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Preface

This book is based upon lectures held from 29 June to 3 July 2009 at the
INFN-Laboratori Nazionali di Frascati School on Attractor Mechanism, directed
by Stefano Bellucci, with the participation of prestigious lecturers, including
M. Cvetic, G. DallAgata, S. Ferrara, J.F. Morales, G. Moore, A. Sen, J. Simon,
and M. Trigiante, as well as invited scientists of the caliber of M. Bianchi, C. Nappi,
A. Sagnotti, and E. Witten. All lectures were given at a pedagogical, introductory
level, a feature which reflects itself in the specific “flavor” of this volume, which
also benefited much from extensive discussions and related reworking of the various
contributions.

This is the fifth volume in a series of books on the general topics of
supersymmetry, supergravity, black holes, and the attractor mechanism. Indeed,
based on previous meetings, four volumes were already published:
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(Springer, Berlin Heidelberg) Lecture Notes in Physics Vol. 698.

Bellucci S., S. Ferrara, A. Marrani. (2006). Supersymmetric Mechanics – Vol. 2:
The Attractor Mechanism and Space Time Singularities. (vol. 701, pp. 1–242).
ISBN: 978-3-540-34156-7. (Springer, Berlin Heidelberg) Lecture Notes in Physics
Vol. 701.

Bellucci S. (2008). Supersymmetric Mechanics – Vol. 3: Attractors and Black
Holes in Supersymmetric Gravity. (vol. 755, pp. 1–373). ISBN: 978-3-540-79522-3.
(Springer, Berlin Heidelberg) Lecture Notes in Physics Vol. 755.

Bellucci S. (2010). The Attractor Mechanism. Proceedings of the INFN-Laboratori
Nazionali di Frascati School 2007. ISSN 0930-8989, ISBN 978-3-642-10735-1,
e-ISBN 978-3-642-10736-8. DOI 10.1007/978-3-642-10736-8. (Springer
Heidelberg Dordrecht London New York) Proceedings in Physics Vol. 134.
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I wish to thank all lecturers, invited scientists, and participants at the School
for contributing to the success of the School, which prompted the realization of
this volume. I wish to thank especially Mario Calvetti for giving vital support
to the School and for personal trust and enduring encouragement. Lastly, but
most importantly, my gratitude goes to my wife Gloria and our beloved daughters
Costanza, Eleonora, Annalisa, Erica, and Maristella for love and inspiration, in want
of which I would have never had the strength to complete this book.
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Chapter 1
Black Holes in Supergravity: Flow Equations
and Duality

Gianguido Dall’Agata

1.1 Introduction

The analysis of black hole solutions and the study of their physics is an active and
important branch of contemporary theoretical physics. In fact, not only black holes
are an excellent theoretical laboratory for understanding some features of quantum
gravity, but they can also be successfully used as a tool in applications to nuclear
physics, condensed matter, algebraic geometry and atomic physics. For this reason,
black holes are considered the “Hydrogen atom” of quantum gravity [67] or the
“harmonic oscillator of the 21st century” [77].

The existence of black holes seems to be an unavoidable consequence of General
Relativity (GR) and of its extensions (like supergravity). Classically, the horizon
of black holes protects the physics in the outer region from what happens in the
vicinity of singular field configurations that can arise in GR from smooth initial
data. However, already at the semiclassical level, black holes emit particles with
a thermal spectrum [7, 58]. A thermodynamic behaviour can also be associated to
black holes from the laws governing their mechanics [79] and, in particular, one can
associate to a black hole an entropy S proportional to the area A of its event horizon
(measured in Planck units l2P D G„=c3)

S D kB

l2P

A

4
: (1.1)

In most physical systems the thermodynamic entropy has a statistical interpre-
tation in terms of counting microscopic configurations with the same macroscopic
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2 G. Dall’Agata

properties, and in most cases this counting requires an understanding of the quantum
degrees of freedom of the system. The identification of the degrees of freedom
that the Bekenstein–Hawking entropy is counting is a long-standing puzzle that
motivated much theoretical work of the last few years. String Theory, being a
theory of quantum gravity, should be able to provide a microscopic description
of black holes and hence justify Bekenstein–Hawking’s formula. By now we have
strong indications and many different and compelling examples where String
Theory successfully accomplishes this goal, although often simplifying assumptions
are made so that the configurations which are considered are not very realistic.
In particular, black holes are non-perturbative objects and only for special classes of
solutions (mainly supersymmetric) string theory at weak coupling can reproduce
the correct answer1 [33, 73, 78]. However, there is now a growing evidence
that also for non-zero coupling we can identify candidate microstate geometries,
whose quantization may eventually yield an entropy that has the same parametric
dependence on the charges as that of supersymmetric black holes [5, 13, 65, 68].

In the last few years a lot of progress has been made in understanding the physics
of extremal non-supersymmetric solutions and of their candidate microstates.
The aim of these lectures is to provide an elementary and self-contained introduction
to supergravity black holes, describing in detail the techniques that allow to
construct full extremal solutions and to discuss their physical properties. We will
especially focus on the peculiar role of scalar fields in supergravity models and
on the flow equations driving them to the attractor point provided by the black
hole horizon. We will also discuss the multicentre solutions and the role of duality
transformations in establishing the classes of independent solutions.

1.2 Black Holes and Extremality

In this section we will review some general properties of black holes and discuss the
concept of extremality, both in the context of geometrical and of thermodynamical
properties of the solutions.

We will be interested in charged black hole configurations, so our starting point
is the Einstein–Maxwell action in 4 dimensions, with Lagrangian density given by

e�1L D R � 1

4
F��F

��: (1.2)

For the sake of simplicity we will look for static, spherically symmetric and charged
solutions. This means that the line element describing the metric should be of
the form

1Recently there has been also a lot of progress in understanding the nature of the entropy for Kerr
black holes and close to extremal examples of this sort can be realized in nature [20].
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ds2 D �e2U.r/dt2 C e�2U.r/dr2 C r2d˝2; (1.3)

where d˝2 D d�2 C sin2 � d�2 is the line element of a two-sphere and U is the
warp factor, which depends only on the radial variable in order to respect spherical
symmetry. For the same reason, the two-form associated to the Maxwell field F��
should be of the form

F D P sin � d� ^ d� CQdt ^ dr

r2
; (1.4)

so that, by integrating over a sphere, one gets the electric and magnetic charge of
the configuration:

1

4�

Z
S2
F D P ;

1

4�

Z
S2
?F D Q: (1.5)

By solving the equations of motion derived from (1.2) we obtain the following
expression for the warp factor

e2U.r/ D 1 � 2M

r
C P2 CQ2

r2
; (1.6)

which is the appropriate one for a Reissner–Nordström black hole and reduces to
the one by Schwarzschild for P D Q D 0.

The solution above contains a singularity at r D 0, as one can see by computing
the quadratic scalar constructed in terms of the Ricci tensor

R��R
�� D 4

.Q2 C P2/2

r8
r!0�! 1 (1.7)

(For the special case P D Q D 0 we can still find a singularity in R����R���� D
48M

2

r6
). However, the singularity is hidden by the horizons appearing at the zeros of

the warp-factor function

e2U D 0 , r˙ D M ˙
p
M2 � .P 2 CQ2/: (1.8)

The two solutions are real as long asM2 � P2CQ2, while the singularity becomes
naked for smaller values of the mass. This means that, for fixed charges, there is a
minimum value of the mass for which the singularity is screened by the horizons.
At such value the warp factor has a double zero, the two horizons coincide and the
semi-positive definite parameter

c D rC � r� D
p
M2 � .P 2 CQ2/ ; (1.9)

which we introduce for convenience, is vanishing. The corresponding black hole
configuration is called extremal (c D 0 or M D p

P2 CQ2). Note that in the
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Fig. 1.1 Minkowski and Schwarzschild spacetimes in Rindler coordinates. The first diagram
approximates the second close to the horizon

uncharged limit c D M , which is the extremality parameter for the Schwarzschild
solution. This means that extremal Schwarzschild black holes are necessarily small,
i.e. with vanishing horizon area at tree level.

Although the singularity is timelike (for charged solutions) and hence one can
interpret it as the presence of a source, the existence of the horizons guarantees that
the physics outside the horizon is not influenced by what happens inside, where one
meets the singularity. This fact is easily seen by computing the time it takes for a
light ray traveling radially to reach the horizon from infinity, as measured by an
observer sitting far from the black hole. By taking ds D 0 for constant � and � one
gets that

p
gtt dt D p

grr dr; (1.10)

so that the time it takes for a light ray to travel radially between two points at distance
r1 and r2 from the singularity is proportional to the distance measured with a weight
given by the inverse of the warp factor

t12 D
Z r2

r1

r
grr

gt t
d Qr D

Z r2

r1

e�2U.Qr/d Qr: (1.11)

This expression goes to infinity when r1 ! rC and therefore a signal from the
horizon takes an infinite time to reach a far distant observer.

The physics close to the horizon can be better understood by considering the
expansion of the solution obtained above for r close to rC (Fig. 1.1). The only non-
trivial function in the metric is given by the warp factor, which approaches

e2U D .r � rC/.r � r�/
r2

r!rC�! rC � r�
r2C

�; (1.12)
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where we introduced a new coordinate � measuring the distance from the outer
horizon: � D r � rC. The resulting near horizon geometry is

ds2 ! �rC � r�
r2C

�dt2 C r2C
rC � r�

d�2

�
C r2C d˝2; (1.13)

which can be interpreted as the product of a 2-dimensional Rindler spacetime with
a two-sphere of radius rC. We can actually make this result explicit by performing
another change of coordinates .t; �/ 7! .	; 
/ as follows

� D e2˛
 ; t D 1

4˛2
	; ˛ D

p
rC � r�
2rC

: (1.14)

This leads to a near-horizon metric described by

ds2NH D e2˛

��d	2 C d
2

�C r2C d˝2: (1.15)

The geometry of the non-compact part is 2-dimensional Minkowski spacetime as
seen by an observer that is uniformly accelerated with acceleration ˛ D p

˛�˛�.
In fact the change of coordinates from the standard ones to Rindler’s is dictated by
the trajectory of an accelerated observer

x.x0/ D 1

˛

p
1C ˛2.x0/2 ; (1.16)

and 	 denotes the proper time

x0.	/ D 1

˛
sinh.˛	/: (1.17)

Our derivation explains this acceleration as the effect of gravitation and one can
actually show that ˛ coincides with the surface gravity of the black hole. In
fact surface gravity is given in terms of the derivative of the null Killing vector
generating the horizon surface, computed at the surface [79]

˛2 D
�
�1
2

r�
�r�
�
�
rDrC

(1.18)

and the two expressions coincide.

1.2.1 Thermodynamics

Hawking and Unruh showed that an accelerated observer following the trajectory
described in (1.16) sees a thermal spectrum with temperature proportional to the
acceleration:

T D ˛

2�
: (1.19)
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A simple heuristic argument to understand this result follows by considering the
near-horizon geometry rotated to Euclidean signature. This is the same procedure
that is used to describe quantum field theories with temperature. In fact, in quantum
mechanics, for a system with Hamiltonian H , the thermal partition function is

Z D Tr e�ˇH ; (1.20)

where ˇ is the inverse temperature and Z is related to the time evolution operator
e�i	H by a Euclidean analytic continuation. From the geometric point of view,
by defining Q	 D i	 and Q
 D e˛
=˛, the resulting euclidean geometry is

ds2 D d Q
2 C ˛2 Q
2 d Q	2; (1.21)

which has a conical singularity at the origin unless 	 � 	 C i ˇ, where

ˇ D 1

T
D 2�

˛
D 4�r2C
rC � r�

(1.22)

and this gives an expression of the temperature in terms of the geometric quantities
defining the black hole horizons.

Having now a thermodynamic system for which we defined the energy (given by
the mass of the black hole M ) and a temperature T , it is natural to define a
(Bekenstein–Hawking) entropy SBH , such that, for fixed charges, one fulfills the
thermodynamic relation

dSBH

dM
D 1

T
: (1.23)

In the case at hand, namely the Reissner–Nordström black hole, integration of the
previous equation leads to

SBH D � r2C D �
h
M C

p
M2 � .P 2 CQ2/

i2
: (1.24)

The dependence of the entropy on the mass and charge of the black hole is
summarized by the geometric quantity rC, the horizon radius, which can be
translated to the horizon area, leading to the famous relation

SBH D A

4
; (1.25)

which is also valid for other configurations at the two-derivatives level. This is a
remarkable relation between the thermodynamic properties of a black hole on the
one hand and its geometric properties on the other and it is a cornerstone for our
understanding of any theory of quantum gravity. In fact, if we believe that SBH
has the meaning of a real entropy, although such a quantity is usually defined in
terms of global properties of the system, it contains non trivial information about
the microscopic structure of the theory via Boltzmann’s relation

S D log˝; (1.26)
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where˝ is the total number of microstates of the system for a given energy and fixed
total charges. In detail, the entropy contains information about the total number of
microscopic degrees of freedom of the system and in our case a microscopic theory
of gravity should explain the black hole entropy in terms of the quantum numbers
defining the solution:

SBH D log˝.M;Q;P /: (1.27)

Explaining this formula is actually one of the biggest problems in theoretical
physics. Given (1.25) relating the entropy of a black hole to its horizon area, we
can actually see that the typical number of microstates forming a black hole is
humongous. For instance, the black hole at the centre of our galaxy (Sgr A�) is
estimated to have a radius of about rC � 7 � 109 km [52], leading to an estimate
of SBH � 10100, and this is just the logarithm of the number of states defining the
black hole! If, on the other hand, we think about a generic black hole solution in GR,
we know that the no-hair theorem tells us that a black hole is completely specified
by its mass and charges. This would mean that, for fixed mass and charges, there is
a unique classical state, leading to an expectation of S D 0.

It is actually interesting that the laws of black hole mechanics can be put in a one
to one relation with the laws of thermodynamics [79]:

• Zeroth law: the temperature of a black hole T D ˛=2� is uniform at the horizon;
• First law: for quasi static changes the energy (mass) of a black hole changes as

dM D TdS C  dQ C �dP C˝dJ � gij˙id�j ; (1.28)

where the entropy is identified with the area of the horizon as in (1.25), Q and
P are the electric and magnetic charges, J is the angular momentum,  , �
and ˝ are the associated chemical potentials (namely the electric and magnetic
potentials at the horizon and the angular velocity, assumed constant for stationary
solutions), �i the values of the scalar fields defining the solution and˙i the scalar
charges;

• Second law: the horizon area always increases in time �A � 0. A consequence
of this last law is that coalescence processes are possible, while generically no
splitting processes are allowed. For instance, two Schwarzschild black holes with
masses M1 and M2 can form a bigger black hole with mass M1 C M2 because
their horizon area is proportional to the square of the corresponding masses and
therefore .M1CM2/

2 � M2
1 CM2

2 . The inverse process is forbidden by the same
argument.

Coming back to our example, the Reissner–Nordström black hole, we can see that
the temperature T , the entropy SBH and the extremality parameter c are all defined
in terms of the characteristic geometric quantities of the solution, namely the radii
of the two horizons. This implies that, by comparing (1.24), (1.22) and (1.9), we can
express the extremality parameter in terms of the temperature and entropy as

T D ˛

2�
D c

2S
) c D 2 S T: (1.29)
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Recalling that an extremal configuration is such when the two horizons coincide,
i.e. c D 0, and that the entropy is non-vanishing whenever there is a non-trivial
horizon S D � r2C, we can see that extremality implies vanishing temperature:

Extremality , c D 2 ST D 0 ) T D 0: (1.30)

Extremal black holes are therefore thermodynamically stable. They do not radiate.
We will come back to an explanation of this fact momentarily.

The special properties of this kind of black holes is reflected also in the near
horizon metric, which now is not given by (1.15) anymore. Since the warp factor
has a double zero, its behaviour close to the horizon is approximated by a quadratic
function of � rather than linear as in (1.12)

e2U D .rC � r�/2

r2
! �2

r2C
: (1.31)

The near-horizon metric changes accordingly and, by introducing

z D �M
2

�
; (1.32)

we can see that it is given by the product of a 2-dimensional Anti-de Sitter spacetime
and a 2-dimensional sphere, both with radiusM D p

P2 CQ2:

ds2NH D M2

��dt2 C d z2

z2

�
CM2d˝2 : (1.33)

Remember that, using these coordinates, the horizon sits at z ! �1. It is
interesting to note that this geometry is conformally flat (extremal Reissner–
Nordström solutions are also supersymmetric).

Before proceeding to a more detailed analysis of the differences between
extremal and non-extremal black holes, let us pause for a second to make some
comments. From the above discussion we can see that black holes are rather
special thermodynamic systems, because they do not satisfy Nernst law, which
states that the entropy should vanish (or arrive at a “universal constant” value)
as the temperature approaches zero. The analog of this law fails in black hole
mechanics, because extremal black holes have vanishing temperature, but non-
vanishing entropy, S D �

p
P2 CQ2 in the previous example. However, there is

good reason to believe that “Nernst theorem” should not be viewed as a fundamental
law of thermodynamics but rather as a property of the density of states near the
ground state in the thermodynamic limit, which happens to be valid for commonly
studied materials. Indeed, examples can be given of ordinary quantum systems that
violate the Nernst form of the third law in a manner very similar to the violations of
the analog of this law that occur for black holes [80].
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Another interesting observation follows from rewriting the metric ansatz in an
isotropic form:

ds2 D �H�2.x/ dt2 CH2.x/dx23: (1.34)

Once the metric is written in this fashion, the equations of motion for the warp factor
can be expressed as

43H D 0 (1.35)

and therefore can be solved by generic harmonic functions, which may have more
than one centre:

H D 1C
X
i

mi

jx � xi j ; mi D
q
p2i C q2i ; (1.36)

where xi denotes the position of the i -th centre. This solution is allowed by the fact
that gravitational attraction equals electromagnetic repulsion for each centre and
hence leads to a condition of static neutral equilibrium. The additive nature of the
solution is related to the BPS nature of force-free objects.

