
Chapter 1
Black Holes in Supergravity: Flow Equations
and Duality

Gianguido Dall’Agata

1.1 Introduction

The analysis of black hole solutions and the study of their physics is an active and
important branch of contemporary theoretical physics. In fact, not only black holes
are an excellent theoretical laboratory for understanding some features of quantum
gravity, but they can also be successfully used as a tool in applications to nuclear
physics, condensed matter, algebraic geometry and atomic physics. For this reason,
black holes are considered the “Hydrogen atom” of quantum gravity [67] or the
“harmonic oscillator of the 21st century” [77].

The existence of black holes seems to be an unavoidable consequence of General
Relativity (GR) and of its extensions (like supergravity). Classically, the horizon
of black holes protects the physics in the outer region from what happens in the
vicinity of singular field configurations that can arise in GR from smooth initial
data. However, already at the semiclassical level, black holes emit particles with
a thermal spectrum [7, 58]. A thermodynamic behaviour can also be associated to
black holes from the laws governing their mechanics [79] and, in particular, one can
associate to a black hole an entropy S proportional to the area A of its event horizon
(measured in Planck units l2P D G„=c3)

S D kB

l2P

A

4
: (1.1)

In most physical systems the thermodynamic entropy has a statistical interpre-
tation in terms of counting microscopic configurations with the same macroscopic
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properties, and in most cases this counting requires an understanding of the quantum
degrees of freedom of the system. The identification of the degrees of freedom
that the Bekenstein–Hawking entropy is counting is a long-standing puzzle that
motivated much theoretical work of the last few years. String Theory, being a
theory of quantum gravity, should be able to provide a microscopic description
of black holes and hence justify Bekenstein–Hawking’s formula. By now we have
strong indications and many different and compelling examples where String
Theory successfully accomplishes this goal, although often simplifying assumptions
are made so that the configurations which are considered are not very realistic.
In particular, black holes are non-perturbative objects and only for special classes of
solutions (mainly supersymmetric) string theory at weak coupling can reproduce
the correct answer1 [33, 73, 78]. However, there is now a growing evidence
that also for non-zero coupling we can identify candidate microstate geometries,
whose quantization may eventually yield an entropy that has the same parametric
dependence on the charges as that of supersymmetric black holes [5, 13, 65, 68].

In the last few years a lot of progress has been made in understanding the physics
of extremal non-supersymmetric solutions and of their candidate microstates.
The aim of these lectures is to provide an elementary and self-contained introduction
to supergravity black holes, describing in detail the techniques that allow to
construct full extremal solutions and to discuss their physical properties. We will
especially focus on the peculiar role of scalar fields in supergravity models and
on the flow equations driving them to the attractor point provided by the black
hole horizon. We will also discuss the multicentre solutions and the role of duality
transformations in establishing the classes of independent solutions.

1.2 Black Holes and Extremality

In this section we will review some general properties of black holes and discuss the
concept of extremality, both in the context of geometrical and of thermodynamical
properties of the solutions.

We will be interested in charged black hole configurations, so our starting point
is the Einstein–Maxwell action in 4 dimensions, with Lagrangian density given by

e�1L D R � 1

4
F��F

��: (1.2)

For the sake of simplicity we will look for static, spherically symmetric and charged
solutions. This means that the line element describing the metric should be of
the form

1Recently there has been also a lot of progress in understanding the nature of the entropy for Kerr
black holes and close to extremal examples of this sort can be realized in nature [20].
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ds2 D �e2U.r/dt2 C e�2U.r/dr2 C r2d˝2; (1.3)

where d˝2 D d�2 C sin2 � d�2 is the line element of a two-sphere and U is the
warp factor, which depends only on the radial variable in order to respect spherical
symmetry. For the same reason, the two-form associated to the Maxwell field F��
should be of the form

F D P sin � d� ^ d� CQdt ^ dr

r2
; (1.4)

so that, by integrating over a sphere, one gets the electric and magnetic charge of
the configuration:

1

4�

Z
S2
F D P ;

1

4�

Z
S2
?F D Q: (1.5)

By solving the equations of motion derived from (1.2) we obtain the following
expression for the warp factor

e2U.r/ D 1 � 2M

r
C P2 CQ2

r2
; (1.6)

which is the appropriate one for a Reissner–Nordström black hole and reduces to
the one by Schwarzschild for P D Q D 0.

The solution above contains a singularity at r D 0, as one can see by computing
the quadratic scalar constructed in terms of the Ricci tensor

R��R
�� D 4

.Q2 C P2/2

r8
r!0�! 1 (1.7)

(For the special case P D Q D 0 we can still find a singularity in R����R���� D
48M

2

r6
). However, the singularity is hidden by the horizons appearing at the zeros of

the warp-factor function

e2U D 0 , r˙ D M ˙
p
M2 � .P 2 CQ2/: (1.8)

The two solutions are real as long asM2 � P2CQ2, while the singularity becomes
naked for smaller values of the mass. This means that, for fixed charges, there is a
minimum value of the mass for which the singularity is screened by the horizons.
At such value the warp factor has a double zero, the two horizons coincide and the
semi-positive definite parameter

c D rC � r� D
p
M2 � .P 2 CQ2/ ; (1.9)

which we introduce for convenience, is vanishing. The corresponding black hole
configuration is called extremal (c D 0 or M D p

P2 CQ2). Note that in the
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Fig. 1.1 Minkowski and Schwarzschild spacetimes in Rindler coordinates. The first diagram
approximates the second close to the horizon

uncharged limit c D M , which is the extremality parameter for the Schwarzschild
solution. This means that extremal Schwarzschild black holes are necessarily small,
i.e. with vanishing horizon area at tree level.

Although the singularity is timelike (for charged solutions) and hence one can
interpret it as the presence of a source, the existence of the horizons guarantees that
the physics outside the horizon is not influenced by what happens inside, where one
meets the singularity. This fact is easily seen by computing the time it takes for a
light ray traveling radially to reach the horizon from infinity, as measured by an
observer sitting far from the black hole. By taking ds D 0 for constant � and � one
gets that

p
gtt dt D p

grr dr; (1.10)

so that the time it takes for a light ray to travel radially between two points at distance
r1 and r2 from the singularity is proportional to the distance measured with a weight
given by the inverse of the warp factor

t12 D
Z r2

r1

r
grr

gt t
d Qr D

Z r2

r1

e�2U.Qr/d Qr: (1.11)

This expression goes to infinity when r1 ! rC and therefore a signal from the
horizon takes an infinite time to reach a far distant observer.

The physics close to the horizon can be better understood by considering the
expansion of the solution obtained above for r close to rC (Fig. 1.1). The only non-
trivial function in the metric is given by the warp factor, which approaches

e2U D .r � rC/.r � r�/
r2

r!rC�! rC � r�
r2C

�; (1.12)
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where we introduced a new coordinate � measuring the distance from the outer
horizon: � D r � rC. The resulting near horizon geometry is

ds2 ! �rC � r�
r2C

�dt2 C r2C
rC � r�

d�2

�
C r2C d˝2; (1.13)

which can be interpreted as the product of a 2-dimensional Rindler spacetime with
a two-sphere of radius rC. We can actually make this result explicit by performing
another change of coordinates .t; �/ 7! .	; 
/ as follows

� D e2˛
 ; t D 1

4˛2
	; ˛ D

p
rC � r�
2rC

: (1.14)

This leads to a near-horizon metric described by

ds2NH D e2˛

��d	2 C d
2

�C r2C d˝2: (1.15)

The geometry of the non-compact part is 2-dimensional Minkowski spacetime as
seen by an observer that is uniformly accelerated with acceleration ˛ D p

˛�˛�.
In fact the change of coordinates from the standard ones to Rindler’s is dictated by
the trajectory of an accelerated observer

x.x0/ D 1

˛

p
1C ˛2.x0/2 ; (1.16)

and 	 denotes the proper time

x0.	/ D 1

˛
sinh.˛	/: (1.17)

Our derivation explains this acceleration as the effect of gravitation and one can
actually show that ˛ coincides with the surface gravity of the black hole. In
fact surface gravity is given in terms of the derivative of the null Killing vector
generating the horizon surface, computed at the surface [79]

˛2 D
�
�1
2

r�
�r�
�
�
rDrC

(1.18)

and the two expressions coincide.

1.2.1 Thermodynamics

Hawking and Unruh showed that an accelerated observer following the trajectory
described in (1.16) sees a thermal spectrum with temperature proportional to the
acceleration:

T D ˛

2�
: (1.19)
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A simple heuristic argument to understand this result follows by considering the
near-horizon geometry rotated to Euclidean signature. This is the same procedure
that is used to describe quantum field theories with temperature. In fact, in quantum
mechanics, for a system with Hamiltonian H , the thermal partition function is

Z D Tr e�ˇH ; (1.20)

where ˇ is the inverse temperature and Z is related to the time evolution operator
e�i	H by a Euclidean analytic continuation. From the geometric point of view,
by defining Q	 D i	 and Q
 D e˛
=˛, the resulting euclidean geometry is

ds2 D d Q
2 C ˛2 Q
2 d Q	2; (1.21)

which has a conical singularity at the origin unless 	 � 	 C i ˇ, where

ˇ D 1

T
D 2�

˛
D 4�r2C
rC � r�

(1.22)

and this gives an expression of the temperature in terms of the geometric quantities
defining the black hole horizons.

