


Lecture Notes in Computer Science 7374
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Aikaterini Mitrokotsa Serge Vaudenay (Eds.)

Progress in Cryptology -
AFRICACRYPT 2012
5th International Conference on Cryptology in Africa
Ifrane, Morocco, July 10-12, 2012
Proceedings

13



Volume Editors

Aikaterini Mitrokotsa
Serge Vaudenay
École Polytechnique Fédérale de Lausanne, IC LASEC
Bâtiment INF, Station 14, 1015 Lausanne, Switzerland
E-mail: {katerina.mitrokotsa, serge.vaudenay}@epfl.ch

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-31409-4 e-ISBN 978-3-642-31410-0
DOI 10.1007/978-3-642-31410-0
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012940535

CR Subject Classification (1998): E.3, K.6.5, C.2.0, C.2, E.4, K.4.4, H.4, J.1, F.2

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

The 5th Africacrypt conference was held July 10–12, 2012 in Ifrane, Morocco.
It followed previous editions in Casablanca, Morocco (2008), Gammarth, Tunisia
(2009), Stellenbosch, South Africa (2010), and Dakar, Senegal (2011).

The goal of the conference is to present research advances in the area of
cryptography. It aims at bringing together in a friendly atmosphere researchers
from all countries, beyond borders and political issues.

The conference received 56 submissions. They went through a doubly anony-
mous review process aided by 42 Program Committee members and 54 external
reviewers. Our submission software invited authors to indicate from which con-
tinent they were. We counted 12 papers with at least one co-author from Africa.

Our invited talks were given by:

– Willi Meier (University of Applied Sciences and Arts Northwestern Switzer-
land) - Stream Ciphers, A Perspective

– Craig Gentry (IBM) - Fully Homomorphic Encryption: Current State of the
Art

– Marc Fischlin (The Darmstadt University of Technology, Germany) - Black-
Box Reductions and Separations in Cryptography

This volume represents the revised version of the 24 accepted contributed papers
which were presented at the conference along with abstracts of invited speakers.

The Program Committee selected a paper to award. Committee members
were invited to oppose to nominated papers and to vote on remaining ones.
After this selection, the Program Committee decided to give the Africacrypt 2012
Best Paper Award to Elena Andreeva, Bart Mennink, Bart Preneel, and Marjan
Skrobot for their paper:

“Security Analysis and Comparison of the SHA-3 Finalists BLAKE,
Groestl, JH, Keccak, and Skein”

The submission and review process was done using the iChair Web-based
software system developed by Thomas Baignères and Matthieu Finiasz.

We would like to thank the authors of all submitted papers. Moreover, we
are indebted to the members of the Program Committee and the external sub-
reviewers for their diligent work. We would also like to acknowledge the con-
ference organizers and the Steering Committee for supporting us and for the
excellent collaboration we had.

Finally, we heartily thank the sponsors of Africacrypt 2012 for their generous
support.

Aikaterini Mitrokotsa
Serge Vaudenay



Organization

Conference Chairs

General Chairs
Abdelhak Azhari Ecole Normale Supérieure de Casablanca,

Morocco
Tajjeeddine Rachidi Al Akhawayn University in Ifrane, Morocco

Program Chair

Serge Vaudenay EPFL, Switzerland

Publication Chair

Aikaterini Mitrokotsa EPFL, Switzerland

Program Committee

Hatem M. Bahig Ain Shams University, Egypt
Hussain Ben-Azza Ensam-Meknès, Moulay Ismail University,

Morocco
Alex Biryukov University of Luxembourg, Luxembourg
Ivan Bjerre Damg̊ard University of Aarhus, Denmark
Riaal Domingues South African Communications Security

Agency, South Africa
Orr Dunkelman University of Haifa and Weizmann Institute,

Israel
Georg Fuchsbauer University of Bristol, UK
Mustapha Hedabou ENSA of Safi, Morocco
Antoine Joux University of Versailles, France
Mike Just Glasgow Caledonian University, UK
Seny Kamara Microsoft Research, USA
Aggelos Kiayias University of Athens, Greece
Evangelos Kranakis Carleton University, Canada
Pascal Lafourcade Verimag, University of Grenoble, France
Pil Joong Lee Pohang University of Science and Technology

(POSTECH), Korea
Reynald Lercier DGA & University of Rennes, France
Helger Lipmaa University of Tartu, Estonia
Javier Lopez University of Malaga, Spain
Bruno Martin University of Nice-Sophia Antipolis, France
Barbara Masucci University of Salerno, Italy
Kanta Matsuura The University of Tokyo, Japan



VIII Organization

Aikaterini Mitrokotsa EPFL, Switzerland
David Naccache Ecole Normale Supérieure, France
Phong Nguyen INRIA, France, and Tsinghua University, China
Abderrahmane Nitaj University of Caen, France
Kaisa Nyberg Aalto University, Finland
Ayoub Otmani University of Caen and ENSICAEN, France
Khaled Ouafi EPFL, Switzerland
Kenny Paterson Royal Holloway University of London, UK
Goutam Paul Jadavpur University, India
Christian Rechberger DTU, Denmark
Magdy Saeb Arab Academy of Science and Technology,

Egypt
Rei Safavi-Naini University of Calgary, Canada
Taizo Shirai Sony Corporation, Japan
Djiby Sow Cheikh Anta Diop University, Senegal
Martijn Stam University of Bristol, UK
Ron Steinfeld Macquarie University, Australia
Christine Swart University of Cape Town, South Africa
Serge Vaudenay EPFL, Switzerland
Ingrid Verbauwhede K.U. Leuven, Belgium
Christopher Wolf Ruhr University Bochum, Germany
Amr Youssef Concordia University, Canada

External Reviewers

Ahmad Ahmadi
Hadi Ahmadi
Toru Akishita
Mohsen Alimomeni
Tomoyuki Asano
Josep Balasch
Rishiraj Bhattacharyya
Olivier Blazy
Julia Borghoff
Ioana Boureanu
Billy Brumley
Pierre-Louis Cayrel
Rafik Chaabouni
Ashish Choudhury
Marion Daubignard
Jean Paul Degabriele
Vivien Dubois
Nadia El Mrabet
Mohamed Elkadi

Pooya Farshim
Anna Lisa Ferrara
Martin Gagné
David Galindo
Sourav Sen Gupta
Anthony Van Herrewege
M. Jason Hinek
Sebastiaan Indesteege
Kimmo Järvinen
Saqib A. Kakvi
Nikos Karvelas
Geonwoo Kim
Aleksandar Kircanski
Gregor Leander
Eun Sung Lee
Jin-woo Lee
Vadim Lyubashevsky
Roel Maes
Nele Mentens

Miodrag Mihaljevic
Shiho Moriai
Kris Narayan
Svetla Nikova
Onur Özen
Sumit Kumar Pandey
Ludovic Perret
Rodrigo Roman
Vladimir Rudskoy
Katerina Samari
Kyoji Shibutani
Rosemberg Silva
Petr Sušil
Bogdan Warinschi
Bingsheng Zhang
Wei Zhang



Table of Contents

Signature Schemes

Batch Verification of ECDSA Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Sabyasachi Karati, Abhijit Das, Dipanwita Roychowdhury,
Bhargav Bellur, Debojyoti Bhattacharya, and Aravind Iyer

Extended Security Arguments for Signature Schemes . . . . . . . . . . . . . . . . . 19
Sidi Mohamed El Yousfi Alaoui, Özgür Dagdelen, Pascal Véron,
David Galindo, and Pierre-Louis Cayrel

Sanitizable Signatures with Several Signers and Sanitizers . . . . . . . . . . . . . 35
Sébastien Canard, Amandine Jambert, and Roch Lescuyer

Stream Ciphers

Attack Based on Direct Sum Decomposition against the Nonlinear
Filter Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Jingjing Wang, Xiangxue Li, Kefei Chen, and Wenzheng Zhang

Applications of Information Theory

Fuzzy Vault for Multiple Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Julien Bringer, Hervé Chabanne, and Mélanie Favre

Bounds and Constructions for 1-Round (0, δ)-Secure Message
Transmission against Generalized Adversary . . . . . . . . . . . . . . . . . . . . . . . . . 82

Reihaneh Safavi-Naini and Mohammed Ashraful Alam Tuhin

Improving the Performance of the SYND Stream Cipher . . . . . . . . . . . . . . 99
Mohammed Meziani, Gerhard Hoffmann, and Pierre-Louis Cayrel

Block Ciphers

Impossible Differential Cryptanalysis of the Lightweight Block Ciphers
TEA, XTEA and HIGHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Jiazhe Chen, Meiqin Wang, and Bart Preneel

Three-Subset Meet-in-the-Middle Attack on Reduced XTEA . . . . . . . . . . 138
Yu Sasaki, Lei Wang, Yasuhide Sakai, Kazuo Sakiyama, and
Kazuo Ohta

Differential Cryptanalysis of Reduced-Round ICEBERG . . . . . . . . . . . . . . 155
Yue Sun, Meiqin Wang, Shujia Jiang, and Qiumei Sun



X Table of Contents

Compact Implementation and Performance Evaluation of Block Ciphers
in ATtiny Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Thomas Eisenbarth, Zheng Gong, Tim Güneysu, Stefan Heyse,
Sebastiaan Indesteege, Stéphanie Kerckhof, François Koeune,
Tomislav Nad, Thomas Plos, Francesco Regazzoni,
François-Xavier Standaert, and Löıc van Oldeneel tot Oldenzeel

Network Security Protocols

Cryptanalysis of Enhanced TTS, STS and All Its Variants, or:
Why Cross-Terms Are Important . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Enrico Thomae and Christopher Wolf

A Complementary Analysis of the (s)YZ and DIKE Protocols . . . . . . . . . 203
Augustin P. Sarr and Philippe Elbaz–Vincent

Public-Key Cryptography

A New Attack on RSA and CRT-RSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Abderrahmane Nitaj

Shift-Type Homomorphic Encryption and Its Application to Fully
Homomorphic Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Frederik Armknecht, Stefan Katzenbeisser, and Andreas Peter

Cryptanalysis of Hash Functions

The Collision Security of MDC-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Ewan Fleischmann, Christian Forler, and Stefan Lucks

SPN-Hash: Improving the Provable Resistance against Differential
Collision Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

Jiali Choy, Huihui Yap, Khoongming Khoo, Jian Guo,
Thomas Peyrin, Axel Poschmann, and Chik How Tan

Security Analysis and Comparison of the SHA-3 Finalists BLAKE,
Grøstl, JH, Keccak, and Skein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

Elena Andreeva, Bart Mennink, Bart Preneel, and Marjan Škrobot

Hash Functions: Design and Implementation

The GLUON Family: A Lightweight Hash Function Family Based
on FCSRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

Thierry P. Berger, Joffrey D’Hayer, Kevin Marquet,
Marine Minier, and Gaël Thomas



Table of Contents XI

SHA-3 on ARM11 Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
Peter Schwabe, Bo-Yin Yang, and Shang-Yi Yang

Algorithms for Public-Key Cryptography

Improved Fixed-Base Comb Method for Fast Scalar Multiplication . . . . . 342
Nashwa A.F. Mohamed, Mohsin H.A. Hashim, and Michael Hutter

Optimal First-Order Masking with Linear and Non-linear Bijections . . . . 360
Houssem Maghrebi, Claude Carlet, Sylvain Guilley, and
Jean-Luc Danger

Cryptographic Protocols

Size-Hiding in Private Set Intersection: Existential Results and
Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

Paolo D’Arco, Maŕıa Isabel González Vasco,
Angel L. Pérez del Pozo, and Claudio Soriente

Round-Optimal Black-Box Statistically Binding Selective-Opening
Secure Commitments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

David Xiao

Invited Talks

Stream Ciphers, a Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
Willi Meier

Black-Box Reductions and Separations in Cryptography . . . . . . . . . . . . . . 413
Marc Fischlin

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423



Batch Verification of ECDSA Signatures

Sabyasachi Karati1, Abhijit Das1, Dipanwita Roychowdhury1,
Bhargav Bellur2, Debojyoti Bhattacharya2, and Aravind Iyer2

1 Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur, India

{skarati,abhij,drc}@cse.iitkgp.ernet.in
2 General Motors Technical Centre India

India Science Lab, Bangalore, India
bhargav bellur@yahoo.com,

Debojyoti.bhattacharya@gmail.com,
aravind.iyer@gm.com

Abstract. In this paper, we study several algorithms for batch verification of
ECDSA signatures. The first of these algorithms is based upon the naive idea of
taking square roots in the underlying field. We also propose two new and efficient
algorithms which replace square-root computations by symbolic manipulations.
Experiments carried out on NIST prime curves demonstrate a maximum speedup
of above six over individual verification if all the signatures in the batch belong
to the same signer, and a maximum speedup of about two if the signatures in the
batch belong to different signers, both achieved by a fast variant of our second
symbolic-manipulation algorithm. In terms of security, all the studied algorithms
are equivalent to standard ECDSA* batch verification. These algorithms are prac-
tical only for small (� 8) batch sizes. To the best of our knowledge, this is the
first reported study on the batch verification of original ECDSA signatures.

Keywords: Digital Signatures, Elliptic Curves, ECDSA, ECDSA*, Batch Verifi-
cation, Modular Square Root, Symbolic Computation, Linearization.

1 Introduction

Batch verification is used to verify multiple digital signatures in time less than total in-
dividual verification time. The concept of batch verification is introduced by Naccache
et al [7] in EuroCrypt’94. They propose an interactive batch-verification protocol for
DSA [8]. In this protocol, the signer generates t signatures through interaction with the
verifier, and then the verifier validates all these t signatures simultaneously.

Harn, in 1998, proposes an efficient scheme [4,5] for the batch verification of RSA
signatures [12], where multiple signatures signed by the same private key can be ver-
ified simultaneously. Harn’s scheme uses only one exponentiation for batches of any
size t. There are some weaknesses in this scheme. For example, if batch verification
fails, we cannot identify the faulty signature(s) without making individual verification.
Moreover, Harn’s scheme does not adapt to the case of signatures from multiple signers.

These protocols are not straightaway applicable to ECDSA signatures [2,6]. Since
ECDSA requires smaller key and signature sizes than DSA and RSA, there has been a

A. Mitrokotsa and S. Vaudenay (Eds.): AFRICACRYPT 2012, LNCS 7374, pp. 1–18, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 S. Karati et al.

growing interest in ECDSA. ECDSA* [1], a modification of ECDSA, permits an easy
adaptation of Naccache et al’s batch-verification protocol for DSA. Cheon and Yi [3]
study batch verification of ECDSA* signatures, and report speedup factors of up to 7
for same signer and 4 for different signers. However, ECDSA* is not a standard, and
is thus unacceptable, particularly in applications where interoperability is of concern.
More importantly, ECDSA* increases the signature size compared to ECDSA without
any increase in the security. Consequently, batch verification of original ECDSA signa-
tures turns out to be a practically important open research problem. To the best of our
knowledge, no significant result in this area has ever been reported in the literature.

In this paper, we propose three algorithms to verify original ECDSA signatures in
batches. Our algorithms apply to all cases of ECDSA signatures sharing the same curve
parameters, although we obtain good speedup figures when all the signatures in the
batch come from the same signer. Our algorithms are effective only for small batch sizes
(like t � 8). The first algorithm we introduce (henceforth denoted as Algorithm N) is
based upon a naive approach of taking square roots in the underlying field. As the
field size increases, square-root computations become quite costly. We modify Algo-
rithm N by replacing square-root calculations by symbolic manipulations. We propose
two ECDSA batch-verification algorithms, called S1 and S2, using symbolic manipu-
lations. Algorithm S1 is not very practical, but is discussed in this paper, for it provides
the theoretical and practical foundations for arriving at Algorithm S2. For a wide range
of field and batch sizes, Algorithm S2 convincingly outperforms the naive Algorithm N.
Both S1 and S2 are probabilistic algorithms in the Monte Carlo sense, that is, they may
occasionally fail to verify correct signatures. We analytically establish that for randomly
generated signatures, the failure probability is extremely low.

The rest of this paper is organized as follows. In Section 2, we identify the problems
associated with ECDSA batch verification. In this process, we introduce the ECDSA
signature scheme, and set up the notations which we use throughout the rest of the pa-
per. In Section 3, we introduce a naive batch-verification algorithm N and its variant N′.
Section 4 elaborates our new algorithm S1 based upon symbolic manipulations. Sec-
tion 5 presents an analytic study of Algorithm S1. We furnish details about the running
time, the cases of failure, and the security of Algorithm S1. The running time estimates
for Algorithm S1 indicate that this algorithm is expected to perform poorly unless the
batch size t is very small. In Section 6, we improve upon this algorithm to arrive at
Algorithm S2. Analytic results for Algorithm S2 are provided in Section 7. A heuristic
capable of significantly speeding up Algorithms S1 and S2 is presented in Section 8. In
Section 9, we list our experimental results, and compare the performances of the three
algorithms N, S1 and S2. We also study the performances of three faster variants N′,
S1′ and S2′ of these algorithms. Although we have concentrated only upon the curves
over prime fields, supplied in the NIST standard [9], our algorithms readily apply to
other curves with cofactor 1. As mentioned in [1], cofactor values larger than 1 can be
easily handled by appending only a few bits of extra information to standard ECDSA
signatures. The concluding Section 10 highlights some future research directions.



Batch Verification of ECDSA Signatures 3

2 Notations

The elliptic-curve digital signature algorithm (ECDSA) is based upon some parameters
common to all entities participating in a network.

q = Order of the prime field Fq.

E = An elliptic curve y2 = x3 + ax+ b defined over the prime field Fq.

P = A random non-zero base point in E(Fq).

n = The order of P , typically a prime.

h = The cofactor
|E(Fq)|

n
.

For the time being, we assume that h = 1, that is, E(Fq) is a cyclic group, and P is a
generator of E(Fq). This is indeed the case for certain elliptic curves standardized by
NIST. By Hasse’s theorem, we have |n−q−1| � 2

√
q. If n � q, an element of Zn has

a unique representation in Zq. On the other hand, if n < q, an element ofZn has at most
two representations in Zq . The density of elements of Zn having two representations in
Zq is � 2/

√
q which is close to zero for large values of q.

In an ECDSA signature (M, r, s), the values r and s are known modulo n. However,
r corresponds to an elliptic-curve point and should be known modulo q. If r corresponds
to a random point on E, it uniquely identifies an element of Fq with probability close
to 1. In view of this, we will ignore the effect of issues associated with the ambiguous
representation stated above, in the rest of this article.

Note that the ambiguities arising out of h > 1 and/or q > n can be practically solved
by appending only a few extra bits to standard ECDSA signatures [1,3]. Consequently,
our assumptions are neither too restrictive nor too impractical.

An ECDSA key pair consists of the public key Q and the private key d satisfying
Q = dP . The steps for generating the ECDSA signature (r, s) on a message M follow.

1. k = A randomly chosen element in the range [1, n− 1] (the session key).
2. R = kP .
3. r = x(R) (the x-coordinate of R) reduced modulo n.
4. s = k−1(H(M) + dr)(mod n) (where H is a cryptographic hash function like

SHA-1 [10]).

The following steps verify the ECDSA signature (r, s) on a message M .

1. w = s−1 (mod n).
2. u = H(M)w (mod n).
3. v = rw (mod n).
4. R = uP + vQ ∈ E(Fq). (1)
5. Accept the signature if and only if x(R) = r (mod n).



4 S. Karati et al.

3 Naive Batch Verification Algorithms N and N′ for ECDSA

Throughout the rest of this paper, we plan to simultaneously verify t ECDSA signatures
(r1, s1), (r2, s2), . . . , (rt, st) on messages M1,M2, . . . ,Mt. By m, we will denote 2t.

For t signed messages (Mi, ri, si), i = 1, 2, . . . , t, we have

t∑
i=1

Ri =

(
t∑

i=1

ui

)
P +

t∑
i=1

viQi. (2)

If all the signatures belong to the same signer, we have Q1 = Q2 = · · · = Qt = Q
(say), and the last equation simplifies to:

t∑
i=1

Ri =

(
t∑

i=1

ui

)
P +

(
t∑

i=1

vi

)
Q. (3)

The basic idea is to compute the two sides of Eqn (2) or Eqn (3), and check for the
equality. Use of these equations reduces the number of scalar multiplications from 2t
to [2, t + 1], where 2 corresponds to the case where all the signatures belong to same
signer, and t + 1 corresponds to the case where the t signers are distinct from one
another. However, only the x-coordinates of Ri are known from the signatures. In gen-
eral, there are two y-coordinates corresponding to a given x-coordinate, but computing
these y-coordinates requires taking square roots modulo q, a time-consuming operation.
Moreover, there is nothing immediately available in the signatures to remove the ambi-
guity in these two values of y. Finally, computing all Ri using Eqn (1) misses the basic
idea of batch verification, since after this expensive computation, there is only an in-
significant amount of effort left to complete individual verifications of the t signatures.

ECDSA* [1], a modification of ECDSA where the entire point R is included in the
signature instead of r, adapts readily to the above batch-verification idea. Nonetheless,
a naive algorithm (to be denoted as Algorithm N) for the batch verification of original
ECDSA signatures can be conceived of. For each i, we compute the square roots yi
of r3i + ari + b modulo q. There are (usually) 2t choices of the square roots yi for
all i = 1, 2, . . . , t. If any of these combinations of square roots satisfies Eqn (2), we
accept the batch of signatures. This is definitely an obvious way of solving the ECDSA
batch-verification problem, but we have not found any previous mention of this algo-
rithm in the literature. Modular square-root computation turns out to be a costly op-
eration. Moreover, we need to check (at most) m = 2t possible conditions for batch
verification—a step that is also quite costly unless t is small.

Using a single extra bit of information in an ECDSA signature, one can unambigu-
ously identify the correct square root of r3i + ari + b, and thereby avoid the Θ(2t)
overhead associated with Algorithm N. This updated (and efficient) version of the naive
algorithm will henceforth be denoted by Algorithm N′. Despite this updating, there is
apparently nothing present in ECDSA signatures, that provides a support for quickly
computing the correct square root. The basic aim of this paper is to develop algorithms
to reduce the overhead associated with square-root calculations. In effect, we are con-
verting ECDSA signatures to ECDSA* signatures. In that sense, this paper is not com-
peting with but complementary to the earlier works [1,3] on ECDSA*.



Batch Verification of ECDSA Signatures 5

4 A New Batch-Verification Algorithm for ECDSA (Algorithm S1)

In this section, we present a new algorithm to convert Eqn (2) or Eqn (3) to a form which
eliminates the problems associated with the lack of knowledge of the y-coordinates of
Ri. We compute the right side of Eqn (2) or Eqn (3) as efficiently as possible. The left
side is not computed explicitly, but symbolically in the unknown values y1, y2, . . . , yt
(the y-coordinates of R1, R2, . . . , Rt). By solving a system of linear equations over
Fq, we obtain enough information to verify the t signatures simultaneously. This new
algorithm, called Algorithm S1, turns out to be faster than Algorithm N for small batch
sizes (typically for t � 4) and for large underlying fields.

4.1 Symbolic Computation of R =

t∑
i=1

Ri

Let Ri = (xi, yi). The x-coordinates xi = x(Ri) are available from the signatures,
namely, xi = ri or xi = ri + n. The second case pertains to the condition n < q and
has a very low probability. So we plan to ignore this case, and take xi = x(Ri) = ri.
It is indeed easy to detect when the reduced x-coordinate ri has two representatives in
Fq, and if so, we repeat Algorithm S1 for both these values.

Although the y-coordinate yi = y(Ri) is unknown to us, we know the values of

y2i = r3i + ari + b (mod q) (4)

for all i = 1, 2, . . . , t, since Ri = (ri, yi) is a point on the curve E.
Applying the elliptic-curve point-addition formula repeatedly gives the following

representation of the point R =
∑t

i=1 Ri:

R =

(
gx(y1, y2, . . . , yt)

hx(y1, y2, . . . , yt)
,
gy(y1, y2, . . . , yt)

hy(y1, y2, . . . , yt)

)
, (5)

where gx, gy, hx, hy are polynomials in Fq[y1, y2, . . . , yt]. In view of Eqn (4), we may
assume that these polynomials have yi-degrees � 1 for all i = 1, 2, . . . , t. This implies
that the denominator hx(y) is of the form u(y2, y3, . . . , yt)y1 + v(y2, y3, . . . , yt). Mul-
tiplying both gx and hx by u(y2, y3, . . . , yt)y1−v(y2, y3, . . . , yt) and using Eqn (4), we
can eliminate y1 from the denominator. Repeating this successively for y2, y3, . . . , yt
allows us to represent the point R as a pair of polynomial expressions:

R = (Rx(y1, y2, . . . , yt), Ry(y1, y2, . . . , yt)) (6)

with the polynomials Rx and Ry linear individually with respect to all yi. It is useful
to clear the denominator after every symbolic addition instead of only once after the
entire sum R =

∑t
i=1 Ri is computed symbolically. It is easy to establish that Rx

is a polynomial with each non-zero term having even total degree, whereas Ry is a
polynomial with each non-zero term having odd total degree (See Appendix A).

From the right side of Eqn (2) or Eqn (3), we compute the x- and y-coordinates of R
as R = (α, β) for some α, β ∈ Fq. This gives us two initial multivariate equations:

Rx(y1, y2, . . . , yt) = α, (7)

Ry(y1, y2, . . . , yt) = β. (8)



6 S. Karati et al.

4.2 Solving the Multivariate Equations

We treat Eqns (7) and (8) as linear equations in the square-free monomials yi, yiyj ,
yiyjyk, and so on. Rx contains non-zero terms involving only the even-degree mono-
mials, that is, yiyj , yiyjykyl, and so on. There are exactly μ = 2t−1− 1 = m

2 − 1 such
monomials, where m = 2t. We name these monomials as z1, z2, . . . , zμ, and take out
the constant term from Rx to rewrite Eqn (7) as

ρ1,1z1 + ρ1,2z2 + · · ·+ ρ1,μzμ = α1. (9)

If we square both sides of this equation, and use Eqn (4) to eliminate all squares of
variables, we obtain another linear equation:

ρ2,1z1 + ρ2,2z2 + · · ·+ ρ2,μzμ = α2. (10)

By repeated squaring, we generate a total of μ linear equations in z1, z2, . . . , zμ. We
then solve the resulting system and obtain the values of z1, z2, . . . , zμ.

If the system is not of full rank, we make use of Eqn (8) as follows. Each non-zero
term in Ry has odd degree. However, the equation R2

y = β2 (along with the substitution
given by Eqn (4)) leads to a linear equation in the even-degree monomials z1, z2, . . . , zμ
only. Repeated squaring of this equation continues to generate a second sequence of
linear equations in z1, z2, . . . , zμ.

We expect to obtain μ linearly independent equations from these two sequences.

4.3 A Strategy for Faster Equation Generation

There are indeed other ways of generating new linear equations in z1, z2, . . . , zμ. Let

ρ1z1 + ρ2z2 + · · ·+ ρμzμ = γ (11)

be an equation already generated, and let f(z1, z2, . . . , zμ) be any Fq-linear combina-
tion of the monomials z1, z2, . . . , zμ. Simplification of the equation

(ρ1z1 + ρ2z2 + · · ·+ ρμzμ)f(z1, z2, . . . , zμ) = γf(z1, z2, . . . , zμ)

using Eqn (4) again yields a linear equation in z1, z2, . . . , zμ. In particular, the choice
f(z1, z2, . . . , zμ) = zi with a small degree of zi typically leads to a faster generation of
a new equation than squaring Eqn (11). Our experiments indicate that we can generate a
full-rank system by monomial multiplications and a few squaring operations. Moreover,
only Eqn (7) suffices to generate a uniquely solvable linearized system.

4.4 Retrieving the Unknown y-Coordinates

The final step in Algorithm S1 involves the determination of the y-coordinates yi of the
points Ri. Multiplying both sides of Eqn (8) by y1 gives an equation of the form

βy1 = ε0 + ε1z1 + ε2z2 + · · ·+ εμzμ.

Substitution of the values of zi available from the previous stage gives y1 (provided
that β �= 0). Subsequently, the values yi for i = 2, 3, . . . , t can be obtained by dividing



Batch Verification of ECDSA Signatures 7

the known value of y1yj by y1 provided that y1 �= 0. Even if y1 = 0, we can multiply
Eqn (8) by y2 to solve for y2. If y2 �= 0, we are allowed to compute yi = (y2yi)/y2 for
i � 3. If y2 = 0 too, we compute y3 by directly using Eqn (8), and so on. The only
condition that is necessary to solve for all yi values uniquely is β �= 0, where β is the
y-coordinate of the point on the right side of Eqn (2) (or Eqn (3)).

We finally check whether Eqn (4) is valid for all i = 1, 2, . . . , t. If so, all the signa-
tures are verified simultaneously. If one or more of these equations fail(s) to hold, batch
verification fails.

In short, Algorithm S1 uniquely reconstructs the points Ri with x(Ri) = ri. The
computations do not involve taking modular square roots in Fq. We also avoid com-
puting the points R′

i = uiP + viQi needed in individual verification. The final check
(y2i = r3i + ari + b) guarantees that the reconstructed points really lie on the curve.
In the next section, we prove that the reconstruction process succeeds with very high
probability. Moreover, for small batch sizes, the reconstruction process is efficient.

5 Analysis of Algorithm S1

5.1 Running Time

The count of monomials handled during the equation-generation and equation-solving
stages is μ = 2t−1 − 1 = m

2 − 1 which grows exponentially with t. Determination
of the Eqns (7) and (8) needs t − 1 symbolic additions involving rational functions
with at most Θ(m) non-zero terms. Each symbolic addition is followed by at most t
uses of Eqn (4). Therefore, the symbolic derivation of R requires O(mt2) operations
in Fq. The subsequent generation of the μ× μ linearized system requires O(m2t) field
operations. Finally, Gaussian elimination on an μ × μ system demands Θ(m3) field
operations. Retrieving individual yi values calls for O(mt2) (usually O(mt)) field op-
erations. The running time of Algorithm S1 is dominated by the linear system-solving
stage. Evidently, Algorithm S1 becomes impractical except only for small values of t.

It is worthwhile to investigate the running time of the naive Algorithm N. First,
this algorithm needs to compute t modular square roots in the field Fq. Each such
square-root computation (for example, by the Tonelli-Shanks algorithm [13]) involves
an exponentiation in Fq . Subsequently, one needs to check at most m = 2t = 2(μ +
1) conditions, with each check involving the computation of the sum of t points on
the curve. Therefore, the total running time of Algorithm N is O((σ + m)t), where
σ is the time for computing one square root in Fq. Thus, Algorithm S1 outperforms
Algorithm N only in situations where σ is rather large compared to m. This happens
typically when the batch size t is small and the field size q is large.

5.2 Unique Solvability of the Linearized System

In Algorithm S1, we solve a linearized μ × μ system to obtain the values of the even-
degree monomials z1, z2, . . . , zμ in the unknown y-coordinates y1, y2, . . . , yt. Let us
call the coefficient matrix M . In order that the linearized system is uniquely solvable,
we require detM �= 0. We now investigate how often this condition is satisfied, and
also how we can force this condition to hold in most cases.



8 S. Karati et al.

For a moment, let us treat the x-coordinates r1, r2, . . . , rt as symbols. But then the
failure condition detM = 0 can be rephrased in terms of a multivariate polynomial
equation in r1, r2, . . . , rt. Let us denote this equation as D(r1, r2, . . . , rt) = 0. If D
is identically zero, then any values of r1, r2, . . . , rt constitute a root of D. We explain
shortly how this situation can be avoided.

Assume that D is not identically zero. Let δ be the maximum degree of each in-

dividual ri in D. One can derive that δ �
(
22t+3�log2 t�+2 + 3

)(
22

t−1−1 − 1
)
≈

22
t−1+2t+3�log2 t�+1 (See Appendix B). If we restrict our attention to the values t � 6,

we have δ � 254. The maximum number of roots of D is bounded below tδqt−1 (See
Appendix C). The total number of t-tuples (r1, r2, . . . , rt) over Fq is qt. Therefore, a
randomly chosen tuple (r1, r2, . . . , rt) is a root of D with probability � tδqt−1/qt =
tδ/q. If we use the inequalities t � 6, δ � 254 and q � 2160, we conclude that this
probability is less than 2−103. Therefore, if D is not the zero polynomial, we can solve
for z1, z2, . . . , zμ uniquely with very high probability.

What remains is to propose a way to avoid the condition D = 0. We start with any t
randomly chosen ECDSA signatures with r-values r1, r2, . . . , rt. We then choose any
sequence of squaring and multiplication by zi in order to arrive at a linear system in
z1, z2, . . . , zμ. If the corresponding coefficient matrix M is not invertible, we discard
the chosen sequence of squaring and multiplication. This is because detM = 0 implies
that either D is the zero polynomial or the chosen r1, r2, . . . , rt constitute a root of a
non-zero D. The second case is extremely unlikely. With high probability, we, there-
fore, conclude that the chosen sequence of squaring and multiplication gives D = 0
identically. We change the sequence, and repeat the above process until we come across
the situation where r1, r2, . . . , rt do not constitute a root of the non-zero polynomial
equation D(r1, r2, . . . , rt) = 0. This implies that D is not identically zero, and ran-
domly chosen r1, r2, . . . , rt satisfy D(r1, r2, . . . , rt) = 0 with very low probability.
We keep this sequence for all future invocations of our batch-verification algorithm.

Table 1 lists some sequences of squaring and multiplication, that work for NIST
prime curves. Here, S stands for a squaring step, whereas a monomial (like y2y4) stands
for multiplication by that monomial. In all these cases, we use only Eqn (7), whereas
Eqn (8) is used only for the unique determination of individual yi values. These se-
quences depend upon t alone, but not on the NIST curves. For other curves, this method
is expected to work equally well. Indeed, we may consider D(r1, r2, . . . , rt) as a poly-
nomial inZ[r1, r2, . . . , rt]. If D is not identically zero, then it is identically zero modulo
only a finite number of primes (the common prime divisors of the coefficients of D).

Table 1. Sequences to generate linearized systems for NIST prime curves

t Sequence in the linearization phase
2 No squaring or multiplication needed
3 y1y2, y1y3
4 y1y2, y1y3, y1y4, y2y3, y3y4, y1y4
5 y1y2, y1y3, y1y4, y1y5, y2y3, y2y4, y4y5, y1y2, y1y3, y1y4, y1y5, y1y2, y2y4, y2y3
6 y1y2, y1y3, y1y4, y1y5, y1y6, y2y3, y2y4, y2y5, y1y2, y3y4, y3y5, y1y5, y1y6, y1y2y3y6, y1y5,
y1y4, y1y3, y1y2y3y6, y1y2, y1y3, y1y4, y1y5, y2y5, y2y3, S, y2y6, y4y6, y3y6, y5y6, y1y5



Batch Verification of ECDSA Signatures 9

5.3 Security Analysis

In Algorithm S1, we reconstruct the points Ri with x-coordinates x(Ri) = ri by forc-
ing the condition R =

∑t
i=1 Ri =

∑t
i=1 R

′
i = R′, where R′

i = uiP + viQi. Sup-
pose that an adversary too can force the condition R = R′. The adversary must also
reveal the x-coordinates r1, r2, . . . , rt as parts of ECDSA signatures. Given these x-
coordinates and the condition R = R′, there exists (with high probability) a unique
solution for the corresponding y-coordinates y1, y2, . . . , yt of R1, R2, . . . , Rt. This so-
lution can be computed by the adversary, for example, using Algorithm S1 (or by taking
modular square roots in Fq as in Algorithm N). So long as t is restricted to small con-
stant values (like t � 6), the adversary requires only moderate computing resources for
determining y1, y2, . . . , yt uniquely. This implies that although the adversary needs to
reveal only the x-coordinates ri, (s)he essentially knows the full points Ri. But these
points R1, R2, . . . , Rt satisfy the standard batch-verification condition for ECDSA*.
That is, if the adversary can fool Algorithm S1, (s)he can fool the standard ECDSA*
batch-verification algorithm too. It follows that Algorithm S1 is no less secure than the
standard batch-verification algorithm for ECDSA*. Conversely, if an adversary can fool
any ECDSA* batch-verification algorithm, (s)he can always fool any ECDSA batch-
verification algorithm, since ECDSA signatures are only parts of ECDSA* signatures.
To sum up, Algorithm S1 is as secure as standard ECDSA* batch verification [7].

An analysis of the security of Algorithm N is also worth including here. Suppose that
an adversary can pass one of the m = 2t checks in Algorithm N along with disclosing
r1, r2, . . . , rt. The correct choices yi of the square roots of r3i + ari + b (that is, those
choices corresponding to the successful check) constitute a case of fulfillment of the
ECDSA* batch-verification criterion. Consequently, Algorithm N too is as secure as
standard ECDSA* batch verification.

5.4 Cases of Failure for Algorithm S1

Our Monte Carlo batch-verification Algorithm S1 may fail for a few reasons. We now
argue that these cases of failure are probabilistically very rare.

1. Taking xi = ri blindly is a possible cause of failure for Algorithm S1. As discussed
earlier, this situation has a very low probability. Furthermore, it is easy to identify
when this situation occurs. In case of ambiguity in the values of xi, we can repeat
Algorithm S1 for all possible candidate tuples (x1, x2, . . . , xt). If the points Ri are
randomly chosen in E(Fq), most of these xi values are unambiguously available to
us, and there should not be many repeated runs (if any) of Algorithm S1. Repeated
runs, if necessary, may be avoided, because doing so goes against the expected
benefits achievable by batch verification.

2. Although we are able to identify good sequences of squaring and multiplication in
order to force the determinant polynomial D(r1, r2, . . . , rt) to be not identically
zero, roots of this polynomial may appear in some cases of ECDSA signatures. We
have seen that if r1, r2, . . . , rt are randomly chosen, the probability of this situation
is no more than 2−103 (for t � 6).



10 S. Karati et al.

3. Eqn (5) is derived using the point-addition formula on the curve E, which is differ-
ent from the doubling formula. So long as we work symbolically using the unknown
quantities y1, y2, . . . , yt, it is impossible to predict when the two points being added
turn out to be equal. If R1, R2, . . . , Rt are randomly chosen from E(Fq), the prob-
ability of this occurrence is extremely low.

4. Algorithm S1 fails if R′ is the point at infinity or lies on the x-axis (β = 0). In
that case, one should resort to individual verification. For randomly chosen session
keys, this case occurs with a very small probability (nearly 4/q).

6 A More Efficient Batch-Verification Algorithm (Algorithm S2)

The linearization stage in Algorithm S1 (requiring O(m2t) field operations) and the
subsequent Gaussian-elimination stage (O(m3) field operations) are rather costly, m
being an exponential function of the batch size t. Our second symbolic-manipulation
algorithm S2 avoids these two stages altogether.

Algorithm S1 uniquely solves for the monomials z1, z2, . . . , zμ using the equation
Rx = α only. At this point, there are only two possible solutions for the yi values:
(y1, y2, . . . , yt) and (−y1,−y2, . . . ,−yt). This sign ambiguity is eliminated by using
the other equation Ry = β. As mentioned in connection with the security analysis of
Algorithm N, the exact determination of these signs is not important. In other words,
we would be happy even if we can determine each yi correctly up to multiplication by
±1. This, in turn, implies that if we have any multivariate equation (linear in yi) of the
form uyi + v = 0 (where u, v are polynomials in y1, . . . , yi−1, yi+1, . . . , yt), we do
not mind multiplying this equation by uyi − v so that ±yi satisfy u2y2i − v2 = 0. But
y2i = r3i + ari + b, so we have u2

i (r
3
i + ari + b)− v2i = 0, an equation in which yi is

eliminated. This observation leads to Algorithm S2.
Like Algorithm S1, we first symbolically compute R =

∑t
i=1 Ri, and arrive at

Eqns (7) and (8). Then, we consider only the multivariate equation Rx − α = 0 linear
individually in each yi. We first eliminate y1, and with substitutions given by Eqn (4)
for i = 2, 3, . . . , t, we arrive at a multivariate equation in y2, y3, . . . , yt, again linear in
each of these variables. We eliminate y2 from this equation, and arrive at a multivariate
equation in y3, y4, . . . , yt. We repeat this process until all variables y1, y2, . . . , yt are
eliminated. If the polynomial after all these eliminations reduces to zero, the original
equation Rx = α is consistent with respect to y2i = r3i + ari + b for all i = 1, 2, . . . , t.

We may likewise eliminate y1, y2, . . . , yt from Ry − β = 0 too, but this is not
necessary, because it suffices to know yi uniquely up to multiplication by ±1.

Some comments on efficient implementations of the elimination stage are now in
order. First, we are not using Eqn (8) at all in Algorithm S2. Consequently, it is not
necessary to compute the polynomialRy . However, in the symbolic-computation stage,
we need to compute all intermediate y-coordinates, since they are needed in the final
value of Rx. The computation of only the last y-coordinate Ry may be avoided. Still,
this saves quite some amount of effort (O(mt) field operations, to be precise). This
saving does not affect the theoretical complexity of the algorithm in the big-Oh notation,
but its practical effects are noticeable.

The second issue is that the polynomials u and v in each elimination step have some
nice properties. Throughout this step, φ = uyi + v and v are polynomials with each



Batch Verification of ECDSA Signatures 11

non-zero term having even degree, whereas u is a polynomial with each non-zero term
having odd degree. In particular, when the first t − 2 y-coordinates are eliminated, we
have φ = uyt−1yt + v with u, v ∈ Fq . Elimination of yt−1 eliminates yt too, so an
explicit elimination of yt is not necessary.

The y-coordinates y1, y2, . . . , yt are not explicitly reconstructed in Algorithm S2.
However, if necessary, we can compute two sets of solutions y1, y2, . . . , yt and −y1,
−y2, . . . ,−yt by using the values of φ = uyi + v for i = t − 1, t − 2, . . . , 2, 1. The
sign ambiguity can be removed by using Ry = β. Algorithm S2 does not include this
reconstruction phase, since this is cryptographically unimportant. However, we use this
result in the security proof for S2.

It is also important to note that the determination of individual yi values is
cryptographically unimportant for Algorithm S1 too, since Rx = α already identi-
fies exactly two solutions for the reconstructed points. If these steps are omitted, the
batch-acceptance criterion would match z2i against appropriate products of r3j +arj + b
for all i = 1, 2, . . . , μ. In fact, it suffices to consider only the monomials zi of degree
2. However, the unique determination of yi values takes only an insignificant fraction
of time in Algorithm S1, so it does not practically matter to make a choice between
whether we carry out these steps or not.

7 Analysis of Algorithm S2

7.1 Running Time

The symbolic computation of (Rx, Ry) involves O(mt2) field operations (as in Al-
gorithm S1). Subsequently, we start with the polynomial φ = Rx − α with at most
μ + 1 = m

2 + 1 non-zero terms. Elimination of yi requires computing the squares u2

and v2, carrying out the polynomial arithmetic u2(r3i + ari + b) − v2, and t − i sub-
stitutions of y2j by r3j + arj + b. Therefore, the reduction of φ too requires O(mt2)

field operations. This is significantly better than the O(m3) operations needed by Al-
gorithm S1. Moreover, Algorithm S2 outperforms Algorithm N for a wide range of t
and q, since the condition (σ +m)t � mt2 is more often satisfied than the condition
(σ +m)t� m3.

7.2 Security Analysis

We establish the equivalence between the security of Algorithm S2 and the security
of standard ECDSA* batch verification, as we have done for the earlier algorithms (N
and S1). Suppose that an adversary reveals the x-coordinates r1, r2, . . . , rt in ECDSA
signatures which pass the batch-verification procedure of Algorithm S2. We mentioned
above that there are exactly two solutions (y1, y2, . . . , yt) and (−y1,−y2, . . . ,−yt)
consistent with Rx − α = 0 and y2i = r3i + ari + b for i = 1, 2, . . . , t. One of
these solutions corresponds to the ECDSA* signatures based upon the disclosed values
r1, r2, . . . , rt. It is that solution that would pass Ry = β. To sum up, the adversary can
forge the standard ECDSA* batch-verification algorithm. Moreover, this forging pro-
cedure which essentially involves the unique reconstruction of the points Ri = (ri, yi)
is practical for any adversary with only a moderate amount of computing resources, so
long as t is restricted only to small values (the only cases where we can apply S2).



12 S. Karati et al.

8 Efficient Variants of S1 and S2

In Algorithm S1, we generate a system of linearized equations in m
2 − 1 = 2t−1 − 1

monomials. Solving the resulting equation turns out to be the costliest step of Algo-
rithm S1, demanding Θ(m3) field operations. In Algorithm S2, the symbolic computa-
tion of R = (Rx, Ry) turns out to be the most time-consuming step. This step calls for
Θ(mt2) field operations. The elimination phase too calls for Θ(mt2) operations.

In this section, we explain a strategy to reduce the number of monomials in Al-
gorithms S1 and S2. So far, we have been symbolically computing the point R =∑t

i=1 Ri, and equating the symbolic sum to R′ = (α, β). This results in polynomial
expressions with Θ(2t−1) (that is, Θ(m)) non-zero terms.

Now, let τ = �t/2�. We symbolically compute the two sums:

R(1) =
τ∑

i=1

Ri and R(2) = R′ −
t∑

i=τ+1

Ri. (12)

The polynomial expressions involved in R(1) and R(2) contain only Θ(2τ ), that is,
Θ(
√
m) non-zero terms. So computing these two symbolic sums needs Θ(2τ τ2), that

is, Θ(
√
mt2) field operations which is significantly smaller than the Θ(mt2) operations

associated with the symbolic computation of the complete sum
∑t

i=1 Ri. The condition
R = R′ is equivalent to the condition R(1) = R(2). Using this new condition helps us
in speeding up the subsequent steps too.

8.1 Algorithm S1′

The symbolic computation of R in Algorithm S1 can be replaced by the two symbolic
computations given by Eqn (12). In that case, we replace the initial equations Rx = α
and Ry = β by the two equations x(R(1)) = x(R(2)) and y(R(1)) = y(R(2)). It is easy
to argue that x(R(1)) is a polynomial in y1, y2, . . . , yτ with each non-zero term having
even degree, whereas y(R(1)) is a polynomial in y1, y2, . . . , yτ with each non-zero term
having odd degree. That is, the number of non-zero terms in these two expressions is
2τ−1 =

√
m
2 . However, the presence of R′ = (α, β) on the right side of the expression

for R(2) (Eqn 12) lets both x(R(2)) and y(R(2)) contain all (square-free) monomials in
yτ+1, yτ+2, . . . , yt (both even and odd degrees). There are exactly 2�t/2�−1 � √

m−1
monomials in these two expressions. In the linearized system that we subsequently
generate, we consider, as variables, only the even-degree monomials in y1, y2, . . . , yτ
and all monomials in yτ+1, yτ+2, . . . , yt.

We start with the equation x(R(1)) = x(R(2)). Subsequently, we keep on squaring
the equation x(R(1)) = x(R(2)) (and substituting values of y2i wherever necessary).
This sequence does not increase the number of monomials in the linearized equations.
More precisely, for any j � 0, the equation x(R(1))2

j

= x(R(2))2
j

contains only the
Θ(
√
m) monomials with which we start. If we fail to obtain a linearized system of full

rank, we start squaring the other initial equation y(R(1)) = y(R(2)). For any j � 1,
the equation y(R(1))2

j

= y(R(2))2
j

again contains only the monomials with which
we start. In all the cases studied, we have been able to obtain a full-rank linearized



Batch Verification of ECDSA Signatures 13

system by squaring the two initial equations. Since the number of linearized variables is
Θ(
√
m), the linearization step of Algorithm S1 now reduces to O(mt) field operations.

Finally, we solve a system with Θ(
√
m) variables using Θ(m3/2) field operations.

To sum up, using the trick introduced in this section decreases the number of field
operations from Θ(m3) to Θ(m3/2). Let us plan to call this efficient variant of S1 as
S1′. Fundamentally, S1′ is not a different algorithm from S1. In particular, the security
of S1′ is the same as the security of S1 (in fact, little better, because fewer linearized
equations are involved). However, the reduction in the running time is very significant,
both theoretically and practically.

8.2 Algorithm S2′

Instead of starting with φ = Rx − α, Algorithm S2′ starts with the initial expression

φ = x(R(1))− x(R(2)). (13)

We then repeatedly eliminate y1, y2, . . . , yt. Although the initial expression of φ con-
tains much less number of monomials than in the original Algorithm S2, elimination
of y1 itself introduces many new monomials in φ, that is, soon φ becomes almost full.
Consequently, the elimination phase continues to make Θ(mt2) field operations as be-
fore, that is, the theoretical running time of S2′ is the same as that of S2. Still, the effects
of our heuristic are clearly noticeable in practical implementations.

As described in Section 6, the y-coordinates y(R(1)) and y(R(2)) need not be com-
puted. It is, however, necessary to symbolically compute the y-coordinates of all inter-
mediate sums.

9 Experimental Results

Our batch-verification algorithms are implemented using the GP/PARI calculator [11]
(version 2.3.5). Our choice of this implementation platform is dictated by the symbolic-
computation facilities and an easy user interface provided by the calculator. All exper-
iments are carried out in a 2.33 MHz Xeon server running Mandriva Linux Version
2010.1. The GNU C compiler 4.4.3 is used for compiling the GP/PARI calculator.

In Table 2, we list the average times for carrying out single scalar multiplications in
the NIST prime curves. This table also lists the times for single square-root calculations
in the underlying fields. Table 3 lists the overheads associated with the three algorithms
N, S1 and S2, and their variants N′, S1′ and S2′. These overhead figures do not include
the scalar-multiplication times. The algorithms S1, S1′ and S2 become impractical for
batch sizes t > 6, so these algorithms are not implemented for t = 7 and t = 8.

Table 2. Timings (ms) for NIST prime curves

P-192 P-224 P-256 P-384 P-521
Time for Scalar Multiplication (in E(Fq)) 1.82 2.50 3.14 7.33 14.38

Time for Square-root (in Fq) 0.06 0.35 0.09 0.26 0.67



14 S. Karati et al.

Table 3. Overheads (ms) for different batch-verification algorithms

Naive (N) Naive (N′)
t t

Curve 2 3 4 5 6 7 8 2 3 4 5 6 7 8
P-192 0.18 0.39 0.76 1.57 3.40 7.71 17.00 0.13 0.19 0.26 0.33 0.39 0.46 0.52
P-224 0.81 1.34 2.04 3.29 5.63 10.60 21.50 0.71 1.06 1.42 1.78 2.14 2.49 2.85
P-256 0.24 0.49 0.97 1.95 4.18 9.27 20.85 0.19 0.29 0.38 0.48 0.58 0.68 0.78
P-384 0.66 1.15 1.95 3.51 6.76 13.80 29.90 0.53 0.81 1.08 1.35 1.62 1.90 2.17
P-521 1.66 2.70 4.21 6.73 11.63 21.00 43.10 1.36 2.05 2.74 3.42 4.11 4.80 5.49

Symbolic (S1) Symbolic (S1′)
t t

Curve 2 3 4 5 6 2 3 4 5 6
P-192 0.14 0.57 2.01 8.66 40.50 0.07 0.20 0.70 1.60 4.40
P-224 0.15 0.60 2.10 9.50 45.60 0.07 0.20 0.80 1.80 4.70
P-256 0.16 0.61 2.17 9.78 46.30 0.08 0.21 0.82 1.90 4.90
P-384 0.18 0.74 2.71 12.56 62.10 0.08 0.30 0.90 2.20 6.10
P-521 0.22 0.90 3.45 16.80 88.40 0.12 0.40 1.30 2.90 8.00

Symbolic (S2) Symbolic (S2′)
t t

Curve 2 3 4 5 6 2 3 4 5 6 7 8
P-192 0.07 0.30 0.76 2.39 6.65 0.07 0.11 0.32 0.61 1.14 2.36 5.46
P-224 0.07 0.32 0.84 2.53 7.11 0.07 0.12 0.33 0.64 1.21 2.51 5.91
P-256 0.08 0.32 0.80 2.51 7.08 0.08 0.12 0.33 0.64 1.22 2.52 5.88
P-384 0.09 0.37 0.91 2.85 8.15 0.09 0.14 0.38 0.72 1.41 2.95 7.12
P-521 0.11 0.44 1.07 3.45 10.02 0.11 0.18 0.42 0.95 1.76 3.72 9.26

Table 4 records the speedup values achieved by the six algorithms N, N′, S1, S1′, S2
and S2′. Here, the speedup is computed with respect to individual verification, and in-
corporates both scalar-multiplication times and batch-verification overheads. The maxi-
mum achievable speedup values (t in the case of same signer, and 2t/(t+1) in the case
of different signers) are also listed in Table 4, to indicate how our batch-verification
algorithms compare with the ideal cases. The maximum speedup obtained by our fully
ECDSA-compliant algorithms is 6.20 in the case of same signer, and 1.70 in the case
of different signers, both achieved by Algorithm S2′ for the curve P-521 and for t = 7.

From Table 4, it is evident that one should use Algorithm S2′ if extra information (a
bit identifying the correct square root of each r3i +ari+ b) is not available. In this case,
the optimal batch size is t = 7 (or t = 6 if the underlying field is small). If, on the other
hand, disambiguating extra bits are appended to ECDSA signatures, one should use S2′

for t � 4 for (curves over) small fields and for t � 6 (or t � 7) for large fields. If the
batch size increases beyond these bounds, it is preferable to use Algorithm N′.



Batch Verification of ECDSA Signatures 15

Table 4. Speedup obtained by different batch-verification algorithms

Same signer Different signers
Curve t Ideal N N′ S1 S1′ S2 S2′ Ideal N N′ S1 S1′ S2 S2′

P-192 2 2.00 1.91 1.94 1.93 1.96 1.96 1.96 1.33 1.29 1.30 1.30 1.32 1.32 1.32
3 3.00 2.71 2.86 2.59 2.84 2.77 2.91 1.50 1.42 1.46 1.39 1.46 1.44 1.48
4 4.00 3.31 3.75 2.58 3.35 3.31 3.68 1.60 1.48 1.56 1.31 1.49 1.48 1.55
5 5.00 3.49 4.62 1.48 3.47 3.02 4.28 1.67 1.46 1.62 0.93 1.45 1.37 1.58
6 6.00 3.10 5.46 0.49 2.72 2.12 4.57 1.71 1.35 1.67 0.41 1.27 1.13 1.57
7 7.00 2.24 6.28 – – – 4.25 1.75 1.14 1.70 – – – 1.51
8 8.00 1.41 7.07 – – – 3.20 1.78 0.87 1.73 – – – 1.33

P-224 2 2.00 1.72 1.75 1.94 1.97 1.97 1.97 1.33 1.20 1.22 1.31 1.32 1.32 1.32
3 3.00 2.37 2.48 2.68 2.88 2.82 2.93 1.50 1.32 1.36 1.42 1.47 1.45 1.48
4 4.00 2.84 3.12 2.82 3.45 3.42 3.75 1.60 1.38 1.44 1.37 1.50 1.50 1.56
5 5.00 3.02 3.70 1.72 3.68 3.32 4.43 1.67 1.37 1.49 1.02 1.49 1.43 1.60
6 6.00 2.82 4.23 0.59 3.09 2.48 4.83 1.71 1.30 1.53 0.48 1.35 1.22 1.60
7 7.00 2.24 4.70 – – – 4.66 1.75 1.14 1.56 – – – 1.55
8 8.00 1.51 5.13 – – – 3.67 1.78 0.91 1.58 – – – 1.41

P-256 2 2.00 1.93 1.94 1.95 1.97 1.97 1.97 1.33 1.30 1.31 1.31 1.32 1.32 1.32
3 3.00 2.78 2.88 2.73 2.90 2.85 2.94 1.50 1.44 1.47 1.43 1.48 1.46 1.49
4 4.00 3.46 3.78 2.97 3.54 3.55 3.80 1.60 1.51 1.56 1.41 1.52 1.52 1.57
5 5.00 3.82 4.67 1.96 3.84 3.57 4.54 1.67 1.51 1.63 1.10 1.51 1.47 1.61
6 6.00 3.60 5.52 0.72 3.37 2.82 5.02 1.71 1.44 1.67 0.55 1.40 1.30 1.62
7 7.00 2.83 6.36 – – – 5.00 1.75 1.28 1.71 – – – 1.59
8 8.00 1.85 7.18 – – – 4.13 1.78 1.02 1.73 – – – 1.47

P-384 2 2.00 1.91 1.93 1.98 1.99 1.99 1.99 1.33 1.29 1.30 1.32 1.33 1.33 1.33
3 3.00 2.78 2.85 2.86 2.94 2.93 2.97 1.50 1.44 1.46 1.46 1.48 1.48 1.49
4 4.00 3.53 3.74 3.38 3.77 3.77 3.90 1.60 1.52 1.56 1.49 1.56 1.56 1.58
5 5.00 4.03 4.59 2.69 4.35 4.19 4.77 1.67 1.54 1.62 1.30 1.59 1.57 1.64
6 6.00 4.11 5.42 1.15 4.24 3.86 5.47 1.71 1.51 1.66 0.78 1.53 1.48 1.67
7 7.00 3.61 6.23 – – – 5.83 1.75 1.42 1.70 – – – 1.67
8 8.00 2.63 7.01 – – – 5.38 1.78 1.22 1.72 – – – 1.60

P-521 2 2.00 1.89 1.91 1.98 1.99 1.99 1.99 1.33 1.28 1.29 1.33 1.33 1.33 1.33
3 3.00 2.74 2.80 2.91 2.96 2.95 2.98 1.50 1.43 1.45 1.48 1.49 1.49 1.50
4 4.00 3.49 3.66 3.57 3.83 3.86 3.94 1.60 1.51 1.54 1.53 1.57 1.58 1.59
5 5.00 4.05 4.48 3.16 4.54 4.46 4.84 1.67 1.55 1.60 1.40 1.61 1.60 1.65
6 6.00 4.27 5.26 1.47 4.69 4.45 5.65 1.71 1.54 1.65 0.91 1.59 1.56 1.68
7 7.00 4.05 6.02 – – – 6.20 1.75 1.48 1.68 – – – 1.70
8 8.00 3.20 6.74 – – – 6.05 1.78 1.33 1.71 – – – 1.66

10 Conclusion

In this paper, we have proposed six algorithms for the batch verification of ECDSA sig-
natures. To the best of our knowledge, these are the first batch-verification algorithms
ever proposed for ECDSA. In particular, development of algorithms based upon sym-
bolic manipulations appears to be a novel approach in the history of batch-verification
algorithms. There are several ways to extend our study, some of which are listed below.



16 S. Karati et al.

– Section 8 describes a way to reduce the running time of the symbolic-addition
phase of Algorithm S2 from O(mt2) to O(

√
mt2). An analogous speedup for the

elimination phase would be very useful.
– Our best symbolic-computation algorithm runs in O(mt2) time. Removal of a fac-

tor of t (that is, designing an O(mt)-time algorithm) would be useful to achieve
higher speedup values.

– It is of interest to study our algorithms in conjunction with the earlier works [1,3]
on ECDSA*.

– Our batch verification algorithms can be easily ported to other curves (like the
Koblitz and Pseudorandom families recommended by NIST). Solving quadratic
equations in binary fields is somewhat more involved than modular square-root
computations in prime fields, so our symbolic-manipulation algorithms are ex-
pected to be rather effective for binary fields.

References

1. Antipa, A., Brown, D., Gallant, R., Lambert, R., Struik, R., Vanstone, S.: Accelerated Verifi-
cation of ECDSA Signatures. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897,
pp. 307–318. Springer, Heidelberg (2006)

2. ANSI, Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Dig-
ital Signature Algorithm (ECDSA), ANSI X9.62, approved January 7 (1999)

3. Cheon, J.H., Yi, J.H.: Fast Batch Verification of Multiple Signatures. In: Okamoto, T., Wang,
X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 442–457. Springer, Heidelberg (2007)

4. Harn, L.: Batch verifying multiple RSA digital signatures. Electronics Letters 34(12), 1219–
1220 (1998)

5. Hwang, M.-S., Lin, I.-C., Hwang, K.-F.: Cryptanalysis of the Batch Verifying Multiple RSA
Digital Signatures. Informatica 11(1), 15–19 (2000)

6. Johnson, D., Menezes, A.: The Elliptic Curve Digital Signature Algorithm (ECDSA). Inter-
national Journal on Information Security 1, 36–63 (2001)

7. Naccache, D., M’Raı̈hi, D., Vaudenay, S., Raphaeli, D.: Can D.S.A. be Improved: Complex-
ity Trade-Offs with the Digital Signature Standard. In: De Santis, A. (ed.) EUROCRYPT
1994. LNCS, vol. 950, pp. 77–85. Springer, Heidelberg (1995)

8. NIST, Digital Signature Standard (DSS) (2006),
http://csrc.nist.gov/publications/drafts/fips 186-3/Draft-
FIPS-186-3%20 March2006.pdf

9. NIST, Recommended elliptic curves for federal government use (July 1999),
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur
.pdf

10. NIST, Secure Hash Standard (SHS) (2007), http://csrc.nist.gov/publications
/drafts/fips 180-3/draft fips-180-3 June-08-2007.pdf

11. PARI Group, PARI/GP Development Headquarters (2003-2008),
http://pari.math.u-bordeaux.fr/

12. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and pubic-
key cryptosystem. Communications of the ACM 2, 120–126 (1978)

13. Shanks, D.: Five number theoretic algorithms. In: Proceedings of the Second Manitoba Con-
ference on Numerical Mathematics, pp. 51–70 (1973)

http://csrc.nist.gov/publications/drafts/fips_186-3/Draft-FIPS-186-3%20_March2006.pdf
http://csrc.nist.gov/publications/drafts/fips_186-3/Draft-FIPS-186-3%20_March2006.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://csrc.nist.gov/publications/drafts/fips_180-3/draft_fips-180-3_June-08-2007.pdf
http://csrc.nist.gov/publications/drafts/fips_180-3/draft_fips-180-3_June-08-2007.pdf
http://pari.math.u-bordeaux.fr/


Batch Verification of ECDSA Signatures 17

Appendix

A Properties of Rx and Ry

Theorem 1. Rx contains only even-degree monomials, and Ry contains only odd-
degree monomials in the variables y1, y2, . . . , yt.

Proof. We proceed by induction on the batch size t � 1. If t = 1 (case of individual
verification), we have Rx = r1 and Ry = y1, for which the theorem evidently holds.

So assume that t � 2. We compute R =
∑t

i=1 Ri as R′ + R′′ with R′ =
∑τ

i=1 Ri

and R′′ =
∑t

i=τ+1Ri for some τ in the range 1 � τ � t− 1. Let R′ = (R′
x, R

′
y) and

R′′ = (R′′
x, R

′′
y). The inductive assumption is that all non-zero terms of R′

x and R′′
x are

of even degrees (in y1, . . . , yτ and yτ+1, . . . , yt, respectively), and all non-zero terms
of R′

y and R′′
y are of odd degrees.

We first symbolically compute λ = (R′′
y − R′

y)/(R
′′
x − R′

x) as a rational function.
Clearing the variables yi from the denominator multiplies both the numerator and the
denominator of λ by polynomials of non-zero terms having even degrees. Every substi-
tution of y2i by the field element r3i +ari+b reduces the yi-degree of certain terms by 2,
so the parity of the degrees in these terms is not altered. Finally,λ becomes a polynomial
with each non-zero term having odd degree. But then, Rx = λ2 − R′

x − R′′
x is a poly-

nomial with each non-zero term having even degree, whereas Ry = λ(R′
x −Rx)−R′

y

is a polynomial with each non-zero term having odd degree. Further substitutions of y2i
by r3i + ari + b to simplify Rx and Ry preserve these degree properties.

B Derivation of δ

For computing the number of roots (r1, r2, . . . , rt) of detM = 0, we treat r1, r2, . . . , rt
as symbols, and need to calculate an upper bound on the degree δ of each individual
ri. Without loss of generality, we compute an upper bound on the degree δ of r1 in
detM = 0. To this effect, we first look at the expressions for Rx and Ry which are el-
ements of Fq(r1, r2, . . . , rt)[y1, y2, . . . , yt]. We can write Rx = gx/h and Ry = gy/h,
where gx, gy are polynomials in Fq[r1, r2, . . . , rt, y1, y2, . . . , yt], and the common de-
nominator h is a polynomial in Fq[r1, r2, . . . , rt]. Let ηt denote the maximum of the
r1-degrees in gx, gy and h. We first recursively derive an upper bound for ηt.

We compute R = R′ +R′′ with R′ = (R′
x, R

′
y) =

∑τ
i=1 Ri and R′′ = (R′′

x, R
′′
y) =∑t

i=τ+1Ri, where τ = �t/2�. The r1-degree of R′ is ητ , whereas the r1-degree of R′′

is 0. The initial r1-degree of λ = (R′′
y − R′

y)/(R
′′
x − R′

x) is at most ητ . Clearing y1
from the denominator of λ changes the r1-degree to 2ητ + 3. Subsequent eliminations
of y2, . . . , yt finally reduces λ with a y-free denominator. The maximum r1-degree of
this expression for λ is 2t−1(2ητ + 3). Therefore, λ2 has r1-degree � 2t(2ητ + 3).
Subsequent computations of Rx = λ2 −R′

x −R′′
x and Ry = λ(R′

x −Rx)−R′
y yield

ηt � (2t + 2t−1)(2ητ + 3) + 2ητ � (2t + 2t−1)(2ητ + 3) + 2ητ

with τ = �t/2�. Solving this recurrence gives the upper bound ηt � 22t+3�log2 t�+2.



18 S. Karati et al.

Now, we follow a sequence of squaring and monomial multiplication to convertRx =
α to a set of linear equations. If Δi is the r1-degree of the i-th equation, we have

Δ1 = ηt,

Δi � 2Δi−1 + 3 for i � 2.

The recurrence relation pertains to the case of squaring. One easily checks that Δi �
(ηt + 3)2i−1 for all i � 1. Finally, the r1-degree of the equation detM = 0 is

δ � Δ1 +Δ2 + · · ·+Δμ � (ηt + 3)(2μ − 1) �
(
22t+3�log2 t�+2 + 3

)(
22

t−1−1 − 1
)
.

Notice that this is potentially a very loose upper bound for δ. In general, we avoid
squaring. Multiplication by a monomial can increase the r1-degree by 3 if the monomial
contains y1. If the monomial does not contain y1, the r1-degree does not increase at all.
Nevertheless, this loose upper bound is good enough in the present context.

C Number of Roots of detM = 0

Let us write the equation detM = 0 as D(r1, r2, . . . , rt) = 0, where the ri-degree of
the multivariate polynomial D is � δ for each i. We assume that D is not identically
zero. We plan to show that the maximum number B(t) of roots of D is � tδqt−1. To
that effect, we first write D as a polynomial in rt:

D(r1, r2, . . . , rt) = Dδ(r1, r2, . . . , rt−1)r
δ
t +Dδ−1(r1, r2, . . . , rt−1)r

δ−1
t + · · ·+

D1(r1, r2, . . . , rt−1)rt +D0(r1, r2, . . . , rt−1).

If D is not identically zero, at least one Di is not identically zero. If (r1, r2, . . . , rt−1)
is a common root of each Di, appending any value of rt gives a root of D. The max-
imum number of common roots of D0, D1, . . . , Dδ is B(t−1). On the other hand, if
(r1, r2, . . . , rt−1) is not a common root of all Di, there are at most δ values of rt satis-
fying D(r1, r2, . . . , rt) = 0. We, therefore, have

B(t) � B(t−1)q + (qt−1 −B(t−1))δ = (q − δ)B(t−1) + δqt−1. (14)

Moreover, we have

B(1) � δ. (15)

By induction on t, one can show that B(t) � tδqt−1. This bound is rather tight, particu-
larly for δ 	 q (as it happens in our cases of interest). A polynomialD satisfying equal-
ities in (14) and (15) can be constructed as D(r1, r2, . . . , rt) = Δ(r1)Δ(r2) · · ·Δ(rt),
where Δ is a square-free univariate polynomial of degree δ, that splits over Fq. By the
principle of inclusion and exclusion (or by explicitly solving the recurrence (14)), we
obtain the total number of roots of this D as

δtqt−1 −
(
t

2

)
δ2qt−1 +

(
t

3

)
δ3qt−3 − · · ·+ (−1)t−1δt

= qt − (q − δ)t = δ(qt−1 + (q − δ)qt−2 + (q − δ)2qt−3 + · · ·+ (q − δ)t−1).

If δ 	 q, this count is very close to tδqt−1. It remains questionable whether our equa-
tion detM = 0 actually encounters this worst-case situation, but this does not matter,
at least in a probabilistic sense.



Extended Security Arguments

for Signature Schemes

Sidi Mohamed El Yousfi Alaoui1, Özgür Dagdelen1, Pascal Véron2,
David Galindo3, and Pierre-Louis Cayrel4

1 Darmstadt University of Technology, Germany
2 IML/IMATH Université du Sud Toulon-Var, France

3 University of Luxembourg, Luxembourg
4 Laboratoire Hubert Curien Université de Saint-Etienne, France

Abstract. The well-known forking lemma by Pointcheval and Stern has
been used to prove the security of the so-called generic signature schemes.
These signature schemes are obtained via the Fiat-Shamir transform
from three-pass identification schemes. A number of five-pass identifi-
cation protocols have been proposed in the last few years. Extending
the forking lemma and the Fiat-Shamir transform would allow to ob-
tain new signature schemes since, unfortunately, these newly proposed
schemes fall outside the original framework. In this paper, we provide an
extension of the forking lemma in order to assess the security of what we
call n-generic signature schemes. These include signature schemes that
are derived from certain (2n + 1)-pass identification schemes. We thus
obtain a generic methodology for proving the security of a number of
signature schemes derived from recently published five-pass identifica-
tion protocols, and potentially for (2n + 1)-pass identification schemes
to come.

Keywords: signature schemes, forking lemma, identification schemes.

1 Introduction

The focus of this work is on methodologies to prove the security of digital sig-
nature schemes. Thus, instead of providing security reductions from scratch, the
goal is to provide security arguments for a class of signature schemes, as previ-
ously done in [12,13,9,1,19]. In particular, we aim at extending a pioneering work
by Pointcheval and Stern [12] where a reduction technique was introduced to ob-
tain security arguments for the so-called generic signature schemes. These security
arguments allow for simple proofs and for efficient signature schemes. Moreover,
this type of signature schemes can be derived from identification schemes if the
latter satisfy certain requirements.

Generic Signature Schemes. Pointcheval and Stern call generic signature schemes
those whose signatures are of the form σ = (σ0, h1, σ1), where σ0 is uniformly

A. Mitrokotsa and S. Vaudenay (Eds.): AFRICACRYPT 2012, LNCS 7374, pp. 19–34, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



20 S.M. El Yousfi Alaoui et al.

distributed over a large set, h1 = H(m,σ0) with H being a hash function mod-
eled as a random oracle, m is the message to be signed and σ1 depends just on
σ0 and h1.

The works [12,13] provide security arguments for generic signature schemes
thanks to the use of the forking lemma. This lemma states that a successful forger
can be restarted with a different random oracle in order to get two distinct but
related forgeries. If the generic signature schemes additionally enjoy the existence
of a polynomial-time algorithm, called extractor, that recovers the signing key
from two signatures σ = (σ0, h1, σ1) and σ′ = (σ0, h

′
1, σ

′
1) with h1 �= h′

1, then
unforgeability is guaranteed under a supposedly intractable problem.

Unfortunately, the forking lemma is restricted to 3-tupled signatures. One
would like to obtain an unbounded version of this lemma for signatures of
the form (σ0, h1, σ1, . . . , hn, σn) where hi = Hi(m,σ0, h1, σ1, . . . , hi−1, σi−1) for
n ∈ N. This would allow to address a greater class of signatures. In this work,
we provide such an extension and apply it to assess the security of n-generic
signature schemes. Roughly speaking, n-generic signature schemes are built as
generic signature schemes but are not restricted in the number of tuple entries
as mentioned above.

From Identification Schemes to Signature Schemes. One of the ways to build a
signature scheme is to depart from an existing identification protocol and convert
it into a signature scheme using the well-known Fiat-Shamir (FS) paradigm [5].
In an identification protocol a series of messages are exchanged between two
parties, called prover and verifier, in order to enable a prover to convince a
verifier that it knows a given secret. Zero-knowledge identification protocols [7]
convince a verifier without revealing any other information whatsoever about
the secret itself. Informally, the FS paradigm builds a signature scheme as the
transcript of one execution of the identification scheme, where the challenges
sent by the verifier are replaced by the output of a secure hash function having
as input the message and the current transcript.

In [12] the signatures obtained by applying the FS transform to canonical iden-
tification schemes were generalized to the concept of generic signatures schemes.
Schematically, in a canonical identification scheme a prover sends first a com-
mitment Com, then receives a challenge Ch drawn from a uniform distribution,
and finishes the interaction with a message, called response Rsp. Finally, the
verifier applies a verifying algorithm to the prover’s public key, determining ac-
ceptance or rejection. In addition, the identification protocol needs to satisfy
special-soundness. Roughly, special-soundness means there exists a polynomial-
time algorithm which is able to extract the witness of the prover, given two
correlated transcripts (Com,Ch,Rsp), (Com′,Ch′,Rsp′) with Com = Com′ and
Ch �= Ch′.

Many zero-knowledge identification schemes have been proposed whose
conversion to signature schemes lead to generic signature schemes like [5,6,17].
However, several signature schemes which are derived from 5-pass identifica-
tion protocols are not covered by the abstraction above. Thus, we are obliged
to prove their security from scratch. Examples of schemes falling outside the



Extended Security Arguments for Signature Schemes 21

Pointcheval-Stern framework can be found in [3,16,17,4,10,11,15,8,18]. The au-
thors must provide direct proofs for the signature schemes in these works deriving
from 5-pass identification. These proofs often appear quite complex. Moreover,
the authors of [14] recently left open to find a security reduction for signatures
derived from a 5-pass identification protocol. We show that all aforementioned 5-
pass identification schemes give raise to 2-generic signature schemes. We isolate
a property, called n-soundness, that implies unforgeability of all the schemes
satisfying it. Informally, n-soundness means that the signing key can be ex-
tracted from two correlated valid signatures σ = (σ0, h1, . . . , σn−1, hn, σn) and
σ′ = (σ0, h1, . . . , σn−1, h

′
n, σ

′
n) with hn �= h′

n. In particular, we prove in Section
4 the security of the resulting signature scheme from [14], which was missing in
the original paper.

Related Work. Pointcheval and Stern [12,13] provided security arguments for
generic signature schemes. However, these generic signature schemes are restric-
tive in the sense that (a) they allow transformations only based on canonical
identification schemes, and (b) there exists an extractor for these schemes. The
work of Abdalla et al. [1] introduced a new transformation from identification
schemes (IS) to signature schemes (SS) without insisting on the existence of such
an extractor. Nonetheless, they require again canonical IS. Ohta and Okamoto
[9] assume that the IS is honest-verifier (perfect) zero-knowledge and that it
is computationally infeasible for a cheating prover to convince the verifier to
accept. Again, this result is valid only for three-pass IS.

Very recently, Yao and Zhao [19] presented what they call challenge-divided
Fiat-Shamir paradigm. Here, security results are set for three-pass IS with di-
vided random challenges. Even though they consider more challenges, still iden-
tification schemes with more than three interactions are not captured by their
paradigm. In this work, we consider an unlimited number of challenges as long as
they are randomly chosen from large enough sets. To the best of our knowledge
this is the first transformation which gives generic security statements for SS
derived from (2n+ 1)-pass IS.

Organization. We introduce in Section 2 the necessary background to understand
the paper. In Section 3 we present the notion of n-generic signature schemes and
provide an extended forking lemma that applies to this new signature type.
We exemplify in Section 4 our paradigm and derive a provably secure 2-generic
signature scheme based on multivariate polynomials.

2 Preliminaries

We begin by introducing some notations and briefly reviewing some definitions. A
function μ(·) is negligible in n, or just negligible, if for every positive polynomial
p(·) and all sufficiently large n it holds that μ(n) < 1/p(n). Otherwise, we
call μ(·) non-negligible. Note that the sum of two negligible functions (resp.
non-negligible) is again negligible (resp. non-negligible) whereas the sum of one



22 S.M. El Yousfi Alaoui et al.

non-negligible function π(·) and one negligible function μ(·) is non-negligible,
i.e. there exists a positive polynomial p(·) such that for infinitely many n’s it
holds that π(n) + μ(n) > 1/p(n).

Two distributions ensembles {Xn}n∈N and {Yn}n∈N are said to be (computa-
tionally) indistinguishable, if for every non-uniform polynomial-time algorithm
D, there exists a negligible function μ(·) such that

|Pr[D(Xn) = 1]− Pr[D(Yn) = 1] | ≤ μ(n).

We write s
$←− AO(x) to denote the output s by a probabilistic algorithm A with

input x having black-box access to an oracle O. In particular, this means, that
A may query oracle O in order to derive s from its answers.

Digital Signatures. In the following we give the definition of a signature scheme
together with the corresponding standard security level.

Definition 1 (Signature scheme). A signature scheme is a collection of the
following algorithms S = (KGen, Sign,Vf) defined as follows.

KGen(1κ) is a probabilistic algorithm which, on input a security parameter 1κ,
outputs a secret and a public key (sk, pk).

Sign(sk,m) is a probabilistic algorithm which, on input a secret key sk and a
message m, outputs a signature σ.

Vf(pk,m, σ) is a deterministic algorithm which, on input a public key pk, a
message m and a signature σ, outputs either 1 (= valid) or 0 (= invalid).

We require correctness of the verification, i.e., the verifier will always accept
genuine signatures. More formally, for all (sk, pk)← KGen(1κ), any message m,
any σ ← Sign(sk,m), we always have Vf(pk,m, σ) = 1.

From signature schemes we require that no outsider should be able to forge a
signer’s signature. The following definition captures this property formally.

Definition 2 (Unforgeability of a Signature Scheme). A signature scheme
S = (KGen, Sign,Vf) is existentially unforgeable under (adaptively) chosen-
message attacks if for any efficient algorithm A making at most qs oracle queries,
the probability that the following experiment returns 1 is negligible:

Experiment UnforgeabilitySA(κ)

(sk, pk)
$←− KGen(1κ)

(σ∗,m∗) $←− ASign′(·)(pk)

Sign′(·) on input m outputs σ
$←− Sign(sk,m)

Return 1 iff
Vf(pk,m∗, σ∗) = 1 and m∗ was not queried to Sign′(·) by A

The probability is taken over all coin tosses of KGen, Sign, and A.
Note that qs is bounded by a polynomial in the security parameter κ. Definition 2
captures unforgeability against adaptively chosen-message attacks for signature
schemes. Unforgeability against no-message attacks is defined analogously but
qs must be 0.



Extended Security Arguments for Signature Schemes 23

Splitting Lemma. The following lemma is extensively used in the forking lemma
proofs. It states that one can split a given set X into two subsets, (a) a non-
negligible subset Ω consisting of ”good” x’s which provides a non-negligible
probability of success over y, and (b) its complement, consisting of ”bad” x’s.

Lemma 1 (Splitting Lemma [12, Lemma 3]). Let A be a subset of X × Y
such that Pr [A(x, y)] ≥ ε, then there exist Ω ⊂ X such that

1. Pr [x ∈ Ω] ≥ ε/2
2. If a ∈ Ω, then Pr [A(a, y)] ≥ ε/2.

See [12, Lemma 3] for the proof.

3 Extended Security Arguments for Digital Signatures

In this section we give the formal definition of an n-generic signature scheme and
extend the forking lemma accordingly. This allows us to prove that any n-generic
signature scheme satisfying what we call n-soundness is existentially unforgeable
in the random oracle model.

3.1 n-Generic Signature Schemes

Let Hi denote a hash function with output of cardinality 2κi (derived from the
security parameter κ).

Definition 3 (n-Generic Signature Scheme). Ann-generic signature scheme
is a digital signature scheme S = (KGen, Sign,Vf) with the following properties:

Structure A signature σ for a message m is of the form (σ0, h1, . . . , σn−1, hn, σn)
where h1 = H1(m,σ0) and hi = Hi(m,σ0, . . . , hi−1, σi−1) for i = 2, . . . , n
with Hi being modeled as a random oracle. σi depends on previous σ0, . . . , σi−1

and hash values h1, . . . , hi for i = 1, . . . , n.
Honest-Verifier Zero-Knowledge (HVZK) Assume the hash functions Hi

are modeled by publicly accessible random oracles. There exists a PPT algo-
rithm Z, the zero-knowledge simulator, controlling the random oracles, such
that for any pair of PPT algorithms D = (D0, D1) the following distributions
are computationally indistinguishable:
– Let (pk, sk,m, state) ← D0(1

κ). If pk belongs to sk, then set
σ = (σ0, h1, . . . , σn−1, hn, σn) ← Sign(sk,m), else σ ← ⊥. Output
D1(σ, state).

– Let (pk, sk,m, state) ← D0(1
κ). If pk belongs to sk, then set

σ = (σ0, h1, . . . , σn−1, hn, σn) ← Z(pk,m, 1), else σ ← Z(pk,m, 0).
Output D1(σ, state).

Notice that the structure of a generic signature as originally proposed in [12]
matches that of a 1-generic signature. For the sake of simplicity we occasionally
write σ = (σ0, . . . , σn, h1 . . . , hn) instead of (σ0, h1, . . . , σn−1, hn, σn).



24 S.M. El Yousfi Alaoui et al.

3.2 An Extended Forking Lemma

Pointcheval and Stern introduced in [12] the forking lemma as a technique to
prove the security of some families of signature schemes, namely generic signature
schemes with special-soundness. This well-known lemma is applied to get two
forgeries for the same message using a replay attack, after that, one can use the
two obtained forgeries to recover the secret key. They also show that a successful
forger in the adaptive chosen-message attack model implies a successful forger
in the no-message attack model, as long as the honest-verifier zero-knowledge
property holds. In the following we propose an extension of the original forking
lemma that applies to n-generic signature schemes. We first provide the Extended
Forking Lemma in the no-message attack model.

No-Message Attack Model

Lemma 2. Let S be an n-generic signature scheme with security parameter κ.
Let A be a PPT Turing machine given only the public data as input. If A can find
a valid signature (σ0, . . . , σn, h1, . . . , hn) for a message m with a non-negligible
probability, after asking the n random oracles O1, . . . ,On polynomially often (in
κ), then, a replay of this machine with the same random tape, the same first
oracles O1, . . . ,On−1 and a different last oracle On, outputs two valid signatures
(σ0, . . . , σn, h1, . . . , hn) and (σ0, . . . , σ

′
n, h1, . . . , h

′
n) for the same message m with

a non-negligible probability such that hn �= h′
n.

Proof. We are given a no-message adversary A, which is a PPT Turing machine
with a random tape ω taken from a set Rω. During the attack, A may ask
q1, . . . , qn (polynomially bounded in κ) queries to random oracles O1, . . . ,On

with q
(i)
j denoting the j-query to oracle Oi. We denote by q

(i)
1 , . . . , q

(i)
qi the qi

distinct queries to the random oracles Oi and let r(i) = (r
(i)
1 , . . . , r

(i)
qi ) be the

answers of Oi, for 1 ≤ i ≤ n. Let Sqi
i denote the set of all possible answers from

Oi, i.e., {r(i)1 , . . . , r
(i)
qi } ∈ Sqi

i . Furthermore, we denote by

E the event that A can produce a valid signature (σ0, . . . , σn, h1, . . . , hn) for

message m by using random tape ω and the answers r
(i)
1 , . . . , r

(i)
qi for i ≤ n.

Note that a valid signature implies hi = Oi(m,σ0, h1, . . . , hi−1, σi−1).
F the event that A has queried the oracle On with input

(m,σ0, h1, . . . , hn−1, σn−1), i.e.,

∃j ≤ qn : q
(n)
j = (m,σ0, h1, . . . , hn−1, σn−1).

Accordingly, its complement ¬F denotes

∀j ≤ qn : q
(n)
j �= (m,σ0, h1, . . . , hn−1, σn−1).

By hypothesis of the lemma, the probability that event E occurs (Pr[E ]), is non-
negligible, i.e., there exists a polynomial function T (·) such that Pr[E ] ≥ 1

T (κ) .

We know that

Pr[E ] = Pr[E ∧ F ] + Pr[E ∧ ¬F ] . (1)



Extended Security Arguments for Signature Schemes 25

Furthermore, we get

Pr [hn = On(m,σ0, h1, . . . , hn−1, σn−1) ∧ ¬F ]
= Pr [hn = On(m,σ0, h1, . . . , hn−1, σn−1) | ¬F ] · Pr[¬F ]
≤ Pr [hn = On(m,σ0, h1, . . . , hn−1, σn−1) | ¬F ]

≤ 1

2kn
,

because the output of On is unpredictable. The event E implies that
hn = On(m,σ0, h1, . . . , hn−1, σn−1), and thus we get

Pr[E ∧ ¬F ] ≤ Pr [hn = On(m,σ0, h1, . . . , hn−1, σn−1) ∧ ¬F ] ≤
1

2kn
(2)

Relations (1) and (2) lead to

Pr[E ∧ F ] ≥ 1

T (κ)
− 1

2kn
≥ 1

T ′(κ)
(3)

Note that a polynomial T ′(·) must exist since the difference between a non-
negligible and negligible term is non-negligible. Therefore, ∃l ≤ qn so that

Pr
[
E ∧ q

(n)
l = (m,σ0, h1, . . . , hn−1, σn−1)

]
≥ 1

qnT ′(κ)
.

Indeed, if we suppose that, ∀l ∈ {1, . . . , qn},

Pr
[
E ∧ q

(n)
l = (m,σ0, h1, . . . , hn−1, σn−1)

]
<

1

qnT ′(κ)

then,

Pr[E ∧ F ] = Pr
[
E ∧ (∃j ≤ qn, q

(n)
j = (m,σ0, h1, . . . , hn−1, σn−1))

]
≤

qn∑
j=1

Pr
[
E ∧ q

(n)
j = (m,σ0, h1, . . . , hn−1, σn−1)

]
<

qn
qnT ′(κ)

=
1

T ′(κ)

This leads to a contradiction with (3). Further, we define

B = {(ω, r(1), . . . , r(n)) s.t. E ∧ q
(n)
l = (m,σ0, h1, . . . , hn−1, σn−1)}.

Since, B ⊂ Rω × Sq1
1 × . . . × Sqn

n and Pr[B] ≥ 1
qnT ′(κ) , by using the splitting

lemma we have:

– ∃Ω ⊂ Rω such that Pr[ω ∈ Ω] ≥ 1
2qnT ′(κ) .

– ∀ω ∈ Ω, Pr
[
(ω, r(1), . . . , r(n)) ∈ B

]
≥ 1

2qnT ′(κ) , where the probability is

taken over Sq1
1 × . . .× Sqn

n .



26 S.M. El Yousfi Alaoui et al.

We define

B′ = {(ω, r(1), . . . , r(n)) s.t. (ω, r(1), . . . , r(n)) ∈ B ∧ ω ∈ Ω}.

Recall that r(i) = (r
(i)
1 , . . . , r

(i)
qi ) where r

(i)
j ∈ Si for 1 ≤ j ≤ qi. Since,

B′ ⊂ (Rω × Sq1
1 × . . .× Sl−1

n )× Sqn−l+1
n ,

by using the splitting lemma again we get

– ∃Ω′ ⊂ Rω × Sq1
1 × . . .× Sl−1

n such that

Pr
[
(ω, r(1), . . . , r(n−1), (r

(n)
1 , . . . , r

(n)
l−1)) ∈ Ω′

]
≥ 1

4qnT ′(κ) .

– ∀(ω, r(1), . . . , r(n−1), (r
(n)
1 , . . . , r

(n)
l−1)) ∈ Ω′,

Pr
[
(ω, r(1), . . . , r(n−1), (r

(n)
1 , . . . , r

(n)
l−1, r

(n)
l , . . . , r

(n)
qn )) ∈ B′

]
≥ 1

4qnT ′(κ) ,

where the probability is taken over Sqn−l+1
n .

As a result, if we choose l, ω, (r(1), . . . , r(n−1), (r
(n)
1 , . . . , r

(n)
l−1)), (r

(n)
l , . . . , r

(n)
qn ),

and (r′(n)l , . . . , r′(n)qn ) randomly, then we obtain two valid signatures
(σ0, . . . , σn, h1, . . . , hn) and (σ0, . . . , σ

′
n, h1, . . . , h

′
n) for message m with a non-

negligible probability such that hn �= h′
n.

1

��

Chosen-Message Attack Model

We now provide the Extended Forking Lemma in the adaptively chosen-message
attack model. In this model, an adversary may adaptively invoke a signing oracle
and is successful if it manages to compute a signature on a new message. If the
signing oracle outputs signatures which are indistinguishable from a genuine
signer without knowing the signing key, then using the simulator one can obtain
two distinct signatures with a suitable relation from a single signature, similarly
to the no-message scenario.

Theorem 1 (The Chosen-Message Extended Forking Lemma). Let S

be an n-generic signature scheme with security parameter κ. Let A be a PPT
algorithm given only the public data as input. We assume that A can find a valid
signature (σ0, . . . , σn, h1, . . . , hn) for message m with a non-negligible probability,
after asking the n random oracles O1, . . . ,On, and the signer polynomially often
(in κ). Then, there exists another PPT algorithm B which has control over A by
replacing interactions with the real signer by a simulation, and which provides
with a non-negligible probability two valid signatures (σ0, . . . , σn, h1, . . . , hn) and
(σ0, . . . , σ

′
n, h1, . . . , h

′
n) for the same message m such that hn �= h′

n.

1 Since l is the index of A’s query and there are only polynomially number of queries
made by A, our success probability remains non-negligible when picking l randomly.



Extended Security Arguments for Signature Schemes 27

Proof. We consider a PPT algorithm B that executes A in such a way that B
simulates the environment of A. Therefore, B must simulate the interactions of
A with random oraclesO1, . . . ,On and with the real signer. Then, we could see B
as an algorithm performing a no-message attack against the signature scheme S.

Let Sim denote the zero-knowledge simulator of S that can simulate the an-
swers of the real signer without knowledge of the secret key and has access to
the random oracles Oi (1 ≤ i ≤ n). Let A be an adaptively chosen-message ad-
versary, which is a probabilistic polynomial time Turing machine with a random
tape ω taken from a set Rω. During the attack, A may ask q1, . . . , qn queries to
random oracles O1, . . . ,On, and qs queries (possibly repeated) to Sim. The val-

ues q1, . . . , qn and qs are polynomially bounded in κ. We denote by q
(i)
1 , . . . , q

(i)
qi

the qi distinct queries to the random oracles Oi, and by m(1), . . . ,m(qs) the qs
queries to the simulator Sim.

The simulator Sim answers a tuple (σ
(j)
0 , . . . , σ

(j)
n , h

(j)
1 , . . . , h

(j)
n ) as a signature

for a message m(j), for each integer j with 1 ≤ j ≤ qs. Then, the adversary A
assumes that h

(j)
i = Oi(m

(j), σ
(j)
0 , h

(j)
1 , . . . , h

(j)
i−1, σ

(j)
i−1) holds for all 1 ≤ i ≤ n

and 1 ≤ j ≤ qs, and stores all these relations.
Now we need to consider potential “collisions” of queries in the random ora-

cles. There are two kind of collisions that can appear. That is, (a) the simulator
Sim queries the random oracle with the same input the adversary has asked
before (let us denote this event by E1), and (b) Sim asks the same question
repeatedly (let us denote this event by E2).

We show that the probabilities of such events are negligible.

Pr[E1] = Pr[∃i ∈ {1, . . . , n}; ∃j ∈ {1, . . . , qs}; ∃t ∈ {1, . . . , qn}|

(m(j), σ
(j)
0 , h

(j)
1 , . . . , h

(j)
i−1, σ

(j)
i−1) = q

(i)
t ]

≤
n∑

i=1

qs∑
j=1

qn∑
t=1

Pr[(m(j), σ
(j)
0 , h

(j)
1 , . . . , h

(j)
i−1, σ

(j)
i−1) = q

(i)
t ] ≤ nqsqn

2κ
,

which is negligible, assuming that the σi’s are random values drawn from a large
set with cardinality greater than 2κ.
Moreover, we have

Pr[E2] = Pr[∃i ∈ {1, . . . , n}; ∃j, j′ ∈ {1, . . . , qs} : j �= j′|

(m(j), σ
(j)
0 , h

(j)
1 , . . . , h

(j)
i−1, σ

(j)
i−1) = (m(j′), σ

(j′)
0 , h

(j′)
1 , . . . , h

(j′)
i−1, σ

(j′)
i−1)]

≤
n∑

i=1

qs∑
j=1

j∑
j′=1

Pr[(m(j), σ
(j)
0 , h

(j)
1 , . . . , h

(j)
i−1, σ

(j)
i−1) =

(m(j′), σ
(j′)
0 , h

(j′)
1 , . . . , h

(j′)
i−1, σ

(j′)
i−1)] ≤

nq2s
2κ

,

which is also negligible.



28 S.M. El Yousfi Alaoui et al.

Algorithm B succeeds whenever the machine A produces a valid signature
without any collisions. Hence, we have

Pr[B succeeds ] = Pr[A succeeds ]−Pr[E1]−Pr[E2] ≥
1

T (κ)
− nqsqn

2κ
− nq2s

2κ
,

which is non-negligible.
Summing up, we have an algorithm B that performs a no-message attack

against the signature scheme S in polynomial time with non-negligible proba-
bility of success. So we can use Lemma 2 applied to algorithm B, and we will
obtain two valid signatures for the same message, such that hn �= h′

n again in
polynomial time.

��

3.3 Security of n-Generic Signature Schemes

Similar to generic signature schemes defined by Pointcheval and Stern [12], for se-
curity under chosen-message attacks we require from n-generic signature schemes
a property which we call n-soundness. Informally, n-soundness means that the se-
cret key can be extracted from two correlated valid signatures
σ = (σ0, h1, . . . , σn−1, hn, σn) and σ′ = (σ0, h1, . . . , σn−1, h

′
n, σ

′
n) with hn �= h′

n

in polynomial-time and with a non-negligible probability. The notion of special-
soundness2 and n-soundness coincide if n = 1.

Definition 4 (n-Soundness). Let S = (KGen, Sign,Vf) be an n-generic sig-
nature scheme. We call S n-sound if there exists a PPT algorithm K, the
knowledge extractor, such that for any κ and m, any (sk, pk) ← KGen(1κ), any
σ = (σ0, h1, . . . , σn−1, hn, σn) and σ′ = (σ0, h1, . . . , σn−1, h

′
n, σ

′
n) with

Vf(pk,m, σ) = Vf(pk,m, σ′) = 1 and h′
n �= hn, we have sk ← K(pk, σ, σ′) with

non-negligible probability.

The following theorem states that all n-generic signature schemes satisfying n-
soundness are existentially unforgeable under adaptively chosen-message attacks
in the random oracle model.

Theorem 2 (Security of n-Generic Signature Schemes). Let S be an n-
generic signature scheme satisfying n-soundness with underlying hard problem
P. Let κ be the security parameter. Then, S is existentially unforgeable under
adaptively chosen-message attacks.

Proof. We assume that the underlying hardness P of the n-generic signature
scheme is hard, i.e., for all PPT algorithms A the probability to solve a hard
instance of P is negligible. The key generation algorithm KGen of S outputs a se-
cret and public key pair (sk, pk) derived by a hard instance and its corresponding
solution of the problem P.

2 Actually, special-soundness is a notion belonging to identification schemes. However,
since this property is quite similar to the required property of generic signature
schemes, this concept is used for both cases in the literature.



Extended Security Arguments for Signature Schemes 29

Now, assume by contradiction, that S is not existentially unforgeable under
chosen-message attacks. That is, there exists a PPT algorithm B1 such that B1

is able to output a signature σ∗ = (σ0, h1, . . . , σn−1, hn, σn) for a fresh message
m∗ with non-negligible probability. Then, due to the Extended Forking Lemma,
one can construct a PPT algorithm B2 which outputs two correlated signatures
σ∗ = (σ0, h1, . . . , σn−1, hn, σn) and σ∗∗ = (σ0, h1, . . . , σn−1, h

′
n, σ

′
n) with non-

negligible probability such that hn �= h′
n .

Due to the n-soundness of S, we know that there exists an “extractor” which
extracts the secret key given the two signatures above. This contradicts with the
assumption that the underlying problem P is hard, and by implication, we learn
that there cannot exist such a successful forger B1.

4 Applications

In this section we first discuss a transformation from (2n + 1)-pass identifica-
tion protocols with a special structure to signature schemes that in many cases
yields n-generic signature schemes. This is essentially an extended Fiat-Shamir
transform. Then we go on with a specific instance of the aforementioned trans-
formation. We obtain a new signature scheme based on multivariate polynomials
by applying our method to a five-pass identification scheme recently introduced
in [14].

4.1 n-Generic Signature Schemes Derived from Identification
Schemes

Our goal is to enlarge the class of identification protocols to which the Fiat-
Shamir transformation can be applied. We identify a potential set of candidates
that we name n-canonical identification schemes. By n-canonical identification
we mean schemes secure with respect to impersonation against passive attacks,
where the challenges are drawn from an uniform distribution and have 2n + 1
moves.

Definition 5 (n-canonical Identification Protocol). An n-canonical iden-
tification scheme IS = (K,P ,V) is a (2n + 1)-pass interactive protocol. K and
P = (P1, . . . ,Pn+1) are PPT algorithms whereas V = (ChSet,Vf) with ChSet be-
ing a PPT algorithm and Vf a deterministic boolean algorithm. These algorithms
are defined as follows:

K(1κ) upon input a security parameter 1κ, outputs a secret and public key (sk, pk)
and challenge spaces G1, . . . , Gn with 1/|Gi| negligible in 1κ.

P1(sk) upon input a secret key sk outputs the commitment R1.
Pi(sk, R1, C1, . . . , Ri−1, Ci−1) for i = 2, . . . , n, upon input a secret key sk and the

current transcript R1, C1, . . . , Ri−1, Ci−1, outputs the i-th commitment Ri.
Pn+1(sk, R1, C1, . . . , Rn, Cn) upon input a secret key sk and the current tran-

script R1, C1, . . . , Rn, Cn, outputs a response Rsp.



30 S.M. El Yousfi Alaoui et al.

ChSet(pk, i) upon input a public key pk and round number i, outputs a challenge
Ci ∈ Gi.

Vf(pk, R1, C1, . . . , Rn, Cn, Rsp) upon input a public key pk, and the current tran-
script R1, C1, . . . , Rn, Cn, Rsp, outputs either 1 (= valid) or 0 (= invalid).

An n-canonical identification scheme IS has the following properties.

Public-Coin. For any index i ∈ {1, . . . , n} and any (sk, pk, G1, . . . , Gn) ←
K(1κ) the challenge Ci ← ChSet(pk, i) is uniform in Gi.

Honest-Verifier Zero-Knowledge. There exists a PPT algorithm Z, the zero-
knowledge simulator, such that for any pair of PPT algorithms D = (D0, D1)
the following distributions are computationally indistinguishable:

– Let (pk, sk, state) ← D0(1
κ), and trans = (R1, C1, . . . , Rn, Cn, Rsp) ←

〈P(sk, pk),V(pk)〉 if pk belongs to sk, and otherwise trans← ⊥. Output
D1(trans, state).

– Let (pk, sk, state) ← D0(1
κ), and trans = (R1, C1, . . . , Rn, Cn, Rsp) ←

Z(pk, 1) if pk belongs to sk, and otherwise trans ← Z(pk, 0). Output
D1(trans, state).

Note that the definition of 1-canonical identification schemes is identical to that
of canonical identification schemes [1]. An extended Fiat-Shamir transform is ap-
plied to an n-canonical identification scheme and yields an n-generic signature
scheme, just as the original Fiat-Shamir transform yields a generic signature
scheme in [12]. The idea of this transformation consists on replacing the uni-
formly random challenges of the verifier as set by ChSet in the identification
scheme by the outputs of some secure hash functions Hi : {0, 1}∗ → Gi mod-
eled as random oracles. More precisely, let IS = (K,P ,V) be an n-canonical
identification scheme. The joint execution of P(sk, pk) and V(pk) then defines
an interactive protocol between the prover P and the verifier V . At the end of
the protocol V outputs a decision bit b ∈ {0, 1}. An n-generic signature scheme
S = (KGen, Sign,Vf) is derived as follows:

KGen(1κ) takes as input security parameter 1κ and returns K(1κ).
Sign(sk,m) takes as input a secret key sk and a message m and returns the

transcript 〈P(sk, pk),V(pk)〉 as the signature σ, i.e.,

σ = (σ0, h1, . . . , hn, σn) = (R1, C1, . . . , Rn, Cn, Rsp)

or simply σ = (σ0, . . . , σn, h1 . . . , hn) = (R1, . . . , Rn, Rsp, C1, . . . , Cn). Here,
Ci is defined by the equation Ci := Hi(m,R1, . . . , Ri, C1, . . . , Ci−1).

Vf(pk,m, σ) takes as input a public key pk, a message m and a signature σ and
returns V .Vf(pk,m, σ)3 as the decision bit.

3 By V.Vf(pk,m, σ) we mean the verification algorithm performed by the verifier from
the underlying identification scheme IS.



Extended Security Arguments for Signature Schemes 31

The resulting scheme S is an n-generic signature scheme. Indeed, the obtained
scheme S has the right structure and the honest-verifier zero-knowledge property
is guaranteed by (the similar property of) the identification scheme.

However, it is still not guaranteed that S is existentially unforgeable. It lacks
then to check/prove that the resulting scheme S is n-sound. If this is the case
then one can apply Theorem 2 and S is guaranteed to have security against
adaptive chosen-message attacks.

Let us point out that the plain version of most identification protocols does
not directly satisfy the required security level by their choice of challenges spaces
G1, . . . , Gn. In particular, it might be the case that 1/|Gi| is not negligible in
the security parameter 1κ. For that reason, one should typically repeat the ID
protocol several (say δ) times until the desired security level is reached. In that
case the concatenation of δ transcripts 〈P(sk, pk),V(pk)〉 builds the signature
(instead of a single execution of the ID scheme). Moreover, for our security
analysis, we consider that the commitments Ri in all contain more entropy than
kn, the output size of the last hash function. This condition can be achieved by
choosing their domain as large as necessary. Note that in [12] it is assumed that
R1 is uniformly distributed over its corresponding set.

4.2 Examples

Many zero-knowledge identification schemes have been proposed, whose conver-
sion to signature schemes does not lead to generic signature schemes according
to the definition of Pointcheval and Stern [12]. Examples of such schemes are
those based on the Permuted Kernel Problem [15,8], the Permuted Perceptron
Problem [10,11], the Constrained Linear Equations [18], the five-pass variant
of SD problem [17,2], the q-SD problem [4], the SIS problem [3,16] and the
MQ-problem [14]. Fortunately, their conversion to signature schemes belong to
the class of n-generic signature schemes. Unlike [10,11], they even satisfy n-
soundness. Consequently, our result for security of n-generic signature schemes
satisfying n-soundness carries over to the resulting signature schemes derived
from all these aforementioned identification schemes in the random oracle model.

We provide next the security argument for the resulting signature scheme
derived from the MQ-based identification scheme [14]. The conversion of all
aforementioned identification schemes to n-generic signature schemes and its
security can be formulated in a very similar fashion. For this reason, we omit
these proofs here.

The (Five-Pass) MQ Identification Scheme [14] and Its Signature. Re-
cently at Crypto 2011, Sakumoto et al. presented a five-pass public-key identifi-
cation scheme based on multivariate quadratic polynomials [14]. Assuming the
existence of a non-interactive commitment scheme Com which should be statisti-
cally hiding and computationally binding, the authors of [14] showed that their
scheme is an honest-verifier zero-knowledge identification scheme whereas the
n-soundness property is also verified as we will later see in the security analysis.



32 S.M. El Yousfi Alaoui et al.

We first briefly describe the identification scheme [14], following the procedure
to convert it into a signature scheme using Section 4.1. Finally, we analyze the
security of the obtained signature scheme using the Extended Forking Lemma
discussed in Section 3.2.

Let n,m and q be positive integers. We denote by MQ(n,m,Fq) a family of
functions

{F (x) = (f1(x), · · · , fm(x)) |
fl(x) =

∑
i,j

al,i,jxixj +
∑
i

bl,ixi, al,i,j , bl,i ∈ Fq for l = 1, · · · ,m},

where x = (x1, · · · , xn). An element F ofMQ(n,m,Fq) is called an MQ function
and a function G(x, y) = F (x+ y)− F (x)− F (y) is called the polar form of F .

Let κ be a security parameter. Let n = n(κ),m = m(κ) and q = q(κ) be
polynomially bounded functions. The key-generation algorithm K of this iden-
tification scheme can be described as follows. It takes 1κ as input and creates a
system parameter F ∈ MQ(n,m,Fq) which consists of an m-tuple of random
multivariate quadratic polynomials. Then, it randomly chooses a vector s ∈ Fn

q

(secret key), and computes the corresponding public key v := F (s). Finally, it
returns the key pair (pk, sk) = (v, s). Figure 1 illustrates the interaction protocol
between the prover and the verifier.

Prover P(s, v) Verifier V(v)

r0, t0
$←− Fn

q , e0
$←− Fm

q

r1 ← s− r0
c0 ← Com (r0, t0, e0)

c1 ← Com (r1, G(t0, r1) + e0)
c0, c1−−−−−−−−−−−→
α←−−−−−−−−−−− α

$←− Fq

t1 ← αr0 − t0

e1 ← αF (r0)− e0
(t1, e1)−−−−−−−−−−−→

b←−−−−−−−−−−− b
$←− {0, 1}

If b = 0:
r0−−−−−−−−−−−→ Check c0

?
= Com(r0, αr0 − t1,

αF (r0)− e1)

Else:
r1−−−−−−−−−−−→ Check c1

?
= Com(r1, α(v − F (r1))

−G(t1, r1)− e1)

Fig. 1. The five-pass MQ identification scheme

The resulting Signature Scheme and its Security. According to Section 4.1, the
MQ-based identification scheme described above can be turned to an n-generic
signature scheme S = (KGen, Sign,Vf) as follows. Let δ be the number of rounds
needed to achieve the required impersonation resistance.



Extended Security Arguments for Signature Schemes 33

KGen(1κ) takes as input a security parameter 1κ and outputs K(1κ). The ran-
dom oracles O1 and O2 output elements of Fq and {0, 1}, respectively.

Sign(sk,m) takes as input sk and a message m, and computes for all 1 ≤ i ≤ δ,

– r1,i = s− r0,i where r0,i
$←− Fn

q ,
– c0,i = Com (r0,i, t0,i, e0,i) , c1,i = Com (r1,i, G(t0,i, r1,i) + e0,i), and sets

σ0,i = (c0,i, c1,i), where t0,i
$←− Fn

q and e0,i
$←− Fm

q ,
– h1,i ∈ Fq such that h1,i = O1(m,σ0,i),
– (t1,i, e1,i) = (h1,ir0,i − t0,i, h1,iF (r0,i)− e0,i) and sets σ1,i = (t1,i, e1,i),
– h2,i such that h2,i = O2(m,σ0,i, h1,i, σ1,i),
– (σ0,i, h1,i, σ1,i, h2,i, σ2,i), where σ2,i := r0,i if h2,i = 0 and, otherwise,

σ2,i := r1,i,
– and finally, returns the signature σ for the messagem as (σ0, h1, σ1, h2, σ2),

where σj = (σj,1, . . . , σj,δ) and hk = (hk,1, . . . , hk,δ) with 0 ≤ j ≤ 2 and
1 ≤ k ≤ 2.

Vf(pk,m, σ) takes as input a public key pk, a message m and a signature σ,
outputs 1 iff (σ0,1, . . . , σ0,δ) is well calculated as in the identification protocol,
i.e., the following respective equation is valid for all 1 ≤ i ≤ δ:

If h2,i = 0 : c0,i = Com (r0,i, h1,ir0,i − t1,i, h1,iF (r0,i)− e1,i)

If h2,i = 1 : c1,i = Com (r1,i, h1,i(v − F (r1,i))−G(t1,i, r1,i)− e1,i)

Security Argument. Using the Extended Forking Lemma, we prove in the fol-
lowing that the signature scheme derived from the MQ-based zero-knowledge
identification scheme is secure against adaptively chosen message attacks. We
assume that an adversary produces a valid signature (σ0, h1, σ1, h2, σ2) for a mes-
sage m. By applying Theorem 1 we can find a second forgery (σ0, h1, σ1, h

′
2, σ

′
2)

with a non-negligible probability, such that h2 �= h′
2. That leads to the existence

of an index i with 1 ≤ i ≤ δ, such that h2,i �= h′
2,i. W.l.o.g. assume h2,i = 0

and h′
2,i = 1. Now, the adversary gets the answers for two distinct challenges,

namely r0,i and r1,i. Finally, by adding the last two values, the secret key can
be disclosed. This contradicts the intractability of the MQ problem.

References

1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From Identification to Sig-
natures via the Fiat-Shamir Transform: Minimizing Assumptions for Security and
Forward-Security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 418–433. Springer, Heidelberg (2002)

2. Aguilar Melchor, C., Gaborit, P., Schrek, J.: A new zero-knowledge code based
identification scheme with reduced communication. CoRR, abs/1111.1644 (2011)

3. Cayrel, P.-L., Lindner, R., Rückert, M., Silva, R.: Improved Zero-Knowledge Iden-
tification with Lattices. In: Heng, S.-H., Kurosawa, K. (eds.) ProvSec 2010. LNCS,
vol. 6402, pp. 1–17. Springer, Heidelberg (2010)

4. Cayrel, P.-L., Véron, P., El Yousfi Alaoui, S.M.: A Zero-Knowledge Identification
Scheme Based on the q-ary Syndrome Decoding Problem. In: Biryukov, A., Gong,
G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 171–186. Springer, Hei-
delberg (2011)



34 S.M. El Yousfi Alaoui et al.

5. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

6. El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS,
vol. 196, pp. 10–18. Springer, Heidelberg (1985)

7. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: STOC 1985, pp. 291–304. ACM (1985)

8. Lampe, R., Patarin, J.: Analysis of some natural variants of the PKP algorithm.
Cryptology ePrint Archive, Report 2011/686 (2011), http://eprint.iacr.org/

9. Ohta, K., Okamoto, T.: On Concrete Security Treatment of Signatures Derived
from Identification. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp.
354–369. Springer, Heidelberg (1998)

10. Pointcheval, D.: A New Identification Scheme Based on the Perceptrons Problem.
In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp.
319–328. Springer, Heidelberg (1995)

11. Pointcheval, D., Poupard, G.: A new NP-complete problem and public-key identi-
fication. Des. Codes Cryptography 28, 5–31 (2003)

12. Pointcheval, D., Stern, J.: Security Proofs for Signature Schemes. In: Maurer, U.M.
(ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg
(1996)

13. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptology 13(3), 361–396 (2000)

14. Sakumoto, K., Shirai, T., Hiwatari, H.: Public-Key Identification Schemes Based on
Multivariate Quadratic Polynomials. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 706–723. Springer, Heidelberg (2011)

15. Shamir, A.: An Efficient Identification Scheme Based on Permuted Kernels (Ex-
tended Abstract). In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 606–
609. Springer, Heidelberg (1990)

16. Silva, R., Cayrel, P.-L., Lindner, R.: Zero-knowledge identification based on lattices
with low communication costs. XI Simpósio Brasileiro de Segurança da Informação
e de Sistemas Computacionais 8, 95–107 (2011)

17. Stern, J.: A New Identification Scheme Based on Syndrome Decoding. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)

18. Stern, J.: Designing Identification Schemes with Keys of Short Size. In: Desmedt,
Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 164–173. Springer, Heidelberg
(1994)

19. Yao, A.C., Zhao, Y.: Digital signatures from challenge-divided sigma-protocols.
Cryptology ePrint Archive, Report 2012/001 (2012), http://eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/


Sanitizable Signatures
with Several Signers and Sanitizers

Sébastien Canard1, Amandine Jambert2, and Roch Lescuyer1,3

1 Orange Labs, Applied Crypto Group, Caen, France
2 CNIL, Paris, France
3 ENS, Paris, France

Abstract. Sanitizable signatures allow a signer of a message to give one
specific receiver, called a sanitizer, the power to modify some designated
parts of the signed message. Most of the existing constructions consider
one single signer giving such a possibility to one single sanitizer. In this
paper, we formalize the concept with n signers and m sanitizers, taking
into account recent models (for 1 signer and 1 sanitizer) on the subject.
We next give a generic construction based on the use of both group
signatures and a new cryptographic building block, called a trapdoor or
proof, that may be of independent interest.

Keywords: Sanitizable signatures, anonymity, trapdoor or proof.

1 Introduction

Cryptographic research provides today a large choice of tools to secure our net-
works and services. Besides authentication and encryption, it exists several ways
to lighten or slightly modify the main cryptographic tools. Regarding signature
schemes, it is for example possible to blind the identity of the signer (using e.g.
group signatures) or to add properties on the resulting message-signature pair.

Among those variants, the idea of a signature on a document which can be
further modified by a designated “sanitizer”, without interaction with the signer,
has been introduced in [19]. The current definition, introduced in [1] under the
named of sanitizable signatures, allows the signer to control which parts of the
message can be modified by the chosen sanitizer. The security properties sketched
in [1] have been formalized in [7] for the case of one single signer giving the mod-
ification power to one single sanitizer1: such a scheme should be transparent
(only the signer and the sanitizer are able to distinguish an original signature
from a sanitized one), immutable (the sanitizer is unable to modify non admis-
sible blocks of a signed message), signer-accountable (a signer can not force a
judge to accuse a sanitizer) and sanitizer-accountable (a sanitizer can not force
a judge to accuse a signer). The notion of unlinkability (infeasibility to identify
message-signature pairs from the same source) has later been proposed in [8].
Some extensions [18,9] have also been described, allowing the signer to better
control the modifications the sanitizer can do.
1 Even if several sanitizers could exist in the system.

A. Mitrokotsa and S. Vaudenay (Eds.): AFRICACRYPT 2012, LNCS 7374, pp. 35–52, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



36 S. Canard, A. Jambert, and R. Lescuyer

It currently exists several sanitizable signature constructions in the litera-
ture [1,10,7,9,8,17] which consider one single signer allowing one single sanitizer
to sanitize a given message-signature pair. But nobody has really taken into
account the case of multiple signers and sanitizers in a unique system. The clos-
est solutions are either trapdoor solutions [10,21] which allows signer to chose
afterwards one sanitizer in a group or the recent work in [8] about unlinkable
schemes which can be extended to the case of “one signer and m sanitizers”.

Regarding concrete applications, sanitizable signatures with one signer and
one sanitizer may be useful in the context of Digital Right Management [10]
(signer of a license vs. modifier of a given license), database applications [1]
(commercial vendor vs. database administrator) or medical ones [1] but the one-
one case does not cover all use cases. The secure routing application proposed
in [1] should e.g. use a group of n entities acting as both signers and sanitizers.
Sanitizable signatures can also be used e.g. to protect the privacy of customers
in a billing system where the service provider does not obtain the identity of the
customer and the billing provider does not know the provided service.

In this paper, we propose the first complete model for sanitizable signatures
with n signers and m sanitizers. Our model includes the Brzuska et al. [7,8] for
1 signer and 1 sanitizer and considers collusion of adversary.

Ideas behind our model. A signer can choose several designated sanitiz-
ers for a given message and each of them is able to modify the resulting mes-
sage/signature pair. We thus redefine accordingly the notions of accountabil-
ity and immutability and introduce several notions of transparency: the no-
transparency where anybody can distinguish a signed message from a sanitized
one, the group transparency where only signers can make such a distinction and
the full transparency where this can only be done by the true signer, the true
sanitizer and a designated authority.

As there are several signers and sanitizers, we study the case where the signer
(resp. the sanitizer) is anonymous within the group of signers (resp. sanitizers).
Similarly to the transparency, we also introduce the concept of group anonymity
where a signer (resp. sanitizer) is anonymous for people who are not in the group
of signers (resp. sanitizers). To be complete, we also treat the anonymity revo-
cation by some designated authorities and study the notion of traceability and
non-frameability from the group signature world [3,4].

Idea of our construction. Our main (n, m) multi-players sanitizable sig-
nature construction is based on the work of Brzuska et al. [8], using group sig-
natures [3,5,4,13]. More precisely, we base our new solution on a new crypto-
graphic building block that may be of independent interest: trapdoor or proof.
Zero-knowledge proofs of knowledge allow one prover to prove to one verifier that
she knows some secrets verifying some public relations. An or proof enables to
prove e.g. that the known secret is the discrete logarithm of either y in base g or
of z in base h. We introduce the concept, and give a practical construction, for a



Sanitizable Signatures with Several Signers and Sanitizers 37

trapdoor or proof where a given authority can reveal which discrete logarithm is
known. Independently, this tool can be used to design electronic voting systems.

The paper is organized as follows. Our model for multi-players sanitizable
signature is described in Section 2 (for procedures) and in Section 3 (for security).
Section 4 is dedicated to useful tools and Section 5 to our new trapdoor or proof.
Our main multi-players sanitizable signature scheme is described in Section 6.

2 Multi-players Sanitizable Signatures

Our aim is to propose a model where one signer (among n) can choose a set of
sanitizers (among m) such that any sanitizer of the chosen subset is able to san-
itize the output message-signature pair. Moreover we want to be consistent with
the initial model from Brzuska et al. where one signer chooses one sanitizer [7].
We thus keep traditional procedures (Sign, Sanitize, Verify, SigOpen and
Judge) and security properties: immutability, signer and sanitizer accountabil-
ities and transparency (see below). We also add the unlinkability property [8].

Adding anonymity. As we now have a group of signers and sanitizers, we
can handle these groups in different ways. One possibility is to publicly know
who is the initial signer (resp. sanitizer) of a given message-signature pair (no-
anonymity). We can also take the example of group signatures by considering
that the signer (resp. sanitizer) can be anonymous, except for a designated au-
thority (full anonymity). In some cases, the other signers (resp. sanitizers) may
need to identify the signer (resp. the sanitizer) of a given message, while this is
still not feasible for other parties (group-anonymity).

We thus add a full opener Ofull who is able to determine (during the
FullOpen procedure) the real producer of a given message-signature pair. Sim-
ilarly, the origin opener Oori is able to retrieve (during the FindOri algorithm)
the signer who is at the origin of a given message-signature pair.

The notion of anonymity and the possibility to revoke this property neces-
sary lead to the notion of traceability (the identity of an anonymous signer or
an anonymous sanitizer can always be retrieved if needed) and non-frameability
(the infeasibility to produce a wrong opening).

The case of the transparency. The notion of transparency says [7] that
only the signer and the sanitizer are able to distinguish an original signature
from a sanitized one. For this purpose, the signer in [7] has access to a SigOpen

procedure which permits her to prove that a given message/signature pair is an
original or a sanitized one.

As we consider the case of a group, we introduce, as for anonymity, the notion
of group anonymity where the the SigOpen procedure is extended to any signer
in the group (not only the real signer).

We also keep the traditional notion (called full transparency) where only the
true original signer, the true sanitizer (if relevant), and a new introduced authority
called the algorithm opener Oalg, are able to prove that one message-signature



38 S. Canard, A. Jambert, and R. Lescuyer

pair is an original or not. For the latter, we introduce the AlgOpen procedure
which can be executed by Oalg. Note that the true signer is always able to make
such distinction but she is not necessarily able to prove it.

Remark 1. We do not need to add an unforgeability property since it is implied
by the accountability, traceability and non-frameability. In fact, from Proposition
4.2 of [7], we obtain that accountabilities imply unforgeability and the given proof
still work in our case. Moreover (cf. Appendix A of [4]), the group signature’s
unforgeability follows from traceability plus non-frameability.

General Definition. A multi-players sanitizable signature scheme involves a
set of signers, a set of sanitizers, an issuer I that may be divided into Isig and
Isan and an opener O that may be divided into Ofull, Oalg, and Oori.

Given a message m of length � and divided into t blocks, ADM is defined by
the signer as (i) the length �i of each block mi (such that � =

∑t
i=1 �i) and (ii)

the index of the block which will be modifiable by the sanitizer, i.e. the subset
T of [1, t] such that for all i ∈ T , mi is modifiable. By misuse of notation, we
say that i ∈ ADM if i ∈ T . If two messages m0 and m1 are defined as having
the same admissible parts ADM, we note that ADM(m0, m1) = 1. On input a
message m and the variable ADM, the sanitizer define the modifications MOD
as the set of all the (i, m′

i) such that she is able to replace the i-th block of m by
m′

i. We say that MOD matches ADM if ∀i ∈ MOD, i ∈ ADM.

Definition 1 (Multi-players sanitizable signature scheme). Let λ be a
security parameter. A (n, m)-multi-players sanitizable signature scheme Π is
composed of the following eleven algorithms.

Setup(1λ) outputs the public key gpk of the system, the secret key isk :=
(isksig, isksan) of some issuers and, in some cases, an additional opening
secret key denoted by osk := (oskfull, oskalg, oskori).

SigKG(1n, 1λ, isksig) and SanKG(1m, 1λ, isksan) take as input the issuer key
isksig (resp. isksan), the number n (resp. m) of signers (resp. of sanitizers)
and λ. They output two vectors of keys (sksig,pksig) (resp. (sksan,pksan)).
From now on, the whole public key (gpk,pksig,pksan) is denoted PK.

Sign(m, sksig[i], p̃ksan, ADM, PK) enables the signer i to sign a message m for
authorized sanitizers p̃ksan ⊆ pksan according to ADM as defined above. It
outputs a signature σ on m. By convention σ contains ADM and p̃ksan. Note
that σ also contains the way for authorized sanitizers to sanitize m.

Sanitize(m, σ, sksan[j], MOD, PK) is carried out by the sanitizer j to sanitize
a message-signature pair (m, σ). The modifications MOD describe the new
message m′ as defined above. This algorithm outputs a new signature σ′ and
the modified message m′ or ⊥ in case of error (for example, j is not able to
sanitize this message).

Verify(m, σ, PK) allows to verify the signature σ (sanitized or not) on the
message m. It outputs 1 if the signature is correct and 0 if it is not.



Sanitizable Signatures with Several Signers and Sanitizers 39

FullOpen(m, σ, oskfull, PK) enables the opener Ofull to find the identity of
the producer of the given message. It outputs the string full, an identity
Ifull which is either (sig, ifull) or (san, jfull), and a proof τfull of this claim.
In case Ifull = 0, it is claiming that no one produced σ.

AlgOpen(m, σ, oskalg, PK) enables the opener Oalg to find whether the couple
(m, σ) is an original or a sanitized couple. It outputs the string alg, next
either Ialg = sig (original signature) or Ialg = san (sanitized signature),
and a proof τalg of this claim. In case Ialg = 0, the result is that the opener
Oalg cannot conclude.

FindOri(m, σ, oskori, PK) enables the opener Oori to find the original signer
of the given message. It outputs the string ori, the identity Iori = (sig, iori)
of the original signer and a proof τori of this claim. In case Iori = 0, it is
claiming that no signer is at the origin of σ. Note that iori is not necessarily
the identity of the actor having produced the signature σ, since this one may
have been sanitized after the original signature from iori.

SigOpen(m, σ, (ori, Iori, τori), sksig [̃i], PK, DB) enables the signer ĩ to be con-
vinced, using an entry (ori, Iori, τori) (with Iori := (sig, iori)) which could
have been produced by the FindOri algorithm, that the signer iori is the
originator of the given message. The signer ĩ may use a set DB of couples
(mk, σk) and proves that the given message-signature pair (m, σ) is or is not a
sanitized pair. It outputs a triple containing the string sig, either Isig = Iori
if (m, σ) a true signature or (san, 0) if (m, σ) was sanitized, and a proof τsig
(including τori). It outputs Isig = 0 if the signer ĩ can not conclude.

Judge(m, σ, gpk, (s, Is, τs), PK) is a public algorithm which aims at deciding
the origin of a given message-signature pair (m, σ). According to the string
s ∈ {full, alg, ori, sig}, it outputs 1 if the predicate guessed in τs is exact
and 0 otherwise.

The correctness property states that all of them should be correct, from the
verification to the different opening algorithms.

3 Security Requirements

We now give the security definitions a multi-players sanitizable signature scheme
should satisfy. Our work is based on those from [7] and [3].

Oracles. The security properties will be displayed using experiments in which
the adversary’s attacks are modelled by having access to some oracles. In the
following, CU denotes the set of corrupted users (as a signer or a sanitizer).

− setup(·, ·, ·): this oracle corresponds to the generation of the different keys
and parameters. It takes as input the parameters λ, n, m ∈ N and executes
the procedures Setup(·), SigKG(·, ·, ·) and SanKG(·, ·, ·) and the set PK is
given on output, while SK = {isk, osk, sksig, sksan} is kept secret (for now).



40 S. Canard, A. Jambert, and R. Lescuyer

− corrupt(·, ·, ·): the adversary can corrupts a signer or a sanitizer. This oracle
takes as input three elements: the first one a ∈ {sig, san} says whether the
corrupted player is a signer or a sanitizer, the second argument k ∈ N gives
the identity of the corresponding signer (k ∈ [1, n]) or sanitizer (k ∈ [1, m])
and the third one corresponds to a public key pk. The couple (a, k) is added
to the set CU and the oracle sets (pksig[k], sksig[k]) = (pk,⊥) if a = sig
(or (pksan[k], sksan[k]) = (pk,⊥) if a = san). An adversary having access
to no corruption oracle is denoted A(0), an adversary only having access to
corrupt(sig, ·, ·) (resp. corrupt(san, ·, ·)) is denoted A(si) (resp. A(sa)), while an
adversary having access to both is denoted by A(∗).

− sign(·, ·, ·), sanitize(·, ·, ·, ·), fullopen(·, ·), algopen(·, ·), findorigin(·, ·) and finally
sigopen(·, ·, ·, ·): these oracles are related to the procedures given in Defini-
tion 1 (without the non necessary public parameters). The set of queries and
answers to and from the sign (resp. the sanitize) oracle is denoted Σsig (resp.
Σsan) and is composed of elements of the form (mk, ik, p̃ksan,k, ADMk, σk)
(resp. (mk, σk, jk, MODk, m′

k, σ′
k)).

Adversaries. For each property, there are two types of adversary.

1. A generator adversary Agen outputs something that will pass some given
criteria. The experiment outputs 1 if all criteria on the adversary’s output
are verified. For any adversary Agen against a property prop and any param-
eters λ, n, m ∈ N, the success probability of Agen is the probability that the
experiment outputs 1. We say that the scheme verifies prop if this success is
negligible (as a function of λ, n, m) for any polynomial-time Agen.

2. A choose-then-guess adversary A = (Ach,Agu) is divided into two phases:
Ach for the “choose” phase or Agu for the “guess” one. For the experiments,
a challenge bit b ∈ {0, 1} is set and for any adversary A against a property
prop and any parameters λ, n, m ∈ N, the advantage of A is Pr

[
Expprop-1

Π,A =

1
]
− Pr

[
Expprop-0

Π,A = 1
]
. We next say that the whole scheme verifies the

property prop if this advantage is negligible for any polynomial-time A.

Immutability. The immutability says that it is not feasible, for an adversary
controlling all the sanitizers, to make a modification on a signed message by a
non-authorized sanitizer, to modify a signed message in a non admissible part,
or to modify ADM (see [17]). We allow the adversary to corrupt signers, but the
output pair should not originally come from a corrupted signer.

Expimm
Π,A(λ, n, m):

– (PK, SK)← setup(1λ);
– (m∗, σ∗)← A(*)

gen(PK, isksan); // let (p̃k
∗
san, ADM∗) ∈ σ∗

– (ori, Iori, τori)← FindOri(m∗, σ∗, oskori, PK)
– if

[
Verify(m∗, σ∗,PK) = 0

]
or

[
Iori = (sig, iori) ∈ CU

]
, return 0;

– if ∀(mk, iori, p̃ksan,k, ADMk, ·) ∈ Σsig,
[
p̃ksan,k �= p̃k

∗
san

]
or
[
ADMk �= ADM∗]

or
[
∃� ∈ [1, tk] s.t. mk[�] �= m∗[�] and � �∈ ADMk

]
, then return 1.



Sanitizable Signatures with Several Signers and Sanitizers 41

Sanitizer accountability. The adversary controls all the sanitizers and out-
puts a (m∗, σ∗) pair which will be attributed to a signer, while this is not the
case. The first possibility for the adversary is to output a valid tuple (alg, sig,
τalg) accepted by the judge. The second possibility is to make use of an honest
signer i∗ of its choice, such that when i∗ executes the SigOpen algorithm, the
output is (sig, Isig) with Isig being an honest signer. Since the adversary is given
the ability to corrupt signers, we should be convinced that σ∗ neither comes
from a corrupted signer nor from the sign oracle.

Expsan-acc
Π,A (λ, n, m):

– (PK, SK)← setup(1λ, n, m);
– (m∗, σ∗, (I∗alg, τ∗

alg), I∗ := (sig, i∗))← A(*)
gen(PK, osk, isksan); // let p̃k

∗
san ∈ σ∗

– (ori, Iori, τori)← FindOri(m∗, σ∗, oskori, PK);
– if

[
Verify(m∗, σ∗,PK) = 0

]
or

[
I∗ ∈ CU

]
or

[
Iori = (sig, iori) ∈ CU

]
or[

∃(mk, ik, p̃ksan,k, ·, σk) ∈ Σsig s.t. (ik, mk, p̃ksan,k) = (iori, m
∗, p̃k

∗
san)

]
, return

0;
– (sig, Isig, τsig)← SigOpen(m∗, σ∗, (ori, Iori, τori), sksig[i∗], PK, DB); where
DB := {(mk, σk) | ∀(mk, ik, ·, ·, σk) ∈ Σsig s.t. ik = iori}
– if

[(
I∗alg = sig∧Judge(m∗, σ∗, (alg, I∗alg, τ∗

alg, PK) = 1
)

or
(
I∗ /∈ CU∧Iori =

Isig ∧ Judge(m∗, σ∗, (sig, Isig, τsig), PK) = 1
)]

, then return 1.

Signer accountability. The adversary controls all the signers and outputs a
(m∗, σ∗) pair which will be attributed to a sanitizer, while this is not the case.
The first possibility is to output a judge-accepted tuple (alg, san, τalg). The
second possibility is to produce a judge-accepted proof (sig, (san, 0), τsig), which
may be output by the SigOpen procedure. Again, we should be convinced that
σ∗ neither comes from a corrupted sanitizer/signer nor from the sanitize oracle.

Expsig-acc
Π,A (λ, n, m):

– (PK, SK)← setup(1λ, n, m);
– (m∗, σ∗, (I∗BOn, τ∗))← A(*)

gen(PK, osk, isksig);
– (full, Ifull, τfull)← FullOpen(m∗, σ∗, oskfull, PK);
– if

[
Verify(m∗, σ∗, PK) = 0

]
or

[
Ifull = (san, j∗) ∈ CU

]
or[

∃(·, σk, ·, ·, m′
k, ·) ∈ Σsan s.t. (pksan[j

∗] ∈ p̃ksan,k or m′
k = m∗)

]
, return 0;

– if
[(

I∗ = san ∧ Judge(m∗, σ∗, (alg, I∗, τ∗), PK) = 1
)

or(
[I∗ = (san, 0) ∧ Judge(m∗, σ∗, (sig, I∗, τ∗), PK) = 1

)]
, then return 1.

Transparency. The aim of the adversary is here to decide whether a given
message-signature is a sanitized one or not. In the full transparency case, she
has access to the signer corruption oracle, while she does not in the group
transparency case. The existence of SigOpen obviously implies that the full



42 S. Canard, A. Jambert, and R. Lescuyer

transparency can not be reached. Therefore, to design a fully transparent multi-
players sanitizable signature scheme, the SigOpen procedure must be restricted
to the case ĩ = iori.

Exptran-b
Π,A (λ, n, m) // b ∈ {0, 1} ; A = A(∗) if full and A = A(sa) if group:

– (PK, SK)← setup(1λ, n, m);
– (m∗, ADM∗, MOD∗, i∗, j∗, p̃k

∗
san, st)← A

(∗)
ch (PK);

– if i∗ ∈ CU or j∗ ∈ CU , return ⊥;
– σ∗ ← Sign(m∗, sksig[i∗], p̃k

∗
san, ADM∗, PK);

– (m′∗, σ′∗
0 )← Sanitize(m∗, σ∗, sksan[j∗], MOD∗, PK);

– if b = 1, then σ′∗
1 ← Sign(m′∗, sksig[i∗], p̃k

∗
san, ADM∗, PK);

– b∗ ← A(∗)
gu (m′∗, σ′∗

b , st)
– if (m′∗, σ′∗

b ) was queried to sigopen, return ⊥, else return b∗.

Unlinkability. The aim of the adversary is here to choose two messages that
become identical once sanitized and decide which one has been sanitized. The
adversary has access to a left-or-right oracle which executes the sanitization
according to a random bit the adversary must guess.

Expunlink-b
Π,A (λ, n, m) // b ∈ {0, 1}:

– (PK, SK)← setup(1λ, n, m);
– (m∗

0, m
∗
1, σ

∗
0 , σ∗

1 , MOD∗
0, MOD∗

1, j
∗
0 , j∗1 , st)← A(∗)

ch (PK);
– (m′∗, σ′∗)← Sanitize(m∗

b , σ
∗
b , sksan[j∗b ], MOD∗

b , PK);
– (ori, Iori, τori)← FindOri(m′∗, σ′∗

b , oskori, PK);
– if

[
Iori = 0

]
or

[
Iori = (sig, iori) and iori ∈ CU

]
or

[
j0 ∈ CU

]
or

[
j1 ∈ CU

]
or

[
Judge(m′∗, σ′∗

b , (ori, Iori, τori), PK) = 0
]
, return ⊥;

– b∗ ← A(∗)
gu (m′∗, σ′∗

b , st)
– if (m′∗, σ′∗) was queried to sigopen, return ⊥, else return b∗.

Traceability. The traceability says that the opening should always conclude.
The adversary wins if she is able to output a message-signature pair such that
the opener (Ofull, Oori) outputs ⊥ or is unable to produce a correct proof τ of
its claim.

Exptrac
Π,A(λ, n, m):

– (PK, SK)← setup(1λ, n, m);
– (m∗, σ∗)← A(∗)

gen(PK, osk);
– (full, Ifull, τfull)← FullOpen(m∗, σ∗, oskfull, PK);
– (ori, Iori, τori)← FindOri(m∗, σ∗, oskori, PK);
– if Verify(m∗, σ∗, PK) = 0, return 0;
– if

[
Judge(m∗, σ∗, (s, Is, τs), PK) = 0

]
or

[
Is = 0

]
, with s ∈ {full,ori},

then return 1.



Sanitizable Signatures with Several Signers and Sanitizers 43

Sanitizer anonymity. The adversary here controls all the signers, chooses two
sanitizers (j∗0 , j∗1 ), a pair (m∗, σ∗) and some MOD∗ of her choice. Then the j∗b -th
sanitizer sanitizes the signature (for a uniformly chosen bit b) and the adversary
aims at guessing b. In the full anonymity case, she has access to the sanitizer
corruption oracle, while this is not the case in the group anonymity. Note that
the “no-” and “group-” anonymity can only be defined if the signer is also viewed
as a sanitizer (the contrary not being true) because of the transparency property.

Expsan-ano-b
Π,A (λ, n, m) // b ∈ {0, 1}; A = A(∗) if full and A = A(sa) if group:

– (PK, SK)← setup(1λ, n, m);
– (j∗0 , j∗1 , m∗, σ∗, MOD∗, st∗)← A(si)

ch (PK, isksig);
– (m′∗, σ′∗)← Sanitize(m∗, σ∗, sksan[j∗b ], MOD∗, PK);
– if

[
Verify(m∗, σ∗, PK) = 0

]
or

[
j∗0 ∈ CU

]
or

[
j∗1 ∈ CU

]
, return ⊥;

– b∗ ← A(si)
gu (m′∗, σ′∗, st)];

– if (m′∗, σ′∗) was queried to fullopen, return ⊥, else return b∗.

Signer anonymity. The adversary now controls all the sanitizers and aims
at distinguish between two signers (i∗0, i

∗
1) of her choice, which one has signed

a message m∗ according to a chosen ADM∗. We next make the same division
as for the sanitizer anonymity part, regarding the corruption possibility for the
adversary.

Expsig-ano-b
Π,A (λ, n, m) // b ∈ {0, 1}; A = A(∗) if full and A = A(sa) if group:

– (PK, SK)← setup(1λ, n, m);
– (i∗0, i

∗
1, m

∗, p̃k
∗
san, ADM∗, st)← A(sa)

ch (PK, isksan);
– if

[
i∗0 ∈ CU

]
or

[
i∗1 ∈ CU

]
, return ⊥;

– σ∗ ← Sign(m∗, sksig[i∗b ], p̃k
∗
san, ADM∗, PK);

– b∗ ← A(sa)
gu (m∗, σ∗, st);

– if (m∗, σ∗) was queried to fullopen, return ⊥, else return b∗.

Non-Frameability. The non-frameability property argues that it is not pos-
sible for an adversary, even being the openers, to falsely accuse an honest user
(signer or sanitizer) from having produced a valid signature. This property is
different from the accountability ones since it takes into account the case where
some corrupted signers (resp. sanitizers) try to accuse an honest signer (resp. san-
itizer). Moreover, we study the case of a false accusation during the FullOpen

and FindOri procedures. The adversary does not control all users but can cor-
rupt them, as it wants. It finally outputs a valid (m∗, σ∗) pair and a (i∗, τ∗) pair
which could have been output by the FullOpen (resp. FindOri) procedure.
She wins if the judge outputs that i∗ has truly produced σ∗, while this is not
the case.



44 S. Canard, A. Jambert, and R. Lescuyer

Expnf
Π,A(λ, n, m):

– (PK, SK)← setup(1λ, n, m);
– (m∗, σ∗, i∗, τ∗)← A(∗)

gen(PK, isk, osk);
– If

[
Verify(m∗, σ∗, PK) = 0

]
or

[
I∗ ∈ CU

]
or

[
(I∗ = (sig, i∗) and

∃(mk, ik, ·, ·, ·) ∈ Σsig s.t. (ik, mk) = (i∗, m∗))
]

or
[
(I∗ = (san, j∗) and

∃(·, ·, jk, ·, m′
k, ·) ∈ Σsan s.t. (jk, m′

k) = (j∗, m∗))
]
, then return 0.

