
Chapter 8

Noise Reduction

Oleg Tischenko and Christoph Hoeschen

In this chapter, we will describe the theoretical background of noise reduction in

medical imaging as well as give some examples of noise reduction methods. To do

so, we start with a fundamental description of digital image generation in medical

imaging, since we will only focus on digital images and noise reduction by means

of digital image processing. In the next part, we will discuss the corresponding

processing in general before we describe the approaches typically used mainly

based on linear filtering and some new approaches based on nonlinear approaches.

8.1 Idealized Model of Digital Image Generation

The simplified model of an imaging system can be characterized by the image

space D, which can be assumed to be two dimensional without a loss of generality,

and impulse responseφ. LetD � R2 be squared area of the size D� D, and letφbe a
continuous function of fast decay whose Fourier transform φ̂ðωx;ωyÞ is supported
inside the circle ω2

x þ ω2
y ¼ Ω2

0 , i.e., φ̂ðω1;ω2Þ ¼ 0 if ω2
1 þ ω2

2 > Ω2
0 . The output

F : D ! R of the imaging system is modeled as a convolution

F ¼ f � φ; (8.1)

where f : D ! R is the input signal. It is supposed that f is integrable onD. Then F
can be represented by the Fourier series
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Fðx; yÞ ¼
X
m; k2Z

F̂m; ke
iδðxmþykÞ; (8.2)

where F̂m;k ¼ D�2 f̂ ðδm; δkÞφ̂ðδm; δkÞ and

δ ¼ 2π=D: (8.3)

Since the impulse response φ is band limited with the bandwidth Ω0, the series

(8.2) can be truncated:

Fðx; yÞ ¼
X

�N�m;k�N

F̂m;ke
iðxmþykÞδ (8.4)

with

N ¼ D

Δ

� �
(8.5)

and

Δ ¼ 2π

Ω0

(8.6)

That is, the output F is a trigonometric polynomial and, consequently, can be

uniquely recovered from its samples (see, e.g., [1]) measured over the rectangular

grid fðxm; ykÞjxm ¼ mΔ; yk ¼ kΔg�N�m;k�N: Hence, under certain idealizing

assumptions, the continuous image can be identified with its samples.

We refer to the matrix fFm;kg�N�m;k�N as a digital image of the input signal f . In

the following, we call the number N the resolution limit of the imaging system,

meaning that Nδ is the maximal resolution that can be achieved with this system.

Clearly, for the case considered here, the value Nδ coincides with the Nyquist

frequency of the imaging system.1

Finally, we point out that extending the matrixfFj;ngperiodically with the period
M �M, M ¼ 2N þ 1, we can write

F̂l;m ¼ 1

M2

XM�1

j¼0

XM�1

k¼0

Fj;ke
�2πiðjlþkmÞ=M; (8.7)

which is the standard notation for the discrete 2D Fourier transform.

1 It is not always the case in real systems.
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8.2 Image Processing

In practice, we do not have to deal with the image F but with its corrupted version I

I ¼ Fþ η; (8.8)

where η is the random value referred to as system noise. For an X-ray imaging

system, another substantial noise component, which is due to the Poisson statistics

and scattering of the X-ray quanta, is referred to as quantum noise (see, e.g., Chap. 9

of [2]). In view of the fact that the quantum noise is an inherit feature of the input

signal f , the representation (8.8) can be replaced by

I ¼ ðgþ qÞ � φþ η; (8.9)

where q is the input quantum noise and g is the desired signal. One of the most

important problems of the image processing is to recover g from the measured

image I. It is clear, that this can be done to some degree of accuracy only. The best

possible approximation of g in terms of the mean squared error is given by

Agðx; yÞ ¼
X

�N�k;l�N

ĝk;le
iðxkþylÞδ; (8.10)

where, at the right, there is the Fourier series of g truncated up to the resolution limit

of the given imaging system. Leaving aside details, we mention that the linear

problem of recovering unknowns ĝk;l from I is sometimes referred to as the Wiener

filtering.2

As it follows from (8.9), the problem of recovering Ag from I can be looked at

as the one consisting of two distinct tasks: the suppression of the noisy component

q � φþ η (noise reduction) and the deconvolution of blurred image g � φ
(de-blurring). In the following, we use this discrimination in two tasks and describe

some approaches used for the reduction of noise in the image.

8.3 Linear Filtering

The general strategy of this approach is to separate in the spectral description of the

medical image the frequencies corresponding mainly to signals and those mainly

corresponding to noise. Afterwards it is tried to suppress the power of those spectral

components which are related to noise. This is done via appropriate weighting of

2Norbert Wiener had stated and solved this problem under special conditions for stationary

stochastic time series (see [3]).
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the frequency components of image I. The result of the weighting is the image wI,
given by

wIðx; yÞ ¼ D�2
X

�N�l;m�N

ŵl;m Îl;m eiðxlþymÞδ: (8.11)

The set fŵl;mg�N� l;m�N is called transfer matrix. The elements of transfer

matrix are samples of the Fourier transform of the filter w, in terms of which the

right-hand side of (8.11) can be written as the 2D convolution

wI ¼ I � w: (8.12)

In the following, we call function w 2 L2ðR2Þ smoothing function if it is

continuous and

ŵð0Þ ¼
ð
R2

wðx; yÞdxdy 6¼ 0: (8.13)

Due to (8.12) the kernel w acts upon the image I as a local weighted averaging,

which is uniform for the whole image and is independent from its current space

context. Linear filtering is perfect if the power spectrum of the image I can be

separated in two disjoint regions, the one of which contains the spectral component

of the useful signal and, the other, of the noise. We illustrate this apparent property

in Fig. 8.1, where in the middle, there is an image corrupted with additive noise, the

spectral power of which is concentrated outside the circle ω2
x þ ω2

y ¼ Ω2 . On the

contrary, the spectral power of the useful signal (left) is concentrated inside this

circle. The right image is the convolution of the corrupted image with the ideal

filter, i.e., the filter, the transfer function of which is

ŵðωÞ ¼
1; jωj � Ω;

0; otherwise:

8<: (8.14)

Clearly, in this case, the original image and the denoised one are identical. In

fact, if the power spectrum of the useful signal is concentrated inside a bounded

region of the frequency domain and the signal-to-noise ratio is big enough in this

region, then the linear filtering is still excellent independently from the spectral

distribution of the noise. The corresponding example is illustrated in Fig. 8.2. On

the left of this figure, there is the same image as in Fig. 8.1 with added white noise

and, on the right, the result of the filtering with Gaussian filter gΩ , the transfer

function of which is

ĝΩðωÞ ¼ e�
1
2

jωj
Ωð Þ2 : (8.15)
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Thus, the following short conclusion can characterize the linear filtering: it

works well if applied to regular signals, i.e., such signals the power spectrum of

which is concentrated within a bounded region of low frequencies and it vanishes

fast outside this region. The filtering operation in this case is reduced to the

suppression of high-frequency components of the image. If the Fourier transform

of an image decays slowly as jωj ! 1, the linear filtering is not efficient anymore.

Since the spectral power of such images is high also in the high-frequency sub-

band, suppressing within this sub-band affects the sharpness of edges and destroys

fine details of the image. This results in overall blurring of the image (see Fig. 8.3).

There is a variety of filters and corresponding smoothing kernels which are

available. However, all rely on the same principle and show similar behavior.

