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Abstract. Cryptographic constructions of one primitive or protocol
from another one usually come with a reductionist security proof, in
the sense that the reduction turns any adversary breaking the derived
scheme into a successful adversary against the underlying scheme. Very
often the reduction is black-box in the sense that it only looks at the
input/output behavior of the adversary and of the underlying primitive.
Here we survey the power and the limitations of such black-box reduc-
tions, and take a closer look at the recent method of meta-reductions.

1 Introduction

Since the beginning of modern cryptography in the 70’s the design methodology
for cryptographic protocols has shifted from ad-hoc constructions and “security
by obscurity” techniques to well-founded approaches. This transition shows in
the agreed-upon methodology to provide clean attack models and security goals
of a protocol, and to give a rigorous proof that the protocol meets these goals.
Here, the term “proof” should be understood from a reductionist viewpoint,
saying that any successful adversary breaking a cryptographic scheme would
entail the efficient break of a presumably hard primitive.

Today a special type of proof, called black-box reduction, is pervasive in cryp-
tography and provides a very powerful tool to analyze protocols. Roughly, a re-
duction is black-box if it does not use any internals of the adversary beyond the
input and output behavior, and analogously if nothing about the structure of the
underlying primitive except for its basic properties is exploited (such reductions
are called fully black-box [33]). It turns out that a vast number of cryptographic
primitives such as one-way functions, pseudorandom generators [22], and pseu-
dorandom functions [20] can all be derived from each other in a black-box way.
Starting with a result by Impagliazzo and Rudich [27], though, for some impor-
tant problems it has been proven that black-box reductions cannot exist. These
negative results are summarized under the name black-box separations.

In this paper we survey the three main techniques for black-box separation
results, namely, the relativization technique [27], the two-oracle technique [24],
and the increasingly more popular meta-reduction technique [5]. We start with
an overview about black-box constructions and, after having reviewed the three
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separation techniques, we also briefly discuss non-black-box constructions to
indicate potential limitations and bypasses of black-box separation results.

2 Black-Box Constructions

In this section we look at the positive cases of constructions which are black-box
and the equivalence class of symmetric-key primitives, called Minicrypt [25].

2.1 One-Way Functions Are Necessary

Most of today’s cryptography is impossible without assuming the existence of
(cryptographic) one-way functions. Of course, we can symmetrically encrypt
messages securely with the One-Time Pad encryption, but as shown by Shan-
non [38] this basically requires the key to be of equal length as the message. If,
on the other hand, one tries to securely encrypt messages which are larger than
the key, then this immediately implies the existence of one-way functions, as for-
mally shown by Impagliazzo and Luby [26]. In this paper, Impagliazzo and Luby
also show further primitives to imply one-way functions, like bit commitments,
(private-key) identification, and coin-flipping over phone.

It should be mentioned that all these implications are constructive in the
sense that one can build a concrete one-way function f given the primitive
in question, even given the primitive as a black-box only. For instance, for
a semantically-secure symmetric encryption scheme Enc which allows to en-
crypt messages of twice the length as the key, the one-way function is given
by f(k,m) = Enc(k,m)||m. Furthermore, the reduction from the one-wayness
to the security of the underlying primitive treats both the adversary and the
primitive as black-boxes, such that the overall constructions are also called fully
black-box [33].

The implications also mean that most cryptographic primitives are not known
to exist for sure. That is, the existence of (cryptographic) one-way functions
implies (worst-case) one-way functions and thus P �= NP . In other words, P �=
NP is necessary for numerous cryptographic tasks. It is, however, currently not
known if it is also sufficient [1,3].

2.2 One-Way Functions Are Sufficient for Minicrypt

In a sense, one-way functions appear to be “very low” in the hierarchy of assump-
tions. They are not only necessary for most cryptographic tasks, but they also
suffice to build a lot of cryptographic primitives. In a series of papers it has been
shown that one-way functions imply pseudorandom generators [22], that such
pseudorandom generators imply pseudorandom functions [20], and that pseu-
dorandom functions imply pseudorandom permutations [28]. Once one has the
powerful pseudorandom functions then other primitives like message authenti-
cation codes (MACs), private-key encryption, and private-key identification are
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derived easily. All these constructions and reductions are of the fully black-box
type.