– If ∃s ∈ {full,ori} s.t. Judge(m∗, σ∗, (s, I∗, τ∗)) = 1, then return 1.

Remark 2. Even if relations exist between security properties, no implication re-
mains. This is less obvious in the relationship between non frameability and ac-
countability but (i) an adversary against accountability and using the AlgOpen

procedure to win the experiment is unable to win against the non frameability
experiment ; (ii) an adversary against the non-frameability is stronger (as he
controls all the issuing keys isk) than an adversary against the accountabilities
(who only controls isksan or isksig).

The suitability with simple sanitizable signature schemes [7] and the way to
add extensions [9] are given in the full version of the paper.

4 Primitives

Before giving a construction, let us begin by describing some cryptographic prim-
itives we will use. Let λ be a security parameter.

Digital signature schemes. We will need a standard signature scheme S =
(KGn,Sign,Verif) specified by algorithms for key generation, signing and ver-
ifying. It should satisfy the standard notion of unforgeability under chosen mes-
sage attack [16]. In a nutshell, the adversary is given the public key and can in-
teract with a signing oracle. Finally, the adversary outputs an attempted forgery
(m, σ) and wins if σ is valid, and m was never queried to the signing oracle. We
denote by Succunf

S,A(λ) the success probability of the adversary A against S.

Pseudo-random functions. Let PRF = (FKGn,PRF) be a pseudo-random
function, which is defined by the generation algorithm and the pseudo-random
function itself. An adversary A against such scheme is given access to a random
function oracle and outputs a value x0. After that, a bit b is secretly and ran-
domly chosen. If b = 0, the adversary receives the output of the PRF on x0. If
b = 1, the adversary receives a random value. The adversary finally outputs a
bit b′. The advantage Advprf

PRF,A(λ) of A is the difference between 1/2 and the
probability that b′ = b.

Group Signatures. In the following, we will need two different types of group
signature schemes. First, a BSZ type group signature scheme [4] and second, a
similar concept where we do not want an interactive join protocol between the
group manager and a group member, but the non-frameability property. This is



Sanitizable Signatures with Several Signers and Sanitizers 45

an hybrid model between the BMW model [3] for static groups and the BSZ [4]
one for dynamic groups. The non-frameability property is needed to ensure ac-
countability, since the signer needs to produce a signature without the presence
of the sanitizers [8].

A group signature scheme GS is composed of an issuer, an opener and mem-
bers and is given by a tuple (GKGn,UKGn, Join, [NI-Join, GSKGn,] GSign,
GVerif, Open, Judge) described as follows. The join protocol is denoted NI-
Join in case of a non-interactive procedure and it is next necessary for each user to
execute the GSKGn procedure. If Join is interactive, the latter is not necessary.

GKGn is a probabilistic algorithm which on input 1λ outputs the key pair
(ik, gpki) of the issuer (sub-procedure called IGKGn), the key pair (ok, gpko)
of the opener (sub-procedure called OGKGn) and the group public key
gpk = (gpki, gpko).

UKGn is a probabilistic algorithm executed by each user i and which on input
1λ outputs her key pair (upk[i],usk[i]).

Join is an interactive protocol between the issuer taking on input ik and upk[i]
and user i taking on input usk[i]. The issuer makes a new entry reg[i] in its
registration table reg. The new group member i obtains msk[i].[

NI-Join is an algorithm executed by the issuer taking on input ik and mpk ⊆
upk. The issuer outputs its registration table reg.

GSKGn is an algorithm executed by a group member i that on input usk[i]
and reg[i] outputs a private signing key denoted msk[i].

]
GSign is a probabilistic algorithm that takes on input a message m and a

private signing key msk[i] and outputs a group signature σ on m.
GVerif is an algorithm that on input a message m, a group signature σ and

gpk outputs 1 if the signature is valid, and 0 otherwise.
Open is an algorithm which on input a message m, a group signature σ and

the opener key ok outputs (in a deterministic way) an integer i ≥ 0 and (in
a probabilistic way) a proof τ that i has produced the signature σ on m. If
i = 0, then no group member produced σ.

Judge is a deterministic algorithm taking on input a message m, a group
signature σ, an integer i, the public key upk[i] of the entity with identity i
and a proof-string τ . It outputs 1 if the proof τ is valid and 0 otherwise.

– Anonymity. The anonymity property says that the adversary, given sig-
natures produced by a user (among two of his choice) is not able to guess which
users provided the signatures. During the related experiment, A is given access
to ik, can corrupt user, obtain their keys, ask for the opening of group signatures
and has access to a challenge oracle which takes as input two non-corrupted
member i0 and i1 and a message m and outputs the group signature of user
ib, for a bit b set by the experiment. Eventually, A outputs a bit b′. Next, the
advantage Advano

GS,A(λ) of A is the difference between 1/2 and the probability
that b′ = b.

– Traceability. This property says that the adversary is not able to output a
valid group signature such that the opening and judge procedures do not occur



46 S. Canard, A. Jambert, and R. Lescuyer

properly. A is given access to ok and outputs a valid (m, σ) which is accepted
by the experiment if either the opening procedure outputs i = 0 or the Judge

procedure cannot succeed. The success probability Succtrac
GS,A(λ) the adversary

A is next the probability that the experiment accepts.
– Non-frameability. An adversary A is not able to falsely accuse an honest

user from having produced a valid group signature. A is given access to (ik, ok)
and outputs a valid (m, σ, i, τ) which is accepted by the experiment if i is not
corrupted (and her keys are unknown) and the judge accepts the proof τ that i
has produced σ while this is not the case. The success probability Succnf

GS,A(λ)
the adversary A is next the probability that the experiment accepts.

5 A New Tool: Trapdoor “or” Proof

A Zero Knowledge Proof of Knowledge (ZKPK) is an interactive protocol during
which a prover proves to a verifier that he knows a set (α1, . . . , αq) of secret values
verifying a given relation R without revealing any information about the known
secrets. We denote by Pok(α1, . . . , αq : R(α1, . . . , αq)) such proof of knowledge.

Introduction. Let Rel = {(x, w)} be a binary relation. We first consider the
protocol, corresponding to a proof of knowledge for Rel, which is played by a
prover, taking on input x and a witness w, and a verifier taking on input x.
In fact, following [12,20], we consider a set X = (x1, · · · , x�) and a proof of
knowledge of the “or” statement where both the prover and the verifier take the
common input X , while the prover is also given a private input wi such that
∃xi ∈ X such that(xi, wi) ∈ Rel. Additionally to the witness itself, the verifier
should not be able to obtain the index i related to xi.

In our construction, a designated entity should be able to know which index i
is really used by the witness of a user to verify Rel, while it is still infeasible for
every other actors. To the best of our knowledge, this notion of trapdoor or proof
does not exist in the literature. However, it can be very useful, as we will see
later for our main construction of an (n, m)-sanitizable signature scheme, but
also e.g. for e-voting where the result of the vote (candidate A “or” candidate B)
should not be known, except by authorized scrutineers.

Definitions. In the following, the above or proof is next denoted TPok(wi :
∃i ∈ [1, �]|(xi, wi) ∈ Rel) and the whole system, including the key generation
TKGn for the trap, and the “opening” procedure TOpen, is denoted T OP =
(TKGn,TPok,TOpen).

As usual, such a proof of knowledge should verify the completeness (a valid
prover knowing one such wi is accepted with overwhelming probability), the
soundness (a false prover who does not know any such wi should be rejected with
overwhelming probability) and the honest-verifier zero-knowledge properties (the
proof does not reveal any information about the witness).

Cipher commuting relations. In the following, we will describe a way to
generically design a trapdoor or proof for any relation Rel. For this purpose, we
need to commute the relation and the encryption procedure of a public key en-



Sanitizable Signatures with Several Signers and Sanitizers 47

cryption scheme and we thus need to restrict the relations where such commuting
operation is possible, which gives us the following definition.

Definition 2 (Cipher commuting relation). Let λ be a security parameter.
Let E = (EKg,Enc,Dec) be a secure probabilistic encryption scheme. Let Rel

be a binary relation. We say that Rel is a cipher commuting relation if for all
x, w, for all (epk, esk)←− EKG(1λ),

(x, w) ∈ Rel⇐⇒ (Enc(x, epk), w) ∈ Rel.

Our generic construction. Let λ be a security parameter, E = (EKg,
Enc, Dec) be a secure probabilistic encryption scheme and Rel be a cipher
commuting relation. We want to design the proof TPok(wi : ∃i ∈ [1, �]|(xi, wi) ∈
Rel) where the prover knows wi such that (xi, wi) ∈ Rel.

In a nutshell, we encrypt xi and use a traditional or proof that the encrypted
value is one element related to Rel, without revealing which one. We next use
the cipher commuting property of Rel to prove that the knowledge of a witness
which verifies Rel with the cipher ci related to xi.

Let us first consider that the trap has been generated by executing (epk, esk)
← EKG(1λ). The proof next works as follows.

1. Computes ci = Enc(xi, epk).
2. Generates the standard honest-verifier zero-knowledge proof with both rela-

tions:
(a) Pok(xi : ∃i ∈ [1, �]|ci = Enc(xi, epk)) and
(b) Pok(wi, xi : (Enc(xi, epk), wi) ∈ Rel).

As they are connected with an “and”, these two proofs of knowledge can be
composed together, using standard techniques [11]. The verifier, knowing the re-
lation Rel, the ciphertext ci and epk, can easily verify the two above Pok, using
standard techniques. Finally, the owner of esk can easily decrypt ci to retrieve xi.

A concrete construction. Let G be a group of prime order p. Let u, h
be random generators of G and let v and z be two elements of G. We want to
design the trapdoor or proof denoted TPok(α : ∃(b, f){(u, v), (h, z)}|f = bα).

Our solution makes use of a homomorphic encryption scheme π = (KeyGen,
Enc, Dec) such that the trapdoor of our construction is the decryption key dk.
The encryption public key is ek = a and the corresponding secret key is α ∈ Z∗

p

such that a = dα where d ∈ G. A prover having access to e.g. the discrete loga-
rithm x ∈ Z∗

p of v in base u, that is v = ux, can produce a trapdoor or proof as fol-
lows, with the ElGamal encryption scheme as an concrete instantiation (see [15]).

1. Encrypt v and u as cv = (t1 = vaw, t2 = dw) and cu = (t3 = uar, t4 = dr)
where w, r ∈ Z∗

p.
2. Produce a (traditional) proof of knowledge on x, r and w such that:

(a) the pair of encrypted values corresponds to either (v, u) or (z, h), using a
set membership proof: (t1/v = aw∧t3/u = ar) or (t1/z = aw∧t3/h = ar)
(together with the proof that t2 = dw and that t4 = dr.



48 S. Canard, A. Jambert, and R. Lescuyer

(b) using the encrypted value (which satisfies the relation v = ux) and the
homomorphic property of the encryption scheme, it is done by producing
the proof of knowledge of x such that cv = cx

u. For this purpose, we use
that tx3 = uxarx = varx = t1a

rx−w.

The final trapdoor or proof is composed of (t1, t2, t3, t4) and the following proof
of knowledge:

V = Pok

(
w, r, x, r̄ :

(
( t1

v = aw ∧ t3
u = ar) ∨ ( t1

z = aw ∧ t3
h = ar)

)
∧t2 = dw ∧ t4 = dr ∧ t1 = tx3a−r̄aw ∧ 1 = tx4d−r̄

)
Anyone in possession of α can retrieve the encrypted pair (v, u) and obtain the
known discrete logarithm. We here present the more general case where we need
to encrypt both u and v. As in [12,20], the (trapdoor) or proof for a representation
can also be treated similarly. We do not detailed the case of a representation but
we will use it in the following section.

6 Full Transparent and Fully Anonymous Multi-players
Sanitizable Signature

We now describe our fully transparent and fully anonymous sanitizable signature
scheme for several signers and sanitizers.

Following the idea from [8], one user is able to sanitize a message/signature
pair if she belongs to a group created by the initial signer and related to this
message/signature pair. Next, the principle of our signature is to associate (i) a
signature of the signer, as member of a group of signers, on the fixed parts of the
message with (ii) a group signature on the admissible parts of the message, on
behalf of the new group generated by the signer and (iii) a trapdoor or proof of
knowledge of either a certified signer key or a certified sanitizer key. The latter
is added to prevent everybody to distinguish a signed message from a sanitized
one, except by Oalg.

Our scheme is composed of openers Ofull, Oalg, Oori, a group manager GM
for a group signature scheme and a certification authority denoted CA.

Generation Phases. Let μ be a security parameter. We note GS1 (resp. GS2)
an interactive-join (resp. non-interactive) group signature scheme, S a standard
signature scheme, T OP a trapdoor or proof system (cf. Section 5) and PRF a
pseudo-random function.

Setup Phase. The certification authority CA executes twice the key generation
S.KGn for the standard signature scheme S to obtain two different keys pairs
denoted (casksi, capksi) and (casksa, capksa). The group manager GM executes
GS1.IGKGn, which gives isk and gpki. The openerOfull executes GS2.OGKGn,
which gives oskfull and gpkfull. The opener Oalg executes the T OP .TKGn al-
gorithm, which gives oskalg and gpkalg. The openerOori executes GS1.OGKGn,
which gives oskori and gpko. In the following, we denote gpksi = (gpki, gpko).



Sanitizable Signatures with Several Signers and Sanitizers 49

To sum up, we have isksig = (isk, casksi), isksan = (casksa) and the general
public key gpk = (capksi, capksa gpksi, gpkfull, gpkalg).

Signer Key Generation. Each signer i executes the following. She uses the
Join interactive protocol with GM to get her private signing key msk[i]. Next,
she executes the key generation for the pseudo-random function to obtain uk[i] =
PRF .FKGen(1μ). Then, she uses the user key generation GS2.UKGn for GS2

to obtain both upksi[i] and usksi[i]. Finally, she sends upksi[i] to CA with a non-
interactive proof of knowledge of the related usksi[i] and CA generates ucsi[i] =
S.Sign(upksi[i], casksi).

Sanitizer Key Generation. Each sanitizer j uses GS2.UKGn to get (usksa[j],
upksa[j]) and sends upksa[j] to CA with a non-interactive proof of knowledge of
the related usksa[j]. Then, CA generates ucsa[j] = S.Sign(upksa[j], casksa).

Signature Procedure. During this procedure, the signer first generates the
keys of a new group signature scheme (for herself and the chosen sanitizers). She
next produces two different group signatures, the first as a member of the group
of signers and the second as a member of the new formed group. Let us consider
the i-th signer, i ∈ [1, n] and let m be the message, divided into t parts, she wants
to sign. Following ADM given on input, let mFIX be the part of m which will not
be sanitizable by the sanitizers. The Sign procedure is described as follows.

Choice of Sanitizers. The signer chooses a subset J ⊆ [1, m] of sanitizers
allowed to modify her message with p̃ksan the set of their public keys.

Generation of a Group. The signer creates a group for herself and the chosen
sanitizers. For this purpose, she uses the group signature scheme GS2 with a
non-interactive join. More precisely, she computes rd = PRF(uk[i], idm) where
idm = mFIX‖ADM is the identifier of the initial message.

She next carries out the key generation algorithm IGKGn of the group sig-
nature scheme GS2, using rd as a random (see also [8]). It gives isk[i, idm] and
gpki[i, idm]. We note gpk[i, idm] = (gpki[i, idm], gpkfull). Then, she uses the non-
interactive join procedure NI-Join of GS2 to generate the private signing key
for each group members, using rd as a random. We denote it reg[i, idm] for the
signer and regsa[j, idm] for each sanitizer j ∈ J .

She finally obtains her own membership secret key for this group msk[i, idm]
thanks to the GSKGn procedure on input upksi[i] and reg[i, idm].

Group Signatures Generation. She computes two group signatures, the first
as a signer σfix = GS1.GSign(msk[i], msig) with msig = idm‖p̃ksan‖regsa, the
second as a member of the new group σfull = GS2.GSign(msk[i, idm], m).

Proof of Validity. The signer finally proves, thanks to the non-interactive zero-
knowledge proofs of knowledge π, that (i) the above is correctly done and (ii)
she is either a signer or a sanitizer.

– Pok(msk[i, idm], upksi[i], reg[i, idm]) : msk[i, idm] = GS2.GSKGn(upksi[i],
reg[i, idm])); and



50 S. Canard, A. Jambert, and R. Lescuyer

– Pok(msk[i, idm] : σfull = GS2.GSign(msk[i, idm], m)); and
– TPOK(upksi[i], ucsi[i] : ∃sk ∈ {casksi, casksa}|ucsi[i] = S.Sign(upksi[i],

sk)).

As the proofs are connected with an “and” (which is the case for the trapdoor
or proof), these relations can be composed together [11].

The resulting signature is σ = (π, σFIX, σFULL, ADM, p̃ksan, wi, regsa) where
regsa allows sanitizers to obtain their group member keys afterwards.

Sanitization Procedure. The sanitization algorithm consists, for the san-
itizer, in (i) the creation of a new σ′

FULL, according to her own keys and the
modified message, and (ii) the construction of the corresponding modified proof
π′. Let us consider the j-th sanitizer, j ∈ [1, m], let m be the initial message,
with fixed part mFIX, and let σ = (π, σFIX, σFULL, ADM, p̃ksan, wi, regsa) be a sig-
nature on m and MOD be instructions for a new message m′. First of all, if
pksan[j] /∈ p̃ksan, then the algorithm returns ⊥. Otherwise, she executes the
following steps.

Proof of Group Membership. The sanitizer retrieves its value regsa[j, idm]
in regsa. She executes the GSKGn procedure on input upksa[j] and regsa[j, idm]
to compute msk[j, idm]. Then, she produces a new group signature σ′

full =
GS2.GSign(msk[j, idm], m′) as a member of the authorized modifier.

Proof of validity. She next produces a proof π′ as a sanitizer :

– Pok(msk[j, idm],upksa[i], regsa[j, idm]) :
msk[j, idm] = GS2.GSKGn(upksa[j], regsa[j, idm])); and

– Pok(msk[j, idm] : σfull = GS2.GSign(msk[j, idm], m′)); and
– TPOK(upksa[j], ucsa[j] : ∃sk ∈ {casksi, casksa}|ucsa[j] = S.Sign(upksa[j],

sk)).

The resulting signature is σ′ = (π′, σFIX, σ
′
FULL, ADM, p̃ksan, wi, regsa).

Verification and Opening Procedures. Verification. On input a signa-
ture σ = (π, σFIX, σFULL, ADM, p̃ksan, wi, regsa) on a message m, the verification
procedure simply checks both signatures σFIX and σFULL and the whole proof π.
If all is correct, she outputs 1, otherwise 0.

Opening. We finally describe the different opening procedures for a signature
σ as defined above. The AlgOpen procedure is simply executed by using the
trap of the trapdoor or proof as shown in Section 5 with the key oskalg. The
FindOri procedure is the execution of the GS1.Open algorithm related to the
group signature scheme for signers. Next, the SigOpen is executed as described
in [8], by using the pseudo-random function and the opening algorithm of the
group signature scheme. The FullOpen algorithm corresponds to GS2.Open.

Security Theorem. We finally give the following security theorem.



Sanitizable Signatures with Several Signers and Sanitizers 51

Theorem 1. Our full transparent and fully anonymous multi-players sanitiz-
able signature verifies all the required security properties, assuming that the used
group signature, the pseudo-random function, the signature scheme (underlying
the trapdoor or proof) and the trapdoor or proof are secure.

Proof (sketch, see full paper for the full proof). Several parts of the proof (im-
mutability, unlinkability and accountabilities) are similar to the the one given
in [8], except that we have to replace the unforgeability of the used signature
scheme by the traceability and non-frameability of the group signature scheme
GS2. The anonymity properties are given by the anonymity of the group sig-
nature scheme, together with the zero-knowledge property of our trapdoor or
proof. The non-frameability and traceability properties are related to the ones
related to the used group signature schemes, together with the unforgeability
of CA’s signature scheme. The full transparency is obtained according to the
anonymity of the group signature scheme and the zero-knowledge property of
the trapdoor or proof. ��

Dealing with the group anonymity. The group anonymity states that the
anonymity of sanitizers (resp. signers) is preserved, except for the sanitizers (resp.
signers). In this case and regarding the above construction, each sanitizer (resp.
signer) should be able to independently decrypt the same message, corresponding
to the one related to the full opener or the origin opener: we need a multi receiver
encryption scheme.

In such a scheme, a designated authority having a master key generates all
the “receivers” (sanitizers or signers) secret keys. Such concept already exists, it
is named broadcast encryption [14] when it includes a revocation mechanism,
traitor tracing [6] when it treats the case of fraudulent receivers or multi-recipient
encryption [2] when several messages are encrypted for several recipients. Our
need is close to public key traitor tracing scheme, except we do not necessarily
need a tracing procedure. Thus a practical construction can be obtained with [6].

Acknowledgments. This work has been supported by the European Com-
mission under Contract ICT-2007-216676 ECRYPT II. We are grateful to the
anonymous referees for their valuable comments.

References

1. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable Signatures. In:
di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS,
vol. 3679, pp. 159–177. Springer, Heidelberg (2005)

2. Bellare, M., Boldyreva, A., Staddon, J.: Randomness Re-use in Multi-recipient
Encryption Schemeas. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp.
85–99. Springer, Heidelberg (2002)

3. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of Group Signatures: For-
mal Definitions, Simplified Requirements, and a Construction Based on General
Assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–
629. Springer, Heidelberg (2003)



52 S. Canard, A. Jambert, and R. Lescuyer

4. Bellare, M., Shi, H., Zhang, C.: Foundations of Group Signatures: The Case of
Dynamic Groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–
153. Springer, Heidelberg (2005)

5. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

6. Boneh, D., Franklin, M.: An Efficient Public Key Traitor Scheme (Extended
Abstract). In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 338–353.
Springer, Heidelberg (1999)

7. Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J.,
Schröder, D., Volk, F.: Security of Sanitizable Signatures Revisited. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 317–336. Springer, Heidelberg
(2009)

8. Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Unlinkability of Sanitizable
Signatures. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056,
pp. 444–461. Springer, Heidelberg (2010)

9. Canard, S., Jambert, A.: On Extended Sanitizable Signature Schemes. In: Pieprzyk,
J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 179–194. Springer, Heidelberg (2010)

10. Canard, S., Laguillaumie, F., Milhau, M.: Trapdoor Sanitizable Signatures and
Their Application to Content Protection. In: Bellovin, S.M., Gennaro, R.,
Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 258–276.
Springer, Heidelberg (2008)

11. Chaum, D., Pedersen, T.P.: Transferred Cash Grows in Size. In: Rueppel, R.A. (ed.)
EUROCRYPT 1992. LNCS, vol. 658, pp. 390–407. Springer, Heidelberg (1993)

12. Cramer, R., Damgrard, I., Schoenmakers, B.: Proof of Partial Knowledge and Sim-
plified Design of Witness Hiding Protocols. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

13. Delerablée, C., Pointcheval, D.: Dynamic Fully Anonymous Short Group Signa-
tures. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 193–210.
Springer, Heidelberg (2006)

14. Fiat, A., Naor, M.: Broadcast Encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

15. El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS,
vol. 196, pp. 10–18. Springer, Heidelberg (1985)

16. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

17. Gong, J., Qian, H., Zhou, Y.: Fully-Secure and Practical Sanitizable Signatures.
In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 300–317.
Springer, Heidelberg (2011)

18. Klonowski, M., Lauks, A.: Extended Sanitizable Signatures. In: Rhee, M.S., Lee,
B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 343–355. Springer, Heidelberg (2006)

19. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS 2000. The Internet
Society (2000)

20. De Santis, A., Di Crescenzo, G., Persiano, G., Yung, M.: On monotone formula
closure of SZK. In: FOCS 1994, pp. 454–465. IEEE (1994)

21. Yum, D.H., Seo, J.W., Lee, P.J.: Trapdoor Sanitizable Signatures Made Easy. In:
Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 53–68. Springer, Hei-
delberg (2010)



Attack Based on Direct Sum Decomposition

against the Nonlinear Filter Generator

Jingjing Wang1, Xiangxue Li2,�, Kefei Chen1,��, and Wenzheng Zhang3

1 Department of Computer Science and Engineering,
Shanghai Jiaotong University, Shanghai, China

{wangjingjing,kfchen}@sjtu.edu.cn
2 Department of Computer Science and Technology,
East China Normal University, Shanghai, China

3 National Laboratory of Modern Communications, Chengdu, China

Abstract. The nonlinear filter generator (NLFG) is a powerful build-
ing block commonly used in stream ciphers. In this paper, we present
the direct sum decomposition of the NLFG output sequence that leads
to a system of linear equations in the initial state of the NLFG and
further to an efficient algebraic attack. The coefficients of the equation
system rely only on the NLFG structure. The attack is operated in an
online/offline manner, doing most of the work (determining the coeffi-
cients of the equation system) in the offline phase. Thus the online phase
is very fast, requiring only four multiplications and one diagonalization
of n× n matrices.
Compared with related works, our attack has the advantages in both

online computation cost and success probability. On the one hand, far
fewer output bits and significantly less matrix computation are required
in our attack, although the online computation complexity O(LC) (LC is
the linear complexity of the output sequence) is the same as in the known
Rønjom-Helleseth attack. On the other hand, the success probability of
the attack is analyzed in this paper, different from most prior work.
The success probability of this algebraic attack is 1 − 2−φ(2n−1) (φ(·)
is the Euler function), which is much greater than 1 − 2−n, the success
probability of the Rønjom-Helleseth attack.

Keywords: nonlinear filter generator, algebraic attack, direct sum de-
composition, characteristic polynomial, success probability.

1 Introduction

The nonlinear filter generator (NLFG) consists of an n-bit linear feedback shift
register (LFSR) and a Boolean function g : GF (2)n → GF (2), called filter

� The author is supported by the National Natural Science Foundation of China
(60703031). Corresponding author.

�� The author is supported by the National Natural Science Foundation of China
(61133014, 60970111) and NLMC (9140C110201110C1102), kfchen@sjtu.edu.cn.

A. Mitrokotsa and S. Vaudenay (Eds.): AFRICACRYPT 2012, LNCS 7374, pp. 53–66, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



54 J. Wang et al.

function, whose n inputs are taken from some shift register stages, called taps,
to produce the GF (2) keystream sequence z = z0, z1, z2, . . .. It can either be used
to produce the key stream itself [8] or as a building block in a more complex
stream cipher system [23]. In this paper, all sequence elements are considered
over the field GF (2) which consists of the two elements {0, 1}.

It is known that any encryption map between finite dimensional vector spaces
over a finite field is polynomial [22]. Thus one may represent the task of breaking
a cryptosystem by the problem of solving a multivariate polynomial system of
equations over a finite field. Such techniques are usually called algebraic attacks
[9, 11, 15] and have been a powerful tool to cryptanalyze many stream ciphers
previously believed secure [1, 6–8].

A major parameter which influences the complexity of the algebraic attack
is the degree of the underlying equation system [9]. It is known for a long time
that those nonlinear functions involved in stream ciphers which implement the
encryption map should have high degrees [12, 20]. One interesting line in the
cryptography community recently is to find efficient methods of decreasing the
degree of the final equation system to be solved, especially in the literature about
the attacks against the NLFG [2, 3, 9–11, 21].

Prior Work. For an NLFG, the encryption map consists of the feedback
function of the LFSR and the nonlinear filter function[20]. The degree of this
encryption map degree is equal to the degree of the nonlinear filter function and
the latter is usually high. An equation system constructed directly from that
map is hard to solve [21].

Traditional algebraic attack methods overcome this by constructing low-degree
equations from low-degree multiples of the Boolean function [9], whereas fast
algebraic attacks reduce unknowns of original equations by combining them lin-
early [11]. Both attacks treat equations as random and include the computa-
tion of the coefficients of final low-degree equations in their online phases.[15].
Rønjom-Helleseth attacks (RH) overcome that problem by analyzing the output
sequence of the NLFG [21]. Given the low-degree equations generated via the
fast algebraic attack method in [11], Rønjom and Helleseth show that the coef-
ficients of these low-degree equations can be computed in an offline manner by
using LC×n output bits of the NLFG, where LC is the linear complexity of the
output sequence. With the pre-computation, RH attacks are more efficient than
the traditional algebraic attack and fast algebraic attack [14]. And as a conse-
quence, to resist RH attacks the Boolean function should have a much higher
algebraic degree than they have before[5].

Motivation. This paper focuses on more efficient methods of computing
the coefficients of those low-degree equations. To fulfill this purpose, the pre-
computation technique is employed.

The NLFG keystream is produced by filtering the LFSR stages; the initial
state of the NLFG is that of the LFSR. Our motivation is to view the keystream
as a direct sum of some particular sequences in such a way that the initial state
of the LFSR can be recovered easily. This can be further explained in these three
steps:



Attack Based on Direct Sum Decomposition against the NLFG 55

- firstly, we will build a relationship between a component sequence of the
direct sum decomposition of the NLFG keystream and the output sequence
of the LFSR;

- secondly, we recover the current state of the component sequence;
- and lastly, we determine the initial state of the LFSR from that current
state.

The first step above will construct some low-degree equations and pre-compute
their coefficients efficiently. More details may be found in Section 4.1.

Our Contributions. We notice an interesting property of the NLFG
keystream:

one component sequence of the direct sum is a shifted sequence of the LFSR
output sequence, and the shift value is independent of the initial state.

By a pre-determination of the shift value and a direct sum decomposition algo-
rithm, we recover the current state of the LFSR. After that a linear
equation system is used to deduce the initial state from the current state. The
pre-determination of the shift value and the subsequent pre-computation of the
coefficients of the linear equation system require only LC offline output bits of
the NLFG; they take far less matrix computation than that of the RH attack.
In addition, the linear equation system is exactly the one generated via the pre-
computation of the fast algebraic attack and also the one constructed in the RH
attack. It can be solved as efficiently as it is in the RH attack. Concrete compar-
ison with known prior work shows that our attack is amongst the most efficient
algebraic methods applicable to NLFG. Refer to Table 1 and Table 2 in Section
4 for more details.

Different from most previous work [3, 9–11] that estimate via experiment
simulations the probability of successful recovery of the LFSR initial state, we
analyze the probability from a theoretical point of view. By employing our attack
against any nonlinear filter generator, one can succeed in recovering the LFSR
initial state with probability 1− 2−φ(2n−1) (φ(·) is the Euler function), which is
significantly greater than the success probability 1−2−n of the Rønjom-Helleseth
attack [21].

Roadmap. This paper is organized as follows. Section 2 gives some necessary
definitions and notations for the paper. In Section 3 we use direct sum decom-
position to distinguish the shifted sequence of the LFSR in the NLFG. Section 4
presents an efficient algebraic attack against the NLFG and discusses its success
probability and time/space complexity. Section 5 concludes the paper.

2 Preliminaries

In this section we give some necessary definitions and notations about linear
recurring sequences and sequence spaces. While this paper considers the binary
case, the results can be extended to other finite fields. See [17] for a thorough
discussion.



56 J. Wang et al.

Let s = s0, s1, . . . be a binary sequence. Let F2 denote the binary field. If the
sequence s satisfies the following relation, for any positive integer t,

st+n = an−1st+n−1 + an−2st+n−2 + . . .+ a0st

with a0, a1, . . . , an−1 ∈ F2, then s is called a linear recurring sequence. The
polynomial f(x) = xn + an−1x

n−1 + an−2x
n−2 + . . . + a0 ∈ F2[x] is called

a characteristic polynomial of s. The companion matrix of the polynomial is
defined as

A =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 · · · 0 a0
1 0 0 · · · 0 a1
0 1 0 · · · 0 a2
...
...
...

...
...

0 0 0 · · · 1 an−1

⎞⎟⎟⎟⎟⎟⎠
For any state vector st

�
= (st, st+1, . . . , st+n−1), we have st = s0A

t.
Let Trn1 (x) : F2n → F2 be the trace function. If the characteristic polynomial

f(x) is irreducible and α is one of its root over the extension field F2n , then we
have

st = Trn1 (βα
t), for some β ∈ F2n .

Moreover if f(x) is primitive, then s is an m-sequence.
If g(x) is a multiple of f(x), i.e., f(x)|g(x), then a sequence s with charac-

teristic polynomial g(x) is also with characteristic polynomial f(x). If all char-
acteristic polynomials of s can be divided by f(x), then f(x) is the minimal
polynomial of s.

Let S(f(x)) be the set of sequences with characteristic polynomial f(x). It
follows that S(f(x)) ⊆ S(g(x)) if f(x)|g(x). ∀b ∈ F2 and the sequences v =
v0, v1, . . . ∈ S(f(x)) and w = w0, w1, . . . ∈ S(f(x)), we define in the set S(f(x))

v + w = v0 + w0, v1 + w1, . . .

and
b · v = bv0, bv1, . . .

Thus, S(f(x)) is a vector space over F2 with zero element 0 = 0, 0, . . ..

If the polynomial f(x) is reducible, i.e., f(x) =
d∏

i=0

fi(x), where fi(x), i =

0, 1, . . . , d are co-prime to each other, then S(f(x)) is a direct sum of vector
spaces S(f0(x)), S(f1(x)), . . . , S(fd(x)), i.e., a sequence s with characteristic
polynomial f(x) is a direct sum of sequences ui, i = 0, 1, . . . , d with ui with
characteristic polynomial fi(x), i = 0, 1, . . . , d respectively.



Attack Based on Direct Sum Decomposition against the NLFG 57

3 Using Direct Sum Decomposition to Distinguish the
Shifted Sequence

In this section, we first express one characteristic polynomial of the NLFG
keystream as the product of some particular co-primes polynomials. Then we
identify the direct sum decomposition of the NLFG keystream corresponding to
that particular couple of co-prime polynomials. This direct sum decomposition
is of special interest for us as it gives the shifted sequence of the LFSR output
sequence.

An NLFG consists of an n-bit LFSR and a Boolean function g to produce
its keystream z = z0, z1, . . .. Let ut, ut+1, . . . , ut+n−1 be the n LFSR stages, and
g be an n-variable Boolean function. We have zt = g(ut, ut+1, . . . , ut+n−1), t =
0, 1, . . .. The keystream z can thus be viewed as a sum of e-th order product
sequences of the LFSR output sequence u, 0 ≤ e ≤ d where d is the maximum
order of product sequences and it is also the degree of the Boolean function g.
The LFSR of the NLFG has a primitive feedback polynomial and as a result, the
LFSR output sequence u is an maximal sequence. Let α be one of the roots of the
primitive characteristic polynomial of u. [16] shows that an e-th order product

sequence has characteristic polynomial
e∏

i=0

∏
wt(�)=i

(x + α�), where wt(�) is the

binary Hamming weight of the integer �. It follows that all the e-thorder product

sequences, e = 0, 1, . . . , d are with characteristic polynomial
d∏

i=0

∏
wt(�)=i

(x+α�)
�
=

f(x). The keystream z, a sum of some of them, is thus also with characteristic
polynomial f(x).

Let f1(x) be the primitive characteristic polynomial of the LFSR output
sequence u. The root α of the polynomial f1(x) is primitive over F2n . Set
fi(x), 0 ≤ i ≤ d as the following:

fi(x) =
∏

wt(�)=i

(x+ α�).

The polynomials fi(x), i = 0, 1, . . . , d are co-prime factors of the characteristic

polynomial f(x) =
d∏

i=0

∏
wt(�)=i

(x + α�) of z, and the sequence z decomposed as

below has the special shifted sequence as its component.

Lemma 1. The output sequence z is a direct sum of sequences ui ∈ S(fi(x)), i =
0, 1, . . . , d.

Let us now assume that u1 �= 0. We then consider the sequence vector space
S(f1(x)). The polynomial f1(x) is a primitive polynomial and thus the vector
space contains exactly those m-sequences with the same characteristic polyno-
mial f1(x). Then u1 = u1,0, u1,1, . . . ∈ S(f1(x)) is an m-sequence. If we denote
the state of the LFSR at any time instant t by (ut, ut+1, . . . , ut+n−1), then the



58 J. Wang et al.

sequence u = u0, u1, . . . is also an m-sequence in S(f1(x)). Therefore, there exists
an integer c, 0 ≤ c ≤ 2n − 2 such that

u1,t = ut+c, t = 0, 1, . . . . (1)

Suppose that e is an integer, 0 ≤ e ≤ n− 1. We denote by i0, i1, . . . , ie−1 some e
integers in Rn = {0, 1, . . . , n−1} and by j0, j1, . . . , je−1 some e different integers
in Rn. Then for the integers i0, i1, . . . , ie−1 and the integers j0, j1, . . . , je−1, set
I = 2i0 + 2i1 + . . .+ 2ie−1 , and

μj0,j1,...,je−1 =
∑

i0,i1,...,ie−1,s.t.I=1

α2i0 j0α2i1 j1 · · ·α2ie−1 je−1 .

For brevity, we omit hereafter i0, i1, . . . , ie−1 in the summation index
“i0, i1, . . . , ie−1, s.t. I = a” for some positive integer a. The following theorem
presents the significant property of the shift value c in the equation (1).

Theorem 1. Let the filter function g be of the form:

g(x0, x1, . . . , xn−1) = b+ b0x0 + . . .+ bn−1xn−1

+ b01x0x1 + . . .+ bn−2,n−1xn−2xn−1

+ · · ·+
+ b01···n−1x0x1 · · ·xn−1

(2)

for some b, b0, . . . , b01···n−1 ∈ F2 .
Then we have

αc = μ,

where

μ =b0μ0 + . . .+ bn−1μn−1

+ b01μ0,1 + . . .+ bn−2,n−1μn−2,n−1

+ · · ·+
+ b01···n−1μ0,1,...,n−1.

Proof. It suffices to prove this for the case that g(x0, x1, . . . , xn−1) = xj0xj1

· · ·xje−1 . Now the output bit is zt = g(ut, ut+1, . . . , ut+n−1) = ut+j0ut+j1

· · ·ut+je−1 , where ut = Trn1 (βα
t) for some β ∈ F2n . Then we have

zt =Trn1 (βα
t+j0 )Trn1 (βα

t+j1 ) · · ·Trn1 (βαt+je−1 )

=
n−1∑
k=0

(βαt+j0 )2
k ·

n−1∑
k=0

(βαt+j1 )2
k · · ·

n−1∑
k=0

(βαt+je−1 )2
k

=

d∑
i=1

∑
wt(I)=i

(βIαIt · (α2i0 j0α2i1 j1 · · ·α2ie−1 je−1))).

(3)



Attack Based on Direct Sum Decomposition against the NLFG 59

Define ui,t =
∑

wt(I)=i

(βIαIt · (α2i0 j0α2i1 j1 · · ·α2ie−1 je−1)). One can see that the

sequence formed by ui,t, t = 0, 1, . . . is with the characteristic polynomial fi(x).
Therefore, those ui,t, t = 0, 1, . . . are exactly the terms of the sequence ui defined
in Lemma 1.

Now consider the sequence u1. For m = 0, 1, . . . , n− 1, set

λm =
∑
I=2m

α2i0 j0α2i1 j1 · · ·α2ie−1 je−1 . (4)

Especially, we have λ1 = μj0,j1,...,je−1 . An immediate consequence of (4) is that
λm+1 = (λm)2. Then following the definition of ui,t, the term of u1 at time t is

u1,t =

n−1∑
m=0

β2mαt2mλm

=

n−1∑
m=0

β2mαt2m(λ1)
2m

=Trn1 (βα
tμj0,j1,...,je−1).

(5)

Comparing this with ut = Trn1 (βα
t), one can conclude that the integer c in the

equation (1) satisfies αc = μj0,j1,...,je−1 = μ. This ends the proof. ��

Theorem 1 implies that the sequence u1 is a shifted one of u, where the shift
value c relies only on α (or, the feedback function of the LFSR) and the filter
function g if u1 �= 0. For simplicity, we view hereafter the zero sequence as a
kind of shifted sequence; namely the zero sequence is the shifted sequence for
any one by infinite positions.

Corollary 1. Let Γi be the set of (cyclotomic) coset leaders of binary Hamming
weight i modulo 2n − 1. For positive integer a, we denote by ua the decimated
sequence u0, ua, u2a, . . .. Then for 2 ≤ i ≤ d,

1) the direct sum decomposition of the sequence ui gives the shifted sequences
of ua, a ∈ Γi, (a, 2

n − 1) = 1;
2) the shift values also rely only on α and the filter function g.

Proof. The proof is similar to that of Theorem 1. Thus we here give only a sketch
of the proof.

First, it is easy to see that the sequences ui is with characteristic polynomial
fi(x) and that ui can be seen as a direct sum including the shifted sequences of
ua, a ∈ Γi, (a, 2

n − 1) = 1 as its component (consider the factorization of fi(x)).
Second, it is still sufficient to prove the case that g(x0, x1, . . . , xn−1) =

xj0xj1 · · ·xje−1 . The corresponding shift value ca of sequence ua satisfies αca =∑
I=a

α2i0 j0α2i1 j1 · · ·α2ie−1 je−1 , a ∈ Γi. Thus like the value c in Theorem 1, the

shift values mentioned in the Corollary 1 also rely only on α and the filter func-
tion g. ��



60 J. Wang et al.

4 Attack Based on Direct Sum Decomposition against
the NLFG

Now we describe how to use Theorem 1 to design an algebraic attack against the
NLFG. Suppose that the attacker has somehow known the shift value c. Then
with the linear recurrence relation of both the sequences u and u1, he knows
how to convert the (t+ c)th state of u1 to the initial state of u which is exactly
the initial state of the NLFG. This is illustrated in matrix operations as follows.

4.1 Main Idea

We represent those states by vectors. Let u0 be the initial state vector (u0, u1, . . . ,
un−1), u1,t the state vector (u1,t, u1,t+1, . . . , u1,t+n−1) of the sequence u1, and
A the companion matrix of the polynomial f1(x). Therefore, we have

u1,t = u0A
t+c. (6)

Assume that f(x) of degree deg(f) = LC is the minimal polynomial of z. And

we have LC ≤
∑d

i=0

(
n
i

)
as the degree of the minimal polynomial is no greater

than that of any characteristic polynomial of z. Assume that h(x) = h0x
0 +

h1x
1+ . . .+hNxN for some degree N is a multiple of the polynomial f(x)/f1(x)

that satisfies (h(x), f1(x)) = 1. Let h be the vector (h0, h1, . . . , hN) and Z be
the matrix (zt

T , zt+1
T , . . . , zt+n−1

T ) with zt = (zt, zt+1, . . . , zt+N ). It is easy
to show that

u1,t = hZ. (7)

Combining the equation (6) with the equation (7), we obtain a linear equation
system between the output bits and the initial state

u0A
t+c = hZ, (8)

with coefficient matrix At+c and the variables u0, u1, . . . , un−1. An immediate
consequence of (8) is that the initial state vector can be computed by

u0 = hZA−(t+c). (9)

Namely, if we can compute the matrix At+c and the vector hZ, then we can
recover the initial state u0. The coming sections show the details.

Remarks. Note that if the polynomial h(x) is only a multiple of f(x)/f1(x),
then hZ gives a shifted vector of u1,t with some constant shift value c′ and the

coefficient matrix to be computed should be At+c−c′ . However, as we care little
about the specific value c, we can set h(x) = f(x)/f1(x), substitute c for c− c′

and still get equation (9). In this way we can reduce the number of keystream
bits required by computing hZ to only LC − n.



Attack Based on Direct Sum Decomposition against the NLFG 61

4.2 Computing the Coefficient Matrix At+c

To compute the coefficient matrix, one can calculate the element μ through its
explicit expression in Theorem 1, deduce the value c from μ, and do the matrix
multiplications. But through the linear equation system (8), one can see that
the only use of the shift value c is to compute the coefficient matrix. In other
words, the deduction of the value c is unnecessary if we have an alternative to
fulfill the computation.

In fact, such an alternative does exist by diagonalizing the companion matrix
A. The trick can also be used to determine the element μ. Here we use this
alternative to compute the coefficient matrix At+c.

Let D be the diagonal matrix diag(α, α2, . . . , α2n−1

). The elements

α, α2, . . . , α2n−1

are roots of the polynomial f1(x) and thus are the eigenval-
ues of A. By diagonalizing the matrix A, one can find a nonsingular matrix P
over F2n such that

A = PDP−1. (10)

Combining the equation (7) and the equation (10), we have

u0A
tP ·Dc = hZP. (11)

Suppose γ1 and γ2 are the first elements of the row vectors u0A
tP , hZP respec-

tively.Thenwehaveμ = γ1/γ2, asD
c is the diagonalmatrix diag(μ, μ2, . . . , μ2n−1

).
As shown in Theorem 1, the element μ is a constant independent of the initial

state vector u0, which implies that μ can be computed from any initial state

u
(1)
0 and its corresponding output Z(1). Therefore, to compute μ, we can just

feed into the NLFG some selected initial state, obtain the corresponding output
bits, and do the calculations above.

Despite that the element μ has been known already, we can not calculate the
coefficient matrix At+c from the (t+ c)th power of A because it is infeasible to
deduce c from μ = αc due to the hardness of discrete logarithm problem. But
the diagonalization of A enables its (t+ c) times multiplication from the (t+ c)
times multiplication, or the c times multiplication of its eigenvalue α which is
just the element μ. More precisely, from the diagonalization equation (10), we
have

At+c = At · PDcP−1 = At · P diag(μ, μ2, . . . , μ2n−1

)P−1. (12)

Moreover, we can just replace for the element μ its inverse if we want to compute
directly the matrix A−(t+c) for the initial state recovery equation (9).

The following algorithm 1 presents the concrete steps of computing At+c.
Note that all the steps can be performed in an offline manner (i.e., without the
knowledge of the output bits to be attacked), and that the coefficient matrix
needs only to be computed once for any output sequence of the same NLFG.
Thus Algorithm 1 can be seen as the precomputation phase of the algebraic
attack described in the next section.



62 J. Wang et al.

Algorithm 1. Pre-calculation of Coefficient Matrix

Inputs: the time instant t; the companion matrix A and the roots α, α2, . . . , α2n−1

of
the polynomial f1(x).
Outputs: the coefficient matrix At+c.

1. Calculate the minimal polynomial f(x) and h(x) = f(x)/f1(x). Suppose h(x) =
h0x

0 + h1x
1 + . . . hLC−nx

LC−n, set h = (h0, h1, . . . , hLC−n).

2. Select a initial state u
(1)
0 , u

(1)
1 , . . . , u

(1)
n−1 and generate LC bits z0, z1, . . . , zLC−1 by

the NLFG. Set them into the vector u
(1)
0 and the matrix Z(1) respectively.

3. Calculate the first element γ
(1)
1 of the vector u0A

tP and the first element γ
(1)
2 of

hZP .
4. Compute μ = γ

(1)
1 /γ

(1)
2 .

5. Diagonalize A to find a nonsingular P such that A = P diag(α, α2, . . . , α2n−1

)P−1.

6. Calculate the coefficient matrix At+c = P diag(μαt, μ2α2t, . . . , μ2n−1

α2n−1t)P−1

and output it.

In Algorithm 1, calculating the minimal polynomial f0(x) is the most domi-
nant operation and takes the complexity of O(LC(n(log n)2 + (log(LC))3)), ac-
cording to [15]. Therefore, the time complexity of Algorithm 1 isO(LC(n(log n)2+
(log(LC))3)). For the data complexity, we need only LC offline bits to fulfill the
algorithm.

4.3 Attack against the NLFG

After obtaining the coefficient matrix At+c, we are close to the attack against
the NLFG. In fact, what’s remaining is to solve a linear equation system. We
summarize the whole algebraic attack in Algorithm 2.

Algorithm 2. Algebraic Attack on the NLFG

Inputs: the output sequence z = z0, z1, . . .; the feedback polynomial of the LFSR
f1(x); the Boolean function g(x0, x1, . . . , xn−1).
Outputs: the initial state u0, u1, . . . , un−1.

1. Pre-compute the coefficient matrix by Alg. 1 and store the vector h.
2. Set consecutive LC bits of z in to Z and calculate hZ.
3. Solve the equations u0A

t+c = hZ and output the result.

We assume that hZ = u1,0 �= 0 in previous sections to launch the attack. If
it is not the case we may pick an integer a �= 1 such that (a, 2n − 1) = 1. Then
the initial state of ua can be converted into the initial state of u by the discrete



Attack Based on Direct Sum Decomposition against the NLFG 63

fourier transform [13]. By Corollary 1 the shifted sequence of ua falls into the
direct sum decomposition of z and the shift value can be pre-determined in a
similar way. Therefore we can still recover the initial state u0 even if u1 = 0.

4.4 Results

To see how efficient our attack against the NLFG is, we analyze the success
probability of our attack in recovering the initial state and the time and space
complexities of the attack.

Success Probability

Now we analyze the success probability of recovering the initial state by using
the proposed attack against the NLFG. Suppose that with probability 1/2, that
shifted sequence of ua, (a, 2n − 1) = 1 in the direct sum decomposition is not
the zero sequence. Then one can succeed in recovering the initial state with a
probability at most

1− 1

2φ(2n−1)
, (13)

which is sufficiently high for the attacker. Herein, φ(·) is the Euler function.
The coefficient matrix of the underlying algebraic system is the power of a state
transition matrix for some LFSR and is thus non-singular. As long as there exists
an integer a such that (a, 2n − 1) = 1 and the shifted sequence of ua is not 0,
the initial state is exactly the unique solution of the algebraic system.

Therefore, the probability in (13) is the exact value of the success probability
of recovering the initial state. We are inclined to address here that most of the
existing algebraic attacks only estimate via experiment simulations the prob-
ability of successful recovery of the LFSR initial state. Although Rønjom and
Helleseth also analyzed the probability of successful attack in [21] from a the-
oretical point of view, one can employ our method to recover the LFSR initial
state with a probability significantly greater than the success probability

1− 1

2n
(14)

in the Rønjom-Helleseth attack.

Complexity Comparison

Consider the performance of the Algorithm 2. The space complexity of Algorithm
2 is O(n2 + LC). The time complexity and the data complexity are O(LC) and
O(LC) respectively. Table 1 compares the known algebraic attacks applicable to
the NLFGs in the literature.



64 J. Wang et al.

Table 1. Comparison among Known Algebraic Attacks on NLFG

Data Space Time

Precomputation Computation

AA[9] O(D1) O((D1)
2) uncertain O((D1)

ω)b

FAA[11][15]a O(LC) O(n2) O((LC)2) O(n2LC)

Improved FAA O(D2) O(n2 + LC) O(D2(n(log n)
2 O(n log nD2)

for the NLFG[15] +(logD2)
3))

RH[21] O(LC) O(n2 + LC) O(LC(n(log n)2 O(LC)
+(log(LC))3))

Alg.2 O(LC) O(n2 + LC) O(LC(n(log n)2 O(LC)
+(log(LC))3))

a Part of the complexity result in [11] is corrected by [15].
b ω ≈ 2.807.

In the table, we denote by D1 the sum
d/2∑
i=0

(
n
i

)
and by D2 the sum

d∑
i=2

(
n
i

)
.

W.l.o.g., LC ≤ D2. For the time complexity comparison, both pre-computation
and on-line computation are concerned. Note that the pre-computation stage
of the algebraic attack (AA) in [9] relies heavily on the complexity of finding
low-degree multiples of the filter function of the NLFG and thus is uncertain
to be measured [4]. Table 1 shows that from the complexity perspective, our
proposed attack is as efficient as the RH algebraic attack and is more efficient
than the fast algebraic attack (FAA) and the improved fast algebraic attack on
the NLFG.

Comparisons between Our Attack and the RH Attack

As the RH attack in [21] is amongst the most efficient methods sofar, we compare
it with the method proposed in this paper step by step as shown in Table 2. Both
methods use pre-computation to improve the performance of the attacks. But

Table 2. Comparison between RH Algebraic Attack and Algorithm 2

Precomputation Computation

Calculate Generate Calculate Diagonalize Calculate Solve n
f0(x) D0 bits

a hZ and multiply hZ linear
n× n matrices equations

RH[21] once n times n times - once once

Alg.2 once once once C times b once once

a D0 = D2 + n.
b C is a constant.



Attack Based on Direct Sum Decomposition against the NLFG 65

we observe that the output sequence of the NLFG has the very special property
that one direct sum decomposition of the sequence includes the shifted LFSR
sequence of the NLFG and that shift value is not affected by the initial state of
the NLFG. This motivates our attack to gain two advantages over the RH attack:
far fewer output bits and significantly less matrix computation. Moreover, the
success probability of the proposed method is much greater than that in the RH
attack, as shown in the equations (13) and (14).

5 Conclusion

Based on direct sum decomposition, a special property of the NLFG output
sequence has been explored and exploited to provide new methods of decreasing
the degree of the algebraic equation system for the algebraic attack. We show
that the output sequence can be decomposed in a direct sum of a series of
sequences, one of which is a shifted one of the LFSR sequence. The shift value is a
constant independent of the NLFG initial state and thus can be pre-determined.
The resulting equation system is linear and thus easy to be solved. Moreover,
the coefficient matrix of the algebraic system, which depends just on the shift
value, needs only to be calculated once for the NLFG. The total complexity of
our algebraic attack based on that equation system is the same as that of the RH
algebraic attack, one of the most efficient algebraic methods applicable to the
NLFG sofar. Theoretical analysis shows that our attack requires fewer operations
and achieves higher success probability than the RH algebraic attack.

References

1. Al-Hinai, S., Dawson, E., Henricksen, M., Simpson, L.: On the Security of the LILI
Family of Stream Ciphers against Algebraic Attacks. In: Pieprzyk, J., Ghodosi, H.,
Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 11–28. Springer, Heidelberg
(2007)

2. Armknecht, F., Krause, M.: Algebraic Attacks on Combiners with Memory. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 162–175. Springer, Heidel-
berg (2003)

3. Armknecht, F., Ars, G.: Introducing a New Variant of Fast Algebraic Attacks and
Minimizing Their Successive Data Complexity. In: Dawson, E., Vaudenay, S. (eds.)
Mycrypt 2005. LNCS, vol. 3715, pp. 16–32. Springer, Heidelberg (2005)

4. Canteaut, A.: Open Problems Related to Algebraic Attacks on Stream Ciphers. In:
Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 120–134. Springer, Heidelberg
(2006)

5. Carlet, C., Feng, K.: An Infinite Class of Balanced Functions with Optimal Alge-
braic Immunity, Good Immunity to Fast Algebraic Attacks and Good Nonlinearity.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 425–440. Springer,
Heidelberg (2008)

6. Billet, O., Gilbert, H.: Resistance of SNOW 2.0 Against Algebraic Attacks. In:
Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 19–28. Springer, Heidelberg
(2005)



66 J. Wang et al.

7. Cho, J.Y., Pieprzyk, J.: Algebraic Attacks on SOBER-t32 and SOBER-t16 without
Stuttering. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 49–64.
Springer, Heidelberg (2004)

8. Courtois, N.T.: Higher Order Correlation Attacks,XL Algorithm and Cryptanalysis
of Toyocrypt. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 182–
199. Springer, Heidelberg (2003)

9. Courtois, N.T., Meier, W.: Algebraic Attacks on Stream Ciphers with Linear Feed-
back. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359.
Springer, Heidelberg (2003)

10. Courtois, N.: Cryptanalysis of SFINKS. In: ICISC 2005, Cryptology ePrint Archive
Report 2005/243 (2005), http://eprint.iacr.org/

11. Courtois, N.T.: Fast Algebraic Attacks on Stream Ciphers with Linear Feedback.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Hei-
delberg (2003)

12. Ding, C., Shan, W., Xiao, G.: The Stability Theory of Stream Ciphers. LNCS,
vol. 561. Springer, Heidelberg (1991)

13. Golomb, S.W., Gong, G.: Signal Design for Good Correlation: For Wireless Com-
munication, Cryptography and Radar. Cambridge University Press, Cambridge
(2005)

14. Gong, G., Ronjom, S., Helleseth, T., Hu, H.: Fast Discrete Fourier Spectra Attacks
on Stream Ciphers. IEEE Trans. Inform. Theory 57(8), 5555–5565 (2011)

15. Hawkes, P., Rose, G.: Rewriting Variables: The Complexity of Fast Algebraic At-
tacks on Stream Ciphers. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152,
pp. 390–406. Springer, Heidelberg (2004)

16. Key, E.L.: An Analysis of the Structure and Complexity of Nonlinear Binary Se-
quence Generators. IEEE Trans. Inform. Theory 22(6) (1976)

17. Lidl, R., Niederreiter, H.: Finite Fields, Encyclopedia of Mathematics and its Ap-
plications, 2nd edn., vol. 20. Cambridge University Press, Cambridge (1997)

18. Meier, W., Pasalic, E., Carlet, C.: Algebraic Attacks and Decomposition of Boolean
Functions. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 474–491. Springer, Heidelberg (2004)

19. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press, Boca Raton (1996)

20. Rueppel, R.A.: Analysis and Design of Stream Ciphers. Springer, Heidelberg (1986)
21. Rønjom, S., Helleseth, T.: A New Attack on the Filter Generator. IEEE Trans.

Inform. Theory 53(5), 1752–1758 (2007)
22. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28,

656–715 (1949)
23. Simpson, L.R., Dawson, E., Golić, J.D., Millan, W.L.: LILI Keystream Generator.

In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 248–261.
Springer, Heidelberg (2001)

http://eprint.iacr.org/


Fuzzy Vault for Multiple Users�

Julien Bringer1, Hervé Chabanne1,2, and Mélanie Favre1

1 Morpho
2 Télécom ParisTech

Abstract. We introduce an extension of the Fuzzy Vault scheme to
support multiple users. Namely, different participants might share the
same vault to store their secret. In the classical Fuzzy Vault, a user locks
a secret using a set A and one can unlock it by providing another set
B which overlaps substantially with A. In our extension, our Extended
Fuzzy Vault is locked thanks to different sets Aj , j = 1, . . . , l and can
be unlocked with a set B with enough common elements with one of
these Aj . Our results are based on Folded Reed-Solomon Codes and their
recent list recovery algorithm. This way, our idea can be interpreted as a
natural extension of the list decoding of the Reed-Solomon Codes to list
recovery. We give a security analysis of our proposal relying on Secure
Sketches security properties to gauge our results. Finally, we provide
details on an implementation to support our ideas.

Keywords: Fuzzy Vault, Folded Reed-Solomon Codes, list recovery
algorithm.

1 Introduction

Since its introduction in 2002 by Juels and Sudan [7, 8], the Fuzzy Vault (FV)
scheme has attracted a lot of attention; in particular in the biometric community
[1,2,9–13,16–19,23]. This Fuzzy Vault scheme relies on the Reed-Solomon codes
and their decoding capacity. More precisely, to contrust a FV scheme, each
information symbol xi – considered as element of a finite field – is accompanied by
its evaluation by a given polynomial p to form a pair (xi, yi = p(xi)). Moreover,
some chaff points are added to thwart an adversary who should not be able to
differentiate genuine pairs from fake ones. Whenever a user comes back to recover
data from a FV, he has to produce a sufficient number of genuine pairs; this way,
the errors decoding capacity of the Reed-Solomon code enables to recover the
underlying polynomial p.

In this paper, we introduce the idea of an Extended Fuzzy Vault (EFV) scheme
for multiple users. This means that following the idea of FV, different users
can now share the same EFV. From a technical point of view, an immediate
difficulty comes from the fact that different users can have the same information
symbol xi. To deal with this problem, we replace the underlying list decoding of
Reed-Solomon codes suggested by FV scheme [8] by a more advanced technique

� This work has been partially funded by the French ANR project BMOS.

A. Mitrokotsa and S. Vaudenay (Eds.): AFRICACRYPT 2012, LNCS 7374, pp. 67–81, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



68 J. Bringer, H. Chabanne, and M. Favre

called list recovery. Indeed, this is the needed method to handle multiplicities
we can now encounter for each xi. Doing so, we also switch from Reed-Solomon
codes to a variant called folded Reed-Solomon codes. Folded Reed-Solomon codes
are an explicit family of codes that achieve the optimal trade-off between rate
and error-correction capability. Moreover, recently [4] introduces effective list
decoding algorithms for this family of codes which can be easily extended to list
recovery algorithms [5].

The origin of the motivation for our extension can be found in [8] where the
case of encoding multiple sets in the same fuzzy vault is briefly mentioned. For
instance, the idea of replacing part of, or all, chaff points by points correspond-
ing to other polynomials is introduced. However, [8] does not try to deal with
potential collisions between the different sets to be encoded. Another solution
would be to use several fuzzy vaults for single sets in parallel but then one has to
execute as many decoding algorithms to test if a set can open one of the vaults.
Our contribution is to show how to generally encode multiple sets in the same
vault with only one associated unlocking algorithm to be executed.

On an applicative side, and in particular in the biometric domain, the demand
of encoding multiple sets is natural [15]. Today, the FV scheme permits to users
to authenticate themselves through their biometric data. For an identification
scenario, where a comparison with a database of several users is needed, [15]
studies the way to reduce the number of comparisons to run among the several
vaults – each corresponding only to one set – by filtering techniques. Going
further, our proposal can directly address identification protocols, which is the
largest application of biometric recognition process, by seeing the whole database
as a single vault.

2 Fuzzy Vault (FV) Scheme

Let F stand for a finite field of cardinality q (F = GF (q)). We have a secret
value κ ∈ Fk to be protected and a secret set A = {ai ∈ F , i = 1, . . . , t}. Let r,
a parameter of the scheme, be an integer greater than t.

The associated Fuzzy Vault (FV) VA ∈ F2r, as introduced by Juels and Sudan
in [7,8], is computed thanks to the LOCK algorithm that takes as inputs the set
A and a vector κ. This algorithm transforms κ into a polynomial p. Moreover,
to each value in A, its evaluation by the polynomial p is made to form a pair.
Finally, some chaff points, i.e. points taken at random are chosen. This gives:

LOCK(A, κ) = VA = {(xi, yi) ∈ F × F , i = 1, . . . , r} with

for i = 1 to t do
xi = ai, yi = p(xi)

end
for i = t+ 1 to r do

xi ∈ F \A, yi ∈ F \ {p(xi)} (both taken randomly)
end



Fuzzy Vault for Multiple Users 69

Whenever one gets a set B with many common elements with the secret set A,
he should be able to recover the secret κ from VA. To this end, an algorithm
UNLOCK is provided. This gives:

Definition 1 ( [8]). A locking/unlocking pair (LOCK; UNLOCK) with param-
eter set (k; t; r) is complete with ε-fuzziness if the following holds. For κ ∈ Fk, for
2 sets A, B ∈ F t such that ‖A−B‖ ≤ ε, we have UNLOCK(B; LOCK(A;κ)) = κ
with overwhelming probability.

In [8], the UNLOCK algorithm relies on the error correction capacity of the
Reed-Solomon codes.

A Reed-Solomon code over the finite field F , of length t, and dimension
k, is made by the evaluations of polynomials of F [X ] of degree strictly less
than k for t elements of F . Each polynomial p is associated with the code-
word (p(a1), . . . , p(at)) where the ai’s stand for elements in F . Reed-Solomon
codes can be decoded up to t−k

2 errors by the Peterson-Berlekamp-Massey al-
gorithm [14]. List decoding algorithms [22], such as the one introduced by Gu-
ruswami and Sudan in [6], enable to correct even more errors. We denote by
RSDECODE such a decoding algorithm which takes as input a set of t points of
F2 and returns either a polynomial of degree k or null.

To achieve complete t−k
2 -fuzziness for the (LOCK; UNLOCK) pair with k ≤

t ≤ r ≤ q, one has to simply take in the Fuzzy-Vault VA, the points with an
abscissa in B and recover the underlying polynomial using the RSDECODE
Peterson-Berlekamp-Massey decoding algorithm.

In [8] the security analysis is formalized through an attack model that captures
the possibility for an attacker to have prior knowledge of a part of the set A when
trying to find out the value of κ from LOCK(A;κ): Given an uniformly random
subset A′ of A of a given bounded size, the probability for the adversary to guess
the right value κ (given A′ and LOCK(A;κ)) should remain small.

The security is directly depending on the number r− t of chaff points that are
added. In fact, the more chaff points they are, the more possible polynomials of
degree less than k are encoded in the vault, thus leading to higher conditional
entropy of κ knowing the vault VA. The authors quantify this by showing that
for any μ > 0 there is, with probability at least 1−μ, at least μ

3 q
k−t( rt )

t possible
polynomials. This enables to prove the security for uniformly drawn set A. The
case of non-uniform distribution is also analyzed when r = q − 1.

Another security model to analyze the Fuzzy Vault scheme is to see it in the
secure sketch [3] framework. Let H be a metric space with distance function d.
The formal definition of secure sketches functions is the following.

Definition 2. A (H,m,m′, t)-secure sketch is a pair of functions (SS,Rec) where
the sketching function SS takes w ∈ H as input, and outputs a sketch in {0, 1}∗,
such that for all random variables W over H with min-entropy H∞(W ) ≥ m,
we have the conditional min-entropy H∞(W | SS(W )) ≥ m′.

The recovery function Rec takes a sketch P and a vector w′ ∈ H as inputs,
and outputs a word w′′ ∈ H, such that for any P = SS(w) and d(w,w′) ≤ t, it
holds that w′′ = w.



70 J. Bringer, H. Chabanne, and M. Favre

Where H∞(X) = − log2 maxx P(X = x) stands for the min-entropy and
H∞(X | Y ) = − log2 Ey←Y (2

−H∞(X|Y=y)) for the conditional min-entropy.

The difference between m and m′ gives the entropy loss of the scheme. In [21],
it is shown that the entropy loss of the fuzzy vault scheme is at most

(t− k) log2 q + log2

(
q

r

)
− log2

(
q − t

r − t

)
.

This leads to the lower bound

log2

(
r

t

)
− (t− k) log2 q (1)

on the remaining entropy H∞(A | LOCK(A;κ)).
One advantage of this measure compared to the original security analysis

from [7,8] is that it is independent on the distribution assumption of the encoded
set A (in particular this handles non-uniformity for all r ≤ q − 1).

Example 1. The movie lover’s problem is introduced in [8] as an example of
application of the FV scheme. In this problem, Alice – a movie lover – has
to choose among 104 movies her 22 favorites. She is looking for someone with
similar affinities. She does not want to reveal her preferences to other people. She
uses the FV scheme to encrypt her phone number as whenever someone unlocks
her vault, he demonstrates that he shares her film taste and this enables him to
call her.

3 Folded Reed-Solomon Codes

After recalling some definitions from [5], we present the list decoding algorithm
taken from [4] used in our scheme.

3.1 A Few Definitions

Definition 3 (Folded Reed-Solomon Code). Given γ a generator of F , the
m-folded version of the Reed Solomon code C[n, k], denoted FRSF ,γ,m,N,k, is a
code of block length N = n/m over Fm where n = q − 1 is divisible by m. The
encoding of a message p ∈ F [X ] of degree at most k − 1 is given by

p(X) =

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

p(1)
p(γ)
...

p(γm−1)

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
p(γm)

p(γm+1)
...

p(γ2m−1)

⎤⎥⎥⎥⎦ , . . . ,

⎡⎢⎢⎢⎣
p(γn−m)

p(γn−m+1)
...

p(γn−1)

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

The m-tuple (p(γjm), p(γjm+1), . . . , p(γjm+m−1)) is the j’th symbol of the en-
coding of p for 0 ≤ j < n/m.



Fuzzy Vault for Multiple Users 71

More generally any restriction of p(X) on part of its columns will form a
codeword of a folded Reed Solomon code FRSF ,γ,m,N,k of shorter length N =
n/m with n < q− 1. In the paper, we consider this general case where n can be
either equal to q − 1 or lower than q − 1.

Definition 4 (List decodable code). Let C be a code of block length N , let
σ ≥ 1 be an integer and 0 < ρ < 1 be a real. C is called (ρ, σ)-list decodable if
every Hamming ball of radius ρN has at most σ codewords in it.

List decoding is a relaxation of unique decoding. Instead of outputting a single
codeword, given an error bound e, the decoding algorithm gives the list of all
polynomials p ∈ F [X ] of degree at most k − 1 whose encoding differs with the
received word in at most e symbols.

List recovery is an extension of list decoding where for each position i of the
received message the input is of the form of a set Ti of possible values.

Definition 5 (List recoverable code). Let C be a code of block length N , let
�, σ ≥ 1 be integers and 0 < ρ < 1 be a real. C is called (ρ, �, σ)-list recoverable
if for all sequences of sets T0, . . . , TN−1 where |Ti| ≤ �, for every 0 ≤ i ≤ N − 1,
there are at most σ codewords c = 〈c0, . . . , cN−1〉 such that ci ∈ Ti for at least
(1− ρ)N positions i.

For � = 1, a (ρ, 1, σ)-list recoverable code C is (ρ, σ)-list decodable.

3.2 List Decoding of Folded Reed-Solomon Codes

We chose to use Guruswami’s list decoding algorithm [4] from which we give here
a brief overview. Decoding of FRS codes is a two-step process: first interpolate a
multivariate polynomial Q ∈ F [X,Y1, . . . , Ys], where s is a chosen a parameter
lower than m, and secondly find all candidate polynomials p of degree k − 1
satisfying Q(X, p(X), . . . , p(γs−1X)) = 0. Both steps can be reduced to the
solving of linear systems over F .

Interpolation. Starting from a received word y ∈ (Fm)N of the form
〈y0, . . . ,yN 〉 = 〈[y0, . . . , ym−1], . . . , [yn−m, . . . , yn−1]〉, we are looking for a nonzero
polynomial

Q(X,Y1, Y2, . . . , Ys) = A0(X) +A1(X)Y1 +A2(X)Y2 + . . .+As(X)Ys (2)

over F where deg(Ai) ≤ D for i = 1, . . . , s and deg(A0) ≤ D + k − 1 and D is
chosen as

D =

⌊
N(m− s+ 1)− k + 1

s+ 1

⌋
(3)

For i = 0, .., N − 1, j = 0, ..,m− s, Q has to satisfy

Q(γim+j , yim+j , yim+j+1, . . . , yim+j+s−1) = 0 (4)



72 J. Bringer, H. Chabanne, and M. Favre

The number N(m− s+1) of these interpolation conditions are smaller than the
number (D + 1)s + D + k of monomials in Q, which guarantees the existence
of such a polynomial. Note that we can choose any polynomial Q satisfying the
conditions (4).

From the choice of D (3), we can deduce that the fractional agreement needed
to decode a received word y is τ > 1

s+1 +
s

s+1
mR

m−s+1 where R = k/n is the rate of

the code. This is equivalent to say that we can tolerate up to e = s
s+1 (N−

k
m−s+1 )

erroneous symbols in y.

Root Finding. We need now to find all polynomials p ∈ F [X ] satisfying

A0(X) +A1(X)p(X) + A2(X)p(γX) + . . .+As(X)p(γs−1X) = 0 (5)

This equation can be seen as a linear system in the coefficients p0, . . . , pk−1 of
p. Let us define B(X) = a1,0 + a2,0X + . . .+ as,0X

s−1 and we denote Ai(X) =∑D+k−1
j=0 ai,jX

j for 0 ≤ i ≤ s. Then for r = 0, . . . , k − 1 we can deduce from
equation (5) that

a0,r+pr(a1,0+a2,0γ
r+. . .+as,0γ

(s−1)r)+pr−1(a1,1+a2,1γ
r−1+. . .+as,1γ

(s−1)(r−1))

+ . . .+ p1(a1,r−1 + a2,r−1γ + . . .+ as,r−1γ
s−1) + p0(a1,r + . . .+ as,r) = 0 (6)

which is equivalent to

B(γr)pr + (

r−1∑
i=0

b
(r)
i pi) + a0,r = 0 (7)

This leads to a lower-triangular linear system with on its diagonal the B(γr)’s.
If B(γr) �= 0, pr is an affine combination of p0, . . . , pr−1. The dimension of the
space of solutions is thus limited by the amount of B(γr) = 0. As γ is a generator
of F , all γr values for 0 ≤ r < k are different. Moreover B is a s − 1 degree
polynomial, thus B(γr) vanishes for at most s− 1 values of r.

The whole decoding procedure can be summed up as follows

Theorem 1 ( [4]). Given a received word y ∈ (Fm)N , for any integer s,
1 ≤ s ≤ m, one can find a subspace of dimension at most s − 1 containing
all polynomials p ∈ F [X ] of degree less than k whose FRS encoding agrees with
y in at least a fraction 1

s+1 + s
s+1

mR
m−s+1 of the N codeword symbols.

According to Definition 4, for any integer 1 ≤ s ≤ m, an FRSF ,γ,m,N,k code is
an (ρ, qs−1)-list decodable code with ρ = 1− ( 1

s+1 +
s

s+1
mR

m−s+1 ). The algorithm
described previously gives the corresponding list decoding procedure.

Remark 1. The fuzzy vault construction from Section 2 can be adapted to the
folded Reed-Solomon codes. The y-axis points of the vault will still be associated
to one coordinate of a codeword associated to a random polynomial; but with a
coordinate that corresponds here to several evaluations (one column of p(X) in
Definition 3). Based on the list decoding property – here applied with a folded



Fuzzy Vault for Multiple Users 73

Reed-Solomon code of length t with t the size of the locked set as in Section 2 –
this would lead to a fuzzy vault scheme ensuring s

s+1 (t−
k

m−s+1 )-fuzziness.

3.3 Generalization to List Recovery

Suppose now that for each position i = 0, . . . , N − 1 of a received message we
have a set Ti of possible values yi,1,. . .,yi,#Ti with yi,j = [yim,j , . . . , yim+m−1,j] ∈
Fm and 1 ≤ j ≤ #Ti ≤ �. Fortunately, list recovering is also possible with
Guruswami’s algorithm [4] but with some slight modifications. As we have now
up to � values for each symbol, we need to expand the N(m−s+1) interpolation
conditions to �N(m− s+ 1) to take all symbols into account. For i = 0, .., N −
1, j = 0, ..,m− s, Q has now to satisfy

Q(γim+j , yim+j,1, yim+j+1,1, . . . , yim+j+s−1,1) = 0

Q(γim+j , yim+j,2, yim+j+1,2, . . . , yim+j+s−1,2) = 0

...

Q(γim+j , yim+j,#Ti , yim+j+1,#Ti , . . . , yim+j+s−1,#Ti) = 0

The same way, D becomes

D =

⌊
�N(m− s+ 1)− k + 1

s+ 1

⌋
(8)

The interpolation step works just as before but with a bigger linear system to
solve and root finding is exactly the same. Finally, we have the new agreement
fraction τ > �

s+1 + s
s+1

mR
m−s+1 .

This means that an FRSF ,γ,m,N,k code is an (ρ, �, qs−1)-list recoverable code
with ρ = 1− ( �

s+1 + s
s+1

mR
m−s+1 ).

Remark 2. Following the preceding facts, one has to note that there are some
restrictions on the values of parameters m, s and �, indeed we need to have
1 ≤ � ≤ s ≤ m.

4 Extended Fuzzy Vault (EFV) Scheme

In this section, we show how to extend the FV scheme to the case where the
vault is made thanks to different secret sets Aj , j = 1, . . . , l. As before for the
FV scheme, we want to unlock the vault from a set B which contains enough
common elements with one of these Aj ’s.

Let E be an alphabet containing N symbols denoted by x1, . . . , xN . Each Aj

possesses t of these symbols.
We will rely on the list recovery capacity of the Folded Reed-Solomon Codes

as described in the previous section to build our EFV scheme. We take back the
notations of Section 3, N = n/m is the length of the underlying Folded Reed-
Solomon Code in the finite field F . As before γ is a generator of its multiplicative
group. Let F1, . . . , Fl be l evaluation functions according to Definition 3. More
precisely, each set Aj is associated to a function Fj . Let pj a random polynomial



74 J. Bringer, H. Chabanne, and M. Favre

of degree k−1 in F [X ]. The value Fj(xi) is defined as the i−1’th symbol of the en-
coding of pj for 0 ≤ i−1 < N , (pj(γ

(i−1)m), pj(γ
(i−1)m+1), . . . , pj(γ

(i−1)m+m−1)).

4.1 LOCK

We take back the idea of the Fuzzy Vault scheme that is made with genuine
polynomial evaluations hidden within a cloud of chaff points.

The extended vault V = LOCK(A1, . . . , Al;κ) corresponding to the secret sets
Aj is made as follows (κ represents here the randomness used to generate the l
evaluation functions F1, . . . , Fl). Consider N sets S1, . . . , SN that will be related
to the N symbols in E . Let r, � be two integers corresponding to parameters for
the addition of chaff points.

Initialize a counter cpt← 0 and the sets S1, . . . , SN to the empty set:
Si ← ∅, i = 1, . . . , N
for i = 1 to N do

for j = 1 to l do
if xi ∈ Aj then

Si ← Si ∪ {Fj(xi)}
end

end
set li ← #Si

if li �= 0 then
cpt← cpt+ 1
for j = li + 1 to � do

let yji randomly chosen in Fm \ {Fd(xi)}d=1,...,l

let Si ← Si ∪ {yji }
end

end

end
randomly choose icpt+1, . . . , ir such that #Sie = 0 for e ∈ {cpt+ 1, . . . , r}
for e = cpt+ 1 to r do

for j = 1 to � do

let yjie randomly chosen in Fm \ {Fd(xie )}d=1,...,l

let Sie ← Sie ∪ {y
j
ie
}

end

end
Finally, every set Si for i = 1, . . . , N is shuffled

At the end, the locked vault is V = LOCK(A1, . . . , Al) = {(xi, Si), i = 1, . . . , N}.
To simplify the description and the security analysis, the same number of

points is associated to each set Si. Note that this constraint could be relaxed.

Remark 3. In other words, we construct a collection of sets S1, . . . , SN where

– there are N − r empty sets
– and r indices i1, . . . , ir such that for e ∈ {1, . . . , r}, Sie is constituted with

the union of the sets



Fuzzy Vault for Multiple Users 75

S
(1)
ie

= {Fj(xie )|xie ∈ Aj , j = 1, . . . , l}

with some chaff points

S
(2)
ie

= {yjie ∈ F
m \ {Fd(xie )}d=1,...,l | j = 1, . . . , ρ}

such that #S
(1)
ie

+#S
(2)
ie

= �.

As for the original fuzzy vault scheme, we have a number of chaff points that
hide the genuine positions that correspond to polynomial values. Moreover we
now have another dimension where at one given position, a genuine polynomial
value is mixed among other polynomial values and additional chaff points. And
even the genuine sets (the Aj ’s) can be seen as chaff with respect to one given
set Ai.

4.2 UNLOCK

Let A1, . . . , Al be l sets of size t. The unlocking procedure of a vault

LOCK(A1, . . . , Al) = {(xi, Si), i = 1, . . . , N}
is as follows.

When receiving a new set B = {b1, . . . , bt}, take the subcollection Si1 , . . . , Sit

where the ie’s are such that xie = be and run the list recovery decoding algo-
rithm with input ((xi1 , Si1), . . . , (xit , Sit)). More precisely, here the list recovery
decoding algorithm is executed by restricting the folded RS code to a folded RS
code FRSF ,γ,m,t,k of length t that is constituted with codewords⎛⎜⎝

⎡⎢⎣ p(γ(i1−1)m)
...

p(γ(i1−1)m+m−1)

⎤⎥⎦ , . . . ,

⎡⎢⎣ p(γ(it−1)m)
...

p(γ(it−1)m+m−1)

⎤⎥⎦
⎞⎟⎠

for any p ∈ F [X ] of degree at most k − 1.
We thus apply the list recovery algorithm within this code with the sets

Si1 , . . . , Sit corresponding to the set of possible received message values (the
Ti’s in Definition 5) at each position i1, . . . , it. Thanks to the list recoverable
property of the Folded Reed-Solomon codes (cf. Section 3.3), the algorithm will
output all the codewords c = 〈ci1 , . . . , cit〉 such that cie ∈ Sie for at least (1−ρ)t
positions ie with ρ = 1− ( �

s+1 + s
s+1

mR
m−s+1 ).

Consequently, as soon an Aj is sufficiently close to B, the output list will
contain the codeword associated to the evaluation function Fj . From Fj , this
leads to retrieving the content of Aj . Based on the parameters of the list recovery
decoding algorithm, for any s such that � ≤ s ≤ m, we can hence retrieve the
Aj ’s such that ‖Aj −B‖ ≤ ε with ε = 1

s+1 ((s+ 1− �)t− sk
m−s+1 ).

Lemma 1. Following a straightforward extension of Definition 1, our Extended
Fuzzy Vault scheme based on a FRSF ,γ,m,N,k code is complete with ε-fuzziness
where

ε =
1

s+ 1
((s+ 1− �)t− sk

m− s+ 1
)



76 J. Bringer, H. Chabanne, and M. Favre

Remark 4. Although our EFV construction is described in the folded Reed-
Solomon context, it can also be applied to other codes for which a list recovery
algorithm exists. This is for instance the case for classical Reed-Solomon codes.
So the EFV scheme can be instantiated for RS codes but then the list recovery
decoding will be suboptimal [20].

5 Security Properties of the EFV Scheme

5.1 Uniform Case

As in [8], we can estimate the difficulty for an attacker to retrieve a genuine
polynomial among the different possible combinations of points in the vault by
approximating the number of polynomials. As explained in Section 2, for the
Reed-Solomon fuzzy vault of dimension k over F with t genuine points and r− t
chaff points, for any μ > 0 there is at least μ

3 q
k−t( rt )

t possible polynomials, with
probability at least 1− μ.

Similarly to [8], we can use this number of possible polynomials as an estima-
tion of the security when the sets are uniformly random (ideal case): In the case
of the application of the EFV scheme to RS codes, following the fact that one can
extract �r different possible combinations of r pairs (xi, yi) (with distinct abscis-
sas) from a vault for multiple sets LOCK(A1, . . . , Al) = {(xi, Si), i = 1, . . . , N},
this leads to the following security bound.

Lemma 2. Assume that the sets A1, . . . , Al are randomly and uniformly chosen
into F t. Given a vault LOCK(A1, . . . , Al) with chaffing parameters �, r, then for
any μ > 0, with probability at least 1−μ, there exist at least μ

3 �
rqk−t( rt )

t polyno-
mials p of degree lower than k such that the Reed-Solomon codeword generated
by p has t coordinates that are included in the vault.

We remark an important difference compared with the use of l independent
vaults (one for each Aj): instead of multiplying the number of possible poly-
nomials by l, it is increased by a multiplicative factor �r (with l ≤ �). This
underlines the interest of using our extended fuzzy vault scheme instead of l
parallel independent fuzzy vaults. Other advantages are explained in next sub-
section and Section 6.

5.2 General Case

The assumption of uniform distribution is often not practical (in particular for
application to biometrics). Moreover, when using folded RS codes, the result
does not hold at all. The analysis to estimate the number of polynomials is more
complex as one should take in account the information given by the correlations
within one column of evaluations. In order to obtain a generic security bound
that is valid for folded Reed-Solomon codes with any kind of distribution for the
Aj ’s, we estimate the entropy loss as for a secure sketch scheme:



Fuzzy Vault for Multiple Users 77

Lemma 3. The entropy loss of our Extended Fuzzy Vault scheme based on a
FRSF ,γ,m,N,k code is at most

(mt− k)l × log2 q − log2

(
r

λ

)
+ log2

(
N

λ

)
with t ≤ λ ≤ lt is the number of indexing sets (the Si’s) covered by the genuine
points.

Proof. Choosing the l evaluation functions corresponds to l × k × log2 q bits of
entropy (the choice of l polynomials). Let li be the size of each indexing set
Si after filling the vault only with genuine points (from the Aj ’s). Let λ the
number of li strictly greater than 0. The choice of additional chaff positions
requires log2

(
N−λ
r−λ

)
bits of randomness. The choice of the chaff values requires

about ((r − λ) × � +
∑

i=1..N |li =0(� − li)) log2 q
m = m × (r� − lt) log2 q (we

assume here that � is sufficiently small to neglect the difference between Fm and
Fm \ {Fd(xi)}d=1,...,l).

Thus, we have approximatelyH∞(A1, . . . , Al, R) = H∞(A1, . . . , Al)+log2 q×
(lk+m(r�− lt)) + log2

(
N−λ
r−λ

)
where R denote the random bits that are used to

lock the vault LOCK(A1, . . . , Al).
Note that R is entirely determined by A1, . . . , Al and LOCK(A1, . . . , Al), so

H∞(A1, . . . , Al, R | LOCK(A1, . . . , Al)) = H∞(A1, . . . , Al | LOCK(A1, . . . , Al)).
We know also that the output can be encoded with log2

(
N
r

)
+mr� log2 q.

This leads to H∞(A1, . . . , Al | LOCK(A1, . . . , Al)) ≥ H∞(A1, . . . , Al)−(mt−
k)l × log2 q + log2

(
N−λ
r−λ

)
− log2

(
N
r

)
.

We conclude from
(
N−λ
r−λ

)(
N
λ

)
=
(
N
r

)(
r
λ

)
. ��

Note that we have at most H∞(A1, . . . , Al) = l log2
(
N
t

)
. Assuming that the

sets are independent, this would give us a remaining entropy H∞(A1, . . . , Al |
LOCK(A1, . . . , Al)) greater than(

l log2

(
N

t

)
− log2

(
N

λ

))
+ log2

(
r

λ

)
− ((mt− k)l × log2 q)

This is somehow comparable with the remaining entropy when using l indepen-
dent fuzzy vaults that can be approximated from Equation (1) as

l

(
log2

(
r

t

)
− (t− k) log2 q

)
With t and λ small in front of N and r, the first equation can be approximated
as lN t−Nλ+rλ− (mt−k)l× log2 q and the second equation is approximated as
lrt − (t− k)l× log2 q. In both situation, r needs in general to be large to ensure
that the entropy is large. Note that despite this possibility to achieve similar
security levels in term of entropy loss between our construction and the use of l
parallel independent fuzzy vaults, this leads to different costs. In particular:



78 J. Bringer, H. Chabanne, and M. Favre

– For l independent fuzzy vaults, additional noise is needed for each vault. For
one Aj , the number of chaff points is then r −#Aj ; that would be large if
#Aj is small. Globally, this requires rl − lt chaff points.

– Whereas in the case of our extended fuzzy vault, the amount of additional
noise to be added is mainly determined by �, λ and r−λ where λ is equal to
the number of indexing sets (the Si’s) that are filled with one of the genuine
points (from the sets A1, . . . Al). More precisely, the number of chaff points
is r� − lt. This means that when l is large and when the genuine points are
quite well distributed (which implies that we can choose � << l), then that
number can be very small compared with the trivial construction.

6 Implementation Aspects

Based on our experiments, we discuss in this section some practical aspects of the
Extended Fuzzy Vault scheme (based on folded Reed-Solomon codes), especially
those that are related to the number of sets or the number of collisions (and
thus �).

We also emphasize the difference between the classical fuzzy vault scheme and
our scheme to explain several advantages of our scheme compared to the use of
several independent and parallel fuzzy vaults.

6.1 Noise

In [8], Juels and Sudan provide an example of their Fuzzy Vault scheme where
the number of chaff points, to hide a given set, equals q − t. Transposed to our
case, this would mean to have N−t chaff points for each set (with N that can be
up to qm due to the folded Reed-Solomon framework). But precisely as we deal
with multiple sets encoded in the same vault, we can decrease the amount of
chaff points needed: we can see this as a kind of upper bound on the number of
chaff points we add for each set. Nevertheless, we could fill the space of possible
symbols with noise up to � for each of the N symbols (see one example in
Table 1).

Table 1. An example of noise filling for � = 3

x1 x2 x3 x4 x5 x6 . . . xN−1 xN−2

y1,1 y2,1 × y4,1 y5,1 y6,1 yN−1,1 yN,1

y1,2 y2,2 × y4,2 y5,2 × . . . × yN,2

× y3,3 × × × × × ×

The lower amount of random chaff points per encoded set in the EFV scheme
is compensated by the multiple sets themselves. The more there are sets, the
more it is difficult for an attacker to find a specific set’s attributes.



Fuzzy Vault for Multiple Users 79

6.2 Complexity

List Size. Parameter s gives an upper bound on the size of the output list of
algorithm from Section 3.3: recalling that the cardinality of F is q, output list is
smaller than qs−1. This was already stressed in [4] that this can be very large.
In the EFV scheme, this is in particular dependent on the amount li ≤ � of users
sharing a same information symbol xi which can be quite large. As s has to be
bigger than �, we could have to deal with potentially very big output lists. Note
that in practice, our experiments have resulted into much smaller output lists.

Example 2. Suppose the amount of referenced movies is N = 104, Alice has a
list (x1, . . . , x22) of her t = 22 favorites. Among the other users, we can easily
imagine that two people love one common movie xi with Alice (li = 3). Let us
fix � = 3, s = 4 and m = 5 to tolerate up to e = 3 errors and q > mN . When
Bob tries to learn who gets the same tastes as him, giving another set of 22 titles
including the above movie xi, the EFV scheme could be faced with a large output
list (q3).

Although we did not encounter this situation in our experiments, the theoretical
large size of the list could be a limitation for increasing the number of sets in
the vault.

Memory Space and Execution Time. Another point is that s and � give a
lower bound on m and determine the parameter D (cf. Equation (8)). The code
size is directly impacted by these parameters, which leads to the memory space
needed and the execution time. In particular, the size of the first linear system
to solve – that is a critical element in the algorithm implementation – grows fast.

Table 2. Some execution timings for EFV scheme with 100 users on F = F2053

t m s � k System size Execution time

22 5 4 3 14 132*133 125 ms
50 10 8 6 15 900*905 14.5 sec
73 14 11 8 16 2336*2343 6 min 44 sec

Table 2 gives an overview of the size of the systems one have to solve while
decoding. Implementation has been done using PARI/GP on a common desktop
computer. Although the size is growing quickly, the execution time remains quite
reasonable for these parameters.

Vault Size. A vault obtained from locking multiple sets can be represented
with log2

(
N
r

)
+mr� log2 q bits. As explained in Section 5, r needs in general to

be large for security. This has an impact on the size of the vault representation.
It is important to remark that it is also the case for the original FV scheme

(for which a vault can be represented with log2
(
N
r

)
+ r log2 N bits).



80 J. Bringer, H. Chabanne, and M. Favre

Consequently, we underline another advantage of using our EFV scheme in-
stead of l independent FV vaults (one for each Aj): If the number of collisions
between the l sets A1, . . . , Al is small, then � can be chosen small. The overall
size of our EFV vault will be then about log2

(
N
r

)
+mr�(log2 N + log2 m) bits

while the l vaults will need l× (log2
(
N
r

)
+ r log2 N) bits. For instance, if N = r,

as soon m� is much smaller than l, then the EFV vault size will become much
smaller. In fact, this is due to the randomness that needs to be renewed for l
independent vaults whereas we use the same for all sets in our EFV scheme.

7 Conclusion

In this paper, we extend the Fuzzy Vault scheme to handle multiple users at the
same time, leading to several benefits compared to the trivial solution of using
several single fuzzy vaults in parallel. Our extension follows the quite recent
improvements of the decoding properties of Reed Solomon codes as we are using
list recovery methods for which effective algorithms have been discovered last
year. From our first experiments, we think that, today, direct applications of our
proposal can be attempted. One of the next step is to apply our Extended Fuzzy
Vault scheme to biometric identification (in particular, for fingerprint modality).
As for application of fuzzy vault, due to the level of errors to handle, a specific and
concrete fine tuning will be required to reach a good trade-off between biometric
error rates and the level of security. Moreover, the current decoding techniques
would also need further improvements, specifically for decoding complexity and
list size, to be practically able to embed a large number of sets in the same vault.

Acknowledgments. The authors thank Daniel Augot for his valuable com-
ments on list decoding algorithms and the reviewers for their comments.

References

1. Chae, S.H., Lim, S.J., Bae, S.H., Chung, Y., Pan, S.B.: Parallel processing of the
fuzzy fingerprint vault based on geometric hashing. TIIS 4(6), 1294–1310 (2010)

2. Chung, Y., Moon, D., Lee, S., Jung, S., Kim, T., Ahn, D.: Automatic Alignment
of Fingerprint Features for Fuzzy Fingerprint Vault. In: Feng, D., Lin, D., Yung,
M. (eds.) CISC 2005. LNCS, vol. 3822, pp. 358–369. Springer, Heidelberg (2005)

3. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy Extractors: How to Generate Strong Keys
from Biometrics and Other Noisy Data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)

4. Guruswami, V.: Linear-algebraic list decoding of folded Reed Solomon codes. In:
IEEE Conference on Computational Complexity, pp. 77–85. IEEE Computer So-
ciety (2011)

5. Guruswami, V., Rudra, A.: Explicit codes achieving list decoding capacity: Error-
correction with optimal redundancy. IEEE Transactions on Information The-
ory 54(1), 135–150 (2008)

6. Guruswami, V., Sudan, M.: Improved decoding of Reed Solomon and algebraic-
geometric codes. In: FOCS, pp. 28–39. IEEE Computer Society (1998)



Fuzzy Vault for Multiple Users 81

7. Juels, A., Sudan, M.: A fuzzy vault scheme. In: Proceedings of IEEE International
Symposium on Information Theory, ISIT. LNCS, p. 408 (2002)

8. Juels, A., Sudan, M.: A fuzzy vault scheme. Des. Codes Cryptography 38(2), 237–
257 (2006)

9. Lee, S., Moon, D., Jung, S., Chung, Y.: Protecting Secret Keys with Fuzzy Finger-
print Vault Based on a 3D Geometric Hash Table. In: Beliczynski, B., Dzielinski,
A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007, Part II. LNCS, vol. 4432,
pp. 432–439. Springer, Heidelberg (2007)

10. Li, J., Yang, X., Tian, J., Shi, P., Li, P.: Topological structure-based alignment for
fingerprint fuzzy vault. In: 19th International Conference on Pattern Recognition
(ICPR 2008), Tampa, Florida, USA, December 8-11, pp. 1–4 (2008)

11. Li, P., Yang, X., Cao, K., Shi, P., Tian, J.: Security-Enhanced Fuzzy Fingerprint
Vault Based on Minutiae’s Local Ridge Information. In: Tistarelli, M., Nixon, M.S.
(eds.) ICB 2009. LNCS, vol. 5558, pp. 930–939. Springer, Heidelberg (2009)

12. Li, P., Yang, X., Cao, K., Tao, X., Wang, R., Tian, J.: An alignment-free fin-
gerprint cryptosystem based on fuzzy vault scheme. J. Network and Computer
Applications 33(3), 207–220 (2010)

13. Lim, S.J., Chae, S.-H., Pan, S.B.: VLSI Architecture of the Fuzzy Fingerprint Vault
System. In: Schwenker, F., El Gayar, N. (eds.) ANNPR 2010. LNCS, vol. 5998, pp.
252–258. Springer, Heidelberg (2010)

14. MacWilliams, F.J., Sloane, N.J.A.: The theory of error correcting codes. North-
Holland Pub. Co. (1977)

15. Merkle, J., Niesing, M., Schwaiger, M., Ihmor, H., Korte, U.: Performance of the
fuzzy vault for multiple fingerprints. In: Brömme, A., Busch, C. (eds.) BIOSIG.
LNI, vol. 164, pp. 57–72. GI (2010)

16. Moon, D., Lee, S., Jung, S., Chung, Y., Park, M., Yi, O.: Fingerprint Template
Protection Using Fuzzy Vault. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007,
Part III. LNCS, vol. 4707, pp. 1141–1151. Springer, Heidelberg (2007)

17. Nagar, A., Nandakumar, K., Jain, A.K.: Securing fingerprint template: Fuzzy vault
with minutiae descriptors. In: 19th International Conference on Pattern Recogni-
tion (ICPR 2008), Tampa, Florida, USA, December 8-11, pp. 1–4 (2008)

18. Nandakumar, K., Jain, A.K., Pankanti, S.: Fingerprint-based fuzzy vault: Imple-
mentation and performance. IEEE Transactions on Information Forensics and Se-
curity 2(4), 744–757 (2007)

19. Nandakumar, K., Nagar, A., Jain, A.K.: Hardening Fingerprint Fuzzy Vault Using
Password. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 927–937.
Springer, Heidelberg (2007)

20. Rudra, A.: List Decoding and Property Testing of Error Correcting Codes. Ph.D.
thesis, University of Washington (2007)

21. Smith, A.D.: Maintaining secrecy when information leakage is unavoidable. Ph.D.
thesis, Cambridge, MA, USA (2004), aAI0807529

22. Sudan, M.: Decoding of Reed Solomon codes beyond the error-correction bound.
J. Complexity 13(1), 180–193 (1997)

23. Uludag, U., Pankanti, S., Jain, A.K.: Fuzzy Vault for Fingerprints. In: Kanade, T.,
Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 310–319. Springer,
Heidelberg (2005)



Bounds and Constructions for 1-Round

(0, δ)-Secure Message Transmission
against Generalized Adversary

Reihaneh Safavi-Naini and Mohammed Ashraful Alam Tuhin

Department of Computer Science, University of Calgary
{rei,maatuhin}@ucalgary.ca

Abstract. In the Secure Message Transmission (SMT) problem, a sender
S is connected to a receiver R through n node-disjoint paths in the net-
work, a subset of which are controlled by an adversary with unlimited
computational power. S wants to send a message m to R in a private and
reliable way. Constructing secure and efficient SMT protocols against a
threshold adversary who can corrupt at most t out of n wires, has been
extensively researched. However less is known about SMT problem for
a generalized adversary who can corrupt one out of a set of possible
subsets.
In this paper we focus on 1-round (0, δ)-SMT protocols where privacy

is perfect and the chance of protocol failure (receiver outputtingNULL)
is bounded by δ. These protocols are especially attractive because of their
possible practical applications.
We first show an equivalence between secret sharing with cheating

and canonical 1-round (0, δ)-SMT against a generalized adversary. This
generalizes a similar result known for threshold adversaries. We use this
equivalence to obtain a lower bound on the communication complexity
of canonical 1-round (0, δ)-SMT against a generalized adversary. We
also derive a lower bound on the communication complexity of a general
1-round (0, 0)-SMT against a generalized adversary.
We finally give a construction using a linear secret sharing scheme and

a special type of hash function. The protocol has almost optimal com-
munication complexity and achieves this efficiency for a single message
(does not require block of message to be sent).

1 Introduction

The Secure Message Transmission (SMT) problem was introduced by Dolev,
Dwork, Waarts and Yung [6] to address the problem of secure communication
between two nodes in an incomplete network. In the SMT problem, the sender
S and the receiver R do not share a key but are connected by n ‘wires’, a
subset of which are controlled by an adversary A with unlimited computational
power. Wires are abstractions of node-disjoint paths between S and R. The
sender S wants to send a message m to a receiver R in a ‘private’ and ‘reliable’
way. ‘Private’ means that the adversary should not learn any information about

A. Mitrokotsa and S. Vaudenay (Eds.): AFRICACRYPT 2012, LNCS 7374, pp. 82–98, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



1-Round (0, δ)-SMT against Generalized Adversary 83

m and ‘reliable’ means that R will receive the same message m that S has
sent. Security of an SMT protocol means achieving both privacy and reliability.
A perfectly secure message transmission (PSMT) guarantees that R always
receives the sent message and the adversary never learns anything about the
message.

One of the main motivations of studying SMT has been to reduce connectivity
requirements in secure multi-party protocols in unconditional setting [1,2,17].
These protocols assume reliable and secure channels between every two nodes.
This assumption cannot be satisfied in many real life scenarios and so, SMT
is used to simulate a secure channel between nodes using redundant paths in
the network. Algorithms and techniques developed in the study of SMT, and in
particular one round protocols, have found other applications including in key
distribution and in particular strengthening keys shared between nodes in sensor
networks [19,20].

Franklin and Wright relaxed the original definition of PSMT and proposed
(ε, δ)-SMT (0 ≤ ε, δ ≤ 1) [9] where privacy and reliability losses are bounded
by ε and δ respectively. Relaxing security and reliability reduces connectivity
requirement and results in more efficient protocols.

Motivation of This Work

Secure message transmission problem against a threshold adversary has been
extensively researched in the literature. [6,9,11]. Generalized adversaries provide
a flexible way of modelling real life adversaries and so it is important to de-
velop the SMT theory in the case of generalized adversaries. This is the main
motivation of this work.

Our Results. We present a number of results.

– We first show an equivalence between secret sharing with cheating and a
1-round (0, δ)-SMT against generalized adversary, assuming SMT and the
adevrsary structure satisfy certain conditions. In particular, the decoding
function of SMT must be of a special form which is called canonical. This
result generalizes a similar result for threshold adversaries due to Kurosawa
and Suzuki [11]. Using this equivalence we will derive a lower bound on
the communication complexity of a canonical 1-round (0, δ)-SMT against a
generalized adversary.

– We derive a lower bound on the communication complexity of a 1-round
(0, 0)-SMT against a generalized adversary. The bound is the first of this
kind for generalized adversary case. A similar bound on the communication
complexity was known for the case of threshold adversary.

– We finally give the construction of a 1-round (0, δ)-SMT protocol with se-
curity against a generalized adversary. The protocol is simpler than the only
other known protocol with the same property [5], and can be used for trans-
mission of a single message, while the protocol of [5] requires a block of
messages to be sent. Both protocols have the same efficiency (polynomial in
the size of the adversary structure).



84 R. Safavi-Naini and M.A.A. Tuhin

Organization of the paper

We recall the basic definitions of secure message transmission, secret sharing,
secret sharing with cheating, and linear secret sharing in Section 2. In Section
3 we show the equivalence between 1-round (0, δ)-SMT and secret sharing with
cheating against a generalized adversary under some assumptions. In Section
4 we derive the lower bound on the communication complexity of 1-round (0,
δ)-SMT from the shown equivalence. We also show the lower bound on the
communication complexity of 1-round (0, 0)-SMT in Section 4. Finally in Section
5, we design a 1-round (0, δ)-SMT protocol using a secret sharing with cheating
scheme.

2 Preliminaries

Communication Model.We consider a synchronous, incomplete network. The
sender S and the receiver R are connected by n node-disjoint paths, also known
as wires or channels. Both S and R are honest. The goal is for S to send a
message m, drawn from the message space M, to R such that R receives it
correctly and privately.

The network is undirected and wires are two-way. SMT protocols proceeds in
one or more rounds. In a round, a message is sent by either S or R to the other
party over the wires. Messages are received by the recipient of the round before
the next round starts. We consider only 1-round in this work, where the sender
sends the message to the receiver.

Adversary Model. We consider an adversary A having unlimited computa-
tional power who can corrupt a subset of nodes in the network. Honest nodes
forward the received messages to the next nodes on the path. A path (wire)
that includes a corrupted node is controlled by the adversary. Corrupted nodes
can fully control the corrupted wires and arbitrarily eavesdrop, modify or block
messages sent over them. A is adaptive and can corrupt wires any time during
the protocol execution and after observing communications over the wires that
she has corrupted so far. A is also rushing, i.e., in each round it sees the messages
sent by S and R over the corrupted wires before deciding on the messages to
be sent over those wires in that round. S and R do not know which wires are
corrupted.

Notation. M be the message space from which messages are chosen according
to a probability distribution Pr(m). Let mS be the message randomly selected
by S. We assume M and Pr(m) are known in advance to all parties including
the adversary. Let RA be the random coins used by A to choose one set of wires
in the adversary structure Γ to corrupt.

In an execution of an SMT protocol Π, S draws MS fromM using the distri-
bution Pr(m), and aims to send it to R privately and reliably. We assume that
by the end of the protocol, R outputs a message MR ∈ M or NULL and so, an
execution is completely determined by the random coins selected by all parties
and the messages selected by the sender.



1-Round (0, δ)-SMT against Generalized Adversary 85

2.1 Secure Message Transmission

Let the sender S and the receiver R are connected by a set of n wires W =
{w1, w2, ..., wn}. S wants to send a messagem to a receiver in private and reliable
way. A computationally unbounded byzantine adversary A can control a subset
of wires. The set of possible subsets of wires that the adversary can control forms
the adversary structure Γ defined as,

Γ = {B ⊂ W : A can corrupt B}.

We assume the adversary structure is monotone. This means that, if C ∈ Γ
and C′ ⊂ C ⊂ W , then C′ ∈ Γ . A threshold adversary is a special case of an
adversary structure where Γ includes all subsets of W with size at most t.

The receiver, on the other hand, can reconstruct the secret message using the
values sent on specific subsets of wires, defined by the access structure, Σ defined
as follows:

Σ = {C ⊂ W : values sent on wires in C uniquely determine the message}.

We assume Σ is monotone, that is, if B ∈ Σ and B ⊂ B′ ⊂ W , then B′ ∈ Σ.
We assume any subset in 2W is either an adversary set or an access set. That is,

Γ = 2W \Σ.

Definition 1. (Qk condition [10]) An adversary structure Γ satisfies Qk con-
dition with respect to the wire set W if there are no k sets in Γ , which cover the
full W. Mathematically,

Γ satisfies Qk ⇔ ∀B1, ..., Bk ∈ Γ : B1 ∪ ... ∪Bk �=W .

An SMT protocol tolerating a generalized adversary consists of a pair of algo-
rithms (Enc, Dec) defined as follows.

– Enc is a probabilistic encoding algorithm which takes a secret m ∈ M as
input and outputs an encoding (x1, ..., xn), of the message. xi is transmitted
through the ith wire. Enc is called by the sender S.

– Dec is a deterministic decoding algorithm which takes (x′
1, ..., x

′
n), a cor-

rupted version of the encoded message, and outputs m′ ∈ M or NULL
(denoting failure). Dec is called by the receiver R.

(x1, ..., xn) is corrupted to (x′
1, ..., x

′
n) by the adversary who controls wires cor-

responding to an adversary set. It is required that Dec(Enc(m))=m, for any
m ∈M. Let Xi denote the random variable representing value xi, and Xi denote
the set of possible values xi, 1 ≤ i ≤ n.

Definition 2. An SMT protocol is called an (0, δ)-Secure Message Transmission
((0, δ)-SMT) protocol if the following conditions are satisfied:



86 R. Safavi-Naini and M.A.A. Tuhin

– Privacy: A learns no information about the secret m. More precisely, if
{wi1 , ..., wik} ∈ Γ then for any m ∈M,

Pr(M = m|Xi1 = xi1 , ..., Xik = xik) = Pr(M = m).

– General Reliability: The receiver R always outputs m̂ = m or NULL.
He never outputs an incorrect secret.

– Trivial Reliability: If the adversary blocks the transmissions on the wires
he corrupts (i.e., the received transmissions on those wires are all null strings)
then the receiver R outputs m̂ = m.

– Failure: R receives the message m with probability ≥ 1 − δ. That is, if
{wi1 , ..., wik} ∈ Σ then,

Pr(R outputs NULL) ≤ δ.

When δ = 0, we call it a Perfectly Secure Message Transmission (PSMT, for
short) or (0, 0)-SMT.

Remark: An alternative definition of general reliability used in the literature
[9] allows the receiver to reconstruct a message m′ �= m. The trivial reliability
requirement was first assumed in [11]. The requirement although natural, is not
required in general.

It has been shown that 1-round (0, 0)-SMT and 1-round (0, δ)-SMT is possible
if and only if the adversary structure Γ satisfies the Q3 [7] andQ2 [15] conditions,
respectively.
The number of rounds of a protocol is the number of interactions between S
and R. We consider synchronous network where time is divided into clock ticks
and in each clock tick the sender or the receiver sends a message and the message
is received by the other party before the next clock tick.

Communication complexity is the total number of bits transmitted (b) be-
tween S and R for communicating the message(s). Communication efficiency is
often measured in terms of transmission rate, which is the ratio of the commu-
nication complexity to the length of the message MS . That is,

Transmission Rate = total number of field elements transmitted(b)
size of the secrets(|MS |) .

The message MS is either one element or a sequence of elements from an
alphabet.

Computation complexity is the amount of computation performed by S and
R throughout the protocol. A protocol which needs exponential (in the size of the
adversary structure) computation is called inefficient. Efficient protocols need
polynomial (in the size of the adversary structure) computation. We note here
that if the size of the adversary structure is exponential (in n), then the protocol
will have inefficient computation.

Related Work. Chowdury, Kurosawa, and Patra gave an efficient 1-round (0,
δ)-SMT protocol for against a generalized adversary satisfying the Q2 condition
[5].



1-Round (0, δ)-SMT against Generalized Adversary 87

2.2 Secret Sharing

A secret sharing scheme is a cryptographic primitive that distributes a secret
s among n participants such that only qualified subsets of participants can re-
construct the secret, while non-qualified subsets get no information about the
secret. In a secret sharing scheme, there are n participants P = {P1, ..., Pn} and
a trusted dealer D. The set of participants who are qualified to reconstruct the
secret is specified by an access structure Σ ⊆ 2P . We consider monotone access
structures in which any subset that contains a qualified subset is also a qualified
set. In this case the access structure Σ is uniquely determined by the family of
minimal qualified subsets, Σ0, known as the basis of Σ. The set of participants
who are not allowed to learn any information about the secret is specified by
the adversary structure Γ , which is defined as Γ = 2P \Σ. For monotone access
structures, the adversary structure is also monotone. In a monotone adversary
structure if B ∈ Γ and B′ ⊂ B ⊂ P , then B′ ∈ Γ .

A secret sharing scheme with a monotone access structure Σ must satisfy the
following conditions:

– SS1: A set of participants Pi1 , ..., Pik can reconstruct the secret if and only
if {Pi1 , ..., Pik} ∈ Σ.

– SS2: Any set of participants P /∈ Σ must have no information about the
secret.

A secret sharing model consists of two algorithms: ShareGen andReconst. The
share generation algorithm ShareGen takes a secret s ∈ S as input and outputs
a list (v1, v2, ..., vn). Each vi is called a share and is given to participant Pi. The
ShareGen algorithm is invoked by the dealer D. The secret reconstruction
algorithm Reconst takes a list of shares and outputs a secret s ∈ S.

Let Vi denotes the random variable that represents the share values vi and
denote, Vi = {vi|Pr[Vi = vi] > 0}, the set of possible shares held by
participant Pi.

The efficiency of a secret sharing scheme is measured by the information rate
which is the ratio of the size of the secret to the size of the largest share given
to any participant. The maximum possible rate is 1 and such schemes are called
ideal.

2.3 Linear Secret Sharing Scheme

A secret sharing scheme for a monotone access structure Σ can be realized by a
linear secret sharing scheme (LSSS). Let M be a d× e matrix over a finite field
S and ψ : {1, ..., d} → {1, ..., n} be a labelling function, where d ≥ e and d ≥ n.
The share generation algorithm ShareGen is as follows.

ShareGen

1. To share a secret s ∈ S, the dealer D first chooses a random vector r ∈ Se−1

and computes a vector,

v = (v1, ..., vd)
T = M ×

(
s

r

)
.



88 R. Safavi-Naini and M.A.A. Tuhin

2. Let LSSS(s, r)= (share1, ..., sharen), here sharei = {vj : ψ(j) = i}. Pi will
receive sharei as its share, i = 1, ..., n.

The reconstruction algorithm Reconst is as follows:
A set of participants A ∈ Σ can reconstruct the secret s if and only if (1, 0,

..., 0) is in the linear span of,

MA = {mj : ψ(j) ∈ A},

here mj is the jth row of M .

3 Secret Sharing Scheme with Cheaters

Tompa and Woll first considered the problem of secret sharing with cheaters [18]
who submit wrong shares with the aim of learning the secret while preventing
an honest member of a qualified set to do so. That is, given a qualified set
{Pi1 , ..., Pik+1

} ∈ Γ , the adversary can corrupt Pi1 , ..., Pik (this is a non-qualified
set) who will submit incorrect shares to cheat the (k + 1)st participant. The
cheaters (i.e., the adversary) succeed if the shares presented by Pi1 , ..., Pik+1

construct a secret s′ �= s. Secret sharing schemes that detect cheating has been
studied by a number of authors using slightly different models. In [3], authors
assumed that the cheaters know the secret when cheating, while some other [13]
assumed the cheaters do not know the secret. Also in some cases it is assumed
that the secret is uniformly distributed, while in other arbitrary distribution
is assumed [12]. In nearly all cases the access structure is assumed threshold.
Secret sharing schemes with cheating for a special type of access structure has
been considered in [16,14,4]. To the best of our knowledge, only [12] considers
non-threshold adversary for any monotone access structure.

In a secret sharing scheme with cheaters, the reconstruction algorithm is mod-
ified to as follows. The secret reconstruction algorithm Reconst takes a list of
shares corresponding to an access set and outputs either a secret s ∈ S, or a
special symbol ⊥,⊥ /∈ S . Here ⊥ is a special symbol indicating the event that a
cheating has been detected. The success probability of the adversary in cheating
is defined as Pr[s′ ∈ S ∧ s′ �= s].

4 Relations between Secret Sharing with Cheating and
1-Round (0, δ)-SMT against a Generalized Adversary

The relationship between 1-round (0, δ)-SMT with a threshold adversary struc-
ture, and threshold secret sharing scheme with cheating probability λ, has been
considered in [11] where authors showed equivalence of the two under certain re-
strictions on the two. In this paper we revisit the same problem, assuming general
adversary structure and derive restrictions under which the two are equivalent.



1-Round (0, δ)-SMT against Generalized Adversary 89

4.1 From Secret Sharing to Secure Message Transmission Tolerating
a Generalized Adversary

Theorem 1. If there exists a secure secret sharing scheme with cheating prob-
ability ≤ λ for the secret space S against a generalized adversary, then there
exists a 1-round (0, δ)-SMT protocol against the same adversary satisfying the
Q2 condition for the message space M = S such that δ = λ(|Σ| − 1). Further it
holds that Vi = Xi, for 1 ≤ i ≤ n.

Proof

We show a construction of SMT from secret sharing with cheating detection
such that δ for the SMT is bounded by a function of λ in the secret sharing with
cheating detection.

For a maximal adversary set B = {Pi1 , ..., Pik} ∈ Γ , the chance of cheating
a target participant Pik+1

such that C = {Pi1 , ..., Pik , Pik+1
} ∈ Σ is at most

λ, where cheating means that the reconstruction algorithm of secret sharing
outputs a different secret s′, than the original secret s.

Enc and Dec for SMT are generated from ShareGen and Reconst of secure
secret sharing with cheating as follows. Enc is just the same as ShareGen. That
is, on input of the secret message m ∈ M, Enc runs ShareGen to generate
(x1, ..., xn) = (v1, ..., vn). Then S sends the shares over the wires, one share per
wire.

Dec works as follows. Note that an adversary set can intersect with a num-
ber of access sets and so access sets will include corrupted members (cheaters).
Dec invokes Reconst for every access set a ∈ Σ. The result will be a set
{m,m1, ...,mi,⊥} where mi �= m corresponds to the output of Reconst when
an access set includes cheaters and cheater detection algorithm has failed to
detect the cheating. Dec algorithm outputs m if the output set is {m,⊥}, and
NULL indicating failure, otherwise.

We have to show that all the conditions of a SMT are satisfied. The privacy
of SMT follows from the corresponding property SS2 of secret sharing with
cheating. This is true as the participants corresponding to an adversary set in
secret sharing with cheating learn no information about the secret.

Trivial reliability follows from the Q2 property of the adversary structure. If
the adversary blocks the transmission on the wires corresponding to an adversary
set γ ∈ Γ , the remaining wires in σ = W \ Γ , constitutes an access set with
no cheating participant. The Dec algorithm uses Reconst on all the access
sets. Reconst will output the correct m for σ. For all other access sets that
are disjoint with γ, the same m will be output. For the access sets that have
nonempty intersection with γ, there will not be sufficient shares and so Reconst
will output ⊥. So the set of messages that are output from Reconst will include
only m and ⊥ and so Dec will output m.

The message recovery algorithm Dec of SMT will output NULL, or the
message m and will never output an incorrect message. This is because if the
adversary corrupts an adversary set γ, its complement will be an access set and
so Reconst, when applied to this access set, will result in m. According to



90 R. Safavi-Naini and M.A.A. Tuhin

the description of Dec, if the set of messages that are obtained from applying
Reconst to all access sets include only this message (other than ⊥) then this
message will be output; otherwise Dec outputs NULL. Suppose the adversary
corrupts an adversary set γ. All the access sets that have non-empty intersection
with this set will include cheaters and so the Reconst algorithm applied to such
sets can potentially output a message m′ �= m. The adversary will maximize
his success chance in causing Dec to fail, by choosing an adversary set that
intersects with the most number of access sets. Note that since the complement
of an adversary set is an access set, the maximum number of access sets that have
nonempty intersection with γ is |Σ| − 1. For each such access sets the cheaters
succeed in cheating with probability at most λ and so with probability at least
1−λ the cheating will be detected. Dec outputs the correctm if all cheatings are
detected. This will happen with probability at least (1−λ)|Σ|−1 = 1−(|Σ|−1)λ.
That is 1− δ ≥ 1− (Σ| − 1)λ or δ ≤ (|Σ| − 1)λ. ��

4.2 From Secure Message Transmission to Secret Sharing Tolerating
a Generalized Adversary

First consider the followings which hold if Q2 holds.

1. The complement of an adversary set γ is an access set.
This is true because a subset in 2P is either an access set or an adversary
set. Let γ̄ =W \ γ. Then if γ̄ is not an access set, it will be an adversary set
which cannot be the case because of Q2.

2. Complement of an access set σ is not necessarily an adversary set. It may
be another access set.

In the following we assume that:

R1. The adversary structure satisfies Q2.
R2. Complement of a minimal access set is a maximal adversary set.

Note that these requirements imply the following.
R3 The complement of a maximal adversary set is a minimal access set.

This is true because of the following. Suppose γ is a maximal adversary set.
Then, because of Q2 its complement is not an adversary set and so is an access
set σ. Note that σ must be minimal. If not, then σ′ ⊂ σ is a minimal access
set and by the above assumption (R2) γ′ = W \ σ′ is a maximal adversary
set. We have γ ⊂ γ′ which contradicts with γ being maximal. With the above
assumptions, we denote the access structures as Q̂2.

For a maximal adversary set γ, we use σ to represent the set γ̄ = W \ γ
as defined above, i.e., γ̄ = σ ∈ Σ. Note that σ is a minimal access set. For
σ = {i1, · · · ik}, define the function Fσ(x

′
i1 , ..., x

′
ik
) as follows:

Fσ(x
′
i1 , ..., x

′
ik
) = mσ or ⊥, (wi1 , ..., wik) ∈ Σ,



1-Round (0, δ)-SMT against Generalized Adversary 91

were, mσ is defined as follows:

mσ = the unique message that because of trivial reliability, is the output of the

decoding algorithm when wires in γ are blocked,

= for other (not blocking) corruptions, either (i) a message m′ if this is the
unique message that has x′

i1
, ..., x′

ik
on these wires, or

(ii) ⊥ if more than one message has x′
i1 , ..., x

′
ik

on these wires.

Note that the above function is defined for all minimal access sets because from
the assumption on the adversary set, any minimal access set is the complement
of a maximal adversary set.

We say that a 1-round (0, δ)-SMT protocol is canonical if, for all corrupted tran-
scripts (x′

1, x
′
2, · · ·x′

n) of a message m (from the original transcript (x1, x2, · · · ,
xn) corrupted by an adversary set) we have:

Dec(x′
1, ..., x

′
n) = m, if Fσ(x

′
i1 , ..., x

′
ik
) = m, or ⊥ for all minimal access sets σ ∈ Σ,

= NULL, otherwise, (1)

where m ∈M.
That is decoding function of a canonical SMT can be written in terms of Fσ()

for all minimal access sets σ ∈ Σ.

Theorem 2. If there exists a canonical 1-round (0, δ)-SMT protocol for the
message space M, then there exits a secure secret sharing scheme with cheating
probability ≤ λ where λ ≤ δ, for the secret space S = M. Further it holds that
Xi = Vi, for 1 ≤ i ≤ n.

Proof

The share generation algorithm ShareGen works by invoking Enc of SMT
as follows. On input a secret s ∈ S, ShareGen calls Enc(s) and generates
(v1, ..., vn) = (x1, ..., xn). The Dealer D gives the share xi to the participant
Pi, 1 ≤ i ≤ n.

We have to show that the conditions SS1 and SS2 of secret sharing with
cheating are satisfied. SS1 requires that for any access set there is a unique
message that can be constructed from the set of participants’ shares. An access
set contains a minimal access set which because of trivial reliability, uniquely
determines the secret. SS2 follows from the privacy condition of SMT. This is
true because in SMT the shares corresponding to an adversary set, reveal no
information about the secret.

To show that success probability of cheaters in the secret sharing scheme is
less than δ, we assume this is not true. That is, there is a maximal adversary set
γ = {wi1 , · · · , wik}, such that cheaters using the shares on {wi1 , · · · , wik} can
cheat Pik+1

with probability higher than δ.
Now suppose in the SMT the adversary corrupts wires {wi1 , · · · , wik}. The

SMT decoding algorithm is canonical and so uses Fσ() for all minimal ac-
cess sets as defined in decoding function definition in (1). Note that the set



92 R. Safavi-Naini and M.A.A. Tuhin

{wi1 , · · · , wik , wik+1
} is a minimal access set (this is true because {wi1 , · · · , wik}

is a maximal adversary set and so adding wik+1
will make it an access set. This

access set is minimal also- because if it is not, then a subset of it is a minimal
access set which implies that γ is not maximal) and Fσ() will output m′ �= m
with probability higher than δ. On the other hand, secret reconstruction al-
gorithm applied to the complement of γ which is a minimal access set results
in a message m and so Dec(x′

1, · · · , x′
n) will output ⊥ with probability higher

than δ. ��

5 Lower Bound on Communication Complexity
of 1-Round (0, 0)-SMT and (0, δ)-SMT against
Generalized Adversaries

Using the equivalence between canonical (0, δ)-SMT and secret sharing with
cheating against a generalized adversary, and the known bounds on share size
of the latter, we can derive lower bound on the communication complexity of
canonical (0, δ)-SMT against a generalized adversary (using our definition of
reliability).

Proposition 1. The lower bound on the communication complexity of a canon-
ical 1-round (0, δ)-SMT tolerating a generalized adversary with adversary struc-

ture Γ and satisfying the condition Q2 is n log( |M|−1
δ +1), where δ is the cheating

probability and M is the message space.

Proof: A lower bound on the share size of secret sharing scheme with cheating

probability δ is log( |M|−1
δ +1), derived in [13]. The result follows by noting that

the secret sharing scheme can be used to construct a canonical (0, δ)-SMT (See
proof of Theorem 1).

In the following we will derive a lower bound on the communication complexity
of 1-round (0, 0)-SMT tolerating a generalized adversary,

We will first state the following lemma.

Lemma 1. In a 1-round (0, δ)-SMT tolerating a generalized adversary with
δ < 1/2, for any pair of adversary sets Bi and Bj, the information transmitted
on the wires in the set Cij = [n]−(Bi∪Bj) will uniquely determine the message.
Here Cij is the set of all wires minus the wires in Bi and Bj.

This is true because otherwise, we have two different messages m and m′ such
that:

–XYZ is the transmission over the wires in C,Bi, Bj , respectively when message
m is sent;
–XY ′Z ′ is the transmission over the wires in C,Bi, Bj , respectively when mes-
sage m′ is sent.

Now the transcript XY ′Z corresponds to message m with adversary set Bi and
m′ with adversary set Bj , respectively. So the success chance of the receiver in
correctly outputting the message is 1/2.



1-Round (0, δ)-SMT against Generalized Adversary 93

Theorem 3. A 1-round PSMT protocol tolerating a generalized adversary with
the adversary structure Γ satisfying Q3, has communication complexity lower
bounded by ≥ γ

γ−3�, where � = log |M| is the size of the message in bits and

γ = |Γ |.

Proof. The proof of the theorem is inspired by the proof in [8] for threshold
adversary.

Let Tm
i denote the set of all possible transmissions that can occur on wire wi ∈

W when the sender S transmits message m. Suppose for j ≥ i, Mm
C ⊆ ×wi∈CT

m
i

denote the set of all possible transmissions (as vectors) that can occur on the set
of wires in the set C when S transmits message m. Let the set of all transmission
(for all messages) on wire wi given by, Ti =

⋃
m∈M Tm

i be the capacity of the
wire wi. The capacity of the set C of wires is MC =

⋃
m∈M Mm

C .
Perfect reliability of a SMT protocol implies that the (uncorrupted) transmis-

sions on the wires in any set Cij , uniquely determines the secret (Lemma 1) and
so:

Mm1

Cij
∩Mm2

Cij
= ∅. (2)

On the other hand, perfect privacy means that if the adversary A corrupts any
set in Γ , they should get no information about the message m. This implies
the transmission vector corresponding to the adversary set corrupted by the
adversary, should reveal no information about the message and so is a possible
transmission for any message. Thus for any two messages m1,m2 ∈M and any
adversary set B ∈ Γ , it must be true that,

Mm1

B = Mm2

B . (3)

We know that for a 1-round (0, 0)-SMT, Γ satisfies Q3.
Let |Γ | = γ and define Cijk = [n]− (Bi∪Bj ∪Bk). We know that the wires in

Cij uniquely determine the secret. Also that for any Bi∪Bj∪Bk, transmission on
Bi∪Bj∪Bk\Bi∪Bj will be common to all messages (it is a subset of transmission
in MBk

), and so transmission on wires in Cijk will satisfy, |Cijk | ≥ |M |.
And so, ∏

a∈Cijk

|Ta| > |MCijk
| > |M |. (4)

Now consider the following product:∏
Bi,Bj ,Bk∈Γ

∏
a∈Cijk

|Ta| >
∏

Bi,Bj ,Bk∈Γ

MCijk
> |M |

γ(γ−1)(γ−2)
6 , (5)

where
(
γ
3

)
= γ(γ−1)(γ−2)

6 is the number of Cijk .
We would like to find the maximum number of times that a wire can appear

in
∏

Bi,Bj,Bk∈Γ

∏
a∈Cijk

|Ta|.
Note that a wire x must appear in at least one adversary set (otherwise that

wire is secure and can be used for secure transmission). This means that at most(
γ−1
3

)
= (γ−1)(γ−2)(γ−3)

6 sets of the form Cijk will include the wire x.



94 R. Safavi-Naini and M.A.A. Tuhin

This means that we can always (for any Γ ) write,

(
n∏

a=1

|Ta|)
(γ−1)(γ−2)(γ−3)

6 ≥
∏

Bi,Bj ,Bk∈Γ

∏

a∈Cijk

|Ta| >
∏

Bi,Bj ,Bk∈Γ

MCijk
> |M |

γ(γ−1)(γ−2)
6 (6)

That is,

(γ − 3) logΣn
a=1|Ta|) ≥ γ log |M |,

and,
Σn

a=1 log |Ta|)
log |M | ≥ γ

γ − 3
.

Therefore, the lower bound on the transmission rate of a 1-round (0, 0)-SMT
against a generalized adversary is γ

γ−3 .

Thus the lower bound on the communication complexity is ≥ �γ
γ−3 . ��

Remark. The lower bound above is for any generalized adversary and so will not
in general be tight for a given adversary structure. That is, one can derive better
(higher) lower bound if the adversary structure satisfies certain properties. For
example, for threshold adversaries, the above lower bound when specialized to
threshold case will give a weaker bound than what is directly derived in [8].

6 An Efficient 1-Round (0, δ)-SMT Protocol against a
Generalized Adversary

In this section we construct an efficient 1-round (0, δ)-SMT protocol against a
generalized adversary inspired by a construction of cheater detecting ε-secure
secret sharing schemes [12]. The construction uses linear secret sharing scheme
(LSSS) and a special class of hash functions.

The basic idea of the protocol is to generate a key-dependent hash value
for the message, and then send the shares of the message and the key of the
hash function, generated using two LSSSs, over the wires. The hash value of the
message is broadcasted to the receiver. The receiver will be able to recover the
message with small failure probability, from the received shares and hash value.

The hash functions required for this construction are called, strongly key-
differential universal hash function, introduced in [12].

Definition 3. A family of hash function H : A → B is called a strongly key-
differential universal ε-SKDU2 if there exists b̂ ∈ B such that for two distinct
a, a′ ∈ A and for any c ∈ E, where E is the key space,

|{he|e ∈ E , he(a) = b̂, he+c(a
′) = b̂}|

|{he|e ∈ E , he(a) = b̂}|
≤ ε,

such that for any a ∈ A and b ∈ B, |{he ∈ H |he(a) = b}| = |H|
|B| .



1-Round (0, δ)-SMT against Generalized Adversary 95

Construction. Let H be a family of ε-SKDU2 that maps the set A =M to B.
Let SS1 = (ShareGen1, Reconst1), and SS2 = (ShareGen2, Reconst2), are

two linear secret sharing schemes for adversary set Γ , for the message set M
and key set E , respectively. and assume Γ satisfies Q2. Let Σ = 2P \ Γ .

The SMT protocol Π is described below.

– Message Transmission:
Suppose the sender S wants to send a secret m ∈ M to the receiver R. S
does the following.

Step 1 Randomly select e ∈ E and find he(m) = b̂.
Step 2 Call ShareGeni of SSi, i = 1, 2, to generate two sets of shares for m and

e respectively: (sm1 , ..., smn )← SS1(m), and (se1, ..., s
e
n)← SS2(e).

Step 3 send si = (smi , sei ), b̂ through wire i, 1 ≤ i ≤ n.

– Message Recovery:
The receiver R receives the shares s′i = (s′mi , s′ei ) through wire i, 1 ≤ i ≤ n
and does the following.

Step 1 Set L = ∅. For each minimal access set a ∈ Σ do:
1. Call the reconstruction algorithms Reconsti, i = 1, 2, on the shares
{s′mi |i ∈ a} and recover m̂ and ê.

2. If hê(m̂) �= b̂ , output NULL. Otherwise add m̂ to L.
Step 2 If L contains more than one distinct value, output NULL.

Otherwise output the unique element in L, as the protocol output.

Let k denote the number of minimal access sets in Σ.

Theorem 4. Π is a 1-round (0, δ)-SMT protocol, δ = (k − 1)ε tolerating the
generalized adversary with the adversary structure Γ satisfying Q2. The protocol
sends a message that is one field element, by transmitting O(n) field elements.

Proof (sketch)

Perfect privacy

Suppose the adversary corrupts a maximal adversary set B and accesses the val-
ues sent over the associated wires. Let B = {wi1 · · · , wit−1} with message and
key shares, sij = (smij , s

e
ij
), j = 1, · · · , t− 1. We need to show that Pr(m|sij , j =

1, · · · , t − 1, he(m) = b̂) = Pr(m). Note that because of perfect privacy of
SSi, i = 1, 2, and independent choice of m and e, we have Pr(m|sij , j = 1, · · · , t−
1) = Pr(m) (also Pr(e|sij , j = 1, · · · , t − 1) = Pr(e)). For any b̂, we have

Pr(m, e|he(m) = b̂) is the number of pairs e,m where he(m) = b̂ divided by

|M| × |E| which because of the property of hash function, is constant and so b̂
does not leak any information about the pair.

δ-reliability

Receiver attempts to recover the message for all minimal access sets. Note that
because of the Q2 property, for any maximal adversary set B that is corrupted



96 R. Safavi-Naini and M.A.A. Tuhin

by the adversary, the set W \B is an access set (otherwise it is an adversary set
which contradicts Q2) and contains a minimal access set. So the correct message
will be reconstructed for this access set and so L, will always contain the correct
message.

Note that the adversarymay succeed in constructing a pair of message and key,
m′, e′, such that he′(m

′) = b̂. The following argument shows that this probability
is at most ε.

This is true because of the following. Let B = {wi1 , · · · , wit−1} with message
and key shares, sij = (smij , s

e
ij
), j = 1, · · · , t− 1. Note that due to linear property

of secret sharing schemes there are recombination constants cMA,j , j = 1, · · · , t−
1, x, and cEA,j , j = 1, · · · , t1, x, that depend on the access set A = B ∪ {x} such
that,

m = cMA,xs
m
x +

t−1∑
i=1

cMA,js
m
ij ,

e = cEA,xs
e
x +

t−1∑
i=1

cEA,js
e
ij .

Now e′ and m′ are constructed using the same constants, but forged values of
shares for B and so,

m′ = cMA,xs
m
x +

t−1∑
i=1

cMA,js
′m
ij ,

e′ = cEA,xs
e
x +

t−1∑
i=1

cEA,js
′e
ij ⇒ e′ = e+

t−1∑
i=1

(cEA,js
′e
ij − cEA,js

e
ij ) = e+ C.

The success probability of the adversary is, Pr(m′ ∈ M,m′ �= m,he′(m
′) = b̂)

which is bounded as,

Pr(m′ ∈M,m′ �= m,he′(m
′) = b̂|he(m) = b̂)

=
Pr(he(m) = b̂, he+C(m

′) = b̂)

Pr(he(m) = b̂)
=
|{he : he(m) = b̂, he+C(m

′) = b̂}|
|{he : he(m) = b̂}|

≤ ε.

Note that according to the SMT reconstruction algorithm, adversary’s success in
this case result in the SMT protocol to output NULL. Then, at most k− 1 can
be influenced by the adversary. Probability of protocol not outputting NULL
is at least (1− ε)k−1 ≈ 1− (k − 1)ε. That is δ = (k − 1)ε.

6.1 Comparison with the Protocol in [5]

Chowdhury, Kurosawa, and Patra designed an efficient 1-round (0, δ)-SMT pro-
tocol tolerating a generalized adversary [5]. But their protocol needs to send
� = n messages. On the other hand, our protocol can work for a single message.



1-Round (0, δ)-SMT against Generalized Adversary 97

In many scenarios we may need to send just one message, for example a key in
sensor network. In those scenarios our protocol is better than their protocol. It is
to be noted here that both the protocols need computation which is polynomial
in the size of the adversary structure Γ and the underlying LSSS.

References

1. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-
cryptographic Fault-tolerant Distributed Computation (extended abstract). In:
Proceedings of the Twentieth Annual ACM Symposium on Theory of Comput-
ing (STOC 1988), pp. 1–10. ACM, New York (1988)

2. Chaum, D., Crépeau, C., Damgard, I.: Multiparty Unconditionally Secure Proto-
cols (extended abstract). In: Proceedings of the Twentieth Annual ACM Sympo-
sium on Theory of Computing (STOC 1988), pp. 11–19. ACM, New York (1988)

3. Carpentieri, M., De Santis, A., Vaccaro, U.: Size of Shares and Probability of
Cheating in Threshold Schemes. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS,
vol. 765, pp. 118–125. Springer, Heidelberg (1994)

4. Cabello, S., Padró, C., Sáez, G.: Secret Sharing Schemes with Detection of Cheaters
for a General Access Structure. Des. Codes Cryptography 25(2), 175–188 (2002)

5. Choudhury, A., Kurosawa, K., Patra, A.: Simple and Efficient Single Round al-
most Perfectly Secure Message Transmission Tolerating Generalized Adversary. In:
Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 292–308. Springer,
Heidelberg (2011)

6. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly Secure Message Transmis-
sion. Journal of the ACM 40(1), 17–47 (1993)

7. Desmedt, Y., Wang, Y., Burmester, M.: A Complete Characterization of Tolerable
Adversary Structures for Secure Point-to-Point Transmissions Without Feedback.
In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 277–287. Springer,
Heidelberg (2005)

8. Fitzi, M., Franklin, M., Garay, J., Vardhan, S.H.: Towards Optimal and Efficient
Perfectly Secure Message Transmission. In: Vadhan, S.P. (ed.) TCC 2007. LNCS,
vol. 4392, pp. 311–322. Springer, Heidelberg (2007)

9. Franklin, M.K., Wright, R.N.: Secure Communication in Minimal Connectivity
Models. Journal of Cryptology 13(1), 9–30 (2000)

10. Hirt, M., Maurer, U.: Player Simulation and General Adversary Structures in Per-
fect Multiparty Computation. Journal of Cryptology 13(1), 31–60 (2000)

11. Kurosawa, K., Suzuki, K.: Almost Secure (1-Round, n-Channel) Message Trans-
mission Scheme. In: Desmedt, Y. (ed.) ICITS 2007. LNCS, vol. 4883, pp. 99–112.
Springer, Heidelberg (2009)

12. Obana, S., Araki, T.: Almost Optimum Secret Sharing Schemes Secure Against
Cheating for Arbitrary Secret Distribution. In: Lai, X., Chen, K. (eds.) ASI-
ACRYPT 2006. LNCS, vol. 4284, pp. 364–379. Springer, Heidelberg (2006)

13. Ogata, W., Kurosawa, K., Stinson, D.R.: Optimum Secret Sharing Scheme Secure
against Cheating. SIAM J. Discrete Math. 20(1), 79–95 (2006)

14. Padro, C.: Robust Vector Space Secret Sharing Schemes. Inf. Process. Lett. 68(3),
107–111 (1998)

15. Patra, A., Choudhary, A., Srinathan, K., Rangan, C.P.: Unconditionally Reliable
and Secure Message Transmission in Undirected Synchronous Networks: Possibility,
Feasibility and Optimality. Int. J. Appl. Cryptol. 2(2), 159–197 (2010)



98 R. Safavi-Naini and M.A.A. Tuhin

16. Padró, C., Sáez, G., Villar, J.: Detection of Cheaters in Vector Space Secret Sharing
Schemes. Des. Codes Cryptography 16(1), 75–85 (1999)

17. Rabin, T., Ben-Or, M.: Verifiable Secret Sharing and Multiparty Protocols with
Honest Majority (extended abstract). In: Johnson, D.S. (ed.) Proceedings of the
Twenty-First Annual ACM Symposium on Theory of Computing (STOC 1989),
pp. 73–85. ACM, New York (1989)

18. Tompa, M., Woll, H.: How to Share a Secret with Cheaters. Journal of Cryptol-
ogy 1(2), 133–138 (1988)

19. Wang, Y.: Robust Key Establishment in Sensor Networks. SIGMOD Record 33(1),
14–19 (2004)

20. Wu, J., Stinson, D.R.: Three Improved Algorithms for Multi-path Key Estab-
lishment in Sensor Networks Using Protocols for Secure Message Transmission,
http://eprint.iacr.org/2009/413.pdf

http://eprint.iacr.org/2009/413.pdf


Improving the Performance

of the SYND Stream Cipher

Mohammed Meziani1, Gerhard Hoffmann2, and Pierre-Louis Cayrel3

1 CASED – Center for Advanced Security Research Darmstadt,
Mornewegstrasse 32, 64293 Darmstadt, Germany

mohammed.meziani@cased.de
2 Technische Universität Darmstadt

Fachbereich Informatik
Kryptographie und Computeralgebra,

Hochschulstraße 10
64289 Darmstadt, Germany

hoffmann@mathematik.tu-darmstadt.de
3 Laboratoire Hubert Curien, UMR CNRS 5516,
Bâtiment F 18 rue du professeur Benôıt Lauras,

42000 Saint-Etienne, France
pierre.louis.cayrel@univ-st-etienne.fr

Abstract. In 2007, Gaborit et al. proposed the stream cipher SYND as
an improvement of the pseudo random number generator due to Fischer
and Stern. This work shows how to improve considerably the efficiency
the SYND cipher without using the so-called regular encoding and with-
out compromising the security of the modified SYND stream cipher.
Our proposal, called XSYND, uses a generic state transformation which
is reducible to the Regular Syndrome Decoding problem (RSD), but has
better computational characteristics than the regular encoding. A first
implementation shows that XSYND runs much faster than SYND for
a comparative security level (being more than three times faster for a
security level of 128 bits, and more than 6 times faster for 400-bit secu-
rity), though it is still only half as fast as AES in counter mode. Parallel
computation may yet improve the speed of our proposal, and we leave it
as future research to improve the efficiency of our implementation.