8.4 Adaptive Nonlinear Filtering

In contrast to methods based on linear filtering, many advanced noise reduction

techniques assume a control over the local amount of smoothing. Appropriately

choosing a smoothing kernel at the current positions, it is possible to avoid

unnecessary blurring in regions of high variation of the useful signal. Usually in

practice the desired kernel is chosen from a predefined family of kernels. As an

example we consider the family fgσ; σ � 0g, where

Fig. 8.1 Linear filtering of the band-limited image. Left: the image the power spectrum of which

is inside the circle B. Middle: the same image with added noise, the power spectrum of which is

outside the circle B. Right: convolution of the middle image with the ideal filter given by (8.14)

Fig. 8.2 Linear filtering of

the band-limited image. Left:
image from Fig. 8.1 with

added white noise. Right: the
convolution with Gaussian

kernel
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gσðx; yÞ ¼ σ�2g
x

σ
;
y

σ

n o
(8.16)

and the generating kernel g is a smoothing kernel [see definition above, (8.13)]. It

can easily be seen that for σ > 0, ĝσð0Þ ¼ 1, that is, gσ is also a smoothing kernel.

Besides, lim
σ!0

F � gσðx; yÞ ¼ Fðx; yÞ, which implies that lim
σ!0

gσ ¼ δ, where δ is a

Dirac delta function. These properties allow to construct the image gF defined by

gFðx; yÞ ¼
ð
Fðt; sÞgσðx;yÞðx� t; y� sÞdtds; (8.17)

where we determine σ depending on current position ðx; yÞ. The challenging task is

to establish a rule according to which the value σ can be adapted to the current

context of the image. Usually, σ is required to change as a function of some decisive
characteristic such as the gradient, the Laplacian, the curvature, or some other local

characteristic of the image. An example of such filtering with the Gaussian function

gðx; yÞ ¼ 1

2π
e�

x2þy2

2 (8.18)

as a generating kernel, and the squared deviation ξðx; yÞ as a local decisive

characteristic, is given in Fig. 8.4. Particularly for this example, the current value

of σ was set to

σðx; yÞ ¼ h C;
ξrðx; yÞ
ξmax

� �
; (8.19)

Fig. 8.3 Blurring effect of the linear filtering. Left: X-ray image of a human lung specimen. Right:
convolution with a Gaussian kernel
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where

hðC; tÞ ¼ r

1þ Ch1ðtÞ (8.20)

and the function h1 : ½0; 1� ! ½0; 1� is monotonically increasing from zero to one.

For the local squared deviation, we have

ξ2r ðx; yÞ ¼
1

2πr2

ð
Brðx;yÞ

Fðt; sÞ � �Fðx; yÞj j2dtds; (8.21)

ξmax ¼ max
ðx;yÞ2D

ξrðx; yÞ; (8.22)

where the ball Brðx; yÞ is a ball of radius r located in ðx; yÞ; �Fðx; yÞ is the local mean

value of F inside the ball.

The smoothing considered in this example incorporates two tuning parameters,

which are the constants C and r. From (8.19) it follows that σ varies between r and
r=ðCþ 1Þ, and the type of this variation depends on the type of the growth of the

function h1 defined in (8.20).

Another class of smoothing techniques is the so-called sigma filtering. Here we

use smoothing kernels of the following general form:

φI;x;yðt; sÞ ¼ Cðx; yÞwτðIðt; sÞ � Iðx; yÞÞgσðx� t; y� sÞ; (8.23)

where ðx; yÞ is the current update position; gσ and wτ are the smoothing kernels, the

effective width of which are σ and τ, respectively; and the local constant Cðx; yÞ is
determined from the conditionð

R2

φI;x; yðt; sÞdtds ¼ 1: (8.24)

Fig. 8.4 Filtering with adaptive bandwidth Gaussian kernel. Left: a patch of the X-ray image

shown in Fig. 8.3; middle: the result of the filtering by given tuning parameters r andC ¼ 5r; right:
linear filtering with Gaussian kernel by σ ¼ r
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Because of two kernels acting both in the space and the intensity domains, sigma

filtering is sometimes referred to as bilateral filtering (see [4]). As it follows from

(8.23), the sigma filter is represented by a family of kernels which depends on

two scale parameters σ and τ. The parameter σ determines the radius of the ball

Bðx; yÞ centered in ðx; yÞ. Using the parameter τ, it has to be decided which values

Iðx� t; y� sÞ inside the ball Bðx; yÞ have to be weighted down. Normally, these are

values which deviate from the value Iðx; yÞ. In other words, the kernel w generates

the local averaging mask that allocates those points within the ball Bðx; yÞ where
image values are close to Iðx; yÞ.

Bilateral filters are especially efficient if applied iteratively. Denoting the filter-

ing operation with F, the iterative chain can formally be represented as FσnτnFσn�1τn�1

. . . Fσ1τ1 .
In [5], it has been shown that the best result by an iterative sigma filter can be

achieved if σ1 > . . . > σn�1 > σn and τ1 < . . . < τn�1 < τn . It can be shown that

such a sequence of filtered images converges to the image which is piecewise

constant. As an example, in Fig. 8.5, there are three iterations of bilateral filtering

where w and g are both Gaussian.

8.5 Wavelet-Based Nonlinear Filtering

A quite different principle for spatially adaptive noise reduction is based on the

reconstruction from selected wavelet coefficients. For the sake of completeness,

before describing the related techniques, we will review main points of the theory of

the wavelet transform referring mainly to [6] and [7]. In doing so, we will use the

terminology of the theory of functions, and therefore, we start by stating formal

notations accepted in this theory and used in the text.

Cm , m � 1, is a space whose elements are m times continuously differentiable

functions; the space C0 is the space of continuous functions, and C�1, the space of

piecewise continuous functions.

Fig. 8.5 Sigma filtering. Three iterations of applying sigma filter to the patch of the lung phantom
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Let us have j 2 Z and m 2 N. As spline space Sjm, we will call the set of all such
functions f 2 Cm�2 , the restriction of which to the interval ½2jk; 2jðk þ 1Þ� is the
algebraic polynomial of order m� 1; the points 2jk are called knots of the spline

space Sjm.
A space with an inner product 	; 	h i is called Hilbert space. In the following, the

norm of element a 2 H is defined by

ak kH ¼
ffiffiffiffiffiffiffiffiffiffiffi
a; ah i

p
: (8.25)

LpðTÞ is a space of functions satisfying
Ð
T f ðxÞj jp < 1. The space L2ðTÞ is a

Hilbert space with the inner product

a; bh i ¼
ð
T

aðxÞbðxÞ�dx; (8.26)

where b� is a complex conjugate of b.
‘p is a set of all infinite sequences fakgk2Z such that

P
k akj jp < 1. The space ‘2

is a Hilbert space with the inner product

a; bh i ¼
X
k

akb
�
k : (8.27)

Span fgngn is the minimal space spanned on the family fgngn, i.e., for any a 2 ‘2,X
n
angn ¼ f 2 spanfgngn: (8.28)

Operators that map a Hilbert space E into Hilbert space G will be denoted as

H : E ! G . With H� , we denote the adjoint of H , i.e., such that H=f ; gh iG ¼
f ;H�gh iE for any f 2 E and any g 2 G. The operator is self-adjoint, if H ¼ H�.
A wavelet is a function ψ 2 L2ðRÞ that necessarily satisfies the conditionð

R
ψðxÞdx ¼ ψ̂ð0Þ ¼ 0: (8.29)

Everywhere in the text, it will be supposed that ψ is real and normalized, i.e.,

ψk kL2 ¼ 1 . Wavelets are “famous” for being well localized both in the space

domain and in the frequency domain. The localization properties of wavelets are

usually expressed in terms of a so-called space-frequency window. This is a

rectangle σ � σ̂ in the space-frequency plane with σ and σ̂ defined by

σ2 ¼
ð
R
ðx� �xÞjψðxÞj2dx; �x ¼

ð
R
xjψðxÞj2dx; (8.30)
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σ̂2 ¼ π�1

ð1
0

ðω� �ωÞ2 ψ̂ðωÞj j2dx; �ω ¼ π�1

ð1
0

ω ψ̂ðωÞj j2dx: (8.31)

The point ð�x; �ωÞ is the center of the space-frequency window of the wavelet.

