation maintains the invariant that the Stem
(resp., Lasso) values are active exactly when k1 #_| (resp., k2 # 1 ). Reads and writes
to shared variables (on Lines@7H57) read and write to both Stem and Lasso as they are
active.

Our translation also adds code at every potential context switch point (Lines [71-
[06). Initially, the context counters k1 and k2 are incremented nondeterministically and
synchronously (the block starting at Line [74). Then, at Line [78 we check whether the
thread’s keyframe has been encountered for the first time, and if so make a snapshot of
the local valuation and program location, and activate the lasso; later along, at Line
we validate the snapshot when returning to the same keyframe (perhaps with a larger
procedure stack). At some point in between, at Line the stem becomes inactive.
We ensure using the local variable bottom that the keyframe in which a thread begins
repeating is never returned from.

We ensure strong fairness using an auxiliary vector of Boolean constants waited,
one per lock x € Locks, indicating the set of locks which are held throughout the lasso.
According to Section 3.4l we ensure each waited lock is held at the beginning of the
lasso (Lines 28H30) and not released during the lasso (Line [68)), and allow attempted
acquires to abort (Line[63).

Lemma 5. The program ((P))k1 k2 violates its assertion if P has a strongly-fair ulfi-
mately periodic round-robin execution with ki € N and ky € N, resp., stem and lasso
rounds; if ((P))k k2 Violates its assertion then P has a strongly-fair ultimately periodic
round-robin execution with ki + ky and ks, resp., stem and lasso rounds.

5 Experimental Evaluation

We have implemented our analysis, based on the code-to-code translation presented
in Section @ Our prototype tool, called MUTANTH, takes as input a program writ-
ten in the BOOGIE intermediate verification language [2]. Though normally a rich se-
quential language with recursive procedures, integers, maps, and algebraic datatypes,
we have extended BOOGIE with thread-creation and atomic blocks, which we use to
model shared-memory multithreaded programs with synchronization operations. Given
a bound K € N (where K = ki + k2), MUTANT outputs an assertion-annotated sequen-
tial BOOGIE program. We feed the resulting program to our SMT-based bounded model
checker CORRAL [14]. MUTANT has support for strong fairness, and does not falsely
detect nonterminating executions in the program of Figure[Th, for instance.

As an initial example to demonstrate MUTANT’s effectiveness, we consider a try-
lock based algorithm for the dining philosophers problem. This program involves N
locks and N threads, each of which executes the code shown in Figure[3h. Each philoso-
pher tries to acquire two locks. TryLock is a non-blocking synchronization operation
that returns true when the lock is successfully acquired, otherwise it returns false. If

3 MUTANT stands for MUItiThreAded Non Termination.
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// translation of
// var g: T
var Stem[k+k,-1]: T

// translation of
// proc p (var 1: T) s
ssproc p (var 1: T,

221

65
// translation of
// release x

var Lassol[k]: T bottom: B) s assume k2 = !waited[x];
svar Local: T release x

var Location: Locs // translation of 70

var shift: N<euU{l} // call x :=pe // translation of

const waited[Locks]: B s call x := p (e,%) // (implicit) yield

var ki: NU{l}
ovar k2: NU{Ll}

// at

while

location ‘loc”’

// translation of * do

// return e skl := k1l + 1;
proc Main () assume !bottom; k2 := (k2+1) mod k;;
const Stem; := x*; ssreturn e
const Lasso, := x; if k1 = k;+shift

15 Stem := Stem; // translation of shared A k2 = 1 then
Lasso := Lassog; // vartable read x := g 80 // begin the lasso
foreach t in Tids do assume Stem[k1] assume bottom;

shift := x; 50 = Lasso[k2]; k2 := shift;
k1 := 0; x := Stem[ki] Local := 1;
20 k2 := 1|; x := Lasso[k2]; Location := loc;
call Main[t] Q; 85
assume // translation of shared if k1 > ki+k,-1 then
Stem[0. .k +k,-3] ss // variable write g := e // end the stem
= Stem [1..k1+k-2]; Stem[k1] := e; k1 := 1;
25 assume Lasso[k2] := e
Lasso[0. .k -2] 90 if k2 = shift
= Lassoo[1..k-1]; // translation of A k1 = 1 then
assume Vx € Locks: 60 // acquire x // end the lasso
x(Lasso [0]) if shift = L A x assume Local = 1;

30 < waited[x]; A waited[x] then assume Location = loc;
assert false; abort; 95 // exit to main
return acquire x abort;

Fig. 2. The sequential translation ((P))*1* of a multithreaded program P. We assume that state-
ments which evaluate undefined expressions (i.e., using _L in arithmetic or array indexing) are
simply skipped, and that no statement both reads and writes to g. The expression * nondetermin-
istically evaluates to any well-typed value, and the assume e statement proceeds only when e
evaluates to true. The abort statement discards the procedure stack and returns control to Main.

a philosopher acquires the left lock but is not able to acquire the right lock, then he
releases the left lock and tries again. A philosopher terminates when he is able to ac-
quire both locks (Line 10). This program has a fair non-terminating execution for each
N > 2, namely where each philosopher first acquires their left lock, then upon seeing
their right lock unavailable, they release their left lock. MUTANT is able to automat-
ically detect this execution for each value of N with K = 2; we report running times
in Figure Bd. Note that while this execution requires all N threads to participate, each
thread only uses a fixed number of context switches in each period of the lasso. Though
the state-space of the program grows exponentially with N, Figure Bd demonstrates
that MUTANT scales sub-exponentially. Though the program has unfair non-terminating
executions—e.g., where one philosopher acquires a lock and ceases to participate fur-
ther, while the others continuously spin waiting to acquire both their locks—MUTANT
correctly does not report any such unfair non-terminating executions.
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1// An array of N locks

2var Lock[N]: mutex 1 proc Threadl() .

5 ) var vl i= %; 1 while ¢, do

s proc Philosopher (n: int) 3 add(v1l); 2 131meout := false;

5 var left := Lock[n]; 4 flag := false; 3 if *'and e then

6 var right := Lock[(n+1)YN]; s return 4 timeout := true;
7 while true do 6 s break

8 if TryLock(left) 7 proc Thread2() (©)

9 if TryLock(right) s while flag do

10 break 9 var v2 := x;

1 else 10 if x then N=2 3 4 5 6
1 ReleaseLock (left) ; " add (v2) 2.1s  343s 6.13s 8.94s 2191s
13 ReleaseLock(right); 12 else N=7 8 9 10

14 ReleaseLock(left); 13 remove (v2);  15.79s 30.77s 31.66s 43.54s

15 return 14 return

(a) (b) (d)

Fig. 3. (a) TryLock based dining phisophers. (b) A concurrent client operating on an Optimisti-
cList. (c) Modeling timeout. (d) Running time of MUTANT on the dining philosophers example.
As our verifier is based on the Z3 SMT solver, running times may increase non-uniformly with
N due to Z3’s internal heuristics, which may vary widely across different instances.

As a second example we consider the concurrent OptimisticList algorithm from
Section 9.6 of Herlihy and Shavit [9], supporting concurrent insertions and deletions on
sorted lists using optimistic concurrency control. Our BOOGIE encoding spans roughly
250 lines. In order to determine whether each operation is guaranteed to terminate in
the presence of an environment performing arbitrary list operations, we wrote the two-
thread driver of Figure Bb. While the first thread tries to insert an element, the second
thread continuously fires add and remove operations with arbitrary arguments. The
shared variable flag ensures that the second thread terminates when the first thread
does. Though not shown, the driver also initializes the list with a few arbitrary elements.

This program has the following fair non-terminating execution, similar in spirit to
that in Figure[Ik: first, the add operation of Threadl selects a position in the (sorted) list
where to insert a value vy, say between consecutive nodes with values a and b (i.e., such
that a < v; < b). Then the second thread picks a value v, such that a < v < b, and
inserts. When the first thread then sees that list has been modified at the position it was
about to insert, it retries the add operation. Meanwhile, the second thread fires a remove
operation and deletes v,. This program then reencounters the initial configuration, and
the add operation has not succeeded. MUTANT finds this execution with three contexts
per thread in 44 seconds. Interesting to note is that even though this program may use
infinite-domain data values, there remains nevertheless an execution that loops back
exactly to the configuration. One slightly tricky aspect of this example is modeling
memory allocation: because the second thread allocates and removes a list node in each
period, we must explicitly free the removed node in order to reencounter the same
configuration at the end of the lasso. As future work, using a more abstract notion of
heap equality could simplify this aspect.

As a third example we consider a algorithm developed by our colleagues [2(] that en-
ables programmers to write assertions which are checked continuously and concurrently
with the actual program, in similar spirit to asynchronous assertions [1]]. One salient
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feature of this algorithm is that it is non-blocking, i.e., the evaluation of the asserted ex-
pressions does not block other threads from making progress. We coded the algorithm,
and two variations with possible non-termination bugs, in roughly 230 lines of BOOGIE
code. In each of the potentially-buggy variations we found a non-terminating execution
where incorrect assertion evaluations led to livelock. To our surprise, we also found a
non-terminating execution in our supposedly-correct variation. After consulting with
the developers, the problem turned out to be in our modeling. To understand the prob-
lem, consider the code in Fig. Bb. MUTANT detected non-termination by skipping the
then-branch in each iteration of the lasso. (The actual non-termination found by Mu-
TANT required concurrent reasoning, even though the lasso only involved one thread.)
However, the intention of the designers was that this branch represents an actual time
out reflecting a timer running down to zero. We corrected this modeling by ensuring that
the above choice must evaluate to true at least once within the lasso. This is similar to
enforcing Condition 1, Case 2 of strong fairness in Section[3l Nonetheless, MUTANT’s
output is still valuable: it says that if the time out is not implemented correctly, then the
program may enter a livelock.

MUTANT is able to determine the absence of periodic nontermination bugs in the
corrected variation with up to 3 contexts per thread in 402 seconds. MUTANT also de-
tects nonterminating executions in the three buggy variations in 11, 21, and 36 seconds.
These experiments demonstrate that MUTANT is effective on real-world algorithms.

6 Related Work

Our work follows the line of research on compositional reductions from concurrent
to sequential programs. The initial so-called “sequentialization” [22] explored multi-
threaded programs up to one context-switch between threads. Following Qadeer and
Rehof [21]’s generalization of context-bounding to an arbitrary number of context
switches, Lal and Reps [[13] later proposed a sequentialization to handle a parameter-
ized amount of context-switches between a statically-determined set of threads execut-
ing in round-robin order. La Torre et al. [12] extended the approach to handle programs
parameterized by an unbounded number of statically-determined threads, and shortly
after, Emmi et al. [6] further extended these results to handle an unbounded amount of
dynamically-created tasks. Bouajjani et al. [3] pushed these results even further to a se-
quentialization which attempts to explore as many behaviors as possible within a given
analysis budget. The compositional analyses resulting from each of these sequential-
izations however only consider finite executions, and are thus incapable of establishing
liveness properties.

Although much previous work has been done for proving termination and detecting
non-termination in sequential programs—for instance, Cook et al. [4] discover ranking
functions to prove termination of sequential programs, and Gupta et al. [8] use concolic
execution to detect non-terminating executions in sequential programs—relatively little
attention has been paid to multithreaded programs, where interesting non-terminating
executions often have little to do with possible divergence of data values. Though Cook
et al. [5] have extended TERMINATOR to multithreaded programs, their analysis is ori-
ented to proving termination; failure to prove termination does not generally indicate the
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existence of a non-terminating execution. More recently Popeea and Rybalchenko [19]
have developed compositional techniques to prove termination in multithreaded pro-
grams, though again, their approach does not certify the existence of non-terminating
executions. Because both of these techniques focus on establishing a proof of termina-
tion, they necessarily consider over-approximations of concurrent programs, whereas
our technique looks at an under-approximation to find counterexamples faster.

Musuvathi and Qadeer [[18] consider liveness properties in multithreaded programs,
but their approach is based on systematic testing, and thus behavioral coverage is lim-
ited by test harnesses and concrete input values. Moreover, their approach is stateless
(i.e., they never store states during the execution of the program), hence they can only
detect possible non-termination by identifying lengthy executions.

In the most closely related work of which we are aware, Morse et al. [[L6] pro-
pose a compositional LTL model checking technique for multithreaded programs based
on context-bounding. As far as we can tell, their technique (a) does not ensure non-
terminating executions are fair, (b) does not consider lassos in which multiple recursive
threads interfere, and (c) requires very high context-bounds to capture synchronized
interaction between the program and a monitor Biichi automaton.

7 Conclusion

We have developed a compositional algorithm for detecting fair ultimately periodic
executions in recursive multithreaded programs by bounding the number of context-
switches in each repeating period. Our approach reveals a simple-to-implement code-to-
code translation, which reduces the problem to finding assertion violations in recursive
sequential programs; consequently we leverage existing sequential analysis algorithms.

Our approach can be used to encode other linear temporal logic conditions besides
non-termination, e.g., response properties. Though for specific classes of formulae/prop-
erties efficient encodings are possible, a sequentialization parameterized by arbitrary
linear temporal logic formulae must essentially construct the product of the input pro-
gram with an arbitrary Biichi automaton; the encoding of this (synchronous) product as
a sequential program may not be as succinct.

In this work, discovering ultimately periodic executions is done by detecting repeated
state valuations. This notion of repeatability is complete for programs manipulating fi-
nite data, but is not complete in general. Still, this notion is actually relevant in many
practical cases, since non-termination bugs in concurrent programs are often due to
non-state-changing retry mechanisms. In the case of infinite data domains periodic ex-
ecutions may exhibit, for instance, ever increasing counter values; there a notion of
repeatability more relaxed than state-equality may be necessary. This notion however,
contrary to the one we consider here, would have to account for the actions encountered
during the lasso. Ensuring repeatability may be complex to define and check, depending
on the data domains and the nature of program operations.
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Abstract. We propose a trace-based concurrent program analysis to soundly re-
move redundant synchronizations such as locks while preserving the behaviors
of the concurrent computation. Our new method is computationally efficient in
that it involves only thread-local computation and therefore avoids interleaving
explosion, which is known as the main hurdle for scalable concurrency analysis.
Our method builds on the partial-order theory and a unified analysis framework;
therefore, it is more generally applicable than existing methods based on simple
syntactic rules and ad hoc heuristics. We have implemented and evaluated the
proposed method in the context of runtime verification of multithreaded Java and
C programs. Our experimental results show that lock removal can significantly
speed up symbolic predictive analysis for detecting concurrency bugs. Besides
runtime verification, our new method will also be useful in applications such as
debugging, performance optimization, program understanding, and maintenance.

1 Introduction

Concurrent programs are notoriously difficult to analyze due to their behavioral com-
plexity resulting from the often extremely large number of thread interleavings. This
renders comprehending all the possible ways in which threads interact a difficult prob-
lem. As a result, programmers often take a defensive stance and label large sections of
code as critical sections. This may result in the addition of redundant locks, both degrad-
ing performance and making program modeling, analysis, and understanding difficult.
The situation is particularly severe in trace-based concurrent program analysis. When
focusing on a concrete execution trace rather than the entire program, we often find
significantly more redundant locks, i.e. locks that are not completely redundant in the
whole program may become redundant when the analysis is restricted to a trace.
Although there exist some methods for identifying redundant synchronizations in
Java and C programs [3l416.221130], e.g. as part of the compiler’s performance opti-
mization, they are all based on very simple syntactic rules and ad hoc heuristics. Since
these methods are based on matching patterns rather than analyzing the program seman-
tics, they do not lead to a generally applicable framework. Indeed, most of them handle
only the simple case of effectively thread-local objects, i.e. locks that are declared as
globally visible but are accessed only by one thread throughout the execution. For the
many truly shared but still redundant locks, these existing methods are not effective.
We address this limitation by introducing a new and more generally applicable lock
removal algorithm. Our method is generally applicable since it can remove not only the
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effectively thread-local locks but also the truly shared redundant locks. Our method is
also efficient since it is based on a compositional analysis that involves only thread-local
computation. Our method is sound in that it can guarantee preservation of the behavior
of the original computation.

In formulating our lock removal strategy, we start from the classical notion of a con-
current computation as a happens-before relation on the shared variable accesses or,
equivalently, as a set of partial orders. Two interleavings are equivalent if they induce
the same partial order of shared variable accesses. Since removing locks lifts the corre-
sponding mutual exclusion constraints, some previously infeasible thread interleavings
may become feasible. Thus there is a danger for lock removal to introduce new program
behaviors. To address this problem, we make sure that new interleavings are added by
lock removal only if they do not add new partial orders. This leads to the formulation
of the behavior preservation theorem, which is a main contribution of this paper.

Another main contribution is the set of efficiently checkable conditions under which
the behavior preservation is guaranteed. They reduce the semantic check of behavior
preservation to a simple static check of the feasibility of transitions between global
control states. This is significant because it allows us to avoid enumerating the often
astronomically large number of thread interleavings. Our method is thread-modular in
that it does not require inspecting the interleaved parallel composition of threads. In
addition, our focus on a concrete execution trace is also crucial in keeping the method
scalable. The concrete execution trace provides the exact memory addresses that are
accessed by each thread, thereby giving us the precise points-to information of lock
pointers, together with information about the actual array fields accessed, etc.

Trace-based concurrent program analysis has obvious applications not only in run-
time verification, but also in debugging, just-in-time (JIT) optimization, program un-
derstanding, and maintenance. An important feature of trace-based analysis is that the
trace program has finitely many threads and a fixed set of named locks. Although the
whole program may have pointers, loops, recursion, and dynamic thread creation, in
the trace program, each thread is reduced to a bounded straight-line path. Most of the
complications common to static program analysis are avoided because, during the con-
crete execution, branching decisions at if-else statements have been made, function calls
have been inlined, loops have been unrolled, and recursions have been applied. The only
remaining source of nondeterminism comes from thread interleaving.

We have implemented the proposed method in a runtime verification platform called
Fusion, where the underlying bug detection algorithm uses an SMT-based symbolic
analysis. Since redundant locks can introduce a large set of synchronization constraints
during the modeling and checking phases, their presence often significantly increases
the cost of the symbolic analysis. Our lock removal method has been used to remove
these redundant locks. Our experiments on a set of public Java and C programs showed
a significant reduction in the number of locks, which in turn led to a significant speedup
in the subsequent symbolic analysis.

To sum up, this paper has made the following two contributions: (1) formulating
the general framework of behavioral preservation to soundly remove redundant locks;
and (2) proposing a set of efficiently checkable conditions based on the thread-local
computation of lock access patterns.
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The remainder of this paper is organized as follows. In Section 2] we use two ex-
amples to illustrate both the benefit and challenges of lock removal. In Section 3] we
illustrate our main ideas. In Section 4] we present a set of efficiently checkable con-
ditions. In Section[3l we demonstrate the application of our algorithm on the running
example. Our experimental results are presented in Section [6l We review the related
work in Section[7]and give our conclusions in Section 8l

2 Motivation

The main driving application in this paper is runtime predictive analy-
sis [1202505011423129119]], which is a promising method for detecting concurrency bugs
by analyzing an execution trace. In other words, even if the given test execution is
not erroneous, but if an alternative interleaving of the events of that trace can trigger
a failure, runtime predictive analysis will be able to detect it. Since a concurrent
program often has a very large number of sequential paths and thread interleavings,
statically analyzing the whole program is often extremely difficult. In such cases,
runtime predictive analysis offers a good compromise between runtime monitoring and
full-fledged model checking.

Runtime predictive analysis typically has three steps: (1) run a test of the concurrent
program to obtain an execution trace; (2) run a sound static analysis of the trace to
compute all the potential violations, e.g. deadlocks and race conditions; (3) for each
potential violation, build a precise predictive model to decide whether the violation is
feasible. The main scalability bottleneck is step 3 wherein the feasibility check needs to
explore all possible interleavings of the trace events. Although the problem in step 3 can
be solved by an efficient symbolic analysis [29/19]], redundant locks in the trace program
can unnecessarily increase the cost of this analysis, since they can lead to a large number
of locking constraints that need to be modeled and checked. Our lock removal method
can cut down on the number of unnecessary locking constraints, therefore resulting in
significant performance improvement in the subsequent analysis.

