
SPN-Hash: Improving the Provable Resistance

against Differential Collision Attacks�

Jiali Choy1, Huihui Yap1, Khoongming Khoo1, Jian Guo2,
Thomas Peyrin3,��, Axel Poschmann3,� � �, and Chik How Tan4

1 DSO National Laboratories, 20 Science Park Drive, Singapore 118230
{cjiali,yhuihui,kkhoongm}@dso.org.sg

2 Institute for Infocomm Research, A*STAR, Singapore
ntu.guo@gmail.com

3 SPMS, Nanyang Technological University, Singapore
{thomas.peyrin,aposchmann}@ntu.edu.sg

4 Temasek Laboratories, National University of Singapore
tsltch@nus.edu.sg

Abstract. Collision resistance is a fundamental property required for
cryptographic hash functions. One way to ensure collision resistance is to
use hash functions based on public key cryptography (PKC)which reduces
collision resistance to a hard mathematical problem, but such primitives
are usually slow. A more practical approach is to use symmetric-key de-
sign techniques which lead to faster schemes, but collision resistance can
only be heuristically inferred from the best probability of a single differ-
ential characteristic path. We propose a new hash function design with
variable hash output sizes of 128, 256, and 512 bits, that reduces this gap.
Due to its inherent Substitution-Permutation Network (SPN) structure
and JH mode of operation, we are able to compute its differential collision
probability using the concept of differentials. Namely, for each possible in-
put differences, we take into account all the differential paths leading to
a collision and this enables us to prove that our hash function is secure
against a differential collision attack using a single input difference. None
of the SHA-3 finalists could prove such a resistance. At the same time, our
hash function design is secure against pre-image, second pre-image and
rebound attacks, and is faster than PKC-based hashes. Part of our de-
sign includes a generalization of the optimal diffusion used in the classi-
cal wide-trail SPN construction from Daemen and Rijmen, which leads to
near-optimal differential bounds when applied to non-square byte arrays.
We also found a novel way to use parallel copies of a serial matrix over
the finite field GF (24), so as to create lightweight and secure byte-based
diffusion for our design. Overall, we obtain hash functions that are fast
in software, very lightweight in hardware (about 4625 GE for the 256-bit

� The full version of this paper can be found on the eprint archive at
http://eprint.iacr.org.

�� This author is supported by the Lee Kuan Yew Postdoctoral Fellowship 2011 and
the Singapore National Research Foundation Fellowship 2012.

� � � This author was supported in part by Singapore National Research Foundation
under Research Grant NRF-CRP2-2007-03.

A. Mitrokotsa and S. Vaudenay (Eds.): AFRICACRYPT 2012, LNCS 7374, pp. 270–286, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



SPN-Hash: Improving the Provable Resistance 271

hash output) and that provide much stronger security proofs regarding
collision resistance than any of the SHA-3 finalists.

Keywords: SPN, wide-trail strategy, Hash Functions, collision resis-
tance.

1 Introduction

For current hash function designs, there are mainly two approaches to obtain
provable security. The first approach is to prove collision and/or preimage resis-
tance in relation to hard problems. For instance, Contini et al.’s very smooth hash
(VSH) [13] is a number-theoretic hash for which finding a collision can be proven
to be equivalent to solving the VSSH problem of the same order of magnitude
as integer factorization. Concerning preimage, an example is MQ-HASH [8] for
which finding a preimage is proven to be as hard as solving a multivariate system
of equations. For the SHA-3 candidate FSB [1], finding collisions or preimages
imply solving syndrome decoding. The second approach is more practical and
less rigorous, and aims at proving a good differential probability bound for a sin-
gle characteristic path. However, collision resistance is only heuristically inferred
from this bound.

The first approach accomplishes more than a proof of resistance to differen-
tial cryptanalyis. However, hash function schemes based on this design strat-
egy often suffer significantly in terms of speed and performance. On the other
hand, schemes using the second approach enjoy faster speeds but suffer from
incomplete proof of collision resistance. In this paper, we seek to reduce the gap
between these two approaches by providing a more powerful proof for collision
resistance while maintaining similar speed as compared to the symmetric-key
design hashes.

Here, we recall that a differential characteristic over a composed mapping con-
sists of a sequence of difference patterns such that the output difference from one
round corresponds to the input difference in the next round. On the other hand,
a differential is the set of all differential characteristics with the same first-round
input and last-round output differences. Most hash function designs only aim
at showing that any single differential characteristic has sufficiently low prob-
ability and heuristically infer collision resistance from this. Examples of hash
functions which adopt this approach include hashes such as WHIRLPOOL [21] and
some SHA-3 finalists like GRØSTL [17] and JH [28]. In addition, this differential
characteristic bound is hard to determine for Addition-Rotation-XOR (ARX)
designs such as BLAKE [3] and SKEIN [16]. Therefore, the next step in collision
resistance proof, as already done by the second-round SHA-3 candidate ECHO [5],
is to give a bound on the best differential probability instead of only the best
differential characteristic probability. However, note that this security argument
only takes into account attackers that limit themselves to a fixed colliding dif-
ferential (i.e. with a fixed output difference of the internal permutation), while
many exist.