Having now a thermodynamic system for which we defined the energy (given by
the mass of the black hole M ) and a temperature T , it is natural to define a
(Bekenstein–Hawking) entropy SBH , such that, for fixed charges, one fulfills the
thermodynamic relation

dSBH

dM
D 1

T
: (1.23)

In the case at hand, namely the Reissner–Nordström black hole, integration of the
previous equation leads to

SBH D � r2C D �
h
M C

p
M2 � .P 2 CQ2/

i2
: (1.24)

The dependence of the entropy on the mass and charge of the black hole is
summarized by the geometric quantity rC, the horizon radius, which can be
translated to the horizon area, leading to the famous relation

SBH D A

4
; (1.25)

which is also valid for other configurations at the two-derivatives level. This is a
remarkable relation between the thermodynamic properties of a black hole on the
one hand and its geometric properties on the other and it is a cornerstone for our
understanding of any theory of quantum gravity. In fact, if we believe that SBH
has the meaning of a real entropy, although such a quantity is usually defined in
terms of global properties of the system, it contains non trivial information about
the microscopic structure of the theory via Boltzmann’s relation

S D log˝; (1.26)
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where˝ is the total number of microstates of the system for a given energy and fixed
total charges. In detail, the entropy contains information about the total number of
microscopic degrees of freedom of the system and in our case a microscopic theory
of gravity should explain the black hole entropy in terms of the quantum numbers
defining the solution:

SBH D log˝.M;Q;P /: (1.27)

Explaining this formula is actually one of the biggest problems in theoretical
physics. Given (1.25) relating the entropy of a black hole to its horizon area, we
can actually see that the typical number of microstates forming a black hole is
humongous. For instance, the black hole at the centre of our galaxy (Sgr A�) is
estimated to have a radius of about rC � 7 � 109 km [52], leading to an estimate
of SBH � 10100, and this is just the logarithm of the number of states defining the
black hole! If, on the other hand, we think about a generic black hole solution in GR,
we know that the no-hair theorem tells us that a black hole is completely specified
by its mass and charges. This would mean that, for fixed mass and charges, there is
a unique classical state, leading to an expectation of S D 0.

It is actually interesting that the laws of black hole mechanics can be put in a one
to one relation with the laws of thermodynamics [79]:

• Zeroth law: the temperature of a black hole T D ˛=2� is uniform at the horizon;
• First law: for quasi static changes the energy (mass) of a black hole changes as

dM D TdS C  dQ C �dP C˝dJ � gij˙id�j ; (1.28)

where the entropy is identified with the area of the horizon as in (1.25), Q and
P are the electric and magnetic charges, J is the angular momentum,  , �
and ˝ are the associated chemical potentials (namely the electric and magnetic
potentials at the horizon and the angular velocity, assumed constant for stationary
solutions), �i the values of the scalar fields defining the solution and˙i the scalar
charges;

• Second law: the horizon area always increases in time �A � 0. A consequence
of this last law is that coalescence processes are possible, while generically no
splitting processes are allowed. For instance, two Schwarzschild black holes with
masses M1 and M2 can form a bigger black hole with mass M1 C M2 because
their horizon area is proportional to the square of the corresponding masses and
therefore .M1CM2/

2 � M2
1 CM2

2 . The inverse process is forbidden by the same
argument.

Coming back to our example, the Reissner–Nordström black hole, we can see that
the temperature T , the entropy SBH and the extremality parameter c are all defined
in terms of the characteristic geometric quantities of the solution, namely the radii
of the two horizons. This implies that, by comparing (1.24), (1.22) and (1.9), we can
express the extremality parameter in terms of the temperature and entropy as

T D ˛

2�
D c

2S
) c D 2 S T: (1.29)
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Recalling that an extremal configuration is such when the two horizons coincide,
i.e. c D 0, and that the entropy is non-vanishing whenever there is a non-trivial
horizon S D � r2C, we can see that extremality implies vanishing temperature:

Extremality , c D 2 ST D 0 ) T D 0: (1.30)

Extremal black holes are therefore thermodynamically stable. They do not radiate.
We will come back to an explanation of this fact momentarily.

The special properties of this kind of black holes is reflected also in the near
horizon metric, which now is not given by (1.15) anymore. Since the warp factor
has a double zero, its behaviour close to the horizon is approximated by a quadratic
function of � rather than linear as in (1.12)

e2U D .rC � r�/2

r2
! �2

r2C
: (1.31)

The near-horizon metric changes accordingly and, by introducing

z D �M
2

�
; (1.32)

we can see that it is given by the product of a 2-dimensional Anti-de Sitter spacetime
and a 2-dimensional sphere, both with radiusM D p

P2 CQ2:

ds2NH D M2

��dt2 C d z2

z2

�
CM2d˝2 : (1.33)

Remember that, using these coordinates, the horizon sits at z ! �1. It is
interesting to note that this geometry is conformally flat (extremal Reissner–
Nordström solutions are also supersymmetric).

Before proceeding to a more detailed analysis of the differences between
extremal and non-extremal black holes, let us pause for a second to make some
comments. From the above discussion we can see that black holes are rather
special thermodynamic systems, because they do not satisfy Nernst law, which
states that the entropy should vanish (or arrive at a “universal constant” value)
as the temperature approaches zero. The analog of this law fails in black hole
mechanics, because extremal black holes have vanishing temperature, but non-
vanishing entropy, S D �

p
P2 CQ2 in the previous example. However, there is

good reason to believe that “Nernst theorem” should not be viewed as a fundamental
law of thermodynamics but rather as a property of the density of states near the
ground state in the thermodynamic limit, which happens to be valid for commonly
studied materials. Indeed, examples can be given of ordinary quantum systems that
violate the Nernst form of the third law in a manner very similar to the violations of
the analog of this law that occur for black holes [80].
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Another interesting observation follows from rewriting the metric ansatz in an
isotropic form:

ds2 D �H�2.x/ dt2 CH2.x/dx23: (1.34)

Once the metric is written in this fashion, the equations of motion for the warp factor
can be expressed as

43H D 0 (1.35)

and therefore can be solved by generic harmonic functions, which may have more
than one centre:

H D 1C
X
i

mi

jx � xi j ; mi D
q
p2i C q2i ; (1.36)

where xi denotes the position of the i -th centre. This solution is allowed by the fact
that gravitational attraction equals electromagnetic repulsion for each centre and
hence leads to a condition of static neutral equilibrium. The additive nature of the
solution is related to the BPS nature of force-free objects.

Finally, the fact that the near-horizon geometry approaches the product of an
Anti-de Sitter spacetime and a sphere is actually a universal behaviour of extremal
p-branes in D dimensions, whose near horizon geometry is given by AdSpC2 �
SD�p�2. Black holes in four spacetime dimensions are a simple instance where
pD 0 andDD 4, but one could also think of different examples like black holes and
black strings (pD 0; 1) in DD 5, dyonic black strings (pD 1) in D D 6 and
D3-branes in IIB string theory (p D 3, D D 10).

1.2.2 Extremal Versus Non-extremal Solutions

We can now go back to the concept of extremality to discuss an important difference
between extremal and non-extremal black holes. A general ansatz for the metric that
satisfies the requirements of describing spherically symmetric, static, asymptotically
flat black holes and which encompasses both the extremal and non-extremal
solutions is the following:

ds2 D �e2U dt2 C e�2U
�

c4

sinh4.cz/
d z2 C c2

sinh2.cz/
d˝2

�
: (1.37)

The extremality parameter c was explicitly inserted and the extremal case is
recovered by sending c ! 0, so that the metric simplifies to

ds2cD0 D �e2U dt2 C e�2U
�
d z2

z4
C 1

z2
d˝2

�
; (1.38)

where one can rewrite the factor in brackets using isotropic coordinates as a
plain R

3:
ds2cD0 D �e2U dt2 C e�2U dx 2: (1.39)
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Fig. 1.2 Schematic
representation of
non-extremal and extremal
black hole throats using
proper-distance coordinates

By applying this ansatz to the Reissner–Nordström case analyzed before, it is easy
to realize that the horizon sits at z ! �1.

However, proper distance from the horizon has to be computed by using
appropriate coordinates. In the non-extremal case, assuming that the horizon area
is finite, one gets that the factor in front of the angular variables should remain finite
as z ! �1 (Fig. 1.2).

This means that

e�2U c2

sinh2.cz/

z!�1�! A

4�
D r2H ; (1.40)

where rH is the radius of the horizon. A proper radial coordinate ! can then be
introduced by considering the gzz component of the metric in the same limit:

e�2U c4

sinh4.cz/
d z2 �! A

4�
4c2e2czd z2 � r2Hd!

2: (1.41)

Distances should then be measured by ! D 2 ecz in units of rH and the black hole
horizon sits at !H D 0, at finite proper distance from an arbitrary observer

L D
Z !0

!H

rHd! D rH !0 < 1: (1.42)

On the other hand, having finite area in the extremal case means

e�2U

z2
�! A

4�
D r2H : (1.43)

This implies that a new proper radial coordinate can be introduced by identifying

e�2U d z2

z4
�! A

4�

d z2

z2
D r2H d!

2; (1.44)
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which means
! D � log.�z/: (1.45)

The horizon is now at !H D �1 at infinite proper distance from any observer

L D
Z !0

!H

rHd! D C1: (1.46)

As we will see in a moment, this difference has a crucial impact on the behaviour of
scalar fields in this scenario and implies the existence of an attractor mechanism for
extremal black hole configurations. Moreover, the fact that the horizon is at infinite
proper distance from any observer justifies also the fact that extremal black holes
are thermodynamically stable. Any radiation emitted by such black hole would be
infinitely red-shifted before reaching any observer outside the horizon.

1.3 Attractors

1.3.1 Black Holes and Scalar Fields

When dealing with supergravity theories, as with many other effective theories
of fundamental interactions, gravity needs to be coupled to scalar fields, possibly
parameterizing a scalar �-model and affecting also the couplings of the vector
fields (which we consider abelian for the sake of simplicity). A generic Lagrangian
describing the bosonic degrees of freedom of such theories will have the form

e�1L D R�1
2
gij .�/ @��

i@��jC1

4
I˙.�/F

��F
˙ ��C1

4
R˙.�/

�����

2
p�gF


��F

˙
�� ;

(1.47)
where gij .�/ is the metric of the scalar �-model, I is definite negative and describes
the gauge kinetic couplings, R is the generalization of the �-angle terms in the
presence of many scalar and vector fields and we assume that there is no scalar
potential for the time being. We are still interested in finding single centre, static,
spherically symmetric, charged and asymptotically flat black hole solutions and
therefore we keep the metric ansatz (1.37) and the request that the integral of the
vector field strengths and their duals on a sphere at infinity gives the electric and
magnetic charges of the solution:

1

4�

Z
S2
F  D p ;

1

4�

Z
S2
G D q: (1.48)

Now, however, we need to introduce a new definition of the dual field strengths
G, because the values of the gauge couplings and the charges will be affected by
the values of the scalar fields appearing in the functions R and I.
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In the setup considered in the previous section, the magnetic and electric charges
are associated to the two-forms appearing in the Bianchi identities and in the
equations of motion of the electromagnetic theory, respectively. These two-forms
are also related between them by the known electromagnetic duality F $ ?F .
In a general setup, like the one considered here, electric–magnetic duality can be
extended to a new group of duality transformations that leaves invariant Bianchi
identities and equations of motion [48]. If we focus on the part of the Lagrangian
involving the gauge field-strengths

SEM D
Z �I˙F  ^ ?F ˙ � R˙F

 ^ F˙
	
; (1.49)

we can deduce that the Bianchi identities and equations of motion form a set, from
which we can define the dual field strengths G:

(
dF D 0 ;

dG D d
�R˙F

˙ � I˙ ? F˙
� D 0 :

(1.50)

It is obvious, that for any constant matrix S we can rotate the original field strengths
F and the dual ones G between them, leaving the full set of Bianchi identities
and equations of motion invariant:

 
F

G

!
!
 