710 { 70 { T{0{ 7704 Ty'0{
Oa: —-; Ob: —; Oa: —; Oa: — Ob: —
la: lock(A); 1b: a[10]++; la: lock(A); : la: —- Ib: —
2a: a[1]++; 2b: a[11]++; 2a: —; 2b: —-; 2a; —; 2b: —;
3a:unlock(A);  3b: lock(A); 3a: unlock(A);  3b: lock(A); 3a: —; 3b: —;
4a: a[2]++; 4b: lock(B); 4a: —; 4b: lock(B); 4a: —; 4b: —-;
Sa: lock(A); 5b: a[12]++; Sa: lock(A); 5b: —-; Sa: —; 5b: —-;
6a: lock(B); 6b: unlock(B); 6a: lock(B); 6b: unlock(B); 6a: —; 6b: —-;
Ta: a[3]++; 7b: unlock(A); Ta: —-; 7b: unlock(A); Ta: —; 7b: —-;
8a: unlock(B);  8b: sh++; 8a: unlock(B);  8b: sh++; 8a: —; 8b: sh++;
9a: unlock(A); 9a: unlock(A); 9a: —;
10a: sh++; 10a: sh++; 10a: sh++;
} ¥ } } } }

(a) original (b) intermediate (c) final

Fig. 1. Example: removing redundant lock statements from a concurrent trace program
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Consider the concurrent trace program in Fig.[Il(a), which has two straight-line paths
in threads T and 7%, respectively. The global variables are sh and array a. Suppose that
the goal is to check whether locations 10a and 8b are simultaneously reachable (e.g. a
data race), we need to decide whether there exists a valid interleaving of these trace
statements along which 77 and 75 can reach 10a and 8b, respectively.

First, note that precise knowledge of the memory accesses is available since the trace
program is derived from a concrete execution. The knowledge can be used to cut down
the number of shared accesses that need to be interleaved. For example, although a/[i]
is a global variable, the entries of a accessed by the two threads in this particular trace
program are all disjoint and can be treated as thread-local. In other words, we can use
the runtime information to slice away the redundant statements. This can reduce the
trace program in Fig. [Tl (a) to the one in Fig.[(b).

Next, consider the program in Fig. [I] (b). Since locks A and B now protect only
thread-local statements, some of these lock statements may be redundant. We shall
show in later sections that, for this particular example, these lock statements are all
redundant and therefore can be removed while preserving the original program behav-
ior. This reduction yields the simple trace program shown in Fig. [l (¢) with only the
shared variable accesses. Consequently, it becomes easy to decide the simultaneous
reachability of 10a and 8b.

Challenges in Lock Removal. The example in Fig. 1 may give a false impression
that locks protecting only thread-local operations can always be removed. This is not
true, as demonstrated by Fig. 2 In this example, variable sh=0 initially. The assertion
at b7 holds because, to get value 2, one has to execute by...b5 — aj...ag — by...b7,
which is impossible since lock A is held by thread 75 at b3, which prevents thread T}
from acquiring the same lock at location as. However, if we remove the lock/unlock
statements at ae and a4 — since they protect only thread-local operations — the assertion
at b7 may fail because the aforementioned interleaving is now allowed. This example
highlights the fact that locks may play a key role in defining the set of allowed program
behaviors even if they do not guard any global operation. It also shows that, without a
rigorous concurrency analysis, ad hoc heuristics are often susceptible to subtle errors.
We address this problem by proposing a generally applicable lock removal framework.

T1() { T2() { ay: sh++ A ‘ bpt s

ay :sh++; byt ! o

as : lock(A) bs : lock(A) | bs: sh=0

A3z ¢ oeeeens b3 : sh=0; '

a4 : unlock(A) by : x=sh; ! L by: x=sh

as ... bs : unlock(A) i o

ag : sh++ bg ¢ e e !

a7 .. b7 : assert(x!=2); ag: sh++ ’ *

} } br: assert(x!=2)

Fig. 2. Example: Assuming that sh=0 initially. The lock statements at a2 and a4 cannot be re-
moved despite that they do not protect any shared access. Otherwise, assertion at b7 may fail.
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3 Lock Removal: The Core Idea

We say that a program P’ results from another program P via lock removal if P’ is
obtained from P by converting some of the lock statements to nop. A lock statement
in P is considered as redundant if removing that statement does not alter the program
behavior. Here the program behavior is defined as the set of interleaved computations
that are allowed by the program semantics. Since lock statements impose mutual ex-
clusion constraints, they restrict the thread interactions. By removing lock statements
from P, in general, we may allow the new program P’ to have more interleavings; on
the other hand, it is impossible to remove any previously allowed interleavings in P.
Therefore, to preserve the program behavior, we only need to ensure that every newly
added interleaving (allowed in P’ but not in ) is equivalent, in some sense, to an exist-
ing interleaving in P. In other words, lock removal is sound as long as it does not add
new equivalence classes (of interleavings).

3.1 The Lock Removal Strategy

Since characterizing interleavings directly is cumbersome and computationally expen-
sive, we rely on the standard notion of concurrent computations as happens-before re-
lations on the shared variable accesses [20/14]]. That is, executing two operations from
different threads that update the same memory location in different orders may lead to
different results. Therefore, instead of preserving interleavings of all the statements, we
focus on preserving the partial orders of shared variable accesses (reads and writes).

For a program P comprised of the n threads 71, ..., T),, a global control state s is a
tuple (c1, ..., ¢,) Where ¢; is a control location of 7; for all ¢ € [1..n]. In contrast to
a concrete program state, denoted s € s, the global control state s is more abstract in
that it tracks only the program counters but not the values of the program variables.
Therefore s can be viewed as a set of concrete states. Since thread-local operations are
invisible to the other threads, in the sequel we shall assume without loss of generality
that the locations in (c1, ..., ¢, ) are all starting points of global operations, i.e. either
shared reads/writes or lock acquisitions. This restriction can drastically cut down the
number of global control states that need to be considered during our analysis. Note
that if a thread is at location ¢;, it means that the operation at ¢; has not been executed
yet.

Definition 1 (Visible Successor). For global control states s, s’ in program P, we say
that s’ is a visible successor of s iff there exist states s € s and s' € s’ such that

— s’ is reachable from s via a valid concurrent computation, and
— along this computation, the first operation is the only global operation.

Our lock removal strategy can be phrased as follows: Removing all lock statements such
that no new visible successor is introduced to any global control state that is reachable
from the initial state in P. In other words, for each s, if we can preserve the set of global
control states that s can transit to, the program behavior will be preserved.

Consider Fig. 2] as an example. For all transitions between two global control loca-
tions, e.g. from (a2, bs) to (ag, bg), our lock removal strategy says that, if the transition
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is not allowed by P before lock removal, it should not be allowed by P’ either. Based
on this strategy, the lock statements at a2 and a4 will be preserved, because removing
them would make the infeasible transition in P from (az, b3) to (ae, b3) feasible in P’.

3.2 Conservative Static Check

Although the lock removal strategy proposed so far is sound as well as generally appli-
cable, computing the visible successors of a global control state is a challenging task,
because the conditions in Definition [T] are semantic conditions. Checking the reachabil-
ity between two concrete states s and s’ would be too expensive in practice. To avoid
this bottleneck, we introduce a set of checks based on the notion of static or control-
state reachability.

Lets = (¢1,...,¢n) and s’ = (cf, ..., c),) be two global control states, where for
each i € [1..n], the local path z* of T} leads from location ¢; to ;. We say that s’ is
statically reachable from s if and only if there exists an interleaving of 2!, ..., 2" that
obeys the scheduling constraints imposed by the locks while ignoring data (which is the
consistency between shared variable accesses).

Definition 2 (Static Visible Successor). For global control states s,s' in program P,
we say that s’ is a static visible successor of s iff

— s is statically reachable from s via some interleaved computation, and
— along this computation, at most one global operation is present.

Here the second condition ensures that s’ can be immediately reached from s (hence a
successor). Let Succp(s) be the set of static visible successors of s in program P. Our
static lock removal strategy is stated as follows.

Theorem 1 (Behavior Preservation). Let program P’ result from program P via lock
removal. If for each global control state s of P, we have Succp(s) = Succp: (s), then
the two programs have the same behavior as defined by the partial orders of global
operations.

Intuitively, if no new global control state becomes reachable from the initial state, then
there is certainly no new program behavior. For brevity, we omit the proof. A crucial
property of Theorem[T]is that the static reachability check can be turned into a concep-
tual lock removal procedure as follows:

1. Enumerate the set S of global control states of the given trace program.

2. For eachs € S, compute the set Succp (s)of static visible successors.

3. For each lock statement lk-stmt in thread T3, if there exists a global control location
s such that, removing lk-stmt would add a new successor s’ that is not in Succp(s),
we must retain lk-stmt else lk-stmt is removed.

There are two remaining problems. First, given two global control states s, s’, how to
efficiently decide whether s’ is a static visible successor of s. Second, how to efficiently
compute the set of static visible successors of s while avoiding the naive enumeration
of all global control states. We will address these two problems in the next section.
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4 Compositional Lock Removal

We present a compositional analysis for static lock removal to avoid the exponential
blowup incurred by naively enumerating the global control states. Our method is thread-
modular in that the lock removal computation involves only thread-local reasoning, and
therefore has a linear worst-case time complexity in the program size.

4.1 Deciding Static Reachability

We leverage an existing procedure [[L8] to decide the static reachability between two
global control states. The procedure is both sound and complete for 2-threaded pro-
grams with nested locks. For programs with more than two threads, the procedure re-
mains sound but is not complete. This is acceptable because, as long as it shows that s’
is statically unreachable from s, the unreachability is guaranteed to hold.

The procedure in [18]] can be viewed as a generalization of the
standard lockset analysis [24]. The key insight is that, to decide

whether s = (¢}, ¢}) is statically reachable from s = (¢q, c2), T T,
for example, in a 2-threaded program, merely checking the dis- .
jointness of the set of locks held by 77 and T3 at ¢} and ¢y is  (, [o o] ¢
not enough (see the figure on the right). Although overlapping

locksets prove that s is not reachable from s, the disjointness of a! a?
the locksets is not sufficient to prove that s’ is reachable from J

s. Instead, reachability can be decided more accurately by first ¢ [ o)
computing a lock access pattern (LAP) for each path from ¢; to | |

c;, where i € [1..2], and then checking whether the LAPs are
consistent.

Definition 3 (Lock Access Pattern). The lock access pattern for path z* from c; to c}
in thread T;, denoted LAP(c;, ¢}), is a tuple (L1, Lo, bah, fah, Held, Acq) where

L1 and Ly are the set of locks held by T; at c; and ¢}, respectively;
bah and fah are the backward and forward acquisition histories, respectively:
o foreachlockl € Lo held at ¢}, bah(l) is the set of locks acquired (and possibly
released) after the last acquisition of | along path x* from c; to c};
e foreachlockl € Ly held at c;, fah(l) is the set of locks released (and possibly
acquired) since the last release of | in traversing x* backward from ¢} to c;.
Held is the set of locks that are held in every state along path * from c; to c’;
Acq is the set of locks that are acquired (and possibly released) along path x*.

A key feature of this LAP-based static analysis procedure is that all computations are
local to each individual thread, which is crucial in ensuring scalability.

Decomposition Result. The static reachability from s to s’ can be decided by checking
whether the corresponding lock access patterns are consistent. For ease of exposition,
we present the result for programs with two threads. However, the result, as well as all
the other subsequent results, is applicable to programs with n threads.

Let s = (c1,c2) and s = (cf,c5) be two global control states, and
LAP(c1,¢;) = (L1, L3, bah' fah', Held", Acq") and LAP(cy,cy) = (L3, L3,
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bah?, fah?, Held?, Acq?) be the lock access patterns. Then s’ is statically reachable
from s iff

LiNnL? =0,and LI N L = 0;

there do not exist locks [ € L} and I € L? such that [ € fah?(I’) and I’ € fah*(l);
there do not exist locks I € L} and I € L3 such that [ € bah?(I’) and I’ € bah'(1);
Acq' N Held? = (), and Acq® N Held" = ).

B

For n-threaded programs, the only significant difference would be in conditions 2 and
3, wherein one has to account for the cases in which n threads form a cyclic dependency
that may span multiple threads instead of just two.

4.2 Compositional Analysis

To avoid the expensive enumeration of global control states as described in Theorem![T]
we compute for each individual thread, all pairs of local control states that may cor-
responds to some static visible successors. More specifically, a pair (¢;, ¢;) of control
locations in thread T is called a pair of interest (POI) iff

- ¢; and ¢ correspond to either shared variable accesses or lock acquisitions, and
— there exists a local path z* in T; from ¢; to ¢} such that no other shared variable
access or lock acquisition occurs between ¢; and c}.

Our compositional lock removal procedure is given in Algorithm [I After computing
the POIs of each thread T3, it traverses that thread to collect the lock access patterns for
all POIs. Let LP; denote the set of all lock access patterns in 7;. Note that LP; can be
computed via a single traversal pass of thread 7; (step 4).

Algorithm 1. Compositional Lock Removal
1: Imput: Threads 71,715
: for each thread T; do
3:  Enumerate all pairs of interest POI(T3).
4:  Traverse the local path in T; to compute LAP(c;, ;) for each pair (c;, ;) € POI(T}).
5:  Let LP; be the set of lock access patterns of all POIs in 7.
6
7
8

D N

: end for
: for each pair (lap1, lap2) where lap; € LP; for all thread index ¢ € [1..2] do
if lap1,lapz are inconsistent then

9: Identify the set of lock statements that are the root causes of inconsistency.
10:  endif
11: end for

12: Remove lock statements that are not the root causes of inconsistency for any pair.

Instead of iterating through the set of all global control states, Algorithm[Ilconsiders
all pairs (lap,laps) of lock access patterns that are inconsistent (step 7). Note that
lap; corresponds to some pair (¢;,¢;) € POI(T;) and the inconsistency of lap; and
laps means that there exist some lock statements that prevent (c1,c2) from reaching
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(¢}, c). In this case, we need to identify a minimum subset of lock statements that are
sufficient to establish this inconsistency, and retain these lock statements. Finally any
lock statement that is not responsible for causing an inconsistency between any pair of
lock access patterns does not impact the reachability between any pair of global control
states, and is therefore removed.

It is worth pointing out that the lock statements (to be retained) can be identified
from the lock access patterns (lap; and lap2) alone, without considering the global
control states or the POIs that generate these lock access patterns. In other words, we
can implicitly isolate the set of non-reachable pairs of global control states without
explicitly enumerating them. The algorithm can also be extended to programs with n
threads, by changing step 7 to check for inconsistent tuples of the form (lap1, ..., lapy, ),
as opposed to the inconsistent pair (lapy, laps).

4.3 Identifying the Locks to Be Retained

If s’ is not statically reachable from s in the original program P, according to Sec-
tion [£.]] at least one of the conditions in the decomposition result must be violated.
From these conditions, we can isolate the root causes that prevent s from reaching s’
statically. Our observation is that if s’ is not statically reachable from s in P, then we
need to make sure that s’ is not reachable from s in the transformed program P’. The
behavior preservation can be guaranteed if we retain at least some (but not all) of the
lock statements that prevent s from reaching s’.

Given an inconsistent pair lap; and laps of lock access patterns, we can define a
reachability barrier by isolating the locks causing the inconsistency. To this end, for
each pair (s, s’) of global control states where s = (c1,¢2) and s’ = (¢, ), we define
a reachability barrier, denoted RB(s,s’), which is the set of all locksets (L) for which
at least one of the following conditions holds:

— L = {I}, where [ is held at both ¢; and ¢3 or at both ¢} and ¢, (violating condition
1 of the decomposition result);

- L ={I,l'}, where [ and I’ are held at ¢; and c3, respectively, such that [ € fah(l’)
and [” € fah(l) (violation of condition 2);

- L ={l,I'}, where [ and I’ are held at ¢} and ¢4, respectively, such that [ € bah(l")
and !’ € bah(l) (violation of condition 3);

- L = {l}, where [ is held throughout 2! (or x?) and is acquired along 22 (or x!)
(violation of condition 4).

Note that in order to ensure that s’ remains unreachable from s, it suffices to retain

the locks belonging to some lockset in RB(s,s’) as that will ensure that at least one
condition of the decomposition result is violated.

5 Applying Lock Removal to the Running Example

We now use our new method to remove all locks in the trace program shown in Fig.[Il(b)
while preserving the program behavior.
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We start by identifying the pairs of interest. In the path ! shown in Fig.[Il (b), there
are three lock acquisition statements, i.e. locations la, 5a and 6a, and two shared vari-
able accesses, i.e., Oa and 10a (the initial state is always treated as a shared variable
access). This leads to the pairs of interest POl(x!) = {(0a,0a), (0a, la), (1a, la),
(1a,5a), (5a,5a), (5a,6a), (6a,6a), (6a,10a)}. Similarly, POI(z?) = {(0b,0b),
(0b, 3b), (3b,3D), (3b,4b), (4b, 4b), (4D, 8D), (8b,8b)}.

Next, we compute the lock access patterns generated by all pairs of interest in paths
x! and 2. Toward that end, we compute the lap2POlI function for 22 that maps each
lock access pattern lap that is encountered to the set of POIs of 22 that generate that
pattern. For each (cg, c}) in the set {(0b, 0b), (00, 3b), (3b,3b), (8D, 8b)}, no lock is
held at either ¢ or ¢4 and no lock is acquired along the sub-sequence of 2 from c; to
ch. Thus all the entries in the lock access pattern tuples for these pairs are empty (note
that if a thread is at location 3b it means that the statement at 3b hasn’t been executed
yet, i.e., lock held at location 3b is 0).

Consider now the pair of interest (4b, 8b). We show that LAP(4b,8b) = ({A}, 0,
{(A4,{B})}, 0, 0, {B}). The first two entries in the tuple are the locksets held at 4b
and 8b which are { A} and (), respectively. Since no lock is held at the final state 8b, the
forward acquisition histories, i.e., the fourth entry of the tuple is empty. On the other
hand, lock A is held at the initial state 4b. This lock is released at 7b. However before it
is released 7% also releases B at 6b. Thus B is in the backward acquisition history of A
which is reflect in the third entry of the tuple. Also, since lock B is acquired at location
4b, we have Acq = {B} (6th entry). Finally, since there exists no lock that is held at
all states, we have Held = () (5th entry). Similarly, we may compute the lock access
patterns for the remaining pairs of interest (see Fig. 3] (b)). Similarly, we compute the
lap2POl function for ! (see Fig. [l (a)).

From Fig.[3| (a) and 3] (b), we compute the inconsistent pairs (p1, p2) of lock access
patterns where

1. p1 = ({4}, {A},0,0,{A},0), p2 = (0, {A}, 0, {(A,{})}, 0, {A}): Held and Acq fields
of p1 and po, respectively, have the common lock A.

2. p1 = (0,0,0,0,0,{A}) and p2 = ({A}, {A}, 0, 0, {A},0): Acq and Held fields of py
and p2, respectively, have the common lock A.

3. p1 = (0,{A},0,{(A,{}1)},0,{A}) and p> = ({A},{A}, 0, 0, {A}, 0): Acq and Held
fields of p1 and po, respectively, have the common lock A

4. p1 = ({A},{A4},0,0,{A},0) and po = ({A},{A}, 0, 0, {A}, 0): L: fields have the
common lock A

5. p1 = ({4}, {A},0,0,{A},0) and po = ({A},0,{(A,{B})}, 0, 0, {B}): L fields have
the common lock A

6. p1 = ({A},0,{(A,{B})},0,0,{B}) and p> = ({A},{A}, 0,0, {A}, 0): L, fields have
the common lock A

7. p1 = ({A}L0,{(A,{B})},0,0,{B}) and p> = ({A}, 0, {(A,{B})}, 0, 0,{B}): L

fields have the common lock A

8. p1 = (@, {A}7 0? {(A’ {})}v 0? {A}) and p2 = (@, {A}7 @, {(A’ {})}v @, {A}) L, fields

have the common lock A.

Note that in each of the above cases, the only lock occurring in the reachability barriers
of the non-reachable pairs of global control states is A. Since lock B does not occur
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in any of the reachability barriers, in the first iteration, we can remove all statements
locking/unlocking B.