Keywords: Stream ciphers, Provable security, Syndrome Decoding.

1 Introduction

A stream cipher is a secret key cryptosystem that employs a symmetric secret key
for producing an arbitrary long pseudo random sequence, called keystream. This
keystream is then combined with the plaintext, typically by means of the bitwise
XOR, to produce the ciphertext. Stream ciphers are necessary in many real-
life applications, especially the wireless communication standards such as IEEE
802.11b [2] and Bluetooth [3]. Therefore, stream ciphers are usually required to
be fast and implementable on constrained hardware.

A. Mitrokotsa and S. Vaudenay (Eds.): AFRICACRYPT 2012, LNCS 7374, pp. 99–116, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



100 M. Meziani, G. Hoffmann, and P.-L. Cayrel

It is easy to design a stream cipher. The challenge here is to make it theo-
retically secure and at the same time very efficient. A variety of efficient stream
ciphers have been proposed, but most of them were proven to be insecure as
reported during the eSTREAM project [1]. It is thus desirable to have provably
secure stream ciphers, whose security is grounded on hard problems. The first
constructions in this direction are [14,13] whose security is based on the hard-
ness of factoring problem. Another proposal was developed by Kaliski [24], its
security relies on the intractability of the discrete logarithm problem. Assuming
the hardness of solving RSA problem, Alexi et al. [4] proposed a pseudo-random
number generator (PRNG). The one-way function hard-core bit construction by
Goldreich et al. [19] has also led to the construction of the efficient PRNG, called
BMGL [32], which was developed by H̊astad and Näslund using Rijndael.

Although proving the hardness of all mentioned problems is an important
open problem, they are all known to be easy on quantum attacks as shown
in [31]. It is therefore advantageous to design stream ciphers whose security
relies on other assumptions, and which are more promising even in the age of
quantum computers. The first construction addressing this challenge is due to
Impagliazzo et al. [23], based on the subset sum problem. Later, Fisher and
Stern [16] proposed a PRNG whose security relies on the syndrome decoding
(SD) problem [10]. Recently, further provably secure constructions have been
proposed. The first one, called QUAD, due to Berbain et al. [9] under assumption
that solving a multivariate quadratic system is hard (MQ-problem). The second
one, named SYND, proposed by Gaborit et al. [18], is an improved variant of [16].
The security of SYND is also reducible to the SD problem. Recently, Meziani et
al. [27] proposed the 2SC stream cipher based on the same problem, following
the sponge construction. This cipher is much more efficient than SYND [18] in
terms of performance and has small key/IV size, but it suffers from the drawback
of having big matrices.

Our contribution. In this paper we propose an efficient variant of the SYND
stream cipher [18], called XSYND, this new construction is reducible to the SD
problem. This cipher is faster than all existing code-based stream ciphers [18,27]
and requires comparatively little storage capacity, making it attractive for prac-
tical implementations. We also propose parameters for fast keystream generation
for different security levels.

Outline of the paper. Section 2 provides a background of coding theory. Section 3
describes the SYND stream cipher. A detailed description of the XSYND stream
cipher is presented in Section 4, its security is discussed in Section 5. In Section 6
secure parameters and experimental results for XSYND are presented. Section 7
concludes this paper.

2 Coding Theory Background

This section provides a short introduction to error-correcting codes and recall
some hard problems in this area.



Improving the Performance of the SYND Stream Cipher 101

In general, a linear code C is a k-dimensional subspace of an n-dimensional
vector space over a finite field Fq, where k and n are positive integers with k < n
and q a prime power. Elements of Fn

q are called words and elements of C are
called codewords. The integer r = n − k is called the co-dimension of C. The
weight of a word x, denoted by w = wt(x), is the number of non-zero entries
in x, and the Hamming distance between two words x and y is wt(x − y) . The
minimum distance d of a code is the smallest distance between any two distinct
codewords. A generator matrix G of C is a matrix whose rows form a basis of
C, .i.e., C = {x · G : x ∈ Fk

q}. A parity check matrix H of C is defined by

C = {x ∈ Fn
q : H · xT = 0} and generates the dual space of the code C.

A linear code C is called a cyclic code if any cyclic shift of a codeword is another
codeword. That is, x0, · · · , xn ∈ C implies xn, x0, · · · , xn−1 ∈ C. In this case, the
parity check matrix of C can be only described by its first row. Furthermore, C
is called a quasi cyclic code if its parity check matrix is composed of a number
of cyclic submatrices. In practice, such codes are very good from the decoding
capacity point of view and behave like random codes with small requirement on
the length as shown in [17].Throughout this paper we consider q = 2.

Definition 1 (Regular word). A regular word of length n and weight w is a
word consisting of w blocks of length n/w, each with a single non-zero entry.

In code-based cryptography, the security of most of the cryptographic primitives
is related to the hardness of the following problems.

Definition 2 (Binary Syndrome Decoding (SD) problem). Given a bi-
nary r× n matrix H, a binary vector y ∈ Fr

2, and an integer w > 0, find a word
x ∈ Fn

2 of weight wt(x) = w, such that H · xT = y.

This problem is proven NP-complete in [10]. A particular case of this problem is
the Regular Syndrome Decoding (RSD) problem, which has been proved to be
NP-complete in [5]. It can be stated as follows.

Definition 3 (Regular Syndrome Decoding (RSD) Problem). Given a
binary r × n matrix H, a binary vector y ∈ Fr

2 ,and an integer w > 0, find a
regular word x ∈ Fn

2 of weight wt(x) = w, such that H · xT = y.

Through this paper, we will denote RSD(n, r, w) to indicate an instance of RSD
problem with parameters (n, r, w). Before ending this section, we recall the def-
inition of a hardcore bit (or hardcore predicate).

Definition 4 (Hardcore bit). Let f be a one-way function. Let h : {0, 1}∗ →
{0, 1} be a polynomial-time computable function. We say that h is a hardcore bit
for f if for all PPT adversary A there exists one negligible function ε, such that

Pr[A(f(x)) = h(x)] ≤ 1

2
+ ε(n), ∀n

where the probability is over x chosen randomly and the coin tosses of A.



102 M. Meziani, G. Hoffmann, and P.-L. Cayrel

3 The SYND Stream Cipher

This section gives a short description of the original SYND design. SYND is a
synchronous stream cipher with security reduction proposed in 2007 by Gaborit
et. al [18]. SYND is a improved variant of Fisher-Stern’s PRNG [16] with two
improvements: the use of quasi-cyclic codes, which reduces the storage capacity
and the introduction of regular words used in [5], which speeds up the keystream
generation of the system. This PRNG can be seen as a finite automaton, S,
determined by a set of inner states with lengths ranging from 256 to 1024 bits.
SYND accepts keys of length 128 to 512 bits and produces a keystream twice as
large as the key size in each round.

More precisely, let n, w, and r be three positive integers such that the ratio
n/w is a power of two and r = w log2(n/w). The key stream generation of
SYND works in three steps using three different one-to-one functions called Ini,
Upd, and Out, respectively (See Figure 1). The Ini function takes a secret key
K concatenated with an initial vector IV, both of length r/2 bits, and returns
an initial state e0 = Ini(K|IV), which starts the key stream generation process,
where (a|b) denotes the concatenation of bit strings a and b. The Ini function
is a three-Feistel transformation based on Upd and Out, and given by:

Ini(x) = y ⊕ Out(x⊕ Upd(y)); y = x⊕ Upd(y), ∀x = (K, IV) ∈ Fr/2
2 × Fr/2

2 ,

where Upd and Out functions are defined by

Upd(x) = A · θ(x); Out(x) = B · θ(x), ∀x ∈ Fr
2.

Here, A and B are random binary matrices which describe the same binary quasi-
cyclic (QC) code of length n, correcting up to w errors. The mapping x �→ θ(x)
is an encoding algorithm which transforms an r-bit string into a regular word of
length n and weight w. Starting from e0, in each time unit i, S outputs a key
bit zi = Out(ei) and changes the inner state as follows: ei+1 = Upd(ei).

After generating the key bit stream z0, z1, · · · , a cleartext bit streamm0,m1, · · ·
is encrypted into a cyphertext stream c0, c1, · · · by the bitwise XOR operator as
ci = zi⊕mi. Knowing the secret state e0 the receiver can generate the keystream
z0, z1, · · · and therefore recover the cleartext bitstream by mi = zi ⊕ ci.

Thus, the evaluation of Upd and Out for state x is done by first encoding x
into a regular word θ(x) of length n and weight w, and then multiplying the
resulting word by a random r × n binary matrix. This process can be regarded
as XORing w columns from the underlying random matrix with one another
(these r-bit long columns correspond to the non-zero positions of the regular
word θ(x)). This idea was first introduced in the FSB hash family [5] in order
to speed up the hashing process. In the next section, we show how to speed up
SYND by eliminating the encoding x �→ θ(x), while at the same time preserving
the security properties of the underlying scheme.



Improving the Performance of the SYND Stream Cipher 103

Fig. 1. A graphical illustration of the SYND stream cipher

4 Our Proposal: XSYND

This section describes an eXtended SYND algorithm (XSYND), which adds
two main features to the original SYND structure. In what follows, we use the
notations of the previous section.

Firstly, we modify the Ini function such that it requires only two, rather than
three function evaluations, without loss of security. We denote the new function
by XIni and depict it in Fig. 2. Note that this modification does not affect the
recovery of the secret K or the initial vector IV. In fact, it is straightforward to
prove that, given an initial state e0 output by XIni, if an adversary can extract
K and IV from e0, it can also easily solve an instance RSD(n, r, w). The new
function XIni function is defined by:

XIni(x) = y ⊕ Out(y); y = x⊕ Upd(x); ∀x = (K, IV) ∈ Fr/2
2 × Fr/2

2 .

Fig. 2. The XIni function of XSYND

The second modification in XSYND is to avoid the regular encoding x �→ θ(x)
in Upd and Out by using the randomize-then-combine paradigm due to Bellare
et al. [6,7,8] as depicted in Figure 3. More precisely, given an input x consisting
of w blocks x1, . . . , xw , each block being b bits (where b is chosen at will), we
first feed each block through a random function f , obtaining an output yi. The
values y1, y2, · · · , yw are combined by bitwise XOR to generate the final output.
In XSYND, we use the following function f : let H be a random binary matrix of



104 M. Meziani, G. Hoffmann, and P.-L. Cayrel

size wb×w · 2b, consisting of w submatrices H1 . . . Hw of size wb× 2b (we write

H = H1| . . . |Hw). If we write the submatrices as Hi = (h
(0)
i , h

(1)
i , . . . , h

(2b−1)
i ),

where h
(j)
i ∈ Fwb for j ∈ {0, 1, . . . , 2b − 1}, then we can define f by yi = h

(j)
i if

and only if the decimal value of xi is equal to j. We have 2b possible value for
each yi, depending on the decimal value of the block xi. In this way, we redefine
the functions Upd and Out as follows (see also Fig. 4):

Upd(x) = a
(x1)
1 ⊕ a

(x2)
2 ⊕ · · · ⊕ a(xw)

w ; Out(x) = b
(x1)
1 ⊕ b

(x2)
2 ⊕ · · · ⊕ b(xw)

w ; ∀x ∈ Fwb
2 .

Here, a
(j)
i (resp. b

(j)
i ) is the jth column of the ith submatrix Ai (resp. Bi) of a

random binary matrix A (resp. B), both of size wb× w2b.

Remark 1. It is worth noting that the same technique has been recently used by
Berstein et al. [12] to improve the efficiency of the FSB hash family [5].

Fig. 3. Randomize-then-combine paradigm

Fig. 4. The Update Function Upd of XSYND



Improving the Performance of the SYND Stream Cipher 105

5 Security of XSYND

5.1 Theoretical Security

In this section we present the theoretical security of our construction. The pre-
sentation is done in two steps. In the first step, we show that it is hard to find the
secret state x given Upd(x) and Out(x) as described in section 4. More precisely,
we show that inverting Upd(x) and Out(x) is reducible to the RSD problem. In
the second step, we prove that XSYND is a pseudo-random generator, meaning
that the key stream produced by XSYND is indistinguishable from truly random
sequences.

Step 1: We consider general transformations g defined as:

g(x) = a
(x1)
1 ⊕ a

(x2)
2 ⊕ · · · ⊕ a(xw)

w , ∀x = (x1, . . . , xw) ∈ Fwb
2 .

In this transformation, a
(j)
i for j = 0, . . . , 2b is the (j + 1)th column of the ith

submatrix Ai of a random binary matrix A of size wb × w2b. Note that both
Upd(x) and Out(x) are particular instantiations of g, for random matrices A and
B (see previous section). Our argument in this section is as follows: we first
show that (1)for each x there exists a regular word z such that g(x) = A · zT ,
then prove that (2) learning x from y = g(x) is equivalent to finding a regular
word z such that A · zT = y (this is an instantiation of RSD(n, r, w) for r = wb
and n = w2b). Thus, under the RSD assumption, the modified XSYND protocol
security can be reduced to the hardness of RSD.

First consider (1). We write A = A1| . . . |Aw as in section 4, for wb × 2b

submatrices Ai. Each submatrix has columns a
(0)
i , . . . , a

(2b−1)
i . We note that any

regular word z is in fact a word of length n = w2b and weight w, whose decimal
entries z1, . . . , zw indicate the positions of its non-zero entries (and each zi is
a unique value between (i − 1)2b + 1 and i2b since the word is regular). Let
x = (x1, . . . , xw) be a state in decimal notation. We associate each x with a
value z whose decimal notation is (z1, . . . , zw) for zi = (xi + 1) + (i− 1)2b. The
reverse transformation of z to x is obtained as follows:⎧⎪⎪⎨⎪⎪⎩

x1 ≡ z1 − 1 (mod 2b)
x2 ≡ z2 − 1 (mod 2b)
· · · · · · · · · · · ·
xw ≡ zw − 1 (mod 2b)

It is easy to check that:

A · zT = a
(x1)
1 ⊕ a

(x2)
2 ⊕ · · · ⊕ a(xw)

w .



106 M. Meziani, G. Hoffmann, and P.-L. Cayrel

Toy Example. Let us consider w = 3 and b = 2. Then the matrix A should
be (3 · 2)× (3 · 22) = 6× 12 and binary. Consider in this example the following
matrix A:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a
(0)
1 a

(1)
1 a

(2)
1 a

(3)
1 a

(0)
2 a

(1)
2 a

(2)
2 a

(3)
2 a

(0)
3 a

(1)
3 a

(2)
3 a

(3)
3

1 0 1 0 1 0 1 0 1 0 0 1
0 1 1 0 0 0 1 0 1 1 1 0
1 0 0 0 0 1 0 1 0 1 0 0
0 1 0 1 0 1 0 1 0 1 1 1
0 0 1 1 0 1 1 0 1 1 1 0
1 0 0 0 0 1 0 1 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Let us consider a state x in decimal form, with x = (2, 1, 0). Compute z in
decimal form according to the formula zi = (xi + 1) + (i − 1)2b. Thus z1 =
3, z2 = 6, and z3 = 9. In binary notation, zi denotes the positions of z’s non-zero
entries, i.e. z = [0010|0100|1000]. We can now verify that for this z we have

g(x) = a
(2)
1 ⊕ a

(1)
2 ⊕ a

(0)
3 = [001111] = A · zT .

Now let us consider the security reduction of general transformations g to the
RSD problem, i.e. step (2) outlined above. We have shown that for each input
value x we can find a regular word z of weight w such that A · zT = g(x).
Assume that there exists an adversary that can invert g(x), i.e. given y = g(x),
the adversary outputs x. Then the same adversary computes z as above and
can thus, given a matrix A, and a value y = g(x) = A · zT , this adversary can
output the regular word z. This is exactly an instantiation of RSD(n, r, w) for
r = wb and n = w2b. In conclusion, we can reduce the security of XSYND to
the hardness of the RSD problem.

Step 2: In this step, we prove that XSYND is a pseudo-random generator. Our
proof is an adaption of that given for the Fischer-Stern’s PRNG [16]. We will
show that if there exists an algorithm that is able of distinguishing a random bit
string from the output of the mapping x→ (Out(x), Upd(x)), then this algorithm
can be converted into a predicator that can predicts the inner product of an
input x and a random bit string chosen at random. Before doing so, we state
the following assumptions.

1. Indistinguishability: The binary matrices A and B (both of size r × n) are
computationally indistinguishable from uniform matrices of the same dimen-
sions.

2. Regular syndrome decoding (RSD): The family of mappings defined as gM (z)=
M · zT for an uniform 2r × n binary matrix M is one-way on the set of all
regular words of length n and weight w.

As shown in the last subsection, the mapping x → Upd(x) (resp. x → Out(x))
can be regarded as fu(z) = A · zT (resp. fo(z) = B · zT ), where A and B are



Improving the Performance of the SYND Stream Cipher 107

binary matrices, both of size r×n, and z is taken from the set of regular words.
Therefore, from now on, we will use fu (resp. fo) instead of Upd (resp. Out).

From A and B we build a 2r×n block matrix M by stacking them vertically,
i.e.

M =

(
A
B

)
In this case, we can write the mapping x→ (Out(x), Upd(x)) as gM (z) = M ·zT =
(fu(z), fo(z)). Consequently, in order to prove that XSYND is a pseudo-random
generator, it is sufficient to prove that the output of z → gM (z) is pseudo random
as proved in [16]. Our proof is based on the Goldreich-Levin Theorem [19], which
says that, for any one-way function, the inner product of its argument and a
randomly chosen bit string is a hardcore bit (or hardcore predicate). Recall that
the inner product of two bit strings a and b (of the same size) is defined by

〈a, b〉 =
∑
i

aibi mod 2.

Theorem 1. (Goldreich-Levin theorem) Let f : Fλ(n)
2 → Fμ(n)

2 be a one-way
function. For every PPT algorithm A, for all polynomials p and all but finitely
many n’s,

Pr[A(f(x), ν) = 〈x, ν〉] ≤ 1

2
+

1

p(n)

where the probability is taken over x uniformly chosen x and ν ∈ Fλ(n)
2 .

The theorem proving that XSYND is a pseudo-random generator is stated as
follows.

Theorem 2. Suppose n, r, and w are chosen such that the indistinguishabil-
ity and the regular syndrome decoding assumptions hold. Then the output dis-
tribution of XSYND is computationally indistinguishable from a truly random
distribution. That is, XSYND is a pseudo-random generator.

Proof. (by contradiction). Let us assume that an 2r-bit output of the mapping
gM (z) = M · zT is not pseudo-random, and there exists a distinguisher D, which
is capable to differentiate this output of from a 2r-bit random string υ. More
precisely, D takes as input 2r × n binary random matrix M and a random
υ ∈ {0, 1}2r as a candidate being equal to M · zT for some unknown regular
word z. In the event that M · zT = υ, D outputs 1 with probability above
1
2 +

1
p(n) , for every polynomial p(n). Otherwise, when υ is chosen uniformly from

{0, 1}2r, D outputs 1 with probability at most 1
2 . Formally, the distinguisher D

behaves as follows:{
Pr[D(M,υ) = 1] ≥ 1

2 + 1
p(n) , if υ = M · zT , for some regular word z

Pr[D(M,υ) = 1] < 1
2 , if υ is taken uniformly from {0, 1}2r



108 M. Meziani, G. Hoffmann, and P.-L. Cayrel

As next step, we will build an algorithm P , which uses the distinguisher D as
subroutine. This algorithm will predicts the inner product 〈z, ν〉 with probability
at least 1

2 + 1
2p(n) , where z is an unknown regular word (an input of gM ) and

ν a randomly chosen n-bit string. To this end, let write ν = (ν1, · · · , νn). In
addition, let σ be the number of the positions j such that where zi = νj = 1, i.e.
the size of the intersection z ∩ ν and ρ its parity, i.e. the inner product 〈z, ν〉.
Then the algorithm P takes as input gM (z) and ν and executes the following
steps:

• Select a random ρ′ ∈ {0, 1} as candidate to ρ
• Choose randomly ξ ∈ {0, 1}2r
• Build a new 2r × n binary matrix M̂ = (m̂1, · · · , m̂n) such that for every

j ∈ {1, · · · , n} it holds

m̂j =

{
mj + ξ if νj = 1,

mj if νj = 0

• Feed the distinguisher with M̂ and gM (z) + ρ′ · ξ
• If the distinguisher outputs 1, then output ρ′ = ρ. Otherwise, output the

opposite of ρ′.

Now, we show next that P predicts the inner product 〈z, ν〉 with probability
above 1

2 + 1
2p(n) . We have to consider two events:

(1) E1:”ρ is guessed correctly”. Then the prognosticated value for the inner
product 〈z, ν〉 is correct if the distinguisher outputs 1. The distribution seen

by the distinguisher on (M̂, gM (z)+ ρ′ · ξ) is identical to the distribution on
input (M, gM (z)). By construction, this is the case with probability at least
1
2 + 1

p(n) .

(2) E2:”ρ is not guessed correctly”. The distinguisher receives uniformly dis-
tributed inputs because of the randomness of ξ. It then returns 1 with prob-
ability 1

2 .

Since Pr[E1] = Pr[E2] =
1
2 , we conclude that the overall probability of correctly

predicting the inner product 〈z, ν〉 is at least 1
2 + 1

2p(n) . This contradicts the

Theorem 1 because of the RSD assumption. �

5.2 Practical Security

This section presents what are provably the most generic attacks against XSYND.
We will only address the hardness of inverting the mapping g defined in the previ-
ous section, since this is the main building block of XSYND design. If an attacker
can invert g, then she can recover the secret key and recover inner states.

In what follows, we denote by WFY (n,w, r) the work factor (i.e. number of
binary operations) required to solve the instance RSD(n,w, r) by using an al-
gorithm Y . Furthermore, in estimating the complexity of each attack against
XSYND we use r = wb with b = log2

(
n
w

)
.



Improving the Performance of the SYND Stream Cipher 109

There are essentially three types of known attacks that are applicable to
XSYND:

1. Linearization Attacks. There are two types of linearization attacks that
are relevant for XSYND, namely the Bellare-Micciancio (BM) attack [8]
against the XHASH function [8], and the attack due to Saarinen [30]. We
discuss these attacks below.

(a) The Bellare-Micciancio’s attack. This is a preimage attack proposed
by Bellare and Micciancio [8] against the so-called XHASH mapping. This
attack relies on finding a linear dependency among w r-bit vectors, where
w is the number of vectors XORred together and r, the length (in bits) of
the target value. This is likely to succeed if the value w is close to r. More
precisely, let l and k be two positive integers. Let f be a random function
with f : Fl

2 �→ Fr
2. Let [i] denote the binary representation of an integer i.

Based on f , the XHASH is defined as

XHASH(x) = f([1]|x1)⊕ · · · ⊕ f([w]|xw), with x = (x1, x2, . . . , xw).

The BM attack finds a preimage x of a given z = XHASH(x) ∈ F r
2 as fol-

lows. First, one finds w-bit string y = (y1, . . . , yw), with yi ∈ F2, such that
XHASH(xy) = z, where xy = xy1

1 . . . xyw
w . To achieve this, one first computes

2w values βk
i = f([i]|xj

i ) for k ∈ {0, 1} and i ∈ {1, . . . , w}; the next step is to
try to solve the following system of equations over F2 using linear algebra:{

yi ⊕ ȳi = 1, i ∈ {1, . . . , w},
⊕w

i=1β
0
i (j)yi ⊕ β1

i (j)ȳi = z(i), j ∈ {1, . . . , r}.

Here, β0
i (j) (resp. β

1
i (j) ) denotes the j

−th bit of β0
i (resp. β1

i ) and ȳi = 1−yi
are the unknowns. This system has r + w equations in 2w unknowns and is
easy to solve when w = r+1. More generally, it was shown in [8] (Appendix
A, Lemma A.1) that for all y ∈ Fw

2 the probability to have XHASH(xy) �= z
is at most 2r−w. That is, the complexity of inverting XHASH is at least 2r−w;
in our notation,

WFBM(n,w, r) ≥ 2r−w = 2(b−1)w.

(b) The Saarinen’s attack. This attack is due to Saarinen [30] and it
was proposed against the FSB [5] hash function. The main idea behind this
attack is reducing the problem of finding collisions or preimages to that of
solving systems of equations. This attack is very efficient when r < 2w. We
briefly show how this attack works in our setting, where we must invert the
map g.

As shown in section 5.1, g(x) = A · zT , where A is the random binary
matrix of size r×n, whose entries define g, and z is a regular word of length
n and weight w. We can in turn write A · zT out as follows:

y = ⊕w
i=1a(i−1) n

w+xi+1, 0 ≤ xi ≤
n

w
, (1)



110 M. Meziani, G. Hoffmann, and P.-L. Cayrel

where x = (x1, . . . , xw) and aj denotes the j−th column of A. For simplicity,
assume that xi ∈ {0, 1}. In this case, we define a constant r-bit vector c and
an additional r × w binary matrix B as follows.

c = ⊕w
i=1a(i−1) n

w+1, B = [b1 · · · bw] with bi = a(i−1) n
w+1 ⊕ a(i−1) n

w+2. (2)

It is easy to check that y = B · x + c. As a consequence if r = w, then B is
square and we can find the preimage x from y as:

x = B−1 · (y ⊕ c), (3)

where B−1 denotes the inverse of B. Note that this inverse exists with prob-
ability without proof of

∏r
i=1(1 − 1/2i) ≈ 0.29 for r moderately large. The

expected complexity of this attack is the the workload of inverting B, which
is al most 0.29 · r3. It has been proved in [30] that the same complexity is
obtained even if r ≤ 2w.
In the opposite direction, Saarinen also extended his attack for the case

when w ≤ r/α for α > 1 and xi /∈ {0, 1}. In this case, the complexity is
about 2r/(α+1)w. Moreover, the recent result[12] shows that if α = 2β, for
β > 1, this complexity becomes 2r/(β + 1)2w. As consequence we obtain:

WFSaarinen(n,w, r) ≥
{
2r/(α+ 1)w if w ≤ r/α
2r/(α+ 1)2w if w ≤ r/2α

which can be rewritten in our setting as:

WFSaarinen(n,w, r) ≥
{
( 2b

α+1 )
w if α ≤ b

( 2b

(α+1)2 )
w if α ≤ b/2

2. Generalized Birthday Attacks (GBA). This class of attacks attempt to
solve the following, so-called k-sum problem: given k random lists L1, L2, . . . ,
Lk of r-bit strings selected uniformly and independently at random, find
x1 ∈ L1, x2 ∈ L2, . . . , xk ∈ Lk such that ⊕k

i=1xi = 0. For k = 2, a solution
can be found in time 2r/2 using the standard birthday paradox. For k > 2
Wagner’s algorithm [33] and its extended variants [5,11,28,15] can be applied.
When k = 2j−1 and |Li| > 2r/j, Wagner’s algorithm can find at least one
solution in time 2r/j.

The main idea behind a GBA algorithm is depicted Fig. 5. We consider the
case k = 4. Let L1, . . . , L4 be four lists, each of length 2r/3. The algorithm
proceeds in two iterations. In the first iteration, we build two new lists L1,2

and L3,4. The list L1,2 contains all sums x1 ⊕ x2 with x1 ∈ L1 and x2 ∈ L2

such that the first r/3 bits of the sum are zero. Similarly, L3,4 contains all
sums x3⊕x4 with x3 ∈ L3 and x4 ∈ L4 such that the first r/3 bits of the sum
are zero. So the expected length of L1,2 is equal to 2−r/3 · |L1| · |L2| = 2r/3.
Similarly, the expected length of L3,4 is also 2r/3. In the second iteration
of the algorithm, we construct a new list L′

1 containing all pairs (x′
1, x

′
2) ∈

L1,2 × L3,4 such that the first r/3 bits of the sum x′
1 ⊕ x′

2 are zero. Then



Improving the Performance of the SYND Stream Cipher 111

the probability that x′
1 ⊕ x′

2 equals zero is 2−2r/3. Therefore, the expected
number of matching sums is 2−2r/3 · |L1,2| · |L3,4| = 1. So we expected to
find a solution. This idea can be generalized for k = 2j−1 by repeating
the same procedure j − 2 times. In each iteration a, we construct lists, each
containing 2r/j elements that are zero on their first ar/j bits, until obtaining,
on average, one r-bit element with all entries equal to 0.

Fig. 5. The GBA idea for k = 4

We estimate the security of XSYND against GBA attacks by using the
GBA algorithm from [15]. This algorithm attempts to find a set of indices
I = {1, 2, · · · , 2γ} satisfying ⊕i∈IHi = 0, whereHi are columns of the matrix

H . As shown in [15], the algorithm is applicable when
(

2bw
2(1−γ )w

)
≥ 2bw+γ(γ−1).

Under this condition, the cost of solving an instance RSD problem with
parameters (n, r, w) is given by:

WFGBA(n,w, r) ≥
(

wb
γ − 1

)
2

wb
γ −1.

Note that the recent result in [29] shows that the time and memory efficiency
of GBA attacks can be improved, but only by a small factor. In Section 6 we
take this improvement into account when proposing parameters for XSYND.

3. Information Set Decoding (ISD). ISD is one of the most important
generic algorithm for decoding errors in an arbitrary linear code. An ISD
algorithm consists (in its simplest form) in finding a valid, so-called infor-
mation set, which is a subset of k error-free positions amongst the n positions
of each codeword. Here, k is the dimension and n the length of the code.
The validity of this set is checked by using Gaussian elimination on the r×n
parity check matrix H . If we denote by p(n, r, w) the probability of finding a
valid information set and by c(r) the cost of Gaussian elimination, then the
overall cost of ISD algorithms equals the ratio c(r)/p(n, r, w).
In the following, we estimate the cost of finding a solution to the regu-

lar syndrome decoding (RSD) problem, i.e. we wish to invert the map g.
Let ns(n, r, w) be the expected number of solutions of RSD instance. This
quantity is:

ns(n, r, w) =

(
n
w

)w
2r

= 1,



112 M. Meziani, G. Hoffmann, and P.-L. Cayrel

because r = w log2(
n
w ). In addition, let pv(n, r, w) be the probability that

a given information set is valid for one given solution of RSD. As shown
in [5], p(n, r, w) can be approximated by: p(n, r, w) ≈ pv(n, r, w) ·ns(n, r, w).
Furthermore, as shown in [5], pv(n, r, w) is given by:

pv(n, r, w) =
( r

n

)w

=

(
log2(n/w)

n/w

)w

We thus conclude that the probability of selecting a valid set to invert RSD
is equal to: p(n, r, w) =

(
b
2b

)w
.

Hence, the cost WFISD(n,w, r) of solving an instance of RSD with parameters
(n, r, w) is approximately:

WFISD(n,w, r) ≈ c(r) ·
(
2b

b

)w

. (4)

If we assume that the complexity of Gaussian elimination is r3, then
WFISD(n,w, r) becomes:

WFISD(n,w, r) ≈ (wb)3 ·
(
2b

b

)w

. (5)

In practice, we use the lower bound for ISD algorithms presented in [26] to
estimate the security of XSYND against ISD attacks and show our results
in Table 1 .

Remark 2. One could also use Time Memory trade-off attacks against stream
ciphers. This attack was first introduced in [21] as a generic method of attack-
ing block ciphers. To make this attack unfeasible, one must adjust the cipher
parameters as shown in [20,22], i.e., the initial vector should be at least as large
as the key, and the state should be at least twice the key.

Table 1 briefly summarizes the expected complexity of the previous attacks
against XSYND.

Table 1. The estimated complexities of possible attacks against XSYND

Attack The binary logarithm of the complexity: log2(WF(.)(n,w, r))

BM w(b − 1)

Sarinnen

{
w(b − log2(α+ 1)), if α ≤ b

w(b − 2 log2(α+ 1)), if α ≤ b/2

GBA wb/γ + log2(wb/γ − 1)− 1 for γ ∈ N
ISD w(b − log2(b)) + 3 log2(wb)



Improving the Performance of the SYND Stream Cipher 113

6 Parameters and Experimental Results

Suitable parameters (n, r, w) for XSYND must provide both efficiency and high
security against all known attacks. Firstly, we account for Time Memory Trade-
Off attacks (see section 5.2) and choose (n, r, w) such that:

r = w log2(n/w) ≥ 2|IV| and |IV| ≥ |K|.

For XSYND we choose r = w log2(n/w) = 2|IV| = 2|K|. We then fix b =
log2(n/w) = 8 and for each security level λ we vary w to obtain both high
performance and a complexity of solving the RSD problem of at least 2λ.

We have tested a large set of potential parameters for a number of security
levels. Table 2 presents the optimal parameter sets (n,w, r) resulted from running
our implementation for several security levels. Note that in our implementation,
we only use random binary codes without any particular structure. But it is
possible to find parameters providing the same security levels when the parity
check matrix is quasi-cyclic as in [18]. In this case, r has to be a prime and
2 is primitive root of the finite field F∗

r in order to guarantee the randomness
property of QC-codes as demonstrated in [17].

Table 2. Proposed parameters for XSYND

Security Level n r w Key/IV size Speed of XSYND
[bits] [cpb]

80 8192 256 32 128 14.92
120 12288 384 48 192 16.98
160 16384 512 64 256 35.40
200 20480 640 80 320 43.68
240 24576 768 96 384 55.42
280 28672 896 112 448 77.09

The results shown in Table 2 are for a pure C/C++ implementation with
additional use of C/C++-Intrinsics). The operating system was Debian 6.0.3,
the source has been compiled with gcc (Debian 4.4.5-8) 4.4.5. All results have
been gained on an AMD Phenom(tm) 9950 Quad-Core Processor, running at a
clock rate of 1300 MHz. Due to the row-major convention of C/C++, the two
matrices H1 resp. H2 have been used and stored in transposed form. In order to
compare the speed of XSYND with the claimed speed of SYND [18] and 2SC [27]
(Table 4), we have tested our implementation using the parameter sets suggested
in [18]. Our results presented in Table 3 show that, for comparable security levels,
XSYND runs faster than SYND [18] and 2SC cipher [27]. It is worth to stress
that the authors of 2SC [27] compared the performance of 2SC [27] to that of
SYND [18] based on their own implementations (of both schemes), because no
freely-available implementation of SYND exists.



114 M. Meziani, G. Hoffmann, and P.-L. Cayrel

Table 3. Performance of XSYND vs. SYND using parameter sets proposed in [18]

Security Level n r w key/IV size speed of SYND speed of XSYND
[bits] [cpb] [cpb]

80 8192 256 32 128 27 14.92
128 8192 384 48 192 47 16.86
180 8192 512 64 256 53 35.18
400 8192 1024 128 512 83 55.69

Compared to the (bitsliced and parallel) fastest software implementation of
AES in CTR mode proposed by Käsper et al. [25], XSYND runs about two
times slower. Indeed, this implementation is written in assembly using 128-bit
XMM registers and runs at 7.59 cycles/byte on a Intel Core 2 Q9550 and 6.92
cycles/byte on Core i7 920. Note that our implementation could be sped up by
using parallel computations achieving much better results than what Tables 2
and 3 show. It is therefore interesting to implement this to see how much further
XSYND can be improved.

Table 4. Parameters and performance of 2SC cipher given in [27]

Security Level n r w key/IV size speed of 2SC
[bits] [cpb]

100 1572864 384 24 144 37
160 2228224 544 34 208 47
250 3801088 928 58 352 72

7 Conclusion

In this paper we presented XSYND, an improved variant of SYND stream cipher,
without compromising its security. Our proposal uses a generic state transfor-
mation which is directly reducible to the regular syndrome decoding problem
(RSD), but has better computational characteristics than the regular encoding
introduced in the SYND system. A software implementation shows that our
proposal runs much faster than all code-based stream ciphers for different secu-
rity levels, but it is only half as fast as AES in counter mode without making
any parallel computation. Moreover, unlike to SYND, we show how the security
reduction of our proposal works.



Improving the Performance of the SYND Stream Cipher 115

References

1. http://www.ecrytp.eu.org/stream

2. Overview of IEEE 802.11b Security. Intel Technology Journal Q2 (2000)

3. Specification of the Bluetooth system, vol. 1.1 (February 2001),
http://www.bluetooth.org/spec/

4. Alexi, W., Chor, B., Goldreich, O., Schnorr, C.P.: RSA and Rabin functions: certain
parts are as hard as the whole. SIAM J. Comput. 17(2), 194–209 (1988)

5. Augot, D., Finiasz, M., Sendrier, N.: A Family of Fast Syndrome Based Crypto-
graphic Hash Functions. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS,
vol. 3715, pp. 64–83. Springer, Heidelberg (2005)

6. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental Cryptography: The Case
of Hashing and Signing. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839,
pp. 216–233. Springer, Heidelberg (1994)

7. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography and appli-
cation to virus protection. In: Proceedings of the Twenty-Seventh Annual ACM
Symposium on Theory of Computing, STOC 1995, pp. 45–56. ACM (1995)

8. Bellare, M., Micciancio, D.: A New Paradigm for Collision-Free Hashing: Incremen-
tality at Reduced Cost. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 163–192. Springer, Heidelberg (1997)

9. Berbain, C., Gilbert, H., Patarin, J.: QUAD: A multivariate stream cipher with
provable security. J. Symb. Comput. 44(12), 1703–1723 (2009)

10. Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of
certain coding problems. IEEE Transactions on Information Theory 24(2), 384–
386 (1978)

11. Bernstein, D.J.: Better price-performance ratios for generalized birthday attacks.
In: Workshop Record of SHARCS 2007: Special-purpose Hardware for Attacking
Cryptographic Systems (2007)

12. Bernstein, D.J., Lange, T., Peters, C., Schwabe, P.: Really Fast Syndrome-Based
Hashing. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS,
vol. 6737, pp. 134–152. Springer, Heidelberg (2011)

13. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo random number
generator. SIAM J. Comput. 15(2), 364–383 (1986)

14. Blum, M., Micali, S.: How to generate cryptographically strong sequences of
pseudo-random bits. SIAM J. Comput. 13(4), 850–864 (1984)

15. Finiasz, M., Sendrier, N.: Security Bounds for the Design of Code-Based Cryp-
tosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 88–105.
Springer, Heidelberg (2009)

16. Fischer, J.-B., Stern, J.: An Efficient Pseudo-random Generator Provably as Se-
cure as Syndrome Decoding. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS,
vol. 1070, pp. 245–255. Springer, Heidelberg (1996)

17. Gaborit, P., Zémor, G.: Asymptotic improvement of the Gilbert-Varshamov bound
for linear codes, vol. abs/0708.4164 (2007)

18. Gaborit, P., Laudaroux, C., Sendrier, N.: SYND: a very fast code-based cipher
stream with a security reduction. In: IEEE Conference, ISIT 2007, Nice, France,
pp. 186–190 (July 2007)

19. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
STOC 1989: Proc. of the Twenty-First Annual ACM Symposium on Theory of
Computing, pp. 25–32. ACM (1989)

http://www.ecrytp.eu.org/stream
http://www.bluetooth.org/spec/


116 M. Meziani, G. Hoffmann, and P.-L. Cayrel

20. Golić, J.D.: Cryptanalysis of Alleged A5 Stream Cipher. In: Fumy, W. (ed.) EU-
ROCRYPT 1997. LNCS, vol. 1233, pp. 239–255. Springer, Heidelberg (1997)

21. Hellman, M.: A cryptanalytic time-memory trade-off. IEEE Transactions on Infor-
mation Theory 26, 401–406 (1980)

22. Hong, J., Sarkar, P.: Rediscovery of time memory tradeoffs. Cryptology ePrint
Archive, Report 2005/090 (2005), http://eprint.iacr.org/

23. Impagliazzo, R., Naor, M.: Efficient cryptographic schemes provably as secure as
subset sum. J. Cryptology 9(4), 199–216 (1996)

24. Kaliski, B.S.: Elliptic Curves and Cryptography: A Pseudorandom Bit Generator
and Other Tools. Phd thesis. MIT, Cambridge, MA, USA (1988)

25. Käsper, E., Schwabe, P.: Faster and Timing-Attack Resistant AES-GCM. In:
Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 1–17. Springer, Hei-
delberg (2009)

26. May, A., Meurer, A., Thomae, E.: Decoding Random Linear Codes in Õ(20.054n).
In: Lee, D.H. (ed.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124. Springer,
Heidelberg (2011)

27. Meziani, M., Cayrel, P.-L., El Yousfi Alaoui, S.M.: 2SC: An Efficient Code-Based
StreamCipher. In:Kim, T.-H., Adeli, H., Robles, R.J., Balitanas, M. (eds.) ISA 2011.
CCIS, vol. 200, pp. 111–122. Springer, Heidelberg (2011)

28. Minder, L., Sinclair, A.: The extended k-tree algorithm. In: Proc. of the Twentieth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, pp. 586–595
(2009)

29. Niebuhr, R., Cayrel, P.-L., Buchmann, J.: Improving the Efficiency of General-
ized Birthday Attacks Against Certain Structured Cryptosystems. In: WCC 2011.
LNCS, pp. 163–172. Springer, Heidelberg (2011)

30. Saarinen, M.-J.O.: Linearization Attacks Against Syndrome Based Hashes. In: Sri-
nathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859,
pp. 1–9. Springer, Heidelberg (2007)

31. Shor, P.W.: Algorithms for Quantum Computation: Discrete Logarithms and Fac-
toring. In: SFCS 1994: Proc. of the 35th Annual Symposium on Foundations of
Computer Science, pp. 124–134. IEEE Computer Society (1994)

32. H̊astad, J., Näslund, M.: BMGL: Synchronous key-stream generator with provable
security (2001)

33. Wagner, D.: A Generalized Birthday Problem (Extended Abstract). In: Yung, M.
(ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002)

http://eprint.iacr.org/


Impossible Differential Cryptanalysis

of the Lightweight Block Ciphers
TEA, XTEA and HIGHT

Jiazhe Chen1,2,�, Meiqin Wang1,2,��, and Bart Preneel2

1 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, School of Mathematics,

Shandong University, Jinan 250100, China
2 KU Leuven, ESAT/COSIC and IBBT, Belgium

mqwang@sdu.edu.cn

Abstract. TEA, XTEA and HIGHT are lightweight block ciphers with
64-bit block sizes and 128-bit keys. The round functions of the three ci-
phers are based on the simple operations XOR, modular addition and
shift/rotation. TEA and XTEA are Feistel ciphers with 64 rounds designed
by Needham and Wheeler, where XTEA is a successor of TEA, which was
proposed by the same authors as an enhanced version of TEA. HIGHT,
which is designed by Hong et al., is a generalized Feistel cipher with 32
rounds. These block ciphers are simple and easy to implement but their
diffusion is slow, which allows us to find some impossible properties.

This paper proposes a method to identify the impossible differentials
for TEA and XTEA by using the weak diffusion, where the impossible
differential comes from a bit contradiction. Our method finds a 14-round
impossible differential of XTEA and a 13-round impossible differential of
TEA, which result in impossible differential attacks on 23-round XTEA
and 17-round TEA, respectively. These attacks significantly improve the
previous impossible differential attacks on 14-round XTEA and 11-round
TEA given by Moon et al. from FSE 2002. For HIGHT, we improve
the 26-round impossible differential attack proposed by Özen et al.; an
impossible differential attack on 27-round HIGHT that is slightly faster
than the exhaustive search is also given.

1 Introduction

TEA [22], XTEA [19] and HIGHT [6] are lightweight block ciphers suitable for
low resource devices such as RFID tags and sensor nodes. TEA was proposed
by Needham and Wheeler in 1994; it is a simple design that is easy to under-
stand and implement. By exploiting its too simple key schedule, Kelsey et al.
� This author is supported by Graduate Independent Innovation Foundation of Shan-

dong University (No. 11140070613183).
�� This author is supported by NSFC Projects (No.61133013, No.61070244, No.

61103237 and No.60931160442), Outstanding Young Scientists Foundation Grant
of Shandong Province (No.BS2009DX030).

A. Mitrokotsa and S. Vaudenay (Eds.): AFRICACRYPT 2012, LNCS 7374, pp. 117–137, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



118 J. Chen, M. Wang, and B. Preneel

proposed a related-key attack on full TEA [10]. In order to preclude the attack,
the authors enhanced the cipher with an improved key schedule and a different
round function by rearranging the operations; the new version is called XTEA.
Both TEA and XTEA are implemented in the Linux kernel; they use modular
addition (modulo 232), shift (left and right) and XOR in their round functions.
Several cryptanalytic results on TEA and XTEA have been published. In the
single-key setting, Moon et al. gave impossible differential attacks on 11-round
TEA and 14-round XTEA [18] based on 10-round and 12-round impossible dif-
ferentials, respectively. Hong et al. [7] proposed truncated differential attacks
that can break TEA reduced to 17 rounds with 2123.73 encryptions and XTEA
reduced to 23 rounds with 2120.65 encryptions. Later, Sekar et al. presented a
meet-in-the-middle attack on 23-round XTEA with complexity 2117 [21]. Very
recently, Bogdanov and Wang proposed attacks on TEA and XTEA [3] with
a new technique named zero correlation linear cryptanalysis [2]; these attacks
are best attacks on TEA and XTEA in terms of the number of rounds to date,
which can break 21 rounds of TEA and 25 rounds of XTEA. If the full code-
book is available, their attacks are improved to 23/27 rounds for TEA/XTEA.
There are also attacks on XTEA in the related-key setting, which are given in
[4][13][15][17].

HIGHT, designed by Hong et al. [6], was standardized by the Telecommuni-
cations Technology Association (TTA) of Korea. Recently, it was adopted as an
International Standard by ISO/IEC 18033-3 [8]. It is an 8-branch generalized
Feistel with initial and final whitening layers; its round function uses addition
modulo 28, rotation and XOR. The best related-key attack on HIGHT is a full-
round rectangle attack with complexity 2125.83 [14]. The best single-key attack
is a 26-round impossible differential cryptanalysis proposed by [20], which does
not take the initial whitening layer into account and needs 2119.53 encryptions.

The impossible differential attack, which was independently proposed by Bi-
ham et al. [1] and Knudsen [12], is a widely used cryptanalytic method. The
attack starts with finding an input difference that can never result in an output
difference, which makes up an impossible differential. By adding rounds before
and/or after the impossible differential, one can collect pairs with certain plain-
text and ciphertext differences. If there exists a pair that meets the input and
output values of the impossible differential under some subkey bits, these bits
must be wrong. In this way, we discard as many wrong keys as possible and
exhaustively search the rest of the keys, this phase is called key recovery phase.
The early abort technique is usually used during the key recovery phase, that
is, one does not guess all the subkey bits at once, but guess some subkey bits
instead to discard some pairs that do not satisfy certain conditions step by step.
In this case, we can discard the unwished pairs as soon as possible to reduce the
time complexity.

Our Contribution. This paper presents a novel method to derive impossi-
ble differentials for TEA and XTEA. Due to the one-directional diffusion prop-
erty of TEA and XTEA, one can determine a one-bit difference after a chosen



Impossible Differential Cryptanalysis of TEA, XTEA and HIGHT 119

difference propagates several steps forward/backward, which might lead to a one-
bit contradiction in certain rounds if we choose two differences and make them
propagate towards each other. Based on this technique we identify 13-round and
14-round impossible differentials for TEA and XTEA respectively. These impos-
sible differentials are significantly better than the 10-round impossible differen-
tial of TEA and 12-round impossible differential of XTEA in [18], and result in
improved impossible differential attacks on 17-round TEA and 23-round XTEA.
Our attack on 17-round TEA needs 257 chosen plaintexts and 2106.6 encryptions.
If we use 262.3 chosen plaintexts, we can attack 23-round XTEA with 2114.9 en-
cryptions; if we increase the data complexity to 263, the complexity of the attack
will become 2106 memory accesses and 2105.6 encryptions. 15-round impossible
differentials can also be found for both TEA and XTEA, however, we should use
the full codebook to carry out the attacks. In this case, 19 rounds of TEA and 26
rounds of XTEA can be attacked. Although the attacks on TEA and XTEA are
not as good as those in [3], they greatly improve the corresponding impossible
differential attacks in [18].

Table 1. Summary of Single-Key Attacks on TEA, XTEA and HIGHT

Attack #Rounds Data Time Ref.

TEA

Impossible Differential 11 252.5 CP 284EN [18]
Truncated Differential 17 1920 CP 2123.37EN [7]

Impossible Differential 17 257 CP 2106.6EN this paper
Zero Correlation Linear 21 262.62KP 2121.52EN [3]
Zero Correlation Linear 23 264 2119.64EN [3]

XTEA

Impossible Differential 14 262.5 CP 285EN [18]
Truncated Differential 23 220.55 CP 2120.65EN [7]
Meet-in-the-Middle 23 18 KP 2117EN [21]

Impossible Differential 23 262.3 CP 2114.9EN this paper
Impossible Differential 23 263 CP 2101MA+2105.6EN this paper
Zero Correlation Linear 25 262.62KP 2124.53EN [3]
Zero Correlation Linear 27 264 2120.71EN [3]

HIGHT

Saturation 22 262.04 CP 2118.71EN [23]
Impossible Differential 25 260 CP 2126.78EN [16]
Impossible Differential 26 261 CP 2119.53EN [20]

Impossible Differential 26 261.6 CP 2114.35EN this paper
Impossible Differential 27 258 CP 2120 MA+2126.6EN this paper

CP: Chosen Plaintext; KP: Known Plaintext;
EN: Encryptions; MA: Memory Accesses.

Furthermore, we present impossible differential attacks on HIGHT reduced
to 26 and 27 rounds that improve the result of [20]. Like the attack in [20], our
26-round attack also does not take the initial whitening layer into account; the
complexity of our attack is 261.6 chosen plaintexts and 2114.35 encryptions. While



120 J. Chen, M. Wang, and B. Preneel

the 27-round attack includes both the initial and final whitening layers; it needs
258 chosen plaintexts, 2126.6 27-round encryptions and 2120 memory accesses.
We summarize our results of TEA, XTEA and HIGHT, as well as the major
previous results in Table 1.

The rest of the paper is organized as follows. We give some notations and
brief descriptions of TEA, XTEA and HIGHT in Sect. 2. Some properties of
TEA, XTEA and HIGHT are described in Sect. 3. Section 4 gives the impos-
sible differentials and our attacks on reduced TEA and XTEA. The impossible
differential cryptanalysis of HIGHT is presented in Sect. 5. Finally, Section 6
concludes the paper.

2 Preliminary

2.1 Notations

– �: addition modular 232 or 28

– ⊕: exclusive-OR (XOR)
– MSB: most significant bit, which is the left-most bit
– LSB: least significant bit, which is the right-most bit
– ?: an indeterminate difference
– ||: concatenation of bits
– ΔA: the XOR difference of a pair (A, A′), where A and A′ are values of

arbitrary length
– Ai: the i-th bit of A, where the 1st bit is the LSB
– Ai∼j : the i-th to j-th bits of A
– (·)2: the binary representation a byte, where the left-most bit is the MSB
– e0: (???????0)2, e1: (???????1)2, e4: (?????100)2
– D[i]: a 32-bit difference where the i-th bit is 1, the first to the (i − 1)-th

bits are 0, and the (i + 1)-th to 32-th bits are indeterminate. For i < 0, D[i]
means that all the 32 bits of the difference are indeterminate.

2.2 Brief Description of TEA and XTEA

TEA and XTEA are 64-bit block ciphers with 128-bit key-length. The key K
can be described as follows: K = (K0, K1, K2, K3), where Ki (i = 0, ..., 3) are
32-bit words. Denote the plaintext by (PL, PR), the ciphertext by (CL, CR), and
the input of the i-th round by (Li−1, Ri−1), so (L0 = PL, R0 = PR). Then we
can briefly describe the encryption procedure of TEA.

For i = 1 to 64, if i mod 2 = 1,
Li = Ri−1 ,
Ri = Li−1 + (((Ri−1 � 4)+ K0)⊕ (Ri−1 + (i + 1)/2× δ)⊕ ((Ri−1� 5)+ K1)) .
If i mod 2 = 0,
Li = Ri−1 ,
Ri = Li−1 + (((Ri−1 � 4)+ K2)⊕ (Ri−1 + (i + 1)/2× δ)⊕ ((Ri−1� 5)+ K3)) .



Impossible Differential Cryptanalysis of TEA, XTEA and HIGHT 121

Finally, (CL = L64, CR = R64). Note that the constant δ = 0x9e3779b9. XTEA
is also very simple, it has similar structure and round function as TEA. To make
the cipher resist against related-key attack, XTEA has a key schedule which is
more complicated. By using the same notion, the encryption procedure of XTEA
is depicted as follows.

F
Ri+1

Ri+1

<<4

>>5

K[0]

K[1]

δ

Li

Li+1

i·δ K[(i·δ>>11)&3]

F

Li Ri

Li+1 Ri+1

<<4

>>5

TEA XTEA

F
Ri+1

Ri+1

<<4

>>5

K[0]

K[1]

δ

Li

Li+1

i·δ K[(i·δ>>11)&3]

F

Li Ri

Li+1 Ri+1

<<4

>>5

TEA XTEA

Fig. 1. Round Functions of TEA and XTEA

For i = 1 to 64,
Li = Ri−1 ,
Ri = Li−1 + (((Ri−1 � 4⊕Ri−1 � 5) + Ri−1)⊕ (i/2× δ + K((i−1)/2×δ�11)∩3) .

The round functions of TEA and XTEA are illustrated in Fig. 1. The sequence
Ki that is used in each round of XTEA can be found in Table 2.

Table 2. Subkey Used in Each Round of XTEA

K0 K3 K1 K2 K2 K1 K3 K0 K0 K0 K1 K3 K2 K2 K3 K1

K0 K0 K1 K0 K2 K3 K3 K2 K0 K1 K1 K1 K2 K0 K3 K3

K0 K2 K1 K1 K2 K1 K3 K0 K0 K3 K1 K2 K2 K1 K3 K1

K0 K0 K1 K3 K2 K2 K3 K2 K0 K1 K1 K0 K2 K3 K3 K2

2.3 Brief Description of HIGHT

HIGHT is a lightweight block cipher with a 64-bit block size and a 128-bit
key. The cipher consists of 32 rounds with four parallel Feistel functions in
each round; whitening keys are applied before the first round and after the
last round. The master key of HIGHT is composed of 16 bytes MK=(MK15,
MK14, MK13, MK12, MK11, MK10, MK9, MK8, MK7, MK6,MK5, MK4, MK3,
MK2, MK1, MK0); the whitening keys (WK0,WK1,WK2,WK3, WK4, WK5,
WK6, WK7) and round subkeys (SK0, ..., SK127) are generated from the
master key by the key schedule algorithm. The schedule of whitening keys is



122 J. Chen, M. Wang, and B. Preneel

relatively simple and results in WK0 = MK12, WK1 = MK13, WK2 = MK14,
WK3 = MK15, WK4 = MK0, WK5 = MK1, WK6 = MK2, WK7 = MK8. The
128 7-bit constants δ0, ..., δ127 have to be generated before generating the round
subkeys; the algorithm is described in Fig. 2. Let the plaintext and ciphertext

Set s0 ← 0, s1 ← 1, s2 ← 0, s3 ← 1, s4 ← 1, s5 ← 0 and s6 ← 1.
δ0 = s6||s5||s4||s3||s2||s1||s0.
For i = 1 to 127,

si+6 = si+2 ⊕ si−1,
δi = si+6||si+5||si+4||si+3||si+2||si+1||si.

For i = 0 to 7,
for j = 0 to 7,

SK16i+j = MK(j−i) mod 8 � δ16i+j .
for j = 0 to 7,

SK16i+j+8 = MK((j−i) mod 8)+8 � δ16i+j+8.

Fig. 2. Subkey Generation of HIGHT

be P = (P7, P6, P5, P4, P3, P2, P1, P0) and C= (C7, C6, C5, C4, C3, C2, C1, C0),
where Pj , Cj (j = 0, ..., 7) are 8-bit values. If we denote the input of the (i + 1)-
round be X i = (X i

7, X
i
6, X

i
5, X

i
4, X

i
3, X

i
2, X

i
1, X

i
0), then an initial transformation

is first applied to P by setting X0
0 ← P0 � WK0, X0

1 ← P1, X0
2 ← P2 ⊕WK1,

X0
3 ← P3, X0

4 ← P4 � WK2, X0
5 ← P5, X0

6 ← P6 ⊕WK3 and X0
7 ← P7. After

this, the round transformation iterates for 32 times:

For i = 0 to 32,
X i+1

1 = X i
0, X i+1

3 = X i
2, X i+1

5 = X i
4, X i+1

7 = X i
6,

X i+1
0 = X i

7 ⊕ (F0(X i
6) � SK4i+3),

X i+1
2 = X i

1 � (F1(X i
0)⊕ SK4i+2),

X i+1
4 = X i

3 ⊕ (F0(X i
2) � SK4i+1),

X i+1
6 = X i

5 � (F1(X i
4)⊕ SK4i).

Here F0(x) = (x ≪ 1) ⊕ (x ≪ 2) ⊕ (x ≪ 7), and F1(x) = (x ≪ 3) ⊕ (x ≪
4)⊕ (x ≪ 6). One round of HIGHT is illustrated in Fig. 3.

A final transformation is used to obtain the ciphertext C, where C0 = X32
1 �

WK4, C1 = X32
2 , C2 = X32

3 ⊕WK5, C3 = X32
4 , C4 = X32

5 � WK6, C5 = X32
6 ,

C6 = X32
7 ⊕WK7 and C7 = X32

0 .

3 Diffusion Properties of TEA, XTEA and HIGHT

For XTEA and TEA, instead of rotations, shifts (left and right) are used, hence
the differences that are shifted beyond MSB/LSB will be absorbed, which results



Impossible Differential Cryptanalysis of TEA, XTEA and HIGHT 123

F0

SK4(i+1)-1

F1

SK4(i+1)-2

F0

SK4(i+1)-3

F1

SK4(i+1)-4

Xi
7 Xi

6 Xi
5 Xi

4 Xi
3 Xi

2 Xi
1 Xi

0

X7
i+1 X6

i+1 X5
i+1 X4

i+1 X3
i+1 X2

i+1 X1
i+1 X0

i+1

Fig. 3. One Round of HIGHT

in a slower diffusion than for rotations. In other words, the difference in the most
significant bits can only influence the least significant bits after several rounds.
This is the starting point of our attacks, which allows us to construct impossible
differentials. The derivation of the impossible differentials will be elaborated in
Sect. 4.1.

There is also a common property in the block ciphers TEA, XTEA and
HIGHT, that is, the round subkeys are added (or XORed) to the intermedi-
ate values after the diffusion operations. Furthermore, the operations used in all
the three ciphers are modular addition, XOR and shift (rotation), which may
allow us to guess the subkey bit by bit from the LSB to the MSB to abort the
wrong pairs as soon as possible to reduce the time complexity.

In the rest of this section, we will first give the definition of the T-function [11],
then give Theorem 1 and Property 1 that are useful for attacks on TEA and
XTEA.

Definition 1. (From [11]) A function φ from Bm×n to Bl×n is called a T-
function if the k-th column of the output [φ(x)]∗,k−1 depends only on the first k
columns of the input: [x]∗,0, ..., [x]∗,k−1, where B is the set {0, 1} and [x]∗,i is the
i-th column of x.

From the definition we know that modular addition is a T-function, more specif-
ically, we have the following Theorem.

Theorem 1. (From [5]). Let [x+y] be (x+y) mod 2n, then [x+y]i = xi⊕yi⊕ci

(i = 1, ..., n), where c1 = 0 and ci = xi−1yi−1 ⊕ xi−1ci−1 ⊕ yi−1ci−1, for i = 2,
..., n.

From Theorem 1, Property 1 can be deduced:

Property 1. Given x, x′, y, y′ be n-bit values, and z = (x + y) mod 2n, z′ =
(x′ + y′) mod 2n. If the i-th (counting from 1) to j-th bits of x, x′, y, y′ and the
i-th carry ci, c′i of x+ y, x′ + y′ are known, then the i-th to j-th (i < j ≤ n) bits
of Δz can be obtained, regardless of the values of least significant i− 1 bits of x
(or x′), y (or y′). Note that if there are no differences in the the least significant
i− 1 bits of x + y and x′ + y′, then ci = c′i.



124 J. Chen, M. Wang, and B. Preneel

4 Impossible Differential Attacks on Reduced XTEA and
TEA

In this section, we first explain how to obtain the impossible differentials for TEA
and XTEA. Then a 13-round impossible differential for TEA and a 14-round
impossible differential for XTEA are given, which are used to attack 17-round
TEA and 23-round XTEA .

4.1 Impossible Differentials of TEA and XTEA

As mentioned in Sect. 3, we know that the differences in the most significant
bits propagate only in one direction. Since both TEA and XTEA use operations
that shift to the left for 4 bits and shift to the right for 5 bits, they share the
following properties.

Property 2. If the input difference of the i-th round of XTEA (TEA) is (0, D[n]),
then the output difference is (D[n], D[n−5]). Vice versa, if the output difference
of the j-th round of XTEA (TEA) is (D[p], 0), then the input difference is
(D[p− 5], D[p]).

Property 3. If the input difference of the i-th round of XTEA (TEA) is (D[m],
D[n]), where (m > n − 5), then the output difference is (D[n], D[n − 5]). Vice
versa, if the output difference of the j-th round of XTEA (TEA) is (D[p], D[q]),
where (q > p− 5), then the input difference is (D[p− 5], D[p]).

From Property 2 and Property 3, we propose a method to construct impossible
differentials for TEA and XTEA. If we choose the input difference to be (0, D[n])
(or (D[m], D[n]) (m > n − 5)), then after i rounds, the difference should be of
the form (D[n−5(i−1)], D[n−5i]). Similarly, if we choose the output difference
(D[p], 0) (or (D[p], D[q]) (q > p − 5)), then after propagating backwards for j
rounds, the difference should be of the form (D[p − 5j], D[p− 5(j − 1)]). Then
at least one bit contradiction will appear if

n− 5(i− 1) > 0, p− 5j > 0, n− 5(i− 1) �= p− 5j.

With this method, we can derived a 14-round impossible differential for XTEA
and a 13-round impossible differential for TEA (see Fig. 4), where the left-most
bit is the MSB, each small rectangle stands for one bit: blank rectangles mean
that there are no differences in these bits, while black ones mean the differences
are equal to 1, and gray ones mean that the differences are indeterminate. As
mentioned, we can even derive 15-round impossible differentials for both XTEA
and TEA, resulting in attacks that work for more rounds of TEA and XTEA.
However, the resulting attacks require the full codebook and very high complex-
ities, so we decided not to describe them in detail.



Impossible Differential Cryptanalysis of TEA, XTEA and HIGHT 125

F

F

F

F

F

F

F

F

F

F

F

F

F

Round 1

Round 2

Round 3

Round 4

Round 5

Round 6

Round 7

Round 8

Round 9

Round 10

Round 11

Round 12

Round 13

Round 14

F

contradiction

F

F

F

F

F

F

F

F

F

F

F

F

Round 1

Round 2

Round 3

Round 4

Round 5

Round 6

Round 7

Round 8

Round 9

Round 10

Round 11

Round 12

Round 13

F

contradiction

Fig. 4. Impossible Differentials of XTEA (left) and TEA (right)

4.2 Impossible Differential Attack of 23-Round XTEA

By placing the 14-round impossible differential on rounds 11 ∼ 24, we can attack
XTEA from round 6 to round 28. This is clarified in Fig. 5.

Data Collection. We first construct 25.3 structures of plaintexts, where in
each structure the LSB of PL and the 6 least significant bits of PR are fixed,
whereas the other bits take all values. For each structure, ask for the encryption
of the plaintexts to get the corresponding ciphertexts. By the birthday paradox,
we can get 257×2−1 × 2−29 = 284 pairs that satisfy (ΔPL)1 = 1, (ΔPR)6 = 1,
(ΔCL)15 = 1, (ΔCR)10 = 1, the 15 least significant bits of ΔCL are 0, and the
10 least significant bits of ΔCR are 0 in each structure. As a result, 289.3 pairs
are obtained since we have 25.3 structures; the number of chosen plaintexts is
262.3.

Key Recovery. In order to find if there are pairs obtained from the data col-
lection phase that may follow the differential in Fig. 5, we need to guess the key
bits and sieve the pairs in rounds 6 ∼ 10 and 25 ∼ 28. From Table 2 we know



126 J. Chen, M. Wang, and B. Preneel

the subkey used in each round (namely K1, K3, K0, K0, K0; and K0, K1, K1,
K1), hence we know the key bits we have to guess in each step.

As mentioned above, for XTEA the round subkeys intervene in the round
functions after the diffusion, hence from Property 1 one can deduce that the
attacker does not always have to guess all the 32 bits of the subkey to sieve the
pairs with the required differences.

The key recovery process is described in Table 3, where the second column
stands for the bits that have to be guessed in each step. Note that in Step 6,
guessing bits 1 ∼ 6 of K3 only takes 25 times, since one-bit information is known
from c2. Similarly, it takes 210 and 212 guesses for bits 1 ∼ 11 and 23 ∼ 25
of K0, respectively. The fifth and fourth columns of Table 3 are the rounds
where the sieving is launched and the conditions that can be used to sieve; the
last column shows the number of remaining pairs after each step (for each key
guess). Consequently, we can get the time complexity (measured by the number
of 23-round encryptions) of each step, which is given in column 3 of the table.

In Step 7, if there is a pair kept, then we discard the key guess and try another
one. Otherwise, for this key guess we exhaustively search the remaining 232 keys
by trial encryptions, and then either output the correct key or try another 96-bit
key guess.

Analysis of the Attack. From the data collection phase we know that the data
complexity, i.e., the number of plaintexts we need is equal to 262.3. In Step 7 of the
key recovery phase, about 296×(1−2−20)2

23.3 ≈ 282.2 96-bit values (K0, K1, K3)
will remain. Since the trial encryptions need two plaintext-ciphertext pairs, the
cost of the trial encryptions is about 232× 282.2 +250.2 = 2114.2 23-round XTEA
encryptions. The complexity of this step is about 2×296× (1+(1−2−20)+ ...+
(1− 2−20)2

23.3−1)× 2/23 + 2114.2 ≈ 2113.5 + 2114.2 ≈ 2114.9 encryptions, which is
also the dominating time complexity of the attack. The memory complexity to
store the pairs is 294.3 bytes.

Reducing the Time Complexity. If we prepare the pairs that satisfy the
conditions of rounds 8, 9 and 10 by precomputation, we can avoid guessing bits
1 ∼ 25 of K0 by doing some table look-ups and memory accesses. If the same data
complexity is used, the time complexity will be dominated by the trial encryp-
tions used to discard the remaining keys. Hence we also increase the data com-
plexity to 263 by choosing 26 structures. First we illustrate the procedure of pre-
computation: we choose ΔL10 = D[27] and ΔR10 = 0, for each K0, L10 and R10,
decrypt all (L10, L10⊕ΔL10) and (R10, R10⊕ΔR10) to get (L7, L7⊕ΔL7) and
(R7, R7⊕ΔR7) (the subkey used in round 8, 9 and 10 is K0); then insert bits 1 ∼
25 of K0 into a hash table T indexed by (L7, R7, ΔL7, ΔR7, (K0)26∼32). There
are 264×235×27 = 2106 (L7, R7, ΔL7, ΔR7, (K0)26∼32)s since ΔL7 = D[12] and
ΔR7 = D[17]; however, only 264 × 25 × 232 = 2101 (L10, R10, ΔL10, ΔR10, K0)s
can be chosen, which means that only a fraction 2−5 of the rows in Table T
are not empty, and each non-empty row contains one (K0)1∼25 on average. The
complexity of precomputation is 2× 2101 = 2102 3-round encryptions.



Impossible Differential Cryptanalysis of TEA, XTEA and HIGHT 127

Table 3. Attack on 23-Round XTEA

Step Guess Bits Complexity Sieve on Conds Pairs Kept

1 K1 : 1 ∼ 12 297.8 round 6 10 279.3

2 K1 : 13 ∼ 22 297.8 round 28 10 269.3

3 K1 : 23 ∼ 32 298.8 round 26,27 20 249.3

4 K0 : 26 ∼ 32, c1* 285.8 round 25 6 243.3

5 K3 : 7 ∼ 17, c2† 290.8 round 7 10 233.3

6 K3 : 1 ∼ 6, 18 ∼ 32, K0 : 12 ∼ 22, c3‡ 2103.8 round 8 10 223.3

7 K0 : 1 ∼ 11, 23 ∼ 25 2114.9 round 9,10 20 −
*c1 is the 26th carry in the left modular addition of the 25th round
† c2 is the 7th carry in the left modular addition of the 7th round
‡ c3 is the 12th carry in the left modular addition of the 8th round

With Table T , we can replace Step 6 and Step 7 of the key recovery procedure
as follows: we construct another table Γ that contains all values of bits 1 ∼
25 of K0. In Step 6, after guessing bits 1 ∼ 6, 18 ∼ 32 of K3, we calculate
(L7, R7, ΔL7, ΔR7) and access the value from the corresponding row of Table T .
If there is a value in the row, we delete this (K0)1∼25 from Table Γ . For each
guess of K1, K3 and bits 26 ∼ 32 of K0, we get 234 pairs before accessing Table T ;
a fraction 2−5 of the 234 pairs will access Table T to get a (K0)1∼25, which will
be then deleted from Γ . Consequently, 264 × 27 × 225 × (1 − 2−25)2

29 ≈ 273.6

(K0, K1, K3) will remain, which have to be further tested by trial encryptions
with each K2. The complexity of this procedure is 2107 one-round encryptions,
2101 memory accesses to Table T , 2101 memory accesses to Table Γ and 2105.6

trial encryptions. If we assume that one memory access to Table Γ is equivalent
to one one-round encryption, then the dominating complexity is 2101 memory
accesses to Table T and 2105.6 trial encryptions, which is also the dominating
complexity of the whole attack. The memory complexity of the attack is about
2103 bytes required for Table T .

4.3 Impossible Differential Attack of 17-Round TEA

Using the 13-round impossible differential, we can attack the first 17 rounds
of TEA by extending the impossible differential forward and backward for two
rounds (see Fig. 5).

Note from [9] one can deduce that the effective key size of TEA is only 126
bits: if the MSBs of K0 and K1 flip simultaneously, the output value of the round
will be the same; actually, the same phenomenon happens for K2 and K3. As a
result, every key value has three equivalent keys, which allows us to guess only
one of the 4 equivalent keys when we mount an impossible differential attack
on TEA. At the end of the attack, if we output one correct key, there are three
other keys that are also correct.

In the data collection phase, we construct 230 structures of plaintexts with
the least 16 bits of PL and the least 21 bits of PR fixed, while the other bits take



128 J. Chen, M. Wang, and B. Preneel

14-Round Impossible Differential

F

F

F
F

F

F

F

F

F

F

F

13-Round Impossible Differential

F

F

Fig. 5. 23-Round Attack on XTEA (left) and 17-Round Attack on TEA (right)

all values. Ask for the encryptions to get the ciphertexts; for each structure we
can get 253−39 = 214 pairs that satisfy the required differences of the plaintext
and ciphertext by the birthday paradox. Then the total number of pairs kept
after the data collecting phase is 244.

Observe that K0 and K1 are used in the first and the 17th round, and K2

and K3 are used in the second and the 16th round. Hence for the remaining
pairs, we first guess K0 and K1, partially encrypt the first round and discard
the pairs that do not meet the condition of ΔR1; then decrypt the 17th round
and discard the pairs whose ΔL16 do not satisfy the required form. The number
of pairs that meet the conditions should be 224; and the complexity of this step
is about 2 × 2107 + 2 × 297 = 2108 one-round encryptions, equivalent to 2104

17-round encryptions.
Then we guess bits 21 ∼ 32 of K2 and K3, the 22th carry of the left modular

addition in round 2, and the 26th carry of the left modular addition in round
16. For the remaining pairs, we partially encrypt round 2 and round 16, and
keep only the pairs that satisfy the required differences. If there is a pair kept,
then we discard the key guess and try another one. Otherwise, for this key guess
we exhaustively search the remaining key values by trial encryption, and then
either output the correct key or try another guess. Considering the equivalent
keys, the key values we guessed are 88 bits (including the guessed carries); the
expected number of remaining 88-bit key guesses is about 288 × (1− 2−20)2

24 ≈
265.6. Since each of the remaining key guesses has to be exhaustively searched
with the other 238 key values, so the time complexity of this step is about
2×288×(1+(1−2−20)+(1−2−20)2+...+(1−2−20)2

24
)×2/17+265.6+38 ≈ 2106.3

encryptions; thus the time complexity of the attack is about 2106.3+2104 ≈ 2106.6.
The data complexity is 257 and the memory complexity is 249 bytes.



Impossible Differential Cryptanalysis of TEA, XTEA and HIGHT 129

5 Impossible Differential Cryptanalysis of Reduced
HIGHT

In this section, we improve the 26-round impossible differential attack on HIGHT
in [20] by using a 16-round impossible differential that is similar to that of
[20] (see Fig. 6a). In order to take advantage of the redundancy in the key
schedule, we carefully choose the beginning and ending rounds of the impossible
differential, which are round 10 and round 25, respectively. The attack excludes
the initial whitening layer (as in [20]), and works for round 5 to round 30 (see Fig.
6b). In addition, a 27-round impossible differential attack with both the initial
and final whitening layers, which is slightly better than exhaustive search, is also
proposed based on the 16-round impossible differential in [20] (see Fig. 7a).

i ΔX i
7 ΔX i

6 ΔX i
5 ΔX i

4 ΔX i
3 ΔX i

2 ΔX i
1 ΔX i

0

9 0 0 0 0 e1 0 0 0
10 0 0 0 e1 0 0 0 0
11 0 ? e1 0 0 0 0 0
12 ? e1 0 0 0 0 0 ?
13 e1 0 0 0 0 ? ? ?
14 0 0 0 ? ? ? ? e1

15 0 ? ? ? ? ? e1 0
16 ? ? ? ? ? e1 0 ?
17 ? ? ? ? e1 ? ? ?
17 ? ? ? ? e0 0x80 ? ?
18 ? ? ? e1 0x80 0 ? ?
19 ? ? e1 0x80 0 0 ? ?
20 ? e1 0x80 0 0 0 ? ?
21 e1 0x80 0 0 0 0 ? ?
22 0x80 0 0 0 0 0 ? e4

23 0 0 0 0 0 0 e4 0x80
24 0 0 0 0 0 0 0x80 0
25 0 0 0 0 0 0x80 0 0

(a) The 16-Round Impossible Differen-
tial

i ΔX i
7 ΔX i

6 ΔX i
5 ΔX i

4 ΔX i
3 ΔX i

2 ΔX i
1 ΔX i

0

P ? e1 0 0 ? ? ? ?
4 ? e1 0 0 ? ? ? ?
5 e1 0 0 0 ? ? ? ?
6 0 0 0 0 ? ? ? e1

7 0 0 0 0 ? ? e1 0
8 0 0 0 0 ? e1 0 0
9 0 0 0 0 e1 0 0 0

Impossible Differential
25 0 0 0 0 0 0x80 0 0
26 0 0 0 e1 0x80 0 0 0
27 0 ? e1 0x80 0 0 0 0
28 ? e1 0x80 0 0 0 0 ?
29 e1 0 0 0 0 ? ? ?
30 0x80 0 0 ? ? ? ? e0

C e0 0x80 0 0 ? ? ? ?

(b) Impossible Differential Attack on
26-Round HIGHT

Fig. 6.

5.1 Improved Impossible Differential Attack on 26-Round HIGHT

In order to reduce the time complexity of the 26-round attack in [20], we choose
a similar impossible differential and a different beginning round; the data com-
plexity is slightly higher because we want to reduce the complexity of the final
trial encryptions that would otherwise dominate the complexity. Precomputa-
tion is also used to reduce the time complexity.

Data Collection. Construct 213.6 structures with P4, P5 fixed and for which
P0, ..., P3, P6, P7 take all values. Ask for the encryptions of all the plaintexts to
get the corresponding ciphertexts. Since the ciphertext pairs with the difference



130 J. Chen, M. Wang, and B. Preneel

((???????0)2, 0x80, 0, 0, ?, ?, ?, ?) are required, and there is one more condition in
the plaintext difference, which is ΔP6,0 = 1; by the birthday paradox, there are
282.6 pairs left.

Precomputation. Three pre-computed tables α, β and ε will be set up for the
sake of reducing the complexity in the key recovery phase. The purpose of setting
up α is finding all the (X6

2 , ΔX6
2 ), (X6

1 , ΔX6
1 ), (X6

0 , ΔX6
0 ), MK12 and MK15 which

satisfy ΔX8
4 = 0. Hence we choose all values ofX8

4 , X8
3 , ΔX8

3 , X7
1 , ΔX7

1 , MK12 and
MK15, calculate (X6

2 , ΔX6
2 ), (X6

1 , ΔX6
1 ), and (X6

0 , ΔX6
0 ) by 1/2 round decryp-

tions and insert MK15 to the row of α indexed by (X6
2 , ΔX6

2 , X6
1 , ΔX6

1 , X6
0 , ΔX6

0 ,
MK12). Hence there is one MK15 in each row on average; the size of α is 255 bytes as
there are only 27 ΔX6

0 s. When constructing Table β, all values of X25
2 , X25

3 , X26
2 ,

MK7 and MK11 are chosen, then we compute X27
3 , X27

4 and (X27
5 , ΔX27

5 ), and in-
sert MK11 to the row indexed by (X27

3 , X27
4 , X27

5 , ΔX27
5 ,MK7). Since there are 240

tuples (X25
2 , X25

3 , X26
2 , MK7, MK11), but only 239 tuples (X27

3 , X27
4 , X27

5 , ΔX27
5 ,

MK7) are possible (ΔX27
5 = (???????1)2), we have 239 rows in β with 2 MK11

values in each row on average. The setting of Table ε is also similar: we choose
all values of X9

4 , X9
3 , ΔX9

3 , X8
1 , MK7 and MK11, and calculate X7

0 , (X7
1 , ΔX7

1 ),
(X7

2 , ΔX7
2 ); then insert X7

0 to the row indexed by (X7
1 , ΔX7

1 , X7
2 , ΔX7

2 ,MK7,
MK11). There is one X7

0 in each row on average. The sizes of β and ε are 240 bytes
and 248 bytes, respectively. Constructing Table α dominates the time complexity
of the precomputation, which is about 256 1/2-round encryptions. To better illus-
trate the precomputation, we depict it in Fig. 8a;

Key Recovery. The key recovery phase is described in Table 4, where the
second column contains the key bytes/bits which are guessed in the step, the
third column indicates the whitening keys/subkeys used in the step to calculate
the values that are needed, the fourth column gives the intermediate values that
can be calculated in the step, the fifth column stands for the time complexity
of each step, the sixth column gives the number of bit conditions which can be
used, the seventh column indicates the number of the pairs that are kept after
each step and the last column gives the position of Feistel branches where the
sieving occurs ((x, y) means the y-th branch of the x-th round, where the right-
most branch is the 0th one). To better illustrate the procedure, we also give the
subkeys used, as well as the corresponding master key bytes, in Table 5 in the
Appendix; the subkeys that have to be guessed in the attack are in bold.

In Step 1, for each remaining pair from the data collection phase, we guess
MK0 and discard the pairs that do not satisfy ΔX5

4 = 0 by 1/4-round encryp-
tions. So the number of pairs kept after this step is 282.6−8 = 274.6 and the
complexity of this step is about 2 × 282.6 × 28 × 1/4 × 1/26 ≈ 284.9 26-round
encryptions. Steps 2 ∼ 7 are similar; we guess the subkey bytes, calculate the in-
termediate value and discard the pairs that do not meet the conditions. In Step 8,
we do not guess all 8 bits of MK8 at once, but guess them bit by bit from the LSB
to the MSB by using the diffusion property mentioned in Sect. 3. Once we guess
one bit of MK8, we can compute the corresponding bit of ΔX7

4 and discard the



Impossible Differential Cryptanalysis of TEA, XTEA and HIGHT 131

pairs that do not meet the condition. Since 8 bits of MK8 should be guessed in 8
times, the complexity of this step is 2×8×272×242.6×1/4×1/26≈ 2111.9. Step
9 is similar to Step 8, except that we have to carry out 1/2-round decryption for
each pair other than 1/4-round in Step 8.

In Step 11, for each pair obtained from Step 10 we first access Table α to get
a value of MK15, then we calculate X27

3 to access Table β. Two MK11 can be ob-
tained on average, for each of the values, we access Table ε to get X7

0 and calculate
MK10 as X6

6 , X6
7 are already known. The corresponding (MK15,MK11,MK10)

should be discarded. After processing all the pairs, if any tuples (MK15,MK11,
MK10) remain, we output them with the guessed (MK0, MK1, MK2, MK3, MK4,
MK5, MK6, MK7, MK8, MK9, MK12), and exhaustively search them with the re-
maining 16-bit key. Otherwise, we try another guess for (MK0, MK1, MK2, MK3,
MK4, MK5, MK6, MK7, MK8, MK9, MK12). In this step, 288 × 226.6 = 2114.6

1/4-round decryptions (equivalent to 2107.9 encryptions) should be performed
to compute X27

3 ; 2 × 288 × 226.6 = 2115.6 1/4-round decryptions (equivalent
to 2108.9 encryptions) should be performed to calculate MK10. We also need
288 × 226.6 = 2114.6 memory accesses to Table α, 2115.6 memory accesses to Ta-
ble β and 2115.6 memory accesses to Table ε. After analyzing all the pairs, we
expect 2112 × (1 − 2/224)2

26.6 ≈ 295 112-bit key (MK0, MK1, MK2, MK3, MK4,
MK5, MK6, MK7, MK8, MK9, MK10, MK11 MK12, MK15) will remain. So the
complexity of the exhaustive search is about 2111 + 247 ≈ 2111.

If we count one memory access to tables α, β and ε as one-round encryption,
then the complexity of Step 11 will be about 2116.6× 1/26+ 2111 ≈ 2112.5. From
Table 4, we can deduce the time complexity, which is about 2110.8 + 2109.9 +
2109.9 + 2111.9 + 2112.9 + 2112.5 ≈ 2114.35 encryptions. The data complexity of the
attack is 261.6 and the memory complexity is 287.6 bytes.

5.2 Impossible Differential Attack on 27-Round HIGHT

Placing the impossible differential of [20] on round 10 to round 25, an attack
on 27-round HIGHT can be mounted by discarding some of the wrong subkeys
in rounds 4 ∼ 9 and 26 ∼ 30, see Fig. 7b in the Appendix. Note that for the
27-round attack, we take both the initial and final whitening layers into account.

Data Collection. Construct 22 structures with P0 fixed and for which P1, ..., P7

take all values. Ask for the encryptions of all the plaintexts to get the correspond-
ing ciphertexts. Since the ciphertext pairs with the difference (?, ?, ?, ?, (???????0)2,
0x80, 0, 0) are required, and there is one more condition in the plaintext difference,
which is ΔP1,0 = 1; by the birthday paradox, there are 287 pairs left. Since the
whitening keys are considered in our attack, we have:

X3
0 = P0 � WK0, X

3
1 = P1, X

3
2 = P2 ⊕WK1, X

3
3 = P3,

X3
4 = P4 � WK2, X

3
5 = P5, X

3
6 = P6 ⊕WK3, X

3
7 = P7.

C7 = X30
0 , C0 = X30

1 � WK4, C1 = X30
2 , C2 = X30

3 ⊕WK5,

C3 = X30
4 , C4 = X30

5 � WK6, C5 = X30
6 , C6 = X30

7 ⊕WK7.



132 J. Chen, M. Wang, and B. Preneel

Precomputation. Before the key recovery procedure, a precomputation is car-
ried out for the sake of reducing the time complexity. We first choose all values of
MK1, MK8, MK9, MK13, MK14, X9

0 , X9
7 , ΔX9

7 , X8
0 , X8

5 , X7
3 , X25

6 , X25
7 , X26

6 and
X27

6 , calculate (X6
6 , X

′6
6 ), (X6

5 , X
′6
5 ), (X6

4 , X
′6
4 ), X6

3 and X6
2 by 3-round decryp-

tion; and X29
1 , (X29

3 , ΔX29
3 ), X28

7 and X30
3 by 5-round encryption (see Fig. 8b in

the Appendix). Then insert (MK8, MK9) to a hash table H indexed by (MK1,
MK13, MK14, (X6

6 , X
′6
6 ), (X6

5 , X
′6
5 ), (X6

4 , ΔX6
4 ), X6

3 , X6
2 , X29

1 , (X29
3 , ΔX29

3 ),
X28

7 , X30
3 ). There are 27 ΔX9

7 s, 27 ΔX6
4 s and 27 ΔX29

3 s, hence on average only
a fraction 2−7 of the rows are not empty; and each non-empty row consists of
one value (MK8, MK9). The complexity of the precomputation is less than 289

three-round encryptions.

Key Recovery. The key recovery procedure is demonstrated in Table 7 in
the Appendix; Table 7 has the same meaning as Table 4. Table 6 is also given
in the Appendix to illustrate the subkeys that have to be guessed.

Table 4. Key Recovery Procedure of the Attack on 26-Round HIGHT

Step Guess Bits Known Keys Known Values Complexity Conds Pairs Kept Sieve on

1 MK0 SK17 X5
4 284.9 EN 8 274.6 (5,1)

2 MK1, MK6 WK5, SK117 X29
3 292.9 EN 8 266.6 (30,1)

3 MK5 WK4, SK116, X29
1 , ΔX29

1 , X28
1 293.9 EN 8 258.6 (29,0)

SK112

4 MK4, MK7 SK16, SK21 X5
2 , ΔX5

2 , X6
4 2101.9 EN 8 250.6 (6, 1)

5 MK3, MK9 WK7, SK119, X29
7 , ΔX29

7 , X28
7 , 2110.8 EN 8 242.6 (28,3)

SK115, SK111 ΔX28
7 , X27

7

6 MK2 SK19,SK20 X5
0 , X6

2 , ΔX6
2 2109.9 EN − 242.6 −

7 − SK118, SK114, X29
5 , X28

5 2109.9 EN − 242.6 −
WK6

8 MK8† SK25 X7
4 2111.9 EN 8 234.6 (7,1)

9 MK12† SK110, SK106 X27
5 , ΔX27

5 , X26
5 2112.9 EN 8 226.6 (27,2)

10 − SK18, SK19, X6
6 , X6

7 , X6
0 , 2109.9 EN − 226.6 −

SK22, SK23 ΔX6
0 , X6

1 , ΔX6
1

11 (accessing the pre-computed tables) Complexity: 2116.6MA+2111EN

MA: memory accesses; EN: 26-round HIGHT encryptions
† The key byte is guessed bit by bit from the LSB to the MSB.

Step 1 and Step 2 are trivial: we guess the key bytes and test whether a 0 differ-
ence can be obtained. In Step 3 we guess MK1 and MK6 to calculate (X29

3 , X ′29
3 );

in Step 4, MK14 is guessed to calculate (X4
6 , X ′4

6 ) without discarding any pairs.
In order to reduce the time complexity of Step 5, we guess MK2 bit by bit, in-
stead of guessing the whole byte at once. We guess the bits from the LSB to the
MSB, so once we guess one bit of MK2, we can compute the corresponding bit
of ΔX6

0 and discard the pairs that do not meet the condition. In Step 6, we do
not guess any key byte, but calculate ΔX28

4 which can be used to sieve the pairs



Impossible Differential Cryptanalysis of TEA, XTEA and HIGHT 133

in Step 7. The other steps are similar except Step 13, to which have to be paid
more attention. In Step 13, we first construct a small table γ which consists all
values of (MK8, MK9); then guess MK4 to look up table H . If the corresponding
row is not empty, then access the value (MK8, MK9) and delete the value from
γ. After analyzing all the pairs, if any values (MK8, MK9) remain, we output
them with the guessed (MK0, MK1, MK2, MK3, MK4, MK5, MK6, MK7, MK10,
MK12, MK13, MK14, MK15), and exhaustively search them with the remaining
8-bit key. Otherwise, we try another guess for (MK0, MK1, MK2, MK3, MK4,
MK5, MK6, MK7, MK10, MK12, MK13, MK14, MK15).

We can see from Table 7 that all the values required to access table H can
be calculated in Step 13 after guessing MK4, since the only unknown values are
X6

4 , ΔX6
4 and X28

7 . The complexity to compute the values is less than 2128 one
round encryptions, equivalent to 2123.25 27-round encryptions. Since for each
pair, Table H will be accessed with probability 2−7, it will be accessed 216 times
for each key guess; hence the number of memory accesses is about 2104 × 216 =
2120. As each memory access discards one value (MK8, MK9) on average, about
2120 × (1 − 2−16)2

16
= 2118.6 120-bit keys will remain after processing all the

pairs. For these remaining keys, we also need to guess the remaining 8 bits of
the main key and test the 2118.6 × 28 = 2126.6 keys by trial encryptions. As
trial encryption needs 2 plaintext-ciphertext pairs, the complexity of the trial
encryptions is about 2126.6 + 262.6 ≈ 2126.6 encryptions. Step 13 dominates the
time complexity of the attack, which is 2126.6 encryptions and 2120 memory
accesses. The data complexity is 258 and the memory complexity is 2120 bytes
for storing Table H .

6 Conclusion

This paper introduces impossible differential attacks on the lightweight block
ciphers TEA, XTEA and HIGHT which are based on simple operations like
modular addition, XOR, shift and rotation. We first propose a method to derive
impossible differentials for TEA and XTEA, which improves the previous 10-
round and 12-round impossible differentials up to 15 rounds. With the 13-round
and 14-round impossible differentials, attacks on 17-round TEA and 23-round
XTEA can be achieved. If the full codebook is available to the adversary, attacks
on 19-round TEA and 26-round XTEA can be mounted based on 15-round im-
possible differentials. By using some carefully constructed pre-computed tables,
we also give improved impossible differential attacks on HIGHT reduced to 26
and 27 rounds. The method for finding impossible differentials can also be ap-
plied to the other ciphers with similar operations as TEA and XTEA.

Acknowledgement. We are grateful to the anonymous reviewers for their valu-
able comments on this paper. This work was supported in part by the Research
Council K.U.Leuven: GOA TENSE, the IAP Program P6/26 BCRYPT of the
Belgian State (Belgian Science Policy), and in part by the European Commission
through the ICT program under contract ICT-2007-216676 ECRYPT II.



134 J. Chen, M. Wang, and B. Preneel

References

1. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

2. Bogdanov, A., Rijmen, V.: Zero-Correlation Linear Cryptanalysis of Block Ciphers.
IACR Cryptology ePrint Archive 2011, 123 (2011)

3. Bogdanov, A., Wang, M.: Zero Correlation Linear Cryptanalysis with Reduced
Data Complexity. Pre-proceedings of FSE 2012 (2012)

4. Bouillaguet, C., Dunkelman, O., Leurent, G., Fouque, P.A.: Another Look at Com-
plementation Properties. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147,
pp. 347–364. Springer, Heidelberg (2010)

5. Daum, M.: Cryptanalysis of Hash Functions of the MD4-Family. PhD thesis,
http://www.cits.rub.de/imperia/md/content/magnus/idissmd4.pdf

6. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee,
J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A New Block Cipher Suitable
for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 46–59. Springer, Heidelberg (2006)

7. Hong, S., Hong, D., Ko, Y., Chang, D., Lee, W., Lee, S.: Differential Cryptanalysis
of TEA and XTEA. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971,
pp. 402–417. Springer, Heidelberg (2004)

8. International Standardization of Organization (ISO): International Standard-
ISO/IEC 18033-3, Information technology-Security techniques-Encryption algo-
rithms -Part 3: Block ciphers (2010)

9. Kelsey, J., Schneier, B., Wagner, D.: Key-Schedule Cryptanalysis of IDEA, G-DES,
GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS,
vol. 1109, pp. 237–251. Springer, Heidelberg (1996)

10. Kelsey, J., Schneier, B., Wagner, D.: Related-key Cryptanalysis of 3-WAY, Biham-
DES, CAST, DES-X, NewDES, RC2, and TEA. In: Han, Y., Okamoto, T., Qing,
S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 233–246. Springer, Heidelberg (1997)

11. Klimov, A., Shamir, A.: A New Class of Invertible Mappings. In: Kaliski Jr., B.S.,
Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 470–483. Springer,
Heidelberg (2003)

12. Knudsen, L.: DEAL - A 128-bit Block Cipher. In: NIST AES Proposal (1998)
13. Ko, Y., Hong, S., Lee, W., Lee, S., Kang, J.S.: Related Key Differential Attacks

on 27 Rounds of XTEA and Full-Round GOST. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 299–316. Springer, Heidelberg (2004)

14. Koo, B., Hong, D., Kwon, D.: Related-Key Attack on the Full HIGHT. In: Rhee, K.-
H., Nyang, D. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 49–67. Springer, Heidelberg
(2011)

15. Lee, E., Hong, D., Chang, D., Hong, S., Lim, J.: A Weak Key Class of XTEA for a
Related-Key Rectangle Attack. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS,
vol. 4341, pp. 286–297. Springer, Heidelberg (2006)

16. Lu, J.: Cryptanalysis of Reduced Versions of the HIGHT Block Cipher from CHES
2006. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 11–26.
Springer, Heidelberg (2007)

17. Lu, J.: Related-key Rectangle Attack on 36 Rounds of the XTEA Block Cipher.
Int. J. Inf. Sec. 8(1), 1–11 (2009)

18. Moon, D., Hwang, K., Lee, W., Lee, S., Lim, J.: Impossible Differential Cryptanal-
ysis of Reduced Round XTEA and TEA. In: Daemen, J., Rijmen, V. (eds.) FSE
2002. LNCS, vol. 2365, pp. 49–60. Springer, Heidelberg (2002)

http://www.cits.rub.de/imperia/md/content/magnus/idissmd4.pdf


Impossible Differential Cryptanalysis of TEA, XTEA and HIGHT 135

19. Needham, R.M., Wheeler, D.J.: TEA Extensions. Tech. rep., University of Cam-
bridge (October 1997)

20. Özen, O., Varıcı, K., Tezcan, C., Kocair, Ç.: Lightweight Block Ciphers Revisited:
Cryptanalysis of Reduced Round PRESENT and HIGHT. In: Boyd, C., Nieto,
J.G. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 90–107. Springer, Heidelberg (2009)

21. Sekar, G., Mouha, N., Velichkov, V., Preneel, B.: Meet-in-the-Middle Attacks on
Reduced-Round XTEA. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp.
250–267. Springer, Heidelberg (2011)

22. Wheeler, D.J., Needham, R.M.: TEA, a Tiny Encryption Algorithm. In: Preneel,
B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1995)

23. Zhang, P., Sun, B., Li, C.: Saturation Attack on the Block Cipher HIGHT. In:
Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 76–
86. Springer, Heidelberg (2009)

Appendix

Table 5. Subkeys Used in the Attack on 26-Round HIGHT

#Round Subkey Used
5 SK19(MK2) SK18(MK1) SK17(MK0) SK16(MK7)
6 SK23(MK6) SK22(MK5) SK21(MK4) SK20(MK3)
7 SK27(MK10) SK26(MK9) SK25(MK8) SK24(MK15)
8 SK31(MK14) SK30(MK13) SK29(MK12) SK28(MK11)
9 SK35(MK1) SK34(MK0) SK33(MK7) SK32(MK6)
... ... ... ... ...
26 SK103(MK1) SK102(MK0) SK101(MK7) SK100(MK6)
27 SK107(MK13) SK106(MK12) SK105(MK11) SK104(MK10)
28 SK111(MK9) SK110(MK8) SK109(MK15) SK108(MK14)
29 SK115(MK4) SK114(MK3) SK113(MK2) SK112(MK1)
30 SK119(MK0) SK118(MK7) SK117(MK6) SK116(MK5)

Post-Whitening WK7(MK3) WK6(MK2) WK5(MK1) WK4(MK0)



136 J. Chen, M. Wang, and B. Preneel

i ΔX i
7 ΔX i

6 ΔX i
5 ΔX i

4 ΔX i
3 ΔX i

2 ΔX i
1 ΔX i

0

9 e1 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 e1

11 0 0 0 0 0 ? e1 0
12 0 0 0 ? ? e1 0 0
13 0 ? ? ? e1 0 0 0
14 ? ? ? e1 0 0 0 ?
15 ? ? e1 0 0 ? ? ?
16 ? e1 0 ? ? ? ? ?
17 e1 ? ? ? ? ? ? ?
17 e0 0x80 ? ? ? ? ? ?
18 0x80 0 ? ? ? ? ? e1

19 0 0 ? ? ? ? e1 0x80
20 0 0 ? ? ? e1 0x80 0
21 0 0 ? ? e1 0x80 0 0
22 0 0 ? e4 0x80 0 0 0
23 0 0 e4 0x80 0 0 0 0
24 0 0 0x80 0 0 0 0 0
25 0 0x80 0 0 0 0 0 0

(a) 16-Round Impossible Differential
from [20]

i ΔX i
7 ΔX i

6 ΔX i
5 ΔX i

4 ΔX i
3 ΔX i

2 ΔX i
1 ΔX i

0

P ? ? ? ? ? ? e1 0
3 ? ? ? ? ? ? e1 0
4 ? ? ? ? ? e1 0 0
5 ? ? ? ? e1 0 0 0
6 ? ? ? e1 0 0 0 0
7 ? ? e1 0 0 0 0 0
8 ? e1 0 0 0 0 0 0
9 e1 0 0 0 0 0 0 0

Impossible Differential
25 0 0x80 0 0 0 0 0 0
26 0x80 0 0 0 0 0 0 e1

27 0 0 0 0 0 ? e1 0x80
28 0 0 0 ? ? e1 0x80 0
29 0 ? ? ? e1 0x80 0 0
30 ? ? ? e0 0x80 0 0 ?
C ? ? ? ? e0 0x80 0 0

(b) Impossible Differential Attack on
27-Round HIGHT

Fig. 7.

Table 6. Subkeys Used in the Attack on 27-Round HIGHT

#Round Subkey Used
Pre-Whitening WK3(MK15) WK2(MK14) WK1(MK13) WK0(MK12)

4 SK15(MK15) SK14(MK14) SK13(MK13) SK12(MK12)
5 SK19(MK2) SK18(MK1) SK17(MK0) SK16(MK7)
6 SK23(MK6) SK22(MK5) SK21(MK4) SK20(MK3)
7 SK27(MK10) SK26(MK9) SK25(MK8) SK24(MK15)
8 SK31(MK14) SK30(MK13) SK29(MK12) SK28(MK11)
9 SK35(MK1) SK34(MK0) SK33(MK7) SK32(MK6)
... ... ... ... ...
26 SK103(MK1) SK102(MK0) SK101(MK7) SK100(MK6)
27 SK107(MK13) SK106(MK12) SK105(MK11) SK104(MK10)
28 SK111(MK9) SK110(MK8) SK109(MK15) SK108(MK14)
29 SK115(MK4) SK114(MK3) SK113(MK2) SK112(MK1)
30 SK119(MK0) SK118(MK7) SK117(MK6) SK116(MK5)

Post-Whitening WK7(MK3) WK6(MK2) WK5(MK1) WK4(MK0)



Impossible Differential Cryptanalysis of TEA, XTEA and HIGHT 137

Table 7. Key Recovery Procedure of the Attack on 27-Round HIGHT

Step Guess Bits Known Keys Known Values Complexity Conds Pairs Left Sieve on
1 MK15 WK3,SK15 X4

0 291.2 EN 8 279 (4,3)
2 MK0,MK3 WK7, SK119 X29

7 299.2 EN 8 271 (30,3)
3 MK6, MK1 SK117, WK5 X29

3 , ΔX29
3 2107.2 EN − 271 −

4 MK14 WK1,SK14 X4
6 , ΔX4

6 2115.2 EN − 271 −
5 MK2 † SK19 X5

0 , X6
2 2118.2 EN 8 263 (5,3)

6 − SK113,SK109 X28
3 , ΔX28

3 2115.2 EN − 263 −‡
7 MK7 † WK6,SK118 X29

5 , ΔX29
5 2118.2 EN 8 255 (30,2)

8 − SK114 X28
5 2115.2 EN 8 247 (29,2)

9 MK13 SK13,SK18,SK23, X4
4 , ΔX4

4 , X5
6 , 2115.2 EN 8 239 (6,3)

WK2 ΔX5
6 , X6

0

10 MK5 WK4,SK116,SK108 X29
1 , X28

1 , X27
1 , ΔX27

1 2115.2 EN − 239 −
11 MK10 † SK104 X26

1 2118.2 EN 8 231 (27,0)
12 MK12 WK0,SK12,SK17, X4

2 , ΔX4
2 , X5

4 , 2123.2 EN 8 223 (7,3)
SK22,SK27 ΔX5

4 , X6
6 , ΔX6

6 , X7
0

13 MK4 SK16,SK21,SK26, X6
4 , ΔX6

4 , X28
7 2120 MA + *

SK107, SK31 2126.6 EN
SK111,SK115

MA: memory accesses; EN: 27-round HIGHT encryptions
† The key byte is guessed bit by bit from the LSB to the MSB.
‡ calculate ΔX28

4

* the sieving is already done by precomputation

F1

MK15

F0

MK12

F1

MK11

F0

MK7

F0

MK7

F0

MK11

Table α

Table β

Table є
X8

3, X8
3X8

4

X7
1, X7

1

X6
0, X6

0X6
1, X6

1X6
2, X6

2

X25
2X25

3

X26
2

X27
3

X27
4X27

5, X27
5

X9
3, X9

3X9
4

X8
1

X7
0

X7
1, X7

1X7
2, X7

2

(a) The Construction of
Tables α, β and ε in the At-
tack on 26-Round HIGHT

F1

MK9

F0

MK8

F0

MK14

F1

MK13

F0

MK1

X9
0( X9

0=0)
(X9

7, X9
7)

X8
0( X8

0=0)X8
5( X8

5=0)

X7
3( X7

3=0)

(X6
6, X6

6) (X6
5, X6

5) (X6
4, X6

4) X6
3 X6

2

F0

MK13

F1

MK1

MK1

F0

MK1
X25

6( X25
6=0x80)X25

7

X26
6( X26

6=0)

F0

MK9
F1

MK14
X27

6( X27
6=0)

X28
7

(X29
3, X29

3) X29
1

X30
3

(b) Precomputation for Rounds 7 ∼ 9 (top) and Rounds
26 ∼ 30 (bottom) in the Attack on 27-Round HIGHT

Fig. 8.



Three-Subset Meet-in-the-Middle Attack

on Reduced XTEA

Yu Sasaki1, Lei Wang2, Yasuhide Sakai2, Kazuo Sakiyama2, and Kazuo Ohta2

1 NTT Secure Platform Laboratories, NTT Corporation
3-9-11 Midori-cho, Musashino-shi, Tokyo 180-8585 Japan

sasaki.yu@lab.ntt.co.jp
2 The University of Electro-Communications

1-5-1 Choufugaoka, Choufu-shi, Tokyo, 182-8585 Japan
{lei.wang,s-yasu,sakiyama,kazuo.ota}@uec.ac.jp

Abstract. This paper presents an improved single-key attack on a block-
cipher XTEA by using the three-subset meet-in-the-middle (MitM) at-
tack. Firstly, a technique on a generic block-cipher is discussed. It points
out that the previous work applying the splice-and-cut technique to the
three-subset MitM attack contains incomplete arguments, and thus it
requires a very large data complexity, which is close to the code book.
This paper gives a corrected procedure to keep the data complexity
small. Secondly, the three-subset MitM attack is applied for reduced-
round XTEA, which is a 64-bit block-cipher with 64-round Feistel net-
work and a 128-bit key. 25 rounds are attacked with 9 known plaintexts
and 2120.40 XTEA computations, while the previous best single-key at-
tack only reaches 23 rounds. In the chosen-plaintext model, the attack
is extended to 28 rounds with 237 chosen-plaintexts and 2120.38 compu-
tations.

Keywords: XTEA, 3-subset meet-in-the-middle, splice-and-cut, multi-
pair match.

1 Introduction

Block-ciphers are one of the most fundamental symmetric-key primitives. In
recent years, block-ciphers are required to be implemented in the resource-
restricted environment such as an RFID tag. Due to this, the design and security
of light-weight block-ciphers are receiving great attentions.

At FSE 1994, the block-cipher TEA was proposed by Wheeler and Needham
[1]. Then, a series of block-ciphers called the TEA-family have been proposed.

– TEA was adopted in the Microsoft’s Xbox gaming console for providing the
hash function facility. However, an attack was proposed by Steil [2], which
was based on a pioneering work by Kelsey, Schneier, and Wagner [3]. They
also proposed a related-key attack [4].

– As a stronger version of TEA, Needham and Wheeler designed XTEA and
Block TEA [5]. TEA and XTEA are implemented in the Linux kernel.

A. Mitrokotsa and S. Vaudenay (Eds.): AFRICACRYPT 2012, LNCS 7374, pp. 138–154, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Three-Subset Meet-in-the-Middle Attack on Reduced XTEA 139

– To correct the weaknesses of Block TEA, Needham and Wheeler designed
Corrected Block TEA, which is called XXTEA [6]. However, an attack on full
Block TEA and several weaknesses of XXTEA were pointed out by Saarinen
[7]. Full XXTEA was also attacked by Yarrkov [8].

The full XTEA has not been attacked yet. In addition, XTEA is known to
be suitable for the resource-restricted environment [9]. Hence, investigating the
security of XTEA seems interesting and useful.

Several attacks on round-reduced XTEA are known. Related-key attacks and
weak-key attacks can work on many rounds of XTEA [10–13]. On the other
hand, single-key attacks without the weak-key assumption are more important
in terms of the impact in practice. After the work by Moon et al. in 2002 [14] and
Hong et al. in 2003 [15], the research on the single-key attack was stopped for a
while. In 2011, Sekar et al. presented an attack on 23 rounds out of 64 rounds of
XTEA with the MitM attack [16]. Recently, Chen et al. have presented another
attack on 23 rounds with the impossible differential approach [17].

The MitM attack was introduced by Diffie and Hellman in 1977 [18]. Then,
Chaum and Evertse applied it to reduced-round DES in 1985 [19] by exploiting
the low diffusion of the key schedule to select subsets of key bits for the MitM
guess. The basic idea is separating the block-cipher EK into two sub-parts E1k1
and E2k2, where k1 and k2 are independent subkeys and EK = E2k2 ◦ E1k1.
For a pair of plaintext P and ciphertext C, an attacker independently computes
E1k1(P ) and E2−1

k2 (C) for all possible k1 and k2, respectively. By checking the
match of two results, wrong key candidates can be eliminated efficiently. The
MitM attack is now widely applied to various block-ciphers. Note that several
attacks that are a little bit different from the basic MitM attack are also called
MitM attack. The attacks on AES [20] and XTEA [16] are such examples.

In recent years, the MitM attack was applied to various hash functions e.g.
MD5 [21, 22], SHA-1 [23], SHA-2 [24], and many techniques were developed for
the MitM attack on hash functions. In 2010, Bogdanov and Rechberger revisited
the MitM attack on block-ciphers and proposed a framework called three-subset
MitM attack [25]. It works efficiently against block-ciphers with a weak key
schedule. This matches the property of light-weight ciphers on which a heavy key
schedule cannot be implemented. Hence, the three-subset MitM attack is actively
discussed presently. In addition, several researchers rearranged the techniques
which were originally developed for hash functions, and applied them to block-
ciphers [26–30].

Our Contributions

In this paper, we firstly point out the incomplete argument of the previous work
[29], which applies the splice-and-cut technique [21] for the three-subset MitM
attack. We show that its simple application will lead to a very large data com-
plexity. We then propose a corrected procedure to keep the data complexity
small. This procedure can be used for any block-cipher in generic. The optimiza-
tion may be done depending on the detailed structure of the attack target.



140 Y. Sasaki et al.

Table 1. Comparison of key recovery attacks on reduced XTEA

Single-key Attacks Related-key Attacks

Approach Rounds Time Data Ref. Weak-key Rounds Time Data Ref.

Imp. Diff. 14 285 262.5 CPs [14] 27 2115.15 220.5 CPs [11]
Trunc. Diff. 23 2120.65 220.55 CPs [15] Yes 34 231.94 262 CPs [12]
MitM 23 2117.00 18 KPs [16] 36 2126.44 264.98 CPs [13]
Imp. Diff. 23 2116.9 262 CPs [17] Yes 36 2104.33 263.83 CPs [13]
3-Sub. MitM 25 2120.40 9 KPs Ours 37 2125 263 CPs [10]
3-Sub. MitM 28 2120.38 237 CPs Ours Yes 51 2123 263 CPs [10]

Secondly, by using this technique, the three-subset MitM attack is applied
for reduced-round XTEA. The attack reaches 25 rounds in the known-plaintext
model and 28 rounds in the chosen-plaintext model. The complexity of the attack
is summarized in Table 1. As far as we know, our attack is the best in terms of
the number of attacked rounds in a single-key setting.

Paper Outline

Section 2 describes the specification of XTEA. Section 3 summarizes the previous
work. Section 4 explains the incompleteness of the previous attack procedure and
describes a new generic technique for the three subset MitM attack on block-
ciphers. Section 5 shows attacks on XTEA. Finally, we conclude the paper in
Sect. 6.

2 Specification of XTEA

XTEA [5] has the block size of 64 bits and key size of 128 bits. It uses a 64-round
Feistel network. The F -function of the Feistel network takes a 32-bit input x and
produces a 32-bit output as:

F (x) = ((x	 4)⊕ (x� 5))� x, (1)

where ‘	’ and ‘�’ represent the left and right shifts (not rotations) respectively,
‘⊕’ represents the XOR, and ‘�’ represents the modular addition over 232. The
round function is described in Fig. 1

The 128-bit key K is separated into four 32-bit subkeys K0,K1,K2, and K3.
The 64-bit input to round i consists of two 32-bit values Li−1 and Ri−1. First,
the plaintext P is loaded into the state, namely L0‖R0 ← P . Then, the following
is computed recursively for i = 0, 1, . . . , 63;

Li+1 ← Ri, (2)

Ri+1 ← Li � ((δi �Kπ(i))⊕ F (Ri)), (3)

where δi is a pre-defined constant and π(i) ∈ {0, 1, 2, 3} is a pre-defined subkey
index in round i. The list of index π(i) is shown in Table 2. Finally, L64‖R64 are
produced as the ciphertext of P .



Three-Subset Meet-in-the-Middle Attack on Reduced XTEA 141

F

Li Ri

Li+1 Ri+1

δi

Kπ(i)

<<4

>>5
xF(x)

F

Fig. 1. Round function of XTEA

Table 2. Subkey index for each round

Round i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Index π(i) 0 3 1 2 2 1 3 0 0 0 1 3 2 2 3 1

Round i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Index π(i) 0 0 1 0 2 3 3 2 0 1 1 1 2 0 3 3

Round i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Index π(i) 0 2 1 1 2 1 3 0 0 3 1 2 2 1 3 1

Round i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
Index π(i) 0 0 1 3 2 2 3 2 0 1 1 0 2 3 3 2

3 Previous Work

3.1 Previous Meet-in-the-Middle Attack on XTEA

At CT-RSA 2011, Sekar et al. presented a meet-in-the-middle attack on several
intermediate 23 rounds of XTEA [16], e.g. from round 16 to 38, in total 23 rounds.
Let E23 be the data processing transformation for 23 rounds. The main idea of
this attack is separating E23 into an inner round I and outer rounds O1 and O2,
namely E23(·) = O2 ◦ I ◦ O1(·), where one of the subkeys never appears in the
outer rounds. Because all subkeys in the outer rounds are also used in an inner
round, it is impossible to compute the inner and outer rounds independently.
Hence this attack is a little bit different from the classical meet-in-the-middle
attack, and we do not discuss it in this paper.

3.2 Three-Subset Meet-in-the-Middle Attack

The three-subset meet-in-the-middle attack is an approach of cryptanalysis on
block-ciphers proposed by Bogdanov and Rechberger at SAC 2010 [25]. The
framework is well summarized in [28] by Isobe. This attack essentially examines
all possible key candidates. Because wrong keys can be filtered out efficiently
by using the meet-in-the-middle technique, the attack can be faster than the
exhaustive search.



142 Y. Sasaki et al.

E1 E2P C

A0, A1 A0, A2

match?

Forward chunk Backward chunk

Eskip

Partial match

Fig. 2. Basic framework of 3-subset MitM attack with the partial match

Basic Framework. A block-cipher EK with the block size of b bits is divided
into two parts E1K1 and E2K2 so that EK(x) = E2K2 ◦ E1K1(x), x ∈ {0, 1}b,
whereK1 andK2 are sets of key bits involved in the computations of E1 and E2,
respectively. E1K1 is called the forward chunk and E2K2 is called the backward
chunk. A0 = K1 ∩K2 is a common set of key bits used in both of E1 and E2.
A1 = K1 \K1 ∩K2 and A2 = K2 \K1 ∩K2 are sets of key bits used in only
E1 and only E2, respectively. The attack first prepares a pair of plaintext and
ciphertext denoted by (P,C). The attack procedure is as follows.

MitM Phase
1. For all candidates of A0, do as follows;
2. Compute E1K1(P ) for all candidates of A1, and store them in a table T .
3. For each value in A2, compute E2−1

K2(C), and check whether or not the same
value is in T . If the value exists, the key is stored as a valid key candidate.

Exhaustive Search Phase
4. Obtain another pair of plaintext and ciphertext denoted by (P ′, C′). For all

valid key candidates, exhaustively check whether EK(P ′) = C′ holds. If the
equation holds, the key is stored as a valid key candidate.

5. Repeat Step 4 until the key space is reduced to 1.

Let � be the size of the secret key. After the MitM phase, the key candidate
space is reduced to 2�−b. With each iteration of the exhaustive search phase,
the key candidate space is reduced by a factor of b bits. In step 2, 2|A1| values
are stored, where |A1| is the number of elements in A1. Therefore, the attack
requires a memory to store 2|A1| values. The computational complexity for the
MitM phase is 2|A0|(2|A1| + 2|A2|) and the computational complexity for the
exhaustive search phase is 2�−b + 2�−2b + · · · . Most of the case, the dominant
complexity is 2|A0|(2|A1| + 2|A2|). When |A1| = |A2|, the attack can be faster
than the brute force attack by a factor of 2|A1|. Therefore, finding two chunks
with large |A1| and |A2| is important for the attacker.

Note that, EK is often separated into three parts so that EK(·) = E2K2 ◦
Eskip ◦E1K1(·). This is illustrated in Fig. 2. In this case, the direct comparison
of E1K1(P ) and E2−1

K2(C) becomes impossible due to the existence of Eskip.
However, the internal state inside Eskip often can be computed partially without
the knowledge of subkeys. This is called partial match. As a result, by reduc-
ing the number of matched bits, the number of attacked rounds can be increased.



Three-Subset Meet-in-the-Middle Attack on Reduced XTEA 143

E1 E2P C

A0, A1 A0, A2

match?

Forward chunk Backward chunk

EskipE2’

A0, A2

Backward 
chunk

E2E1

d bits

Internal state value: V

Oracle query

Partial match

Fig. 3. Splice-and-cut technique for 3-subset MitM attack

Let m be the number of matched bits. As long as m ≥ |A1|+ |A2|, the attack is
faster than the brute force attack by a factor of 2|A1|. However, if m < |A1|+|A2|,
the improved factor is reduced to 2m. Hence, keeping m big is also important to
mount an efficient MitM attack.

Recent Progress. Before Bogdanov and Rechberger presented the 3-subset
meet-in-the-middle attack, the meet-in-the-middle attack was applied to var-
ious hash functions, e.g. MD5 [21, 22], HAVAL [31], SHA-1 [23], and SHA-2
[24]. Through these attacks, a lot of techniques for the meet-in-the-middle at-
tack were proposed such as splice-and-cut [21] and initial-structure [22]. These
techniques were developed in order to attack hash functions, and thus they can-
not be directly applied to the 3-subset meet-in-the-middle attack whose targets
are block-ciphers. However, several researchers reconstructed the techniques and
successfully applied them to block-ciphers.

Wei et al. [29] applied the splice-and-cut technique [21] to the block-cipher
KTANTAN. This is illustrated in Fig. 3. This enables the attacker to divide the
target cipher EK into E2K2◦Eskip◦E1K1◦E2′K2 instead of E2K2◦Eskip◦E1K1.
Obviously, the search space of the chunk separation increases. The attack first
fixes the value of the internal state between E1K1 and E2′K2, which is denoted by
V . In the backward chunk, the attacker computes P = E2′−1

K2 (V ) for all possible
values of A2, and query P to the encryption oracle to obtain the corresponding
ciphertext C. Then, E2−1

K2(C) is computed. Assume that the change of A2 in
the backward chunk only propagates to the partial bits (say d bits) in P . If the
attacker has 2d data (chosen plaintexts) for all possible such P in advance, the
corresponding C can be queried. The data complexity increases depending on d,
namely how the change of A2 propagates to P . As [29] noted, we should avoid
that the change of A2 propagates to all bits in P . Otherwise, the attack requires
the full code book. However, in Sect. 4, we will show that the discussion in [29]
is not enough to perform the attack only with 2d chosen plaintexts.

Bogdanov et al. [27] proposed a useful form of the initial-structure and applied
it to full-round AES-128. The technique is called biclique. Because we do not
discuss the application of the biclique for XTEA, we do not discuss its details.



144 Y. Sasaki et al.

4 Maintaining Small Data Complexity in Three-Subset
MitM Attack with Splice-and-Cut Technique

In this section, we show that the discussion in [29] is not enough to perform the
attack only with 2d chosen plaintexts. We then propose the corrected procedure
to keep the small data complexity even if the splice-and-cut technique is applied.

Let us use Fig. 3 to discuss the problem. The estimation of the data complexity
by [29] can be summarized as follows.

Suppose that changing the value of A2 only gives impact to d bits of
the plaintext after computing P = E2′−1

K2 (V ). Then, the attack can be
performed with 2d chosen plaintexts.

This argument is surely true as long as the value of A0 is fixed. However, the
meet-in-the-middle attack is repeated many times with changing the value of
A0, and the simple application of the procedure requires the data complexity of
2|A0|+d. In many block-ciphers including KTANTAN and XTEA, the key size
is bigger than the block size b. This means that the value of |A0| will be much
bigger than the block size, and thus the data complexity becomes the same as the
entire code book. Wei et al. [29] did not discuss the case where A0 is changed1.

The solution of this problem is that every time we change the value of A0, we
also change the internal state value V so that b− d bits in the plaintext, which
are not affected by A2, always take the same value. However, achieving this is
sometimes hard especially if the target cipher uses the Feistel network.

Let us discuss the case that E2′−1
K2 covers 2 rounds of the Feistel ciphers whose

round function consists of the key addition and a certain transformation F . This
is depicted in Fig. 4. We assume that only a part of bits in Kπ(i) belong to A2

and the other bits of Kπ(i) and all bits of Kπ(i−1) belong to A0.
The impacts of changing A2 is marked with blue lines, and we assume that

only a limited number of bits in blue lines are influenced by changing A2. We now
consider the impact of changing the value of A0. If we change the bits of Kπ(i)

belonging to A0 into various values, the value of F (Li+1 ⊕Kπ(i)) takes various
values. If the value of Li+1 is fixed in advance, we can compute F (Li+1⊕Kπ(i))
and thus can modify Ri+1 so that b− d bits of Ri−1 are always the fixed value.
Then, in round i − 1, we also need to absorb the change of F (Li ⊕Kπ(i−1)) by
modifying Ri. However, this is the contradiction in round i, where the value of
Li+1(= Ri) needs to be fixed in advance. Consequently, fixing the b − d bits of
the plaintext for any A0 cannot be done trivially.

We finally show that this problem can be solved, that is to say, the attack
can work only with 2d chosen plaintexts regardless of the cipher’s structure. We
stress that the value of d in this procedure is the number of bit positions in the
plaintext which can be influenced by the change of neutral key bits. The worst-
case configuration for the attacker is used to estimate the value of d. In other
words, for any case, the change of the neutral key bits can impact to at most d
bits. The procedure is depicted in Fig. 5. Assume that during the computation in

1 Bogdanov et al. [27] solved this problem in their analysis on AES.



Three-Subset Meet-in-the-Middle Attack on Reduced XTEA 145

Li-1 Ri-1

Li Ri

F

Li+1 Ri+1

Kπ(i)

Internal State Value: V

Plaintext: P

F

Kπ(i-1)round i-1

round i

Fig. 4. A problem of the splice-and-cut tech-
nique for block-ciphers. First, Li+1(= Ri) is
fixed. Second, Ri+1 is modified in round i.
Third, Ri is modified in round i− 1, but this
is the contradiction against the first step.

Internal State Value: V

Plaintext: P

A0, A2 E2K2’fixed to 0

fixed to 0 fixed to fixP[0,d-1] P[d,b-1]

Fig. 5. Computation of V which avoids
increasing the data complexity

E2′−1
K2 , changing bits in A2 only gives influence to at most d bits of the plaintext

P . Without losing the generality, we assume that the left d bits are influenced.
We denote the left d bits of P by P0,d−1, and thus P is denoted by P0,d−1‖Pd,b−1.
At first, we choose a unique value for b− d bits of Pd,b−1. We denote this value
by fix . The goal is choosing the internal state value V so that fix can always be
achieved for A0.

1. Every time the bits in A0 are chosen, do as follows;
2. Temporarily fix the value of d bits of P0,d−1 and all bits in A2, say 0.
3. Compute V = E2′K2(P0,d−1‖Pd,b−1) with chosen A0 and fixed A2.

When the attacker performs the meet-in-the-middle attack with the configura-
tion of chosen A0, she uses V as the internal state value. Then, Pd,b−1 = fix is
always satisfied and the attack can be performed with only 2d chosen plaintexts.

Optimization of Our Procedure Depending on the Attack Target

In the previous section, the value of d was evaluated with the worst-case config-
uration. In this section, we explain that the worst-case-based evaluation may be
improved by considering the details of the attack target.

Let us consider the structure of SHACAL-1 [32] as an example and apply
the splice-and-cut technique for 2 rounds. The analysis is described in Fig. 6.
F (B,C,D) is a bitwise Boolean function which returns (B ∧ C) ∨ (¬B ∧ D).
Please refer to [32] for the detailed specification.



146 Y. Sasaki et al.

ai+2 bi+2 ci+2 di+2 ei+2

F

δi+1

Ki+1

ai+1 bi+1 ci+1 di+1 ei+1

<<< 30

<<< 5

F

ai bi ci di ei

<<< 30

<<< 5

δi

Ki

ai+2 bi+2 ci+2 di+2 ei+2

F

δi+1

Ki+1

ai+1 bi+1 ci+1 di+1 ei+1

<<< 30

<<< 5

F

ai bi ci di ei

<<< 30

<<< 5

δi

Ki

1

1

1

d bits

d bits d bits d bits

absorb

d bits

Fig. 6. Example of optimization for 2-round SHACAL-1. (Left) generic method requir-
ing 22d chosen-plaintexts. (Right) optimization requiring 2d chosen-plaintexts.

Assume that the most significant d bits are free bits for the backward chunk. In
the worst case, changing d bits results in changing 2d bits of the plaintext. Hence,
our generic method achieves the attack with 22d chosen-plaintexts. However, if
inside of the F function is considered, the impact can be reduced to d bits by
setting the value of di+2 to 0xffffffff. In Fig. 6, we denote the values set
to 0xffffffff by 1. This illustrates the possibility of improving the generic
method by considering the details of the attack target. Note that in some cases
including our analysis on XTEA in the next section, the optimization is not
necessary. The simple application of the generic method is already optimal.

5 Attacks on XTEA

5.1 Known Plaintext Attack on 25-Round XTEA

In this section, we propose a known plaintext attack on 25 rounds of XTEA
with the single-key setting. Although the attack cost is a little bit worse than
the previous best attack [16], the number of attacked rounds is extended. Note
that the splice-and-cut technique is not used for this attack.

Chunk Separation. The chunk separation is shown in Table 3. The attacked
rounds are from round 5 to 29, in total 25 rounds. The forward chunk covers
the first 7 rounds, in which K2 is not used in these rounds. The backward
chunk covers the last 7 rounds, in which K3 is not used in these rounds. Rounds
12 to 22, in total 11 rounds are skipped. In order to perform the match over
skipped 11 rounds, we fix the least significant 21 bits of K3 and K2, and use the



Three-Subset Meet-in-the-Middle Attack on Reduced XTEA 147

Table 3. Chunk separation for known plaintext attack on 25-round XTEA

Round i 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Index π(i) 1 3 0 0 0 1 3 2 2 3 1 0 0 1 0 2 3 3 2 0 1 1 1 2 0

forward chunk Eskip backward chunk

E1 E2

A0, A1 A0, A2

τ m-bit match
Forward chunk Backward chunk

Multi-pair match

E1 E2E1 E2E1 E2Eskip

P(0) C(0)

P(1) C(1)

P(τ -1) C(τ -1)

E1 E2P C

A0, A1 A0, A2

Forward chunk Backward chunk

Eskip

Partial match

m-bit match

Fig. 7. (Top) match with one pair, (Bottom) multi-pair match

most significant 11 bits as the free bits for each chunk. Namely, |A1| = |A2| =
11. Inside Eskip, we only check the match of 1 bit for a pair of plaintext and
ciphertext, namely m = 1. As explained in Sect. 3.2, because m < |A1| = |A2|,
the simple application of the basic framework improves the complexity only by
a factor of 21. In order to improve the attack efficiency, we use multi-pairs of
plaintext/ciphertext (P (j), C(j)) to check the match of two chunks.

Multi-pair Match. Assume m = 1 like our attack. Therefore, each plain-
text/ciphertext pair produces 1-bit filtering condition. To filter out wrong key
candidates more efficiently, we use multi-pairs rather than a single pair. This
is illustrated in Fig. 7. As a result, with τ plaintext/ciphertext pairs, the 1-bit
filtering condition is amplified into a τ -bit filtering function. The time complex-
ity for each chunk becomes τ times (linear increase) to analyze τ pairs, instead
2τ wrong key candidates can be filtered out (exponential increase). Hence, the
efficiency of the entire attack increases.

In the following, we explain how to compute 1 matching bit during skipped
11 rounds in our attack. In the forward chunk, until the output of round 11
(L12, R12) can be computed in all bits. For round 12, in the computation of

R13 = L12 � ((δ12 �K2)⊕ F (R12)), (4)

we do not know the value of the bit positions 21 to 31 of K2, but we know the
bit positions 0 to 20 of K2. Hence, we cannot compute the bit positions 21 to 31
of R13 but can compute the bit positions 0 to 20 of R13.



148 Y. Sasaki et al.

Table 4. Partial-match for 25-round XTEA. Each entry shows the known bit positions.

Forward chunk Backward chunk

j Lj Rj j Lj Rj

12 31–0 31–0 23 31–0 31–0
13 31–0 20–0 22 20–0 31–0
14 20–0 15–0 21 15–0 20–0
15 15–0 10–0 20 10–0 15–0
16 10–0 5–0 19 5–0 10–0
17 5–0 0 18 0 5–0
18 0 ?

For round 13, R14 is computed as follows.

R14 = L13 � ((δ13 �K2)⊕ F (R13)), (5)

F (R13) = ((R13 	 4)⊕ (R13 � 5))�R13. (6)

Because only the bit positions 0 to 20 of R13 are known, we can only compute
the bit positions 0 to 15 of F (R13). Hence, we can compute the bit positions 0
to 15 of R14.

Similarly, we can trace the bit positions that can be computed. The result is
shown in Table 4. As we process one round, the number of known bits decreases
by 5 bits. Hence, we can compute the bit position 0 of L18. The result for the
backward chunk can be obtained in the same way, which is also shown in Table 4.
We can compute the bit position 0 of L18. Finally, we can check the match for
1 bit (bit position 0) of L18.

To perform the multi-pair match, we use τ = 9 pairs of known plaintext/
ciphertext and apply the same matching method for 9 pairs simultaneously.
Hence, we can check the match of 9 bits in total.

Attack Procedure. At first, the attacker prepares τ = 9 pairs of known plain-
texts and ciphertexts denoted by (P (0), C(0)), (P (1), C(1)), . . . , (P (8), C(8)).

1. Guess the value of A0, namely the value of K0, K1, bit positions 0–20 of K2,
and bit positions 0–20 of K3.

2. For all possible candidates of A1, namely for the bit positions 21 to 31 in
total 11 bits of K2, compute the round function from round 5 to 11 for P (j),

where 0 ≤ j ≤ 8, and store the value of (L
(j)
12 , R

(j)
12 ) and corresponding K2.

Then partially compute the round function from round 12 to 17 and store

the value of L
(j)
18 in bit position 0.

3. For all possible candidates of A2, namely for the bit positions 21 to 31 in
total 11 bits of K3, compute the round function from round 29 to 23 for

C(j), 0 ≤ j ≤ 8, and store the value of (L
(j)
23 , R

(j)
23 ) and corresponding K3.

Then partially compute the round function from round 22 to 18 and check

whether or not the value of L
(j)
18 in bit position 0 matches the value from the

forward chunk.



Three-Subset Meet-in-the-Middle Attack on Reduced XTEA 149

4. If they match for all j, compute the round function from round 12 to 17 and
23 to 18 in all bits for the pair (P (0), C(0)), and check whether or not the

remaining 63 bits of (L
(0)
18 , R

(0)
18 ) match.

5. If all bits match, examine EK(P (j)) equals to C(j) for all j. If they match
for all j, the key candidate is the correct key. Otherwise, the key is wrong,
and repeat the attack from Step 1 with a different guess of A0.

Complexity Evaluation. Let us assume that 1 round operation is 1
25 XTEA

computation. Step 2 requires 9×211× 12
25 XTEA computations and Step 3 requires

9×211× 12
25 XTEA computations. After the 9-bit match at Step 3, 211+11−9 = 213

pairs will survive. Step 4 requires 213× 12
25 XTEA computations. The complexity

for Step 5 is negligible because the number of right key candidates are already
reduced at Step 4. Finally, these procedures are iterated for 2|A0| = 2128−11−11 =
2106 times due to the recursion at Step 1. Hence, the total computational cost is

2106(9× 211 × 12

25
+ 9× 211 × 12

25
+ 213 × 12

25
), (7)

which is approximately 2120.40 XTEA computations. The attack requires to store
(211 × 4) 32-bit values at Step 2 and Step 3. Hence, the total required memory
is 214 32-bit values, which correspond to 213 XTEA state.

Remarks for the Choice of τ . The number of known plaintext/ciphertext
pairs τ is chosen to optimize the time complexity. With τ pairs, the time com-
plexity of the attack in Eq. (7) can be written as follows.

Time = 2106(τ × 211 × 12

25
+ τ × 211 × 12

25
+ 222−τ × 12

25
), (8)

=
12

25
× 2106(τ × 212 + 222−τ ), (9)

=
12

25
× 2118(τ + 210−τ ). (10)

When τ is an integer, τ = 9 or 10 minimizes the equation. Hence, we chose
τ = 9. As is indicated above, a trade-off exists in this attack. The attack, with
some increase of the time complexity, still can work even if only τ pairs where
τ < 9 is available.

Partial Experimental Verification. In the 25-round known-plaintext attack,
the core part, which is a search of 222 key space with the meet-in-the-middle
approach, is iterated 2106 times. The complexity of the entire attack is obviously
too expensive to be implemented, however only implementing the core part is
feasible. In the following, we explain the experimental results of the single run
of the core part.

At first, the key is set to the following value. Note that the data is described
in the hexadecimal form.

(K0,K1,K2,K3) = (01234567, 89abcdef, 76543210, fedcba98)



150 Y. Sasaki et al.

Table 5. Data set used in the partial experiment

i P (i) C(i)

0 (00000000,00000000) (a3a559ab,f5c0a730)
1 (00001111,11110000) (ca20b404,8726fe59)
2 (22220000,00002222) (b1b1b57c,902f500a)
3 (03030303,30303030) (e1dd4344,d6c0c7ce)
4 (40044004,04400440) (006ca23f,c6f09208)
5 (ffff5555,5555ffff) (cb50fab8,495d2a96)
6 (6666ffff,ffff6666) (cf57dc3d,05db1f4f)
7 (f7f7f7f7,7f7f7f7f) (0f54aa91,90b8f106)
8 (8ff88ff8,f88ff88f) (76049dd8,a460d1b2)

Then, we prepare nine plaintexts and compute the corresponding ciphertexts.
The data we used is listed in Table 5.

In the experiment, the value of A0 is given to the attacker in Step 1 of the
attack procedure. Hence, the remaining task is searching for bit positions 31–21
of K2 and K3. According to the theoretical evaluation, 211+11−9 = 213 pairs will
survive after the 9-bit match at Step 3. In the experiment, 8,205 (= 213.002) pairs
survived, which well-matched the theoretical evaluation. Then, at Step 5, only
the valid key guess survived. The entire attack is a simple iteration of the core
part. Therefore, we believe that the entire attack will work as it is estimated.

We also report the mean value and standard deviation when the above ex-
periment is performed 100 times with randomly choosing the key value. Let
xi be the number of remaining pairs after the 9-bit match at Step 3 for i-th
trial. The mean value x : x = Σ100

i=1xi/100 is 8185.4. The standard deviation√
((Σ100

i=1(xi − x)2)/100) is 94.1.

5.2 Chosen Plaintext Attack on 28-Round XTEA

In the chosen plaintext scenario, the attack can be extended up to 28 rounds.
We add three rounds to the beginning of the 25-round attack in Sect. 5.1 by
using the splice-and-cut technique.

Chunk Separation. The chunk separation is shown in Table 6. The attacked
rounds are from round 2 to 29, in total 28 rounds. Compared to Table 3, 3 rounds
are added as a part of backward chunk before round 5. In fact, K3 is not used
in these rounds. Therefore, the attack is the same as 25-round known-plaintext
attack except for the application of the splice-and-cut technique. In the following
part, we explain how the splice-and-cut technique works in this attack.

1-Round Splice-and-Cut. For simplicity, we firstly explain the splice-and-cut
technique for 1-round, namely the attack on 26 rounds (from round 4 to 29).

The computation in the backward chunk in round 4 is depicted in Fig. 8.
fixed represents the values which are fixed throughout the attack. temporarily



Three-Subset Meet-in-the-Middle Attack on Reduced XTEA 151

Table 6. Chunk separation for chosen plaintext attack on 28-round XTEA

Round i 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Index π(i) 1 2 2 1 3 0 0 0 1 3 2 2 3 1 0 0 1 0 2 3 3 2 0 1 1 1 2 0

backward chunk forward chunk Eskip backward chunk

Internal State Value: V

Plaintext: P

round 4
F

L4 R4

L5 R5

δ4

Kπ(4)=K2

temp fix: 20--0 fixed
active: 31--21

fixed: 20--0

temp fixfixed

free: 31--21

Fig. 8. Splice-and-cut for 1 round

Internal State Value: V

Plaintext: P

round 4
F

L4 R4

L5 R5

δ4

Kπ(4)=K2

temp fix: 20--0
temp fixactive: 31--21

fixed: 20--0

temp fixtemp fix

free: 31--21

L3 R3temp fix: 20--0
active: 31--16
fixed: 15--0

free: 31--21

round 3

L2 R2temp fix
active: 31--11
fixed: 10--0

round 2

active: 31--21
fixed: 20--0

active: 31--16
fixed: 15--0

F

δ3

Kπ(3)=K2

F

δ2

Kπ(2)=K1

Fig. 9. Splice-and-cut for 3 rounds

fixed represents the values which are fixed during the meet-in-the-middle phase
but are changed to repeat the meet-in-the-middle phase. free represents the
free bits in the meet-in-the-middle phase. active represents the values which are
influenced by free bits.

The free bits are bit positions 21 to 31 ofK2. Changing the free bits will impact
to the bit positions 21 to 31 of the left-half of the plaintext (L4). Therefore, in
this attack, we firstly prepare 211 chosen plaintexts where the bit positions 0
to 20 of L4 and all bits of R4 are fixed to a pre-chosen constant (any value is
acceptable, say 0) and the bit positions 21 to 31 of L4 take all possibilities. In
the end, the data complexity is 211 chosen plaintexts.

As pointed out in Sect. 4, it must be ensured that for any value of the bit
positions 0 to 20 of K2, we choose appropriate value of L5 so that the fixed
value (the bit positions 0 to 20) of L4 can be realized. This is possible by using
the procedure in Sect. 4. In details, we set the values labelled as fixed to pre-
chosen values, and fix the values labelled as active in L4 and free in K2 to any
value, say 0. Because L4, R4, and K2 are fixed now, we can compute temporarily
fixed values L5 and R5 by simply computing the round function. The resulting V



152 Y. Sasaki et al.

ensures that for any value of free bits in K2, fixed values in the plaintext (L4

and R4) are always achieved.