Since ψ is real, the modulus of its Fourier transform is even, and this is why the

integration in (8.31) is made over the positive half axis only.

Wavelet ψ is called the mother wavelet for the family fψ s;ugs>0;u2R, where the

function

ψ s;uðxÞ ¼ s�1=2ψ
x� u

s

� �
(8.32)

is the dilated and translated version of the mother wavelet ψ. As an example, let us

consider the family generated by so-called Mexican hat wavelet

λðxÞ ¼ 2ffiffiffi
3

p π�1=4ð1� x2Þe�x2

2 : (8.33)

In Fig. 8.6 wavelets λ1;0 and λ5;0 of this family (left) as well as their Fourier

transforms (right) are shown.

Figure 8.7 shows space-frequency windows of these wavelets. One observes that

the bigger is s, the wider is the effective width of the wavelet in the space domain

and the better is its spectral resolution. In contrary, we obtain better space resolution

by smaller s. Since σ̂s ¼ σ̂=s and σs ¼ sσ, the area of the space-frequency window

does not change.

The bivariate function

wf ðs; uÞ ¼ f ; ψ s;u

	 

; s; u 2 R (8.34)

is called a continuous wavelet transform of the function f . Since

f̂ ; ψ̂ s;u

	 
 ¼ 2π f ;ψ s;u

	 

; (8.35)

the wavelet coefficient f ;ψ s;u

	 

by fixed s; u relates to the local contribution made by

f within the space-frequency window of the wavelet ψ s;u.

Besides the space-frequency window, another important characteristic of a

wavelet is the number of vanishing moments. A wavelet ψ is said to have m

vanishing moments if
Ð
xkψðxÞdx ¼ 0 for 0 � k < m. Since

dn

dωn
ψ̂ðωÞ ¼

ð
ð�ixÞnψðxÞe�iωxdx; (8.36)

the number of vanishing moments ofψ is equal to the number of zeros of its Fourier

transform atω ¼ 0. Using this property, it can be shown that a compactly supported
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wavelet ψ has m vanishing moments if and only if there exists a compactly

supported smoothing function θ such that

ψðtÞ ¼ ð�1Þn d
nθðtÞ
dtn

(8.37)

(see Chap. 6 of [7] for details); the corresponding wavelet transform of f is

consequently

Wf ðs; tÞ ¼ snþ1=2 d
n

dtn
ðf � �θsÞ; (8.38)

-0.2

-20 -10
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100 20
0

0

1

2

3

-4 -2
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2 4

S = 1

S = 5S = 1

S = 5

0.0

0.2

0.4

0.6

0.8

Fig. 8.6 Mexican hat wavelet. Wavelets λs;0 for s ¼ 1; 5 (left) and their Fourier transforms (right)

Fig. 8.7 Space-frequency windows of λs;0 for s ¼ 1; 5
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where �θsðtÞ ¼ θsð�tÞ and θsðtÞ ¼ s�1θðt=sÞ: Hence, the number of vanishing

moments is crucial in those applications where the local regularity of the signal

has to be measured.

The identity

f ðxÞ ¼ C�1
ψ

ð1
0

ð1
�1

f ;ψ s;u

	 

ψ s;uðxÞdu

ds

s2
(8.39)

with

Cψ ¼
ð1
0

jψ̂ðωÞj2
ω

dω (8.40)

is valid and makes sense for any f 2 L2 R if Cψ < 1. Therefore, the wavelet ψ is

called admissible ifCψ < 1. Condition (8.29) formulated above is necessary for ψ
to be admissible. However, assuming that ψ is “reasonable,” that is, ψ is such that it

makes sense in the practice, this condition is also sufficient.

There are different possibilities to choose wavelets in 2D. For example, this can

be a wavelet ψ 2 L2 ðR2Þ that is radially symmetric. Since the wavelet in this case

depends effectively on one variable only, the situation is essentially the same as in

the 1D case: the 2D wavelet transform is the function that depends on two

parameters, the shift (which is now 2D vector) and the dilation. The reconstruction

formula is in this case

f ðrÞ~
ð1
0

ð
R2

f ;ψ s;u

	 

ψ s;uðrÞdu

ds

s3
: (8.41)

It is also possible to choose a 2D wavelet that is not radially symmetric. Such

wavelets are often called oriented wavelets. The wavelet transform in this case is a

function that depends on three parameters, dilation, translation, and rotation, and

the corresponding reconstruction formula is

f ðrÞ~
ð2π
0

ð
R2

ð1
0

f ; ψ s;u;θ;
	 


ψ s;u;θðrÞdu
ds

s3
dθ: (8.42)

In practice, one often applies separable 2D wavelets, i.e., a wavelet of the form

φðtÞψðsÞ, where bothφ andψ are functions fromL2ðRÞ, and at least the one of which
is a wavelet.

The continuous wavelet transform provides an extremely redundant description

of the function f . In fact, even a discrete subset of fWf ðs; uÞgs;u can be used to

recover functions exactly. A related discrete wavelet transform isWfm;n ¼ f ;ψm;n

	 

where
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ψm;nðxÞ ¼ a�m=2ψða�mx� nbÞ (8.43)

for some fixed positive a; b.
For a wide range of choices forψ, a and b discrete families of wavelets constitute

frames of the functional space L2ðRÞ. The family fgngn is called a frame of the

Hilbert space H if there exist constants 0 < A � B < 1 such that

A fk k2H�
X
n

f ; gnh ij j2 � B fk k2H (8.44)

for any f 2 H . The equivalency f ; gnh i 
 0 , f ¼ 0 that follows from this

definition implies that frames are complete in H , which means that any function

inH can be approximated by linear combination of frame elements with any degree

of accuracy. The frame is called redundant if its elements are linearly dependent.

In general, recovering a function from the frame coefficients is equivalent to

the inversion of a self-adjoint operatorH : H ! H that relates to the frame fgngn of
H via

Hf ¼
X
n

f ; gnh ign: (8.45)

It is easy to see that the frame condition (8.44) is equivalent to the bounding

condition

A fk k2 � Hf ; fh ij j � B fk k2 (8.46)

that holds for any f 2 H . This means that the inverse H�1 exists and is stable.

Applying H�1 to both sides of (8.45) yields

f ¼
X
n

f ; gnh i~gn (8.47)

with

~gn ¼ H�1gn: (8.48)

The familyf~gngn is called dual frame. Indeed, let us introduce the operator ~H that

relates to f~gngn via

~H f ¼
X
n

f ; ~gnh i~gn: (8.49)
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One directly verifies that ~H ¼ H�1, and since H�1 is bounded by B�1 and A�1,

f~gng satisfies the frame bounding conditions with the bounds B�1 and A�1 .