272 J. Choy et al.

Our proposal for a new hash function design is able to achieve a stronger dif-
ferential collision resistance proof. For example, for our proposed 512-bit hash,
we prove that the differential probability of 4 rounds of its internal permutation
function, which has a 1024-bit state size, is upper bounded by 2−816. We sum
this upper bound over all output differences that lead to a collision (2512

candidates) in order to find that the differential collision probability of our pro-
posed hash is then upper bounded by 2−304 < 2−256 after the final truncation.
In contrast, for the SHA-3 semi-finalist ECHO [5], the maximal expected differ-
ential probability for four rounds of their 2048-bit AES extension, ECHO.AES, is
1.055×2−452, but summing over all possible colliding output difference masks (at
least 21536 candidates) completely prevents such a collision-resistance argument.
For SHA-3 finalist, GRØSTL, it is easy to compute the internal collision probabil-
ity of its compression function f . However, its output transformation, involving
a permutation P followed by a truncation, makes such a derivation much less
straightforward for the external collision probability of the full GRØSTL hash
function.

In addition, we have to consider that for some hash function constructions, it
is necessary to prove low related-key differential probability instead of just low
fixed-key differential probability. For example, consider the Davies-Meyer com-
pression function instantiated with AES. The main AES cipher has very low differ-
ential characteristic probability which is bounded by 2−150 for every four rounds.
However, in the Davies-Meyer mode, each input message block to the hash corre-
sponds to the cipher key of the AES-based compression function. This makes the
compression function vulnerable to the multicollision attack by Biryukov et al.
[9], because AES does not have good resistance against related-key differential
attack.

1.1 Our Contributions

In this paper, we propose a new hash function design, SPN-Hash, with variable
output sizes of 128, 256, and 512 bits. It is specially constructed to circumvent
the weaknesses in the proofs of differential collision resistance as well as to resist
common attacks against hash functions.

Concerning the internal permutations, we use the Substitution-Permutation
Network (SPN) structure as the building block for SPN-Hash to ensure that the
maximum probability taken over all differentials (not only differential character-
istics) will be low enough. In [23], Park et al. presented an upper bound for the
maximum differential probability for two rounds of an SPN structure, where the
linear transformation can have any value as its branch number. This bound is
found to be low for SPN structures. For instance, the maximum differential prob-
ability for four rounds of AES is bounded by 1.144×2−111. Based on Park’s result,
we deduce an upper bound for the differential collision probability of SPN-Hash.
We use this bound to show that our hash functions are secure against a dif-
ferential collision attack. Furthermore for our internal permutations, we need to
consider non-square byte-arrays of sizem×n wherem �= n. The designers of AES
[15] gave a construction for m × n arrays where m < n using optimal diffusion



SPN-Hash: Improving the Provable Resistance 273

maps, but the differential bound is the same as that of an m ×m array, which
is sub-optimal for mn-byte block size. By their method, a 256-bit permutation
would be constructed by a 4× 8 byte-array that has the same differential bound
1.144×2−111 as a 4×4 byte-array. This is not close enough to 2−blocksize = 2−256

for our security proof. We generalize the optimal diffusion map of [15]
to construct m × n byte-arrays where m > n, which can achieve near
optimal differential bound close to 2−blocksize.

We also analyzed the security of our internal permutations against the latest
rebound-like attacks [25]. More precisely, we present distinguishing attacks on
three versions of the internal permutation P for 8 out of 10 rounds. For the 256-
bit permutation P , the 8-round attack requires time 256 and memory 216. For
the 512-bit permutation P , the 8-round attack requires time 248 and memory
28, while for the 1024-bit permutation P , the 8-round attack requires time 288

and memory 216.
Concerning the operating mode, we use the JH mode of operation [28], a

variant of the Sponge construction [6]. In this design, assuming a block size of
2x bits, each x-bit input message block is XORed with the first half of the state.
A permutation function P is applied, and the same message block is XORed
with the second half of P ’s output. For this construction, the message blocks are
mapped directly into the main permutation block structure instead of via a key
schedule. This eliminates the need to consider related-key differentials
when analyzing protection against collision attacks. Furthermore, the JH
mode of operation is able to provide second preimage resistance of up to 2x bits
for an x-bit hash as compared to only 2x/2 for the Sponge construction with the
same capacity.

To summarize, our SPN-Hash functions use AES-based internal permutations
with fixed-key and a generalized optimal diffusion to ensure low and provable
maximum differential probability. Then our JH-based operating mode allows us
to apply directly our security reasoning and obtain a bound on the maximum
probability of an attacker looking for collisions using a fixed input difference.
To the best of our knowledge, this is the only known function so far that
provides such a security argument.

The performances of SPN-Hash are good since the internal permutation is
very similar to the one used in the SHA-3 finalist GRØSTL. We propose a novel
construction to use parallel copies of the PHOTON 8× 8 serialized MDS
matrix over GF (24) from [18], to create a secure and very lightweight
byte-based diffusion for our design in hardware.1 Moreover, the area of
SPN-Hash is also lowered by the relatively small internal memory required by
the JH mode of operation. Hardware implementations require 4625 GE for 256-
bit hash output, while current best results for the SHA-3 competition finalists
require 10000 GE or more. Overall, our proposal achieves both excellent
software speed and compact lightweight implementations.