Combination of the Splice-and-Cut and Multi-pair Match. These two
techniques can be used at the same time. Let us firstly consider the simple
method. When the interstate value V is computed, we prepare τ = 9 patterns,
say 0 to 8, for the fixed values of the plaintext, and compute the corresponding
9 patterns of V . This method requires 211 chosen plaintexts for each pattern of
the fixed values of the plaintext, thus τ · 2d = 9 · 211 chosen plaintexts in total.

By carefully choosing V , we can reduce the data complexity to 2d = 211.
The idea is using the bit positions in V which the change of their bits only gives
influence to the active bits of the plaintext. In the case of Fig. 8, the bit positions
21 to 31 of R5 only gives influence to the active bits in the plaintext. In the end,
the procedure to obtain τ intermediate states V is as follows.

1. Obtain one V (0) with the same manner as the case for the single pair.
2. Modify V 0 in bit positions discussed above to τ − 1 patterns to obtain

V (1), V (2), . . . , V (τ−1).

These τ intermediate values ensure that for any free bits in K2, the fixed bits
in L4 can be achieved. Hence, the multi-pair match can be performed only with
2d chosen plaintexts.

3-Round Splice-and-Cut. We show the 3-round backward computation for
the attack on 28 rounds. See Fig. 9 for its illustration. After 2-rounds, the number
of influenced bits becomes 27 and after 3-rounds, it becomes 37. In the end,
3-rounds are appended with the splice-and-cut technique by using 237 chosen
plaintexts.

Brief Description of the Attack

1. Prepare 237 chosen plaintexts and obtain their corresponding ciphertexts.
2. For each candidate of A0, do as follows.
3. Compute V (j), where 0 ≤ j ≤ 8.
4. For all candidates of A1, compute the forward chunk starting from V (j).
5. For all candidates of A2, compute rounds 4 to 2 starting from V (j) to obtain

P (j). By using the oracle query, obtain the corresponding ciphertext C(j)

and compute the backward chunk.

The rest of the procedure is exactly the same as the 25-round known-plaintext
attack. The computational cost slightly decreases because the ratio of the inde-
pendently computed part becomes bigger, which is 2120.38 XTEA computations.

6 Concluding Remarks

We presented the 3-subset meet-in-the-middle attack on XTEA. We firstly cor-
rected the procedure for using the splice-and-cut technique to keep the data



Three-Subset Meet-in-the-Middle Attack on Reduced XTEA 153

complexity small. We then attacked reduced-round XTEA by using this tech-
nique. 25 rounds were attacked with 9 known plaintexts and 28 rounds were
attacked 237 chosen plaintexts. As far as we know, our attacks are best in terms
of the number of attacked rounds as a single-key attack.

Acknowledgements. We would like to thank anonymous referees of Africacrypt
2012 for their helpful comments. Lei Wang was supported by Grant-in-Aid for
JSPS Fellows (23001043).

References

1. Wheeler, D.J., Needham, R.M.: TEA, a Tiny Encryption Algorithm. In: Preneel,
B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1995)

2. Steil, M.: 17 mistakes microsoft made in the Xbox security system. In: 22nd Chaos
Communication Congress (2005),
http://events.ccc.de/congress/2005/fahrplan/events/559.en.html

3. Kelsey, J., Schneier, B., Wagner, D.: Key-Schedule Cryptanalysis of IDEA, G-DES,
GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS,
vol. 1109, pp. 237–251. Springer, Heidelberg (1996)

4. Kelsey, J., Schneier, B., Wagner, D.: Related-key Cryptanalysis of 3-WAY, Biham-
DES, CAST, DES-X, NewDES, RC2, and TEA. In: Han, Y., Okamoto, T., Qing,
S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 233–246. Springer, Heidelberg (1997)

5. Needham, R.M., Wheeler, D.J.: TEA extensions. Technical report, Computer Lab-
oratory, University of Cambridge (1997)

6. Needham, R.M., Wheeler, D.J.: Correction to xtea. Technical report, Computer
Laboratory, University of Cambridge (1998),
http://www.movable-type.co.uk/scripts/xxtea.pdf

7. Saarinen, M.J.O.: Cryptanalysis of Block-TEA (1998) (unpublished manuscript),
http://groups.google.com/group/sci.crypt.research/msg/f52a533d1e2fa15e

8. Yarrkov, E.: Cryptanalysis of XXTEA. Cryptology ePrint Archive, Report
2010/254 (2010), http://eprint.iacr.org/2010/254

9. Kaps, J.-P.: Chai-Tea, Cryptographic Hardware Implementations of xTEA. In:
Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365,
pp. 363–375. Springer, Heidelberg (2008)

10. Bouillaguet, C., Dunkelman, O., Leurent, G., Fouque, P.-A.: Another Look at Com-
plementation Properties. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147,
pp. 347–364. Springer, Heidelberg (2010)

11. Ko, Y., Hong, S., Lee, W., Lee, S., Kang, J.-S.: Related Key Differential Attacks
on 27 Rounds of XTEA and Full-Round GOST. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 299–316. Springer, Heidelberg (2004)

12. Lee, E., Hong, D., Chang, D., Hong, S., Lim, J.: A Weak Key Class of XTEA for a
Related-Key Rectangle Attack. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS,
vol. 4341, pp. 286–297. Springer, Heidelberg (2006)

13. Lu, J.: Related-key rectangle attack on 36 rounds of the XTEA block cipher. Int.
J. Inf. Sec. 8(1), 1–11 (2009)

14. Moon, D., Hwang, K., Lee, W., Lee, S., Lim, J.: Impossible Differential Cryptanal-
ysis of Reduced Round XTEA and TEA. In: Daemen, J., Rijmen, V. (eds.) FSE
2002. LNCS, vol. 2365, pp. 49–60. Springer, Heidelberg (2002)

http://events.ccc.de/congress/2005/fahrplan/events/559.en.html
http://www.movable-type.co.uk/scripts/xxtea.pdf
http://groups.google.com/group/sci.crypt.research/msg/f52a533d1e2fa15e
http://eprint.iacr.org/2010/254


154 Y. Sasaki et al.

15. Hong, S., Hong, D., Ko, Y., Chang, D., Lee, W., Lee, S.: Differential Cryptanalysis
of TEA and XTEA. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971,
pp. 402–417. Springer, Heidelberg (2004)

16. Sekar, G., Mouha, N., Velichkov, V., Preneel, B.: Meet-in-the-Middle Attacks on
Reduced-Round XTEA. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp.
250–267. Springer, Heidelberg (2011)

17. Chen, J., Wang, M., Preneel, B.: Impossible differential cryptanalysis of the
lightweight block ciphers TEA, XTEA and HIGHT. Cryptology ePrint Archive,
Report 2011/616 (2011), http://eprint.iacr.org/2011/616

18. Diffie, W., Hellman, M.E.: Exhaustive cryptanalysis of the NBS Data Encryption
Standard. Computer 6(10) (1977)

19. Chaum, D., Evertse, J.-H.: Cryptanalysis of DES with a Reduced Number of
Rounds. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 192–211.
Springer, Heidelberg (1986)

20. Demirci, H., Selçuk, A.A.: A Meet-in-the-Middle Attack on 8-Round AES. In: Ny-
berg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 116–126. Springer, Heidelberg (2008)

21. Aoki, K., Sasaki, Y.: Preimage Attacks on One-Block MD4, 63-Step MD5 and
More. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381,
pp. 103–119. Springer, Heidelberg (2009)

22. Sasaki, Y., Aoki, K.: Finding Preimages in Full MD5 Faster Than Exhaustive
Search. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 134–152.
Springer, Heidelberg (2009)

23. Aoki, K., Sasaki, Y.: Meet-in-the-Middle Preimage Attacks Against Reduced SHA-
0 and SHA-1. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 70–89.
Springer, Heidelberg (2009)

24. Aoki, K., Guo, J., Matusiewicz, K., Sasaki, Y., Wang, L.: Preimages for Step-
Reduced SHA-2. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
578–597. Springer, Heidelberg (2009)

25. Bogdanov, A., Rechberger, C.: A 3-Subset Meet-in-the-Middle Attack: Cryptanal-
ysis of the Lightweight Block Cipher KTANTAN. In: Biryukov, A., Gong, G.,
Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 229–240. Springer, Heidel-
berg (2011)

26. Biham, E., Dunkelman, O., Keller, N., Shamir, A.: New data-efficient attacks
on reduced-round IDEA. Cryptology ePrint Archive, Report 2011/417 (2011),
http://eprint.iacr.org/2011/417

27. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique Cryptanalysis of the
Full AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
344–371. Springer, Heidelberg (2011)

28. Isobe, T.: A Single-Key Attack on the Full GOST Block Cipher. In: Joux, A. (ed.)
FSE 2011. LNCS, vol. 6733, pp. 290–305. Springer, Heidelberg (2011)

29. Wei, L., Rechberger, C., Guo, J., Wu, H., Wang, H., Ling, S.: Improved meet-in-the-
middle cryptanalysis of KTANTAN. Cryptology ePrint Archive, Report 2011/201
(2011), http://eprint.iacr.org/2011/201

30. Wei, L., Rechberger, C., Guo, J., Wu, H., Wang, H., Ling, S.: Improved Meet-in-
the-Middle Cryptanalysis of KTANTAN (Poster). In: Parampalli, U., Hawkes, P.
(eds.) ACISP 2011. LNCS, vol. 6812, pp. 433–438. Springer, Heidelberg (2011)

31. Sasaki, Y., Aoki, K.: Preimage Attacks on 3, 4, and 5-Pass HAVAL. In: Pieprzyk,
J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 253–271. Springer, Heidelberg
(2008)

32. Handschuh, H., Naccache, D.: SHACAL: A family of block ciphers. Submission to
the NESSIE Project (2008)

http://eprint.iacr.org/2011/616
http://eprint.iacr.org/2011/417
http://eprint.iacr.org/2011/201


Differential Cryptanalysis of Reduced-Round

ICEBERG

Yue Sun1, Meiqin Wang2,�, Shujia Jiang3, and Qiumei Sun2

1 Institute for Advanced Study, Tsinghua University, Beijing, 100084, China
2 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan 250100, China

3 Venustech Incorporation, Beijing, 100193, China
yuesun@tsinghua.edu.cn, {mqwang,mei}@sdu.edu.cn,

jiang shujia@venustech.com.cn

Abstract. ICEBERG is proposed by Standaert et al. in FSE 2004 for
reconfigurable hardware implementations. It uses 64-bit block size and
128-bit key and the round number is 16. Specially, it is a SPN block ci-
pher and all components are involutional and allow very efficient combi-
nations of encryption/decryption. In this paper, we propose an elaborate
method to identify the 6-round differentials and present the differential
attack on 7-round ICEBERG with 257 chosen plaintexts and 290.28 7-
round encryptions. Then we use multiple differentials to attack 8-round
ICEBERG with 263 chosen plaintexts and 296 8-round encryptions. The
previous linear cryptanalysis can only attack 7-round ICEBERG with
the whole codebook. It means that ICEBERG is more resistant to linear
cryptanalysis than differential cryptanalysis. Although our attack can-
not threat ICEBERG, we give the best attack for ICEBERG published
to date and our elaborate method to identify multiple differential can be
used for other similar block ciphers.

Keywords: Differential Cryptanalysis, Light-Weight, Block Cipher,
ICEBERG, Involutional.

1 Introduction

Along with the development of the internet of things, a variety of constraint
equipments such as RFID devices, wireless sensor network etc have been perva-
sively used around us. Although they meet relative moderate security problem
compared to Internet, only such a extremely resource constrained environment
(weak computation ability, small storage space, strict power constraints and so
on) is provided that it’s hard to directly implement standard ciphers on it. So a
requirement on low energy cost but efficient and secure cipher is rapidly develop-
ing. So the security primitives suitable for these light-weight environments must
be designed. Recently, several light-weight block ciphers have been proposed such
as PRESENT [1], mCRYPTON [2], HIGHT [3], SEA [4] and KTANTAN [5] etc.

� Corresponding author.

A. Mitrokotsa and S. Vaudenay (Eds.): AFRICACRYPT 2012, LNCS 7374, pp. 155–171, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



156 Y. Sun et al.

In general, a block cipher based on SP-network structure has the different en-
cryption and decryption process like AES [6], which will increase the hardware
costs. Although the block cipher based on the Feistel structure does not have
such disadvantage, its slow avalanche effect requires the large round number to
guarantee the security. In this way, how to design an involutional block cipher
based on SP-network structure has become an important object in the field of
light-weight block cipher.

At FSE 2004, Standaert et al. proposed a fast involutional block cipher with
SP-network structure optimized for reconfigurable hardware implementations,
named ICEBERG [7]. ICEBERG uses 64-bit text blocks and 128-bit keys and
the round number is 16. Specially, all components are involutional and allow
very efficient combinations of encryption/decryption. In practice, very low-cost
hardware crypto-processors and high throughput data encryption are potential
applications of ICEBERG. In [8], Sun et al. gave the linear cryptanalysis for
7-round ICEBERG with the whole codebook and 291.19 7-round encryptions,
which is the first published attack for reduced-round ICEBERG.

Differential cryptanalysis, proposed by Biham and Shamir [9], has been one of
the most classic cryptanalytic techniques for block ciphers. Later a variety of re-
finements to this attack has been suggested, such as differentials [10] and multiple
differential attack [11] etc. Although the original ICEBERG proposal provided
theoretical upper bounds of the probability for the differential characteristics of
16-round ICEBERG, the proposal did not give the concrete differential crypt-
analysis. In this paper, we will give the concrete differential cryptanalysis for
reduced-round ICEBERG. Specially, we will improve the differential cryptana-
lytic results for ICEBERG with multiple differential cryptanalysis, which has
been put forward in [11].

In this paper, we make use of the property of the linear layer of ICEBERG
and design an efficient searching algorithm to identify the differential character-
istic for ICEBERG. As a result, we found that the highest probability of 6-round
differential 2−60.53 is much greater than that of the 6-round differential charac-
teristic 2−63.32, so we give two attacks with multiple differentials [12], the first
one is the structure attack on 7-round ICEBERG with one output difference and
multiple input differences and it requires that 290.28 times of 7-round encryptions
and 257 chosen plaintexts; and the second one is the multiple differential attack
on 8-round ICEBERG with multiple output differences. Although we cannot
threat ICEBERG, the attack on 8-round ICEBERG we give is the best attack.
Furthermore, our method to identify differentials can be used for other block
ciphers.

The paper is organized as follows. Section 2 presents the description for ICE-
BERG block cipher. In Section 3, we identify the best 6-round differential char-
acteristic and differentials based on the property of linear layer of ICEBERG.
Section 4 presents the 7-round structure attack on ICEBERG and the 8-round
multiple differential attack on ICEBERG, respectively. Section 5 concludes this
paper.



Differential Cryptanalysis of Reduced-Round ICEBERG 157

2 Description of ICEBERG

ICEBERG is proposed by Standaert et al. on FSE 2004, and it is a fast involu-
tional block cipher with SP-network structure optimized for reconfigurable hard-
ware implementations [7]. Specially, all components are involutional and allow
very efficient combinations of encryption/decryption. In practice, very low-cost
hardware crypto-processors and high throughput data encryption are potential
applications of ICEBERG. It operates on 64-bit block and uses a 128-bit key.
The round number is 16. The round function ρK can be expressed as:

ρK : Z64
2 → Z64

2 : ρK ≡ εK ◦ γ,

where γ is the non-linear layer and εK is the linear layer.
It is an involutional cipher since its encryption is only different from its de-

cryption in the key schedule. Because the key schedule has little relationship
with our analysis, we will not describe it here.

2.1 Non-linear Layer γ

Non-linear layer γ is composed of non-linear substitution layers S0 and S1 and
bit permutation layer P8. Fig. 1 depicts the non-linear layer γ. Each substitu-
tion layer consists of 16 identical S-boxes in parallel. The bit permutation layer
consists of eight identical bit permutations P8. The γ layer can be expressed as:

γ : Z64
2 → Z64

2 : γ ≡ S0 ◦ P8 ◦ S1 ◦ P8 ◦ S0.

Fig. 1. The Non-Linear Layer γ

The γ layer can be viewed as one layer consisting of the application of eight
identical 8× 8 S-boxes listed in Table 1.

2.2 Linear Layer εK

Fig. 2 depicts the linear layer εK . The εK can be described as:

εK : Z64
2 → Z64

2 : εK ≡ P64 ◦ P4 ◦ σK ◦M ◦ P64.



158 Y. Sun et al.

Fig. 2. The Linear Layer εK

Table 1. The 8× 8 S-box

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

00 24 c1 38 30 e7 57 df 20 3e 99 1a 34 ca d6 52 fd

10 40 6c d3 3d 4a 59 f8 77 fb 61 0a 56 b9 d2 fc f1

20 07 f5 93 cd 00 b6 62 a7 63 fe 44 bd 5f 92 6b 68

30 03 4e a2 97 0b 60 83 a3 02 e5 45 67 f4 13 08 8b

40 10 ce be b4 2a 3a 96 84 c8 9f 14 c0 c4 6f 31 d9

50 ab ae 0e 64 7c da 1b 05 a8 15 a5 90 94 85 71 2c

60 35 19 26 28 53 e2 7f 3b 2f a9 cc 2e 11 76 ed 4d

70 87 5e c2 c7 80 b0 6d 17 b2 ff e4 b7 54 9d b8 66

80 74 9c db 36 47 5d de 70 d5 91 aa 3f c9 d8 f3 f2

90 5b 89 2d 22 5c e1 46 33 e6 09 bc e8 81 7d e9 49

a0 e0 b1 32 37 ea 5a f6 27 58 69 8a 50 ba dd 51 f9

b0 75 a1 78 d0 43 f7 25 7b 7e 1c ac d4 9a 2b 42 e3

c0 4b 01 72 d7 4c fa eb 73 48 8c 0c f0 6a 23 41 ec

d0 b3 ef 1d 12 bb 88 0d c3 8d 4f 55 82 ee ad 86 06

e0 a0 95 65 bf 7a 39 98 04 9b 9e a4 c6 cf 6e dc d1

f0 cb 1f 8f 8e 3c 21 a6 b5 16 af c5 18 1e 0f 29 79

It consists of the 64-bit permutation layer P64, the parallel binary matrix
multiplications M , the key addition layer σK , the parallel 4-bit permutation
layer and the identical 64-bit permutation as in Fig. 2. P64 and P4 are listed in
Table 2 and Table 3, respectively. The matrix multiplication M is based on the
parallel application of a simple involutional matrix multiplication. Let V ∈ Z4×4

2

be a binary involutional matrix (i.e. such that V 2 = In):

V =

⎡⎢⎢⎣
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎤⎥⎥⎦ .

M is then defined as:

M : Z16
24 → Z16

24 : x→ y = M(x)⇔ yi = V · xi 0 ≤ i ≤ 15.

Then the diffusion box D is defined as performing multiplication by V .



Differential Cryptanalysis of Reduced-Round ICEBERG 159

Table 2. The P64 Permutation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 23 25 38 42 53 59 22 9 26 32 1 47 51 61

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

24 37 18 41 55 58 8 2 16 3 10 27 33 46 48 62

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

11 28 60 49 36 17 4 43 50 19 5 39 56 45 29 13

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

30 35 40 14 57 6 54 20 44 52 21 7 34 15 31 63

Table 3. The P4 Permutation

0 1 2 3

1 0 3 2

The encryption process for R rounds is defined as follows:

σRKR
0
◦ γ ◦ (©R−1

r=1 ρRKr
1
) ◦ σRK0

1
.

where σK is the key addition layer.

3 Differential Distinguishers of 6-Round ICEBERG

Differential cryptanalysis, introduced by Biham and Shamir in [9], is one of the
most popular and important attack towards block ciphers. It uses the differential
characteristic with high probability for inner rounds as a distinguisher to recover
the subkey bits in fore or last few rounds. Then several works proposed that the
effect of differential cryptanalysis can be strengthened with differentials [10] or
multiple differential [12]. In this section, we will identify the differential charac-
teristics of 6-round ICEBERG and the differentials of 6-round ICEBERG.

3.1 Differential Characteristic of 6-Round ICEBERG

The way to search the differential characteristic of an iterated SPN block cipher
depends on two components. The differential distribution table of the active
S-box in the non-linear layer determines the probability of the differential char-
acteristic while the linear layer determines the least number of active S-boxes.
So the higher probability of the active S-box and the fewer active S-boxes are
there in one round, the better is the differential characteristic. According to
the differential distribution table of 8 × 8 S-box for ICEBERG, we found that
the probability ranges from 2−7 to 2−5. The gap between them is so small that
the number of active S-boxes in the differential characteristic is the determi-
nant factor for its probability. Therefore, we will aim at finding the best one
among differential characteristics with as few active S-boxes as possible which is
determined by the linear layer of ICEBERG.



160 Y. Sun et al.

Property of Linear Layer P64-DP4-P64

The linear layer of ICEBERG includes three kinds of components, which are
permutations, diffusion box and key addition. The permutation P64 mapping
on 64 bit is respectively at the beginning and end of the linear layer of ICEBERG,
while the 16 same permutations P4 are mapped on each 4 bit. The diffusion box
D makes each output bit equal to the exclusive-or among the three input bits.
The diffusion pattern of differential characteristic for 2-round is shown in Fig. 3.
In view of differential cryptanalysis, P4 and D can be regarded as a whole,
named DP4 depicted in Table 4.

Fig. 3. Diffusion of Two Rounds ICEBERG

Table 4. DP4 Linear-Layer

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 13 14 3 7 10 9 4 11 6 5 8 12 1 2 15

Remind the observation on the linear layer of ICEBERG described in the
linear cryptanalysis of ICEBERG [8], we learn that the property of DP4 remains
the same. It means there are at least 4 active S-boxes for two rounds, so totally
five patterns exist, which are three primary patterns (1→ 3, 2→ 2, 3→ 1) and
two auxiliary patterns (2 → 3, 3 → 2), where m → n means that there are m
active S-boxes in the first round and n active S-boxes in the second round.

We obtained the similar analysis of the 5 patterns as the one we give in [8],
so we take Pattern (1→ 3) as an example to explain.

� Pattern (1 → 3): It implies there should be m (1 � m � 8) active DP4(s)
with 1 → 3 (1 nonzero input difference bit to 3 nonzero output difference
bits). After the bottom P64, the 3m nonzero output difference bits of DP4s
will input to three S-boxes, each of which has m nonzero input difference
bits. Whilst the m non-zoro input difference bits will input to the same S-box
before the top P64 in reverse order. To sustain this condition, we need to
search m-DP4s whose three nonzero output difference bits will be located
in the same three bytes after P64. Meanwhile, deduced by the reversed P64,
the m nonzero input difference bits should be just right located in the same
one byte. The pattern is depicted in Fig. 4(a).



Differential Cryptanalysis of Reduced-Round ICEBERG 161

To efficiently search all the possible combinations of m-DP4, we divide
them into several sets by m and look into the relation of these sets during
their generation, which has been given in proposition 1 in [8].

Proposition 1. Assuming Γm is the set of allm-DP4 possible combinations.
If (α0, α1 . . . αm) ∈ Γm+1(m � 1), then there should be (α0, α1 . . . αm−1) ∈
Γm and (α0, α1 . . . αm−2, αm) ∈ Γm. So Γm+1 can be generated from Γm.
Vice versa, if (α0, α1 . . . αm−1) ∈ Γm and (α0, α1 . . . αm−2, βm−1) ∈ Γm, then
(α0, α1 . . . αm−1, βm−1) ∈ Γm+1.

We will produce each possible Γm from Proposition 1. Firstly, in order to
generate Γ1, we searched the combinations for 1-DP4s with only one active
DP4 locating in 16 kinds of possible positions. Then we used the elements
from Γ1 to produce Γ2, and then we produce Γ3 from Γ2. In the similar way,
we will stop the process until there is no element in some Γm (As the data
in Table 5 shows, the process stops at Γ4). The sets of possible combinations
for Pattern(1 → 3) are shown in the first row in Table 5. As we can see,
1 � m � 3, and in each sub row we give an example in each Γm. For example,
the first sub row means that there is a possible combination for Γ1, in which
the output difference of the active S-box S0 in top round (we will name
it as top output difference for short in following sections) is 1x, the input
difference and output difference on the 0-th DP4 are 1x and dx, and the
input difference of the active S-boxes in the next round (for short we call
bottom input difference) S0 is 1x, S2 is 80x, S3 is 2x.

S-box

DP4

S-box

(c)(a) (b)

(d) (e)

S-box

DP4

S-box

Fig. 4. Patterns for Linear Layer P64-DP4-P64

Table 5 gives the set |Γm| and one example in Γm for each pattern. It should
be noticed that the pattern is not an intact two-round differential characteristic,
it begins with the output differences of the active S-boxes in the first round and
ends at the input differences of the active S-boxes in the second round, as shown
in Fig. 4. We name this semi-joint 2-round differential characteristic as a node
for short in following sections which involves two members: top output difference
and bottom input difference.



162 Y. Sun et al.

Fig. 5. 6-round Best Differential Characteristic Patterns

Search the 6-Round Differential Characteristics

According to the above five patterns, eight patterns for 6-round differential char-
acteristics can be produced in Fig. 5.

Because S(x) = S−1(x), P64(x) = P64−1(x) and DP4(x) = DP4−1(x), each
differential characteristic in Fig. 5(a) will generate a reversed differential char-
acteristic in Fig. 5(b) by turning its input and output differences upside down
in each round. The same scenario is for (Fig. 5(c), Fig. 5(d)) and (Fig. 5(e),
Fig. 5(f)). In this way, in order to search the differential characteristic with
highest probability among the 5 patterns, firstly, we can concatenate 2-round
nodes in the five patterns depicted in Table 5 to the 6-round nodes. Two 2-
round nodes can be linked with each other only if they are on same series
of active S-boxes and the joint entries whose bottom input difference is from
the above node and the top output difference comes from the node below have
nonzero probability. For example, the bottom input difference of the 2-round
node {(0, 5x), (1, 11x)} → {(0, 5x), (1, 11x)} and the top output difference of
the 2-round node {(0, 4x), (1, 1x)} → {(0, 4x), (1, 1x)} are both on the active
S-boxes S0 and S1, and from the difference distribution table of the S-box,
Pr{5x → 4x} = 2−7, Pr{11x → 1x} = 2−5.42, so they can be concatenated to
3-round node {(0, 5x), (1, 11x)} → {(0, 4x), (1, 1x)} with probability 2−12.42. By
concatenating 2-round nodes one by one or iterative concatenation (two 2-round
nodes can concatenate to a 3-round node, then two 3-round nodes can concate-
nate to a 5-round node, go along with concatenating another 2-round node at
end), we will get a 6-round node.

Table 6 gives examples for the best 6-round node for the eight patterns in
Fig. 5. From the last column of Table 6, we can see the highest probability is
2−43.32. From column Δout and Δin, we see that there are 4 active S-boxes in



Differential Cryptanalysis of Reduced-Round ICEBERG 163

Table 5. Patterns for DP4

Patternm |Γm| Δout (pos, out) Δin (pos, in) DP4 (pos, in, out)

1→ 3 1 64 (0, 1x) (0, 1x), (2, 80x), (3, 2x) (0, 1x, dx)

2 13 (5, 84x) (5, 84x), (6, 28x), (7, 28x) (1, 2x, ex), (3, 2x, ex)

3 1 (5, c4x) (5, c4x), (6, 29x), (7, 68x) (1, 2x, ex), (3, 2x, ex), (7, 2x, ex)

2→ 2 1 96 (0, 1x), (1, 10x) (0, 1x), (1, 10x) (0, 3x, 3x)

2 27 (0, 5x), (1, 11x) (0, 5x), (1, 11x) (0, 3x, 3x), (5, cx, cx)

3 12 (6, a8x), (7, 2cx) (6, a8x), (7, 2cx) (1, cx, cx), (3, cx, cx), (5, 3x, 3x)

4 5 (6, a9x), (7, 6cx) (6, a9x), (7, 6cx) (1, cx, cx), (3, cx, cx),

(5, 3x, 3x), (7, cx, cx)

5 1 (6, abx), (7, 7cx) (6, abx), (7, 7cx) (1, cx, cx), (3, cx, cx),

(5, 3x, 3x), (7, cx, cx), (8, cx, cx)

3→ 1 1 64 (0, 1x), (2, 80x), (3, 2x) (0, 1x) (0, dx, 1x)

2 13 (5, 84x), (6, 28x), (7, 28x) (5, 84x) (1, ex, 2x), (3, ex, 2x)

3 1 (5, c4x), (6, 29x), (7, 68x) (5, c4x) (1, ex, 2x), (3, ex, 2x), (7, ex, 2x)

2→ 3 2 218 (1, 12x), (3, 6x) (0, 1x), (2, c0x), (4, 1x) (0, ax, 5x), (2, 6x, 9x)

3 119 (2, c4x), (3, 2x) (2, c4x), (3, 7x), (4, 21x) (0, cx, cx), (2, 1x, dx), (4, 4x, 7x)

4 51 (1, 1cx), (3, 1cx) (1, 1ex), (2, c0x), (3, 1ex) (0, 2x, ex), (2, 4x, 7x)

(6, cx, cx), (8, 3x, 3x)

5 17 (1, 3cx), (3, 3cx) (1, 3ex), (2, c0x), (3, 3ex) (0, 2x, ex), (2, 4x, 7x)

(6, cx, cx), (8, 3x, 3x), (11, cx, cx)

6 3 (6, ebx), (7, 7cx) (0, 40x), (6, ebx), (7, 7ex) (1, cx, cx), (3, cx, cx), (5, 3x, 3x)

(7, cx, cx), (8, cx, cx), (13, 4x, 7x)

3→ 2 2 218 (0, 1x), (2, c0x), (4, 1x) (1, 12x), (3, 6x) (0, 5x, ax), (2, 9x, 6x)

3 119 (2, c4x), (3, 7x), (4, 21x) (2, c4x), (3, 2x) (0, cx, cx), (2, dx, 1x), (4, 7x, 4x)

4 51 (1, 1ex), (2, c0x), (3, 1ex) (1, 1cx), (3, 1cx) (0, ex, 2x), (2, 7x, 4x)

(6, cx, cx), (8, 3x, 3x)

5 17 (1, 3ex), (2, c0x), (3, 3ex) (1, 3cx), (3, 3cx) (0, ex, 2x), (2, 7x, 4x)

(6, cx, cx), (8, 3x, 3x), (11, cx, cx)

6 3 (0, 40x), (6, ebx), (7, 7ex) (6, ebx), (7, 7cx) (1, cx, cx), (3, cx, cx), (5, 3x, 3x)

(7, cx, cx), (8, cx, cx), (13, 7x, 4x)

Δout means the output difference of the active S-box in this round;
Δin means the input difference of the active S-box in the next round;
The tuple (a, b) means a is the index of S-box, and b is the output difference in Δout

column or the input difference in Δin column;
The triple (a, b, c) means on the a-th DP4, the input difference is b and the output
difference is c.

the first and the last round. According to the differential distribution table, the
probability of one entry is at most 2−5, so the probability of the best differen-
tial characteristic for the first node pattern depicted in Table 6 is at least 2−66.84



164 Y. Sun et al.

Table 6. Results of Eight 6-Round Nodes

Node pattern Amount Δout Δin Pr

1→ 3→ 1→ 3→ 1→ 3 306 (5, c0x) (5, c0x), (6, 9x), (7, 60x) 2
−46.84

3→ 1→ 3→ 1→ 3→ 1 306 (5, c0x), (6, 9x), (7, 60x) (5, c0x) 2−46.84

1→ 3→ 1→ 3→ 2→ 2 347 (6, 10x) (6, 40x), (7, 2x) 2−59.42

2→ 2→ 3→ 1→ 3→ 1 347 (6, 40x), (7, 2x) (6, 10x) 2−59.42

2→ 2→ 2→ 2→ 3→ 1 4606 (6, bx), (7, 70x) (7, 2x) 2−56.66

1→ 3→ 2→ 2→ 2→ 2 4606 (7, 2x) (6, bx), (7, 70x) 2−56.66

1→ 3→ 2→ 2→ 3→ 1 757 (1, 4x) (1, 40x) 2−63.66

2→ 2→ 2→ 2→ 2→ 2 53846 (6, abx), (7, 7cx) (6, abx), (7, 7cx) 2−43.32

(6, bx), (7, 70x) (6, bx), (7, 70x) 2−43.32

Amount: the total number of nodes.
(Δout, Δin, Pr): the node with highest probability Pr, its top output difference is Δout

and bottom input difference is Δin.
Pr: the probability of the 6-round nodes; it is exclusive of the probability of the active
S-boxes in the first round and the last round.

less than 2−64. So we only identify the 6-round differential characteristics with
the probability greater than 2−64. By computing all the eight node patterns, the
6-round differential characteristics with the probability greater than 2−64 have
been identified from the last node pattern 2→ 2→ 2→ 2→ 2→ 2.

By further analysis on the 6-round nodes {(6, abx), (7, 7cx)→ (6, abx), (7, 7cx)}
and {(6, bx), (7, 70x)→ (6, bx), (7, 70x)}, we obtain four best 6-round differential
characteristics with probability 2−63.32 as follows,

(93ab0000 00000000x)
6r−→ (93ab0000 00000000x)

LL−−→ (93ebc446 2010a106x),

(93ab0000 00000000x)
6r−→ (c7ab0000 00000000x)

LL−−→ (c7eb8444 3010a802x),

(c7ab0000 00000000x)
6r−→ (93ab0000 00000000x)

LL−−→ (93ebc446 2010a106x),

(c7ab0000 00000000x)
6r−→ (c7ab0000 00000000x)

LL−−→ (c7eb8444 3010a802x).

where ”6r” stands for the 6-round node with input difference of the active S-
boxes in the first round and output difference of the active S-boxes in the last
round; the ”LL” stands for the linear layer in the last round. Due to the limited
space, we only list the details for the last 6-round differential characteristic in
Table 7.



Differential Cryptanalysis of Reduced-Round ICEBERG 165

Table 7. 6-Round Differential Characteristic

Round Output Difference Probability Pr

S6=abx, S7=c7x
R1 S-box S6=abx, S7=7cx 2−10

R1 LT S6=abx, S7=7cx 1

R2 S-box S6=bx, S7=70x 2−10.83

R2 LT S6=bx, S7=70x 1

R3 S-box S6=abx, S7=7cx 2−10.83

R3 LT S6=abx, S7=7cx 1

R4 S-box S6=bx, S7=70x 2−10.83

R4 LT S6=bx, S7=70x 1

R5 S-box S6=abx, S7=7cx 2−10.83

R5 LT S6=abx, S7=7cx 1

R6 S-box S6=abx, S7=c7x 2−10

R6 LT S0=2x, S1=a8x, S2=10x, S3=30x, 1
S4=44x, S5=84x, S6=ebx, S7=c7x

3.2 Differentials of 6-Round ICEBERG

From Table 6, there are 53846 6-round nodes in 2 → 2 → 2 → 2 → 2 → 2
pattern. Not only the active S-Boxes for the input difference and the output dif-
ference of the above four best 6-round nodes with highest probability are located
in (S6, S7), but also other 52384 nodes are located in them. So we traverse 232

different input differences and output differences to compute the probability of
each differential on the given input and output difference value on the four fixed
active S-boxes. As a result, we identify some differentials with higher probability
in Table 8. The first column is the differential; the second column shows how
many 6-round nodes contribute to the differential among all the 52384 6-round
nodes; the third column is the corresponding probability of the differential.

Table 8. Differentials of 6-Round ICEBERG

Differential Amount/52384 Pr

(7c0b0000 00000000x)→ (7c0b0440 00000104x) 1338 2−60.53

(7cab0000 00000000x)→ (7c0b0440 00000104x) 2046 2−60.59

(7c0b0000 00000000x)→ (7cab0000 00000000x) 2046 2−60.59

(c7ab0000 00000000x)→ (7c0b0440 00000104x) 2242 2−60.59

(7c0b0000 00000000x)→ (c7eb8444 3010a802x) 2242 2−60.59

3.3 Structures of Differentials of 6-Round ICEBERG

Now we consider the effect of a set of differentials whose active S-boxes locate
in S6 and S7. Firstly, we collected differentials with different input differences
and fixed given output difference on active S-boxes S6 and S7 whose probabilities



166 Y. Sun et al.

are greater than the average probability 2−64 as a set. Then we compared all
the 216 sets with different output differences to obtain the set of differentials
with highest probability. Some of them with higher probability are shown in
Table 9. Because the number of input differences is large, we have not listed
the input differences in Table 9. The first column is the sets of the differentials
with fixed output differences; the second column shows the amount of various
of differentials’ input differences; the third column is the sum of probabilities of
all the differentials in the set.

Table 9. Sets of Differentials of 6-Round ICEBERG

Set of Differentials Amount Pr

(xxxx0000 00000000x)→ (7c0b0440 00000104x) 10981 2−49.77

(xxxx0000 00000000x)→ (c7eb8444 3010a802x) 10784 2−49.82

(xxxx0000 00000000x)→ (7cab0000 00000000x) 10501 2−49.86

(xxxx0000 00000000x)→ (93ebc446 2010a106x) 10473 2−49.87

Amount: the number of different input differences.

4 Attacks against Reduced-Round ICEBERG

4.1 Structure Attack to 7-Round ICEBERG

In this section, we will use the set with 10981 6-round differentials in the first
row in Table 9 to proceed the structure attack on 7-round ICEBERG. Firstly,
we construct 241 structures, in each structure, the 16-bit plaintext input to S-
boxes S6 and S7 traverses all possible values and other plaintext bits will take
the fixed value. So our attack will use 241 · 216 = 257 chosen plaintexts. The
sum of the probability for all differentials is 2−49.77. In each structure, there are
215 · 10981 ≈ 228.42 plaintext pairs satisfying any of the 10981 input differences.
So the expected number of right pairs is 241 · 215 · 2−49.77 = 26.23 ≈ 75.06.
According to the input difference in round 7 (7c0b0440 00000104x), there are
six active S-boxes, which results in 48 subkey bits to be guessed. Considering
all the possible output differences of the six active S-boxes and the two non-
active S-boxes, the filtering probability β and the average number of subkey
values counted per pair α should be computed. We list the number of the output
differences and the number of subkey values counted according to the different
cases in Table 10, which can be obtained from the differential distribution table
of S-box. As we see in each row of Table 10, the number of possible subkey
values for the given input difference of the active S-box varies on 2, 4, 6 and
8. In column 3 of Table 10, we classify the number of the output differences
by the number of candidate subkey values. Column 4 is the average number of
subkeys suggested by the given input difference. As a result, the filtering ratio
β = ( 94

256 )
2 · ( 99

256 )
3 · 102

256 · 2−16 ≈ 2−24.33, the average increment on per counter
for wrong pairs will be 241 · 215 · 10981 · 2−24.33 · 28.34 · 2−48 ≈ 25.43 ≈ 43.11.



Differential Cryptanalysis of Reduced-Round ICEBERG 167

Table 10. Number of Candidate Subkey Values

Number of Number of Candidate Subkeys
Input Difference

Output Differences 2 4 6 8
Average Number

1x 94 65 25 3 1 21.45

4x 99 75 20 3 1 21.37

40x 102 80 18 4 0 21.33

bx 94 70 15 8 1 21.45

7cx 99 76 19 2 2 21.37

abx 99 76 18 4 1 21.37

70x 105 84 19 2 0 21.29

Next, we will give the attacking procedure as follows:

– For each structure:
a: Insert all the ciphertexts into the hash table according to the 16-bit

ciphertext bits of the non-active S-boxes in the last round.
b: For each entry with collision (a pair of ciphertext with equal 16-bit val-

ues) check whether the plaintexts difference (in round 1) is one of the
10981 differentials’s input differences.

c: Filter wrong pairs which satisfy none of 48-bit of the ciphertext differ-
ences on the six active S-boxes of the 10981 differentials.

d: For each possible subkey in round 7, decrypt the last round to obtain
the output difference of round 6, and check whether the difference equals
to the output difference of the differentials. If a pair passes the above
test, add one to the counter related to the subkey value. The average
increment on per counter for wrong pairs will be 43.11.

– Collect all the subkeys whose counter has at least 75 hits. With the high
probability the correct subkey is in this list.

– Exhaustively search the remaining 80-bit subkey key and we can obtain the
whole 128-bit master key.

In step (a), the time complexity is 216 memory accesses. In step (b), about 215

pairs remain through the filter of step (a), so the time complexity is 216 memory
accesses. So for all structures, the two steps require 258 memory accesses. For all
structures, the time complexity of step (c) is negligible, and the time complexity
of step (d) is about 241 · 215 · 10981 · 2−24.33 · 248 ≈ 293.09 one-round decryptions,
which equals to 290.28 7-round encryptions.

The signal to noise ratio is:

S/N =
2−49.77 · 248

10981 · 2−24.33 · 28.34 ≈ 1.74.

The success rate is computed with the method in [13] as follows,

Ps = Φ(
√
μSN−Φ−1(1−2−a)√

SN+1
)

= Φ(
√
75.06·1.74−Φ−1(1−2−48)√

1.74+1
) = 98.65%,



168 Y. Sun et al.

To recover the 48 subkey bits, the time complexity is about 290.28 7-round en-
cryptions. The remaining 80-bit key can be exhaustively searched within 280

7-round encryptions.
In all, the data complexity is 257 chosen plaintexts, and the time complexity

is 290.28 7-round encryptions. The memory requirements are 248 counters. The
success rate is 98.65%.

4.2 Multiple Differential Attack against 8-Round ICEBERG

As we see in Table 7 and Table 8, the best differential characteristic or differential
for 6-round has at least six active S-boxes for the output difference because of
the fast diffusion of the linear layer of ICEBERG in the last round, which make
it infeasible to produce 8-round differential with high probability. For example,
the best 6-round differential (7c0b0000 00000000x)→ (7c0b0440 00000104x) will
result in six active S-boxes in the following round. But it should be noticed that
the difference before the linear layer of the last round is (7c0b0000 00000000x),
with only two active bytes.

If the number of active bytes passing through the linear layer remains two, it
will be helpful to extend more rounds for the differential. So the differentials of
6-round ICEBERG which can be used to produce 8-round differentials should
have two properties: higher probability and the two active bytes before linear
layer in the last round should confirm to Pattern(2 → 2). Recall that all of
the 6-round differentials of ICEBERG whose probabilities are greater than 2−64

confirm to 2 → 2 → 2 → 2 → 2 → 2. At last, we searched in this pattern and
found 28 differentials satisfying the above properties, whose input difference or
output difference doesn’t change after passing the linear layer. We list the best
four differentials in Table 11. The first column is the differential; the second
column shows how many 6-round nodes contribute to the differential among all
the 52384 6-round nodes; the third column is the corresponding probability of
the differential.

Table 11. Differentials of 6-Round ICEBERG Whose Output Differences Confirm to
Pattern(2→ 2)

Differential Amount/52384 Pr

(7cab0000 00000000x)→ (7cab0000 00000000x) 3382 2−60.64

(700b0000 00000000x)→ (7cab0000 00000000x) 2761 2−60.96

(7cab0000 00000000x)→ (700b0000 00000000x) 2761 2−60.96

(700b0000 00000000x)→ (700b0000 00000000x) 2817 2−61.26

We use the four differentials from round 2 to round 7 to recover total 32
subkey bits in round 0 and round 8, so the input difference of the 8-th round
will be (7cab0000 00000000x) or (700b0000 00000000x). According to Table 10,
we can see the size of the set of possible output differences of round 8 for
(7cab0000 00000000x) will be 99 · 99 ≈ 213.26, for (700b0000 00000000x) it



Differential Cryptanalysis of Reduced-Round ICEBERG 169

will be 94 · 105 ≈ 213.27. Because there are totally 42 shared output differ-
ences for (abx, bx) and 40 ones for (7cx, 70x), the size of the set of possible out-
put differences in round 8 for the input differences set {(7cab0000 00000000x),
(700b0000 00000000x)} is 99 · 99 + 94 · 105 − 42 · 40 = 17991 ≈ 214.13. So we
construct 247 structures different on bits from 0 to 46. Since the linear layer is
involutional, the set of input differences in round 1 is the same as the one in
round 8, the size of the set of chosen plaintexts differences should be 214.13. In
each structure, there are 215+14.13 = 229.13 pairs.

The right pairs for each differential can be computed respectively. We take
(7cab0000 00000000x) → (7cab0000 00000000x) as an example. In each struc-
ture, the expected number of pairs with input differences ΔS6 = Δxi and
ΔS7 = Δyi in the first round should be 215 · pi · qi, and denote pi = Pr{Δxi →
abx} and qi = Pr{Δyi → 7cx}. Since all the input differences are considered,∑
i

pi · qi = 1. So the expected number of right pairs for (7cab0000 00000000x)→

(7cab0000 00000000x) should be 247 · 215 · 2−60.64 = 21.36. So the total expected
number of right pairs for the four differentials should be 247 · 215 · (2−60.64 + 2 ·
2−60.96 + 2−61.26) ≈ 23.06 ≈ 8.36.

Since there are six non-active S-boxes in round 8, the filter ratio is 2−48 ·214.13 ·
2−16 = 2−49.87, there will be 247 · 215+14.13 · 2−49.87 = 226.26 pairs remained after
the ciphertext differences filter. Considering the 42 shared output differences
for (abx, bx) and 40 ones for (7cx, 70x), the average number of counted subkey
values for each pair is 23472+16800+17472+15264+14000+21600+21840

17991 ≈ 7.25, which is
computed out by a tiny programme we wrote. So the expected increment on each
counter for wrong subkey values will be 226.26 · (7.25)2 · 2−32 ≈ 2−0.02 ≈ 0.98,
while the value of the counter corresponding to the right key is at least 8.36.

The signal noise S/N = 8.36/0.98 = 8.51. The success rate is computed as
follows,

Ps = Φ(
√
μSN−Φ−1(1−2−a)√

SN+1
)

= Φ(
√
8.36·8.51−Φ−1(1−2−32)√

8.51+1
) = 76.10%.

After recovering the 32-bit subkey, we can exhaustively search the remaining
96-bit subkey to get 128-bit master key. In this attack, the data complexity is
263 chosen plaintexts and the time complexity is about 296 times of 8-round
encryptions. The memory requirements are 232 counters.

5 Summary

As a block cipher for reconfigurable hardware implementations, ICEBERG is a
SP-network structure involutional block cipher, so the property with very low-
cost hardware crypto-processors and high throughput data encryption will result
in the potential applications of ICEBERG. In this paper, we elaborately analyze
the property of the linear layer of ICEBERG and design an efficient searching
algorithm to identify the 6-round differential characteristics. Then we present



170 Y. Sun et al.

the first differential analysis of 7-round ICEBERG using structure attack. Our
attack requires 290.28 7-round encryptions and 257 chosen plaintexts. Then we
give multiple differential attack against 8-round ICEBERG, which requires 263

chosen plaintexts and 296 8-round encryptions. We have improved the previous
linear cryptanalysis for 7-round ICEBERG and it shows that ICEBERG can
resist linear cryptanalysis more than differential cryptanalysis.

Acknowledgments. We would like to thank anonymous reviewers for their
very important comments. This work was supported by National Natural
Science Foundation of China (No.61133013, No.61070244, No.61103237 and
No.60931160442), Outstanding Young Scientists Foundation Grant of Shandong
Province (No.BS2009DX030).

References

1. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

2. Lim, C.H., Korkishko, T.: mCrypton – A Lightweight Block Cipher for Security of
Low-Cost RFID Tags and Sensors. In: Song, J., Kwon, T., Yung, M. (eds.) WISA
2005. LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2006)

3. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B.-S., Lee, C., Chang, D., Lee,
J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A New Block Cipher Suitable
for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 46–59. Springer, Heidelberg (2006)

4. Standaert, F., Piret, G., Gershenfeld, N., Quisquater, J.: SEA: a Scalable Encryp-
tion Algorithm for Small Embedded Applications. In: Domingo-Ferrer, J., Posegga,
J., Schreckling, D. (eds.) CARDIS 2006. LNCS, vol. 3928, pp. 222–236. Springer,
Heidelberg (2006)

5. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A
Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C.,
Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg
(2009)

6. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

7. Standaert, F.-X., Piret, G., Rouvroy, G., Quisquater, J.-J., Legat, J.-D.: ICEBERG:
An Involutional Cipher Efficient for Block Encryption in Reconfigurable Hardware.
In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 279–299. Springer,
Heidelberg (2004)

8. Sun, Y., Wang, M.Q.: Linear Cryptanalysis of Reduced-Round ICEBERG. In:
Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 381–
392. Springer, Heidelberg (2012)

9. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. Jour-
nal of Cryptology 4(1), 3–72 (1991)

10. Lai, X., Massey, J.L., Murphy, S.: Markov Ciphers and Differential Cryptanalysis.
In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer,
Heidelberg (1991)



Differential Cryptanalysis of Reduced-Round ICEBERG 171

11. Blondeau, C., Gérard, B.: Multiple Differential Cryptanalysis: Theory and Practice.
In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 35–54. Springer, Heidelberg
(2011)

12. Wang, M., Sun, Y., Tischhauser, E., Preneel, B.: A Model for Structure Attacks,
with Applications to PRESENT and Serpent. In: FSE 2012. LNCS. Springer, Hei-
delberg (2012)

13. Selçuk, A.A., Biçak, A.: On Probability of Success in Linear and Differential Crypt-
analysis. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576,
pp. 174–185. Springer, Heidelberg (2003)



Compact Implementation and Performance

Evaluation of Block Ciphers in ATtiny Devices

Thomas Eisenbarth1, Zheng Gong2, Tim Güneysu3, Stefan Heyse3,
Sebastiaan Indesteege4,5, Stéphanie Kerckhof6, François Koeune6,

Tomislav Nad7, Thomas Plos7, Francesco Regazzoni6,8,
François-Xavier Standaert6, and Löıc van Oldeneel tot Oldenzeel6

1 Department of Mathematical Sciences, Florida Atlantic University, FL, USA
2 School of Computer Science, South China Normal University

3 Horst Görtz Institute for IT Security, Ruhr-Universität, Bochum, Germany
4 Department of Electrical Engineering ESAT/COSIC, KULeuven, Belgium

5 Interdisciplinary Institute for BroadBand Technology (IBBT), Ghent, Belgium
6 UCL Crypto Group, Université catholique de Louvain, Belgium

7 Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Austria

8 ALaRI Institute, University of Lugano, Switzerland

Abstract. The design of lightweight block ciphers has been a very active
research topic over the last years. However, the lack of comparative source
codes generally makes it hard to evaluate the extent to which implemen-
tations of different ciphers actually reach their low-cost goals on various
platforms. This paper reports on an initiative aiming to relax this issue.
First, we provide implementations of 12 block ciphers on an ATMEL AVR
ATtiny45 8-bit microcontroller, and make the corresponding source code
available on a web page. All implementations are made public under an
open-source license. Common interfaces and design goals are followed by
all designers to achieve comparable implementation results. Second, we
evaluate performance figures of our implementations with respect to dif-
ferent metrics, including energy-consumptionmeasurements and show our
improvements compared to existing implementations.

Keywords: Lightweight, Block Cipher, AVR ATtiny, Implementation,
Open Source.

1 Introduction

Small embedded devices including smart cards, RFIDs, and sensor nodes are
deployed in many applications today. They are usually characterized by strong
cost constraints. Yet, as they increasingly manipulate sensitive data, they re-
quire cryptographic protection. As a result, many lightweight ciphers have been
proposed in order to allow strong security guarantees at a lower cost than stan-
dard solutions. Quite naturally, the very idea of “low-cost” is highly dependent
on the target technology. Some operations that are extremely low-cost in hard-
ware (e.g., wire crossings) turn out to be annoyingly expensive in software. Even

A. Mitrokotsa and S. Vaudenay (Eds.): AFRICACRYPT 2012, LNCS 7374, pp. 172–187, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Compact Implementation and Performance Evaluation of Block Ciphers 173

within a class of similar targets, the presence or absence of some options such
as hardware multipliers may cause strong variations in the performance analysis
of different algorithms. As a result, it is difficult to have a good understanding
of which algorithms are actually lightweight on which device. Also, the lack of
comparative studies prevents a good understanding of the cost vs. performance
trade-off for these algorithms.

In this paper, we provide performance evaluations for low-cost block ciphers,
and investigate their implementation on an ATMEL AVR ATtiny45 device [2],
i.e. a small 8-bit microcontroller with limited memory and limited instruction
set. Despite the relatively frequent use of such devices in different applications,
little work has been done in benchmarking cryptographic algorithms in this con-
text. Notable exceptions include B. Poettering’s open-source codes for AES [18],
the XBX frameworks [20] and an interesting survey of lightweight cryptogra-
phy implementations [9]. Unfortunately, these references are still limited by the
number of ciphers under investigation and the fact that in some cases the source
code is not available for evaluation.

The goal of our work is to extend the benchmarking of 12 lightweight and stan-
dard block ciphers, namely AES, DESXL, HIGHT, IDEA, KASUMI,
KATAN, KLEIN, mCrypton, NOEKEON, PRESENT, SEA, TEA, and to make
their implementation available under an open-source license. To the best of our
knowledge, four of these algorithms (KASUMI, KLEIN, mCrypton, KATAN)
are implemented for the first time on an 8-bit platform. We selected the ciphers
according to three criteria: all selected candidates should (a) give no indication
of flawed security, (b) be freely usable without patent restrictions, and (c) likely
result in lightweight implementations with a footprint of less than 256 bytes of
RAM and 4 KB of code size for a combined encryption and decryption function.

In order to make comparisons asmeaningful as possible, we adapt the guidelines
for evaluations of hardware implementations proposed in [10] to our software con-
text. Yet, as the project involves 12 different designers, we also acknowledge that
some biases can appear due to slightly different implementation choices. Hence, as
usual for performance evaluations, looking at the source codes is essential in order
to properly understand the reasons of different performance figures. Overall, we
hope that this initiative can be used as a first step in better analyzing the perfor-
mances of block ciphers in a specific but meaningful class of devices. We also hope
that it can be used as a starting point to further develop cryptographic libraries
for embedded platforms and, in the long run, add security against physical attacks
(e.g., based on faults or side-channel leakage) as another evaluation criteria.

The remainder of this paper is structured as follows. Section 2 contains a
brief overview of the implemented ciphers. Section 3 establishes our evaluation
methodology and metrics, followed by Section 4 that gives details about the AT-
tiny45 microcontroller. Section 5 provides succinct descriptions and motivation
of the implementation choices made by the designers. Finally, performance eval-
uations are given in Section 6 and conclusions are drawn in Section 7. The web
page containing all our open-source codes is available at [8].



174 T. Eisenbarth et al.

2 Investigated Ciphers

AES [6] is the new encryption standard selected in 2002 replacing the former
DES. It supports key sizes of 128, 192 or 256 bits, and its block size is 128
bits. The encryption iterates a round function a number of times, depending
on the key size. The round is composed of four transformations: SubBytes (that
applies a non-linear S-box to the bytes of the states), ShiftRows (a wire crossing),
MixColumns (a linear diffusion layer), and finally AddRoundKey (a bitwise XOR
of the round key). The round keys are generated from the secret key by means
of an expansion routine that re-uses the S-box used in SubBytes. For low-cost
applications, the typical choice is to fix the key size to 128 bits.

DESL, DESX, and DESXL [14] are lightweight variants of the DES cipher
with the main goal to minimize the gate count required in hardware implemen-
tations. In the L-variant, all eight DES S-boxes are replaced by a single S-Box
with well chosen characteristics to resist known attacks against DES. Addition-
ally, the initial permutation (IP ) and its inverse (IP−1) are omitted, because
they do not provide additional cryptographic strength. The X-variant includes
an additional key whitening of the form: DESXk,k1,k2(x) = k2 ⊕ DESk(k1 ⊕ x).
DESXL is the combination of both variants.

HIGHT [12] is a hardware-oriented block cipher designed for low-cost and low-
power applications. It uses 64-bit blocks and 128-bit keys. HIGHT is a variant
of the generalized Feistel network and is composed of simple operations: XOR,
additions mod 28 and bitwise rotations. Its key schedule consists of two algo-
rithms: one generating whitening key bytes for initial and final transformations;
the other one generating subkeys for the 32 rounds. Each subkey byte is the re-
sult of an addition mod 28 between a master key byte and a constant generated
using a linear feedback shift register.

IDEA [13] is a patented cipher whose patent expired in May 2011 (in all coun-
tries with a 20 year term of patent filing). Its underlying Lai-Massey construction
does not involve an S-box or a permutation network such as in other Feistel or
common SPN ciphers. Instead, it interleaves mathematical operations from three
different groups to establish security, such as addition modulo 216, multiplication
modulo 216 + 1 and addition in GF(216) (XOR). IDEA has a 128-bit key and
64-bit input and output. A major drawback of its construction is the inverse
key schedule that requires the complex extended Euclidean algorithm during
decryption. For efficient implementation, this complex key schedule needs to be
precomputed and stored in memory.

KASUMI [1] is a block cipher derived from MISTY1 [17]. It is used as a
keystream generator in UMTS, GSM, and GPRS mobile communication systems.
KASUMI has a 128-bit key and 64-bit input and output. The core of KASUMI is
an eight-round Feistel network. The round functions in the main Feistel network
are irreversible Feistel-like network transformations. The key scheduling is done
by bitwise rotating the 16-bit subkeys or XORing them with a constant. There
are two S-boxes, one with 7 bit, the other with 9 bit input/output.



Compact Implementation and Performance Evaluation of Block Ciphers 175

KATAN and KTANTAN [4] are two families of hardware-oriented block
ciphers. They have 80-bit keys and a block size of either 32, 48 or 64 bits. The
cipher structure resembles that of a stream cipher, consisting of shift registers
and non-linear feedback functions. An LFSR counter is used to protect against
slide attacks. The difference between KATAN and KTANTAN lies in the key
schedule. KTANTAN is intended to be used with a single key per device, which
can then be burnt into the device. This allows KTANTAN to achieve a smaller
footprint in a hardware implementation. In our implementation, we consider
KATAN with 64-bit block size.

KLEIN [11] is a family of lightweight software-oriented block ciphers with
64-bit plaintexts and variable key length (64, 80 or 96 bits - our performance
evaluations focus on the 80-bit version). It is primarily designed for software im-
plementations in resource-constrained devices such as wireless sensors and RFID
tags, but its hardware implementation can be compact as well. The structure
of KLEIN is a typical Substitution-Permutation Network (SPN) with 12/16/20
rounds for KLEIN-64/80/96, respectively. One round transformation consists of
four operations AddRoundKey, SubNibbles (4-bit involutive S-box), RotateNibbles
and MixNibbles (borrowed from AES MixColumns). The key schedule of KLEIN
has a Feistel-like structure. It is agile even if keys are frequently changed and it
is designed to avoid potential related-key attacks.

mCrypton [15] is a block cipher designed for resource-constrained devices such
as RFID tags and sensors. It has a block length of 64 bits and a variable key
length of 64, 96 or 128 bits. Here, we implement the variant with 96-bit key
length. mCrypton consists of an AES-like round transformation (12 rounds) and
a key schedule. The round transformation operates on a 4×4 nibble (4-bit) array
and consists of a nibble-wise non-linear substitution, a column-wise bit permu-
tation, a transposition and a key-addition step. The substitution step uses four
4-bit S-boxes. Encryption and decryption have almost the same form. The key
scheduling algorithm generates round keys using non-linear S-box transforma-
tions, word-wise rotations, bit-wise rotations and a round constant. The same
S-boxes are used for the round transformation and key scheduling.

NOEKEON [5] is a block cipher with a key length and a block size of 128
bits. The block cipher consists of a simple round function based only on bit-wise
Boolean operations and cyclic shifts. The round function is iterated 16 times for
both encryption and decryption. Within each round, a working key is XORed
with the data. The working key is fixed during all rounds and is either the cipher
key itself (direct mode) or the cipher key encrypted with a null string. The self-
inverse structure of NOEKEON allows to efficiently combine the implementation
of encryption and decryption operation with only little overhead.

PRESENT [3] is a hardware-oriented lightweight block cipher designed to
meet tight area and power restrictions. It features a 64-bit block size and 80-bit
or 128-bit key size (we focus on the 80-bit variant). PRESENT implements a
substitution-permutation network and iterates 31 rounds. The permutation layer
consists only of bit permutations (i.e. wire crossings). Together with the tiny



176 T. Eisenbarth et al.

4-bit S-box, the design enables minimalistic hardware implementations. The key
scheduling consists of a single S-box lookup, a counter addition and a rotation.

SEA [19] is a scalable family of encryption algorithms, defined for low-cost
embedded devices, with variable bus sizes and block/key lengths. In this paper,
we focus on SEA96,8, i.e. a version of the cipher with 96-bit block and key size.
SEA is a Feistel cipher that exploits rounds with 3-bit S-boxes, a diffusion layer
made of bit and word rotations and a mod 2n key addition. Its key scheduling
is based on rounds similar to the encryption ones and is designed such that keys
can be derived “on-the-fly” both in encryption and decryption.

TEA [21] is a 64-bit block cipher using 128-bit keys (although equivalent keys
effectively reduce the key space to 2126). TEA stands for Tiny Encryption Algo-
rithm and, as the name says, this algorithm was built with simplicity and ease of
implementation in mind. An implementation of the algorithm in C corresponds
to about 20 lines of code, and does not involve a S-box. TEA has a 64-round
Feistel structure, each round being based on XOR, 32-bit addition and rotation.
The key schedule is also very simple, alternating the two halves of the key at
each round. TEA is sensitive to related-key attacks using 223 chosen plaintexts
and one related-key query, with a time complexity of 232.

3 Methodology and Metrics

In order to be able to compare the performances of the different ciphers in terms
of speed, memory space and energy, the developers were asked to respect a list
of common constraints, detailed hereunder.

1. The code has to be written in assembly, in a single file. It has to be com-
mented and easily readable, e.g., naming functions similar to their original
specifications.

2. The cipher has to be implemented in a low-cost way, minimizing the code
size and the use of data memory.

3. Both encryption and decryption routines have to be implemented.
4. Whenever possible, and in order to minimize the data-memory use, the key

schedule has to be computed “on-the-fly”. The computation of the key sched-
ule is always included in the algorithm evaluations.

5. The encryption process should start with plaintext and key in data memory.
The ciphertext should overwrite the plaintext at the end of this process (and
vice versa for decryption).

6. The target device is the 8-bit microcontroller ATtiny45 from ATMEL’s AVR
device family. It has a reduced instruction set and does not provide a hard-
ware multiplier.

7. The encryption and decryption routines have to be called by a common
interface.

The SEA reference code was sent as an example to all designers, together with
the common interface (also provided at [8]).



Compact Implementation and Performance Evaluation of Block Ciphers 177

The basic metrics considered for evaluation are code size, RAM size, cycle
count in en- and decryption, and energy consumption. From these basic met-
rics, a combined metric is extracted (see Section 6). For the energy-consumption
evaluations, each cipher is programmed and executed on an ATtiny45 mounted
on a power-measurement board. A 22Ohm shunt resistor is inserted between the
Vdd pin and the 5V power supply, in order to measure the current consumed by
the controller while encrypting. The common interface generates a trigger at the
beginning and end of each encryption. The power traces are measured between
those two triggers using an oscilloscope that is equipped with a differential probe.
We average one hundred encryption traces for each energy evaluation using ran-
domly generated plaintexts and keys for each encryption. The average energy
consumed by an encryption is deduced by integrating the measured current.

Finally note that, as mentioned in the introduction, the 12 ciphers are im-
plemented by 12 different designers, with slightly different interpretations of
low-cost optimizations. As a result, some of the guidelines could not always
be followed, because of the cipher specifications making them less relevant. In
particular, the following exceptions deserve to be mentioned.

(1) The key scheduling of IDEA is not computed “on-the-fly” but precomputed
(as explained in Section 2).

(2) The key in KATAN has to be restored externally for subsequent invocations.
(3) The 4-bit S-boxes of KLEIN, mCrypton, and PRESENT are implemented

as 8-bit tables (because of a better time/memory trade-off).

4 Description of the ATtiny45 Microcontroller

The ATtiny45 is an 8-bit RISC microcontroller from ATMEL’s AVR series. It
uses a Harvard architecture with separate instruction and data memory. Instruc-
tions are stored in a 4 kB Flash memory (2048× 16 bits). Data memory involves
256-byte of static RAM, a register file with 32 8-bit general-purpose registers,
and special I/O memory for peripherals like timer, analog-to-digital converter
or serial interface. Different direct and indirect addressing methods are available
to access data in RAM. Especially indirect addressing allows accessing data in
RAM with very compact code size. Moreover, the ATtiny45 features a 256-bytes
EEPROM memory for non-volatile data storage.

The instruction set of the ATtiny45 consists of 120 instructions which are typ-
ically 16-bit wide. Instructions can be divided into arithmetic logic unit (ALU)
operations (arithmetic, logical, and bit operations) and conditional and uncon-
ditional jump and call operations. The instructions are processed within a two-
stage pipeline with a pre-fetch and an execute phase. Most instructions are
executed within a single clock cycle, leading to a good instructions-per-cycle
ratio. Compared to other microcontrollers from ATMEL’s AVR series such as
the ATmega or ATxmega devices, the ATtiny45 has a reduced instruction set
(e.g., no multiply instruction), smaller memories (Flash, RAM, EEPROM), no
in-system debug capabilities, and less peripherals. On the bright side, the AT-
tiny45 consumes less power and is cheaper in price.



178 T. Eisenbarth et al.

5 Implementation Details

AES. The code is written following the specification for 128-bit key/block size
and operates on a state matrix of 16 bytes. In order to improve performance,
the state is stored in 16 registers, while the key is stored in RAM. In addition,
five temporary registers are used to implement the MixColumn step. The S-box
and the round constants are implemented as look-up tables. The multiplication
operation needed for MixColumn is computed using shift and XOR instructions.

DESXL. In order to keep code size small, a function which can compute all
permutations and expansions depending on the calling parameters is used. This
function is also capable of generating 6-bit outputs for direct usage as S-box
input. Because of the bit-oriented structure of the permutations which are slow
in software, this function is the performance bottleneck of the implementation.
The rest of the code is a straightforward application of the specification. Besides
the memory requirements for plain-/ciphertext and the keys k, k1, k2, additional
16 bytes of RAM are required for the round key and the state. The S-box and all
permutation and expansion tables are stored in Flash memory and are processed
directly from there.

HIGHT. First, the intermediate states are stored in RAM at each round and
two bytes of the plaintext and one byte of the key are loaded at a time. This way,
it is possible to re-use the same code fragment four times per round. Next, the
byte rotation at the output of the round function is integrated in the memory
accesses of the surrounding functions, thus minimizing temporary storage and
gaining cycles. Eight subkey bytes are generated once every two rounds and are
stored in RAM. Finally, except for the additions mod 28 that are replaced by
subtractions mod 28 and some other minor changes, the same functions as in
encryption are used in decryption.

IDEA. This cipher is implemented including a precomputed key schedule per-
formed by separate functions for encryption and decryption, prior to the actual
cipher operation. During cipher execution the precomputed key (104 bytes) is
then read byte by byte from RAM. The plaintext/ciphertext and the internal
state are kept completely in 16 registers and 9 additional registers are used for
temporary computations and counters. IDEA requires a 16-bit modular mul-
tiplication as basic operation. However, in the AVR device used in this work,
no dedicated hardware multiplier unit is available. Multiplication is therefore
implemented in software resulting in a data-dependent execution time of the
cipher operation and an increased cycle count (about a factor of 4) compared to
an implementation for a device with a hardware multiplier. Note that IDEA’s
multiplication is special and maps zero as any input to 216 (which is equivalent
to −1 mod 216 +1). Therefore, whenever a zero is detected as input to the mul-
tiplication, our implementations returns the additive inverse of the other input,
reduced modulo 216 + 1.

KASUMI. The code is written following the functions described in the cipher
specifications. During the execution, the 16-byte key as well as the 8-byte running



Compact Implementation and Performance Evaluation of Block Ciphers 179

state remain stored in RAM. This allows using only 12 registers and 24 bytes of
RAM. Some rearrangements are done to skip unnecessary moves between regis-
ters. The 9-bit S-box is implemented as 8-bit table, with the MSBs concatenated
in a second 8-bit table. The 7-bit S-box is implemented as 8-bit table, leaving the
MSBs unused in this table. The round keys are derived “on-the-fly”. Decryption
is very similar to encryption, as usual for a Feistel structure.

KATAN-641. The main optimization goal is to limit the code size. The en-
tire state of the cipher is kept in registers during operation. To avoid excessive
register pressure, the in- and outputs are stored in RAM, and this RAM space
is used to backup the register contents during operation. Only three additional
registers need to be stored on the stack. The fact that three rounds of KATAN
can be run in parallel is not used in this implementation. Doing so would re-
quire more complicated shifting and masking to extract bits from the state, and
thus significantly increase the code size, for little or no performance gain. As the
KATAN key schedule is computed “on-the-fly”, the key in RAM is clobbered and
needs to be restored externally for subsequent invocations. Keeping the master
key in RAM would require 10 additional words (note that the KTANTAN key
schedule does not modify the key, so it does not have this limitation). In order
to implement the non-linear functions efficiently, addition instructions are used
to compute several logical AND’s and XOR’s in parallel through carefully posi-
tioning the input bits and using masking to avoid undesired carry propagation.

KLEIN-80. Despite the goal of small memory footprint, the 4-bit involutive S-
box is stored as an 8-bit table for saving clock cycles. As it can be used in both
encryption and decryption, this corresponds to a natural trade-off between code
size and processing speed (a similar choice is made for mCrypton and PRESENT,
see the next paragraphs). In order to save memory usage during processing, the
MixNibbles step (borrowed from AES MixColumns) is implemented by a single
function without using lookup tables. Overall, 29 registers are used during the
computations. Among them, 8 registers correspond to the intermediate state, 10
registers to the key scheduling, 9 registers are used for temporary storage and 2
registers for the round counter.

mCrypton. The reference code directly follows the cipher specification. The
implementation aims for a limited code size. Therefore, as much code as possi-
ble is reused for decryption and encryption. In addition, up to 20 registers are
used during the computations to reduce the cycle count. 12 registers are used to
compute the intermediate state and the key scheduling, 6 registers for tempo-
rary storage, one for the current key scheduling constant and one for the round
counter. After each round the modified state and key scheduling state are stored
in RAM. The round key is derived from the key scheduling state and is tem-
porarily stored in RAM. The four 4-bit S-boxes are stored in four 8-bit tables,
wasting the 4 most significant bits of each entry, but saving cycle counts. The
constants used in the key scheduling algorithm are stored in an 8-bit table.

1 All six variants of the KATAN/KTANTAN family are supported via conditional
assembly. Our performance evaluations focus on the 64-bit version of KATAN.



180 T. Eisenbarth et al.

NOEKEON. The implementation aims to minimize the code size and the num-
ber of utilized registers. During execution of the block cipher, input data and
cipher key are stored in the RAM (32 bytes are required). In that way, only 4
registers are used for the running state, one register for the round counter, and
three registers for temporary computations. The X-register is used for indirect
addressing of the data in the RAM. Similar to the implementation of SEA (de-
tailed below), using more registers for the running state will decrease the cycle
count, but will also increase the code size because of a less generic program-
ming. For decrypting data, the execution sequence of the computation functions
is changed, which leads to a very small increase in code size.

PRESENT. The implementation is optimized in order to limit the code size
with throughput as secondary criteria. State and round key are stored in the
registers to minimize accesses to RAM. The S-boxes are stored as two 256-byte
tables, one for encryption and one for decryption. This allows for two S-box
lookups in parallel. However, code size can easily be reduced if only encryption
or decryption is performed. A single 16-byte table for the S-boxes could halve
the overall code size, but would significantly impact encryption times. The code
for permutation, which is the true performance bottleneck, can be used for both
encryption and decryption.

SEA. The reference code is written directly following the cipher specifications.
During its execution, plaintexts and keys are stored in RAM (accounting for a
total of 24 bytes), limiting the register consumption to 6 registers for the running
state, one register for the round counter and three registers of temporary storage.
Note that higher register consumption would allow decreasing the cycle count
at the cost of a less generic programming. The S-box is implemented using its
bitsliced representation. Decryption uses exactly the same code as encryption,
with “on-the-fly” key derivation in both cases.

TEA. Implementing TEA is almost straightforward due to the simplicity of the
algorithm. The implementation is optimized to limit the RAM usage and code
size. As far as RAM is concerned, we only use 24 bytes needed for plaintext
and key storage, with the ciphertext overwriting the plaintext in RAM at the
end of the process. The only notable issue regarding implementing TEA con-
cerns rotations. TEA is optimized for a 32-bit architecture and the fact that
only 1-position shift and rotations are available on the ATtiny, plus the need to
propagate carries, make these operations slightly more complex. In particular,
5-position shifts are optimized by replacing them by a 3-position shift in the
opposite direction and recovering boundary carries. Nonetheless, TEA proves to
be very easy to implement, resulting in a compact code of 648 bytes.

6 Performance Evaluation

We consider 6 different metrics: code size (in bytes), RAM use (in bytes), cycle
count in encryption and decryption, energy consumption (in μJ) and a combined
metric, namely the code size × cycle count product, normalized by the block



Compact Implementation and Performance Evaluation of Block Ciphers 181

size. The results for our different implementations are given in Table 1 which
are compared in Figures 1, 2, 3, 4, 5, 6 as shown in the appendix. We detail a
few meaningful observations below.

Table 1. Performance evaluation of our implementations on the AVR ATtiny45 mi-
crocontroller. Results obtained in this work are given in bold face.

Cipher Block Key Size Code Size RAM Cycles Cycles Energy
Size [bits] [bits] [bytes] [bytes] (enc+key) (dec+key) [μJ]

AES 128 128 1659 33 4557 7015 19,2
AES[9] 128 128 2606 0 6637 7429 -
DESXL 64 184 820 48 84602 84602 348,9
DESXL[9] 64 184 3192 0 8531 7961 -
HIGHT 64 128 402 32 19503 20159 79,8
HIGHT[9] 64 128 5672 0 2964 2964 -
IDEA 64 128 836 232 ∼8250 ∼22729 34,3
IDEA[9] 64 128 596 0 2700 15393 -
KASUMI 64 128 1264 24 11939 11939 47,6
KATAN 64 80 338 18 72063 88525 289,2
KLEIN 64 80 1268 18 6095 7658 25,1
mCrypton 64 96 1076 28 16457 22656 68
NOEKEON 128 128 364 32 23517 23502 95,9
PRESENT 64 80 1000 18 11342 13599 45,3
PRESENT[9] 64 80 936 0 10723 11239 -
SEA 96 96 426 24 41604 40860 173,7
SEA[9] 96 96 2132 0 9654 9654 -
TEA 64 128 648 24 7408 7539 30,3
TEA[9] 64 128 1140 0 6271 6299 -

First, as our primary goal is to consider compact implementations, we com-
pare our code sizes with the ones listed in [9]. Note, however, that secure imple-
mentation is not considered a goal of this work. As illustrated in Figure 1, we
reduce the memory footprint for most investigated ciphers, with specially strong
improvements for DESXL, HIGHT and SEA. The code sizes among our new
implementations can also be compared using this figure. The frontrunners are
HIGHT, NOEKEON, SEA and KATAN (all take less than 500 bytes of ROM).
One can notice the relatively poor performances of mCrypton, PRESENT and
KLEIN. This can in part be explained by the hardware-oriented flavor of these
ciphers (e.g., the use of bit permutations or manipulation of 4-bit nibbles is not
optimal when using 8-bit microcontrollers). As expected, standard ciphers such
as AES and KASUMI are more expensive, but only up to a limited extent since
both can be implemented using less than 2000 bytes of ROM.

The RAM usage in Figure 2 first exhibits the large needs of IDEA regarding
this metric (232 words) that is essentially due to the need to store a precomputed
key schedule for this cipher. Besides, and following our design guidelines, this
metric essentially reflects the size of the intermediate state that has to be stored



182 T. Eisenbarth et al.

during the execution of the algorithms. Note that for AES, this is in contrast to
the “Furious” implementation [18] that uses 192 bytes of RAM and explains our
slightly reduced performance for this cipher.

The cycle count in Figure 3 clearly illustrates the performance loss that is im-
plied by the use of simple round functions in most lightweight ciphers. This loss
is critical for DESXL and KATAN where the large number of round iterations
leads to cycle counts beyond 50,000 cycles. It is also large for SEA, NOEKEON
and HIGHT. By contrast, these metrics show the excellent efficiency of AES. Cy-
cle count for decryption (Figure 4) shows similar results, with some noticeable
changes. Most visibly, IDEA decryption is much less efficient than its encryp-
tion. AES also shows an non-negligible overhead when decrypting. In contrast,
a number of ciphers behave identically in encryption and decryption, e.g., SEA
where the two routines perform almost identical.

As expected, the energy consumption of all the implemented ciphers (Fig-
ure 5) is strongly correlated with the cycle count, confirming the experimental
results in [7]. However, slight code dependencies can be noticed. This raises an
interesting question whether (and to what extend) different coding styles can
further impact the energy consumption.

Lastly, the combined metric in Figure 6 first shows the excellent size vs.
performance trade-off offered by AES. Among the low-cost ciphers, NOEKEON
and TEA exhibit excellent figures as well, most likely due to their very simple
key scheduling. This comes at the cost of possible security concerns regarding
related-key attacks. HIGHT and KLEIN provide a good trade-off between code
size and cycle count. A similar comment applies to SEA, where parts of the
overhead comes from a complex key scheduling algorithm (key rounds are as
complex as the rounds for this cipher). Despite their hardware-oriented nature,
PRESENT and mCrypton offer decent performance on 8-bit devices as well.
KATAN falls a bit behind, mainly because of its very large cycle count. Only
DESXL appears not to be suitable in such an implementation context.

7 Conclusion

This paper reported on an initiative to evaluate the performance of different
standard and lightweight block ciphers on a low cost microcontroller. In total,
12 different ciphers have been implemented with compactness as main optimiza-
tion criteria. Their source code is available on a web page, under an open-source
license. Our results improve most prior work obtained for similar devices. They
highlight the different trade-offs between code size and cycle count that is offered
by different algorithms. They also put forward the weaker performances of ci-
phers that were specifically designed with hardware performance in mind. Scopes
for further research include the extension of this work towards more algorithms
and the addition of countermeasures against physical attacks.

Acknowledgements. This work has been funded in part by the European Com-
mission’s ECRYPT-II NoE (ICT-2007-216676), by the Belgian State’s IAP pro-
gram P6/26 BCRYPT, by the ERC project 280141 (acronym CRASH), by the



Compact Implementation and Performance Evaluation of Block Ciphers 183

7th framework European project TAMPRES, by the Walloon region’s S@T Sky-
win, MIPSs and NANOTIC-COSMOS projects. This work has been also been
supported in part by the Ministry of Economic Affairs and Energy of the State of
North Rhine-Westphalia (Grant 315-43-02/2-005-WFBO-009). Stéphanie Kerck-
hof is a PhD student funded by a FRIA grant, Belgium. F.-X. Standaert is a
Research Associate of the Belgian Fund for Scientific Research (FNRS-F.R.S).
Zheng Gong is supported by NSFC (No. 61100201). The authors would like
to thank Svetla Nikova for her help regarding the implementation of the block
cipher KLEIN.

References

1. 3rd Generation Partnership Project. Technical Specification Group Services and
System Aspects, 3G Security, Specification of the 3GPP Confidentiality and In-
tegrity Algorithms, Document 2: KASUMI Specification (Release 10) (2011)

2. ATMEL. AVR 8-bit Microcontrollers, http://www.atmel.com/products/avr/
3. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

4. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A
Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C.,
Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg
(2009)

5. Daemen, J., Peeters, M., Assche, G.V., Rijmen, V.: Nessie Proposal: NOEKEON
(2000), http://gro.noekeon.org/Noekeon-spec.pdf

6. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer (2002)

7. de Meulenaer, G., Gosset, F., Standaert, F.-X., Pereira, O.: On the Energy Cost of
Communication and Cryptography in Wireless Sensor Networks. In: WiMob, pp.
580–585. IEEE (2008)

8. Eisenbarth, T., Gong, Z., Güneysu, T., Heyse, S., Indesteege, S., Kerckhof, S.,
Koeune, F., Nad, T., Plos, T., Regazzoni, F., Standaert, F.-X., van Oldeneel tot
Oldenzeel, L.: Implementations of Low-Cost Block Ciphers in Atmel AVR Devices
(2011), http://perso.uclouvain.be/fstandae/lightweight_ciphers/

9. Eisenbarth, T., Kumar, S.S., Paar, C., Poschmann, A., Uhsadel, L.: A Survey
of Lightweight-Cryptography Implementations. IEEE Design & Test of Comput-
ers 24(6), 522–533 (2007)

10. Gaj, K., Homsirikamol, E., Rogawski, M.: Fair and Comprehensive Methodology
for Comparing Hardware Performance of Fourteen Round Two SHA-3 Candidates
Using FPGAs. In: Mangard, Standaert (eds.) [16], pp. 264–278

11. Gong, Z., Nikova, S., Law, Y.W.: KLEIN: A New Family of Lightweight Block
Ciphers. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18.
Springer, Heidelberg (2012)

12. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B.-S., Lee, C., Chang, D., Lee,
J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A New Block Cipher Suitable
for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 46–59. Springer, Heidelberg (2006)

http://www.atmel.com/products/avr/
http://gro.noekeon.org/Noekeon-spec.pdf
http://perso.uclouvain.be/fstandae/lightweight_ciphers/


184 T. Eisenbarth et al.

13. Lai, X., Massey, J.L.: A Proposal for a New Block Encryption Standard. In:
Damg̊ard, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 389–404. Springer,
Heidelberg (1991)

14. Leander, G., Paar, C., Poschmann, A., Schramm, K.: New Lightweight DES Vari-
ants. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 196–210. Springer,
Heidelberg (2007)

15. Lim, C.H., Korkishko, T.: mCrypton – A Lightweight Block Cipher for Security of
Low-Cost RFID Tags and Sensors. In: Song, J., Kwon, T., Yung, M. (eds.) WISA
2005. LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2006)

16. Mangard, S., Standaert, F.-X. (eds.): CHES 2010. LNCS, vol. 6225. Springer, Hei-
delberg (2010)

17. Matsui, M.: New Block Encryption Algorithm MISTY. In: Biham, E. (ed.) FSE
1997. LNCS, vol. 1267, pp. 54–68. Springer, Heidelberg (1997)

18. Poettering, B.: RijndaelFurious AES-128 Implementation for AVR Devices (2007),
http://point-at-infinity.org/avraes/

19. Standaert, F.-X., Piret, G., Gershenfeld, N., Quisquater, J.-J.: SEA: A Scalable
Encryption Algorithm for Small Embedded Applications. In: Domingo-Ferrer, J.,
Posegga, J., Schreckling, D. (eds.) CARDIS 2006. LNCS, vol. 3928, pp. 222–236.
Springer, Heidelberg (2006)

20. Wenzel-Benner, C., Gräf, J.: XBX: eXternal Benchmarking eXtension for the SU-
PERCOP Crypto Benchmarking Framework. In: Mangard, Standaert (eds.) [16],
pp. 294–305

21. Wheeler, D.J., Needham, R.M.: TEA, a Tiny Encryption Algorithm. In: Preneel,
B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1995)

http://point-at-infinity.org/avraes/


Compact Implementation and Performance Evaluation of Block Ciphers 185

Appendix

Fig. 1. Code size: comparison with previous work [9]

Fig. 2. Performance evaluation: RAM use



186 T. Eisenbarth et al.

Fig. 3. Performance evaluation: cycle count (encryption)

Fig. 4. Performance evaluation: cycle count (decryption)



Compact Implementation and Performance Evaluation of Block Ciphers 187

Fig. 5. Performance evaluation: energy consumption

Fig. 6. Performance evaluation: combined metric



Cryptanalysis of Enhanced TTS, STS and All Its
Variants, or: Why Cross-Terms Are Important

Enrico Thomae and Christopher Wolf

Horst Görtz Institute for IT-security
Faculty of Mathematics

Ruhr-University of Bochum, 44780 Bochum, Germany
enrico.thomae@rub.de, chris@Christopher-Wolf.de

Abstract. We show that the two multivariate signature schemes En-
hanced STS, proposed at PQCrypto 2010, and Enhanced TTS, proposed
at ACISP 2005, are vulnerable due to systematically missing cross-terms.
To this aim, we generalize equivalent keys to so-called good keys for an
improved algebraic key recovery attack. In particular, we demonstrate
that it is impossible to choose both secure and efficient parameters for
Enhanced STS and break all current parameters of both schemes.

Since 2010, many variants of Enhanced STS, such as Check Equations
or Hidden Pair of Bijections were proposed. We break all these variants
and show that making STS secure will either lead to a variant known
as the Oil, Vinegar and Salt signature scheme or, if we also require the
signing algorithm to be efficient, to the well-known Rainbow signature
scheme. We show that our attack is more efficient than any previously
known attack.

Keywords: Multivariate Cryptography, Algebraic Cryptanalysis, STS,
TTS, Rank Attack, Key Recovery Attack, Equivalent Keys.

1 Introduction

All signature schemes discussed in this article use a public multivariate quadratic
map P : Fn

q → Fm
q with

P :=

⎛⎜⎝ p(1)(x1, . . . , xn)
...

p(m)(x1, . . . , xn)

⎞⎟⎠
and

p(k)(x1, . . . , xn) :=
∑

1≤i≤j≤n

γ
(k)
ij xixj = xᵀP(k)x, for 1 ≤ k ≤ m, γij ∈ Fq

where P(k) is the (n × n) matrix describing the quadratic form of p(k) and
x = (x1, . . . , xn)ᵀ. Note that we can neglect linear and constant terms for crypt-
analytical purposes as they never mix with quadratic terms and thus have no

A. Mitrokotsa and S. Vaudenay (Eds.): AFRICACRYPT 2012, LNCS 7374, pp. 188–202, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Cryptanalysis of enTTS and enSTS 189

positive effect on security. In the case of TTS those linear terms will even de-
crease security as we will see later. Inverting a system of generic multivariate
quadratic (MQ) polynomials P is known to be hard, as the correspondingMQ-
problem is proven to be NP-complete [9]. However, the trapdoor is given by a
structured central map F : Fn

q → Fm
q with

F :=

⎛⎜⎝ f (1)(u1, . . . , un)
...

f (m)(u1, . . . , un)

⎞⎟⎠
and

f (k)(u1, . . . , un) :=
∑

1≤i≤j≤n

γ
(k)
ij uiuj = uᵀF(k)u.

To hide the trapdoor we choose two secret linear transformations S, T and define
P := T ◦ F ◦ S. See figure 1 for illustration.

Fn
q Fm

q

Fn
q Fm

q

P

S T

F

Fig. 1.MQ-Scheme in general

One way to achieve a secret map F = (f1, . . . , fm)ᵀ was given by the Se-
quential Solution Method of Tsujii [18,21]. The idea was somehow similar to the
independently proposed schemes of Shamir [16] and Moh [14]. In 2004 Kasahara
and Sakai extended this idea to the so-called RSE system [11], which later was
generalized to the Stepwise Triangular System (STS) by Wolf et al. [22]. Here the
central polynomials f (k) are some random quadratic polynomial in a restricted
number of variables. See figure 2 for the stepped structure of the resultingMQ-
system. Inverting this map is possible as long as solving r quadratic equations in
r variables is practical (cf. section 2 for the complexity of solvingMQ-systems).
Consequently, we need to restrict r to rather small values, e.g. r = 4 . . . 9.

In the same year Wolf et al. [22] showed how to efficiently break the pro-
posed parameters of the STS schemes RSSE(2)PKC and RSE(2)PKC using a
HighRank attack. At PQCrypto 2010 Tsujii et al. [20] tried to fix the scheme by
proposing a new variant called Enhanced STS, which uses a complementary STS
structure (cf. section 2). Only a few months later they noticed themselves that
the scheme is obviously not immune to HighRank attacks, although this was
originally a design goal. To fix this problem, they proposed several new variants
[10,19]. In section 2 we will shortly repeat the HighRank Attack. We then give a
more efficient algebraic key recovery attack which makes use of a generalization



190 E. Thomae and C. Wolf

f (1)(u1, . . . , ur)

...
f (r)(u1, . . . , ur)

...

f ((i−1)r+1)(u1, . . . , uir)

...
f (ir)(u1, . . . , uir)

...

f ((L−1)r+1)(u1, . . . , um)

...
f (m)(u1, . . . , um)

︷︸
︸︷

︷︸
︸︷

︷︸
︸︷

Step 1

Step i

Step LStep L

resp.

r

r

...

r

po
ly

no
m

ia
ls

u1· · ·ur · · · um

variables

Fig. 2. Central map of STS based signature schemes like RSSE(2)PKC or RSE(2)PKC.
The gray parts of the matrix indicate that those variables occur in the corresponding
polynomial and white parts indicate that they do not.

of equivalent keys, which we call good keys, and missing cross-terms. The latter
are quadratic monomials of two variables from different sets, which do not exist
in the central map F by construction. We want to mention that our attack can
be seen as a generalization of the Rainbow Band Separation attack [6]. Please
refer to the full version of this article [17] for a comprehensive description of this
connection.

Section 2 concludes with the statement that it is impossible to find a secure
and efficient parameter set for Enhanced STS. In section 3 we will also break
the new variants of STS. In section 4 we apply our attack to Enhanced TTS
and break current sets of parameters. Note that we can repair Enhanced TTS
by just raising parameters. In section 5 we discuss possible improvements and
conclude our work.

2 Cryptanalysis of Enhanced STS

To exploit different ranks in plain STS, we use the quadratic form of the polyno-
mials f (k), i.e. f (k) = uᵀF(i)u for u = (u1, . . . , um)ᵀ and some (m ×m) matrix
F(i). Note that we have n = m = Lr here. Obviously the rank of these matrices
in the i-th step is ir. Now we use that the rank is invariant under the bijective
transformation S−1u = x of variables, i.e. rank(SᵀF(i)S) = rank(F(i)) for all i.
In addition, the public polynomials p(i) = xᵀP(i)x are given by some linear com-
bination P(i) =

∑m
j=1 tijS

ᵀF(j)S = Sᵀ
(∑m

j=1 tijF
(j)
)

S. As the rank is changed
by the transformation of equations T , we can use the rank property of the under-
lying central equations f (k) as a distinguisher to obtain the full transformation T .



Cryptanalysis of enTTS and enSTS 191

Enhanced STS was thought to resist rank attacks. Tsujii et al. introduced
two sets U = {u1, . . . , um} and V = {v1, . . . , vm−r} of variables and constructed
central polynomials f (k) which all have the same rank m. The construction is
very similar to figure 2, but every polynomial f (k) depends on m variables. See
figure 3 for details.

r

r

...

r

po
ly

no
m

ia
ls

u1..ur · · · umv1..vr · · · vm−r

variables

Fig. 3. Central map of Enhanced STS. The gray parts of the matrix indicate that those
variables occur in the corresponding polynomial and white parts indicate that they do
not.

As the corresponding MQ-system F has m quadratic equations but n =
2m − r variables, we could fix all variables of V to random values and obtain
an MQ-system of r equations and r variables in the first step. Solving this
MQ-system, substituting the solution in the next step and so on, allows for a
reasonable efficient inversion of F .

Tsujii et al. themselves noticed [19] that having the same rank m for the
central polynomials f (k) does not prevent rank attacks in any way, as the rank
of the public polynomials is 2m − r. The following simple HighRank attack is
still applicable. Note that due to the additional variables vi the minimal rank of
the central polynomials is m, for m ≥ 26 in practice to prevent direct attacks.
Thus Enhanced STS is at least secure against MinRank attacks [8,4].

HighRank Attack. In order to reconstruct T we have to search for linear com-
binations of the public polynomials P(i), such that the rank decrease from 2m−r
to m. Let σ ∈ Sm be a random permutation, which we need for randomization.
Then there exist λi ∈ Fq such that the following linear combination has rank
2m− 2r and thus the rank drops by r.

P(σ(r+1)) +
r∑

i=1

λiP
(σ(i)) =: P̃

There are 2 different solutions, as we can eliminate the r matrices F(1), . . . , F(r)

or F(m−r+1), . . . , F(m) such that P̃ has rank 2m − 2r. In the first case P̃ is a
linear combination of secret polynomials, who do not contain variables v1, . . . , vr



192 E. Thomae and C. Wolf

respectively um−r+1, . . . , um in the latter case. Thus brute forcing all λi has
complexity qr/2. Once we have eliminated all the F(i) of one block (e.g. 1 ≤ i ≤ r)
in one polynomial P̃ we easily eliminate those F(i) in all the other m− r public
polynomials by just determining ker(P̃). The linear system

∑m
i=1 λiP

(i)ω = 0
with ω ∈ ker(P̃) provides all m−r polynomials of rank 2m−2r. The complexity
of this step is 2(2m − r)3. Repeating this whole procedure L times yields r

matrices P̃(i) of rank m. At this point we know the kernel of one of the central
blocks of F and could use this to separate the matrices in the steps before, which
are still linear combinations of some SᵀF(i)S. Choosing a vector that lies in the
kernel of the matrices obtained in the i-th step, but not in the kernel of matrices
recovered in step i + 1, . . . , L easily provides T . The overall complexity of this
HighRank attack is given by

L

2
qr + 2L(2m− r)3 +

L−1∑
i=1

(ir)3 = O(qr).

Algebraic Key Recovery Attack. For readers not familiar with solving al-
gorithms for multivariate non-linear systems of equations, we first briefly sketch
how to determine the complexity of solving a MQ-system using a Gröbner Ba-
sis algorithm like F4 (cf. [2] for details). In a nutshell, we first have to calculate
the degree of regularity dreg. For semi-regular sequences, which generic systems
are assumed to be, the degree of regularity is the index of the first non-positive
coefficient in the Hilbert series Sm,n with

Sm,n =
∏m

i=1(1− zdi)
(1 − z)n

,

where di is the degree of the i-th equation, m is the number of equations and
n the number of variables. The complexity of solving a zero-dimensional (semi-
regular) system using F4 is

O
((

n + dreg

dreg

)α)
,

with 2 ≤ α ≤ 3 the linear algebra constant. The internal equations used by F4

are very sparse and thus α = 2 is applied by cryptanalyst. Well, the constructors
of schemes are often of a different opinion and use α = 3. Note that genericMQ-
systems are assumed to have worst-case complexity. As soon as the equations
contain some structure, e.g. they are bihomogeneous, the complexity of solving
them decrease [7].

We saw that the complexity of the HighRank attack strongly depends on the
field size q and the parameter r. Even if r is restricted to small values due to
efficiency constraints, it is possible to choose q large enough to obtain a scheme
secure against the previously mentioned attack. For example, let r = 9 and
q = 29. Now we describe a new key recovery attack that is almost independent
of the field size q and thus makes it impossible to find a parameter set that is



Cryptanalysis of enTTS and enSTS 193

both efficient and secure. To ease explanation we fix a parameter set of enhanced
STS to illustrate the attack. As there are no parameters given in [19], which is
by the way not very courteous to cryptanalyst, we choose m = 27, r = 9 and
q = 29 as this prevents message recovery attacks via Gröbner Bases on the public
key as well as HighRank attacks. The number of steps is given by L = m/r = 3.
The number of variables is n = 2m− r = |U |+ |V | = 27 + 18 = 45. Note that a
legitimate user would need to solve three generic MQ-system with 9 equations
and variables over F29 to compute a signature. Using the fastest known method,
i.e. the hybrid approach [3] by guessing one variable has theoretical complexity
of 3q

(
8+5
5

)2 ≈ 231 with dreg = 5. Using the very fast F4 implementation of
Magma V2.16-1 [5] on a Intel Xeon X33502.66GHz (Quadcore) with 4 GB of
RAM using only one core, solving one system took us 0.3 seconds. Thus the
worst case signing time is 3 · 29 · 0.3 ≈ 461 seconds. But despite of choosing such
a large r, we now show that the resulting scheme still is not secure.

F : ,

U︷ ︸︸ ︷ V︷ ︸︸ ︷

U1 U2 U3 V1 V2

U1 U2 U3 V1 V2

U︷ ︸︸ ︷ V︷ ︸︸ ︷
0

0

0

0

0

0

S̃ : and T̃ :

9 9 9

9

9

9

Fig. 4. Central map F of Enhanced STS and the minimal representative S and T of
the class of equivalent keys

Figure 4 shows the structure of the central map F . The picture describing F
has to be read as figure 3. Every little square denotes a (9× 9) array. Moreover,
we give the structure of the secret key S̃ := S−1, which is a (45×45) matrix with
ones at the diagonal, zeros at the white parts and unknown values at the gray
parts. Note that there are many different secret keys S respectively S−1 that
preserve the structure of F , i.e. preserve systematical zero coefficients in the
polynomials f (i). We call all them equivalent keys and can assume that there
is one representative with the structure given in figure 4 with overwhelming
probability. The same holds for T̃ := T−1. The notion of equivalent keys was
introduced by Wolf et al. [23,24]. We skip the derivation of S̃ and T̃ given in
figure 4 as it was already known and is very similar to the proof of lemma 1.

An algebraic key recovery attack uses the special structure of F to obtain
equations in S̃ and T̃ through the following equality derived from F = T−1 ◦P ◦
S−1 with T̃ := T−1 =: (t̃ij) and S̃ := S−1.

F(i) = S̃ᵀ

⎛⎝ m∑
j=1

t̃ijP
(j)

⎞
⎠ S̃ (1)



194 E. Thomae and C. Wolf

As P is publicly known and we further know that some of the entries of F are
systematically zero, we obtain cubic equations in the elements of S̃ and T̃ . To
ease notation in (2) we use uj+m := vj for j = 1, . . . , m− r. It is interesting to
observe that the equations obtained from the coefficients uiuj in fk are of the
form

0 =
n∑

x=1

n∑
y=1

n∑
z=1

αxyz t̃kxs̃yis̃zj (2)

for some coefficients αxyz ∈ Fq that depend on the public key matrices P(j)

(cf. [15, Sec. 3] for an explicit formula). In particular every monomial con-
tains one variable of the i-th column and one variable of the j-th column
of S̃. Due to the special form of S̃ this immediately implies that all equa-
tions obtained by zero monomials uiuj with ui ∈ U1 := {u1, . . . , u9} and
uj ∈ U2 ∪ U3 := {u10, . . . , u18} ∪ {u19, . . . , u27}, as well as uivj with ui ∈ U1

and vj ∈ V1 ∪ V2 := {v1, . . . , v9} ∪ {v10, . . . , v18} become quadratic instead of
cubic. This change hence greatly improves the overall attack complexity. Defin-
ing U × V := {{u, v} |u ∈ U, v ∈ V } the total amount of equations obtained by
systematical zeros in F is

9 · (|(U2 ∪ U3)× (U2 ∪ U3)|+ |(U2 ∪ U3)× (V1 ∪ V2)|)
+ 9 · (|(U3 ∪ V1)× (U3 ∪ V1)|+ |(U3 ∪ V1)× (U2 ∪ V2)|)
+ 9 · (|(V1 ∪ V2)× (V1 ∪ V2)|+ |(V1 ∪ V2)× (U2 ∪ U3)|)
= 9 · 3 · ((18 · 19)/2 + 18 · 18)
= 27 · (171 + 324) = 13 365 cubic equations and

9 · |(U2 ∪ U3)× U1|+ 9 · |(U3 ∪ V1)× U1|+ 9 · |(V1 ∪ V2)× U1|
= 27 · 162 = 4 374 quadratic equations.

Solving this system of equations in 486 variables t̃ij and 1134 variables s̃ij with a
common Gröbner basis algorithm like F4 has a total complexity of 2877 (cf. [1,2]).
This huge complexity is due to the large number of variables and the fact that
the complexity estimation assumes generic equations and thus does not take the
structure of the equations into account. In order to decrease the complexity, we
have to break down the problem into smaller pieces. This can be done if we
further decrease the number of variables in S̃ and T̃ . Therefore we generalize
the notion of equivalent keys to keys that do not preserve the whole structure
of F but just parts of it. We call these keys good keys if they also reveal some
parts of the keys S̃ respectively T̃ . At a first glance it is not clear that such good
keys actually exists. The following lemma proves the existence of good keys and
constructively give a special class of them.

Lemma 1. Let S̃ and T̃ be equivalent keys for enhanced STS of the form given
in figure 4. Then there exist good keys S′ and T ′, of the following form.
S′ is all zero except the gray parts, which are equal to the corresponding values
in S̃ and the diagonal, which contains only ones. Similarly, the gray parts of T ′

equal the corresponding values in T̃ .



Cryptanalysis of enTTS and enSTS 195

F : ,

U︷ ︸︸ ︷ V︷ ︸︸ ︷

U1 U2 U3 V1 V2

U1 U2 U3 V1 V2

U︷ ︸︸ ︷ V︷ ︸︸ ︷
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

S′ : and T ′ :

9 9 9

0

0

0 0

0

9

9

9

Proof. To preserve the structure of F given in lemma 1 we are allowed to map
variables U1 ∪U2 ∪ U3 ∪ V2 �→ U1 ∪U2 ∪ U3 ∪ V2 as well as V1 �→ V1. As soon as
we map variables from V1 to any other set of variables, all polynomials would
contain variables from V1 and thus the whole structure of F would be destroyed.
Now we show that using such a transformation Ω of variables, we can uniquely
map S̃ to S′ by S̃Ω = S′.

S̃Ω :=

⎛⎜⎜⎜⎜⎜⎝
I S̃(1) S̃(2) S̃(3) S̃(4)

0 I S̃(5) S̃(6) S̃(7)

0 0 I S̃(8) S̃(9)

0 S̃(10) S̃(11) I 0
0 S̃(12) S̃(13) S̃(14) I

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

Ω(1) Ω(2) Ω(3) 0 Ω(4)

Ω(5) Ω(6) Ω(7) 0 Ω(8)

Ω(9) Ω(10) Ω(11) 0 Ω(12)

Ω(13) Ω(14) Ω(15) Ω(16) Ω(17)

Ω(18) Ω(19) Ω(20) 0 Ω(21)

⎞⎟⎟⎟⎟⎠ != S′

Obviously Ω(16) = I and thus S̃(3), S̃(6), S̃(8) and S̃(14) remain unchanged. As S̃
is regular, all other Ω(i) are uniquely determined by S̃−1S′. Showing that T ′ is
a good key is trivial: If we only want f2r+1, . . . , f3r to contain no V1 variables,
we are allowed to map all polynomials except f1, . . . , fr to one another. ��

Using the good keys of lemma 1 we end up with 405 cubic equations, 2916
quadratic equations and 405 variables. The complexity of solving such a system
using F4 is still 2151. To bring this game to an end, i.e. to preserve as less struc-
ture as possible and thus reduce the number of variables as much as possible, we
only need to assure that f30 do not contain the variable v1. With (2) we now ob-
tain |(U∪V2∪V1\{v1})×{v1}| = 44 quadratic equations and one cubic equation.
Using good keys analogous to lemma 1, we obtain 9 variables t27j for 1 ≤ j ≤ 9
as well as 36 variables si28 for 1 ≤ i ≤ 36. Applying the generic complexity anal-
ysis as before still provides the same, and hence infeasible complexity of 2151.
Reason: now the number of equations equals the number of variables, which is
assumed to have worst-case complexity. To obtain a better attack complexity
we somehow have to use the fact that all quadratic equations are bihomoge-
neous, i.e. of the form

∑36
i=1

∑9
j=1 αijt27jsi28 for some αij ∈ Fq. In [7] Faugère

et al. analyzed systems of such a special structure and gave an upper bound on
the degree of regularity for F4. To use their results we first have to guess one
variable tij such that we obtain a system of 44 bihomogeneous equations in 44
variables. According to their results we now obtain a degree of regularity of 9



196 E. Thomae and C. Wolf

and a complexity of 29
(
44+9

9

)2 ≈ 273. In general the degree of regularity is r, as
we have r − 1 variables tij after guessing and thus the complexity of our attack
for arbitrary parameters is given by

q

(
2m− 1

r

)2

.

Once we obtained a single row/column of S̃ and T̃ , the whole system breaks
down as all other elements are now determined through linear equations. To
show that this is actually true for all elements of S̃, T̃ , let us label every equation
obtained by a zero coefficient of uiuj in fk by (ui, uj, k) (cf. (2)). Now, (ui, v1, k)
and (vj , v1, k) with i = 1, . . . , 27, j = 1, . . . , 18 and k = 19, . . . , 26 provide linear
equations in tij with i = 19, . . . , 26 and j = 1, . . . , 9. Next we can apply the same
approach using good keys as above for v1 to vi, i = 2, . . . , 9. As we already know
the coefficients tij of the appropriate good key, all bihomogeneous equations
become linear in sij . Next we can determine the next blocks in T through linear
equations only. We repeat the process until all secret coefficients are recovered.

To summarize our new attack, we first used the fact that cross-terms from
(U ∪ V2)× V1 do not exist to obtain quadratic instead of cubic equations in the
key recovery attack. Second, we reduced the number of variables through good
keys. And third, we used the special bihomogeneous structure of the equations to
lower the attack’s complexity. In order to protect the scheme against this attack
we either have to increase m or r. But as the complexity of the signing algorithm
is 3q

(
r−1+dreg

r−1

)2
, i.e. in the same order of magnitude of our attack, Enhanced

STS cannot be efficient and secure at the same time. In general it do not seem
to be a good idea to use an exponential time signing algorithm (cf. section 5).

3 Cryptanalysis of Enhanced STS Variants

Check Equation Enhanced STS. The original Enhanced STS contain m
quadratic equations in 2m−r variables in the public key and thus have qm−r pos-
sible valid signatures to one message. Even if current algorithms cannot take ad-
vantage of underdeterminedMQ-systems, Tsujii et al. [19] suggested to strength
their signature by adding m − r check equations and thus fix one unique sig-
nature. From a message recovery point of view, the attacker now would have
to solve a MQ-system of 2m − r (public key) equations and variables. Before
he had to solve a system of m equations and variables after just guessing the
additional m− r variables.

However, the check equations do not affect the algebraic key recover attack
in section 2. Moreover, if the check equations are not chosen purely random and
thus introducing new structure, the attack may even benefit.

Hidden Pair of Bijection. The overall idea is very general. Take a pair F1, F2 :
Fm

q → Fm
q of bijections with a disjoint set of variables, i.e. u = (u1, . . . , um) and

v = (v1, . . . , vm) and connect them with a function H containing all the cross-
terms of u and v. The central polynomial f (k) is given by



Cryptanalysis of enTTS and enSTS 197

f (k)(u, v) := F1(u) + F2(v) + H(u, v) for some H(u, v) :=
m∑

j=1

m∑
i=1

αijuivj .

If F1 and F2 contain some trapdoor and we assign u or v zero, we can invert the
central map. An instantiation of this scheme using the STS trapdoor is depicted
in figure 5.

r

r

...

r

po
ly

no
m

ia
ls

U︷ ︸︸ ︷

f (k)(u, v) = +

r

r

...

r

V︷ ︸︸ ︷

+

r

r

...

r

U×V︷ ︸︸ ︷

Fig. 5. Secret map F of Hidden Pair of Bijection using STS trapdoor

The first observation is that due to the cross-terms in H all the secret matrices
F(i) have full rank 2m and thus rank attacks are not trivially applicable. But
there is a smart way in applying rank attacks to the scheme. The weak point is
the signing algorithm proposed by Tsujii et al., which first chooses u or v to be
zero. They claimed that this would not help an attacker, as his chance to guess
the right choice is 1

2 . Well, if we collect 4m − 1 valid signatures x1, . . . , x4m−1

to arbitrary massages, which are all signed using the same secret S, we can
built an efficient distinguisher. We know X := (xᵀ

1 , . . . , xᵀ
2m−1) is (up to column

permutations) of the following form

X = S·
0

0

The probability of matrix X to have rank 2m − 1 is (1/2)2m−12
(
2m−1

m

)
which is

sufficiently large—for example choosing m = 30 this equals 0.21. Once we found
a collection of signatures x1, . . . , x2m−1, such that rank(X) = 2m−1 we obtained
an efficient distinguisher. If X ||xj for j ≥ 2m still has rank 2m− 1 we add xj to
the set A. If the rank increase by one we add xj to the set B. As soon as both sets
A and B are of cardinality m we easily obtain a transformation S̃ which separates
the U and V space through linear algebra. After fixing one of the both sets of
variables we obtain a plain STS scheme and can apply the HighRank or the Key
Recovery attack from above.

In order to prevent this attack we would have to assign arbitrary values to u
respectively v instead of all zeros. This immediately invalidate the trapdoor and
renders the scheme unusable. In every step we would have to solve a quadratic un-
derdetermined system of equation without destroying possible solution through
guessing variables. We will discuss this question further in section 5.



198 E. Thomae and C. Wolf

4 Cryptanalysis of Enhanced TTS

Enhanced TTS was proposed by Yang and Chen in 2005 [25]. The overall idea
of the scheme was to use several layers of UOV trapdoors and to make them
as sparse as possible. In contrast to UOV this would prevent the Kipnis and
Shamir attack [13] without increasing the number of vinegar variables. In fact,
while we have a signature blow up of factor 3 for UOV, enTTS improves this
figure to 1.3. As enTTS was designed for high speed implementation it uses as
few monomials as possible.

There are two different scalable central maps given in [25], one is called even
sequence and the other odd sequence. The following equations show the even
sequence.

f (i) = ui +
2�−5∑
j=1

γijuju2�−4+(i+j+1 mod 2�−2) for 2�− 4 ≤ i ≤ 4�− 7,

f (i) = ui +
�−4∑
j=1

γijui+j−(4�−6)ui−j−2�−1 +
2�−5∑

j=�−3

γijui+j−3�+5ui−j+�−4

for 4�− 6 ≤ i ≤ 4�− 3,

f (i) = ui + γi0ui−2�+2ui−2�−2 +
6�−5∑

j=i+1

γi,j−(4�−3)u4�−3+i−juj

+γi,i−4�+3u0ui +
i−1∑

j=4�−2

γi,j−(4�−3)u2(i−j)−(i mod 2)uj + γi,i−4�+2u0ui

for 4�− 2 ≤ i ≤ 6�− 5.

The number of equations and variables is m = 4� and n = 6�−4, respectively, for
some parameter �. The first observation is that the number of equations obtained
by (2) is very large, as only 2� − 3 monomials per equation are non-zero. The
second observation is that the linear terms provide an enormous amount of new
equations, as their coefficients are not chosen at random but fixed. Considering
only the linear parts of the public polynomials p(j) we obtain the following
equation analogously to (1)

ei+2�−5 = S̃

⎛⎝ m∑
j=1

t̃ij(γ
(j)
1 , . . . , γ(j)

n )ᵀ

⎞
⎠ for 1 ≤ i ≤ m, (3)

where ei denote the all-zero vector with a single 1 in the i-th entry and γ
(j)
i is the

coefficient of xi in p(j). We obtain a total amount of 4�(6�− 4) bihomogeneous
equations in the (4�)2 variables of T̃ and in the (6� − 4)2 variables of S̃. But
despite of this large amount of equations a theoretical complexity analysis of
solving those equations provide infeasible large results, due to the large amount
of variables. Note that in practice the solving algorithm may seriously benefit of



Cryptanalysis of enTTS and enSTS 199

the equations internal structure. We leave it as an open problem to implement
this attack and run experiments to determine the real complexity of attacking
enTTS this way.

In the sequel we once again focus on reducing the number of variables. Note
that most of the equations (3) vanish as soon as we use equivalent keys. This is
also true for a large amount of zero-coefficients in the quadratic part. Thus we
generalize the scheme by adding more monomials. In particular, we adapt the
definition of enTTS as follows: As soon as a monomial xixj with xi ∈ U and
xj ∈ V occurs in the original enTTS polynomial f (k), we just assume that all
monomials xixj with xi ∈ U and xj ∈ V occur as well. This way we easily see
that enTTS is a very special case of the Rainbow signature scheme, neglecting the
linear parts. We chose the parameter set (n, m) = (32, 24) and thus � = 6 given
in [25], as this provides a security level of 288. See figure 6 for an illustration.

F(1), . . . , F(10) F(11), . . . , F(14) F(15), . . . , F(24)

8 10 4 10 8 10 4 10 8 10 4 10

0

0 0

T = 0

0 0

0 00

S =

Fig. 6. Secret map F of TTS (32, 24) and equivalent keys T and S

The attack is similar to the one described in section 2. Suppose we just want do
preserve zero coefficients of x32xi in polynomial uᵀF(14)u. This leads to the good
keys given in figure 7 and thus to 31 bihomogeneous equations in 10 variables
t14i with i = 15, . . . , 24 and 22 variables sj32 with j = 1, . . . , 22. Analogous to
section 2 we first have to guess one variable tij . Solving the remaining system of
31 bihomogeneous equations in 31 variables has complexity 28

(
31+10

10

)2 ≈ 268.
But due to the special structure of enTTS we can do even better. Applying the

transformation of variables Ω analogous to lemma 1, we see that the monomial
u32u32 do not occur in any of the secret polynomials. This way we additionally
obtain 23 quadratic equations in sij . The complexity of solving a generic system
of 23 + 31 quadratic and 1 cubic equation in 32 variables is 252.4. Note that this
complexity is just an upper bound as we assumed generic equations and thus
did not use the special structure.



200 E. Thomae and C. Wolf

0

0 0

0 0

T ′ = 0

0 0

0 00

0 0

0S′ =

Fig. 7. Good Keys T ′ and S′ for enTTS (32, 24)

5 Conclusions or: Where Do We Take It from Here?

In summary, we have introduced a new attack that is applicable to both En-
hanced STS and Enhanced TTS. It uses equations on cross-terms and the inher-
ent bihomogenious structure of them. In the case of Enhanced STS the question
arise if non-linearity could help in any way to improve UOV or Rainbow. Or in
other words, is it possible to repair STS at all?

Quick Fix. One answer was already given by Kipnis et al. in the paper that
proposed UOV [12]. One of their possible variants to repair the balanced Oil
and Vinegar scheme and thus to avoid the attack of Kipnis and Shamir [13] was
called Oil, Vinegar and Salt signature scheme. Here the variables are divided
into three sets O, V and S. The central map F is constructed such that there
are no monomials uiuj with ui ∈ O and uj ∈ V ∪ S. After fixing the vinegar
variables we obtain a system linear in the O variables and quadratic in the S
variables. The best known way to solve such a system is to brute-force the S
variables and then solve the remaining linear system. This way we loose a factor
of q|S| in terms of efficiency. As it turned out later, a modified version of the
Kipnis and Shamir attack actually can be applied to the Oil, Vinegar and Salt
scheme. Ironically, the factor we gain compared to the original scheme is exactly
the factor we loose in terms of efficiency. But as the (positive) effect of non-
linearity to the public key size is negligible compared to the (negative) effect to
the efficiency of the scheme, the best trade-off is to just skip the salt variables
and hence use the original UOV scheme.

The Dilemma. STS can be seen as a layer-based version of Oil, Vinegar and
Salt. So we can rephrase the question between UOV and UOV+S in this setting.
In particular, we have to ask ourselves if the layered structure of STS allows
for a better trade-off between efficiency and security than UOV. Unfortunately,
we have to leave the final answer as an open question. However, we incline to
the negative. To illustrate this, we want to elaborate some thoughts on this
matter. One the one hand, it is not clear even for UOV if the ratio between
efficiency and security increases for the layer-based scheme Rainbow. Especially
the attack of section 4, which is not applicable to UOV, challenges this hope.
On the other hand, the attack of Kipnis and Shamir [13] is exponential and
not practical for layer-based schemes like Rainbow. So the question remains, if
and how much security we can gain at all by introducing some non-linearity
in each layer. Our intuition is that the loss of efficiency is always greater or



Cryptanalysis of enTTS and enSTS 201

equal than the gain of security in these cases and hence of no avail in practice.
The reason is that on the one hand the signing algorithm becomes exponential
instead of polynomial, as soon as we introduce non-linear parts. In comparison,
the attack stays exponential in both cases, i.e. there is no security gap between
the legitimate user and the attacker.

A Way Out? The only exception from this rule seem to be Gröbner bases
that are used without any additional structure as a trapdoor. Clearly we have to
use Vinegar variables in that case, as otherwise MinRank attacks are applicable.
But we found no way to fuse this into a working scheme—but got the impression
that this is not possible at all. Hence, we leave it as an open problem, how to
embed a Gröbner Basis into a scheme using Vinegar variables and to derive a
both secure and efficient scheme.

Acknowledgments. We want to thank Peter Czypek (Bochum) for fruitful
discussions and helpful remarks on Enhanced TTS. Furthermore we thank the
reviewers for helpful comments.

The authors were supported by the German Science Foundation (DFG)
through an Emmy Noether grant where the second author is principal investiga-
tor. All authors were in part supported by the European Commission through
the IST Programme under contract ICT-2007-216676 Ecrypt II.

References

1. Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of Gröbner basis compu-
tation of semi-regular overdetermined algebraic equations. In: Proceedings of the
International Conference on Polynomial System Solving, pp. 71–74 (2004)

2. Bardet, M., Faugère, J.-C., Salvy, B., Yang, B.-Y.: Asymptotic expansion of the
degree of regularity for semi-regular systems of equations. In: Gianni, P. (ed.)
MEGA 2005, Sardinia, Italy (2005)

3. Bettale, L., Faugère, J.-C., Perret, L.: Hybrid approach for solving multivariate
systems over finite fields. Journal of Mathematical Cryptology 3, 177–197 (2009)

4. Billet, O., Gilbert, H.: Cryptanalysis of Rainbow. In: De Prisco, R., Yung, M. (eds.)
SCN 2006. LNCS, vol. 4116, pp. 336–347. Springer, Heidelberg (2006)

5. Computational Algebra Group, University of Sydney. The MAGMA Com-
putational Algebra System for Algebra, Number Theory and Geometry,
http://magma.maths.usyd.edu.au/magma/

6. Ding, J., Yang, B.-Y., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M.: New Differential-
Algebraic Attacks and Reparametrization of Rainbow. In: Bellovin, S.M., Gennaro,
R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 242–257.
Springer, Heidelberg (2008)

7. Faugère, J.-C., Din, M.S.E., Spaenlehauer, P.-J.: Gröbner bases of bihomogeneous
ideals generated by polynomials of bidegree (1, 1): Algorithms and Complexity. J.
Symb. Comput. 46(4), 406–437 (2011)

8. Faugère, J.-C., Levy-dit-Vehel, F., Perret, L.: Cryptanalysis of MinRank. In: Wag-
ner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 280–296. Springer, Heidelberg
(2008)

http://magma.maths.usyd.edu.au/magma/


202 E. Thomae and C. Wolf

9. Garey, M.R., Johnson, D.S.: Computers and Intractability — A Guide to the The-
ory of NP-Completeness. W.H. Freeman and Company (1979) ISBN 0-7167-1044-7
or 0-7167-1045-5

10. Gotaishi, M., Tsujii, S.: Hidden Pair of Bijection signature scheme. IACR Cryptol-
ogy ePrint Archive (2011), http://eprint.iacr.org/2011/353

11. Kasahara, M., Sakai, R.: A construction of public-key cryptosystem based on sin-
gular simultaneous equations. In: Symposium on Cryptography and Information
Security — SCIS 2004, Sendai, Japan, January 27-30. The Institute of Electronics,
Information and Communication Engineers (2004)

12. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar signature schemes
— extended version, 17 pages (2003)

13. Kipnis, A., Shamir, A.: Cryptanalysis of the Oil & Vinegar Signature Scheme.
In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer,
Heidelberg (1998)

14. Moh, T.: A public key system with signature and master key func-
tion. Communications in Algebra 27(5), 2207–2222 (1999), electronic version,
http://citeseer/moh99public.html

15. Petzoldt, A., Thomae, E., Bulygin, S., Wolf, C.: Small Public Keys and Fast Ver-
ification for Multivariate Quadratic Public Key Systems. In: Preneel, B., Takagi,
T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 475–490. Springer, Heidelberg (2011)

16. Shamir, A.: Efficient Signature Schemes Based on Birational Permutations. In:
Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 1–12. Springer, Heidelberg
(1994)

17. Thomae, E.: A Generalization of the Rainbow Band Separation Attack and its
Applications to Multivariate Schemes. IACR Cryptology ePrint Archive (2012)

18. Tsujii, S., Fujioka, A., Hirayama, Y.: Generalization of the public-key cryptosystem
based on the difficulty of solving non-linear equations. Transactions of the Institute
of Electronics and Communication Engineers of Japan (1989)

19. Tsujii, S., Gotaishi, M.: Enhanced STS using check equation - extended version
of the signature scheme proposed in the PQCrypt 2010. IACR Cryptology ePrint
Archive (2010), http://eprint.iacr.org/2010/480

20. Tsujii, S., Gotaishi, M., Tadaki, K., Fujita, R.: Proposal of a Signature Scheme
Based on STS Trapdoor. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061,
pp. 201–217. Springer, Heidelberg (2010)

21. Tsujii, S., Kurosawa, K., Itho, T., Fujioka, A., Matsumoto, T.: A public-key cryp-
tosystem based on the difficulty of solving a system of non-linear equations. Trans-
actions of the Institute of Electronics and Communication Engineers of Japan
(1986)

22. C. Wolf, A. Braeken, and B. Preneel. Efficient cryptanalysis of RSE(2)PKC
and RSSE(2)PKC. In Conference on Security in Communication Networks —
SCN 2004, volume 3352 of Lecture Notes in Computer Science, pages 294–309.
Springer, Sept. 8–10 2004. Extended version: http://eprint.iacr.org/2004/237.

23. Wolf, C., Preneel, B.: Equivalent Keys in HFE, C∗, and Variations. In: Dawson,
E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 33–49. Springer, Hei-
delberg (2005), extended version, 15 pages, http://eprint.iacr.org/2004/360/

24. Wolf, C., Preneel, B.: Equivalent keys in multivariate quadratic public key systems.
Journal of Mathematical Cryptology 4(4), 375–415 (2011)

25. Yang, B.-Y., Chen, J.-M.: Building Secure Tame-like Multivariate Public-Key
Cryptosystems: The New TTS. In: Boyd, C., González Nieto, J.M. (eds.) ACISP
2005. LNCS, vol. 3574, pp. 518–531. Springer, Heidelberg (2005)

http://eprint.iacr.org/2011/353
http://eprint.iacr.org/2010/480
http://eprint.iacr.org/2004/237
http://eprint.iacr.org/2004/360/


A Complementary Analysis of the (s)YZ
and DIKE Protocols

Augustin P. Sarr1 and Philippe Elbaz–Vincent2

1 Université de Strasbourg
aug.sarr@gmail.com

2 Institut Fourier – CNRS, Université Grenoble 1

Abstract. The Canetti–Krawczyk (CK) model remains widely used for
the analysis of key agreement protocols. We recall the CK model, and its
variant used for the analysis of the HMQV protocol, the CKHMQV model;
we recall also some of the limitations of these models. Next, we show that
the (s)YZ protocols do not achieve their claimed CKHMQV security. Fur-
thermore, we show that they do not achieve their claimed computational
fairness. Our attack suggests that no two–pass key establishment proto-
col can achieve this attribute. We show also that the Deniable Internet
Key Exchange fails in authentication; this illustrates the inability of cap-
turing some impersonation attacks in the CK model. Besides, we propose
a secure, efficient, and deniable protocol, geared to the post peer speci-
fied model.

Keywords: authentication, key establishment, computational fairness,
deniability, (e)CK models, (s)YZ, DIKE, SMQV–1.

1 Introduction

The design and analysis of key agreement protocols is a notoriously subtle topic;
a large part of the proposed designs appears to be flawed. In [1], Bellare and Rog-
away proposed a new approach for the analysis of key agreement protocols. Since
their work, other models was proposed, including the Canetti–Krawczyk (CK) [3]
and the extended Canetti–Krawczyk (eCK) [13] models, which are now consid-
ered as advanced security definitions. However, there remains a large class of
attacks which are not considered in these security definitions [6,22].

Recently, Yao and Zhao [25] proposed a new family of authenticated key
establishment protocols, the (s)YZ protocols, they analyzed in the CKHMQV
model (the variant of the CK model used in [11,12] for the analysis of the HMQV
protocol). They introduced also a new security notion, computational unfairness,
which aims to capture the difference that may exist between the computational
effort it requires for an honest and a malicious party to complete a session; and
showed that the (s)YZ protocols are computationally fair, while (H)MQV is
not. Also, in [27], they proposed a new protocol termed Deniable Internet Key
Exchange (DIKE), which “adds novelty and new value to the IKE” standard;
they showed the DIKE secure in the CK model.

A. Mitrokotsa and S. Vaudenay (Eds.): AFRICACRYPT 2012, LNCS 7374, pp. 203–220, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



204 A.P. Sarr and P. Elbaz–Vincent

In this work, we propose a complementary analysis of the (s)YZ and DIKE
protocols; we examine also the computational unfairness security attribute. First,
we show that, contrary to the claims of [25], the (s)YZ protocols do not achieve
the CKHMQV–security. Second, we show that the (s)ZY protocols do not achieve
the computational fairness attribute; further, our attack suggests that no two–
pass key establishment protocol can achieve this attribute. Third, we show that
the DIKE protocol fails in authentication. Namely, if an attacker learns the
ephemeral secret at a session initiator, it can impersonate any party to the ini-
tiator; this illustrates also the inability of capturing some impersonation attacks
in the CK model.

The remainder of this paper is organized as follows. In section 2, we recall
the CK and CKHMQV security models, and some of their limitations. In sec-
tion 3, we recall the YZ protocols family. In section 4 we discuss the YZ proto-
cols attributes, and propose an attack which invalidates their CKHMQV security,
we show also that these protocols do not achieve their claimed computational
fairness. In section 5, we recall the DIKE protocol, and propose an attack which
shows its failure in authentication, we also present a SMQV variant geared to
the post peer specified model. We conclude in section 6.

Notations and terminology: G denotes a multiplicatively written cyclic group
of prime order q generated by G, |q| is the bit length of q; G∗ is the set of non–
identity elements in G. For X ∈ G, the lowercase x denotes the discrete logarithm
of X in base G. The identity of a party with public key A is denoted Â; Â is
supposed to contain A, and may be a certificate. If Â �= B̂, we suppose that no
substring of Â equals B̂. H , H1, and HK are λ–bit cryptographic hash function,
where λ is the length of session keys, and H̄ is a l–bit hash function, where
l = (�log2 q�+1)/2. The symbol ∈R stands for “chosen uniformly at random in.”

2 The Canetti–Krawczyk Security Model(s)

In the CK model, a protocol is defined as a collection of procedures run by a
finite number of parties. Each protocol specifies its processing rules for incoming
and outgoing messages. A two–party key agreement is a protocol which involves
two parties. A session is an instance of a protocol run at a party. In a two–party
key agreement, each session is activated with a quadruple (P̂i, P̂j , ψ, ς), where P̂i

is the session owner, P̂j is the peer, ψ is the session identifier, and ς is the role
of P̂i in the session. A session identifier is required to be unique at each party
involved in the session, i.e., a party never uses the same identifier twice. Two
sessions with activation parameters (P̂i, P̂j , ψ, ς) and (P̂j , P̂i, ψ′, ς ′) are said to
be matching if ψ = ψ′. Notice that CK matching sessions can have the same role.

The adversary, denoted by A, is a probabilistic polynomial time machine in
control of communications between parties; outgoing messages are submitted
to A, which decides about their delivery. The adversary decides also about ses-
sion activations. In addition, it is given the following queries, aiming to model
practical information leakages.



A Complementary Analysis of the (s)YZ and DIKE Protocols 205

– SessionStateReveal(P̂i, ψ): when this query is issued on the uncompleted ses-
sion ψ at P̂i, the adversary obtains the session’s ephemeral information.
However, the model does not specify the information revealed by this query;
it leaves this to be specified by protocol designers.

– SessionKeyReveal(P̂i, ψ): with this query, the adversary obtains, the session
key derived in the session ψ at P̂i, if the session is completed and unexpired.

– Corrupt(P̂i): when this query is issued on a party P̂i, the adversary obtains all
the information the party holds, including its static private key and session
states. Once the query issued, the attacker (which is in control of communi-
cation links) can impersonate the party at will; one then consider the party
under the attacker’s control. A party against which this query is not issued
is said to be honest.

– Expire(P̂i, ψ): this query models the erasure of a session key and state from
the session owner’s memory. Notice that a session can be expired while its
matching session is unexpired.

– Test(P̂i, ψ): when this query is issued on a completed (and unexpired) session
ψ at P̂i, a bit γ is chosen at random, and depending on the value of γ,
the attacker is provided with either the session key, or a random value chosen
under the distribution of session keys. The attacker is allowed to continue its
run with regular queries, but not to reveal the test session or its matching
session’s key or state.

Definition 1 (CK Session Freshness). A session at a party is said to be lo-
cally exposed if it was sent a SessionStateReveal query, a SessionKeyReveal query,
or if its owner is corrupted. A session is said to be exposed if it or its matching
session is locally exposed. An unexposed session is said to be CK–fresh.

With this session freshness definition, a CK–secure protocol is as follows.

Definition 2 (CK–Security). A two–party key agreement protocol is said to be
CK–secure if: (1) when two uncorrupted parties complete matching sessions then,
except with negligible probability, they both compute the same session key, and
(2) no polynomially bounded adversary can distinguish a CK–fresh session key
from a random value (chosen under the distribution of session keys) with prob-
ability significantly greater than 1/2.

2.1 The CKHMQV Model

In [12], Krawczyk uses a variant of the CK–model for the analysis of the HMQV
protocol. In this variant, termed here CKHMQV, a session is identified with a
quadruple (P̂i, P̂j , X, Y ) where P̂i is the session owner, P̂j is the peer, and X
and Y are respectively the outgoing and incoming ephemeral public keys. Two
sessions with identifiers (P̂i, P̂j , X, Y ) and (P̂j , P̂i, Y, X) are said to be matching.
In addition, there is no Expire query in the CKHMQV model (the motivation is



206 A.P. Sarr and P. Elbaz–Vincent

that the CKHMQV model does not aim to capture forward secrecy1, but weak
forward secrecy [11]).

In a separate analysis, Krawczyk [12, sections 6 and 7.4] allows the adversary
to query a SessionStateReveal on the test session, or to learn the static private
key of the session’s owner. Notice that, the purpose of [12], was not to propose
a new security model, as it refers to [3] for details [12, p. 9], and considers
its session identifiers and matching sessions definitions as consistent with the
CK–model [12, p. 10], while the CK and CKHMQV models are formally and
practically incomparable [5,6]. Except the differences on (1) session identifiers
and matching sessions definition, and (2) the absence of the Expire query in the
CKHMQV model, the CK and CKHMQV session freshness and security definitions
are the same.

Some Weaknesses in the CK(HMQV) Models

In this section, we recall some of the reported weaknesses on the CK and
CKHMQV security models. The discussion is voluntarily limited to the aspects re-
lated to this work. Notice that contrary to [25], and in accordance with [2,4,5,22,6],
by CK–model we mean the security model defined in [3], and by CKHMQV, the
model(s) used in [11] for the analysis of the HMQV protocol.

On the CK Matching Sessions. Besides not modelling key compromise imper-
sonation resilience, a main limitation of the CK model is its matching sessions
definition. Indeed, it is a requirement of the model that the layer calling a key
agreement protocol makes sure that a party never uses the same identifier twice.
One may ask how can this be achieved over an unauthenticated network in con-
trol of an active adversary. Moreover, in the CK model, session identifiers may
be nonces generated by the session initiator and provided to the peer in the
first message of the protocol. In this case, when each party stores the previously
used identifiers, and verifies at session activation that the identifier was not used
before; the requirement that a party never uses the same identifier twice is then
achieved. Unfortunately, in such a case, the model fails in capturing some prac-
tical impersonation attacks. A kind of impersonation attacks not captured in
the CK model, was reported and illustrated in [22, section 2] on the protocol
P from [17].

Limitation of the CKHMQV Session Identifiers. By defining matching sessions
using the identities and ephemeral keys of the involved parties, the CKHMQV
model, patches the impossibility of capturing, in the CK model, the kind of
impersonation attacks reported in [22, section 2]. However, the CKHMQV ses-
sion identifiers and matching sessions definitions, remain limited. Indeed, as re-
ported in [5,6], protocols such that the way a party involved in a session derives
1 Some authors, [11] for instance, use the term ‘perfect forward secrecy’, but follow-

ing [2], we prefer ‘forward secrecy’ to avoid a confusion with Shannon’s ‘perfect
secrecy’.



A Complementary Analysis of the (s)YZ and DIKE Protocols 207

the session key is dependent from its role (initiator or responder) are insecure
in the CKHMQV model. The security of such protocols can be invalided by an
attacker performing as in Attack 1.

Attack 1. Crossing Attack to invalidate CKHMQV security
(1) Activate a session at Â with peer B̂, and intercept Â’s message to B̂.
(2) Activate a session at B̂ with peer Â, and intercept B̂’s message to Â.
(3) Send B̂’s message to Â as a responder in the session initiated by Â.
(4) Send Â’s message to B̂ as a responder in the session initiated by B̂.

In this attack, the sessions at Â and B̂ are CKHMQV matching; but, when the
key derivation is role dependent, they do not yield the same session key. As a re-
sult, the first requirement in the CKHMQV security definition is not satisfied.
Such attacks invalidate a large class of valuable protocols. Consider, for instance,
the HMQV protocol. Recall that in an HMQV execution, the initiator, say Â,
chooses and ephemeral key X = Gx ans sends (Â, B̂, X) to the responder B̂; B̂
chooses an ephemeral key Y = Gy and sends (B̂, Â, Y ) to Â. Both Â and B̂ com-
pute the dual signature σ = (Y Be)x+da = (XAd)y+eb, wherein d = H̄(X, B̂) and
e = H̄(Y, Â); and the session key K = H(σ). One can see, through Attack 1 that
the HMQV variant wherein the session key is derived as H(σ, X, Y ) instead of
K = H(σ) is formally insecure in the CKHMQV model. The CKHMQV matching
sessions definition formally invalidates a large class of valuable designs. In an-
other respect, as the CKHMQV model does not differentiate a session initiator
and a responder in key derivation, CKHMQV secure protocols may be vulnerable
to some kinds of reflection attacks (see the worm–hole attack on HMQV [7],
for instance).

3 The YZ Protocols Family

In [26] Yoa and Zhao introduce a family of authenticated Diffie–Hellman proto-
cols. The building blocks of the protocols, termed joint proof of knowledge, can
be viewed as variants of the (D)XCR scheme. The general construction of the
secret group element, shared between two parties, say Â and B̂, with respec-
tive ephemeral keys X and Y is Z = Bfa+dxY ca+ex = Afb+cyXdb+ey, where
c, d, e and f are publicly computable digest values. The main instantiations,
the YZ and sYZ protocols, are close enough. An execution of the YZ protocol is
as in Protocol 2.

To achieve reasonable deniability, the inability of an attacker to compute a
session key from ephemeral private keys is sacrificed. Notice also, that the inclu-
sion of the static keys in the messages is superfluous, as in effect Â and B̂ are
certificates.

To obtain the single–hash YZ (sYZ) variant, it suffices to modify Protocol 2,
with the digests d, c and e set to d = c = 1 and e = H1(Â, A, B̂, B, X, Y ).



208 A.P. Sarr and P. Elbaz–Vincent

Protocol 2. The YZ Protocol
I) The initiator Â does the following:

(a) Choose x ∈R [1, q − 1] and compute X = Gx.
(b) Send (Â, A, X) to the peer B̂.

II) At receipt of (Â, A, X), B̂ does the following:
(a) Verify that X ∈ G∗.
(b) Choose y ∈R [1, q − 1] and compute Y = Gy.
(c) Send (B̂, B, Y ) to Â.
(d) Compute c = H1(Â, A, Y ), d = H1(B̂, B, X), and e = H1(Y, X).
(e) Compute σ = AcyXdb+ey and K = H(σ).

III) At receipt of (B̂, B, Y ), Â does the following:
(a) Verify that Y ∈ G∗.
(b) Compute c = H1(Â, A, Y ), d = H1(B̂, B, X), and e = H1(Y, X).
(c) Compute σ = BdxY ca+ex and K = H(σ).

IV) The shared session key is K.

When c = H1(Â, A, B̂, B, Y ), d = H1(B̂, B, Â, A, X), e = H1(Â, A, B̂, B, X, Y ),
and f = H1(Â, A, B̂, B), the resulting protocol is termed robust YZ (rYZ);
and single hash robust YZ (srYZ) when c = d = f = 1, and e = H1(Â, A, B̂,
B, X, Y ).

In [28], other protocols, inspired by the (H)MQV protocols are proposed,
namely the YZ–MQV–i i=1,4 protocols, defined with the following digest values.

– YZ–MQV–1: c = H1(Â, A, B̂, B, X, Y ), d = H1(c), e = 1, and f = cd.
– YZ–MQV–2: d = H1(Â, A, B̂, B, X, Y ), c = H1(d), e = cd, and f = 1.
– YZ–MQV–3: c = H1(Â, A, X, pub1), d = H1(B̂, B, Y, pub2), e = 1, and f =

cd, wherein pub1 and pub2 are public information.
– YZ–MQV–4: c = H1(B̂, B, Y, pub2), d = H1(Â, A, X, pub2), e = cd, and f = 1.

Contrary to the (s)YZ protocols, these protocols do not sacrifice the inability of
an attacker to compute a session key from ephemeral private keys, and are not
reasonably deniable.

Origins of the YZ–MQV Protocols. In [28, p. 352] one can read that the YZ–
MQV–4 protocol is named YZ–MQV in [24] (the prefix in the protocol names
have changed from ‘YYZ’ to ‘YZ’), and that the SMQV and FHMQV protocols
are originated from [24]. The authors of [28] refer also to the Chinese version
of [24]; unfortunately, we do not read Chinese, so we use [24].