F 0

G0

!
D S

 
F

G

!
: (1.51)

However, the requirement that also the definition of the dual field-strengths G �
� ıL
ıF

remains invariant constrains the duality transformation to be part of the
symplectic group S 2 Sp(2nV ;R), where nV is the total number of abelian vector
fields in the theory and the symmetry transformations are continuous at the classical
level. Moreover additional matter couplings, like the ones considered in (1.47),
may reduce it to G � Sp(2nV ;R). G is called the U-duality group of the theory.
An important result of [48] is that the stress energy tensor and hence the Einstein
equations of motion following from rather general interactions between the various
fields are invariant under such transformations. This means that by using the duality
group we can map solutions of the Bianchi identities and of the equations of motion
to new solutions of the same set of equations, leaving the metric untouched. In
particular, we can map charged black hole solutions with different charges and scalar
fields between them without changing the metric and hence a crucial property like
the area of the horizon.

Before proceeding, let us note that by performing such duality transformations
the Lagrangian does not necessarily remain invariant. U-duality transformations
are symmetry transformations by which the equations of motion and the Bianchi
identities are mixed among themselves linearly and this may require changes in the
Lagrangian originating them.
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Since .F ;G/ form a symplectic vector of closed two-forms, we could
introduce explicitly the corresponding potentials .A�;A�/, though obviously not
both at the same time. Given the request (1.48), the vector potentials should have
a restricted form such that the integrals provide the correct electric and magnetic
charges. In particular, solving dF D 0 and respecting the request of finding
solutions with spherical symmetry, we can introduce

A D �.r/dt � p cos � d�; (1.52)

where � are the electric potentials, so that F D dA. In the same fashion we can
also introduce the dual potentials

A D  .r/dt � q cos � d�; (1.53)

where   are the magnetic potentials, so that G DdA. In the original action
(1.47) only the first appears. Actually, we can see that � appears in the action only
under derivatives and therefore we can integrate it out. In fact, from the � equations
of motion one gets

�
0 D e2U I�1˙ �q˙ � R˙� p

�
�
; (1.54)

which is also the correct relation needed to fulfill the duality relation by which the
definition of G follows from the one of F.

A simple strategy to find black hole solutions in this framework is to use the
fact that the problem is spherically symmetric, so that all relevant quantities depend
only on the radial variable, �i D �i .r/, U D U.r/, etc., and reduce the system to 1
dimension. By using (1.54) and by integrating out formally � , � and t one gets the
effective 1-dimensional action

L1d D .U 0/2 C 1

2
gij �

i 0�j 0 C e2U VBH � c2; (1.55)

where

VBH D �1
2
QTMQ; (1.56)

with

M D
�
I CRI�1R �RI�1

�I�1R I�1
�

(1.57)

and

Q D
 
p

q

!
: (1.58)

The kinetic term for the warp factor and the overall constant c2 come from the
reduction of the Einstein kinetic term. The black hole potential VBH comes from the
reduction of the kinetic term and �-angle terms of the vector fields, after dualization
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of the electric potential using (1.54). The resulting problem is a 1-dimensional
mechanical system of n C 1 scalars in the presence of a potential VBH depending
on a number of parameters equal to the total number of non-vanishing electric and
magnetic charges.

Since we have made an ansatz on the metric, we should take into account the
possibility that the equations of motion of this reduced system do not solve also
the equations of motion of the original one, because we are essentially looking at
constrained variations of the original system. This is actually the case and it means
that in order to obtain solutions from the equations of motion coming from this
Lagrangian that are equivalent to the original ones, we need to supplement the
1-dimensional Lagrangian (1.55) with the constraint

.U 0/2 C 1

2
gij �

i 0�j 0 D e2U VBH C c2: (1.59)

For completeness, we provide here the equations of motion:

U 00 D e2U VBH ; (1.60)

�i 00 C �jk
i�j 0�k 0 D e2U gij @j VBH : (1.61)

1.3.2 General Features of the Attractor Mechanism

We have seen that black holes in generic supergravity theories will depend on scalar
fields. However, extremal black holes have the special property that the horizon
quantities loose all the information about them. This is true independently of the
fact that the solution preserves any supersymmetry or not. The horizon is in fact an
attractor point [37, 38, 40, 76]: scalar fields, independently of their value at spatial
infinity, flow to a fixed point given in terms of the charges of the solution at the
horizon. Recalling that the entropy of black holes is given by the area of the horizon,
this attractive behaviour for the scalar fields implies that for extremal black holes the
entropy is a topological quantity, given in terms of quantized charges and therefore
it does not depend on continuous parameters, which is a very appealing feature
in order to have the chance to provide a microscopic explanation for the resulting
number.

The main reason at the base of the attractor mechanism is the fact that for
extremal black holes the horizon is at an infinite proper distance from any observer
[41]. This means that while moving along the infinite throat leading to the horizon,
scalar fields lose memory of the initial conditions. This is an obvious outcome of
the request of having regular solutions. In fact, regularity of the scalar fields at the
horizon implies that their derivative should vanish while approaching the horizon

�i 0 z!�1�! 0: (1.62)
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Fig. 1.3 Generic behaviour of a scalar field in the case of an extremal black hole (left) and of a
non-extremal one (right). In the first case the scalar field � runs towards the same value at the
horizon ��, no matter what was its value at infinity. In the second case the scalar stops at different
points in moduli space depending on its asymptotic value

On the other hand non-extremal black holes have !H D 0 and hence scalar fields
do not have time to blow up even for a non-trivial, but finite, first derivative along
the radial direction.

Extremal black holes are therefore described by trajectories in the moduli space
with a fixed point reached when the proper radial parameter ! ! �1. The fixed
point is an attractor of the system (Fig. 1.3). Since infinitely far away from the
black hole (! ! C1) the geometry approaches that of 4-dimensional Minkowski
spacetime and at the horizon (! ! �1) it approaches the product AdS2 � S2, we
can see that extremal black holes can also be thought of as solitons interpolating
between two different vacua of the theory. We will come back to this picture later
on to justify the description of such solutions in terms of first-order differential
equations.

From the equations of motion of the scalar fields (1.61), fixed scalars at the
horizon imply that the moduli reached a critical point of the black hole potential:

@iVBH .�
i�; q; p/ D 0: (1.63)

This is actually an intrinsic characterization of the horizon for extremal black holes.
Extremization of the scalar potential, means that the scalar fields at the horizon
take the value �i� such that the minimization condition (1.63) is satisfied. Since the
only parameters appearing in the minimization condition are the black hole charges,
the resulting attractor values of the moduli fields are also going to be given in terms
of the same charges

�i� D �i�.q; p/: (1.64)

In turn, this implies that at the horizon the value of the scalar potential does not
depend anymore on the values of the scalars at infinity, but only on the charges:

V �
BH D VBH .�

i�.q; p/; q; p/: (1.65)
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Fig. 1.4 Examples of black
hole potentials for various
values of the quartic
invariants

At this point we can also solve the equation for the warp factor (1.60) close to the
attractor point, which gives that

U ! � log

�q
V �
BH z

�
: (1.66)

This implies that the metric approaches that of AdS2 � S2 as expected, with a
characteristic horizon radius given by rH D p

V �
BH . This in turn implies that the

entropy of extremal black holes can be expressed in terms of the value of the black
hole potential at the critical point:

SBH D A

4
D � V �

BH .q; p/: (1.67)

Since the black hole potential depends only on the quantized charges, because of
the attractor mechanism, also the entropy of extremal black holes will depend on
the same quantized parameters and all the possible dependence on the value of the
moduli fields (which still characterize the full solution) is lost.

The contrast becomes even more clear if we compare (1.67) with the correspond-
ing expression for non-extremal solutions, where the area formula is valid for a
radius of the horizon sitting at the larger value between

r˙ D M ˙
r
M2 � VBH .�1; p; q/C 1

2
gij .�1/˙i˙j : (1.68)

Not only this expression depends on the value of the scalar fields at infinity, but also
on the scalar charges, which vanish only for solutions where the scalars remain
constant [53].

An interesting outcome of this analysis is that extremal black hole solutions
are completely specified by the black hole potential. In particular different kind of
attractors will be characterized by different types of potentials. Still, while VBH
depends on the theory under investigation, the general features of the attractor
mechanism are universal.

As an example, consider the most constrained supergravity theory in 4 dimen-
sions: maximally supersymmetric (N D 8) supergravity. This theory has a fixed
matter content, which is all contained in the gravity multiplet. Among other fields,
the gravity multiplet contains 28 vector fields, leading to 56 charges, and 70 scalar
fields parameterizing the scalar manifold E7.7//SU(8).
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Fig. 1.5 Runaway behaviour
for small black holes

The black hole potential depends on the detailed choice of the 28 electric and
28 magnetic charges, but, given the restrictive form of the scalar manifold and of
the invariances of the theory, one can distinguish three main classes of solutions.
These are related to the value of a special E7.7/ invariant, which is quartic in the
charges I4.p; q/ [36, 63]. Whenever I4 > 0 the scalar potential has a minimum
and the corresponding black hole solutions preserve some supersymmetry (Fig. 1.4).
If I4 < 0 the solutions are non-supersymmetric. Finally, in the special instance
where the quartic invariant vanishes, the warp factor at the horizon vanishes. This
implies that the corresponding classical geometry is singular and various orbits can
be further distinguished by the values of derivatives of I4. However, higher-order
corrections in the curvature terms modify the equations of motion in a way such that
a horizon is developed, with a characteristic radius of the order of the typical scale of
the correction terms. For this reason the corresponding black holes are called small
black holes (Fig. 1.5).