Moreover, the dual of f~gngn is fgngn, and therefore,

f ¼
X
n

f ; ~gnh ign: (8.50)

The inverse of H can be determined by means of the auxiliary operator

R ¼ I� 2ðAþ BÞ�1
H where I is the identity operator. The operator R is self-

adjoint and satisfies the bounding condition

Rf ; fh ij j � B� A

Aþ B
fk k2L2� fk k2L2 (8.51)

which means that Rk k < 1. Then,

H�1 ¼ 2ðAþ BÞ�1ðI � RÞ�1 ¼ 2ðAþ BÞ�1
X1
k¼0

Rk: (8.52)

In practice, one truncates the series (8.52) up to someN and uses the approximation

~gn � ~gNn ¼ 2ðAþ BÞ�1
XN
k¼0

Rkgn: (8.53)

It is known (see Chap. 3 of [6]) that

f �
X
n

f ; gnh i~gNn
�����

�����
L2

� B� A

Aþ B

� �Nþ1

fk kL2 : (8.54)

That is, the norm in (8.54) converges exponentially to zero at a rate depending on

the value ðB� AÞ=ðAþ BÞ. If A � B, one can truncate the series (8.52) up to zeroth
term avoiding the computation of the dual frame and still have a high quality of

reconstruction of arbitrary function.

If A ¼ B, the frame is called tight. In this case, we can rearrange the identityX
n

f þ g; gnh ij j2 ¼ A f þ gk k2H (8.55)

to the identity

f � A�1
X
n

f ; gnh ign; h
* +

¼ 0 (8.56)

that holds for any h 2 H and any f 2 H, and as a result, obtain the inversion formula
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f ¼ A�1
X
n

f ; gnh ign (8.57)

that holds for any f 2 H at least in the weak sense.3 The simplicity of (8.57) makes

tight frames especially interesting in practice. Note that in spite of the similarity

between (8.57) and a decomposition in an orthonormal basis, tight frames can be

redundant. In the following, we show that a tight frame is either redundant or

orthonormal. Indeed, setting f ¼ gk in (8.56), we obtain that for any k,
P

n αngn ¼ 0

where

αn ¼
A�1 gk; gkh i � 1; n ¼ k;

A�1 gn; gkh i; n 6¼ k::

(
(8.58)

This means that if fgng are linearly independent, then gn; gkh i ¼ Aδn;k, i.e., fgngn
is orthonormal. On the other side, if gk k2H¼ A for all n, thenX

n

gk; gnh ij j2 ¼ A2 þ
X
n 6¼k

gk; gnh ij j2 ¼ A2; (8.59)

which is possible only if gk; gnh i ¼ Aδk;n. It follows that if for some n, jjgnjj2H ¼
C 6¼ A, then the tight frame is redundant andC � A. For a tight frame, elements of

which are of the same norm, the value A=C, where jjgnjj2H ¼ C, can be interpreted

as a measure of the redundancy of the frame.

Redundant tight frames can be used for noise reduction. Suppose that the signal

f is measured over a redundant frame fgngn, and let the measured coefficients fn be
contaminated with noise, i.e., fn ¼ f ; gnh i þ qn, where q is a random variable. Let

U : H ! ‘2 be the frame operator

ðUf Þn ¼ f ; gnh i: (8.60)

Since the frame is redundant, there exists nontrivial c 2 ‘2, so that
P

n cngn ¼ 0.

In other words, the orthogonal complement of ImU in ‘2 , where we denote the

image of the operatorU as ImU, is not empty. Let P : ‘2 ! ‘2 be the orthoprojector
onto ImU. Then,PðUf þ qÞ ¼ Uf þ Pq. Decomposing q ¼ q1 þ q2, where q1 2 Im,

and q2 2 ðImUÞ?, where ðImUÞ? is the orthogonal complement of ImU in ‘2, we
obtain thatPq ¼ q1, which in turn implies that Pqk k‘2 � qk k‘2. The following result
is due to [7, Chap. 5]: let gnk k2L2¼ C for all n, and let q be a zero-mean white noise of

variance σ2q. Then,

3 The equality f ¼ g holds in the weak sense if f ; hh i ¼ g; hh i for any h 2 H.
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σ2Pq � σ2q
C

A
: (8.61)

This approach can be applied, e.g., in the edge-based technique used for the

determination of the pre-sampling modulation transfer function (MTF) of digital

detectors. The setup used within the framework of this technique is depicted in

Fig. 8.8, left.

The samples of the edge profile can be thought of to be the coefficients measured

over the set fSincðΩðx� bnÞÞgn , which is the frame of the space of band-limited

functions. Usually, the edge profile is highly oversampled. As a consequence, the

frame is redundant, and the redundancy factor A=C is very high. Let E be the

smallest subspace of ‘2 such that ImU � E. Then, due to (8.61), the orthogonal

projection onto E is supposed to reduce the noisy fraction of the edge profile

significantly.

The linear independent frames constitute a special class of families called Riesz

basis: the family fgng is called Riesz basis of H if H ¼ spanfgng and there exist

constants A > 0 and B < 1 such that

A
X
n

cnj j2 �
X
n

cngn

�����
�����
2

� B
X
n

cnj j2 (8.62)

for anyc 2 ‘2. Note that the equivalency
P

n cngn ¼ 0 , c ¼ 0 that follows from

(8.62) implies that elements of the Riesz basis are linearly independent.

For the Riesz basis constituted by integer translates of the function g 2 L2ðRÞ,
the condition (8.62) can be written as

A �
X
n

ĝðωþ 2πnÞj j2 � B; ω 2 R: (8.63)

Fig. 8.8 Idealized setup for the determination of the MTF of a digital detector. Four-cell patch of

the detector matrix and the edge line (bold) tilted at an angle α relative to the matrix. Centers of

detector cells are projected onto the edge profile
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Since

g; gð	 � kÞh i ¼ 1

2π

ð1
�1

ĝðωÞj j2eiωkdω ¼ 1

2π

ð2π
0

X
n

ĝðωþ 2πnÞj j2eiωkdω; (8.64)

one concludes that translates of g are orthonormal if and only ifX
n

ĝðωþ 2πnÞj j2 
 1: (8.65)

In a similar way, it is verified that fgð	 � nÞg and f~gð	 � nÞg are biorthogonal,

i.e., gð	 � nÞ; ~gð	 � kÞh i ¼ δn;k, if and only ifX
n

ĝðωþ 2πnÞ~̂gðωþ 2πnÞ� 
 1: (8.66)

Returning to wavelets, we accent that most known wavelet bases in L2ðRÞ have
been constructed by means of so-called multi-resolution analysis (MRA)

formulated first in [8]. The key role within this approach is played by the so-

called scaling functions: function φ 2 L2ðRÞ is called a scaling function if for any

fixed j 2 Z the family fφj;ngn;

φj;nðxÞ ¼ 2�j=2ð2�jx� nÞ; (8.67)

is the Riesz basis of the subspace Vj � L2ðRÞ, and
(i)

Vj � Vj�1:

(ii)
f ð	Þ 2 Vj , f ð2	Þ 2 Vj�1:

(iii) [
j2Z

Vj ¼ L2ðRÞ;
\
j2Z

Vj ¼ f0g:

Three necessary conditions for φ to be a scaling function are:

(1) The Fourier transform φ̂ must satisfy (8.63).