1 Note that the approach of [18] to do an exhaustive search for serialized MDS matrix
over GF (28) by MAGMA is only feasible for n×n matrix up to size n = 6. Therefore
we need our current approach to construct serailized 8× 8 matrix over GF (28).



274 J. Choy et al.

Our paper is organized as follows: We state some necessary preliminaries con-
cerning differential cryptanalysis in Section 2. Then we describe our proposed
SPN-Hash design and give instantiations of 128-, 256-, and 512-bit SPN-Hash in
Section 3 before proceeding to a summary of our security analysis results against
differential collision, preimage, second preimage, and rebound attacks in Section
4. Lastly in Section 5, we show some performance comparisons.

2 Preliminaries

Substitution Permutation Network. One round of an SPN structure con-
sists of three layers: key addition, substitution, and linear transformation. In the
key addition layer, a round subkey is XORed with the input state. The substi-
tution layer is made up of small non-linear substitutions called S-boxes imple-
mented in parallel. The linear transformation layer is used to provide a good
spreading effect of the cryptographic characteristics in the substitution layer. As
such, the SPN structure has good confusion and diffusion properties [26]. One
round of the SPN structure is shown in Figure 1 in Appendix A.

Maximum Differential Probability of an S-Box. In this paper, we fol-
low the standard definitions related to differential cryptanalysis, such as those
in [15]. We take all S-boxes to be bijections from GF (2s) to itself. Consider an
SPN structure with an st-bit round function. Let each S-box Si be an s-bit to
s-bit bijective function Si : GF (2s) → GF (2s), (1 ≤ i ≤ t). So the S-box layer
consists of t s-bit S-boxes in parallel.

Definition 1. For any given Δx,Δy ∈ GF (2s), the differential probability of
each Si is defined as

DPSi(Δx,Δy) =
#{x ∈ GF (2s) | Si(x) ⊕ Si(x⊕Δx) = Δy}

2s
,

where we consider Δx to be the input difference and Δy the output difference.

Definition 2. The maximal differential probability of Si is defined as

DP ((Si)max) =
max

Δx �=0,Δy DPSi(Δx,Δy).

Definition 3. The maximal value of DP ((Si)max) for 1 ≤ i ≤ t is defined as

p =
max
1≤i≤t (DP (Si)max).

An S-Box Si is strong against differential cryptanalysis if DP ((Si)max) is low
enough, while a substitution layer is strong if p is low enough.

A differentially active S-box is an S-box having a non-zero input difference.
A differentially active S-box always has a non-zero output difference and vice
versa. In order to evaluate security against differential cryptanalysis, other than
the differential probabilities of the S-box or S-box layer, one also has to consider



SPN-Hash: Improving the Provable Resistance 275

the number of active S-boxes whose value is determined by the linear transfor-
mation layer.

Substitution-Diffusion-Substitution Function. In order to ease the analy-
sis of the SPN structure, we define an SDS (Substitution-Diffusion-Substitution)
function as shown in Figure 2. Let the linear transformation layer of the SDS
function be defined by L, its input difference by Δx = x⊕ x∗, its output differ-
ence by Δy = y ⊕ y∗ = L(x)⊕ L(x∗). If L is linear, we have Δy = L(Δx). The
number of differentially active S-boxes on the input/output of the SDS function
is given by the branch number of the linear transformation layer.

Definition 4. The branch number of a linear transformation layer L is defined
as

βd = min
v �=0

{wt(v) + wt(L(v))},

where the wt(x) is the number of non-zero s-bit characters in x.

If we want to find the number of active S-boxes in two consective rounds of
the SPN structure, we only need to consider the SDS function. βd gives a lower
bound on the number of active S-boxes in two consecutive rounds of a differential
characteristic approximation.

Definition 5. A linear transformation layer on t elements is maximal distance
separable (MDS) if βd = t+ 1.

Maximum differential Probability of an SPN. The differential probability,
which is the sum of all differential characteristic probabilities with the same
input and output difference, gives a more accurate estimate of resistance against
differential cryptanalysis (than that of a single characteristic path). In [23], Park
et al. proved an upper bound for the maximum differential probability for 2
rounds of the SPN structure.

Theorem 1. [23, Theorem 1] Let L be the linear transformation of an SPN
structure and βd be the branch number of L from the viewpoint of differential
cryptanalysis. Then the maximum differential probability for 2 rounds of the SPN
structure is bounded by

max

{
max
1≤i≤t

max
1≤u≤2s−1

2s−1∑
j=1

{DPSi(u, j)}βd , max
1≤i≤t

max
1≤u≤2s−1

2s−1∑
j=1

{DPSi(j, u)}βd

}
.

As a consequence, we get the following theorem.

Theorem 2. [23, Corollary 1] Let L be the linear transformation of an SPN
structure and βd be the branch number of L from the viewpoint of differential
cryptanalysis. Then the maximum differential probability for 2 rounds of the SPN
structure is bounded by pβd−1, where p is the maximal value of DP ((Si)max) for
1 ≤ i ≤ t.