Finally, the fact that the near-horizon geometry approaches the product of an
Anti-de Sitter spacetime and a sphere is actually a universal behaviour of extremal
p-branes in D dimensions, whose near horizon geometry is given by AdSpC2 �
SD�p�2. Black holes in four spacetime dimensions are a simple instance where
pD 0 andDD 4, but one could also think of different examples like black holes and
black strings (pD 0; 1) in DD 5, dyonic black strings (pD 1) in D D 6 and
D3-branes in IIB string theory (p D 3, D D 10).

1.2.2 Extremal Versus Non-extremal Solutions

We can now go back to the concept of extremality to discuss an important difference
between extremal and non-extremal black holes. A general ansatz for the metric that
satisfies the requirements of describing spherically symmetric, static, asymptotically
flat black holes and which encompasses both the extremal and non-extremal
solutions is the following:

ds2 D �e2U dt2 C e�2U
�

c4

sinh4.cz/
d z2 C c2

sinh2.cz/
d˝2

�
: (1.37)

The extremality parameter c was explicitly inserted and the extremal case is
recovered by sending c ! 0, so that the metric simplifies to

ds2cD0 D �e2U dt2 C e�2U
�
d z2

z4
C 1

z2
d˝2

�
; (1.38)

where one can rewrite the factor in brackets using isotropic coordinates as a
plain R

3:
ds2cD0 D �e2U dt2 C e�2U dx 2: (1.39)
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Fig. 1.2 Schematic
representation of
non-extremal and extremal
black hole throats using
proper-distance coordinates

By applying this ansatz to the Reissner–Nordström case analyzed before, it is easy
to realize that the horizon sits at z ! �1.

However, proper distance from the horizon has to be computed by using
appropriate coordinates. In the non-extremal case, assuming that the horizon area
is finite, one gets that the factor in front of the angular variables should remain finite
as z ! �1 (Fig. 1.2).

This means that

e�2U c2

sinh2.cz/

z!�1�! A

4�
D r2H ; (1.40)

where rH is the radius of the horizon. A proper radial coordinate ! can then be
introduced by considering the gzz component of the metric in the same limit:

e�2U c4

sinh4.cz/
d z2 �! A

4�
4c2e2czd z2 � r2Hd!

2: (1.41)

Distances should then be measured by ! D 2 ecz in units of rH and the black hole
horizon sits at !H D 0, at finite proper distance from an arbitrary observer

L D
Z !0

!H

rHd! D rH !0 < 1: (1.42)

On the other hand, having finite area in the extremal case means

e�2U

z2
�! A

4�
D r2H : (1.43)

This implies that a new proper radial coordinate can be introduced by identifying

e�2U d z2

z4
�! A

4�

d z2

z2
D r2H d!

2; (1.44)



1 Black Holes in Supergravity: Flow Equations and Duality 11

which means
! D � log.�z/: (1.45)

The horizon is now at !H D �1 at infinite proper distance from any observer

L D
Z !0

!H

rHd! D C1: (1.46)

As we will see in a moment, this difference has a crucial impact on the behaviour of
scalar fields in this scenario and implies the existence of an attractor mechanism for
extremal black hole configurations. Moreover, the fact that the horizon is at infinite
proper distance from any observer justifies also the fact that extremal black holes
are thermodynamically stable. Any radiation emitted by such black hole would be
infinitely red-shifted before reaching any observer outside the horizon.

1.3 Attractors

1.3.1 Black Holes and Scalar Fields

When dealing with supergravity theories, as with many other effective theories
of fundamental interactions, gravity needs to be coupled to scalar fields, possibly
parameterizing a scalar �-model and affecting also the couplings of the vector
fields (which we consider abelian for the sake of simplicity). A generic Lagrangian
describing the bosonic degrees of freedom of such theories will have the form

e�1L D R�1
2
gij .�/ @��

i@��jC1

4
I˙.�/F

��F
˙ ��C1

4
R˙.�/

�����

2
p�gF


��F

˙
�� ;

(1.47)
where gij .�/ is the metric of the scalar �-model, I is definite negative and describes
the gauge kinetic couplings, R is the generalization of the �-angle terms in the
presence of many scalar and vector fields and we assume that there is no scalar
potential for the time being. We are still interested in finding single centre, static,
spherically symmetric, charged and asymptotically flat black hole solutions and
therefore we keep the metric ansatz (1.37) and the request that the integral of the
vector field strengths and their duals on a sphere at infinity gives the electric and
magnetic charges of the solution:

1

4�

Z
S2
F  D p ;

1

4�

Z
S2
G D q: (1.48)

Now, however, we need to introduce a new definition of the dual field strengths
G, because the values of the gauge couplings and the charges will be affected by
the values of the scalar fields appearing in the functions R and I.
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In the setup considered in the previous section, the magnetic and electric charges
are associated to the two-forms appearing in the Bianchi identities and in the
equations of motion of the electromagnetic theory, respectively. These two-forms
are also related between them by the known electromagnetic duality F $ ?F .
In a general setup, like the one considered here, electric–magnetic duality can be
extended to a new group of duality transformations that leaves invariant Bianchi
identities and equations of motion [48]. If we focus on the part of the Lagrangian
involving the gauge field-strengths

SEM D
Z �I˙F  ^ ?F ˙ � R˙F

 ^ F˙
	
; (1.49)

we can deduce that the Bianchi identities and equations of motion form a set, from
which we can define the dual field strengths G:

(
dF D 0 ;

dG D d
�R˙F

˙ � I˙ ? F˙
� D 0 :

(1.50)

It is obvious, that for any constant matrix S we can rotate the original field strengths
F and the dual ones G between them, leaving the full set of Bianchi identities
and equations of motion invariant:

 
F

G

!
!
 
F 0

G0

!
D S

 
F

G

!
: (1.51)

However, the requirement that also the definition of the dual field-strengths G �
� ıL
ıF

remains invariant constrains the duality transformation to be part of the
symplectic group S 2 Sp(2nV ;R), where nV is the total number of abelian vector
fields in the theory and the symmetry transformations are continuous at the classical
level. Moreover additional matter couplings, like the ones considered in (1.47),
may reduce it to G � Sp(2nV ;R). G is called the U-duality group of the theory.
An important result of [48] is that the stress energy tensor and hence the Einstein
equations of motion following from rather general interactions between the various
fields are invariant under such transformations. This means that by using the duality
group we can map solutions of the Bianchi identities and of the equations of motion
to new solutions of the same set of equations, leaving the metric untouched. In
particular, we can map charged black hole solutions with different charges and scalar
fields between them without changing the metric and hence a crucial property like
the area of the horizon.

Before proceeding, let us note that by performing such duality transformations
the Lagrangian does not necessarily remain invariant. U-duality transformations
are symmetry transformations by which the equations of motion and the Bianchi
identities are mixed among themselves linearly and this may require changes in the
Lagrangian originating them.
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Since .F ;G/ form a symplectic vector of closed two-forms, we could
introduce explicitly the corresponding potentials .A�;A�/, though obviously not
both at the same time. Given the request (1.48), the vector potentials should have
a restricted form such that the integrals provide the correct electric and magnetic
charges. In particular, solving dF D 0 and respecting the request of finding
solutions with spherical symmetry, we can introduce

A D �.r/dt � p cos � d�; (1.52)

where � are the electric potentials, so that F D dA. In the same fashion we can
also introduce the dual potentials

A D  .r/dt � q cos � d�; (1.53)

where   are the magnetic potentials, so that G DdA. In the original action
(1.47) only the first appears. Actually, we can see that � appears in the action only
under derivatives and therefore we can integrate it out. In fact, from the � equations
of motion one gets

�
0 D e2U I�1˙ �q˙ � R˙� p

�
�
; (1.54)

which is also the correct relation needed to fulfill the duality relation by which the
definition of G follows from the one of F.

A simple strategy to find black hole solutions in this framework is to use the
fact that the problem is spherically symmetric, so that all relevant quantities depend
only on the radial variable, �i D �i .r/, U D U.r/, etc., and reduce the system to 1
dimension. By using (1.54) and by integrating out formally � , � and t one gets the
effective 1-dimensional action

L1d D .U 0/2 C 1

2
gij �

i 0�j 0 C e2U VBH � c2; (1.55)

where

VBH D �1
2
QTMQ; (1.56)

with

M D
�
I CRI�1R �RI�1

�I�1R I�1
�

(1.57)

and

Q D
 
p

q

!
: (1.58)

The kinetic term for the warp factor and the overall constant c2 come from the
reduction of the Einstein kinetic term. The black hole potential VBH comes from the
reduction of the kinetic term and �-angle terms of the vector fields, after dualization
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of the electric potential using (1.54). The resulting problem is a 1-dimensional
mechanical system of n C 1 scalars in the presence of a potential VBH depending
on a number of parameters equal to the total number of non-vanishing electric and
magnetic charges.

Since we have made an ansatz on the metric, we should take into account the
possibility that the equations of motion of this reduced system do not solve also
the equations of motion of the original one, because we are essentially looking at
constrained variations of the original system. This is actually the case and it means
that in order to obtain solutions from the equations of motion coming from this
Lagrangian that are equivalent to the original ones, we need to supplement the
1-dimensional Lagrangian (1.55) with the constraint

.U 0/2 C 1

2
gij �

i 0�j 0 D e2U VBH C c2: (1.59)

For completeness, we provide here the equations of motion:

U 00 D e2U VBH ; (1.60)

�i 00 C �jk
i�j 0�k 0 D e2U gij @j VBH : (1.61)

1.3.2 General Features of the Attractor Mechanism

We have seen that black holes in generic supergravity theories will depend on scalar
fields. However, extremal black holes have the special property that the horizon
quantities loose all the information about them. This is true independently of the
fact that the solution preserves any supersymmetry or not. The horizon is in fact an
attractor point [37, 38, 40, 76]: scalar fields, independently of their value at spatial
infinity, flow to a fixed point given in terms of the charges of the solution at the
horizon. Recalling that the entropy of black holes is given by the area of the horizon,
this attractive behaviour for the scalar fields implies that for extremal black holes the
entropy is a topological quantity, given in terms of quantized charges and therefore
it does not depend on continuous parameters, which is a very appealing feature
in order to have the chance to provide a microscopic explanation for the resulting
number.

The main reason at the base of the attractor mechanism is the fact that for
extremal black holes the horizon is at an infinite proper distance from any observer
[41]. This means that while moving along the infinite throat leading to the horizon,
scalar fields lose memory of the initial conditions. This is an obvious outcome of
the request of having regular solutions. In fact, regularity of the scalar fields at the
horizon implies that their derivative should vanish while approaching the horizon

�i 0 z!�1�! 0: (1.62)
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Fig. 1.3 Generic behaviour of a scalar field in the case of an extremal black hole (left) and of a
non-extremal one (right). In the first case the scalar field � runs towards the same value at the
horizon ��, no matter what was its value at infinity. In the second case the scalar stops at different
points in moduli space depending on its asymptotic value

On the other hand non-extremal black holes have !H D 0 and hence scalar fields
do not have time to blow up even for a non-trivial, but finite, first derivative along
the radial direction.

Extremal black holes are therefore described by trajectories in the moduli space
with a fixed point reached when the proper radial parameter ! ! �1. The fixed
point is an attractor of the system (Fig. 1.3). Since infinitely far away from the
black hole (! ! C1) the geometry approaches that of 4-dimensional Minkowski
spacetime and at the horizon (! ! �1) it approaches the product AdS2 � S2, we
can see that extremal black holes can also be thought of as solitons interpolating
between two different vacua of the theory. We will come back to this picture later
on to justify the description of such solutions in terms of first-order differential
equations.

From the equations of motion of the scalar fields (1.61), fixed scalars at the
horizon imply that the moduli reached a critical point of the black hole potential:

@iVBH .�
i�; q; p/ D 0: (1.63)

This is actually an intrinsic characterization of the horizon for extremal black holes.
Extremization of the scalar potential, means that the scalar fields at the horizon
take the value �i� such that the minimization condition (1.63) is satisfied. Since the
only parameters appearing in the minimization condition are the black hole charges,
the resulting attractor values of the moduli fields are also going to be given in terms
of the same charges

�i� D �i�.q; p/: (1.64)

In turn, this implies that at the horizon the value of the scalar potential does not
depend anymore on the values of the scalars at infinity, but only on the charges:

V �
BH D VBH .�

i�.q; p/; q; p/: (1.65)
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Fig. 1.4 Examples of black
hole potentials for various
values of the quartic
invariants

At this point we can also solve the equation for the warp factor (1.60) close to the
attractor point, which gives that

U ! � log

�q
V �
BH z

�
: (1.66)

This implies that the metric approaches that of AdS2 � S2 as expected, with a
characteristic horizon radius given by rH D p

V �
BH . This in turn implies that the

entropy of extremal black holes can be expressed in terms of the value of the black
hole potential at the critical point:

SBH D A

4
D � V �

BH .q; p/: (1.67)

Since the black hole potential depends only on the quantized charges, because of
the attractor mechanism, also the entropy of extremal black holes will depend on
the same quantized parameters and all the possible dependence on the value of the
moduli fields (which still characterize the full solution) is lost.

The contrast becomes even more clear if we compare (1.67) with the correspond-
ing expression for non-extremal solutions, where the area formula is valid for a
radius of the horizon sitting at the larger value between

r˙ D M ˙
r
M2 � VBH .�1; p; q/C 1

2
gij .�1/˙i˙j : (1.68)

Not only this expression depends on the value of the scalar fields at infinity, but also
on the scalar charges, which vanish only for solutions where the scalars remain
constant [53].

An interesting outcome of this analysis is that extremal black hole solutions
are completely specified by the black hole potential. In particular different kind of
attractors will be characterized by different types of potentials. Still, while VBH
depends on the theory under investigation, the general features of the attractor
mechanism are universal.

As an example, consider the most constrained supergravity theory in 4 dimen-
sions: maximally supersymmetric (N D 8) supergravity. This theory has a fixed
matter content, which is all contained in the gravity multiplet. Among other fields,
the gravity multiplet contains 28 vector fields, leading to 56 charges, and 70 scalar
fields parameterizing the scalar manifold E7.7//SU(8).
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Fig. 1.5 Runaway behaviour
for small black holes

The black hole potential depends on the detailed choice of the 28 electric and
28 magnetic charges, but, given the restrictive form of the scalar manifold and of
the invariances of the theory, one can distinguish three main classes of solutions.
These are related to the value of a special E7.7/ invariant, which is quartic in the
charges I4.p; q/ [36, 63]. Whenever I4 > 0 the scalar potential has a minimum
and the corresponding black hole solutions preserve some supersymmetry (Fig. 1.4).
If I4 < 0 the solutions are non-supersymmetric. Finally, in the special instance
where the quartic invariant vanishes, the warp factor at the horizon vanishes. This
implies that the corresponding classical geometry is singular and various orbits can
be further distinguished by the values of derivatives of I4. However, higher-order
corrections in the curvature terms modify the equations of motion in a way such that
a horizon is developed, with a characteristic radius of the order of the typical scale of
the correction terms. For this reason the corresponding black holes are called small
black holes (Fig. 1.5).

In generic N D 2 theories supersymmetric configurations are always minima,
while non-BPS ones have flat directions at the attractor point the potential (actually
these flat directions are generically given by expectation values of scalar fields that
do not appear in the scalar potential at all) [39]. For N > 2 also supersymmetric
attractors may have a non-trivial moduli space.

One important lesson that can be learned from this analysis is that while
supersymmetry always implies extremality, the opposite is not true. In fact the
supersymmetry condition is achieved when the mass of the BPS object equals a
certain value defined by its charges, however, for a given charge configuration the
BPS bound may never be reached and hence for such configurations the object with
the minimal mass will still be extremal, though non supersymmetric.

1.4 Glancing Through Special Kähler Geometry

As discussed in the previous section, the black hole potential containing the
necessary information to describe extremal black holes depends on the detail of
the model under investigation. General features of these solutions can anyway be
obtained independently on such details. Although in the following we will try to give
some general arguments about the properties of single and multi-centre extremal
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black holes in supergravity theories, it is better to fix a specific framework, so that
we can provide explicit examples along with the general arguments. For this reason
we now provide a brief intermezzo with some elementary facts about Special Kähler
geometry, which is the geometric structure underlying the vector multiplet scalar
�-model in N D 2 theories in 4 dimensions.