(2) It satisfies the two-scale relation

φ ¼
X
n

hnφ�1;n: (8.68)

8 Noise Reduction 151



(3) φ̂ð0Þ 6¼ 0:

In particular from (3), it follows that φ is a smoothing function. Therefore, Vj is

called approximation, and the ladder . . . � Vjþ1 � Vj � Vj�1 � . . . as a multi-

resolution approximation of L2ðRÞ.
Suppose that the Fourier transform of the scaling function φ satisfies (8.65), i.e.,

its integer translates are orthonormal. LetW0 be the orthogonal compliment ofV0 in

V�1, that is, V�1 ¼ V0 �W0. Then there exists ψ 2 L2ðRÞ, the integer translates of
which constitute a basis of W0. Moreover, ψ is necessarily a wavelet, the Fourier

transform of which satisfies (8.65). In order to show this, let us rewrite the two-scale

relation (8.68) in the Fourier domain:

φ̂ðωÞ ¼ 2�1=2ĥðω=2Þφ̂ðω=2Þ; (8.69)

where

ĥðωÞ ¼
X
n

hne
�inω (8.70)

is 2π periodic. The orthonormality of φð	 � nÞ implies the condition

ĥðωÞ�� ��2 þ ĥðωþ πÞ�� ��2 
 2; (8.71)

which can be checked using (8.65). For any f 2 W0 , the inclusion f 2 V�1 takes

place, and consequently, there exists a 2 ‘2; so that f ¼Pn anφ�1;n , or in the

Fourier domain

f̂ ðωÞ ¼ 2�1=2âðω=2Þφ̂ðω=2Þ; (8.72)

where âðωÞ ¼Pn ane
�iωn is 2π periodic. The condition W0?V0 implies that

f ; φð	 � kÞh i ¼ 0 for any k 2 Z, which in turn leads to the identity

âðωÞĥðωÞ� þ âðωþ πÞĥðωþ πÞ� 
 0: (8.73)

The possible solution of (8.73) is

âðωÞ ¼ v̂ð2ωÞĥðωþ πÞ�; (8.74)

where v̂ is any 2π-periodic function. Substitution of (8.74) into (8.72) yields

f̂ ðωÞ ¼ 2�1=2v̂ðωÞĥðω=2þ πÞ�φ̂ðω=2Þ; (8.75)

152 O. Tischenko and C. Hoeschen



or equivalently

f ðxÞ ¼
X
n

vnψðx� nÞ; (8.76)

where ψ is the function, the Fourier transform of which is

ψ̂ðωÞ ¼ 2�1=2ĥðω=2þ πÞ�φ̂ðω=2Þ: (8.77)

Hence, we have shown that there existsψ, translates of which constitute the basis
in W0. In order to see that ψ is a wavelet, note first that from (8.69), it follows that

ĥð0Þ ¼ ffiffiffi
2

p
. Together with (8.71), this implies ĥðπÞ ¼ 0. Using this in (8.77) and

taking into account that φ̂ð0Þ 6¼ 0 yields ψ̂ð0Þ ¼ 0: That is, ψ is a wavelet

(see condition (8.29)). The orthonormality of its translates can be checked by

means of (8.65). Substituting (8.77) into (8.65), we obtain thatX
n

��ψ̂ðωþ 2πnÞj2 ¼ 2�1
X
n

ĥðω=2þ πnþ πÞ�� �
φ̂ðω=2þ πnÞj2: (8.78)

Representing the sum on the right-hand side of (8.78) by two sums over odd and

even indices, using (8.71) and accounting for the 2π periodicity of ĥ, we obtainX
k

jψ̂ðωþ πnÞj2 
 1; (8.79)

that is, ψð	 � nÞf gn is an orthonormal basis of W0. This basis is not unique. Any λ
defined by

λ̂ðωÞ ¼ α̂ðωÞψ̂ðωÞ; (8.80)

where α̂ is 2π periodic and jα̂ðωÞj 
 1 , is a wavelet whose integer translates

constitute the orthonormal basis in W0. Indeed, λ̂ð0Þ ¼ 0; moreover,X
n

jλ̂ðωþ 2πnÞj2 ¼ jα̂ðωÞj2
X
n

jψ̂ðωþ 2πnÞj2 
 1: (8.81)

In fact, any two functions, integer translates of which constitute orthogonal bases

in W0, relate to each other via (8.80) (see Chap. 8 of [6]). Therefore,

ψ̂ðωÞ ¼ 2�1=2α̂ðωÞĥðω=2þ πÞ�φ̂ðω=2Þ; (8.82)

where α̂ is 2π periodic and jα̂ðωÞj 
 1, characterizes all possible wavelets whose

translates constitute the orthonormal basis in W0. The choice of α̂ substantiates the

wavelet. Usually, one sets α̂ðωÞ ¼ e�iω=2. Then
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ψ̂ð2ωÞ ¼ 2�1=2ĝðωÞφ̂ðωÞ; (8.83)

where

ĝðωÞ ¼ ĥðωþ πÞ�e�iω (8.84)

is the transfer function of coefficients of the decomposition of ψ in the basis of V�1,

that is,

ψ ¼
X
n

gnφ�1;n; (8.85)

with

gn ¼ ð�1Þnh1�n: (8.86)

From (i) and (ii) of MRA, it follows that the decomposition

Vj�1 ¼ Vj �Wj (8.87)

is valid for any j. Together with (iii), this yields

L2ðRÞ ¼ �
j2Z

Wj (8.88)

Since fψ j;kgk with

ψ j;k ¼ 2�j=2ψð2jx� kÞ (8.89)

is the orthonormal basis ofWj, the whole family fψ j;kgj;k is the orthonormal basis of

L2ðRÞ.
In order to construct the orthonormal wavelet basis inL2ðR2Þ, we first notice that

the family fφð	 � lÞφð	 � mÞgl;m is the orthonormal basis ofV2
0 ¼ V0 
 V0. It is also

easy to see that for any j; the family f2�jφð2�j 	 �nÞφð2�j 	 �kÞgn;k is the

orthonormal basis of V2
j ¼ Vj 
 Vj and V2

j � V2
j�1: Using the fact that the set of

all functions of view f ðxÞgðyÞ is dense in L2ðR2Þ, we conclude that subspaces V2
j

constitute multi-resolution approximation of L2ðR2Þ in the sense (i)–(iii). Then,

representing V2
j�1 by the orthogonal sum

V2
j�1 ¼ V2

j �W2
j (8.90)

and recalling that Vj�1 ¼ Vj �Wj, we obtain
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ðVj 
 VjÞ � ðVj 
Wj �Wj 
 Vj �Wj 
WjÞ ¼ ðVj 
 VjÞ �W2
j ; (8.91)

which yields

W2
j ¼ ðVj 
WjÞ � ðWj 
 VjÞ � ðWj 
WjÞ: (8.92)

Taking into account that L2ðR2Þ ¼ �
j
W2

j ; we conclude that the family

fψ1
j;k;ψ

2
j;k;ψ

3
j;kgj2Z;k2Z2 , where ψ

i
j;k ¼ 2�jψ ið2�jx� k1; 2

�jy� k2Þ, and

ψ1ðx; yÞ ¼ φðxÞψðyÞ; (8.93)

ψ2ðx; yÞ ¼ ψðxÞφðyÞ; (8.94)

ψ3ðx; yÞ ¼ ψðxÞψðyÞ; (8.95)

constitutes the orthonormal basis in L2ðR2Þ.
MRA allows to fulfill the wavelet transformation of f by means of the cascade

filter bank algorithm. We describe this algorithm for 1D. The extension to 2D is

straightforward.