Now we repeat the lock removal procedure again on the trace program in Fig. [Tl (b),
by converting statements 6a, 8a, 4b and 6b to nop. These new traces generate the
lap2POI functions shown in Figs. 3] (c) and (d). Note that now all pairs of access
patterns are mutually consistent. Thus the reachability barriers for all pairs of global
control states are empty. Hence all locks in the original traces can now be removed
giving us the traces with no lock statements.

— {(0a, 0a), (Oa, 1a), (1a, 1a), (5a, 5a), (10a, 10a) }
}) = {(1a,5a)}

A, {N},0,{A}) — {(5a,6a)}
{A},0) — {(6a,6a)}
BN}, 0,0,{B}) — {(6a,10a)}

(a)

0
0)}.0, {A}) — {(3b 4b)}
{A},0) — {(4b,4b)}

0,0, {B}) — {(4b,8b)}

(b)
) — {(0a, 0a), (Oa, 1a), (1a, 1a), (5a, 5a), (10a, 10a) }
A}) — {(1la,5a), (5a, 10a)}
(©
— {(0b, 0b), (0b, 3b), (3b, 3b), (8b, 8b)}
{(3b,8b)}
(d)

s
1

Fig. 3. The lap2POlI function for z* (left) and 22 (right)

Generalizations. So far, for ease of exposition, we have presented all the algorithms
using concurrent trace programs with two threads. However, our results can be extended
to programs with an arbitrary but fixed number of threads. This generalizations do not
require additional insights. The only difference from the 2-thread case is that we need
an efficient technique to decide static reachability between global control states which
are now n-tuples of the form (cy, ...c,, ), where each ¢; is either a shared variable access
or a lock acquisition in thread T;. This is achieved via a straightforward extension of the
decomposition result in Section[4.Jl That is, for each pair of threads, we check whether
their lock access patterns (LAPs) are consistent.

So far we have discussed only mutex locks. A typical real-world concurrent program
in Java or C (with POSIX threads) may have additional concurrency primitives such as
thread creation and join operations, wait/notify/notifyall, as well as reentrant locks. The
presence of these synchronization primitives does not affect the soundness of our lock
removal algorithm. The reason is that, if s’ is statically unreachable from s according
to locks (while ignoring data and other concurrency primitives), it is guaranteed to be
unreachable when more synchronization constraints are considered. At the same time,
if there is a way to incorporate the causality constraints imposed by other concurrency
primitives, one can more accurately determine the reachability between global control
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states, therefore leading to the identification and removal of potentially more redundant
lock statements. To this end, we have incorporated the universal causality graph based
analysis in [[19] during our implementation of the proposed lock removal method. How-
ever, we note that this UCG-based analysis is orthogonal to lock removal, and can be
carried out once in the beginning of the computation.

6 Experiments

We have evaluated the lock removal method in the context of an SMT-based runtime
predictive analysis [28/29]], to quickly remove the lock statements that are redundant
and therefore ease the burden of modeling and checking by the SMT solvers.

We now provide a brief overview of the symbolic predictive analysis. Given a multi-
threaded Java or C program and a user-defined test case, the predictive analysis pro-
cedure first instruments the program code to add self-logging capability, and then uses
stress tests to detect concurrency failures. However, due to the scheduling nondetermin-
ism and the astronomically large number of interleavings, it is often difficult to uncover
the concurrency bugs. If testing fails to detect any bug, we start a post-mortem analysis
of the logged execution trace.

In this subsequent analysis, first we use a simple control flow analysis to compute the
potential bugs. Consider the one-variable three-access atomicity violation [21111]] as an
example. In this case, a potential bug is a sequence t....t,...t.» of program statements
such that: (1) ¢, and ¢/ are intended to be executed atomically by one thread, (2) ¢, is in
another thread and is data dependent with both ¢, and ¢.,. Then we use a more precise
static analysis based on the universal causality graph (UCG [I9)]) to prune away the
obviously bogus violations.

For each remaining potential violation, we call the SMT-based symbolic procedure
to decide if there exists a valid interleaving under which the violation is feasible. In this
context, an interleaving is feasible if it satisfies both the synchronization consistency
(e.g. locks) and the shared memory consistency. Please refer to [28/29.26] for more
information about the symbolic encoding. Here we assume the sequential consistency
(SC) memory model. We have used the YICES solver from SRI [8] in our experiments.
Since having more lock statements generally leads to more logical constraints and there-
fore a higher cost for SMT solving, we have used lock removal before the SMT-based
analysis, to remove the redundant lock statements.

We conducted experiments using the following benchmarkdl. The Java programs
come from various public benchmarks [[16417015/27]. The C programs are the PThreads
implementation of two sets of known bug patterns. The first set (Af) mimics an atomicity
violation in the Apache web server code (c.f. [21]), where At/ is the original program,
while At/a and Af2a are generated by adding code to the original programs to remove
the atomicity violations. The second set (bank) is a parameterized version of the bank
example [10], where the original program bank-av has a well-known atomicity viola-
tion and the remaining two are various attempts of fixing it All our experiments were
conducted on a PC with 1.6 GHz Intel processor and 2GB memory running Fedora.

! The benchmarks are available at http://www.nec-labs.com/~chaowang/pubDOC/LnW.tar.gz
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Table [Tl shows the results. The first five columns show the statistics of the trace pro-
gram, including the name, the number of threads, the total number of events, the num-
ber of lock/unlock events, and the number of named locks. The next nine columns show
the statistics of the lock removal computation. In particular, Columns 6-9 show the total
number of pairs of interest (POI), the number of POIs without any held lock (POI-e), the
number of POIs with non-trivial lock acquisition histories (POI-h), and the maximum
nesting depths of locks (max-h). The fact that max-h is often zero helps to make our
analysis scale to real-life programs. Columns 10-11 show the total number of relevant
pairs of global control states, and the number of pairs wherein one state is unreachable
from the other. Columns 12 and 13 show the number of critical sections (pairs of lock-
unlock statements) in the original and transformed programs, respectively. Column 14
shows the total time (in seconds) taken for the lock removal computation.

Table 1. Results: Using lock removal to improve symbolic analysis. mem means memory-out.

Concurrent Trace Program Lock Removal Computation Symbolic Analysis
name thrds events lk-evs lk-v  POI POI-e POI-h max-h vis-ne vis-ch Ik-r rm-r time(s) p-avs r-avs pre(s) post(s)
ra.Main 3 55 12 3 23 7 0 0 65 0 5 3 0.0 2 0 00 0.0
connect 4 97 16 1 43 29 0 0 1526 0 8 0 0.0 6 0 0.1 0.1
hedcex 1 122 35 7 1 0 0 0 0 0o 0 o0 0.0 0o 0 00 0.0
liveness 7 283 4 9 105 68 0 0 10272 015 0 02 36 0 04 0.4
BarrierB1 10 653 108 2 307 168 0 0 69498 0 35 14 09 102 0 105 3.0
BarrierB2 13 805 136 2 409 217 0 0 120659 0 49 21 1.6 87 0 545 7.4
accountl 11 902 146 21 230 134 0 0 43690 0 72 30 0.7 140 2 1.8 0.9
philo 6 1141 126 6 433 260 0 0 147294 0 63 10 22 81 0 425 194
account2 21 1747 282 41 442 260 0 0 171400 0140 60 2.6 280 3 87 2.4
Daisy1 32998 422 10 843 105 29 1 17249 141204 175 0.3 7 0 mem 213
Elevator] 4 3004 370 11 893 28 0 0 1453 0184 174 0.1 4 0 296 0.7
Elevator2 4 5001 610 11 1992 116 0 0 25435 0304 257 0.7 8 0 mem 43
Elevator3 4 8004 1128 11 2369 214 0 0 81890 0563 468 1.9 12 0 mem 282
Tsp 4 45653 20 5 87 4 0 0 20 0 8 6 0.0 o 0 00 0.0
Atl 3 88 6 1 14 7 0 0 60 0 3 0 0.0 3 0 1.0 0.0
Atla 3 100 8 1 17 10 0 0 126 0 4 0 0.0 4 0 1.0 0.0
At2a 3 462 126 2 156 149 32 1 38208 9216 52 16 06 52 16 20 0.6
Bank-av = 3 748 20 3 160 104 0 0 28776 0 40 8 04 40 8 8.0 0.4
Bank-sav 3 852 28 3 195 139 0 0 51510 0 56 8 0.7 56 8 8.0 0.7
Bank-fix 3 856 32 3 204 147 16 1 57612 12540 64 8 0.8 64 8 9.0 0.8

Finally, the last four columns in Table [Tl show the impact of lock removal on the
performance of a runtime verification procedure. Recall that, for each of the potential
atomicity violations, we use symbolic analysis to decide whether it is a real atomicity
violation. Here we first show the total number of potential atomicity violations (p-avs)
that are collected by a simple static analysis, and then show the number of real atom-
icity violations found by the precise symbolic analysis (r-avs). Please refer to [29119]
for more details on predicting atomicity violation. The last two columns compare the
runtime of symbolic analysis with and without lock removal. The results clearly show
that lock removal has made the predictive verification step more efficient. Note that for
Daisyl (which is file system) and Elevator2, without lock removal, symbolic execution
would run out of the 2GB memory limit, whereas after lock removal, they were able to
finish in short time.
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7 Related Work

Existing work on automatically removing unnecessary synchronizations has con-
centrated mostly on performance optimization and on eliminating thread-local
locks [31446l30], i.e. locks that have been acquired or released by a single thread or
used to protect an object accessed by a single thread. The difference among these meth-
ods lies in how they identify shared/escaped objects. For example, Blanchet [3] uses a
flow-insensitive escape analysis both to allocate thread-local objects on the stack and
to eliminate synchronization from stack-allocated objects. Bogda et. al. [4] also use a
flow-insensitive escape analysis to eliminate synchronization from thread local objects,
but the analysis is limited to thread-local objects that are only reachable by paths of one
or two references from the stack. Choi et al. [6] perform an inter-procedural points-to
analysis to classify objects as globally escaping, escaping via an argument, and not es-
caping. When synchronizing, the compiler eliminates synchronizations for thread-local
objects, while preserving Java semantics by flushing the local processor cache.

Ruf [22] combines a thread behavior analysis with a unification based alias analysis
to removal unnecessary synchronizations. Aldrich et al. [[1] propose three analysis to
optimize the synchronization opportunities: lock analysis, unshared field analysis, and
multithreaded object analysis. Lock analysis computes a description of the monitors
held at each synchronization point so that reentrant locks and enclosed locks can be
eliminated. Unshared field analysis identifies unshared fields so that lock analysis can
safely identify enclosed locks. Finally, multithreaded object analysis identifies which
objects may be accessible by more than one thread. This enables the elimination of all
synchronization on objects that are not multi-threaded. Zee and Rinard [30] present a
static program analysis for removing unnecessary write barriers in Java programs that
use generational garbage collection.

In contrast, the focus of our work is not to identify which objects are effectively
thread-local, which objects are shared, or when they are shared, by multiple threads,
but to identify more optimization opportunities on the truly shared objects and yet re-
dundant locks. To the best of our knowledge, this is the first such lock removal algo-
rithm. It is generally applicable, based on a rigorous and unified concurrency analysis
framework. It is also practically efficient, due to the use of lock access patterns, which
involves only thread-local computation.

In the formulation of our efficient check for behavior preservation, we have leveraged
the lock access patterns [18]], since our trace program has a fixed number of threads
interacting with only nested locks. To extend the method from trace programs to whole
programs, one might need to leverage the more advanced machinery in [13/9] to deal
with locks interacting with dynamic thread creation.

In the literature, there has also been some work on reducing the run-time cost of
synchronizations, e.g. by making their implementation more efficient (e.g. [2]) rather
than removing the unnecessary ones. These techniques complement ours. Our local
removal algorithm is also different from lock coarsening [7], which optimizes the nec-
essary synchronizations, e.g. those arising from acquiring and releasing a lock multiple
times in succession. Converting multiple lock operations into one, in general, changes
the program behavior, and therefore one must take care not to introduce deadlock.
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8 Conclusions

In this paper, we have presented an efficient and fully automatic lock removal technique
for concurrent trace programs. A key feature of our method is that it is compositional
in nature, i.e., hinges on a thread local analysis, which makes it applicable to large,
realistic programs. Furthermore, our technique guarantees the preservation of program
behaviors, i.e., partial orders induced on shared variable accesses. These features make
it a standalone utility with many wide ranging applications, including performance op-
timization as well as improving the efficacy of concurrent program analysis like run-
time verification, model checking and dataflow analysis. As a concrete application, we
demonstrated the use of our lock removal technique in enhancing the scalability of pre-
dictive analysis in the context of runtime verification of concurrent programs.
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Abstract. Linearisability is the standard correctness criterion for concurrent data
structures. In this paper, we present a sound and complete proof technique for
linearisability based on backward simulations. We exemplify this technique by
a linearisability proof of the queue algorithm presented in Herlihy and Wing’s
landmark paper. Except for the manual proof by them, none of the many other
current approaches to checking linearisability has successfully treated this intri-
cate example. Our approach is grounded on complete mechanisation: the proof
obligations for the queue are verified using the interactive prover KIV, and so is
the general soundness and completeness result for our proof technique.

1 Introduction

The advent of multi- and many-core processors will see an increased usage of concur-
rent data structures. These are implementations of data structures like queues, stacks or
hashtables which allow for concurrent access by many processes at the same time. Li-
braries such as java.util.concurrent offer a vast number of such concurrent
data structures. To increase concurrency, these algorithms often completely dispose
with locking, or only lock small parts of the structure. This inevitably leads to race
conditions. Indeed, the designers of such algorithms do not aim at race-free but at lin-
earisable algorithms. Linearisability [14] requires that fine-grained implementations of
access operations (e.g., insertion or removal of an element) appear as though they take
effect “instantaneously at some point in time” [14]], thereby achieving the same effect
as an atomic operation.

Recently, a number of new approaches to proving linearisability have appeared, some
supported by theorem provers (like our own), some automatic based on user-annotated
algorithms and some manual (see Section [7). Looking at these approaches, one finds
that a number of techniques (including our own so far) get adapted every time a new
type of algorithm is treated. Every new “trick” designers build into their algorithms to
increase performance (e.g., like a mutual push and pop elimination for stacks, or lazy
techniques) requires an extension of the verification approach.

In this paper, we propose a proof technique which can be used to prove linearisability
of every linearisable algorithm: Our method is sound and complete for linearisability.

P. Madhusudan and S.A. Seshia (Eds.): CAV 2012, LNCS 7358, pp. 243— 2012.
(© Springer-Verlag Berlin Heidelberg 2012
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The approach is based on backward simulations - a technique borrowed from data re-
finement. More precisely, we show that a fine-grained implementation is linearisable
with respect to an abstract atomic specification of the data structure if and only if there
is a backward simulation between the specification and the implementation. The use of
simulations for showing linearisability is not new; however, current refinement-based
approaches (e.g. [9]]) are based on both backward and forward simulations. We exem-
plify our approach on the queue implementation of Herlihy and Wing [[14]. None of
the current other works on linearisability have treated this algorithm; and it is also not
clear whether the many approaches tailored towards heap usage (like separation logic or
shape analysis based techniques) can successfully verify the queue, as the complexity
in the interaction between concurrent processes in the queue is not due to a shared heap
(there is no heap involved at all). Along with this queue example we also show how to
systematically construct the backward simulations needed in the linearisability proofs.

Last but not least we have a complete mechanisation of our approach. It is complete
in the sense that we both carry out the backward simulation proofs for our examples
(here, the queue) with an interactive prover (which is KIV [23]]), and have verified
within KIV that the general soundness and completeness proof of our technique is cor-
rect. In summary, this paper thus contains three contributions: (1) the proof of sound-
ness and completeness of backward simulations for linearisability, (2) the linearisability
proof for the Herlihy and Wing queue, and (3) the full mechanisation of both the exam-
ple and the general theory.

The next section gives the algorithms for the example. Section[3] defines linearisabil-
ity as a specific form of refinement. Section @ gives our main theorem, that linearisabil-
ity can always be proven with a backward simulation, and Section [3] derives one for the
example, showing that this can be done systematically. Section 6] gives some informa-
tion on the KIV prover, and sketches how the proof obligations for backward simulation
could be verified. Full details of all proofs are online [17]. Section [ gives related work
and Section [§] discusses possible improvements and concludes.

2 Example

The queue of [14]], which serves as our running example, is a data structure with two
operations: enqueue appends new elements (of some type T) to the end of the queue
and dequeue removes elements from the front of the queue. The implementation of the
queue uses a shared array AR of unbounded length. All slots of the array are initialised
with a value null, signalling ‘no element present’. A back pointer back into the array
stores the current upper end of the array where elements are enqueued. Dequeues oper-
ate on the lower end of the array. The pseudocode of the queue operations is as follows:

E0 eng(lv : T) DO deg(): T
El /* increment =*/ D1 1lback := back; k := 0; 1v := null;
(k, back) := D2 if k < lback goto D3 else goto DI1;
(back,back+1); D3 (lv, ARI[k]) := (AR[k], 1lv); /* swap */
E2 /% store =/ D4 if 1lv # null then goto D6 else goto D5;
AR[k]:= 1v; D5 k := k + 1; goto D2;

E3 return D6 return(lv)
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The enq operation simply gets a local copy of back, increments back (these two steps are
executed as an atomic “fetch & increment”) and then stores the element to be enqueued
in the array.

The deq operation proceeds in several steps: first, it gets a local copy of back and ini-
tialises a counter k and a local variable, Iv, which is used to store the dequeued element.
It then walks through the array trying to find an element to be dequeued. Steps D2 and
D5 of the code are a loop consecutively visiting the array elements. At every position
k visited, the array contents AR[k] is swapped with variable /v (i.e., the assignment at
D3 is executed in parallel). If the dequeue finds a proper non-null element this way
(Iv # null), this will be returned, otherwise the search is continued. In the case where
no element can be found in the entire array, deq restarts the search. Note that if no eng
operations occur, deq will thus run forever.

The complete specification consists of a number of processes p € P, each capable of
executing its queue operations on the shared data structure. For the concrete implemen-
tation, therefore, these two algorithms can be executed concurrently by any number of
processes - where the individual steps (i.e., the statements in locations EO to D6) in the
operations are taken to be atomic, but crucially can be interleaved. That is, a process
may start an eng operation (say doing EQ and E1) but then another process may execute
its own atomic step (e.g., start a deq). Verification that the concrete implementation is
somehow correct with respect to abstract, atomic enqueue and dequeue operations is
the crux of the problem and linearisability is the proof obligation.

Our proof of linearisability proceeds by showing that the concurrent implementation is
a backward simulation of an atomic abstract specification of the queue, i.e. that every
step of the implementation can be simulated by the abstract specification in a backward
fashion. To this end, we phrase both abstract specification and implementation in terms
of data types. A data type consists of a state State (set of variables) and operations on
the state Op C State X State (e.g. enqueue or dequeue, or operations like D1, D2, .. .). In
addition, an initialisation operation Init : State specifies constraints on the initial state
and a finalisation operation Fin C State x F relates states to global result values from
some set F. Intuitively, Fin fixes those parts of the state that we are interested in and
want to observe when comparing the data types. A data type is written as

(State, Init, (Opp,i)pep.ici, Fin)

Note that we have incorporated processes in here. We take a relational view on opera-
tions, and use § for composition of relations. Primed variables in operations refer to the
after state. Sequences of operations are written as Op*.

For the abstract queue (omitting Fin for the moment), we for instance have A =
(AState, Alnit, Enqpep, Deqpep) given by

AState = [q : seqT] Eng,(x?:T)=[q =q~ (x7)]
Alnit = [q = ()] Deq,(x! : T) = [x! = first(q) N\ g’ = rest(q)]
Here, the variable x? is an input to and x! an output of the operation.

The data type C = (CState, Clnit, (COp, j)pep jes) for the concurrent implemen-
tation is more complex. The state consists of the two global variables back : N and
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AR : N — T to represent the array with elements of type T. Additionally, the local vari-
ables of processes are part of the state, e.g. lback : P — N represents the values of the
local variable lback for all the processes. Finally, pc : P — {N,E1,E2,E3,D1,...,D6}
defines a program counter for all processes, pc(p) = N means that process p is currently
running no operation. Initial states Clnit : CState have an empty array, back = 0 and
pc(p) =N forallp € P.