276 J. Choy et al.

3 The SPN-Hash Functions

In this section we describe our proposed hash function design, SPN-Hash , with
variable hash output sizes of 128, 256, and 512 bits. We adopt the JH mode of
operation [28], a variant of the Sponge construction [6], operating on a state of
b = r + c bits. b is called the width, r the rate, and c the capacity. Our design
is a simple iterated construction based on a fixed-length unkeyed permutation
P , where r = c. The internal state of P can be represented by an n×m matrix
of 8-bit cells, where n is the number of bytes in a bundle, and m is the number
of bundles. Thus, P operates on a width of b = 8nm bits, the rate and capacity
are 4nm-bit each, and the output is a 4nm-bit hash value.

Firstly, the input message x of length N bits is padded and divided into blocks
of r = 4nm bits each. The padding function produces the padded message, x′,
of length a multiple of 4nm. It follows “Padding Method 2” in [22, Algorithm
9.30]: first append the bit ‘1’ to x, followed by a sequence of z = (−N − 2nm− 1
mod 4nm) ‘0’ bits. Finally, append the 2nm-bit representation of l = (N + z +
2nm + 1)/4nm. The integer l represents the number of message blocks in the
padded message x′. The maximum message length for 4nm-bit SPN-Hash is thus
set as 4nm · (22nm − 1)− 2nm− 1.

Then, all the bits of the state are initialized to the value of an Initialization
Vector (IV). The IV of 4nm-bit SPN-Hash is taken to be the 8nm-bit binary
representation of 4nm. That is, in big-endian notation, the IVs are 0x00 . . . 0080
for 128-bit SPN-Hash , 0x00 . . .0100 for 256-bit SPN-Hash, and 0x00 . . .0200 for
512-bit SPN-Hash .

For each padded message block, the JH mode of operation iteratively XORs
the incoming 4nm-bit input message block Mi into the left half of the state,
applies the permutation P : GF (2)8nm → GF (2)8nm to the internal state and
XORsMi into its right half. After all the message blocks have been processed, the
right half of the last internal state value is the final message digest and therefore
our construction produces a 4nm-bit hash. It is summarized as follows:

Padded Input = M0,M1, . . . ,MN−1

(H0,L, H0,R) = IV

For i = 0 to N − 1:

(Hi+1,L, Hi+1,R) = P ((Mi ⊕Hi,L, Hi,R))⊕ (0,Mi)

Hash = HN,R

where Mi ∈ GF (2)4nm, (Hi,L, Hi,R) ∈ GF (2)8nm and N is the total number
of padded message blocks. A diagram of our JH mode of operation is shown in
Figure 3 in Appendix A.

Using appropriate parametersm and n such thatm is even andm divides n, we
will be able to construct a wide range of hash functions of different output sizes:

128-bit SPN-Hash : m = 4, n = 8
256-bit SPN-Hash : m = 8, n = 8
512-bit SPN-Hash : m = 8, n = 16



SPN-Hash: Improving the Provable Resistance 277

3.1 The Internal Permutation P

The 8nm-bit permutation P iterates a round function for 10 rounds. Its internal
state can be represented by an n×m matrix of 8-bit cells, where n is the number
of bytes in a bundle, and m is the number of bundles. Here, each column can be
viewed as a bundle consisting of n bytes. In each round, there is a substitution
layer, followed by an MDS layer, a generalized optimal diffusion layer, and lastly,
an XOR with a round constant. Thus, the linear transformation layer of the
SPN structure introduced in Section 2 is actually a composition of the MDS
layer and the generalized optimal diffusion layer while the “round keys” of the
SPN structure are taken to be the round dependant constants. A diagram of the
permutation function P is shown in Figure 4 in Appendix A.

The Substitution Layer σ. takes in a 8nm-bit input and splits it into nm
bytes. It then applies the AES 8-bit S-box [15] to each of these bytes in parallel.
This is chosen due to its low maximum differential and linear approximation
probabilities of 2−6, which strengthens resistance against differential and linear
attacks. In hardware, it is possible to achieve a very compact implementation of
the AES S-box using “tower-field” arithmetic, as proposed in [12]. In software,
one could use the Intel AES-NI instruction set [14] for efficient implementation.

The MDS Layer θ. combines consecutive n bytes into bundles and applies on
each of these m bundles an MDS transformation described in Section 3.3.

The Generalized Optimal Diffusion Layer π. is a permutation of bytes that
achieves good spreading effect. It is an instantiation of the generalized optimal
diffusion which we define in Section 3.2. We write this layer π as (π1, π2, . . . , πn),
where 0 ≤ πi ≤ m− 1. This notation indicates that row i is rotated by πi posi-
tions to the left:

128-bit SPN-Hash: π = (0, 0, 1, 1, 2, 2, 3, 3)
256-bit SPN-Hash: π = (0, 1, 2, 3, 4, 5, 6, 7)
512-bit SPN-Hash: π = (0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7)

These byte permutations are indeed generalized optimal diffusions since exactly
n/m bytes from each column is sent to each of the m columns.