Rescaling (8.68) and (8.85) to φj; k

P
n hn�2kφj�1; n and to ψ j; k

P
n gn�2kφj�1; n ,

respectively, and denoting fj;k ¼ f ;φj;k

	 

,dj;k ¼ f ;ψ j;k

	 

, one obtains the filter bank

decomposition at step j:

fj;k ¼
X
n

fj�1;nhn�2k;

dj;k ¼
X
n

fj�1;ngn�2k: (8.96)

On the other hand, denoting with PA the operator of the orthogonal projection

onto the subspace A, we can write

PVj�1 ¼ PVj þ PWj: (8.97)

Therefore, for any f 2 L2ðRÞ,X
n

f ;φj�1;n

	 

φj�1;n ¼

X
n

f ;φj;n

	 

φj;n þ

X
n

f ;ψ j�1;n

	 

ψ j;n: (8.98)

Building the inner product of both sides of (8.98) with φj�1;k yields the

reconstruction formula
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fj�1;k ¼
X
n

fj;nhk�2n þ
X
n

dj;ngk�2n (8.99)

which is fulfilled recursively down to j ¼ 0.

Let us consider an example of constructing orthonormal bases with box splines

Bm. Per definition, Bm is the m� 1 times convolution of B1 with itself, and

B1ðxÞ ¼ 1if 0 � x < 1;
0 otherwise:



(8.100)

For Bm , it is known that its integer translates constitute Riesz basis of

Vm
0 ¼ L2ðRÞ \ S0m with the Riesz-bounds Am and Bm

Am ¼ 2π�2mð22m � 1Þ
X1
k¼1

k�2m; Bm ¼ 1 (8.101)

(see, e.g., Chap. 4 of [9]). The two-scale relation for Bm is known to be

BmðxÞ ¼
Xm
n¼0

2�mþ1=2 m
n

� �
Bmð2x� nÞ: (8.102)

Since B̂mðωÞ ¼ ðB̂1ðωÞÞm�1
and

B̂1ðωÞ ¼ sinðω=2Þ
ω=2

e�iω=2; (8.103)

we obtain that B̂mð0Þ ¼ 1. That is, Bm is a scaling function that generates a multi-

resolution approximation . . . � Vm
j � Vm

j�1 � . . . , where Vm
j ¼ L2ðRÞ \ Sjm.

Bym ¼ 1, the coefficients of the two-scale relation (8.102) are h0 ¼ h1 ¼ 2�1=2.

The wavelet associated with B1, constructed with the help of (8.85) and (8.86), is

ψðxÞ ¼ B2ð2xÞ � B1ð2x� 1Þ ¼
1 if 0 � x � 1=2;

�1 if 1=2 � x � 1;
0; otherwise:

8<: (8.104)

This is the well-known Haar wavelet. Since Riesz-bounds A1 ¼ B1 ¼ 1 , the

translatesB1ð	 � nÞ are orthonormal (see above (8.63) and (8.65), and consequently

so are the translates ψð	 � nÞ . The whole family f2�j=2ψð2�j 	 �nÞgj; n is the

orthonormal basis of L2ðRÞ.
As it follows from (8.101), the lower Riesz-bound Am decays with m. Therefore,

Am < 1 for any m > 1, and as a consequence, the integer translates of Bm are not

orthonormal. Applying to Bm the orthogonalization trick
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B̂#
m ðωÞ ¼ B̂mðωÞ

X
n

jB̂mðωþ 2πnÞj2
 !�1=2

; ω 2 R; (8.105)

one obtains functions B#
m which satisfy (8.65), and as a consequence, their integer

translates are orthonormal. However, these functions are no more compactly

supported, and neither are the associated wavelets called Battle-Lemarié wavelets.

In practical applications, numerically advantageous compactly supported

wavelets are preferable. In applications where the perceptual assessment of the signal

is important, e.g., medical imaging, the symmetry of wavelets is another important

feature of preference: applying the asymmetric wavelets can yield asymmetric

errors,4 and it is known that the human visual system is less tolerant to asymmetric

errors than to symmetric ones. Additionally, symmetric or antisymmetric wavelets

are more efficient while treating boundaries of the compactly supported signal, such

as an image. For such applications, the basis of L2ðTÞ, where T � Rn is supposed to

be the support of the signal, has to be constructed. Normally this is done by

modifying wavelets of the basis of L2ðRnÞ: wavelets, the support of which is entirely
inside T are not changed; the wavelets, the support of which is entirely outside T are

skipped; and those whose support overlaps the boundaries of T are modified. There

are different ways to modify the boundary wavelets (see, e.g., Chap. 7 of [7]). For

symmetric or antisymmetric wavelets, boundary wavelets are simply folded back

away from boundaries. The decomposition in the so-obtained basis is equivalent to

the decomposition of the signal that is symmetrically extended beyond T . An

example of such extension for 1D signal supported on T ¼ ½a; b� is given in Fig. 8.9.
It is well known (see, e.g., [6]) that constructing the orthonormal basis from

compactly supported wavelet is possible only if the wavelet is asymmetric. The

exception is the discontinuous Haar wavelet. For any continuous compactly

supported wavelet, the symmetry and orthonormality are inconsistent. But com-

pactly supported symmetric or antisymmetric wavelets can be used to construct

biorthogonal bases of L2ðRÞ.
For the following we accept (without proof) several important facts about

compactly supported scaling functions. Let h be the filter the transfer function of

which is the trigonometric polynomial

ĥðωÞ ¼
XN2

n¼N1

hne
�iωn: (8.106)

In other words, h is a finite impulse response (FIR) filter, i.e., the filter finitely

many taps of which are not zero. Let in addition

ĥð0Þ ¼
ffiffiffi
2

p
and ĥðπÞ ¼ 0: (8.107)

4 That is, errors that are described with asymmetric density distribution.
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Then φ, the Fourier transform of which is

φ̂ðωÞ ¼
Y1
j¼1

ĥð2�jωÞffiffiffi
2

p ; (8.108)

is a compactly supported square integrable scaling function. The function defined

by (8.108) will be referred to as the one related to h. A pair of FIR low-pass filters

h and ~h, both satisfying (8.107), are called dual if the families fφð	 � nÞgn and

f~φð	 � nÞgn , where φ and ~φ are related scaling functions, are biorthogonal. The

necessary condition for h and ~h to be dual is

ĥðωÞ� ~̂hðωÞ þ ĥðωþ πÞ� ~̂hðωþ πÞ 
 2 (8.109)

(for sufficient conditions, see [10]).

The multi-resolution analysis can be reformulated in terms of biorthogonal

bases. Let h and ~h be dual filters, and let the related scaling functions generate

multi-scale approximations of L2ðRÞ

. . . � Vj � Vj�1 � . . . (8.110)

and

. . . � ~Vj � ~Vj�1 � . . . (8.111)

respectively.

Denote withWj the subspace that completes the subspace Vj in Vj�1 and with ~Wj

the complement subspace of ~Vj. ApparentlyW0? ~V0 and ~W0?V0. In the similar way

as we did in the orthonormal case, but using (8.66) instead of (8.65), it is possible to

show that there exist biorthogonal Riesz bases of W0 and ~W0 that are constituted

with integer translates of wavelets ψ and ~ψ , the Fourier transform of which are

ψ̂ðωÞ ¼ 2�1=2α̂ðωÞ ~̂hðω=2þ πÞ�φ̂ðω=2Þ; (8.112)

~̂ψðωÞ ¼ 2�1=2β̂ðωÞĥðω=2þ πÞ� ~̂φðω=2Þ; (8.113)

Fig. 8.9 To the boundary problem of the decomposition of the signal supported on the limited

interval. The signal (bold) and its extension (dashed); two boundary wavelets located at most

extreme positions
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with α̂ and β̂ being 2π periodic, jα̂ðωÞj 
 1, jβ̂ðωÞj 
 1, and α̂ðωÞβ̂ðωÞ� 
 1. The

families f2�j=2ψð2�j 	 �nÞgj;n and f2�j=2~ψð2�j 	 �nÞgj;n are biorthogonal Riesz

bases of L2ðRÞ:
For α̂ðωÞ ¼ e�iω=2, the equalities (8.112) and (8.113) in the space domain are