The operations of this concrete data type are made up of the steps of the algorithm:
every line in the algorithm becomes one operatiorﬂ. We thus for instance have an oper-
ation called eng1, (line E1 in the enqueue of process p) which is specified as

enql, = [pc(p) = E1 A pc'(p) = E2 ANk (p) = back A back’ = back + 1]

Here, we use the convention of not mentioning variables of the state which remain un-
changed. In a similar way we can define operations for all other steps of the algorithm.

Our goal for the next section is to show that all concurrent runs of the algorithm given
here faithfully implement queue operations. E.g., a concrete run might start with the
sequence enqQs § engls g enq01 3 deqO2. Does this represent a possible implementation
of an abstract run? Formally, we have to prove linearisability and we will do so by
showing that the concurrent implementation is (a particular type of) refinement of the
abstract atomic specification.

3 Linearisability and Refinement

Linearisability is defined by comparing histories created by the atomic queue opera-
tions and those created by the concurrent implementation. Histories are sequences of
invoke and return events of particular operations (out of some index set /) by particular
processes p € P with certain input or output values. For example, a possible history of
our queue implementation is

h = (inv(3, enq, a),inv(1,enq,b),inv(2,deq, ), inv(4, enq, c), ret(3, enq, ), ret(4, enq, ))

In this history, process 3 first invokes an enqueue operation with argument a. Next, pro-
cess 1 invokes an enqueue for element b. While these two processes are running, process
2 starts a dequeue, and process 4 invokes an enqueue of c. At the end, first process 3
returns from its enqueue and finally process 4. These histories are thus abstracting the
algorithm into just its start and end given by the invokes and returns of the operations.
In a legal history, a return event of process p from operation i is always preceded by
a matching (i.e., corresponding) invoke event with the same p and i, while an invoke
event may or may not be followed by a matching return. In the latter case, the operation
has not yet finished, and the invoke is a member of the set pi(h) of pending invokes of
history A. For the given history pi(h) = {inv(1, enq,b), inv(2, degq, )}. In the following,
Event denotes the set of all events, and we write Ret for the set of all return events.
The first step in our proof technique is to add the history created by the algorithms
to the data types: We construct history enhanced data types collecting histories. The
enhancement we define is not specific to the queue example but applies to all concrete

! In the KIV specification of the algorithm we split IF-statements into a true and false case.
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and abstract data types for which we want to show linearisability. The history enhanced
concrete data type HC = (HCState, HCInit, (HCOp, ;),cp jcs, HCFin) gets HCState =
CState A [h : Event*]. As in the example above, the invoking steps of operations op
of processes p (like enq0, and deq0, for the queue corresponding to lines £0 and D0)
add an event inv(p, op,a) (where a is the input value of op) to the history. Similarly
the returning operations add return events, all others leave the history unchanged. Now
we can also define a meaningful finalisation operation: HCFin C HCState x F for
F = Event* extracts the collected history by defining HCFin((cs, h),H) ift H = h.

On the abstract data type we perform a slightly different form of enhancement which
is also motivated by our objective of wanting to prove linearisability. Informally, lin-
earisability means that all histories created by the implementation could also be pro-
duced by working with an abstract atomic queue. As Herlihy and Wing formulate it:
we want the concurrent implementation to “provide the illusion that each operation

. takes effect instantaneously at some point between its invocation and return”. This
point in time is |usually called the Ilinearisation point. The formal
definition given in [14]], however, is based on comparing concurrent and sequential
histories (where the latter are sequences of matching invocation and return pairs). Al-
ready [14] note that this definition is not suitable for proofs, therefore like most re-
lated work (see Section [7) we prefer an alternative definition that directly formalises
the idea of a linearisation point. In the enhancement of the abstract data type HA =
(HAState, HAInit, {Inv, ;, Lin, ;, Ret,, ; } ,cp ic1 }, HAFin) we thus add histories plus we
also split operations in three: an invocation, a linearisation point and a return.

HAState = AState A [h : Event” R : P Ret]
HAInit = Alnit A [h = () AR = @]
Invy i(in? < In) = [(= 3, in’ e inv(p,i',in’) € pi(h)) A
as’ =as NR'=RANK =h" (inv(p,i,in?))]
Lin,; = [Jin, out e inv(p,i,in) € pi(h) A (— Jouts ® ret(p,i,outs) € R) A
AOp, i(in,as,as’,out) N\h' = h AR = RU {ret(p, i,out)}]

Ret, j(out! : Out) = [ret(p,i,out!) € RAK =h" (ret(p,i,out!)) A
R =R\ {ret(p,i,out")} A as’ = as]
HAFin = [H : Event” | H = h]

As we see here we do not only add a variable & collecting histories but also a variable
R, a set of return events. The role of R is to collect return events for those operations
which have already taken effect, i.e., which are past the linearisation point but have not
yetreturned. Abstract execution of operations now consists of three steps: the invocation
operation /nv, ; just adds an invoke event to the history, the linearisation operation Lin,, ;
changes the state according to the original definition of the operation in A, adds a return
event to R (now the effect has taken place) and keeps the history. The return operation
Ret,, ; adds the return event to the history and — now that it is present in /2 — has to remove
it from R. Finalisation again gives the current history.

Note that HA is concurrent in the sense that operations of processes are interleaved.
However, the “effect” operation Lin is still atomic and thus faithfully reflects the original
abstract data type. These two abstractions HA and HC can thus be compared.
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Definition 1. The reachable states of HA are called possibilities. Writing HAOp for the
union of all operations of HA, we define

Poss(as, h,R) = (HAInit g HAOp*)(as, h, R)

Our definition of possibilities is essentially the same as the one in Herlihy and Wing’s
paper [[14], p. 486f. The notation given there is (as, P,R) € Poss(h), with a redundant
set P, that contains those invokes in pi(h) with no matching return in R. Axioms S, I, C
and R correspond one-to-one to our operations HAInit, Inv, Lin and Ret: the premise and
conclusion are the pre- and post-state of the operations (our side conditions guarantee
legal histories in conclusions, left implicit in [14]).

Lynch [18]], Sec. 13.1.2, gives a similar definition of linearisability using the “canon-
ical wait-free automaton for atomic objects”. States of this automaton are essentially
(as, P, R) (P is called inv-buffer), traces of the IO automaton correspond to our history.
Theorems 9 and 10 of [[14] state that possibilities are equivalent to linearisability:

Theorem 1. An implementation data type C is linearisable with respect to some ab-
stract data type A if and only if for every history h created by C there exists a possibility
Poss(as,h,R).

This theorem seems to be universally accepted, and informal arguments for its validity
appear in many papers. However, to relate the results given here to the original definition
of linearisability, we have mechanised the proof in KIV. The proof is rather complex. It
shows that a forward simulation exists between the type HA given here and the abstract
data type we have used in [7] for the original linearisability definition. This provided
a hint that backward simulation could be a complete proof procedure for the definition
given here.

The theorem gives us the option to prove linearisability by showing the existence of
possibilities, which can be viewed as a form of a refinement, given next.

Definition 2. Ler A = (AState, Alnit, (AOpy, ;)pep,ic1,AFin) and C = (CState, Clnit,
(COp, j)pep jes, CFin) be abstract and concrete data types respectively.

A program is a sequence of operation (indices) Prg = ji . . .j,; and running a program
on the data type C gives the execution

Prg(C) = CInit 3COpj, 5 ...5 COp;j, 3 CFin

C is a data refinement of A, denotedd C C A, if for all programs Prg, Prg(C) C Alnit g
AOp* g AFin. An empty concrete program must refine the empty abstract program.

Note that this is a very weak form of refinement as it assumes that the effect of a par-
ticular program in C can be achieved with some arbitrary program (AOp*) in A. This is
crucial for our approach since for complex linearisable algorithms — such as the one we
consider in this paper — one concrete step in the implementation may correspond to the
execution of several linearisation steps in the abstract data type. This type of refinement
applied on the enhanced data types coincides with linearisability.

% Note that the literature on refinement usually writes the notation the other way round.
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Theorem 2. HC T HA iff C linearisable wrt. A.

Proof: The concrete histories 4 are the values returned by finalisation of HC. Refine-
ment implies that there is an abstract run which also produces k. This run reaches a
state (as, h,R) in HA before finalisation, i.e. Poss(as, H,R) holds, and linearisability
follows by Theorem [Il On the other hand, if linearisability holds, and % is a concrete
history, then there is a possibility Poss(as, h, R) by Theorem [I] so refinement holds,
since finalisation will give A. m|

4 Proving Linearisability with Backward Simulation

Data refinement is the process of adding implementation detail to an initial abstract
algorithm, and standard results show that forward and backward simulations are sound
and jointly complete for verifying refinements (see [[6] for an overview).

The fact that linearisability can be expressed in terms of refinement also underlies
the work of Doherty, Groves et al. [9/12]. However, their work as well as many others
assume that linearisability needs both backward and forward simulation to be complete
(and, e.g., [9] uses both). Here, we show that in fact backward simulation alone is
already complete for proving linearisability.

Definition 3 (Backward simulation). Let A = (AState, Alnit, (AOp, ;) pcp,ic1, AFin)
and C = (CState, Clnit, (COp,)pep jcs, CFin) be two data types. A relation BS C
CState x AState is a backward simulation from C to A, denoted C <ps A, if the following
conditions hold:

— Initialisation: Clnit § BS C Alnit,
— Finalisation: CFin C BS g AFin,
— Correctness: Vp € P,j € J e COp,;gBS C BS3AOp*.

The correctness condition is weaker than usual (to match the weak data refinement) in
that it only requires a concrete operation to be matched by an arbitrary sequence of
abstract operations. Note that BS is often called abstraction relation: given a concrete
state one has to define what the possible corresponding abstract states are.

The main result of this paper is that backward simulations are sufficient and we can
avoid forward simulations entirely when verifying linearisability. The proof relies on
the following two observations.

Proposition 1. ([[I4)], p. 487) Possibilities are prefix-closed: If Poss(as,ho ™ h,R) for
some histories hg, h, set of returns R and abstract state as, then there are asg and Ry,
such that Poss(asg, ho, Ro) and HAOp* ((aso, ho, Ro), (as,ho ™ h,R)).

Proof: Simple induction over the number of operation executions necessary to reach

the final state (as, by — h, R), since every operation adds at most one event and we start
with the empty history. O

Proposition 2. The reachable states (as,h,R) of HA satisfy an invariant called
retsforpis(h,R) (returns for pending invokes only) which says that all return events
in R have a process p with a corresponding invoke event in pi(h).
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Again the proof is by induction on the number of operation executions. This now lets us
formulate and prove our main theorem which shows that backward simulation is sound
and complete for linearisability.

Theorem 3. Let C, A be a concrete and an abstract data type, and HC, HA their history
enhancements as defined above. Then HC <ps HA iff C linearisable wrt. A.

Proof: The easy direction from left to right just combines soundness of backward sim-
ulation and Theorem 2l For the other direction, assume C is linearisable wrt. A. We
define a relation BS as

BS((cs, h), (as,H,R)) = h=H A Poss(as,H,R)
A (H = () = Alnit(as))

and prove the three proof obligations which show backward simulation.

— For Initialisation, we must prove that HClInit(cs, h) implies HAInit(as, H, R) when
BS holds. Since A = (), we have H = h = () and ASInit(as). It remains to show
that R = . This follows from Proposition[2] since pi(()) = @.

— Finalisation requires to find an abstract (as, H, R) for every (cs, k), such that BS
holds. Since C is linearisable, there is a state (as, h, R) with Poss(as, h,R). If h is
nonempty, this state is already sufficient. Otherwise, state (as, h, R) was reached
from an initial state (aso, ho, Ro) € HAlnit with hy = (), Ry = @ and ASInit(as).
Therefore we can choose (as, H, R) := (aso, ho, Ro)-

— For  Correctness, assume that both BS((cs',H'),(as’,H',R")) and
HCOp,j((cs,H),(cs’,H')) hold. We have to find (as,H,R) with
BS((cs,H), (as,H,R)) and HAOp*((as,H,R), (as’, H',R")). Now for all concrete
operations H is a prefix of H': either H = H or H = H ™ (e) for invoking
and returning operations that add an event e. Prefix closedness of possibili-
ties (Prop. [I) gives a reachable state (as,H,R) for the prefix H of H' with
HAOp*((as,H,R), (as’,H',R")). Again, if H # (), this state already satisfies BS.
Otherwise, like for finalisation, we have to choose the initial state. O

The theorem gives a backward simulation which matches an invoke operation COp, ;
to a sequence Lin™ § Inv,, 45y § Lin*, where Lin = \JLin, ;. Similarly, return operations
match a sequence of linearisation steps with one return in the middle (since only such
sequences add the right event to H). Other steps are matched to an empty sequence of
abstract steps.

Theorem[3|specialises general completeness results, which imply that backward sim-
ulations and history variables are jointly complete for data refinement (these can be
adapted to our formalism from [[L], or more directly from [[19], Theorem 5.6). However,
all general completeness proofs add history variables, which record the full history of
all concrete states. Theorem 3] shows, that for linearisability, the only history variable
ever needed is the history needed to define linearisability (i.e. possibilities) itself.

5 Backward Simulation for the Case Study

The theory given in the last section ensures that any linearisable algorithm can be ver-
ified using a backward simulation BS. However, it does not tell us how to find such a
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Fig. 1. Observation tree for an example state cs

relation between concrete states (cs, k) and abstract states (as, H, R). As the abstract
state in our case study consists of the queue variable ¢ only, we also write (g, H, R) for
the state of HA. As a first observation, the finalisation condition requires # = H and
thus we can split BS into the part relating state spaces and that of relating histories.

BS((cs,h),(q,H,R)) = B(cs,q,R) Nh=H

The key insight we now need is that for finding backward simulations one has to analyse
the observations made by future behaviours.

To explain the approach consider the example state (the history for this state was
given at the start of Section [3) c¢s shown at the top of Figure [Il The state shows a
situation where the array has been filled with two elements, AR(0) = a and AR(2) = ¢
Furthermore process 1 is running an enqueue operation that tries to enqueue the element
b at position 1, which has reached pc(1) = E2, but then has been preempted. We call
such an operation with pc(1) = E2 a pending enqueue, and write PE; (b) in the figure
to indicate it. Note that the “gap” in the array is due to this enqueue: it has increased
the global back pointer before the enqueue of ¢, but has not executed statement E2 yet.
In addition there is a pending dequeue of process 2 (PD-) currently looking at position
1 as well. Such a dequeue operation has already initialised its lback (pc # D1), but has
not yet successfully retrieved an element (pc # D6, and if pc = D4 then still /v = null).

To define B we now have to find out what possible abstract queue states this concrete
state could correspond to. For this we look at observations made about this state when
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proceeding with executions on it. The observation tree shows all future executions from
this state when new observers are started. An observer gives us information about the
elements in the data structure, most often by extracting data from it. For our queue, the
observers are dequeue operations. Processes currently running (like the enqueue) might
or might not be continued.

First, consider the leftmost branch. It describes the following steps: (1) the pending
enqueue of process 1 runs to completion (PEng1), then (2) the pending dequeue runs
to completion and returns the element in position 1 which is b (PDeg2(1)), (3) a new
dequeue is started (of whatever process), runs to completion and returns the element
stored in position 0 which is a (NDeg(0)), and (4) another new dequeue starts, com-
pletes and returns the element in position 2 which is c. Hence from the point of view of
these dequeues the queue contents has been (b, a, ¢). Note that we do not start any new
enqueues, we just observe the existing state of the queue.

The rightmost branch executes pending operations in a different order (first the de-
queue and then the enqueue) and again runs two observing dequeues. Here, we see that
the queue is (c, a, b). Different future executions thus give different orderings of queue
elements. Still, the order is not arbitrary: for instance (b, ¢, a) is impossible. We see that
it is not only the current state of the array which determines the queue content, but also
the pending enqueues and dequeues, and their current position into the array. Hence we
cannot define B as a function from concrete to abstract state since this would contradict
one or the other run. In summary, the backward simulation we look for must relate the
current state ¢s to any queue that is possible in a future observation.

We still have to determine the R-components B relates concrete states to. Recall that
R collects linearisation points. Again, general advice on finding a backward simulation
is to defer decisions as far as possible to the future (this observation is not specific to
linearisability or concurrency, see [3]). For our case, we delay any linearisation point
that still can be executed to the future, i.e. we do not add it to set R. This is possible for
pending dequeues. These can linearise at the time they swap the element: they have a
definite linearisation point in the sense that we can attach it to line D3 when they swap a
non-null element. However, enqueue operations cannot linearise in the future, since they
would put the element in the wrong place in the queue. We find, that enqueue already
potentially linearises when it executes E1, but only if the future run considered executes
the operation to the end. In other runs, linearisation will happen when the element is
actually inserted at line E2.

These considerations now help us towards defining B. We write NDeg(n)(cs, ¢s' ) to
mean that a new (observer) dequeue is started, returns the element in array position
n and brings the concrete state from cs to ¢s’. Similarly, we write PDeg),(n)(cs, cs’)
to say the same for an already running (pending) dequeue of process p, and finally
PEngy(cs,cs’) for the completion of a pending enqueue. The actual definition of B
recursively follows the paths of the tree and has to consider four cases:

— The array is empty. Then the queue is empty as well and the set R consists of re-
turn events for those processes which have definitely achieved their effect (denoted
outs(cs)). In our case, these are all the enqueues after their store (at E3), and the
dequeues after the non-null swap (at D6 or at D4, when v # null).

3 The web presentation [17] gives a formal definition.



How to Prove Algorithms Linearisable 253

— An observing dequeue (newly started) returns the element in position n of the array.
All elements below n must be null . The corresponding abstract queue thus has
AR|n] as its first element. The rest of the queue (and of B) is defined by recursion.

— A pending dequeue finishes and returns the element in position n of the array. Thus
again one of the corresponding abstract queues has AR|[n] as first element. The rest
of the queue (and B) is defined by recursion.

— A pending enqueue finishes and the corresponding return event is already in R.
Then the effect on the abstract queue has already taken place, i.e., ret(p, enq, ) € R.
B is defined by recursion using the same queue g, but removing the return event
from R.

Putting into one definition (and taking as abstract state as the queue state g) we get

B(cs,q,R) == (Vi:N e AR[i] = null) A g = () A R = outs(cs))
V(3¢ ,neq=(AR[n]) " ¢" A (NDeq(n) 3 B)(cs, ', R))
V(3¢',p,n e g = (AR(n)) " q' N (PDeqp(n) s B)(cs, ', R))
V (3p e ret(enq,p,) € R A\ (PEng, 3 B)(cs,q,R \ {ret(eng,p,)}))

Applying this technique to our example state cs in the root of Figure [T gives a total
of six pairs (g, R) with B(cs, g, R). These are written with shaded background at those
nodes of the tree where the array is empty.

Note that the definition of B is well-founded: PEng removes a pending enqueue pro-
cess (and adds one element to the array), PDeq and NDeq each remove an array element.
The corresponding well-founded order < plays a central role in the correctness proofs
of the next section.

6 Verification with KIV

KIV [23] is an interactive verifier, based on structured algebraic specifications using
higher-order logic (simply typed lambda-calculus). Crucial features of KIV used in the
proofs here are the following.

— Proofs in KIV are explicit proof trees of sequent calculus which are graphically
displayed and can be manipulated by pruning branches, or by replaying parts of
proofs after changes. This is of invaluable help to analyse and efficiently recover
from failed proof attempts due to incorrect theorems, which is typically the main
effort when doing a case study like the one here.

— KIV implements correctness management: lemmas can be freely used before be-
ing proved. This allows to focus on difficult theorems first, which are subject to
corrections. Changing a lemma invalidates those proofs only, that actually used it.