Impagliazzo [25] calls the world in which we have cryptographic one-way func-
tions, but no public-key cryptography, “Minicrypt”; as opposed to “Cryptoma-
nia” in which we have all the power of public-key encryption. In Minicrypt,
we can still do a remarkably number of cryptographic tasks like sending mes-
sages securely to parties which we have met before; only secure communication
with strangers in impossible then. Somewhat unexpected, another very inter-
esting primitive which can also be built from one-way functions and thus lies
in Minicrypt, are secure digital signature schemes. This has been shown in a
sequence of papers [30,34], again in the fully black-box sense. The notewor-
thy property here is that, structurally, digital signatures are of course related
to public-key primitives; existentially, though, they belong to the family of
symmetric-key primitives.

3 Black-Box Separations

In this section we review the three main techniques for black-box separations
ans the questions which primitives lie (presumably) outside of Minicrypt.

3.1 Relativizing Reductions: Separating Key Agreement from
One-Way Functions

In their seminal paper, Impagliazzo and Rudich [27] show that one cannot base
(even weakly) secure key agreement on one-way functions. More precisely, they
first use a (random) permutation oracle to implement a one-way permutation.
This oracle can later be derandomized and one “good” oracle Π can be found by
standard counting arguments and the Borel-Cantelli lemma (see [27] for details).
In the next step they show that relative to the random permutation oracle, no
key agreement protocol can be secure. (A simplified version of this fact for the
case of perfect completeness can be found in [6].) Put differently, there cannot
exist relativizing constructions of key agreement from one-way permutations,
i.e., where the security of the construction remains intact in the presence of an
arbitrary oracle.

As pointed out by [27,39,33] relativing reductions where the relativizing oracle
allows for an embedding of an NP-complete oracle —or more generally, any
PSPACE-complete oracle, such that any “standard” cryptography besides the
one-way permutation can be broken— can be shown to rule out so-called ∀∃
semi-black-box reductions [33]. Roughly, these are efficient reductions which turn
efficient successful adversaries (both with access to the oracle) for one scheme
into an adversary for the other one. Since such reductions only use the underlying
primitive as a black-box, separations on this level are “somewhat less black-
box” than in the case of fully black-box reductions, strengthening the separation
result.
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Relativizing separations can be found in [27,39,19,14,23]. In particular, Rudich
[35] used this technique to separate k-round key agreement from any (k + 1)-
round key agreement, implying an infinite hierarchy of primitive classes.

3.2 Fully Black-Box Reductions: The Two-Oracle Technique by
Hsiao and Reyzin

Since relativizing reductions (with embedding) are equivalent to ∀∃ semi-black-
box reductions [33] showing impossibility results is much more challenging than
for the fully black-box case. Hence, Hsiao and Reyzin [24] introduced the idea
of moving from relativizing reductions to fully black-box reductions, and use a
so-called two-oracle technique. The idea is roughly to have an oracle Ω which is
used to implement the primitive Q we would like to have, say, a one-way function
or permutation. The second oracle Π is used to break the primitive P which we
are trying to build out of the one given through Ω. For a separation it then
suffices to show that one can implement Q from Ω (ignoring Π), such that that
for all algorithms R there exists some adversary A such that AΠ breaks P , but

RAΠ,Ω ,Ω cannot break Q. Note that in the latter case R only has access to Π
through the black-box access to A, although most proofs later use a universal
A which basically merely runs Π , such that this essentially boils down to show
that RΠ,Ω should not be able to break Q.

Because the two-oracle technique allows for easier separations it became quite
popular and has been applied more often in recent papers. Examples include
[24,10,4,15,13].