We will not give an exhaustive review of this topic, but rather focus on some
minimal ingredients necessary for our following discussion. An interested reader
can find more details on the many geometric identities and on the relation with
String Theory in [24] and in references therein. There are three main types of
multiplets in N D 2 supergravity: gravity, vector and hyper-multiplets

0
BB@
g��

 A�

A0�

1
CCA ;

0
BB@
Ai�

�iA

zi

1
CCA ;

 
�˛

qu

!
;

gravity; nV vector nH hyper
multiplets; multiplets:

(1.69)

In a generic interacting ungauged theory, the number of vector fields is determined
by the number of vector multiplets nV with the addition of the vector field sitting in
the gravity multiplet, named graviphoton. Scalar fields sit in both vector (2nV real
fields) and hypermultiplets (4nH real fields). The self-interactions between these
fields can be described by a factorized �-model given by the product of a Special
Kähler manifold for the scalars in the vector multiplets and a Quaternionic Kähler
manifold for the scalars in the hypermultiplets:

Mscalar D MSK ˝ MQK: (1.70)

The different structure between the two manifolds has to do with the way the U(2)
R-symmetry group of N D 2 theories acts on the fields of the two multiplets. Just
like the R-symmetry group factorizes U(2) D U(1) � SU(2), so does the scalar
manifold.

The scalars in the vector multiplets define the gauge kinetic functions I and R,
while the hyperscalars do not enter into their definition. For this reason the scalars
of the hypermultiplets do not appear in the black hole potential VBH and hence do
not participate at the definition of the tree level solutions. Hence, we will set them
to zero for the time being.

A Special-Kähler (SK) manifold can be parameterized by nV complex scalar
fields, the scalars appearing in the vector multiplets. However, SK manifolds have
an intrinsic projective nature, related to the fact that there are nV C 1 vectors
that appear in a supergravity theory that can mix between them. This means that
one could use nV C 1 projective coordinates X.z/,  D 0; 1; : : : ; nV , which are
holomorphic sections of the complex line bundle associated to the scalar manifold
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(whose principal bundle is related to the U(1) factor in the R-symmetry group).
Actually, just like for any set of nV C 1 vector fields we can define a set of
nV C 1 duals according to the procedure outlined previously and symplectic duality
transformations mix them, a SK manifold can be specified in terms of 2nV C 2

sections, which form a symplectic vector .X; F/. Its Kähler potential is then
defined via these sections as

K D � log i
� NXF � X NF

� D � log ih˝;˝i; (1.71)

where

hA;Bi D AT
�
0 �1
1 0

�
B: (1.72)

Summarizing a SK manifold is a Kähler manifold endowed with both a projective
and a symplectic structure.

Obviously the .X; F/ sections and consequently the Kähler potential, is only
defined locally. This means that, given two patches covering the scalar manifoldU˛
and Uˇ, the sections in their non-trivial intersection can be related by a symplectic
and holomorphic transformation

�
X

F

�
˛

D S˛ˇ e
h˛ˇ.z/

�
X

F

�
ˇ

; (1.73)

where S˛ˇ 2 Sp.2nV C 2;R/ is constant. This implies a Kähler transformation on
the Kähler potential

K˛ ! Kˇ C h˛ˇ C Nh˛ˇ: (1.74)

The projective nature becomes manifest in the fact that there is always a choice
of the sections so that normal coordinates can be defined

t i D Xi

X0
: (1.75)

In such frames, the dual sections F.z/ can be derived from a prepotential F.X/,
such that F.�X/ D �2F.X/. We should stress that, on the other hand, generically
there are frames in which such a prepotential does not exist.

The geometric structure of SK geometry fixes completely all the other couplings,
among which the vector kinetic terms, which can be given in terms of a function
N˙ , with the property

F D N˙X
˙: (1.76)

The gauge kinetic couplings are the real and imaginary parts of this complex matrix:

R˙ D Re N˙; I˙ D Im N˙: (1.77)
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1.4.1 Examples

Before proceeding further, we give here a couple of interesting examples, which
will be used in the following.

The first example is one of the simplest SK manifold one could think of:
a manifold with a single scalar field parameterizing SU(1,1)/U(1). In a frame where
a prepotential exists, it is defined as

F D �iX0X1; (1.78)

which implies that F0 D �iX1 and F1 D �iX0. In such a frame we can also define
a normal coordinate z D X1=X0 and, with the gauge choice X0 D 1, we can write
the holomorphic sections and the Kähler potential as

˝ D

0
BB@

1

z
�iz
�i

1
CCA ; K D � log 2.z C Nz/: (1.79)

The z modulus is constrained, because its real part must be positive in order for the
Kähler potential to be well defined.

A second simple example is the so-called STU model. This is a scalar manifold
corresponding to [SU(1,1)/U(1)]3. The prepotential is

F D X1X2X3

X0
(1.80)

and the sections and Kähler potential can be written as

˝ D

0
BBBBBBBBBBB@

1

s

t

u
�stu
tu
su
st

1
CCCCCCCCCCCA

; K D � logŒ�i.s � Ns/.t � Nt /.u � Nu/�; (1.81)

in a basis whereX0 D 1. It is interesting to point out that the metric of such manifold
factorizes.
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1.4.2 String Theory Origin

Supergravity theories with N D 2 supersymmetry in 4 dimensions can be obtained
in various ways. The main path is to consider type II theories in 10 dimensions
on Calabi–Yau threefolds. For instance, type IIB supergravity on a Calabi–Yau
manifold Y6 has 2.nV C 1/ three-cycles in H3.Y6;R/, with nV Dh.2;1/, that lead
to nV vector multiplets in the effective theory by reduction of the Ramond–
Ramond four-form of type IIB on them. The scalar fields in the corresponding SK
manifold parameterize the space of complex structure deformations of the internal
manifold. The holomorphic sections we introduced previously can be introduced by
considering the periods of the holomorphic three-form ˝ (with a suggestive abuse
of notation) on the symplectic basis .A;B/ of H3.Y6;R/:

X D
Z
A

˝; F D
Z
B
˝: (1.82)

The corresponding Kähler potential can be obtained as

K D � log i
Z
CY

˝ ^˝; (1.83)

where the analogy between this expression, given in terms of the wedge product of
the holomorphic three-form˝ , and (1.71), given in terms of the symplectic product
of the sections˝ , is now evident.

By calling .˛; ˇ/ the basis of harmonic three-forms on Y6, the vector fields
arise in the expansion of

F5 D F˙ ^ ˛˙ �G˙ ^ ˇ˙; (1.84)

where the duality relation between G and F follows from the self-duality
property of F5 D 	F5. This expression is also telling us that the black hole charges
in 4 dimensions correspond to charges of F5 integrated over the product of a two-
sphere and the three-cycles of Y6. This means that black holes can be viewed as
the superposition of D3-branes wrapping different three-cycles of Y6, hence giving
a hint on the route one needs to follow to explain the microscopic origin of the
entropy of such configurations.

Since any Calabi–Yau manifold has at least a non-trivial three-cycle associated
to the holomorphic form˝ , we can see why there is always at least one vector field
in the corresponding N D 2 effective theory, which appears in the gravity multiplet.
The Kähler structure deformations are described by the hypermultiplet scalar fields.

Reductions of type IIA supergravity on a Calabi–Yau manifold are similar to
the ones just described but with the role of complex and Kähler structure reversed:
˝ $ J . In particular, the vector-multiplet moduli space describes the complexified
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Kähler structure of Y6. If Jc � B C i J , Ci is a basis ofH.1;1/.Y6;R/ andDi is the
dual basis of H.2;2/.Y6;R/,

Xi

X0
D
Z
Ci

Jc;
Fi

F0
D
Z
Di

Jc ^ Jc: (1.85)

The Kähler potential is now

K D � log

�
4

3

Z
CY

J ^ J ^ J
�
: (1.86)

Vector fields generate from the 1, 3, 5 and 7-form potentials of type IIA expanded on
the basis of harmonic 0, 2, 4 and 6-forms respectively. This means that the associated
charges come from wrapped D0, D2, D4 and D6-branes.

1.5 Flow Equations for BPS and Non-BPS Attractors

In this section we are going to show that extremal black holes admit a first order
description, no matter whether they are supersymmetric or not. For the sake of
simplicity and in order to be specific, we will constrain our discussion to models
within N D 2 supergravity, but the results hold for more general theories. This
presentation follows mainly [23], where the result was first derived, but expanding
on the reasoning justifying and explaining it.

As we saw previously, critical points of the black hole potential define extremal
black hole configurations and the same potential plays an essential role in the
attractor mechanism. For N D 2 theories the potential is

VBH D jZj2 C 4gi N|@i jZj@ N| jZj; (1.87)

where

Z D eK=2
�
Xq � pF

� D eK=2h˝;Qi (1.88)

is the central charge of the N D 2 supersymmetry algebra.
Extremal black holes are solutions of the equations of motion derived from the

effective 1-dimensional lagrangian

L D .U 0/2 C gi N| zi 0Nz N| 0 C e2U


jZj2 C 4gi N|@i jZj@ N| jZj

�
; (1.89)

also satisfying the constraint

H D 0 , .U 0/2 C gi N| zi 0Nz N| 0 D e2U


jZj2 C 4gi N|@i jZj@ N| jZj

�
(1.90)
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and where the scalar fields reach a critical point of the potential. The generic
equations that need to be satisfied are second-order equations. We will now show
that we can actually further reduce the system to first-order ordinary differential
equations.

1.5.1 Supersymmetric Attractors

The Hamiltonian constraint (1.90) is an equality between two different sums of
squares weighted with the same positive definite metric gi N| . A natural solution is
given by matching each term on the left hand side with the corresponding term on
the right hand side asU 0 D ˙eU jZj and zi 0 D ˙2 eUgi N| jZj, for an arbitrary choice
of sign in both equations. Although surprising at first sight, it is a straightforward
exercise to show that such a solution of the constraint equation is also a solution of
the equations of motion coming from (1.89), provided the same sign is chosen in
the flow equations. We therefore reduced the system of second-order equations of
motion and the quadratic constraint to a system of first order ordinary differential
equations driven by the absolute value of the central charge jZj.

The flow equation for the warp factor can also be rewritten as .e�U /0 D 
jZj
and should be increasing along the flow, because its value is going to be 1 at infinity
and becomes proportional to jzj when approaching the horizon (see the discussion
around (1.43)). This means that only the lower sign is acceptable in order to generate
regular black hole solutions and hence black holes can be described by the following
set of flow equations: 8<

:
U 0 D �eU jZj;
zi 0 D �2 eUgi N| @ N| jZj:

(1.91)

Having first-order equations rather than second-order, may be a sign of supersym-
metry and in fact this is the case at hand. The mass of the black holes generated
by (1.91) is

MADM D jZj1; (1.92)

which means that they are extremal configurations at the threshold of the super-
symmetric bound M � jZj. In fact, by analyzing the gravitino and gaugino super-
symmetry transformations one finds that, after imposing a suitable projector on
the supersymmetry parameter, the first flow equation is equivalent to ı A� D 0,
while the second satisfies ı�iA D 0. Actually, the scalar equation coming from the
supersymmetry variation of the gauginos is

zi 0 D �eU�i˛gi N|D N|Z; (1.93)

where ˛ is a phase factor appearing in the projector, identified with the phase of
the central charge. Full equivalence with (1.91) can be established by realizing
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that also the phase obeys a first order equation coming from the consistency of the
supersymmetry conditions

˛0 CQ D 0; (1.94)

whereQ is the composite Kähler connectionQ D Im zi 0@iK , and that this equation
is identically satisfied once the flow equations (1.91) are fulfilled. This is an obvious
consequence of the fact that ˛ is not a new independent degree of freedom.

Inspection of (1.91) also shows that the central charge jZj determines completely
the solution and that, no matter what is the value of the scalar fields at infinity, the
flow stops where the central charged is minimized:

@i jZj� D 0 , zi 0 D 0: (1.95)

As we could expect, such a critical point of the central charge is also a critical point
of the full black hole potential VBH :

@iVBH D jZj@i jZj C @i @j jZj N@j jZj C @j jZj@i N@j jZj D 0 (1.96)

and therefore a generic flow that reaches such a critical point describes a supersym-
metric extremal black hole.

As expected, the attractor conditions (1.95) fix the values of the scalar fields in
terms of the asymptotic charges of the solution zi� D zi�.p; q/ and all the horizon
quantities depend only on the same charge values. The criticality condition (1.95)
gives nV complex independent conditions for nV scalar fields and hence fixes
them all.

At the critical point the warp factor has a simple behaviour

.e�U /0 D jZj� ) e�U ! jZj�z; (1.97)

so that the near horizon metric approaches AdS2 � S2. Going back to the standard
radial coordinate r D �1=z:

ds2 D � r2

jZj2�
dt2 C jZj2�

r2

�
dr2 C r2d˝2

S2

	
: (1.98)

The corresponding black hole entropy is given by the usual area formula, which in
this case can be rewritten in terms of the central charge and in turn of the black hole
potential at the horizon:

SBH D A

4
D �jZj2� D �V �

BH : (1.99)

Since the scalar fields at the horizon are all fixed in terms of the electric and
magnetic charges of the solution, also the central charge

jZj� D jZj.p; q; zi�.p; q// (1.100)

depends only on the discrete charges and so does the entropy, according to (1.99).
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Fig. 1.6 Representation of a
moduli space with multiple
basins of attraction

The geometric properties satisfied by the scalar manifold, namely the fact that
it has a Special-Kähler nature, constrain the evaluation of the second derivatives of
the central charge driving the supersymmetric flow so that

@i@ N| jZj D gi N| jZj > 0: (1.101)

This means that the critical points at which the flow stops are all minima of the
central charge. This also helps in understanding the attractor behaviour of the
black hole horizon. No matter what is the value at infinity of the scalar fields,
they are driven by the flow equations towards the minimum of the central charge,
which constitutes an attractor point for the differential equations determining the
flow. Eventually all the horizon quantities are determined by the value of the scalar
fields at such minimum. We can therefore think of our moduli space as a basin of
attraction where the final attractor point, at the minimum of the basin, is specified
only by the choice of the asymptotic charges.

We should note, however, that in some cases there can exist multiple basins of
attraction (Fig. 1.6), leading to a discrete number of possible values zi�.p; q/ for a
given choice of charges. In this case the attractor flow must be complemented by the
“area code” corresponding to the basin of attraction to which the initial conditions
belong
[62,64,81]. For a SK manifold all these critical points will be minima of the central
charge and there will be no other critical points, so that we are not in contradiction
with the previous discussion. If the reader wonders how such functions could be, an
example with two minima and no other critical point in R

2 is f D e�2x � e�x�y2y2
[69].

Before proceeding to the analysis of the non-supersymmetric case, let us analyze
another interesting property of the flow equations (1.91): the supersymmetric
c-theorem. It is a straightforward consequence of the previous analysis that the scale
factor � D e�U is monotonically increasing along the flow

�0 D jZj > 0 (1.102)
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and therefore it can play the role of a c-function for the system (or rather its inverse),
which has a minimum value at the Minkowski vacuum and blows up at the horizon
(recall that �1 D 1 and �hor D C1). This implies that � can replace the radial
coordinate to describe the same flow. By using the c-function as a parameter, the
scalar field equations become a simple gradient flow equation:

�
d

d�
zi D gi N| @ N| log jZj: (1.103)

Here we focused on N D 2 models, but supersymmetric solutions in models
with N > 2 follow essentially the same discussion where jZj is replaced by the
largest of the absolute values of the eigenvalues of the central charge matrix.

1.5.2 Non-BPS Attractors

Although the solution of the Hamiltonian constraint given by (1.91) is straightfor-
ward and leads to supersymmetric attractors, the same theory (for different choice
of charges) allows also for non-supersymmetric black holes. These are described by
critical points of the scalar potential @iV �

BH D 0 for which the central charge is not
minimized @i jZj� ¤ 0. The purpose of this section is to show that also in this case
extremal black holes are described by first-order ordinary differential equations,
driven by a functionW ¤ jZj, which we will call fake superpotential [23].

There are two main motivations to believe that such a reduction may happen also
for non-supersymmetric black holes. The first one is that the attractor mechanism
is at work also in this case. Also for non-BPS extremal black holes the scalar
potential drives the flow of the scalar fields in the moduli space towards the horizon
value, which is once more specified by the minimum of the function. This is also
generically an attractor point, in the sense that critical points of VBH are generically
minima, though for non-BPS black holes there exist flat directions. An interesting
remark in this case is that such flat directions, when they exist, extend to the whole
scalar potential and not just to the minimum. Also, derivative corrections do not
seem to destabilize the model [10]. The second one is that also non-BPS attractors
have a c-theorem and therefore the flow has a clear and unique direction of motion
in the moduli space.