In generic N D 2 theories supersymmetric configurations are always minima,
while non-BPS ones have flat directions at the attractor point the potential (actually
these flat directions are generically given by expectation values of scalar fields that
do not appear in the scalar potential at all) [39]. For N > 2 also supersymmetric
attractors may have a non-trivial moduli space.

One important lesson that can be learned from this analysis is that while
supersymmetry always implies extremality, the opposite is not true. In fact the
supersymmetry condition is achieved when the mass of the BPS object equals a
certain value defined by its charges, however, for a given charge configuration the
BPS bound may never be reached and hence for such configurations the object with
the minimal mass will still be extremal, though non supersymmetric.

1.4 Glancing Through Special Kähler Geometry

As discussed in the previous section, the black hole potential containing the
necessary information to describe extremal black holes depends on the detail of
the model under investigation. General features of these solutions can anyway be
obtained independently on such details. Although in the following we will try to give
some general arguments about the properties of single and multi-centre extremal
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black holes in supergravity theories, it is better to fix a specific framework, so that
we can provide explicit examples along with the general arguments. For this reason
we now provide a brief intermezzo with some elementary facts about Special Kähler
geometry, which is the geometric structure underlying the vector multiplet scalar
�-model in N D 2 theories in 4 dimensions.

We will not give an exhaustive review of this topic, but rather focus on some
minimal ingredients necessary for our following discussion. An interested reader
can find more details on the many geometric identities and on the relation with
String Theory in [24] and in references therein. There are three main types of
multiplets in N D 2 supergravity: gravity, vector and hyper-multiplets

0
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g��
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A0�

1
CCA ;

0
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Ai�
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zi

1
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�˛

qu

!
;

gravity; nV vector nH hyper
multiplets; multiplets:

(1.69)

In a generic interacting ungauged theory, the number of vector fields is determined
by the number of vector multiplets nV with the addition of the vector field sitting in
the gravity multiplet, named graviphoton. Scalar fields sit in both vector (2nV real
fields) and hypermultiplets (4nH real fields). The self-interactions between these
fields can be described by a factorized �-model given by the product of a Special
Kähler manifold for the scalars in the vector multiplets and a Quaternionic Kähler
manifold for the scalars in the hypermultiplets:

Mscalar D MSK ˝ MQK: (1.70)

The different structure between the two manifolds has to do with the way the U(2)
R-symmetry group of N D 2 theories acts on the fields of the two multiplets. Just
like the R-symmetry group factorizes U(2) D U(1) � SU(2), so does the scalar
manifold.

The scalars in the vector multiplets define the gauge kinetic functions I and R,
while the hyperscalars do not enter into their definition. For this reason the scalars
of the hypermultiplets do not appear in the black hole potential VBH and hence do
not participate at the definition of the tree level solutions. Hence, we will set them
to zero for the time being.

A Special-Kähler (SK) manifold can be parameterized by nV complex scalar
fields, the scalars appearing in the vector multiplets. However, SK manifolds have
an intrinsic projective nature, related to the fact that there are nV C 1 vectors
that appear in a supergravity theory that can mix between them. This means that
one could use nV C 1 projective coordinates X.z/,  D 0; 1; : : : ; nV , which are
holomorphic sections of the complex line bundle associated to the scalar manifold
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(whose principal bundle is related to the U(1) factor in the R-symmetry group).
Actually, just like for any set of nV C 1 vector fields we can define a set of
nV C 1 duals according to the procedure outlined previously and symplectic duality
transformations mix them, a SK manifold can be specified in terms of 2nV C 2

sections, which form a symplectic vector .X; F/. Its Kähler potential is then
defined via these sections as

K D � log i
� NXF � X NF

� D � log ih˝;˝i; (1.71)

where

hA;Bi D AT
�
0 �1
1 0

�
B: (1.72)

Summarizing a SK manifold is a Kähler manifold endowed with both a projective
and a symplectic structure.

Obviously the .X; F/ sections and consequently the Kähler potential, is only
defined locally. This means that, given two patches covering the scalar manifoldU˛
and Uˇ, the sections in their non-trivial intersection can be related by a symplectic
and holomorphic transformation

�
X

F

�
˛

D S˛ˇ e
h˛ˇ.z/

�
X

F

�
ˇ

; (1.73)

where S˛ˇ 2 Sp.2nV C 2;R/ is constant. This implies a Kähler transformation on
the Kähler potential

K˛ ! Kˇ C h˛ˇ C Nh˛ˇ: (1.74)

The projective nature becomes manifest in the fact that there is always a choice
of the sections so that normal coordinates can be defined

t i D Xi

X0
: (1.75)

In such frames, the dual sections F.z/ can be derived from a prepotential F.X/,
such that F.�X/ D �2F.X/. We should stress that, on the other hand, generically
there are frames in which such a prepotential does not exist.

The geometric structure of SK geometry fixes completely all the other couplings,
among which the vector kinetic terms, which can be given in terms of a function
N˙ , with the property

F D N˙X
˙: (1.76)

The gauge kinetic couplings are the real and imaginary parts of this complex matrix:

R˙ D Re N˙; I˙ D Im N˙: (1.77)
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1.4.1 Examples

Before proceeding further, we give here a couple of interesting examples, which
will be used in the following.

The first example is one of the simplest SK manifold one could think of:
a manifold with a single scalar field parameterizing SU(1,1)/U(1). In a frame where
a prepotential exists, it is defined as

F D �iX0X1; (1.78)

which implies that F0 D �iX1 and F1 D �iX0. In such a frame we can also define
a normal coordinate z D X1=X0 and, with the gauge choice X0 D 1, we can write
the holomorphic sections and the Kähler potential as

˝ D

0
BB@

1

z
�iz
�i

1
CCA ; K D � log 2.z C Nz/: (1.79)

The z modulus is constrained, because its real part must be positive in order for the
Kähler potential to be well defined.

A second simple example is the so-called STU model. This is a scalar manifold
corresponding to [SU(1,1)/U(1)]3. The prepotential is

F D X1X2X3

X0
(1.80)

and the sections and Kähler potential can be written as

˝ D

0
BBBBBBBBBBB@

1

s

t

u
�stu
tu
su
st

1
CCCCCCCCCCCA

; K D � logŒ�i.s � Ns/.t � Nt /.u � Nu/�; (1.81)

in a basis whereX0 D 1. It is interesting to point out that the metric of such manifold
factorizes.
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1.4.2 String Theory Origin

Supergravity theories with N D 2 supersymmetry in 4 dimensions can be obtained
in various ways. The main path is to consider type II theories in 10 dimensions
on Calabi–Yau threefolds. For instance, type IIB supergravity on a Calabi–Yau
manifold Y6 has 2.nV C 1/ three-cycles in H3.Y6;R/, with nV Dh.2;1/, that lead
to nV vector multiplets in the effective theory by reduction of the Ramond–
Ramond four-form of type IIB on them. The scalar fields in the corresponding SK
manifold parameterize the space of complex structure deformations of the internal
manifold. The holomorphic sections we introduced previously can be introduced by
considering the periods of the holomorphic three-form ˝ (with a suggestive abuse
of notation) on the symplectic basis .A;B/ of H3.Y6;R/:

X D
Z
A

˝; F D
Z
B
˝: (1.82)

The corresponding Kähler potential can be obtained as

K D � log i
Z
CY

˝ ^˝; (1.83)

where the analogy between this expression, given in terms of the wedge product of
the holomorphic three-form˝ , and (1.71), given in terms of the symplectic product
of the sections˝ , is now evident.

By calling .˛; ˇ/ the basis of harmonic three-forms on Y6, the vector fields
arise in the expansion of

F5 D F˙ ^ ˛˙ �G˙ ^ ˇ˙; (1.84)

where the duality relation between G and F follows from the self-duality
property of F5 D 	F5. This expression is also telling us that the black hole charges
in 4 dimensions correspond to charges of F5 integrated over the product of a two-
sphere and the three-cycles of Y6. This means that black holes can be viewed as
the superposition of D3-branes wrapping different three-cycles of Y6, hence giving
a hint on the route one needs to follow to explain the microscopic origin of the
entropy of such configurations.

Since any Calabi–Yau manifold has at least a non-trivial three-cycle associated
to the holomorphic form˝ , we can see why there is always at least one vector field
in the corresponding N D 2 effective theory, which appears in the gravity multiplet.
The Kähler structure deformations are described by the hypermultiplet scalar fields.

Reductions of type IIA supergravity on a Calabi–Yau manifold are similar to
the ones just described but with the role of complex and Kähler structure reversed:
˝ $ J . In particular, the vector-multiplet moduli space describes the complexified
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Kähler structure of Y6. If Jc � B C i J , Ci is a basis ofH.1;1/.Y6;R/ andDi is the
dual basis of H.2;2/.Y6;R/,

Xi

X0
D
Z
Ci

Jc;
Fi

F0
D
Z
Di

Jc ^ Jc: (1.85)

The Kähler potential is now

K D � log

�
4

3

Z
CY

J ^ J ^ J
�
: (1.86)

Vector fields generate from the 1, 3, 5 and 7-form potentials of type IIA expanded on
the basis of harmonic 0, 2, 4 and 6-forms respectively. This means that the associated
charges come from wrapped D0, D2, D4 and D6-branes.

1.5 Flow Equations for BPS and Non-BPS Attractors

In this section we are going to show that extremal black holes admit a first order
description, no matter whether they are supersymmetric or not. For the sake of
simplicity and in order to be specific, we will constrain our discussion to models
within N D 2 supergravity, but the results hold for more general theories. This
presentation follows mainly [23], where the result was first derived, but expanding
on the reasoning justifying and explaining it.