The claim that YZ–MQV–4 protocol is named YZ–MQV in [24], and that
SMQV and FHMQV are originated from [24] is erroneous. Indeed, there is a
fundamental difference between the YZ–MQV–4 protocol and the YZ–MQV
protocol, defined in [24, Claim 30] and in [25, p. 49], also drawn in [24, Fig-
ure 2]. In the YZ–MQV protocol, the values of c, d, e, and f are defined as
c = H1(Â, A, X), d = H1(B̂, B, Y ), e = 1, and f = cd. This protocol increases
the HMQV weakness reported in [22], and fixed in the FHMQV and SMQV de-
signs [20,22]. In the YZ–MQV protocol, when an attacker learns an intermediate
secret exponent in a session, it can not only impersonate indefinitely the session



A Complementary Analysis of the (s)YZ and DIKE Protocols 209

owner to its peer in the leaked session, as in HMQV [22], but to any party. The
other protocols defined in [24] do not match the YZ–MQV–ii=3,4 protocols. One
can find definitions parametrized by “public information” pubi,i=1,··· ,4 in [24,
claims 24–25] where pubi is a subset of {Â, A, m1, B̂, B, m2} , but none of these
designs matches YZ–MQV–i i=3,4, as m1, m2 “denote other messages, other than
the DH–components, exchanged in (or related to) the protocol run” [24, p. 18].

Even if FHMQV and SMQV can be instantiated from the YZ–MQV–i i=3,4
protocols, which appeared after the FHMQV and SMQV designs was proposed,
we cannot see how SMQV and FHMQV can be considered as originated from [24].

4 On the Attributes of the (s)YZ Protocols

In this section, we discuss the main attributes of the (s)YZ protocols. We show
that their claimed security and computational fairness do not hold.

On the Security of the (s)YZ Protocols

In [26] the (s)YZ protocols are shown secure in the CKHMQV model under the
Gap Diffie–Hellman assumption. As in these protocols, the session key deriva-
tion is role dependent, matching sessions do not necessarily yield the same key;
hence their CKHMQV security arguments are invalid. When an attacker exe-
cutes Attack 1, the two parties involved in the run, say Â and B̂, both be-
lieve being the session initiator, and respectively compute eA = H1(X, Y ) and
eB = H1(Y, X) �= eA (except with negligible probability). So, they do not derive
the same session key, while their sessions are matching. The requirement that
if two honest parties complete matching session, they should compute the same
session key is not achieved, the (s)YZ protocols do not achieve CKHMQV security.

Notice that, unless changed fundamentally, using the CK session identifiers
and matching sessions definition does not patch the security arguments invalidity.
And, as in the (s)YZ protocols, session keys can be computed from ephemeral
private keys, it is also straightforward to see that these protocols are insecure in
the (s)eCK security models.

In [28, Remark 2 and Table 2], the srYZ protocol is presented as seCK–
secure. Here also, this is erroneous. As in the srYZ protocol c = d = f = 1,
and e = H1(Â, A, B̂, B, X, Y ) [28, p. 351], the shared secret group element in an
execution of this protocol is σ = Ba+xY a+ex = Ab+yXb+ey, Attack 3 invalidates
the protocol’s security in the seCK model. Using x and y, the attacker can
compute the same key as B̂, for the secret element B̂ derives is

ZB = Ab+yX ′b+ey = Ab+y(Gx/A)b+ey = A(1−e)y(BY e)x
.

With Attack 1, we show that the (s)YZ protocols do not achieve CKHMQV secu-
rity, the protocols are also (s)eCK insecure; and Attack 3 invalidates the srYZ
protocol’s security in the seCK model.



210 A.P. Sarr and P. Elbaz–Vincent

Attack 3. Attack against srYZ in the seCK model
(1) Choose x ∈R [1, q − 1], and send (Â, A, X ′ = Gx/A) to B̂.
(2) Intercept B̂’s response to Â (B̂, B, Y ).
(3) Issue an EphemeralKeyReveal query on the session at B̂ to learn y.
(4) Use x and y to compute the same session key as B̂, and communicate with

B̂ on behalf of Â.

Computational (Un)fairness

In [26], Yoa and Zhao introduce a new notion, termed computational unfairness
between an attacker and an honest player. The aim is to capture the ability of
an adversary to compute a secret shared with an honest party, while perform-
ing much less operations than the honest user does. Such attacks can be used,
in turn, to mount effective Denial of Service (DoS) attacks. For concreteness,
we recall in Attack 4 the exponent–dependent attack (EDA) proposed in [25,26]
to show that the (H)MQV protocols are computationally unfair. Recall that be-
sides the differences on the digest values, computed as d = 2l +(X̃ mod 2l) and
e = 2l + (Ỹ mod 2l) in MQV, wherein X̃ denotes the integer representation
of X , the MQV and HMQV descriptions are identical. (Public key validation
was voluntarily omitted in the HMQV design, but in this case, the protocol is
already known to be insecure [15,16]).

Attack 4. EDA Attack against MQV
(1) Choose X ∈ G and compute d = 2l + (X̃ mod 2l).
(2) Compute A = X−d−1

Gt for some t ∈ [0, q − 1], and register the static key
A on behalf of Â.

(3) Send (Â, X) to B̂.
(4) Intercept B̂’s message (B̂, Y ).
(5) Compute the secret shared with B̂, σ = (Y Be)td, and derive the same

session key as B̂.

In Attack 4, as XAd = Gtd, we have (XAd)y+eb = (Y Be)td, hence the at-
tacker derives the same secret as B̂. Recall that in the standardized version of
(H)MQV [9], the above attack with t = 0 cannot work as the shared secret is
tested to be non-identity. With other small values of t the attack can be mounted,
as discussed in [25,26].

An attempt to formalize computational fairness attribute is given in [26,25].
A protocol is said to be computationally fair “if for any successfully finished
session run by a malicious player (e.g., B̂) with an honest player (e.g., Â),
the session–key computation involves the same number of (strongly or gen-
eral) non–malleably independent dominant–operation values for both the honest
player and the malicious player” [26, Definition 6.3]. And, [26, Proposition 6.1]
claims that the (s)YZ protocol is session key computationally fair under the



A Complementary Analysis of the (s)YZ and DIKE Protocols 211

random oracle model, while (H)MQV is not. The formalization of the attribute
is unclear, and it is difficult to see how two–pass protocols can achieve this at-
tribute, as the attacker is allowed to register a static public key of its choice.
Consider, for instance, the sYZ protocol; when an attacker registers A = G as
static public key, and uses X = G as ephemeral public key, the session key deriva-
tion, is “unfair” in the sense that it requires much less operations for the attacker
than for an honest party (which chooses its public keys at random).

Attack 5. Computational Unfairness Attack against the sYZ Protocol
(1) Register the static public key A = G to obtain a certificate Â.
(2) Choose X = G as ephemeral public key.
(3) Send (Â, A, X) to B̂
(4) Intercept B̂’s response (B̂, B, Y = gy).
(5) Compute e = H1(Â, A, B̂, B, X, Y ), the secret σ = BY 1+e, and the session

key K = H(σ).

Consider Attack 5; as x = a = 1, it is clear that the attacker computes
the same secret as B̂. Moreover, the computational effort it requires to execute
Attack 5 against the sYZ protocol, one exponentiation, is much less than what is
required to execute the EDA attack against MQV (two exponentiations at least,
when the simultaneous exponentiation technique [18, section 14.6.1] is used).
Naturally, one can ask how does the (s)YZ protocols achieve computational
fairness. Further, as the attacker can register and use the keys of its choice
(the keys can be chosen with small exponents for instance), one may ask how
computational fairness can be achieved in two–pass key agreement protocols.

Remark 1. The YZ protocols are presented as optimally efficient [26,28], mean-
ing that no protocol achieving the same security attributes can be more efficient;
but there is no proof of such a claim. The “optimal efficiency” of the (s)YZ pro-
tocols is sustained by the ability of a party, say B̂, to pre–compute Afb+cy,
where A is the initiator’s static key. Unfortunately, this argument is not careful
enough. In fact, in an execution of a protocol from YZ family, the ability of B̂
to pre–compute AF b+Cy may be limited. The reason is that B̂ usually evolves
in an open network, often with a large number of potential peers; so knowing in
advance the next peer seems difficult. This is particularly true, if B̂ is a server
with a large number of clients (a bank server, for instance). In this case, pre–
computability is highly desirable, but the server cannot guess the next client;
as a result, it is difficult to see how the Afb+cys can be adequately precomputed.

5 The Deniable Internet Key Exchange (DIKE)

In this section, we recall DIKE protocol [27], and analyze its security attributes.
Namely, we show that if an attacker learns the ephemeral private key at a session
initiator, it can impersonate any party to the initiator.



212 A.P. Sarr and P. Elbaz–Vincent

Authentication and deniability are the main motivations of the DIKE proto-
col; it is also another goal that if an attacker completes a session, which matching
session exists, then it knows not only the ephemeral private key corresponding to
its outgoing ephemeral public key, but also the static private key corresponding
to its alleged outgoing static public key [27, pp. 331, 337]. Notice that it is widely
admitted that an attacker should not be able to impersonate a party, unless it
knows the party’s static private key.

An execution of DIKE, with initiator Â and responder B̂, is as in Protocol 6,
if any verification fails, the execution aborts. Recall that G is a multiplicatively
written cyclic group of prime order q, with generator G.

Protocol 6. The DIKE Protocol in the main model
I) At session activation with identifier sid, Â does the following:

(a) Choose x ∈R [1, q − 1] and compute X = Gx.
(b) Send (sid, X) to the peer.

II) At receipt of (sid, X), the responder B̂ does the following:
(a) Verify that X ∈ G∗.
(b) Choose y ∈R [1, q − 1] and compute Y = Gy.
(c) Compute tB = H(sid, B̂, Y, X, Xy).
(d) Send (sid, B̂, Y, tB) to the initiator.

III) At receipt of (sid, B̂, Y, tB), Â does the following:
(a) Verify that Y ∈ G∗.
(b) Verify that tB = H(sid, B̂, Y, X, Y x).
(c) Compute τA = H(sid, Â, X, Y, Y a, Y x).
(d) Send (sid, Â, τA) to B̂.

IV) At receipt of (sid, Â, τA), B̂ does the following:
(a) Verify that τA = H(sid, Â, X, Y, Ay, Xy).
(b) Compute τB = H(sid, B̂, Y, X, Xb, Xy).
(c) Send (sid, τB) to Â.
(d) Compute K = HK(Xy, X, Y ).

V) At receipt of (sid, τB), Â does the following:
(a) Verify that τB = H(sid, B̂, Y, X, Bx, Y x).
(b) Compute K = HK(Xy, X, Y ).

VI) The shared session key is K.

For the security arguments of the DIKE protocol, Yao and Zhao introduce
a new assumption termed the CKEA assumption. They also introduce a simula-
tion based security definition, which aims to model non–malleability for Diffie–
Hellman key agreement protocols in concurrent settings. The DIKE protocol
is shown CK secure and tag–based robust non–malleable in the restricted RO
model, under the Gap Diffie–Hellman and CKEA assumptions.



A Complementary Analysis of the (s)YZ and DIKE Protocols 213

Failure in Authentication

Despite its security arguments, and the use of the non–standard CKEA assump-
tion, the DIKE protocol fails in authentication, which is a primary goal in key
agreement. “A minimal requirement for a secure key–exchange protocol is that
the attacker, not knowing the private key of a party Â, should not be able to
impersonate Â” [11, p. 14]. This requirement is also considered as minimal in [8,
section 2]. In the DIKE protocol, if an attacker learns the ephemeral private key
in a session initiated at Â, it can impersonate any party to Â (recall that the
DIKE protocol is defined in the post–specified peer model). The impersonation
is described in Attack 7. Notice that ephemeral private key leakage is a realistic
assumption, as in many applications the ephemeral pairs (x, Gx) are off–line pre-
computed and kept in a less protected storage than the long–lived private keys.

Attack 7. Impersonation Attack against DIKE
When the initiator, Â is activated with a session identifier sid, the attacker
does the following:
(1) Intercept Â’s message to the responder (sid, X).
(2) Learn the ephemeral private key in the session at Â.
(3) Choose y ∈R [1, q − 1] and compute Y = Gy .
(4) Compute tB = H(sid, B̂, Y, X, Xy).
(5) Send (sid, B̂, Y, tB) to the initiator.
(6) Intercept Â’s message to B̂ (sid, Â, τA).
(7) Verify that τA = H(sid, Â, X, Y, Ay, Xy).
(8) Compute τB = H(sid, B̂, Y, X, Bx, Y x).
(9) Send (sid, τB) to Â.
(10) Compute and use K = HK(Xy, X, Y ) to communicate with Â on be-

half of B̂.

The session at Â does not abort, as both tB and τB are valid tags, so Â’s
verifications at steps IIIb and Va of Protocol 6 do not fail. It is also clear that
(i) the attacker has no knowledge of B̂’s static private key, while (ii) it derives
the same session key as Â, and (iii) Â believes its session key shared with B̂.
This is clearly a failure in authentication. This attack illustrates not only an
insufficiency in the DIKE design, but also the impossibility of capturing some
kind of impersonation attacks in the CK–model. Indeed, in the CK model, in
contrary to the (s)eCK models for instance, once the ephemeral information in
a session is exposed, the model does not care about the security of the session.
As a consequence, the CK model cannot guarantee that an attacker cannot
impersonate a party unless it knows its static private key.

Notice also that such an attack cannot hold against the SIGMA protocol [10],
as in an execution of SIGMA, a peer has to sign a fresh nonce; this cannot be
performed without a knowledge of the static private corresponding to its alleged
public key.



214 A.P. Sarr and P. Elbaz–Vincent

The SMQV–1 Protocol

In this section we propose a robust variant of the SMQV protocol [22] geared
to the post–specified peer model, to reaffirm the usefulness of the SMQV building
blocks. A similar variant can be obtained from the FHMQV protocol [20,21].

The protocol’s design follows the same principles than SMQV; in addition, a
proof of the ability to compute the shared secret is required from each party,
before a session is derived and accepted. The shared secret is a dual signature,
from which the session key is computed. In accordance with the IKEv2 design
choices [8], the initiator reveals its identity first. Notice also that it is straight-
forward to modify the protocol to make the responder reveal its identity first.
In the design, we do not use the CK session identifiers and matching sessions
definitions (owing to their limitations); instead, we use the session identifiers
from the combined CK model [17]. Sessions at Â are activated with parameters
(Â, B̃) or (Ã, B̂, in) wherein Ã and B̃ are destination addresses, and in is an
incoming message. An execution of SMQV–1 is as in Protocol 8, wherein I and
R are role indicators (initiator or responder). When used in a message, a role in-
dicator denotes the intended peer’s role, while in a session identifier, it indicates
the session owner’s role.

Protocol 8. The SMQV–1 Protocol
I) At session activation with parameter (Â, B̃), Â does the following:

(a) Choose x ∈R [1, q − 1] and compute X = Gx.
(b) Send (B̃, Â, R, X) to B̃.

II) At receipt of (B̃, Â, R, X), the responder B̂ does the following:
(a) Verify that X ∈ G∗.
(b) Choose y ∈R [1, q − 1] and compute Y = Gy.
(c) Compute d = H̄(X, Y, Â, B̂) and e = H̄(Y, X, Â, B̂).
(d) Compute sB = ye + b and σ = (XdA)sB .
(e) Compute τB = H1(Â, B̂, Y, X, σ).
(f) Send (Â, B̂, I, X, Y, τB) to Â.

III) At receipt of (Â, B̂, I, X, Y, τB), Â does the following:
(a) Verify that Y ∈ G∗.
(b) Compute d = H̄(X, Y, Â, B̂) and e = H̄(Y, X, Â, B̂).
(c) Compute sA = xe + a and σ = (Y bB)sA .
(d) Verify that τB = H1(Â, B̂, Y, X, σ).
(e) Compute τA = H1(Â, B̂, X, σ, Y ).
(f) Send (B̂, Â, R, X, Y, τB, τA) to B̂.
(g) Compute K = H(σ, X, Y, Â, B̂).

IV) At receipt of (B̂, Â, R, X, Y, τB, τA), B̂ does the following:
(a) Verify that τA = H1(Â, B̂, X, σ, Y ).
(b) Compute K = H(σ, X, Y, Â, B̂).

V) The shared session key is K.



A Complementary Analysis of the (s)YZ and DIKE Protocols 215

In a SMQV–1 execution, both parties confirm their ability to compute the se-
cret group element σ. The inputs in the tags computation are set to (Â, B̂, X, σ, Y )
for Â and (Â, B̂, Y, X, σ) for B̂ to avoid reflection attacks. The SMQV–1 proto-
col is more efficient than the DIKE protocol; when ephemeral keys are off–line
pre–computed, and execution of SMQV–1 requires 1.25 times a single exponen-
tiation, when the simultaneous exponentiation technique [18, section 14.6.1] is
used. Also, the protocol is not vulnerable to the impersonation attack we pro-
pose.

The SMQV–1 protocol is secure in the combined eCK model under the RO
model and the GDH assumption, and is deniable, under the RO model and the
GDH and KEA assumptions. For lack of space, we do not give here the security
arguments; instead, we give in the appendix a proof of a variant of the FXCR–1
scheme, and show that the critics on the SMQV building blocks from [28] missed
some points.

6 Conclusion

We discussed some of the weaknesses of the CK and CKHMQV security models.
We showed that the (s)YZ protocols do not achieve their claimed CKHMQV secu-
rity. We also showed that the (s)YZ protocols do not achieve the computational
fairness attribute; our attack suggests that no two–pass protocol can achieve this
attribute. We showed that the Deniable Internet Key Exchange (DIKE) fails in
authentication. Besides this failure, our attack emphasizes the inability of cap-
turing some kind impersonation attacks in the CK model. We proposed a variant
of the SMQV protocol, the SMQV–1, geared to the post peer specified model.
The SMQV–1 protocol is secure in the combined eCK model and deniable.

In a forthcoming stage, we will be interested in clarifying and illustrating
the weaknesses of the (e)CK and CKHMQV models. We will also work on an
adaptation of the seCK model to the post peer specified model, and on illustrat-
ing the differences between the (e)CK, CKHMQV, and seCK security models.

References

1. Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

2. Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment.
Springer (2003)

3. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use
for Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

4. Choo, K.-K.R.: Refuting the Security Claims of Mathuria and Jain (2005) Key
Agreement Protocols. International Journal of Network Security 7(1), 15–23 (2005)

5. Cremers C.: Formally and Practically Relating the CK, CK–HMQV, and eCK Se-
curity Models for Authenticated Key Exchange. Cryptology ePrint Archive, Report
2009/253 (2009)



216 A.P. Sarr and P. Elbaz–Vincent

6. Cremers, C.: Examining Indistinguishability–Based Security Models for Key Ex-
change Protocols: The case of CK, CK–HMQV, and eCK. In: Proc. of the 6th
ACM Symposium on Information, Computer and Communications Security. ACM
(2011)

7. Hao, F.: On Robust Key Agreement Based on Public Key Authentication. In: Sion,
R. (ed.) FC 2010. LNCS, vol. 6052, pp. 383–390. Springer, Heidelberg (2010)

8. Harkins D., Kaufman C., Kivinen T., Kent S., Perlman R.: Design Rationale for
IKEv2. IPSec Working Group Internet Draft (2002),
http://tools.ietf.org/html/draft-ietf-ipsec-ikev2-rationale-00

9. IEEE P1363: Draft Standard for Public Key Cryptography. IEEE (2009)
10. Krawczyk, H.: SIGMA: The ‘SIGn-and-MAc’ Approach to Authenticated Diffie-

Hellman and Its Use in the IKE Protocols. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003)

11. Krawczyk, H.: HMQV: A High-Performance Secure Diffie-Hellman Protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg
(2005)

12. Krawczyk H.: HMQV: A High Performance Secure Diffie–Hellman Protocol. Cryp-
tology ePrint Archive, Report Report 2005/176 (2005)

13. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger Security of Authenticated Key
Exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007)

14. Maurer, U.M., Wolf, S.: Diffie-Hellman Oracles. In: Koblitz, N. (ed.) CRYPTO 1996.
LNCS, vol. 1109, pp. 268–282. Springer, Heidelberg (1996)

15. Menezes, A., Ustaoglu, B.: On the Importance of Public-Key Validation in the
MQV and HMQV Key Agreement Protocols. In: Barua, R., Lange, T. (eds.)
INDOCRYPT 2006. LNCS, vol. 4329, pp. 133–147. Springer, Heidelberg (2006)

16. Menezes, A.: Another Look at HMQV. Journal of Mathematical Cryptology 1,
148–175 (2007)

17. Menezes, A., Ustaoglu, B.: Comparing the Pre– and Post–specified Peer Models
for Key Agreement. International Journal of Applied Cryptography 1(3), 236–250
(2009)

18. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press (1996)

19. Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind
Signatures. Journal of Cryptology 13, 361–396 (2000)

20. Sarr, A.P., Elbaz-Vincent, P., Bajard, J.-C.: A Secure and Efficient Authenti-
cated Diffie–Hellman Protocol. In: Martinelli, F., Preneel, B. (eds.) EuroPKI 2009.
LNCS, vol. 6391, pp. 83–98. Springer, Heidelberg (2010)

21. Sarr, A.P., Elbaz-Vincent, P., Bajard, J.C.: A Secure and Efficient Authenticated
Diffie–Hellman Protocol (extended version). Cryptology ePrint Archive, Report
2009/408 (2009)

22. Sarr, A.P., Elbaz-Vincent, P., Bajard, J.-C.: A New Security Model for Authen-
ticated Key Agreement. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS,
vol. 6280, pp. 219–234. Springer, Heidelberg (2010)

23. Sarr, A.P., Elbaz-Vincent, P., Bajard, J.C.: A New Security Model for Authen-
ticated Key Agreement (extended version). Cryptology ePrint Archive, Report
2010/237 (2010)

http://tools.ietf.org/html/draft-ietf-ipsec-ikev2-rationale-00


A Complementary Analysis of the (s)YZ and DIKE Protocols 217

24. Yao, A.C., Zhao, Y.: Method and Structure for Self–Sealed Joint Proof–of–
Knowledge and Diffie-Hellman Key-Exchange Protocols. In: PCT 2009 (2009),
http://www.wipo.int/patentscope/search/en/detail.jsf;jsessionid=C14F61
855C476745B13CFDB74D848875.wapp2?docId=WO2009056048&recNum=1&tab=
PCTDocuments&maxRec=&office=&prevFilter=&sortOption=&queryString=
(accessed September 26, 2011)

25. Yao, A.C., Zhao, Y.: A New Family of Practical Non-Malleable Protocols. Cryp-
tology ePrint Archive, Report 2011/035 (2011)

26. Yao, A.C., Zhao, Y.: A New Family of Practical Non-Malleable Protocols. CoRR
abs/1105.1071 (2011)

27. Yao, A.C., Zhao, Y.: Deniable Internet Key Exchange. In: Zhou, J., Yung, M. (eds.)
ACNS 2010. LNCS, vol. 6123, pp. 329–348. Springer, Heidelberg (2010)

28. Yoneyama, K., Zhao, Y.: Taxonomical Security Consideration of Authenticated Key
Exchange Resilient to Intermediate Computation Leakage. In: Boyen, X., Chen, X.
(eds.) ProvSec 2011. LNCS, vol. 6980, pp. 348–365. Springer, Heidelberg (2011)

About the Critics on SMQV from [28]

In [28], Yoneyama and Zhao propose a taxonomy of authenticated key agreement
protocols in regard with their security arguments and assumptions. We have
already showed that this taxonomy is partly flawed; the srYZ is classified as
seCK–secure, while this is erroneous. Again, their claim that SMQV and FH-
MQV are not secure even in the CKHMQV model, and then are insecure in the
seCK model, suggests that seCK security should imply CK or CKHMQV security.
This requires some clarifications. In [22,23], we claimed that “the seCK model is
practically stronger than the CK model” and that the “seCK model encompasses
the eCK one”, meaning that the seCK–model captures more security attributes
than the CK–model, and that seCK security formally implies eCK–security.

The security of the SMQV and FHMQV protocols depends on that of the
FXCR–1 scheme. Yoneyama and Zhao [28] consider the security of the FXCR–1
scheme in the case the signer is the initiator. Strictly speaking, this defines an-
other scheme, as in the definition of the FXCR–1 scheme, the communications
are initiated by the verifier (not the signer); and the signature (Y, XsB ) is pro-
vided to the verifier after it provides its challenge X . When the interaction order
is changed, this defines another scheme (we call FXCR–2), and the proof may
become invalid. Here, we show that even in this modified variant of the FXCR–1
scheme, the security remains valid.

Definition 3 (FXCR–2 Signature). Let B̂ be a party with public key B ∈ G∗,
and Â a verifier; B̂’s signature on a message m and challenge X, provided by Â
(x ∈R [1, q − 1] is chosen and kept secret by Â), after it receives the ephemeral
element Y , is SigB̂(m, X) = (Y, XsB ), where Y = Gy, y ∈R [1, q − 1] is chosen
by B̂, and sB = ye+b, wherein e = H̄(Y, X, m). And, Â accepts the pair (Y, σB)
as a valid signature if Y ∈ G∗ and (Y eB)x = σB.

The FXCR–2’s security is given in the following proposition.

http://www.wipo.int/patentscope/search/en/detail.jsf;jsessionid=C14F61855C476745B13CFDB74D848875.wapp2?docId=WO2009056048&recNum=1&tab=PCTDocuments&maxRec=&office=&prevFilter=&sortOption=&queryString=
http://www.wipo.int/patentscope/search/en/detail.jsf;jsessionid=C14F61855C476745B13CFDB74D848875.wapp2?docId=WO2009056048&recNum=1&tab=PCTDocuments&maxRec=&office=&prevFilter=&sortOption=&queryString=
http://www.wipo.int/patentscope/search/en/detail.jsf;jsessionid=C14F61855C476745B13CFDB74D848875.wapp2?docId=WO2009056048&recNum=1&tab=PCTDocuments&maxRec=&office=&prevFilter=&sortOption=&queryString=


218 A.P. Sarr and P. Elbaz–Vincent

Proposition 1 (FXCR–2 Security). Under the CDH assumption in G and
the RO model, there is no adaptive probabilistic polynomial time attacker, which
given a public key B, a challenge X0 (B, X0 ∈R G∗), together with a hashing
and a FCXR–2 signing oracles, outputs with non–negligible success probability a
triple (m0, Y0, σ0) such that: (1) (Y0, σ0) is a valid signature with respect to the
public key B, and the message–challenge pair (m0, X0); and (2) (Y0, σ0) was not
obtained from the signing oracle with a query on (m0, X0).

Proof. We have to distinguish two classes of attacker. Suppose an attacker, which
does the following at some point of its execution:
(1) activate B̂ with a message m to obtain Y ,
(2) issue digest queries on (Y, Zi, m), for arbitrary Zis,
(3) send Zi0 to B̂, where Zi0 equals some Zi,
(4) receive the signature (Y, σ, sB).
Notice that the attacker is given sB in addition to the signature σ. In this se-
quence, as the digest value e has to be set before the incoming ephemeral public
key is known, we cannot simulate consistently the disclosure of sB to the verifier.
We summarize the sequence of queries in Seq1 below. Without loss of generality,
we omit the possible independent computations the attacker may perform be-
tween two consecutive steps of Seq1.

Algorithm 9. Seq1
(1) Activate the signer B̂ with a message m to obtain Y .
(2) Issue digest queries on (Y, Zi, m), for arbitrary Zi ∈ G∗.
(3) Send Zi0 to B̂, where Zi0 equals some Zi.
(4) Receive the signature on message m and challenge Zi0 (Y, σ, sB).

Let B be the family of polynomial time attackers which at some point of their
run, execute Seq1 (the attackers may execute Seq1 many times).

Let A /∈ B be a polynomial time attacker which, given B, X0 ∈R G∗, suc-
ceeds with non–negligible probability in forging a fresh and valid signature, with
respect to the public key B and challenge X0. Let Qh and Qs be respectively
the number of queries A asks to the hashing and signing oracles. Using A we build
a polynomial time CDH solver S which succeeds with non–negligible probabil-
ity. The solver S provides A with random coins, and simulates the digest and
signature queries. The interactions between S and A are detailed in Figure 10.

Under the RO model, the distribution of the simulated signatures is indis-
tinguishable from that of real signatures generated by B̂, except the deviation
that occurs when the same Y is chosen twice. Since the number of queries to
the oracles is less than (Qh + Qs), and Y is chosen uniformly at random in G,
this deviation occurs with probability less than (Qh +Qs)/q, which is negligible.
Hence this simulation is perfect, except with negligible probability. Moreover the
probability of producing a valid forgery without querying H̄(Y0, X0, m0) is 2−l.
Thus under this simulation, A outputs with non–negligible probability a valid
forgery (Y0, X0, m0, σ0); we denote H̄(Y0, X0, m0) by e0.



A Complementary Analysis of the (s)YZ and DIKE Protocols 219

Figure 10. CDH solver from A
Run of A:
(a) At A’s digest query on (Y, X, m), S responds as follows: (i) if a value is

already assigned to H̄(Y, X, m), S returns H̄(Y, X, m); (ii) otherwise S
responds with e ∈R {0, 1}l, and sets H̄(Y, X, m) = e.

(b) When S is activated with a message m, it does the following: (i) Choose
sB ∈R [1, q − 1], e ∈R {0, 1}l, set Y = (GsB B)e−1 and H̄(Y, �, m) = e.
(The inputs yielding to e are set temporarily to (Y, �, m) and updated
once X is known.) If Y was previously chosen as ephemeral key, S aborts.
(ii) Responds with (Y, m).

(c) At A’s signature query on (Y, m, X), S responds as follows: (i) Update
H̄(Y, �, m) = e to H̄(Y, X, m) = e. (ii) Responds with (Y, XsB , sB) (sB is
given in addition to XsB ).

(d) At A’s halt, S verifies that A’s output (Y0, X0, m0, σ0) (if any) satisfies
the following conditions. If one of these conditions is not satisfied S aborts.

– Y0 ∈ G∗ and H̄(Y0, X0, m0) was queried from H̄ .
– The signature (Y0, σ0) was not returned by B̂ on query (m0, X0).

Repeat: S executes a new run of A, using the same input and coins; and
answering to all digest queries before H̄(Y0, X0, m0) with the same values
as in the previous run. The new query of H̄(Y0, X0, m0) and subsequent
queries to H̄ are answered with new random values.

Output: If A outputs a second signature on (Y0, X0, m0, σ′
0) satisfying con-

ditions of step d, with a hash value H̄(Y0, X0, m0)2 = e′
0 �= e0 =

H̄(Y0, X0, m0)1, then S outputs
(

σ0
e0

−1
/σ′

0
e′

0
−1 )(e0

−1−e′
0

−1)−1

as a guess
for CDH(B, X0).

From the forking lemma [19], the repeat experiment outputs with non–
negligible probability a valid forgery (Y0, X0, m0, σ′

0) with a digest e′
0, which

with probability 1 − 2−l is different from e0. Hence, the computation

(
σ0

e0
−1

/σ′
0

e′
0

−1 )(e0
−1−e′

0
−1)−1

=

((
Y0Be0

−1
)x0

(
Y0Be′

0
−1

)x0

)
(

e0
−1−e′

0
−1

)−1

= Bx0

gives CDH(B, X0). Recall that such a polynomial CDH solver, succeeding with
non–negligible probability, can be transformed into an efficient CDH solver [14].

For attackers in B, we do not provide a direct simulation; instead, we show that
their success probability is bounded by that of a class of attackers which can be
efficiently simulated. Let B be an attacker in B, and d(|q|) and m(|q|) (for some
polynomials d and m) be respectively upper bounds on the number of Zi the
attacker chooses at step 2 of Seq1, and the number of times B executes Seq1.
For simplicity (in the notations), we suppose that whenever B executes Seq1, it
chooses d(|q|) Zis at step 2.



220 A.P. Sarr and P. Elbaz–Vincent

For all B ∈ B, let BR be an attacker, which receives in addition to B’s in-
put, the resource vector v =

(
(i0

1, · · · , i0
m), (Z11, · · · , Z1d), · · · , (Zm1, · · · , Zmd)

)
,

where Zij ∈R G∗ and i0
i ∈R [1, d], and performs exactly the same way as B,

except that whenever B executes the sequence of queries Seq1 for the l–th time,
BR executes the modified sequence Seq2, using i0

l and (Zl1, · · · , Zld). And, when
B uses, for any other computation Zi, chosen during the l–th execution Seq1,
BR uses Zli.

Algorithm 11. Seq2
(1) Activate the signer B̂ with a message m to obtain Y (BR uses the same

message as B).
(2) Issue digest queries on (Y, Zli, m), for Zli ∈ {Zl1, · · · , Zld}.
(3) Send Zi0

l
to B̂.

(4) Receive the signature on message m and challenge Zi0
l

(Y, σ, sB).

Notice that if B is polynomial, then so is BR. Let V be the set of resource
vectors. For v ∈ V, we say that BR(v) matches B, if for all l ∈ [1,m], the l–
th time B executes Seq1, it chooses {Zl1, · · · , Zld} at step 2, and sends Zi0

l
at

step 3. It is clear that if BR(v) matches B, then the success probability of B is,
Pr(SuccB) = Pr(SuccBR(v)).

For B ∈ B, we say v ∈ V possible if there is non–zero probability that BR(v)
matches B. Let P oss(V) denote the set of possible resource vectors. For every
run of B, there is some v ∈ P oss(V) such that BR(v) matches B (v can be built
from the choices of B in its executions of Seq1), hence

Pr(SuccB) � max
v∈P oss(V)

Pr(SuccBR(v)).

Now, it suffices to show that for all B and all v ∈ P oss(V), Pr(SuccBR(v)) is
negligible. For this purpose, we modify the simulation to take as input v and
respond as follows, when BR(v) executes the sequence Seq2 for the l–th time.

– When BR activates the signer B̂ with a message m to obtain Y , the simulator
S does the following:

• Choose sB ∈R [1, q − 1], e ∈R {0, 1}l, set Y = (GsB B−1)e−1 and e =
H1(Y, Zi0

l
, m).

• Respond with (Y, m).
– At BR’s signature query on (Y, Zi0

l
, m, ), S responds with (Zi0

l
, ZsB

i0
l

, sB).
The simulation remains polynomial–time and consistent for all v ∈ P oss(V)
and BR. As S knows, from the resource vector, what will be the incoming chal-
lenge, answers to the queries of Seq2 are consistently simulated. If for some v,
Pr(SuccBR(v)) is non–negligible, using the oracle replay technique, we build a
CDH solver which succeeds with non–negligible probability. Hence under the
CDH assumption, Pr(SuccBR(v)) is negligible, for all v ∈ P oss(V). This implies
Pr(SuccB) is negligible.



A New Attack on RSA and CRT-RSA

Abderrahmane Nitaj

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen, France

abderrahmane.nitaj@unicaen.fr

http://www.math.unicaen.fr/~nitaj

Abstract. In RSA, the public modulus N = pq is the product of two
primes of the same bit-size, the public exponent e and the private expo-
nent d satisfy ed ≡ 1 (mod (p−1)(q−1)). In many applications of RSA,
d is chosen to be small. This was cryptanalyzed by Wiener in 1990 who
showed that RSA is insecure if d < N0.25. As an alternative, Quisquater
and Couvreur proposed the CRT-RSA scheme in the decryption phase,
where dp = d (mod (p− 1)) and dq = d (mod (q− 1)) are chosen signifi-
cantly smaller than p and q. In 2006, Bleichenbacher and May presented
an attack on CRT-RSA when the CRT-exponents dp and dq are both
suitably small. In this paper, we show that RSA is insecure if the public

exponent e satisfies an equation ex+y ≡ 0 (mod p) with |x||y| < N
√

2−1
2

and ex+y �≡ 0 (mod N). As an application of our new attack, we present
the cryptanalysis of CRT-RSA if one of the private exponents, dp say,

satisfies dp < N

√
2

4√
e
. This improves the result of Bleichenbacher and May

on CRT-RSA where both dp and dq are required to be suitably small.

Keywords: RSA, CRT-RSA, Cryptanalysis, Linear Modular Equation.

1 Introduction

In the RSA cryptosystem, the modulus N = pq is the product of two primes of
the same bit-size. The public and private exponents e and d are positive integers
satisfying ed ≡ 1 (mod (p− 1)(q − 1)). The encryption and decryption in RSA
require taking heavy exponential multiplications modulo a large integer N . To
reduce the encryption time, one may be tempted to use a small public exponent
e. Unfortunately, it has been proven to be insecure against some small public
exponent attacks [8]. Conversely, to reduce the decryption time, one may also
be tempted to use a short secret exponent d. However, it is well-known that
RSA is vulnerable with a small private exponent. In 1990, Wiener [17] showed
that RSA is insecure if d < N0.25, which was extended to d < N0.292 by Boneh
and Durfee [3]. Wiener [17] proposed to use the Chinese Remainder Theorem
(CRT) for decryption and Quisquater and Couvreur made this explicit in [14].
In CRT-RSA, the public exponent e and the private CRT-exponents dp and
dq satisfy edp ≡ 1 (mod (p − 1)) and edq ≡ 1 (mod (q − 1)). One can further
reduce the decryption time by carefully choosing d so that both dp and dq are

A. Mitrokotsa and S. Vaudenay (Eds.): AFRICACRYPT 2012, LNCS 7374, pp. 221–233, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.math.unicaen.fr/~nitaj


222 A. Nitaj

small. Combining dp and dq, the CRT finds d such that d ≡ dp (mod (p − 1))
and d ≡ dq (mod (q − 1)). The best known attack on CRT-RSA runs in time
complexity O

(
min

{√
dp,

√
dp
})

which is exponential in the bit-size of dp or dq.
At Crypto’07, Jochemsz and May [11] proposed the first polynomial time attack
on CRT exponents that are smaller than N0.073 when p and q are balanced and
e is full size, that is e

N ≈ 1. In the special case when e is much smaller than N ,
Bleichenbacher and May [1] proposed an attack that is applicable if both dp and

dq are such that dp, dq < min
{

1
4

(
N
e

) 2
5 , 1

3N
1
4

}
.

In this paper, we present an attack on RSA and a second attack on CRT-RSA.
We consider RSA with a modulus N = pq where p, q are of the same bit-size.
We present an attack on RSA if one of the primes, p say, satisfies an equation
ex+ y ≡ 0 (mod p), where the unknown parameters x, y satisfy

|x||y| < N
√

2−1
2 and ex+ y �≡ 0 (mod N).

Our attack is based on the method of Coppersmith [5] for finding small solutions
of modular equations. In particular, we make use of a result from Herrmann and
May [9] to solve linear equations modulo divisors. Moreover, we estimate a very
conservative lower bound on the number of exponents for which our method

works as N
√

2
2 −ε where ε > 0 is a small constant depending only on N . As an

application of this method, we present the cryptanalysis of CRT-RSA with a
private decryption exponent dp satisfying

dp <
N

√
2

4

√
e
.

We notice that for balanced p and q and small e, the attack of Bleichenbacher

and May [1] works when both dp and dq satisfy dp, dq < min
{

1
4

(
N
e

) 2
5 , 1

3N
1
4

}
while in our new attack, only dp (or dq) is required to be small.

The rest of this paper is organized as follows. In Section 2, we will state
preliminaries on RSA, CRT-RSA, and bivariate linear equations modulo divisors.
Section 3 will contain the description of the attack for exponents e satisfying
ex+ y ≡ 0 (mod p) with suitably small parameters x, y and give a lower bound
for the number of such exponents. In Section 4, we will present an application of
our attack to CRT-RSA with small CRT-exponent dp when p and q are balanced.
In Section 5, we provide some experimental results. Finally, we conclude the
paper in Section 6.

2 Preliminaries

2.1 The Original RSA and CRT-RSA

We first review the original RSA [15] and CRT-RSA [14].



A New Attack on RSA and CRT-RSA 223

The Original RSA. The RSA cryptosystem depends on two large primes p and
q used to form the RSA modulus N = pq. Let e and d be two integers satisfying
ed ≡ 1 (mod φ(N)), where φ(N) = (p − 1)(q − 1) is the Euler totient function
of N . In general, e is called the public exponent, and d is the secret exponent.
To encrypt a plaintext message M , one computes the corresponding ciphertext
C ≡ M e (mod N). To decrypt the ciphertext C, the receiver computes simply
M ≡ Cd (mod N).

CRT-RSA. In CRT-RSA, the public exponent e and the private CRT-exponents
dp and dq satisfy edp ≡ 1 (mod (p− 1)) and edq ≡ 1 (mod (q − 1)). The CRT-
RSA decryption is as follows. Compute Mp ≡ Cdp (mod p), Mq ≡ Cdq (mod q)
and use the Chinese Remainder Theorem (CRT) to find M satisfying M ≡ Mp

(mod p) and M ≡Mq (mod q).

2.2 Bivariate Linear Equations Modulo Divisors

In our attack we will use a theorem of Herrmann and May [9] to factor an RSA
modulus N = pq using a linear equation f(x, y) = ax + by + c ≡ 0 (mod p).
Their method is based on Coppersmith’s technique for finding small roots of
polynomial equations [5] and consists in using the LLL algorithm [12] to obtain
two polynomials h1(x, y) and h2(x, y) sharing the same solution (x0, y0), that is
h1(x0, y0) = h2(x0, y0) = 0. If h1 and h2 are algebraically independent, then the
resultant of h1 and h2 recovers the common root (x0, y0). This relies on a heuris-
tic assumption for multivariate polynomials as required by most applications of
Coppersmith’s algorithm [5].

Assumption 1. Let h1(x, y), h2(x, y) be the polynomials that are found by
Coppersmith’s method. The resultant computations for the polynomials h1(x, y),
h2(x, y) yield non-zero polynomials.

Theorem 1 (Herrmann-May [9]). Let ε > 0 and let N be a sufficiently large
composite integer of unknown factorization with a divisor p > Nβ. Furthermore,
let f(x, y) ∈ Z[x, y] be a linear polynomial in two variables. Then, one can find
all solutions (x0, y0) of the equation f(x, y) ≡ 0 (mod p) with |x0| < Nγ and
|y0| < N δ if

γ + δ ≤ 3β − 2 + 2(1− β)
3
2 − ε.

The time complexity of the algorithm is polynomial in logN and 1
ε .

For completeness reasons, let us give a sketch of the proof. First we recall two
important results. The first gives a bound on the smallest vectors of an LLL-
reduced lattice basis [12].

Theorem 2 (LLL [12]). Let L be a lattice with dimension n and determinant
det(L). Let B = 〈b1, . . . , bn〉 be an LLL-reduced basis. Then

‖b1‖ ≤ ‖b2‖ ≤ 2
n
4 (det(L)) 1

n−1 .



224 A. Nitaj

The next result gives a link between the roots of a polynomial modulo some
integer and the roots of the polynomial over the integers. For a multivariate
polynomial f(x1, . . . , xk) =

∑
i1,...,ik

ai1,...,ikx
i1 · · ·xik , the norm is defined as

‖f(x1, . . . , xk)‖ =

⎛⎝ ∑
i1,...,ik

a2i1,...,ik

⎞⎠
1
2

.

Theorem 3 (Howgrave-Graham [10]). Let f(x1, . . . , xk) ∈ ZZ[x1, . . . , xk]

be a polynomial with at most ω monomials. Suppose that f(x
(0)
1 , . . . , x

(0)
k ) ≡ 0

(mod B) where |x(0)
0 | < X1, . . . , |x(0)

k | < Xk and ‖f(X1x1, . . . , Xkxk)‖ < B√
ω
.

Then f(x
(0)
1 , . . . , x

(0)
k ) = 0 holds over the integers.

We assume that f(x, y) = x + by + c since otherwise we can multiply f by
a−1 (mod N). To find a solution (x0, y0) such that f(x0, y0) ≡ 0 (mod p), the
basic idea consists in finding two polynomials h1(x, y) and h2(x, y) such that
h1(x0, y0) = h1(x0, y0) = 0 holds over the integers. Then the resultant of h1(x, y)
and h2(x, y) will reveal the root (x0, y0). To do so, we generate a collection of
polynomials gk,i(x, y) as

gk,i(x, y) = yi · f(x, y)k ·Nmax{t−k,0}

for 0 ≤ k ≤ m, 0 ≤ i ≤ m− k and integer parameters t and m with t < m that
will be specified later. Observe that for all k and i, we have

gk,i(x0, y0) = yi0 · f(x0, y0)
k ·Nmax{t−k,0} ≡ 0 (mod pt).

We define the following ordering for the polynomials gk,i. If k < l, then gk,i < gl,j .
If k = l and i < j, then gk,i < gk,j . On the other hand, each polynomial gk,i(x, y)
is ordered in the monomials xiyk. The ordering for the monomials xiyk is as
follows. If i < j, then xiyk < xjyl. If i = j and k < l, then xiyk < xiyl.
Let X and Y be positive integers. Gathering the coefficients of the polynomials
gk,i(Xx, Y y), we obtain a matrix as illustrated in Table 1.

Let L be the lattice of row vectors from the coefficients of the polynomials
gk,i(Xx, Y y) in the basis 〈xkyi〉0≤k≤m,0≤i≤m−k. The dimension of L is

n =

m∑
i=0

(m+ 1− i) =
(m+ 2)(m+ 1)

2
.



A New Attack on RSA and CRT-RSA 225

Table 1. Herrmann-May’s matrix of the polynomials gk,i(Xx, Y y) in the basis
〈xrys〉0≤r≤m,0≤s≤m−r

1 · · · ym x · · · xym−1 . . . xt · · · xtym−t · · · xm

g0,0 N t

...
. . .

g0,m N tY m

g1,0 ∗ . . . ∗ N t−1X
... ∗ · · · ∗

. . .

g1,m−1 ∗ · · · ∗ ∗ . . . N t−1XY m−1

... ∗
... ∗ ∗

... ∗
. . .

gt,0 ∗ . . . ∗ ∗ . . . ∗ . . . Xt

...
...

...
...

. . .

gt,m−t ∗ · · · ∗ ∗ . . . ∗ . . . ∗ . . . XtY m−t

... ∗
... ∗ ∗

... ∗
... ∗

... ∗
. . .

gm,0 ∗ · · · ∗ ∗ . . . ∗ . . . ∗ . . . ∗ . . . Xm

From the triangular matrix of the lattice, we can easily compute the determinant
det(L) = XsxY syNsN where

sx =

m∑
i=0

i(m+ 1− i) =
m(m+ 1)(m+ 2)

6
,

sy =

m∑
i=0

m−i∑
j=0

j =
m(m+ 1)(m+ 2)

6
,

sN =

t∑
i=0

(t− i)(m+ 1− i) =
t(t+ 1)(3m+ 4− t)

6
.

We want to find two polynomials with short coefficients that contain all small
roots over the integer. This can be achieved by applying the LLL algorithm [12]
to the lattice L. From Theorem 2, we get two polynomials h1(x, y) and h2(x, y)
satisfying

‖h1(Xx, Y y)‖ ≤ ‖h2(Xx, Y y)‖ ≤ 2
n
4 (det(L)) 1

n−1 .

To ensure that (x0, y0) is a root of both h1(x, y) and h2(x, y) over the integers,
we apply Howgrave-Graham’s Theorem 3 for h1(Xx, Y y) and h2(Xx, Y y) with
B = pt and ω = n. A sufficient condition is that

2n/4(det(L))1/(n−1) ≤ pt√
n
. (1)



226 A. Nitaj

Let X = Nγ , Y = N δ and p > Nβ with β ≥ 1
2 . We have n = (m+2)(m+1)

2 and

det(L) = XsxY syNsN = Nsx(γ+δ)+sN . Then the condition (1) transforms to

2
(m+2)(m+1)

8 N
2(γ+δ)sx+2sN

m(m+3) ≤ Nβt√
(m+2)(m+1)

2

. (2)

Define ε1 > 0 such that

2−
(m+2)(m+1)

8√
(m+2)(m+1)

2

= N−ε1 .

Then, the condition (2) simplifies to

2(γ + δ)sx + 2sN
m(m+ 3)

≤ βt− ε1.

Neglecting the ε1 term and using sx = m(m+1)(m+2)
6 and sN = t(t+1)(3m+4−t)

6 ,
we get

m(m+ 1)(m+ 2)

3
(γ + δ) +

t(t+ 1)(3m+ 4− t)

3
< m(m+ 3)βt.

It is shown in [9] that setting t =
(
1−

√
1− β

)
m leads to the condition

γ + δ < 3β − 2 + 2(1− β)
3
2 − ε,

with a small constant ε > 0 and that the method’s complexity is polynomial in
log(N) and 1/ε.

3 A New Class of Weak Public Exponents in RSA

In this section, we analyze the security of the RSA cryptosystem where the public
exponent e satisfies an equation ex + y ≡ 0 (mod p) with parameters x and y

satisfying ex + y �≡ 0 (mod N) |x| < Nγ and |y| < N δ with γ + δ ≤
√
2−1
2 . We

firstly show that such exponents lead to the factorization of the RSA modulus
and secondly that a very conservative estimate for the number of such weak

exponents is N
√

2
2 −ε where ε > 0 is arbitrarily small for suitably large N .

Theorem 4. Let N = pq be an RSA modulus with q < p < 2q. Let e be a public
exponent satisfying an equation ex+y ≡ 0 (mod p) with |x| < Nγ and |y| < N δ.
If ex+ y �≡ 0 (mod N) and

γ + δ ≤
√
2− 1

2
,

then, under Assumption 1, N can be factored in polynomial time.



A New Attack on RSA and CRT-RSA 227

Proof. Let N = pq be an RSA modulus with q < p < 2q. Then N < p2 and√
N < p. Hence p = Nβ for some β > 1

2 . Let e be a public exponent satisfying
an equation ex + y ≡ 0 (mod p), which is linear in the two variables x and y.
Assume that |x| < Nγ and |y| < N δ with γ and δ satisfying

γ + δ ≤
√
2− 1

2
.

Then applying Theorem 1 with any β > 1
2 , we find x and y in polynomial time.

Using x and y, we get ex + y = pz for some integer z. Moreover, assume that
ex+ y �≡ 0 (mod N). Then gcd(z, q) = 1. Hence

gcd(ex+ y,N) = gcd(pz,N) = p.

This terminates the proof. ��

Next, we estimate the number of exponents for which our method works.

Theorem 5. Let N = pq be an RSA modulus with q < p < 2q. The number of
exponents e < N satisfying ex+ y ≡ 0 (mod p) and ex+ y �≡ 0 (mod N) where
gcd(x, y) = 1, |x| < Nγ and |y| < N δ, with

γ + δ ≤
√
2− 1

2
,

is at least N
√

2
2 −ε where ε is a small positive constant.

Proof. Consider the set

K = {e : 2 ≤ e < N, e = αp+
(
−yx−1 (mod p)

)
,with gcd(x, y) = 1,

0 ≤ α < q, |x| < Nγ , |y| < N
√

2−1
2 −γ and ex+ y �≡ 0 (mod N)}.

Here
(
−yx−1 (mod p)

)
represents the unique positive integer lying in the inter-

val (0, p − 1). Each exponent e ∈ K satisfies ex + y ≡ 0 (mod p) where x and
y fulfil the condition of Theorem 4. Moreover, ex + y �≡ 0 (mod N). Hence, we
can apply Theorem 4 to find the parameters x and y related to each exponent
e ∈ K. This shows that every exponent e ∈ K is vulnerable to the attack.

Next, let e1 ∈ K and e2 ∈ K with

e1 = α1p+
(
−y1x−1

1 (mod p)
)
, e2 = α2p+

(
−y2x−1

2 (mod p)
)
.

Suppose e1 = e2. Then e1 ≡ e2 (mod p) and −y1x−1
1 ≡ −y2x−1

2 (mod p). Equiv-
alently, we get y1x

−1
1 −y2x−1

2 ≡ 0 (mod p).Multiplying by x1x2 modulo p, we get

y1x2−y2x1 ≡ 0 (mod p). On the other hand, for i = 1, 2, we have xi, yi ≤ N
√

2−1
2 .

Hence, since q < p < 2q and
√
N < p, we get

|y1x2 − y2x1| ≤ |y1x2|+ |y2x1| ≤ 2N2×
√

2−1
2 = 2N

√
2−1 < N

1
2 < p.



228 A. Nitaj

This implies that y1x2 − y2x1 = 0 and since (x1, y1) = 1 and (x2, y2) = 1, then
x1 = x2 and y1 = y2. Hence e1 = e2 reduces to α1p = α2p and α1 = α2. This
shows that each exponent e ∈ K is defined by a unique tuple (α, x, y). Observe
that if e satisfies ex+ y ≡ 0 (mod p) and ex+ y ≡ 0 (mod q) with x < q, then
ex + y ≡ 0 (mod N) and e ≡ −yx−1 (mod N). To find an estimation of #K,
consider the set

K′ = {e : 2 ≤ e < N, e =
(
−yx−1 (mod N)

)
,

with gcd(x, y) = 1 , |x| < Nγ , |y| < N
√

2−1
2 −γ}.

On the other hand, observe that the conditions |x| < Nγ and |y| < N
√

2−1
2 −γ

imply that |x||y| < N
√

2−1
2 . Let

M =
⌊
N

√
2−1
2

⌋
.

The number #K of exponents e ∈ K is such that

#K ≥
q−1∑
α=0

M∑
|x|=1

M/|x|∑
|y|=1

(x,y)=1

1−#K′

≥ q

M∑
|x|=1

M/|x|∑
|y|=1

(x,y)=1

1−
M∑

|x|=1

M/|x|∑
|y|=1

(x,y)=1

1

≥ (q − 1)

M∑
|x|=1

M/|x|∑
|y|=1

(x,y)=1

1

≥ (q − 1)M.

Since q − 1 = N
1
2−ε1 and M = N

√
2−1
2 −ε2 for some ε1 > 0 and ε2 > 0, then

#K > N
1
2
−ε1 ×N

√
2−1
2

−ε2 = N
√

2
2

−ε,

where ε > 0 is a small constant. This terminates the proof. ��

4 Application to CRT-RSA

In this section, we present a new attack on CRT-RSA. Let N = pq be an RSA
modulus. Let e be a public exponent corresponding to the private exponent d.
Since the attacks of Wiener [17] and Boneh and Durfee [3], we know that RSA
with a small private key d is vulnerable. As an alternative approach, Wiener
proposed to use the Chinese Remainder Theorem (CRT) for decryption. Then



A New Attack on RSA and CRT-RSA 229

Quisquater and Couvreur proposed a decryption scheme in [14]. The scheme uses
two private exponents dp and dq related to d by

dp ≡ d (mod (p− 1)), dq ≡ d (mod (q − 1)).

Many attacks on CRT-RSA show that using small dp and dq is also dangerous.
The best known result from Jochemsz and May [11] asserts that CRT-RSA is
vulnerable if dp and dq are smaller than N0.073.

Notice that the private exponents dp and dq satisfy the equations

edp ≡ 1 (mod (p− 1)), edq ≡ 1 (mod (q − 1)).

Rewriting the equation edp ≡ 1 (mod (p − 1)) as edp = 1 + kp(p− 1) where kp
is a positive integer, we get edp = 1 − kp + kpp, and edp + kp − 1 ≡ 0 (mod p).
It follows that (dp, kp − 1) is a solution of the equation ex + y ≡ 0 (mod p) in
the variables (x, y). Hence one can apply Theorem 4 which leads to the following
result.

Corollary 1. Let N = pq be an RSA modulus with q < p < 2q. Let e be a public

exponent satisfying e < N
√

2
2 and edp = 1 + kp(p− 1) for some dp with

dp <
N

√
2

4

√
e
.

Then, under Assumption 1, N can be factored in polynomial time.

Proof. Starting with the equation edp = 1 + kp(p − 1) with e = Nα, dp = N δ

and p > N
1
2 , we get

kp =
edp − 1

p− 1
<

edp
p− 1

< Nα+δ− 1
2 . (3)

On the other hand, we have edp ≡ 1− kp (mod p) with dp < N δ and

|1− kp| = kp − 1 < kp < Nα+δ− 1
2 .

To apply Theorem 4 with the equation ex+ y ≡ 0 (mod p) where x = dp < N δ

and y = kp − 1 < Nα+δ− 1
2 , the parameters α and δ must satisfy

δ + α+ δ − 1

2
≤
√
2− 1

2
.

This leads to δ < 1
2

(√
2
2 − α

)
and dp < N δ < N

√
2

4√
e
. Observe that α+ 2δ <

√
2
2 .

Plugging in (3), we get

kp < Nα+δ− 1
2 < Nα+2δ− 1

2 < N
√

2
2 − 1

2 < q.

Hence, the parameters dp and kp are such that edp + kp − 1 = kpp with kp �≡ 0
(mod q). Hence edp − 1 + kp �≡ 0 (mod N) which implies that the method of
Theorem 4 will give the factorization of N in polynomial time. ��



230 A. Nitaj

Notice that our attack on CRT-RSA works for exponents e < N
√

2
2 , that is when

e is much smaller than N . This corresponds to a variant of RSA-CRT proposed
by Galbraith, Heneghan and McKee [6] and to another variant proposed by
Sun, Hinek and Wu [16]. We want to point out that our new attack improves

Bleichenbacher and May’s bound [1] where dp < min
{

1
4

(
N
e

) 2
5 , 1

3N
1
4

}
and dq <

min
{

1
4

(
N
e

) 2
5 , 1

3N
1
4

}
, that is when both dp and dq are suitably small. In other

terms, our attack extends Bleichenbacher and May’s attack in the sense that

only dp (or dq) is small with dp < N

√
2

4√
e
. On the other hand, the existing results

on cryptanalysis of CRT-RSA will directly work on the CRT-RSA variant called
Dual CRT-RSA. Consequently, our result improves the latest bounds on dual
CRT-RSA obtained by Sarkar and Maitra [13].

Next, we consider an instance related to CRT-RSA when the public exponent
e satisfies an equation ex = y+ z(p− 1) with suitably small parameters x, y and
z. We obtain the following result as a corollary of Theorem 4.

Corollary 2. Let N = pq be an RSA modulus with q < p < 2q. Suppose e is a
public exponent satisfying e < N and ex = y + z(p− 1) with

x|z − y| < N
√

2−1
2 and gcd(z, q) = 1.

Then, under Assumption 1, N can be factored in polynomial time.

Proof. Rewrite the equation ex = y + z(p− 1) as ex+ z − y = pz. Assume that
gcd(z, q) = 1, x < Nγ and |z − y| < N δ. Then, by Theorem 4, we can find the

factorization of N in polynomial time if γ + δ ≤
√
2−1
2 , that is

x|z − y| < N
√

2−1
2 ,

which terminates the proof. ��

5 Experimental Results

We have implemented the attack described in Section 4 using the algebra system
Maple on a Intel(R) Core(TM)2 DUO CPU T5870 @ 2.00GHZ 2.00GHZ, 3.00Go
RAM machine. Let us first present a detailed example.

5.1 A Working Example

We choose a 200-bitN which is a product of two 100-bit primes p and q satisfying
q < p < 2q. We also choose a 100-bit e.

N = 2746482122383906972393557363644983749146398460239422282612197,

e = 1908717316858446782674807627631.



A New Attack on RSA and CRT-RSA 231

We suppose that e satisfies edp = 1+ kp(p− 1) with dp < N

√
2

4√
e
. We rewrite this

equation as x0+ey0 ≡ 0 (mod p) where x0 = kp−1 and y0 = dp. Next, consider
the polynomial f(x, y) = x+ey. We apply the lattice-based method of Herrmann
and May with m = 5 and t = 2 as explained in Subsection 2.2. We find that the
polynomials h1(x, y) and h2(x, y) share the common factor 407851x− 396114y.
Solving over the integers, this leads to the solution (x0, y0) = (kp − 1, dp) =
(396114, 407851). Hence dp = 407851 ≈ N0.09 and kp = 396115 ≈ N0.09. Using
(kp, dp), one can find p, q as

p = gcd(edp + kp − 1, N) = 1965268334695819089811552114253,

q =
N

p
= 1397509985733832541423163654649.

In connection with CRT-RSA, we observe that the private parameter dq satis-
fying edq ≡ 1 (mod (q− 1)) is dq = 822446363998652526665788028903≈ N0.49.

This is greater than the bound min
{

1
4

(
N
e

) 2
5 , 1

3N
1
4

}
≈ N0.2 obtained by Ble-

ichenbacher and May in [1]. This shows that the technique of [1] will not work
here.

5.2 Massive Experiments

We generated 1000 RSA moduli N = pq with 512-bit primes. For each modulus

N , we generated a 512-bit exponent e such that dp < N

√
2

4√
e
. The implementation

was in all cases successful and it needs approximately 8 secondes to find the
factors of the RSA modulus.

We also ran our experiments with random 1024-bit moduliN = pq and various
size of dp as follows. We randomly select two distinct 512-bit primes p and q and
a positive integer dp of prescribed size such that gcd(dp, (p− 1)(q− 1)) = 1. The
exponent e is then calculated as e ≡ d−1

p (mod (p− 1)). Observe that e is of size

approximately N
1
2 , so that the condition connecting e and dp becomes

Table 2. Experimental results for various size of dp

Size of dp Size of e Size of dq LLL execution time

10 511 510 5.35 sec
20 511 508 6.49 sec
40 511 508 6.49 sec
80 510 511 11.45 sec
90 510 510 11.80 sec
95 512 507 11.51 sec
100 511 511 11.74 sec
105 511 511 12.18 sec
110 502 511 11.06 sec



232 A. Nitaj

dp <
N

√
2

4

√
e
≈ N

√
2−1
4 .

Hence, for a 1024-bit modulus N , the CRT-exponent dp is typically of size at
most 110.

In Table 2, we give the details of the computations using the method described
in Subsection 2.2 with the lattice parameters m = 4 and t = 2.

6 Conclusion

In this paper, we presented a new attack on the RSA cryptosystem when the
public key (N, e) satisfies an equation ex + y ≡ 0 (mod p) with the constraint

that |x||y| < N
√

2−1
2 . We showed that the number of such exponents with e < N

is at least N
√

2
2 −ε. As an application of our new attack, we presented the crypt-

analysis of CRT-RSA if the private exponent dp satisfies dp < N

√
2

4√
e

when p and q

are of the same bit-size and e is much smaller than N . This improves the former
result of Bleichenbacher and May for CRT-RSA with small CRT-exponents and
balanced primes in the case that the public exponent e is significantly smaller
than N.

References

1. Bleichenbacher, D., May, A.: New Attacks on RSA with Small Secret CRT-
Exponents. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 1–13. Springer, Heidelberg (2006)

2. Blömer, J., May, A.: A Generalized Wiener Attack on RSA. In: Bao, F., Deng, R.,
Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 1–13. Springer, Heidelberg (2004)

3. Boneh, D., Durfee, G.: Cryptanalysis of RSA with Private Key d Less than N0.292.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 1–11. Springer,
Heidelberg (1999)

4. Cohen, H.: A Course in Computational Number Theory. Graduate Texts in Math-
ematics. Springer (1993)

5. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. Journal of Cryptology 10(4), 233–260 (1997)

6. Galbraith, S.D., Heneghan, C., McKee, J.F.: Tunable Balancing of RSA. In: Boyd,
C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 280–292.
Springer, Heidelberg (2005)

7. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. Oxford
University Press, London (1965)

8. Hastad, J.: Solving simultaneous modular equations of low degree. SIAM J. of
Computing 17, 336–341 (1988)

9. Herrmann, M., May, A.: Solving Linear Equations Modulo Divisors: On Factor-
ing Given Any Bits. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350,
pp. 406–424. Springer, Heidelberg (2008)



A New Attack on RSA and CRT-RSA 233

10. Howgrave-Graham, N.: Finding Small Roots of Univariate Modular Equations Re-
visited. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355,
pp. 131–142. Springer, Heidelberg (1997)

11. Jochemsz, E., May, A.: A Polynomial Time Attack on RSA with Private CRT-
Exponents Smaller Than N0.073 . In: Menezes, A. (ed.) CRYPTO 2007. LNCS,
vol. 4622, pp. 395–411. Springer, Heidelberg (2007)

12. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational co-
efficients. Mathematische Annalen 261, 513–534 (1982)

13. Maitra, M., Sarkar, S.: Cryptanalysis of Dual CRT-RSA. In: WCC 2011 - Workshop
on Coding and Cryptography, pp. 27–36 (2011)

14. Quisquater, J.J., Couvreur, C.: Fast decipherment algorithm for RSA public key
cryptosystem. Electronic Letters 18(21), 905–907 (1982)

15. Rivest, R., Shamir, A., Adleman, L.: A Method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

16. Sun, H.-M., Hinek, M.J., Wu, M.-E.: On the design of rebalanced CRT-RSA.
Technical Report CACR 2005–35, University of Waterloo (2005)

17. Wiener, M.: Cryptanalysis of short RSA secret exponents. IEEE Transactions on
Information Theory 36, 553–558 (1990)



Shift-Type Homomorphic Encryption

and Its Application
to Fully Homomorphic Encryption

Frederik Armknecht1, Stefan Katzenbeisser2, and Andreas Peter2

1 Theoretical Computer Science and IT Security Group
Universität Mannheim, Germany
armknecht@uni-mannheim.de
2 Security Engineering Group

Technische Universität Darmstadt and CASED, Germany
{stefan.katzenbeisser,andreas.peter}@cased.de

Abstract. This work addresses the characterization of homomorphic
encryption schemes both in terms of security and design. In particular,
we are interested in currently existing fully homomorphic encryption
(FHE) schemes and their common structures and security. Our main
contributions can be summarized as follows:

– We define a certain type of homomorphic encryption that we call
shift-type and identify it as the basic underlying structure of all
existing homomorphic encryption schemes. It generalizes the already
known notion of shift-type group homomorphic encryption.

– We give an IND-CPA characterization of all shift-type homomorphic
encryption schemes in terms of an abstract subset membership prob-
lem.

– We show that this characterization carries over to all leveled FHE
schemes that arise by applying Gentry’s bootstrapping technique to
shift-type homomorphic encryption schemes. Since this is the com-
mon structure of all existing schemes, our result actually character-
izes the IND-CPA security of all existing bootstrapping-based leveled
FHE.

– We prove that the IND-CPA security of FHE schemes that offer a cer-
tain type of circuit privacy (for FHE schemes with a binary plaintext
space we require circuit privacy for a single AND-gate and, in fact,
all existing binary-plaintext FHE schemes offer this) and are based
on Gentry’s bootstrapping technique is equivalent to the circular
security of the underlying bootstrappable scheme.

Keywords: Public-Key Cryptography, Homomorphic Encryption, Se-
mantic Security, Circular Security.

1 Introduction

Homomorphic encryption is one of the central topics in public-key cryptography
as it allows for the evaluation of certain circuits over encrypted data without the

A. Mitrokotsa and S. Vaudenay (Eds.): AFRICACRYPT 2012, LNCS 7374, pp. 234–251, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Shift-Type Homomorphic Encryption 235

ability to decrypt. Many important applications, such as Outsourcing of Com-
putation [18], Electronic Voting [5, 10, 12, 13], Private Information Retrieval
[26], Oblivious Polynomial Evaluation [28], and Multiparty Computation [11]
are based on this primitive. In the past decades, a substantial number of homo-
morphic encryption schemes have been proposed (see survey [17]). The major-
ity of these schemes are group homomorphic, i.e., the plaintext and ciphertext
spaces are groups and the decryption function is a group homomorphism. In
other words, group homomorphic schemes allow the evaluation of circuits, con-
sisting solely of group operations in the plaintext group, over the ciphertexts.
Recently, Armknecht et al. [3] gave a comprehensive and complete framework of
all currently existing group homomorphic encryption schemes and, in particular,
gave characterization both in terms of security and design.

Concerning the construction and characterization of more general homomor-
phic encryption schemes on the other hand, there is still a lot of work to be
done. Much effort has been devoted to the construction of so-called fully homo-
morphic encryption (FHE) schemes [7–9, 15, 19, 21–24, 27, 29, 30], which allow
the evaluation of any circuit (not just consisting of group operation gates as it is
the case for group homomorphic encryption) over the ciphertexts. The first such
scheme has been proposed by Gentry [20] which uses a certain technique that
subsequently has been the basis of all currently existing FHE schemes. Gentry’s
technique is called bootstrapping and can be summarized in the following 2 steps:

1. Construct a bootstrappable homomorphic encryption scheme, i.e., a scheme
allowing the evaluation of low-degree polynomials over the ciphertexts and,
in particular, the evaluation of its own decryption circuit together with one
additional set of gates like AND and NOT.

2. Use the bootstrapping technique on this scheme to make it fully homomor-
phic. This technique refreshes a given ciphertext so that it can further be
used for evaluation. Usually, ciphertexts are created by adding noise to a
given plaintext and once the noise gets too big, the ciphertexts have to be
refreshed to reduce the noise again – this is what bootstrapping achieves.

Essentially, the same bootstrapping technique (with minor differences) can be
used to construct so-called leveled FHE schemes – a relaxed notion of FHE. Such
schemes can evaluate all circuits up to a certain depth.1

Concerning security, the resulting FHE schemes can be proven secure in terms
of IND-CPA (also known as semantic security) under certain assumptions. For a
leveled FHE scheme, IND-CPA security follows from the IND-CPA security of the
underlying bootstrappable scheme. For a “pure” FHE scheme, we require the

1 The recent leveled FHE scheme by Brakerski et al. [7] is built without the boot-
strapping technique. It is the only scheme known so far that deviates from Gentry’s
blueprint. We stress that we focus on schemes that follow the bootstrapping ap-
proach.
We also want to point out that we are not concerned with the “squashing of

the decryption circuit” step that Gentry originally proposed in his blueprint. The
schemes [7–9, 21] circumvent this “squashing” step but still rely on bootstrapping
which is the technique we focus on in this paper.



236 F. Armknecht, S. Katzenbeisser, and A. Peter

underlying bootstrappable scheme to be circular secure which roughly means
that the scheme remains secure even if the adversary gets to see the bits of the
secret key encrypted under the corresponding public key.

1.1 Contribution and Related Work

In this paper, we address the above mentioned topic of characterizing the secu-
rity and the design of homomorphic encryption schemes in the context of FHE,
thereby extending the work of Armknecht et al. [3] on group homomorphic en-
cryption to these more general homomorphic schemes:

1. We identify and formalize the underlying structure of all existing homomor-
phic schemes and call such schemes shift-type homomorphic. It is a natural
generalization of the shift-type group homomorphic schemes introduced in
[3].

2. We give an IND-CPA security characterization of all shift-type encryption
schemes in terms of an abstract subset membership problem. In comparison
to the proof of the IND-CPA security characterization of group homomor-
phic schemes in [3] that heavily relies on the group homomorphic property,
it is interesting to see that our result shows that it is actually the shift-type
structure of the encryption algorithm that gives the IND-CPA characteriza-
tion (and not the homomorphic property of the decryption).

3. We show that this characterization carries over to all leveled FHE schemes
that are based on Gentry’s bootstrapping technique applied to shift-type ho-
momorphic schemes. Since all existing schemes are shift-type homomorphic,
this gives a characterization of all existing bootstrapping-based schemes. Ad-
ditionally, our result has the nice application that once an FHE scheme is
constructed using Gentry’s technique, the underlying hardness assumption
yielding IND-CPA security immediately comes out of this characterization.

4. We prove that the IND-CPA security of “pure” FHE schemes that are based
on Gentry’s bootstrapping technique and that are circuit-private for a cer-
tain small set of circuits (meaning that a ciphertext that is the evaluation
of ciphertexts under one of these circuits does not reveal any information
about the used circuit, even when the secret key is known) is equivalent to
the circular security of the underlying bootstrappable scheme. We note that
Gentry [19, Theorem 4.3.2] has already proved one of the directions, namely
that if the underlying bootstrappable scheme is circular secure, then the
resulting FHE scheme is IND-CPA secure. Interestingly enough, all existing
FHE schemes where the plaintext space is {0, 1} are circuit-private for this
special set of circuits.

Our characterization result gives another important relation between the
notion of circular security and IND-CPA security. Moreover, it shows that
when the resulting FHE scheme (using the bootstrapping technique) gives a
certain “minimal” circuit privacy, the circular security is not only sufficient
but also necessary. Therefore it underlines the importance of Brakerski et
al.’s work [9]. Therein, they construct a “somewhat” homomorphic scheme



Shift-Type Homomorphic Encryption 237

(i.e., a homomorphic encryption scheme for low-degree polynomials only)
that is provably circular secure. However, this scheme is not bootstrappable.
By using standard techniques, they turn it into a bootstrappable scheme.
Unfortunately, the proof of circular security gets lost in this transformation.
We note that, even with Brakerski et al.’s result, we still do not know how to
prove circular security for given IND-CPA secure bootstrappable encryption
schemes. So currently existing FHE schemes still rely on the assumption that
the circular security and the IND-CPA security of their underlying bootstrap-
pable schemes are equivalent.

In regard to circular security, there are two other papers important to mention.
First, there is the work by Barak et al. [4]. Therein, they show that any FHE
scheme that is circular secure is actually fully KDM secure (i.e., the adversary
gets evaluations of arbitrary functions on the private key). Second, the work by
Applebaum [2] shows that any simulatable fully KDM secure scheme (a notion
which is even stronger than fully KDM security) is also fully homomorphic.
Furthermore, it shows that the same bootstrapping technique that Gentry uses
to build FHE schemes can be used to construct fully KDM secure encryption
schemes.

We stress that in contrast to the just mentioned works, we prove that the
IND-CPA security of FHE schemes (that arise by using the bootstrapping tech-
nique) which give a certain “minimal” circuit privacy, is equivalent to the circular
security of the underlying bootstrappable scheme.

To complete the list of related works on FHE, we want to mention an approach
by Aguilar Melchor et al. [1], which uses so-called “chained encryption schemes”
and differs from the bootstrapping technique. Although it is likely that our
results extend to their method, we do not cover this here, since the computational
cost of their solution is exponential in the number of multiplications that the
scheme should be able to evaluate over the ciphertexts (formally, they do not
achieve leveled FHE but only constant-bounded FHE).

1.2 Outline

Throughout the paper, we use standard notation and definitions that are sum-
marized in Section 2. Therein, we also formally define public-key homomorphic
encryption, recall its standard security notion, and define a class of subset mem-
bership problems. In Section 3, we define shift-type homomorphic encryption
schemes and characterize their security in terms of these subset membership
problems. Finally, Section 4 is entirely devoted to FHE. First, we recall Gen-
try’s bootstrapping technique for leveled FHE schemes and show that our secu-
rity characterization for shift-type homomorphic encryption carries over to such
schemes. Second, we prove the equivalence of a “pure” bootstrapping-based FHE
scheme being IND-CPA secure and the underlying bootstrappable scheme being
circular secure. Third, we give a brief overview on existing FHE schemes and
their underlying shift-type structures, while focusing on the scheme by van Dijk
et al. [15] for a better conceptual understanding. We conclude in Section 5.



238 F. Armknecht, S. Katzenbeisser, and A. Peter

2 Preliminaries

2.1 Notation

We write x←− X if X is a random variable or distribution and x is to be chosen
randomly from X according to its distribution. In the case where X is solely a

set, x
U←− X denotes that x is chosen uniformly at random from X . For an

algorithm A we write x ←− A(y) if A outputs x on fixed input y according to
A’s distribution. If A has access to an oracle O, we write AO. Sometimes, we
need to specify the randomness of a probabilistic algorithm A explicitly. To this
end, we interpret A as a deterministic algorithm A(y, r), which has access to
random values r from some randomness space Rnd.

By a description of a finite set X we mean an efficient sampling algorithm
(according to some distribution) for the set X . If X is a group, a description of
X additionally includes the neutral element and a set of efficient algorithms that
allow us to perform the usual group operation on X and the inversion of group
elements. We abuse notation and write X both for the description and for the
set itself. If a description of X is given, we denote sampling from X according to
the distribution given by the sampling algorithm of the description by x←− X .

For given probabilistic algorithms A and Gen that run in time polynomial in a
given parameter λ, we describe computational problems P through experiments
ExpP

A,Gen(λ). The output of ExpP
A,Gen(λ) is always defined to be a single bit.

We then say that problem P is hard (relative to Gen) if for all probabilistic
polynomial time (PPT) algorithms A there exists a negligible (in λ) function
negl such that ∣∣∣∣Pr[ExpP

A,Gen(λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ).

We recall that a public-key encryption scheme E = (KeyGen,Enc,Dec) consists
of a PPT key generation algorithm KeyGen which generates a pair (pk, sk) of
corresponding public and private keys, a PPT encryption algorithm Enc and a
deterministic PT decryption algorithm Dec with the usual correctness condition.
We denote the set of plaintexts by P and the set of ciphertexts by Ĉ.

2.2 Public-Key Homomorphic Encryption Schemes

We briefly recall the notion of public-key homomorphic encryption (see [25,
Definition 5] or [20, Definition 1]).

Definition 1. A public-key encryption scheme E = (KeyGen,Enc,Dec) is called
homomorphic for a set of circuits C = C[λ] (that depends on the security param-
eter λ), if there exists a PPT algorithm Eval (that outputs a ciphertext and takes
as input public keys pk from the output of KeyGen, circuits C ∈ C(λ) and ci-
phertexts (c1, . . . , cr) with ci ←− Encpk(mi) for some mi ∈ P, i = 1, . . . , r) such
that for every output (pk, sk) of KeyGen(λ) it holds that ( correctness condition)

Decsk(Evalpk(C, c1, . . . , cr)) = C(m1, . . . ,mr),

except with negligible (in λ) probability over the random coins in Eval.



Shift-Type Homomorphic Encryption 239

The minimal security property that we require such schemes to have is semantic
security (or IND-CPA security), which is defined in exactly the same way as
for standard public-key encryption schemes and is captured by the following
experiment between a challenger and an adversary A:

Experiment Expind-cpa
A,KeyGen(λ):

1. (pk, sk)←− KeyGen(λ)
2. (m0,m1, s)←− A1(pk) where m0,m1 ∈ P and s a state of A1

3. Choose b
U←− {0, 1} and compute c←− Encpk(mb)

4. d←− A2(m0,m1, s, c) where d ∈ {0, 1}
5. The output of the experiment is defined to be 1 if d = b and 0 otherwise.

We say that E is IND-CPA secure (relative to KeyGen) if the advantage∣∣∣∣Pr[Expind-cpa
A,KeyGen(λ) = 1]− 1

2

∣∣∣∣ is negligible for all PPT algorithms A.

2.3 The Subset Membership Problem

The Subset Membership Problem (SMP) was introduced by Cramer and Shoup in
[14]: Let Gen be a PPT algorithm that takes a security parameter λ as input and
outputs descriptions (S,N ) where N is a non-trivial, proper subset of a finite
set S. Consider the following experiment for a given algorithm Gen, algorithm
A and parameter λ:

Experiment ExpSMP
A,Gen(λ):

1. (S,N )←− Gen(λ)

2. Choose b
U←− {0, 1}. If b = 1: z ←− S. Otherwise: z ←− N .

3. d←− A(S,N , z) where d ∈ {0, 1}
4. The output of the experiment is defined to be 1 if d = b and 0 otherwise.

This experiment defines the Subset Membership Problem SMP (relative to Gen)
which, informally, states that given (S,N , z) where z ←− S, one has to decide
whether z ∈ N or not.

3 Shift-Type Homomorphic Encryption

Informally, an encryption scheme is shift-type homomorphic if the plaintexts form
a non-trivial (say multiplicative) group, encryptions of known plaintexts can be
transformed (or “shifted”) to encryptions of 1, and if the same transformation
is applied to a random ciphertext, the resulting ciphertext is still random.

Definition 2. A public-key encryption scheme E = (KeyGen,Enc,Dec) is called
shift-type homomorphic, if for every output (pk, sk) of KeyGen(λ), the plain-

text space P and the ciphertext space Ĉ are (multiplicatively written) non-trivial



240 F. Armknecht, S. Katzenbeisser, and A. Peter

groups2 such that the public key pk contains a description of a subset N ⊆ Ĉ and
an efficient injective homomorphism ϕ : P → Ĉ so that for all plaintexts m ∈ P,

Encpk(m) outputs ϕ(m) · n,

where n←− N .

We denote the set of all encryptions by

C := {Encpk(m) | m ∈ P} ⊆ Ĉ

and sometimes call its elements fresh ciphertexts/encryptions. Since ϕ is a ho-
momorphism, we know that N is actually a subset of C.

Remark 1. 1. The concept of shift-type homomorphic encryption is very similar
to the concept of “adding noise” to the plaintext. Here, we are a bit more
general, as we allow homomorphic manipulation of the plaintext prior to
adding (or multiplying in our case) noise. The “noise” corresponds to the
elements of the subset N .

2. The name “shift-type” is due to the fact that we can “shift” encryptions
of known plaintexts to encryptions of arbitrary plaintexts under the same
noise: Let c := ϕ(m) · n be an encryption of message m ∈ P . Then, by
computing c′ := ϕ(m′ · m−1) · c for some arbitrary message m′ ∈ P , we
receive an encryption c′ = ϕ(m′) · n of message m′ under the same noise n,
by using the homomorphic property of ϕ.

3. Definition 2 is a natural generalization of the notion of shift-type group
homomorphic encryption as introduced in [3]. For the latter, the decryption
procedure is a group homomorphism and the mapping ϕ is the encryption
algorithm under a fixed randomness.

4. We stress that the shift-type structure of the encryption algorithm is not
implied by a group homomorphic encryption scheme (recall that this means
that the decryption procedure is a group homomorphism, see [3] for details).
Although all existing IND-CPA secure homomorphic schemes do have this
structure, it is easy to construct a group homomorphic scheme (which is
insecure in terms of IND-CPA) that does not: Let E = (KeyGen,Enc,Dec) be
an arbitrary IND-CPA secure group homomorphic encryption scheme with
randomness space Rnd (e.g., ElGamal’s scheme [16]) and let r∗ be some fixed
value in Rnd. We modify its encryption algorithm as follows and denote it
by Enc∗: On input a plaintext m, Enc∗(m) chooses a random bit b ∈ {0, 1}
and some random r ∈ Rnd. If b = 1 or m = 1, Enc∗(m) outputs Enc(m, r).
Otherwise, it outputs Enc(m, r∗).

It is easy to see that the modified scheme Enc∗ = (KeyGen,Enc∗,Dec) is
group homomorphic but not IND-CPA secure. On the other hand, it is also
not shift-type homomorphic. Interestingly enough, it is an open question

2 We assume that descriptions of P and Ĉ are contained in the public key pk. As de-
scribed in Section 2.1, sampling from P (resp. Ĉ) using the (corresponding) sampling
algorithm of the description is denoted by m ←− P (resp. c ←− Ĉ).



Shift-Type Homomorphic Encryption 241

whether the shift-type structure is implied by the IND-CPA security of a
given group homomorphic encryption scheme – meaning that if the output
distribution of the encryption algorithm is computationally distinguishable
from the shift-type structure, then the given group homomorphic scheme is
insecure in terms of IND-CPA.

Next, we will characterize the IND-CPA security of such schemes. We note that
by saying that the Subset Membership Problem (SMP) as defined in Section
2.3 is hard relative to KeyGen for a key generator KeyGen of some shift-type
homomorphic encryption scheme, we mean that SMP is hard for (C,N ). For a
given shift-type homomorphic encryption scheme, we use the notation

Cm := {c ∈ C | Decsk(c) = m}

to denote the set of ciphertexts decrypting to m ∈ P . In particular, we have
N = C1 in this notation. We are now in a position to prove a characterization of
IND-CPA security of such schemes.

Theorem 1 (IND-CPA Security of Shift-Type Schemes). For a shift-type
homomorphic encryption scheme E = (KeyGen,Enc,Dec) we have:

E is IND-CPA (rel. to KeyGen) ⇐⇒ SMP is hard (rel. to KeyGen)

Proof. “⇐”: Assume that E is not IND-CPA secure, i.e. there exists a PPT
algorithm Acpa = (Acpa

1 ,Acpa
2 ) that breaks the security with non-negligible ad-

vantage f(λ). We derive a contradiction by constructing a PPT algorithm Asmp

that successfully solves SMP with advantage 1
2f(λ).

Since SMP and IND-CPA are both considered relative to KeyGen, Asmp can
simply forward the public key pk of the output of KeyGen(λ) to Acpa

1 . Next,
Acpa

1 outputs two messages m0,m1 ∈ P to Asmp. The SMP challenger chooses a

bit b
U←− {0, 1} and sends the challenge c ∈ C to Asmp, who then chooses a bit

d
U←− {0, 1} and sends the challenge cd := ϕ(md) · c to Acpa

2 . Now, Acpa
2 outputs

a bit d′ and sends it back to Asmp which sends b′ := d⊕d′ to the SMP challenger.
We have the following relations: If b = 0, then c ∈ N = C1 and cd ∈ Cmd

(a
fresh encryption of md) by definition. Hence, Acpa

2 makes the right guess with
advantage f(λ), i.e., Pr[b′ = b|b = 0] ≥ 1

2 + f(λ). If b = 1, then c ∈ C, meaning
that it is a fresh encryption (by definition of the set C) of some random message
m. But ϕ is a homomorphism and so cd is a fresh encryption of (the random
message) md · m. Hence, Acpa

2 guesses d with no advantage, i.e. Pr[b′ = b|b =
1] = 1

2 . We have shown:

Pr[ExpSMP
Asmp,Gen(λ) = 1] =

∑
β∈{0,1}

Pr[b′ = b|b = β] · Pr[b = β]

≥ 1

2
·
(
1

2
+ f(λ) +

1

2

)
=

1

2
+

1

2
f(λ).

“⇒”: For the converse, we assume that there is a PPT algorithm Asmp that
solves SMP with advantage f(λ). Similarly to what we have done above, we



242 F. Armknecht, S. Katzenbeisser, and A. Peter

construct a PPT algorithm Acpa = (Acpa
1 ,Acpa

2 ) that successfully breaks the
IND-CPA security with advantage f(λ).

Again as above, Acpa
1 forwards the output of KeyGen(λ) to Asmp. Next, Acpa

1

outputs two random messages m0,m1 ∈ P . The IND-CPA challenger chooses a

bit b
U←− {0, 1} and sends the challenge cb ←− Encpk(mb) to Acpa

2 , who then
computes c := ϕ(m−1

0 ) · cb ∈ C and sends the challenge c to Asmp. Now, Asmp

returns a bit d′ to Acpa
2 that then outputs b′ := d′ to the IND-CPA challenger.

We have the following relations: If b = 0, then c ∈ C1 = N and Asmp guesses
b with advantage f(λ), i.e. Pr[b′ = b|b = 0] ≥ 1

2 + f(λ). If b = 1, then c
is a random element in C and Asmp guesses b again with advantage f(λ), i.e.
Pr[b′ = b|b = 1] ≥ 1

2 + f(λ). Therefore, we have shown:

Pr[Expind-cpa
Acpa,Gen(λ) = 1] =

∑
β∈{0,1}

Pr[b′ = b|b = β] · Pr[b = β]

≥ 1

2
· (1 + 2f(λ)) =

1

2
+ f(λ).

�

4 Fully Homomorphic Encryption (FHE)

An encryption scheme E = (KeyGen,Enc,Dec,Eval) that is homomorphic for all
circuits (in terms of Definition 1) is called fully homomorphic (FHE = Fully
Homomorphic Encryption). To rule out trivial FHE schemes E , e.g., where Eval
simply outputs its input circuit C together with its input ciphertexts and Dec
takes circuits C as input as well and simply outputs the evaluation of C on the
decryptions of the plugged-in ciphertexts, we require the additional property of
compactness (cf. [19, Definition 2.1.2]). Informally this means that the size of
the output of Eval does not depend on the size of the circuit it evaluates.

We recall this notion in the more general context of encryption schemes that
are homomorphic for a given set of circuits.

Definition 3. Let E = (KeyGen,Enc,Dec,Eval) be an encryption scheme that is
homomorphic for a set of circuits C = C[λ]. E is called compact, if Dec can be
expressed as a circuit of size at most p(λ) for some polynomial p.

With this definition in mind, we can formalize the notion of FHE:

Definition 4. An encryption scheme E = (KeyGen,Enc,Dec,Eval) that is ho-
momorphic for all circuits and compact is called fully homomorphic.

We note that all currently existing FHE schemes in terms of Definition 4 (namely,
[7–9, 15, 19, 21–24, 27, 29, 30]) are variants of a scheme proposed by Gentry [20]
and do all have the property that decryption Dec is implemented by a circuit
that does only depend on the security parameter λ. To achieve this notion of
FHE, all these schemes are based on the so-called bootstrapping technique by
Gentry [20], which we will recall in the next section.



Shift-Type Homomorphic Encryption 243

We stress, however, that there is the relaxed notion of Leveled FHE that we
want to deal with first. Unlike “pure” FHE schemes (as in Definition 4), such
schemes can correctly evaluate circuits up to a certain depth only. We will recall
this notion in the next section. For such leveled FHE schemes, we remark that
except for the scheme by Brakerski, Gentry, and Vaikuntanathan [7], again all
existing schemes are based on Gentry’s bootstrapping technique.3 In this paper,
we restrict our attention to (leveled) FHE schemes that are based on Gentry’s
bootstrapping technique.

Our aim is a characterization of the IND-CPA security of all existing (leveled)
FHE schemes that are based on the technique of bootstrapping. To do so, we first
give a brief summary on Gentry’s bootstrapping approach in the next section
and prove an IND-CPA characterization of schemes that can be constructed in
this way. We will do this both for leveled FHE schemes, as well as for “pure”
FHE schemes. For the latter, we need the FHE schemes to have the additional
property of circuit privacy that we will recall in Section 4.2. Finally, in Section
4.3 we discuss existing schemes, while focusing on a particular scheme by van
Dijk et al. [15] for a better conceptual understanding.

4.1 Gentry’s Bootstrapping Technique: Leveled FHE Schemes

In this section, we briefly want to recall Gentry’s bootstrapping technique [20] on
how to construct FHE schemes. Roughly speaking, Gentry constructs a homo-
morphic encryption scheme for circuits of any depth from an underlying encryp-
tion scheme that is homomorphic for “just a little more than its own decryption
circuit”. We formalize the term in double quotes momentarily (see also [20, Def-
inition 4]), but first need to do some more definitional work. We will prove later
that characterizing the IND-CPA security of the underlying schemes is already
enough to characterize the IND-CPA security of resulting schemes that are ho-
momorphic for all circuits up to a certain depth (such schemes are also known
as Leveled FHE schemes).

Definition 5. Let E = (KeyGen,Enc,Dec,Eval) be an encryption scheme in
which Dec is implemented by a circuit that does only depend on the security
parameter λ. For every output (pk, sk) of KeyGen(λ), we let Γ be a set of gates
with inputs and output in plaintext space P including the identity gate (input and
output are the same). For gate g ∈ Γ , the g-augmented decryption circuit con-
sists of a g-gate connecting multiple copies of Dec (the number of copies equals
the number of inputs to g), where Dec takes the secret key sk and a ciphertext as
input formatted as elements of P�(λ), where �(λ) is some polynomial in λ. We
denote the set of all g-augmented decryption circuits, g ∈ Γ , by Dec(Γ ).4

3 Some of the existing schemes, however, deviate from Gentry’s original blueprint
where one starts with a “somewhat homomorphic scheme”, then “squashes” the
decryption circuit, and then does the bootstrapping. In the present work, we are not
interested in the “squashing” step and will restrict our attention to the bootstrapping
step.

4 Recall that Dec always depends on λ and we sometimes write Dec[λ] to make this
dependency obvious.



244 F. Armknecht, S. Katzenbeisser, and A. Peter

Recall that from now on, we restrict our attention to encryption schemes in
which decryption Dec is implemented by a circuit that does only depend on the
security parameter λ. The most important property of an encryption scheme to
be of any use in Gentry’s approach is that of bootstrappability.

Definition 6. Let E = (KeyGen,Enc,Dec,Eval) be a homomorphic encryption
scheme for a set of circuits C = C[λ]. E is called bootstrappable for a set of
gates Γ , if Dec[λ](Γ ) ⊆ C[λ] for all security parameters λ.

There are two main results in [20] that are of particular interest to us:

Theorem 2 (see Theorem 3 of [20]). There is an efficient and explicit trans-
formation that for any given bootstrappable scheme E for a set of gates Γ and
parameter d = d(λ) outputs another encryption scheme E(d) that is

1. compact and whose decryption circuit is identical to that of E
2. homomorphic for all circuits with gates in Γ of depth at most d.

Theorem 3 (see Theorem 4 of [20]). Let E be a bootstrappable scheme for a
set of gates Γ . For all parameters d = d(λ), we have that the output E(d) of the
transformation from Theorem 2 applied to E and d is IND-CPA secure if E is.

We will now prove that the IND-CPA security of E(d) is actually equivalent to
that of E . For this we need to recall a few details in Gentry’s transformation of
Theorem 2. For all remaining details, we refer to [20]. The particular facts, we
will need about E(d) are the following three (cf. [20]):

1. The plaintext space P of E(d) is the same as that of E .
2. The key generation algorithm of E(d) uses the key generator KeyGen of E

(d + 1)-times to produce d + 1 public and secret key pairs (pki, ski), i =
0, . . . , d. Let ski1, . . . , ski� be the representation of ski as elements of P with
� = �(λ) as in Definition 5. The key generator of E(d) then computes skij ←−
Encpki−1

(skij) for i = 1, . . . , d and j = 1, . . . , �, and outputs the secret key

sk(d) := sk0, and public key

pk(d) :=

(
(pki)i=1,...,d, (skij)i=1,...,d

j=1,...,�

)
.

3. Encryption of a message m ∈ P in E(d) is done by computing a ciphertext
c←− Encpkd(m), i.e., an encryption of m under pkd by using the encryption
algorithm Enc of E .

We are now in a position to prove the IND-CPA characterization.

Theorem 4. Let E be a bootstrappable scheme for a set of gates Γ . For param-
eter d = d(λ), let E(d) denote the output of the transformation from Theorem 2
applied to E and d. For all parameters d, it holds:

E(d) is IND-CPA secure ⇐⇒ E is IND-CPA secure.



Shift-Type Homomorphic Encryption 245

Proof. “⇐”: This is Theorem 3.
“⇒”: If A is a PPT adversary that successfully breaks the IND-CPA security of
E , then A can also be used to break the IND-CPA security of E(d). By looking at
the facts above, we know that in the IND-CPA security game for E(d), A receives
the public key pkd, outputs two messages m0,m1 ∈ P and gets the ciphertext

c ←− Encpkd(mb) as the challenge ciphertext, where b
U←− {0, 1}. Due to the

initial assumption on A, A can guess the bit b with non-negligible advantage. �

Unfortunately, the resulting scheme from Theorem 2 after applying the transfor-
mation is not yet an FHE scheme as it is only homomorphic for all circuits with
gates in Γ of depth at most d (i.e., it is leveled fully homomorphic). However,
in [19], Gentry shows how to modify the previously described technique to get
“pure” FHE schemes. We will give an IND-CPA security characterization of such
schemes (with a certain additional property) in the next section.

4.2 Gentry’s Bootstrapping Technique: FHE Schemes

In [19, Section 4.3], Gentry shows that, by changing the transformation as de-
scribed in the following and by assuming that the underlying bootstrappable
scheme is circular secure (a notion we will recall momentarily), the resulting
scheme is indeed fully homomorphic and IND-CPA secure. We start by explain-
ing the modification of the transformation of Theorem 2, whereas we denote the
resulting scheme by E∗:

In the key generation step above (this is step 2 right after Theorem 3), E∗
uses the key generator KeyGen of E only once (instead of (d + 1)-times) to
compute a key pair (pk, sk) and outputs the secret key sk∗ := sk and public
key pk∗ := (pk, sk1, . . . , sk�) where ski ←− Encpk(ski) and sk1, . . . , sk� is the
representation of sk as elements of P . This is the only modification and the rest
works exactly as in the transformation of Theorem 2 (see [19, Section 4.3] for
details).

Next, we recall the notion of circular security for bootstrappable encryption
schemes E = (KeyGen,Enc,Dec,Eval). Consider the following experiment for a
given algorithm A and parameter λ:

Experiment Expcircular
A,KeyGen(λ):

1. Compute (pk, sk)←− KeyGen(λ)

2. Choose b
U←− {0, 1}. If b = 0, then compute skj ←− Encpk(skj) for all

j = 1, . . . , � where sk1, . . . , sk� is the representation of sk as elements of P
with � = �(λ) as in Definition 5. If b = 1, then compute skj as encryptions
of some fixed element 0 ∈ P , unrelated to pk, for all j = 1, . . . , �

3. d←− A
(
pk, sk1, . . . , sk�

)
where d ∈ {0, 1}

4. The output of the experiment is defined to be 1 if d = b and 0 else.

This experiment defines circular security for bootstrappable encryption schemes
E . We note that, as we consider bootstrappable schemes, this definition is equiv-
alent to the “standard” definition of circular security [6] as originally introduced
(this is shown in [19, Chapter 4]).



246 F. Armknecht, S. Katzenbeisser, and A. Peter

Before we can state the main result of this section, we need to recall another
notion that is related to FHE, namely that of circuit privacy. Informally, this
notion says that even if the secret key is known, the output of Eval does not
reveal any information about the circuit that it evaluates, except for the output
value of that circuit. Formally, this idea is captured in the following definition:

Definition 7. An FHE scheme E = (KeyGen,Enc,Dec,Eval) is said to be (com-
putationally) circuit-private, if for every keypair (pk, sk)←− KeyGen(λ), any cir-
cuit C, and any fixed tuple of fresh encryptions (c1, . . . , cr) with ci ←− Encpk(mi)
for plaintexts mi ∈ P and i = 1, . . . , r, the following distributions (over the ran-
dom coins in Enc and Eval) are (computationally) indistinguishable:

Encpk(C(m1, . . . ,mr)) ≈c Evalpk(C, c1, . . . , cr).

Finally, we can formulate the main result:

Theorem 5. Let E = (KeyGen,Enc,Dec,Eval) be a bootstrappable scheme for a
universal5 set of gates Γ . If the resulting scheme E∗ is circuit-private, it holds
that

E∗ is IND-CPA secure ⇐⇒ E is circular secure.

Proof (Sketch). “⇐”: This is shown in [19, Theorem 4.3.2].
“⇒”: We assume that E is not circular secure, i.e., there exists a PPT algorithm
Acircular that breaks the security of E with non-negligible advantage f(λ). We
derive a contradiction by constructing a PPT algorithm Acpa = (Acpa

1 ,Acpa
2 )

that successfully breaks the IND-CPA security of E∗ with advantage f(λ).
First, the adversaryAcpa

1 receives the public key pk∗ = (pk, sk1, . . . , sk�) where
ski ←− Encpk(ski) and sk1, . . . , sk� is the representation of the secret key sk
as elements of P . Then, Acpa

1 chooses messages 0 �= m0 ∈ P and m1 := 0
together with circuits Ci such that Ci(m0, ski) = ski and Ci(m1, ski) = m1 for
all i = 1, . . . , �. For instance, if we consider all boolean circuits and assume that
P = {0, 1}, Acpa

1 could simply choose m0 = 1,m1 = 0 and Ci as a single AND-
gate for all i = 1, . . . , �. Now, the IND-CPA challenger chooses a random bit

b
U←− {0, 1} and sends the challenge c ←− Encpk(mb) to Acpa

2 . Since E∗ is fully
homomorphic, Acpa

2 can compute σi ←− Evalpk(Ci, c, ski) for all i = 1, . . . , �. Due
to the correctness condition on E∗, this means for all i = 1, . . . , �:

σi := Decsk(σi) = Ci(mb, ski). (1)

Next, Acpa
2 sends (pk, σ1, . . . , σ�) to Acircular that returns a bit d ∈ {0, 1} which

in turn is the output b′ of Acpa
2 , i.e., b′ = d.

We have the following relations: If b = 0, then σi is computationally indistin-
guishable (since E∗ was assumed to be circuit-private) from a fresh encryption
of ski, meaning in particular that σi = ski for all i = 1, . . . , � due to equa-
tion (1). Hence, Acircular makes the right guess on b with advantage f(λ), i.e.,

5 This is a set of gates by which any circuit can be expressed, e.g., a NAND-gate when
considering boolean circuits.



Shift-Type Homomorphic Encryption 247

Pr[b′ = b|b = 0] ≥ 1
2+f(λ). If b = 1, then σi is computationally indistinguishable

from a fresh encryption of 0, unrelated to pk, for all i = 1, . . . , �. Hence, Acircular

again guesses b with advantage f(λ), i.e., Pr[b′ = b|b = 1] ≥ 1
2 + f(λ). We have

shown:

Pr[Expind-cpa
Acpa,Gen(λ) = 1] =

∑
β∈{0,1}

Pr[b′ = b|b = β] · Pr[b = β]

≥ 1

2
· (1 + 2f(λ)) =

1

2
+ f(λ).

�

Some remarks on this result are in order:

Remark 2. 1. We would like to stress that Theorem 5 actually holds in a more
general context as well. Looking at the proof, one notices that there is no
need for E∗ to be circuit-private for all circuits. The circuit privacy is only
needed for the special circuits Ci used in the proof. In particular, in the
case when only boolean circuits are considered and the plaintext space is
P = {0, 1}, the circuits Ci are all the same, namely an AND-gate. It is
easy to see that all existing FHE schemes that work on the plaintext space
P = {0, 1} are circuit-private for a single AND-gate (see also Section 4.3).

2. In Theorem 1, we showed a characterization of the IND-CPA security of shift-
type homomorphic encryption schemes. All currently existing FHE schemes
rely on the assumption that the IND-CPA security of the underlying scheme
already implies its circular security – meaning that for these schemes the two
notions of circular security and IND-CPA security are equivalent. So under
this assumption, Theorem 5 together with Theorem 1 yield an IND-CPA
characterization of all existing circuit-private FHE schemes that are based
on Gentry’s bootstrapping technique.

3. Theorem 5 together with the first item of this remark tell us that the circu-
lar security of the underlyling bootstrappable scheme is not only sufficient
but also necessary in order to get an FHE scheme. It therefore underlines
the importance of Brakerski et al.’s work [9] which actually has the bigger
goal of achieving circular secure bootstrappable encryption, instead of only
achieving circular security for somewhat homomorphic encryption schemes
(cf. Section 1.1).

4.3 Gentry’s Bootstrapping Technique: The Existing Schemes

In total, there currently exist 13 FHE schemes that are all based on Gentry’s
bootstrapping technique (at least concerning the resulting “pure” FHE schemes),
namely [7–9, 15, 19–24, 27, 29, 30]. Their underlying schemes are all shift-type
homomorphic. This is due to the fact that the concept of shift-type homomorphic
encryption is very similar to that of “adding noise” (see Remark 1), which itself
is a concept employed in all existing schemes. For the more recently developed
schemes [7–9, 21, 23, 24] the shift-type structure of the encryption algorithm can



248 F. Armknecht, S. Katzenbeisser, and A. Peter

be immediately seen. A good summary of Gentry’s original scheme [20] is given
in [30, Section 3.1]. Therein, Gentry’s scheme and the variants [19] and [30] are
presented in a way such that the shift-type structure is easily seen. Concerning
the variants [22, 27, 29], a summary is given in [27, Section 3], again presented
in a fashion such that the shift-type structure of the encryption is immediately
noticeable.

We will recall (only very briefly due to lack of space) the remaining variant
by van Dijk et al. [15] to show that it is shift-type homomorphic. To get rid
of a very voluminous and confusing introduction of parameters, we will fix a
particular setup of parameters in the key generation phase and note that all of
the following can be done in a more general fashion (see [15]). Also, we will focus
here on the encryption algorithm only and refer the reader to [15] for details
on the remaining algorithms for decryption and evaluation. For the security
parameter λ, we fix:

ρ := λ, ρ′ := 2λ, η ∈ ρ′ · Θ(λ log2 λ), γ ∈ ω(η2 logλ) and τ := γ + λ.

The secret key sk of the scheme is p
U←− (2Z+ 1) ∩ [2η−1, 2η) and we define the

following efficiently sampleable distribution

Dγ,ρ(p) :=
{
x = pq + r | q U←− Z ∩ [0, 2γ/p), r

U←− Z ∩ (−2ρ, 2ρ)
}
.

With this notation, we let pk = (x0, . . . , xτ ) be the public key with xi
U←−

Dγ,ρ(p) for all i = 0, . . . , τ whereas the xi’s are relabeled such that x0 is the
largest (if x0 is even or x0 mod p is odd, then restart). The plaintext space is
{0, 1}.

The encryption algorithm takes the public key pk and a plaintext m ∈ {0, 1}
as input and outputs a ciphertext c := [(m + 2r + 2

∑
i∈S xi) mod x0] whereas

S is a random subset of {1, . . . , τ} and r
U←− Z ∩ (−2ρ′

, 2ρ
′
). In the notation of

the shift-type homomorphic definition (see Definition 2), we have that Ĉ is the
ring Zx0 and

N =

{
2(r +

∑
i∈S

xi) mod x0 | r ∈ Z ∩ (−2ρ′
, 2ρ

′
), S ⊆ {1, . . . , τ}

}
.

The injective homomorphism ϕ is given by m �→ m mod x0, which is even a ring
homomorphism. Encryption is then given by ϕ(m)+n where n ∈ N . Concerning
the homomorphic property in Definition 2, we need to make more effort:

It is shown in [15, Lemma 3.3] that the scheme is homomorphic for Boolean
circuits with the property that for any α ≥ 1 and any set of integer inputs
all less than 2α(ρ

′+2) in absolute value, it must hold that the output of the
generalized circuit (same circuit where the ADD- and MULT-gates are applied
to integers instead of bits) has absolute value at most 2α(η−4). Furthermore, it is
shown in [15, Lemma 3.5] that if f(x1, . . . , xt) is the multivariate polynomial of
degree d computed by the generalized circuit of a given boolean circuit C with



Shift-Type Homomorphic Encryption 249

t inputs, then the scheme is homomorphic for C if |f̄ | · (2ρ′+2)d ≤ 2η−4, where
|f̄ | is the l1 norm of the coefficient vector of f . In respect of the homomorphic
property of Definition 2, it suffices to show that the scheme is homomorphic for
the boolean circuit CADD that consists of a single ADD-gate only. Clearly, the
multivariate polynomial that is computed by the generalized circuit of CADD is
f(x1, x2) = x1 + x2 and has degree d = 1 with |f̄ | = 2. Therefore, the scheme is
homomorphic for this circuit if we have

2ρ
′+3 ≤ 2η−4, which in turn is fulfilled if η ≥ ρ′ + 7.

This final condition holds as η ∈ ρ′ · Θ(λ log2 λ). In total we have shown that
the above scheme indeed is shift-type homomorphic.

5 Conclusion

With the identification of shift-type encryption as the most basic structure that
all existing homomorphic encryption schemes have in common, we were able
to deduce IND-CPA characterizations of all existing bootstrapping-based leveled
FHE schemes. This result supports an easier design of such schemes, since new
candidates can immediately be checked for IND-CPA security by looking at the
corresponding subset membership problem that comes out of our characteriza-
tion. In regard to [3], it is interesting to see that all existing group homomorphic
encryption schemes and the more general homomorphic schemes (in particular,
the existing FHE schemes) share the same shift-type structure. Further research
in this direction could implicate that a given homomorphic scheme has to have
this shift-type structure in order to be IND-CPA secure. We leave this as an open
question.

Our result that the IND-CPA security of bootstrapping-based FHE schemes
that offer a “minimal” type of circuit privacy is equivalent to the circular se-
curity of the underlying bootstrappable scheme shows: If we want to construct
such IND-CPA secure FHE schemes, we are bound to the design of circular secure
bootstrappable schemes. We hope that this fact stimulates the research com-
munity to devote even more effort to proving existing schemes circular secure
and/or finding a radically new approach to FHE that is not based on Gentry’s
bootstrapping technique.

References

1. Melchor, C.A., Gaborit, P., Herranz, J.: Additively Homomorphic Encryption with
d-Operand Multiplications. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 138–154. Springer, Heidelberg (2010)

2. Applebaum, B.: Key-Dependent Message Security: Generic Amplification and
Completeness. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp.
527–546. Springer, Heidelberg (2011)



250 F. Armknecht, S. Katzenbeisser, and A. Peter

3. Armknecht, F., Katzenbeisser, S., Peter, A.: Group homomorphic encryption:
Characterizations, impossibility results, and applications. Designs, Codes and
Cryptography, 1–24, 10.1007/s10623-011-9601-2,
http://dx.doi.org/10.1007/s10623-011-9601-2

4. Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded Key-Dependent Message
Security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 423–444.
Springer, Heidelberg (2010)

5. Benaloh, J.: Verifiable secret-ballot elections. Ph.D. thesis, Yale University (1987)
6. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-Secure Encryp-
tion from Decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 108–125. Springer, Heidelberg (2008)

7. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic en-
cryption without bootstrapping. In: ITCS, pp. 309–325. ACM (2012)

8. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: FOCS, pp. 97–106. IEEE (2011)

9. Brakerski, Z., Vaikuntanathan, V.: Fully Homomorphic Encryption from Ring-
LWE and Security for Key Dependent Messages. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

10. Cohen, J.D., Fischer, M.J.: A robust and verifiable cryptographically secure elec-
tion scheme (extended abstract). In: FOCS, pp. 372–382. IEEE (1985)

11. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty Computation from Threshold
Homomorphic Encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 280–299. Springer, Heidelberg (2001)

12. Cramer, R., Franklin, M.K., Schoenmakers, B., Yung, M.: Multi-authority Secret-
Ballot Elections with Linear Work. In: Maurer, U.M. (ed.) EUROCRYPT 1996.
LNCS, vol. 1070, pp. 72–83. Springer, Heidelberg (1996)

13. Cramer, R., Gennaro, R., Schoenmakers, B.: A Secure and Optimally Efficient
Multi-authority Election Scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 103–118. Springer, Heidelberg (1997)

14. Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen
Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

15. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully Homomorphic
Encryption over the Integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

16. El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS,
vol. 196, pp. 10–18. Springer, Heidelberg (1985)

17. Fontaine, C., Galand, F.: A survey of homomorphic encryption for
nonspecialists. EURASIP J. Inf. Secur., 15:1–15:15 (January 2007),
http://dx.doi.org/10.1155/2007/13801

18. Gennaro, R., Gentry, C., Parno, B.: Non-interactive Verifiable Computing: Out-
sourcing Computation to Untrusted Workers. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

19. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009)

20. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–
178. ACM (2009)

21. Gentry, C., Halevi, S.: Fully homomorphic encryption without squashing using
depth-3 arithmetic circuits. In: FOCS, pp. 107–109. IEEE (2011)

http://dx.doi.org/10.1007/s10623-011-9601-2
http://dx.doi.org/10.1155/2007/13801


Shift-Type Homomorphic Encryption 251

22. Gentry, C., Halevi, S.: Implementing Gentry’s Fully-Homomorphic Encryption
Scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–
148. Springer, Heidelberg (2011)

23. Gentry, C., Halevi, S., Smart, N.P.: Fully Homomorphic Encryption with Polylog
Overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 465–482. Springer, Heidelberg (2012)

24. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic
encryption. Cryptology ePrint Archive, Report 2011/680 (2011)

25. Ishai, Y., Paskin, A.: Evaluating Branching Programs on Encrypted Data. In:
Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg
(2007)

26. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database,
computationally-private information retrieval. In: FOCS, pp. 364–373 (1997)

27. Loftus, J., May, A., Smart, N.P., Vercauteren, F.: On CCA-Secure Somewhat
Homomorphic Encryption. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS,
vol. 7118, pp. 55–72. Springer, Heidelberg (2012)

28. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5),
1254–1281 (2006)

29. Smart, N.P., Vercauteren, F.: Fully Homomorphic Encryption with Relatively
Small Key and Ciphertext Sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC
2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010)

30. Stehlé, D., Steinfeld, R.: Faster Fully Homomorphic Encryption. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 377–394. Springer, Heidelberg (2010)



The Collision Security of MDC-4

Ewan Fleischmann, Christian Forler, and Stefan Lucks

Bauhaus-University Weimar, Germany
{ewan.fleischmann,christian.forler,stefan.lucks}@uni-weimar.de

Abstract. There are four somewhat classical double length block cipher
based compression functions known: MDC-2, MDC-4, Abreast-DM,
and Tandem-DM. They all have been developed over 20 years ago. In
recent years, cryptographic research has put a focus on block cipher
based hashing and found collision security results for three of them
(MDC-2, Abreast-DM, Tandem-DM). In this paper, we add MDC-4,
which is part of the IBM CLiC cryptographic module1, to that list
by showing that – ’instantiated’ using an ideal block cipher with 128
bit key/plaintext/ciphertext size – no adversary asking less than 274.76

queries can find a collision with probability greater than 1/2. This is the
first result on the collision security of the hash function MDC-4.
The compression function MDC-4 is created by interconnecting two

MDC-2 compression functions but only hashing one message block with
them instead of two. The developers aim forMDC-4 was to offer a higher
security margin, when compared to MDC-2, but still being fast enough
for practical purposes.
The MDC-2 collision security proof of Steinberger (EUROCRYPT

2007) cannot be directly applied to MDC-4 due to the structural differ-
ences. Although sharing many commonalities, our proof for MDC-4 is
much shorter and we claim that our presentation is also easier to grasp.

Keywords: MDC-4, cryptographic hash function, block-cipher based,
proof of security, double length, ideal cipher model.

1 Introduction

A cryptographic hash function is a function which maps an input of arbitrary
length to an output of fixed length. It should satisfy at least collision-, preimage-
and second-preimage resistance and is one of the most important primitives in
cryptography [24]. In recent years, most of the functions in the widely used
MD4-family (e.g., MD4 [30], MD5 [31], RIPEMD [12], SHA-1 [28], SHA-2 [29])
have been successfully attacked in several ways [5, 11, 34, 35] which has stimu-
lated researchers to look for alternatives. Block cipher based constructions seem
promising since they are very well known – they even predate the MD4-approach
[23]. One can easily create a hash function using, e.g., the Davies-Meyer [36]
mode of operation and the Merkle-Damg̊ard transform [4, 25]. Also, many of the

1 FIPS 140-2 Security Policy for IBM CrytoLite in C, October 2003.

A. Mitrokotsa and S. Vaudenay (Eds.): AFRICACRYPT 2012, LNCS 7374, pp. 252–269, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



The Collision Security of MDC-4 253

proposed SHA-3 designs like Skein [7], SHAvite-3 [1], and SIMD [22] use block
cipher based instantiations. Another reason for the resurgence of interest in block
cipher based hash functions is due to the rise of resource restricted devices such
as RFID tags or smart cards. A hardware designer only needs to implement a
block cipher in order to obtain an encryption function as well as a hash function.
However, due to the short output length of most practical block ciphers, one is
mainly interested in sound design principles for double length (DL) hash func-
tions. Such double length hash functions use a block cipher with n-bit output as
the building block by which it maps possibly long strings to 2n-bit hash values.
DL compression functions can be parted by the type of block cipher they need to
operate: The first group, (group-1), uses an internal block cipher with an n-bit
plaintext/ciphertext/key, the second group, (group-2), uses a block cipher with
an n-bit plaintext/ciphertext and a k-bit key, k > n. DL compression functions
in the first group are few. Currently, there are only three known candidates in
literature: MDC-2, MDC-4 and a most recent variant of MDC-2: MJH [19].
Group-2 examples are Abreast-DM Tandem-DM, Cyclic-DM [17, 10], etc.
The security of group-2 functions is relatively well understood.

MDC-4 is an acronym for Modification Detection Code with ratio 1/4, and was
developed at IBM in the late eighties by Meyer and Schilling [26]. The ratio indi-
cates the number of block cipher calls that are required to process a single message
block. MDC-4 was originally specified for the 64-bit block cipher DES [27].

Our Contribution. In this paper, we give the first collision security bound for the
hash function MDC-4, a block cipher based hash function that has been publicly
known for more than 20 years. In our proof, we use many of the techniques that
have been applied in the MDC-2 collision security proof [33]. Our proof is in the
ideal cipher model, too. However, we consider MDC-4 using an ideal n-bit block
cipher accepting n-bit keys. Furthermore, as in [33], we also ignore an additional
bit-fixing step that was used back than as an additional security measure to
avoid some DES specific key issues.

In this paper we show, assuming a hash output length of 256 bits, that any
adversary asking less than 274.76 queries to the block cipher cannot find a collision
for the hash function MDC-4 with probability greater than 1/2. Note that the
optimal security bound for collisions for 256 bit hash functions is about 2128.
For MDC-2 (ratio 1/2) and MJH (ratio 1/2), the trivial collision resistance
bound is 264, since they both internally use a Davies-Meyer compression function.
Although MDC-4 also uses Davies-Meyer type functions inside, even such a
trivial bound is not so easy to see.

Related Work. For group-2 functions, there has been a lot of research in recent
years, e.g. [8, 10, 16, 17, 18, 20, 21]. As a result, there are group-2 compression
functions known that are ’provably optimal’. This is in stark contrast to the
known results for group-1 functions which are summarized in Table 1.

Outline. The paper is organized as follows: Section 2 includes formal notations
and definitions. In Section 3 we prove that an adversary asking less than 274.76



254 E. Fleischmann, C. Forler, and S. Lucks

Table 1. List of known group-1 hash functions, values evaluated for an internal block
cipher with 128 bit plaintext/ciphertext/key [Notation: CF = compression function]

Function Security (Collision) Attack (Collision) Attack (Preimage)

MDC-2 274.91 [33] 2121 [14] 22n (time · space) [14, 17]
MDC-4 274.76 (this paper) 296 [15] (only CF) 2224 [15]

MJH [19] 278.33 (no results known) (no results known)

oracle queries has the threshold probability 1/2 finding a collision for theMDC-4

hash function.

2 Preliminaries

2.1 General Notations

An n-bit block cipher is a keyed family of permutations consisting of two paired
algorithms E : {0, 1}n×{0, 1}n → {0, 1}n and E−1 : {0, 1}n×{0, 1}n → {0, 1}n
both accepting a key of size n bits and an input block of size n bits for some
n > 0. Let Block(n) be the set of all n-bit block ciphers. For any E ∈ Block(n)
and any fixed key K ∈ {0, 1}n, decryption E−1

K := E−1(K, ·) is the inverse
function of encryption EK := E(K, ·), so that E−1

K (EK(X)) = X holds for any
input X ∈ {0, 1}n. In the ideal cipher model E is modeled as a family of random
permutations {EK} whereas the random permutations are chosen independently
for each key K [2, 6, 13], i.e., formally E is selected randomly from Block(n). If
Y = EK(X) we call the value Z = X⊕Y the XOR-output of a query (K,X, Y ).

We use the convention to write oracles, that are provided to an algorithm,
as superscripts. For example AE is an algorithm A with oracle access to E to
which A can request forward and backward queries. For ease of presentation,
we identify the sets {0, 1}a+b and {0, 1}a × {0, 1}b. Similarly, for A ∈ {0, 1}a
and B ∈ {0, 1}b, the concatenation of these bit strings is denoted by A||B ∈
{0, 1}a+b = {0, 1}a × {0, 1}b.

A compression function is a mapping H : {0, 1}m × {0, 1}r → {0, 1}r for
some m, r > 0. A block cipher-based compression function is a mapping HE :
{0, 1}m × {0, 1}r → {0, 1}r that, given an r-bit state R and an m-bit message
M , computes HE(M,R) using oracle access to some E ∈ Block(n).

2.2 The MDC-4 Compression Function

The MDC-4 compression function HE (cf. Figure 1) takes an n-bit message M ,
a 2n-bit state (S, T ) and outputs a new 2n-bit state (U, V ) as follows:

1. Compute O = (OL||OR) = ES(M)⊕M ,
2. compute P = (PL||PR) = ET (M)⊕M ,



The Collision Security of MDC-4 255

S TM

OL OR PL PR

OL PR PL OR

U V

E
[TL]

E
[TR]

E
[BL]

E
[BR]

Fig. 1. The double-length compression function HE where E is an n-bit block cipher.
The black bar inside the cipher indicates the key input.

3. compute U = EOL||PR(T )⊕ T ,
4. compute V = EPL||OR(S)⊕ S,
5. output (U, V ).

The superscript L denotes the left n/2 bits of an expression, and the superscript
R denotes the right n/2 bits of an expression.

The original MDC-4 specification [26] swaps the right halves of U and V .
But, since we are in the ideal cipher model, this operation does not change the
distribution of the output and neither our collision security analysis. So, for ease
of presentation, we omitted this additional step.

Our analysis is for theMDC-4 hash functionHE which is obtained by a simple
iteration of the MDC-4 compression function HE in the obvious manner: Given
some n · �-bit message (M1, . . . ,M�), Mj ∈ {0, 1}n for j = 1, . . . , � and an initial
value (S0, T0) ∈ {0, 1}2n it works by computing (Si, Hi) = HE(Mi, Si−1, Ti−1)
for i = 1, . . . , �. The hash value is (S�, T�).



256 E. Fleischmann, C. Forler, and S. Lucks

2.3 Security of the MDC-4 Compression Function and the MDC-4
Hash Function

Generally, insecurity is quantified by the success probability of an optimal resource-
bounded adversary. The resource is the number of backward and forward queries

to the block cipher E. For a set C, let Y
$← C represent random sampling from

C under the uniform distribution. For a probabilistic algorithm D, let Y
$← D

mean that Y is an output of D and its distribution is based on the random
choices of D.

In our case, an adversary is a computationally unbounded collision-finding
algorithmAE with access to E ∈ Block(n). We assume that AE is deterministic.
The adversary may make a forward query (K,X)f to discover the corresponding
value Y = EK(X), or the adversary may make a backward query (K,Y )b, so as
to learn the corresponding value X = E−1

K (Y ) such that EK(X) = Y . Either
way, the result of the query is stored in a triple (Ki, Xi, Yi) := (K,X, Y ) and
the query history Q is the tuple (Q1, . . . , Qq) where Qi = (Ki, Xi, Yi) and q is
the total number of queries made by the adversary.

Without loss of generality, we assume that AE asks at most only once on a
triplet of a key Ki, a plaintext Xi and a ciphertext Yi obtained by a query and
the corresponding reply.

Collision Resistance of the MDC-4 compression function. There is a very simple
attack on the compression function which only requires about 2n/2 invocations
of the E oracle: Let the adversary find values K,K ′,M,M ′ ∈ {0, 1}n such that
EK(M) = EK′(M ′). This requires about 2n/2 E-oracle queries. Then, by

HE(M,K,K) = HE(M ′,K ′,K ′),

a collision for the full MDC-4 compression function has been found. So our
analysis will be for theMDC-4 compression function in the iteration. This attack
is only possible if the chaining values are equal.

3 Proof of Collision Resistance

3.1 Proof Model

Our analysis is for the MDC-4 hash function HE assuming that the initial
chaining values are different, i.e., S0 �= T0. The goal of the adversary is to output
two messages M1 ∈ {0, 1}n·� and M2 ∈ {0, 1}n·�

′
such that H(M1) = H(M2)

for some non-zero integers �, �′.
In our analysis, we dispense the adversary from returning these two messages.

Instead we upper bound his success probability by giving the attack to him if

(i) he has found an ’internal’ collision, i.e., (M,S, T ) such that (U, V ) =
HE(M,S, T ) with U = V for some U, V ∈ {0, 1}n or



The Collision Security of MDC-4 257

(ii) case (i) is not true but he has either found a collision in the compres-
sion function HE, i.e., (M,S, T ) and (M ′, S′, T ′), such that HE(M,S, T ) =
HE(M ′, S′, T ′) with S �= T , S′ �= T ′, or

(iii) cases (i), (ii) are not true but he has found values (M,S, T ) such that
(S0, T0) = HE(M,S, T ). Note that this requirement essentially models the
preimage resistance of the MDC-4 compression function.

The proof is simple and straightforward. Assume a collision for HE has been
found using two not necessarily equal-length messagesM andM′, i.e.,HE(M) =
HE(M′). Also assume that the collision is the earliest possible. Then the ad-
versary has either found (i) or (ii). For case (iii), we also give the attack to the
adversary, particularly for reasons already discussed in Section 2.3.

For our analysis, we impose the reasonable condition that the adversary must
have made all queries necessary to compute the results. We determine whether
the adversary has been successful or not by examining the query history Q.
Formally, we say that Coll(Q) holds if there is such a collision and Q contains
all the queries necessary to compute it.

We now define what we formally mean by a collision of the MDC-4 compres-
sion function.

Definition 1. (Collision resistance of the MDC-4 compression func-
tion) Let HE be a MDC-4 compression function. Fix an adversary A. Then
the advantage of A in finding collisions for HE is the real number

AdvColl

HE (A) = Pr[E
$← Block(n); ((M,S, T ), (M ′, S′, T ′)) $← AE,E−1

:

((M,S, T ) �= (M ′, S′, T ′)) ∧HE(M,S, T ) = HE(M ′, S′, T ′)].

For q ≥ 1 we write

AdvColl

HE (q) = max
A
{AdvColl

HE (A)},

where the maximum is taken over all adversaries that ask at most q oracle
queries, i.e., forward and backward queries to E.

Since our analysis in the next sections is for HE , we informally say that the
probability of a collision of HE is upper bounded by using a union bound for
the cases (i), (ii) and (iii). This is part of the formalization in Theorem 1.

3.2 Our Results

We now give our main result. Although having a substantial complexity on the
first sight in its general form, we can easily evaluate it to numerical terms (cf.
Corollary 1).

Theorem 1. Fix some initial values S0, T0 ∈ {0, 1}n with S0 �= T0 and let HE

be the MDC-4 hash function as given in Section 2.2. Let α, β, γ be constants



258 E. Fleischmann, C. Forler, and S. Lucks

Table 2. Upper bounds on AdvColl

HE (q) as given by Theorem 1

q AdvColl

HE (q) ≤ α β γ

264 7.18 · 10−7 42 4.0 2 · 106

268.26 10−4 126 4.0 6 · 106

272.19 1/100 900 4.0 1.3 · 107

273.84 1/10 2600 4.0 1.4 · 107

274.40 1/4 3780 4.0 1.5 · 107

274.76 1/2 4900 4.0 1.5 · 107

such that eq2n/2/(2n − q) ≤ α, eq/(2n − q) ≤ β and let Pr[Lucky(Q)] as in
Proposition 8. Then

AdvColl

HE (q) ≤q

(
α2 + γ

2n − q
+

αβ

(2n − q)(2n/2 − α)
+

α

2n − 2n/2α
+

β2 + 4

2n − q
+

β

2n − q

)

+2q

(
α4 + α2 + 3αγ + 2γ

N − q
+ 6

α2 + 1

N1/2 − α

)

+q

(
γα2 + γ2

2n − q
+

2α

(2n/2 − α)2

)
+ Pr[Lucky(Q)]. (1)

Proof. The proof follows from the following discussion together with Proposition
1 by adding up the individual results from Propositions 2 - 8. ��

As mentioned before, our bound is rather non-transparent, so we discuss it for
n = 128. We evaluate the equation above such that the adversary’s advantage
is upper bounded by 1/2 – thereby maximizing the value of q by numerically
optimizing the values of α, β and γ. Our result is the following corollary.

Corollary 1. No adversary asking less than 274.76 queries can find a collision
for the MDC-4 hash function with probability greater than 1/2.

An overview of the behavior of our upper bound is given in Table 2. Note that
for other values of (α, β, γ) the bound stays correct but worsens numerically (as
long as the conditions given in Theorem 1 hold).

3.3 Proof Preliminaries

Overview. Our discussion starts with case (ii). We analyze whether the list
of oracle queries to E made by the adversary can be used for a collision of
the MDC-4 compression function HE . For a collision, there are eight – not
necessarily distinct – block cipher queries necessary (cf. Figure 2).

To upper bound the probability of the adversary obtaining queries that can be
used for a collision, we upper bound the probability of the adversary making a



The Collision Security of MDC-4 259

S T S′ T ′M M ′

OL OR PL PR

WL WR RL RR

OL PR PL OR

WL RR RL WR

U V U ′ V ′

E
[1TL]

E
[1TR]

E
[1BL]

E
[1BR]

E
[2TL]

E
[2TR]

E
[2BL]

E
[2BR]

Fig. 2. The double-length MDC-4 compression function HE, where E is a (n, n)-
block cipher. If (S,M, T ) �= (S′,M ′, T ′) but (U, V ) = (U ′, V ′) then the adversary has
found a collision for HE. The black beam inside the cipher indicates the key input.
For later reference, the different positions a query can be used in are denoted by
1TL, 1TR, . . . , 2BR.

final query that can be used as the last query to complete such a collision. Let Qi

denote the set of the first i queries (K1, X1, Y1), ..., (Ki, Xi, Yi) (either forward
or backward) made by the adversary. Furthermore we denote by the term last
query the latest query made by the adversary. This query has always index i.
Therefore, for each i with 1 ≤ i ≤ q, we upper bound the success probability of
an adversary to use the i-th query to complete the collision.

As the probability depends on the first i − 1 queries, we have to put some
restrictions on these and also upper bound the probability that these restrictions
are not met by an adversary. One example of such a restriction is to assume that,
e.g., the adversary has to find too many collisions for the underlying component
function EK(X)⊕X .

Thus, our upper bound breaks down into two parts: an upper bound for the
probability of an adversary not meeting our restrictions and the probability of an
adversary ever making a successful i-th query, conditioned on the fact that the
adversary does meet our restrictions and has not been successful by its (i−1)-th
query. We use some notations that are given in Figure 2, e.g., the statement



260 E. Fleischmann, C. Forler, and S. Lucks

1BL �= 2BL means that the query used in the bottom left of the ’left’ side is
not the same as the query used in the bottom left of the ’right’ side.

3.4 Details

We say Coll(Q) if the adversary wins. Note that winning does not necessarily
imply, that the adversary has found a collision. It might be that the adversary
got lucky and does not meet our restrictions any more. But in the case of a
collision Coll(Q) always holds.

Proposition 1

Coll(Q) =⇒
Lucky(Q) ∨ InternalColl(Q) ∨CollTopRows(Q) ∨
CollLeftColumns(Q) ∨CollRightColumns(Q) ∨

CollBothColumns(Q) ∨ Preimage(Q).

We now define the involved predicates of Proposition 1 and then give a proof.
The predicates on the ’right’ side are made mutually exclusive meaning that if
the left side is true it follows that exactly one of the predicates on the right side
is true. By upper bounding separately the probabilities of these predicates on
the right side it is easy to see that the union bound can be used to upper bound
the probability of Coll(Q) as follows:

Pr[Coll(Q)] ≤Pr[Lucky(Q)] + Pr[InternalColl(Q)] + Pr[CollTopRows(Q)]
+ Pr[CollLeftColumns(Q)] + Pr[CollRightColumns(Q)]
+ Pr[CollBothColumns(Q)] + Pr[Preimage(Q)].

To state the predicate Lucky(Q), we give some helper definitions that are also
used as restrictions for the other predicates. Let NumEqual(Q) be a function
defined on the query set Q, |Q| = q as follows:

NumEqual(Q) = max
Z∈{0,1}n

|{i : EKi(Xi)⊕Xi = Z}|.

It is the maximum size of a set of queries in Q whose XOR-outputs are all the
same. Similarly, we define NumEqualHalf(Q) as the maximum size of a set of
queries whose XOR-outputs either share the same left half or the same right
half. Let

NEH-L(Q) = max
Z∈{0,1}n/2

|{i : (EKi(Xi)⊕Xi)
L = Z}|,

NEH-R(Q) = max
Z∈{0,1}n/2

|{i : (EKi(Xi)⊕Xi)
R = Z}|,



The Collision Security of MDC-4 261

then NumEqualHalf(Q) = max(NEH-L(Q), NEH-R(Q)). Let NumColl(Q) be also
defined on a query set Q, |Q| = q, as

NumColl(Q) = |{(i, j) ∈ {1, . . . , q}2 : i �= j, EKi(Xi)⊕Xi = EKj (Xj)⊕Xj}|.

It outputs the number of ordered pairs of distinct queries in Q which have the
same XOR-outputs.

We now define the event Lucky(Q) as

Lucky(Q) =(NumEqualHalf(Q) > α) ∨ (NumEqual(Q) > β) ∨ (NumColl(Q) > γ),

where α, β and γ are the constants from Theorem 1. These constants are chosen
depending on n and q by a simple numerical optimization process such that the
upper bound of the advantage of an adversary is minimized for given values of
n, q.

We now give the definitions of the other predicates.

FitInternalColl(Q). The adversary has found four – not necessarily distinct –
queries such that HE(M,S, T ) can be computed and HE(M,S, T ) = (U,U)
holds for some arbitrary U with S �= T .

FitCollLeftColumns(Q). The adversary has found eight – not necessarily dis-
tinct – queries such that (U, V ) = HE(M,S, T ) and (U ′, V ′) = HE(M ′, S′, T ′)
can be computed with U = U ′, 1BL �= 2BL and 1BR = 2BR.

FitCollRightColumns(Q). The adversary has found eight – not necessarily
distinct – queries such that (U, V ) = HE(M,S, T ) and (U ′, V ′) = HE

(M ′, S′, T ′) can be computed with V = V ′, 1BR �= 2BR and 1BL = 2BL.

FitCollTopRows(Q). The adversary has found four – not necessarily distinct
– queries such that

(ES(M)⊕M,ET (M)⊕M) = (ES′ (M ′)⊕M ′, ET ′(M ′)⊕M ′)

for S �= T , S′ �= T ′, 1BL = 2BL and 1BR = 2BR.

FitCollBothColumns(Q). In this case we assume ¬FitCollLeftColumns(Q)
and ¬FitCollRightColumns(Q). The adversary has found eight – not
necessarily distinct – queries such that (U, V ) = HE(M,S, T ) and (U ′, V ′) =
HE(M ′, S′, T ′) can be computed with U = U ′, V = V ′, 1BL �= 2BL and
1BR �= 2BR.

FitPreimage(Q). This formalizes case (iii). The adversary has found four –
not necessarily distinct – queries used in HE in positions 1TL, 1TR, 1BL,
1BR such that the output of HE is equal to (S0, T0), i.e., the initial chaining
values of the MDC-4 hash function.



262 E. Fleischmann, C. Forler, and S. Lucks

For practical purposes we derive our predicates as follows.

InternalColl(Q) =
¬Lucky(Q) ∧FitInternalColl(Q)

CollLeftColumns(Q) =
¬(Lucky(Q) ∨ FitInternalColl(Q)) ∧ FitCollLeftColumns(Q)

CollRightColumns(Q) =
¬(Lucky(Q) ∨ FitInternalColl(Q) ∨FitCollLeftColumns(Q))
∧FitCollRightColumns(Q)

CollTopRows(Q) =
¬(Lucky(Q) ∨ FitInternalColl(Q) ∨FitCollLeftColumns(Q)
∨FitCollRightColumns(Q)) ∧ FitCollTopRows(Q)

CollBothColumns(Q) =
¬(Lucky(Q) ∨ FitInternalColl(Q) ∨FitCollLeftColumns(Q)
∨FitCollRightColumns(Q) ∨ FitCollTopRows(Q))
∧FitCollBothColumns(Q)

Preimage(Q) =
¬(Lucky(Q) ∨ FitInternalColl(Q) ∨FitCollLeftColumns(Q)
∨FitCollRightColumns(Q) ∨ FitCollTopRows(Q)
∨FitCollBothColumns(Q)) ∧ FitPreimage(Q)

Proof of Proposition 1. Assume that the adversary is not lucky, i.e., ¬Lucky(Q).
Then it is easy to see that

FitInternalColl(Q) ∨ FitCollLeftColumns(Q) ∨
FitCollRightColumns(Q) ∨FitCollTopRows(Q) ∨

FitCollBothColumns(Q) ∨FitPreimage(Q)
=⇒

InternalColl(Q) ∨CollLeftColumns(Q) ∨CollRightColumns(Q) ∨
CollTopRows(Q) ∨CollBothColumns(Q) ∨ Preimage(Q)

holds. Therefore it is sufficient to show that

Coll(Q) =⇒ FitInternalColl(Q) ∨ FitCollLeftColumns(Q)
∨ FitCollRightColumns(Q) ∨ FitCollTopRows(Q)
∨ FitCollBothColumns(Q) ∨ FitPreimage(Q).

To ensure that the chaining values are always different, we give the attack to
the adversary if these values collide, i.e., U = V or U ′ = V ′. Note that this is
usually not a real collision, but we can exclude this case in our analysis. We call
this InternalColl(Q). This corresponds to case (i) in Section 3.1.

For the case (ii), we assume that a collision for the MDC-4 compression
function HE can be constructed from the queries in Q. Then there are inputs
M,M′ ∈ ({0, 1}n)+, M �=M′ such that H(M) = H(M′). In particular, there
are M,M ′ ∈ {0, 1}n and (S, T ), (S′, T ′) ∈ {0, 1}2n, (S, T,M) �= (S′, T ′,M ′),
such that HE(S, T,M) = HE(S′, T ′,M ′).

For the following analysis we have ¬InternalColl(Q), i.e., S �= T , S′ �= T ′.
Our case differentiation is based on the disposal of queries in the bottom row.



The Collision Security of MDC-4 263

First assume that 1BL = 2BL and 1BR = 2BR. Then CollTopRows(Q).
Now assume that 1BL = 2BL and 1BR �= 2BR. ThenCollRightColumns(Q).
Conversely, if 1BL �= 2BL and 1BR = 2BR, we say CollLeftColumns(Q).
The only missing case, 1BL �= 2BL and 1BR �= 2BR, is denoted by
CollBothColumns(Q). Preimage(Q) formalizes case (iii) of Section 3.1 and
corresponds to FitPreimage(Q). ��

General Remarks. The strategy for the other predicates is to upper bound the
probability of the last query being successful conditioned on the fact that the ad-
versary has not yet been successful in previous queries. We say that the last query
is successful if the output is such that NumEqualHalf(Q) < α, NumEqual(Q) < β,
NumColl(Q) < γ and that one of the predicates is true.

Proposition 2 (InternalColl(Q))

Pr[InternalColl(Q)] ≤ q

(
α2 + γ

2n − q
+

αβ

(2n − q)(2n/2 − α)
+

α

2n − 2n/2α

)
Proof The adversary can use the last query Qi either once or twice. When Qi is
used three times or more then it must occur twice either in the top- or bottom
row. But this would imply S = T .

In the case that the query is used once it can either be used in the top
or bottom row. Due to the symmetric structure of MDC-4, we can assume
WLOG that the last query Qi is either used in position TL or BL2. The success
probability is analyzed in Lemma 1.