The proof of the non-BPS c-theorem was given in [57]. We leave the reader
to the original reference for the precise demonstration, while here we recall the
general line of the argument. The main assumption is that the matter involved in the
theory giving the non-BPS extremal black holes satisfies the null energy condition.
This states that the stress energy tensor for such models should be positive definite
when contracted with null vector fields:

T���
��� � 0; 8 � j �2 D 0: (1.104)
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Once this assumption is made [57] proves that the area function A decreases
monotonically along the solution towards the horizon and this means that one can
identify such function with a c-function for the flow. The demonstration uses the
fact that the area function is a specific term appearing in the metric, once again also
proportional to e2U , whose derivatives can be identified with certain combinations
of the Ricci tensor constructed from the same metric: A0 � �Rrrgrr C Rttg

t t .
Now, using Einstein’s equations and introducing a vector such that .�t /2 D �gtt
and .�r/2 D grr , the same combination of the Ricci tensor describing the derivative
of the area function can be rewritten as a combination of the stress energy tensor
computed on the solution. Finally, using the null energy condition this shows that
the area is always decreasing along the flow

A0 � �Rrrgrr CRttg
t t D �T������ � 0: (1.105)

These facts and the analogy with a similar situation happening for non-BPS
domain-wall solutions in the context of the gauge/gravity correspondence strongly
suggests the existence of first-order equations also for non-BPS extremal black
holes. Within the AdS/CFT correspondence Renormalization Group flows of the
dual field theory can be described in the gravitational setup as domain-walls
interpolating between two different Anti-de Sitter vacua. The field theory c-theorem
guarantees a description of such domain-walls in terms of first order differential
equations, also when there is no supersymmetry [22,47,75]. Analogously, extremal
black holes are solutions interpolating between Minkowski and AdS2 �S2 vacua of
the same model. Using this analogy we can now make our argument solid.

Consider a simple model with a single scalar field �, subject to a scalar potential
V.�/ admitting two different extrema. An instantonic solution can be constructed
by moving to euclidean signature and assuming that the field depends only on one
variable, so that �0 denotes its derivative with respect to such variable. Different
solutions are parameterized by different values of the energy and an extremal one is
defined by solutions of the constrained equation of motion following from

L D .�0/2 C V.�/; H D .�0/2 � V.�/ D 0: (1.106)

Although this system has a generic second order equation of motion, it is easy to
see that a first-order equation is sufficient by using Bogomolnyi’s trick of squaring
the action:

S D
Z
dt


�0 ˙ p

V
�2 
 2

Z
dt �0pV : (1.107)

This action is equivalent to the one obtained by the previous Lagrangian, but now
we clearly reduced the equation of motion for � to a first order one

�0 ˙ p
V D 0: (1.108)
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In fact, the second term in (1.107) is always a total derivative and hence can be
discarded, while the first term in brackets solves both the equation of motion and
the Hamiltonian constraint.

The extension of this trick to the case where many scalars � are involved needs
some care. Extremal solutions of a system analogous to (1.106) but with many
scalars means solving the constrained equations of motion coming from

L D j�0j2 C V.�/; H D j�0j2 � V.�/ D 0; (1.109)

where the norm j�0j can be taken with respect to a positive definite metric also
depending on the scalar fields. The squaring of the action leads to

S D
Z
dt
ˇ̌
ˇ�0 ˙ n

p
V
ˇ̌
ˇ2 
 2

Z
dt n � �0 p

V ; (1.110)

where n is a unit-norm vector: jnj2 D 1. In this example however the second term
in the action is a boundary if and only if it is proportional to the field derivative of a
new function W :

n D r�Wp
V
: (1.111)

We therefore conclude that the system of equations of motion and Hamiltonian
constraint coming from (1.109) can be described by first-order equations provided
the scalar potential can be rewritten as the norm of the derivative of a scalar function:

V.�/ D jr�Wj2: (1.112)

The Lagrangian and the Hamiltonian constraint of extremal black holes are a special
instance of this general case, where the set of scalars comprises the moduli fields as
well as the warp factor � D fU; zig and the metric defining the norm is factorized
and equal to 1 in the U direction and equal to gi N| in the direction of the moduli
fields. Actually, given the special dependence on the warp factor, we can introduce
a real valued fake superpotentialW so that W D eUW and the necessary constraint
to rewrite the equations of motion in a first-order form reduces to

e2UVBH D @U .e
UW /2 C 4 @i .e

UW /gi N| @ N| .eUW /; (1.113)

which implies that the black hole potential can be written as [23]:

VBH D W 2 C 4 @iWg
i N|@ N|W: (1.114)

Whenever this condition is satisfied, the black hole equations are reduced to first-
order differential conditions [23]:

8<
:
U 0 D �eUW;
zi 0 D �2 eUgi N| @ N|W:

(1.115)
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Once more the sign is fixed because of consistency of the behaviour of the warp
factor from infinity to the horizon. Obviously the BPS case is trivially recovered
wheneverW D jZj, however, we will see that for a given black hole potential more
solutions, with W ¤ jZj, can and will exist whenever there are extremal points of
the black hole potential that are not extrema of the central charge.

The fake superpotential W assumes a very important role for the description
of the black hole solutions. In fact, not only the flow equations determining the
complete solution are driven by W , but also the mass and the entropy of the black
hole are determined by the same function [43]. In detail, the boundary term reduces
to eUW and the value of the boundary term far away from the black hole determines
the ADM mass: eUW ! W1 D MADM . Also in this case the flow equations will
stop at the critical point of the function driving the scalars. For non-BPS black holes
this means that the horizon is reached whenever

@iW� D 0: (1.116)

It is trivial to check that these are also critical points of the full black hole potential
VBH . As discussed previously, in the non-BPS case there may be flat directions
and actually this is reflected by W , which will not depend on the moduli related
to such flat directions [3, 25, 27]. From the flow equations we can also determine
the behaviour of the warp factor close to the horizon, in full analogy with the
supersymmetric case (1.97), and this fixes the entropy to be

SBH D A

4
D �W 2� D �V �

BH : (1.117)

We stress that the fake superpotential is an extremely powerful procedure that
provides the full solution, including properties that depend on the behaviour of
the scalar fields infinitely far away from the black hole, and not just the horizon
properties as other procedures do.

Obviously the main problem connected with this technique is whether we can
find any solution of the main constraint equation (1.114) other than the central
charge of the system. The answer is positive and two main techniques have been
developed to provide such answer:

• A constructive approach for coset manifolds based on duality invariants (see [25,
27] and [2] also for N > 2 theories);

• An existence theorem in connection with the Hamilton–Jacobi equation [4].

The constructive approach is based on the simple observation that the warp factor
U is a duality invariant quantity (it is part of the metric and this is invariant
under U-duality transformations). Since the derivative of this function is related
to W , also the fake superpotential must be invariant. For a model based on a
symmetric coset manifold describing the self-interactions of the vector multiplet
scalar fields Msc D G=H , the duality group is G �Sp.2nV C 2;R/. It is therefore
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a straightforward technical task to identify all possible invariants and find a working
definition for W . This can generically be done in few steps, by first identifying W
for a simple charge configuration, using symmetry properties to reconstruct the seed
superpotential and then boost it by a duality transformation to generic charges. One
has to say that although the number of invariants is limited and one generically
faces a well defined problem, the resulting fake superpotential may be extremely
non-trivial, for instance non-polynomial in the invariants (see [11]) and hence the
procedure can be technically challenging. Also, this procedure does not apply to the
cases where the scalar manifold is not a coset.

On the other hand, the Hamilton–Jacobi interpretation of our system of equations
is very useful to derive a formal general solution and to prove an existence theorem,
but it is also often unpractical in order to derive a closed expression for W .
The Hamilton–Jacobi equation is a first order nonlinear partial differential equation
for a function W.�/ called Hamilton’s principal function such that

H
�
�i ;

@W
@�i

�
D 0 (1.118)

In our case the radial variable plays the role of a euclidean time, the fake
superpotential plays the role of the principal Jacobi function while the set of all
fields �i is assimilated to the coordinates of phase-space and the equation to be
solved is defined by

H D V.�;Q/�
ˇ̌
ˇ̌@W
@�

ˇ̌
ˇ̌2 : (1.119)

In this context W gets the interpretation of the generating function of canonical
transformations of the classical Hamiltonian, so that �i D @W

@�i
and �i D Gij �

j 0 D
ıL
ı�i 0

become the flow equations. The existence of such a function is guaranteed by
the Liouville integrability of the system [46]. From the general theory, W can also
be formally constructed as the integral of the Lagrangian along the solution [4]:

W.�/ D W0 C
Z 	

	0

L.�; �0/d	: (1.120)

Clearly this is unpractical in the generic situation where one does not know the
solutions before having constructed W .

An alternative technique has been proposed in [19], where the superpotential
is implicitly defined via the solution of an algebraic equation of degree 6, which
follows from analyzing the geodesics in the time-like reduction of the black hole
geometry. This also gives a formal general definition of W , but the result of the
solution of the equation of degree 6 is at least impractical.
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1.5.2.1 Examples

The first example is given by the SU(1,1)/U(1) model with prepotential

F D �iX0X1: (1.121)

The holomorphic sections and the Kähler potential were given in Sect. 1.4.1.
For generic electric q and magnetic p charges, the central charge is then

Z D q0 C ip1 C .q1 C ip0/zp
2.z C Nz/ : (1.122)

The black hole potential VBH is derived by inserting this expression in (1.87):

VBH D .p1/2 � iq1.z � Nz/p1 C q0
2 C ip0q0.z � Nz/C �

.p0/2 C .q1/
2
�

zNz
z C Nz :

(1.123)
Black hole solutions are then found by looking for solutions interpolating between
flat space at infinity and AdS2 � S2 at the horizons defined by the critical points of
VBH . Such critical points are found for

z˙ D ˙.p0p1 C q0q1/C i.p0q0 � p1q1/

.p0/2 C .q1/2
; (1.124)

and since consistency requires Rez > 0, they lie inside the moduli space only for
.p0p1Cq0q1/ > 0 when zC is chosen in (1.124), and for .p0p1Cq0q1/ < 0 for z�.
Different critical points have a different nature. More precisely, zC (1.124) gives the
supersymmetric vacuum, which satisfies DiZ D 0, with Z ¤ 0, (hence @i jZj D 0)
and thus it is a fixed point of (1.122), while the other critical point z� gives the non-
BPS black hole, for whichDiZ ¤ 0. The Hessian at these points is always positive
as there are two identical positive eigenvalues

Eigen fHess.VBH /g D ˙ 1

p0p1 C q0q1
f..p0/2 C .q1/

2/2; ..p0/2 C .q1/
2/2g:
(1.125)

A simple inspection of these formulae shows that the two type of black holes are
related by a change of sign in the electric or magnetic charges. In fact, in this case,
the fake superpotential is given by

W D
ˇ̌�q0 C ip1 C .q1 � ip0/zˇ̌p

2.z C Nz/ ; (1.126)

which indeed differs from (1.122), but gives rise to the same potential VBH . It is also
quite simple to check that the critical point of this new “fake superpotential” is the
non-BPS black hole, namely (1.124) with the minus sign (Fig. 1.7).
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Fig. 1.7 Plots of the sections of W and jZj at Im z D 0, for unit charges. Where the central
charge shows a minimum, the “fake superpotential” crosses zero. Changing the signs of the q0 and
p0 charges exchanges the two pictures

An extremely non-trivial example is the STU model, for which the complete
superpotential expression can be found in [11]. A simpler expression we can report
here is the limiting case of the t3 model, which essentially follows from the STU
model by identifying s D t D u, for the case of only two non-trivial charges, p0

and q1. The central charge is

Z D zq1 C p0z3p�i.z � Nz/3 ; (1.127)

whose critical point is

z� D �i
r

� q1

3p0
: (1.128)

The corresponding fake superpotential is

W D jzq1 C p0z2Nzjp�i.z � Nz/3 ; (1.129)

whose critical point is

z� D �i
r
q1

3p0
: (1.130)

This superpotential cannot be obtained from the central charge just by flipping
charges. Note also that when the supersymmetric critical point is well defined, the
non-BPS critical point is not well defined and vice-versa.

1.6 Duality

An important aspect of black hole solutions in supergravity is that the U-duality
transformations map solutions of the various equations of motion and Bianchi iden-
tities to new solutions of the equations of motion and Bianchi identities of another
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system with different charges, preserving the metric. This implies that the U-duality
groupU can be used to generate solutions with arbitrary charges starting from more
constrained configurations (see for instance [1, 28–30, 42, 60, 61, 71, 74]) by

�
p0
q0
�

D S

�
p

q

�
; (1.131)

where S 2 U � Sp.2nV C 2;R/. We have also seen that such a technique has been
used in order to provide a constructive mechanism to find the fake superpotential in
the case of coset scalar manifolds.

An obvious interesting question is: what is the minimum number of charges
that allows to generate arbitrary ones by a duality transformation? The black hole
solutions we considered so far are specified by the values of the charges .p; q/
and by the asymptotic value of the scalar fields zi!DC1. This gives a total of
2nV C 2 C 2nV parameters specifying the complete solutions. Note that while the
first set is enough for defining the various quantities at the horizon, the second set is
necessary for the full solution. Consider now the case where the scalar manifold is
given by a coset Msc D G=H . The asymptotic values of the scalar fields zi!DC1 are
parameters of the coset manifold and hence we can use the generators ofG=H to set
them to whatever value we want. The non-trivial parameters left are then 2nV C 2,
corresponding to the electric and magnetic charges of the theory. We are also free
to use duality transformations sitting in H , because they will not affect the value of
the scalar fields,2 but will rotate the charges. Some H -generators may also have a
trivial action on the charges, but all the others can be used to remove parameters of
the solutions, which could be generated by the action of the duality group, instead.

An explicit example of this procedure can be outlined for the STU model.
A generic black hole in this model has 14 parameters: 8 charges and 6 real scalar
fields. The duality group is determined by the scalar manifold to be G D SU(1,1)3,
with H D U(1)3. As expected, the dimension of the coset coincides with the number
of scalar fields and therefore the minimum number of parameters can be obtained
by subtracting the dimension of H to the total number of charges

#charges � #.H/ D 8 � 3 D 5: (1.132)

A slightly more complicated example is given by N D 8 supergravity. This
theory has 56 charges and 70 scalar fields for a total of 126 parameters for the
generic black hole configuration. The scalar manifold is E7.7/=SU(8), and the
dimensions of the two groups are #[E7.7/] D 133 and #[SU(8)] D 63. Surprisingly,
if we straightforwardly apply the previous relation and subtract the number of
H -generators to the number of allowed charges we would get a negative number.

2To be more precise: the scalar manifold can be parameterized by (right-invariant) coset repre-
sentatives L, from which one can construct the scalar matrix M D LTL that enters in the scalar
kinetic term. M is invariant under H -transformations.
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However, the resolution of this little puzzle is rather simple if one analyzes more
carefully the action of the H -group on the same charges. In fact there is an
SU.2/4 � H that leaves the charges invariant and therefore the total number
of duality parameters we can use to reduce the number of independent charges
is #.H/ � #[SU(2)4] D 51. This means that we are once more left with just five
independent parameters to construct the seed solution that can be used to generate
the most general one by duality. This is not surprising after all, because the STU
model analyzed previously is a special truncation of the N D 8 model. It should
also be noted that, although we fixed the scalars in order to determine the number of
independent parameters, the seed solution could also be constructed by choosing any
other five parameters among the charges and asymptotic scalars, with the obvious
constraint that the invariant charge combination defining the entropy at the horizon
should be non-vanishing (for large black holes).

Another important issue we will not analyze here in detail is the definition of
the duality orbits [1, 8, 42]. Since duality transformations can map black holes
with different charges among themselves, it is useful to understand how many
different orbits one has with respect to this action. A full classification requires
the construction of an appropriate number of independent invariant quantities. For
instance in N D 8 supergravity different orbits are classified by the quartic invariant
I4.p; q/. Whenever I4 > 0 one has supersymmetric black holes. For I4 < 0 one has
non-BPS configurations and, finally, when I4 D 0, the horizon area vanishes and
hence one has small black holes. N D 2 duality orbits were classified in [26].

1.7 Multicentre Solutions

So far we concentrated our discussion on single centre black hole configurations.
However, a great deal of progress in our recent understanding of black hole physics
within the context of String Theory came from multicentre solutions. In this
final section we will review such solutions with a special emphasis on the non-
supersymmetric ones.

Once more, we would like to make contact with what has been discussed so far
in the context of single centre configurations and therefore we will focus on N D 2

theories in 4 dimensions. In order to have an explicit relation with String Theory
it is actually very useful to see also how such configurations can be constructed in
10/11 dimensions within type II or M-theory models. We chose to concentrate on
M-theory compactifications on the product of a Calabi–Yau manifold and a circle:
CY � S1. This kind of compactification leads to an N D 2 theory in 4 dimensions
and it is also useful for to establish an explicit relation between quantities in 4 and
5 dimensions. We will further specify the Calabi–Yau to be a simple orbifold

CY6 D T 6

Z2 � Z2
' .T 2/3; (1.133)
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because this gives a reduced setup where the scalar manifold is described by the
STU model. In this scenario the eight charges of the STU model correspond to
different branes wrapped on the various cycles of the internal manifold. Obviously,
by replacing the internal manifold with a more general Calabi–Yau, we can get more
general cubic Special–Kähler geometries, as discussed in Sect. 1.4.2. If we call t and
x the coordinates of 4-dimensional spacetime,  the coordinate of the circle and ya

the coordinates of the six-torus, with the two Z2 orbifold actions inverting the sign
of the first four and last four coordinates respectively, the charge configuration can
be summarized by the following table:

Dimensions wrapped by the various M-branes and D-branes with the corresponding 4-dimensional
charges

M-theory t x1 x2 x3  y1 y2 y3 y4 y5 y6 IIA Charge

KK6 � � � � � � � � D6 p0

M5 � � � � � � D4 p1

M50 � � � � � � D40 p2

M500 � � � � � � D400 p3

M2 � � � D2 q1
M20 � � � D20 q2
M200 � � � D200 q3
KK0 � � D0 q0

where the line denotes the extension of the brane along that direction. From the
M-theory point of view we have six real charges (pi and qi ) and two geomet-
ric charges (p0 and q0). The first one arises from Kaluza–Klein monopoles in
M-theory, and can be seen as an additional brane charge in 10 dimensions
(a D6-brane charge), while q0 arises as the charge related to the 4-dimensional vector
arising from the 5-dimensional component of the metric describing the fibration of
 on x and corresponds to a Kaluza–Klein particle (with a nontrivial momentum
along  ).