— KIV uses heuristics (e.g. for quantifier instantiation and induction) together with
conditional higher-order rewrite rules to automate proofs. The rules are compiled
into functional code, which runs very efficiently even for a large number of rules:
the case study here uses around 2000 rules, 1500 of these were inherited from KIV’s
standard library of data types.
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KIV was used to verify the completeness result for backward simulation as well as to
prove the resulting proof obligations for the queue case study. A web presentation of all
specifications and proofs can be found online [17]]. The completeness proof follows the
proof given in Sectiond] the difficult part is Theorem [}

The correctness of the queue implementation is proved by instantiating the backward
simulation relation B with the concrete operations of the Herlihy-Wing queue which
were sketched in Section 2l This results in proof obligations that are instances of the
backward simulation as given in Definition[3l

The interesting proof obligations for the case study are the correctness conditions for
each operation. These can be written adl

(HCOp,, 5 BS)((cs, H), (¢', R, H')) =
34q,R e BS((cs,H), (¢, R, H)) N HAOp*((q, R, H), (¢',R",H'))

A suitable sequence of abstract operations HAOp* that fixes g and R is easy to determine
in most cases: for invoking and returning operations it is just the corresponding abstract
invoke and return. For all other operations, except engl,, enq2, and deq3t, (the case
of deq3, where the swap is with a non-null element), the sequence is empty. These
correspond to cases where the observation tree for the current state cs is not changed by
the operation. For deg3t, and and eng2, the sequence is the linearisation step Lingeq p
resp. Line,g p. These two operations reduce the observation tree to one of its branches.
The only difficult case is when COp,,; is engl, which is explained below. The choice
of HAOp* simplifies the proof obligation to

(COpyj§B)(cs,q',R') = B(cs,q,R)

The simplicity of the changes to the observation tree is then reflected by the simplic-
ity of the proofs: they all are proven by well-founded induction over <g, followed by
a case split over the definition of B. This gives a trivial base case and three recursive
cases for each PN € {PDeq,(n), PEnq,, NDeq(n)}. The resulting goals can be closed
immediately with the induction hypothesis by noting that COP,, ; and PN always com-
mute. The only exception is deg3t, which needs an auxiliary lemma that PEng, s deq3f,
commutes with every PN. This case crucially relies on the obvious invariant that there
may be no more than one pending enqueue process for each array element.

The difficult case is engl, which adds a new pending enqueue process, and has to
deal with a potential linearisation point. To see what happens, consider the example
shown in Fig.[2l It shows a situation on the left where an element « is in the array and
process 2 is pending with element b, together with the possible observations (g, R) re-
turned by the simulation B. Process 1 then executes engl;(cs, cs’) and becomes pending
too with element c. This is shown on the right, together with the possible pairs (¢’, R’)
such that B(cs’, ¢', R’).

The pairs (g, R) before the operation are exactly the subset of those pairs (¢, R’)
where ret(1,enq,) ¢ R', i.e., the potential linearisation point has not been executed.
For this case simulation is trivial, choosing the empty sequence as HAOp*. The difficult
cases have ret(1,eng,) € R'. As the last result with ¢’ = {(a, ¢, b) shows, the element

* For easier readability, we leave out the invariants of the two data types.
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possible pairs (g, R): l pE,(¢) Possible pairs (¢',R'):
- PEb) (@), 9 — PEb) (@),9
a (a,b),{ret(2,enq.)} [a a,b),{ret(2, enq, )}

(

(a,c), {ret(1,enq, )}
(a,b,c),{ret(1, enq,), ret(2,enq,)}
(a,c,b), {ret(2,eng, ), ret(1,eng, )}

Fig. 2. Results of B before and after executing engla

¢ may be observed to be not the last element of the queue. This demonstrates that one
linearisation step with c is not sufficient on the abstract level. Instead the right choice
for (¢,R) is ({a), @), and both linearisation steps Linq enq § Lins .y are necessary as
HAOp*. This exploits the fact that the potential linearisation of process 2 may not have
been executed, and can still be executed after the one for process 1.

In general, the element ¢ enqueued by some process p may be observed in any place
behind the current elements of the array: we have ¢ = ¢~ (¢) ™ g2, where g only

consists of elements that pending enqueues will add in the future. Adding {(c) ™ g2
corresponds to a sequence of abstract linearisation steps LinE, , := Lin, cng; Liny, eng $
... 8 Lin,, cng. For the last result of the example, r = (2) and g2 = (a). Therefore we
strengthen the proof obligation for eng1, to

(enql, s B)(cs,q',R") A ret(p,eng,) € R' =
HQ7 6127R7 re B(CS, Q7 R) A LinEPJ((Q7 R7 H)7 (q/7R/7H))

Again the proof follows the standard well-founded induction scheme over <p. The
difficult case occurs when unfolding B executes PEng, for the same process p. This
case requires another induction to prove that engl, 3 PEng, commutes with all PN. This
works except for a new dequeue process that removes the element just added by process
p, which can only happen for an empty array. We finally complete the proof of engl,
by showing that the observable queues for an empty array consist of some (or none) of
the elements of pending enqueues (in any order).

7 Related Work

Our work gives a general and practically applicable method for proving linearisability.
It should be contrasted with other methods of proving linearisability which fall into
several classes.

First, there is work on model checking linearisability, e.g. [5] for checking a spe-
cific algorithm or [4] for a general strategy. These approaches are very good at finding
counter examples when linearisability is violated. However, these methods only check
short sequences of (usually two or three) operations by exploring all possibilities of lin-
earisation points, so they do not give a full proof. They also do not yield any explanation
of why a certain implementation is indeed linearisable.

Work on full proofs has analysed several classes of increasing complexity, where
figuring out simulations (in particular thread-local ones, that exploit the symmetry of
all processes executing the same operations) becomes increasingly difficult.
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The simplest standard class of algorithms has an abstraction function, and all lin-
earisation points can be fixed to be specific instructions of the code of an algorithm
(often atomic compare-and-swap (CAS) instructions are candidates). A variety of ap-
proaches for such algorithms have been developed: [[12] uses [O-Automata refinement
and interactive proofs with PVS, [27] executes abstract operations as “ghost-code” at
the linearisation point, arguing informally that linearisability is implied. Proof obliga-
tions for linearisability have also been verified using shape analysis [2].

Our own work in [7] gave step-local forward simulation conditions for this standard
case. Conditions were optimised for the case where reasoning about any number of pro-
cesses can be reduced to thread-local reasoning about one process and its environment
abstracted to one other process. It mechanised proofs that these are indeed sufficient to
prove linearisability.

A second, slightly more difficult class are algorithms where the linearisation point is
non-deterministically one of several instructions, the Michael-Scott queue ([20]) being
a typical example. [9] has given a solution using backward and forward simulation,
Vafeiadis [27] uses a prophecy variable as additional ghost code. Our work here shows
that backward simulation alone is sufficient.

A third, even more difficult class are algorithms that use observer operations that do
not modify the abstract data structure. Such algorithms often have no definite linearisa-
tion point in the code. Instead steps of other processes linearise. The standard example
for this class is Heller et al’s “lazy” implementation of sets [13]. There, the contains
algorithm that checks for membership in the set has no definitive linearisation point.
Based on the idea that linearisation of such operations can happen at any time during
its execution, [28] develops the currently most advanced automated proof strategy for
linearisability in the Cave tool.

Our work in [8]] gives thread-local, step-local conditions for this class, and verifies
Heller et al’s lazy set. Mechanised proofs that these conditions can be derived from the
general theory given here are available on the Web too [16].

All these three classes, where mechanised proofs have been attempted, had an ab-
straction function, so different possibilities for one concrete state could only differ in the
possible linearisation points that have been executed (our set R of return events). How-
ever, the Herlihy-Wing queue is just the simplest example that falls outside of these
classes. We have chosen it here since it is easy to explain, not because it is practically
relevant. One of the practically relevant examples is the elimination queue [21]], which
to our knowledge is currently the most efficient lock-free queue implementation. This
example has some striking similarities to the case study considered here. Verifying this
case study is future work, however it seems clear that it can be verified using exactly
the same proof strategy as shown here.

For this most complex class only pencil-and-paper approaches exist to proving lin-
earisability, so our proof of the Herlihy-Wing queue is the first that mechanises such a
proof (and even a full proof, not just the verification of proof obligations justified on
paper) for this algorithm. Our proof is step-local in considering stepwise simulation.
Even for simpler classes many proof approaches so far have resorted to global argu-
ments about the past, either informally e.g. [13], [20], [29], using explicit traces [22] or
with temporal past operators [LL1].



How to Prove Algorithms Linearisable 257

Herlihy and Wing’s own proof in [[14]] also uses such global arguments: first, it adds
a global, auxiliary variable to the code. The abstraction relation based on this variable
is not a simulation. Therefore they have to use global, queue-specific lemmas (Lemmas
11 and 12) about normalised derivations to ensure that it is possible to switch from one
(g, R) to another (¢, R) in the middle of the proof.

8 Conclusion and Future Work

In this paper, we have presented a sound and complete proof technique for linearisability
of concurrent data structures. We have exemplified our technique on the Herlihy and
Wing queue which is one of the most complex examples of a linearisable algorithm.
Except for pen-and-paper proofs no-one has treated this example before, in particular
none of the partially or fully automatic approaches to proving linearisability. Both the
linearisability proof for the queue and the general soundness and completeness proof
for our technique have been mechanised within an interactive prover.

The proof strategy given here is complete, but still not optimal in terms of reduction
of proof effort: in particular, we have to encode the algorithms as operations, and just
like in Owicki-Gries style proofs we require specific assertions for every particular
value of the program counter. Rely-Guarantee reasoning [[L5] can help to reduce the
number of necessary assertions and we have already developed an alternative approach
based on Temporal Logic that used Relys and Guarantees. That approach can currently
handle the standard class of algorithms for linearisability, though it has advantages for
proving the liveness property of lock-freedom [24] and has been used to verify the hard
case-study of Hazard pointers [25]]. Integrating both approaches remains future work.

Our approach is also not fully optimal for heap-based algorithms, where the use
of concurrent versions of separation logic (e.g. RGSep [28] or HLRG [[L1]) helps to
avoid disjointness predicates between (private) portions of the heap, and gives heap-
local reasoning.

Finally, there is a recent trend to generalise linearisability to general refinement of
concurrent objects [[10], [26], where the abstract level is not required to execute one ab-
stract operation. We have not yet studied these theoretically interesting generalisations,
since they are not needed for our examples. This — as well as techniques for optimising
our approach with respect to proof effort — is left for future work.
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Abstract. We study a class of concurrent pushdown systems commu-
nicating by both global synchronisations and reversal-bounded counters,
providing a natural model for multithreaded programs with procedure
calls and numeric data types. We show that the synchronisation-bounded
reachability problem can be efficiently reduced to the satisfaction of an
existential Presburger formula. Hence, the problem is NP-complete and
can be tackled with efficient SMT solvers such as Z3. In addition, we
present optimisations to make our reduction practical, e.g., heuristics for
removing or merging transitions in our models. We provide optimised al-
gorithms and a prototypical implementation of our results and perform
preliminary experiments on examples derived from real-world problems.

1 Introduction

Pushdown systems (PDS) are a popular abstraction of sequential programs with
recursive procedure calls. Verification problems for these models have been ex-
tensively studied (e.g. |7, [17]) and they have been successfully used in the model
checking of sequential software (e.g. |3, 15, 137)).

However, given the ubiquity and growing importance of concurrent software
(e.g. in web-servers, operating systems and multi-core machines), coupled with
the inherent non-determinism and difficulties in anticipating all concurrent inter-
actions, the verification of concurrent programs is a pressing problem. In the case
of concurrent pushdown systems, verification problems quickly become undecid-
able [33]. Because of this, much research has attempted to address the undecid-
ability, proposing many different approximations, and restrictions on topology
and communication behaviour (e.g. [29, [8-10, 135, 134, 121, [25]). A technique that
has proved popular in the literature is that of bounded context-switches [34].

Bounded context-switching uses the observation that many real-world bugs
require only a small number of inter-thread communications. It is known that, if
the number of communications is bounded to a fixed k, reachability checking of
pushdown systems becomes NP-complete [26]. The utility of this approach has
been demonstrated by several successful implementations (e.g. [4, 130, 136]).

In addition to recursive procedure calls, numeric data types are an important
feature of programs. By adding counters to pushdown systems one can accu-
rately model integer variables and, furthermore, abstract certain data structures
— such as lists — by tracking their size. It is well known that finite-state machines
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augmented even with only two counters leads to undecidability of the simplest
verification problems. One way to retain decidability of reachability is to im-
pose an upper bound r on the number of reversals between incrementing and
decrementing modes for each counter (cf. |12, 23]).

This restriction can be viewed in at least two ways (cf. |12, 24]). First, in
the spirit of bounded-context switches, it provides a generalisation of bounded
model checking — a successful verification technique which exploits the fact that
many bugs occurring in practice are “shallow” (cf. [14]). Secondly, many counting
properties — such as checking the existence of a computation where the number
of calls to the functions fi1, fo, f3, and f; are the same — require no reversals
(e.g. the number of memory allocations equals the number of frees). Similar
counting properties (and their model checking problems) have been studied in
many other contexts (cf. [27] and references therein).

In this paper, we study the problem of verifying reachability over a program
model incorporating concurrency, numeric data types, and recursions. Qur con-
tributions are as follows:

1. We propose a concurrent extension of pushdown systems with reversal-
bounded counters that communicate through shared counters and global
synchronisations, and prove that the notion of global synchronisations sub-
sumes context-bounded model checking.

2. We show that reachability checking for these systems is in NP, by reduction
to existential Presburger, handled by efficient SMT solvers such as Z3 [13].

3. We provide several new optimisation techniques, including a minimisation
routine for pushdown systems, that are crucial in making our reductions
feasible in practice. These techniques keep the size of the computation objects
small throughout reduction, while also producing smaller output formulas.

4. Finally, we provide two optimised, prototypical tools using these techniques.
The first translates a simple programming language into our model, while
the second performs our reduction to existential Presburger. We demonstrate
the efficacy of our tools on several real-world problems.

The full version of this paper and tool implementations and benchmarks can be
obtained from the authors’ homepages.

Related Work. In recent work [20], we showed that reachability analysis for
pushdown systems with reversal-bounded counters is NP-complete. We provided
a prototypical implementation of our algorithm and obtained encouraging results
on examples derived from Linux device drivers.

Over reversal-bounded counter systems (without stack), reachability is NP-
complete but becomes NEXP-complete when the number of reversals is given
in binary |22]. On the other hand, when the numbers of reversals and counters
are fixed, the problem is solvable in P [19]. The techniques developed by |19,
22), which reason about the maximal counter values, are very different to our
techniques, which exploit the connection to Parikh images of pushdown automata
(first explicated in Ibarra’s original paper |23] though not in a way that gives
optimal complexity or a practical algorithm).
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Context-bounded model checking was introduced in 2005 by Qadeer and Re-
hof |34, 8, 132]. It has then been used in many different settings and many differ-
ent generalisations have been proposed. For example, one may consider phase-
bounds [3&], ordered multi-stack machines |1}, bounded languages |18], dynamic
thread creation |2] and more general approaches [2§].

In recent, independent work, Esparza et al. used a reduction to existential
Presburger to tackle a generalisation of context-bounded reachability checking
for multithreaded programs without counters [15]. Their work, however, does not
allow the use of counters and it is not clear whether our global synchronisation
conditions can be simulated succinctly in their framework.

Organisation. In §2] we define the models that we study. We prove decidabil-
ity of the synchronisation-bounded reachability problem in §3l In §4] we show
that synchronisation-bounded model checking subsumes context-bounded model
checking. Our optimisations are presented in §5l In §6 we describe our imple-
mentation and experimental results. Finally, we conclude in §7

2 Model Definition

In this section, we define the models that we study. For a vector v = (v1,...,v,),
we write v (i) to access v;. For a formula 6 over variables (z1,...,2,) we write
O(v1,...,v,) to substitute the values v1,...,v, for the variables z1,...,z, re-

spectively. Given an alphabet I' = {v1,...,vn} and a word w € I'*, we write
P(w) to denote a tuple with |I'| entries where the ith entry counts the number
of occurrences of ; in w. Given a language £ C I'*, we write P(£) to denote
the set { P(w) | w € £ }. We say that P(L) is the Parikh image of L.

Pushdown Automata. A pushdown automaton P is a tuple (Q, X, I', A, qo, F)
where Q is a finite set of control states, X is a finite stack alphabet with a special
bottom-of-stack symbol L, I' is a finite output alphabet, ¢y € Q is an initial
state, F C Q is a set of final states, and A C (@ x X) x I'™* x (@ x X*) is a
finite set of transition rules. We will denote a transition rule ((g,a),~, (¢',w’))

using the notation (g, a) A (¢’,w"). Note that v € I'* is a sequence of output
characters. This is for convenience, and optimisation. We can reduce this to
single output characters using intermediate control states or stack characters.
Note, a pushdown system is a pushdown automaton without a set of final states.
A configuration of P is a tuple (¢, w), where ¢ € Q and w € X* are the control
state and stack contents. We say that a configuration (¢, aw) has a head ¢, a.
There exists a transition (g, aw) 2 (¢, w'w) of P whenever (g, a) A (¢ ,w') e
A. We call a sequence cq Dy B oo Xy o a run of Pl It s accepting if
¢o = (qo, L) and ¢, = (¢, w) with ¢ € F. Let L(P) be the set of words labelling
accepting runs. Finally, we write ¢ —* ¢’ if there is a run from c to ¢’.

Pushdown Systems with Counters. A pushdown system with counters is a
pushdown system which, in addition to the control states and the stack, has a
number of counter variables. These counters may be incremented, decremented
and compared against constants (given in binary).
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An atomic counter constraint on counter variable X = {z1,...,z,} is an ex-
pression of the form x; ~ ¢, where ¢ € Z and ~€ {<,>,=}. A counter constraint
O(x1,...,x,) on X is a boolean combination of atomic counter constraints on
X. Let Constx denote the set of counter constraints on X.

A pushdown system with n counters (n-PDS) P is a tuple (Q, X, I A, X)
where Q is a finite set of control states, X' is a finite stack alphabet, I" is a
finite output alphabet, X = {x1,...,2,} is a set of n counter variables, and
AC(Qx X xConstx)xI'™ x(Qx X*xZ") is a finite set of transition rules.
We will denote a rule ((g,a,0),7, (¢, w',u)) using (g, a,d) A (¢, w',u).

A configuration of P is a tuple (¢, w,v), where ¢ € Q is the current control
state, w € X* is the current stack contents, and v = (v1,...,v,) € N gives the
current valuation of the counter variables x1, ..., x, respectively. There exists a
transition (¢, aw,v) % (¢, w'w,v’) of P whenever

1. (q,a,0) rl>(q’,w’,'u,) € A, and
2. (v (1),...,v(n)) is true, and
3. vV ()=v()+u(i)>0forall<i<n.

Communicating Pushdown Systems with Counters. Given Qg,..., Qm,
let Y = {y1,- .-, Ym, Y1, -, U} be a set of control state variables such that,
for each i, y;, y} range over Q;. Then, an atomic state constraint is of the form
y; = q for some y; € Y and q € Q;. A synchronisation constraint, written
0(Y1, -, YmsYis- -+ Yh,), 1S & boolean combination of atomic state constraints.
For example, let n = 3 and consider the constraint

m=aANyl=a yh=@Ays=q3)) V
(pr=rmAyr=riANyy=ro Nyz=r13)) .

This allows synchronisations where, whenever the first process has control state
q1, the other processes can simultaneously move to ¢; (for all 1 <4 < 3), whereas,
if process one has control state r1, the processes move to states r; instead. Let
StateConsg, ... 0,, be the set of synchronisation constraints for Qy,..., Q.

Definition 1 (n-SyncPDSr). Given a finite output alphabet I' and set of n
counter variables X, a system of communicating pushdown systems with n coun-
ters C is a tuple (P1,...,Pm, Ay, X, 1) where, for all 1 <i < m, P; is a push-
down system (Q;, X;, I', A;, X) with n counters, and Ay C StateConsg, ... 0, X
Constx XZ" is a finite set of synchronisation constraints, and r € N is a natural
number given in unary.