In the case that Qi is used twice, it must be used once in the top and once
in the bottom row. We again assume that the last query is WLOG used in TL

and BL or TL and BR. The success probability is analyzed in Lemma 2. ��
Lemma 1. Let S �= T and Qi−1 the query list not containing the last query Qi.
Assume that Qi is used once in the MDC-4 compression function HE. Then

Pr[(U,U) = HE(S, T,M)] ≤ q

(
α2 + γ

2n − q

)
.

Proof

Case 1: Assume first that Qi = (KL
i ||KR

i , Xi, Yi) is used in position BL. It
follows that KL

i must be equal to the XOR-output ZL
TL of the query in

TL. It follows that there are at most α different candidates for the query in
TL in the query history Qi−i. Similarly, because KR

i must be equal to the
right half of the XOR-output of TR, ZR

TR, there are at most α candidates
for that can be used in TR. For the query in BR, there are at most α2

possible key inputs, the ciphertext input of BR is determined by the query
used in TL. So the probability that there is a query in Qi such that U = V
is upper bounded by α2/(2n − q). For q queries, the total chance of success
is ≤ qα2/(2n − q).

2 In this case we only consider the ’left’ side of Figure 2 and denote 1TL by TL, 1TR

by TR, 1BL by BL and 1BR by BR.



264 E. Fleischmann, C. Forler, and S. Lucks

Case 2: Now assume that Qi is used in position TL. Since S �= T it follows
that BL �= BR. So there are at most γ ordered pairs of queries that can
be used in BL and BR such that their XOR-output collides. Fixing one of
these, it fully determines the XOR-output TL. So, for q queries, Qi has at
most a chance of qγ/(2n − q). ��

Lemma 2. Let S �= T and Qi−1 the query list not containing the last query Qi.
Assume that Qi is used twice in the MDC-4 compression function HE. Then

Pr[(U,U) = HE(S, T,M)] ≤ q

(
αβ

(2n − q)(2n/2 − α)
+

α

2n − 2n/2α

)
.

Proof. By symmetry arguments, we assume WLOG that the last query Qi is
used in position TL. Since S �= T , the last query can only appear a second time
in position BL, or BR but not in TR.

Case 1: Assume Qi is used in position TL and BL. This query can be used in
these positions if the randomly determined left-sideXOR-output ZL

i is equal
to the left-side of the key KL

i . This event is called PK and its probability
of success can be upper bounded for Qi by Pr[PK ] ≤ α/(2n/2 − α). We now
upper bound the number of queries that can be used in BR conditioned on
the fact that PK is successful. There are at most α queries that can be used
in TR, since now the key input of BL is fixed. As the ciphertext input of
BR is now also fixed by TL, there are at most β possibilities for BR. So the
chance of success for the i-th query in this case is ≤ β

2n−q · Pr[PK ]. So for q

queries the bound becomes qαβ
(2n−q)(2n/2−α)

.

Case 2: Assume Qi is used in position TL and BR. Then, Ki = Xi. The query
Qi can be used in these two positions at the same time if the randomly
determined right-half XOR-output ZR

i is equal to the right-half of the key,
KR

i = XR
i . This event is called OK and its probability of success can be

upper bounded for Qi by Pr[OK ] ≤ 1
2n/2 .

We now upper bound the number of queries that can be used in TR

conditioned on the fact the OK is successful. There are at most α queries
that can be used in TR such that ZL

TR = KL
i holds. Hence, there are at most

α queries that can be used in BL. We denote the chance that ZL
BL = ZL

i

for the i-the query as Pr[ZL
i ]. This event can thus be upper bounded by

α
2n/2−α

· Pr[OK ] ≤ α
2n−2n/2α

. For q queries we can upper bound this case by
qα

2n−2n/2α
. ��

Proposition 3 (CollTopRows(Q))

Pr[CollTopRows(Q)] ≤ qβ

2n − q

Proof. In this case we consider a collision in the top row, with 1BL = 2BL and
1BR = 2BR. This implies S = S′ and T ′ = T . Furthermore it implies M �= M ′,
because otherwise we would have 1TL = 2TL and 1TR = 2TR. Regarding to



The Collision Security of MDC-4 265

this constraints we have to upper bound the probability that the i-th query can
be used such that

(ES(M)⊕M,ET (M)⊕M) = (ES′(M ′)⊕M ′, ET ′(M ′)⊕M ′).

Note, that no internal collision has happened before, i.e., ¬InternalColl(Q),
and therefore the chaining values are always different. First assume that the
last query is used twice or more. In order to find a collision in the top-row, the
last query must be used in the top-row or otherwise the success probability is
zero. The last query cannot be used in 1TL and 2TL or else 1TL = 2TR and
M = M ′ would follow. The last query also cannot be used in 1TL and 2TR or
else S = T ′ = S′ = T would follow.

Now assume that Qi is used once, WLOG in 1TL. Then there are at most
β pairs of queries for 1TR, 2TR that form a collision. So there are at most β
queries that can be used in 2TL that may form a collision with the XOR-output
of the last query used in 1TL. The success probability for q queries can therefore
be upper bounded by qβ/(2n − q). ��

Proposition 4 (CollLeftColumns(Q))

Pr[CollLeftColumns(Q)] ≤ q

(
α2(α2 + 2γ + 1) + αγ + α

2n − q
+

α3 + 2α2 + α

(2n/2 − α)2

)
The proof can be found in the full version of this paper [9, Appendix B].

Proposition 5 (CollRightColumns(Q))

Pr[CollRightColumns(Q)] ≤ q

(
α2(α2 + 2γ + 1) + αγ + α

2n − q
+

α3 + 2α2 + 1

(2n/2 − α)2

)
Proof. Due to the symmetric structure of MDC-4 this proof is essentially the
same as for proposition 4. ��

Proposition 6 (CollBothColumns(Q))

Pr[CollBothColumns(Q)] ≤ q

(
γα2 + γ2

2n − q
+

2α

(2n/2 − α)2

)
The proof of Proposition 6 is given in Appendix A.

Proposition 7 (Preimage(Q))

Pr[Preimage(Q)] ≤ q(4 + β2)

2n − q

Proof. The adversary can use the last query either once or twice. If it is used
twice, it is used at least once in the bottom row.



266 E. Fleischmann, C. Forler, and S. Lucks

Case 1: Assume first, that the last query is used once and that it is used in the
top row. Assume WLOG that it is used in 1TL. Since there are at most β
queries that can be used in 1BL and also at most β queries for 1BR, the
success probability is upper bounded for q queries by qβ2/(2n − q).

Now assume that the last query is used once and that it is used in the
bottom row. Whether it is used in 1BL or 1BR, the success probability in
each case for one query is ≤ 1/(2n − q).

So the total success probability for q queries for this case is upper bounded
by q(2 + β2)/(2n − q).

Case 2: Now, assume that the last query is used twice. So it is used exactly
once in the bottom row and the analysis of Case 1 (bottom row) gives an
upper bound of 2q/(2n − q). ��

Proposition 8 (Lucky(Q)). Let n, q ∈ N, n ≥ q. Let α, β, and γ be as in

Theorem 1 with eq2n/2/(2n − q) ≤ α and eq/(2n − q) ≤ β. Set τ = α(2n−q)
q2n/2 and

ν = β(2n−q)
q . Then

Pr[Lucky(Q)] ≤ q2

γ(2n − q)
+ 2q2n/2eq2

n/2τ(1−ln τ)/(2n−q) + q2neq2
nν(1−ln ν)/(2n−q).

A proof can be found in [32, Appendix B].

4 Conclusion

We have derived the first collision security bound for MDC-4, a double length
block cipher based compression function which takes 4 calls to hashing a message
block using a (n, n) block-cipher. AlthoughMDC-4 is structurally quite different
from MDC-2, it is somewhat surprising that the result given by Steinberger for
MDC-2 (274.91) and our result for MDC-4 (274.76) are numerically quite similar
– although we have applied much more economical proof techniques. This leads
to open questions we have not been able to find satisfying answers for as, e.g., why
are these results so similar? One possible answer is, that MDC-2 and MDC-4

are security-wise very similar. This would lead to the conclusion that MDC-4

is totally dominated by MDC-2. Another answer might be that the limitations
are due to the applied techniques in the proofs. Then it would be interesting and
important to find new proof methods that help overcome these.

References

[1] Biham, E., Dunkelman, O.: The SHAvite-3 Hash Function. Submission to NIST,
Round 2 (2009)

[2] Black, J., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-
Based Hash-Function Constructions from PGV. In: Yung, M. (ed.) CRYPTO
2002. LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002)

[3] Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435. Springer, Heidelberg (1990)
[4] Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard [3], pp. 416–427



The Collision Security of MDC-4 267

[5] den Boer, B., Bosselaers, A.: Collisions for the Compression Function of MD-5. In:
Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 293–304. Springer,
Heidelberg (1994)

[6] Even, S., Mansour, Y.: A Construction of a Cipher From a Single Pseudorandom
Permutation. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT 1991.
LNCS, vol. 739, pp. 210–224. Springer, Heidelberg (1993)

[7] Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein Hash Function Family. Submission to NIST, Round 2
(2009)

[8] Fleischmann, E., Forler, C., Gorski, M., Lucks, S.: Collision Resistant Double-
Length Hashing. In: Heng, S.-H., Kurosawa, K. (eds.) ProvSec 2010. LNCS,
vol. 6402, pp. 102–118. Springer, Heidelberg (2010)

[9] Fleischmann, E., Forler, C., Lucks, S., Wenzel, J.: The collision security of mdc-4.
Cryptology ePrint Archive, Report 2012/096 (2012), http://eprint.iacr.org/

[10] Fleischmann, E., Gorski, M., Lucks, S.: Security of Cyclic Double Block Length
Hash Functions. In: Parker, M.G. (ed.) Cryptography and Coding 2009. LNCS,
vol. 5921, pp. 153–175. Springer, Heidelberg (2009)

[11] Dobbertin, H.: The status of MD5 after a recent attack (1996)
[12] Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD (RACE integrity primitives

evaluation message digest) (1996)
[13] Kilian, J., Rogaway, P.: How to Protect DES against Exhaustive Key Search.

In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 252–267. Springer,
Heidelberg (1996)

[14] Knudsen, L.R., Mendel, F., Rechberger, C., Thomsen, S.S.: Cryptanalysis of
MDC-2. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 106–120.
Springer, Heidelberg (2009)

[15] Knudsen, L.R., Preneel, B.: Fast and Secure Hashing Based on Codes. In: Kaliski
Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 485–498. Springer, Heidelberg
(1997)

[16] Krause, M., Armknecht, F., Fleischmann, E.: Preimage Resistance Beyond the
Birthday Bound: Double-Length Hashing Revisited. Cryptology ePrint Archive,
Report 2010/519 (2010), http://eprint.iacr.org/

[17] Lai, X., Massey, J.L.: Hash Functions Based on Block Ciphers. In: Rueppel, R.A.
(ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)

[18] Lee, J., Kwon, D.: The security of abreast-dm in the ideal cipher model. Cryptol-
ogy ePrint Archive, Report 2009/225 (2009), http://eprint.iacr.org/

[19] Lee, J., Stam, M.: MJH: A Faster Alternative to MDC-2. In: Kiayias, A. (ed.)
CT-RSA 2011. LNCS, vol. 6558, pp. 213–236. Springer, Heidelberg (2011)

[20] Lee, J., Stam, M., Steinberger, J.: The collision security of tandem-dm in
the ideal cipher model. Cryptology ePrint Archive, Report 2010/409 (2010),
http://eprint.iacr.org/

[21] Lee, J., Stam, M., Steinberger, J.: The preimage security of double-block-length
compression functions. Cryptology ePrint Archive, Report 2011/210 (2011),
http://eprint.iacr.org/

[22] Leurent, G., Bouillaguet, C., Fouque, P.-A.: SIMD Is a Message Digest. Submis-
sion to NIST, Round 2 (2009)

[23] Rabin, M.: Digitalized Signatures. In: DeMillo, R., Dobkin, D., Jones, A., Lipton,
R. (eds.) Foundations of Secure Computation, pp. 155–168. Academic Press (1978)

[24] Menezes, A., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press (1996)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/


268 E. Fleischmann, C. Forler, and S. Lucks

[25] Merkle, R.C.: One Way Hash Functions and DES. In: Brassard [3], pp. 428–446
[26] Meyer, C.H., Schilling, M.: Secure program load with manipulation detection code.

In: SECURICOM 1988, France, Paris, pp. 111–130 (1988)
[27] National Bureau of Standards. FIPS Publication 46-1: Data Encryption Standard

(January 1988)
[28] NIST National Institute of Standards and Technology. FIPS 180-1: Secure Hash

Standard (April 1995), http://csrc.nist.gov
[29] NIST National Institute of Standards and Technology. FIPS 180-2: Secure Hash

Standard (April 1995), http://csrc.nist.gov
[30] Rivest, R.L.: The MD4 Message Digest Algorithm. In: Menezes, A., Vanstone,

S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 303–311. Springer, Heidelberg
(1991)

[31] Rivest, R.L.: RFC 1321: The MD5 Message-Digest Algorithm. Internet Activities
Board (April 1992)

[32] Steinberger, J.P.: The Collision Intractability of MDC-2 in the Ideal Cipher Model.
Cryptology ePrint Archive, Report 2006/294 (2006), http://eprint.iacr.org/

[33] Steinberger, J.P.: The Collision Intractability of MDC-2 in the Ideal-Cipher
Model. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 34–51.
Springer, Heidelberg (2007)

[34] Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 1–18. Springer, Heidelberg (2005)

[35] Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

[36] Winternitz, R.S.: A Secure One-Way Hash Function Built from DES. In: IEEE
Symposium on Security and Privacy, pp. 88–90 (1984)

A Proof of Proposition 6

In case 1, we discuss the implication if the last query is only used once, the cases
2-4 give bounds if the last query is used at least twice.

Case 1: The last query is used exactly once. We can WLOG assume the it is
either used in 1TL or 1BL.

Subcase 1.1: The last query is used in position 1BL. Since 1BR = 2BR,
there are at most γ pairs of queries in the query history that can be used
for position 1BR, 2BR. Now, for any one query 2BR, there are at most
α matching queries in position 2TL and at most α matching queries in
2TR. Since the queries in 2TL and 2TR uniquely determine the query
2BL, there are at most γα2 queries that can be used for 2BL. Therefore
the last query has a chance of being successful of ≤ γα2/(2n − q). For q
queries, the total chance of success in this case is ≤ qγα2/(2n − q).

Subcase 1.2: The last query is used in position 1TL. There are at most γ
possible pairs of queries that can be used for 1BL and 2BL and there
are at most γ possible queries that can be used for 1BR and 2BR. We
now upper bound the probability that the last query can be used in
1TL assuming a collision. There are at most γ2 pairs of queries that

http://csrc.nist.gov
http://csrc.nist.gov
http://eprint.iacr.org/


The Collision Security of MDC-4 269

can be used for 1BL and 1BR. Therefore the success probability of the
last query can be upper bounded by ≤ γ2/(2n − q) and for q queries by
qγ2/(2n − q).

Case 2: The last query is only used in the bottom row. Then it is used exactly
twice, WLOG in positions 1BL and 2BR. This would imply U = V ′ which
then – in the case of success – implies InternalColl(Q).

Case 3: The last query is only used in the top row. We can WLOG assume it is
used in 1TL. We can use the same reasoning as in Subcase 1.2 and therefore
extend Subcase 1.2 to also handle this slightly more general situation here.

Case 4: The last query is used at least once in the bottom row and at least once
in the top row. We can WLOG assume that it is used in position 1TL. Using
the same argument as for Case 2, the last query must then appear exactly
once in the bottom row. The following four subcases discuss the implications
of the last query being also used in 1BL, 1BR, 2BL and 2BR. Note that
the adversary may use it also a second time – apart from 1TL– in the top
row but this does not change our bounds.

Subcase 4.1: The last query is also used in 1BL. The left half of the XOR-
output of 1TL has a chance of being equal to its key input (i.e., the key
input of 1BL) of ≤ 1/(2n/2−α). The following analysis is now based on
the fact the the left half of the XOR-output has matched the left half of
the key input. Since we now also know the left half of the XOR-output
of 2BL, there are at most α queries that can be used in 2BL. The chance
that the right half of the XOR-output of 2BL matches the right half of
the XOR-output of 1BL is therefore ≤ α/(2n/2 − α). So for q queries
the total chance of success is ≤ qα/(2n/2 − α)2.

Subcase 4.2: The last query is also used in 1BR. The same arguing as for
Subcase 4.1 can be used (apart from exchanging ’left’ and ’right’) and
the bound for q queries is again ≤ α/(2n/2 − α)2.

Subcase 4.3 The last query is also used in position 2BL. There are at
most γ possible pairs of query in the query history that can be used
for the pair 1BR, 2BR that form a collision. The probability that the
right half of the XOR-output of 1TL matches the right half of its key
input (i.e., for the last query being also used in 1BR) is ≤ 1/(2n/2−α).
Conditioned on the fact that the right half of the XOR-output is now
fixed there are at most α queries that can be used in 1BL such that the
XOR-outputs of 1BL and 2BL collides. The probability that the left
half of the XOR-output of 1TL is equal to the left half of the key of
1BL is therefore ≤ α/(2n/2 − α) and the total chance of success for q
queries is ≤ qα/(2n/2 − α)2.

Subcase 4.4 The last query is also used in 2BR. The same arguing as for
Subcase 4.3 can be used (apart from exchanging ’left’ and ’right’) and
the bound for q queries is again ≤ qα/(2n/2 − α)2. ��



SPN-Hash: Improving the Provable Resistance

against Differential Collision Attacks�

Jiali Choy1, Huihui Yap1, Khoongming Khoo1, Jian Guo2,
Thomas Peyrin3,��, Axel Poschmann3,� � �, and Chik How Tan4

1 DSO National Laboratories, 20 Science Park Drive, Singapore 118230
{cjiali,yhuihui,kkhoongm}@dso.org.sg

2 Institute for Infocomm Research, A*STAR, Singapore
ntu.guo@gmail.com

3 SPMS, Nanyang Technological University, Singapore
{thomas.peyrin,aposchmann}@ntu.edu.sg

4 Temasek Laboratories, National University of Singapore
tsltch@nus.edu.sg

Abstract. Collision resistance is a fundamental property required for
cryptographic hash functions. One way to ensure collision resistance is to
use hash functions based on public key cryptography (PKC)which reduces
collision resistance to a hard mathematical problem, but such primitives
are usually slow. A more practical approach is to use symmetric-key de-
sign techniques which lead to faster schemes, but collision resistance can
only be heuristically inferred from the best probability of a single differ-
ential characteristic path. We propose a new hash function design with
variable hash output sizes of 128, 256, and 512 bits, that reduces this gap.
Due to its inherent Substitution-Permutation Network (SPN) structure
and JH mode of operation, we are able to compute its differential collision
probability using the concept of differentials. Namely, for each possible in-
put differences, we take into account all the differential paths leading to
a collision and this enables us to prove that our hash function is secure
against a differential collision attack using a single input difference. None
of the SHA-3 finalists could prove such a resistance. At the same time, our
hash function design is secure against pre-image, second pre-image and
rebound attacks, and is faster than PKC-based hashes. Part of our de-
sign includes a generalization of the optimal diffusion used in the classi-
cal wide-trail SPN construction from Daemen and Rijmen, which leads to
near-optimal differential bounds when applied to non-square byte arrays.
We also found a novel way to use parallel copies of a serial matrix over
the finite field GF (24), so as to create lightweight and secure byte-based
diffusion for our design. Overall, we obtain hash functions that are fast
in software, very lightweight in hardware (about 4625 GE for the 256-bit

� The full version of this paper can be found on the eprint archive at
http://eprint.iacr.org.

�� This author is supported by the Lee Kuan Yew Postdoctoral Fellowship 2011 and
the Singapore National Research Foundation Fellowship 2012.

� � � This author was supported in part by Singapore National Research Foundation
under Research Grant NRF-CRP2-2007-03.

A. Mitrokotsa and S. Vaudenay (Eds.): AFRICACRYPT 2012, LNCS 7374, pp. 270–286, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



SPN-Hash: Improving the Provable Resistance 271

hash output) and that provide much stronger security proofs regarding
collision resistance than any of the SHA-3 finalists.

Keywords: SPN, wide-trail strategy, Hash Functions, collision resis-
tance.

1 Introduction

For current hash function designs, there are mainly two approaches to obtain
provable security. The first approach is to prove collision and/or preimage resis-
tance in relation to hard problems. For instance, Contini et al.’s very smooth hash
(VSH) [13] is a number-theoretic hash for which finding a collision can be proven
to be equivalent to solving the VSSH problem of the same order of magnitude
as integer factorization. Concerning preimage, an example is MQ-HASH [8] for
which finding a preimage is proven to be as hard as solving a multivariate system
of equations. For the SHA-3 candidate FSB [1], finding collisions or preimages
imply solving syndrome decoding. The second approach is more practical and
less rigorous, and aims at proving a good differential probability bound for a sin-
gle characteristic path. However, collision resistance is only heuristically inferred
from this bound.

The first approach accomplishes more than a proof of resistance to differen-
tial cryptanalyis. However, hash function schemes based on this design strat-
egy often suffer significantly in terms of speed and performance. On the other
hand, schemes using the second approach enjoy faster speeds but suffer from
incomplete proof of collision resistance. In this paper, we seek to reduce the gap
between these two approaches by providing a more powerful proof for collision
resistance while maintaining similar speed as compared to the symmetric-key
design hashes.

Here, we recall that a differential characteristic over a composed mapping con-
sists of a sequence of difference patterns such that the output difference from one
round corresponds to the input difference in the next round. On the other hand,
a differential is the set of all differential characteristics with the same first-round
input and last-round output differences. Most hash function designs only aim
at showing that any single differential characteristic has sufficiently low prob-
ability and heuristically infer collision resistance from this. Examples of hash
functions which adopt this approach include hashes such as WHIRLPOOL [21] and
some SHA-3 finalists like GRØSTL [17] and JH [28]. In addition, this differential
characteristic bound is hard to determine for Addition-Rotation-XOR (ARX)
designs such as BLAKE [3] and SKEIN [16]. Therefore, the next step in collision
resistance proof, as already done by the second-round SHA-3 candidate ECHO [5],
is to give a bound on the best differential probability instead of only the best
differential characteristic probability. However, note that this security argument
only takes into account attackers that limit themselves to a fixed colliding dif-
ferential (i.e. with a fixed output difference of the internal permutation), while
many exist.



272 J. Choy et al.

Our proposal for a new hash function design is able to achieve a stronger dif-
ferential collision resistance proof. For example, for our proposed 512-bit hash,
we prove that the differential probability of 4 rounds of its internal permutation
function, which has a 1024-bit state size, is upper bounded by 2−816. We sum
this upper bound over all output differences that lead to a collision (2512

candidates) in order to find that the differential collision probability of our pro-
posed hash is then upper bounded by 2−304 < 2−256 after the final truncation.
In contrast, for the SHA-3 semi-finalist ECHO [5], the maximal expected differ-
ential probability for four rounds of their 2048-bit AES extension, ECHO.AES, is
1.055×2−452, but summing over all possible colliding output difference masks (at
least 21536 candidates) completely prevents such a collision-resistance argument.
For SHA-3 finalist, GRØSTL, it is easy to compute the internal collision probabil-
ity of its compression function f . However, its output transformation, involving
a permutation P followed by a truncation, makes such a derivation much less
straightforward for the external collision probability of the full GRØSTL hash
function.

In addition, we have to consider that for some hash function constructions, it
is necessary to prove low related-key differential probability instead of just low
fixed-key differential probability. For example, consider the Davies-Meyer com-
pression function instantiated with AES. The main AES cipher has very low differ-
ential characteristic probability which is bounded by 2−150 for every four rounds.
However, in the Davies-Meyer mode, each input message block to the hash corre-
sponds to the cipher key of the AES-based compression function. This makes the
compression function vulnerable to the multicollision attack by Biryukov et al.
[9], because AES does not have good resistance against related-key differential
attack.

1.1 Our Contributions

In this paper, we propose a new hash function design, SPN-Hash, with variable
output sizes of 128, 256, and 512 bits. It is specially constructed to circumvent
the weaknesses in the proofs of differential collision resistance as well as to resist
common attacks against hash functions.

Concerning the internal permutations, we use the Substitution-Permutation
Network (SPN) structure as the building block for SPN-Hash to ensure that the
maximum probability taken over all differentials (not only differential character-
istics) will be low enough. In [23], Park et al. presented an upper bound for the
maximum differential probability for two rounds of an SPN structure, where the
linear transformation can have any value as its branch number. This bound is
found to be low for SPN structures. For instance, the maximum differential prob-
ability for four rounds of AES is bounded by 1.144×2−111. Based on Park’s result,
we deduce an upper bound for the differential collision probability of SPN-Hash.
We use this bound to show that our hash functions are secure against a dif-
ferential collision attack. Furthermore for our internal permutations, we need to
consider non-square byte-arrays of sizem×n wherem �= n. The designers of AES
[15] gave a construction for m × n arrays where m < n using optimal diffusion



SPN-Hash: Improving the Provable Resistance 273

maps, but the differential bound is the same as that of an m ×m array, which
is sub-optimal for mn-byte block size. By their method, a 256-bit permutation
would be constructed by a 4× 8 byte-array that has the same differential bound
1.144×2−111 as a 4×4 byte-array. This is not close enough to 2−blocksize = 2−256

for our security proof. We generalize the optimal diffusion map of [15]
to construct m × n byte-arrays where m > n, which can achieve near
optimal differential bound close to 2−blocksize.

We also analyzed the security of our internal permutations against the latest
rebound-like attacks [25]. More precisely, we present distinguishing attacks on
three versions of the internal permutation P for 8 out of 10 rounds. For the 256-
bit permutation P , the 8-round attack requires time 256 and memory 216. For
the 512-bit permutation P , the 8-round attack requires time 248 and memory
28, while for the 1024-bit permutation P , the 8-round attack requires time 288

and memory 216.
Concerning the operating mode, we use the JH mode of operation [28], a

variant of the Sponge construction [6]. In this design, assuming a block size of
2x bits, each x-bit input message block is XORed with the first half of the state.
A permutation function P is applied, and the same message block is XORed
with the second half of P ’s output. For this construction, the message blocks are
mapped directly into the main permutation block structure instead of via a key
schedule. This eliminates the need to consider related-key differentials
when analyzing protection against collision attacks. Furthermore, the JH
mode of operation is able to provide second preimage resistance of up to 2x bits
for an x-bit hash as compared to only 2x/2 for the Sponge construction with the
same capacity.

To summarize, our SPN-Hash functions use AES-based internal permutations
with fixed-key and a generalized optimal diffusion to ensure low and provable
maximum differential probability. Then our JH-based operating mode allows us
to apply directly our security reasoning and obtain a bound on the maximum
probability of an attacker looking for collisions using a fixed input difference.
To the best of our knowledge, this is the only known function so far that
provides such a security argument.

The performances of SPN-Hash are good since the internal permutation is
very similar to the one used in the SHA-3 finalist GRØSTL. We propose a novel
construction to use parallel copies of the PHOTON 8× 8 serialized MDS
matrix over GF (24) from [18], to create a secure and very lightweight
byte-based diffusion for our design in hardware.1 Moreover, the area of
SPN-Hash is also lowered by the relatively small internal memory required by
the JH mode of operation. Hardware implementations require 4625 GE for 256-
bit hash output, while current best results for the SHA-3 competition finalists
require 10000 GE or more. Overall, our proposal achieves both excellent
software speed and compact lightweight implementations.

1 Note that the approach of [18] to do an exhaustive search for serialized MDS matrix
over GF (28) by MAGMA is only feasible for n×n matrix up to size n = 6. Therefore
we need our current approach to construct serailized 8× 8 matrix over GF (28).



274 J. Choy et al.

Our paper is organized as follows: We state some necessary preliminaries con-
cerning differential cryptanalysis in Section 2. Then we describe our proposed
SPN-Hash design and give instantiations of 128-, 256-, and 512-bit SPN-Hash in
Section 3 before proceeding to a summary of our security analysis results against
differential collision, preimage, second preimage, and rebound attacks in Section
4. Lastly in Section 5, we show some performance comparisons.

2 Preliminaries

Substitution Permutation Network. One round of an SPN structure con-
sists of three layers: key addition, substitution, and linear transformation. In the
key addition layer, a round subkey is XORed with the input state. The substi-
tution layer is made up of small non-linear substitutions called S-boxes imple-
mented in parallel. The linear transformation layer is used to provide a good
spreading effect of the cryptographic characteristics in the substitution layer. As
such, the SPN structure has good confusion and diffusion properties [26]. One
round of the SPN structure is shown in Figure 1 in Appendix A.

Maximum Differential Probability of an S-Box. In this paper, we fol-
low the standard definitions related to differential cryptanalysis, such as those
in [15]. We take all S-boxes to be bijections from GF (2s) to itself. Consider an
SPN structure with an st-bit round function. Let each S-box Si be an s-bit to
s-bit bijective function Si : GF (2s) → GF (2s), (1 ≤ i ≤ t). So the S-box layer
consists of t s-bit S-boxes in parallel.

Definition 1. For any given Δx,Δy ∈ GF (2s), the differential probability of
each Si is defined as

DPSi(Δx,Δy) =
#{x ∈ GF (2s) | Si(x) ⊕ Si(x⊕Δx) = Δy}

2s
,

where we consider Δx to be the input difference and Δy the output difference.

Definition 2. The maximal differential probability of Si is defined as

DP ((Si)max) =
max

Δx �=0,Δy DPSi(Δx,Δy).

Definition 3. The maximal value of DP ((Si)max) for 1 ≤ i ≤ t is defined as

p =
max
1≤i≤t (DP (Si)max).

An S-Box Si is strong against differential cryptanalysis if DP ((Si)max) is low
enough, while a substitution layer is strong if p is low enough.

A differentially active S-box is an S-box having a non-zero input difference.
A differentially active S-box always has a non-zero output difference and vice
versa. In order to evaluate security against differential cryptanalysis, other than
the differential probabilities of the S-box or S-box layer, one also has to consider



SPN-Hash: Improving the Provable Resistance 275

the number of active S-boxes whose value is determined by the linear transfor-
mation layer.

Substitution-Diffusion-Substitution Function. In order to ease the analy-
sis of the SPN structure, we define an SDS (Substitution-Diffusion-Substitution)
function as shown in Figure 2. Let the linear transformation layer of the SDS
function be defined by L, its input difference by Δx = x⊕ x∗, its output differ-
ence by Δy = y ⊕ y∗ = L(x)⊕ L(x∗). If L is linear, we have Δy = L(Δx). The
number of differentially active S-boxes on the input/output of the SDS function
is given by the branch number of the linear transformation layer.

Definition 4. The branch number of a linear transformation layer L is defined
as

βd = min
v =0
{wt(v) + wt(L(v))},

where the wt(x) is the number of non-zero s-bit characters in x.

If we want to find the number of active S-boxes in two consective rounds of
the SPN structure, we only need to consider the SDS function. βd gives a lower
bound on the number of active S-boxes in two consecutive rounds of a differential
characteristic approximation.

Definition 5. A linear transformation layer on t elements is maximal distance
separable (MDS) if βd = t+ 1.

Maximum differential Probability of an SPN. The differential probability,
which is the sum of all differential characteristic probabilities with the same
input and output difference, gives a more accurate estimate of resistance against
differential cryptanalysis (than that of a single characteristic path). In [23], Park
et al. proved an upper bound for the maximum differential probability for 2
rounds of the SPN structure.

Theorem 1. [23, Theorem 1] Let L be the linear transformation of an SPN
structure and βd be the branch number of L from the viewpoint of differential
cryptanalysis. Then the maximum differential probability for 2 rounds of the SPN
structure is bounded by

max

{
max
1≤i≤t

max
1≤u≤2s−1

2s−1∑
j=1

{DPSi(u, j)}βd , max
1≤i≤t

max
1≤u≤2s−1

2s−1∑
j=1

{DPSi(j, u)}βd

}
.

As a consequence, we get the following theorem.

Theorem 2. [23, Corollary 1] Let L be the linear transformation of an SPN
structure and βd be the branch number of L from the viewpoint of differential
cryptanalysis. Then the maximum differential probability for 2 rounds of the SPN
structure is bounded by pβd−1, where p is the maximal value of DP ((Si)max) for
1 ≤ i ≤ t.



276 J. Choy et al.

3 The SPN-Hash Functions

In this section we describe our proposed hash function design, SPN-Hash , with
variable hash output sizes of 128, 256, and 512 bits. We adopt the JH mode of
operation [28], a variant of the Sponge construction [6], operating on a state of
b = r + c bits. b is called the width, r the rate, and c the capacity. Our design
is a simple iterated construction based on a fixed-length unkeyed permutation
P , where r = c. The internal state of P can be represented by an n×m matrix
of 8-bit cells, where n is the number of bytes in a bundle, and m is the number
of bundles. Thus, P operates on a width of b = 8nm bits, the rate and capacity
are 4nm-bit each, and the output is a 4nm-bit hash value.

Firstly, the input message x of length N bits is padded and divided into blocks
of r = 4nm bits each. The padding function produces the padded message, x′,
of length a multiple of 4nm. It follows “Padding Method 2” in [22, Algorithm
9.30]: first append the bit ‘1’ to x, followed by a sequence of z = (−N − 2nm− 1
mod 4nm) ‘0’ bits. Finally, append the 2nm-bit representation of l = (N + z +
2nm + 1)/4nm. The integer l represents the number of message blocks in the
padded message x′. The maximum message length for 4nm-bit SPN-Hash is thus
set as 4nm · (22nm − 1)− 2nm− 1.

Then, all the bits of the state are initialized to the value of an Initialization
Vector (IV). The IV of 4nm-bit SPN-Hash is taken to be the 8nm-bit binary
representation of 4nm. That is, in big-endian notation, the IVs are 0x00 . . . 0080
for 128-bit SPN-Hash , 0x00 . . .0100 for 256-bit SPN-Hash, and 0x00 . . .0200 for
512-bit SPN-Hash .

For each padded message block, the JH mode of operation iteratively XORs
the incoming 4nm-bit input message block Mi into the left half of the state,
applies the permutation P : GF (2)8nm → GF (2)8nm to the internal state and
XORsMi into its right half. After all the message blocks have been processed, the
right half of the last internal state value is the final message digest and therefore
our construction produces a 4nm-bit hash. It is summarized as follows:

Padded Input = M0,M1, . . . ,MN−1

(H0,L, H0,R) = IV

For i = 0 to N − 1:

(Hi+1,L, Hi+1,R) = P ((Mi ⊕Hi,L, Hi,R))⊕ (0,Mi)

Hash = HN,R

where Mi ∈ GF (2)4nm, (Hi,L, Hi,R) ∈ GF (2)8nm and N is the total number
of padded message blocks. A diagram of our JH mode of operation is shown in
Figure 3 in Appendix A.

Using appropriate parametersm and n such thatm is even andm divides n, we
will be able to construct a wide range of hash functions of different output sizes:

128-bit SPN-Hash : m = 4, n = 8
256-bit SPN-Hash : m = 8, n = 8
512-bit SPN-Hash : m = 8, n = 16



SPN-Hash: Improving the Provable Resistance 277

3.1 The Internal Permutation P

The 8nm-bit permutation P iterates a round function for 10 rounds. Its internal
state can be represented by an n×m matrix of 8-bit cells, where n is the number
of bytes in a bundle, and m is the number of bundles. Here, each column can be
viewed as a bundle consisting of n bytes. In each round, there is a substitution
layer, followed by an MDS layer, a generalized optimal diffusion layer, and lastly,
an XOR with a round constant. Thus, the linear transformation layer of the
SPN structure introduced in Section 2 is actually a composition of the MDS
layer and the generalized optimal diffusion layer while the “round keys” of the
SPN structure are taken to be the round dependant constants. A diagram of the
permutation function P is shown in Figure 4 in Appendix A.

The Substitution Layer σ. takes in a 8nm-bit input and splits it into nm
bytes. It then applies the AES 8-bit S-box [15] to each of these bytes in parallel.
This is chosen due to its low maximum differential and linear approximation
probabilities of 2−6, which strengthens resistance against differential and linear
attacks. In hardware, it is possible to achieve a very compact implementation of
the AES S-box using “tower-field” arithmetic, as proposed in [12]. In software,
one could use the Intel AES-NI instruction set [14] for efficient implementation.

The MDS Layer θ. combines consecutive n bytes into bundles and applies on
each of these m bundles an MDS transformation described in Section 3.3.

The Generalized Optimal Diffusion Layer π. is a permutation of bytes that
achieves good spreading effect. It is an instantiation of the generalized optimal
diffusion which we define in Section 3.2. We write this layer π as (π1, π2, . . . , πn),
where 0 ≤ πi ≤ m− 1. This notation indicates that row i is rotated by πi posi-
tions to the left:

128-bit SPN-Hash: π = (0, 0, 1, 1, 2, 2, 3, 3)
256-bit SPN-Hash: π = (0, 1, 2, 3, 4, 5, 6, 7)
512-bit SPN-Hash: π = (0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7)

These byte permutations are indeed generalized optimal diffusions since exactly
n/m bytes from each column is sent to each of the m columns.

The Round Constant RConi. that is XOR-ed with the state is different
for every round i. This is to defend against slide attacks [10,11] and to prevent
fixed points present over reduced rounds from being propagated to the entire
permutation P . Each RConi can be viewed as an n ×m matrix A, where Ax,y

(0 ≤ x < n, 0 ≤ y < m) denotes the entry in row x and column y. Then for
RConi used in round i,



278 J. Choy et al.

Ax,y =

{
y ⊕ i if x = 0
0 otherwise,

where i is the round number viewed as an 8-bit value. These values of round
constants are chosen as they are light in hardware.

3.2 Generalized Optimal Diffusion

Definition 6. Generalized Optimal Diffusion: Let m divide n. We consider a
concatenation of n bytes as a bundle and we consider a concatenation of m
bundles as a block. A linear transform, π, mapping a block of m bundles to m
bundles is called a (m,n)-generalized optimal diffusion if for each input bundle
of a block, n/m bytes of that input bundle is mapped to each of the m output
bundles.

Our (m,n)-generalized optimal diffusion is a generalization of the optimal diffu-
sion layer used in the wide-trail strategy of Rijmen and Daemen [15]. The latter
corresponds to the case m = n and the ShiftRows function in AES is a particular
instantiation of it. For our hash function design, m must be even and m must
divide n.

The following two results compute the maximum differential probability of
SPN-Hash. Their proofs can be found in Appendix ??.

Theorem 3. Let θ : [GF (28)n]m → [GF (28)n]m be an MDS layer formed by
concatenating m n × n MDS transforms over GF (28). Let π : [GF (28)n]m →
[GF (28)n]m be a (m,n)-generalized optimal diffusion mapping m bundles to m
bundles. Then π ◦ θ ◦ π is a m×m MDS transform over GF (28n).

Theorem 4. The probability of any non-zero input-output differential for the
internal permutation P described in Section 3.1 is upper bounded by(

126× (2−7)n+1 + (2−6)n+1
)m

.

3.3 MDS Layer

The MDS layer provides an independent linear mixing of each column. In the
following, we describe the mixing function of each column and show that it is
indeed an MDS transform.

128- and 256-bit SPN-Hash. In [18], the authors proposed a method for gener-
ating the 8×8 MDS transform over GF (24) in a serial way that is very compact.
However, it is difficult to find an 8× 8 serialized MDS matrix over GF (28) using
the exhaustive search method of [18]. Thus, we show here a way to construct
such a matrix using two parallel copies of the PHOTON 8× 8 serialized MDS ma-
trix2 over GF (24) [18, Appendix C]. This method of construction, similar to

2 We use PHOTON ’s serialized matrix as we verified that it has the lowest binary weight
over GF (24).



SPN-Hash: Improving the Provable Resistance 279

the one used for the MDS layer of ECHO [5], produces an MDS transform that is
very lightweight as compared to, for example, the 8 × 8 matrices3 over GF (28)
used in WHIRLPOOL [4] or GRØSTL [17].

In what follows, we describe this MDS transform for 128- and 256-bit SPN-Hash.
Label the 8 bytes in each column as a1, a2, . . . , a8. We may write each byte as a
concatenation of two 4-bit values, ai = aLi ‖ aRi . Let aL = (aL1 , a

L
2 , . . . , a

L
8 ) and

aR = (aR1 , a
R
2 , . . . , a

R
8 ). Let Q be the 8× 8 MDS matrix over GF (24) used in the

PHOTON [18, Appendix C] hash function, i.e.

Q = (A256)
8 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
2 4 2 11 2 8 5 6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

8

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 4 2 11 2 8 5 6
12 9 8 13 7 7 5 2
4 4 13 13 9 4 13 9
1 6 5 1 12 13 15 14
15 12 9 13 14 5 14 13
9 14 5 15 4 12 9 6
12 2 2 10 3 1 1 14
15 1 13 10 5 10 2 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The matrix Q is chosen as it can be implemented with a very low area footprint
in hardware. This is due to the shifting property of A which simply updates
the last cell of the column vector with a linear combination of all the vector
components, and then rotates the vector by one position towards the top. The
MDS layer is thus composed of 8 applications of A to the input column vector.
This allows reuse of existing memory without need for temporary storage or
additional control logic. Furthermore, the hash function using Q can be imple-
mented efficiently in software using precomputed tables that combine the S-box
and matrix coefficients.

We compute bL = Q ·aL = (bL1 , b
L
2 , . . . , b

L
8 ) and bR = Q ·aR = (bR1 , b

R
2 , . . . , b

R
8 ).

For field multiplication over GF (24), the irreducible polynomial x4 + x + 1 is
chosen with compactness as the main criterion. Then the output of the local
diffusion layer is taken to be (b1, b2, . . . , b8), where each bi is a concatenation of
the two 4-bit values, bi = bLi ‖ bRi .

It can be shown that this transform is indeed MDS over GF (28). Suppose the
input a is non-zero. Then at least one of aL or aR is non-zero. Without loss of
generality, suppose aL is non-zero. Since Q is MDS, this means that the number
of non-zero 4-bit values in (aL, bL) is at least 9. Hence, the number of non-zero
bytes in (a, b) is at least 9.

512-Bit SPN-Hash. The choice of matrix for the 16×16 MDS is left open to the
reader. One possibility is to use the matrix proposed by Nakahara et al. in [20].
Note that Nakahara et al.’s matrix may not be lightweight due to its large size
necessitating a large number of primitive operations. However, this is not an
issue since it is unlikely that a 512-bit hash function will be used for lightweight
purposes.

3 A comparison of their hardware estimations can be found in Section 5.2.



280 J. Choy et al.

4 Security Analysis of SPN-Hash

In this section, we give a summary of our security analysis results against various
attacks 4.

4.1 Differential Collision Attack

We analyzed the security of SPN-Hash against differential collision attacks. While
some hash functions such as ECHO [5] do provide upper bounds on the maximum
differential probability for a certain number of rounds, in actual fact, one has
to sum the maximum differential probability bound over all the possible colliding
output differences for a sharper estimation of the collision resistance of a hash
function. To the best of our knowledge, no known hash function has yet provided
such a collision resistance proof.

Let ΔInput denote the input differential and ΔOutput be the output differ-
ential of the 4 last rounds of the SPN-Hash internal permutation. A collision for
the hash function can occur either by an internal collision (a collision on the
full 8nm-bit internal state) or by an external collision during the last iteration
(a collision on the right side of the 8nm-bit internal state, the left side being
truncated before outputing the hash value).

In the case of an external collision, this corresponds to P having an output
differential of the form (Δx,ΔM) ∈ GF (2)4nm×GF (2)4nm, where XOR with the
message difference ΔM in the right half will give a zero difference. Then we can
show that Pr(External Collision) < 24nm ×

[
(2−6n)(2−n + 2−6)

]m
< 2−2nm,

where the complexity of a generic birthday attack is 24nm/2 = 22nm.
In the case of an internal collision on the 8nm-bit permutation P , since there is

no truncation, the differential probability is given by Pr(ΔInput
4R−→ (0, ΔMi))

for all possible message differences ΔMi. By Theorem 4 and in the same way
as the computation above, we can show that this is lower than 2−2nm, the com-
plexity of a generic birthday attack for the hash function.

Applying these bounds, we can conclude that the differential collision proba-
bilities of 128-bit, 256-bit, and 512-bit SPN-Hash are upper bounded by 2−86.73 <
2−64, 2−173 < 2−128, and 2−303.99 < 2−256 respectively. This means that a dif-
ferential collision attack will not perform better than a generic birthday attack.

In summary, we are able to show that SPN-Hash can provide good maximum
differential probability upper bounds for 4 rounds of its internal permutation
and that its operating mode allows us to go further to prove that the sum of
all colliding differential probabilities is still much lower than what an attacker
would get with a generic birthday collision attack.

4.2 (Second)-Preimage Attack

In the JH mode of operation, there is an XOR of the message in the right
half at the end of the permutation to make the meet-in-the-middle (MITM)

4 A full description of the security analysis can be found on the eprint archive at
http://eprint.iacr.org.



SPN-Hash: Improving the Provable Resistance 281

attacks, originally applicable to the Sponge construction, invalid. This MITM
attack on the Sponge construction can easily be modified into a second pre-
image attack, which is also defeated by the feedforward XOR in the JH mode of
operation.

The preimage attack against the JH-512 hash function by Bhattacharyya et
al. [7] has time and memory complexity 2507, which remains a theoretical result
because the complexity is of the same magnitude as brute force search. Moreover,
a generic time-memory trade-off (TMTO) attack will perform much better with
2512 pre-computation complexity, 2507 memory, and 210 time complexity.

4.3 Rebound Attack - Distinguishing Attack on Permutation P

We analyzed the security of our internal permutations against the latest rebound-
like attack [25] which uses the non-full-active Super S-box cryptanalysis tech-
nique. More precisely, we present distinguishing attacks on three versions of the
internal permutation P for 8 out of 10 rounds. For the 256-bit permutation P ,
the 8-round attack requires time 256 and memory 216. For the 512-bit permu-
tation P , the 8-round attack requires time 248 and memory 28, while for the
1024-bit permutation P , the 8-round attack requires time 288 and memory 216.
In comparison, the complexity of attacking an ideal permutation is 264, 296 and
2256 for 256-bit, 512-bit, and 1024-bit permutations P respectively.

To the best of our knowledge, the differential paths presented are among
the longest paths with the least complexities. Since P comprises ten round
functions, the distinguishing attacks do not threaten the security of the hash
function.

4.4 Exploiting the MDS Layer Structure for 128- and 256-bit
SPN-Hash

Since the MDS layer is built by applying a diffusion matrix over GF (24) two
times independently, an attacker could try to exploit this special structure in a
truncated differential attack by forcing the differences at some stage to remain
on the left or on the right side of the bytes processed. This observation was used
in the first attacks [24] on the ECHO hash function.

However, we believe such a strategy would very likely fail because this right/left
property would be destroyed by the application of the AES S-box. Alternatively,
forcing this property to be maintained for each active byte through the S-box
layer would imply a big cost for the attacker, bigger than the gain from the
truncated differential transitions. This has been confirmed by experiments, as
there is no strong bias through the AES S-box in order to reach an all-right or
an all-left difference (forward or backward). In the case of ECHO this is not true
since the 128-bit ECHO S-box is implemented by two AES rounds, for which forcing
good truncated differential paths at no cost is easy.



282 J. Choy et al.

5 Implementation

5.1 Software Performance

Due to its similarity with GRØSTL concerning the construction of the internal
permutation, it is interesting to analyze SPN-Hash’s software speed in the light
of this SHA-3 candidate. The internal permutation of 256-bit SPN-Hash is com-
parable with GRØSTL-256 since their (individual) internal permutation are of the
same size, and their amount of message bits per call to the internal permutation
is the same (256-bit SPN-Hash compression function processes 256 bits message
in 10 round operations, compared to 512-bit message in 20 very similar round op-
erations by GRØSTL-256). The round function of these two hash functions should
take about similar amount of time due to: 1) The equal number of substitution
operations using the same AES sbox; 2) The speed of MDS multiplication is in-
dependent of the MDS coefficients in most table-based implementations; 3) The
ShiftByte in GRØSTL is done together with step 2 in table-based implementations;
4) The round constants are a bit simpler than those in GRØSTL; and 5) There
are three times ⊕ for 512 bits in GRØSTL and twice 256-bit ⊕ in 256-bit SPN
hash. We did a simple and unoptimized implementation based on table lookups,
which turns to be 34 cycles per byte on a Intel(R) Xeon(R) CPU E5640 clocked
at 2.67GHz. We believe that there remains an important room for improvements
by implementing SPN-Hash with optimized assembly instructions. Similar com-
parison argument applies when one considers implementations with the AES
new instruction set, while GRØSTL-256 runs at 12 cycles per byte with internal
parallelization of the two permutations P and Q, we expect SPN-Hash-256 to run
at 12 to 24 cycles per byte mostly due to the fact that similiar parallelization is
not possible. Note that the 128-bit SPN-Hash shall run as fast as the 256-bit ver-
sion, since its compression function takes half the message bits, and uses roughly
half the amount of operations. Test vectors are provided in Appendix Table 2.

5.2 Hardware Performance

We have implemented 128-bit and 256-bit SPN hash in VHDL and used Synopsys
DesignCompiler A-2007.12-SP1 to synthesize it to the Virtual Silicon (VST)
standard cell library UMCL18G212T3, which is based on the UMC L180 0.18μm
1P6M logic process with a typical voltage of 1.8 V. We used Synopsys Power
Compiler version A-2007.12-SP1 to estimate the power consumption of our
ASIC implementations. For synthesis and for power estimation we advised the
compiler to keep the hierarchy and use a clock frequency of 100 KHz.

Table 1 in Appendix A compares our implementations of SPN hash with the
remaining five SHA-3 candidates with regards to area, latency and a FOM pro-
posed by [2]. In order to have a fair comparison, we only include figures for
fully-autonomous low-area ASIC implementations and omit figures for imple-
mentations that are optimized for high throughput. Among the SHA-3 candi-
dates BLAKE, GRØSTL, and SKEIN, 256-bit SPN-Hash is by far the most compact
proposal. Though it has only the second highest FOM, our estimates for a 64-bit



SPN-Hash: Improving the Provable Resistance 283

datapath implementation indicate that it can achieve the highest FOM, while
still being 35% smaller than the most compact SHA-3 candidate.

References

1. Augot, D., Finiasz, M., Gaborit, P., Manuel, S., Sendrier, N.: SHA-3 Proposal:
FSB. Submission to NIST (2008)

2. Aumasson, J.-P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: A
Lightweight Hash. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 1–15. Springer, Heidelberg (2010), http://131002.net/quark/

3. Aumasson, J.-P., Henzen, L., Meier, W., Phan, R.C.-W.: SHA-3 Proposal BLAKE.
Candidate to the NIST Hash Competition (2008), http://131002.net/blake/

4. Barreto, P., Rijmen, V.: The Whirlpool Hashing Function,
http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html

5. Benadjila, R., Billet, O., Gilbert, H., Macario-Rat, G., Peyrin, T., Robshaw, M.,
Seurin, Y.: SHA-3 Proposal: ECHO. Submission to NIST (2009) (updated)

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge Functions. In:
ECRYPT Hash Workshop (2007)

7. Bhattacharyya, R., Mandal, A., Nandi, M.: Security Analysis of the Mode of JH
Hash Function. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp.
168–191. Springer, Heidelberg (2010)

8. Billet, O., Robshaw, M.J.B., Peyrin, T.: On Building Hash Functions from Mul-
tivariate Quadratic Equations. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.)
ACISP 2007. LNCS, vol. 4586, pp. 82–95. Springer, Heidelberg (2007)

9. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and Related-Key Attack
on the Full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
231–249. Springer, Heidelberg (2009)

10. Biryukov, A., Wagner, D.: Slide Attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 245–259. Springer, Heidelberg (1999)

11. Biryukov, A., Wagner, D.: Advanced Slide Attacks. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 589–606. Springer, Heidelberg (2000)

12. Canright, D.: A Very Compact S-Box for AES. In: Rao, J.R., Sunar,
B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg
(2005); The HDL specification is available at the author’s official webpage
http://faculty.nps.edu/drcanrig/pub/index.html

13. Contini, S., Lenstra, A.K., Steinfeld, R.: VSH, an Efficient and Provable Collision-
Resistant Hash Function. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 165–182. Springer, Heidelberg (2006)

14. Intel Corporation. Advanced Encryption Standard (AES) Instruction Set (October
30, 2008), http://softwarecommunity.intel.com/articles/eng/3788.htm

15. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer (2002)

16. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein Hash Function Family. Submission to NIST, Round 2
(2009)

17. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schlaffer, M., Thomsen, S.S.: Grøstl addendum. Submission to NIST (2009) (up-
dated)

http://131002.net/quark/
http://131002.net/blake/
http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
http://faculty.nps.edu/drcanrig/pub/index.html
http://softwarecommunity.intel.com/articles/eng/3788.htm


284 J. Choy et al.

18. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash
Functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011)

19. Henzen, L., Aumasson, J.-P., Meier, W., Phan, R.C.W.: VLSI Characterization
of the Cryptographic Hash Function BLAKE. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems (99), 1–9

20. Nakahara Jr., J., Abrahão, É.: A New Involutary MDS Matrix for AES. Interna-
tional Journal of Network Security 9(2), 109–116 (2009)

21. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound
Distinguishers: Results on the Full Whirlpool Compression Function. In: Matsui,
M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 126–143. Springer, Heidelberg
(2009)

22. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press (1996)

23. Park, S., Sung, S.H., Lee, S., Lim, J.: Improving the Upper Bound on the Maximum
Differential and the Maximum Linear Hull Probability for SPN Structures and
AES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 247–260. Springer,
Heidelberg (2003)

24. Peyrin, T.: Improved Differential Attacks for ECHO and Grøstl. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 370–392. Springer, Heidelberg (2010)

25. Sasaki, Y., Li, Y., Wang, L., Sakiyama, K., Ohta, K.: Non-full-active Super-Sbox
Analysis: Applications to ECHO and Grøstl. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 38–55. Springer, Heidelberg (2010)

26. Shannon, C.: Communication Theory of Secrecy System. Bell System Technical
Journal 28, 656–715 (1949)

27. Tillich, S., Feldhofer, M., Issovits, W., Kern, T., Kureck, H., Mühlberghuber, M.,
Neubauer, G., Reiter, A., Köfler, A., Mayrhofer, M.: Compact Hardware Implemen-
tations of the SHA-3 Candidates Arirang, Blake, Grøstl, and Skein. IACR ePrint
archive, Report 2009/349 (2009)

28. Wu, H.J.: The Hash Function JH. Submission to NIST (September 2009) (up-
dated), http://ehash.iaik.tugraz.at/uploads/1/1d/Jh20090915.pdf

http://ehash.iaik.tugraz.at/uploads/1/1d/Jh20090915.pdf


SPN-Hash: Improving the Provable Resistance 285

A Tables and Figures

Table 1. Comparison of Low-Area Hardware implementations of SPN hash and a
selection of SHA-3 finalists

Digest Alg. Ref. Msg. Technology Area Latency T’put@100KHz FOM
size size [GE] [clk] [kbps] [nbps/GE2]

128
SPN-Hash-128 256 UMC 0.18 2 777 710 36.1 2 338
SPN-Hash-128 256 estimate 4 600 230 55.7 2 627

256

SPN-Hash-256 512 UMC 0.18 4 625 1 430 35.8 837
SPN-Hash-256 512 estimate 8 500 230 111.3 1 541
BLAKE-32 [19] 512 UMC 0.18 13 575 816 62.8 340

GRØSTL-224/256 [27] 512 AMS 0.35 14 622 196 261.2 1 222
SKEIN-256-256 [27] 256 AMS 0.35 12 890 1 034 24.8 149

Fig. 1. One round of a SPN structure Fig. 2. The SDS function

Fig. 3. The JH mode of operation



286 J. Choy et al.

Fig. 4. The round function in permutation P

B Test Vector

We hash the message “SPN-Hash: Improving the Provable Resistance Against
Differential Collision Attacks” with three variants of the SPN-Hash family, and
the following are digests generated by our reference implementation.

Table 2. Test vectors for three variants of SPN-Hash family

SPN-Hash-128 2b021df78220afd2a41fa3592dc7d284

SPN-Hash-256 eabd18110d48e81d0663a7034b265462bf93f8019ca292e58ec1d830f90d67c5

SPN-Hash-512
f3e4a3dcc44acb2cf4d6f5f67bd8ce50ef030f55e0189a322136b5fc46af3cf5

e071f1ee9bf1851bbd854540da1ccc496d679b43090f8e24f486d6866092ac02



Security Analysis and Comparison of the SHA-3

Finalists BLAKE, Grøstl, JH, Keccak, and Skein

Elena Andreeva, Bart Mennink, Bart Preneel, and Marjan Škrobot

Dept. Electrical Engineering, ESAT/COSIC and IBBT
Katholieke Universiteit Leuven, Belgium

{elena.andreeva,bart.mennink,bart.preneel}@esat.kuleuven.be,
marjanskrobot@yahoo.com

Abstract. In 2007, the US National Institute for Standards and Tech-
nology announced a call for the design of a new cryptographic hash al-
gorithm in response to the vulnerabilities identified in widely employed
hash functions, such as MD5 and SHA-1. NIST received many submis-
sions, 51 of which got accepted to the first round. At present, 5 candidates
are left in the third round of the competition. At NIST’s second SHA-3
Candidate Conference 2010, Andreeva et al. provided a provable security
classification of the second round SHA-3 candidates in the ideal model.
In this work, we revisit this classification for the five SHA-3 finalists. We
evaluate recent provable security results on the candidates, and resolve
remaining open problems for Grøstl, JH, and Skein.

1 Introduction

Hash functions are a building block for numerous cryptographic applications. In
2004 a series of attacks by Wang et al. [41,42] showed security vulnerabilities in
the design of the widely adopted hash function SHA-1. In response, the US Na-
tional Institute for Standards and Technology (NIST) recommended the replace-
ment of SHA-1 by the SHA-2 hash function family and announced a call for the
design of a new SHA-3 hash algorithm [34]. The call prescribes that SHA-3 must
allow for message digests of length 224, 256, 384 and 512 bits, it should be effi-
cient, and most importantly it should provide an adequate level of security. Five
candidates have reached the third and final round of the competition: BLAKE
[6], Grøstl [25], JH [43], Keccak [9], and Skein [22]. These candidates are under
active evaluation by the cryptographic community. As a result of comparative
analysis, several classifications of the SHA-3 candidates, mostly concentrated on
hardware performance, appeared in the literature [23,27,40]. At NIST’s second
SHA-3 Candidate Conference 2010, Andreeva et al. [4,5] provided a classification
based on the specified by NIST security criteria. Below we recall the security
requirements by NIST in their call for the SHA-3 hash function.

NIST Security Requirements. The future SHA-3 hash function is required
to satisfy the following security requirements [34]: (i) at least one variant of the
hash function must securely support HMAC and randomized hashing. Next, for

A. Mitrokotsa and S. Vaudenay (Eds.): AFRICACRYPT 2012, LNCS 7374, pp. 287–305, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



288 E. Andreeva et al.

all n-bit digest values, the hash function must provide (ii) preimage resistance
of approximately n bits, (iii) second preimage resistance of approximately
n−L bits, where the first preimage is of length at most 2L blocks, (iv) collision
resistance of approximately n/2 bits, and (v) it must be resistant to the length-
extension attack. Finally, (vi) for any m ≤ n, the hash function specified by
taking a fixed subset of m bits of the function’s output is required to satisfy
properties (ii)-(v) with n replaced by m.

Our Contributions. We revisit the provable security classification of Andreeva
et al. [4,5], focussing on the five remaining SHA-3 finalists. More concretely, we
reconsider the preimage, second preimage and collision resistance (security re-
quirements (ii)-(iv)) for the n = 256 and n = 512 variants of the five can-
didates. We also include their indifferentiability security results. The security
analysis in this work is realized in the ideal model, where one or more of the
underlying integral building blocks (e.g., the underlying block cipher or permu-
tation(s)) are assumed to be ideal, i.e. random primitives.

In our updated security classification of the SHA-3 finalists, we include the
recent full security analysis of BLAKE by Andreeva et al. and Chang et al. [2,18],
and the collision security result of JH by Lee and Hong [29]. Despite these recent
advances, there still remain open questions in the earlier security analysis and
classification of [4,5]. The main contribution of this work is to address these
questions. More concretely, we do so by either providing new security results
or improving some of the existing security bounds. We list our findings for the
relevant hash functions below and refer to Table 1 for the summary of all results.

– Grøstl. We analyze Grøstl with respect to its second preimage security due to
the lack of an optimal security result as indicated in [4,5]. While optimal col-
lision and preimage security are achieved following a property-preservation
argument, this is not true for the second preimage security. Another way
(than property-preservation) to derive security bounds for hash function
properties is via an indifferentiability result (Thm. 2 in [4,5]). Following this
approach, an approximately 128-bit and 256-bit second preimage resistance
bound is obtained, where the output size of the Grøstl hash function is 256 or
512 bits, respectively. This result is unfortunately not optimal. In this work
we take a different approach to improve these bounds, and we provide a di-
rect second preimage security proof for the Grøstl hash function. Our proof
indicates that Grøstl, in addition to collision and preimage security, is also
optimally ((256 − L)-bit and (512 − L)-bit, respectively) second preimage
secure, where 2L is the length of the first preimage in blocks;

– JH. The existing bounds on JH for second and preimage security are derived
via the indifferentiability result of [13] and are not optimal; approximately
170-bit security for both the 256 and 512 variants. To improve these results,
we follow the direct approach and derive bounds for both security proper-
ties in the ideal permutation model. As a result we achieve optimal 256-bit
security for the 256 variant of the hash function. The new bound for the 512
variant is still not optimal (as is the existing bound), but improved to 256-bit



Security Analysis and Comparison of the SHA-3 Finalists 289

Table 1. Preimage, second preimage, collision, and indifferentiability security results
of the SHA-3 finalists in bits. Here, l and m denote the chaining value and the message
input sizes, respectively. Regarding second preimage resistance, the first preimage is of
length 2L blocks. The ideality assumptions are “E ideal” for BLAKE and Skein, “P,Q
ideal” for Grøstl, and “P ideal” for JH and Keccak. The results in bold are presented
in this work. A more detailed summary can be found in the full version of this paper.

1234 1234 12345 12345 12345 12345l m pre sec coll indiff

BLAKE-256 256 512 256 256 128 128

Grøstl-256 512 512 256 256–L 128 128

JH-256 1024 512 256 256 128 256

Keccak-256 1600 1088 256 256 128 256

Skein-256 512 512 256 256 128 256

NIST’s requirements [34] 256 256–L 128 —

1234 1234 12345 12345 12345 12345l m pre sec coll indiff

BLAKE-512 512 1024 512 512 256 256

Grøstl-512 1024 1024 512 512–L 256 256

JH-512 1024 512 256 256 256 256

Keccak-512 1600 576 512 512 256 512

Skein-512 512 512 512 512 256 256

NIST’s requirements [34] 512 512–L 256 —

security. Using different proof techniques, it may be possible to improve the
(second) preimage bound for JH-512, yet we note that by a preimage attack
of [13] the maximum amount of security is upper bounded by 507-bit;1

– Skein. By the implications of the existing indifferentiability results of Skein
we can directly conclude an optimal 256-bit second preimage security for
the 256 version of the hash function. This is however not true for the 512
version, which offers only 256-bit security following the indifferentiability
argument. We, thus, analyze the generic second preimage security of Skein in
the ideal block cipher model and obtain optimal bounds for both its versions,
confirming the second preimage result for the 256 version and optimally
improving the bound for the 512 version.

The results of Table 1 show that all candidates, with the exception of the (second)
preimage security of JH-512, achieve optimal collision, second and preimage secu-
rity for both their 256 and 512 variants. The optimal results refer to the general
iterative structure of all the algorithms. The analysis in all cases is performed in
the ideal setting. But more importantly, we claim that the provided comparison
is sufficiently fair due to the fact that the ideality assumption is hypothesized on
basic underlying primitives, such as block ciphers and permutations, as opposed
to higher level compression function building blocks.

On the other hand, while optimality results hold for the five the hash function
finalists, the security of their compression functions again in the ideal model dif-
fers. The security here varies from trivially insecure compression functions for
JH and Keccak to optimally secure ones for BLAKE, Grøstl and Skein. We want to
note that the latter remark does not reflect any security criteria indicated in the
security requirements of NIST. In addition to the classical notions of collision,
second and preimage security, we also investigate the notion of indifferentiabil-
ity [31]. Indifferentiability encompasses structural attacks, such as the length

1 In independent concurrent research, Moody et al. [33] have reconsidered the indif-
ferentiability bound on JH and improved it to 256-bit security, therewith confirming
our findings on the (second) preimage resistance of JH.



290 E. Andreeva et al.

extension attack in single round interactive protocols [36], and is therefore an
important security criteria satisfied by all five candidates. We include the in-
differentiability notion not only because it is relevant by itself, but it is also an
important tool to derive further security results. JH and Skein offer 256-bit indif-
ferentiability security for both their variants, and BLAKE and Grøstl offer 128-bit
and 256-bit security for their respective 256 and 512 variants. Keccak provides
higher indifferentiability guarantees: 256-bit and 512-bit, respectively, and that
is achieved by increasing the iterated state size to 1600 bits as compared to sizes
from 256 bits to 1024 bits for the other hash function candidates.

Outline. Section 2 briefly covers the notation, and the basic principles of hash
function design. In Sects. 3-7, we consider the five SHA-3 finalists from a provable
security point of view. We give a high level algorithmic description of each hash
function, and discuss the existing and new security results. We conclude the
paper with Sect. 8 and give some final remarks on the security comparison.

2 Preliminaries

For n ∈ N, we denote by Zn
2 the set of bit strings of length n, and by (Zn

2 )
∗

the set of strings of length a positive multiple of n bits. We denote by Z∗
2 the

set of bit strings of arbitrary length. For two bit strings x, y, x‖y denotes their
concatenation and x⊕y their bitwise XOR. For m,n ∈ N we denote by 〈m〉n the
encoding of m as an n-bit string. The function chopn(x) takes the n leftmost bits
of a bit string x. We denote by Func(m,n) the set of all functions f : Zm

2 → Zn
2 .

A random oracle [8] is a function which provides a random output for each new
query. A random m-to-n-bit function is a function sampled uniformly at random
from Func(m,n).

Throughout, we use a unified notation for all candidates. The value n denotes
the output size of the hash function, l the size of the chaining value, and m the
number of message bits compressed in one iteration of the compression function.
A padded message is always parsed as a sequence of k ≥ 1 message blocks of
length m bits: (M1, . . . ,Mk).

2.1 Preimage, Second Preimage and Collision Security

In our analysis we model the adversaryA as a probabilistic algorithm with oracle

access to a randomly sampled primitiveP $← Prims. The set Prims depends on the
hash function to be analyzed. We consider information-theoretic adversaries only.
This type of adversary has unbounded computational power, and its complexity
is measured by the number of queries made to his oracle. The adversary can make
queries to P , which are stored in a query historyQ as indexed elements. In the re-
mainder, we assume thatQ always contains the queries required for the attack and
that the adversary never makes queries to which it knows the answer in advance.

Let F : Zp
2 → Zn

2 for p ≥ n be a compressing function instantiated with a

randomly chosen primitive P $← Prims. Throughout, F will either denote the



Security Analysis and Comparison of the SHA-3 Finalists 291

compression function f or the hash function H specification of one of the SHA-3
finalists. For the preimage and second preimage security analysis in this work,
we consider the notions of everywhere preimage and second preimage resistance
[37], which guarantees security on every range (resp. domain) point.

Definition 1. Let p, n ∈ N with p ≥ n and let F : Zp
2 → Zn

2 be a compressing
function using primitive P ∈ Prims. The advantage of an everywhere preimage
finding adversary A is defined as

AdvepreF (A) = max
y∈Zn

2

Pr
(
P $← Prims, z ← AP(y) : F (z) = y

)
.

We define by AdvepreF (q) the maximum advantage of any adversary making q
queries to its oracles.

Definition 2. Let p, n ∈ N with p ≥ n and let F : Zp
2 → Zn

2 be a compressing
function using primitive P ∈ Prims. Let λ ≤ p. The advantage of an everywhere
second preimage finding adversary A is defined as

Adv
esec[λ]
F (A) = max

z′∈Zλ
2

Pr
(
P $← Prims, z ← AP (z′) : z �= z′ ∧ F (z) = F (z′)

)
.

We define by Adv
esec[λ]
F (q) the maximum advantage of any adversary making q

queries to its oracles.

If F is a compression function, we require λ = p. Note that, while the length of
the first preimage is of 2L blocks following NIST’s security requirements, here
we bound the length by λ bits. This translates to 2L ≈ λ/m, where m is the size
of the message block.

We define the collision security of F as follows.

Definition 3. Let p, n ∈ N with p ≥ n and let F : Zp
2 → Zn

2 be a compressing
function using primitive P ∈ Prims. Fix a constant h0 ∈ Zn

2 . The advantage of
a collision finding adversary A is defined as

AdvcolF (A) = Pr
(
P $← Prims, z, z′ ← AP : z �= z′ ∧ F (z) ∈ {F (z′), h0}

)
.

We define by AdvcolF (q) the maximum advantage of any adversary making q
queries to its oracles.

If a compressing function F outputs a bit string of length n, one expects to
find collisions with high probability after approximately 2n/2 queries (due to the
birthday attack). Similarly, (second) preimages can be found with high prob-
ability after approximately 2n queries2. Moreover, finding second preimages is
provably harder than finding collisions [37].

2 Kelsey and Schneier [26] describe a second preimage attack on the Merkle-Damg̊ard
hash function that requires at most approximately 2n−L queries, where the first
preimage is of length at most 2L blocks. This attack does, however, not apply to all
SHA-3 candidates. In particular, the wide-pipe SHA-3 candidates (l � n) remain
mostly unaffected due to their increased internal state (see the remark on Thm. 3).



292 E. Andreeva et al.

2.2 Indifferentiability

The indifferentiability framework introduced by Maurer et al. [31] is an extension
of the classical notion of indistinguishability; it ensures that a hash function
has no structural defects. We denote the indifferentiability security of a hash
function H by Advpro

H , maximized over all distinguishers making at most q
queries of maximal length K ≥ 0 message blocks to their oracles. We refer to
Coron et al. [19] for a formal definition. An indifferentiability bound guarantees
security of the hash function against specific attacks. Although recent results by
Ristenpart et al. [36] show that indifferentiability does not capture all properties
of a random oracle, indifferentiability still remains the best way to rule out
structural attacks for a large class of hash function applications.

It has been demonstrated in [4,5] that

Advatk
H ≤ PratkRO +Advpro

H (1)

for any security notion atk, where PratkRO denotes the success probability of a
generic attack against H under atk and RO is an ideal function with the same
domain and range space as H.

2.3 Hash Function Design Strategies

In order to allow the hashing of arbitrarily long strings, all SHA-3 candidates
employ a specific mode of operation. Central to all designs is the iterated hash
function principle [28]: on input of an initialization vector IV and a message M ,
the iterated hash function Hf based on the compression function f , applies a
padding mechanism pad to M resulting in (M1, . . . ,Mk), and outputs hk where
h0 = IV and hi = f(hi−1,Mi) for i = 1, . . . , k. This principle is also called the
plain Merkle-Damg̊ard (MD) design [20,32]. Each of the five remaining candi-
dates is based on this design, possibly followed by a final transformation (FT),
and/or a chop-function3.

The padding function pad : Z∗
2 → (Zm

2 )∗ is an injective mapping that trans-
forms a message of arbitrary length to a message of length a multiple of m
bits (the number of message bits compressed in one compression function iter-
ation). The padding rule is called suffix-free (resp. prefix-free) if for any dis-
tinct M,M ′ there exists no bit string X such that pad(M ′) = X‖pad(M)
(resp. pad(M ′) = pad(M)‖X). The MD design (possibly with final transfor-
mation or chop-function) using suffix-free padding preserves collision resistance
[4,5]. The MD design with prefix-free padding, based on ideal compression func-
tion, is proven to be indifferentiable from a random oracle [19]. Furthermore,
everywhere preimage resistance is preserved by the MD design. All candidates
have a sufficiently strong padding rule (see Fig. 1). Additionally, for BLAKE and
Skein, the message blocks are compressed along with specific counters or tweaks.

3 The chop-function is not considered to be (a part of) a final transformation. It refers
to the chopping off or discarding a specified number of bits from the output.



Security Analysis and Comparison of the SHA-3 Finalists 293

HAIFA Design. A concrete design based on the MD principle is the HAIFA
construction by Biham and Dunkelman [14]. In HAIFA the message is padded in
a specific way so as to solve some deficiencies of the original MD construction: in
the iteration, each message block is accompanied with a fixed (optional) salt of
s bits and a (mandatory) counter Ci of t bits. The counter Ci keeps track of the
number of message bits hashed so far, and equals 0 by definition if the i-th block
does not contain any message bits. Due to the properties of this counter the
HAIFA padding rule is suffix- and prefix-free, and consequently the construction
preserves collision resistance and the indifferentiability results of Coron et al. [19]
carry over. For the HAIFA design, these indifferentiability results are improved
by Bhattacharyya et al. in [12]. Furthermore, the HAIFA construction is proven
optimally secure against second preimage attacks if the underlying compression
function is assumed to behave ideal [17].

Wide-Pipe Design. In the wide-pipe design [30], the iterated state size is
significantly larger than the final hash output: at the end of the iteration, a
fraction of the output of a construction is discarded. As proved in [19], the MD
construction with a distinct final transformation and/or chopping at the end is
indifferentiable from a random oracle.

Sponge Functions. The sponge hash function design is a particular design by
Bertoni et al. [11]. It has been generalized by Andreeva et al. [1]. Two SHA-3
finalists are known to be sponge(-like) functions, JH and Keccak.

3 BLAKE

The BLAKE hash function [6] is a HAIFA construction. The message blocks
are accompanied with a HAIFA-counter, and the function employs a suffix- and
prefix-free padding rule. The underlying compression function f is based on a
block cipher E : Z2l

2 ×Zm
2 → Z2l

2 . It moreover employs an injective linear function
L, and a linear function L′ that XORs the first and second halves of the input.
The BLAKE hash function design is given in Fig. 1.

As the mode of operation of BLAKE is based on the HAIFA structure, all
security properties regarding this type (cf. Sect. 2.3) hold [14], provided the
compression function is assumed to be ideal. However, as independently shown by
Andreeva et al. [2] and Chang et al. [18], the BLAKE compression function shows
non-random behavior: it is differentiable from a random compression function
in about 2n/4 queries, making the above-mentioned security properties invalid.
This attack has invalidated the results on BLAKE reported in the second round
SHA-3 classification of [4,5].

The security results have been reconfirmed by Andreeva et al. [2] in the ideal
cipher model. Firstly, the authors prove optimal security bounds on the com-
pression function, Advepre

f = Θ(q/2n) and Advcol
f = Θ(q2/2n). In the ideal

model, everywhere second preimage resistance of the compression function can
be proven similar as the preimage resistance, up to a constant (the security anal-
ysis differs only in that we give the adversary one query for free). The BLAKE



294 E. Andreeva et al.

BLAKE:
(n, l,m, s, t) ∈ {(256, 256, 512, 128, 64),

(512, 512, 1024, 256, 128)}
E : Z2l

2 × Zm
2 → Z2l

2 block cipher

L : Zl+s+t
2 → Z2l

2 , L′ : Z2l
2 → Zl

2 (cf. Sect. 3)
f(h,M, S,C) =

L′(EM (L(h,S, C)))⊕ h ⊕ (S‖S)}
BLAKE(M) = hk, where:
(M1, . . . ,Mk) ← padb(M); h0 ← IV

S ∈ Zs
2; (Ci)

k
i=1 HAIFA-counter

hi ← f(hi−1,Mi, S,Ci) for i = 1, . . . , k

Grøstl:
(n, l,m) ∈ {(256, 512, 512), (512, 1024, 1024)}
P,Q : Zl

2 → Zl
2 permutations

f(h,M) = P (h ⊕ M) ⊕ Q(M) ⊕ h
g(h) = P (h) ⊕ h

Grøstl(M) = h, where:
(M1, . . . ,Mk) ← padg(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k
h ← chopn(g(hk))

JH:
(n, l,m) ∈ {(256, 1024, 512), (512, 1024, 512)}
P : Zl

2 → Zl
2 permutation

f(h,M) = P (h ⊕ (0l−m‖M)) ⊕ (M‖0l−m)

JH(M) = h, where:
(M1, . . . ,Mk) ← padj(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k
h ← chopn(hk)

Keccak:
(n, l,m) ∈ {(256, 1600, 1088), (512, 1600, 576)}
P : Zl

2 → Zl
2 permutation

f(h,M) = P (h ⊕ (M‖0l−m))

Keccak(M) = h, where:
(M1, . . . ,Mk) ← padk(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k
h ← chopn(hk)

Skein:
(n, l,m) ∈ {(256, 512, 512), (512, 512, 512)}
E : Zm

2 × Z128
2 × Zl

2 → Zm
2 tweakable block cipher

f(h, T,M) = Eh,T (M) ⊕ M

Skein(M) = h, where:
(M1, . . . ,Mk) ← pads(M); h0 ← IV
(Ti)

k
i=1 round-specific tweaks

hi ← f(hi−1, Ti,Mi) for i = 1, . . . , k
h ← chopn(hk)

Padding functions:

padb(M) = M‖10−|M|−t−2 mod m1‖ 〈|M|〉t
padg(M) = M‖10−|M|−65 mod l‖

〈⌈ |M|+65
l

⌉〉
64

padj(M) = M‖10383+(−|M| mod m)‖ 〈|M|〉128
padk(M) = M‖10−|M|−2 mod m1

pads(M) = M ′‖0(−|M′| mod m)+m,

where M ′ =

{
M if |M| ≡ 0 mod 8,

M‖10−|M|−1 mod 8 otherwise.

Fig. 1. Descriptions of the SHA-3 finalists. Here, h denotes state values, M denotes
message blocks, S denotes a (fixed) salt, C denotes a counter and T denotes a tweak.

mode of operation preserves collision resistance and everywhere preimage resis-
tance due to which we obtain Advcol

H = Θ(q2/2n) and Advepre
H = Θ(q/2n). The

hash function is moreover proven optimally second preimage resistance in the

ideal cipher model by Andreeva et al. [2], which gives Adv
esec[λ]
H = Θ(q/2n). Fi-

nally, the BLAKE hash function is reproven indifferentiable from a random oracle
up to bound Θ((Kq)2/2n), this time under the assumption that the underlying
block cipher is assumed to be ideal [2,18].

4 Grøstl

The Grøstl hash function [25] is a chop-MD construction, with a final transforma-
tion before chopping. The hash function employs a suffix-free padding rule. The
underlying compression function f is based on two permutations P,Q : Zl

2 → Zl
2.

The final transformation g is defined as g(h) = P (h)⊕h. The Grøstl hash function
design is given in Fig. 1.

The compression function of Grøstl is permutation based, and the generic
attacks of [38,39] apply. Furthermore, the preimage resistance of the compression
function is analyzed in [24], and an upper bound for collision resistance can



Security Analysis and Comparison of the SHA-3 Finalists 295

be obtained easily. As a consequence, we obtain tight security bounds on the
compression function, Advepre

f = Θ(q2/2l) and Advcol
f = Θ(q4/2l). In the ideal

model, everywhere second preimage resistance of the compression function can be
proven similar as the preimage resistance, up to a constant (the security analysis
differs only in that we give the adversary one query for free). The Grøstl mode
of operation preserves collision resistance and everywhere preimage resistance
due to which we obtain Advcol

H = Θ(q2/2n) and Advepre
H = Θ(q/2n). Finally, it

is proven indifferentiable from a random oracle up to bound O((Kq)4/2l) if the
underlying permutations are ideal [3].

As an addition to above results, in this work we consider second preimage
resistance of the Grøstl hash function. We prove that optimal second preimage
resistance (up to a constant) is achieved for all versions.

Theorem 1. Let n ∈ N, and λ ≥ 0. The advantage of any adversary A in
finding a second preimage for the Grøstl hash function H after q < 2l−1 queries
can be upper bounded by

Adv
esec[λ]
H (q) ≤ ((λ + 65)/m+ 2)q(q − 1)

2l
+

2q

2n
.

Proof. Let M ′ ∈ Zλ
2 be any target preimage. Denote by h′

0, . . . , h
′
k′ the state

values corresponding to the evaluation of H(M ′), and let h = chopn(P (h′
k′) ⊕

h′
k′).
We consider any adversary A making q queries to its underlying permutations

P and Q. Associated to these queries, we introduce an initially empty graph G
that indicates compression function calls for Grøstl that can be derived from these
queries. Note that any P -query (xP , yP ) and any Q-query (xQ, yQ) correspond
to exactly one compression function call, namely xP ⊕ xQ → xP ⊕ yP ⊕ xQ⊕ yQ
where the message input is xQ. In order to find a second preimage, the adversary

(1) either needs to end up with a graph that contains a path (labeled differently
from the first preimage) from IV to any node of {h′

0, . . . , h
′
k′},

(2) or he needs to find a P -query (xP , yP ) with xP �= h′
k′ such that chopn(xP ⊕

yP ) = h and G contains a path from IV to xP .

A proof of this claim can be found in [2,17]. To achieve the first goal, the ad-
versary needs to find a preimage for the Grøstl compression function, for any
image in {h′

0, . . . , h
′
k′}. To achieve the second goal, the adversary needs to find

a preimage for the final transformation of the Grøstl compression function. For
i = 1, . . . , q, we consider the probability of the i-th query to render success. We
distinguish between the two success cases.

Case (1). Without loss of generality the i-th query is a forward query xP to
P , let yP be the oracle answer drawn uniformly at random from a set of size at
least 2l− q. Let (xQ, yQ) be any Q-query in the query history. The query results
in a compression function call xP ⊕xQ → xP ⊕yP ⊕xQ⊕yQ. This value hits any

of {h′
0, . . . , h

′
k′} with probability at most k′+1

2l−q . Considering any of the at most



296 E. Andreeva et al.

i−1 possible Q-queries, case (1) is achieved with probability at most (k′+1)(i−1)
2l−q .

The same bound is found for queries to Q and for inverse queries.

Case (2). Case (2) can only be achieved in a query to P . Without loss of
generality, the i-th query is a forward query xP , let yP be the oracle answer
drawn uniformly at random from a set of size at least 2l− q. This value satisfies

chopn(xP ⊕ yP ) = h with probability at most 2l−n

2l−q .

By the union bound, we obtain the following bound on the second preimage
resistance of Grøstl:

Adv
esec[λ]
H (q) ≤

q∑
i=1

(
(k′ + 1)(i− 1)

2l − q
+

2l−n

2l − q

)
≤ (k′ + 1)q(q − 1)

2(2l − q)
+

q2l−n

2l − q
.

As for q < 2l−1 we have 1
2l−q

≤ 2
2l

and k′ ≤ (λ + 65)/m + 1, we obtain our
result. ��

Given that for Grøstl we have l = 2n, for q < 2n the result of Thm. 1 directly
implies a Θ(λ/m · q/2n) bound on the second preimage resistance.

5 JH

The JH hash function [43] is a sponge-like function, but can also be considered
as a parazoa function [1] or a chop-MD construction. The hash function employs
a suffix-free padding rule. The compression function f is based on a permuta-
tion Zl

2 → Zl
2. The JH hash function design is given in Fig. 1. Note that the

parameters of JH satisfy l = 2m.
The compression function of JH is based on one permutation, and collisions

and preimages for the compression function can be found in one query to the per-
mutation [15]. The JH hash function is proven optimally collision resistant [29],
and we obtain Advcol

H = Θ(q2/2n). Furthermore, it is proven indifferentiable

from a random oracle up to bound O

(
q3

2l−m
+

Kq3

2l−n

)
if the underlying permu-

tation is assumed to be ideal [13]. As explained in [4,5], using (1) this indifferen-

tiability bound additionally renders an improved upper bound O
(

q
2n + q3

2l−m

)
on the preimage and second preimage resistance.

We note, however, that these bounds on the preimage and second preimage
resistance of JH are non-optimal for both variants. We improve these bounds in
Thms. 2 and 3. Although the new bounds are still not better than the trivial
bound for n = 512 (as was the previous bound), they are now optimal (up to
a constant) for the 256 variant. In independent concurrent research Moody et
al. [33] improved the indifferentiability bound on JH to O((Kq)2/2l−m), there-
with confirming our findings on the (second) preimage resistance of JH.

In the proofs of Thms. 2 and 3 we will use the chop-function for both the left
and right side of x. Therefore, we introduce the functions leftn(x) and rightn(x)
that take the n leftmost and rightmost bits of x, respectively.



Security Analysis and Comparison of the SHA-3 Finalists 297

Theorem 2. Let n ∈ N. The advantage of any adversary A in finding a preim-
age for the JH hash function H after q < 2l−1 queries can be upper bounded
by

AdvepreH (q) ≤ 4q2

2l−m
+

2q

2n
.

Proof. Let h ∈ Zn
2 be any point to be inverted (cf. Def. 1). IV denotes the

initialization vector of size l bits. We consider any adversary A making q queries
to its underlying permutation P . Associated to these queries, we introduce an
initially empty graph G that indicates compression function calls for JH that can
be derived from these queries. We denote Gi as the graph after the i-th query
(i = 0, . . . , q). Each query adds 2m edges to the graph, and Gi thus contains i2

m

edges. In order to find a preimage, the adversary must necessarily end up with a
graph that contains a path from node IV to any node inH := {h‖h′ | h′ ∈ Zl−n

2 }.
We denote by winAi the event that after the i-th query this property is satisfied.

We denote by Gout
i , resp. Gin

i , the set of nodes in Gi with an outgoing, resp. in-
coming, edge. We denote by τ IVi the subgraph of Gi consisting of all nodes and
edges reachable from IV. Similarly, τHi denotes the subgraph of Gi consisting of
all nodes and edges from which any node in H can be reached. Next to event
winAi, we say the adversary also wins if either of the following events occurs for
any i = 1, . . . , q:

winBi : τ IVi contains two nodes v, v′ with leftl−m(v) = leftl−m(v′),

winCi : τHi \H contains two nodes v, v′ with rightl−m(v) = rightl−m(v′).

We denote by wini = winAi ∨ winBi ∨ winCi the event that after the i-th query
the adversary has won. We have

Advepre
H (q) ≤ Pr (winAq) ≤ Pr (winq) =

q∑
i=1

Pr (wini ∧ ¬wini−1) . (2)

For i = 1, . . . , q, we consider the probability of the i-th query to render success.
We distinguish between forward and inverse queries.

Forward Query. Suppose the adversary makes a forward query xi to receive a
random yi. By ¬winBi−1, there is at most one v ∈ τ IVi−1 such that leftl−m(v) =
leftl−m(xi). Denote M = rightl−m(v)⊕ rightl−m(xi); this query will add only the
edge v → yi ⊕ (M‖0l−m) =: w to the tree. We define the following events.

badAi : rightl−m(yi) ∈ {rightl−m(w) | w ∈ τHi−1},
badBi : leftl−m(w) ∈ {leftl−m(v) | v ∈ τ IVi−1},
badCi : w ∈ Gout

i ,

badDi : leftn(w) = h.

Here, badAi covers the event that τHi−1 is extended. Event badBi covers the case
that the updated τ IVi contains two nodes with the same left half (note that this



298 E. Andreeva et al.

would directly make winBi satisfied). The case badCi covers the event that the
newly added edge to τ IVi hits any node with outgoing edge, and badDi covers
the event that the newly added edge to the tree would hit h (in both cases a
valid preimage path may have been established). Denote badi = badAi∨badBi∨
badCi ∨ badDi.

By basic probability theory, we have in case of forward queries

Pr (wini ∧ ¬wini−1) ≤ Pr (wini ∧ ¬wini−1 ∧ ¬badi) +Pr (badi ∧ ¬wini−1) .

We consider the first probability. Assume ¬wini−1 ∧¬badi. Recall, by ¬winBi−1,
v → w is the only edge added to τ IVi−1. Now, we have ¬winAi by ¬winAi−1 and
as by ¬badCi∧¬badDi this new edge does not connect τ IVi with H . Case ¬winBi

follows from ¬winBi−1∧¬badBi. Finally, by ¬badAi, the tree τ
H
i−1 is not extended,

and hence ¬winCi follows from ¬winCi−1. Thus, the first probability equals 0 and
for forward queries we have Pr (wini ∧ ¬wini−1) ≤ Pr (badi ∧ ¬wini−1). This
probability will be analyzed later.

Inverse Query. Suppose the adversary makes an inverse query yi to receive a
random xi. By ¬winCi−1, there is at most one v ∈ τHi−1 such that rightl−m(v) =
rightl−m(yi). Denote M = leftl−m(v) ⊕ leftl−m(yi); this query will add only the
edge w := xi ⊕ (0l−m‖M)→ v to the tree. We define the following events.

badA′
i : leftl−m(xi) ∈ {leftl−m(v) | v ∈ τ IVi−1},

badB′
i : rightl−m(v) ∈ {rightl−m(w) | w ∈ τHi−1},

badC′
i : v ∈ Gin

i ,

badD′
i : v = IV.

Here, badA′
i covers the event that τ IVi−1 is extended. Event badB′

i covers the case
that the updated τHi contains two nodes with the same right half (note that this
would directly make winCi satisfied). The case badC′

i covers the event that the
newly added edge to τHi hits any node with incoming edge, and badD′

i covers
the event that the newly added edge to the tree would hit IV (in both cases a
valid preimage path may have been established). Denote bad′i = badA′

i∨badB′
i∨

badC′
i ∨ badD′

i.
By basic probability theory, we have in case of inverse queries

Pr (wini ∧ ¬wini−1) ≤ Pr
(
wini ∧ ¬wini−1 ∧ ¬bad′i

)
+Pr

(
bad′i ∧ ¬wini−1

)
.

We consider the first probability. Assume ¬wini−1 ∧¬bad′i. Recall, by ¬winCi−1,
v → w is the only edge added to τHi−1. Now, we have ¬winAi by ¬winAi−1 and
as by ¬badC′

i ∧¬badD′
i this new edge does not connect IV with τHi . By ¬badA′

i,
the tree τ IVi−1 is not extended, and hence ¬winBi follows from ¬winBi−1. Finally,
case ¬winCi follows from ¬winCi−1 ∧ ¬badB′

i. Thus, the first probability equals
0 and for inverse queries we have Pr (wini ∧ ¬wini−1) ≤ Pr

(
bad′i ∧ ¬wini−1

)
.

This probability will be analyzed later.



Security Analysis and Comparison of the SHA-3 Finalists 299

As each query is either a forward or an inverse query, we obtain for i = 1, . . . , q:

Pr (wini ∧ ¬wini−1) ≤ max{Pr (badi | ¬wini−1; forward query) ,

Pr
(
bad′i | ¬wini−1; inverse query

)
}. (3)

As explained above, provided ¬wini−1, the i-th query adds at most one node to
τ IVi−1 and at most one node to τHi−1, regardless whether it is a forward or inverse
query. This particularly means that |τ IVi−1| ≤ i and |τHi−1| ≤ i − 1. Additionally,
|Gout

i |, |Gin
i | ≤ i2m. It is now straightforward to analyze the success probabilities

of badi, bad
′
i to occur. As the answer from P is drawn uniformly at random from

a set of size at least 2l − q, we obtain from (3):

Pr (wini ∧ ¬wini−1) ≤
(2i− 1)2m

2l − q
+

i2m

2l − q
+

2l−n

2l − q
. (4)

This combines with (2) to

Advepre
H (q) ≤

q∑
i=1

(
(3i− 1)2m

2l − q
+

2l−n

2l − q

)
≤ 2q22m

2l − q
+

q2l−n

2l − q
,

The result is now obtained as for q < 2l−1 we have 1
2l−q

≤ 2
2l
. ��

The proof of second preimage resistance of JH is similar. Note that the attack
by Kelsey and Schneier [26] only impacts JH in the internal state, which is
reflected by the second part of the bound. In accordance with NIST’s security
requirements, we can assume q < 2n−L, or in particular that λ/m · q � 2n (see
the remark below Def. 2). Consequently, the second term of the second preimage
bound is negligible.

Theorem 3. Let n ∈ N, and λ ≥ 0. The advantage of any adversary A in
finding a second preimage for the JH hash function H after q < 2l−1 queries can
be upper bounded by

Adv
esec[λ]
H (q) ≤ 4q2

2l−m
+

2(λ/m+ 2)q

2l
+

2q

2n
.

Proof. The proof follows the same argument as the proof of Thm. 2; we only high-
light the differences. Let M ′ ∈ Zλ

2 be any target preimage. Denote by h′
0, . . . , h

′
k′

the state values corresponding to the evaluation ofH(M ′), and set leftn(h
′
k′ ) = h.

Now, the adversary necessarily needs to end up with a graph that contains a path
from IV to any node in {h′

0, . . . , h
′
k′} ∪ {h‖h′ | h′ ∈ Zl−n

2 }.
This path must be labeled by a message different from M ′. The analysis of

Thm. 2 carries over, with the minor difference that badCi and badC′
i are replaced

by

badCi : w ∈ Gout
i ∪ {h′

0, . . . , h
′
k′−1}, badC′

i : v ∈ Gin
i ∪ {h′

1, . . . , h
′
k′}.

Similar as before, we obtain

Adv
esec[λ]
H (q) ≤

q∑
i=1

(
(3i− 1)2m + k′

2l − q
+

2l−n

2l − q

)
≤ 2q22m

2l − q
+

k′q
2l − q

+
q2l−n

2l − q
.

The result is now obtained from the fact that k′ ≤ λ/m+ 2. ��



300 E. Andreeva et al.

6 Keccak

The Keccak hash function [9] is a sponge function, but can also be considered
as a parazoa function [1] or a chop-MD construction. The compression function
f is based on a permutation Zl

2 → Zl
2. The hash function output is obtained by

chopping off l−n bits of the state4. Notice that the parameters of Keccak satisfy
l = 2n+m. The Keccak hash function design is given in Fig. 1.

The compression function of Keccak is based on one permutation, and colli-
sions and preimages for the compression function can be found in one query to
the permutation [15]. The Keccak hash function is proven indifferentiable from
a random oracle up to bound Θ((Kq)2/2l−m) if the underlying permutation is
assumed to be ideal [10]. Using (1), this indifferentiability bound renders an
optimal collision resistance bound for Keccak, Advcol

H = Θ(q2/2n), as well as
optimal preimage second preimage resistance bounds Θ(q/2n).

7 Skein

The Skein hash function [22] is a chop-MD construction. The message blocks
are accompanied with a round-specific tweak, and the function employs a suffix-
and prefix-free padding rule. The compression function f is based on a tweakable
block cipher E : Zm

2 ×Z128
2 ×Zl

2 → Zm
2 . The Skein hash function design is given

in Fig. 1.
The compression function of Skein is the PGV1, or Matyas-Meyer-Oseas, com-

pression function [35], with a difference that a tweak is involved. As claimed in
[7], the results of [16] carry over, giving optimal preimage and collision secu-
rity bounds on the compression function, Advepre

f = Θ(q/2l) and Advcol
f =

Θ(q2/2l). In the ideal model, everywhere second preimage resistance of the com-
pression function can be proven similar as the preimage resistance, up to a
constant (the security analysis differs only in that we give the adversary one
query for free). The Skein mode of operation preserves collision resistance and
everywhere preimage resistance due to which we obtain Advcol

H = Θ(q2/2n)
and Advepre

H = Θ(q/2n). Furthermore, the Skein hash function is proven indif-
ferentiable from a random oracle up to bound O((Kq)2/2l) if the underlying
tweakable block cipher is assumed to be ideal [7]. This proof is based on the
preimage awareness approach [21]. Using (1), this indifferentiability bound addi-

tionally renders an improved upper bound O
(

q
2n + q2

2l

)
on the second preimage

resistance.
The second preimage bound for Skein is optimal for the n = 256 variant, but

meets the trivial bound for the n = 512 variant. Therefore, we reconsider second
preimage resistance of the Skein hash function. We prove that optimal second
preimage resistance (up to a constant) is achieved for all versions.

4 We notice that sponge function designs are more general [11], but for Keccak this
description suffices.



Security Analysis and Comparison of the SHA-3 Finalists 301

Theorem 4. Let n ∈ N, and λ ≥ 0. The advantage of any adversary A in
finding a second preimage for the Skein hash function H after q < 2l−1 queries
can be upper bounded by

Adv
esec[λ]
H (q) ≤ 2q

2l
+

2q

2n
.

Proof. The proof follows a similar reasoning as the proof of Thm. 1, and we
only highlight the differences. Let M ′ ∈ Zλ

2 be any target preimage. Denote by
h′
0, . . . , h

′
k′ the state values corresponding to the evaluation of H(M ′), and let

h = chopn(h
′
k′).

We consider any adversary A making q queries to its underlying block cipher
E. Associated to these queries, we introduce an initially empty graph G that
indicates compression function calls for Skein that can be derived from these
queries. Note that any query tuple (M,T, h) → C corresponds to exactly one
compression function call, namely h → C ⊕M where the message input is M
and where T is a tweak value. These tweaks are round-specific (see Fig. 1). In
order to find a second preimage, the adversary needs to end up with a graph
that contains a path (labeled different from the first preimage) from IV to any
node of {h′

0, . . . , h
′
k′} ∪ {h‖h′ | h′ ∈ Zl−n

2 }, where the associated tweaks need
to be compliant with the hash function evaluation corresponding to the path. A
proof of this claim can be found in [2,17]. To achieve the first goal, the adversary
needs to find a preimage for the Skein compression function, for any image in
H1 := {h′

0, . . . , h
′
k′} orH2 := {h‖h′ | h′ ∈ Zl−n

2 } (where the tweak is compliant).
For i = 1, . . . , q, we consider the probability of the i-th query to render success.
We distinguish between the two sets H1, H2. Without loss of generality, let the
i-th query be a forward query M,T, h, and let C be the oracle answer drawn
uniformly at random from a set of size at least 2l − q. The same bounds are
found for inverse queries.

Set H1. As the tweaks need to be compliant, depending on T there is at most
one value h ∈ H1 for which a collision h = C ⊕M may result in a valid second
preimage. The i-th query thus renders a collision with H1 probability at most

1
2l−q

.

Set H2. A collision with any element from H2 may result in a valid preimage.

C ⊕M collides with any element from H2 with probability at most 2l−n

2l−q
.

By the union bound, we obtain the following bound on the second preimage
resistance of Skein:

Adv
esec[λ]
H (q) ≤

q∑
i=1

(
1

2l − q
+

2l−n

2l − q

)
≤ q

2l − q
+

q2l−n

2l − q
.

The result is now obtained as for q < 2l−1 we have 1
2l−q ≤

2
2l . ��



302 E. Andreeva et al.

8 Conclusions

In this work we revisited the previous summary of [4,5] with respect to the five
finalist SHA-3 hash functions. More concretely, we updated existing results with
the new results in the area in Table 1, part of which are freshly proved in this
paper. A more detailed summary can be found in the full version of this paper.
A main improvement of this work is that all results in our analysis hold for ideal
primitives of comparable size; either ideal ciphers or permutations. Secondly,
most “security gaps” (with respect to preimage, second preimage, and collision
resistance) remaining from [4,5] are closed. One of the few open problems left
in the ideal model is achieving an optimal (second) preimage bound of the 512
variant of the JH hash function.

We note that our security analysis needs to be read with care and for this
purpose we provide the following discussion:

– Ideal primitives do not exist and the ideal model proofs are only an indi-
cation for security. In particular, none of the candidates’ underlying block
cipher or permutation is ideal. However, due to the lack of security proofs in
the standard model (other than preserving collision security of the compres-
sion function in MD based designs), assuming ideality of these underlying
primitives gives significantly more confidence in the security of the higher
level hash function structure than any ad-hoc analysis or no proof at all;

– While assuming ideality of sizable underlying building blocks like permuta-
tions and block ciphers allows for a fair security comparison of the candidates
on one hand, it disregards internal differences between the idealized primi-
tives on the other. Such specific design details can distort the security results
for the distinct hash functions when concrete attacks exploiting the internal
primitive weaknesses are applied.

Acknowledgments. This work has been funded in part by the IAP Program
P6/26 BCRYPT of the Belgian State (Belgian Science Policy), and in part by
the European Commission through the ICT program under contract ICT-2007-
216676 ECRYPT II. The second author is supported by a Ph.D. Fellowship from
the Institute for the Promotion of Innovation through Science and Technology
in Flanders (IWT-Vlaanderen).

References

1. Andreeva, E., Mennink, B., Preneel, B.: The parazoa family: Generalizing the
sponge hash functions. Int. J. Inf. Sec. 11(3), 149–165 (2012), doi:10.1007/s10207-
012-0157-6

2. Andreeva, E., Luykx, A., Mennink, B.: Provable security of BLAKE with non-ideal
compression function. Cryptology ePrint Archive, Report 2011/620 (2011)

3. Andreeva, E., Mennink, B., Preneel, B.: On the Indifferentiability of the Grøstl
Hash Function. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280,
pp. 88–105. Springer, Heidelberg (2010)



Security Analysis and Comparison of the SHA-3 Finalists 303

4. Andreeva, E., Mennink, B., Preneel, B.: Security Reductions of the Second Round
SHA-3 Candidates. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.)
ISC 2010. LNCS, vol. 6531, pp. 39–53. Springer, Heidelberg (2011)

5. Andreeva, E., Mennink, B., Preneel, B.: Security reductions of the SHA-3 candi-
dates (2010). In: NIST’s 2nd SHA-3 Candidate Conference 2010 (2010)

6. Aumasson, J., Henzen, L., Meier, W., Phan, R.: SHA-3 proposal BLAKE. Submis-
sion to NIST’s SHA-3 Competition (2010)

7. Bellare, M., Kohno, T., Lucks, S., Ferguson, N., Schneier, B., Whiting, D., Callas,
J., Walker, J.: Provable security support for the Skein hash family (2009)

8. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73. ACM, New York (1993)

9. Bertoni, G., Daemen, J., Peeters, M., Assche, G.: The KECCAK sponge function
family. Submission to NIST’s SHA-3 Competition (2011)

10. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the Indifferentiability
of the Sponge Construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 181–197. Springer, Heidelberg (2008)

11. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In:
ECRYPT Hash Workshop 2007 (2007)

12. Bhattacharyya, R., Mandal, A., Nandi, M.: Indifferentiability Characterization of
Hash Functions and Optimal Bounds of Popular Domain Extensions. In: Roy, B.,
Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 199–218. Springer,
Heidelberg (2009)

13. Bhattacharyya, R., Mandal, A., Nandi, M.: Security Analysis of the Mode of JH
Hash Function. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp.
168–191. Springer, Heidelberg (2010)

14. Biham, E., Dunkelman, O.: A framework for iterative hash functions – HAIFA.
Cryptology ePrint Archive, Report 2007/278 (2007)

15. Black, J., Cochran, M., Shrimpton, T.: On the Impossibility of Highly-Efficient
Blockcipher-Based Hash Functions. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 526–541. Springer, Heidelberg (2005)

16. Black, J., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-
Based Hash-Function Constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002)

17. Bouillaguet, C., Fouque, P.: Practical hash functions constructions resistant to
generic second preimage attacks beyond the birthday bound. Submitted to Infor-
mation Processing Letters (2010)

18. Chang, D., Nandi, M., Yung, M.: Indifferentiability of the hash algorithm BLAKE.
Cryptology ePrint Archive, Report 2011/623 (2011)

19. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard Revisited: How
to Construct a Hash Function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

20. Damg̊ard, I.B.: A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

21. Dodis, Y., Ristenpart, T., Shrimpton, T.: Salvaging Merkle-Damg̊ard for Practical
Applications. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 371–388.
Springer, Heidelberg (2009)

22. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein Hash Function Family. Submission to NIST’s SHA-3
Competition (2010)



304 E. Andreeva et al.

23. Fleischmann, E., Forler, C., Gorski, M.: Classification of the SHA-3 candidates.
Cryptology ePrint Archive, Report 2008/511 (2008)

24. Fouque, P.-A., Stern, J., Zimmer, S.: Cryptanalysis of Tweaked Versions of SMASH
and Reparation. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS,
vol. 5381, pp. 136–150. Springer, Heidelberg (2009)

25. Gauravaram, P., Knudsen, L., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.: Grøstl – a SHA-3 candidate. Submission to NIST’s
SHA-3 Competition (2011)

26. Kelsey, J., Schneier, B.: Second Preimages on n-Bit Hash Functions for Much Less
than 2n Work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

27. Kobayashi, K., Ikegami, J., Matsuo, S., Sakiyama, K., Ohta, K.: Evaluation of
hardware performance for the SHA-3 candidates using SASEBO-GII. Cryptology
ePrint Archive, Report 2010/010 (2010)

28. Lai, X., Massey, J.L.: Hash Functions Based on Block Ciphers. In: Rueppel, R.A.
(ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)

29. Lee, J., Hong, D.: Collision resistance of the JH hash function. Cryptology ePrint
Archive, Report 2011/019 (2011)

30. Lucks, S.: A Failure-Friendly Design Principle for Hash Functions. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)

31. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, Impossibility Results on
Reductions, and Applications to the Random Oracle Methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

32. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

33. Moody, D., Paul, S., Smith-Tone, D.: Improved indifferentiability security bound
for the JH mode. In: NIST’s 3rd SHA-3 Candidate Conference 2012 (2012)

34. National Institute for Standards and Technology. Announcing Request for Candi-
date Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3)
Family (November 2007)

35. Preneel, B., Govaerts, R., Vandewalle, J.: Hash Functions Based on Block Ciphers:
A Synthetic Approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
368–378. Springer, Heidelberg (1994)

36. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with Composition: Limita-
tions of the Indifferentiability Framework. In: Paterson, K.G. (ed.) EUROCRYPT
2011. LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg (2011)

37. Rogaway, P., Shrimpton, T.: Cryptographic Hash-Function Basics: Definitions, Im-
plications, and Separations for Preimage Resistance, Second-Preimage Resistance,
and Collision Resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017,
pp. 371–388. Springer, Heidelberg (2004)

38. Rogaway, P., Steinberger, J.: Security/Efficiency Tradeoffs for Permutation-Based
Hashing. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 220–236.
Springer, Heidelberg (2008)

39. Stam, M.: Beyond Uniformity: Better Security/Efficiency Tradeoffs for Compres-
sion Functions. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 397–412.
Springer, Heidelberg (2008)

40. Tillich, S., Feldhofer, M., Kirschbaum, M., Plos, T., Schmidt, J.M., Szekely, A.:
High-speed hardware implementations of BLAKE, Blue Midnight Wish, Cube-
Hash, ECHO, Fugue, Grøstl, Hamsi, JH, Keccak, Luffa, Shabal, SHAvite-3, SIMD,
and Skein. Cryptology ePrint Archive, Report 2009/510 (2009)



Security Analysis and Comparison of the SHA-3 Finalists 305

41. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

42. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

43. Wu, H.: The Hash Function JH. Submission to NIST’s SHA-3 Competition (2011)



The GLUON Family: A Lightweight Hash

Function Family Based on FCSRs�

Thierry P. Berger1, Joffrey D’Hayer2, Kevin Marquet2,
Marine Minier2, and Gaël Thomas1

1 XLIM (UMR CNRS 7252), Université de Limoges
123 avenue Albert Thomas, 87060 Limoges Cedex, France

{firstname.lastname}@unilim.fr
2 Université de Lyon, INRIA

INSA-Lyon, CITI, F-69621, Villeurbanne, France
{firstname.lastname}@insa-lyon.fr

Abstract. Since the beginning of the SHA3 competition, the crypto-
graphic community has seen the emergence of a new kind of primitives:
the lightweight cryptographic hash functions. At the time writing this
article, two representatives of this category have been published: Quark

[7] and PHOTON [18] designed to match RFID constraints.
In this paper, we propose a third representative of this category which

is called GLUON. It is based on the sponge construction model [11] as
Quark and PHOTON and inspired by two stream ciphers F-FCSR-v3 [4]
and X-FCSR-v2 [10]. From the generic definition of our lightweight hash
function, we derive three different instances according to the required
security level that must be reached.
For example, our lightest instance (GLUON-128/8) dedicated to 64-

bit security level fits in 2071 gate-equivalents which stays competitive
when compared with the parallel implementation of U-Quark. The soft-
ware performances are good for GLUON-224/32, our heaviest instance.

Keywords: lightweight hash function, FCSRs, sponge functions.

Introduction

The last five years have seen the emergence of new challenging tasks that consist
in designing lightweight primitives dedicated to very constrained environments
such as sensors or RFID tags. Among those proposals, many block ciphers such
as PRESENT [13], HIGH [20], mCrypton [23] or KATAN & KTANTAN [15] have
been specially designed to fit with a very compact hardware implementation.

The same kind of works concerning lightweight hash functions has just been
initiated with two existing standalone proposals: Quark [7] and PHOTON [18]
both based on sponge constructions [11]. The need for such proposals comes
first from the embedded system community (RFID and sensor) and second from

� This work was partially supported by the French National Agency of Research: ANR-
11-INS-011.

A. Mitrokotsa and S. Vaudenay (Eds.): AFRICACRYPT 2012, LNCS 7374, pp. 306–323, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



The GLUON Family: A Lightweight Hash Function Family 307

the lack of lightweight SHA3 finalists [26]. Indeed, all the SHA3 finalists require
more than 12000 GE for a 128-bit security level. Some previous proposals such
as SQUASH [29] or ARMADILLO [8] have been done but show their respective
weaknesses [28,1]. The first step in the design of lightweight hash functions dates
from the use of the block cipher PRESENT in the Davies-Meyer mode of oper-
ation. However, and as already noticed in [7,18], sponge constructions allow a
better ratio between internal state size and security level, better than for tradi-
tional modes of operations even if hashing small messages is not really efficient
due to the squeezing step.

Following the recent proposals for lightweight hash functions taking their
name from small particles1, we propose a new lightweight hash function fam-
ily called GLUON based on a sponge construction. This new family is based
on a particular Feedback with Carry Shift Register (FCSR), elementary build-
ing block well studied during the last two decades. Even if the hardware size
of such a primitive is a little bit heavier than the basic building blocks used in
Quark and PHOTON, we think that the well-known design principles of FCSRs
could be considered as a strength of our proposed design. Moreover, the software
performances of our design are also good.

This paper is organized as follows: in Section 1, we recall the definitions of
sponge constructions and of word ring FCSRs. In Section 2, we describe the
underlying function that composes the sponge construction based on a word
ring FCSR. In Section 3, we give some insights about our chosen design whereas
in Section 4 we sum up all the security observations we made concerning the f
function. In Section 5, we provide performance results for hardware and software
implementations. Finally, Section 6 concludes this paper.

1 Background

1.1 Sponge Constructions

Sponge constructions have been proposed by Bertoni et al. in [11] as a new way
of building hash functions from a fixed function or a fixed permutation. A sponge
construction as defined in Fig. 1 has a rate r which corresponds with the block
length, a capacity cp and an output length N . The width of its internal state b is
defined as r + cp that must be greater than N . Of course, we could set N = cp
for non null r.

Given an initial state, the sponge construction processes a message M of
length in words of size r bits |M | as follows:

1. Initialization: The message is padded by appending a ’1’ bit and sufficiently
many zeros to reach a length multiple of r.

2. Absorbing phase: The r-bit message blocks are xored into r bits of the
state interleaved with applications of the function f .

3. Squeezing phase: Some r bits of the state are returned as output, inter-
leaved with applications of the function f , until N bits are returned.

1 See: http://www.131002.net/data/talks/quarks_rump.pdf

http://www.131002.net/data/talks/quarks_rump.pdf


308 T.P. Berger et al.

Fig. 1. The sponge construction

1.2 FCSR Automata in Word Ring Representation

Roughly speaking, a FCSR as defined in [17,22] consists of a binary main register
and of a carry register but contrary to LFSRs the performed operations are no
more xors over F2 but additions with carry in the set of 2-adic integers Z2 (i.e.
the set of power series:

∑∞
i=0 si2

i, si ∈ {0, 1}). Each cell of the main register
produces a sequence S = (sn)n∈N that is eventually periodic if and only if there
exist two numbers p and q in Z, q odd, such that s =

∑∞
i=0 si2

i = p/q. This
sequence is strictly periodic if and only if pq ≤ 0 and |p| ≤ |q|. The period of S
is the order of 2 modulo q, i.e., the smallest integer P such that 2P ≡ 1 (mod q).
The period satisfies P ≤ |q| − 1. If q is prime and if P = |q| − 1, the sequence S
is called an �-sequence. �-sequences have many proved properties that could be
compared to the ones of m-sequences: known period, good statistical properties,
fast generation, etc.

F. Arnault et al. have studied in [4] and in [10] efficient hardware and software
FCSRs using matrix representations. They give the following definition:

Definition 1. A (diversified or ring) FCSR is an automaton composed of a
main shift register of n binary cells m = (m0, . . . ,mn−1), and a carry register
of n integer cells c = (c0, . . . , cn−1). It is updated using the following relations:{

m(t+ 1) = Tm(t) + c(t) mod 2
c(t+ 1) = Tm(t) + c(t) ÷ 2

(1)

where T is a n× n matrix with coefficients 0 or 1 in Z, called transition matrix.

Note that ÷2 is the traditional expression: X ÷ 2 = X−(X mod 2)
2 .

They also prove the following property:

Theorem 1 ([4] Theorem 1). The series Mi(t) observed in the cells of the
main register are 2-adic expansion of pi/q with pi ∈ Z and with q = det(I − 2T ).



The GLUON Family: A Lightweight Hash Function Family 309

The T transition matrix completely defines the ring FCSR as shown in Theorem
1. Moreover and as shown in [4], ring FCSRs have better hardware implemen-
tations than classical Galois or Fibonacci FCSRs. Moreover, the diffusion speed
(which is faster than in Galois/Fibonacci FCSRs) is related to the diameter d of
the transition graph. This diameter is the maximal distance between two cells
of the main register. In other words, d is the distance after which each cell of
the main register has been influenced by all the other cells. It corresponds to the
minimal number of clocks required to have each cell of the main register influ-
enced by all the other cells. d should be small for better diffusion. Thus, in the
case of a ring FCSR, the diffusion of differences is also improved because these
diffusions could be also computed as the diameter d of the graph associated to
the transition matrix T . Typically this value is close to n/4 for a ring FCSR
instead of n in the Galois or Fibonacci cases.

In [10], Berger et al. describe word ring FCSRs that are efficient both in
hardware and in software. Those FCSRs are completely determined by the choice
of the matrix T . Contrary to ring FCSRs, word ring FCSRs act on words of size
r bits depending on the targeted architecture. Classically, r could be equal to
8, 16, 32 or 64 bits. Then, in the generic description of a word ring FCSR, the
associated matrix T is defined on r-bit words. The main register of this kind of
FCSR could thus be represented as w r-bit words m0, · · · ,mw−1 with feedback
words c0, · · · , cw−1. The deduced T matrix is of size w × w. For example, the
following T matrix represents a word ring FCSR acting on r = 8 bits words:

T =

⎛
⎜⎜⎜⎜⎝

0 I 0 SL3 0
0 0 I 0 SR2

0 0 SL1 I 0
SR3 0 0 0 I
I 0 0 0 0

⎞
⎟⎟⎟⎟⎠

where I is the r × r identity matrix, the SLa operation is the left shift at 8-bit
level by a bits, SRb is the right shift operation at 8-bit level by b bits (two other
operations could also be used: RLd, the rotation on the left by d bits and RRe,
the rotation on the right by e bits).

This matrix defines the associated word ring FCSR described in Figure 2 with
n = 40 and r = 8.

88
m4 m3

8
m2

8
m1

8
m0

� 3

� 1

� 3

� 2

Fig. 2. A FCSR with efficient software design. The pluses in the boxes represent eight
parallel binary adders with carry.



310 T.P. Berger et al.

The corresponding q value could be directly computed using the formula given
in Theorem 1 and is equal to −1497813390989. This number is prime and has a
maximal order. Thus the corresponding FCSR produces �-sequences, and is not
only efficient in software due to the word oriented structure, it is also efficient
in hardware (here only 23 binary additions are required) because the intrinsic
word ring nature of this FCSR representation limits the number of required gates.
Moreover, the diameter of the associated graph is equal for this example to 15
(d = 15) which means that a complete diffusion of all the cells is achieved after
d+ 4 = 19 clocks.

2 Description of the GLUON Hash Family

The GLUON family is based on a sponge construction where the f function
calls a filtered FCSR. The filtered FCSR is directly inspired by the F-FCSR-
v3 hardware stream cipher [4] and by the X-FCSR-v2 software stream cipher
[10]. All the proposed instances of the GLUON family varies according to the
version but all versions are based on “ring-word FCSRs” to be efficient not only
in hardware but also in software. The general structure of the GLUON family
is described on Fig. 3. The elementary building blocks are the following ones:

– The content of the word ring FCSR of size w words of r bits is denoted
m(t) = (m0(t), · · · , mw−1(t)) for the main register where w is the length in
words of the considered FCSR and c(t) = (c0(t), · · · , cw−1(t)) for the carry
register with a active memories (i.e. a internal feedbacks). The FCSR is
defined by its associated matrix T as seen in the previous section.

– A filter FI is also defined to filter the content of the main register m(t). It
is xor-linear to break the 2-adic structure of the automaton. As done in [4],
it consists in xoring together some shifted version of the words of the main
register that have active carries. More precisely, let F = {mf0 , · · · ,mf�−1

}
be the set of all the words mi that have a feedback. Then, r bits of output
are: FI(m) =

⊕�−1
j=0(mfj )<<<kj with kj a value in the set [−r/2, r/2]. This

linear filter is only used at the end of the computation of the function to
extract the output from the state of the FCSR.

mw−1 ... ... ... ... ... ... m0

out out

Linear filter FI

Fig. 3. General view of the f function of the GLUON family

The size of the input/output of f is b = (w−1)× r (instead of w× r as expected
because a particular word (the word w − 1) of the main register is not used as
input of the function).



The GLUON Family: A Lightweight Hash Function Family 311

2.1 Details of the f Function

f processes a b-bit input in three steps:

Initialization: For an input s = (s0, · · · , sb−1), f initializes its internal state
as follows:

– The w− 1 first words of m are initialized with the (w− 1)× r input bits.
– The last word of m is initialized with the all-one string of length r.
– The carry register c is initialized with the all-zero string.

State Update: From the internal state (m(t), c(t)), the FCSR is clocked d+ 4
times using its internal transition function:

m(t+ 1) = Tm(t) + c(t) mod 2

c(t+ 1) = Tm(t) + c(t)÷ 2

Computation of the Output: The FCSR is then clocked w−1 times. At each
iteration, a r-bit word is extracted with the linear filter F in order to obtain
the (w − 1)× r bits of output.

2.2 The Sponge Construction Deduced from the f Function

The rate of the associated sponge construction is r, its capacity is cp = (w−2)×r.
The size of f is b = r+cp. Let us now analyze in a few words how this f function
fits in the sponge model. The external part of the f function is composed of the
first r-bit word of the input whereas the internal part consists of the following
(w − 2) r-bit words of the input. In other words, during the absorbing steps, at
each call of f , a message word pi of length r bits is xored with the first r-bit
word of the FCSR main register. Then, this first r-bit word is output when the
squeezing step begins.

2.3 Proposed Instances

As done forQuark and PHOTON, we propose 3 different instances of ourGLUON

family functions that we will denote GLUON-N/r (the same that for Quark).
From the sizes parameters, we use the same algorithm than the one proposed
in [10] to compute the different T matrices: we randomly pick matrices T such
as log2(q) ≥ n, q = det(I − 2T ) is prime, the order of 2 modulo q is equal to
|q| − 1 and is maximal to ensure that the outputs are composed of �-sequences.
Moreover, q has been chosen such that the diameter d is sufficiently small to
ensure a quick diffusion and with a number of carries close to wr/2. The filters
are randomly chosen but guaranteeing that all the picked words have a carry.

– 64-bit security level: r = 8, cp = 128, b = 136, N = 128 leading to a
FCSR composed of 18 8-bit words and with about 70 carries. The complete
description of the Matrix T and of the filter FI is given in Appendix A.



312 T.P. Berger et al.

– 80-bit security level: r = 16, cp = 160, b = 176, N = 160 leading to a
FCSR composed of 12 16-bit words and with about 90 carries. The complete
description of the Matrix T and of the filter FI is given in Appendix B.

– 112-bit security level: r = 32, cp = 224, b = 256, N = 224 leading to a
FCSR composed of 9 32-bit words and with about 130 carries. The complete
description of the Matrix T and of the filter FI is given in Appendix C.

As done for PHOTON, we could also add some other instances with as possible out-
put sizes 80 and 256. In those cases, the corresponding r values are respectively
8 and 32.

3 Design Rationale

3.1 Flat Sponge Claim

Sponge construction is a recent model for iterated hash functions and random
number generation developed in [11] and in [12]. The general security claim
is done in the indifferentiability framework introduced by Maurer, Renner and
Holenstein [24]. In [11], the authors prove that the success probability of differ-
entiating a sponge construction calling a random permutation or transformation
from a random oracle is upper bounded by 1 − exp(−Q22−(cp+1)) with Q the
number of calls to f or its inverse when possible.

From this particular bound, the authors of [11] deduce a simplification of the
proof model which considers from the previous result only the worst-case success
probability. This simplification called the flat sponge claim makes the security
of a concrete function seen as a random sponge depend on the capacity of the
random sponge. More precisely, the collision resistance of a sponge construction
under the flat sponge claim is 2min(cp,N)/2, the (second) preimage resistance is
2min(cp/2,N).

Thus, we design our function using this flat sponge argument which allows
to minimize the internal state (looking at the indifferentiability in the random
oracle model) of the used function when compared with other traditional hash
constructions such as the Merkle-Damg̊ard one for example. In fact, sponge
constructions lead to achieve the highest security level that could be obtained
for a hash construction.

3.2 Choice of the f Function

As already mentioned for the hash function Quark [7], the design choice of f
comes from this simple idea: from a stream cipher with an internal state of size
n, one can construct a function from {0, 1}b into itself as follows:

– The b-bit input is padded to an initial state of size n bits,
– The stream cipher is initialized as usual,
– The first b output bits compose the output of the f function.

Under the hypothesis that the stream-cipher is “perfect”, the f function looks
like a random function. In other words, finding a bias in the function f is equiv-
alent to find a weakness of the stream-cipher.



The GLUON Family: A Lightweight Hash Function Family 313

F-FCSR-v3 and X-FCSR-v2. We have based our f design on a mix between
two FCSR based stream ciphers which are F-FCSR-v3 [4] and X-FCSR-v2 [10].
The first one is dedicated to hardware and uses a linear filter as done here
whereas the second one introduces the word ring oriented structure of a FCSR
which is efficient both in hardware and in software. This kind of automata is the
building block of our f design.

Since the first proposal of a stream cipher based on a FCSR in 2005 in [2],
the security of such designs has been carefully studied through the eStream call
for stream ciphers [27]. One of the first proposals called F-FCSR-v2 based on a
Galois FCSR was however successfully attacked by M. Hell and T. Johansson in
2008 in [19]. This attack exploits a particular dependence between the feedback
bit and all the carry bits. This attack is also efficient against the first version
of X-FCSR (X-FCSR-v1) as shown in [30]. Those particular attacks led to the
modification of the original proposals into the new versions F-FCSR-v3 and X-
FCSR-v2 based on new matrix representations of the FCSR leading to discard
the two previous attacks as detailed in Section 4. Since their publications, two
years ago, no attack has been exhibited against the two new stream ciphers
which are based on strong security arguments. This leads to have a relative level
of confidence concerning those two particular primitives, particularly if we look
at the absence of existing distinguishers against the building blocks.

Moreover, those designs are simple and relatively efficient both in software and
hardware. Thus, these simple arguments concerning the efficiency of F-FCSR-v3
and of X-FCSR-v2 and the security level claimed lead to naturally consider them
as possible instance for a compression function in the sponge model.

Quality of the f Function. The good statistical properties (period, balanced
sequences and so on) of the underlying building blocks come from the 2-adic
properties and are equivalent over Z2 to the ones of LFSRs over F2. We will see
now how the design choices made here are efficient to prevent classical attacks.

First, the number of clocks in f is d + 4 to ensure a complete diffusion of the
message block into all the words of the FCSR. Even if a difference is introduced in
the message block, this difference will influence all the output blocks. This is due
to the diameter definition which clearly improves the diffusion speed in a word
ring representation. In other words, the diffusion is complete after d+ 4 clocks.

Let us consider a FCSR with connection integer q which produces �-sequences,
i.e. such that the order of 2 modulo q is P = |q| − 1. After a few iterations from
an initial state, the automaton is in a periodic sequence of states of length P .
The average number of required iterations to be in such a state is experimen-
tally less than log2(n), where n is the size of the main register (see [5] for more
details). Thus, during the application of f such states are always reached be-
cause for all our cases log2(n) < d. Those particular periodic states are all on a
(the) main cycle of size P , generally the number of periodic state is close to 2n

(equal to 2wr in our design). This leads to consider a function f which is really
close to a permutation from {0, 1}b into itself because the surjective part of the
construction is really limited once the function f acts on the main cycle. In other



314 T.P. Berger et al.

words, we exploit here the fact that the transition function of a FCSR becomes
a permutation on its periodic states.

So, our f function could be considered as an application from {0, 1}b into
the set of periodic states, i.e. into a set of size 2n that has a behavior close to
a permutation leading to a very low collision probability. Indeed, each possible
input value conducts to a particular part of the main cycle. The entering function
is thus a quasi-permutation on its cycles with a very small loss of entropy. As
soon as the main cycle is reached, f does not anymore lose entropy even after
several iterations. The entropy lost that could be considered here comes from
the extraction step. Thus, in summary, the design of f prevents any entropy
loss and the behavior of f is close to the behavior of a random function. To
corroborate what we say, we have tested the linear, differential and algebraic
properties (using cube testers for this last category) of the GLUON functions
considering r input and output bits. Those tests have shown that those functions
have the same behavior as random functions.

However, the generic word ring FCSR structure brings with it a particular
problem: there are on the graph representation of the FCSR two particular fixed
points which are the all-zero point and the all-one point. Thus, to prevent attacks
producing collisions on two different messagesM andM ′ which differ on a certain
number of all-zero blocks at the beginning (i.e. M = 0||0||m0 and M ′ = 0||m0

for example which lead to the same output results), we introduce the all-one bit
constant in a word of the main register to avoid the all-zero point. The all-one
point is discarded by the initialization of the carry register to the all-zero word
at each f application. These two states can never be reached by design.

4 Security Analysis

As for Quark and PHOTON, we follow the hermetic sponge strategy, which con-
sists in adopting the sponge construction and building an underlying function f
that should not have any structural distinguishers. The indifferentiability proof
of the sponge construction shows that any non-generic attack on a GLUON

hash function implies a distinguisher for its function f (but the inverse is not
necessarily true). This reduces the security of the hash function to the security of
f . As already explained in Section 3.1, the indifferentiability proof of the sponge
construction ensures an expected complexity against any differentiating attack
such as collision or (second) preimage attacks. Thus, as GLUON follows the
hermetic sponge strategy, we directly apply those results and analyze, in this
section, the f function.

Collision Attack and Preimage Attack. If one tries to inverse the f function
from the outputs, he will face a combinatorial explosion, for a given mk+1 bit
value of the main register, the values ck and mk producing mk+1 are not unique
because contrary to the Galois or Fibonacci FCSRs, zeroing the content of the
carry register no more guarantees to be on the main cycle of the FCSR (see
[5] for more details). Whereas in this case, the knowledge of a part of the carry



The GLUON Family: A Lightweight Hash Function Family 315

register and of the main register guarantees the possible inversion of those values,
this is no more the case for a word ring FCSR (see [4] for more details). One
point of the state graph could have two preimages. So, the inversion of the f
function could not be easily done. Thus, due to the combinatorial explosion, the
(second) preimage search has a complexity of 23w∗r, the combined size of the
two registers.

The complexity of the collision search for the f function could be directly
deduced also from the previous remark noticing that the direct collisions search
is to find p and p′ such that p ≡ p′ mod q. So if we write again this equation
at binary level for the contents of the main register and of the carry register, we
are facing an instance of the subset sum problem, with a complexity equals to
2w∗r/2 (if the carries are zeroes) or 23w∗r/2 (in the general case).

Cube Attacks and Cube Testers. Recently, a new kind of attacks called
“Cube attacks” has appeared (the most recent reference in this area is [6]). Those
attacks could be efficient as soon as “Cube testers” show their efficiency in
simplifying a part of the ANF of a function. Thus, those attacks could be applied
against functions which have particular weaknesses in their algebraic structure.
As shown in [9] for the case of a Galois FCSR, such a particular structure (with
a low degree component) does not exist in a Galois FCSR. This is the same
thing for a word ring FCSR and thus for the f function chosen here. Indeed, for
example with a Galois FCSR of size 16 after 7 clocks, the number of monomials in
the output algebraic equations is 125420 with a degree of at least 10 considering
only the variables of the main register as unknowns. The number of monomials
of the obtained system becomes huge with a high degree as mentioned in [9] as
soon as at least 10 clocks are performed. We thus conjecture that it discards the
potential use of cube testers and renders cube attacks harmless as soon as at
least 10 clocks are performed.

Linear and Differential Attacks. Linear attacks have been performed against
Galois FCSRs using a method called LFSRization by Hell and Johansson in [19]
and against Fibonacci FCSRs by Fischer et al. in [16]. The first attack relies on
the existence of correlations between the carries and the feedback values. More
precisely, the probability that the feedback bit is equal to 0 during t consecutive
clocks is 2−t for a Galois FCSR allowing with this probability to linearize the
FCSR (i.e. if the feedbacks are forced to 0 during t clocks the behavior of the
FCSR becomes linear). With a word ring FCSR, this probability becomes 2−tu

where u is the number of bits of the main register controlling a feedback. Thus,
for example, with a word ring FCSR of size 128 bits with around 70 feedbacks,
this leads to a probability of 2−70 to control at the null value the feedback
bits during one clock. The attack presented in [16] is also discarded because it
only concerns stream ciphers where the underlying building block is a Fibonacci
FCSR which is not the case here.

Differential attacks stay a very powerful tool to find inner collisions in com-
pression functions as shown with MD5 and SHA-1 [31]. The main idea relies



316 T.P. Berger et al.

on the non-ideal behavior of difference propagations through the compression
function. The resistance of F-FCSR stream ciphers against differential attacks
have been proven after some changes in F-FCSR-H v2 due to a slow diffusion
of differences presented in [21]. More precisely, in [21], the authors show that a
difference introduced in some cells of the FCSR automaton remains localized as
long as this difference does not reach the feedback end of the register. From this
remark, they deduce an attack on the IV process of F-FCSR-H v1. Thus, in [3],
the designers prevent this attack from happening by redesigning the IV setup
and increasing the number of initial clocks to be sure that a sufficient diffusion of
differences occurs. In the new ring and word ring design, the diffusion criterion
given by the diameter d allows to determine the minimal value from which a suf-
ficient diffusion level occurs. Therefore, the number of clocks of the f function
is d + 4: we are sure that a minimal diffusion (in general and for differences in
particular) is reached. In [21], the authors especially focus on one bit differences
due to the structure of the FCSR, this is the same case for a word ring FCSR,
the word structure being just a representation. So, after d clocks and for the best
differential case, a one bit difference becomes a two bits difference, after d + 1
clocks, this difference is spread on average into many cells becoming in average
at least a four bits difference at different places and so on. So, we conjecture that
the number of clocks equal to d + 4 is sufficient to correctly spread on average
differences in several cells.

Slide Distinguishers. As mentioned in Section 3.2, slide distinguishers could
be built on the two particular fix points of the graph of a FCSR which are the
all-zero point transformed into itself and the all-one point also transformed into
itself. The all-one point could not be reached for f when used inside the sponge
construction due to the way the sponge construction builds its internal states.
However, the all-zero point could be reached for f if a particular initial value is
not given to a particular word of the main register of the FCSR. This is why,
to discard slide distinguishers that make use of block messages equal to zero, a
particular word of the main register is initialized to the all-one point.

In conclusion, we could say that since the beginning of FCSR study in the
cryptographic context 6 years ago, all the original awkwardnesses leading to
conventional attacks or to more tricky attacks have been discarded along the
design process. This is why, we think that cryptanalyzing ring FCSRs passes
through creating new attacks exploiting really original sorts of relations that are
no more linear, differential or algebraic.

5 Performances

This section details our experimental results. We describe the tools used and
compare our results with the existing works. We also provide in Appendix D the
test vectors for the three GLUON instances.



The GLUON Family: A Lightweight Hash Function Family 317

5.1 Hardware Performances

This section reports our hardware implementation of the GLUON instances.
For simulation, we used the ModelSim PE simulator [25], version 10,0a. For
synthesis, we used the ASIC synthetisor Cadence RTL version RC10.1.101 (32-
bits version) [14]. Our implementation consists into two components: the function
f and a register R used to store the intermediate results.

We now detail the optimizations made for GLUON and discuss our imple-
mentation choices.

Loading the FCSR in Parallel. There are two ways to load data into the
main register of a ring FCSR. All parts (i.e. m0..mi) can be loaded in parallel by
inserting multiplexers before each mi. This solution allows fast execution as the
entire main register is loaded in one step. The other solution is to load the main
register serially. Such a solution is usual for the classical representations of an
FCSR, i.e. Galois or Fibonacci. The data is injected by one side of the register
(mN−1). A word mi reaches its correct position after i-th steps of the FCSR.
However, all the feedbacks of the FCSR must be inactivated using multiplexers.
For the Galois or the Fibonacci representation a single multiplexer is enough. For
a ring-FCSR, more multiplexers are needed: one per feedback. As a consequence,
the cost of a parallel solution is very close to the cost of the serial one. We keep
the parallel version.

Storage. The different GLUON instances require to store the output of the
filter at different times. These values are stored directly in the register R to save
memory.

Optimization of the Adders. Adders are used in the FCSR. In our design,
adders are implemented as in [4], that is to say: c = (a.b) ⊕ (a ⊕ b).c and s =
(a ⊕ b) ⊕ c where . denotes the binary AND. The synthesizer optimizes the
design by factorizing the common sub-expression a⊕b. An interesting solution to
implement adders is the one used in PRESENT [13], but we did not implement
adders this way because it is too costly in our case.

Table 1. Performances of GLUON with previous works

Hash function Security Block Area Lat. Thr.
Pre. Coll. [bits] [GE] [cycles] kbps

GLUON-64 128 64 8 2071 66 12.12

GLUON-80 160 80 16 2799.3 50 32

GLUON-112 224 112 32 4724 55 58.18

U-QUARK×8 128 64 8 2392 68 11.76

D-Quark×8 160 80 16 2819 88 18.18

S-Quark×16 224 112 32 4640 64 50.00

PHOTON-80 160 80 16 1168 132 12.15



318 T.P. Berger et al.

Results. Results are reported in Table 1. As we can see, our proposals compete
well in terms of area with Quark proposals: they are 13.4% smaller for the
64-bit version and similar for the 80-bit and 112-bit versions. However, it seems
that the greater the size is, the greater the gap between our results and those of
Quark. The throughput is similar for the 64-bit version, worst for the 80-bits
version and better for the last one. Compared to PHOTON (we only give the
results for 80 bits as it is the provided version for which can compare), the area
is clearly not in our favor but our throughput is better.

We did not include power consumption because the power consumption strongly
depends on the technology used and cannot be compared between different tech-
nologies in a fair manner. In addition, simulated power results strongly depend
on the simulation method used, and the effort spent.

5.2 Software Performances

This section reports our software implementations. Table 2 gives the software
performances we obtained on the variants detailed in Section 2.3. The processor
used for the benchmarks is an Intel Core 2 Duo clocked at 2.66 GHz. Note
that our implementation is not optimized for a particular processor, e.g. it is
not optimized for running on a 64-bit processor. Results are good and better
than the QUARK versions we benchmarked on the same machine. As expected,
PHOTON is better (we only give performance comparison for the 80 bits version
as it is the only provided version with which we can compare with).

Table 2. Software performances in cycles per byte of the GLUON variants for long
messages, compared to QUARK versions and PHOTON when possible

GLUON-64 17319

U-QUARK 43373

GLUON-80 8523

D-QUARK 35103

PHOTON-80 1243

GLUON-112 1951

S-QUARK 25142

6 Conclusion

After the lightweight hash proposals Quark and PHOTON, the family of
lightweight particles expands with the GLUON family and three particular
instances GLUON-128/8, GLUON-160/16 and GLUON-224/32. Even if the
software and hardware performances of GLUON are worst than the ones of
PHOTON, they are comparable when targeting hardware to the parallelized ver-
sions of Quark. We think that our design is relevant and of real interest because
the basic building blocks have been well-studied since twenty years.

We do not develop here (as done for PHOTON) the case where the squeezing
step is reduced and produces more output blocks at each step. An initial study
concerning this aspect shows that we could transform GLUON-128/8 into a
more challenging version fitting with the requirements of such a modified version.



The GLUON Family: A Lightweight Hash Function Family 319

The idea is to directly output, during the squeezing step, one 8-bit word at each
clock without waiting for d + 4 clocks and without changing the input of the f
function at each f call. Of course, due to its simplicity, this version is more risky
but the reached security level could be compared to the one of F-FCSR-v3.