The Round Constant RConi. that is XOR-ed with the state is different
for every round i. This is to defend against slide attacks [10,11] and to prevent
fixed points present over reduced rounds from being propagated to the entire
permutation P . Each RConi can be viewed as an n ×m matrix A, where Ax,y

(0 ≤ x < n, 0 ≤ y < m) denotes the entry in row x and column y. Then for
RConi used in round i,



278 J. Choy et al.

Ax,y =

{
y ⊕ i if x = 0
0 otherwise,

where i is the round number viewed as an 8-bit value. These values of round
constants are chosen as they are light in hardware.

3.2 Generalized Optimal Diffusion

Definition 6. Generalized Optimal Diffusion: Let m divide n. We consider a
concatenation of n bytes as a bundle and we consider a concatenation of m
bundles as a block. A linear transform, π, mapping a block of m bundles to m
bundles is called a (m,n)-generalized optimal diffusion if for each input bundle
of a block, n/m bytes of that input bundle is mapped to each of the m output
bundles.

Our (m,n)-generalized optimal diffusion is a generalization of the optimal diffu-
sion layer used in the wide-trail strategy of Rijmen and Daemen [15]. The latter
corresponds to the case m = n and the ShiftRows function in AES is a particular
instantiation of it. For our hash function design, m must be even and m must
divide n.

The following two results compute the maximum differential probability of
SPN-Hash. Their proofs can be found in Appendix ??.

Theorem 3. Let θ : [GF (28)n]m → [GF (28)n]m be an MDS layer formed by
concatenating m n × n MDS transforms over GF (28). Let π : [GF (28)n]m →
[GF (28)n]m be a (m,n)-generalized optimal diffusion mapping m bundles to m
bundles. Then π ◦ θ ◦ π is a m×m MDS transform over GF (28n).

Theorem 4. The probability of any non-zero input-output differential for the
internal permutation P described in Section 3.1 is upper bounded by(

126× (2−7)n+1 + (2−6)n+1
)m

.

3.3 MDS Layer

The MDS layer provides an independent linear mixing of each column. In the
following, we describe the mixing function of each column and show that it is
indeed an MDS transform.

128- and 256-bit SPN-Hash. In [18], the authors proposed a method for gener-
ating the 8×8 MDS transform over GF (24) in a serial way that is very compact.
However, it is difficult to find an 8× 8 serialized MDS matrix over GF (28) using
the exhaustive search method of [18]. Thus, we show here a way to construct
such a matrix using two parallel copies of the PHOTON 8× 8 serialized MDS ma-
trix2 over GF (24) [18, Appendix C]. This method of construction, similar to

2 We use PHOTON ’s serialized matrix as we verified that it has the lowest binary weight
over GF (24).



SPN-Hash: Improving the Provable Resistance 279

the one used for the MDS layer of ECHO [5], produces an MDS transform that is
very lightweight as compared to, for example, the 8 × 8 matrices3 over GF (28)
used in WHIRLPOOL [4] or GRØSTL [17].

In what follows, we describe this MDS transform for 128- and 256-bit SPN-Hash.
Label the 8 bytes in each column as a1, a2, . . . , a8. We may write each byte as a
concatenation of two 4-bit values, ai = aLi ‖ aRi . Let a

L = (aL1 , a
L
2 , . . . , a

L
8 ) and

aR = (aR1 , a
R
2 , . . . , a

R
8 ). Let Q be the 8× 8 MDS matrix over GF (24) used in the

PHOTON [18, Appendix C] hash function, i.e.

Q = (A256)
8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
2 4 2 11 2 8 5 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

8

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 4 2 11 2 8 5 6
12 9 8 13 7 7 5 2
4 4 13 13 9 4 13 9
1 6 5 1 12 13 15 14
15 12 9 13 14 5 14 13
9 14 5 15 4 12 9 6
12 2 2 10 3 1 1 14
15 1 13 10 5 10 2 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The matrix Q is chosen as it can be implemented with a very low area footprint
in hardware. This is due to the shifting property of A which simply updates
the last cell of the column vector with a linear combination of all the vector
components, and then rotates the vector by one position towards the top. The
MDS layer is thus composed of 8 applications of A to the input column vector.
This allows reuse of existing memory without need for temporary storage or
additional control logic. Furthermore, the hash function using Q can be imple-
mented efficiently in software using precomputed tables that combine the S-box
and matrix coefficients.

We compute bL = Q ·aL = (bL1 , b
L
2 , . . . , b

L
8 ) and bR = Q ·aR = (bR1 , b

R
2 , . . . , b

R
8 ).

For field multiplication over GF (24), the irreducible polynomial x4 + x + 1 is
chosen with compactness as the main criterion. Then the output of the local
diffusion layer is taken to be (b1, b2, . . . , b8), where each bi is a concatenation of
the two 4-bit values, bi = bLi ‖ bRi .

It can be shown that this transform is indeed MDS over GF (28). Suppose the
input a is non-zero. Then at least one of aL or aR is non-zero. Without loss of
generality, suppose aL is non-zero. Since Q is MDS, this means that the number
of non-zero 4-bit values in (aL, bL) is at least 9. Hence, the number of non-zero
bytes in (a, b) is at least 9.