It is actually better to describe the reduction process to 4 dimensions in two
steps. First of all we consider the reduction to 5 dimensions along the .T 2/3 and
then discuss further reductions to 4 dimensions. From the M-theory point of view
a stationary metric ansatz that takes into account the backreaction of the above
configuration of branes on the geometry is

ds211 D �Z�2 .dt C !/2 CZ ds24.x/C
X
I

Z

ZI
ds2

T 2
: (1.134)

Here ds24 is a Ricci-flat 4-dimensional euclidean space, which can be chosen to
be R

4, the Gibbons–Hawking space, the Euclidean Schwarzschild metric or others
according to the type of solution we want to describe. The rest of the ansatz is chosen
so that the total volume of the internal manifold remains fixed, which implies that
no hypermultiplets will be turned on in the lower-dimensional effective theory. The
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warp factors also depend only on the coordinate of the 4-dimensional euclidean
space and

Z D .Z1Z2Z3/
1=3 : (1.135)

Finally, the M-theory ansatz is completed by the three-form potential, which we
take as

C3 D
X
I

��dt C !

ZI
C aI

�
^ dTI ; (1.136)

where dTI is the volume element of the I -th torus. This gives the so-called floating
brane ansatz. The name follows from the fact that any probe M2 brane wrapping one
of the two-tori feels no force thanks to the cancellations between the contributions
coming from the Dirac–Born–Infeld action and the Wess–Zumino terms due to the
same dependence of the metric and C3 on the warp factors ZI .

By using this ansatz, the Bianchi identities and equations of motion of the
11-dimensional theory reduce to almost linear equations depending only on the
coordinates of ds24.x/ [12]:

daI D ?4daI ; (1.137)

d ?4 dZI D j�IJK j
2

daJ ^ ?4dak; (1.138)

d! C ?4d! D ZIdaI : (1.139)

As discussed above, in the end we would like to describe black hole geometries
in 4 dimensions. This means that we need to choose the metric of ds24 as a Ricci-flat
circle fibration on a 3-dimensional base, so that we can reduce the model along the
circle direction and go back to the STU model. The first choice we will consider is
that of a Gibbons–Hawking space. This is a 4-dimensional euclidean space endowed
with a metric

ds24 D 1

V
.d C A/2 C Vdx23; (1.140)

where

? dA D ˙dV: (1.141)

We assume that  is a U(1) isometry and hence V depends only on the coordinates
of the 3-dimensional flat base dx23 D dx21 C dx22 C dx23 . By consistency, V is a
harmonic function which generates the NUT charge corresponding to the presence
of a D6 brane in 10 dimensions:

V D h0 C p0

r
: (1.142)

The overall geometry of this space is that of a cigar (Look at Fig. 1.8). At the tip
(r ! 0) one has the NUT charge p0 and spacetime looks 5-dimensional. At large
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Fig. 1.8 BH’s in a GH
geometry

values of r , the Gibbons–Hawking space becomes the direct product of R3 with a
circle of radius

RTN D 1p
h0
: (1.143)

The choice of sign in (1.141) is equivalent to a choice of orientation on the space
and has a dramatic effect on the reduction of the equations of motion (1.137)–
(1.139). Depending on the sign one gets two different sets of equations which
correspond to supersymmetric and non-supersymmetric configurations [14, 56].
In detail, the plus sign gives BPS configurations, whereas the minus sign breaks
supersymmetry. The supersymmetry breaking is obviously mild and is essentially
just a reaction to the change in the global conditions (the orientation of the space).
For this reason these conditions have been named almost BPS [56].

The knowledge of the map between the quantities entering in the definition of the
11-dimensional ansatz and the fields defining the 4-dimensional STU supergravity
model allows the use of the 4-dimensional duality group to generate new solutions
starting from known ones. The full map is given in [32]. However, we show here how
the reduction along the  circle allows the definition of new quantities in terms of
which one defines the physical scalars in 4 dimensions. Now quantities with a vector
have legs only along dx23. The one-forms appearing in the metric and M-theory
potential now split as

aI D CI .d � A0/C AI ; (1.144)

! D �.d � A0/C !; (1.145)

so that the scalar fields of the STU model are parameterized by

zI D CI � i X
I

�2
; (1.146)
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where XI D Z=ZI is the volumes of the I-th torus and � is a factor that depends
on the fibration. For the Gibbons–Hawking reduction [32]

�4 D Z2=3V

VZ3 � V 2�2
: (1.147)

As explained in Sect. 1.4.1, each coordinate spans a SU(1,1)/U(1) factor and the
U-duality group is [SU(1,1)]3. The action of the duality group on the scalar fields
can be represented as a fractional linear transformation

zi ! ai zi C bi

ci zi C di
; (1.148)

where the parameters are part of an SU(1,1) valued matrix:

Mi D
�
ai bi
ci di

�
2 SU.1; 1/i : (1.149)

We stress that each of these transformations acts also on the charges, but leaves
the 4-dimensional metric invariant. On the other hand, such transformations do
not leave the 5-dimensional or 11-dimensional metric invariant and this may have
profound consequences on the form of the solution as seen from M-theory. Although
some of the 4-dimensional duality transformations have an obvious 11-dimensional
interpretations, other become rather non-trivial and involved in the uplifting process.
For instance, the combination of 2 T-duality transformations on the I-th torus gives
a matrix transformation of the form

MI D
�
0 �1
1 0

�
(1.150)

on the corresponding scalar. It is interesting to note that from the 4-dimensional
point of view this is an S-duality transformation z ! �1=z. Gauge shift symmetries
of C3 along the tori also have a straightforward representation:

MI D
�
1 �I
0 1

�
: (1.151)

On the other hand, the action of

MI D
�
1 0

�i 1

�
(1.152)

has the interpretation of a spectral flow transformation and only the rewriting
in terms of 4-dimensional duality transformations allowed us to identify such a
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transformation with the combination of 6 T-dualities, a gauge transformation and 6
inverse T-dualities. The same duality transformations act also on the charge vectors
as described in [6, 32].

1.7.1 BPS Case

The 4-dimensional black hole solution is generically described by the warp factorU ,
by the scalar fields zi and by the time components of the electric and magnetic vector
fields fA;Ag, whose duals we replaced with the charges in previous examples.
In the multi-centre case, the solutions will not be static anymore and therefore one
also needs the one-form !. Using the setup considered in this section, the electric
vector fields follow from the reduction as A � ˚

A0;AI
�
.

In the case of the choice of positive orientation on the Gibbons–Hawking metric,
the solution is supersymmetric. The full solution was first found in [34] and it can
be completely expressed in terms of eight harmonic functions

?3dA D dH; (1.153)

?3dA D dH; (1.154)

with

H D hC
X
i

Qi

jx � xi j ; (1.155)

where Qi represent the appropriate electric qi or magnetic charge pi . Also the
non-static part of the metric is given in terms of the same harmonic functions

? d! D hdH;H i (1.156)

and its existence is related to the intrinsic angular momentum due to the electric-
magnetic field generated by the static charges.

Consistency also implies that the positions of the charges is constrained by the
equations X

j

hQi;Qj i
jxi � xj j D 2Im .e�i˛Z.qi //1; (1.157)

whose zeros give the positions in moduli space related to marginal stability of the
solution (some of the distances blow up and therefore components are not bound
anymore).

The application of duality transformations to this solution simply rotates the
harmonic functions among themselves [32]. This means that for a supersymmetric
solution the 11-dimensional metric and three-form potential are always described by
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an ansatz like the one we presented above, though the details in terms of the charges
depend on the choices of the harmonic functions.

1.7.2 Non-BPS Case

The non-supersymmetric case is more interesting (at least for what concerns the
construction of solutions). In this case not all possible solutions will fall in the
ansatz above. Actually many interesting new solutions that are candidate microstate
geometries for black holes can be obtained by different bubbling equations. These
depend on the form of our choice of ds24 and consequently on the choice of the
three-form potential and warp factors. Starting from the Gibbons–Hawking space
(Almost BPSsolutions), the bubbling equations become

dAI D CIdV � VdC I ; (1.158)

d ?3 dZI D j�IJK j
2

Vd ?3 d.C
JCK/; (1.159)

?3d! D d.�V / � VZIdC
I : (1.160)

In opposition to what happened in the case of supersymmetric solutions one cannot
generally solve these equations only in terms of harmonic functions. If one insists
in doing so, then only mutually local solutions exist and the positions of the various
centers are not constrained [49, 55]. However one can find more general solutions
with mutually non-local charges and constrained positions.3

Before moving to the multi-centre case, we can see that from the above ansatz
one can easily recover the single centre seed solution with D2 and D6 charges and
a non-trivial axion [14, 54, 66] (this is a total of four charges and one non-trivial
asymptotic value for the scalar fields). This corresponds to setting CI D 0. The
bubbling equations imply that now V and ZI are harmonic functions and � D b

V
,

where b is the asymptotic value of the axions. The warp factor of the black hole
metric follows as

e�4U D 4VZ1Z2Z3 � b2: (1.161)

3The apparent discrepancy between the results in [49, 55] on the one hand and [14] on the other
is due to the different implementation of the regularity requirements. In order to have regular
horizons, the warp factor should not grow too fast when approaching the horizon. If this behaviour
is constrained by considering the asymptotic charges, the only possible regular solutions are all
marginally stable and the solution is given entirely in terms of harmonic functions. On the other
hand this global requirement is not necessary and application of this condition centre by centre
allows for regular bound states as in [14].
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For a multicentre solution we can start by requiringCI to be harmonic functions.
This, in turn, implies that the ZI are not harmonic anymore. The full solution is
rather complicated and can be found in [14]. We stress that regularity of the solution
in this case implies the existence of non-trivial constraints already for two centres.
This is actually an equation for the distance between the centres that is given in
terms of charges and asymptotic values of the scalar fields.

The existence of a constraint on the distances implies that such solutions describe
bound states of black holes. It is obviously of much interest to understand the general
conditions under which such bound states exist depending on the charges and the
point in moduli space, like in the BPS case, where such an analysis culminated in
the wall crossing formulae (See for instance the lectures at [35, 70]). A first attempt
at an analysis in this direction is presented in [44, 45], but only in special models
and for two-centre solutions.

Once more the solution obtained in [14] can be used as a seed to obtain more
general ones by using duality transformations. However, in this instance, the action
of the duality group changes the 5-dimensional metric [32]. We show here a
simple example. Choose C1 DC2 D 0 and C3 ¤ 0, which means only one non-
trivial D4-charge. By inspection of the bubbling equations we now see that the
11-dimensional warp factors ZI are harmonic and only � cannot be given in a
closed form in terms of harmonic functions, because of its equation, which is

d ? d.V�/ D d.VZ3/ ^ ?dC 3: (1.162)

Performing 6 T-dualities, following the approach described in the previous section,
the new 5-dimensional metric contains a new spatial part, which describes now an
Israel–Wilson space, rather than a Gibbons–Hawking. The dual metric is

ds24 D .V1V2/
�1.d � A/2 C V1V2 dx23; (1.163)

where V1 D C3, V2 D Z3 and ?dA D V2 dV1 � V1 dV2. It is obvious that this will
never be of the Gibbons–Hawking form.

The fact that the floating brane ansatz encompasses all BPS solutions, whereas
it does not contain all non-BPS solutions, implies that the non-supersymmetric
configurations are far more richer than the supersymmetric ones. Unfortunately,
this also means that the attempts at constructing a general solution, valid in any
frame, as was done for the BPS multicentre black holes in [34], have to face harder
challenges. Some progress in a 4-dimensional setup was made in [50]. Moreover,
having more centres means that duality orbits are classified by a larger number of
invariants [45] and the non-BPS ones of [14] are the seed solutions only for one of
the orbits in [45].

Similar techniques can be used to generate more general new classes of non-BPS
solutions, however it is very difficult to find a sufficiently general explicit solution
that fulfills the constraint on the positions. The best obtained so far was a line of
rotating black holes [15].
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Before wrapping up, let us also mention that such bubbling equations are also
very useful to obtain other general solutions whenever ds24 has a more general form.
In particular one can obtain new 5-dimensional smooth solutions with the same
charges of 4-dimensional black holes and hence interpret these states as candidate
microstate geometries [16–18].

Also, the reduction to 4-dimensions of these stationary solutions allows also for
rotating configurations in 4-dimensions as well. In fact, by this mechanism we could
find the most general seed solution for slowly rotating black holes (a ! 0;m ! 0,
J D a=m fixed) [14]. The overrotating counterpart (a D m ¤ 0) is still missing
because of the different structure of the ansatz.

As a final note we would like to note that the idea of reducing extremal black hole
equations to a first-order formalism [23] has revised the search for exact solutions
also in other instances where some of the conditions assumed in [23] are relaxed.
Recently we have seen this formalism applied to supersymmetric black holes in U(1)
gauged supergravity [31] (solutions in this context were also obtained in [9,21,59]),
to rotating extremal solutions [50] and even to classes of non-extremal black holes
[4, 51, 72].
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Chapter 2
Intersecting Attractors

Jose Francisco Morales

2.1 Introduction

The attractor mechanism [1–4], initially discovered in the context of N D 2 black
holes, has been recognized as a universal phenomenon governing any extremal flow
in supergravity, i.e. a flow with an AdS horizon. It applies to both BPS and non-BPS
black hole solutions in Einstein supergravities [5, 6], ungauged [7] and gauged [8]
supergravities with higher derivative interactions and general intersections of brane
solutions [9].

In these lectures we review a unifying framework [9, 10] for the attractor
mechanism underlying any extremal flow in supergravity. More precisely, we
consider general black p-brane solutions built out of intersections of branes (and
or fluxes) with AdSpC2 near horizon geometry. In complete analogy with what
happens in the case of extremal black holes p D 0, the solutions can be thought
as scalar attractor flows from infinity to a horizon where active scalars becomes
fixed to particular values determined entirely in terms of the black p-brane charges.
Moreover the near horizon geometry encodes the thermodynamical content (entropy
or central charges) of the boundary theory describing the microscopic degrees of
freedom of the black p-brane. The scalar flow generalizes the more familiar black
hole attractor mechanism to the case where a general set of branes charged under
forms of various ranks intersect on an extended p-dimensional hyperplane.

We focus on static, asymptotically flat, spherically symmetric and extremal
black p-brane solutions in supergravities at the two derivative level. The analysis
combines standard attractor techniques based on the extremization of the black hole
central charge [1–4] and the so-called “entropy function formalism” introduced
in [7] (see [11, 12] for reviews and complete lists of references). Like for black
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holes carrying vector-like charges, we define the entropy function for blackp-branes
as the Legendre transform with respect to the brane charges of the supergravity
action evaluated at the near-horizon geometry. The resulting entropy function can
be written as a sum of a gravitational term and an effective potential Veff given as a
superposition of the kinetic energies of the forms under which the brane is charged.
Extremization of this effective potential gives rise to the attractor equations which
determine the values of the scalars at the horizon as functions of the brane charges.
In particular, the entropy function itself can be expressed in terms of the U-duality
invariants built from these charges and it is proportional to the central charge of
the dual CFTpC1 living on the AdSpC2 boundary. The attractor flow can then be
thought of as a c-flow towards the minimum of the supergravity c-function [13,14].
Interestingly, the central charges for extremal black p-branes satisfy an area law
formula generalizing the famous Bekenstein-Hawking result for black holes.
We divide the review into two parts:

• In the first part, we illustrate the entropic attractor algorithm in the context
of extremal black holes and black strings in N D .1; 1/ supergravity in DD 6

dimensions (see [9] for similar results in DD 7; 8). We derive the entropy
function F and the near-horizon geometry via extremization of F . At the
extremum, the entropy function results into a U-duality invariant combination
of the brane charges reproducing the black hole entropy and the black string
central charge, respectively. Scalars fall into two classes: “fixed scalars” with
strictly positive masses and “flat scalars” not fixed by the attractor equations.
Flat scalars span the moduli space of the solution. The moduli spaces will be
given by symmetric product spaces that can be interpreted as the intersection of
the charge orbits of the various branes entering in the solution. In addition one
finds extra “geometric moduli” (radii and Wilson lines) that are not fixed by the
attractors. Entropy and central charges are entirely determined in terms of the
black hole(string) charges and do not depend on the moduli of the solution.

• In the second part we apply the entropic formalism to the study of AdS4 flux
vacua in N D 2 gauged supergravities with an arbitrary number of vector and
hyper-multiplets [10]. We find generically a tower of AdS vacua with N D 1

unbroken supersymmetry and two N D 0 towers. We show that both supersym-
metric and non-supersymmetric solutions solve a supersymmetry inspired system
of linear differential equations. Finally we derive a U-duality invariants formula
for the cosmological constant characterizing the vacuum solution.