As we saw previously, critical points of the black hole potential define extremal
black hole configurations and the same potential plays an essential role in the
attractor mechanism. For N D 2 theories the potential is

VBH D jZj2 C 4gi N|@i jZj@ N| jZj; (1.87)

where

Z D eK=2
�
Xq � pF

� D eK=2h˝;Qi (1.88)

is the central charge of the N D 2 supersymmetry algebra.
Extremal black holes are solutions of the equations of motion derived from the

effective 1-dimensional lagrangian

L D .U 0/2 C gi N| zi 0Nz N| 0 C e2U


jZj2 C 4gi N|@i jZj@ N| jZj

�
; (1.89)

also satisfying the constraint

H D 0 , .U 0/2 C gi N| zi 0Nz N| 0 D e2U


jZj2 C 4gi N|@i jZj@ N| jZj

�
(1.90)
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and where the scalar fields reach a critical point of the potential. The generic
equations that need to be satisfied are second-order equations. We will now show
that we can actually further reduce the system to first-order ordinary differential
equations.

1.5.1 Supersymmetric Attractors

The Hamiltonian constraint (1.90) is an equality between two different sums of
squares weighted with the same positive definite metric gi N| . A natural solution is
given by matching each term on the left hand side with the corresponding term on
the right hand side asU 0 D ˙eU jZj and zi 0 D ˙2 eUgi N| jZj, for an arbitrary choice
of sign in both equations. Although surprising at first sight, it is a straightforward
exercise to show that such a solution of the constraint equation is also a solution of
the equations of motion coming from (1.89), provided the same sign is chosen in
the flow equations. We therefore reduced the system of second-order equations of
motion and the quadratic constraint to a system of first order ordinary differential
equations driven by the absolute value of the central charge jZj.

The flow equation for the warp factor can also be rewritten as .e�U /0 D 
jZj
and should be increasing along the flow, because its value is going to be 1 at infinity
and becomes proportional to jzj when approaching the horizon (see the discussion
around (1.43)). This means that only the lower sign is acceptable in order to generate
regular black hole solutions and hence black holes can be described by the following
set of flow equations: 8<

:
U 0 D �eU jZj;
zi 0 D �2 eUgi N| @ N| jZj:

(1.91)

Having first-order equations rather than second-order, may be a sign of supersym-
metry and in fact this is the case at hand. The mass of the black holes generated
by (1.91) is

MADM D jZj1; (1.92)

which means that they are extremal configurations at the threshold of the super-
symmetric bound M � jZj. In fact, by analyzing the gravitino and gaugino super-
symmetry transformations one finds that, after imposing a suitable projector on
the supersymmetry parameter, the first flow equation is equivalent to ı A� D 0,
while the second satisfies ı�iA D 0. Actually, the scalar equation coming from the
supersymmetry variation of the gauginos is

zi 0 D �eU�i˛gi N|D N|Z; (1.93)

where ˛ is a phase factor appearing in the projector, identified with the phase of
the central charge. Full equivalence with (1.91) can be established by realizing
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that also the phase obeys a first order equation coming from the consistency of the
supersymmetry conditions

˛0 CQ D 0; (1.94)

whereQ is the composite Kähler connectionQ D Im zi 0@iK , and that this equation
is identically satisfied once the flow equations (1.91) are fulfilled. This is an obvious
consequence of the fact that ˛ is not a new independent degree of freedom.

Inspection of (1.91) also shows that the central charge jZj determines completely
the solution and that, no matter what is the value of the scalar fields at infinity, the
flow stops where the central charged is minimized:

@i jZj� D 0 , zi 0 D 0: (1.95)

As we could expect, such a critical point of the central charge is also a critical point
of the full black hole potential VBH :

@iVBH D jZj@i jZj C @i @j jZj N@j jZj C @j jZj@i N@j jZj D 0 (1.96)

and therefore a generic flow that reaches such a critical point describes a supersym-
metric extremal black hole.

As expected, the attractor conditions (1.95) fix the values of the scalar fields in
terms of the asymptotic charges of the solution zi� D zi�.p; q/ and all the horizon
quantities depend only on the same charge values. The criticality condition (1.95)
gives nV complex independent conditions for nV scalar fields and hence fixes
them all.

At the critical point the warp factor has a simple behaviour

.e�U /0 D jZj� ) e�U ! jZj�z; (1.97)

so that the near horizon metric approaches AdS2 � S2. Going back to the standard
radial coordinate r D �1=z:

ds2 D � r2

jZj2�
dt2 C jZj2�

r2

�
dr2 C r2d˝2

S2

	
: (1.98)

The corresponding black hole entropy is given by the usual area formula, which in
this case can be rewritten in terms of the central charge and in turn of the black hole
potential at the horizon:

SBH D A

4
D �jZj2� D �V �

BH : (1.99)

Since the scalar fields at the horizon are all fixed in terms of the electric and
magnetic charges of the solution, also the central charge

jZj� D jZj.p; q; zi�.p; q// (1.100)

depends only on the discrete charges and so does the entropy, according to (1.99).
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Fig. 1.6 Representation of a
moduli space with multiple
basins of attraction

The geometric properties satisfied by the scalar manifold, namely the fact that
it has a Special-Kähler nature, constrain the evaluation of the second derivatives of
the central charge driving the supersymmetric flow so that

@i@ N| jZj D gi N| jZj > 0: (1.101)

This means that the critical points at which the flow stops are all minima of the
central charge. This also helps in understanding the attractor behaviour of the
black hole horizon. No matter what is the value at infinity of the scalar fields,
they are driven by the flow equations towards the minimum of the central charge,
which constitutes an attractor point for the differential equations determining the
flow. Eventually all the horizon quantities are determined by the value of the scalar
fields at such minimum. We can therefore think of our moduli space as a basin of
attraction where the final attractor point, at the minimum of the basin, is specified
only by the choice of the asymptotic charges.

We should note, however, that in some cases there can exist multiple basins of
attraction (Fig. 1.6), leading to a discrete number of possible values zi�.p; q/ for a
given choice of charges. In this case the attractor flow must be complemented by the
“area code” corresponding to the basin of attraction to which the initial conditions
belong
[62,64,81]. For a SK manifold all these critical points will be minima of the central
charge and there will be no other critical points, so that we are not in contradiction
with the previous discussion. If the reader wonders how such functions could be, an
example with two minima and no other critical point in R

2 is f D e�2x � e�x�y2y2
[69].

Before proceeding to the analysis of the non-supersymmetric case, let us analyze
another interesting property of the flow equations (1.91): the supersymmetric
c-theorem. It is a straightforward consequence of the previous analysis that the scale
factor � D e�U is monotonically increasing along the flow

�0 D jZj > 0 (1.102)
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and therefore it can play the role of a c-function for the system (or rather its inverse),
which has a minimum value at the Minkowski vacuum and blows up at the horizon
(recall that �1 D 1 and �hor D C1). This implies that � can replace the radial
coordinate to describe the same flow. By using the c-function as a parameter, the
scalar field equations become a simple gradient flow equation:

�
d

d�
zi D gi N| @ N| log jZj: (1.103)

Here we focused on N D 2 models, but supersymmetric solutions in models
with N > 2 follow essentially the same discussion where jZj is replaced by the
largest of the absolute values of the eigenvalues of the central charge matrix.

1.5.2 Non-BPS Attractors

Although the solution of the Hamiltonian constraint given by (1.91) is straightfor-
ward and leads to supersymmetric attractors, the same theory (for different choice
of charges) allows also for non-supersymmetric black holes. These are described by
critical points of the scalar potential @iV �

BH D 0 for which the central charge is not
minimized @i jZj� ¤ 0. The purpose of this section is to show that also in this case
extremal black holes are described by first-order ordinary differential equations,
driven by a functionW ¤ jZj, which we will call fake superpotential [23].

There are two main motivations to believe that such a reduction may happen also
for non-supersymmetric black holes. The first one is that the attractor mechanism
is at work also in this case. Also for non-BPS extremal black holes the scalar
potential drives the flow of the scalar fields in the moduli space towards the horizon
value, which is once more specified by the minimum of the function. This is also
generically an attractor point, in the sense that critical points of VBH are generically
minima, though for non-BPS black holes there exist flat directions. An interesting
remark in this case is that such flat directions, when they exist, extend to the whole
scalar potential and not just to the minimum. Also, derivative corrections do not
seem to destabilize the model [10]. The second one is that also non-BPS attractors
have a c-theorem and therefore the flow has a clear and unique direction of motion
in the moduli space.

The proof of the non-BPS c-theorem was given in [57]. We leave the reader
to the original reference for the precise demonstration, while here we recall the
general line of the argument. The main assumption is that the matter involved in the
theory giving the non-BPS extremal black holes satisfies the null energy condition.
This states that the stress energy tensor for such models should be positive definite
when contracted with null vector fields:

T���
��� � 0; 8 � j �2 D 0: (1.104)
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Once this assumption is made [57] proves that the area function A decreases
monotonically along the solution towards the horizon and this means that one can
identify such function with a c-function for the flow. The demonstration uses the
fact that the area function is a specific term appearing in the metric, once again also
proportional to e2U , whose derivatives can be identified with certain combinations
of the Ricci tensor constructed from the same metric: A0 � �Rrrgrr C Rttg

t t .
Now, using Einstein’s equations and introducing a vector such that .�t /2 D �gtt
and .�r/2 D grr , the same combination of the Ricci tensor describing the derivative
of the area function can be rewritten as a combination of the stress energy tensor
computed on the solution. Finally, using the null energy condition this shows that
the area is always decreasing along the flow

A0 � �Rrrgrr CRttg
t t D �T������ � 0: (1.105)

These facts and the analogy with a similar situation happening for non-BPS
domain-wall solutions in the context of the gauge/gravity correspondence strongly
suggests the existence of first-order equations also for non-BPS extremal black
holes. Within the AdS/CFT correspondence Renormalization Group flows of the
dual field theory can be described in the gravitational setup as domain-walls
interpolating between two different Anti-de Sitter vacua. The field theory c-theorem
guarantees a description of such domain-walls in terms of first order differential
equations, also when there is no supersymmetry [22,47,75]. Analogously, extremal
black holes are solutions interpolating between Minkowski and AdS2 �S2 vacua of
the same model. Using this analogy we can now make our argument solid.