512-Bit SPN-Hash. The choice of matrix for the 16×16 MDS is left open to the
reader. One possibility is to use the matrix proposed by Nakahara et al. in [20].
Note that Nakahara et al.’s matrix may not be lightweight due to its large size
necessitating a large number of primitive operations. However, this is not an
issue since it is unlikely that a 512-bit hash function will be used for lightweight
purposes.

3 A comparison of their hardware estimations can be found in Section 5.2.



280 J. Choy et al.

4 Security Analysis of SPN-Hash

In this section, we give a summary of our security analysis results against various
attacks 4.

4.1 Differential Collision Attack

We analyzed the security of SPN-Hash against differential collision attacks. While
some hash functions such as ECHO [5] do provide upper bounds on the maximum
differential probability for a certain number of rounds, in actual fact, one has
to sum the maximum differential probability bound over all the possible colliding
output differences for a sharper estimation of the collision resistance of a hash
function. To the best of our knowledge, no known hash function has yet provided
such a collision resistance proof.

Let ΔInput denote the input differential and ΔOutput be the output differ-
ential of the 4 last rounds of the SPN-Hash internal permutation. A collision for
the hash function can occur either by an internal collision (a collision on the
full 8nm-bit internal state) or by an external collision during the last iteration
(a collision on the right side of the 8nm-bit internal state, the left side being
truncated before outputing the hash value).

In the case of an external collision, this corresponds to P having an output
differential of the form (Δx,ΔM) ∈ GF (2)4nm×GF (2)4nm, where XOR with the
message difference ΔM in the right half will give a zero difference. Then we can
show that Pr(External Collision) < 24nm × [

(2−6n)(2−n + 2−6)
]m

< 2−2nm,

where the complexity of a generic birthday attack is 24nm/2 = 22nm.
In the case of an internal collision on the 8nm-bit permutation P , since there is

no truncation, the differential probability is given by Pr(ΔInput
4R−→ (0, ΔMi))

for all possible message differences ΔMi. By Theorem 4 and in the same way
as the computation above, we can show that this is lower than 2−2nm, the com-
plexity of a generic birthday attack for the hash function.

Applying these bounds, we can conclude that the differential collision proba-
bilities of 128-bit, 256-bit, and 512-bit SPN-Hash are upper bounded by 2−86.73 <
2−64, 2−173 < 2−128, and 2−303.99 < 2−256 respectively. This means that a dif-
ferential collision attack will not perform better than a generic birthday attack.

In summary, we are able to show that SPN-Hash can provide good maximum
differential probability upper bounds for 4 rounds of its internal permutation
and that its operating mode allows us to go further to prove that the sum of
all colliding differential probabilities is still much lower than what an attacker
would get with a generic birthday collision attack.

4.2 (Second)-Preimage Attack

In the JH mode of operation, there is an XOR of the message in the right
half at the end of the permutation to make the meet-in-the-middle (MITM)

4 A full description of the security analysis can be found on the eprint archive at
http://eprint.iacr.org.



SPN-Hash: Improving the Provable Resistance 281

attacks, originally applicable to the Sponge construction, invalid. This MITM
attack on the Sponge construction can easily be modified into a second pre-
image attack, which is also defeated by the feedforward XOR in the JH mode of
operation.

The preimage attack against the JH-512 hash function by Bhattacharyya et
al. [7] has time and memory complexity 2507, which remains a theoretical result
because the complexity is of the same magnitude as brute force search. Moreover,
a generic time-memory trade-off (TMTO) attack will perform much better with
2512 pre-computation complexity, 2507 memory, and 210 time complexity.

4.3 Rebound Attack - Distinguishing Attack on Permutation P

We analyzed the security of our internal permutations against the latest rebound-
like attack [25] which uses the non-full-active Super S-box cryptanalysis tech-
nique. More precisely, we present distinguishing attacks on three versions of the
internal permutation P for 8 out of 10 rounds. For the 256-bit permutation P ,
the 8-round attack requires time 256 and memory 216. For the 512-bit permu-
tation P , the 8-round attack requires time 248 and memory 28, while for the
1024-bit permutation P , the 8-round attack requires time 288 and memory 216.
In comparison, the complexity of attacking an ideal permutation is 264, 296 and
2256 for 256-bit, 512-bit, and 1024-bit permutations P respectively.

To the best of our knowledge, the differential paths presented are among
the longest paths with the least complexities. Since P comprises ten round
functions, the distinguishing attacks do not threaten the security of the hash
function.

4.4 Exploiting the MDS Layer Structure for 128- and 256-bit
SPN-Hash

Since the MDS layer is built by applying a diffusion matrix over GF (24) two
times independently, an attacker could try to exploit this special structure in a
truncated differential attack by forcing the differences at some stage to remain
on the left or on the right side of the bytes processed. This observation was used
in the first attacks [24] on the ECHO hash function.

However, we believe such a strategy would very likely fail because this right/left
property would be destroyed by the application of the AES S-box. Alternatively,
forcing this property to be maintained for each active byte through the S-box
layer would imply a big cost for the attacker, bigger than the gain from the
truncated differential transitions. This has been confirmed by experiments, as
there is no strong bias through the AES S-box in order to reach an all-right or
an all-left difference (forward or backward). In the case of ECHO this is not true
since the 128-bit ECHO S-box is implemented by two AES rounds, for which forcing
good truncated differential paths at no cost is easy.