2.2 Area Law for Central Charges

Before specifying to a particular supergravity theory, here we derive a universal
Bekenstein-Hawking like formula underlying any gravity flow (supersymmetric or
not) ending on an AdS point. Let AdSd � ˙m, with ˙m a product of Einstein
spaces, be the near-horizon geometry of an extremal black .d �2/-brane solution in
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DDd C m dimensions. After reduction along ˙m this solution can be thought as
the vacuum of a gauged gravity theory in d dimensions. To keep the discussion, as
general as possible, we analyze the solution from its d -dimensional perspective. The
only fields that can be turned on consistently with theAdSd symmetries are constant
scalar fields. Therefore we can describe the near-horizon dynamics in terms of a
gravity theory coupled to scalars 'i with a potential Vd . The potential Vd depends
on the details of the higher-dimensional theory. The “entropy function” is given by
evaluating this action at the AdSd near horizon geometry (with constant scalars
'i � ui )

F D � 1

16�Gd

Z
ddx

p�g .R�Vd/ D ˝AdSd r
d

AdS

16�Gd


d.d � 1/

r2AdS

C Vd

�
; (2.1)

with rAdS the AdS radius and˝AdSd the regularized volume of an AdS slice of radius
one. Following [15] we take for ˝AdSd the finite part of the AdS volume integral
when the cut off is sent to infinity. More precisely we write the AdS metric

ds2 D rdAdS.d�
2 � sinh2� d	2 C cosh2� d˝2

d�2/; (2.2)

with 	 2 Œ0; 2��, 0 � � � cosh�1 r0 and d˝d�2 the volume form of a unitary (d-2)-
dimensional sphere. The regularized volume˝AdSd is then defined as the (absolute
value of the) finite part of the volume integral

R
ddx

p�g in the limit r0 ! 1.
This results into

˝AdSd D 2�

.d � 1/
˝d�2: (2.3)

A different prescription for the volume regularization leads to a redefinition of the
entropy function by a charge independent irrelevant constant. The “entropy” and
near-horizon geometry follow from the extremization of the entropy function F
with respect to the fixed scalars ui and the radius rAdS

@F

@ui
/ @Vd

@ui
Š� 0;

@F

@rAdS
/ r2AdS Vd C .d � 1/ .d � 2/

Š� 0: (2.4)

The first equation determines the values of the scalars at the horizon. The second
equation determines the radius of AdS in terms of the value of the potential at the
minimum. Notice that solutions exist only if the potential Vd is negative. Indeed, as
we will see in the next section, Vd is always composed from a part proportional to
a positive definite effective potential Veff generated by the higher dimensional brane
charges and a negative contribution �R˙ related to the constant curvature of the
internal space ˙ (see Eq. 2.30 below). The “entropy” is given by evaluating F at
the extremum and can be written in the suggestive form
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F D ˝d�2 rd�2
AdS

4Gd
D ˝d�2 rd�2

AdS
A

4GD
; (2.5)

where A denotes the area of ˙m, ˝d�2 is the volume of the unit (d-2)-sphere,
and GD D AGd the D-dimensional Newton constant. For black holes (d D 2),
this formula is nothing than the well known Bekenstein-Hawking entropy formula
S D A

4GD
and it shows that F can be identified with the black hole entropy. For

black strings (d D 3), 3
�
F D 3rAdS

2G3
reproduces the central charge c of the two-

dimensional CFT living on the AdS3 boundary [16]. In general, the scaling of (2.5)
with the AdS radius matches that of the supergravity c-function introduced in [13]
and it suggests that F can be interpreted as the critical value of the central charge c
reached at the end of the attractor flow.

2.3 The Entropy Function

The bosonic action of supergravity in D-dimensions can be written as

SSUGRA D
Z �
R 	 1 � 1

2
gij .�/ d�

i ^ 	d�j � 1
2
Nn˙n.�

i / F n
n ^ 	F˙n

n C LWZ
�
;

(2.6)
with Fn

n , denoting a set of n-form field strengths, �i the scalar fields living on
a manifold with metric gij .�/ and LWZ some Wess-Zumino type couplings. The
scalar-dependent positive definite matrix Nn˙n.�

i / provides the metric for the
kinetic term of the n-forms. The sum over n is understood. In the following we will
omit the subscript n keeping in mind that both the rank of the forms and the range of
the indices  depends on n. We will work in units where 16�GD D 1, and restore
at the end the dependence on GD . For simplicity we will restrict ourselves here to
solutions with trivial Wess-Zumino contributions and this term will be discarded in
the following.

We look for extremal black p-brane intersections with near-horizon geometry of
topology MD D AdSpC2 � Sm � T q . Explicitly we look for solutions with near-
horizon geometry

ds2 D r2AdS ds
2
AdSpC2

C r2S ds
2
Sm C

qX
kD1

r2k d�
2
k ;

F  D pa ˛
a C erˇr ; �i D ui ; (2.7)

with r D .rAdS; rS ; rk/, describing the AdS and sphere radii, and ui denoting the
fixed values of the scalar fields at the horizon. ˛a and ˇr denote the volume forms
of the compact f˙ag and non-compact f˙rg cycles, respectively, inMD . The forms
are normalized such as
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Z
˙a

˛b D ıba;

Z
˙r

ˇs D ırs : (2.8)

They define the volume dependent functions Cab; Crs

Z
MD

˛a ^ 	˛b D Cab;

Z
MD

ˇr ^ 	ˇs D Crs; (2.9)

describing the cycle intersections. In particular, for the factorized products of AdS
space and spheres we consider here, these functions are diagonal matrices with
entries

Cab D ıab
vD

vol.˙a/2
; Crs D ırs

vD
vol.˙r/2

; (2.10)

with vD the volume ofMD . Integrals over AdS spaces are cut off to a finite volume,
according to the discussion around (2.3).

The solutions will be labeled by their electric qIr and magnetic charges pIa
defined as

pa D
Z
˙a

F ;

qr D
Z

�˙r

N˙ 	 F˙ D CrsN˙e
˙s; (2.11)

where we denote by 	˙r the complementary cycle to ˙r in MD.
Let us now consider the “entropy function” associated to a blackp-brane solution

with near-horizon geometry (2.7). The entropy functionF is defined as the Legendre
transform in the electric charges qr of SSUGRA evaluated at the near-horizon
geometry

F D er qr � SSUGRA

D er qr � R vD C 1
2
N˙ pa p

˙
b C

ab � 1
2
N˙ e

re˙s Crs; (2.12)

The fixed values of r; ui ; eIr at the horizon can be found via extremization of F
with respect to r , ui , and eIr :

@F

@r
D @F

@ui
D @F

@er
D 0: (2.13)

From the last equation one finds that

qr D N˙ e
˙s Crs; (2.14)



52 J.F. Morales

in agreement with the definition of electric charges (2.11). Solving this set of
equations for er in favor of qr one finds

F.Q; r; ui / D �R.r/ vD.r/C 1
2
QT �M.r; ui / �Q; (2.15)

with

M.r; ui / D
�
N˙.ui /C ab.r/ 0

0 N˙.ui /C rs.r/

�
; Q

�
p˙a
q˙r

�
; (2.16)

and N˙ , C rs denoting the inverse of N˙ and Crs respectively.
It is convenient to introduce the scalar and form intersection “vielbeine”

VM ; J ab; J
0rs according to

N˙ D VM VN˙ ıMN ; C ab D J acJ bc; C rs D J 0rt J 0st : (2.17)

From (2.10) one finds for the factorized products of AdS space and spheres

J ab D ıab
v1=2D

vol.˙a/
; J 0rs D ırs

vol.˙r/

v1=2D
: (2.18)

The electric and magnetic central charges can be written in terms of these quantities
as

ZMa
mag D VM J ba pb ; Zr

el;M D .V�1/M J 0sr qs: (2.19)

Combining (2.17) and (2.19) one can rewrite the scalar dependent part of the entropy
function as the effective potential

Veff D 1
2
QT �M.r; ui / �Q D 1

2
ZMa

mag Z
Ma
mag C 1

2
Zr

el;M Z
r
el;M : (2.20)

For the n D D=2-forms in even dimensions the argument is similar, except for
the possibility of an additional topological term

SSUGRA D
Z 


R 	1� 1
2
I˙.�i / F 

n ^	F˙
n � 1

2
R˙.�

i / F 
n ^F˙

n

�
; (2.21)

(note that R˙ D �R˙, with � D .�1/ŒD=2�). Following the same steps as before
one finds

Veff
1
2
QT �M.r; ui / �Q; (2.22)

with

M.r; ui / � Cab

�
.I C �RI�1R/˙ �.RI�1/˙

.I�1R/˙ .I�1/˙
�
; Q

�
pa
qa

�
: (2.23)
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For R D 0 we are back to the diagonal matrix (2.16). In general, thus we obtain for
the D=2-forms an effective potential

Veff D 1
2
QT �M.r; ui / �Q D 1

2
ZMa ZMa; (2.24)

with

ZMa D J ba .VM pb C VM qb/; (2.25)

where VMI D .VM ;VM/ is the coset representative.
Summarizing, in the case of a general supergravity with bosonic action (2.6) the

entropy function is given by

F.Q; r; ui / D �R.r/vD.r/C Veff.u
i ; r/; (2.26)

with the intersecting-branes effective potential

Veff D 1
2

X
n

QT
n �Mn.r ; u

i / �Qn

D 1
2
ZMa ZMa C 1

2

X
n¤D=2



ZMnan

mag ZMnan
mag CZ

rn
el;Mn

Z
rn
el;Mn

�
; (2.27)

where the first contribution in the second line comes from the n D D=2 forms.
Notice that there are two types of interference between the potentials coming from
forms of different rank: First, they in general depend on a common set of scalar
fields and second, they carry a non-trivial dependence on the AdS and the sphere
radii. Besides this important difference the critical points of the effective potential
can be studied with the standard attractor techniques for vector like charged black
holes.

The near-horizon geometry follows from the extremization equations

rVeff � @ui Veff dui 1
2

X
n

QT
n � rMn.r ; u

i / �Qn
Š� 0; (2.28)

@r

��R.r/ vD.r/C Veff.u
i ; r/

	 Š� 0 : (2.29)

We conclude this section by noticing that after reduction to AdSd , the
D-dimensional effective potential Veff combines with the contribution coming
from the scalar curvatureR˙ of the internal manifold into the d -dimensional scalar
potential

Vd D 1

vD
Veff �R˙ (2.30)

appearing in (2.1). Notice that the resulting potential is not positive defined and
therefore an AdS vacuum is supported.
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2.4 N D .1; 1/ in D D 6

In this section we illustrate the entropy formalism in the context of N D .1; 1/ in
D D 6 dimensions. In D D 6 dimensions, supergravities contain scalars, vectors
and two forms and one finds both black hole and black string extremal solutions.

2.4.1 N D .1; 1/, D D 6 Supersymmetry Algebra

The half-maximal .1; 1/,D D 6 Poincaré supersymmetry algebra has Weyl pseudo-
Majorana supercharges and R-symmetry SO .4/ � SU .2/L �SU .2/R. Its central
extension reads as follows (see e.g. [17–19])

n
QA
� ;QB

ı

o
D �

�

�ıZ
ŒAB�
� C �

���

�ı Z
.AB/
��� I (2.31)

n
Q PA

P� ;Q PB
Pı
o

D �
�

P� Pı Z
Œ PA PB�
� C �

���

P� Pı Z
. PA PB/
��� I (2.32)

n
QA
� ;Q PA

Pı
o

D C� PıZ
A PA C �

��

� Pı Z
A PA
�� ; (2.33)

where A; PA D 1; 2, so that the (L,R)-chiral supercharges are SU.2/.L;R/-doublets.

Notice that Z.AB/
��� D Z

. PA PB/
��� D 0, because the presence of the term Z.AB/

��� is
inconsistent with the bound p 6 D�4, due to the assumed asymptotical flatness of
the (intersecting) black p-brane space-time background.

Strings can be dyonic, and are associated to the central charges ZŒAB�
� ;Z

Œ PA PB�
� in

the .1; 1/ of the R-symmetry group. They are embedded in the 1˙ (here and below
the subscripts denote the weight of SO.1; 1/) of the U -duality group SO .1; 1/ �
SO .4; nV /. On the other hand, black holes and their magnetic duals (black two-
branes) are associated to ZA PA;ZA PA

�� in the .2; 20/ of SO .4/, and they are embedded
in the .nV C 4/˙ 1

2
of SO .1; 1/� SO .4; nV /.

In our analysis, the corresponding central charges are denoted respectively by
ZC and Z� for dyonic strings, and by Zel;A PA and Zmag;A PA for black holes and their
magnetic duals.

2.4.2 N D .1; 1/, D D 6 Supergravity

The bosonic field content of half-maximal N D .1; 1/ supergravity in D D 6

dimensions coupled to nV matter (vector) multiplets consists of a graviton, .nV C4/
vector fields with field strengths FM

2 , M D 1; : : : ; .nV C 4/, a three form field
strengthH3, and 4nV C 1 scalar fields parametrizing the scalar manifold
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M D SO .1; 1/ � SO .4; nV /

SO .4/ � SO .nV / ; dimR M D 4nV C 1; (2.34)

with the dilaton � spanning SO .1; 1/, and the 4nV real scalars zi (i D 1; : : : ; 4nV )
parametrising the quaternionic manifold SO.4;nV /

SO.4/�SO.nV / . The U-duality group is
SO .1; 1/ � SO .4; nV / and the field strengths transform under this group in the
representations

F
2 W .nV C 4/C 1

2
;

H3 W 1˙1 : (2.35)

The coset representative L M
 , ;M D 1; : : : ; 4 C nV , of SO.4;nV /

SO.4/�SO.nV / sits in
the .4;nV / representation of the stabilizer H D SO.4/ � SO.nV / � SU.2/L �
SU.2/R � SO.nV /, and satisfies the defining relations

LM �MN L
N
˙ D �˙ ; LM �

˙ LN˙ D �MN ; (2.36)

with the SO.4; nV / metric �˙ . It is related to the vielbein VM from (2.17) by

VM D e��=2 LM ; (2.37)

and its inverse is defined by LML
N
 D ıNM . The Maurer-Cartan equations take the

form

PMN D LM dzLN D LM @iLN d zi ; (2.38)

where PMN is a symmetric off-diagonal block matrix with non-vanishing entries
only in the .4 � nV /-blocks. Here and below we use ıMN to raise and lower the
indicesM;N .

The solutions will be specified by the electric and magnetic three-form charges q,
p, and the two-form charges p, q˙ . The quadratic and cubic U-duality invariants
that can be built from these charges are

I2 D pq; I3 D 1
2
�˙ p

p˙p; I 0
3 D 1

2
�˙ qq˙q : (2.39)

The central charges (2.19) and (2.25) are given by

Zmag;M D e��=2 J2 LM p; Zel;M D e�=2 J 0
2 L


M q;

Z˙ D 1p
2
J3 .e

� p ˙ e�� q/: (2.40)

Using (2.36), the U-duality invariants (2.39) can be rewritten in terms of the central
charges as
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1
2
.Z2C �Z2�/ D J 23 I2;

1

2
p
2
�MN Zmag;MZmag;N .ZC CZ�/ D .J3J

2
2 / I3;

1

2
p
2
�MN Zel;MZel;N .ZC �Z�/ D .J3J

02
2 / I 0

3: (2.41)

The effective potential Veff (2.27) for this theory is given by

Veff D 1
2
Z2C C 1

2
Z2� C 1

2
Z2

el;M C 1
2
Z2

mag;M : (2.42)

From the Maurer-Cartan equations (2.38) one derives

rZmag;M D �PMN Zmag;N � 1
2
P� Zmag;M ;

rZel;M D PMN Zel;N C 1
2
P� Zel;M ;

rZ˙ D P� Z�: (2.43)

with P� D d�. The attractor equations (2.28) thus translate into

PMN .Zel;MZel;N �Zmag;MZmag;N /C P� .2ZCZ� � 1
2
Z2

mag;M C 1
2
Z2

el;M /
Š� 0 :

(2.44)

Splitting the indexM into .A PA/ D 1; : : : ; 4, (A; PA D 1; 2) (central charges sector)
and I D 5; : : : ; .nV C 4/ (matter charges sector), and using the fact that only
the components PI;A PA D PA PA;I are non-vanishing, the attractor equations can be
written as

Zel;A PAZel;I �Zmag;A PAZmag;I D 0;

4ZCZ� �Zmag;A PAZ
A PA
mag CZel;A PAZ

A PA
el �Z2

mag;I CZ2
el;I D 0 : (2.45)

IndicesA; PA are raised and lowered by �AB; � PA PB . We will study the solutions of these
equations, their supersymmetry-preserving features, and the corresponding moduli
spaces. BPS solutions correspond to the solutions of (2.45) satisfying

Zmag;I D Zel;I D 0; (2.46)

as follows from the Killing spinor equation ı�IA � T I���
���A D 0 with T I�� the

matter central charge densities.
Let us finally consider the moduli space of the attractor solutions, i.e. the scalar

degrees of freedom which are not stabilized by the attractor mechanism at the
classical level. For homogeneous scalar manifolds this space is spanned by the
vanishing eigenvalues of the Hessian matrix rrVeff at the critical point. Using
the Maurer-Cartan equations (2.43) one can write rrVeff at the critical point as
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rrVeff D PI;A PAP
A PA
J .2Zel;IZel;J C 2Zmag;IZmag;J /

CP I;A PAIP I;B PB .2Zel;A PAZel;B PB C 2Zmag;A PAZmag;B PB/

CP�P� .2Z2C C 2Z2� C 1
2
Z2

mag;M C 1
2
Z2

el;M /

C2P�P I;A PA .Zel;IZel;A PA CZmag;IZmag;A PA/

D HIA PA;JB PBP
I;A PAP J;B PB C 2HIA PA;�P

I;A PAP� CH�;�P�P�; (2.47)

which defines the Hessian symmetric matrix H with componentsHIA PA;JB PB ,HIA PA;� ,
H�;� . By explicit evaluation of the Hessian matrix for both BPS and non-BPS
solutions we will show that eigenvalues are always zero or positive implying the
stability (at the classical level) of the solutions under consideration here. We will
now specify to the different near-horizon geometries and study the BPS and non-
BPS solutions of the attractor equations.