3.3 The Meta-reduction Technique

Recently, a new kind of black-box separation technique has gained significant
attention, called meta-reductions [5].1 Roughly, a meta-reduction is a “reduction
against the reduction”. The situation is depicted in Figure 1: The reduction R is
given black-box access to an adversary A, which supposedly attacks a scheme S,
but where S is now simulated by the reduction. The reduction itself is supposed
to break a so-called cryptographic game C with the help of A. This game usually
models any falsifiable assumption [29], including assumptions like computing
discrete logarithms or inverting the RSA function. We note that, in order to
avoid trivial reductions like to the security of the scheme itself, the game C
often consists of less rounds than the interactive phase of the scheme.

The meta-reduction now simulates the adversarial part in order to turn R in
a black-box manner into an efficient and successful algorithm MR against C di-
rectly, without reference to an allegedly successful adversary A. Note that this
clearly requires the existence of a successful adversary A against S in the first
place, or else the reduction R would not need to break C at all. Usually, one can
build such an (inefficient) adversary by exhaustive search and then make sure

1 Albeit the idea appears in [5] it seems as if the term meta-reduction has only been
mentioned later in [7] and [31].
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that M replaces A efficiently. Similarly to the case of zero-knowledge, where the
efficient simulator can mimic the behavior of the all-powerful prover, the meta-
reduction’s advantage over the adversary here is that it can rewind the reduction
(or potentially take advantage of its code or behavior). Overall, if the
meta-reduction is sufficiently close to A from R’s perspective, it follows that the
probability for MR breaking C is close to the one of RA.

(a) (b)

Fig. 1. (a) shows the reduction R turning a successful adversary A against scheme
S into a successful attacker RA against a cryptographic game C, by simulating the
scheme S ; (b) shows the meta-reduction M simulating the adversary A and turning
R into a successful algorithm MR against C directly

The advantage of meta-reductions over the other separation types is that this
technique usually only makes black-box use of the adversary, but works with ar-
bitrary primitives. The technique therefore applies to cases where one, say, seeks
to show that certain constructions cannot be based on the RSA assumption. As
such, this separation technique is in between the cases of fully black-box reduc-
tions and of (∀∃)semi-black-box reductions. On the other hand, it seems that
the method is mainly suitable for interactive protocols in which the scheme can
be queried first, before the adversary is required to produce an output. Exam-
ples include unforgeability of signature schemes under chosen-message attacks
or chosen-ciphertext security for encryption schemes.

In summary, the meta-reduction technique usually consist of the following
three steps:

1. Design an all-powerful adversary A which breaks the scheme.
For example, in the signature case let A first compute a secret key sk∗ from
pk, then let it query the signature oracle to collect signatures (note that
this step is only necessary to build the meta-reduction), and finally let A
compute a forgery.

2. Replace the (inefficient) adversary by the efficient meta-reduction.
This is usually done by carefully rewinding the reduction at appropriate
places in the query phase. To prevent the reduction from making further
queries the rewinding is usually done when the reduction does not make
queries to the game C. This may also require further conditions on the
reduction to prevent the nested-rewinding problem (the reduction seeking
to reset the adversary while the meta-reduction aims to reset the reduction).
This problem may yield an exponential blow-up and is known from the area
of zero-knowledge [11].
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3. Show that the meta-reduction’s behavior is sufficiently close to the one of
the all-powerful adversary.

This step is usually the most challenging step as the meta-reduction’s
output is somewhat closer entangled with the reduction’s state than the
adversary’s behavior, due to the rewinding.

With these steps it follows that MR breaks the game C with probability close
to the reduction RA (given adversary A).

Meta-reductions have been successfully applied in a number of cases since [5],
such as [8,7,31,16,32,18,9,37]. It is clear that the exact use of meta-reductions
differ, e.g., some results also impose restrictions on the primitives and work for
black-box groups only.

4 Non-black-Box Constructions

In this section we mention some non-black-box constructions resp. reductions.
Both examples stem form the area of zero-knowledge proofs but the issue is in
principle not restricted to this area.