Consider a simple model with a single scalar field �, subject to a scalar potential
V.�/ admitting two different extrema. An instantonic solution can be constructed
by moving to euclidean signature and assuming that the field depends only on one
variable, so that �0 denotes its derivative with respect to such variable. Different
solutions are parameterized by different values of the energy and an extremal one is
defined by solutions of the constrained equation of motion following from

L D .�0/2 C V.�/; H D .�0/2 � V.�/ D 0: (1.106)

Although this system has a generic second order equation of motion, it is easy to
see that a first-order equation is sufficient by using Bogomolnyi’s trick of squaring
the action:

S D
Z
dt


�0 ˙ p

V
�2 
 2

Z
dt �0pV : (1.107)

This action is equivalent to the one obtained by the previous Lagrangian, but now
we clearly reduced the equation of motion for � to a first order one

�0 ˙ p
V D 0: (1.108)
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In fact, the second term in (1.107) is always a total derivative and hence can be
discarded, while the first term in brackets solves both the equation of motion and
the Hamiltonian constraint.

The extension of this trick to the case where many scalars � are involved needs
some care. Extremal solutions of a system analogous to (1.106) but with many
scalars means solving the constrained equations of motion coming from

L D j�0j2 C V.�/; H D j�0j2 � V.�/ D 0; (1.109)

where the norm j�0j can be taken with respect to a positive definite metric also
depending on the scalar fields. The squaring of the action leads to

S D
Z
dt
ˇ̌
ˇ�0 ˙ n

p
V
ˇ̌
ˇ2 
 2

Z
dt n � �0 p

V ; (1.110)

where n is a unit-norm vector: jnj2 D 1. In this example however the second term
in the action is a boundary if and only if it is proportional to the field derivative of a
new function W :

n D r�Wp
V
: (1.111)

We therefore conclude that the system of equations of motion and Hamiltonian
constraint coming from (1.109) can be described by first-order equations provided
the scalar potential can be rewritten as the norm of the derivative of a scalar function:

V.�/ D jr�Wj2: (1.112)

The Lagrangian and the Hamiltonian constraint of extremal black holes are a special
instance of this general case, where the set of scalars comprises the moduli fields as
well as the warp factor � D fU; zig and the metric defining the norm is factorized
and equal to 1 in the U direction and equal to gi N| in the direction of the moduli
fields. Actually, given the special dependence on the warp factor, we can introduce
a real valued fake superpotentialW so that W D eUW and the necessary constraint
to rewrite the equations of motion in a first-order form reduces to

e2UVBH D @U .e
UW /2 C 4 @i .e

UW /gi N| @ N| .eUW /; (1.113)

which implies that the black hole potential can be written as [23]:

VBH D W 2 C 4 @iWg
i N|@ N|W: (1.114)

Whenever this condition is satisfied, the black hole equations are reduced to first-
order differential conditions [23]:

8<
:
U 0 D �eUW;
zi 0 D �2 eUgi N| @ N|W:

(1.115)
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Once more the sign is fixed because of consistency of the behaviour of the warp
factor from infinity to the horizon. Obviously the BPS case is trivially recovered
wheneverW D jZj, however, we will see that for a given black hole potential more
solutions, with W ¤ jZj, can and will exist whenever there are extremal points of
the black hole potential that are not extrema of the central charge.

The fake superpotential W assumes a very important role for the description
of the black hole solutions. In fact, not only the flow equations determining the
complete solution are driven by W , but also the mass and the entropy of the black
hole are determined by the same function [43]. In detail, the boundary term reduces
to eUW and the value of the boundary term far away from the black hole determines
the ADM mass: eUW ! W1 D MADM . Also in this case the flow equations will
stop at the critical point of the function driving the scalars. For non-BPS black holes
this means that the horizon is reached whenever

@iW� D 0: (1.116)

It is trivial to check that these are also critical points of the full black hole potential
VBH . As discussed previously, in the non-BPS case there may be flat directions
and actually this is reflected by W , which will not depend on the moduli related
to such flat directions [3, 25, 27]. From the flow equations we can also determine
the behaviour of the warp factor close to the horizon, in full analogy with the
supersymmetric case (1.97), and this fixes the entropy to be

SBH D A

4
D �W 2� D �V �

BH : (1.117)

We stress that the fake superpotential is an extremely powerful procedure that
provides the full solution, including properties that depend on the behaviour of
the scalar fields infinitely far away from the black hole, and not just the horizon
properties as other procedures do.

Obviously the main problem connected with this technique is whether we can
find any solution of the main constraint equation (1.114) other than the central
charge of the system. The answer is positive and two main techniques have been
developed to provide such answer:

• A constructive approach for coset manifolds based on duality invariants (see [25,
27] and [2] also for N > 2 theories);

• An existence theorem in connection with the Hamilton–Jacobi equation [4].

The constructive approach is based on the simple observation that the warp factor
U is a duality invariant quantity (it is part of the metric and this is invariant
under U-duality transformations). Since the derivative of this function is related
to W , also the fake superpotential must be invariant. For a model based on a
symmetric coset manifold describing the self-interactions of the vector multiplet
scalar fields Msc D G=H , the duality group is G �Sp.2nV C 2;R/. It is therefore
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a straightforward technical task to identify all possible invariants and find a working
definition for W . This can generically be done in few steps, by first identifying W
for a simple charge configuration, using symmetry properties to reconstruct the seed
superpotential and then boost it by a duality transformation to generic charges. One
has to say that although the number of invariants is limited and one generically
faces a well defined problem, the resulting fake superpotential may be extremely
non-trivial, for instance non-polynomial in the invariants (see [11]) and hence the
procedure can be technically challenging. Also, this procedure does not apply to the
cases where the scalar manifold is not a coset.

On the other hand, the Hamilton–Jacobi interpretation of our system of equations
is very useful to derive a formal general solution and to prove an existence theorem,
but it is also often unpractical in order to derive a closed expression for W .
The Hamilton–Jacobi equation is a first order nonlinear partial differential equation
for a function W.�/ called Hamilton’s principal function such that

H
�
�i ;

@W
@�i

�
D 0 (1.118)

In our case the radial variable plays the role of a euclidean time, the fake
superpotential plays the role of the principal Jacobi function while the set of all
fields �i is assimilated to the coordinates of phase-space and the equation to be
solved is defined by

H D V.�;Q/�
ˇ̌
ˇ̌@W
@�

ˇ̌
ˇ̌2 : (1.119)

In this context W gets the interpretation of the generating function of canonical
transformations of the classical Hamiltonian, so that �i D @W

@�i
and �i D Gij �

j 0 D
ıL
ı�i 0

become the flow equations. The existence of such a function is guaranteed by
the Liouville integrability of the system [46]. From the general theory, W can also
be formally constructed as the integral of the Lagrangian along the solution [4]:

W.�/ D W0 C
Z 	

	0

L.�; �0/d	: (1.120)

Clearly this is unpractical in the generic situation where one does not know the
solutions before having constructed W .

An alternative technique has been proposed in [19], where the superpotential
is implicitly defined via the solution of an algebraic equation of degree 6, which
follows from analyzing the geodesics in the time-like reduction of the black hole
geometry. This also gives a formal general definition of W , but the result of the
solution of the equation of degree 6 is at least impractical.
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1.5.2.1 Examples

The first example is given by the SU(1,1)/U(1) model with prepotential

F D �iX0X1: (1.121)

The holomorphic sections and the Kähler potential were given in Sect. 1.4.1.
For generic electric q and magnetic p charges, the central charge is then

Z D q0 C ip1 C .q1 C ip0/zp
2.z C Nz/ : (1.122)

The black hole potential VBH is derived by inserting this expression in (1.87):

VBH D .p1/2 � iq1.z � Nz/p1 C q0
2 C ip0q0.z � Nz/C �

.p0/2 C .q1/
2
�

zNz
z C Nz :

(1.123)
Black hole solutions are then found by looking for solutions interpolating between
flat space at infinity and AdS2 � S2 at the horizons defined by the critical points of
VBH . Such critical points are found for

z˙ D ˙.p0p1 C q0q1/C i.p0q0 � p1q1/

.p0/2 C .q1/2
; (1.124)

and since consistency requires Rez > 0, they lie inside the moduli space only for
.p0p1Cq0q1/ > 0 when zC is chosen in (1.124), and for .p0p1Cq0q1/ < 0 for z�.
Different critical points have a different nature. More precisely, zC (1.124) gives the
supersymmetric vacuum, which satisfies DiZ D 0, with Z ¤ 0, (hence @i jZj D 0)
and thus it is a fixed point of (1.122), while the other critical point z� gives the non-
BPS black hole, for whichDiZ ¤ 0. The Hessian at these points is always positive
as there are two identical positive eigenvalues

Eigen fHess.VBH /g D ˙ 1

p0p1 C q0q1
f..p0/2 C .q1/

2/2; ..p0/2 C .q1/
2/2g:
(1.125)

A simple inspection of these formulae shows that the two type of black holes are
related by a change of sign in the electric or magnetic charges. In fact, in this case,
the fake superpotential is given by

W D
ˇ̌�q0 C ip1 C .q1 � ip0/zˇ̌p

2.z C Nz/ ; (1.126)

which indeed differs from (1.122), but gives rise to the same potential VBH . It is also
quite simple to check that the critical point of this new “fake superpotential” is the
non-BPS black hole, namely (1.124) with the minus sign (Fig. 1.7).
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Fig. 1.7 Plots of the sections of W and jZj at Im z D 0, for unit charges. Where the central
charge shows a minimum, the “fake superpotential” crosses zero. Changing the signs of the q0 and
p0 charges exchanges the two pictures

An extremely non-trivial example is the STU model, for which the complete
superpotential expression can be found in [11]. A simpler expression we can report
here is the limiting case of the t3 model, which essentially follows from the STU
model by identifying s D t D u, for the case of only two non-trivial charges, p0

and q1. The central charge is

Z D zq1 C p0z3p�i.z � Nz/3 ; (1.127)

whose critical point is

z� D �i
r

� q1

3p0
: (1.128)

The corresponding fake superpotential is

W D jzq1 C p0z2Nzjp�i.z � Nz/3 ; (1.129)

whose critical point is

z� D �i
r
q1

3p0
: (1.130)

This superpotential cannot be obtained from the central charge just by flipping
charges. Note also that when the supersymmetric critical point is well defined, the
non-BPS critical point is not well defined and vice-versa.