2.4.3 AdS3 � S 3

Let us start with an AdS3�S3 near-horizon geometry, in which only the three-form
charges (magnetic p and electric q) are switched on (dyonic black string). There are
no closed two-forms supported by this geometry and therefore two-form charges are
not allowed. The near-horizon geometry ansatz can then be written as

ds2 D r2AdS ds
2
AdS3 C r2S ds

2
S3
; H3 D p ˛S3 C e ǍdS3 : (2.48)

The attractor equations (2.45) are solved by

Zmag;M D ZelM D Z� D 0; or equivalently; (2.49)

Zmag;M D Zel;M D ZC D 0: (2.50)

Solution (2.49) has I2 > 0, whereas solution (2.50) has I2 < 0; they are both
1
4
-BPS, and they are equivalent, because the considered theory is non-chiral.

Plugging the solutions (2.49) or (2.50) into (2.42) one can write the effective
potential at the horizon in the scalar independent form

Veff D 1
2
Z2C C 1

2
Z2� D 1

2
jZ2C �Z2�jJ 23 jI2j D

�
vAdS3
vS3

�
jI2j; (2.51)

ExtremizingF in r, one finds the entropy function and near-horizon AdS and sphere
radii
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Veff D vAdS3

vS3
jI2j; rAdS D rS D jI2j1=4

2�
;

F D vAdS3�S3
�
6

r2AdS

� 6

r2S

�
C Veff D jI2j : (2.52)

Now let us consider the moduli space of the solutions. Plugging (2.49) and (2.50)
into (2.47) one finds that the only non-trivial component of the Hessian matrix is

H�� D 2Z2C C 2Z2� D 4Veff > 0: (2.53)

Therefore, the Hessian matrix H for the AdS3 � S3 solution has 4nV vanishing
eigenvalues and one strictly positive eigenvalue, corresponding to the dilaton
direction. Consequently, the moduli space of non-degenerate attractors with near-
horizon geometry AdS3 � S3 is the quaternionic symmetric manifold

MBPS D SO .4; nV /

SO .4/ � SO .nV / : (2.54)

This result is also evident from the explicit form of the attractor solution Z� D 0:
only the dilaton is stabilized, while all other scalars are not fixed since the remaining
equationsZel;M D Zmag;M D 0 are automatically satisfied for p D q D 0.

2.4.4 AdS3 � S 2 � S 1

For solutions with near-horizon geometry AdS3 � S2 � S1, there is no support for
electric two-form charges and therefore e D 0. We set also the electric three-form
charge e to zero otherwise no solutions are found. The near-horizon ansatz becomes

ds2 D r2AdS ds
2
AdS3 C r2S ds

2
S2

C r21d�
2;

F 
2 D p ˛S2; H3 D p ˛S2�S1 : (2.55)

The attractor equations (2.45) admit two types of solutions with non trivial central
charges

BPS W ZC D Z�; Zmag;A PAZ
A PA
mag D 4Z2C I (2.56)

non � BPS W ZC D Z� Z2
mag;I D 4Z2C: (2.57)

Plugging the solution into (2.41) one finds the relation

ˇ̌
J 22 J3 I3

ˇ̌ D 2
p
2Z3C: (2.58)



2 Intersecting Attractors 59

that allows us to write the effective potential (2.42) at the horizon in the scalar
independent form

Veff D 3Z2C D 3
2

ˇ̌
J 22 J3 I3

ˇ̌ 2
3 ; (2.59)

with

.J 22 J3/
2
3 D vAdS3 v

1
3

S1

vS2
; (2.60)

The black string central charge and the near-horizon radii follow from
r-extremization of the entropy function F and are given by

Veff D 3
2

vAdS3

vS2
v1=3
S1

jI3j 23 ; rAdS D 2rS D jI3j1=3
2�v1=3

S1

;

F D vAdS3�S2�S1
 

6

r2AdS3

� 2

r2
S2

!
C Veff D jI3j : (2.61)

Note that the radius of the extra S1 is not fixed by the extremization equations.
Besides this geometric modulus the solutions can be also deformed by turning on
Wilson lines for the vector field potentials A5 D c. This is in contrast with the
more familiar case of black holes in D D 4; 5 where the near-horizon geometry is
completely fixed at the end of the attractor flow. As we shall see in the following, this
will be always the case for extremal black p-branes. “Geometric moduli” describing
the shapes ad volumes of the extra circles and constant values of field potentials
along these circles remain unfixed at the horizon. It is important to stress, that
the extreme value of the entropy function does not depend on the moduli of the
solution and is given entirely by a U-duality invariant combination of the black
brane charges.

Now, let us consider the moduli spaces of the two solutions. The BPS solution
(2.56) has remaining symmetry SO .3/ � SO.nV /, because by using an SO .4/
transformation this solution can be recast in the form

Zmag;A PA D 2 z ıA1ı PA1; ZC D Z� D z; Zel;M D 0: (2.62)

Notice that both choices of sign satisfy the Killing spinor relations (2.46) and
therefore correspond to supersymmetric solutions. Plugging (2.62) into the Hessian
matrix (2.47) one finds

H D z2

0
@8ıIJ ıA1ıB1ı PA1ı PB1 04nV �1

01�4nV 6

1
A : (2.63)
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This matrix has 3nV vanishing eigenvalues and nV C 1 strictly positive eigenvalues,
corresponding to the dilaton direction plus the nV directions PI;11. Consequently,
the moduli space of the BPS attractor solution (2.56) with near-horizon geometry
AdS3 � S2 � S1 is the symmetric manifold

MBPS D SO.3; nV /

SO.3/ � SO.nV / : (2.64)

More precisely, the scalars along PI;A PA in the .4;nV / of the group H decompose
with respect to the symmetry group SO.3/ � SO.nV / as:

.4;nV / ! .3;nV /˚ .1;nV / ; (2.65)

and only the .1;nV / representation is massive, together with the dilaton. The .3;nV /
representation remains massless and contains all the massless Hessian modes of the
attractor solutions.

The analysis of the moduli space for the non-BPS solution follows closely that
for the BPS one. Now the symmetry is SO.4/� SO.nV � 1/ and using an SO.nV /
transformation such a solution can be recast as follows:

Zmag;I D 2z ıI1; ZC D Z� D z; Zel;M D Zmag;A PA D Zel;A PA D 0: (2.66)

Plugging (2.66) into the Hessian matrix (2.47), now one finds

H D z2

0
@ 8ıA PAıB PBıJ1ıI1 04nV �1

01�4nV 6

1
A : (2.67)

This Hessian matrix has 4.nV � 1/ vanishing eigenvalues and 4C 1 strictly positive
eigenvalues, corresponding to the dilaton direction plus the 4 P1;A PA directions.
Consequently, the moduli space of the non-BPS attractor solution with near-horizon
geometry AdS3 � S2 � S1 is the symmetric manifold

MnonBPS D SO.4; nV � 1/
SO.4/ � SO.nV � 1/

: (2.68)

More precisely, the scalars along PI;A PA in the .4;nV / of the group H decompose
with respect to the symmetry group SO.4/ � SO.nV � 1/ as:

.4;nV / ! .4;nV � 1/˚ .4; 1/ ; (2.69)

and only the .4; 1/ representation is massive, together with the dilaton. The
.4;nV � 1/ representation remains massless, and it contains all the massless Hessian
modes of the attractor solution.
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2.4.5 AdS2 � S 3 � S 1

For solutions with AdS2 � S3 � S1 near-horizon geometry, there is no support for
magnetic two-form charges and therefore Zmag;M D 0. The near-horizon ansatz
becomes

ds2 D r2AdS ds
2
AdS2 C r2S ds

2
S3

C r21d�
2;

F 
2 D e ǍdS2 ; H3 D e ǍdS2�S1 : (2.70)

The fixed-scalar equations (2.44) admit two type of solutions

BPS W Zmag;M D Zel;I D 0; ZC D �Z�; Zel;A PAZ
A PA
el D 4Z2C;

non � BPS W Zmag;M D Zel;A PA D 0; ZC D �Z�; Z2
el;I D 4Z2C:

(2.71)

Now one finds

J
02
2 J

0
3 I 0

3 D 2
p
2Z3C; (2.72)

and the effective potential (2.42) at the horizon can be written in the scalar
independent form

Veff D 3Z2C D 3
2

jJ 02
2 J

0
3 I 0

3j
2
3 ; (2.73)

with
.J

02
2 J

0
3/

2
3 D vAdS2

v1=3
S1

vS3
; (2.74)

Extremizing F in the radii r one finds

Veff D 3
2

vAdS2

vS3 v1=3
S1

jI 0
3j

2
3 ; rAdS D 1

2
rS D jI 0

3j1=6
2�v1=3

S1

;

F D vAdS2�S3�S1
 

2

r2AdS2

� 6

r2S3

!
C Veff D jI 0

3j1=2 : (2.75)

for the black hole entropy and AdS and sphere radii. Again, the radius of the extra
S1 is not fixed by the extremization equations. The analysis of the moduli spaces
follows mutatis mutandis that of the AdS3 � S2 attractors (replacing magnetic by
electric charges) and the results are again given by the symmetric manifolds (2.64)
and (2.68).
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Table 2.1 Supersymmetric M-intersections

0 1 2 3 4 5 6 7 8 9 10 Near-horizon

M2 � � � � � � � � � � � AdS3 � S3 � T 5

M5 � � � � � � � � � � �
M2 � � � � � � � � � � � AdS2 � S3 � T 6

M2 � � � � � � � � � � �
M2 � � � � � � � � � � �
M5 � � � � � � � � � � � AdS3 � S2 � T 6

M5 � � � � � � � � � � �
M5 � � � � � � � � � � �

2.5 The Lift to Eleven Dimensions

The attractor solutions we have discussed have a simple lift to higher dimensions
all the way up to 11-dimensional supergravity. The black string solution with
AdS3 � S3 near-horizon geometry follow from dimensional reduction of M2M5
branes intersecting on a string. The solution with AdS3 � S2 � S1 follow from the
reduction of a triple M2-intersection on a string. Finally the AdS2 � S3 � S1 near-
horizon geometry corresponds to a triple M5 intersection on a time-like line. The
orientations of the M2,M5 branes in the three cases are summarized in Table 2.1.

After dimensional reductions down to D D 6; 7; 8-dimensions the solutions
expose a variety of charges with respect to forms of various rank. Indeed, a
single brane intersection in D D 11 leads to different solutions after reduction
to D-dimensions depending on the orientation of the M-branes along the internal
space. Different solutions carry charges with respect to a different set of forms
in the D-dimensional supergravity. They can be fully characterized by U-duality
invariants built out of the brane charges. The list of U-duality invariants leading
to extremal black p-brane solutions in D D 6; 7; 8 dimensions is displayed in
Table 2.2. As expected, there is a one-to-one correspondence between the entries
in this table and the solutions that follow from extremization of the entropy function
in the correspondingD dimensional supergravity. We list also the U-duality groups,
the representation content and the corresponding moduli spaces.

2.6 AdS4 Flux Vacua

AdS4 vacua arise in string theory compactifications with fluxes and can be thought
as the near horizon geometries of extremal black brane solutions. In fact, the vacuum
conditions of flux compactifications display many analogies with the attractor
equations defining the near-horizon limit of extremal black holes. This was first
shown in [5] in the context of N D 1 orientifolds of type IIB on Calabi-Yau three-
folds. In that paper, first it was observed that the N D 1 scalar potential has a
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Table 2.2 Electric and magnetic charges for M-brane intersections. p D 0; 1 corresponds to
intersections on a black hole and a black string respectively. qn(pn) denotes the electric(magnetic)
charge of the brane solution and n specifies the rank of the form

d p U-duality Charges Reps Moduli space

6 1 SO.5; 5/ p3q3 10 � 10 SO.5;4/

SO.5/�SO.4/

1 p2p2p3 16s � 16s � 10 SO.4;3/

SO.4/�SO.3/

0 q2q2q3 16c � 16c � 10 SO.4;3/

SO.4/�SO.3/

7 1 SL.5/ p3q3 5 � 50 SL.4/

SO.4/

1 p2p2q3 100 � 100 � 5 SO.3;2/

SO.3/�SO.2/

1 p3p3p2 50 � 50 � 100 SL.3/

SO.3/

0 q2q2p3 10 � 10 � 50 SO.3;2/

SO.3/�SO.2/

0 q3q3q2 5 � 5 � 10 SL.3/

SO.3/

8 1 SL.3/ � SL.2/ p3q3 .30; 1/� .3; 1/


SL.2/

SO.2/

�2
1 p4q4 .1; 2/� .1; 2/ SL.3/

SO.3/

1 p2p3q4 .3; 2/� .30; 1/� .1; 2/ SL.2/

SO.2/

1 p3p3p3 .30; 1/� .30; 1/� .30; 1/ SL.2/

SO.2/

0 q2q3p4 .30; 2/� .3; 1/� .1; 2/ SL.2/

SO.2/

0 q3q3q3 .3; 1/� .3; 1/ � .3; 1/ SL.2/

SO.2/

form close to the N D 2 black hole potential, with the black hole central charge
Z replaced by the combination e

K
2 W involving the N D 1 Kähler potential K

and superpotential W , and with the NSNS and RR fluxes playing the role of the
black hole electric charges. Then, exploiting the underlying special Kähler geometry
of the Calabi-Yau complex structure moduli space, the differential equations both
for black hole attractors and for flux vacua were recast in a set of algebraic
equations. Explicit attracting Calabi-Yau solutions were derived. A recent review
on the subject, including a complete list of references, can be found in [11].

Here we develop the above ideas focussing on a four-dimensional N D 2 setup.
We consider general N D 2 gauged supergravities related to type II theories via
flux compactification on non-Calabi-Yau manifolds. At the four dimensional level,
the family of supergravities we consider can be obtained by deforming the Calabi-
Yau effective action. The latter is characterized by the choice of two special Kähler
manifolds M1 and M2: while M2 defines the vector multiplet scalar manifold, M1

determines via c-map the quaternionic manifold MQ parameterized by the scalars in
the hypermultiplets [20, 21]. The deformation we study is the most general abelian
gauging of the Heisenberg algebra of axionic isometries which is always admitted
by MQ [22–24]. From the point of view of compactifications, this deformation is
expected to correspond to a dimensional reduction of type IIA/IIB on SU.3/ and
SU.3/ � SU.3/ structure manifolds (and possibly non-geometric backgrounds) in
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the presence of general NSNS and RR fluxes [25–30]. In this perspective, our setup
provides a unifying framework for the study of N D 2 flux compactifications of
type II theories on generalized geometries.

We start our analysis in Sect. 2.6.1 by reconsidering the expression derived
in [24] for the N D 2 scalar potential associated with the gauging described
above. This expression is manifestly invariant under the symplectic transformations
rotating the flux charges together with the symplectic sections of both the special
Kähler geometries on M1 and M2. We derive a convenient reformulation of the
scalar potential in terms of a triplet of Killing prepotentials Px ; x D 1; 2; 3,
and their covariant derivatives. The Px encode the informations about the gauging,
and play a role analogous to the central charge Z of N D 2 black holes, or to
the covariantly holomorphic superpotential e

K
2 W of N D 1 compactifications.

Interestingly, in our reformulation the only derivatives appearing are the special
Kähler covariant derivatives with respect to the coordinates on M1 and M2, with no
explicit contributions from the MQ coordinates orthogonal to M1. This rewriting is
advantageous since it allows to study the hypersector with the powerful techniques
of special Kähler geometry.

In Sect. 2.6.2 we move to the study of the extremization equations for the
potential. These are spelled out in Sect. 2.6.2, and resemble the attractor equations
of N D 2 black holes, though they are more complicated to solve. In Sect. 2.6.3
we present a supersymmetry inspired set of linear differential equations that imply
the vacuum equations and encode all (supersymmetric or not) extremal solutions
we found. In Sect. 2.6.4 we find explicit AdS solutions for the wide class of
supergravities whose scalar manifolds M1 and M2 are symmetric with cubic
prepotentials. These solutions generalize those derived in [31] in the context of
flux compactifications of massive type IIA on coset spaces with SU.3/ structure,
allowing for an arbitrary number of vector multiplets (Sect. 2.6.4) and hypermul-
tiplets (Sect. 2.6.4), as well as for a large set of fluxes. In Sect. 2.6.5 we derive a
manifestly U-invariant expression for the AdS cosmological constant. Appendix A.1
illustrates how the gaugings we consider can arise from dimensional reduction of
type II theories on manifolds with SU.3/ structure.