ψ ¼
X
n

gnφ�1;n and ~ψ ¼
X
n

~gn~φ�1;n (8.114)

with

gn ¼ ψ ; ~φ�1;n

	 
 ¼ ð�1Þnþ1 ~h1�n and

~gn ¼ ~ψ ;φ�1;n

	 
 ¼ ð�1Þnþ1h1�n:
(8.115)

The extension to the 2D case is made in a similar way as we did it in the

orthonormal case. One defines three wavelets ψ1 , ψ2 , and ψ3 exactly as in

(8.93)–(8.95), which in this case generate the Riesz basis of L2ðR2Þ. The wavelets
~ψ1ðx; yÞ ¼ ~φðxÞ~ψðyÞ, ~ψ2ðx; yÞ ¼ ~ψðxÞ~φðyÞ, and ~ψ3ðx; yÞ ¼ ~ψðxÞ~ψðyÞ generate the

dual Riesz basis of L2ðR2Þ.
In the same way as in the orthonormal case, the two-scale relation on the one

hand and the relations (8.114) on the other imply the fast filter bank algorithm of the

wavelet transform of f :

f ;φj;k

	 
 ¼X
m

f ;φj�1;m

	 

hm�2k; (8.116)

f ;ψ j;k

	 
 ¼X
m

f ;ψ j�1;m

	 

gm�2k: (8.117)

In order to obtain the reconstruction formula, let us introduce the operator

PVf ¼
X
k

f ; λkh i~λk; (8.118)

where fλkgk , f~λkgk are biorthonormal Riesz bases of the subspace V and ~V ,

respectively. The operator PV is an orthoprojector. Since the families fφj;n;ψ j;ngn
and f~φj;n; ~ψ j;ngn are biorthogonal Riesz bases of Vj�1 and ~Vj�1 , respectively, we

obtain that PVj�1 ¼ PVj þ PWj, that is, for any f 2 L2ðRÞ, the identityX
n

f ;φj�1;n

	 

~φj�1;n ¼

X
n

f ;φj;n

	 

~φj;n þ

X
n

f ;ψ j;n

	 

~ψ j;n (8.119)

is valid. The inner product of (8.119) with φj�1;k yields the reconstruction formula
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f ;φj�1;k

	 
 ¼X
n

f ;φj;n

	 

~hk�2n þ

X
n

f ;ψ j;n

	 

~gk�2n: (8.120)

We conclude our review by considering the redundant dyadic wavelet transform

that is defined by

WfjðuÞ ¼ f ;ψ jð	 � uÞ	 

; u 2 R; j 2 Z; (8.121)

where ψ jðxÞ ¼ 2�j=2ψð2�jxÞ. In a similar way as we did before, let us introduce the

self-adjoint operator H : L2ðRÞ ! L2ðRÞ, defined by

Hf ðtÞ ¼
X
j

2�j

ð
WfjðuÞψ jðt� uÞdu: (8.122)

If there exist constants 0 < A � B < 1 such that the bounding condition

A fk k2 � Hf ; fh i � B fk k2 (8.123)

holds for all f 2 L2ðRÞ , then the operator H is invertible with the inverse H�1

bounded by B�1 and A�1. The sufficient condition for H to satisfy (8.123) is

A �
X
j

ψ̂ð2jωÞ�� ��2 � B: (8.124)

In order to see this, the inequality (8.124) has to be multiplied by j f̂ ðωÞj2 and

integrated over ω. Then, using the representation

cWf jðωÞ ¼ 2j=2ψ̂ð2jωÞ� f̂ ðωÞ (8.125)

and taking into account the Parseval’s identity, one obtains

A fk k2L2�
X
j

2�j Wfj
�� ��2

L2
� B fk k2L2 ; (8.126)

which is another equivalent notation of (8.123).

Applying H�1 to both sides of (8.122) yields

f ðtÞ ¼
X
j

2�j

ð
WfjðuÞ~ψ jðt� uÞdu; (8.127)

where ~ψ ¼ H�1ψ is called a dual wavelet. In order to determine H�1, one has to

notice that
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cHf ðωÞ ¼ f̂ ðωÞ
X
j

jψ̂ð2jωÞj2; (8.128)

that is, in the Fourier domain, the operator H is associated with the operator Ĥ,

which is simply the multiplicator
P
j

jψ̂ð2jωÞj2. Therefore,

Ĥ
�1 ¼ 1P

j

jψ̂ð2jωÞj2 ; (8.129)

and consequently,

~̂ψðωÞ ¼ Ĥ
�1
ψ̂ðωÞ ¼ ψ̂ðωÞP

j

jψ̂ð2jωÞj2 (8.130)

which makes sense due to (8.124). In fact, any ~ψ satisfyingX
j

~̂ψð2jωÞψ̂ð2jωÞ� ¼ 1;ω 2 Rnf0g; (8.131)

satisfies also (8.127). This follows from the fact that in the Fourier domain, the

relation (8.127) is represented by

f̂ ðωÞ ¼ f̂ ðωÞ
X
j

~̂ψð2jωÞψ̂ð2jωÞ�: (8.132)

Let h and g be a pair of FIR filters, and let ĥð0Þ ¼ ffiffiffi
2

p
. Let φ be the scaling

function that relates to h via (8.108). Then, apparently,

φ̂ð2ωÞ ¼ 2�1=2ĥðωÞφ̂ðωÞ: (8.133)

The Fourier transform of the corresponding wavelet is defined by

ψ̂ð2ωÞ ¼ 2�1=2ĝðωÞφ̂ðωÞ: (8.134)

Let ~h and ~g be, in turn, another pair of FIR filters, and ~φ and ~ψ are the related

scaling function and the corresponding wavelet. Since both φ and ~φ are compactly

supported, they are from L1ðRÞ \ L2ðRÞ . Therefore, their Fourier transforms are

continuous. This fact can be used to show that the condition

~̂hðωÞĥðωÞ� þ ~̂gðωÞĝðωÞ� ¼ 2 (8.135)

is sufficient for ψ and ~ψ to satisfy (8.131).
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Hence, given h and g, one has a certain freedom in choosing filters ~h and ~g. For

example, one can set ~h ¼ h. Then from (8.135), we obtain that

~̂gðωÞ ¼ 2� jĥðωÞj2
ĝðωÞ� : (8.136)

The relation (8.136) imposes certain restrictions on g. Namely, zeros of ĝ must

coincide with zeros of 2� jĥðωÞj2 and be of the corresponding order. In particular

at ω ¼ 0, there must be one zero of ĝ. Since the number of zeros of ĝ at ω ¼ 0

coincides with the number of zeros of ψ̂ at ω ¼ 0, it follows that the corresponding

wavelet ψ must have one vanishing moment.