1.6 Duality

An important aspect of black hole solutions in supergravity is that the U-duality
transformations map solutions of the various equations of motion and Bianchi iden-
tities to new solutions of the equations of motion and Bianchi identities of another
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system with different charges, preserving the metric. This implies that the U-duality
groupU can be used to generate solutions with arbitrary charges starting from more
constrained configurations (see for instance [1, 28–30, 42, 60, 61, 71, 74]) by

�
p0
q0
�

D S

�
p

q

�
; (1.131)

where S 2 U � Sp.2nV C 2;R/. We have also seen that such a technique has been
used in order to provide a constructive mechanism to find the fake superpotential in
the case of coset scalar manifolds.

An obvious interesting question is: what is the minimum number of charges
that allows to generate arbitrary ones by a duality transformation? The black hole
solutions we considered so far are specified by the values of the charges .p; q/
and by the asymptotic value of the scalar fields zi!DC1. This gives a total of
2nV C 2 C 2nV parameters specifying the complete solutions. Note that while the
first set is enough for defining the various quantities at the horizon, the second set is
necessary for the full solution. Consider now the case where the scalar manifold is
given by a coset Msc D G=H . The asymptotic values of the scalar fields zi!DC1 are
parameters of the coset manifold and hence we can use the generators ofG=H to set
them to whatever value we want. The non-trivial parameters left are then 2nV C 2,
corresponding to the electric and magnetic charges of the theory. We are also free
to use duality transformations sitting in H , because they will not affect the value of
the scalar fields,2 but will rotate the charges. Some H -generators may also have a
trivial action on the charges, but all the others can be used to remove parameters of
the solutions, which could be generated by the action of the duality group, instead.

An explicit example of this procedure can be outlined for the STU model.
A generic black hole in this model has 14 parameters: 8 charges and 6 real scalar
fields. The duality group is determined by the scalar manifold to be G D SU(1,1)3,
with H D U(1)3. As expected, the dimension of the coset coincides with the number
of scalar fields and therefore the minimum number of parameters can be obtained
by subtracting the dimension of H to the total number of charges

#charges � #.H/ D 8 � 3 D 5: (1.132)

A slightly more complicated example is given by N D 8 supergravity. This
theory has 56 charges and 70 scalar fields for a total of 126 parameters for the
generic black hole configuration. The scalar manifold is E7.7/=SU(8), and the
dimensions of the two groups are #[E7.7/] D 133 and #[SU(8)] D 63. Surprisingly,
if we straightforwardly apply the previous relation and subtract the number of
H -generators to the number of allowed charges we would get a negative number.

2To be more precise: the scalar manifold can be parameterized by (right-invariant) coset repre-
sentatives L, from which one can construct the scalar matrix M D LTL that enters in the scalar
kinetic term. M is invariant under H -transformations.
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However, the resolution of this little puzzle is rather simple if one analyzes more
carefully the action of the H -group on the same charges. In fact there is an
SU.2/4 � H that leaves the charges invariant and therefore the total number
of duality parameters we can use to reduce the number of independent charges
is #.H/ � #[SU(2)4] D 51. This means that we are once more left with just five
independent parameters to construct the seed solution that can be used to generate
the most general one by duality. This is not surprising after all, because the STU
model analyzed previously is a special truncation of the N D 8 model. It should
also be noted that, although we fixed the scalars in order to determine the number of
independent parameters, the seed solution could also be constructed by choosing any
other five parameters among the charges and asymptotic scalars, with the obvious
constraint that the invariant charge combination defining the entropy at the horizon
should be non-vanishing (for large black holes).

Another important issue we will not analyze here in detail is the definition of
the duality orbits [1, 8, 42]. Since duality transformations can map black holes
with different charges among themselves, it is useful to understand how many
different orbits one has with respect to this action. A full classification requires
the construction of an appropriate number of independent invariant quantities. For
instance in N D 8 supergravity different orbits are classified by the quartic invariant
I4.p; q/. Whenever I4 > 0 one has supersymmetric black holes. For I4 < 0 one has
non-BPS configurations and, finally, when I4 D 0, the horizon area vanishes and
hence one has small black holes. N D 2 duality orbits were classified in [26].

1.7 Multicentre Solutions

So far we concentrated our discussion on single centre black hole configurations.
However, a great deal of progress in our recent understanding of black hole physics
within the context of String Theory came from multicentre solutions. In this
final section we will review such solutions with a special emphasis on the non-
supersymmetric ones.

Once more, we would like to make contact with what has been discussed so far
in the context of single centre configurations and therefore we will focus on N D 2

theories in 4 dimensions. In order to have an explicit relation with String Theory
it is actually very useful to see also how such configurations can be constructed in
10/11 dimensions within type II or M-theory models. We chose to concentrate on
M-theory compactifications on the product of a Calabi–Yau manifold and a circle:
CY � S1. This kind of compactification leads to an N D 2 theory in 4 dimensions
and it is also useful for to establish an explicit relation between quantities in 4 and
5 dimensions. We will further specify the Calabi–Yau to be a simple orbifold

CY6 D T 6

Z2 � Z2
' .T 2/3; (1.133)
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because this gives a reduced setup where the scalar manifold is described by the
STU model. In this scenario the eight charges of the STU model correspond to
different branes wrapped on the various cycles of the internal manifold. Obviously,
by replacing the internal manifold with a more general Calabi–Yau, we can get more
general cubic Special–Kähler geometries, as discussed in Sect. 1.4.2. If we call t and
x the coordinates of 4-dimensional spacetime,  the coordinate of the circle and ya

the coordinates of the six-torus, with the two Z2 orbifold actions inverting the sign
of the first four and last four coordinates respectively, the charge configuration can
be summarized by the following table:

Dimensions wrapped by the various M-branes and D-branes with the corresponding 4-dimensional
charges

M-theory t x1 x2 x3  y1 y2 y3 y4 y5 y6 IIA Charge

KK6 � � � � � � � � D6 p0

M5 � � � � � � D4 p1

M50 � � � � � � D40 p2

M500 � � � � � � D400 p3

M2 � � � D2 q1
M20 � � � D20 q2
M200 � � � D200 q3
KK0 � � D0 q0

where the line denotes the extension of the brane along that direction. From the
M-theory point of view we have six real charges (pi and qi ) and two geomet-
ric charges (p0 and q0). The first one arises from Kaluza–Klein monopoles in
M-theory, and can be seen as an additional brane charge in 10 dimensions
(a D6-brane charge), while q0 arises as the charge related to the 4-dimensional vector
arising from the 5-dimensional component of the metric describing the fibration of
 on x and corresponds to a Kaluza–Klein particle (with a nontrivial momentum
along  ).

It is actually better to describe the reduction process to 4 dimensions in two
steps. First of all we consider the reduction to 5 dimensions along the .T 2/3 and
then discuss further reductions to 4 dimensions. From the M-theory point of view
a stationary metric ansatz that takes into account the backreaction of the above
configuration of branes on the geometry is

ds211 D �Z�2 .dt C !/2 CZ ds24.x/C
X
I

Z

ZI
ds2

T 2
: (1.134)

Here ds24 is a Ricci-flat 4-dimensional euclidean space, which can be chosen to
be R

4, the Gibbons–Hawking space, the Euclidean Schwarzschild metric or others
according to the type of solution we want to describe. The rest of the ansatz is chosen
so that the total volume of the internal manifold remains fixed, which implies that
no hypermultiplets will be turned on in the lower-dimensional effective theory. The
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warp factors also depend only on the coordinate of the 4-dimensional euclidean
space and

Z D .Z1Z2Z3/
1=3 : (1.135)

Finally, the M-theory ansatz is completed by the three-form potential, which we
take as

C3 D
X
I

��dt C !

ZI
C aI

�
^ dTI ; (1.136)

where dTI is the volume element of the I -th torus. This gives the so-called floating
brane ansatz. The name follows from the fact that any probe M2 brane wrapping one
of the two-tori feels no force thanks to the cancellations between the contributions
coming from the Dirac–Born–Infeld action and the Wess–Zumino terms due to the
same dependence of the metric and C3 on the warp factors ZI .

By using this ansatz, the Bianchi identities and equations of motion of the
11-dimensional theory reduce to almost linear equations depending only on the
coordinates of ds24.x/ [12]:

daI D ?4daI ; (1.137)

d ?4 dZI D j�IJK j
2

daJ ^ ?4dak; (1.138)

d! C ?4d! D ZIdaI : (1.139)

As discussed above, in the end we would like to describe black hole geometries
in 4 dimensions. This means that we need to choose the metric of ds24 as a Ricci-flat
circle fibration on a 3-dimensional base, so that we can reduce the model along the
circle direction and go back to the STU model. The first choice we will consider is
that of a Gibbons–Hawking space. This is a 4-dimensional euclidean space endowed
with a metric

ds24 D 1

V
.d C A/2 C Vdx23; (1.140)

where

? dA D ˙dV: (1.141)

We assume that  is a U(1) isometry and hence V depends only on the coordinates
of the 3-dimensional flat base dx23 D dx21 C dx22 C dx23 . By consistency, V is a
harmonic function which generates the NUT charge corresponding to the presence
of a D6 brane in 10 dimensions:

V D h0 C p0

r
: (1.142)

The overall geometry of this space is that of a cigar (Look at Fig. 1.8). At the tip
(r ! 0) one has the NUT charge p0 and spacetime looks 5-dimensional. At large
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Fig. 1.8 BH’s in a GH
geometry

values of r , the Gibbons–Hawking space becomes the direct product of R3 with a
circle of radius

RTN D 1p
h0
: (1.143)

The choice of sign in (1.141) is equivalent to a choice of orientation on the space
and has a dramatic effect on the reduction of the equations of motion (1.137)–
(1.139). Depending on the sign one gets two different sets of equations which
correspond to supersymmetric and non-supersymmetric configurations [14, 56].
In detail, the plus sign gives BPS configurations, whereas the minus sign breaks
supersymmetry. The supersymmetry breaking is obviously mild and is essentially
just a reaction to the change in the global conditions (the orientation of the space).
For this reason these conditions have been named almost BPS [56].