4.1 Karp Reductions Are Non-black-Box

The first examples touches the issue of Karp reductions between problems. Re-
call that a Karp reduction from one language A to another language B is a
deterministic polynomial-time algorithm k such that x ∈ A ⇐⇒ k(x) ∈ B.
If such an algorithm exist then we write A ≤p B, intuitively meaning that the
problem B is at least as hard as A (in the sense that any decision algorithm for
B would immediately yield a decider for A). Cook and Levin have shown that
the satisfiability is complete for NP , i.e., any other problem A ∈ NP reduces
to the satisfiability problem. This reduction, however, makes use of the (Turing
machine) code of the algorithm MA deciding A by representing its computa-
tion state as a boolean formula. In other words, the Karp reduction of A to the
satisfiability problem requires access to the code for deciding A.

The code-dependence is exactly where the black-box property for crypto-
graphic purposes may break down. Given an arbitrary one-way function f and,
say, proving in zero-knowledge that one knows a pre-image to some y under
f , one would reduce this problem to some NP-complete language L for which
such a proof is known via a Karp reduction, and to run the zero-knowledge
protocol for L.2 However, the reduction from f to L would then require knowl-
edge of the code of f and does not apply to black-box constructions for f . Note
that it may still be possible to find direct zero-knowledge proofs for specific
one-way functions, like the Schnorr proof for discrete logarithms [36], or find

2 Speaking of zero-knowledge proofs of knowledge in our example, one would need to
ensure that the Karp reduction is such that a witness extracted from the proof for L
also allows to recover a pre-image for f ; this is usually the case and such reductions
are sometimes called Levin reductions.
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other alternatives to the Karp reduction to L. We finally note that Brakerski et
al. [6] recently introduced special zero-knowledge oracles to argue about separa-
tions in the presence of such proofs.

4.2 Barak’s Non-black-Box Zero-Knowledge Proofs

The second example is based on a non-black-box use of the adversary. Barak
[2] designs a zero-knowledge proof based on non-black-box use of the adversary
which overcomes previous black-box impossibility results. Neglecting many tech-
nical subtleties, the protocol to prove x ∈ L is as follows. The protocol first runs
an initialization phase whose only purpose is to give the zero-knowledge simu-
lator some freedom. In this phase, the prover commits to the all-zero string π
and the verifier send a random string r. Now the prover and the verifier engage
in a witness-indistinguishable protocol [12] that x ∈ L or that the commitment
π describes a program that predicts the verifier’s string r.

A malicious prover cannot take advantage of the initialization phase —
predicting r remains infeasible— and thus really needs to prove x ∈ L in the sec-
ond step. A zero-knowledge simulator against a malicious verifier, on the other
hand, can simply use the non-black-box access to the verifier’s code and commit
to the verifier’s program on behalf of the prover. By the hiding property of the
commitment scheme this is indistinguishable from a commitment to zeros. It is
clear that this code π predicts r correctly, such that the simulator can use π as
the witness in the second part of the proof to faithfully simulate these steps, even
without knowing a witness to x ∈ L or by using the usual rewinding techniques.
The zero-knowledge property follows from the hiding of the commitment and
the witness indistinguishability of the second part.

5 Conclusion

Black-box separations (of any kind) are today thought of as good indications that
one cannot derive one primitive out of the other. But they can also been viewed
as a shortcoming of the proof technique itself. A few non-black-box constructions
do exist, and one option to circumvent black-box separations may be to use more
non-black-box techniques. For example, Harnik and Naor [21] showed that, us-
ing a complexity-theoretic assumption, one can build (in a non-black-box way)
collision-resistant hash functions out of one-way functions, allowing to bypass
Simon’s black-box separation result for this case [39]. Unfortunately, Fortnow
and Santhanam [17] later showed that the assumption is unlikely to hold, or else
the polynomial hierarchy collapses. Still, it remains open to explore the limi-
tations of black-box separations via non-black-box techniques, or to strengthen
the separation results along the line of Brakerski et al. [6].
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