282 J. Choy et al.

5 Implementation

5.1 Software Performance

Due to its similarity with GRØSTL concerning the construction of the internal
permutation, it is interesting to analyze SPN-Hash’s software speed in the light
of this SHA-3 candidate. The internal permutation of 256-bit SPN-Hash is com-
parable with GRØSTL-256 since their (individual) internal permutation are of the
same size, and their amount of message bits per call to the internal permutation
is the same (256-bit SPN-Hash compression function processes 256 bits message
in 10 round operations, compared to 512-bit message in 20 very similar round op-
erations by GRØSTL-256). The round function of these two hash functions should
take about similar amount of time due to: 1) The equal number of substitution
operations using the same AES sbox; 2) The speed of MDS multiplication is in-
dependent of the MDS coefficients in most table-based implementations; 3) The
ShiftByte in GRØSTL is done together with step 2 in table-based implementations;
4) The round constants are a bit simpler than those in GRØSTL; and 5) There
are three times ⊕ for 512 bits in GRØSTL and twice 256-bit ⊕ in 256-bit SPN
hash. We did a simple and unoptimized implementation based on table lookups,
which turns to be 34 cycles per byte on a Intel(R) Xeon(R) CPU E5640 clocked
at 2.67GHz. We believe that there remains an important room for improvements
by implementing SPN-Hash with optimized assembly instructions. Similar com-
parison argument applies when one considers implementations with the AES
new instruction set, while GRØSTL-256 runs at 12 cycles per byte with internal
parallelization of the two permutations P and Q, we expect SPN-Hash-256 to run
at 12 to 24 cycles per byte mostly due to the fact that similiar parallelization is
not possible. Note that the 128-bit SPN-Hash shall run as fast as the 256-bit ver-
sion, since its compression function takes half the message bits, and uses roughly
half the amount of operations. Test vectors are provided in Appendix Table 2.

5.2 Hardware Performance

We have implemented 128-bit and 256-bit SPN hash in VHDL and used Synopsys
DesignCompiler A-2007.12-SP1 to synthesize it to the Virtual Silicon (VST)
standard cell library UMCL18G212T3, which is based on the UMC L180 0.18μm
1P6M logic process with a typical voltage of 1.8 V. We used Synopsys Power
Compiler version A-2007.12-SP1 to estimate the power consumption of our
ASIC implementations. For synthesis and for power estimation we advised the
compiler to keep the hierarchy and use a clock frequency of 100 KHz.

Table 1 in Appendix A compares our implementations of SPN hash with the
remaining five SHA-3 candidates with regards to area, latency and a FOM pro-
posed by [2]. In order to have a fair comparison, we only include figures for
fully-autonomous low-area ASIC implementations and omit figures for imple-
mentations that are optimized for high throughput. Among the SHA-3 candi-
dates BLAKE, GRØSTL, and SKEIN, 256-bit SPN-Hash is by far the most compact
proposal. Though it has only the second highest FOM, our estimates for a 64-bit



SPN-Hash: Improving the Provable Resistance 283

datapath implementation indicate that it can achieve the highest FOM, while
still being 35% smaller than the most compact SHA-3 candidate.

References

1. Augot, D., Finiasz, M., Gaborit, P., Manuel, S., Sendrier, N.: SHA-3 Proposal:
FSB. Submission to NIST (2008)

2. Aumasson, J.-P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: A
Lightweight Hash. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 1–15. Springer, Heidelberg (2010), http://131002.net/quark/

3. Aumasson, J.-P., Henzen, L., Meier, W., Phan, R.C.-W.: SHA-3 Proposal BLAKE.
Candidate to the NIST Hash Competition (2008), http://131002.net/blake/

4. Barreto, P., Rijmen, V.: The Whirlpool Hashing Function,
http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html

5. Benadjila, R., Billet, O., Gilbert, H., Macario-Rat, G., Peyrin, T., Robshaw, M.,
Seurin, Y.: SHA-3 Proposal: ECHO. Submission to NIST (2009) (updated)

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge Functions. In:
ECRYPT Hash Workshop (2007)

7. Bhattacharyya, R., Mandal, A., Nandi, M.: Security Analysis of the Mode of JH
Hash Function. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp.
168–191. Springer, Heidelberg (2010)

8. Billet, O., Robshaw, M.J.B., Peyrin, T.: On Building Hash Functions from Mul-
tivariate Quadratic Equations. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.)
ACISP 2007. LNCS, vol. 4586, pp. 82–95. Springer, Heidelberg (2007)

9. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and Related-Key Attack
on the Full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
231–249. Springer, Heidelberg (2009)

10. Biryukov, A., Wagner, D.: Slide Attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 245–259. Springer, Heidelberg (1999)

11. Biryukov, A., Wagner, D.: Advanced Slide Attacks. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 589–606. Springer, Heidelberg (2000)

12. Canright, D.: A Very Compact S-Box for AES. In: Rao, J.R., Sunar,
B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg
(2005); The HDL specification is available at the author’s official webpage
http://faculty.nps.edu/drcanrig/pub/index.html