A described strategy was applied in [11] for the construction of the so-called

Mallat-wavelet. Redundant wavelet family generated with this wavelet has been

proven to be efficient for the reconstruction of the image from the wavelet

coefficients measured over multi-scale edges. The starting point while constructing

the wavelet in [11] was to set

φðxÞ ¼ B3ðxþ 1Þ; (8.137)

where B3 is the box spline of degree 2. The Fourier transform of φ is

φ̂ðωÞ ¼ sinðω=2Þ
ω=2

� �3

e�iω=2: (8.138)

We know that B3 satisfies the two-scale relation (see (8.102)), and so conse-

quently doesφ. That is, there exists a filter h such thatφ ¼Pn hnφ�1;n. The transfer

function of h is yielded from (8.133):

ĥðωÞ ¼
ffiffiffi
2

p φ̂ð2ωÞ
φ̂ðωÞ ¼

ffiffiffi
2

p
cos3

ω

2
e�iω=2: (8.139)

Let us turn our attention to the fact, that the Mallat-wavelet was constructed

using the additional requirement to be efficient for the detection of edges. From

(8.134) and the fact that both g and h are FIR filter, it follows that ψ is compactly

supported. Sinceψ defined by (8.136) must have one vanishing moment, then due to

(8.37), there must exist compactly supported smoothing function θ such that

ψ ¼ �θ0: (8.140)

Due to (8.38), we obtain then thatWfjðuÞ ¼ 2j d
dt f � �θjðtÞ, so that local maxima of

jWfjðuÞj are exactly local maxima of jd=dxðf � �θjÞj. The latter are edge points within
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Canny’s approach of an edge detection [12]. Hence, the desired wavelet is deter-

mined by the choice of θ. For example, one can set

θ ¼ φ: (8.141)

However, this choice leads to a piecewise linear wavelet. Since the regularity of

the wavelet is crucial for the quality of reconstruction, in [11], θ was set to

θðxÞ ¼ 2�1B4ð2xþ 1Þ: (8.142)

The Fourier transform of the waveletψ ¼ �θ0, referred to as theMallat-wavelet, is

ψ̂ðωÞ ¼ �i
ω

4

sinðω=4Þ
ω=4

� �4

e�iω=2: (8.143)

The transfer function of the corresponding filter g, obtained using (8.134)

and (8.138), is

ĝðωÞ ¼ �i
ffiffiffi
2

p
sin

ω

2
e�iω=2: (8.144)

Finally using (8.136), for the transfer function of the reconstruction filter ~g, one
obtains

~̂gðωÞ ¼ �i
ffiffiffi
2

p
sin

ω

2

X3
k¼0

cos2k
ω

2

 !
e�iω=2: (8.145)

Using pairs of filters h; g and ~h; ~g , a fast dyadic wavelet transform can be

calculated with a filter bank algorithm called algorithme à trous [13]. The

corresponding filter bank algorithm in 2D is

fjþ1ðm; nÞ ¼ fj � �hj �hjðm; nÞ; (8.146)

d1jþ1ðm; nÞ ¼ fj � �gjδðm; nÞ; (8.147)

d2jþ1ðm; nÞ ¼ fj � δ�gjðm; nÞ; (8.148)

where αβðm; nÞ is a separable two-dimensional filter, i.e., αβðm; nÞ ¼ αðmÞβðnÞ;
δðnÞ is a discrete Dirac; and αj is the filter obtained from α by inserting 2j � 1 zeros

(trous) between its samples. The reconstruction is made recursively by means of

fjðm; nÞ ¼ fjþ1 � hjhjðm; nÞ þ d1jþ1 � ~gj~qjðm; nÞ þ d2jþ1 � ~qj~gjðm; nÞ; (8.149)
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where ~g is defined by (8.136), and for ~q, we have

~̂qðωÞ ¼ 1þ jĥðωÞj2
2

(8.150)

(see [11]).

We have described several of the most often applied wavelet decomposition-

reconstruction frameworks. All of them can be implemented with fast filter bank

algorithms, the common principal scheme of which is depicted in Fig. 8.10.

In the following, we give some heuristic considerations concerning the question

of how these schemes can be used for the reduction of noise. As one can see in

Fig. 8.10, during the analysis step, the coarse approximation Ij�1 is further

decomposed in the coarser approximation Ij and the details image dj that contains

the wavelet coefficients I;ψ j;k

	 

. Due to the localization properties of wavelets, one

can change the wavelet coefficients within some region R of the image dj , not
bothering much about what effect this would have for those structures of the

synthesized image ~Ij�1 which lie apart fromR. If, for example, we want to reproduce

the region R of the image Ij in the image ~Ij�1, we should suppress all details of dj
located inR, that is, the corresponding wavelet coefficients have to be set to zero. In
order to suppress noisy details of the image Ij�1, we need to know which detail is

due to noise.

There are pretty different scenarios to decide whether (or not) the given wavelet

coefficient is due to noise. We mention an approach developed in [14]. The idea

lying in the background of the method proposed there is to extract relevant details by
means of comparative analysis of two or several images of the same object. It will be

not quite far from the truth to say, that the comparative analysis is what the

radiologist does while investigating the image. Evaluating the X-ray image, the

observer automatically extracts features which he qualifies as relevant. Speaking
figuratively, the skilled observer correlates a real image with an imaginary one that

was created by his visual system. Motivated by the wish to facilitate the daily task of

the radiologist, the authors have decided to apply the “correlation approach” in

clinical practice. As soon as we have two images of the same object, we can define as

relevant those details, which are present in both of them. The other details are

qualified as noise and suppressed. In [14] the results of the method applied to

quasi identical as well as to those which are slightly deformed relative to each

other were reported. The technical aspect of the method is as follows. The both

images, say A and B, are decomposed using the dyadic wavelet frame generated by

the Mallat mother wavelet. The reason for the choice of this wavelet is the shift-

invariance of the related wavelet transform. After the decomposition, details of

Fig. 8.10 Analysis (left) and
synthesis (right) steps of the
filter bank filtration
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image A and image B are correlated with each other at each resolution level. The

result of the correlation is the weighting matrix, each element of which expresses a

measure of similarity between the detail of image A and the detail of image B at the

corresponding location. Denoting the measure of similarity with wj
m;k, where j is the

resolution level and ðm; kÞ the location within the image, we have

0 � w j
m;k � 1: (8.151)

Ifwj
m;k ¼ 1, details of A and B at the level j and location ðm; nÞ coincide; the case

wj
m;k ¼ 0means that the corresponding detail is due to noise; the intermediate cases

should point at the portion of the noise at the location. Here we demonstrate the

functionality of the method applying it to images of a lung phantom, the patch from

the one of which is shown on the left of Fig. 8.4. Figure 8.11 shows weighting

matrices of the first two resolution levels.

During the following step, elements of detail images are weighted by elements of

corresponding weighting matrices. The final image is reconstructed from weighted

coefficients. The result of the reconstruction is shown on the right-hand side of

Fig. 8.12.

Fig. 8.11 Weighting masks

appearing as a result of

comparative analysis of

details images

Fig. 8.12 Denoising of the lung phantom. Left: one of the two images of the same object.Middle:
the sum of both images. Right: the image reconstructed from details weighted with masks shown in

Fig. 8.11
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In spite of the seemingly disadvantage expressed by the necessity to have two or

more images, the method provides a reduction of noise with minimal risk to lose

useful information. In practice, this method could be applied to two images each

acquired at half doses, for example, by means of detector based on CCD camera.

In this chapter, we described the mathematical foundations of image denoising

and its practical implications. The basic principles are also valid for three-

dimensional imaging and can in general be performed in all types of clinical

diagnostic imaging. In nuclear medical imaging, the consequences of image

denoising have to be studied in very much detail due to the fact that in nuclear

medical imaging, the signal-to-noise ratio of the raw data is very poor to avoid high

doses of radiation to the patient. This implies that unreflected use of denoising

methods particularly also those based on compressing information can result in

mainly reducing relevant image structures together with or even instead of the

noise. Which kind of noise reduction can be used without deteriorating necessary

image information has to be studied for each single application.
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