References

1. Abdelraheem, M.A., Blondeau, C., Naya-Plasencia, M., Videau, M., Zenner, E.:
Cryptanalysis of armadillo2. Cryptology ePrint Archive, Report 2011/160 (2011),
http://eprint.iacr.org/

2. Arnault, F., Berger, T.P.: F-FCSR: Design of a New Class of Stream Ciphers. In:
Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 83–97. Springer,
Heidelberg (2005)

3. Arnault, F., Berger, T.P., Lauradoux, C.: Update on F-FCSR Stream Cipher.
ECRYPT - Network of Excellence in Cryptology, Call for stream Cipher Primi-
tives - Phase 2 (2006), http://www.ecrypt.eu.org/stream/

4. Arnault, F., Berger, T., Lauradoux, C., Minier, M., Pousse, B.: A New Approach
for FCSRs. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009.
LNCS, vol. 5867, pp. 433–448. Springer, Heidelberg (2009)

5. Arnault, F., Berger, T.P., Minier, M.: Some Results on FCSR Automata With Ap-
plications to the Security of FCSR-Based Pseudorandom Generators. IEEE Trans-
actions on Information Theory 54(2), 836–840 (2008)

6. Aumasson, J.-P., Dinur, I., Meier, W., Shamir, A.: Cube Testers and Key Recovery
Attacks on Reduced-Round MD6 and Trivium. In: Dunkelman, O. (ed.) FSE 2009.
LNCS, vol. 5665, pp. 1–22. Springer, Heidelberg (2009)

7. Aumasson, J.-P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: A
Lightweight Hash. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 1–15. Springer, Heidelberg (2010)

8. Badel, S., Dağtekin, N., Nakahara Jr., J., Ouafi, K., Reffé, N., Sepehrdad, P., Sušil,
P., Vaudenay, S.: ARMADILLO: A Multi-purpose Cryptographic Primitive Ded-
icated to Hardware. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 398–412. Springer, Heidelberg (2010)

9. Berger, T.P., Minier, M.: Two Algebraic Attacks Against the F-FCSRs Using the
IV Mode. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT
2005. LNCS, vol. 3797, pp. 143–154. Springer, Heidelberg (2005)

10. Berger, T.P., Minier, M., Pousse, B.: Software Oriented Stream Ciphers Based
upon FCSRs in Diversified Mode. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT
2009. LNCS, vol. 5922, pp. 119–135. Springer, Heidelberg (2009)

11. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the Indifferentiability
of the Sponge Construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 181–197. Springer, Heidelberg (2008)

12. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge-Based Pseudo-
Random Number Generators. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 33–47. Springer, Heidelberg (2010)

13. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

14. Cadence. Encounter rtl compiler,
http://www.cadence.com/products/ld/rtl_compiler

http://eprint.iacr.org/
http://www.ecrypt.eu.org/stream/
http://www.cadence.com/products/ld/rtl_compiler


320 T.P. Berger et al.

15. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A
Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C.,
Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg
(2009)

16. Fischer, S., Meier, W., Stegemann, D.: Equivalent Representations of the F-FCSR
Keystream Generator. In: ECRYPT Network of Excellence - SASC Workshop, pp.
87–94 (2008), http://www.ecrypt.eu.org/stvl/sasc2008/

17. Goresky, M., Klapper, A.: Periodicity and Distribution Properties of Combined
FCSR Sequences. In: Gong, G., Helleseth, T., Song, H.-Y., Yang, K. (eds.) SETA
2006. LNCS, vol. 4086, pp. 334–341. Springer, Heidelberg (2006)

18. Guo, J., Peyrin, T., Poschmann, A.: The Photon Family of Lightweight Hash Func-
tions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239. Springer,
Heidelberg (2011)

19. Hell, M., Johansson, T.: Breaking the F-FCSR-H Stream Cipher in Real Time.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 557–569. Springer,
Heidelberg (2008)

20. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B.-S., Lee, C., Chang, D., Lee,
J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A New Block Cipher Suitable
for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 46–59. Springer, Heidelberg (2006)

21. Jaulmes, É., Muller, F.: Cryptanalysis of the F-FCSR Stream Cipher Family. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 20–35. Springer,
Heidelberg (2006)

22. Klapper, A., Goresky, M.: 2-adic Shift Registers. In: Anderson, R. (ed.) FSE 1993.
LNCS, vol. 809, pp. 174–178. Springer, Heidelberg (1994)

23. Lim, C.H., Korkishko, T.: mCrypton – A Lightweight Block Cipher for Security
of Low-Cost RFID Tags and Sensors. In: Song, J.-S., Kwon, T., Yung, M. (eds.)
WISA 2005. LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2006)

24. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, Impossibility Results
on Reductions, and Applications to the Random Oracle Methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

25. ModelSim. Modelsim pe - simulation and debug,
http://model.com/content/modelsim-pe-simulation-and-debug

26. National Institute of Standards and Technology. Announcing Request for
Candidate Algorithm Nominations for a NewCryptographic Hash Algo-
rithm (SHA-3) Family. Federal Register 27(212), 62212–62220 (2007),
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

(October 17, 2008)
27. Network of Excellence in Cryptology ECRYPT. Call for stream cipher primitives,

http://www.ecrypt.eu.org/stream/

28. Ouafi, K., Vaudenay, S.: Smashing SQUASH-0. In: Joux, A. (ed.) EUROCRYPT
2009. LNCS, vol. 5479, pp. 300–312. Springer, Heidelberg (2009)

29. Shamir, A.: SQUASH – A New MAC with Provable Security Properties for Highly
Constrained Devices Such as RFID Tags. In: Nyberg, K. (ed.) FSE 2008. LNCS,
vol. 5086, pp. 144–157. Springer, Heidelberg (2008)

30. Stankovski, P., Hell, M., Johansson, T.: An Efficient State Recovery Attack on
X-FCSR-256. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 23–37.
Springer, Heidelberg (2009)

31. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

http://www.ecrypt.eu.org/stvl/sasc2008/
http://model.com/content/modelsim-pe-simulation-and-debug
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://www.ecrypt.eu.org/stream/


The GLUON Family: A Lightweight Hash Function Family 321

A Matrix T and FI Function for the 64-Bit Security
Level GLUON Version

We first define the two operations Shift Left SL and Shift Right SR in big endian
notation for an n bits word a = (a0, · · · , an−1) as follows:

– Shift Left: SL(a) = (0, a0, · · ·an−2) which is a Shift Right operation in little
endian notation.

– Shift Right: SR(a) = (a1, · · · an−1, 0) which is a Shift Left operation in little
endian notation.

Matrix T : Parameters: w = 18 blocks of r = 8 bits. The value of q is equal to:

−27013336179990468777742546164977981767038829

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0
0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 I 0 0 0 I 0 0 0 0 0 0 0 0 0 0
0 0 SR5 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 I 0 0 0 0 0 I 0 0 0 0 0
0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 SL3 0
0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 I 0 I 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 SR5

0 0 0 0 0 I 0 0 0 0 0 0 0 I 0 0 0 0
0 0 0 0 0 0 0 0 0 SL1 0 0 0 0 I 0 0 0
0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 SR3 0 0 0 0 0 0 0 0 0 0 I
I 0 0 0 0 0 0 0 0 0 0 0 0 0 SL6 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

m(t) = (m0(t), · · · , m17(t))
T and m(t+ 1) = Tm(t)

8-bit words with carries: m0, m2, m3, m5, m6, m8, m11, m12, m13, m14, m16,
m17. The diameter d is equal to 29.

Filter FI:

FI(m(t)) = (m0(t)⊕ (m2(t)>>>4))⊕ (m3(t)>>>5)⊕ (m5(t)>>>3)⊕
(m6(t)<<<1)⊕ (m8(t)>>>2)⊕ (m11(t)<<<4)⊕ (m12(t)>>>1)⊕
(m13(t)>>>5)⊕ (m14(t)>>>3)⊕ (m16(t)>>>1)⊕ (m17(t)<<<2)



322 T.P. Berger et al.

B Matrix T and FI Function for the 80-Bit Security
Level GLUON Version

Matrix T : Parameters: w = 12 blocks of r = 16 bits. The value of q is equal
to:

−5984312555124450134138507630316972109814194460492048685101

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 I 0 0 SL12 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0 SL3 0 0
0 SL 0 0 I 0 0 0 0 0 0 0
0 0 0 0 0 I SL2 0 0 0 0 0
0 I 0 0 0 0 I 0 0 0 0 0
I 0 0 0 0 0 0 I SL12 0 0 0

SL3 0 0 0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 0 SL2 0 I 0 0
0 0 SR3 0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 0 0 0 I
I 0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
16-bit words with carries: m0, m2, m3, m4, m6, m7, m8, m9. The diameter d is
equal to 58.

Filter FI:

F (m) = (m0(t)⊕ (m2(t)>>>3)) ⊕
(m3(t)>>>7)⊕ (m4(t)>>>2) ⊕
(m6(t)>>>2)⊕ (m7(t)>>>4) ⊕
(m8(t)<<<1)⊕ (m9(t)>>>2)

C Matrix T and FI Function for the 112-Bit Security
Level GLUON Version

Matrix T : Parameters: w = 9 blocks of r = 32 bits. The value of q is equal to:

−42288419239352779381136581495386884385959973
56223832672089412465139266477362728972043613



The GLUON Family: A Lightweight Hash Function Family 323

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

SR12 I 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0
0 0 0 0 I 0 SR7 0 0
0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 I SR9 0
0 0 0 SL7 0 0 0 I 0
0 0 0 0 0 0 0 0 I
I 0 SL6 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
32-bit words with carries: m0, m3, m5, m6, m8. The diameter d is equal to 42.

Filter FI:

F (m) = (m0(t)⊕ (m3(t)>>>15)) ⊕
(m5(t)>>>3 ⊕ (m6(t)<<<5)) ⊕ m8(t)>>>13

D Test Vectors

We provide the following test vectors given in little endian and in hexadeximal
for the three GLUON instances:

– For GLUON-64:

input_message = a5a6a7a8a9aaabacadaeafb0b1b2b3b4b5b6

hash = 06a93c1fca21875a1ccd6c2bdcfafa972

– For GLUON-80:

input_message = a5a6a7a8a9aaabacadaeafb0

hash = 047a6630739e7c5cbb9ce735c0f9a89a

– For GLUON-112:

input_message = a5a6a7a8a9aaabacad

hash = 0adb1f3f38b769719c0e62868



SHA-3 on ARM11 Processors

Peter Schwabe1, Bo-Yin Yang1, and Shang-Yi Yang2,�

1 Institute of Information Science and Research Center for Information Technology
Innovation

Academia Sinica,
128 Section 2 Academia Road, Taipei 115-29, Taiwan

peter@cryptojedi.org, by@crypto.tw
2 Department of Electrical Engineering

National Taiwan University
1, Section 4, Roosevelt Road, Taipei 10617, Taiwan

ilway25@crypto.tw

Abstract. This paper presents high-speed assembly implementations of
the 256-bit-output versions of all five SHA-3 finalists and of SHA-256 for
the ARM11 family of processors. We report new speed records for all of
the six implemented functions. For example our implementation of the
round-3 version of JH-256 is 35% faster than the fastest implementation
of the round-2 version of JH-256 in eBASH. Scaled with the number of
rounds this is more than a 45% improvement. We also improve upon pre-
vious assembly implementations for 32-bit ARM processors. For example
the implementation of Grøstl-256 described in this paper is about 20%
faster than the arm32 implementation in eBASH.

Keywords: SHA-3, ARM processors, software implementation.

1 Introduction

In 2007 the National Institute for Standards and Technology (NIST) issued a
public call for submissions to a hash function competition (SHA-3 competition)
[18]. This call received 64 submissions by October 2008, 51 of which entered
round 1 of the competition. These 51 candidates have since been analyzed by
the international cryptologic research community. Based on this analysis, NIST
selected 14 candidates in July 2009 for round 2, and 5 finalists out of these 14
in December 2010.

In 2012, NIST will announce the winner of the competition, which will be
standardized as SHA-3. The security of the 5 SHA-3 finalists has been carefully

� This work was supported by the National Science Council, National Taiwan
University and Intel Corporation under Grant NSC99-2911-I-002-001 and 99-
2218-E-001-007, and by the Academia Sinica Career Award. Part of the work
was done while the first author was employed by National Taiwan University.
Part of the work was done during a research retreat co-sponsored by NIST
grant 60NANB10D004 and NSF grant 1018836. Permanent ID of this document:
fd40a1bbff5e17e661dfed3102dbf1fa. Date: April 22, 2012.

A. Mitrokotsa and S. Vaudenay (Eds.): AFRICACRYPT 2012, LNCS 7374, pp. 324–341, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



SHA-3 on ARM11 Processors 325

analyzed in the last 3 years and no attacks against NIST’s main requirements
have been found in any of the candidates. The only attack against a full version
of one of the finalists is the distinguisher for JH presented by Naya-Plasencia,
Toz, and Varıcı in [17]. One of the main criteria for NIST’s decision is therefore
going to be performance of the finalists in hardware and software. Consequently
much effort had been dedicated to optimizing software implementations of the
SHA-3 finalists by many groups for a variety of platforms. Benchmarks of these
software implementations are collected by the eBASH benchmarking project led
by Bernstein and Lange [10].

It is notable that most of the aforementioned optimizations in software imple-
mentations target high-end 64-bit processors by Intel and AMD. In many cases,
they make significant use of the x86 sophisticated vector instructions. Although
the number of processors in embedded devices, smartphones and other “small
computers” is much larger than the number of high-end Intel and AMD desktop
and server processors, the number of optimized implementations of the SHA-3
finalists targeting such small computers is comparatively small.

This paper describes assembly implementations of all SHA-3 finalists for the
ARM11 family of processors. These implementations set new speed records for
all of the SHA-3 finalists; for comparison we also implemented SHA-256 for
the ARM11. ARM11 processors can be found in many smartphones by Apple,
Samsung, HTC, Nokia and others. They can also be found in embedded devices,
cars and other small devices. According to [3,1,2] ARM ships more than half a
billion ARM11 CPUs each year, many of them are used in environments that
need fast cryptography, including hash functions.

Aside from new speed records on a particular processor that help evaluate
the performance of the SHA-3 finalists, we may draw two perhaps surprising
conclusions from our results: First one would expect that compilers are able to
transform C implementations of the SHA-3 finalists into high-performance code
for this relatively simple 32-bit RISC architecture. However, in some cases we
were able to improve upon the fastest C implementations included in eBASH by
more than a factor of 2. This shows the importance of platform-specific optimiza-
tion on the assembly level. Second some of the finalists are designed to achieve
high performance on 64-bit processors or for implementations that use 128-bit
or 256-bit vector instructions. This paper shows the consequences of such design
decisions for performance on a simple 32-bit platform that does not support
vector instructions.

We submitted the software described in this paper to the eBASH benchmark-
ing project for public benchmarking. All benchmarks reported in this paper are
from the SUPERCOP benchmarking suite. We put all software described in this
paper into the public domain to maximize reusability.

Notation. We use ⊕ for a bitwise xor, ∨ for bitwise or and ∧ for bitwise and.



326 P. Schwabe, B.-Y. Yang, and S.-Y. Yang

2 The ARM11 Processor Family

The ARM11 family of microprocessors has been introduced by ARM in 2002
and is the only implementation of the ARMv6 architecture. The most widely
used processor of this family is the ARM1136, others are the ARM1156 and
the ARM1176. We developed and benchmarked the software described in this
paper on an ARM1136 processor, more specifically on a Samsung GT i7500
Galaxy smartphone containing a Qualcomm MSM7200A chip released in 2007.
The characteristics of ARM11 processors are described in detail in the ARM11
technical reference manuals [6,4,5,7,8]. In the following we give a summary of the
features that are most relevant to the implementations described in this paper.

ARM11 processors have a 32-bit instruction set and 16 architectural 32-bit
integer registers. One register is used as stack pointer, one as program counter,
so 14 registers are freely usable. Instructions are issued in order, one instruction
per cycle. The arithmetic instructions relevant to the implementations described
in this paper have a latency of 1 cycle, the result of an instruction can thus be
used as input to the next instruction without latency penalty. Access to memory
is cached with cache sizes between 4 KB and 64 KB. Loads from cache have a
latency of 3 cycles.

The instruction set is a standard RISC load-store instruction set except for
two features: free shifts and rotates and loads and stores of more than 32 bits.

Free Shifts and Rotates. All arithmetic instructions have three operands, the
output does not necessarily overwrite one of the inputs. Additionally, the second
input operand can be shifted or rotated by arbitrary distances provided as im-
mediate value or through a register. These shifts or rotates as part of arithmetic
instructions do not decrease throughput or increase latency of the instruction,
they are essentially for free. However, the shifted or rotated input value is re-
quired one stage earlier in the pipeline than a non-shifted input. Therefore, using
the output of one instruction as shifted or rotated input to the next instruction
imposes a penalty of one cycle.

Load and Store Double and Multiple. The ARMv6 instruction set contains
load and store instructions that move more than 32 bits between memory and
registers. More specifically, the strd instruction stores 64 bits from two consecu-
tive registers (e.g., r0 and r1) to a 64-bit memory location, the ldrd instruction
loads 64 bits from memory into two consecutive registers. Some additional re-
strictions apply for these 64-bit load and store instructions:

– The first register argument has to be an even register (r0, r2, r4, . . . ),
– the instructions do not support all addressing modes that their 32-bit coun-

terparts support, in particular they do not support shifted register offsets
(documentation is very misleading here; for example, [6, Section 16.11] says
that performance of ldrd and strd depends on the shift distance of the
register offset), and

– they take one memory cycle only if the memory location is 8-byte aligned,
otherwise they take 2 memory cycles.



SHA-3 on ARM11 Processors 327

For details also see [6, Section 16.11]. The ARMv6 architecture also supports
loads and stores of more than 64 bits in one instruction (ldm and stm instruc-
tions). Addressing modes are even more limited than for strd and ldrd. They
need as many memory cycles as a corresponding sequence of 64-bit loads or
stores and thus yield better performance only in very special cases that we were
not able to exploit in our implementations.

Accessing the Cycle Counter. Access to the 32-bit cycle counter is only
possible from kernel mode, for example using the following code:

unsigned int c;

asm volatile("mrc p15, 0, %0, c15, c12, 1" : "=r"(c));

In a posting to the eBATS mailing list ebats@list.cr.yp.to from August 12,
2010, Bernstein publicized code for a kernel module that gives access to the cycle
counter on ARM11 devices through the Linux device file /dev/cpucycles4ns.
The SUPERCOP benchmarking suite [10] supports cycle counts through this
device file; we use SUPERCOP for all benchmarks.

3 Blake

The full specification of Blake is given in [9]. We only briefly recall the structure of
the computationally most expensive part, the compression function. The inputs
to the Blake-256 compression function are a chaining value of 8 32-bit words
h0, . . . , h7, a message block of 16 32-bit words m0, . . . ,m15, a salt of 4 32-bit
words s0, . . . , s3. and counter consisting of 2 32-bit words t0, t1 The output is a
new chaining value consisting of 8 32-bit words. The compression consists of 3
main steps:

– An initialization expands the 14 words of chaining value, salt and counter
to a 16-word state (v0, . . . , v15).

– The 16-word state is transformed through 14 rounds. Each round consists of
8 evaluations of a function G, which modifies 4 words of the state in place
and takes as additional inputs 2 words of the message block and two out of
a set of 16 constants c0, . . . , c15 The total of 14 ·8 = 112 evaluations of G are
the main computation of the Blake-256 hash function. Each evaluation of G
requires 6 32-bit word additions, 6 32-bit xor operations, and 4 rotations of
32-bit words by 16,12,8, and 7 bits, respectively. The 8 evaluations of G can
be seen as 2 blocks of 4 evaluations each; evaluations of G in each of the two
blocks are independent and can be swapped or interleaved.

– The finalization uses 24 32-bit xor operations to map h0, . . . , h7, s0, . . . , s3,
v0, . . . , v15 to a new chaining value h′

0, . . . , h
′
7.

3.1 Implementation Details

The 6 additions and 6 xors in each evaluation of G add up to a total of 112 ·12 =
1344 arithmetic instructions throughout the 14-round main loop. This corre-
sponds to a 1344/64 = 21 cycles lower bound for Blake-256. This lower bound



328 P. Schwabe, B.-Y. Yang, and S.-Y. Yang

is ignoring costs for loads of message words, costs for loads of constants, spills
of state words, as the 16 state words do not fit into the usable 14 registers, and
overhead from the initialization and finalization phase. Furthermore it assumes
that all rotations can be carried out for free in the second argument of additions
or xors.

To obtain the speed of 33.93 cycles per byte for long messages we applied two
optimization techniques. First we manage to merge (almost) all rotations with
arithmetic instructions and second we carefully reschedule code to reduce the
number of spills.

Removing Rotations. As explained in Section 2, the second argument of arith-
metic instructions can be shifted or rotated arbitrarily. This shift or rotation does
not cost any additional cycles, if the shifted value is not the output of the di-
rectly preceding instruction. In other words, the combination of an arithmetic
operation % with a rotation by n of the form

a← b% (c ≫ n)

costs the same as % without the rotation (but imposes an additional scheduling
constraint). The 4 rotations used inside the function G are not of this form, they
rotate the result of an arithmetic instruction instead of one of the inputs:

a← (b% c) ≫ n).

This can easily be decomposed into two instructions

a← (b % c), and

a← a ≫ n.

Our implementation instead only computes the first of the two instructions and
rotates a by n the next time a is used as input. We consistently apply this
technique to all variables. This means that we keep track of the implicit rotation
distances for each variable and apply this rotation whenever the variable is used
as an input. Very soon this will lead to the case that both inputs to an arithmetic
instruction need to be rotated, i.e.,

a← (b ≫ n1)% (c ≫ n2).

In this case we compute

a← b% (c ≫ (n2 − n1))

and set the implicit rotation distance of a to n1. Note at this point that all
rotation distances are constants; the value n2−n1 is computed at compile time.

In principle we can merge all rotations with arithmetic instructions in this
way; the only restriction is that implicit rotation distances of variables must be
invariant across different iterations of loops. We fully unrolled the 14 rounds
of the Blake-256 compression function, so we only need to make the implicit



SHA-3 on ARM11 Processors 329

rotations distances explicit by actual rotations at the very end of the loop. Out
of the 16 state words, 12 end up with a implicit rotation distance of 0, so we
only need 4 dedicated rotation instructions for the whole compression function.

Reducing Spills. The 16 32-bit words v0, . . . , v15, the 16 constants c0, . . . , c15,
and the 16 32-bit message words clearly do not fit into the 14 usable 32-bit
registers. Even worse, not even the 16 state words can be kept in registers, the
compression function thus requires loads and stores. To keep the number of loads
and stores low we do the following:

– Before entering the compression loop we put the 16 constants on the stack
so that they can be accessed through the stack pointer. We could also access
them through offsets to the program counter, but our code is too long to
access constants from any position in the code through the allowed 8-bit
offset.

– In each iteration of the compression loop we place the 16 message words
on the stack. This saves one register containing the pointer to the message
block, furthermore we can easily convert from big-endian to little-endian
encoding by loading message blocks in big-endian mode once and storing
them in little endian mode on the stack.

– We partition the set of state words into low words v0, . . . , v7 and high words
v8, . . . , v15, we keep the low state words in registers throughout the whole
computation. Each evaluation of G transforms 2 low state words and 2 high
state words, so we can compute G with 12 arithmetic instructions, 2 loads
of high words, 2 stores of high words, 2 loads of message words, and 2 loads
of constants – a total of 20 instructions.

– We replace the two loads of high 32-bit words by one 64-bit load, this reduces
the number of instructions per evaluation of G to 19. For this to work we
need to make sure that previous stores of these two words store them to
consecutive memory locations.

– We reorder evaluations of G in a way that allows us to reuse the output high
state words as input to the next evaluation where possible.

In total the 112 evaluations of G take 2044 instructions, 18.25 instructions per
evaluation of G. These instructions are carefully scheduled to hide all latencies
and thus contribute 2044/64 = 31.94 cycles/byte to the total cost.

4 Grøstl

We only recall the computationally intensive part of Grøstl-256, the compression
function. The full specification of Grøstl is given in [16]. The compression func-
tion maps a 512-bit state hi−1 and a 512-bit message block mi to a 512-bit state
hi. This compression uses two 512-bit permutations P and Q and computes

hi = P (hi−1 ⊕mi)⊕Q(mi)⊕ hi−1.

The design of the permutations P and Q is inspired by AES, the main change is
the size of the state which for Grøstl is an 8× 8 byte matrix instead of the 4× 4



330 P. Schwabe, B.-Y. Yang, and S.-Y. Yang

matrix for AES. This change allows to make more efficient use of 64-bit archi-
tectures. The permutations P and Q are very similar, both transform the state
in 10 rounds each round consists of the operations AddRoundConstant, Sub-
Bytes, ShiftBytes, and MixBytes. The SubBytes and the MixBytes op-
erations are the same for P and Q; SubBytes is the byte substitution also used
in AES. The AddRoundConstants and ShiftBytes operations are slightly
different in P and Q; this requires separate implementations of P and Q but
has no effect on the implementation techniques. Everything explained in the
following is valid for both P and Q.

4.1 Implementation Details

The designers of Grøstl recommend in [16, Section 8.1.3] to use a lookup-table
based implementation for 32-bit processors that do not support 128-bit vector in-
structions. The idea is to compute the SubBytes, ShiftBytes, andMixBytes

operations columnwise, where the computation of each column consists of

– 8 table lookups of 64-bit values from 8 tables T0, . . . , T7 of size 2 KB each,
each lookup indexed by one byte of the state, and

– 7 64-bit xors of these 8 values to obtain the new the 64-bit column.

This is the same idea as the lookup-table-based approach for AES described in
[14, Section 5.2].

For a 32-bit implementation all operations on 64-bit values need to be split
into 2 operations on 32-bit values; a small benefit is that the total size of the
tables can be halved because entries in tables T1, . . . , T7 are simply rotations
of values in table T0. ARM addressing modes do not allow to load from a base
address (pointer to the tables) plus a shifted offset register value. Each of these
column computations thus requires 8 byte extractions (for example single-byte
loads), 8 additions of the table pointer to a (shifted) byte offset, 16 32-bit loads,
14 xors, and 2 32-bit stores of the computed new state column. These final
stores are required because the complete state does not fit into registers and
allows to perform byte extraction through single-byte loads. This total of 48
instructions, performed 8 times per round, over 10 rounds in both P and Q
yields a lower bound of (48 ·8 ·10 ·2)/64 = 120 cycles per byte, ignoring the cost
of AddRoundConstants.

This approach is what the arm32 assembly implementation for 32-bit ARM
processors by Wieser (included in SUPERCOP since version 20110914) does.
With about 140 cycles/byte it comes remarkably close to the lower bound if we
consider cost for AddRoundConstants and loop overhead.

At a speed of about 110 cycles per byte for long messages, our implementation
improves upon this implementation by more than 20%. The main reason is that
it makes use of 64-bit table lookups.

64-Bit Lookups. Instead of performing the table lookups with 32-bit loads
we use the ldrd instruction to perform 64-bit lookups. As the result of such a
lookup is returned in two 32-bit registers, we do not need larger tables; “rotation



SHA-3 on ARM11 Processors 331

by 32” is free, the tables only need 8 KB of storage. With this improvement the
computation of one column only requires 8 byte lookups, 8 additions of the table
base pointer to the shifted byte offsets, 8 64-bit lookups, 14 xors, and 1 64-bit
store. These 39 instructions yield a lower bound of (39 ·8 ·10 ·2)/64 = 97.5 cycles
per byte, again ignoring the cost of the AddRoundConstants operation and
loop overhead.

Interleaved Tables. If the 4 lookup tables of size 2 KB each were laid out
in memory one after the other, we would need to either keep 4 table addresses
in memory or add constant offsets of 2048, 4096 or 6192 to 75% of the lookup
addresses. The ARM addressing modes for the ldrd instruction support adding
constant offsets to a base address, but these offsets must not be larger than 8
bytes (signed). We circumvent this problem by interleaving 64-bit entries of the
4 tables in memory, two consecutive 64-bit entries of the same table thus start
at addresses that are 32 bytes apart. The bytes extracted from the state thus
need to be shifted by 5 instead of 2 to serve as lookup offsets.

5 JH

The JH construction may be considered a modified sponge. The full specification
of JH-256 is given in [19]. The central part of the JH hash function is the com-
pression function. This compression function transforms a 1024-bit state and a
512-bit input block into a 1024-bit state as follows:

– Xor the input block into the first half of the state,
– apply a permutation, constructed as a block cipher E8 with a fixed key

(expanded to hash-function round constants), and
– xor the input block into the second half of the state.

The speed-critical part of this compression is the application of E8 which con-
sists of 42 rounds of a substitution-permutation network designed for efficient
bitsliced implementations using 128-bit or 256-bit vector registers. In bitsliced
implementation using 128-bit vector registers the state is decomposed into 8
128-bit vectors. Each round operates on these 128-bit vectors of the state and 2
128-bit round constants. One round consists of the following operations:

– 2 applications of the Sbox operation, an in-place transformation of 4 state
vectors involving 1 round constant (see Listing 1),

– 1 application of the L operation, an in-place transformation of 8 state vectors
(see Listing 1), and

– swapping of adjacent bit blocks in 4 of the state vectors. The size of these
bit blocks is 2(i mod 7) in round i, i.e., in rounds 0, 7, 14, 21, 28, and 35 swap
adjacent bits; in rounds 1, 8, 15, 22, 29, and 36 swap adjacent blocks of 2
bits; in rounds 2, 9, 16, 23, 30, and 37 swap adjacent blocks of 4 bits; and so
on; and in rounds 6, 13, 20, 27, 34, and 41 swap adjacent blocks of 64 bits.



332 P. Schwabe, B.-Y. Yang, and S.-Y. Yang

Listing 1. The Sbox and the L operations of the JH compression function

#define Sbox(v0,v1,v2,v3,rcst) \

v3 = ~(v3); \

v0 ^= ((~(v2)) & (rcst)); \

tmp0 = (rcst) ^ ((v0) & (v1)); \

v0 ^= ((v2) & (v3)); \

v3 ^= ((~(v1)) & (v2)); \

v1 ^= ((v0) & (v2)); \

v2 ^= ((v0) & (~(v3))); \

v0 ^= ((v1) | (v3)); \

v3 ^= ((v1) & (v2)); \

v1 ^= (tmp0 & (v0)); \

v2 ^= tmp0;

#define L(v0,v1,v2,v3,v4,v5,v6,v7) \

(v4) ^= (v1); \

(v5) ^= (v2); \

(v6) ^= (v0) ^ (v3); \

(v7) ^= (v0); \

(v0) ^= (v5); \

(v1) ^= (v6); \

(v2) ^= (v4) ^ (v7); \

(v3) ^= (v4);

5.1 Implementation Details

For the ARM11, each operation on 128-bit vectors needs to be decomposed into 4
operations on 32-bit values. The 19 bit-logical operations in the Sbox operation
(ignoring negations) and the 10 bit-logical operations in the L operation thus
yield a lower bound on JH performance of 42 · 4 · (2 · 19 + 10) = 8064 cycles
per block or 126 cycles per byte. This ignores costs for loads and stores, loop
overhead and costs of the bit-block swapping. We now describe the optimization
techniques that we applied to obtain the performance of 156.43 cycles per byte
for long messages.

Partial Unrolling. Fully unrolling the compression function would result in
code larger than 32 KB, more than the instruction cache on by far most ARM11
processors. Instead we unroll 7 rounds, a choice that comes from the block sizes
in the swapping step. This way we keep the size of the compression function
comfortably below 8 KB. Instead of using a round counter in a register we place
a sentinel value at the end of the round-constant table and exit the loop when
this sentinel value is read.

Loop Reordering. As we decomposed 128-bit vectors into 4 32-bit values, the
compression function has two loops, one loop over the 42 rounds, another one
over the 4 vector chunks. If we ignored the bit-block swapping step at the end
of each round these loops could permute, but in the last two out of 7 rounds
(bit block sizes of 32 and 64) registers at different positions in the vector com-
municate. The obvious way of ordering the loops is thus an outside (partially
unrolled) loop of the rounds and then a loop of length 4 (unrolled) inside each
round. Each of these iterations of the inside loop operates on different 8 32-bit
state values, so with the 14 available registers this solution requires 32 load and
32 store operations per round.

However, by swapping the order of the two loops in the first 5 rounds of a
7-round block, these 32 load-save pairs can avoided. Only the last two rounds of
a 7-round block require frequent loads and stores. We then reverse the processing
order in the last round of a 7-round block, saving a further 4 stores and 4 loads



SHA-3 on ARM11 Processors 333

between this round and the previous round, as well as this round and the next
block.

For the state we use a memory layout that allows us to perform all loads and
stores of the state in 64-bit, halving the number of load-store operations. This
layout also allows us to use 64-bit loads and stores in the xor sequences at the
beginning and the end of the compression function.

Optimized Sbox Operation. The ARMv6 instruction set allows to combine
a logical and with a negation of one of the arguments (bic instruction). Most
negations inside the Sbox operation are exactly of this type but the negation in
the first line (cmp. Listing 1) can not easily be eliminated. However, in 2/7 of
all uses of Sbox the negated value is the output of a swap operation. In these
cases the negation can be combined with a logical and in the swap operation
(see below).

Efficient Bit-Block Swapping. The swapping of 16-bit blocks is a rotation
that is free if we merge it with subsequent uses of the value in arithmetic in-
structions. Swapping 8-bit blocks can be done in just one instruction using the
rev16 instruction. Swapping of adjacent bit blocks of size 1, 2, and 4 is not
that straightforward but can still make use of free shifts. For example swapping
adjacent bits in a register x uses a mask m = 0xaaaaaaaa in another register
and three instructions as follows:

t← m ∧ (x	 1)

x← m ∧ x

x← t⊕ (x� 1)

Note that in one out of four swaps, the bic instruction (which negates the shifted
second operand) is substituted for the logical and to save the negation at the
beginning of the Sbox operation (see above).

6 Keccak

The Keccak hash function uses a sponge construction. The message is absorbed
into a 1600-bit state in r-bit blocks, for Keccak with 256-bit output the SHA-3
submission specifies r = 1088 [12, Section 2]. Each absorption of an r-bit block
consists of two steps:

– Xor the message block with the first r bits of the state, and
– transform the state through the 1600-bit permutation Keccak-f [1600].

After all blocks of the (padded) message have been absorbed, the hash value
is extracted from the state in a squeeze operation. The speed-critical part of
hashing long messages is the absorption and in particular the Keccak-f [1600]
transformation. A full specification of Keccak is given in [11] and in [12].

TheKeccak-f [1600] transformation considers the state a 5×5×8 byte cuboid
or a 5× 5 matrix of 64-bit lanes. The transformation is performed in 24 rounds,
each round consists of the following steps:



334 P. Schwabe, B.-Y. Yang, and S.-Y. Yang

– xor the 5 lanes of each column to obtain values b0, . . . , b4,
– compute 5 values c0, . . . , c4, each as the xor of one of the bi with another of

the bi rotated by 1,
– compute the updated state columnwise, for each column

• pick up 5 state lanes diagonally,
• xor each of these state lanes with a different ci (one lane of the whole
state is additionally xored with a round constant),

• rotate each of these lanes by a different fixed distance,
• compute each lane of the updated column by negating one of the lanes,
computing the logical and with another lane and then xoring the result
to a third lane.

6.1 Implementation Details

For 32-bit architectures without vector registers the designers of Keccak sug-
gest the technique of bit interleaving [13, Sections 1.4 and 2.2]. The idea is to
collect all bits on even positions of a 64-bit lane in one 32-bit register and all
bits at odd positions in another 32-bit register. This requires interleaving every
64-bit chunk of the message, but allows to perform all rotations as rotations of
32-bit words which is particularly efficient for the ARM11 as such rotations are
essentially free.

All logical operations on 64-bit lanes need to be carried out as two 32-bit op-
erations. Computation of b0, . . . , b4 thus takes 40 xors, computation of c0, . . . , c4
takes another 10 xors. The computation of each column requires 10 xors with a
constant, and 10 xors and 10 ands (with negation) of 32-bit half-lanes. A lower
bound on the number of cycles for all 24 rounds (ignoring rotations and nega-
tions) can thus be derived as 24 · (40 + 10 + 5 · (10 + 10 + 10)) = 4800, this
corresponds to 4800/136 = 35.294 cycles per byte, an additional cost of about 4
cycles per byte is required for the interleaving of the 64-bit message chunks.

The Keccak designers recommend the simple32bi implementation as start-
ing point for implementations targeting 32-bit architectures. This implementa-
tion is included in SUPERCOP, it uses the interleaving technique and provides
best performance on an ARM11 of all Keccak implementations benchmarked
in eBACS; the armasm implementation by van Keer fails the tests of the SU-
PERCOP benchmarking suite.

Our assembly implementation requires 71.73 cycles per byte for long messages,
17.5% faster than the simple32bi implementation but quite a bit slower than the
lower bound derived above. The main reason that neither the simple32bi nor
our implementation get closer to the lower bound is the overhead from frequent
loads and stores of parts of the large state. There are mainly two reasons why our
implementation outperforms previous implementations: we manage to reduce
the number of load and store instructions and we merge more rotations with
arithmetic instructions.

Reducing the Number of Loads and Stores. Updating the state column-
wise as described above uses 5 blocks of operations on 64-bit lanes or 10 blocks



SHA-3 on ARM11 Processors 335

of computations on 32-bit half-lanes. A straight-forward implementation loads 5
half-lanes per block, then loads 5 32-bit ci values, performs arithmetic instruc-
tions and then uses 5 store instructions to update the column half-lanes. With all
rotations merged into arithmetic instructions each block only uses 15 arithmetic
instructions, loads and stores thus contribute a 50% overhead.

With an appropriate memory layout of the state we reduce the number of
store instructions to 3 by using 2 64-bit stores. Furthermore, we reorganize the
10 blocks of computations such that ci in registers can be reused across blocks
as much as possible. The initial computation of b0, . . . , b4 (in 10 32-bit words)
uses 64-bit loads of the state.

Removing Rotations. We use the same techniques as for Blake to merge
almost all rotations with arithmetic instructions. Unrolling all 24 rounds would
result in excessively large code. Instead, we perform the first round, then a
loop of length 11 around 2 rounds and then the final round. All rounds but
the last produce shifted state half-lanes, the shift distances are the same for all
rounds. All rounds but the first perform shifts of state half-lanes whenever they
are used as input to an arithmetic instruction. In order to keep shift distances
invariant over iterations of the loop we need to perform 10 dedicated shifts in
the computation of b0, . . . , b4.

7 Skein

The idea of Skein is to build a hash function out of the tweakable block cipher
Threefish. The full specification of Skein is given in [15]. We only briefly review
the Threefish block cipher, the most important component of Skein. Threefish as
used in Skein uses a 512-bit state that is transformed in 72 rounds. Each round
consists of 4 so-called MIX operations. After every 4 rounds the 64-bit words
of the state are permuted and a key (round constant) is injected. An additional
round constant is injected before the first round. The key injection loads 8 out
of 9 64-bit extended-key words, it loads 2 out of 3 64-words of extended tweak
value, adds each of the 8 extended-key words to one of the state words, adds
each of the 2 tweak values to one of the state words, and in i-th key injection
adds i to one of the state words.

7.1 Implementation Details

Each MIX operation takes 2 64-bit integers x and y as inputs. It computes 2
64-bit output integers u and v as

u = (x + y) mod 264, and v = u⊕ (y ≫ R),

where R is a round-dependent constant. On the 32-bit ARMv6 architecture we
need to split each 64-bit word into two 32-bit chunks. With x = (x0, x1) and
y = (y0, y1) we can compute u = (u0, u1) with one addition and one addition
with carry. Xoring u with the shifted y can be done in 4 instructions as follows:



336 P. Schwabe, B.-Y. Yang, and S.-Y. Yang

t← u1 ⊕ (y0 � (32−R))

v0 ← u0 ⊕ (y0 	 R)

v0 ← v0 ⊕ (y1 � (32−R))

v1 ← t⊕ (y1 	 R).

From 72 rounds with 4 mix operations each we get 1728 instructions per block.
From 19 key injections we would expect another 19 · 11 64-bit additions, i.e.
19 · 22 = 418 instructions; this would together yield a lower bound from pure
arithmetic instructions of (1728 + 418)/64 = 33.53 cycles per byte.

Since the 14 general-purpose registers cannot hold all the state words, the
most important optimization required to come close to this bound is minimizing
the number of loads and stores of the state words. We do this by rearranging the
execution sequence to keep as many state words in memory as long as possible.
This task is aided by a self-written program that traces the use of state words.
Furthermore, we show how key injection can be done with less than 11 additions
and less than 10 64-bit loads.

Rearranging the Execution Sequence. Before entering the key injection,
there are four rounds, each of which consists of four MIX operations followed by
a permutation. Instead of performing MIX and permutation in order, we mix
the “permuted” state. This way, we can interleave the MIX functions of all these
four rounds to achieve a much small number of loads and stores.

Consider for example the first 4 rounds. Let s0 to s7 be the state words. The
original sequence of MIX operations is the following:

Round 1: MIX(s0, s1), MIX(s2, s3), MIX(s4, s5), MIX(s6, s7)
Round 2: MIX(s2, s1), MIX(s4, s7), MIX(s6, s5), MIX(s0, s3)
Round 3: MIX(s4, s1), MIX(s6, s3), MIX(s0, s5), MIX(s2, s7)
Round 4: MIX(s6, s1), MIX(s0, s7), MIX(s2, s5), MIX(s4, s3).

Performing the mix operations in this order would cause a lot of overhead from
loading and storing state words. For example s0 is used in the first MIX opera-
tion, then all other state words are used before s0 is used again, this means that
s0 needs to be spilled. Similar statements hold for the other state values.

To keep as many state words in registers as long as possible, we reorder the
MIX sequence as follows:

MIX(s0, s1), MIX(s2, s3), MIX(s2, s1), MIX(s0, s3)
MIX(s4, s5), MIX(s6, s7), MIX(s6, s5), MIX(s4, s7)
MIX(s4, s1), MIX(s6, s3), MIX(s6, s1), MIX(s4, s3)
MIX(s0, s5), MIX(s2, s7), MIX(s2, s5), MIX(s0, s7).

This order of MIX operations allows us to load and store state words only every
four MIX functions. Furthermore, we interleave each round-constant injection
with the preceding MIX operations to eliminate some loads and stores.

Precomputing Parts of the Key Injection. In the key injection, two of
the 64-bit state words, s5 and s6, are modified by adding a 64-bit word of the



SHA-3 on ARM11 Processors 337

extended key k and a 64-bit word of the extended tweak value t. In the i-th key
injection this is done as

s5 ← s5 + k(i+5) mod 9 + ti mod 3,

s6 ← s6 + k(i+6) mod 9 + t(i+1) mod 3,

where the additions are all modulo 264. In the intuitive implementation this
takes 4 loads of 64-bit words and 4 64-bit additions, a total of 4 + 2 · 4 = 12
instructions.

In our implementation, we see that regarding to all possible values of i, there
are only nine possibilities for k(i+5) mod 9+ ti mod 3 and k(i+6) mod 9+ t(i+1) mod 3,
namely {k0, k3, k6} + t1, {k1, k4, k7} + t2 and {k2, k5, k8} + t0. We precompute
these 9 values as kt0,1, kt3,1, kt6,1, kt1,2, kt4,2, kt7,2, etc. and perform only two
64-bit loads and two 64-bit additions, which saves 6 instructions per key schedule
or about (19 · 6)/64 = 1.78 cycles per byte.

8 SHA-256

For reference we also optimized SHA-256 in assembly. Unlike all SHA-3 candi-
dates, the 256-bit state of SHA-256 fits into the available registers. Furthermore,
the design favors 32-bit architectures such as the ARMv6 and can make efficient
use of the free rotations. For example a transformation like

(x ≫ a)⊕ (x ≫ b)⊕ (x ≫ c)

with constants a, b, and c can turn into

(x ⊕ (x ≫ (b − a))⊕ (x ≫ (c− a))) ≫ a

and thus make use of the same techniques we used for Blake to eliminate dedi-
cated rotations. Another optimization consists in writing

Maj(b, c, d) = (b ∧ c)⊕ (c ∧ d)⊕ (b ∧ d) = (b ∧ c) ∨ (d ∧ (b ∨ c)),

and caching the value of b∧c and b∨c until they can be reused when calculating
Maj(a, b, c) = (b∧ c)∨ (a∧ (b∨ c)). It is thus not surprising to see that SHA-256
outperforms all SHA-3 candidates on this platform.

9 Results and Comparison

This section presents performance results of our implementations and a compar-
ison with the previously fastest implementation in eBASH (SUPERCOP version
20110914). All numbers in Tables 1–6 are cycles per byte as reported by the
SUPERCOP benchmarking suite. For the benchmarks we removed several com-
piler options from SUPERCOP that are irrelevant for ARM11 (such as -m64

or -mcpu=ultrasparc). We also added compiler options, specifically we added



338 P. Schwabe, B.-Y. Yang, and S.-Y. Yang

Table 1. Results for Blake-256: cycles/byte for different message lengths

# bytes long 4096 1536 576 64 8
this papera 25%-quartile 33.13 34.95 36.62 40.95 94.88 509.00

median 33.93 34.97 36.68 41.04 95.00 521.50
75%-quartile 34.29 35.11 36.94 41.48 98.19 546.00

sphlib (ver. 3.0)b 25%-quartile 45.93 47.49 49.48 54.82 123.06 614.00
median 46.29 47.49 49.48 55.09 123.06 614.50
75%-quartile 46.81 47.74 49.52 55.97 123.13 719.16

a Compiled with gcc -funroll-loops -fno-schedule-insns -O2
-fomit-frame-pointer

b Compiled with gcc -mcpu=arm1136j-s -Os -fomit-frame-pointer
-fno-schedule-insns

Table 2. Results for Grøstl-256: cycles/byte for different message lengths

# bytes long 4096 1536 576 64 8
this papera 25%-quartile 108.92 113.17 118.26 131.87 301.88 1551.00

median 110.16 113.24 118.44 131.95 301.94 1559.50
75%-quartile 112.32 114.28 120.38 132.47 304.63 1604.13

arm32b 25%-quartile 139.79 143.48 149.52 165.86 374.63 1882.00
median 140.17 143.62 149.65 165.86 374.63 1882.00
75%-quartile 141.61 144.34 152.00 168.01 377.80 1998.38

a Compiled with gcc -funroll-loops -fno-schedule-insns -O2
-fomit-frame-pointer

b Compiled with gcc -mcpu=arm1020t -O -fomit-frame-pointer

the flag -no-schedule-insns to various previously contained combinations of
compiler flags. This flag is crucial for best performance of many C implementa-
tions; we also informed the eBACS editors about this observation, the changes
are included in SUPERCOP since version 20111120. SUPERCOP in version
20110914 did not contain any implementation of the round-3 version of JH-256.
We compare our results with the benchmarks of the round-2 version, note that
this version is only using 35.5 rounds instead of the 42 of our implementation.

For the display of benchmarks we follow eBACS [10]. Specifically, for each
message length we report the median of 45 measurements and the 25% and 75%
quartiles. The value for “long” messages is extrapolated from measurements of
4096-byte messages and 2048-byte messages.

All measurements were performed on a Samsung GT I7500 Galaxy smart-
phone with a 528-MHz ARM1136 processor inside a Qualcomm MSM7200A
chip. All code was compiled with gcc 4.4.5.

Other Related Work. The tables only compare with the fastest implementa-
tion in eBASH as of SUPERCOP version 20110914; there are many more slower



SHA-3 on ARM11 Processors 339

Table 3. Results for JH-256: cycles/byte for different message lengths

# bytes long 4096 1536 576 64 8
this papera 25%-quartile 155.95 159.09 163.73 176.26 337.43 2733.50

median 156.43 159.17 163.76 176.43 339.00 2746.00
75%-quartile 157.68 159.78 163.95 179.02 341.59 2773.50

bitslice opt32b,c 25%quartile 244.91 250.37 257.26 276.41 519.83 4155.88
median 247.16 250.89 257.60 276.74 523.06 4195.00
75%quartile 259.55 256.98 259.02 277.17 529.19 4232.50

a Compiled with gcc -funroll-loops -O3 -fomit-frame-pointer
b Compiled with gcc -funroll-loops -fno-schedule-insns -O2 -fomit-frame-pointer
c Round-2 version with only 35.5 instead of 42 rounds

Table 4. Results for Keccak: cycles/byte for different message lengths

# bytes long 4096 1536 576 64 8
this papera 25%-quartile 71.13 74.31 77.46 87.80 180.59 1438.00

median 71.73 74.45 77.50 87.91 182.22 1447.00
75%-quartile 73.24 75.18 77.78 88.79 185.20 1486.38

simple32bib 25%-quartile 86.72 90.22 93.89 106.33 216.06 1723.00
median 86.95 90.28 93.92 106.54 217.75 1731.00
75%-quartile 88.41 90.99 94.51 106.80 218.81 1752.50

a Compiled with gcc -funroll-loops -O3 -fomit-frame-pointer
b Compiled with gcc -mcpu=arm1136jf-s -O3 -fomit-frame-pointer
-fno-schedule-insns

Table 5. Results for Skein-256: cycles/byte for different message lengths

# bytes long 4096 1536 576 64 8
this papera 25%-quartile 41.94 43.13 44.91 49.64 108.48 867.88

median 42.10 43.16 45.04 49.67 108.73 874.13
75%-quartile 43.66 43.93 45.83 50.05 113.11 893.50

sphlib-small 25%-quartile 94.15 96.32 99.39 107.58 209.11 1688.00
(ver. 3.0)b median 94.57 96.40 99.41 107.65 210.64 1688.88

75%-quartile 97.51 97.83 99.63 108.79 211.30 1698.50
a Compiled with gcc -funroll-loops -march=iwmmxt -O2
-fomit-frame-pointer

b Compiled with gcc -mcpu=arm1136jf-s -O3 -fomit-frame-pointer
-fno-schedule-insns

implementations for all candidates submitted to eBASH that can be used on
ARM11 CPUs. An assembly implementation of Skein supporting different out-
put and state sizes targeting the ARM Cortex-A8 family of CPUs by Hitland



340 P. Schwabe, B.-Y. Yang, and S.-Y. Yang

Table 6. Results for SHA-256: cycles/byte for different message lengths

# bytes long 4096 1536 576 64 8
this papera 25%-quartile 26.57 27.48 28.95 32.48 78.20 454.50

median 26.68 27.52 29.02 32.64 79.55 461.00
75%-quartile 26.93 27.59 29.06 32.72 80.98 493.88

sphlib (ver. 3.0)b 25%-quartile 39.14 40.19 41.86 46.33 103.31 522.50
median 39.19 40.19 41.86 46.33 103.31 522.50
75%-quartile 39.31 40.25 41.86 46.34 103.38 535.50

a Compiled with gcc -mcpu=arm1136j-s -O3 -fomit-frame-pointer
b Compiled with gcc -mcpu=arm1136jf-s -O2 -fomit-frame-pointer
-fno-schedule-insns

can be found on https://github.com/unbounded/skein-arm. We ran the bench-
marking tool shipped with this implementation on the same platform we used
for eBASH benchmarks. For Skein with a 512-bit state size and 256-bit output
size the tool reports a median of 48.78 cycles per byte, only slightly slower than
our implementation.

Acknowledgments. We thank the CyanogenMod and GAOSP teams for their
work on alternative firmware for Android smartphones. Their work made it pos-
sible to install Debian GNU/Linux in a chroot environment on a Samsung GT
i7500 Galaxy phone and use it as development and benchmarking platform. We
thank Dan Bernstein for his help and advice. Furthermore, we thank all the
authors of SHA-3-candidate implementations who published their software and
included it in eBASH.

References

1. ARM Holdings plc reports results for the third quarter and nine months ended
(September 30, 2010),
http://www.arm.com/about/newsroom/arm-holdings-plc-reports-results-for

-the-third-quarter-and-nine-months-ended-30-september-2010.php

2. ARM Holdings plc reports results for the third quarter and nine months ended
(September 30, 2011),
http://www.arm.com/about/newsroom/arm-holdings-plc-reports-results-for

-the-third-quarter-and-nine-months-ended-30-september-2011.php

3. Processors – ARM (2012), http://arm.com/products/processors/index.php
4. ARM Limited. ARM1156T2-S Technical Reference Manual, Revision: r0p4 (2007),

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0338g/DDI0338G

arm1156t2s r0p4 trm.pdf

5. ARM Limited. ARM1156T2F-S TechnicalReference Manual, Revision: r0p4
(2007),
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0290g/DDI0290G

arm1156t2fs r0p4 trm.pdf

https://github.com/unbounded/skein-arm
http://www.arm.com/about/newsroom/arm-holdings-plc-reports-results-for-the-third-quarter-and-nine-months-ended-30-september-2010.php
http://www.arm.com/about/newsroom/arm-holdings-plc-reports-results-for-the-third-quarter-and-nine-months-ended-30-september-2010.php
http://www.arm.com/about/newsroom/arm-holdings-plc-reports-results-for-the-third-quarter-and-nine-months-ended-30-september-2011.php
http://www.arm.com/about/newsroom/arm-holdings-plc-reports-results-for-the-third-quarter-and-nine-months-ended-30-september-2011.php
http://arm.com/products/processors/index.php
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0338g/DDI0338G_arm1156t2s_r0p4_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0338g/DDI0338G_arm1156t2s_r0p4_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0290g/DDI0290G_arm1156t2fs_r0p4_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0290g/DDI0290G_arm1156t2fs_r0p4_trm.pdf


SHA-3 on ARM11 Processors 341

6. ARM Limited. ARM1136JF-S and ARM1136J-S Technical Reference Man-
ual, Revision: r1p5 (2009), http://infocenter.arm.com/help/topic/

com.arm.doc.ddi0211k/DDI0211K arm1136 r1p5 trm.pdf

7. ARM Limited. ARM1176JZ-S Technical Reference Manual, Revision: r0p7 (2009),
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0333h/DDI0333H

arm1176jzs r0p7 trm.pdf

8. ARM Limited. ARM1176JZF-S Technical Reference Manual, Revision: r0p7
(2009), http://infocenter.arm.com/help/topic/com.arm.doc.ddi0301h/

DDI0301H arm1176jzfs r0p7 trm.pdf

9. Aumasson, J.-P., Henzen, L., Meier, W., Phan, R.C.-W.: SHA-3 proposal BLAKE
(version 1.3). Revised Submission to NIST (2010),
http://131002.net/blake/blake.pdf

10. Bernstein, D.J., Lange, T.: eBACS: ECRYPT benchmarking of cryptographic sys-
tems,
http://bench.cr.yp.to

11. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference, version
3.0 (2011),
http://keccak.noekeon.org/Keccak-reference-3.0.pdf

12. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak SHA-3 submis-
sion (version 3). Revised Submission to NIST (2011),
http://keccak.noekeon.org/Keccak-submission-3.pdf

13. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: Keccak im-
plementation overview, version 3.0 (2011),
http://keccak.noekeon.org/Keccak-implementation-3.0.pdf

14. Daemen, J., Rijmen, V.: AES proposal: Rijndael, version 2 (1999),
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf

15. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein hash function family, version 1.3. Revised Submission to
NIST (2008),
http://www.skein-hash.info/sites/default/files/skein1.3.pdf

16. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.S.: Grøstl a SHA-3 candidate (version 2.0). Revised
Submission to NIST (2011),
http://www.groestl.info/Groestl.pdf

17. Naya-Plasencia, M., Toz, D., Varici, K.: Rebound Attack on JH42. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 252–269. Springer,
Heidelberg (2011), http://homes.esat.kuleuven.be/ kvarici/Papers/Rebound

Attack on JH42.pdf

18. Announcing request for candidate algorithm nominations for a new cryptographic
hash algorithm (SHA-3) family. Federal Register 72(212), 62212–62220 (2007),
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

19. Wu, H.: The hash function JH (updated version from January 16, 2011). Revised
submission to NIST (2011),
http://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0211k/DDI0211K_arm1136_r1p5_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0211k/DDI0211K_arm1136_r1p5_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0333h/DDI0333H_arm1176jzs_r0p7_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0333h/DDI0333H_arm1176jzs_r0p7_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0301h/DDI0301H_arm1176jzfs_r0p7_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0301h/DDI0301H_arm1176jzfs_r0p7_trm.pdf
http://131002.net/blake/blake.pdf
http://bench.cr.yp.to
http://keccak.noekeon.org/Keccak-reference-3.0.pdf
http://keccak.noekeon.org/Keccak-submission-3.pdf
http://keccak.noekeon.org/Keccak-implementation-3.0.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://www.skein-hash.info/sites/default/files/skein1.3.pdf
http://www.groestl.info/Groestl.pdf
http://homes.esat.kuleuven.be/~kvarici/Papers/Rebound_Attack_on_JH42.pdf
http://homes.esat.kuleuven.be/~kvarici/Papers/Rebound_Attack_on_JH42.pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf


Improved Fixed-Base Comb Method

for Fast Scalar Multiplication

Nashwa A.F. Mohamed1, Mohsin H.A. Hashim1, and Michael Hutter2

1 Faculty of Mathematical Sciences, University of Khartoum,
P.O. Box 321, Khartoum, Sudan

{nafarah,mhashim}@uofk.edu, nashwaabbas@gmail.com
2 TU Graz, Institute for Applied Information Processing and Communications

Inffeldgasse 16a, 8010 Graz, Austria
michael.hutter@iaik.tugraz.at

Abstract. Computing elliptic-curve scalar multiplication is the most
time consuming operation in any elliptic-curve cryptosystem. In the
last decades, it has been shown that pre-computations of elliptic-curve
points improve the performance of scalar multiplication especially in
cases where the elliptic-curve point P is fixed. In this paper, we present
an improved fixed-base comb method for scalar multiplication. In con-
trast to existing comb methods such as proposed by Lim and Lee or
Tsaur and Chou, we make use of a width-ω non-adjacent form represen-
tation and restrict the number of rows of the comb to be greater or equal
ω. The proposed method shows a significant reduction in the number of
required elliptic-curve point addition operation. The computational com-
plexity is reduced by 33 to 38% compared to Tsaur and Chou method
even for devices that have limited resources. Furthermore, we propose a
constant-time variation of the method to thwart simple-power analysis
attacks.

Keywords: Elliptic-curve cryptosystem, scalar multiplication, Lim-Lee
method, Tsaur-Chou method, non-adjacent form, width-ω NAF.

1 Introduction

In 1985, N. Koblitz [13] and V.Miller [19] introduced elliptic curves for their use
in cryptography. The difficulty of solving the elliptic curve discrete logarithm
problem is mathematically hard so that Elliptic Curve Cryptography (ECC) can
be efficiently applied in modern cryptosystems. Among the most time consuming
operation of ECC is the scalar multiplication. A secret scalar k is multiplied with
a point P on an elliptic curve E(Fq) resulting in the point Q ∈ E(Fq). Over the
last years, there have been many publications that propose new methods to
efficiently calculate Q = kP , e.g., [5] or [8].

When the elliptic-curve point P is fixed, suggestion to pre-compute some data
that depend only on P was first made by Brickell, Gordon, McCurley, andWilson
(BGMW) in 1992 [4]. They observed that if the multiplier k is expressed in a

A. Mitrokotsa and S. Vaudenay (Eds.): AFRICACRYPT 2012, LNCS 7374, pp. 342–359, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Improved Fixed-Base Comb Method for Fast Scalar Multiplication 343

base b, more time may be saved by adding together powers with like coefficients
first.

Another improvement was proposed by Lim and Lee [16] in 1994. They pro-
posed a more flexible pre-computation technique for speeding up the compu-
tation of exponentiation. Later in 2005, Tsaur and Chou [28] proposed a new
fixed-base comb method by applying a NAF representation of the scalar k and
Sakai and Sakurai [23] method for direct doubling.

In this paper, we propose an efficient method for scalar multiplication by
combining the ideas of Lim-Lee [16] and Tsaur-Chou [28]. Our method makes
use of a fixed-base comb technique and represents the scalar k in a width-ω
NAF representation. Furthermore, we restrict the number of rows of the comb
to be greater or equal ω. As a result, our proposed method provides a significant
reduction in the number of required elliptic-curve point addition operation. In
practice, a speed improvement by 33 to 38% is achieved.

The rest of this paper is organized as follows. In Section 2, we give an introduc-
tion to elliptic curves and review some of existing scalar-multiplication methods.
In Section 3, we review the methods of Lim-Lee and Tsaur-Chou. In Section 4,
we propose efficient method for speeding up elliptic curve scalar multiplication.
In Section 5, we show that our proposed method can accelerate simultaneous
scalar multiplication. In Section 6, we discuss the resistance against side-channel
attacks. In Section 7, we give results of our method compared with Tsaur and
Chou method. In Section 8 we draw conclusions. Finally, in the appendix, we
give an example to illustrate our method.

2 Preliminaries

This section introduces some elementary background on elliptic curves. We refer
the reader to [5], [9], and [25] for further details.

An elliptic curve E over a finite field Fq of characteristic �= 2, 3 can be given
by the short Weierstrass equation

E : y2 = x3 + ax+ b

where a, b ∈ Fq, for which 4a3+27b2 �= 0. Elliptic-curve points E(Fq) are defined
to be

E(Fq) = {(x, y) ∈ Fq × Fq : y2 = x3 + ax+ b} ∪O

where O is the point at infinity. E(Fq) forms an additively abelian group with
the point at infinity O which serves as the identity element. Adding two points
in E(Fq) is defined by the chord-and-tangent rule.

The most time consuming operation in elliptic curve cryptography is the scalar
multiplication, i.e., Q = kP , where P and Q are points on the curve E and k
is a scalar such that 0 ≤ k < ordE(P ). The Elliptic Curve Discrete Logarithm
Problem (ECDLP) is to find the scalar k given points P and Q.

Since scalar multiplication largely determines the execution time of ECC-
based protocols, it is attractive to provide efficient methods that reduce the



344 N.A.F. Mohamed, M.H.A. Hashim, and M. Hutter

computational complexity by applying different multiplication techniques. There
are many proposals given in literature which provide improvements for different
kind of scenarios: (1) both the scalar and the base point are unknown, (2) the
scalar is fixed, and (3) the base point is fixed [5,9]. In the following sections, we
will describe generic methods and methods where the base point is fixed. For
methods where the scalar is fixed, addition chains can be used to improve the
performance of scalar multiplication. We refer the reader to [5,9] for more details.

2.1 Generic Methods

One of the most easiest way to perform a scalar multiplication where both the
scalar and the base point are unknown is the binary method (or often referred as
double-and-add). A point doubling operation is performed at every loop iteration
whereas point addition is only performed if the scalar bit value ki is 1, where
i ∈ [0, l−1] denotes the bit index of the scalar k with size l. It therefore achieves
a density of approximately 1/2 which results in a computational complexity
of l

2A + lD, where A and D represent the costs for addition and doubling,
respectively. Note that the binary method does not need any pre-computations
but does not provide resistance against timing [14] or Simple Power Analysis [15]
attacks.

Windowing Techniques. A generalization of the binary method has been
proposed by Brauer [3] in 1939 (also often referred as 2r−ary or window method).
The idea is to slice the representation of the scalar k into pieces and to process
ω digits at a time. For this, k is represented in a base 2ω where ω > 1. The
method scans the bits either from left-to-right or from right-to-left (like for the
binary method). Note that windowing techniques require extra memory but they
significantly improve the speed of scalar multiplication.

An efficient variant of the 2r−ary method is the sliding window method intro-
duced by Thurber [27] in 1973. By pre-computing iP for i ∈ {1, 3, 5, 7, ..., 2ω−1},
one can move a width-ω window across the scalar k and search for the first non-
zero bit. After finding the bit, the window is placed such that the value of the
window is odd.

Non-Adjacent Form (NAF) Representations. The density of the prior
described methods can be further reduced by using a signed-digit representation.
The advantage of this representation is that the cost of computing the inverse
of elliptic-curve points, e.g., −P , comes almost for free. Booth [1] proposed in
1951 to expand the coefficients in the representation of the scalar k to {0,±1}.
However, the disadvantage of his proposal has been that the representation is
not unique. Thus, Reitwiesner [22] proposed to apply a Non-Adjacent Form
(NAF) representation in 1960. A NAF of a positive integer k is an expression

k =
∑l−1

i=0 ki2
i where ki ∈ {0,±1}, kl−1 �= 0, and no two consecutive digits ki are

nonzero. The length of the NAF is l. It is a canonical representation with the
fewest number of non-zero digits for a given scalar k. The expected number of



Improved Fixed-Base Comb Method for Fast Scalar Multiplication 345

Algorithm 1. Width-ω NAF method for a positive integer k

Require: Window width w and a positive integer k.
Ensure: Width-ω NAF(k).
1: i = 0.
2: While k > 0 do
3: If k is odd then
4: b ≡ k mod 2ω.
5: If b ≥ 2ω−1 then
6: b = b− 2ω;
7: k = k − b.
8: Else b = 0.
9: ki = b; i = i+ 1; k = k/2.
10: Return (ki−1, ki−2, ..., k1, k0).

non-zero bits in a NAF is l/3 as shown by Morain and Olivos [21]. The runtime
complexity of a binary NAF method is therefore approximately l

3A+ lD (cf. [2]
and [21]).

A generalization of NAF is the width-ω NAF, proposed by Solinas [26] in 2000.
For the width-ω NAF, the scalar k is represented by

k =

l−1∑
i=0

ki2
i (1)

where each nonzero coefficient ki is odd, |ki| < 2ω−1, kl−1 �= 0, and at most one
of any ω consecutive digits is nonzero. Algorithm1 can be used to obtain the
width-ω NAF of a positive integer k and is denoted by NAFω(k).

In order to perform the scalar multiplication using width-ω NAF, the points
P, 3P, ..., (2ω−1 − 1)P are pre-computed and the scalar multiplication is per-
formed in the evaluation phase as shown in Algorithm2. The average density
of non-zero bits among all width-ω NAFs is asymptotically 1/(1 + ω) [21]. The
expected runtime of Algorithm2 is therefore

Algorithm 2. Width-ω NAF method for scalar multiplication

Require: Window width-ω, positive integer k and P ∈ E(Fq).
Ensure: Q = kP .
1: Use Algorithm 1 to compute NAFω(k) =

∑l−1
i=0 ki2

i.
2: Compute Pi = iP for all i ∈ {1, 3, 5, 7, ..., 2ω−1 − 1}.
3: Q = O.
4: For i = l − 1 downto 0 do
5: Q = 2Q.
6: If ki �= 0 then
7: If ki > 0 then Q = Q+ Pki .
8: Else Q = Q− Pki .
9: Return (Q).



346 N.A.F. Mohamed, M.H.A. Hashim, and M. Hutter

[1D + [2ω−2 − 1]A] + [
l

ω + 1
A+ lD]. (2)

Note that most of the described methods above do not per se provide resistance
against side-channel attacks [15,18]. The methods have to provide at least a con-
stant runtime and (even better) a regular structure to resist against most of these
attacks, for example, as provided by the Montgomery powering ladder [12,20].
There, a point addition and doubling is performed in every loop iteration achiev-
ing a density of 1 (lA+ lD).

2.2 Fixed Base-Point Methods

When the base point P is fixed, the efficiency of scalar multiplication can be
improved by pre-computations. The idea is to pre-compute every multiple 2iP
where 0 < i < l. If theoretically all 2iP points are pre-computed, the com-
plexity of scalar multiplication is reduced to only l

2A (without the need of any
doublings).

Similar to generic methods, fixed base-point methods can be mainly separated
into windowing, NAF windowing, and fixed-base comb techniques. One of the
first who proposed a fixed-base windowing technique has been due to Brickell,
Gordon, McCurley, and Wilson (BGMW) [4]. They proposed to split the scalar
k into d slices, where d = �l/ω�. The runtime complexity is then reduced to
(2ω+d−3)A. Similarly, a NAF windowing technique can be applied which further

reduces the complexity to approximately (2
ω+1

3 +d−2)A, where d = �(l+1)/ω�.
In the following, we will introduce two common techniques proposed by Lim

and Lee [16] as well as Tsaur and Chou [28]. Both methods are based on a fixed-
base comb technique. Afterwards, we will present our proposed method that
makes use of both ideas to reduce the complexity.

3 Fixed-Base Comb Methods

The main idea of fixed-base comb methods is to represent the scalar k as a binary
matrix of h rows and v columns. The matrix is then processed column-wise from
right-to-left or from left-to-right.

3.1 Lim and Lee Method

In 1994, Lim and Lee [16] introduced a comb technique that divides the scalar k
into h blocks Ki from right-to-left, for 0 ≤ i ≤ h− 1, of equal size a = � l

h� (we
pad zeros if necessary). Then, subdivide each block Ki from up-to-down into v
subblocks ki,j of equal size b = �av �, where 0 ≤ j ≤ v − 1. We can rewrite the h
blocks of k in terms of a binary matrix, i.e.,



Improved Fixed-Base Comb Method for Fast Scalar Multiplication 347

k =

⎡⎢⎢⎢⎢⎢⎢⎣
K0

...
Ki

...
Kh−1

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
k0,v−1 · · · k0,j · · · k0,0

...
...

...
ki,v−1 · · · ki,j · · · ki,0

...
...

...
kh−1,v−1 · · · kh−1,j · · · kh−1,0

⎤⎥⎥⎥⎥⎥⎥⎦ =

v−1∑
j=0

h−1∑
i=0

ki,j2
jb2ia.

Let P0 = P and Pi = 2aPi−1 = 2iaP for 0 < i < h. Then, we can rewrite kP as

kP =

v−1∑
j=0

h−1∑
i=0

ki,j2
jb2iaP

=

v−1∑
j=0

h−1∑
i=0

ki,j2
jbPi. (3)

Since Ki is of size a, we can let Ki = ei,a−1...ei,1ei,0 be the binary representation
of Ki for all 0 ≤ i < h, and hence ki,j = ei,jb+b−1...ei,jb+1ei,jb is the binary
representation of ki,j , therefore

kP =

b−1∑
t=0

2t(

v−1∑
j=0

h−1∑
i=0

ei,jb+t2
jbPi). (4)

Suppose that the following values are pre-computed and stored for all 1 ≤ s < 2h

and 1 ≤ j ≤ v − 1,

G[0][s] = eh−1Ph−1 + eh−2Ph−2 + ...+ e0P0,

G[j][s] = 2b(G[j − 1][s]) = 2jbG[0][s],

where the index s is equal to the decimal value of eh−1...e1e0. Therefore, we can
rewrite kP as follows

kP =
b−1∑
t=0

2t(
v−1∑
j=0

G[j][Ij,t]) (5)

where Ij,t is the decimal value of eh−1,jb+t...e0,jb+t.
Now we can use the left-to-right binary method to compute kP using these

pre-computed values. The number of elliptic-curve operations in the worst case
is a + b − 2, and since Ij,t is of size h, we may assume that the probability
of Ij,t being zero is 1

2h
and Ij,t occurs a times, thus the expected number of

elliptic-curve operations is reduced to (1− 1
2h )a+ b− 2.



348 N.A.F. Mohamed, M.H.A. Hashim, and M. Hutter

3.2 Tsaur and Chou Method

In 2005, Tsaur and Chou [28] proposed a new fixed-base comb method by ap-
plying a NAF representation of the scalar k. Furthermore, they divided k into
h× v blocks from up-to-down and then from right-to-left. Moreover, they used
a special doubling operation proposed by Sakai and Sakurai [23] which increases
the performance in addition.

Let k be an l-bit scalar represented in NAF. First, we divide k from up-to-
down into a blocks of equal size h = � l

a�. Thus we can write k as follows

k = ca−1ca−2...c1c0 =

a−1∑
l=0

cl2
lh, (6)

Then, from right-to-left we divide the h× a blocks into h× v blocks, each of size
b = �av �.

Let P0 = P and Pj = 2hbPj−1 = 2jhbP for 0 < j < v. Therefore, we can
rewrite kP as follows

kP = ca−1ca−2...c1c0P =

a−1∑
l=0

cl2
lhP =

b−1∑
t=0

2th(

v−1∑
j=0

cjb+t2
jhbP ), (7)

where cjb+t = eh−1,jb+t...e1,jb+te0,jb+t is the NAF representation. Suppose that

the following values are pre-computed and stored for all 1 ≤ s ≤
∑�h

2 �
i=1 2

h−2i+1

and 0 ≤ j ≤ v − 1

G[0][s] = eh−12
h−1P + eh−22

h−2P + ...+ e0P,

G[j][s] = 2hb(G[j − 1][i]) = 2jhbG[0][s],

where the index s is equal to the decimal value of eh−1...e1e0. Therefore, we can
rewrite kP as follows

kP =
b−1∑
t=0

2th(
v−1∑
j=0

G[j][Ij,t]), (8)

where Ij,t is the decimal number of eh−1,jb+t...e1,jb+te0,jb+t.
We know that NAF is always sparse, hence the probability of Ij,t being zero

is 1
2h

and Ij,t occurs a times, thus the number of elliptic-curve operations in

the worst case is (1 − 1
2h
)a + b − 2. And the expected number of elliptic-curve

operations required is (1− (23 )
h)a+ b− 2 on average.

Direct Doubling Method. When the multiplier k is a power of 2, Sakai and
Sakurai [23] introduced an efficient method to compute kP = 2rP (r ≥ 1) on
elliptic curves over Fp. Given a point P = (x1, y1) ∈ Fp, their method compute
2rP directly. Algorithm3 from [23] illustrates their method.



Improved Fixed-Base Comb Method for Fast Scalar Multiplication 349

Algorithm 3. Sakai-Sakurai method for direct doubling

Require: A positive integer r such that k = 2r and P ∈ E(Fq).
Ensure: k = 2rP
1: A1 = x1, B1 = 3x

2
1 + a and C1 = −y1.

2: For i = 2 to r.
3: Ai = B2

i−1 − 8Ai−1C
2
i−1.

4: Bi = 3A
2
i + 16

i−1a(
∏i−1

j=1 Cj)
4.

5: Ci = −8C4
i−1 −Bi−1(Ai − 4Ai−1C

2
i−1).

6: Compute Dr = 12ArC
2
r −B2

r .

7: Compute x2r =
B2

r−8ArC
2
r

(2r
∏r

i=1 Ci)
2 .

8: Compute y2r =
8C4

r−BrDr

(2r
∏r

i=1 Ci)
3 .

9: Return x2r and y2r .

In Table 1, we give a comparison of required numbers of multiplication (M),
squaring (S), and inversion (I) required to performed the scalar multiplication
k = 2rP between direct doubling method and separate r doubling.

Table 1. Complexity Comparison

Method S M I

Direct Doubling 4r + 1 4r + 1 1
Separate r Doubling 2r 2r r

4 Our Proposed Method

We propose a new method for elliptic-curve scalar multiplication based on the
methods of Lim-Lee [16] and Tsaur-Chou [28]. In our method, the scalar k is
represented in width-ω NAF. Furthermore, it is divided into ω × v blocks from
up-to-down and then from right-to-left as in the method of Tsaur-Chou. In order
to illustrate our method, let k be represented in width-ω NAF with size l. First,
we divide k into a = � l

ω � blocks of equal size ω (we pad the last block with aω− l
zeros if necessary), therefore, we can write k as follows

k = Ka−1Ka−2...K1K0 =

a−1∑
d=0

Kd2
dω, (9)

where 0 ≤ d < a.
Then, each block Kd is a column of ω bits (K0 represents the first ω bits, K1

the second ω bits, ... , and Ka−1 the last ω bits), i.e.,



350 N.A.F. Mohamed, M.H.A. Hashim, and M. Hutter

k =
[
Ka−1...Kd...K0

]
=

⎡⎢⎢⎢⎢⎢⎢⎣

ka−1,(a−1)ω · · · kd,dω · · · k0,0
...

...
...

ka−1,(a−1)ω+i · · · kd,dω+i · · · k0,i
...

...
...

ka−1,(a−1)ω+(ω−1) · · · kd,dω+(ω−1) · · · k0,ω−1

⎤⎥⎥⎥⎥⎥⎥⎦ .

Note that, for each element kd,dω+i in the matrix the first subscript d indicates
the column, whereas the second subscript dω + i indicates the exact bit index
from width-ω NAF(k). To simplify the notation in the following we write kd,dω+i

as kd,i.
From right-to-left we divide the ω × a blocks into ω × v blocks, each of size

b = �av �, i.e.,

k =
[
Ka−1...Ka−b · · · Kjb+b−1...Kjb · · · Kb−1...K0

]

=

⎡⎢⎢⎢⎢⎢⎢⎣
ka−1,0...ka−b,0 · · · kjb+b−1,0...kjb,0 · · · kb−1,0...k0,0

...
...

...
ka−1,i...ka−b,i · · · kjb+b−1,i...kjb,i · · · kb−1,i...k0,i

...
...

...
ka−1,ω−1...ka−b,ω−1 · · · kjb+b−1,ω−1...kjb,ω−1 · · · kb−1,ω−1...k0,ω−1

⎤⎥⎥⎥⎥⎥⎥⎦ .

kP = Ka−1Ka−2...K1K0P =
v−1∑
j=0

b−1∑
t=0

(Kjb+t2
tω)2jbωP =

b−1∑
t=0

2tω
v−1∑
j=0

Kjb+t2
jbωP,

where Kjb+t = kjb+t,ω−1...kjb+t,0 is in width-ω NAF representation. The maxi-
mum value of Kjb+t is (2

ω−1 − 1)2ω−1.
Suppose that the following values are all pre-computed and stored for all

s ∈ {1, 2, 22, 23, ..., 2ω−1}, 0 < j ≤ v − 1 and d ∈ {1, 3, ..., 2w−1 − 1}

G[0][sd] = eω−12
ω−1P + eω−22

ω−2P + ...+ e0P = sdP,

G[j][sd] = 2ωb(G[j − 1][sd])

= 2jωbG[0][sd] = 2jωbsdP,

where the index sd is equal to the decimal value of (eω−1...e1e0). Therefore, we
can rewrite kP as follows

kP =

b−1∑
t=0

2tω(

v−1∑
j=0

G[j][Ij,t]) (10)

where Ij,t is the decimal value of kjb+t,ω−1...kjb+t,0. Algorithm 4 can be used to
compute kP using the proposed method.



Improved Fixed-Base Comb Method for Fast Scalar Multiplication 351

Algorithm 4. Proposed width-ω NAF method for scalar multiplication

Require: Positive integers ω, v, k = (kl−1, ..., k1, k0)NAFω and P ∈ E(Fq).
Ensure: Q = kP .
1: a = � l

ω
� and b = �a

v
�.

2: Compute G[0][sd] and G[j][sd] for all s ∈ {1, 2, 22, 23, ..., 2ω−1}, 0 < j ≤ v − 1 and
d ∈ {1, 3, 5, ..., 2w−1 − 1}.

3: Q = O.
4: For t = b− 1 downto 0 do
5: If ω = 1 then
6: Q = 2Q.
7: Else
8: Use Algorithm3 to compute Q = 2ωQ.
9: For j = v − 1 downto 0 do
10: Ij,t = (kjb+t,ω−1...kjb+t,0)NAFω .
11: If Ij,t > 0 then
12: Q = Q+G[j][Ij,t].
13: Else if Ij,t < 0
14: Q = Q−G[j][−Ij,t].
15: Return (Q).

From [21], we know that the average density of non-zero digits among all
width-ω NAF of length l is approximately 1/(ω + 1), therefore, we can assume
that the probability of Ij,t being zero on average is (ω/(ω + 1))ω, hence the
average cost of our proposed method is

(1 − (
ω

ω + 1
)ω)a+ b− 2. (11)

On the other hand, the density of non-zero digits among all width-ω NAF of
length l in the worst case is 1/ω, therefore, we can assume that the probability
of Ij,t being zero is at most ((ω−1)/ω)ω, hence the cost of our proposed method
in the worst case is

(1 − (
ω − 1

ω
)ω)a+ b− 2. (12)

5 Simultaneous Scalar Multiplication

In elliptic curve cryptosystems, like in ECDSA, we need to perform the compu-
tation of multiple scalar multiplication, i.e., the computation of kP + rQ, where
P,Q ∈ E(Fq) are two elliptic-curve points and k, r are two large integers such
that, 0 ≤ k < ordE(P ) and 0 ≤ r < ordE(Q). The direct way is to perform
two single scalar multiplications kP, rQ and then one point addition, but, since
scalar multiplication is the most time consuming operation in ECC, it is ad-
visable to perform two scalar multiplications simultaneously. There are many
proposals given in literature to perform multiple scalar multiplications, we refer
the reader to [5,9] for further details.



352 N.A.F. Mohamed, M.H.A. Hashim, and M. Hutter

Our proposed method in Section 4 can be used to accelerate the computation
of simultaneous scalar multiplication. In order to illustrate that, assume that we
want to compute kP + rQ, let k and r be represented in width-ω NAF be l-bit
multipliers, then k and r can be represented as follows

k = Ka−1...K0 =
a−1∑
d=0

Kd2
dω and r = Ra−1...R0 =

a−1∑
d=0

Rd2
dω. (13)

Let P0 = P,Q0 = Q,Pj = 2ωbPj−1 = 2jωbP , and Qj = 2ωbQj−1 = 2jωbQ for
0 < j < v. Therefore, as in Section 4 we can write kP and rQ as follows

kP =
b−1∑
t=0

2tω
v−1∑
j=0

Kjb+t2
jbωP and rQ =

b−1∑
t=0

2tω
v−1∑
j=0

Rjb+t2
jbωQ, (14)

where Kjb+t = kjb+t,ω−1...kjb+t,0 and Rjb+t = rjb+t,ω−1...rjb+t,0 are in width-ω
NAF representations.

Therefore we can write kP + rQ as follows

kP + rQ =

b−1∑
t=0

2tω
v−1∑
j=0

(Kjb+t2
jbωP +Rjb+t2

jbωQ), (15)

Suppose that the following values are pre-computed and stored for all s ∈
{1, 2, 22, 23, ..., 2ω−1}, 0 < j ≤ v − 1 and d ∈ {1, 3, ..., 2w−1 − 1}

Gp[0][sd] = eω−12
ω−1P + eω−22

ω−2P + ...+ e0P = sdP,

Gp[j][sd] = 2ωb(Gp[j − 1][sd])

= 2jωbGp[0][sd] = 2jωbsdP

Gq[0][sd] = eω−12
ω−1Q+ eω−22

ω−2Q+ ...+ e0Q = sdQ,

Gq[j][sd] = 2ωb(Gq[j − 1][sd])

= 2jωbGq[0][sd] = 2jωbsdQ,

where the index sd is equal to the decimal value of (eω−1...e1e0). Therefore, we
can rewrite kP + rQ as follows

kP + rQ =
b−1∑
t=0

2tω
v−1∑
j=0

(Gp[j][Mj,t] +Gq[j][Nj,t]), (16)

where Mj,t is the decimal value of kjb+t,ω−1...kjb+t,0 (0 ≤ t < b), and Nj,t is
the decimal value of rjb+t,ω−1...rjb+t,0 (0 ≤ t < b). Algorithm5 can be used to
compute kP using the proposed method.

The expected runtime of Algorithm5 is

2(1− (
ω

ω + 1
)ω)a+ b− 2. (17)



Improved Fixed-Base Comb Method for Fast Scalar Multiplication 353

Algorithm 5. Proposed width-ω NAF method for multiple scalar multiplication

Require: Positive integers ω, v, P,Q ∈ E(Fq), k = (kl−1, ..., k1, k0)NAFω ,
r = (rl−1, ..., r1, r0)NAFω .

Ensure: kP + rQ.
1: a = � l

ω
� and b = �a

v
�.

2: Compute Gp[0][sd] and Gp[j][sd] for all s ∈ {1, 2, 22, 23, ..., 2ω−1}, 0 < j ≤ v − 1
and d ∈ {1, 3, 5, ..., 2w−1 − 1}.

3: Compute Gq[0][sd] and Gq[j][sd] for all s ∈ {1, 2, 22, 23, ..., 2ω−1}, 0 < j ≤ v − 1
and d ∈ {1, 3, 5, ..., 2w−1 − 1}.

4: R = O.
5: For t = b− 1 downto 0 do
6: If ω = 1 then
7: R = 2R.
8: Else
9: Use Algorithm3 to compute R = 2ωR.
10: For j = v − 1 downto 0 do
11: Mj,t = (kjb+t,ω−1...kjb+t,0)NAFω .
12: If Mj,t > 0 then
13: R = R+Gp[j][Mj,t].
14: Else if Mj,t < 0
15: R = R−Gp[j][−Mj,t].
16: For j = v − 1 downto 0 do
17: Nj,t = (rjb+t,ω−1...rjb+t,0)NAFω .
18: If Nj,t > 0 then
19: R = R+Gq [j][Nj,t].
20: Else if Nj,t < 0
21: R = R−Gq [j][−Nj,t].
22: Return (R).

6 Resistance to Side Channel Attacks

The method of Lim-Lee, Tsaur-Chou, and our proposed method are per se not
resistant to side-channel attacks. Side-Channel Analysis (SCA) attacks have been
first introduced by Kocher et al. [14,15,18] in 1996. By monitoring physical char-
acteristics of a given implementation, e.g., the power consumption or the timing
behavior, an attacker is able to extract secret information such as the ephemeral
key or private key in asymmetric-key cryptography. One simple countermeasure
to prevent an attacker from being able to recover the bit values of the scalar
k by timing attacks and Simple Power Analysis (SPA) [14], is to execute the
same code independently of the value of the scalar k, i.e., to make the algorithm
have constant runtime. By having a look at the given fixed-base comb methods
of Lim-Lee, Tsaur-Chou, and our proposed method, it shows that the scalar is
leaking by implementations because the runtime of the algorithms depends on
the number of non-zero digits of the secret scalar, cf. [24]. Therefore, one can
(regularly) add the point at infinity O when Ij,t is equal to zero and even add O
to the pre-computed values. In this case, a point addition is executed in every
loop iteration and a constant runtime is obtained with complexity of a+ b − 2.



354 N.A.F. Mohamed, M.H.A. Hashim, and M. Hutter

Table 2. Number of non-zero columns for different block sizes h of Tsaur-Chou and
our proposed method for a 160-bit scalar multiplication

h Tsaur-Chou Tsaur-Chou Proposed Proposed
worst average worst average

2 61 45 61 45
3 48 38 38 32
4 39 33 29 25
5 32 29 23 20
6 27 25 18 17
7 23 22 16 14
8 21 21 14 13
9 18 18 12 12
10 17 17 12 11
11 15 15 10 10
12 14 14 10 9
13 13 13 9 9
14 12 12 8 8
15 11 11 8 7

A more sophisticated approach is to guarantee that all values of Ij,t are non-
zero, as for example proposed by Hedabou et al. [10,11] or Feng et al. [7]. Another
solution would be to use highly regular (exponent-recoding) techniques such as
proposed by Joye and Tunstall [17]. In order to provide resistance against Dif-
ferential Power Analysis (DPA), we also recommend to include randomization
techniques as proposed by Coron [6].

7 Discussion and Results

In Table 3, we give a runtime-complexity comparison of Tsaur-Chou and our pro-
posed method. We compare the runtime in terms of worst-runtime cost, average-
runtime cost, and memory-storage cost. By having a look at the table, one can
notice that when h = ω = 2, our proposed method and Tsaur-Chou method
are identical. When h = ω = 3, the worst cost of our proposed method is equal
to the average cost of Tsaur-Chou method. Furthermore, when h = ω > 3, the
worst cost of our proposed method is less than the average cost of Tsaur-Chou
method. For fixed values of h and v, the term b− 2 is fixed for both methods for
fixed key-bit size of the scalar in average cost and worst cost.

Table 3. Runtime complexity of Tsaur-Chou and our proposed method

Method Worst cost Average cost Storage cost

Tsaur-Chou [28] (1− ( 1
2
)h)a+ b− 2 (1− ( 2

3
)h)a+ b− 2

∑�h
2
�

i=1 2
h−2i+1v

Proposed (1− (ω−1
ω
)ω)a+ b− 2 (1− ( ω

ω+1
)ω)a+ b− 2 ω2ω−2v



Improved Fixed-Base Comb Method for Fast Scalar Multiplication 355

2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

h

N
um

be
r 

of
 n

on
−

ze
ro

 c
ol

um
ns

Tsaur−Chou worst
Tsaur−Chou average
Proposed worst
Proposed average

Fig. 1. Comparison of Tsaur-Chou [28] and our proposed method for a 160-bit scalar
multiplication

In Table 2 and Figure 1, we analyze the number of non-zero columns for Tsaur-
Chou and our proposed method. Values are given for different block sizes h and
a 160-bit scalar multiplication. For our method and in order to simplify the com-
parison, we have chosen h = ω. It shows that our method performs best in both
the average-cost and the worst-cost scenario. In particular, by evaluating the
performance for all possible block sizes 2 ≤ h ≤ 15, we obtain an improvement
by 33 to 38% (for the worst and average case).

For a fixed value of h, we noticed that the number of pre-computations (stor-
age cost) is increased in our proposed method. In devices with limited resources
(memory), in most cases we found a suitable choice of h, the window size ω and
v, which makes our method best. In order to illustrate this, we assume that the
scalar has a bit size of 160 bits. First, we will fix the window size ω to be equal h
and then, depending on the available memory, we choose h and v. For example,
if storage is available for 5 elements and if we apply the Tsaur-Chou method, we
have two choices: (1) h = 2 and v = 2 (the cost1 is 84), or (2) h = 3 and v = 1
(the cost is 90). Now, using our proposed method, we have only one choice, i.e.,
h = 2 and v = 2 (the cost is 84). This coincides with what we previously noted.

If storage is available for 18 elements and if we use the Tsaur-Chou method,
one can choose between three choices: (1) h = 2 and v = 9 (the cost is 52), (2)
h = 3 and v = 3 (the cost is 49), or (3) h = 4 and v = 1 (the cost is 72). For our
proposed method, there are only two choices, i.e., (1) h = 2 and v = 9 (the cost
is 52) or (2) h = 3 and v = 3 (the cost is 48). Thus, we will choose h = 3 and
v = 3 which has a minimum cost of 48. In Table 4, we give the suitable choices
of h and v when the available storage vary from 2 to 50 elements.

1 The cost is measured in terms of number of elliptic-curve point addition operations.



356 N.A.F. Mohamed, M.H.A. Hashim, and M. Hutter

Table 4. Runtime complexity of Tsaur-Chou and our proposed method for different
available storage elements (2-50) and suitable choices of h and v for 160-bit key size

Available Tsaur-Chou Proposed
storage method method
elements h v costs AUSa h v costs AUSa

2-3 2 1 124 2 2 1 124 2
4-5 2 2 84 4 2 2 84 4
6-7 2 3 70 6 2 3 70 6
8-9 2 4 64 8 2 4 64 8
10-11 2 5 60 10 2 5 60 10
12-13 2 6 57 12 2 6 57 12

3 2 57 12
14 2 7 55 14 2 7 55 14
15 3 3 54 15 2 7 55 14
16-17 2 8 54 16 2 8 54 16
18-19 2 9 52 18 3 3 48 18
20-23 3 4 50 20 3 3 48 18
24 3 4 50 20 3 4 44 24
25-29 3 5 47 25 3 4 44 24
30-34 3 6 45 30 3 5 41 30
35 3 7 44 35 3 5 41 30
36-39 3 7 44 35 3 6 39 36
40-41 4 4 42 40 3 6 39 36
42-47 4 4 42 40 3 7 38 42
45 3 9 42 45
48-49 4 4 42 40 3 8 37 48
50 4 5 40 50 3 8 37 48

a The term AUS is referred to the number of elements actually used to store.

8 Conclusion

In this paper, we proposed an efficient method for scalar multiplication by com-
bining the ideas of Lim-Lee [16] and Tsaur-Chou [28]. Our proposed method
makes a significant reduction in terms of number of elliptic-curve point addi-
tion operations. By comparing our method with previous work, it shows that
when h = ω = 2 our proposed method and Tsaur-Chou method are identical,
when h = ω = 3 the worst cost of our proposed method is equal to the average
cost of Tsaur-Chou method, and when h = ω > 3 the worst cost of our proposed
method is less than the average cost of Tsaur-Chou method.

Also we showed that our proposed method can be used for speeding up simul-
taneous scalar multiplication of elliptic curves which is interesting, for example,
in many digital signature verification algorithms.

For pre-computations, if storage space is disregarded, our proposed method
is the best choice and we can define h ≥ ω, otherwise ω = h. There is always
a suitable choice for h and v which make our method best. In Table 4, we gave



Improved Fixed-Base Comb Method for Fast Scalar Multiplication 357

the suitable choices of h and v when the available storage vary from 2 to 50
elements.

Acknowledgements. This work has been supported by the Faculty of Math-
ematical Sciences of the University of Khartoum (Sudan) and the European
Commission through the ICT program under contract ICTSEC- 2009-5-258754
(Tamper Resistant Sensor Node - TAMPRES).

References

1. Booth, A.D.: A signed binary multiplication technique. Q. J. Mech. Applied Math.,
236–240 (1951)

2. Bosma, W.: Signed bits and fast exponentiation. Jornal de Théorie des Nombers
de Bordeaux 13, 27–41 (2001)

3. Brauer, A.: On addition chains. Bull. Amer. Math. Soc. 45, 736–739 (1939)

4. Brickell, E.F., Gordon, D.M., McCurley, K.S., Wilson, D.B.: Fast Exponentiation
with Precomputation (Extended Abstract). In: Rueppel, R.A. (ed.) EUROCRYPT
1992. LNCS, vol. 658, pp. 200–207. Springer, Heidelberg (1993)

5. Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren,
F.: Handbook of elliptic and hyperelliptic curve cryptography. Taylor and Francis
Group, LLC (2006)

6. Coron, J.-S.: Resistance against Differential Power Analysis for Elliptic Curve
Cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp.
292–302. Springer, Heidelberg (1999)

7. Feng, M., Zhu, B.B., Xu, M., Li, S.: Efficient comb elliptic curve multiplication
methods resistant to power analysis. IACR Cryptology ePrint Archive, 2005:222
(2005)

8. Gordan, D.M.: A survey of fast exponentiation methods. Journal of Algorithms 27,
129–146 (1998)

9. Hankerson, D., Menezes, A., Vanstone, S.: Guide to elliptic curve cryptography.
Springer, New York (2004)

10. Hedabou, M., Pinel, P., Bénéteau, L.: A comb method to render ecc resistant
against side channel attacks. Paper submitted only to the Cryptology ePrint
Archive. hedabou@insa-toulouse.fr 12754 (received, December 2, 2004)

11. Hedabou, M., Pinel, P., Bénéteau, L.: Countermeasures for Preventing Comb
Method Against SCA Attacks. In: Deng, R.H., Bao, F., Pang, H., Zhou, J. (eds.)
ISPEC 2005. LNCS, vol. 3439, pp. 85–96. Springer, Heidelberg (2005)

12. Joye, M., Yen, S.-M.: The Montgomery Powering Ladder. In: Kaliski Jr., B.S.,
Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer,
Heidelberg (2003)

13. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48, 203–
220 (1987)

14. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

15. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)



358 N.A.F. Mohamed, M.H.A. Hashim, and M. Hutter

16. Lim, C.H., Lee, P.J.: More Flexible Exponentiation with Precomputation. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 95–107. Springer, Hei-
delberg (1994)

17. Joye, M., Tunstall, M.: Exponent Recoding and Regular Exponentiation Algo-
rithms. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 334–349.
Springer, Heidelberg (2009)

18. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks – Revealing the Secrets
of Smart Cards. Springer (2007) ISBN 978-0-387-30857-9

19. Miller, V.S.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

20. Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factorization.
Mathematics of Computation 48, 243–264 (1987)

21. Morain, F., Olivos, J.: Speeding up the computations on an elliptic curve using
addition-subtraction chains. Theor. Inform. Appli. 24, 531–543 (1989)

22. Reitwiesner, G.W.: Binary arithmetic. Advances in Computers 1, 231–308 (1960)

23. Sakai, Y., Sakurai, K.: Speeding up elliptic scalar multiplication using multidou-
bling. IEICE Transactions Fundamentals E85-A(5), 1075–1083 (2002)

24. Sakai, Y., Sakurai, K.: A New Attack with Side Channel Leakage During Exponent
Recoding Computations. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS,
vol. 3156, pp. 298–311. Springer, Heidelberg (2004)

25. Silverman, J.H.: The arithmetic of elliptic curves, vol. 106. Springer, Berlin (1986)
26. Solinas, J.A.: Effiecient arithmetic on koblitz curves. Designs, Codes and Cryptog-

raphy 19, 195–249 (2000)

27. Thurber, E.G.: On addition chains l(mn) ≤ l(n) − b and lower bounds for c(r).
Duke Mathematical Journal 40, 907–913 (1973)

28. Tsaur, W.-J., Chou, C.-H.: Efficient algorithm for speeding up the computations
of elliptic curve cryptosystem. Applied Mathematics and Computation 168, 1045–
1064 (2005)

A Example

In order to illustrate our method, we select at random a positive integer k =
1065142573068 and choose ω = 3. First, we represent k in width-3 NAF,

k = (0100001̄000000000001̄001̄001001̄00300000000300).

Then, we divide from up-to-down to a = � 413 � = 14 blocks of size 3, such that

k =

⎡⎣0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1̄ 0 0 0 1̄ 1̄ 1 1̄ 3 0 0 3

⎤⎦ . (18)

Then, from right-to-left we divide the 3× 14 blocks to 3× 7 blocks, each of size
b = � 147 � = 2, such that

k =

⎡⎣00 00 00 00 00 00 00
10 00 00 00 00 00 00
00 1̄0 00 1̄1̄ 11̄ 30 03

⎤⎦ . (19)



Improved Fixed-Base Comb Method for Fast Scalar Multiplication 359

Next, we compute and store the following values. For pre-computed values
G[0][sd], where s ∈ {1, 2, 4} and d ∈ {1, 3}:

G[0][1] = P,G[0][2] = 2P,G[0][4] = 4P,G[0][3] = 3P,G[0][6] = 6P,G[0][12] = 12P.

For pre-computed values G[j][sd], where s ∈ {1, 2, 4}, d ∈ {1, 3} and 0 ≤ j ≤ 6:

G[j][1] = 26jP,G[j][2] = 26j(2P ), G[j][4] = 26j(4P ),

G[j][3] = 26j(3P ), G[j][6] = 26j(6P ), G[j][12] = 26j(12P ).

Next, compute Ij,t = (e2,2j+te1,2j+te0,2j+t)2 for all 0 ≤ t ≤ 1 and 0 ≤ j ≤ 6 as
follows:

I0,0 = (e2,0e1,0e0,0)NAF3 = (300)NAF3 = 12,

I1,0 = (e2,2e1,2e0,2)NAF3 = 0,

I2,0 = (e2,4e1,4e0,4)NAF3 = (1̄00)NAF3 = −4,
I3,0 = (e2,6e1,6e0,6)NAF3 = (1̄00)NAF3 = −4,
I4,0 = (e2,8e1,8e0,8)NAF3 = 0,

I5,0 = (e2,10e1,10e0,10)NAF3 = 0,

I6,0 = (e2,12e1,12e0,12)NAF3 = 0,

I0,1 = (e2,1e1,1e0,1)NAF3 = 0,

I1,1 = (e2,3e1,3e0,3)NAF3 = (300)NAF3 = 12,

I2,1 = (e2,5e1,5e0,5)NAF3 = (100)NAF3 = 4,

I3,1 = (e2,7e1,7e0,7)NAF3 = (1̄00)NAF3 = −4,
I4,1 = (e2,9e1,9e0,9)NAF3 = 0,

I5,1 = (e2,11e1,11e0,11)NAF3 = (1̄00)NAF3 = −4,
I6,1 = (e2,13e1,13e0,13)NAF3 = (010)NAF3 = 2.

Finally, we can compute kP by using above values as follows:

kP = G[0][12] +G[1][0]−G[2][4]−G[3][4] +G[4][0] +G[5][0] +G[6][0] +

23(G[0][0] +G[1][12] +G[2][4]−G[3][4] +G[4][0]−G[5][4] +G[6][2]).



Optimal First-Order Masking

with Linear and Non-linear Bijections

Houssem Maghrebi1, Claude Carlet2,
Sylvain Guilley1,3, and Jean-Luc Danger1,3

1 TELECOM-ParisTech, Crypto Group,
37/39 rue Dareau, 75 634 Paris Cedex 13, France

2 LAGA, UMR 7539, CNRS, Department of Mathematics,
University of Paris XIII and University of Paris VIII,
2 rue de la liberté, 93 526 Saint-Denis Cedex, France
3 Secure-IC S.A.S., 80 avenue des Buttes de Coësmes,

35 700 Rennes, France

Abstract. Hardware devices can be protected against side-channel at-
tacks by introducing one randommask per sensitive variable. The compu-
tation throughout is unaltered if the shares (masked variable and mask)
are processed concomitantly, in two distinct registers. Nonetheless, this
setup can be attacked by a zero-offset second-order CPA attack. The
countermeasure can be improved by manipulating the mask through a
bijection F , aimed at reducing the dependency between the shares. Thus
dth-order zero-offset attacks, that consist in applying CPA on the dth
power of the centered side-channel traces, can be thwarted for d ≥ 2 at
no extra cost. We denote by n the size in bits of the shares and call F
the transformation function, that is a bijection of Fn

2 . In this paper, we
explore the functions F that thwart zero-offset HO-CPA of maximal or-
der d. We mathematically demonstrate that optimal choices for F relate
to optimal binary codes (in the sense of communication theory). First,
we exhibit optimal linear F functions. Second, we note that for values
of n for which non-linear codes exist with better parameters than linear
ones. These results are exemplified in the case n = 8, the optimal F
can be identified:it is derived from the optimal rate 1/2 binary code of
size 2n, namely the Nordstrom-Robinson (16, 256, 6) code. This example
provides explicitly with the optimal protection that limits to one mask of
byte-oriented algorithms such as AES or AES-based SHA-3 candidates.
It protects against all zero-offset HO-CPA attacks of order d ≤ 5. Even-
tually, the countermeasure is shown to be resilient to imperfect leakage
models.

Keywords: First-order masking countermeasure (CM), high-order cor-
relation power analysis (HO-CPA), zero-offset HO-CPA, linear and non-
linear codes.

1 Introduction

Hardware implementations of block-oriented cryptographic functions are vulner-
able to side-channel attacks. Yet their lack of algebraic structure makes them

A. Mitrokotsa and S. Vaudenay (Eds.): AFRICACRYPT 2012, LNCS 7374, pp. 360–377, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.telecom-paristech.fr/en/eng/home.html
http://www.comelec.enst.fr/recherche/sen.en
http://www.math.univ-paris13.fr/laga/
http://www.secure-ic.com/


Optimal First-Order Masking with Linear and Non-linear Bijections 361

hard to protect efficiently. Boolean masking is one answer to secure them, be-
cause it can be adapted to any function implemented. Early masking schemes
involved only one mask per data to protect [26]. Nonetheless, straightforward
implementations of this “first-order” countermeasure (CM) happened to be vul-
nerable to zero-offset “second-order” attacks [29,17]. We call a “first-order” CM
an implementation where one single mask protects the sensitive data. Zero-offset
attacks use one sample of side-channel trace, and are thus monovariate. They ap-
ply when the masked variable and the mask are consumed simultaneously by the
implementation, which is commonplace in hardware. Indeed, this architectural
strategy allows to keep the throughput unchanged. Zero-offset second-order at-
tacks consider not the plain observations themselves, but their variance instead.
The variance of the leakage function, that involves its squaring (second-order mo-
ment), does depend strongly on the sensitive data, which allows for an attack.
Consequently, a branch of the research on masking CMs has evolved towards
masking schemes with multiple masks. Besides, another improvement direction
consists in the adaptation of the first-order CMs to resist attacks that use high-
order moments of one single side-channel observation (commonly referred to as
zero-offset HO-CPA, of order d > 1). Such result can be obtained by trans-
forming the mask before it is latched in register [7]. Concretely, a bijection F is
applied to the mask, in a view to reduce its dependency with the masked data.
The goal of this article is to find bijections F that protect against zero-offset
attacks of order d as high as possible.

The rest of the paper is structured as follows. In Sec. 2, the first-order masking
scheme that involves the bijection F is described, and its leakage is explained
under the Hamming distance model. In Sec. 3, the best zero-offset HO-CPA is
derived for all orders d; also, a necessary and sufficient condition on F for the
CM to resist all zero-offset HO-CPA of orders 1, 2, · · · , d is formulated. Based on
this formal statement of the problem, optimal solutions for F are researched and
given in Sec. 4. The characterization of some optimal bijections F is conducted in
Sec. 5, where both a security analysis against zero-offset HO-CPA and a leakage
analysis with an information theoretic metric are conducted. This analysis is
carried out both with a perfect and an imperfect leakage model. The conclusions
are in Sec. 6. The article is self-contained without those appendices; however,
they bring interesting insights to support the article’s body.

2 Studied Implementation and Its Leakage

The sensitive variable is noted x and the mask m. The two shares manipulated
in a Boolean first-order CM are (x ⊕ m,m). In the CM we study, a bijection
F is applied on the mask share. Thus, the shares are now (x ⊕m,F (m)). The
schematic of this scheme is illustrated in Fig. 1. The variables x and x′ are the
two consecutive values of the sensitive variable. Similarly, m and m′ are the two
consecutive values of the mask. This figure highlights two registers, able to hold
each one n-bit word. The left register hosts the masked data, x⊕m, whereas the
register on the right holds F (m), the mask m passed through the bijection F .



362 H. Maghrebi et al.

In this article, we are concerned with the leakage from those two registers only.
Indeed, they are undoubtedly the resource that leaks the most. Also, the rest
of the logic can be advantageously hidden in tables, thereby limiting their side-
channel leakage [22]. It is referred to as “tabulated round logic” in Fig. 1. This
figure provides with an abstract description of the round, since it usually splits
nicely into independent datapaths of smaller bitwidth. Typically, an AES can be
pipelined to manipulate only bytes. However, in practice, article [16] (resp. [20])
shows how to handle AES substitution box with 4 bit (resp. 2 bit) non-linear
data transformations.

n bits n bits

x⊕m F (m)
a b

Tabulated round logic
a′ b′

F (m′)x′ ⊕m′

Memory

simultaneous
leakage

Fig. 1. Setup of the first-order masking countermeasure with bijection F

The computation of the bijection F shall not leak. Actually, F can be merged
into memories, hence being totally dissolved. Therefore, the two shares (x ⊕
m,F (m)) remain manipulated concomitantly only once, namely at the clock
rising edge. For the sake of illustration, we provide with a typical functionality
of this combinational logic hidden in memory. If we denote by C the round
function and by R the mask refresh function, then the table implements:

– a′ = C(a⊕ F−1(b))⊕R(F−1(b)) and
– b′ = F (R(F−1(b))).

The detail of the tabulated round logic is represented in Fig. 2.
In the context of a side-channel attack against a block cipher, either the first

round or the last round is targeted. Thus either the input x (plaintext) or the
output x′ (ciphertext) is known by the attacker. We make the assumption that
the device leaks in the Hamming distance model. This model is realistic and
customarily assumed in the literature related to side-channel analysis [2,25].
Therefore, the sensitive variable to protect is x⊕ x′, noted z. The leakage of the
studied hardware (Fig. 1) is thus:

HD(x⊕m,x′ ⊕m′) + HD(F (m), F (m′))
= HW(z ⊕m⊕m′) + HW(F (m)⊕ F (m′)) . (1)

In this equation, the Hamming distance operator HD and the Hamming weight
operator HW are defined as HD(a, b) = HW(a⊕b)

.
=
∑n

i=1(a⊕b)i. F is a constant
bijection that will contribute to increase the security of the CM. In addition, F
is a public information, that we assume known by an attacker.



Optimal First-Order Masking with Linear and Non-linear Bijections 363

n bits

x⊕m F (m)
a b

n bits

C R

F

a′ b′

F (m′)x′ ⊕m′

Memory

simultaneous
leakage

F−1

Fig. 2. Detail of the function implemented in the tabulated round logic shown in Fig. 1

3 Optimal Function in Zero-Offset dth-Order CPA

3.1 Optimal Function fopt Definition

Prouff et al. have shown in [19] that an attacker can optimize a CPA [2] against
a device leaking L by computing the correlation between the random variables
L and fopt(Z), where Z is the sensitive variable. The function fopt( · ) is called
the “optimal function”, and is defined as fopt(z) = E[L − E[L] | Z = z]. In this
definition, the capital letters denote random variables, and E is the expectation
operator. If z �→ fopt(z) is constant (i.e. fopt(Z) is deterministic), then [19]
shows that the correlation coefficient of the attack is null, which means that the
attack fails.

This result can be applied on the studied leakage function of Eqn. (1), without
F (i.e. with F equal to the identity function Id). The leakage function therefore
simplifies in HW(Z ⊕M ′′) + HW(M ′′), where M ′′ .

= M ⊕ M ′ is a uniformly
distributed random variable in Fn

2 .

– In a zero-offset first-order attack, the attacker uses fopt(Z) = E[HW(Z ⊕
M ′′) + HW(M ′′)− n | Z] = 0, which is deterministic,

– whereas in a zero-offset second-order attack, the attacker uses fopt(Z) =

E[(HW(Z ⊕M ′′) + HW(M ′′)− n)
2 | Z] = n−HW(Z), which depends on Z.

This result is easily obtained by developing the square. The only non-trivial
term in this computation is E[HW(z ⊕M ′′)×HW(M ′′)], which is proved to

be equal to n2+n
4 − 1

2HW(z) in [19, Eqn. (19)].

In summary, without F , a first-order attack is thwarted, but a second-order
zero-offset attack will succeed. In the sequel, when mentioning HO-CPA attacks,



364 H. Maghrebi et al.

we implicitly mean “zero-offset HO-CPA”, i.e. a mono-variate attack that uses
a high-order moment of the traces instead of the raw traces. Nonetheless, as
explained in [29], this second-order attack requires more traces than a first-order
attack on an unprotected version that do not use any mask. Indeed, the noise is
squared and thus its effect is exacerbated. More generally, the higher the order d
of a HO-CPA attack, the greater the impact of the noise. Thus, attacks are still
possible for small d, but get more and more difficult when d increases. Therefore,
our objective is to improve the masking CM so that the zero-offset HO-CPA
fails for orders �1, d�, with d being as high as possible. This translates in terms

of fopt(Z) by having E[(HW(Z ⊕M ⊕M ′) + HW(F (M)⊕ F (M ′))− n)
d | Z]

deterministic (i.e. independent of random variable Z) for the highest possible
values of the integer d. Thus, when developing the sum raised at the power d,
we are led to study terms of this form:

Term[p, q](fopt)(z)
.
= E[HWp[z ⊕M ⊕M ′]× HWq[F (M)⊕ F (M ′)]
= E[HWp[z ⊕M ′′]× HWq[F (M)⊕ F (M ⊕M ′′)] , (2)

where p and q are two positive integers. If either p or q is null, then trivially,
Term[p, q](fopt) is constant. We are thus interested more specifically in p and
q values that are strictly positive. We note that in order to resist d-th order
zero-offset HO-CPA, Term[p, q](fopt)(z) must not depend on z for all p and q
that satisfy p+ q ≤ d.

3.2 Condition on F for the Resistance against 2nd-Order CPA

To resist zero-offset second-order CPA, the term in Eqn. (2) must be constant
for p + q ≤ 2. As just mentioned, the cases (p, q) = (2, 0) and (0, 2) are trivial.
This subsection thus focuses on the case where p = q = 1.

The term F (m)⊕F (m⊕m′′) is also known as the value at m of the derivative
of F in the directionm′′, and notedDm′′F (m). This notion is for instance defined
in the Definition 8.2 in §8.2.2 of [5]. It can be observed that Eqn. (2) also writes as
a convolution product: Term[p, q](fopt)(z) = 1

2n

(
HW ⊗ E[HW(D(·)F (M))]

)
(z).

An appealing property of the Walsh-Hadamard transform is that it turns a
convolution into a product. So, we have:

fopt(z) = cst ⇐⇒ f̂opt(a) ∝ δ(a)
// where ∝ means “is proportional to”
// and δ( · ) is the Kronecker symbol.

⇐⇒ ĤW(a)× ̂E[HW ◦D(·)F (M)](a) =
(
n× 2n−1

)2 × δ(a)

⇐⇒ ∀a �= 0, ĤW(a) = 0 or ̂E[HW ◦D(·)F (M)](a) = 0 . (3)

To prove the second line, we note that on the one hand: ĤW(0) =
∑

z HW(z) ·
(−1)0·z = n

2 2
n and on the other hand:



Optimal First-Order Masking with Linear and Non-linear Bijections 365

̂E[HW ◦D(·)F (M)](0)

=
∑

z E[HW(DzF (M))(−1)0·z]
= E[

∑
z HW(F (M)⊕ F (M ⊕ z))]

= E[
∑

z′ HW(z′)] // Because ∀m, z �→ F (m)⊕ F (m⊕ z) is bijective

= E[n2 2
n] = n

2 2
n .

Now, if we denote by ei the lines of the identity matrix In of size n× n,

ĤW(a) =
∑
z

1

2

n∑
i=1

(1− (−1)zi) (−1)a·z

= n · 2n−1δ(a)− 1
2

∑
z

∑n
i=1(−1)(a⊕ei)·z

=

⎧⎨⎩n · 2n−1 if a = 0,
−2n−1 if ∃i ∈ �1, n�, such that a = ei,
0 otherwise.

(4)

Thus, the problem comes down to finding a function F such that:
̂E[HW ◦D(·)F (M)](a) = 0 for all a = ei. This condition rewrites:

∀a = ei,
∑
z,m

HW(F (m)⊕ F (m⊕ z))(−1)a·z = 0 . (5)

Let a �= 0. Then:∑
z,mHW(F (m)⊕ F (m⊕ z))(−1)a·z

=
∑

z,m
1
2

∑n
i=1

(
1− (−1)Fi(m)⊕Fi(m⊕z)

)
(−1)a·z

=������������n22n−1δ(a)− 1
2

∑n
i=1

∑
z,m(−1)Fi(m)⊕Fi(m⊕z)⊕a·z

= − 1
2

∑n
i=1

∑
m(−1)Fi(m)

∑
z(−1)a·z⊕Fi(m⊕z)

= − 1
2

∑n
i=1

∑
m(−1)Fi(m)

∑
z(−1)a·(z⊕m)⊕Fi(z) // z ← z ⊕m

= − 1
2

∑n
i=1

∑
m(−1)a·m⊕Fi(m)

∑
z(−1)a·z⊕Fi(z)

= − 1
2

∑n
i=1

(∑
m(−1)a·m⊕Fi(m)

)2
= − 1

2

∑n
i=1

(
(̂−1)Fi(a)

)2

.

Thus, this quantity is null if and only if ∀i ∈ �1, n�, (̂−1)Fi(a) = 0. Thus, if we
generalize the Walsh-Hadamard transform on vectorial Boolean functions (by
applying the transformation component-wise), and use the notation fχ for the
sign function of f (also component-wise), then Eqn. (5) is equivalent to: ∀a =

ei, F̂χ(a) = 0. Now, as F is balanced (since bijective), this equality also holds for
a = 0. This means that every coordinate of F is 1-resilient. Constructions exist,
as explained in [4, Sec. 8.7].

In the next subsection, we use P -resilient functions F : by definition, they are
functions that are balanced when up to P input bits are fixed.



366 H. Maghrebi et al.

3.3 Condition on F for the Resistance against dth-Order CPA

A generalization of the previous result for arbitrary p, q ∈ N∗ .
= N\{0} is pre-

sented in this section. We have the following theorem:

Theorem 1. Let P and Q be two positive integers, and F a bijection of Fn
2 .

Eqn. (2) is constant for all p ∈ �0, P � and q ∈ �0, Q� if and only if:

∀a, b ∈ Fn
2 , 0 < HW(a) ≤ P, 0 ≤ HW(b) ≤ Q, ̂(b · F )χ(a) = 0 . (6)

An (n,m)-function is defined as a vectorial Boolean function from Fn
2 to Fm

2 .

Proposition 1. The condition expressed in Eqn. (6) of theorem 1 can be re-
formulated as follows. Every restriction of the bijective (n, n)-function F to Q
components is an (n,Q)-function that is P -resilient.

4 Existence of Bijections Meeting Eqn. (6)

In this section, we find bijections that meet Eqn. (6).
The condition expressed in Eqn. (6) for theorem 1 rewrites: ∀b ∈ Fn

2
∗ .
=

Fn
2\{0} and ∀a ∈ Fn

2 , if HW(a) ≤ d− HW(b) then ̂(b · F )χ(a) = 0.

4.1 Optimal Linear Bijections

F can be chosen linear. All linear (n, n)-functions write F (x) = (x·v1, · · · , x·vn),
where vi are elements of Fn

2 . F is bijective if and only if (v1, · · · , vn) is a basis
of Fn

2 . We have:

̂(b · F )χ(a) = 0 ⇐⇒
∑

x(−1)b·F (x)⊕x·a = 0

⇐⇒
∑

x(−1)⊕
n
i=1bi(x·vi)⊕x·a = 0

⇐⇒
∑

x(−1)x·⊕
n
i=1(bivi)⊕x·a = 0

⇐⇒
⊕n

i=1 bivi �= a .

As this is true for all a such that HW(a) ≤ d − HW(b), we have the necessary
and sufficient condition:

∀b �= 0, HW(
⊕n

i=1 bivi) > d− HW(b) . (7)

We notice that the set of ordered pairs {(b,
⊕n

i=1 bivi) , b ∈ Fn
2} forms a vector

subspace of F2n
2 . Therefore, it defines a [2n, n, δ] binary linear code, where δ is its

minimum distance. Because of Eqn. (7), the necessary and sufficient condition
becomes δ > d. Reciprocally, a [2n, n, δ] binary linear code (modulo a permuta-
tion of its coordinates) can be spawned by a generator matrix (In G), where G
is an n× n matrix. This representation is the systematic form of the code.



Optimal First-Order Masking with Linear and Non-linear Bijections 367

Table 1. Minimal distance of some binary optimal linear rate 1/2 codes

Sboxes of algorithm DES n/a n/a n/a AES
2n 8 10 12 14 16

δmax(n) 4 4 4 4 5

Now, [2n, n, δ] binary linear codes have been well studied. They are also re-
ferred to as 1/2-rate codes in the literature. Their greatest minimal distance
δmax(n) is known (refer for instance to [12]); corresponding codes are called
“optimal”. For some practical values of n, they are recalled in Tab. 1.

Thus, the best achievable d using a linear bijection F is δmax(n)− 1. In par-
ticular, this result proves that with linear F , it is possible to protect:

– DES against all zero-offset HO-CPA of order d ≤ 3, and
– AES against all zero-offset HO-CPA of order d ≤ 4.

4.2 Optimal Non-linear Bijections

Under some circumstances, a non-linear bijection F allows to reach better per-
formances. The condition on F given by (Eqn. (6)) is satisfied for every P and
every Q such that P + Q = d if and only if the Boolean function equal to the
indicator of the graph {(x, F (x);x ∈ Fn

2} of F is d-th order correlation immune
(see definition in [3]). Given any (n, n)-function F , let C = {(x, F (x)), x ∈ Fn

2}.
The weight enumerator WC(X,Y ) and distance enumerator DC(X,Y ) of this
code are:

– WC(X,Y ) =
∑

x∈Fn
2
X2n−HW(x,F (x))Y HW(x,F (x)) and

– DC(X,Y ) = 1
|C|

∑
x,y∈Fn

2
X2n−HW(x⊕y,F (x)⊕F (y))Y HW(x⊕y,F (x)⊕F (y)).

We have WC(X + Y,X − Y ) =
∑

a,b∈Fn2

(∑
x∈Fn2

(−1)b·F (x)+a·x
)
X2n−HW(a,b)Y HW(a,b)

and DC(X + Y,X − Y ) = 1
|C|

∑
a,b∈Fn2

(∑
x∈Fn2

(−1)b·F (x)⊕a·x
)2

X2n−HW(a,b)Y HW(a,b).

Hence d + 1 is exactly the minimum value of the nonzero exponents of Y with
nonzero coefficients in DC(X + Y,X − Y ), called the dual distance of C in the
sense of Delsarte [8,13].

There is no non-linear code for n = 4 that has a better dual distance than
linear codes of the same length and size, but there are some for n = 8. A non-
linear optimal code for n = 8 is the Nordstrom-Robinson (16, 256, 6) code (see
more in [6]). With these parameters, this code coincides with Preparata and
Kerdock codes [23] and has same minimum distance and dual distance. Some
codewords, as obtained from Golay code in standard form [10], are listed in
Tab. 2.

It happens that the code cannot be trivially split into two halves that each
fill exactly Fn

2 . Indeed, if the codewords are partitioned with bits �15, 8� on the
one hand, and bits �7, 0� on the other,



368 H. Maghrebi et al.

Table 2. Some codewords of the Nordstrom-Robinson (16, 256, 6) code

Bit index 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Codeword x = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Codeword x = 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
Codeword x = 2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Codeword x = 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Codeword x = 4 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
Codeword x = 5 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
Codeword x = 6 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Codeword x = 7 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
Codeword x = 8 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

...
...
...

...
...
...

...
...
...

...
...
...
...

...
...
...

...
Codeword x = 254 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 1
Codeword x = 255 0 1 0 0 0 0 1 0 0 1 1 1 0 0 0 1

– then 11111111 is present (at least) twice in the first half (from the high byte
of codewords x = 3 and x = 7),

– and 00000000 is present (at least) twice in the second half (from the low byte
of codewords x = 0 and x = 7).

We tested all the
(
16
8

)
partitionings. For 2760 of them, the code can be cut in

two bijections Fhigh and Flow of F8
2. This means that if we note x ∈ F8

2 the
codewords index in Tab. 2, the Nordstrom-Robinson (16, 256, 6) code writes as
Fhigh(x) ||Flow(x). The codewords can be reordered according to the first column,
so that the code rewrites x ||Flow(F

−1
high(x)) [6]. So the bijection F can be chosen

equal to F = Flow◦F−1
high. For example, when Fhigh consists in bits �15, 9�∪{7} of

the code (and Flow in bits {8} ∪ �6, 0�), F takes the values tabulated as follows:
{F (x), x ∈ F8

2} = {0x00, 0xb3, 0xe5, 0x6a, 0x2f, 0xc6, 0x5c, 0x89, 0x79, 0xac,
0x36, 0xdf, 0x9a, 0x15, 0x43, 0xf0, 0xcb, 0x1e, 0xb8, 0x51, 0x72, 0xfd, 0x97,
0x24, 0xd4, 0x67, 0x0d, 0x82, 0xa1, 0x48, 0xee, 0x3b, 0x9d, 0x74, 0xd2, 0x07,
0xe8, 0x5b, 0x31, 0xbe, 0x4e, 0xc1, 0xab, 0x18, 0xf7, 0x22, 0x84, 0x6d, 0xa6,
0x29, 0x7f, 0xcc, 0x45, 0x90, 0x0a, 0xe3, 0x13, 0xfa, 0x60, 0xb5, 0x3c, 0x8f,
0xd9, 0x56, 0x57, 0xd8, 0x8e, 0x3d, 0xb4, 0x61, 0xfb, 0x12, 0xe2, 0x0b, 0x91,
0x44, 0xcd, 0x7e, 0x28, 0xa7, 0x6c, 0x85, 0x23, 0xf6, 0x19, 0xaa, 0xc0, 0x4f,
0xbf, 0x30, 0x5a, 0xe9, 0x06, 0xd3, 0x75, 0x9c, 0x3a, 0xef, 0x49, 0xa0, 0x83,
0x0c, 0x66, 0xd5, 0x25, 0x96, 0xfc, 0x73, 0x50, 0xb9, 0x1f, 0xca, 0xf1, 0x42,
0x14, 0x9b, 0xde, 0x37, 0xad, 0x78, 0x88, 0x5d, 0xc7, 0x2e, 0x6b, 0xe4, 0xb2,
0x01, 0xfe, 0x4d, 0x1b, 0x94, 0xd1, 0x38, 0xa2, 0x77, 0x87, 0x52, 0xc8, 0x21,
0x64, 0xeb, 0xbd, 0x0e, 0x35, 0xe0, 0x46, 0xaf, 0x8c, 0x03, 0x69, 0xda, 0x2a,
0x99, 0xf3, 0x7c, 0x5f, 0xb6, 0x10, 0xc5, 0x63, 0x8a, 0x2c, 0xf9, 0x16, 0xa5,
0xcf, 0x40, 0xb0, 0x3f, 0x55, 0xe6, 0x09, 0xdc, 0x7a, 0x93, 0x58, 0xd7, 0x81,
0x32, 0xbb, 0x6e, 0xf4, 0x1d, 0xed, 0x04, 0x9e, 0x4b, 0xc2, 0x71, 0x27, 0xa8,
0xa9, 0x26, 0x70, 0xc3, 0x4a, 0x9f, 0x05, 0xec, 0x1c, 0xf5, 0x6f, 0xba, 0x33,
0x80, 0xd6, 0x59, 0x92, 0x7b, 0xdd, 0x08, 0xe7, 0x54, 0x3e, 0xb1, 0x41, 0xce,



Optimal First-Order Masking with Linear and Non-linear Bijections 369

0xa4, 0x17, 0xf8, 0x2d, 0x8b, 0x62, 0xc4, 0x11, 0xb7, 0x5e, 0x7d, 0xf2, 0x98,
0x2b, 0xdb, 0x68, 0x02, 0x8d, 0xae, 0x47, 0xe1, 0x34, 0x0f, 0xbc, 0xea, 0x65,
0x20, 0xc9, 0x53, 0x86, 0x76, 0xa3, 0x39, 0xd0, 0x95, 0x1a, 0x4c, 0xff}.

Thus byte-oriented cryptographic implementations can be protected with this
code against all zero-offset HO-CPA of order d ≤ 5.

5 Security and Leakage Evaluations of the Optimal
Linear and Non-linear Bijections

As argued in [24], the robustness evaluation of a CM encompasses two dimen-
sions: its resistance to specific attacks, and its amount of leakage irrespective
of any attack strategy. Indeed, a CM could resist some attacks, but still be
vulnerable to others. For instance, in our study, we have focused on zero-offset
HO-CPA, but we have disregarded other attacks, such as mutual information
analysis (MIA [1]) or attacks based on generic side-channel distinguishers [28].
Therefore, in addition to a security evaluation conducted in Sec. 5.1, we will also
estimate the leakage of the CM in Sec. 5.2.

5.1 Verification of the Security for n = 8

In this section, we illustrate the efficiency of the identified bijection from an
zero-offset HO-CPA point of view. We focus more specifically on the n = 8 bit
case, because of its applicability to AES. We compute the values of fopt(z) for
the centered leakage raised at power 1 ≤ d ≤ 6 for four linear bijections (noted
F1, F2, F3 and F4) and the non-linear bijection given in Sec. 4.2 (noted F5).
The linear functions are defined from their matrix:

– G1 is the identity I8, i.e. the Boolean masking function without F ;
– G2 is a matrix that allows second-order resistance and is found without

method;
– G3 is the circulant matrix involved in the AES block cipher;
– G4 is non-systematic half of the [16, 8, 5] code matrix.

The G2, G3 and G4 matrices are:

G2 =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0 1 1 1
0 0 0 1 1 0 1 1
1 0 1 0 0 0 1 1
0 0 1 1 1 0 0 0
1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1
1 0 1 0 1 1 0 0
0 1 0 1 0 1 1 0

⎞⎟⎟⎟⎟⎠ , G3 =

⎛⎜⎜⎜⎜⎝
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎞⎟⎟⎟⎟⎠ , G4 =

⎛⎜⎜⎜⎜⎝
1 0 0 1 1 1 1 0
0 1 0 0 1 1 1 1
1 1 0 0 1 1 0 0
0 1 1 0 0 1 1 0
0 0 1 1 0 0 1 1
1 1 1 1 0 0 1 0
0 1 1 1 1 0 0 1
1 1 0 1 0 1 1 1

⎞⎟⎟⎟⎟⎠ .

It can be checked that they are invertible. Namely, their inverses are:

G2−1 =

⎛⎜⎜⎜⎜⎝
0 1 1 1 0 0 0 0
1 1 1 0 0 1 0 0
1 0 0 1 1 1 0 0
0 0 1 0 1 1 1 0
1 0 1 0 0 0 1 0
0 1 0 0 1 1 0 0
1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1

⎞⎟⎟⎟⎟⎠ , G3−1 =

⎛⎜⎜⎜⎜⎝
0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0

⎞⎟⎟⎟⎟⎠ , G4−1 =

⎛⎜⎜⎜⎜⎝
1 1 1 0 1 0 1 1
1 0 0 1 1 1 1 0
0 1 0 0 1 1 1 1
1 1 0 0 1 1 0 0
0 1 1 0 0 1 1 0
0 0 1 1 0 0 1 1
1 1 1 1 0 0 1 0
0 1 1 1 1 0 0 1

⎞⎟⎟⎟⎟⎠ .



370 H. Maghrebi et al.

Table 3, in Appendix A, reports some values of the optimal functions. The lines
represented in gray are those for which the fopt(z) are the same for all the values
of the sensitive variable z ∈ Fn

2 . For the sake of clarity, we represent only n+ 1
values of z, i.e. one per value of HW(z). But we are aware that unlike in the case
where F = Id, the optimal functions are not invariant in the bits reordering of x.
If the line d is represented in gray, then a d-th order zero-offset HO-CPA cannot
succeed. The table shows that amongst the linear functions, F4 : x �→ G4 × x
is indeed the best, since it protects against zero-offset HO-CPA of orders 1, 2,
3 and 4. It can also be seen that the non-linear function F5 further protects
against 5-th order zero-offset HO-CPA, as announced in Sec. 4.2.

5.2 Verification of the Leakage of the Identified Bijections

As a complement to the security analysis carried out in Sec. 5.1, the leakage of
the CM using the bijections F1, F2, F3, F4 and F5 is computed. It consists in
the mutual information metric (MIM), defined as I[HW(Z ⊕M ′′) +HW(F (M)⊕
F (M⊕M ′′))−n+N ;Z]. The random variableN is an additive noise, that follows
a normal law of variance σ2. The result of the MIM computation is shown in Fig. 3.

−40

−32

−24

−16

−8

 0

¼ ½ ¾ 1 21 22 23 24 25 26 27 28 29

lo
g 2

(M
IM

)

Noise standard deviation (σ)

Countermeasure:
No F, 0 mask
No F, 1 mask
No F, 2 mask

F=F1 (1 mask)
F=F2 (1 mask)
F=F3 (1 mask)
F=F4 (1 mask)
F=F5 (1 mask)

Fig. 3. Mutual information of the leakage with the sensitive variable Z for n = 8 bit

It appears that the leakage agrees with the strength of the CM against HO-
CPA: the greater the order of resistance against HO-CPA, the smaller the mutual
information, at least for a reasonably large noise σ ≥ 1. This simulated charac-
terization validates (in the particular scheme of Fig. 2) the relevance of choosing
F based on a HO-CPA criterion.



Optimal First-Order Masking with Linear and Non-linear Bijections 371

Furthermore, Fig. 3 represents the leakage of a similar CM, where more than
two shares would be used. More precisely, the shares would be the triple (x ⊕
m1 ⊕m2,m1,m2), where the masks mi are not transformed by bijections. This
CM is obviously more costly than our proposal of keeping one single mask, but
passed through F . We notice that all the proposed bijections (suboptimal F2
and F3, optimal linear F4 and optimal non-linear F5) perform better, in that
they leak less irrespective of σ.

5.3 Results in Imperfect Models

Masking schemes randomize more or less properly the leakage. In the straightfor-
ward example studied in this paper (Eqn. (1) with F = Id), when the sensitive
variable z has all its bits equal to ‘1’ (i.e. Z = 0xff), then the mask has no
effect whatsoever on the leakage. Indeed, this is due to a well-known property
of the Hamming weight function: ∀M ′′ ∈ Fn

2 ,HW(0xff ⊕M ′′) + HW(M ′′) =
HW(M ′′) + HW(M ′′) = n. To avoid this situation, the proposed CM based on
the bijection F consists in tuning the leakage, so that the masks indeed dis-
patch randomly the leakage for most (if not all [15]) values of the sensitive data.
The working factor of is improvement is the introduction of a specially crafted
Boolean function F aiming at weakening the link between the data to protect
and the leakage function.

This technique has been shown to be very effective in the previous sections.
Now, the analysis assumed a perfect leakage model. But the Hamming distance
leakage model is in practice an idealization of the reality. Indeed, the assumption
that all the bits leak identically, and without interfering, does not hold in real
hardware [27]. Also, it has been shown that with specific side-channel capturing
systems the attacker can distort the measurement. For instance, in [18], the
authors show that with a home-made magnetic coil probing the circuit at a
crucial location, the rising edges can be forced to dissipate 17% more than the
falling edges.

Therefore, we study how the CM is resilient to imperfections of the leakage
model. To do so, we define a general model that depends on random variables.
The variability is quantified in units of the side-channel dissipation of a bit-flip.
The model is affected by small imperfections (due to process variation, or small
cross-coupling) when the variability is about 10%. We also consider the 20%
case, that would reflect a distortion of the leakage due to measurements in weird
conditions. Eventually, the cases of a 50% and of a 100% deviation indicate that
the designer has few or no a priori knowledge about the device leakage’s model.

More precisely, the leakage model is written as a multivariate polynomial in
R[X1, · · · , Xn, X

′
1, · · · , X ′

n] of degree less or equal to τ ∈ �1, 2n�, where X =
(Xi∈�1,n�) and X ′ = (X ′

i∈�1,n�) are the initial and final values of the sensitive
variable. It takes the following form:

L
.
= P (X1, · · · , Xn, X

′
1, · · · , X ′

n) =
∑

(u,v)∈Fn
2×Fn

2 ,
HW(u)+HW(v)≤τ

A(u,v) ·
n∏

i=1

Xui

i X ′vi
i , (8)



372 H. Maghrebi et al.

where the A(u,v) are real coefficients. This leakage formulation is similar to that
of the high-order stochastic model [21]. For example, it is shown in [19, Eqn. (3)]
that P (X1, · · · , Xn, X

′
1, · · · , X ′

n) is equal to HW(X ⊕X ′) when the coefficients
A(u,v)

.
= aHD

(u,v) satisfy:

aHD

(u,v) =

⎧⎪⎨⎪⎩
+1 if HW(u) + HW(v) = 1 ,

−2 if HW(u) = 1 and v = u ,

0 otherwise .

(9)

In the following experiments, we compute the mutual information between L
and Z = X ⊕X ′ when τ ≤ 2 and when the coefficients A(u,v) deviate randomly
from those of (9) or are completely random (i.e. deviate from a “Null” model).
More precisely, the coefficients A(u,v) are respectively drawn at random from one
of these laws:

AHD

(u,v) ∼ aHD

(u,v) + U(
[
− δ

2 ,+
δ
2

]
) ,

ANull

(u,v) ∼ 0 + U(
[
− δ

2 ,+
δ
2

]
) .

(10)

The randomness lays in the uniform law U(
[
− δ

2 ,+
δ
2

]
), that we parametrize by

the deviation δ ∈ {0.1, 0.2, 0.5, 1.0}. The mutual information I[L;Z] is computed
ten times for ten different randomized models. Four bit variables (case useful for
DES) are considered, because the computation time for the MI would have been
too long for n = 8. The study is conducted on three bijections:

F1′ : the identity (Id), that acts as a reference,
F2′ : one bijection that cancels the first-order leakage but not the second-order,
F3′ : another that cancels both first- and second-orders.

They are linear, i.e. write Fi′(x) = Gi′×x, where the generating matrix Gi′ are
given below:

G1′ = I4 =

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
, G2′ =

(
0 0 1 1
0 1 0 1
1 1 1 0
1 0 0 1

)
, G3′ = I4 =

(
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

)
.

In this section, we use bijections Fi′ from F4
2 to F4

2, noted with a prime, to mark
the difference with the bijections Fi : F8

2 → F8
2 that were studied in Sec. 5.1

and 5.2. The simulation results are provided in the extended version [14]. it can
be seen that despite the HD model degradation, the leakage of the CM:

– remains ordered (F3′ leaks less than F2′, and F2′ in turn leaks less than
F1′),

– and remains low, irrespective of δ.

The average leakage is unchanged, and the leakage values are simply getting
slightly scattered. The reason for this resilience comes from the rationale of the
CM: the masked value and the mask are decorrelated as much as possible. The
dispatching is guided by a randomized pigeon-hole of the values in the image
of the leakage function. The CM thus looses efficiency only in the case where



Optimal First-Order Masking with Linear and Non-linear Bijections 373

two different values of leakage become similar due to the imperfection. This can
happen for some variables, but it is very unlikely that it occurs coherently for
all variables at the same time. Rather, given the way the imperfect model is
built (Eqn. (10)), it is almost as likely that two classes get nearer or further
away. This explains why, in average, the leakage is not affected: the model noise
acts as a random walk, that has an impact on the variance but not on the
average. Of course, some samples (with a degraded model) will be weaker than
the others (because the variance of the MIA increases with the variance1 δ2/12
of the model).

It is interesting to contrast the leakage squeezing with the first-order leak-
free CM presented in [15]. This CM aims at leaking no information when the
HD leakage model is perfect. A study for model imperfection has also been
conducted (see [14]). It appears that this CM is much less robust to deviation
from the ideal model. Indeed, the working factor of the CM is to have one share
leak nothing. But as soon as there is some imperfection, the very principle of
the CM is violated, and it starts to function less well. Concretely the leaked
information increases with the model variance, up to a point where the CM is
less efficient than the straightforward first-order Boolean masking (starting from
δ > 50%).

For the sake of comparison, we also computed the same curves when the
unnoised model is a constant one (called “Null” model in Eqn. (10)) [14]. The
reference leakage (when δ = 0) is null; consequently only the noisy curves are
shown. It is noticeable that despite this “Null” leakage model is random, the
different CMs have clearly distinguishable efficiencies. This had already been
noticed by Doget et al. in [9]. In particular, it appears that our CM continues to
work (F3 leaks less than F2, that leaks less than F1), at least for large enough
noise standard deviations σ. At the opposite, the leak-free CM is not resilient
to this random model: it leaks more than the straightforward masking (i.e. with
F1). Eventually, the impact of the leakage degree τ can be studied. Results
are computed for τ in {1, 2, 3}. In all the cases, τ does not impact the general
conclusions.