Notice that a system of communicating pushdown systems share a set of coun-

ters. A configuration of such a system is a tuple (q1,w1,. .., Gm, Wm,v) where
each (g;,w;,v) is a configuration of P;. We have (g1, w1, ..., Gm,Wm,v) =
(¢, wh,...,q,,wh ,v") whenever,

1. for some 1 < i < m, we have (g;, w;, v) 2, (¢;,w},v") is a transition of P;
and ¢; = ¢; and w; = wj for all j # i, or
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2. y=¢ ndwz—w’forall1§i§mand(6,9,u)€Agwith
0(q1y - s qmyqls - -+, qh,) is true, and
) O(v(1),...,v(n)) is true, and
() v(i)=v(i)+u(i)>0forall 1 <i<mn.
We refer to these two types of transition as internal and synchronising respec-
tively. A run of C is a run ¢g Lo B I,

Bounding Runs. During a run, the counter is in a non-decrementing mode if
the last value-changing operation on that counter was an increment. Similarly, a
counter may be in a non-incrementing mode. The number of reversals of a counter
during a run is the number of times the counter changes from an incrementing
to a decrementing mode, and vice versa. For example, if the values of a counter
x in a path are 1,1,1,2,3,4,4,4,3,2,2,3, then the number of reversals of z is
2 (reversals occur in between the overlined positions). This sequence has three
phases (i.e. subpaths interleaved by consecutive reversals or end points): non-
decrementing, non-incrementing, and finally non-decrementing.

Definition 2 (r-Reversal-Bounded). A run ¢y oo B I s -
reversal-bounded whenever we can partition cocy ... ¢y into Cy...C, such that
for all 1 < p < r, there is some ~€ {<,>} such that for all cjciy1 appearing
together in Cp, we have ¢; = (..., v;), ¢j41 = (..., v41), and for all 1 < i <mn,
; (i) ~ vj41 (i)

Finally, we define the notion of synchronisation-bounded. We show in Section @l
that this notion subsumes context-bounded model checking.

Definition 3 (k-Synchronisation-Bounded). A run 7 is k-synchronisation-
bounded whenever m uses k or fewer synchronising transitions.

3 Synchronisation-Bounded Reachability

The r-reversal and k-synchronisation-bounded reachability problem for a given
C, bound r and k asks, for given configurations ¢ and ¢’ of C, is there a k-
synchronisation-bounded run of C from c to ¢’ using up to r reversals. We prove:

Theorem 1. For two bounds r and k given in unary, the r-reversal and k-
synchronisation-bounded reachability problem for n-SyncPDS is NP-complete.

The proof extends the analogous theorem for r-reversal-bounded n-PDS [20]. We
will construct, for each P; in C, an over-approximating pushdown automaton P;
and use Verma et al. 40@ to obtain an existential Presburger formula Image,
giving the Parikh image of P,. Finally, we add additional constraints such that
a solution exists iff the reachability problem has a positive answer.

! Tt is well known that [40] contains a small bug, fixed by Barner |6]. See the full
version for more details.
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The encoding presented here is one of two encodings that we developed. This
encoding is both simpler to explain and seems to be handled better by Z3 for al-
most all of our examples than the second encoding. However, the second encoding
results in a smaller formula. Hence, we include both reductions as contributions,
and present the second reduction in the full version of the paper.

The key difference between the encodings is where we store the number of
synchronisations performed so far. In the first encoding, we keep a component g
in each control state; thus, from each P we build P’ with |Q| X Npax X (k+ 1)
control states, where Q is set of control states of P and Ny ax is the number of
mode vectors (where modes are defined below).

In the alternative encoding we put the number of synchronisations in the
modes, resulting in |Q| X (Nmax + k + 1) control states. This is important since
our reduction is quadratic in the number of controls. Hence, if k = 2, the alterna-
tive results in pushdown automata a third of the size of the encoding presented
here. However, the resulting formulas seem experimentally more difficult to solve.

Let ¢ = (q?a Wy, .- - 7q9na W, UO) and ¢’ = (fla w,17 L) fma w;,“’l)f). By hard-
coding the initial and final stack contents, we can assume that all w; = w; =1.

Unfortunately, we cannot use the reduction for r-reversal-bounded n-PDS as
a completely black box; hence, we will recall the relevant details and highlight
the new techniques required. We refer the reader to the article [20] for further
details. The correctness of the reduction is given in the full version of the paper.

The final formula HasRun will take the shape

Init(m) A GoodSeq(my,...,mny,,. )
A A\ Image;(2z;)
1<i<m
dmy,...,mn,. 321 -Zm A Respect (Zlgigm Zi,My, ..., mNmax)

A OneChange (Zl<i<m Zz‘)
A EndVal (Z1gigm Zi) A Syncs (Z1§igm zi)

where the formulas OneChange (ZKKm zi) and Syncs (Zl<i<m zi) are the

main differences with the single thread case. In addition, further adaptations
need to be made within other aspects of the formula. We remark at this point
that the user may add to HasRun an additional constraint on the Parikh images
of runs — such as restricting to runs where the number of characters v output
is greater than the number of +'.

The Mode Vectors. We begin with the vectors my,..., my,,,,, which are
unchanged from the case of r-reversal-bounded n-PDS. Let d; < ... < dj, denote
all the numeric constants appearing in an atomic counter constraint as a part of
the constraints in the P;. Without loss of generality, we assume that d; = 0 for
convenience. Let REG = {p1,...,0n,%¥1,...,9¥n} be a set of formulas defined as
follows. Note that these formulas partition N into 2h pairwise disjoint regions.

vilx)=x=d;, vi(x)=di<z<diz1 (1<i<h), Yplx)=dy<z.
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We call a vector in REG™ x [0,7]™ x {1,1}" a mode vector. Given a path 7 from
configurations ¢ to ¢/, we may associate a mode vector to each configuration
in w. This vector records for each counter, which region its value is in, how
many reversals it’s used, and whether its phase is non-decrementing (1) or non-
incrementing (/). Consider a sequence of mode vectors. A crucial observation is,
once a change occurs to the mode information of a counter, the same information
will not recur for that counter. For example, returning to the same region will
incur an increase in the number of reversals. Thus, there are at most Ny 1=
|REG| x (r + 1) x n = 2hn(r + 1) distinct mode vectors in any sequence.

Constructing P;. We define the pushdown automata
P = (9, %, I, Al (q?, 1,1),{fi} x [1, Nmax] x [1,k 4 1])

for each P; in C. Note that each P} has the same output alphabet I'". We assume
that all Q; are pairwise disjoint. There are two main aspects to each P/. First, we
remove the counters. To replace them, we have P! output any counter changes
or tests that would have been performed. E.g. where P; would increment a
counter, P; will output a symbol (ctr;,1,...) indicating (amongst other things)
that counter ctr; should be increased by 1. Furthermore, P; guesses when, and
keeps track of when, mode changes would have occurred. Secondly, we allow P}
to non-deterministically make synchronisations (instead of communicating, the
effect of external threads is guessed). In this case, the control state change, along
with the number of synchronisations performed thus far, will be output. In this
way, P/ makes “visible” the counter tests, counter updates and synchronisations
that would have been performed by P; on the same run. Constraints described
later in HasRun ensure these operations are valid.

More formally, let Q} = Q; X [1, Nmax| X [1, k + 1] (that is, we add to Q; the
current mode and synchronisation number). We define I implicitly from the
transition relation. In fact, I is a (finite) subset of

'u{ (ctrj,u,el) | je[l,n),ucZ,e€[l, Nmax],l € {0,1} }
U (Constx x [1, Nmax])
U U (StateConsog, .. 0, % Qi x Q; X [1, Nmax] X [1,k+ 1] x {0,1}).

1<i<m

Characters (ctr;,u,e,l) mean to add u to ctr;, in mode e, where ! indicates
whether the counter action changes the mode vector. Characters (6, e) indicate
a counter test in mode e. Finally, characters (,q,¢’,e,g,l) indicate a use of
synchronisation rule §, changing P; from control state ¢ to ¢/, in mode e with ¢
synchronisations performed so far.

We define A} to be the smallest set such that, if (¢,a,0) A (¢',w,u) € A;
where u = (u1, ..., uy) then for each e € [1, Npax| and g € [1, k+1], A} contains

~(0,e)(ctri,ui,e,l)...(ctry, uy,e,l)

((g,e,9),a) ((d"se+1,9),w)

for all I € {0,1} if e € [1, Nmax) and [ = 0 otherwise. Thus, | = 1 signifies a
mode changing transition.
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These rules are the rules required in the single thread case. We need additional
rules to reflect the multi-threaded environment. In particular, an external thread
may change the mode, or a synchronising transition may occur. To account for
this Al also has for each ¢ € Q;, a € X;, € € [1, Nmax), and g € [1,k + 1],

((g:€,9),0) <= (g +1,9),a) (%)
and, to model synchronisations, we have for all ¢,¢' € Q;, ¢ € [1, Npax], g €
[1,k+1) and (6,6,u) € Ay, when i > 1,

4,q, ’,e, N
(@ e.9), ) 20 (e +1,9+1),0)

and when ¢ = 1 and u = (uq,...,uy),

((q7 e g), a) (8,9,9",e,9,1)(0,e)(ctri,uy,el)...(ctry,un,e,l) ((q/’ et l’ g+ 1)’ a)
for all I € {0,1} when e € [1, Nyax) and [ = 0 otherwise. That is, P; guesses
the effect of non-internal transitions and P is responsible for performing the
required counter updates. Note that the information in the output character
(9,9,q',e,g,1) allows us to check that synchronising transitions take place in the
same order and in the same modes across all threads.

Constructing The Formula. Fix an ordering 73 < ... < vy on I". By f we
denote a function mapping 7; to ¢ for each i € [1,1]. Let z denote a vector of
[ variables. The formula is HasRun given above, where Init,GoodSeq, Respect,
and EndVal are defined as in the single thread case (using only variables which
are unchanged from [20]); therefore, we describe them informally here, referring
the reader to the full version of the paper for the full definitions. We convert
each P] to a context-free grammar (of cubic size) and use |40] to obtain Image;
such that for each n € N! we have n € P(L(P})) iff Image; (n) holds. Informally,

— Init ensures the initial mode vector m; respects the initial configuration c;

— GoodSeq ensures that the sequence of mode vectors mq,...,my, . is valid.
For example, if the direction of a counter changes, then an extra reversal is
incurred on that counter;

— Respect requires that the counter tests and actions fired within a mode are
allowed. For example, a subtraction may not occur on a counter in a non-
decreasing phase, only one mode change action may occur per mode, and
that counter tests only occur in sympathetic regions; and

— EndVal checks that the counter operations applied during the run leave each

counter in the correct value, as given in the final configuration ¢'.

It remains for us to define OneChange and Syncs. We use OneChange to assert
that only one thread may be responsible for firing the transition that changes a
given mode of the counters to the next. That is,

OneChange (2) = ZF(ctr, >0= fletrj,u,e,l) ) )
gl /\ Jlerry et (/\ Zf(ctrjul,e,1) = 0

(ctrj,u,e,1)
(ctrj,u’,e,1)

u' #u
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The role of Syncs is to ensure that the synchronising transitions taken by
Pi,..., P}, are valid. Note that, by design, each P/ will only output at most
one character of the form (d,q,q’,e,g,1) for each g € [1,k]. We assert, if one
thread uses a global transition with condition 4§, all do, and ¢ is satisfied. That

is,

Fired(sc g (2) =
Syncs (z) = A
1S/Q\Sk 1§e¥vmax < (Sync(‘ie’g’” () A ALIFiredise,q (2) )

(0,0,u)eA,
1€{0,1}

where Sync(; . ;) (%) is 0 (z) with each atomic state constraints replaced as
below.

(yi=q) = \/ Zf(5,0.¢e,9,) > 0 and (yi=4q)= \/ 25 (6,0,0 e,9.0) > 0 -
(6,9, €,9,1) (8,9,9"e,9:1)

Finally, Fired(s g, (2) = \ 2f(5,q.q'en9,) > 0, and
(0,9,9"e,9,1)

AllFired(se 40 (2) = /\ \/ 21 G e0l) > 0 -
1<i<m q,q’€Q;

We remark upon a pleasant corollary of our main result. Consider a sys-
tem of pushdown systems communicating only via reversal-bounded counters.
Since such a system cannot use any synchronising transitions, all runs are
0-synchronisation-bounded; hence, their reachability problem is in NP .

4 Comparison with Context-Bounded Model Checking

Global synchronisations can be used to model classical context-bounded model
checking. We present a simple encoding here. We begin with the definition.

Definition 4 (n-CIPDS). A classical system of communicating pushdown
systems with n counters C is a tuple (P1, ..., Pm, G, X) where, for all1 <i < m,
Pi is a PDA with n counters (Q;, X, I A;, X), X is a finite set of counter vari-
ables and Q; = G x Q. for some finite set Q.

A configuration of a n-CIPDS is a tuple (g,¢1,w1 ..., ¢m, Wn,v) where g € G
and (g,q;) € Q; for all i. We have a transition (g,q1,wr, ..., qm, Wn,v) =

(¢ gy, wh, ..o, wh,, v") when, for some 1 <4 < m, we have ((g,¢;), w;, v) z

((¢',4;), wi,v') is a transition of P; and ¢; = ¢} and w; = wj for all j # i.

A run of C is a sequence cq o B 22 ¢, A k-context-bounded run is
arun cp = ¢; == .- 22 ¢, that can be divided into k phases (4, ..., C} such
that during each C; only transitions from a unique P; are used. By convention,

the first phase contains only transitions from P;.
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We define an n-SyncPDS simulating any given n-CIPDS. It uses the synchro-
nisations to pass the global component g of the n-CIPDS between configurations
of the n-SyncPDS, acting like a token enabling one process to run. Since there
are k global synchronisations, the run will be k-context-bounded.

Definition 5. Given a n-CIPDS C = (P1,...,Pm,G,X). Let # be a symbol
not in G. We define from each P; = (Q;, X, I, A, X) with Q; = G x Q the
pushdown system PP = (Qf U{fi}, 2 I, Af,X) where QF = Q' x (G U {#})
and A is the smallest set containing A; and ((g,q),a, tt) N (fi,w,0) for all
q,a appearing as a head in the final configuration with g = # or with g also in
the final configuration.

Finally, let C5 = (Pf,...,P;?L,Ag,X), where Ay = {(4, tt,0)} such that
the formula 6(qi,...,qk,q%,...,q2) holds only when there is some g € G and
1 <i#j<mn such that

1. q¢} = (g9,9) and ¢? = (#,q) for some q, and
2. q} = (#,q) and qu = (g,q) for some q, and
3. for alli' #i and i # j, ¢ = (#,q) and q% = (#,q) for some q.

We show in the full version of this paper that an optimised version of this
simulation — discussed in Section [§] — is correct. That is, there is a run of C
to the final configuration (g,qi, w1, - ., Gm,Wm,v) iff there is a run of C¥ to
(f1,w1,.. ., fm,Wm,v) using the same number of reversals.

5 Optimisations

Our experiments suggest that without further optimisations our reduction from
Section [3l is rather impractical. In this section, we provide several optimisations
which considerably improve the practical aspect of our reduction. We discuss
improving the encoding of the context-bounded model checking, identifying and
eliminating “removable” heads from our models, and minimising the size of the
CFG produced during the reduction using reachability information. The gist
behind our optimisation strategies is to keep the size of the models (pushdown
automata, CFG, etc.) as small as possible throughout our reduction, which can
be achieved by removing redundant objects as early as possible. For the rest of
this section, we fix an initial and a final configuration.

Context-Bounded Model Checking. The encoding context-bounded model
checking encoding given in Section [ allows context-switches to occur at any
moment. However, we can observe that context-switches only need to occur when
global information needs to be up-to-date. This restriction led to improvements
in our experiments. We describe the positions where context-switches may occur
informally here, and give a formal definition and proof in the long version.

In our restricted encoding, context-switches may occur when an update to
global component g occurs; the value of g is tested; an update to the counters
occurs; the values of the counters are tested; or the control state of the active
thread appears in the final configuration. Intuitively, we delay context-switches
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as long as possible without removing behaviours — that is, until the status of
the global information affects, or may be affected by, the next transition.

Minimising Communicating Pushdown Systems with Counters. We de-
scribe a minimisation technique to reduce the size of the pushdown systems. It
identifies heads ¢, a of the pushdown systems that are removable. We collapse
pairs of rules passing through the head ¢, a into a single combined rule. Thus,
we build a pushdown system with fewer heads, but the same behaviours. In the
following definition, sink states will be defined later. Intuitively it means when
q is reached, ¢ cannot be changed in one local or global transition.

Definition 6. A head q,a is removable whenever

1. q,a is not the head of the initial or final configuration, and

2. it is not a return location, i.e. there is no rule (q1,b1,0) A (g2, bow’, u) with
a appearing in w' and a does not appear below the top of the stack in the
initial configuration, and

3. it is not a loop, i.e. there is no rule (q,a, ) A (g, aw’,u), and

4. it s not a synchronisation location, i.e. for all (gz2,b,0) A (g1, aw’,u) or ini-
tial configuration containing q1 and a, we have either, (i) for all (6,0",u’) €
A, and qi,...,qk, 4%, ..., q% such that §(qi,...,qt,q%, ..., q%) holds we
have qf # q1 for alli,j, or (ii) q1 is a sink state, and

5. it is not a counter access location, i.e. there is no rule (q,a,0) A (¢, w',u)
such that 0 depends on a counter or w contains a non-zero entry, and there

is no rule (¢',b,0) A (g, aw’,u) such that u contains a non-zero entry.

Definition 7. A state q is a sink state when for all rules (q, a, ) J (¢, w',u)
we have ¢’ = q and for all (6,0',u') € Ay and qi,...,q}.q3,...,q2% with ¢t =q
for some i such that 5(qi,...,q},,q3,--.,q2,) holds we have ¢? = q.

Removable heads can be eliminated by merging rules passing through them.
In general, this may increase the number of rules, but in practice it leads to
significant reductions (see Table [I). We show, in the full version of this paper,
that this optimisation preserves behaviours of the systems.

Definition 8. Given a n-SyncPDS with global rules Ay and a pushdown system
P with n counters (Q, X, I, A, X) and a removable head q,a, we define Py 4 to
be (Q, X, IA', X) where A = A if Ay is empty and A" = Ay U Ay otherwise,
where

Y1

Y1,Y2 (ql’b7 01) — (qa awlaul) € A A
Ar =19 (@,6,0) — (@2, w,ur +u2) | (g,0,0,) > (g2, w2,u2) € A N

(
9:(91/\92)/\w=w2w1

(qhbaa) ‘l> (qQaw/au) | qlab:qaa }U

and Ay = A\
(q1,b1,6) < (g2, b2w’,u) | q2,02 = q,a }
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Minimising CFG Size via Pushdown Reachability Table. Recall that
our reduction to existential Presburger formulas from an n-SyncPDS makes
use of a standard language-preserving reduction from pushdown automata to
context-free grammars (CFGs). Unfortunately, the standard translations from
PDAs to CFGs incur a cubic blow-up. More precisely, if the input PDA is
P = (Q, Y. I,A, ¢, F)7 the output CFG has size O(]A| x|Q|?). Our experiments
suggest that this cubic blow-up is impractical without further optimisation, i.e.,
the naive translation failed to terminate within a couple of hours for most of
our examples. Note that the complexity of translating from PDA to CFG is very
much related to the reachability problem for pushdown systems, for which the
optimal complexity is a long-standing open problem (the fastest algorithm [11]
to date has complexity O(n?®/logn) under certain assumptions).

We will now describe two optimisations to improve the size of the CFG that is
produced by our reduction in the previous section, the second optimisation gives
better performance (asymptotically and empirically) than the first. Without loss
of generality, we assume that: (A1) the PDA empties the stack as it accepts an

input word, (A2) the transitions of the input PDA are of the form (p, a) J (g, w)
where p,g € Q, vy € I'*, a € ¥, and w € X* with |w| < 2. [It is well-known
that any input PDA can be translated into a PDA in this “normal form” that
recognises the same language while incuring only a linear blow-up.] The gist
behind both optimisations is to refrain from producing redundant CFG rules by
looking at the reachability table for the PDA. Keeping the CFG size low in the
first place results in algorithms that are more efficient than removing redundant
rules after the CFG is produced.

Let us first briefly recall a standard language-preserving translation from PDA
to CFG. Given a PDA P = (Q, >.I A4, F), we construct the following CFG
with nonterminals N = {S} U {4, 44 : p,¢ € Q,a € X'}, terminals I', starting
nonterminal S, and the following transitions:

(1) For each (p,a) A (g,€) € A, the CFG has A, 4.4 — 7.