13. Contini, S., Lenstra, A.K., Steinfeld, R.: VSH, an Efficient and Provable Collision-
Resistant Hash Function. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 165–182. Springer, Heidelberg (2006)

14. Intel Corporation. Advanced Encryption Standard (AES) Instruction Set (October
30, 2008), http://softwarecommunity.intel.com/articles/eng/3788.htm

15. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer (2002)

16. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein Hash Function Family. Submission to NIST, Round 2
(2009)

17. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schlaffer, M., Thomsen, S.S.: Grøstl addendum. Submission to NIST (2009) (up-
dated)

http://131002.net/quark/
http://131002.net/blake/
http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
http://faculty.nps.edu/drcanrig/pub/index.html
http://softwarecommunity.intel.com/articles/eng/3788.htm


284 J. Choy et al.

18. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash
Functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011)

19. Henzen, L., Aumasson, J.-P., Meier, W., Phan, R.C.W.: VLSI Characterization
of the Cryptographic Hash Function BLAKE. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems (99), 1–9

20. Nakahara Jr., J., Abrahão, É.: A New Involutary MDS Matrix for AES. Interna-
tional Journal of Network Security 9(2), 109–116 (2009)

21. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound
Distinguishers: Results on the Full Whirlpool Compression Function. In: Matsui,
M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 126–143. Springer, Heidelberg
(2009)

22. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press (1996)

23. Park, S., Sung, S.H., Lee, S., Lim, J.: Improving the Upper Bound on the Maximum
Differential and the Maximum Linear Hull Probability for SPN Structures and
AES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 247–260. Springer,
Heidelberg (2003)

24. Peyrin, T.: Improved Differential Attacks for ECHO and Grøstl. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 370–392. Springer, Heidelberg (2010)

25. Sasaki, Y., Li, Y., Wang, L., Sakiyama, K., Ohta, K.: Non-full-active Super-Sbox
Analysis: Applications to ECHO and Grøstl. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 38–55. Springer, Heidelberg (2010)

26. Shannon, C.: Communication Theory of Secrecy System. Bell System Technical
Journal 28, 656–715 (1949)

27. Tillich, S., Feldhofer, M., Issovits, W., Kern, T., Kureck, H., Mühlberghuber, M.,
Neubauer, G., Reiter, A., Köfler, A., Mayrhofer, M.: Compact Hardware Implemen-
tations of the SHA-3 Candidates Arirang, Blake, Grøstl, and Skein. IACR ePrint
archive, Report 2009/349 (2009)

28. Wu, H.J.: The Hash Function JH. Submission to NIST (September 2009) (up-
dated), http://ehash.iaik.tugraz.at/uploads/1/1d/Jh20090915.pdf

http://ehash.iaik.tugraz.at/uploads/1/1d/Jh20090915.pdf


SPN-Hash: Improving the Provable Resistance 285

A Tables and Figures

Table 1. Comparison of Low-Area Hardware implementations of SPN hash and a
selection of SHA-3 finalists

Digest Alg. Ref. Msg. Technology Area Latency T’put@100KHz FOM
size size [GE] [clk] [kbps] [nbps/GE2]

128
SPN-Hash-128 256 UMC 0.18 2 777 710 36.1 2 338
SPN-Hash-128 256 estimate 4 600 230 55.7 2 627

256

SPN-Hash-256 512 UMC 0.18 4 625 1 430 35.8 837
SPN-Hash-256 512 estimate 8 500 230 111.3 1 541
BLAKE-32 [19] 512 UMC 0.18 13 575 816 62.8 340

GRØSTL-224/256 [27] 512 AMS 0.35 14 622 196 261.2 1 222
SKEIN-256-256 [27] 256 AMS 0.35 12 890 1 034 24.8 149

Fig. 1. One round of a SPN structure Fig. 2. The SDS function

Fig. 3. The JH mode of operation



286 J. Choy et al.

Fig. 4. The round function in permutation P

B Test Vector

We hash the message “SPN-Hash: Improving the Provable Resistance Against
Differential Collision Attacks” with three variants of the SPN-Hash family, and
the following are digests generated by our reference implementation.

Table 2. Test vectors for three variants of SPN-Hash family

SPN-Hash-128 2b021df78220afd2a41fa3592dc7d284

SPN-Hash-256 eabd18110d48e81d0663a7034b265462bf93f8019ca292e58ec1d830f90d67c5

SPN-Hash-512
f3e4a3dcc44acb2cf4d6f5f67bd8ce50ef030f55e0189a322136b5fc46af3cf5

e071f1ee9bf1851bbd854540da1ccc496d679b43090f8e24f486d6866092ac02


	SPN-Hash: Improving the Provable Resistanceagainst Differential Collision Attacks
	Introduction
	Our Contributions

	Preliminaries
	The SPN-Hash Functions
	The Internal Permutation P
	Generalized Optimal Diffusion
	MDS Layer

	Security Analysis of SPN-Hash 
	Differential Collision Attack
	(Second)-Preimage Attack
	Rebound Attack - Distinguishing Attack on Permutation P
	Exploiting the MDS Layer Structure for 128- and 256-bit SPN-Hash

	Implementation
	Software Performance
	Hardware Performance

	References