Regarding the deviation from the HD model, the greater the multivariate
degree τ , the more possible deviations from the genuine ideal model. Indeed,
the number of random terms in Eqn. (8) is increasing with τ (and is equal to∑τ

t=0

(
2n
t

)
). This explains the greatest variability in the mutual information re-

sults. In the meantime, the argumentation for the robustness of the CM against
the model deviation still holds, which explains why the average leakage is un-
changed. In the Null model, the greater τ , the less singularities in the leakage.
This explains why the mutual information curves get smoother despite the ad-
ditional noise. But with the greater τ , the more leaking sources (because the
more non-zero terms in the polynomial), which explains why the leaked mutual
information increases in average with τ .

1 The variance of a uniform law of amplitude δ is indeed equal to

Var (U([−δ/2,+δ/2])) = 1
δ

∫ +δ/2

−δ/2
(u− 0)2 du =

[
u3

3δ

]u=+δ/2

u=−δ/2
= δ2

12
.



374 H. Maghrebi et al.

6 Conclusions

Masking is a CM against side-channel attacks that consists in injecting some
randomness in the execution of a computation. The sensitive value is split in
several shares; altogether, they allow to reconstruct the sensitive data by an
adequate combination [11]. In this article, we focus on a Boolean masking CM
that uses two shares, computed concomitantly. Zero-offset HO-CPA attacks can
defeat this CM. They consist in computing a correlation with the centered side-
channel traces, raised at the power d ∈ N∗. We show that by storing F (m)
(the image of m by a bijection F ) instead of m in the mask register, the highest
order d of a successful zero-offset attack can be increased significantly. Typically,
when the data to protect are bytes, the state-of-the-art implementations with
one mask could be attacked with HO-CPA of order d = 2. We show how to
find optimal linear F , that protects against zero-offset HO-CPA of orders 1, 2,
3 and 4. We also show that optimal non-linear functions F protect against zero-
offset HO-CPA of orders 1, 2, 3, 4 and 5. This security increase also translates
into a leakage reduction. An information-theoretic study reveals that the mutual
information between the leakage and the sensitive variable is lower than the same
metric computed on a similar CM without F but that uses two masks (instead
of one).

Acknowledgments. The authors are grateful to Sébastien Briais (Secure-IC
S.A.S.) and M. Abdelaziz Elaabid (Paris 8 University) for insightful discussions.

References

1. Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.-X., Veyrat-
Charvillon, N.: Mutual Information Analysis: a Comprehensive Study. J. Cryp-
tology 24(2), 269–291 (2011)

2. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

3. Camion, P., Carlet, C., Charpin, P., Sendrier, N.: On Correlation-Immune Func-
tions. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 86–100.
Springer, Heidelberg (1992)

4. Carlet, C.: Boolean Functions for Cryptography and Error Correcting Codes. Chap-
ter of the Monography Boolean Models and Methods in Mathematics, Computer
Science, and Engineering, pp. 257–397. Cambridge University Press (2010), Pre-
liminary version,
http://www.math.univ-paris13.fr/~carlet/chap-fcts-Bool-corr.pdf

5. Carlet, C.: Vectorial Boolean Functions for Cryptography. Crama, Y., Hammer, P.
(eds.) Chapter of the Monography Boolean Models and Methods in Mathematics,
Computer Science, and Engineering, pp. 398–469. Cambridge University Press,
Cambridge (2010), Preliminary version,
http://www.math.univ-paris13.fr/~carlet/pubs.html

6. Carlet, C., Gaborit, P., Kim, J.-L., Solé, P.: A new class of codes for Boolean
masking of cryptographic computations, October 6 (2011),
http://arxiv.org/abs/1110.1193

http://www.math.univ-paris13.fr/~carlet/chap-fcts-Bool-corr.pdf
http://www.math.univ-paris13.fr/~carlet/pubs.html
http://arxiv.org/abs/1110.1193


Optimal First-Order Masking with Linear and Non-linear Bijections 375

7. Danger, J.-L., Guilley, S.: Cryptography Circuit Protected Against Observation At-
tacks, in Particular of a High Order, September 23, International patent, published
as FR2941342 (A1), WO2010084106 (A1) & (A9), EP2380306 (A1), CA2749961,
A1 (2010)

8. Delsarte, P.: An algebraic approach to the association schemes of coding theory.
PhD thesis, Université Catholique de Louvain, Belgium (1973)

9. Doget, J., Prouff, E., Rivain, M., Standaert, F.-X.: Univariate side channel attacks
and leakage modeling. J. Cryptographic Engineering 1(2), 123–144 (2011)

10. David Forney Jr., G., Sloane, N.J.A., Trott, M.D.: The Nordstrom-Robinson Code
is the Binary Image of the Octacode. In: Calderbank Amer, R., Forney Jr., G.D.,
Moayeri, N. (eds.) Coding and Quantization: DIMACS/IEEE Workshop, October
19-21. Math. Soc., pp. 19–26 (1992)

11. Goubin, L., Patarin, J.: DES and Differential Power Analysis. In: Koç, Ç.K., Paar,
C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999)

12. Aaron Gulliver, T., Österg̊ard, P.R.J.: Binary optimal linear rate 1/2 codes. Dis-
crete Mathematics 283(1-3), 255–261 (2004)

13. Jessie MacWilliams, F., Sloane, N.J.A.: The Theory of Error-Correcting Codes.
Elsevier, Amsterdam (1977) ISBN: 978-0-444-85193-2

14. Maghrebi, H., Carlet, C., Guilley, S., Danger, J.-L.: Optimal first-order masking
with linear and non-linear bijections. Cryptology ePrint Archive, Report 2012/175,
April 6 (2012), http://eprint.iacr.org/2012/175/

15. Maghrebi, H., Prouff, E., Guilley, S., Danger, J.-L.: A First-Order Leak-Free Mask-
ing Countermeasure. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp.
156–170. Springer, Heidelberg (2012), doi:10.1007/978-3-642-27954-6 10

16. Mathew, S.K., Sheikh, F., Kounavis, M., Gueron, S., Agarwal, A., Hsu, S.K., Kaul,
H., Anders, M.A., Krishnamurthy, R.K.: 53 Gbps Native GF(24)2 Composite-
Field AES-Encrypt/Decrypt Accelerator for Content-Protection in 45 nm High-
Performance Microprocessors. IEEE Journal of Solid-State Circuits 46(4), 767–776
(2011)

17. Peeters, E., Standaert, F.-X., Donckers, N., Quisquater, J.-J.: Improved Higher-
Order Side-Channel Attacks with FPGA Experiments. In: Rao, J.R., Sunar, B.
(eds.) CHES 2005. LNCS, vol. 3659, pp. 309–323. Springer, Heidelberg (2005)

18. Peeters, É., Standaert, F.-X., Quisquater, J.-J.: Power and electromagnetic anal-
ysis: Improved model, consequences and comparisons. Integration, The VLSI
Journal, Special Issue on Embedded Cryptographic Hardware 40, 52–60 (2005),
doi:10.1016/j.vlsi.2005.12.013

19. Prouff, E., Rivain, M., Bevan, R.: Statistical Analysis of Second Order Differential
Power Analysis. IEEE Trans. Computers 58(6), 799–811 (2009)

20. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A Compact Rijndael Hardware
Architecture with S-Box Optimization. In: Boyd, C. (ed.) ASIACRYPT 2001.
LNCS, vol. 2248, pp. 239–254. Springer, Heidelberg (2001)

21. Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side Chan-
nel Cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 30–46. Springer, Heidelberg (2005)

22. Shah, S., Velegalati, R., Kaps, J.-P., Hwang, D.: Investigation of DPA Resistance
of Block RAMs in Cryptographic Implementations on FPGAs. In: Prasanna, V.K.,
Becker, J., Cumplido, R. (eds.) ReConFig, pp. 274–279. IEEE Computer Society
(2010)

23. Snover, S.L.: The uniqueness of the Nordstrom-Robinson and the Golay binary
codes. PhD thesis, Department of Mathematics, Michigan State University, USA
(1973)

http://eprint.iacr.org/2012/175/


376 H. Maghrebi et al.

24. Standaert, F.-X., Malkin, T.G., Yung, M.: A Unified Framework for the Analysis
of Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

25. Standaert, F.-X., Peeters, É., Rouvroy, G., Quisquater, J.-J.: An Overview of Power
Analysis Attacks Against Field Programmable Gate Arrays. Proceedings of the
IEEE 94(2), 383–394 (2006) (invited paper)

26. Standaert, F.-X., Rouvroy, G., Quisquater, J.-J.: FPGA Implementations of the
DES and Triple-DES Masked Against Power Analysis Attacks. In: FPL, Madrid,
Spain. IEEE (August 2006)

27. Veyrat-Charvillon, N., Standaert, F.-X.: Mutual Information Analysis: How, When
and Why? In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 429–443.
Springer, Heidelberg (2009)

28. Veyrat-Charvillon, N., Standaert, F.-X.: Generic Side-Channel Distinguishers:
Improvements and Limitations. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 354–372. Springer, Heidelberg (2011)

29. Waddle, J., Wagner, D.: Towards Efficient Second-Order Power Analysis. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer,
Heidelberg (2004)

A Computation of the Optimal Function z �→ fopt(z) for
Some Bijections F

Some fopt(z) have been computed in Tab. 3 for centered traces raised at power
d ∈ �1, 6�, for some representative bijections, including the optimal linear (F4)
and non-linear (F5) ones. The last column shows the optimal correlation co-
efficient ρopt that an attacker can expect (See definition in [19, Eqn. (15)]). It
can be seen that the first nonzero ρopt approximately decreases with the CM
strength: it is about 25% for F1, about 4% for F2 and F3, and about 2% for
F4 and F5.



Optimal First-Order Masking with Linear and Non-linear Bijections 377

Table 3. Computation of fopt(z) for centered traces raised at several powers d, and
optimal correlation coefficient ρopt

fopt(z) ρopt
z 0x00 0x01 0x03 0x07 0x0f 0x1f 0x3f 0x7f 0xff

Bijection F = F1 (reference F1 : x �→ I8 × x = x)

d = 1 0 0 0 0 0 0 0 0 0 0.000000

d = 2 8 7 6 5 4 3 2 1 0 0.258199

d = 3 0 0 0 0 0 0 0 0 0 0.000000

d = 4 176 133 96 65 40 21 8 1 0 0.235341

d = 5 0 0 0 0 0 0 0 0 0 0.000000

d = 6 5888 3787 2256 1205 544 183 32 1 0 0.197908

Bijection F = F2 (linear F2 : x �→ G2 × x)

d = 1 0 0 0 0 0 0 0 0 0 0.000000

d = 2 4 4 4 4 4 4 4 4 4 0.000000

d = 3 −1.5 −1.5 −1.5 −1.5 0 0 0 0 1.5 0.036509

d = 4 49 49 49 49 49 46 49 46 46 0.015548

d = 5 −120 −75 −37.5 −30 7.5 22.5 15 22.5 67.5 0.051072

d = 6 1399 1061 949 971.5 971.5 821.5 971.5 821.5 979 0.027247

Bijection F = F3 (linear F3 : x �→ G3 × x)

d = 1 0 0 0 0 0 0 0 0 0 0.000000

d = 2 4 4 4 4 4 4 4 4 4 0.000000

d = 3 0 0 0 0 0 0 0 0 0 0.000000

d = 4 70 61 52 43 40 37 40 43 46 0.043976

d = 5 0 0 0 0 0 0 0 0 0 0.000000

d = 6 2584 1684 1144 694 544 484 544 694 664 0.067175

Bijection F = F4 (linear F4 : x �→ G4 × x)

d = 1 0 0 0 0 0 0 0 0 0 0.000000

d = 2 4 4 4 4 4 4 4 4 4 0.000000

d = 3 0 0 0 0 0 0 0 0 0 0.000000

d = 4 46 46 46 46 46 46 46 46 46 0.000000

d = 5 −90 −37.5 −15 15 7.5 −22.5 7.5 7.5 0 0.023231

d = 6 1339 956.5 799 799 866.5 821.5 776.5 821.5 844 0.016173

Bijection F = F5 (non-linear F tabulated in Sec. 4.2)

d = 1 0 0 0 0 0 0 0 0 0 0.000000

d = 2 4 4 4 4 4 4 4 4 4 0.000000

d = 3 0 0 0 0 0 0 0 0 0 0.000000

d = 4 46 46 46 46 46 46 46 46 46 0.000000

d = 5 0 0 0 0 0 0 0 0 0 0.000000

d = 6 2104 1159 844 799 664 799 844 1159 844 0.023258



Size-Hiding in Private Set Intersection:
Existential Results and Constructions

Paolo D’Arco1, Marı́a Isabel González Vasco2,
Angel L. Pérez del Pozo2, and Claudio Soriente3

1 Dipartimento di Informatica, Universitá di Salerno,
84084 Fisciano (SA), Italy
paodar@dia.unisa.it

2 Dpto. de Matemática Aplicada, Univ. Rey Juan Carlos,
c/ Tulipán, s/n, 28933 Madrid, Spain

{mariaisabel.vasco,angel.perez}@urjc.es
3 Institute of Information Security, ETH Zurich

claudio.soriente@inf.ethz.ch

Abstract. In this paper we focus our attention on private set intersection. We
show impossibility and existential results, and we provide some explicit construc-
tions. More precisely, we start by looking at the case in which both parties, client
and server, in securely computing the intersection, would like to hide the sizes of
their sets of secrets, and we show that:

– It is impossible to realize an unconditionally secure size-hiding set intersec-
tion protocol.

– In a model where a TTP provides set up information to the two parties and
disappears, unconditionally secure size-hiding set intersection is possible.

– There exist computationally secure size-hiding set intersection protocols.

Then, we provide some explicit constructions for one-sided protocols, where only
the client gets the intersection and hides the size of her set of secrets. In the model
with the TTP , we design two protocols which are computationally secure under
standard assumptions, and two very efficient protocols which are secure in the
random oracle model. We close the paper with some remarks and by pointing out
several interesting open problems.

1 Introduction

The Private Set Intersection (PSI) problem revolves around two parties, each holding a
set of inputs drawn from a ground set, that wish to jointly compute the intersection of
their sets, without leaking any additional information [14]. In particular, cryptographic
solutions to PSI allow interaction between a server S and client C, with respective
private input sets C = {c1, . . . , cv}, S = {s1, . . . , sw}, both drawn from a ground set
U . At the end of the interaction, C learns S ∩ C and |S|, while S learns nothing beyond
|C|. Real-life applications of PSI include the Department of Homeland Security that
wishes to check its list of terrorists against the passenger list of a flight operated by a
foreign air carrier, federal tax authority wishing to check if any suspect tax evader has
foreign bank account and other folklore case scenarios [8].

A. Mitrokotsa and S. Vaudenay (Eds.): AFRICACRYPT 2012, LNCS 7374, pp. 378–394, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Size-Hiding in Private Set Intersection 379

Related work. Freedman et al. [14] introduced the first PSI protocol based on obliv-
ious polynomial evaluation (OPE). The key intuition is that elements in the client’s
private set can be represented as roots of a polynomial, i.e., P (x) =

∏v
i=1(x − ci) =∑v

i=1 aix
i. Hence, leveraging any additively homomorphic encryption scheme (e.g.,

[21]) the encrypted polynomial is obliviously evaluated by S on each element of its
data set. In particular, S computes {uj}j=1,...,w = {E(rjP (sj) + sj)}j=1,...,w where
E() is the encryption function of the additively homomorphic encryption scheme and
rj is chosen at random. Clearly, if sj ∈ S ∩ C, then C learns sj upon decryption of
the corresponding ciphertext (i.e., uj); otherwise C learns a random value. OPE-based
PSI protocols have been extended in [19,9,10] to support multiple parties and other set
operations (e.g., union, element reduction, etc.).

Hazay et al. [16] proposed Oblivious Pseudo-Random Function (OPRF) [13] as
an alternative primitive to achieve PSI. In [16], given a secret index k to a pseudo-
random function family, S evaluates {uj}j=1,...,w = {fk(sj)}j=1,...,w and sends it to
C. Later, C and S engage in v executions of the OPRF protocol where C is the re-
ceiver with private input C and S is the sender with private input k. As a result, C learns
{fk(ci)}i=1,...,v such that ci ∈ S ∩ C if and only if fk(ci) ∈ {uj}j=1,...,w.

Given U as the ground set where elements of C and S are drawn (i.e., C,S ⊆ U),
none of the above techniques prevents a client to run a PSI protocol on private input
C ≡ U in order to learn the elements in S. To this end, Camenisch et al. extended PSI
to Certified Sets [5], where a Trusted Third Party (TTP) ensures that private inputs are
valid and binds them to each participant.

All of the above techniques reveal the size of the participants’ sets. That is, C (resp.
S) learns |S| (resp. |C|), even if S ∩ C ≡ ∅. To protect the size of private input sets,
Ateniese et al. [1] proposed a so-called Size-Hiding PSI (SHI-PSI) protocol where C
can privately learn S ∩ C without leaking the size of C. Their scheme is based on RSA
accumulators and the property that the RSA function is an unpredictable function. The
authors proved its security against honest but curious adversaries in the Random Oracle
Model (ROM).

Contributions. This paper builds on top of [1] and explores PSI protocols where parties
hide the size of their private sets, under different security models. We start looking at
unconditionally secure SHI-PSI where both parties hide the size of their sets. In this
context, we show that SHI-PSI protocols where both the client and the server hide the
size of their sets are not achievable, while this is possible for the authorized flavor of
PSI, namely APSI.

Then we move to computational security and show that there exist an APSI protocol
where both parties hide the size of their sets. Finally, we provide some explicit con-
structions for one-sided protocols, where only the client hides the size of her set. More
precisely, leveraging a TTP that authorized private inputs, we design two protocols
which are computationally secure under standard assumptions, and two very efficient
protocols which are secure in the random oracle model. The following table summarizes
our findings.



380 P. D’Arco et al.

Result Model Size-Hiding Assumption Efficiency Rounds
Impossible C/S Two-side None × ×
Prot. Fig. 1 C/S with TTP Two-side None NO 2

Prot. Fig. 2 C/S Two-side Standard Model NO 2

Prot. Fig. 3 C/S Two-side∗ Standard Model Y ES 2

Prot. Fig. 4 C/S with TTP One-side Standard Model Y ES 1

Prot. Fig. 5 C/S with TTP One-side Standard Model Y ES 2

Prot. Fig. 6 C/S with TTP One-side ROM Y ES 3

Prot. Fig. 7 C/S with TTP One-side ROM Y ES 1

* an upper bound on the sizes of both sets (client’s and server’s) is needed

2 Preliminaries: Definitions and Tools

In this section we provide definitions and tools used in the rest of the paper.

2.1 Definitions

We refer to the formalization used in [1]. However, we slightly refine the definitions in
order to deal with both computationally and unconditionally secure protocols, and to
introduce the size-hiding constraint on both client and server side. Moreover, we will
also consider the setting in which a trusted third party interacts with the parties in a
setup phase and then disappears.

Definition 1. A party is referred to as honest-but-curious, HBC for short, if it correctly
follows the steps of the protocol but eventually tries to get extra-knowledge from the
transcript of the execution.

A two-side size-hiding private set intersection protocol, can be defined as:

Definition 2. A TS-SHI-PSI is a scheme involving two parties, C and S, with two
components, Setup and Interaction, where

– Setup is an algorithm that selects all global parameters
– Interaction is a protocol between S andC on respective input sets S={s1, . . . , sw}

and C = {c1, . . . , cv}, which are subsets of a ground set U = {u1, . . . , u|U|},

satisfying correctness, client privacy and server privacy.

Correctness is formalized by:

Definition 3. A TS-SHI-PSI is correct if, when both parties are HBC, at the end of
Interaction, run on inputs S and C, with overwhelming probability S outputs ⊥ and
C outputs S ∩ C or ⊥ if the intersection is empty.



Size-Hiding in Private Set Intersection 381

Notice that, compared to the definition of correctness provided in [1], we do not require
that |S| is part of the client’s output. Note that in Section 5 in which we will consider
protocols hiding only the size of the client’s set, we will stick to the definition of cor-
rectness from [1] and require C to output S ∩ C and |S| or just |S| if the intersection is
empty.

Concerning client privacy, since the server does not get any output from the protocol,
it is enough to require that the server, from the interaction, does not distinguish between
cases in which the client has different input sets.

Definition 4. Let V iewS(C,S) be a random variable representing S’s view during the
execution of Interaction with inputs C and S. A TS-SHI-PSI guarantees client privacy
if, for every S∗ that plays the role of S, for every set S, and for any two possible client
input sets C0, C1 it holds that:

V iewS∗(C0,S) ≡ V iewS∗(C1,S).

Notice that in the above definition, when considering the unconditional setting, the par-
ties S,C and S∗ are unbounded and indistinguishable means that the two views are
perfectly indistinguishable, i.e., they are identically distributed. On the other hand, in
the computational setting, S,C and S∗ are PPT machines and, hence, indistinguishable
means that the two views are computationally indistinguishable.

Server privacy needs a bit more: the client gets the output of the protocol, and by
using his input and the output, by analysing the transcript of the execution, could get
extra-knowledge about the server’s secrets. Neverthless, if the transcript can be simu-
lated by using only input and output, then server privacy is achieved.

Definition 5. Let V iewC(C,S) be a random variable representing C’s view during the
execution of Interaction with inputs C and S. Then, the TS-SHI-PSI scheme guarantees
server privacy if there exists an algorithm C∗ such that

{C∗(C,S ∩ C)}(C,S) ≡ {V iewC(C,S)}(C,S).

As before, in the unconditional setting the parties are unbounded and the transcript
produced by C∗ and the real view need to be identically distributed. On the other hand,
in the computationally secure setting, the parties are PPT machines and the transcript
produced by C∗ and the real view are required to be computationally indistinguishable.

We will also consider a model where a trusted third party (TTP , for short) interacts
with client and server during a setup phase and disappears. The TTP might provide
secret information to the parties, as well as it may act as a certification authority for
the sets of secrets held by the parties. The model we consider is essentially the model
considered by Rivest [23]. Let us remark that the use of a TTP is limited to a setup
phase which can actually take place well in advance of the actual protocol execution; in
many real-life scenarios such an authority is probably essential to prevent clients from
using fabricated inputs to learn information on the set held by the server. We introduce
the presence of the TTP by modifying Definition 2 as follows:



382 P. D’Arco et al.

Definition 6. A TS-SHI-PSI-TTP is a scheme involving a TTP and two parties, C
and S, with four components, Setup, SetupC, SetupS, and Interaction, where

– Setup is an algorithm that selects all global parameters
– SetupC is a protocol between TTP and C on input TTP secret data and
C = {c1, . . . , cv}

– SetupS is a protocol between TTP and S on input TTP secret data and
S = {s1, . . . , sw}

– Interaction is a protocol between S and C on respective input sets S =
{s1, . . . , sw} and C = {c1, . . . , cv}. The outputs that S and C get from SetupS
and SetupC respectively are also used as inputs for this protocol.

satisfying correctness, client privacy and server privacy.

Roughly speaking, TS-SHI-PSI-TTP is a TS-SHI-PSI where, during the setup phase,
client and server, one after the other, interact with the TTP and get some private in-
formation which could be used later on when they interact between each other. We
remark that in this paper we will always consider HBC parties, even though the above
Definitions 4 and 5 are written without that restriction.

2.2 Tools

Homomorphic Encryption. An encryption scheme is additively homomorphic if, for
any two encryptions E(m1) and E(m2) of any two messages m1 and m2, it holds
that E(m1) · E(m2) = E(m1 + m2), where · is the group operation on ciphertexts.
By repeated application of the property, for any integer c, it follows that E(m1)

c =
E(cm1). Paillier’s cryptosystem [21] is a semantically secure public-key cryptosystem
which exhibits such properties. It is easy to check that the following claim, already
used in previous works, holds: given encryptions E(a0), . . . , E(ak) of the coefficients
a0, . . . , ak of a polynomial P of degree k, and knowledge of a plaintext value y, it is
possible to compute E(P (y)), i.e., an encryption of P (y).

Oblivious Transfer. An oblivious transfer protocol is a two-party protocol. A sender
has two secrets, s0 and s1, while a receiver is interested in one of them. Her choice is
represented by a bit σ. After running the protocol the receiver gets sσ and nothing else,
while the sender does not learn which secret the receiver has recovered. Introduced by
Rabin [22], and later on redefined in different equivalent ways, it is a key-tool in secure
two-party and multy-party computation. We will denote this primitive as OT (s0, s1, σ).

3 Two-Side Size-Hiding: The Unconditional Case

We now focus on the unconditionally secure setting and we show, first, that it is impos-
sible to provide an unconditionally secure set intersection protocol where both parties
hide the sizes of their sets of secrets. Further, we prove the existence of such a protocol
if a set up phase involving a trusted third party is performed.



Size-Hiding in Private Set Intersection 383

3.1 Impossibility in the Plain Model

The impossibility result for the unconditional secure setting follows by putting together
some known results. Note that an unconditionally secure set intersection protocol where
both parties hide the sizes of their sets of secrets exists only if an unconditionally secure
set intersection protocol (without the privacy-preserving requirement on the sizes of the
sets) exists. Then, by ruling out the possibility of the latter, we rule out the possibility of
the former. To this aim, notice that, in [14], the authors described a reduction from OT
to PSI (therein referred to as PM). Then, due to the results of Impagliazzo and Rudich
[18], they concluded that there is no black-box reduction of set intersection from one-
way functions. On the other hand, it is also very well known (see [4], page 22, for a clear
description) that unconditionally secure oblivious transfer is impossible. Hence, due to
the former reduction, it follows that unconditionally secure TS-SHI-PSI is impossible,
and we get our claim. Details can be found in the full version. In conclusion, we show
that:

Theorem 1. Unconditionally secure TS-SHI-PSI schemes do not exist.

Common input: U

C TTP S

On input: C On input:f, g : P(U) −→ {0, 1}|U| On input: S

C−→ R = f(C)
R,L←−− L = {(g(D), D) : D ⊆ C}

T = {(f(E), g(E ∩ S)) : E ⊆ U} S←−
T−→

R−→ Search (R,R′) ∈ T
Search (R′, D) ∈ L R′

←−
Output D

Fig. 1. Unconditionally secure protocol in the model with a TTP and unbounded parties

3.2 Feasibility in the Model with a Setup by a TTP

The presence of a TTP , which sets up the system and disappears, makes uncondition-
ally secure size-hiding set intersection possible. Parties are unbounded. We prove the
following result:

Theorem 2. Unconditionally secure TS-SHI-PSI-TTP schemes do exist.



384 P. D’Arco et al.

Essentially, the idea of the protocol which proves our claim is the following. The TTP
chooses two random bijections f, g : P(U) −→ {0, 1}|U|. It interacts with the client
and, once received the client’s set of secrets, the TTP sends her an identifier, computed
by using the first random function, and a list of sub-identifiers, one for each possible
subset of the client’ set of secrets, computed through the second random function. On
the other hand, when the TTP interacts with the server and receives her set of secrets, it
constructs a two-column table: in the first column there is, for each possible subset E of
the ground set, an identifier of E, computed with the first random function; the second
column has an identifier, computed with the second random function, of the intersection
E ∩ S of the subset E and the server’s set of secrets S. The table is given to the server.
The protocol between client and server is a simple two-round protocol: the client sends
her set identifier; the server looks up in the table the row with the received identifier,
and sends her back the identifier of the second column. Finally, the client looks up in the
list of sub-identifiers and determines the intersection with the server. Details are given
in Fig. 1

It is easy to check that the protocol is correct. Similarly, it is also easy to check that
the server privacy is unconditionally guaranteed: from the interaction the client only
gets an identifier which determines a subset of her set of secrets. On the other hand, the
client privacy needs a more accurate analysis. First of all, notice that the server does
not get any information about the correspondence value-subset, since the construction
of the table is completely blind to her. Moreover, notice that, independently of the client
set of secrets, the table the server gets has in the second column exactly 2|S| different
random values, that is, the number of all possible subsets of S. Each of these values
appears exactly the same number of times, namely 2|U|−|S|. This follows from the fact
that, for every F ⊆ S,

#{E ⊆ U : S ∩ E = F} = #{F ∪ E′ : E′ ⊆ U \ S} = 2|U|−|S|

Hence, a request from a client only allows the server to learn the two values (f(C), g(C∩
S)) which do not leak any information about the client’ set of secrets nor its size.

4 Two-Side Size-Hiding: The Computationally Secure Case

In this section we show that in the computational case, without a TTP , two-side size-
hiding private set intersection is possible. The first construction is an existential argu-
ment and has an interesting implication. The second one can be useful in practice if the
sizes of the sets of secrets are reasonable small and an upper bound is known a-priori.

4.1 An AND-Based TS-SHI-PSI Protocol

A private AND(a, b) protocol is a two-party protocol, run by A and B, at the end of
which the players get the logical AND of their bits and nothing else (i.e., a private pro-
tocol for computing a · b). It can be realized by using an OT (b0, b1, s) protocol. Indeed
it is enough to invoke the instance OT (0, a, b), since the bit bs that the receiver gets in
an OT (b0, b1, s) can be expressed as bs = (1 ⊕ s)b0 ⊕ sb1. The key-idea underlying
the protocol is that, if the set of secrets of C and S are represented by means of two



Size-Hiding in Private Set Intersection 385

characteristic vectors IC and IS of elements of U then, by running an AND(Ici , Isi)
protocol for each bit of the vectors, C and S get the intersection and nothing else. In-
deed, each AND(Ici , Isi) = 1 means that they share the i-th element of the ground set
U . Details are in Fig. 2.

Let n be a security parameter and let U = {u1, . . . , u|U|} be a ground set of size
poly(n). Assume that C (resp. S) can be encoded in a characteristic vector IC (resp.
IS), such that IC [j] = 1 (resp. IS [j] = 1) iff the j − th element of U is in C (resp. S).

Common input: U = {u1, . . . , u|U|}

C S
On input: C = {c1, . . . , cv} On input: S = {s1, . . . , sw}

Encode C in IC = [Ic1 , . . . , Ic|U| ] Encode S in IS = [Is1 , . . . , Is|U| ]

Run |U| parallel instances
C ≡ Receiver − S ≡ Sender
AND(Ic1 , Is1), . . . , AND(Ic|U| , Is|U| )

For 1 ≤ j ≤ |U|
If AND(Ij , Ij) = 1

Output uj

Fig. 2. A computationally secure size-hiding set intersection protocol

It is easy to check that the protocol is correct. Moreover, it is secure as long as the
AND protocol is secure. If we realize the AND protocol by using the OT construction
proposed in [11] based on the existence of trapdoor permutations, since the executions
are run by using independent randomness, we could use, for each execution, the simu-
lators for the OT protocol. Thus, it is possible to show that the server cannot distinguish
which set of secrets the client is using, and that there exists a simulator which, by using
input and output of the client, provides transcripts which are indistinguishable from the
real ones. Therefore, Definitions 4 and 5 are satisfied. More precisely, we prove the
following result (details1 and the proof can be found in the full version):

Theorem 3. The protocol given in Fig. 2, when instantiated with the OT protocol of
[11], realizes a computationally secure TS-SHI-PSI scheme.

Remark. Notice that, since OT reduces to PSI but, as the protocol of Fig. 2 shows,
also PSI reduces to OT, it follows that OT and PSI are equivalent. Note that the
fact PSI reduces to OT can also be argued from the general statement that two-party
computation can be reduced to OT (e.g., see [17]).

1 Due to lack of space we provide a simplified (and somehow approximated) description. See
[15] for a rigorous treatment of the protocol and the security analysis in the honest but curious
model.



386 P. D’Arco et al.

4.2 Threshold-Based Protocol

Assuming some a-priori information on the sizes of both sets C and S is known, more
efficient protocols may be achieved. Here we assume that a known value M upper
bounds the sizes of both client and server’s sets. Indeed, the smaller M is with respect
to |U|, the greater the interest of this construction (actually, we need M of polynomial
size but |U| may as well be exponential).

In a Setup phase, C generates public parameters (params) and a key pair (sk, pk)
for Paillier encryption. Let Enc and Dec be the encryption and decryption algorithms,
respectively. C makes sure that the message space Zn, is exponentially larger than |U|.
Further, she fixes an encoding of U into Zn \ {0}, denoted by Encoding. For the sake
of readability, in Fig. 3, elements of C and S are assumed to belong to Zn \ {0}. We
will denote by π a random permutation of M elements.

Common input: U = {u1, . . . , u|U|},
params, pk,Encoding

C S
On input: sk, C = {c1, . . . , cv} On input: S = {s1, . . . , sw}

Compute

P (x) = xM−v ∑v
j=1(x− cj)

{Enc(ai)}Mi=0−−−−−−−−→ For 1 ≤ i ≤ w

P (x) =
∑M

j=0 ajx
j ri ←$ Zn2

ei = Enc(ri · P (si) + si)
For w + 1 ≤ i ≤ M

π(e1,...,eM )←−−−−−−−− ei ←$ Zn2

For 1 ≤ j ≤ v
If (∃ j : Dec(ei) = cj ∧ cj ∈ C)

Output cj

Fig. 3. Polynomial-based construction for |C|, |S| ≤ M

Our protocol is depicted in Fig. 3, and it is actually a twist on the polynomial con-
struction from [14], which main tool is a semantically secure (additively) homomorphic
encryption scheme. As the authors of [14], we suggest to use Paillier encryption to this
aim; further refinements of the protocol may of course be advisable if another encryp-
tion scheme is chosen. In the sequel, we set the notation I := |C ∩ S| and L := w − I.

Correctness. It is easy to see that the proposed protocol is correct, as the client’s out-
put is constructed by comparing her set C with the one consisting of S ∩ C plus the
decryption of M − I uniform random values from Zn2 . Namely, this sequence will
consist of random values from Zn which is exponentially larger than U . As a result, the



Size-Hiding in Private Set Intersection 387

probability that they actually encode an element in U (disrupting thus the computation
of the intersection) is negligible.2

Client Privacy. Due to the semantic security of Enc the distribution of {Enc(a0),
. . . ,Enc(aM )} is indistinguishable of that induced by selecting M + 1 elements in-
dependently and uniformly at random from Zn2 .

Server Privacy. In order to argue the existence of a pptm algorithm C∗ which is able to
simulate the clients view on input C and C ∩ S, we modify C’s view replacing the true
input values from the server, constructed as encryptions involving values s ∈ S \C with
encryptions of elements chosen uniformly and independently at random from Zn \ {0}.
Consider thus the true distribution D0 := {ρ0, . . . , ρM ,Enc(rs1P (s1) + s1), . . . ,
Enc(rswP (sw) + sw), ξ1, . . . , ξM−w} where for i = 0 . . .M each ρi denotes the ran-
dom value involved in the Paillier encryption yielding Enc(ai), namely, they are val-
ues chosen uniformly and independently at random from Z∗

n, and {Enc(rs1P (s1) +
s1), . . . ,Enc(rswP (sw) + sw), ξ1, . . . , ξM−w} are constructed as in Fig. 3 (w.l.o.g.,
we assume this sequence is not randomly permuted before output, and, moreover, that
S ∩ C = {s1, . . . , sI}).
Further, consider the distribution DL = {ρ0, . . . , ρM ,Enc(rs1P (s1) + s1), . . . ,
Enc(rsIP (sI) + sI), ν1, . . . , νL, ξ1, . . . , ξM−w} where ν1, . . . , νL are elements cho-
sen independently and uniformly at random from Zn2 .

Again from the semantic security of Enc it follows that this two distributions are
computationally indistinguishable.

Efficiency. Having Paillier encryption in mind, we have designed the polynomial P in
Step 2. of Round 1 (see Fig. 3), maximizing the number of its coefficients which are
equal to zero (as encryptions of 0 with Paillier are cheap). That is the reason for exclud-
ing 0 from the domain when defining the encoding of U into Zn. Different refinements
of this step may suit better if another encryption scheme is used, always ensuring that
the resulting polynomial has no roots that may correspond to an encoding of an element
outside C and yet in U .

5 One-Side Size-Hiding Set Intersection Protocols

In this section, we follow the spirit of [1] and try to provide one-side private set intersec-
tion protocols, i.e., protocols in which the client actually learns |S| from the interaction,
while keeping |C| secret. We will thus, in the sequel, follow the definitions of correct-
ness, client privacy and server privacy from [1].3

2 We leverage the fact that Paillier encryption actually defines a trapdoor permutation from
Zn × Z

∗
n into Zn2 . There is actually a negligible “loss” here, as we exclude 0 as a legitimate

ciphertext.
3 Correctness is defined including |S| as part of the client’s output, the definition of client privacy

coincides with the one we have given here for two-sided protocols, while server’s privacy
ensures the client’s view is polynomial-time simulatable on input C,S ∩ C and |S| (the latter
definition does not coincide with the one from [1], but |S| is needed in the simulation included
in their proof).



388 P. D’Arco et al.

Common input: U = {u1, . . . , u|U|}

C TTP S
On input: C = {c1, . . . , cv} On input: r ←$ K On input: S = {s1, . . . , sw}

OPRFE
fr(C)={fr(c1),...,fr(cv)}←−−−−−−−−−−−−−−−−

OPRFE
fr(S)={fr(s1),...,fr(sw)}−−−−−−−−−−−−−−−−−→

fr(S)←−−−
Compute fr(C) ∩ fr(S)

Fig. 4. One-Side protocol based on OPRFE

5.1 Pseudorandom Function Evaluation Based Protocols

This protocol requires a setup phase where a TTP obliviously evaluates a function (se-
cretely chosen from a pseudorandom family) on the participants’ inputs. This protocol
follows the ideas in [16] but with the function evaluation delegated to the TTP , and is
described in Fig. 4. Here we will make use of a pseudorandom function family {fr}r∈K

(with key set K) which can be evaluated in an oblivious way, that is, the TTP (holding
the key r) learns nothing and a participant with input x learns fr(x).

Correctness. As fr is a pseudorandom function, there is only negligible probability that
two different values from U are mapped to the same image, which is the only case in
which C′s computation of the intersection would not output S ∩ C.

Client Privacy. Straightforward: the client sends nothing to the server.

Server Privacy. This follows from the the pseudorandomness property of the function
family {fr}r∈K . At this, a pptm algorithm C∗ can simulate the client’s view on input
C, C∩S, and |S|, by constructing a sequence {R∗

1, . . . , R
∗
w} so that, for each ui ∈ C∩S,

a correspondingR∗
i is defined as fr(ui), while the rest are values chosen independently

and uniformly at random in G.

Indeed, doing without the oblivious evaluation part, the protocol from Fig. 4 can be
made substantially more efficient; as a trade off, more trust on the TTP is required,
as the sets C and S are completely revealed to her. It is worth mentioning that this
modification is not possible in the protocols from [16] because client’s privacy would
be immediately lost.

In order to implement these two protocols, the efficient proposal of a pseudorandom
function family from [20] can be used. Therefore, we will additionally need an encoding
of the ground set U into the set {0, 1}n for big enough n. Furthermore, the protocol
proposed in [13] can be used to evaluate fr in an oblivious way, suitable for protocol in
Fig. 4.



Size-Hiding in Private Set Intersection 389

5.2 RSA-Based Protocol

Figure 5 shows an RSA based protocol along the lines of [1], but proven secure in
the standard model. Once again, our construction makes use of a TTP which can go
offline after the Setup phase. Loosely speaking, the TTP certifies to S and C their
input elements by means of values in a set V, computed in a two-step process. Such
a process associates unpredictable intermediate values, exactly RSA signatures, to the
input elements and, then, it uses a strongly universal hash function to get final values,
which are unrelated among each other and close to uniformly distributed over V . For
details on strongly universal hash functions we refer to [3,24].

More precisely, in the Setup phase of the protocol, TTP executes an RSA key gener-
ation algorithm and keeps (N, e, d) private. We assume that elements of the ground set
U are encoded as elements of Z∗

N \ {1}. Further, TTP fixes a group G of prime order
p (for p the smallest prime larger than N ) and g a generator of G. Finally, it selects and
keeps private a strongly universal hash function H : Z∗

N �→ Zp from a given family, by
selecting uniformly at random a, b ∈ Zp and setting Ha,b(x) := ax+ b mod p.

In the last round of the protocol, π denotes a permutation of w elements chosen u.a.r.
by the server. An analogous choice is made in the schemes in subsections 5.3 and 5.4.

Before moving to the proof, let us recall the following:

Definition 7. A family H = {hs : {0, 1}� → {0, 1}m} of hash functions is called
ε-almost strongly universal if and only if:

1. ∀a ∈ {0, 1}�, ∀b ∈ {0, 1}m, it holds that Prs∈S [hs(a) = b] = 2−m

2. ∀a1 �= a2 ∈ {0, 1}�, ∀b1, b2 ∈ {0, 1}m, it holds that Prs∈S [hs(a2) = b2|hs(a1) =
b1] ≤ ε.

Notice that, the first condition states that any input a is mapped to any hashed value b
with probability 1

2m . A 2−m-almost strongly universal hash function familyH is called
a strongly universal hash function family.

The function Ha,b is used for two reasons: first, RSA signatures are malleable, e.g.,
from cd1 and cd2 it is immediate to compute the signature (c1c2)

d for the product c1c2.
Moreover, we do not have any idea about the distribution of the secrets c1, . . . , cv and
s1, . . . , sw. Since RSA is a permutation, then it preserves the input distribution. By post-
processing the signatures we get randomized values through the hash function which
are unrelated and more or less uniformly distributed.

Correctness. Comes from the fact that, as H is a bijection, two different elements of
the universe will never end up getting the same encoding from the TTP ; as a result,
the check up from the Client at the last step of the protocol will exactly result in the
intersection.

Client Privacy. As X is the only public output of C, it suffices to argue that it is indis-
tinguishable from a random group element from G. That is so, as G is cyclic of primer
order and thus gPCH generates G.

Server Privacy (Sketch). We again make use of the hybrid argument from [1], and grad-
ually modify the client’s view replacing values “outside” of S∩C with elements chosen



390 P. D’Arco et al.

Common input: U = {u1, . . . , u|U|}, G, g, p

C TTP S
On input: C = {c1, . . . , cv} On input: r ←$ K On input: S = {s1, . . . , sw}

C={c1,...,cv}−−−−−−−−→ S={s1,...,sw}←−−−−−−−−−
ĉ1,...,ĉv←−−−−− ŝ1,...,ŝw−−−−−→

ĉi = Ha,b(c
d
i ) ŝi = Ha,b(s

d
i )

RC ←$ Zp

PCH =
∏v

i=1 ĉi
X=gRC ·PCH

−−−−−−−−−→ RS ←$ Zp

For 1 ≤ i ≤ w

For 1 ≤ i ≤ v
gRS ,π(Y1,...,Yw)←−−−−−−−−−−− Yi = (X

RS )
1
ŝi

PCHi =
∏v

j=1,j 
=i ĉj
Zi = (g

RS )RC ·PCHi

If Zi ∈ {Y1, . . . , Yw}
Output ci

Fig. 5. RSA based protocol

uniformly and independently at random fromG. Let I = S∩C and |I| = t and consider
distributions D1 = {RC , g

RS , Y1, . . . , Yw} and Dw−t = {RC , g
RS , Y1, . . . , Yt, R1,

. . . , Rw−t}.
We assume w.l.o.g. that the elements from the intersection i.e., Y1, . . . , Yt, come

at the beginning in Dw−t, and they are constructed from the simulator exactly as in
the real protocol; while R1, . . . , Rw−t are generated as follows: the simulator chooses
r1, . . . , rw−t uniformly at random from Zp and, for i = 1, . . . , w − t, sets the value

Ri = ((gRS )RCPCH)
1
ri .

The difference between two distributions Di and Di+1, for i = 1, . . . , w − t − 1,
is the replacement of the i-th element; hence, a distinguisher between them should be

able to distinguish an element of the form (XRS )
1
ŝj = ((gRCPCH)RS )

1
ŝj from the

element Rj = ((gRS )RCPCH)
1
rj , constructed by the simulator. However, due to the

first property of a strongly universal hash function, the value ŝj is associated to the
input value sj with probability 1/p. Similarly, rj is chosen uniformly at random, i.e.,

with probability 1/p. Therefore, both (XRS)
1
ŝj and Rj are uniformly distributed over

G. Hence, no PPT distinguisher can distinguish between them.

5.3 Three-Round ROM Based Protocol

This protocol is inspired by [5]. The TTP choses a full-domain hash function (see [2])
H(·), sets up a group G of prime order q and randomly picks γ ∈ Zq as her secret key.
Elements of the ground set are encoded as integers in Zq . Element x ∈ Zq is certified



Size-Hiding in Private Set Intersection 391

Common input: H(·), g, q

C TTP S
On input: i1, . . . , iv On input: γ On input: j1, . . . , jw

{i1,...,iv}−−−−−−→ For 1 ≤ l ≤ v
C={c1,...,cv}←−−−−−−−− ci = gγ

il

For 1 ≤ l ≤ w
{j1,...,jv}←−−−−−−

si = gγ
jl S={s1,...,sv}−−−−−−−−−→

gRS←−−− RS ←$ Zq

RC ←$ Zq

X = gRS
RC ·

∏i=v
i=1 ci

X−→ For 1 ≤ j ≤ w
π(Y1,...,Yw)←−−−−−−−− Yj = H(X

sj
)

For 1 ≤ i ≤ v
Zi = H( X

gRS
RC ·ci

)

If Zi ∈ {Y1, . . . , Yw}
Output ci

Fig. 6. Three-round Multiplicative protocol

as gγ
x

. Let i1, . . . , iv and j1, . . . , jw be the set of (non-certified) elements held by C
and S, respectively. The protocol is depicted in Fig. 6. Both C and S get their elements
certified by the TTP ; S also uses a random permutation π. Later they interact so that
C outputs C ∩ S and |S|.

Client Privacy. During the protocol execution, C sends X to the server. Since RC is
chosen uniformly at random from Zq , and since G is a cyclic group of prime order q,
then X is uniformly distributed element over G.

Server Privacy (Sketch). We use the same argument used before, that is, the simulator
reproduces the client view from his input and the output of the protocol, by replacing
values “outside” of S ∩ C with elements chosen uniformly and independently at ran-
dom. Let I = S ∩ C and |I| = t and consider the distributions DI = {(RC , T ) :
RC ←$ Zq, T = (H(Xs1 ), . . . , H( X

sw
))} and Dw−t = {(RC , T ) : RC ←$ Zq, T =

(H(Xs1 ), . . . , H(Xst ), rt+1, . . . , rw)}, where s1, . . . , sw ∈ I and rt+1, . . . , rw are val-
ues chosen uniformly at random. Since H(·) is a random oracle, there exists no distin-
guisher which is able to take apart DI from Dw−t.



392 P. D’Arco et al.

5.4 One-Round ROM Based Protocol

Fig. 7 shows a very efficient protocol that allows for OS-SHI-PSI in the ROM. The
TTP uses an RSA signature scheme Sign(·) to certify elements; the secret signing key
is sk.

Client Privacy. During the protocol C does not provide any input so its privacy is triv-
ially preserved.

Server Privacy (Sketch). Since hash functions are modeled as a random oracle, the
simulator reproduces the client view from his input and the output of the protocol, by
replacing values “outside” of S ∩ C with elements chosen uniformly and independently
at random. As before, we argue no distinguisher D can tell apart a real transcript from
a simulated one.

Common input: H(·)

C TTP S
On input: i1, . . . , iv On input: sk On input: j1, . . . , jw, π

{i1,...,iv}−−−−−−→ For 1 ≤ l ≤ v
C={c1,...,cv}←−−−−−−−− ci = Signsk(il)

For 1 ≤ l ≤ w
{j1,...,jv}←−−−−−−

si = Signsk(jl)
S={s1,...,sv}−−−−−−−−−→

RS ←$ G

For 1 ≤ j ≤ w
RS ,π(Y1,...,Yw)←−−−−−−−−−− Yj = H(RS, sj)

For 1 ≤ i ≤ v
Zi = H(RS, ci)
If Zi ∈ {Y1, . . . , Yw}

Output ci

Fig. 7. One-round ROM based protocol

6 Open Problems

Several interesting open problems are left: concerning two-side size-hiding private set
intersection, it would be nice to get an efficient unconditionally secure protocol in the
model with a TTP and a computationally secure protocol which does not consider the
whole ground set (or an impossibility result in that respect). Moreover, it is of interest
to study the same problem in the malicious setting and to consider the extension of the
problem to n parties.



Size-Hiding in Private Set Intersection 393

Acknowledgements. The first three authors were partially supported by the Spanish
“Ministerio de Economı́a y Competitividad” through the project grant MTM-2012-
15167.

References

1. Ateniese, G., De Cristofaro, E., Tsudik, G.: (If) Size Matters: Size-Hiding Private Set In-
tersection. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS,
vol. 6571, pp. 156–173. Springer, Heidelberg (2011)

2. Bellare, M., Rogaway, P.: The Exact Security of Digital Signatures - How to Sign with RSA
and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416.
Springer, Heidelberg (1996)

3. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. Journal of Computer and
System Sciences 18, 143–154 (1979)

4. Cramer, R.: Introduction to Secure Computation. In: Damgård, I.B. (ed.) Lectures on Data
Security. LNCS, vol. 1561, pp. 16–62. Springer, Heidelberg (1999)

5. Camenisch, J., Kohlweiss, M., Soriente, C.: An Accumulator Based on Bilinear Maps and
Efficient Revocation for Anonymous Credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009.
LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009)

6. Camenisch, J., Lysyanskaya, A.: A Signature Scheme with Efficient Protocols. In: Cimato,
S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Hei-
delberg (2003)

7. Camenisch, J., Zaverucha, G.M.: Private Intersection of Certified Sets. In: Dingledine, R.,
Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 108–127. Springer, Heidelberg (2009)

8. De Cristofaro, E., Tsudik, G.: Practical Private Set Intersection Protocols with Linear Com-
plexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer, Heidelberg
(2010)

9. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient Robust Private Set Inter-
section. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009.
LNCS, vol. 5536, pp. 125–142. Springer, Heidelberg (2009)

10. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Secure Efficient Multiparty Com-
puting of Multivariate Polynomials and Applications. In: Lopez, J., Tsudik, G. (eds.) ACNS
2011. LNCS, vol. 6715, pp. 130–146. Springer, Heidelberg (2011)

11. Even, S., Goldreich, O., Lempel, A.: A Randomized Protocol for Signing Contracts. Com-
munications of the ACM 28(6), 637–647 (1985)

12. Frikken, K.: Privacy-Preserving Set Union. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS,
vol. 4521, pp. 237–252. Springer, Heidelberg (2007)

13. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword Search and Oblivious Pseudo-
random Functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer,
Heidelberg (2005)

14. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient Private Matching and Set Intersection. In:
Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer,
Heidelberg (2004)

15. Goldreich, O.: Foundations of Cryptography - Volume II Basic Applications. Cambridge
Press (2004)

16. Hazay, C., Lindell, Y.: Efficient Protocols for Set Intersection and Pattern Matching with
Security Against Malicious and Covert Adversaries. In: Canetti, R. (ed.) TCC 2008. LNCS,
vol. 4948, pp. 155–175. Springer, Heidelberg (2008)



394 P. D’Arco et al.

17. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding Cryptography on Oblivious Transfer – Ef-
ficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer,
Heidelberg (2008)

18. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations.
In: Proc. of the 21st Annual ACM Symposium on Theory of Computing, Seattle, Washington,
pp. 44–61 (May 1989)

19. Kissner, L., Song, D.: Privacy-Preserving Set Operations. In: Shoup, V. (ed.) CRYPTO 2005.
LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

20. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random func-
tions. Journal of the ACM 51(2), 231–262 (2004)

21. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–239. Springer, Heidelberg
(1999)

22. Rabin, M.: How to exchange secrets by oblivious transfer, Technical Report TR-81, Aiken
Computation Laboratory, Harvard University (1981)

23. Rivest, R.: Unconditionally Secure Commitment and Oblivious Transfer Schemes Using
Private Channels and a Trusted Initializer (August 11, 1999) (unpublished manuscript),
http://people.csail.mit.edu/rivest/publications.html

24. Stinson, D.R.: Universal hash families and the leftover hash lemma, and applications to cryp-
tography and computing. J. Combin. Math. Combin. Comput. 42, 3–31 (2002)

http://people.csail.mit.edu/rivest/publications.html


Round-Optimal Black-Box Statistically Binding
Selective-Opening Secure Commitments

David Xiao�

LIAFA, CNRS, Université Paris 7
dxiao@liafa.univ-paris-diderot.fr

Abstract. Assuming t-round statistically hiding commitments in the stand-alone
model, we build a (t+ 2)-round statistically binding commitment secure against
selective opening attacks under parallel composition. In particular, assuming
collision-resistant hash functions, we build such commitments in 4 rounds.

Keywords: Commitments, selective opening attacks.

1 Introduction

Selective opening attacks against commitment schemes occur when the commitment
scheme is repeated in parallel and an adversary can choose depending on the commit-
phase transcript to see the values and openings to some subset of the committed bits.
Commitments are secure under such attacks if one can prove that the remaining,
unopened commitments stay secret. Related notions such as chameleon blobs, equiv-
ocal commitments, and trapdoor commitments have been widely studied in the litera-
ture [BCC88,BCY89,Fis01,Bea96,DCIO98,DCO99]. The notion of selective opening
security that we study here was defined by [DNRS03]. One of the primary motivations
of studying such commitment schemes is their application to parallel composition of
zero knowledge: when used as the commitment scheme in, say, the zero knowledge
protocol of [GMW86], that protocol remains zero knowledge under parallel compo-
sition (which is not known to be the case when using a commitment scheme without
selective opening attack security).

[BHY09, Xia11] studied the optimal round complexity for commitments secure
against selective opening attacks. [Xia11] claimed round-optimal constructions under
parallel composition, but it was subsequently shown in [ORSV11] that there were flaws
in the argument of [Xia11]. In particular, [ORSV11] gave a 3-round construction in the
case of computationally binding (and statistically hiding) commitments secure against
selective opening attacks. The (corrected) lower bound of [Xia11] states that this is
optimal (for black-box simulation).

[ORSV11] leave open the question of round-optimal black-box constructions of
statistically binding commitments secure against selective opening attacks. The statis-
tically binding commitment of [Xia11] is 5 rounds, but in light of the flaw discovered
by [ORSV11], the lower bound is 4 rounds.

� Partially supported by the French ANR Defis program under contract ANR-08-EMER-012
(QRAC project).

A. Mitrokotsa and S. Vaudenay (Eds.): AFRICACRYPT 2012, LNCS 7374, pp. 395–411, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



396 D. Xiao

Our contribution: in this paper we construct a (t+2)-round scheme that is secure under
parallel composition assuming the existence of t-round stand-alone statistical hiding
commitments (SHC). In particular, 2-round SHC can be built from collision-resistant
hash functions [DPP93, DPP98, HM96], which gives an optimal 4-round construction
of statistically binding selective-opening attack secure commitments.

Our analysis introduces a novel simulation strategy that generalizes the Goldreich-
Kahan simulation strategy for constant-round zero knowledge [GK90]. At a high level,
our strategy differs from the Goldreich-Kahan simulation strategy because it allows the
simulator to continue even if the receiver aborts individual sessions, and it guarantees
that the simulator’s output distribution will be indistinguishable from the distribution
in an interaction with the honest sender even when taking into account the aborted
sessions. In contrast, the Goldreich-Kahan simulation strategy completely aborts if any
individual session is aborted.

2 Preliminaries

We adopt the following standard notation: for a distributionD and a variable x, x←R D
denotes that x is sampled according to D. For distributions D0,D1, we let Δ(D0,D1)
denote their statistical distance. We say that a function ε(n) is negligible if ε(n) ≤
n−ω(1). For a bit b, b denotes the complement of b. We frequently use underlined vari-
ables to represent vectors, e.g. b ∈ {0, 1}k and bi ∈ {0, 1} for every i ∈ [k].

A commitment protocol is given by a pair of interactive algorithms Send and Rec.
Both algorithms take an input indicating the phase (either com or decom) and a security
parameter 1n, which we often omit. Send takes a one-bit input and both algorithms may
be randomized.

Commit phase: Generate a transcript τ ←R 〈Rec(com), Send(com, b)〉. Send also gen-
erates an internal state variable σ.

Decommit phase: Generate (v, b′) ←R 〈Rec(decom, τ), Send(decom, b, σ)〉, where v
is the receiver’s view (including the entire transcript and its random coins) and
b′ ∈ {0, 1,⊥}, where ⊥ denotes that the receiver rejects the sender’s opening.

We will often omit the phase variable (i.e. either com, decom) and the state variable σ
when it is convenient and their values are implicitly defined by the context. In this paper
the round complexity refers only to the number of rounds in the commit phase, and we
work only with commitments with non-interactive openings (i.e. the opening consists
of a single message from sender to receiver).

We will study commitments under parallel composition, i.e. the commitment is ex-
ecuted many times simultaneously and, for each i, the i’th step of the commitment is
finished in all sessions before the i+ 1’th step begins in any session.

Definition 1 (Binding). Define Advbind to be the supremum over all possible strategies
Send∗ (computationally unbounded) that the probability of the following experiment
succeeds:



Round-Optimal Black-Box 397

1. Generate τ ←R 〈Rec(com), Send∗(com)〉 along with sender state σ.
2. Generate (v0, b0)←R 〈Rec(decom, τ), Send∗(decom, 0, σ)〉 and

(v1, b1)←R 〈Rec(decom, τ), Send∗(decom, 1, σ)〉.
3. The experiment is a success if b0 = 0 and b1 = 1.

We say that (Rec, Send) is statistically binding if Advbind is negligible. We say it is
perfectly binding if Advbind = 0. We say it is computationally binding if the Advbind is
negligible when the supremum is taken over polynomial-size Send∗.

The binding property is preserved under parallel composition.

Definition 2 (Statistically hiding (stand-alone)). A commitment Send,Rec is (stand-
alone) statistically hiding (i.e. it is a SHC) if for all (possibly unbounded)Rec∗, it holds
that Δ(D0,D1) is negligible, where b ∈ {0, 1} and Db denotes the distribution of
τ ←R 〈Rec∗(com), Send(com, b)〉 along with the private coins of Rec∗.

Definition 3 (Hiding under selective opening attacks). A commitment is secure
against selective opening attacks with black-box simulation if for all k = poly(n), there
is an efficient simulator Simk such that the following holds. Define Advhide to be the
supremum over all polynomial-size cheating receiver strategies Rec∗, all polynomial-
size distinguisher circuits D, all inputs b, of the difference between the probability that
D outputs 1 in the following two experiments (in the following, I ⊆ [k] and bI denotes
the vector containing bi for i ∈ I , and likewise for τI , sigmaI):

1. Let Send denote k parallel instances of the sender algorithm, Send1, . . . , Sendk.
(a) Generate τi ←R 〈Rec∗(com), Send(com, bi)〉 along with sender state σi for all

i ∈ [k].
(b) Rec∗ outputs a set I ⊆ [k].
(c) Generate (v, bI)←R 〈Rec∗(decom, τI), Send(decom, bI , σI)〉.
(d) Output D(v, bI).

2. Simk samples random coins for Rec∗ and fixes them; in the following Simk queries
Rec∗ for this fixed choice of coins.
(a) Generate I ←R Sim

Rec∗
k (com).

(b) Generate v ←R Sim
Rec∗
k (decom, I, bI).

(c) Output D(v, bI).

Security against selective opening attacks holds if Advhide is negligible.

This definition is stronger than necessary for many applications (where security is only
needed with respect to certain message distributions and certain families of valid subsets
to be opened). However since we only study constructions in this paper, working with
this definition is stronger than working with weaker definitions.

3 Construction

Let SendSH,RecSH be the sender and receiver algorithms for a t-round statistically
hiding bit commitment. A construction for t = 2 exists based on collision-resistant
hash functions [DPP93, DPP98, HM96]. Let SendNI,RecNI be the sender and receiver



398 D. Xiao

Send’s input: b ∈ {0, 1}.
Commitment phase

1. Rec samples β ←R {0, 1}n and commits to each bit in parallel using (SendSH,RecSH)
(namely, Rec plays the role of SendSH and Send plays the role of RecSH). Let ci denote
the transcript of the commitment to βi. If any ci is not well-formed, the protocol aborts.

2. Define M(b, η) =

(
b η ⊕ b

b η ⊕ b

)
For each i = 1, . . . , n in parallel, Send samples ηi ←R {0, 1}. In parallel, Send uses
SendNI to generate a commitment to all bits of M(b, ηi). Call this commitment di.
Send sends di to Rec. If any di is not well-formed, Rec aborts.

3. For each i ∈ [n] in parallel, Rec generates an opening φi to ci and sends it to Send.
Send calculates βi = RecSH(decom, ci, φi). If any βi = ⊥, Send aborts.

Opening phase

1. Send sends b to Rec, and for each i ∈ [n], Send opens the bits in di that correspond to
the row in M(b, ηi) that equals (b, βi ⊕ b).

2. For each i = 1, . . . , n, Rec computes the two bits in the row opened by Send, call these
(x0

i , x
1
i ). Rec checks that x0

i = b and x1
i = b ⊕ βi. If the check fails, then Rec rejects

and outputs ⊥, otherwise Rec outputs b.

Algorithm 1. 4-round statistically binding and selective opening attack secure commitment

algorithms for a non-interactive perfectly binding commitment (e.g. based on one-way
permutations). Our commitment is given in Algorithm 1. The following two lemmas
prove the security of the commitment.

Lemma 1. Algorithm 1 is statistically binding.

Lemma 2. The simulator given in Algorithm 2 proves that Algorithm 1 is secure against
selective opening attacks.

Proof (of Lemma 1). Fix any Send∗ a (possibly cheating and computationally
unbounded) sender strategy. Let (c, d, φ) ←R 〈Rec(β), Send∗〉 be the commit-phase
transcript: c denotes the n parallel SHC to β sent byRec, d denotes the n non-interactive
commitments to matrices m1, . . . ,mn sent by Send∗ in response to c, and φ denotes
Rec’s opening of c. Note that given d, m = (m1, . . . ,mn) are well-defined because the
non-interactive commitment is perfectly binding.

We say that a matrix mi matches a bit βi if it holds that the bits in the first column
are different and the XOR of the two bits in each row equals βi. Formally, this holds if
m0,0

i �= m1,0
i and also mj,0

i = mj,1
i ⊕ βi for all j ∈ {0, 1}. We say that m matches β if

for all i ∈ [n] it holds that mi matches βi.

Claim. Let (c, d, φ) denote a valid commit-phase transcript. Let β be the opening of c
using φ, and let m be the opening of d. Given this commit-phase transcript, Send∗ can
successfully break binding iff m matches β.



Round-Optimal Black-Box 399

Proof. Suppose m matches β, then for each i ∈ [n] there exists a row in mi that equals

(0, βi) and a row that equals (1, βi). Therefore, it is possible for Send∗ to generate an
opening to the row that equals (b, b⊕ βi) for all b ∈ {0, 1}.

Suppose that Send∗ can open to both values of b ∈ {0, 1}. This means it can open
each di to (b, b⊕ βi) for both b ∈ {0, 1}. Since SendNI is perfectly binding, therefore it
must be that m matches β.

A standard argument says that soundness holds because the initial commitment to β by
Rec does not contain any information about β, therefore it is impossible for Send∗ to
commit to m that will match β.

For the sake of completeness, we give a formal proof: by the statistical hiding prop-
erty of the initial commitment, we have that for any β, it holds that (c, d) ←R

〈Rec(β), Send∗〉 and (c, d) ←R 〈Rec(0n), Send∗〉 are n−ω(1)-close in statistical dis-
tance. Therefore we may write:

Advbind ≤ Pr
β←R{0,1}n

(c,d,φ)←R〈Rec(β),Send∗〉
[d opens to m matching β]

=
∑

β∈{0,1}n

2−n Pr
(c,d,φ)←R〈Rec(β),Send∗〉

[d opens to m matching β]

≤ 2−n
∑

β∈{0,1}n

Pr
(c,d,φ)←R〈Rec(0n),Send∗〉

[d opens to m matching β] + n−ω(1)

≤ 2−n + n−ω(1)

where the last inequality holds because if m matches one β, it cannot match any β′ �=
β, and so the sum of the probabilities is bounded by 1. This means that Send∗ has a
negligible probability of breaking binding.

4 Analyzing the Simulator

Proof (of Lemma 2). We use “initial commitment” to denote the SHC used by the re-
ceiver in the first step of the protocol. We use “final commitment” to denote the overall
selective-opening attack secure commitment we are trying to simulate. As is typical
with black-box simulation strategies, this simulator tries to rewind Rec∗ to discover
the values in the initial commitment, and then use those values to construct a final
commitment that can be opened to both 0 and 1. One subtlety where care is need is
the possibility of individual sessions aborting. We observe that, for each session j that
successfully completes the initial commitment, the simulator needs to successfully dis-
cover the committed βj just once (the receiver cannot change it, otherwise this would

contradict the binding property of the initial commitment). Once βj is discovered,
the simulator can always successfully open the final commitment to both 0 and 1 in
session j.

The idea is to successively increase the number of sessions where the simulator
knows βj , so that eventually Rec∗ will be non-aborting only in sessions where the



400 D. Xiao

simulator can open to any value and therefore the simulation can be successfully ter-
minated. Care must be taken that one does not bias the distribution of non-aborting
sessions in the final transcript. The intuition is the following strategy: suppose at some
point we know that how to reveal arbitrary values for some set of sessions X . The next
time the simulator queries the receiver, if the set S of non-aborting sessions returned
satisfies S ⊆ X then the simulator can successfully open any subset of S that the re-
ceiver requests and so we can terminate the simulation. Otherwise, S �⊆ X and so we
have increased the number of sessions where we know βj , and so in future samples we
have a better chance of being able to open all the non-aborting sessions to both 0 and
1. However, in order not to bias the distribution of opened sessions, in future iterations,
if the simulator receives a response from the receiver whose non-aborting sessions are
contained in X , we ignore it and resample. The actual simulator follows this intuition,
although there are details about how exactly to query the receiver that need to be taken
care of.

As in the case of constant-round zero knowledge, one point we must be careful about
is that the simulator must run in expected polynomial time. This is done by using the
Goldreich-Kahan strategy of estimating the success probability of queries, and then
setting a timeout based on this estimate. In the case of Goldreich-Kahan “success”
means obtaining a response without aborting sessions, while in our case success means
that the set of non-aborting sessions lies inside X but not inside Y , where Y � X are
subsets that evolve during the course of simulation.

4.1 General Observations

The simulator is given in Algorithm 2. In the following we omit k from the notation
and write simply Sim. We can divide the simulator algorithm into two parts: the initial
commitment where the receiver commits to some βj (consisting of all the steps up to
Step 3), and the remainder. We will frequently analyze the simulator for a fixed value
of Rec∗’s random coins and a fixed initial commitment transcript, since this part is
executed exactly once and is distributed identically to the honest interaction.

Fix any choice of Rec∗’s random coins and the initial commitment transcript, which
in turn fixes some Σ ⊆ [k] of non-aborting sessions so far. This defines a distribution
Ddummy as follows: construct dummy commitments dj for j ∈ Σ as in Step 6a and send
these to Rec∗, and let s denote the receiver’s response. Let S = S(s) denote the set of
sessions where s contains a non-aborting response (i.e. in those sessions, Rec∗ produces
a valid opening of the initial commitment). Let Ddummy denote the distribution over S
thus sampled.

For X ⊆ Σ, let qX denote

qX = Pr
S←RDdummy

[S �⊆ X ] (4.1)

Observe that q∅ is the probability that Rec∗’s response contains at least one non-
aborting session.

For Y � X ⊆ Σ, define:

qX|Y = Pr
S←RDdummy

[S �⊆ X | S �⊆ Y ] (4.2)



Round-Optimal Black-Box 401

Given oracle access to a cheating k-fold receiver Rec∗:

1. Initialize X,Y = ∅. Initialize variables β1, . . . , βk to empty. Initialize a counter t to
0 and a timeout T to 0.

2. Sample random coins for Rec∗ and fix them. Sample coins for the honest sender and
execute the initial commitment with Rec∗. Write Rec∗’s random coins and the initial
commitment phase transcript to the output.

3. Let Σ ⊆ [k] denote the set of sessions in which Rec∗ does not abort in the initial
commitment. In the following, only continue interaction in Σ.

4. In the following, if Rec∗ ever outputs an invalid opening of a commitment in session
j, the simulator interprets this as the receiver aborting in session j. The simulator also
checks the values of all the valid openings, and if Rec∗ ever opens the same commit-
ment to two distinct values then the simulator outputs “binding broken” and halts.

5. Define F (γ, β) =

(
γ β ⊕ γ
γ β ⊕ γ

)
.

6. First loop: Repeat the following:
(a) Dummy commitments: For each j ∈ Σ, i ∈ [n], sample γj

i ←R {0, 1}, νj
i ←R

{0, 1} and generate commitments to F (γj
i , ν

j
i ). Call these commitments dj =

(dj1, . . . , d
j
n). Send dj to Rec∗.

(b) Read Rec∗’s response, call this s. Let S ⊆ Σ be the set of non-aborting sessions
in s. Do the following:

i. If S = X = Y = ∅ (this can only occur in the first iteration), write the dj

and s to the output and halt.
ii. If S ⊆ Y , continue the loop.

iii. If S �⊆ Y and S ⊆ X then break the loop.
iv. If S �⊆ X then set Y ← X , X ← X ∪ S, and for all j ∈ S \X , set βj to be

the value that was opened by Rec∗. Continue the loop.
7. Calculate timeout: Repeat the following trial until (nk)2 successes occur: for each

j ∈ Σ, generate dj by the method in Step 6a, and let S′ denote the set of sessions in
Rec∗’s response that are not aborted; the trial is a success if S′ �⊆ Y and S′ ⊆ X .
Let � denote the number of repetitions that were used to obtain (nk)2 successes. Set
T = min( �

nk
, nk2nk) and set t = 0.

8. Second loop: Repeat the following while t ≤ T
(a) For j ∈ Σ, construct and send dj to the receiver, defined as:

i. For each j ∈ Σ \X , let dj be generated by the method in Step 6a.
ii. For j ∈ X and for each i ∈ [n], sample γj

i ←R {0, 1} and construct dji to be
a commitment to F (γj

i , β
j
i ).

(b) Let s be Rec∗’s response and S the set of non-aborted sessions in s.
i. If S ⊆ Y or S �⊆ X then increment t and continue the loop.

ii. Otherwise, it must be that S �⊆ Y and S ⊆ X . Write all the dj and s to the
output. Complete the simulation as follows:
A. Ask Rec∗ for a set I to be opened. If Rec∗ aborts, then the simulator

halts. Otherwise, Rec∗ picks a subset I ∈ I, I ⊆ S to be revealed and
the simulator asks for the values {bj}j∈I . Write I to the output.

B. For each j ∈ I , each i ∈ [n], the simulator outputs bj and an opening to
the row in F (γj

i , β
j
i ) that equals (bj , β

j
i ⊕ bj).

C. Halt.
9. We exceeded the timeout, so output “timeout”.

Algorithm 2. Simulator Simk for Algorithm 1



402 D. Xiao

Input: black-box access to a distribution D over [k].

1. Initialize X = Y = ∅.
2. Repeat the following:

(a) Sample S ←R D. If S = X = Y = ∅, output S and halt.
(b) If S ⊆ Y , continue the loop.
(c) If S �⊆ Y and S ⊆ X , output S.
(d) If S �⊆ X , then we have seen some new elements (S \ X). Set Y ← X and

X ← X ∪ S and continue the loop.

Algorithm 3. Abstraction of simulator

Remark 1. For any Y � X , it holds that qX = qX|Y · qY , and so qX = qX|∅ · q∅.

An abstraction of the simulator. The simulator basically solves the following problem:
we are given black-box access to a distribution D over subsets of [k]. Each time we
obtain a sample S ←R D, we say that we have “seen” all the elements j ∈ S. The
goal is to output some S′ ⊆ [k] such that S′ is distributed identically to D, and each
element of S′ was already seen during the execution of the algorithm. (In our simulator,
having seen some j ∈ S means we have the opening for βj and so can equivocate in the
j’th session. We also have to do some additional work (Steps 7 and 8 in Algorithm 2)
because we want to output a complete transcript, not just S.)

In the setting of this abstract problem, the strategy of our simulator is given in
Algorithm 3.

The intuition why Algorithm 3 (and hence our simulator) produces a set that is
distributed according to D is the following claim: for any V � U ⊆ Σ, if we run
Algorithm 3 with X = U, Y = V (rather than X = Y = ∅), then it outputs a random
S ←R D conditioned on S �⊆ V . The reasoning is as follows.

– With probability 1 − qU|V we get a sample distributed according to S ←R D con-
ditioned on S ⊆ U and S �⊆ V , and this is our output.

– With probability qU|V we get S �⊆ U and so we see some new elements, and we
update X,Y . In this case we can use induction to show that, since the new value
Y is U , the final output will be distributed according to S ←R D conditioned on
S �⊆ U .

Combining the two, the overall distribution is correct. (This intuition is formalized later
in Lemma 10.)

In the following we will analyze the simulator directly (i.e. with all the details per-
taining to outputting a transcript and not just the set of non-aborting sessions), but it
helps to keep this abstraction in mind for intuition.

4.2 Running Time

We first show that the expected running time of the simulator in Algorithm 2 is poly-
nomial. Clearly the steps before Step 6 are efficient, so fix any choice of random coins



Round-Optimal Black-Box 403

for Rec∗ and any initial commitment transcript and let Σ be the set of non-aborting
sessions so far. We count the number of steps starting at Step 6 and afterwards.

We will count the number of iterations in each of the loops, and multiply this by
the number of steps each iteration takes. Therefore, let citeration denote the maximum
amount of time it takes in one iteration of any of the loops: it upper bounds the time
to construct dj , send them to Rec∗, and calculate S the set of sessions where Rec∗’s
responses are non-aborting and do not break binding, and compare S to Y and X , and
possibly updating Y,X . It holds that citeration = poly(n, k).

Let Σ∗ denote ∪S⊆supp(Ddummy)S. Suppose at some point in its execution, the simula-
tor sets X = U and Y = V for some V � U ⊆ Σ∗. Let cU,V denote the total expected
number of steps the simulator takes after having set X = U, Y = V .

Lemma 3. For all V � U ⊆ Σ∗, let v = |V |, then it holds that cU,V ≤ (k−v)((nk)2+
4nk)citeration/qV .

Proof. We prove the lemma by induction.

Base case. Consider the base case where U = Σ∗ (and V � Σ∗ is arbitrary). The
simulator repeatedly samples S until it obtains S �⊆ V . It takes 1/qV executions of the
loop at Step 6 on average to sample S �⊆ V . Each such execution takes citeration steps,
so this part contributes a total of citeration/qV on average.

Since U = Σ∗, therefore for any S �⊆ V that is sampled, S ⊆ Σ∗ and so the
simulator goes to Step 7. We count the number of iterations needed to calculate the
timeout: a success in each trial means sampling S′ �⊆ V , and so on average it takes
1/qV samples to get one success, and (nk)2/qV to get (nk)2 successes. Each sample
takes citeration steps, so overall we execute on average (nk)2citeration/qV steps.

Next, the simulator goes to the loop at Step 8. Here it executes at most T iterations.
There are two cases: either T ≤ 2nk/qV or T > 2nk/qV . The number of iterations
in the first case is at most 2nk/qV . By a standard Chernoff bound, the probability that
the second case occurs is at most 2−nk, and in this case we can apply the bound T ≤
nk2nk. Therefore the expected contribution of this loop is at most 2nkciteration/qV +
citerationnk ≤ (4nk − 1)citeration/qV .

Summing up, we get that cΣ∗,V ≤ ((nk)2 + 4nk)citeration/qV ≤ (k − v)((nk)2 +
4nk)citeration/qV .

Inductive case. Suppose U �= Σ∗. Suppose the lemma holds for all U ′, V ′ where
|U ′| > |U |.

It takes on average 1/qV samples to obtain S �⊆ V . Each sample takes citeration so
this contributes citeration/qV .

For the set S �⊆ V that is sampled, there are two cases:

1. With conditional probability 1 − qU|V , we obtain S ⊆ U . Let us write pU,V =
1 − qU|V . In this case we calculate the timeout (Step 7). Calculating the timeout
takes on average 1/(qV pU,V ) samples to obtain a success, and each sample requires
citeration steps, so overall this contributes on average pU,V · (nk)2 · citeration/(qV ·
pU,V ) = (nk)2citeration/qV steps.

Next the simulator enters the loop at Step 8. This loop runs at most T times.
As with the base case, there are two cases: either T ≤ 2nk/(qV pU,V ) or T >



404 D. Xiao

2nk/(qV pU,V ). As before, we may argue that in the first case T contributes at
most 2nk/(qV pU,V ) and the expected contribution of the second case is at most
nk, so overall the contribution is pU,V · citeration(2nk/(qV pU,V ) + nk) ≤ (4nk −
1)citeration/qV .

2. The other case is when S �⊆ U . Such an S is sampled with conditional probability
qU|V . In this case we update the variables so that X = U ∪ S and Y = U , as well
as updating the values of the βj . From this point on, the remaining number of steps
spent in the loop is given by cU∪S,U . Since S �⊆ U , therefore |U ∪ S| > |U | and
|U | ≥ v + 1, and we can apply the inductive hypothesis. That is, for any such S,
the inductive hypothesis states that

cU∪S,U ≤ (k − v − 1)((nk)2 + 4nk)citeration/qU

Therefore, by applying Remark 1, this contributes qU|V · (k − v − 1)((nk)2 +
4nk)citeration/qU = (k − v − 1)((nk)2 + 4nk)citeration/qV .

Taking the sum of all the terms we have cU,V ≤ (k − v)((nk)2 + 4nk)/qV .

Finally, we observe that the expected running time C of the simulator is bounded by:

C = poly(n, k) + q∅ · ES [cS,∅ | S �= ∅]

≤ poly(n, k) + q∅ · ES [k((nk)
2 + 4nk)citeration/q∅ | S �= ∅]

≤ poly(n, k)

The first poly(n, k) comes from the steps before Step 6 and the contribution from when
the very first iteration of the first loop samples S = ∅. The second term is the contribu-
tion from when S �= ∅.

4.3 Indistinguishability

Next we prove that the output of the simulator is computationally indistinguishable
from the honest interaction. To do this we use a sequence of hybrid simulators, which
unlike the simulator know the input b during the entire simulation.

HSim(b)Rec
∗

which is identical to Sim except it knows the input b beforehand and it
has the following modifications:

1. In Step 6a, Step 7, and Step 8a, to construct dj for j ∈ Σ do the following: for each
i ∈ [n], sample ηji ←R {0, 1} and construct dji to be a commitment to M(bj, η

j
i )

(recall that M was defined in Algorithm 1).
2. In Step 8(b)iiB, for each j ∈ Σ, open the row in dji that equals (bj , β

j
i ⊕ bj).

Namely, it constructs all the commitments honestly, which it can do because it knows
b. Observe that the simulator can still successfully open its final commitments because
they are generated honestly (without relying on learning the βj sent in the initial com-
mitment by Rec∗).

We define a second hybrid BSim that is identical to HSim except it does not check
whether or not the openings given by Rec∗ are consistent (i.e. whether binding is ever
broken). However BSim still calculates and enforces the timeout.



Round-Optimal Black-Box 405

We define a third hybrid TSim that is identical to BSim except it does not check the
timeout condition. (Namely, TSim is like HSim except it enforces neither the timeout
nor the binding broken conditions.)

Lemma 4. HSimRec∗(b) and BSimRec∗(b) both run in expected polynomial time.

Proof. The proof of the expected polynomial running time of Sim applies to each of
these simulators as well: it only used the fact that with high probability the timeout cal-
culation is accurate, and then afterwards bounds the running time by using the timeout.

Namely, one can apply the entire proof with the sole modification being the definition
of the qX , qX|Y (Equation 4.1, Equation 4.2), which, instead of using Ddummy, are now
defined with respect to the following distribution Db:

Definition 4. Fix a transcript of the initial commitment. Let S ←R Db be defined as
follows: construct dj commitments to bj for j ∈ Σ as an honest sender would and send
them to Rec∗. Let S be the sessions in Rec∗’s response that are non-aborting.

Since the actual steps in each iteration of the loops at Step 6a, Step 7, and Step 8 (which
are the only differences between Sim and HSim) never really entered into the proof, one
can apply the rest of the proof for Sim to HSim.

Since the proof never used the fact that Sim sometimes outputs “binding broken”,
and since outputting “binding broken” can only reduce the running time, this same
argument also extends to BSim.

Let (SimRec∗ | b) denote the distribution of the output of the simulator, where the
“conditioned on b” notation emphasizes the fact that the simulator does not see b until
it requests some subset I to be opened, and even then it only sees bI . The follow-
ing four lemmas show that, by using these hybrids, it holds that (SimRec∗ | b) and
〈Send,Rec∗〉(b) are computationally indistinguishable.

Lemma 5. For all sufficiently large n, k and all b ∈ {0, 1}k, the two distributions
(SimRec∗ | b) and HSimRec∗(b) are computationally indistinguishable.

Lemma 6. For all sufficiently large n, k and all b ∈ {0, 1}k, the two distributions
HSimRec∗(b) and BSimRec∗(b) have negligible statistical distance.

Lemma 7. For all n, k and all b ∈ {0, 1}k, the two distributions BSimRec∗(b) and
TSimRec∗(b) have negligible statistical distance.

Lemma 8. For all n, k and all b ∈ {0, 1}k, the two distributions TSimRec∗(b) and
〈Send,Rec∗〉(b) are identical.

We now turn to proving these lemmas.

Proof (of Lemma 5, Sim and HSim are computationally indistinguishable.). Suppose
there exists an efficient distinguisher D, a polynomial P (n) and infinitely many n, k =

poly(n), b ∈ {0, 1}k such that D distinguishes (SimRec∗ | b) from HSimRec∗(b) with
advantage 1/P (n). We build a distinguisher that breaks hiding for (SendNI,RecNI).



406 D. Xiao

Let C denote the maximum of the expected running times of HSimRec∗(b) and
(SimRec∗ | b) and the running time of the distinguisher D. Construct the following
algorithm E, which is supposed to distinguish oracle O1 from O2 taking input b ∈
{0, 1}, β ∈ {0, 1} and behaving as follows:

1. O1(b, β) outputs a commitment using SendNI to (b, β ⊕ b).
2. O2(b, β) outputs a commitment using SendNI to (b, β ⊕ b).

As advice E receives an input (n, k, b) where D achieves advantage 1/P (n).
E executes SimRec∗ (i.e. Algorithm 2) except for the following modifications. For

each j ∈ X ,

1. In Step 6a and Step 7, for each j ∈ Σ, i ∈ [n], construct dji as follows: E sam-
ples νji ←R {0, 1} and calculates by itself commitments under SendNI to the bits
(bj , ν

j
i ⊕ bj), call these dji,0. It calls O(bj , νji ) to get a commitment to two more

bits, call these dji,1. E creates dji by setting with probability 1/2 the commitments

dji,0 as the top row and dji,1 as the bottom row, and with probability 1/2 the other
way around.

2. In Step 8a, for each j ∈ Σ, i ∈ [n], generate dji as follows: E calculates by itself
commitments under SendNI to the bits (bj , β

j
i⊕bj), call these dji,0. It callsO(bj , βj

i )

to get a commitment to two more bits, call these dji,1. E creates dji by setting with

probability 1/2 the commitments dji,0 as the top row and dji,1 as the bottom row,
and with probability 1/2 the other way around.

3. In Step 8(b)iiB, opens the row in dji where it inserted dji,0.

Finally, E applies the distinguisher D to the output transcript and outputs the same
thing as D. Let EO(b) denote E run with oracleO and input b.

Claim. Pr[EO2(b) = 1] = Pr[D(SimRec∗ | b) = 1].

Proof. The only place where E differs from Sim is in how it constructs dj .
Let us look at Step 6a, the case of the other steps is identical (for Step 8a, replace νji

by βj
i ). For each j ∈ X, i ∈ [n], observe that dji constructed according to E using O2

gives a commitment to a matrix where one randomly chosen row equals (bj , ν
j
i ⊕ bj)

and the other row equals (bj , ν
j
i ⊕bj). This is the same as a commitment to F (γ, νji ) for

γ ←R {0, 1}, which is how Sim constructs dji . Since the openings to the non-interactive
commitments are deterministic given fixed dji , this means that the distribution of output
of EO2(b) is identical to the distribution of (SimRec∗ | b).

Claim. Pr[EO1(b) = 1] = Pr[D(HSimRec∗(b)) = 1]

Proof. Again it suffices to look only at the loop at Step 6a. For each j ∈ X, i ∈ [n],
observe that dji constructed according to E using O1 gives a commitment to a matrix
where one randomly chosen row equals (bj , ν

j
i ⊕ bj) and the other row equals (bj , ν

j
i ⊕

bj). This is the same as a commitment to M(bj, η) for η ←R {0, 1}, which is how HSim

constructs dji . Since the opening to the non-interactive commitments are deterministic
given fixed dji , this means that the distribution of output of EO1(b) is identical to the
distribution of HSimRec∗(b).



Round-Optimal Black-Box 407

These two claims imply that E(·)(b) distinguishes between O1 and O2 with advantage
1/P (n). Furthermore, the expected running time of E is bounded by 2C. Let us trun-
cate its running time to 6P (n)C, then the distinguishing advantage remains at least
1/(3P (n)). Furthermore, the fact that HSim and Sim are expected polynomial time
means that 6P (n)C is polynomial. By a standard hybrid argument, this can be trans-
formed into an efficient distinguisher for a single call to O1 vsO2. By another standard
argument, this can be transformed into an efficient distinguisher breaking the hiding
property of the commitment.

Proof (of Lemma 6, HSim and BSim are statistically close.). By definition, HSim and
BSim are identical except in the case that HSim outputs “binding broken”. This can
only happen with negligible probability: otherwise using a standard argument, e.g.
given in Goldreich-Kahan, if C bounds the expected running time of HSimRec∗(b) and
HSimRec∗(b) outputs “binding broken” with non-negligible 1/P (n), then by truncating
the execution of HSim at 2P (n)C we get an algorithm that outputs “binding broken”
with non-negligible probability 1

2P (n) . By Lemma 4 C = poly(n, k) and so this algo-
rithm is efficient. This can then be used to break the binding of the commitment used
by the receiver, which contradicts the computational binding property of the commit-
ment.

Proof (of Lemma 7, BSim and TSim are statistically close.).
By definition, BSim and TSim are identical except in the case that BSim times out.

We calculate this probability. For the following, fix any choice of b, Rec∗’s random
coins, and initial commitment from Rec∗.

Let BU,V denote the event that BSim breaks from the first loop with X = U, Y = V .
Since a timeout can only occur when BU,V occurs with U �= ∅, we observe that:

Pr
BSim

[BSim times out] =
∑

V �U⊆Σ

Pr
BSim

[BSim times out ∧BU,V ] (4.3)

Since there are less than 22k choices for U, V , it suffices to show that each term of the
summation is bounded by 2−Ω(nk). To do this, we relate Pr[BU,V ] to the following
quantity:

δU,V = Pr
S←RDb

[S ⊆ U ∧ S �⊆ V ] (4.4)

where Db is as defined in Definition 4. We claim that

Lemma 9. PrBSim[BU,V ] ≤ δU,V

Let us apply this lemma to complete the proof of the lemma; we will prove the lemma
later. By the lemma, all terms in Equation 4.3 satisfy eitherPr[BU,V ] ≤ 2−nk or δU,V >
2−nk. The second case is the only interesting one, so fix such U, V . It suffices to show
that Pr[BSim times out | BU,V ] ≤ 2−Ω(nk).

Let T denote the timeout calculated in the simulation. Since each trial in the timeout
calculation is a success with probability δU,V , the expected number of trials necessary

to obtain (nk)2 successes is (nk)2

δU,V
. Therefore by a standard Chernoff bound, the prob-

ability that T < nk
2δU,V

is at most 2−nk. (Here the assumption that δU,V > 2−nk is

important, since by definition T is limited to be at most nk2nk.)



408 D. Xiao

Conditioned on T ≥ nk
2δU,V

, the probability of timeout is at most (1 − δU,V )
T ≤

2−nk/2. In total therefore Pr[BSim times out | BU,V ] ≤ 2−nk + 2−nk/2 < 2−nk/3.
Therefore, every term in Equation 4.3 is bounded by 2−Ω(nk) and since there are less
than 22k terms in total, the total probability of timeout is negligible.

We now prove Lemma 9.

Proof (of Lemma 9). Let α denote a vector of SendNI commitments (dj)j∈Σ . Let z
denote a pair containing a vector of queries α and a response s from Rec∗. For a fixing
of z = (α, s), let Z denote the set of non-aborting sessions in s.

For any z, let Az denote the event that the simulator breaks from the first loop where,
in the iteration that causes the loop to break, the query to Rec∗ are the queries in z and
the response received is the response in z. By definition, it holds that

Pr
BSim

[BU,V ] ≤
∑

z | Z ⊆V,Z⊆U

Pr
BSim

[Az ] (4.5)

The following says that PrBSim[Az] = Pr[(α, s) = z], where α are constructed as
honest commitments to b and s is Rec∗’s response (i.e. the same probability space as
Db). This implies that the RHS of Equation 4.5 is equal to δU,V and Lemma 9 follows.

Claim. For all z where Z �= ∅, PrBSim[Az ] = Pr[(α, s) = z].

Proof. Let Σ∗ =
⋃

S⊆supp(Db)
S. If Z �⊆ Σ∗ then Pr[Az] = Pr[(α, s) = z] = 0 and

we are done, so suppose that Z ⊆ Σ∗. For any V � U ⊆ Σ∗, let ρU,V,z denote the
probability Az occurs, conditioned on BSim ever executing the first loop (Step 6) with
X = U, Y = V (but not necessarily breaking from the first loop with X = U, Y = V ).
We prove that

ρU,V,z = Pr[(α, s) = z | S �⊆ V ] (4.6)

where S is the set of non-aborting sessions of the response contained in s. This would
imply the claim, since for any z with non-empty Z , we have

Pr
BSim

[Az ] = Pr[S �= ∅] · ES [ρS,∅,z | S �= ∅] = Pr[(α, s) = z]

since it must be that the first iteration of the loop sampled S �= ∅ and then conditioned
on this the probability of sampling z is given by ρS,∅,z. (This corresponds to our ear-
lier intuition that the abstract sampling algorithm of Algorithm 3 samples the correct
distribution.)

We prove Equation 4.6. If Z ⊆ V then both sides of Equation 4.6 are 0. So suppose
that Z �⊆ V . There are two cases:

1. Suppose that Z ⊆ U . Let us look at the very first sample (α, s) satisfying S �⊆ V
that is obtained after the simulator sets X = U, Y = V . If (α, s) �= z then either
BSim breaks the loop with this different query/response, or else Y is updated to be
U ∪ S and in the subsequent iterations of the loop, Z is contained in the updated
Y , and so z can no longer possibly be sampled.

Therefore, the only contribution to the probability of z being sampled is when
this first sample (α, s) = z. This occurs with probability Pr[(α, s) = z | S �⊆ V ].
In particular, this shows that Equation 4.6 holds for any V � Σ∗ when U = Σ∗.



Round-Optimal Black-Box 409

2. Suppose that Z �⊆ U . Since the first point establishes Equation 4.6 when U = Σ∗,
we may use induction and assume that it holds for all ρU ′,U,z where |U ′| > |U |.
Since Z �⊆ U , it follows that Az only occurs if BSim does not break the loop while
X = U . Therefore, ρU,V,z equals:∑
W ⊆U

Pr[S = W | S �⊆ V ]·ρU∪W,U,z

= Pr[(α, s) = z | S �⊆ U ]
∑
W ⊆U

Pr[S = W | S �⊆ V ]

= Pr[(α, s) = z | S �⊆ U ] Pr[S �⊆ U | S �⊆ V ]

= Pr[(α, s) = z | S �⊆ V ]

where in the last step we use the fact that Z �⊆ U and that for events A,B,C such
that A implies B implies C, it holds that Pr[A | B] Pr[B | C] = Pr[A | C].

Proof (of Lemma 8, TSim and 〈Send,Rec∗〉 are identical.).
By definition, the output of TSim and an honest interaction are identical up to the

end of the initial commitment, so fix any random coins of Rec∗ and fix any initial
commitment transcript. As in Lemma 9, let z be any tuple of queries to and responses
of Rec∗ to open its initial commitments, i.e. z is of the form (α, s). Let Z denote the set
of non-aborting sessions in s.

If Z = ∅, then it is clear that the probability that TSim outputs z is identical to the
probability of z being output in an honest transcript, since this can only be output in
the first iteration of the first loop in TSim and by definition this is identical to an honest
interaction.

So consider z such that Z �= ∅. As in the proof of Lemma 9, let Az denote the
probability that the TSim breaks from the first loop and the last query to and re-
sponse received from Rec∗ before breaking being given by the tuple z. TSim and BSim
are completely identical in the first loop, so we can apply Equation 4.3 to show that
PrTSim[Az ] = Pr[(α, s) = z].

Let A′
z denote the event that TSim outputs z as the query/response in the step corre-

sponding to Step 8(b)ii.

Lemma 10. For all z containing at least one non-aborting session, it holds that
PrTSim[A

′
z ] = PrTSim[Az ].

This combined with Equation 4.3 imply that PrTSim[A′
z ] = Pr[(α, s) = z].

If A′
z occurs then z is written to the output. From the definition of the TSim, condi-

tioned on outputting z, the rest of the output, namely the choice of I and opening, are
identical to the honest interaction conditioned on outputting z. Since the probability of
outputting z is identical, this proves that TSimRec∗(b) and 〈Send,Rec∗〉(b) are identical.

It remains to prove Lemma 10.

Proof (of Lemma 10). If Az occurs, then it must be that TSim breaks out of the first
loop for some U, V satisfying Z �⊆ V and Z ⊆ U . This is exactly the event BU,V



410 D. Xiao

as defined in Lemma 9. Likewise, if A′
z occurs then BU,V must occur for some Z �⊆

V, Z ⊆ U . Therefore it suffices to show that for all U, V such that Z �⊆ V, Z ⊆ U and
Pr[BU,V ] > 0, it holds that

Pr
TSim

[A′
z | BU,V ] = Pr

TSim
[Az | BU,V ] (4.7)

since we could apply this as follows to deduce Lemma 10:

Pr[Az ] =
∑

U,V |Z ⊆V,Z⊆U

Pr[Az ∧BU,V ] =
∑

U,V |Z ⊆V,Z⊆U

Pr[A′
z ∧BU,V ] = Pr[A′

z]

We now prove Equation 4.7. The LHS is equal to Pr[(α, s) = z | S �⊆ V, S ⊆ U ]
because by definition of TSim, it generates α as honest commitments to b and gets a
response s satisfying S �⊆ V and S ⊆ U (notice this requires the fact that there is no
timeout or binding broken condition).

To evaluate the RHS, let EU,V denote the event of TSim ever executing the first loop
with X = U, Y = V . By definition if BU,V occurs then so does EU,V . Therefore we
may develop:

Pr
TSim

[Az | BU,V ] =
PrTSim[Az ∧BU,V ]

PrTSim[BU,V ]

=
PrTSim[Az ∧BU,V | EU,V ]

PrTSim[BU,V | EU,V ]

In the last line, we can simplify the numerator toPr[Az | EU,V ], because conditioned on
EU,V , Az implies BU,V . Since Z ⊆ U , it also holds that Pr[Az | EU,V ] = Pr[(α, s) =
z | S �⊆ V ]. The denominator in the last line equals Pr[S ⊆ U | S �⊆ V ].

Therefore we have that

Pr
TSim

[Az | BU,V ] =
Pr[(α, s) = z | S �⊆ V ]

Pr[S ⊆ U | S �⊆ V ]

Using the fact that (α, s) = z implies that S = Z ⊆ U , we can simplify the fraction
to Pr[(α, s) = z | S �⊆ V, S ⊆ U ]. This proves Equation 4.7 for all U, V satisfying
Z �⊆ V , Z ⊆ U .

5 Conclusion

Combined with [ORSV11, Xia11], we now have a fairly comprehensive view of
commitments with selective opening attack security (under parallel composition): for
statistically hiding commitments there exist 3-round protocols and these are optimal
for black-box simulation [ORSV11,Xia11], and for statistically-binding commitments
there exist 4-round protocols and these are optimal for black-box simulation [ORSV11,
Xia11]. Interestingly, the situation is the reverse of stand-alone commitments, where we
know non-interactive statistically-binding commitments yet the minimal complexity of
statistically hiding commitments is two rounds (without setup assumptions).



Round-Optimal Black-Box 411

[ORSV11] showed that their statistically-hiding commitment is not only secure
under parallel composition but also under “concurrent-with-barrier” composition: the
commit-phase may occur with arbitrary scheduling of the messages, but the reveal phase
happens at the same time across all sessions. An interesting open question is to show
whether this is possible for statistically-binding commitments.

References

Bea96. Beaver, D.: Adaptive zero knowledge and computational equivocation (extended ab-
stract). In: STOC 1996: Proceedings of the Twenty-Eighth Annual ACM Symposium
on Theory of Computing, pp. 629–638. ACM, New York (1996)

BHY09. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and Impossibility Results for En-
cryption and Commitment Secure under Selective Opening. In: Joux, A. (ed.) EU-
ROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009)

BCC88. Brassard, G., Chaum, D., Crépeau, C.: Minimum Disclosure Proofs of Knowledge. J.
of Comp. and Sys. Sci. 37(2), 156–189 (1988)

BCY89. Brassard, G., Crépeau, C., Yung, M.: Everything in NP Can Be Argued in Perfect
Zero-Knowledge in a Bounded Number of Rounds. In: Quisquater, J.-J., Vandewalle, J.
(eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 192–195. Springer, Heidelberg (1990)

DPP93. Damgård, I.B., Pedersen, T.P., Pfitzmann, B.: On the Existence of Statistically Hiding
Bit Commitment Schemes and Fail-Stop Sigantures. In: Stinson, D.R. (ed.) CRYPTO
1993. LNCS, vol. 773, pp. 250–265. Springer, Heidelberg (1994)

DPP98. Damgård, I.B., Pedersen, T.P., Pfitzmann, B.: Statistical Secrecy and Multibit Com-
mitments. IEEE Transactions on Information Theory 44(3), 1143–1151 (1998)

DCIO98. Di Crescenzo, G., Ishai, Y., Ostrovsky, R.: Non-interactive and non-malleable com-
mitment. In: STOC 1998: Proceedings of the Thirtieth Annual ACM Symposium on
Theory of Computing, pp. 141–150. ACM, New York (1998)

DCO99. Di Crescenzo, G., Ostrovsky, R.: On Concurrent Zero-Knowledge with Pre-processing
(Extended Abstract). In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 485–
502. Springer, Heidelberg (1999)

DNRS03. Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.: Magic Functions: In Memoriam:
Bernard M. Dwork 1923-1998. J. ACM 50(6), 852–921 (2003)

Fis01. Fischlin, M.: Trapdoor Commitment Schemes and Their Applications. Ph.D. Thesis
(Doktorarbeit), Department of Mathematics, Goethe-University, Frankfurt, Germany
(2001)

GK90. Goldreich, O., Krawczyk, H.: On the Composition of Zero-Knowledge Proof Systems.
SIAM J. of Com. 25(1), 169–192 (1996); preliminary version appeared in ICALP 1990

GMW86. Goldreich, O., Micali, S., Wigderson, A.: Proofs that Yield Nothing But Their Va-
lidity or All Languages in NP Have Zero-Knowledge Proof Systems. Journal of the
ACM 38(3), 691–729 (1991); preliminary version in FOCS 1986

HM96. Halevi, S., Micali, S.: Practical and Provably-Secure Commitment Schemes from
Collision-Free Hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
201–215. Springer, Heidelberg (1996)

ORSV11. Ostrovsky, R., Rao, V., Scafuro, A., Visconti, I.: Revisiting Lower and Upper Bounds
for Selective Decommitments. Cryptology ePrint Archive, Report 2011/536 (2011),
http://eprint.iacr.org/

Xia11. Xiao, D.: (Nearly) Round-Optimal Black-Box Constructions of Commitments Secure
against Selective Opening Attacks. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp.
541–558. Springer, Heidelberg (2011)

http://eprint.iacr.org/


Stream Ciphers, a Perspective

Willi Meier

FHNW Windisch, Switzerland
willi.meier@fhnw.ch

Abstract. Synchronous stream ciphers are commonly used in applica-
tions with high throughput requirements or on hardware devices with
restricted resources. Well known stream ciphers are A5/1, used in GSM,
RC4, used in SSL, or E0 as specified in Bluetooth, but also some block
cipher modes of operation. A review of the development of stream ciphers
is given which starts with classical designs and is directed to modern ded-
icated stream ciphers as in the European NoE eSTREAM project. The
history of stream ciphers is rich in new proposals followed by devastating
breaks, e.g., by statistical or algebraic attacks. Differential cryptanalysis
is probably the most popular tool for chosen plaintext attacks on block
ciphers. It also applies to the initialization step in stream ciphers, but
here, high order differential attacks are shown to be surprisingly suc-
cessful, namely on constructions based on linear and nonlinear feedback
shift registers. The process of designing and cryptanalyzing stream ci-
phers has not only resulted in a number of building blocks for stream
ciphers: Similar components turn out to be useful as well in the design of
lightweight block ciphers, hash functions and in algorithms for authen-
ticated encryption.

Keywords: Stream Ciphers, Symmetric Cryptography, Design, Crypt-
analysis.

A. Mitrokotsa and S. Vaudenay (Eds.): AFRICACRYPT 2012, LNCS 7374, p. 412, 2012.
� Springer-Verlag Berlin Heidelberg 2012



Black-Box Reductions and Separations

in Cryptography

Marc Fischlin

Darmstadt University of Technology, Germany
marc.fischlin@cryptoplexity.de

www.cryptoplexity.de

Abstract. Cryptographic constructions of one primitive or protocol
from another one usually come with a reductionist security proof, in
the sense that the reduction turns any adversary breaking the derived
scheme into a successful adversary against the underlying scheme. Very
often the reduction is black-box in the sense that it only looks at the
input/output behavior of the adversary and of the underlying primitive.
Here we survey the power and the limitations of such black-box reduc-
tions, and take a closer look at the recent method of meta-reductions.

1 Introduction

Since the beginning of modern cryptography in the 70’s the design methodology
for cryptographic protocols has shifted from ad-hoc constructions and “security
by obscurity” techniques to well-founded approaches. This transition shows in
the agreed-upon methodology to provide clean attack models and security goals
of a protocol, and to give a rigorous proof that the protocol meets these goals.
Here, the term “proof” should be understood from a reductionist viewpoint,
saying that any successful adversary breaking a cryptographic scheme would
entail the efficient break of a presumably hard primitive.

Today a special type of proof, called black-box reduction, is pervasive in cryp-
tography and provides a very powerful tool to analyze protocols. Roughly, a re-
duction is black-box if it does not use any internals of the adversary beyond the
input and output behavior, and analogously if nothing about the structure of the
underlying primitive except for its basic properties is exploited (such reductions
are called fully black-box [33]). It turns out that a vast number of cryptographic
primitives such as one-way functions, pseudorandom generators [22], and pseu-
dorandom functions [20] can all be derived from each other in a black-box way.
Starting with a result by Impagliazzo and Rudich [27], though, for some impor-
tant problems it has been proven that black-box reductions cannot exist. These
negative results are summarized under the name black-box separations.

In this paper we survey the three main techniques for black-box separation
results, namely, the relativization technique [27], the two-oracle technique [24],
and the increasingly more popular meta-reduction technique [5]. We start with
an overview about black-box constructions and, after having reviewed the three

A. Mitrokotsa and S. Vaudenay (Eds.): AFRICACRYPT 2012, LNCS 7374, pp. 413–422, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



414 M. Fischlin

separation techniques, we also briefly discuss non-black-box constructions to
indicate potential limitations and bypasses of black-box separation results.

2 Black-Box Constructions

In this section we look at the positive cases of constructions which are black-box
and the equivalence class of symmetric-key primitives, called Minicrypt [25].

2.1 One-Way Functions Are Necessary

Most of today’s cryptography is impossible without assuming the existence of
(cryptographic) one-way functions. Of course, we can symmetrically encrypt
messages securely with the One-Time Pad encryption, but as shown by Shan-
non [38] this basically requires the key to be of equal length as the message. If,
on the other hand, one tries to securely encrypt messages which are larger than
the key, then this immediately implies the existence of one-way functions, as for-
mally shown by Impagliazzo and Luby [26]. In this paper, Impagliazzo and Luby
also show further primitives to imply one-way functions, like bit commitments,
(private-key) identification, and coin-flipping over phone.

It should be mentioned that all these implications are constructive in the
sense that one can build a concrete one-way function f given the primitive
in question, even given the primitive as a black-box only. For instance, for
a semantically-secure symmetric encryption scheme Enc which allows to en-
crypt messages of twice the length as the key, the one-way function is given
by f(k,m) = Enc(k,m)||m. Furthermore, the reduction from the one-wayness
to the security of the underlying primitive treats both the adversary and the
primitive as black-boxes, such that the overall constructions are also called fully
black-box [33].

The implications also mean that most cryptographic primitives are not known
to exist for sure. That is, the existence of (cryptographic) one-way functions
implies (worst-case) one-way functions and thus P �= NP . In other words, P �=
NP is necessary for numerous cryptographic tasks. It is, however, currently not
known if it is also sufficient [1,3].

2.2 One-Way Functions Are Sufficient for Minicrypt

In a sense, one-way functions appear to be “very low” in the hierarchy of assump-
tions. They are not only necessary for most cryptographic tasks, but they also
suffice to build a lot of cryptographic primitives. In a series of papers it has been
shown that one-way functions imply pseudorandom generators [22], that such
pseudorandom generators imply pseudorandom functions [20], and that pseu-
dorandom functions imply pseudorandom permutations [28]. Once one has the
powerful pseudorandom functions then other primitives like message authenti-
cation codes (MACs), private-key encryption, and private-key identification are



Black-Box Reductions and Separations in Cryptography 415

derived easily. All these constructions and reductions are of the fully black-box
type.

Impagliazzo [25] calls the world in which we have cryptographic one-way func-
tions, but no public-key cryptography, “Minicrypt”; as opposed to “Cryptoma-
nia” in which we have all the power of public-key encryption. In Minicrypt,
we can still do a remarkably number of cryptographic tasks like sending mes-
sages securely to parties which we have met before; only secure communication
with strangers in impossible then. Somewhat unexpected, another very inter-
esting primitive which can also be built from one-way functions and thus lies
in Minicrypt, are secure digital signature schemes. This has been shown in a
sequence of papers [30,34], again in the fully black-box sense. The notewor-
thy property here is that, structurally, digital signatures are of course related
to public-key primitives; existentially, though, they belong to the family of
symmetric-key primitives.

3 Black-Box Separations

In this section we review the three main techniques for black-box separations
ans the questions which primitives lie (presumably) outside of Minicrypt.

3.1 Relativizing Reductions: Separating Key Agreement from
One-Way Functions

In their seminal paper, Impagliazzo and Rudich [27] show that one cannot base
(even weakly) secure key agreement on one-way functions. More precisely, they
first use a (random) permutation oracle to implement a one-way permutation.
This oracle can later be derandomized and one “good” oracle Π can be found by
standard counting arguments and the Borel-Cantelli lemma (see [27] for details).
In the next step they show that relative to the random permutation oracle, no
key agreement protocol can be secure. (A simplified version of this fact for the
case of perfect completeness can be found in [6].) Put differently, there cannot
exist relativizing constructions of key agreement from one-way permutations,
i.e., where the security of the construction remains intact in the presence of an
arbitrary oracle.

As pointed out by [27,39,33] relativing reductions where the relativizing oracle
allows for an embedding of an NP-complete oracle —or more generally, any
PSPACE-complete oracle, such that any “standard” cryptography besides the
one-way permutation can be broken— can be shown to rule out so-called ∀∃
semi-black-box reductions [33]. Roughly, these are efficient reductions which turn
efficient successful adversaries (both with access to the oracle) for one scheme
into an adversary for the other one. Since such reductions only use the underlying
primitive as a black-box, separations on this level are “somewhat less black-
box” than in the case of fully black-box reductions, strengthening the separation
result.



416 M. Fischlin

Relativizing separations can be found in [27,39,19,14,23]. In particular, Rudich
[35] used this technique to separate k-round key agreement from any (k + 1)-
round key agreement, implying an infinite hierarchy of primitive classes.

3.2 Fully Black-Box Reductions: The Two-Oracle Technique by
Hsiao and Reyzin

Since relativizing reductions (with embedding) are equivalent to ∀∃ semi-black-
box reductions [33] showing impossibility results is much more challenging than
for the fully black-box case. Hence, Hsiao and Reyzin [24] introduced the idea
of moving from relativizing reductions to fully black-box reductions, and use a
so-called two-oracle technique. The idea is roughly to have an oracle Ω which is
used to implement the primitive Q we would like to have, say, a one-way function
or permutation. The second oracle Π is used to break the primitive P which we
are trying to build out of the one given through Ω. For a separation it then
suffices to show that one can implement Q from Ω (ignoring Π), such that that
for all algorithms R there exists some adversary A such that AΠ breaks P , but

RAΠ,Ω ,Ω cannot break Q. Note that in the latter case R only has access to Π
through the black-box access to A, although most proofs later use a universal
A which basically merely runs Π , such that this essentially boils down to show
that RΠ,Ω should not be able to break Q.

Because the two-oracle technique allows for easier separations it became quite
popular and has been applied more often in recent papers. Examples include
[24,10,4,15,13].

3.3 The Meta-reduction Technique

Recently, a new kind of black-box separation technique has gained significant
attention, called meta-reductions [5].1 Roughly, a meta-reduction is a “reduction
against the reduction”. The situation is depicted in Figure 1: The reduction R is
given black-box access to an adversary A, which supposedly attacks a scheme S,
but where S is now simulated by the reduction. The reduction itself is supposed
to break a so-called cryptographic game C with the help of A. This game usually
models any falsifiable assumption [29], including assumptions like computing
discrete logarithms or inverting the RSA function. We note that, in order to
avoid trivial reductions like to the security of the scheme itself, the game C
often consists of less rounds than the interactive phase of the scheme.

The meta-reduction now simulates the adversarial part in order to turn R in
a black-box manner into an efficient and successful algorithmMR against C di-
rectly, without reference to an allegedly successful adversary A. Note that this
clearly requires the existence of a successful adversary A against S in the first
place, or else the reduction R would not need to break C at all. Usually, one can
build such an (inefficient) adversary by exhaustive search and then make sure

1 Albeit the idea appears in [5] it seems as if the term meta-reduction has only been
mentioned later in [7] and [31].



Black-Box Reductions and Separations in Cryptography 417

thatM replaces A efficiently. Similarly to the case of zero-knowledge, where the
efficient simulator can mimic the behavior of the all-powerful prover, the meta-
reduction’s advantage over the adversary here is that it can rewind the reduction
(or potentially take advantage of its code or behavior). Overall, if the
meta-reduction is sufficiently close to A from R’s perspective, it follows that the
probability forMR breaking C is close to the one of RA.

(a) (b)

Fig. 1. (a) shows the reduction R turning a successful adversary A against scheme
S into a successful attacker RA against a cryptographic game C, by simulating the
scheme S ; (b) shows the meta-reduction M simulating the adversary A and turning
R into a successful algorithm MR against C directly

The advantage of meta-reductions over the other separation types is that this
technique usually only makes black-box use of the adversary, but works with ar-
bitrary primitives. The technique therefore applies to cases where one, say, seeks
to show that certain constructions cannot be based on the RSA assumption. As
such, this separation technique is in between the cases of fully black-box reduc-
tions and of (∀∃)semi-black-box reductions. On the other hand, it seems that
the method is mainly suitable for interactive protocols in which the scheme can
be queried first, before the adversary is required to produce an output. Exam-
ples include unforgeability of signature schemes under chosen-message attacks
or chosen-ciphertext security for encryption schemes.

In summary, the meta-reduction technique usually consist of the following
three steps:

1. Design an all-powerful adversary A which breaks the scheme.
For example, in the signature case let A first compute a secret key sk∗ from
pk, then let it query the signature oracle to collect signatures (note that
this step is only necessary to build the meta-reduction), and finally let A
compute a forgery.

2. Replace the (inefficient) adversary by the efficient meta-reduction.
This is usually done by carefully rewinding the reduction at appropriate
places in the query phase. To prevent the reduction from making further
queries the rewinding is usually done when the reduction does not make
queries to the game C. This may also require further conditions on the
reduction to prevent the nested-rewinding problem (the reduction seeking
to reset the adversary while the meta-reduction aims to reset the reduction).
This problem may yield an exponential blow-up and is known from the area
of zero-knowledge [11].



418 M. Fischlin

3. Show that the meta-reduction’s behavior is sufficiently close to the one of
the all-powerful adversary.

This step is usually the most challenging step as the meta-reduction’s
output is somewhat closer entangled with the reduction’s state than the
adversary’s behavior, due to the rewinding.

With these steps it follows that MR breaks the game C with probability close
to the reduction RA (given adversary A).

Meta-reductions have been successfully applied in a number of cases since [5],
such as [8,7,31,16,32,18,9,37]. It is clear that the exact use of meta-reductions
differ, e.g., some results also impose restrictions on the primitives and work for
black-box groups only.

4 Non-black-Box Constructions

In this section we mention some non-black-box constructions resp. reductions.
Both examples stem form the area of zero-knowledge proofs but the issue is in
principle not restricted to this area.

4.1 Karp Reductions Are Non-black-Box

The first examples touches the issue of Karp reductions between problems. Re-
call that a Karp reduction from one language A to another language B is a
deterministic polynomial-time algorithm k such that x ∈ A ⇐⇒ k(x) ∈ B.
If such an algorithm exist then we write A ≤p B, intuitively meaning that the
problem B is at least as hard as A (in the sense that any decision algorithm for
B would immediately yield a decider for A). Cook and Levin have shown that
the satisfiability is complete for NP , i.e., any other problem A ∈ NP reduces
to the satisfiability problem. This reduction, however, makes use of the (Turing
machine) code of the algorithm MA deciding A by representing its computa-
tion state as a boolean formula. In other words, the Karp reduction of A to the
satisfiability problem requires access to the code for deciding A.

The code-dependence is exactly where the black-box property for crypto-
graphic purposes may break down. Given an arbitrary one-way function f and,
say, proving in zero-knowledge that one knows a pre-image to some y under
f , one would reduce this problem to some NP-complete language L for which
such a proof is known via a Karp reduction, and to run the zero-knowledge
protocol for L.2 However, the reduction from f to L would then require knowl-
edge of the code of f and does not apply to black-box constructions for f . Note
that it may still be possible to find direct zero-knowledge proofs for specific
one-way functions, like the Schnorr proof for discrete logarithms [36], or find

2 Speaking of zero-knowledge proofs of knowledge in our example, one would need to
ensure that the Karp reduction is such that a witness extracted from the proof for L
also allows to recover a pre-image for f ; this is usually the case and such reductions
are sometimes called Levin reductions.



Black-Box Reductions and Separations in Cryptography 419

other alternatives to the Karp reduction to L. We finally note that Brakerski et
al. [6] recently introduced special zero-knowledge oracles to argue about separa-
tions in the presence of such proofs.

4.2 Barak’s Non-black-Box Zero-Knowledge Proofs

The second example is based on a non-black-box use of the adversary. Barak
[2] designs a zero-knowledge proof based on non-black-box use of the adversary
which overcomes previous black-box impossibility results. Neglecting many tech-
nical subtleties, the protocol to prove x ∈ L is as follows. The protocol first runs
an initialization phase whose only purpose is to give the zero-knowledge simu-
lator some freedom. In this phase, the prover commits to the all-zero string π
and the verifier send a random string r. Now the prover and the verifier engage
in a witness-indistinguishable protocol [12] that x ∈ L or that the commitment
π describes a program that predicts the verifier’s string r.

A malicious prover cannot take advantage of the initialization phase —
predicting r remains infeasible— and thus really needs to prove x ∈ L in the sec-
ond step. A zero-knowledge simulator against a malicious verifier, on the other
hand, can simply use the non-black-box access to the verifier’s code and commit
to the verifier’s program on behalf of the prover. By the hiding property of the
commitment scheme this is indistinguishable from a commitment to zeros. It is
clear that this code π predicts r correctly, such that the simulator can use π as
the witness in the second part of the proof to faithfully simulate these steps, even
without knowing a witness to x ∈ L or by using the usual rewinding techniques.
The zero-knowledge property follows from the hiding of the commitment and
the witness indistinguishability of the second part.

5 Conclusion

Black-box separations (of any kind) are today thought of as good indications that
one cannot derive one primitive out of the other. But they can also been viewed
as a shortcoming of the proof technique itself. A few non-black-box constructions
do exist, and one option to circumvent black-box separations may be to use more
non-black-box techniques. For example, Harnik and Naor [21] showed that, us-
ing a complexity-theoretic assumption, one can build (in a non-black-box way)
collision-resistant hash functions out of one-way functions, allowing to bypass
Simon’s black-box separation result for this case [39]. Unfortunately, Fortnow
and Santhanam [17] later showed that the assumption is unlikely to hold, or else
the polynomial hierarchy collapses. Still, it remains open to explore the limi-
tations of black-box separations via non-black-box techniques, or to strengthen
the separation results along the line of Brakerski et al. [6].



420 M. Fischlin

Acknowledgments. I would like to thank Paul Baecher and Christina Brzuska
for discussions about black-box reductions, and the Africacrypt program com-
mittee and its chair, Serge Vaudenay, for inviting me to present the topic.

References

1. Akavia, A., Goldreich, O., Goldwasser, S., Moshkovitz, D.: On basing one-way
functions on NP-hardness. In: Kleinberg, J.M. (ed.) 38th ACM STOC, May 21-23,
pp. 701–710. ACM Press, Seattle (2006)

2. Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd FOCS,
October 14-17, pp. 106–115. IEEE Computer Society Press, Las Vegas (2001)

3. Bogdanov, A., Trevisan, L.: On worst-case to average-case reductions for np prob-
lems. SIAM J. Comput. 36(4), 1119–1159 (2006)

4. Boldyreva, A., Cash, D., Fischlin, M., Warinschi, B.: Foundations of Non-malleable
Hash and One-Way Functions. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 524–541. Springer, Heidelberg (2009)

5. Boneh, D., Venkatesan, R.: Breaking RSA May Not Be Equivalent to Factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer,
Heidelberg (1998)

6. Brakerski, Z., Katz, J., Segev, G., Yerukhimovich, A.: Limits on the Power of Zero-
Knowledge Proofs in Cryptographic Constructions. In: Ishai, Y. (ed.) TCC 2011.
LNCS, vol. 6597, pp. 559–578. Springer, Heidelberg (2011)

7. Brown, D.R.L.: Breaking rsa may be as difficult as factoring. IACR Cryptology
ePrint Archive (2005), http://eprint.iacr.org/2005/380

8. Coron, J.-S.: Security Proof for Partial-Domain Hash Signature Schemes. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 613–626. Springer, Heidelberg (2002)

9. Dodis, Y., Haitner, I., Tentes, A.: On the Instantiability of Hash-and-Sign RSA
Signatures. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 112–132. Springer,
Heidelberg (2012)

10. Dodis, Y., Oliveira, R., Pietrzak, K.: On the Generic Insecurity of the Full Domain
Hash. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 449–466. Springer,
Heidelberg (2005)

11. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. J. ACM 51(6), 851–
898 (2004)

12. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
STOC, pp. 416–426. ACM (1990)

13. Fiore, D., Schröder, D.: Uniqueness Is a Different Story: Impossibility of Verifiable
Random Functions from Trapdoor Permutations. In: Cramer, R. (ed.) TCC 2012.
LNCS, vol. 7194, pp. 636–653. Springer, Heidelberg (2012)

14. Fischlin, M.: On the Impossibility of Constructing Non-interactive Statistically-
Secret Protocols from Any Trapdoor One-Way Function. In: Preneel, B. (ed.) CT-
RSA 2002. LNCS, vol. 2271, pp. 79–95. Springer, Heidelberg (2002)

15. Fischlin, M., Lehmann, A., Ristenpart, T., Shrimpton, T., Stam, M., Tessaro, S.:
Random Oracles with(out) Programmability. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 303–320. Springer, Heidelberg (2010)

16. Fischlin, M., Schröder, D.: On the Impossibility of Three-Move Blind Signature
Schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 197–215.
Springer, Heidelberg (2010)

http://eprint.iacr.org/2005/380


Black-Box Reductions and Separations in Cryptography 421

17. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct
PCPs for NP. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, May 17-20,
pp. 133–142. ACM Press, Victoria (2008)

18. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, June
6-8, pp. 99–108. ACM Press, San Jose (2011)

19. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The relation-
ship between public key encryption and oblivious transfer. In: 41st FOCS, Novem-
ber 12-14, pp. 325–335. IEEE Computer Society Press, Redondo Beach (2000)

20. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. Jour-
nal of the ACM 33, 792–807 (1986)

21. Harnik, D., Naor, M.: On the compressibility of NP instances and cryptographic
applications. In: 47th FOCS, October 21-24, pp. 719–728. IEEE Computer Society
Press, Berkeley (2006)

22. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999)

23. Hofheinz, D.: Possibility and impossibility results for selective decommitments.
Journal of Cryptology 24(3), 470–516 (2011)

24. Hsiao, C.-Y., Reyzin, L.: Finding Collisions on a Public Road, or Do Secure
Hash Functions Need Secret Coins? In: Franklin, M. (ed.) CRYPTO 2004. LNCS,
vol. 3152, pp. 92–105. Springer, Heidelberg (2004)

25. Impagliazzo, R.: A personal view of average-case complexity. In: Structure in Com-
plexity Theory Conference, pp. 134–147 (1995)

26. Impagliazzo, R., Luby, M.: One-way functions are essential for complexity-based
cryptography. In: 30th FOCS, October 30-November 1, pp. 230–235. IEEE Com-
puter Society Press, Research Triangle Park (1989)

27. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: 21st ACM STOC, May 15-17, pp. 44–61. ACM Press, Seattle (1989)

28. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM Journal on Computing 17(2) (1988)

29. Naor, M.: On Cryptographic Assumptions and Challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003)

30. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: 21st ACM STOC, May 15-17, pp. 33–43. ACM Press, Seattle
(1989)

31. Paillier, P., Vergnaud, D.: Discrete-Log-Based Signatures May Not Be Equiva-
lent to Discrete Log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp.
1–20. Springer, Heidelberg (2005)

32. Pass, R.: Limits of provable security from standard assumptions. In: Fortnow, L.,
Vadhan, S.P. (eds.) 43rd ACM STOC, June 6-8, pp. 109–118. ACM Press, San
Jose (2011)

33. Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of Reducibility between Cryp-
tographic Primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20.
Springer, Heidelberg (2004)

34. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: 22nd ACM STOC, May 14-16, pp. 387–394. ACM Press, Baltimore (1990)

35. Rudich, S.: The Use of Interaction in Public Cryptosystems (Extended Abstract).
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 242–251. Springer,
Heidelberg (1992)

36. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptol-
ogy 4(3), 161–174 (1991)



422 M. Fischlin

37. Seurin, Y.: On the Exact Security of Schnorr-Type Signatures in the Random
Oracle Model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 554–571. Springer, Heidelberg (2012)

38. Shannon, C.E.: Communication theory of secrecy systems. Bell Systems Technical
Journal 28(4), 656–715 (1949)

39. Simon, D.R.: Findings Collisions on a One-Way Street: Can Secure Hash Functions
Be Based on General Assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998.
LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998)



Author Index

Andreeva, Elena 287
Armknecht, Frederik 234

Bellur, Bhargav 1
Berger, Thierry P. 306
Bhattacharya, Debojyoti 1
Bringer, Julien 67

Canard, Sébastien 35
Carlet, Claude 360
Cayrel, Pierre-Louis 19, 99
Chabanne, Hervé 67
Chen, Jiazhe 117
Chen, Kefei 53
Choy, Jiali 270

Dagdelen, Özgür 19
Danger, Jean-Luc 360
D’Arco, Paolo 378
Das, Abhijit 1
D’Hayer, Joffrey 306

Eisenbarth, Thomas 172
Elbaz–Vincent, Philippe 203
El Yousfi Alaoui, Sidi Mohamed 19

Favre, Mélanie 67
Fischlin, Marc 413
Fleischmann, Ewan 252
Forler, Christian 252

Galindo, David 19
Gong, Zheng 172
González Vasco, Maŕıa Isabel 378
Guilley, Sylvain 360
Güneysu, Tim 172
Guo, Jian 270

Hashim, Mohsin H.A. 342
Heyse, Stefan 172
Hoffmann, Gerhard 99
Hutter, Michael 342

Indesteege, Sebastiaan 172
Iyer, Aravind 1

Jambert, Amandine 35
Jiang, Shujia 155

Karati, Sabyasachi 1
Katzenbeisser, Stefan 234
Kerckhof, Stéphanie 172
Khoo, Khoongming 270
Koeune, François 172

Lescuyer, Roch 35
Li, Xiangxue 53
Lucks, Stefan 252

Maghrebi, Houssem 360
Marquet, Kevin 306
Meier, Willi 412
Mennink, Bart 287
Meziani, Mohammed 99
Minier, Marine 306
Mohamed, Nashwa A.F. 342

Nad, Tomislav 172
Nitaj, Abderrahmane 221

Ohta, Kazuo 138

Pérez del Pozo, Angel L. 378
Peter, Andreas 234
Peyrin, Thomas 270
Plos, Thomas 172
Poschmann, Axel 270
Preneel, Bart 117, 287

Regazzoni, Francesco 172
Roychowdhury, Dipanwita 1

Safavi-Naini, Reihaneh 82
Sakai, Yasuhide 138
Sakiyama, Kazuo 138
Sarr, Augustin P. 203
Sasaki, Yu 138
Schwabe, Peter 324
Škrobot, Marjan 287
Soriente, Claudio 378
Standaert, François-Xavier 172
Sun, Qiumei 155
Sun, Yue 155



424 Author Index

Tan, Chik How 270
Thomae, Enrico 188
Thomas, Gaël 306
Tuhin, Mohammed Ashraful Alam 82

van Oldeneel tot Oldenzeel, Löıc 172
Véron, Pascal 19

Wang, Jingjing 53
Wang, Lei 138

Wang, Meiqin 117, 155
Wolf, Christopher 188

Xiao, David 395

Yang, Bo-Yin 324
Yang, Shang-Yi 324
Yap, Huihui 270

Zhang, Wenzheng 53


	Title
	Preface
	Organization
	Table of Contents
	Signature Schemes
	Batch Verification of ECDSA Signatures
	Introduction
	Notations
	Naive Batch Verification Algorithms N and N' for ECDSA
	A New Batch-Verification Algorithm for ECDSA (Algorithm S1)
	Symbolic Computation of R=i=1tRi
	Solving the Multivariate Equations
	A Strategy for Faster Equation Generation
	Retrieving the Unknown y-Coordinates

	Analysis of Algorithm S1
	Running Time
	Unique Solvability of the Linearized System
	Security Analysis
	Cases of Failure for Algorithm S1

	A More Efficient Batch-Verification Algorithm (Algorithm S2)
	Analysis of Algorithm S2
	Running Time
	Security Analysis

	Efficient Variants of S1 and S2
	Algorithm S1'
	Algorithm S2'

	Experimental Results
	Conclusion
	References

	Extended Security Argumentsfor Signature Schemes
	Introduction
	Preliminaries
	Extended Security Arguments for Digital Signatures
	n-Generic Signature Schemes
	An Extended Forking Lemma
	Security of n-Generic Signature Schemes

	Applications
	n-Generic Signature Schemes Derived from Identification Schemes
	Examples

	References

	Sanitizable Signatureswith Several Signers and Sanitizers
	Introduction
	Multi-players Sanitizable Signatures
	Security Requirements
	Primitives
	A New Tool: Trapdoor ``or'' Proof
	Full Transparent and Fully Anonymous Multi-players Sanitizable Signature
	References


	Stream Ciphers
	Attack Based on Direct Sum Decompositionagainst the Nonlinear Filter Generator
	Introduction
	Preliminaries
	Using Direct Sum Decomposition to Distinguish the Shifted Sequence
	Attack Based on Direct Sum Decomposition against the NLFG
	Main Idea
	Computing the Coefficient Matrix At+c
	Attack against the NLFG
	Results

	Conclusion
	References


	Applications of Information Theory
	Fuzzy Vault for Multiple Users
	Introduction
	Fuzzy Vault (FV) Scheme
	Folded Reed-Solomon Codes
	A Few Definitions
	List Decoding of Folded Reed-Solomon Codes
	Generalization to List Recovery

	Extended Fuzzy Vault (EFV) Scheme
	LOCK
	UNLOCK

	Security Properties of the EFV Scheme
	Uniform Case
	General Case

	Implementation Aspects
	Noise
	Complexity

	Conclusion
	References

	Bounds and Constructions for 1-Round(0, δ)-Secure Message Transmission against Generalized Adversary
	Introduction
	Preliminaries
	Secure Message Transmission
	Secret Sharing
	Linear Secret Sharing Scheme

	Secret Sharing Scheme with Cheaters
	Relations between Secret Sharing with Cheating and 1-Round (0, )-SMT against a Generalized Adversary
	From Secret Sharing to Secure Message Transmission Tolerating a Generalized Adversary
	From Secure Message Transmission to Secret Sharing Tolerating a Generalized Adversary

	Lower Bound on Communication Complexity of 1-Round (0, 0)-SMT and (0, )-SMT against Generalized Adversaries
	An Efficient 1-Round (0, )-SMT Protocol against a Generalized Adversary
	Comparison with the Protocol in CKP11

	References

	Improving the Performanceof the SYND Stream Cipher
	Introduction
	Coding Theory Background
	The SYND Stream Cipher
	Our Proposal: XSYND
	Security of XSYND
	Theoretical Security
	Practical Security

	Parameters and Experimental Results
	Conclusion
	References


	Block Ciphers
	Impossible Differential Cryptanalysisof the Lightweight Block Ciphers TEA, XTEA and HIGHT
	Introduction
	Preliminary
	Notations
	Brief Description of TEA and XTEA
	Brief Description of HIGHT

	Diffusion Properties of TEA, XTEA and HIGHT
	Impossible Differential Attacks on Reduced XTEA andTEA
	Impossible Differentials of TEA and XTEA
	Impossible Differential Attack of 23-Round XTEA
	Impossible Differential Attack of 17-Round TEA

	Impossible Differential Cryptanalysis of ReducedHIGHT
	Improved Impossible Differential Attack on 26-Round HIGHT
	Impossible Differential Attack on 27-Round HIGHT

	Conclusion
	References

	Three-Subset Meet-in-the-Middle Attackon Reduced XTEA
	Introduction
	Specification of XTEA
	Previous Work
	Previous Meet-in-the-Middle Attack on XTEA
	Three-Subset Meet-in-the-Middle Attack

	Maintaining Small Data Complexity in Three-Subset MitM Attack with Splice-and-Cut Technique
	Attacks on XTEA
	Known Plaintext Attack on 25-Round XTEA
	Chosen Plaintext Attack on 28-Round XTEA

	Concluding Remarks
	References

	Differential Cryptanalysis of Reduced-RoundICEBERG
	Introduction 
	Description of ICEBERG
	Non-linear Layer 
	Linear Layer K

	Differential Distinguishers of 6-Round ICEBERG
	Differential Characteristic of 6-Round ICEBERG
	Property of Linear Layer P64-DP4-P64
	Search the 6-Round Differential Characteristics

	Differentials of 6-Round ICEBERG
	Structures of Differentials of 6-Round ICEBERG

	Attacks against Reduced-Round ICEBERG
	Structure Attack to 7-Round ICEBERG
	Multiple Differential Attack against 8-Round ICEBERG

	Summary
	References

	Compact Implementation and PerformanceEvaluation of Block Ciphers in ATtiny Devices
	Introduction
	Investigated Ciphers
	Methodology and Metrics
	Description of the ATtiny45 Microcontroller
	Implementation Details
	Performance Evaluation
	Conclusion
	References


	Network Security Protocols
	Cryptanalysis of Enhanced TTS, STS and All ItsVariants, or: Why Cross-Terms Are Important
	Introduction
	Cryptanalysis of Enhanced STS
	Cryptanalysis of Enhanced STS Variants
	Cryptanalysis of Enhanced TTS
	Conclusions or: Where Do We Take It from Here?
	References

	A Complementary Analysis of the (s)YZand DIKE Protocols
	Introduction
	The Canetti–Krawczyk Security Model(s)
	The CKHMQV Model

	The YZ Protocols Family
	On the Attributes of the (s)YZ Protocols
	The Deniable Internet Key Exchange (DIKE)
	Conclusion
	References


	Public-Key Cryptography
	A New Attack on RSA and CRT-RSA
	Introduction
	Preliminaries
	The Original RSA and CRT-RSA
	Bivariate Linear Equations Modulo Divisors

	A New Class of Weak Public Exponents in RSA
	Application to CRT-RSA
	Experimental Results
	A Working Example
	Massive Experiments

	Conclusion
	References

	Shift-Type Homomorphic Encryptionand Its Application to Fully Homomorphic Encryption
	Introduction
	Contribution and Related Work
	Outline

	Preliminaries
	Notation
	Public-Key Homomorphic Encryption Schemes
	The Subset Membership Problem

	Shift-Type Homomorphic Encryption
	Fully Homomorphic Encryption (FHE)
	Gentry's Bootstrapping Technique: Leveled FHE Schemes
	Gentry's Bootstrapping Technique: FHE Schemes
	Gentry's Bootstrapping Technique: The Existing Schemes

	Conclusion
	References


	Cryptanalysis of Hash Functions
	The Collision Security of MDC-4
	Introduction
	Preliminaries
	General Notations
	The MDC-4 Compression Function
	Security of the MDC-4 Compression Function and the MDC-4 Hash Function

	Proof of Collision Resistance
	Proof Model
	Our Results
	Proof Preliminaries
	Details

	Conclusion
	References

	SPN-Hash: Improving the Provable Resistanceagainst Differential Collision Attacks
	Introduction
	Our Contributions

	Preliminaries
	The SPN-Hash Functions
	The Internal Permutation P
	Generalized Optimal Diffusion
	MDS Layer

	Security Analysis of SPN-Hash 
	Differential Collision Attack
	(Second)-Preimage Attack
	Rebound Attack - Distinguishing Attack on Permutation P
	Exploiting the MDS Layer Structure for 128- and 256-bit SPN-Hash

	Implementation
	Software Performance
	Hardware Performance

	References

	Security Analysis and Comparison of the SHA-3Finalists BLAKE, Grøstl, JH, Keccak, and Skein
	Introduction
	Preliminaries
	Preimage, Second Preimage and Collision Security
	Indifferentiability
	Hash Function Design Strategies

	BLAKE
	Grøstl
	JH
	Keccak
	Skein
	Conclusions
	References


	Hash Functions: Design and Implementation
	The GLUON Family: A Lightweight HashFunction Family Based on FCSRs
	Background
	Sponge Constructions
	FCSR Automata in Word Ring Representation

	Description of the GLUON Hash Family
	Details of the f Function
	The Sponge Construction Deduced from the f Function
	Proposed Instances

	Design Rationale
	Flat Sponge Claim
	Choice of the f Function

	Security Analysis
	Performances
	Hardware Performances
	Software Performances

	Conclusion
	References

	SHA-3 on ARM11 Processors
	Introduction
	The ARM11 Processor Family
	Blake
	Implementation Details

	Grøstl
	Implementation Details

	JH
	Implementation Details

	Keccak
	Implementation Details

	Skein
	Implementation Details

	SHA-256
	Results and Comparison
	References


	Algorithms for Public-Key Cryptography
	Improved Fixed-Base Comb Methodfor Fast Scalar Multiplication
	Introduction
	Preliminaries
	Generic Methods
	Fixed Base-Point Methods

	Fixed-Base Comb Methods
	Lim and Lee Method
	Tsaur and Chou Method

	Our Proposed Method
	Simultaneous Scalar Multiplication
	Resistance to Side Channel Attacks
	Discussion and Results
	Conclusion
	References

	Optimal First-Order Maskingwith Linear and Non-linear Bijections
	Introduction
	Studied Implementation and Its Leakage
	Optimal Function in Zero-Offset dth-Order CPA
	Optimal Function fopt Definition
	Condition on F for the Resistance against 2nd-Order CPA
	Condition on F for the Resistance against dth-Order CPA

	Existence of Bijections Meeting Eqn. (6)
	Optimal Linear Bijections
	Optimal Non-linear Bijections

	Security and Leakage Evaluations of the Optimal Linear and Non-linear Bijections
	Verification of the Security for n=8
	Verification of the Leakage of the Identified Bijections
	Results in Imperfect Models

	Conclusions
	References


	Cryptographic Protocols
	Size-Hiding in Private Set Intersection:Existential Results and Constructions
	Introduction
	Preliminaries: Definitions and Tools
	Definitions
	Tools

	Two-Side Size-Hiding: The Unconditional Case
	Impossibility in the Plain Model
	Feasibility in the Model with a Setup by a TTP

	Two-Side Size-Hiding: The Computationally Secure Case
	An AND-Based TS-SHI-PSI Protocol
	Threshold-Based Protocol

	One-Side Size-Hiding Set Intersection Protocols
	Pseudorandom Function Evaluation Based Protocols
	RSA-Based Protocol
	Three-Round ROM Based Protocol
	One-Round ROM Based Protocol

	Open Problems
	References

	Round-Optimal Black-Box Statistically BindingSelective-Opening Secure Commitments
	Introduction
	Preliminaries
	Construction
	Analyzing the Simulator
	General Observations
	Running Time
	Indistinguishability

	Conclusion
	References


	Invited Talks
	Stream Ciphers, a Perspective
	Black-Box Reductions and Separationsin Cryptography
	Introduction
	Black-Box Constructions
	One-Way Functions Are Necessary
	One-Way Functions Are Sufficient for Minicrypt

	Black-Box Separations
	Relativizing Reductions: Separating Key Agreement from One-Way Functions
	Fully Black-Box Reductions: The Two-Oracle Technique by Hsiao and Reyzin
	The Meta-reduction Technique

	Non-black-Box Constructions
	Karp Reductions Are Non-black-Box
	Barak's Non-black-Box Zero-Knowledge Proofs

	Conclusion
	References


	Author Index