(2) For each (p,a) = (p/,b) € A and q € Q, the CFG has Apag = YAp bg-

(3) For each (p,a) A (p',cb) € A and r,q € Q, the CFG has A4,,, —

7Ap’,c,rAr,b,q~
(4) Add S — Ay | 4. for each qr € F.

Note that A, q , generates all words that can be output by P from configuration
(p, a) ending in configuration (g, €). Both of our optimisations refrain from gen-
erating: (i) CFG rules of type (2) above in the case when (p’,b) 4™ (g,¢€), and
(ii) CFG rules of type (3) in the case when (p/,c) 4* (r,€) or (r,b) A" (¢, ¢€),
and (iii) CFG rules of type (4) in the case when (¢° L) A* (qr,€).

It remains to describe how to build the reachability lookup table for P with
entries of the form (p,a,q) witnessing whether (p,a) —* (g,€). The first op-
timisation achieves this by directly applying the pre* algorithm for pushdown
systems described in [16], which takes O(]Q|? x |A|) time. This optimisation
holds for any input PDA and, hence, does not exploit the structure of the PDA
that we generated in the previous section. Our second optimisation improves
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the pre* algorithm for pushdown systems from |16] by exploiting the structure
of the PDA generated in the previous section, for which each control state is of
the form (p,i,j), where 4,5 € Zsg. The crucial observation is that, due to the
PDA rules of type (*) generated from the previous section, the PDA that we are
concerned with satisfy the following two properties:

(PO) ((p.i,4),v) = ((¢,7', '), w) implies ¢’ > i and j' > j.

(P1) ((p,i,5),v) = ((¢,%',7"),w)) implies for each di,ds € N that we have
((p77:+d17j+d2)7v) —* (( 77:/+d17j/+d2)7w) .

(P2) for each nonempty v € X*: ((p,i,5),av) =* ((¢,7, '), v) implies we have
((p,4,7),av) =* ((¢,7",7"),v) for each i"" > '.

Properties (P0) and (P1) imply it suffices to keep track of the differences in the
mode indices and context indices in the reachability lookup table, i.e., instead of
keeping track of all values ((p,?,7),a) —* ((q,7,j'),€), each entry is of the form
(p,a,q,d,d") meaning that ((p,i,7),a) —=* ((¢,i+d,j+d'),e) for each i,j €
Z~¢. Property (P2) implies that if (p, a, ¢, d, d’) is an entry in the table, then so is
(p,a,q,d+1i,d") for each i € N. Therefore, whenever p, a, ¢, d" are fixed, it suffices
to only keep track of the minimum value d such that (p,a,q,d,d’) is an entry
in the table. We describe the adaptation of the pre* algorithm for pushdown
systems from [16] for computing the specialised reachability lookup table in
the full version. The resulting time complexity for computing the specialised
reachability lookup table becomes linear in the number of mode indices.

6 Implementation and Experimental Results

We implemented two tools: Pushdown Translator and SynPCo2Z3.

Pushdown Translator. The Pushdown Translator tool, implemented in C++,
takes a program in a simple input language and produces an n-SyncPDS. The
language supports threads, boolean variables (shared between threads, global to
a thread, or local), shared counters, method calls, assignment to boolean vari-
ables, counter increment and decrement, branching and assertions with counter
and boolean variable tests, non-deterministic branching, goto statements, locks,
output, and while loops. The user can specify the number of reversals and
context-switches and specify a constraint on the output performed (e.g. find
runs where the number of 7 characters output equals the number of +’s). The
full syntax is given in the full version of this paper. The translation uses the
context-switch technique presented in Definition [l and the minimisation tech-
nique of Definition [§ Furthermore, the constructed pushdown systems only con-
tain transitions for reachable states of each thread (assuming counter tests always
pass, and synchronising transition can always be fired).

SynPCo02Z3. Our second tool SynPCo02Z3 is implemented in SWI-Prolog. The
input is an n-SyncPDS, reversal bound r, and synchronisation-bound k. Due
to the declarative nature of Prolog, the syntax is kept close to the n-SyncPDS
definition. The output is an existential Presburger formulas in SMT-LIB format,
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supported by Z3. Moreover, the tool implements all the different translations
that have been described in this paper (including appendix) with and without
the optimisations described in the previous section. The user may also specify a
constraint on the output performed by the input n-SyncPDS.

Experiments. We tested our implementation on several realistic benchmarks.
One benchmark concerns the producer-consumer examples (with one producer
and one consumer) from [31]. We took two examples from [31]: one uses one
counter and is erroneous, wherein both producer and consumer might be both
asleep (a deadlock), and the other uses two counters and is correct. The n-
SyncPDS models of these examples were hand-coded since they use synchroni-
sations rather than the context-switches of Pushdown Translator.

The remaining benchmarks were adapted from modules found in Linux kernel
3.2.1, which contained list- and memory-management, as well as locks for concur-
rent access. These modules often provided “register” and “unregister” functions
in their API. We tested that, when register was called as many times as unreg-
ister, the number of calls to malloc was equal to the number of calls to free.
Furthermore, we checked that the module did not attempt to remove an item
from an empty list. In all cases, memory and list management was correct. We
then introduced bugs by either removing a call to free, or a lock statement. Note
the translation from C to our input language was by hand, and an automatic
translation is an interesting avenue of future work.

The results are shown in Table[Il All tests were run on a 2.8 GHz Intel machine
with 32GB of RAM. Each benchmark had two threads, two context-switches,
one counter and one reversal. The size fields give the total number of pushdown
rules in the n-SyncPDS, both before and after removable heads minimisation.
Tran. Time gives the time it took to produce the SMT formula, Solve Time is
the time taken by Z3 (v. 3.2, Linux build). Each cell contains two entries: the
first is for the instance with a bug, the second for the correct instance.

Table 1. Results of experimental runs

File Size Min. Size  Tran. Time Solve Time
prod-cons.c 22/13 -/- 0.8s/1.8s 4.25/6.8s
api.c (rtl8192u)  654/660 202/208 28s/28s 4m19s/4m32s
af alg.c 506/528 174/204 18s/21s 10m2s/4m4Ts
hid-quirks.c 557/559 303/303 47s/47Ts 18m41s/12m5s
dm-target.c 416/436 254/278 27s/29s 36m43s/10mls

7 Conclusions and Future Work

We have studied the synchronisation-bounded reachability problem for a class
of pushdown systems communicating by shared reversal-bounded counters and
global synchronisations. This problem was shown to be NP-complete via an
efficient reduction to existential Presburger arithmetic, which can be analysed
using fast SMT solvers such as Z3. We have provided optimisation techniques for
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the models and algorithms and a prototypical implementation of this reduction
and experimented on a number of realistic examples, obtaining positive results.

There are several open problems. For instance, one weakness we would like to
address is that we cannot represent data symbolically (using BDDs, for example).
This prevents us from being competitive with tools such as Getafix [39] for
context-bounded model-checking of pushdown systems without counters.

Furthermore, although we can obtain from the SMT solver a satisfying assign-
ment to the Presburger formula, we would like to be able to construct a complete
trace witnessing reachability. Additionally, the construction of a counter-example
guided abstraction-refinement loop will require the development of new techniques
not previously considered. In particular, heuristics will be needed to decide when
to introduce new counters to the abstraction.

We may also consider generalisations of context-bounded analysis such as
phase-bounds and ordered multi-stack automata. A further challenge will be to
adapt our techniques to dynamic thread creation, where each thread has its own
context-bound, rather than the system as a whole.
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Abstract. IC3 is a recently proposed verification technique for the analysis of
sequential circuits. IC3 incrementally overapproximates the state space, refut-
ing potential violations to the property at hand by constructing relative inductive
blocking clauses. The algorithm relies on aggressive use of Boolean satisfiability
(SAT) techniques, and has demonstrated impressive effectiveness.

In this paper, we present the first investigation of IC3 in the setting of software
verification. We first generalize it from SAT to Satisfiability Modulo Theories
(SMT), thus enabling the direct analysis of programs after an encoding in form of
symbolic transition systems. Second, to leverage the Control-Flow Graph (CFG)
of the program being analyzed, we adapt the “linear” search style of IC3 to a tree-
like search. Third, we cast this approach in the framework of lazy abstraction with
interpolants, and optimize it by using interpolants extracted from proofs, when
useful.

The experimental results demonstrate the great potential of IC3, and the effec-
tiveness of the proposed optimizations.

1 Introduction

Aaron Bradley [6] has recently proposed IC3, a novel technique for the verification of
reachability properties in hardware designs. The technique has been immediately gen-
erating strong interest: it has been generalized to deal with liveness properties [3], and
to incremental reasoning [[7]. A rational reconstruction of IC3, referred to as Property
Driven Reachability (PDR), is presented in [12], together with an efficient implemen-
tation: an experimental evaluation shows that IC3 is superior to any other single solver
used in the hardware model checking competition.See also [23]] for an overview.

The technique has several appealing aspects. First, different from bounded model
checking, k-induction or interpolation, it does not require unrolling the transition rela-
tion for more than one step. Second, reasoning is highly localized to restricted sets of
clauses, and driven by the property being analyzed. Finally, the method leverages the
power of modern incremental SAT solvers, able to efficiently solve huge numbers of
small problems.

In this paper, we investigate the applicability of IC3 to software model checking.
We follow three subsequent steps. We first generalize IC3 from the purely Boolean
case [6]], based on SAT, to the case of Satisfiability Modulo Theory (SMT) [1l]. The

* Supported by Provincia Autonoma di Trento and the European Community’s FP7/2007-2013
under grant agreement Marie Curie FP7 - PCOFUND-GA-2008-226070 “progetto Trentino”,
project ADAPTATION.
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characterizing feature of the generalization is the computation of (underapproximations
of) the preimage of potential bug states. This allows us to deal with software modeled
as a (fully) symbolic transition system, expressed by means of first order formulae.

The second step is motivated by the consideration that the fully symbolic represen-
tation does not exploit the control flow graph (CFG) of the program. Thus, we adapt
IC3, that is “linear” in nature, to the case of a tree, which is the Abstract Reachability
Tree (ART) resulting from the unwinding of the CFG. This technique, that we refer to
as TREE-IC3, exploits the disjunctive partitioning of the software, implicit in the CFG.

The third step stems from the consideration that TREE-IC3 can be seen as a form
of lazy abstraction with interpolants [[18]: the clauses produced by IC3 are in fact in-
terpolants at the various control points of the ART. From this, we obtain another opti-
mization, by integrating interpolation within IC3. With proof-based interpolation, once
the path being analyzed is shown to be unfeasible with one SMT call, it is possible to
obtain interpolants for each control point, at a low cost. The key problem with interpo-
lation is that the behaviour is quite “unstable”, and interpolants can sometimes diverge.
On the other hand, IC3 often requires a huge number of individual calls to converge,
and may be computationally expensive, especially in the SMT case, although it rarely
suffers from a memory blow-up. The idea is then to obtain clause sets for IC3 from
proof-based interpolation, in the cases where this is not too costly.

We carried out a thorough set of experiments, evaluating the merits of the three
approaches described above, and comparing with other techniques for software model
checking. The results show that the explicit management of the CFG is often superior to
a symbolic encoding, and that the hybrid computation of clauses can sometimes yield
significant speed-ups. A comparison with other approaches shows that TREE-IC3 can
compete with mature techniques such as predicate abstraction, and lazy abstraction with
interpolants.

This work has two key elements of novelty. The seminal IC3 [6] and all the exten-
sions we are aware of [[12/7)5]] address the problem for fully symbolic transition systems
at the bit level. This paper is the first one to lift IC3 from SAT to SMT, and also the first
one to adapt IC3 to exploit the availability of the CFG.

This paper is structured as follows. In Sec.[2] we present some background. In Sec.[3]
we describe the SMT generalization of IC3. In Sec. ] we present TREE-IC3, and in
Sec. 5l TREE-IC3+ITP, the hybrid approach using interpolants extracted from proofs.
In Sec. [6] we experimentally evaluate the approach. In Sec. [ we discuss related work.
Finally, in Sec.[8|we draw some conclusions and outline lines of future research.

2 Background and Notation

Our setting is standard first order logic. We use the standard notions of theory, satisfi-
ability, validity, logical consequence. We denote formulas with ¢, v, I, T, P, variables
with x, y, and sets of variables with X, Y. Unless otherwise specified, we work on
quantifier-free formulas, and we refer to O-arity predicates as Boolean variables, and
to O-arity uninterpreted functions as (theory) variables. A literal is an atom or its nega-
tion. A clause is a disjunction of literals, whereas a cube is a conjunction of literals.
If sis acubel; A...Al,, with =s we denote the clause —l; V ... V —l,, and vice
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versa. A formula is in conjunctive normal form (CNF) if it is a conjunction of clauses,
and in disjunctive normal form (DNF) if it is a disjunction of cubes. With a little abuse
of notation, we might sometimes denote formulas in CNF C; A ... A C}, as sets of
clauses {C1,...,C,}, and vice versa. If X7,..., X,, are a sets of variables and ¢ is
a formula, we might write (X1, ..., X,,) to indicate that all the variables occurring
in ¢ are elements of Ui X;. For each variable x, we assume that there exists a corre-
sponding variable x’ (the primed version of x). If X is a set of variables, X is the set
obtained by replacing each element x with its primed version. Given a formula ¢, ¢’
is the formula obtained by adding a prime to each variable occurring in ¢, and (™ is
the formula obtained by adding n primes to each of its variables. Given a theory 7T, we
write ¢ =7 v (or simply ¢ |= 1) to denote that the formula ¢ is a logical consequence
of ¢ in the theory 7. Given a first-order formula ¢, we call the Boolean skeleton of
o the propositional formula obtained by replacing each theory atom in ¢ with a fresh
Boolean variable.

We represent a program by a control-flow graph (CFG). A CFG A = (L,G) con-
sists of a set L of program locations, which model the program counter pc, and a
set G C L x Ops x L of control-flow edges, which model the operations that are
executed when control flows from one program location to another. The set of vari-
ables that occur in operations from Ops is denoted by X. We use first-order formulas
for modeling operations: each operation o € Ops has an associated first-order for-
mula 7, (X, X’) modeling the effect of performing the operation o. A program II =
(A, pcy, pcy) consists of a CFG A = (L, G), an initial program location pc, € L (the
program entry), and a target program location pCy € L (the error location). A path
is a sequence (pcy, opo, PCy ), (PC1, 0P1,PCs), - - -, (PC,,_1, OPn—1, PC,, ), representing a
syntactical walk through the CFG. The path 7 is feasible iff the formula A; T, " is
satisfiable. When 7 is not feasible, we say it is spurious. A program is safe when all the
paths leading to pc; are not feasible.

Given a program II, an abstract reachability tree (ART) for II is a tree A over
(V, E) such that: (i) V is a set of triples (pc, ¢, h), where pc € L is a location in the
CFG of II, ¢ is a formula over X, and h € N is a unique identifier; (ii) the root of
A'is (pc,, T, 1); (iii) for every non-leaf node v = (pc;, ¢, h) € V, for every control-
flow edge (pc;, op,pc;) € G, v has a child node (pc;, 1, k) such that p A Ty, = ¢
and k£ > h. In what follows, we might denote with pc; ~» pc; any path in an ART
from a node (pc;, ¢, k) to a descendant node (pc;, 1, k). Intuitively, an ART represents

an unwinding of the CFG of a program performed in an abstract state space. If v =

(pC;, @, h) is a node,  is the abstract state formula of v. A node v; = (pc;, v, k) in
an ART A is covered if either: (i) there exists another node vy = (pc;, ¢, h) in A such
that h < k, ¥ | ¢, and vy is not itself covered; or (ii) v; has a proper ancestor for
which (@) holds. A is complete if all its leaves are either covered or their abstract state
formula is equivalent to L. A is safe if and only if it is complete and, for all nodes
(pCg, . h) € V, v = L. If a program IT has a safe ART, then I7 is safe [16/18]].
Given a set X of (state) variables, a transition system S over X can be described
symbolically with two formulas: Is(X), representing the initial states of the system,
and Ts(X, X'), representing its transition relation. Given a program II, a correspond-
ing transition system Sy can be obtained by encoding symbolically the CFG (L, G)
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of II. This can be done by: (i) adding one special element xpc, with domain L, to
def

the set X of variables; (ii) setting Is, = (rpc = PC,); and (iii) setting Ty, =
v(pci,op,pcj)eG(xpC = pCZ) A Top A (SU;C = pCj).

Given Sy7, the safety of the program I can be established by proving that all the
reachable states of Sy are a subset of the states symbolically described by the formula
PE —(2pc = PCr). In this case, we say that Sy satisfies the invariant property P.

3 IC3 with SMT

High-Level Description of IC3. Let X be a set of Boolean variables, and let S be
a given Boolean transition system described symbolically by I(X) and T'(X, X’). Let
P(X) describe a set of good states. The objective is to prove that all the reachable
states of S are good. (Conversely, =P (X) represents a set of “bad” states, and the
objective is to show that there exists no sequence of transitions from states in I(X)
to states in =P (X).) The IC3 algorithm tries to prove that S satisfies P by finding a
formula F'(X) such that: (i) [(X) = F(X); (i) F(X)ANT(X,X') E F(X'); and
(iii) F(X) E P(X).

In order to construct F', which is an inductive invariant, IC3 maintains a sequence of
formulas (called trace, following [12]]) Fo(X), ..., Fi(X) such that:

Fy=1;

for all 7 > 0, F; is a set of clauses;
- Fiy1 C F; (thus, F; = Fiqq);
F(X)ANT(X,X") E Fi1(X);
foralli < k, F; = P;

The algorithm proceeds incrementally, by alternating two phase: a blocking phase,
and a propagation phase. In the blocking phase, the trace is analyzed to prove that no
intersection between Fy, and —P(X) is possible. If such intersection cannot be dis-
proved on the current trace, the property is violated and a counterexample can be re-
constructed. During the blocking phase, the trace is enriched with additional clauses,
that can be seen as strengthening the approximation of the reachable state space. At the
end of the blocking phase, if no violation is found, F}, = P.

The propagation phase tries to extend the trace with a new formula F};, moving
forward the clauses from preceding F;. If, during this process, two consecutive elements
of the trace (called frames) become identical (i.e. F; = Fj 1), then a fixpoint is reached,
and IC3 can terminate with F; being an inductive invariant proving the property.

Let us now consider the lower level details of IC3. For ¢ > 0, F; represents an
over-approximation of the states of S reachable in ¢ transition steps or less. The dis-
tinguishing feature of IC3 is that such sets of clauses are constructed incrementally,
starting from cubes representing sets of states that can reach a bad state in zero or more

! We follow the formulation of IC3 given in [12]], which is slightly different from the original
one of Bradley given in [6]. Moreover, for brevity we have to omit several important details,
for which we refer to the two papers cited above.
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bool 1C3-prove(l, T, P):
1. trace = [I] #first elem of trace is init formula
2. trace.push() # add a new frame to the trace
3. while True:
# blocking phase

4. while there exists a cube c s.t. trace.last() A T" A ¢ is satisfiable and ¢ = —P:
5. recursively block the pair (c, trace.size() — 1)
6. if a pair (p, 0) is generated:
7. return False # counterexample found
# propagation phase
8. trace.push()
9. for i = 1 to trace.size() — 1:
10. for each clause c € tracel[i]:
11. if trace[i] A ¢ A T A —c’ is unsatisfiable:
12. add c to trace[i+1]
13. if trace[i] == trace[i+1]:
14. return True # property proved

Fig. 1. High-level description of IC3 (following [12])

transition steps. More specifically, in the blocking phase, IC3 maintains a set of pairs
(s,4), where s is a cube representing a set of states that can lead to a bad state, and
1 > 0 is a position in the current trace. New clauses to be added to (some of the frames
in) the current trace are derived by (recursively) proving that a set s of a pair (s, ) is
unreachable starting from the formula F;_;. This is done by checking the satisfiability
of the formula:

Fi_i1A-sATAS. @))]

If (@) is unsatisfiable, and s does not intersect the initial states I of the system, then —s
is inductive relative to F;_1, and IC3 strengthens F; by adding —s to il3, thus blocking
the bad state s at 7. If, instead, () is satisfiable, then the overapproximation F;_1 is not
strong enough to show that s is unreachable. In this case, let p be a cube representing
a subset of the states in F;_; A —s such that all the states in p lead to a state in s’ in
one transition step. Then, IC3 continues by trying to show that p is not reachable in one
step from F;_o (that is, it tries to block the pair (p,4 — 1)). This procedure continues
recursively, possibly generating other pairs to block at earlier points in the trace, until
either IC3 generates a pair (¢, 0), meaning that the system does not satisfy the property,
or the trace is eventually strengthened so that the original pair (s,) can be blocked.
Figure [l reports the pseudo-code for the full IC3 algorithm, including more details on
the propagation phase.