The knowledge of the map between the quantities entering in the definition of the
11-dimensional ansatz and the fields defining the 4-dimensional STU supergravity
model allows the use of the 4-dimensional duality group to generate new solutions
starting from known ones. The full map is given in [32]. However, we show here how
the reduction along the  circle allows the definition of new quantities in terms of
which one defines the physical scalars in 4 dimensions. Now quantities with a vector
have legs only along dx23. The one-forms appearing in the metric and M-theory
potential now split as

aI D CI .d � A0/C AI ; (1.144)

! D �.d � A0/C !; (1.145)

so that the scalar fields of the STU model are parameterized by

zI D CI � i X
I

�2
; (1.146)
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where XI D Z=ZI is the volumes of the I-th torus and � is a factor that depends
on the fibration. For the Gibbons–Hawking reduction [32]

�4 D Z2=3V

VZ3 � V 2�2
: (1.147)

As explained in Sect. 1.4.1, each coordinate spans a SU(1,1)/U(1) factor and the
U-duality group is [SU(1,1)]3. The action of the duality group on the scalar fields
can be represented as a fractional linear transformation

zi ! ai zi C bi

ci zi C di
; (1.148)

where the parameters are part of an SU(1,1) valued matrix:

Mi D
�
ai bi
ci di

�
2 SU.1; 1/i : (1.149)

We stress that each of these transformations acts also on the charges, but leaves
the 4-dimensional metric invariant. On the other hand, such transformations do
not leave the 5-dimensional or 11-dimensional metric invariant and this may have
profound consequences on the form of the solution as seen from M-theory. Although
some of the 4-dimensional duality transformations have an obvious 11-dimensional
interpretations, other become rather non-trivial and involved in the uplifting process.
For instance, the combination of 2 T-duality transformations on the I-th torus gives
a matrix transformation of the form

MI D
�
0 �1
1 0

�
(1.150)

on the corresponding scalar. It is interesting to note that from the 4-dimensional
point of view this is an S-duality transformation z ! �1=z. Gauge shift symmetries
of C3 along the tori also have a straightforward representation:

MI D
�
1 �I
0 1

�
: (1.151)

On the other hand, the action of

MI D
�
1 0

�i 1

�
(1.152)

has the interpretation of a spectral flow transformation and only the rewriting
in terms of 4-dimensional duality transformations allowed us to identify such a
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transformation with the combination of 6 T-dualities, a gauge transformation and 6
inverse T-dualities. The same duality transformations act also on the charge vectors
as described in [6, 32].

1.7.1 BPS Case

The 4-dimensional black hole solution is generically described by the warp factorU ,
by the scalar fields zi and by the time components of the electric and magnetic vector
fields fA;Ag, whose duals we replaced with the charges in previous examples.
In the multi-centre case, the solutions will not be static anymore and therefore one
also needs the one-form !. Using the setup considered in this section, the electric
vector fields follow from the reduction as A � ˚

A0;AI
�
.

In the case of the choice of positive orientation on the Gibbons–Hawking metric,
the solution is supersymmetric. The full solution was first found in [34] and it can
be completely expressed in terms of eight harmonic functions

?3dA D dH; (1.153)

?3dA D dH; (1.154)

with

H D hC
X
i

Qi

jx � xi j ; (1.155)

where Qi represent the appropriate electric qi or magnetic charge pi . Also the
non-static part of the metric is given in terms of the same harmonic functions

? d! D hdH;H i (1.156)

and its existence is related to the intrinsic angular momentum due to the electric-
magnetic field generated by the static charges.

Consistency also implies that the positions of the charges is constrained by the
equations X

j

hQi;Qj i
jxi � xj j D 2Im .e�i˛Z.qi //1; (1.157)

whose zeros give the positions in moduli space related to marginal stability of the
solution (some of the distances blow up and therefore components are not bound
anymore).

The application of duality transformations to this solution simply rotates the
harmonic functions among themselves [32]. This means that for a supersymmetric
solution the 11-dimensional metric and three-form potential are always described by
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an ansatz like the one we presented above, though the details in terms of the charges
depend on the choices of the harmonic functions.

1.7.2 Non-BPS Case

The non-supersymmetric case is more interesting (at least for what concerns the
construction of solutions). In this case not all possible solutions will fall in the
ansatz above. Actually many interesting new solutions that are candidate microstate
geometries for black holes can be obtained by different bubbling equations. These
depend on the form of our choice of ds24 and consequently on the choice of the
three-form potential and warp factors. Starting from the Gibbons–Hawking space
(Almost BPSsolutions), the bubbling equations become

dAI D CIdV � VdC I ; (1.158)

d ?3 dZI D j�IJK j
2

Vd ?3 d.C
JCK/; (1.159)

?3d! D d.�V / � VZIdC
I : (1.160)

In opposition to what happened in the case of supersymmetric solutions one cannot
generally solve these equations only in terms of harmonic functions. If one insists
in doing so, then only mutually local solutions exist and the positions of the various
centers are not constrained [49, 55]. However one can find more general solutions
with mutually non-local charges and constrained positions.3

Before moving to the multi-centre case, we can see that from the above ansatz
one can easily recover the single centre seed solution with D2 and D6 charges and
a non-trivial axion [14, 54, 66] (this is a total of four charges and one non-trivial
asymptotic value for the scalar fields). This corresponds to setting CI D 0. The
bubbling equations imply that now V and ZI are harmonic functions and � D b

V
,

where b is the asymptotic value of the axions. The warp factor of the black hole
metric follows as

e�4U D 4VZ1Z2Z3 � b2: (1.161)

3The apparent discrepancy between the results in [49, 55] on the one hand and [14] on the other
is due to the different implementation of the regularity requirements. In order to have regular
horizons, the warp factor should not grow too fast when approaching the horizon. If this behaviour
is constrained by considering the asymptotic charges, the only possible regular solutions are all
marginally stable and the solution is given entirely in terms of harmonic functions. On the other
hand this global requirement is not necessary and application of this condition centre by centre
allows for regular bound states as in [14].
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For a multicentre solution we can start by requiringCI to be harmonic functions.
This, in turn, implies that the ZI are not harmonic anymore. The full solution is
rather complicated and can be found in [14]. We stress that regularity of the solution
in this case implies the existence of non-trivial constraints already for two centres.
This is actually an equation for the distance between the centres that is given in
terms of charges and asymptotic values of the scalar fields.

The existence of a constraint on the distances implies that such solutions describe
bound states of black holes. It is obviously of much interest to understand the general
conditions under which such bound states exist depending on the charges and the
point in moduli space, like in the BPS case, where such an analysis culminated in
the wall crossing formulae (See for instance the lectures at [35, 70]). A first attempt
at an analysis in this direction is presented in [44, 45], but only in special models
and for two-centre solutions.

Once more the solution obtained in [14] can be used as a seed to obtain more
general ones by using duality transformations. However, in this instance, the action
of the duality group changes the 5-dimensional metric [32]. We show here a
simple example. Choose C1 DC2 D 0 and C3 ¤ 0, which means only one non-
trivial D4-charge. By inspection of the bubbling equations we now see that the
11-dimensional warp factors ZI are harmonic and only � cannot be given in a
closed form in terms of harmonic functions, because of its equation, which is

d ? d.V�/ D d.VZ3/ ^ ?dC 3: (1.162)

Performing 6 T-dualities, following the approach described in the previous section,
the new 5-dimensional metric contains a new spatial part, which describes now an
Israel–Wilson space, rather than a Gibbons–Hawking. The dual metric is

ds24 D .V1V2/
�1.d � A/2 C V1V2 dx23; (1.163)

where V1 D C3, V2 D Z3 and ?dA D V2 dV1 � V1 dV2. It is obvious that this will
never be of the Gibbons–Hawking form.

The fact that the floating brane ansatz encompasses all BPS solutions, whereas
it does not contain all non-BPS solutions, implies that the non-supersymmetric
configurations are far more richer than the supersymmetric ones. Unfortunately,
this also means that the attempts at constructing a general solution, valid in any
frame, as was done for the BPS multicentre black holes in [34], have to face harder
challenges. Some progress in a 4-dimensional setup was made in [50]. Moreover,
having more centres means that duality orbits are classified by a larger number of
invariants [45] and the non-BPS ones of [14] are the seed solutions only for one of
the orbits in [45].

Similar techniques can be used to generate more general new classes of non-BPS
solutions, however it is very difficult to find a sufficiently general explicit solution
that fulfills the constraint on the positions. The best obtained so far was a line of
rotating black holes [15].
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Before wrapping up, let us also mention that such bubbling equations are also
very useful to obtain other general solutions whenever ds24 has a more general form.
In particular one can obtain new 5-dimensional smooth solutions with the same
charges of 4-dimensional black holes and hence interpret these states as candidate
microstate geometries [16–18].

Also, the reduction to 4-dimensions of these stationary solutions allows also for
rotating configurations in 4-dimensions as well. In fact, by this mechanism we could
find the most general seed solution for slowly rotating black holes (a ! 0;m ! 0,
J D a=m fixed) [14]. The overrotating counterpart (a D m ¤ 0) is still missing
because of the different structure of the ansatz.

As a final note we would like to note that the idea of reducing extremal black hole
equations to a first-order formalism [23] has revised the search for exact solutions
also in other instances where some of the conditions assumed in [23] are relaxed.
Recently we have seen this formalism applied to supersymmetric black holes in U(1)
gauged supergravity [31] (solutions in this context were also obtained in [9,21,59]),
to rotating extremal solutions [50] and even to classes of non-extremal black holes
[4, 51, 72].
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