Extension to SMT. In its original formulation, IC3 works on finite-state systems,
with Boolean state variables and propositional logic formulas, using a SAT solver as
its reasoning engine. However, for modeling programs it is often more convenient to
reason at a higher level of abstraction, using (decidable) fragments of first-order logic
and SAT modulo theories (SMT).

% In fact, —s is actually generalized before being added to Fj. Although this is quite important
for the effectiveness of IC3, here for simplicity we shall not discuss this.
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Most of the machinery of IC3 can be lifted from SAT to SMT in a straightforward
way, by simply replacing the underlying SAT engine with an SMT solver. From the
point of view of IC3, in fact, it is enough to reason at the level of the Boolean skeleton
of formulas, simply letting the SMT solver cope with the interpretation of the theory
atoms. There is, however, one crucial step in which IC3 must be made theory-aware,
as reasoning at the Boolean-skeleton level does not work. This happens in the blocking
phase, when trying to block a pair (s, ¢). If the formula () is satisfiable, then a new pair
(p,i — 1) has to be generated such that p is a cube in the preimage of s wrt. T'. In the
purely-Boolean case, p can be obtained from the model i of (1) generated by the SAT
solver, by simply dropping the primed variables occurring in ,uH This cannot be done in
general in the first-order case, where the relationship between the current state variables
X and their primed version X' is encoded in the theory atoms, which in general cannot
be partitioned into a primed and an unprimed set.

A first (and rather naive) solution would be to consider the theory model for the state
variables X generated by the SMT solver. However, for infinite-state systems this would
lead IC3 to exclude only a single point at a time. This will most likely be impractical:
being the state space infinite, there would be a high chance that the blocking phase will
diverge.

For theories admitting quantifier elimination, a better alternative is to compute an
exact preimage of s. This means to existentially quantify the variables X’ in (1), elimi-
nate the quantifiers, and then convert the result in DNF. This will generate a set of cubes
{p;}; which in turn generate a set of pairs {(p;,% — 1)}, to be blocked at ¢ — 1. The
drawback of the second solution is that for many important theories, even when it is
possible, quantifier elimination may be a very expensive operation.

We notice that the two solutions above are just the two extremes of a range of pos-
sibilities: in fact, any procedure that is able to compute an under-approximation of the
exact preimage can be used. Depending on the theory, several trade-offs between pre-
cision and computational cost can be explored, ranging from single points in the state
space to a precise enumeration of all the cubes in the preimage. In what follows, we
shall assume that we have a procedure APPROX-PREIMAGE for computing such under-
approximations, and present our algorithms in a general context. We shall discuss our
current implementation, which uses the theory of Linear Rational Arithmetic, in §6

Discussion. We conclude this Section by pointing out that the ideas underlying IC3
are nontrivial even in the Boolean case. At a very high level, the correctness is based
on the invariants ensured by the blocking and propagation phases. Termination follows
from the finiteness of the state space being analyzed, and from the fact that at each step
at least one more new state is explored. A more in depth justification is out of the scope
of this paper. The interested reader is referred to [6/23/12].

In the case of SMT, we notice that the invariants of the traces also hold in the SMT
case, so that the argument for the finite case can be applied. This ensures partial correct-
ness. On the other hand, the reachability problem being undecidable for infinite-state
transition systems, it is impossible to guarantee termination. This might be due to the

3 For efficiency, the result has to be generalized by dropping irrelevant variables, but this is not
important for the discussion here.
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failure in the blocking phase to eliminate all the counterexamples, for the given trace
length, or to the failure to reach a fixpoint in the propagation phase.

4 Tree-Based IC3

We now present an adaptation of IC3 from symbolic transition systems to a CFG-
represented program. The search proceeds in an “explicit-symbolic” approach, simi-
larly to the lazy abstraction approach [16]. The CFG is unwound into an ART (Abstract
Reachability Tree), following a DFS strategy. Each node of the tree is associated with a
location, and a set of clauses.

The algorithm starts by finding an abstract path to the error location. Then, it applies
a procedure that mimics the blocking phase of IC3 on the sets of clauses of the path.

There are three important differences. First, the clauses associated to a node are im-
plicitly conditioned to the corresponding control location: the clause —(zpc = pC;) V ¢
in the fully symbolic setting simply becomes c in a node associated with control loca-
tion pc;. This also means that the logical characterization of a node being unreachable,
expressed by the clause =(zpc = PCp) in the fully symbolic setting, is now the empty
clause. Second, in each formula 7 characterizing a transition, the start and end control
locations are not explicitly represented, but rather implicitly assumed. Finally, the most
important difference is in the inductiveness check performed when constructing the IC3
trace. When checking whether a cube c is blocked by a set of clauses F;_;, we cannot
use the relative inductiveness check of (). This is because that would not be sound in
our setting, since we are using different transition formulas 7; at different ¢ steps (cor-
responding to the edge formulas in the abstract error path). Therefore, we replace ()
with the weaker check

Fi i ATy == )

which allows us to construct a correct ART (satisfying points (i)—(iii) of the definition on
page[279]) We observe that, because of this difference, the requirement that F; 1 C F;
is not enforced in TREE-IC3.

With this adaptation, the blocking phase tries to produce the clauses necessary to
refute the abstract path. When the blocking phase is successful, it must generate an
empty clause at some point. In case of failure to refute the path, the property is violated
and a counterexample is produce(ﬂ. If sufficient information can be devised to refute
the abstract path to the error location, the algorithm backtracks to the deepest node that
is not inconsistent (i.e. is not associated with the empty clause). The pseudo-code of
this modified blocking phase, which we call TREE-IC3-BLOCK-PATH, is reported in
Figure 2l

Then, a new node is selected and expanded, with a process that is similar in nature
to the forward propagation phase of IC3. For each expanded node, the clauses of the
ancestor are tested for forward propagation, in order to ensure the invariant that the
clauses of an abstract node overapproximate the image of the predecessor clauses. More
specifically, for each clause ¢, we check whether F; A (zpc = pC;) — ¢ A T, entails

(Tpe = PCiy1) — .

* The counterexample has exactly the same length as the abstract path. This is a key difference
with respect to the case of the fully symbolic IC3.
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procedure TREE-IC3-BLOCK-PATH (7 = (pcy, T,1) ~ ... (PC;s Pis-) - ..~ (PCRs Pmy )
#T1 ... Ty—1 are the edge formulas of ™
# initialize the trace with the clauses attached to the nodes in
F=[T,. @i pn-il
while notexists jin1...n — 1s.t. F[j]AT; = L:
q={]
for each bad in APPROX-PREIMAGE (pn—1 ATp—1):
q.push((bad, n — 1)) # bad is a cube in the preimage of Ty,—1
while q is not empty:
¢, j =q.top()
if j = O: compute and return a counterexample trace # 7 is a feasible error trace
if F[] - 1] AT |: =
q.pop() #c is blocked, discard the proof obligation
g = generalization of —¢s.t. F[j — 1] ATj_1 = ¢’
Fljl = Fljl A g
else:
for each p in APPROX-PREIMAGE (F'[j — 1] ATj_1 A ¢):
q.push((p, j — 1))
return ' # 7 is blocked

0 0N kLN =

e e
SR BP =D

Fig. 2. Modified blocking phase of TREE-IC3 for refuting a spurious error path

A significant difference with respect to IC3 is in the way the fix point is handled.
In IC3 the fix point is detected globally, by comparing two subsequent formulae in
the trace. Here, as standard in lazy abstraction, we close each path of the ART being
generated.

Whenever a new node v’ is expanded, it is checked against previously generated
nodes v having the same location. If the set of states of v’ is contained in the states of
some previously generated node v, then v’ is covered, and it can be closed.

In order to maximize the probability of coverage, the IC3-like forward propagation
phase is complemented by another form of forward propagation: whenever a loop is en-
countered (i.e. the node v’ being expanded has the same location of one of its ancestors
v), then each of the clauses of v is tested to see if it also holds in v’. Let v, vy, . .., v, v’
be the path from v to v'. For each clause ¢ in v, we check if the symbolic encoding of
the path v ~ v/, strengthened with the clauses in each v;, entails ¢ in v'.

It is easy to see that this may result in a stronger set of clauses for v’, because the
analysis is carried out on the concrete path from v to v’, that retains all the available
information. Simple forward propagation would not be able to achieve the same result,
because of the limited strength of the clauses on the intermediate nodes v;. Intuitively,
this means that the clauses in v; may be compatible with (too weak to block) the paths
that violate the clauses of v that also hold in v’. Thus, simply strengthening v would
break the invariant that, in each node, the abstract state formula overapproximates the
image of the abstract state formula of its parent node (point (iii) in the definition of
ART, §2). In order to restore the situation, the v; nodes must be strengthened. Let C,

3 In fact, it is also required that there will be no cycles in the covering-uncovering interplay. This
requirement is a bit technical, and discussed in detail in [18]). In the definition of covered node,
in §21 identifiers to nodes are intended to enforce this requirement.



ART UNWINDING:
ifv & (pc;, ¥, h) is an uncovered leaf:
for all edges (pc;, op, pc;) in the CFG:

def

add v; = (pc;, T,k) with k& > hasa
child
of v in the ART

PATH BLOCKING:
ifvg o (pcg, @, h) is aleaf with P& L:
apply TREE-IC3-BLOCK-PATH (Fig. 2) to
the ART path 7 o (pcy, T,1) ~ vg
if IC3 returns a counterexample: return UN-
SAFE
otherwise:
let F1, ..., Fg be the sets of clauses
computed by IC3 for the formulas
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NODE COVERING:
. def . .
ifv] = (pc;, ¥, k) is uncovered, and there exists

vy & (pc;, ¢, h) with k > hand ¥ |= ¢, then:
mark v1 as covered by va
uncover all the nodes v; o (pc;,j, kj;) covered
by v1

STRENGTHENING: _
letv; & (pc;, ¢, h1) and v2 o (pCy, ¥, ha) be two

. def
uncovered nodes s.t. there is a path 7 = 01~ va,

and let ¢ &f /\;l:0 Top, (9) be the formula for 7

let Cyy vy =0
for each ¢; € :
if i £ c; and (0 A ¢r = ¢
add c; to Cyy vq
if Cv1 ,V2 7£ @3

Topys---sTopg of T
for each node v; & (pc;, wi, hs) €, T

for each clause c; in the corresponding F:

refute ~CY, v, using TREE-IC3-BLOCK-PATH along

for each node v; £ (Pey, ¢y, hy) € m
add all the clauses ¢ € F); computed by IC3 s.t.
pj b~ c
if ¢; changes, uncover all the nodes covered by v;
add Cy; v, to 2, and uncover all the nodes covered
by v2

if p; B~ c¢j, then:
add cj to @
uncover all the nodes covered by v;

Fig. 3. High-level description of the basic building blocks of TREE-IC3

be the set of clauses of v that also hold in v’. Before adding C,, . to v/, we strengthen
the v; nodes with the information necessary to block the violation of C,, , in v'. This
is done by “tricking” the blocking phase, using the negation of C,, ,+ as conjecture: the
clauses deduced in the process of refuting —=C), ,» can be added to strengthen each v;.
After this, C, . is added to v'.

Notice that whenever a node v is strengthened, then each node v’ that had been
covered by v must be re-opened. In fact, after the strengthening, the set of states of v
shrinks, thus the set of states of v/, that was previously covered, might no longer be
contained.

A high-level view of the basic steps of TREE-IC3 is reported in Figure Bl We shall
describe the actual strategy that we have implemented for applying these steps in §6l
(Notice that the forward propagation that is performed when a node is expanded is just
a special case of the more general strengthening procedure, in which the path between
the two nodes involved consists of a single edge, and as such does not require a call to
IC3 for strengthening the intermediate nodes.)

Comparison with IC3. When the fully symbolic IC3 analyzes a program (in form of
symbolic transition system), some literals represent the location in the control flow that
is “active”. This information, that is implicit in the position in the ART, becomes direct
part of the clauses. There is the possibility for clauses to be present at frames where
the corresponding location can not be reached, and that are thus irrelevant. Another
advantage of the TREE-IC3 approach is that the program is disjunctively partitioned,
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transition by transition, and thus the SMT solver is manipulating simpler and smaller
formulae. On the other hand, the symbolic representation gives the ability to implicitly
“replicate” the same clause over many control locations — in particular, when no con-
trol location is relevant in the clause, it means that it holds for all the control locations.
Moreover, using a symbolic representation of the program as a transition formula allows
to exploit relative inductiveness, which is crucial for the performance of the original IC3
(on hardware designs). As already mentioned above, relative inductiveness cannot be
directly applied in our setting, because we use a disjunctively-partitioned representa-
tion. In our experiments (§6), we show that the benefits of a CFG-guided exploration
significantly outweigh this drawback in the verification of sequential programs.

5 Hybrid Tree IC3

It can be observed that the sequence of sets of clauses generated by the Tree-based IC3
for refuting a spurious abstract error path can be seen as an interpolant for the path,
in the sense used by McMillan in his “lazy abstraction with interpolants” algorithm
[18]@ Recalling the definition of [[I8]], given a sequence of formulas I' = ¢, ..., ©n,
an interpolant is a sequence of formulas Iy, ..., I, such that: (i) [y = T and [,, = L;
(i) forall 1 <4 <mn, I;_1 Ay; = I;; (iii) forall 1 < i < n, I; contains only variables
that are shared between 1 A. .. Ay; and ;41 A. .. Ap,. Consider now a program path
pc, ~ pc,,, and its corresponding sequence of edge formulas T, , ..., T,,, (where
Top, is the formula attached to the edge (pc;_;, op;, Pc;)). Then, it easy to see that the
trace Fp, ..., F}, generated by IC3 in refuting such path immediately satisfies points (i)
and (ii) above by definition, and, if we consider the sequence T, <0>7 o Top, <”71>,
then F0<0>, ceey F, (™ satisfies also point (iii).

Under this view, the TREE-IC3 algorithm described in the previous section can be
seen as an instance of the lazy abstraction with interpolants algorithm of [1§]], in which
however interpolants are constructed in a very different way. In the algorithm of [1§],
interpolants are constructed from proofs of unsatisfiability generated by the SMT solver
in refuting spurious error paths; as such, the generated interpolants might have a com-
plex Boolean structure, which depends on the structure of the proof generated by the
SMT solver. Moreover, they are typically large and possibly very redundant. In the iter-
ative process of expanding and refining ART nodes, it is often the case that interpolants
become larger and larger, causing the algorithm to diverge. In fact, in our experiments
we have seen several cases in which the interpolant-based algorithm quickly runs out
of memory. On the other hand, when the interpolants are “good”, the algorithm is quite
fast, since interpolants can be quickly generated using a single call to the SMT solver
for each spurious error path.

Consider now the case of TREE-IC3. Here, the interpolants generated, being sets of
clauses, have a very regular Boolean structure, and experiments have shown that they
are often more compact than those generated from proofs, and as such do not cause
blow-ups in memory. Furthermore, another important advantage of having interpolants
(that is, abstract state formulas in the ART) in the form of sets of clauses is that this al-
lows to perform strengthening of nodes (see §4) at the level of granularity of individual

® In fact, a similar observation has been done already for the fully-symbolic IC3 [12123].
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clauses. In [18]], strengthening (called “forced covering” there) is an “all or nothing”
operation: either the whole abstract state formula ¢ p holds at a descendant node ¢y,
or no strengthening is performed. As our experimental evaluation in §6] will show, the
capability of performing clause-by-clause strengthening is very important for perfor-
mance.

A drawback of TREE-IC3 is that the construction of the interpolants is typically
more expensive than with the proof-based approach, since it requires many (albeit
simpler) calls to the SMT solver for each spurious path, and it also requires many
potentially-expensive calls to the APPROX-PREIMAGE procedure needed for general-
izing IC3 to SMT (see 3). As a solution, we propose a hybrid approach that combines
TREE-IC3 with proof-based interpolant generation, in order to get the benefits of both.
The main idea of this new algorithm, which we call TREE-IC3+ITP, is that of gener-
ating the sets of clauses in the trace of TREE-IC3 starting from the proof-based inter-
polants, when such interpolants are “good”. More specifically, given an abstract error
path pc, ~ pCg, before invoking IC3 on it, we generate an interpolant Iy, . . ., I,, (for
the corresponding edge formulas T, ..., T,p,) with the efficient proof-based pro-
cedures available in interpolating SMT solvers (see e.g. [9]); then, we try to generate
clauses from each I; by converting them to CNF, using an equivalence-preserving pro-
cedure (and not, as usual, a satisfiability-preserving one), aborting the computation if
this process generates too many clauses. Only when this procedure fails, we fall back
to generating sets of clauses with the more expensive IC3. This allows us to keep the
performance advantage of the proof-based interpolation method when the generated
interpolants are “good”, while still benefiting from the advantages of a clause-based
representation of abstract states outlined above. Despite its simplicity, in fact, this hy-
brid algorithm turns out to be quite effective in practice, as our experiments in the next
section show.

6 Implementation and Experiments

We have implemented the algorithms described in the previous sections on top of the
MATHSATS SMT solver [14] and the KRATOS software model checker [8]. In this
section, we experimentally evaluate their performance.

6.1 Implementation Details

Generalization of IC3 to SMT. Our current implementation uses the theory of Linear
Rational Arithmetic (LRA) for modeling program operations. LRA is well supported by
MATHSATS, which implements efficient algorithms for both satisfiability checking and
interpolation modulo this theory [[1119]. Moreover (and more importantly), using LRA
allows us to implement a simple and not-too-expensive APPROX-PREIMAGE procedure
for computing under-approximations of preimages, as required for generalizing IC3
to SMT (see §3). Given a bad cube s and a transition formula T'(X, X’ ), the exact
preimage of s wrt. 7' can be computed by converting s" A T' to a DNF \/, m; and
then projecting each of the cubes m; over the current-state variables X: \/, 3X".(m;).
Then, an under-approximation can be constructed by simply picking only a subset of
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the projections of the cubes m,; of the DNF. In our implementation, we use the All-
SMT-based algorithm of [20] to construct the DNF lazily, and in order to keep the cost
of the computation relatively low we under-approximate by simply stopping after the
first cube.

Implementation of IC3. In general, our implementation of IC3 follows the description
given in [[12] (called PDR there). In order to be implemented efficiently, IC3 requires a
very tight integration with the underlying SAT (or SMT) solver, and the details of such
integration are sometimes crucial for performance. Therefore, here we precisely outline
the differences wrt. the description given in [[12]. In particular, besides the obvious one
of using an SMT solver instead of a SAT solver, the two main differences are:

— For simplicity, we use a single solver rather than a different solver per frame, as
suggested in [12]]. Moreover, since MATHS ATS supports both an incremental in-
terface, through which clauses added and removed in a stack-based manner, and
an assumptions-based interface, we use a mixture of both for efficiently querying
the solver: we use assumptions for activating and deactivating the clauses of the
initial states, transition relation, bad states and those of the individual frames, as
described in detail in [12], whereas we use the push/pop interface for temporarily
adding a clause to the solver for checking whether such clause is inductive (relative
to the previously-generated ones). This allows us to avoid the need of periodically
cleaning old activation literals as described in [[12]].

— For reducing bad cubes that must be blocked during the execution of IC3, we ex-
ploit the dual-rail encoding typically used in Symbolic Trajectory Evaluation [22]].
We do not apply ternary simulation through the transition relation, as suggested in
[12] for the Boolean case, as we found the former to be much more efficient than
the latter. This is possibly because the data structures that we use for representing
formulas are r