2.6.1 Revisiting the N D 2 Flux Potential

In this section we reconsider the scalar potential V derived in [24] by gauging
the N D 2 effective action for type II theories on Calabi-Yau three-folds,
and we reformulate it in terms of Killing prepotentials Px and their special
Kähler covariant derivatives. From a dimensional reduction perspective, V arises
in general type II flux compactifications on 6d manifolds with SU.3/ and SU.3/�
SU.3/ structure (and non-geometric backgrounds) preserving eight supercharges
[25–30]. An explicit dictionary between the gauging and the fluxes is presented
in Appendix A.1 for type IIA on SU.3/ structures, together with a further list of
references.
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Scalars in N D 2 supergravity organize in vector multiplets and hypermultiplets,
respectively parameterizing a special Kähler manifold M2 and a quaternionic
manifold MQ. In the cases of our interest, MQ is derived via c-map from a
special Kähler submanifold M1 [20, 21]. For both type IIA/IIB compactifications,
we denote by h1 C 1 the number of hypermultiplets (where the 1 is associated
with the universal hypermultiplet), and by h2 C 1 the number of vector fields
(including the graviphoton in the gravitational multiplet), so that h1 D dimCM1 and
h2 D dimCM2. Furthermore, we introduce complex coordinates zi ; i D 1; : : : h1
on M1, and xa ; a D 1; : : : ; h2 on M2, and we denote by

˘ I

1 D e
K1
2

�
ZI

GI

�
; I D .0; i/ D 0; 1; : : : ; h1 ;

˘A

2 D e
K2
2

�
XA

FA

�
; A D .0; a/ D 0; 1; : : : ; h2 (2.76)

the covariantly holomorphic symplectic sections of the special Kähler geometry on
M1 and M2 respectively. All along the paper, indices in a double font like I and A

correspond to symplectic indices. The respective ranges are I D 1; : : : ; 2.h1 C 1/

and A D 1; : : : ; 2.h2 C 1/ .
To complete the geometric data on M1 and M2, we introduce the respective

Kähler potentialsK1; K2, Kähler metrics gi N| ; ga Nb ; and symplectic invariant metrics
C1; C2 :

K1 D � log i
�
Z
IGI �ZIGI

�
; gi N| D @i @ N|K1

K2 D � log i
�
X
AFA � XAFA

�
; ga Nb D @a@ NbK2

C1 IJ D C
IJ

1 D
�
0 1

�1 0

�
D C2AB D C

AB

2 ) CABC
BC D �ıC

A
;

CIJC
JK D �ıK

I
:

Finally, the coordinates zi 2 M2 are completed to coordinates on MQ by the real
axions 
I D .
I ; Q
I /T arising from the expansion of the higher dimensional RR
potentials, together with the 4d dilaton ' and the axion a dual to the NSNS 2–form
along the 4d spacetime.

The quaternionic manifold MQ always admits a Heisenberg algebra of axionic
isometries [22], which are gauged once fluxes are turned on in the higher-
dimensional background [23, 24]. The NSNS fluxes, including geometric (and
possibly non-geometric) fluxes, are encoded in a real ‘bisymplectic’ matrix QI

A
,

while the RR fluxes are encoded in a real symplectic vector cA. Explicitly,
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QI

A
D
 
e I
A eAI

mAI mA
I

!
; cA D

 
pA

qA

!
: (2.77)

Abelianity and consistency of the gauging impose the following constraints on the
charges [23, 24]

QT
C2Q D QC1Q

T D cTQ D 0 : (2.78)

In the context of dimensional reductions, these can be traced back to the Bianchi
identities for the higher-dimensional field strengths, together with the nilpotency of
the exterior derivative on the compact manifold [26, 28] (cf. Appendix A.1).

The scalar potential generated by the gauging can be written as the sum of two
contributions: V D VNS C VR, where VNS can be seen to come from the reduction
of the NSNS sector of type II theories, while VR derives from the RR sector. Both
these contributions take a symplectically invariant form, and read [24]

VNS D�2e2'
h
˘

T

1
eQT

M2
eQ˘1 C˘

T

2 QM1Q
T˘2

C4˘ T

1 C
T
1 Q

T
�
˘2˘

T

2 C˘2˘
T
2

�
QC1˘1

i

VR D� 1
2
e4'.c C eQ
/TM2 .c C eQ
/ ; (2.79)

with eQA

I
D .CT2 QC1/

A

I
; (2.80)

while .M1/IJ and .M2/AB are symmetric, negative-definite matrices built respec-
tively from the period matrices .N1/IJ and .N2/AB of the special Kähler geometries
on M1 and M2 via the relation

M D
 
1 �ReN
0 1

! 
ImN 0

0 .ImN /�1

! 
1 0

�ReN 1

!
: (2.81)

Nicely, expressions (2.79) for VNS and VR can be recast in a form that reminds
that of the N D 2 black hole potential, with the NSNS and RR fluxes QI

A
and cA

playing a role analogous to the black hole charges. The black hole central charge
will here be replaced by the triplet of N D 2 Killing prepotentials Px ; x D 1; 2; 3

which describe the gauging under study. These read

PC � P1 C iP2 D 2e' ˘T
2 QC1˘1

P� � P1 � iP2 D 2e' ˘T
2 QC1˘1

P3 D e2' ˘T
2 C2.c C eQ
/ : (2.82)
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Here, P˙ encode the contribution of the NSNS sector, while P3 describes the
contribution of the RR sector [26, 28].

We find that the NSNS and RR potentials (2.79) can be recast in the suggestive
form

VNS D ga
NbDaPC ND NbPC C gi N|DiPCD N|PC � 2jPCj2

VR D ga
NbDaP3 ND NbP3 C jP3j2; (2.83)

whose main benefit is to involve only special Kähler covariant derivatives of the Px ,
which are defined as

DiPx D .@i C 1
2
@iK1/Px; DaPx D .@a C 1

2
@aK2/Px : (2.84)

Equation (2.83) are the expressions for VNS and VR we are going to employ in the
next sections. An expression closely related to the above rewriting of VNS in terms
of PC appeared in [24], and our derivation of VR in terms of P3 follows the same
logic. In order to prove the equivalence between (2.79) and (2.83) we employ the
following useful identities of special Kähler geometry [32]:

gi N|Di˘1D N|˘
T

1 D � 1
2

�
C
T
1M1C1 C iC1

� �˘1˘
T
1 (2.85)

ga
NbDa˘2D Nb˘

T

2 D � 1
2

�
C
T
2M2C2 C iC2

� �˘2˘
T
2 : (2.86)

These yield

ga
NbDaPCDNbPC D �2 e2'�˘ T

1
eQT

M2
eQ˘1 C 2˘

T

1 C
T
1 Q

T˘2 ˘
T

2 QC1˘1

�

gi N|DiPCD N|PC D �2 e2'�˘ T

2 QM1Q
T˘2 C 2˘

T

1 C
T
1 Q

T˘2 ˘
T

2 QC1˘1

�

�2jPCj2 D �8 e2' ˘ T

1 C
T
1 Q

T ˘2 ˘
T
2 QC1˘1

ga
NbDaP3DNbP3 C jP3j2 D � 1

2
e4'.c C eQ
/TM2.c C eQ
/ ; (2.87)

and the equivalence between (2.79) and (2.83) is seen by addition of these four lines.
It is instructive to compare the quantities in (2.82) with the black hole central

charge, which reads ZBH D ˘T
2 C2 c, where here c D .pA; qA/ is to be interpreted

as the symplectic vector of electric and magnetic charges of the black hole. In
addition to the fact that we are dealing with two quantities (PC and P3) instead
of a single one (ZBH), we face here the further complication that these do not
depend just on the covariantly holomorphic symplectic section ˘2 of the vector
multiplet special Kähler manifold M2, but also on the scalars in the hypermultiplets.
However, the constrained structure of the quaternionic manifold, determined via
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c-map from the special Kähler submanifold M1, comes to the rescue, yielding a
relatively simple dependence of PC and P3 on the 4d dilaton e' (appearing as a
multiplicative factor) and on the axionic variables 
I (appearing in P3 as a scalar-
dependent shift of the charge vector c). Finally, the M1 coordinates enter in PC
via the covariantly holomorphic symplectic section ˘1, making PC a covariantly
‘biholomorphic’ object.

2.6.2 The Vacuum Equations

The extremization of the scalar potential (2.83) corresponds to the equations

@'V D 0 , VNS C 2VR D 0 (2.88)

@
V D 0 , eQT
M2 .c C eQ
/ D 0 (2.89)

@iV D 0 , iCijkg
j N| gk

Nk ND N|P�
ND NkPC � DiPCPC C ga

NbDaDiPC
NDNbPC D 0

(2.90)

@aV D 0 , iCabcg
b Nbgc Nc

� NDNbP�
NDNcPC C NDNbP3

NDNcP3

� �DaPCPC C 2DaP3P3

Cgi N|DiDaPCD N|PC D 0 : (2.91)

To write (2.90), we used the following characterizing relations of special Kähler
geometry [33]

DiDj˘1 D iCijkg
k Nk ND Nk˘1; Di

ND N|˘1 D gi N|˘1 ; (2.92)

where Cijk is the completely symmetric, covariantly holomorphic 3-tensor of the
special Kähler geometry on M1. The analogous identities obtained by sending
1 ! 2 and i; j; k ! a; b; c have been used to derive Eq. (2.91). In particular,
these relations imply

DiDjPC D iCijkg
k Nk ND NkP� ; (2.93)

as well as

DaDbPC D iCabcg
c Nc ND NcP� and DaDbP3 D iCabcg

c Nc ND NcP3 : (2.94)

The system of equations above, in particular Eqs. (2.90) and (2.91), take a form
which reminds the attractor equations for black holes in N D 2 supergravity. In
the remaining of this section we will show how this set of equations is solved
by a supersymmetry inspired set of first order conditions accounting for both
supersymmetric and non-supersymmetric solutions.
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2.6.3 First Order Conditions

In this subsection we propose a first order ansatz which generalizes the supersymme-
try conditions and implies the vacuum equations (2.88)–(2.91). We refer the reader
to [10] for the proof that vacuum equations are solved by this linear ansatz. We will
later display some explicit examples of supersymmetric and non-supersymmetric
vacua satisfying this first order ansatz.

We consider the following set of equations, linear in the Px (and their deriva-
tives), and hence in the flux charges:

˙e˙i��i�P˙ D u P3

˙e˙i�Ci�DaP˙ D vDaP3

DiPC D 0 D NDN{P� ; (2.95)

where �; u; v; � are real positive parameters. While � will be just a free phase,
the other three parameters will need to satisfy certain constraints given below.
The ansatz (2.95) generalizes the AdS N D 1 supersymmetry condition, which
corresponds to the particular choice.1

susy , u D 2; v D 1; � D 0 : (2.96)

Our aim is to implement the first order ansatz (2.95) to derive non-supersymmetric
solutions of the vacuum equations. For simplicity, we will restrict our analysis for
the case in which M2 is a special Kähler manifold with a cubic prepotential. The
ansatz (2.95) extremizes the scalar potential if the parameters u; v satisfy

1
2
uv2 � u2v C u C v D 0 ; (2.97)

and—under the assumption that M2 is cubic—if we further require that

DaP3 D ˛3 @aK2 P3 ; (2.98)

with ˛3 given by

e3iArg.˛3/C2iArg.P3/ D �
r
4u

3v

1 � v2 e2i�

2 � u v e�2i� ; j˛3j2 D u

3v
: (2.99)

1The N D 1 conditions are completed by P3 D �i ON�, where O� ¤ 0 is the parameter appearing in
the Killing spinor equation on AdS, related to the AdS cosmological constant  via  D �3j O�j2.
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Notice that by evaluating the modulus square of both its sides, the first of (2.99)
yields a constraint involving u; v; � only:

4 u v2 cos.2�/ D 3 u2v3 � 4 u v4 � 4 u C 12 v : (2.100)

We remark that Eq. (2.95) can be rephrased in the symplectically covariant algebraic
form

0 D QT˘2 � iuP3ei��'Re
�
ei�˘1

�
; (2.101)

0 D QC1Re
�
ei�˘1

�
; (2.102)

0 D 2QC1Im
�
ei�˘1

�C 2e�'.u C v/Re
�
e�i� P3C2˘2

	
�e'.M2v cos � � C2v sin �/.c C eQ
/: (2.103)

Notice that, precisely as in the supersymmetric case, the second equation actually
follows from the first one.

2.6.3.1 Explicit Solutions

In the next section we will present explicit vacuum solutions A, B, C (cf. (2.125)–
(2.127)) satisfying the linear ansatz, with the parameters u; v; � given by

A .N D 0/ W u D 3v D 2

q
6
5
; ei� D

q
1
6
.
p
5 � i/

B .N D 0/ W u D v D 2; ei� D 1
2
.1 � ip3/

C .N D 1/ W u D 2v D 2; ei� D 1 :

2.6.4 Vacuum Solutions

In the following we present explicit N D 0 and N D 1 AdS4 vacuum solutions of
the N D 2 gauged supergravities under study.

For simplicity we focus on the case where the special Kähler scalar manifolds
M1 and M2 are symmetric manifoldsG=H with cubic prepotentials. The complete
list of symmetric special Kähler manifolds with cubic prepotentials is given by the
cosets G=H displayed in the first row of the following table (see e.g. [22])
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G
H

SU.1;1/

U .1/

SU.1;1/

U .1/
� SO.2;n/

SO.n/�U.1/

Sp.6;R/

SU .3/�U.1/

SU.3;3/

SU .3/�SU .3/�U.1/

SO�.12/

SU .6/�U.1/

E7.�25/

E6�SO.2/

MQ
G2.2/

SO.4/

SO.4;nC2/

SO.nC2/�SO.4/

F4.4/

USp.6/�SU .2/

E6.2/

SU.6/�SU .2/

E7.�5/

SO.12/�SU .2/

E8.�24/

E7�SU .2/

RG 2 .2; n C 2/ 14 20 32 56

RH 0 n C 1 6 .3; 3/ 15 27

The second row shows the quaternionic manifolds MQ related to the special
Kähler manifolds in the first row via the c-map [20]. The third row displays the
symplecticG-representation under which the sections˘ I

1 or˘A

2 transform. Finally,
the last row shows the H -representation under which the scalar coordinates (zi or
xa) on G=H transform.

We denote the cubic prepotentials on M1 and M2 respectively by

F D 1
6
dabc

XaXbXc

X0
; G D 1

6
dijk

ZiZjZk

Z0
; (2.104)

where dabc and dijk are scalar-independent, totally symmetric real tensors.
Choosing special coordinates, for M2 we have

XA D .1; xa/; FA D .�f; fa/; f D 1
6
dabcx

axbxc;

fa D 1
2
dabcx

bxc

V D 1
6
dabcx

a
2 x

b
2x

c
2 ; Va D 1

2
dabcx

b
2 x

c
2 ; Cabc D eK2 dabc

K2 D � log.�8V/; @aK2 D iVa
2V ; (2.105)

where the complex coordinates xa are split into real and imaginary parts as xa D
xa1 C ixa2 , with xa2 < 0. Analogously, for M1 we have

ZI D .1; zi /; GI D .�g; gi /; g D 1
6
dijkzi zj zk;

gi D 1
2
dijkzj zk

QV D 1
6
dijkz2

i z2
j zk2 ; QVi D 1

2
dijkz2

j zk2 ; Cijk D eK1 dijk

K1 D � log.�8 QV/; @iK1 D i QVi
2 QV : (2.106)

with z2i < 0. For the case of supergravity with no hypermultiplets other than the
universal one, expressions (2.106) are replaced simply by Z0 D 1 ; G0 D �i and
eK1 D 1

2
.
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Moreover, the following relations involving the metric ga Nb D @a@ NbK2 on M2 are
valid:

ga Nb D 1

4V2 .VaVb � V Vab/; ga
Nb D 2. xa2 x

b
2 � 2V Vab/

gabVb D 4Vxa2 ; gabVaVb D 12V2; (2.107)

where Vab D dabcx
c
2 , and Vab is its inverse. Similar relations hold for the

corresponding quantities on M1 with a; b ! i; j and V ! QV.
To perform the forthcoming computations, it is convenient to introduce the

following holomorphic prepotentialsW˙; W3 :

P˙ D e
K1CK2

2 C' W˙ ; P3 D e
K2
2 C2' W3 ; (2.108)

whose Kähler covariant derivatives are defined via

DaWx D .@a C @aK2/Wx ;

DiWC D .@i C @iK1/WC ; DiW� � @iW� D 0 ;

DN{W� D .@N{ C @N{K1/W� ; DN{WC � @N{WC D 0 ; (2.109)

with @aK2 and @iK1 given in (2.105) and (2.106) respectively. Explicitly, recalling
(2.108) and (2.82), and takingmAI D mA

I D 0 for simplicity, one finds

WC D 2XA.eA
IGI � eAIZ

I /; W� D 2XA.eA
I NGI � eAI NZI / ;

W3 D XA.qA C eA
I Q
I � eAI 


I / � FAp
A ; (2.110)

Recalling (2.105) and defining fab D dabcx
c , we preliminarily compute:

@aWC D 2.ea
IGI � eaIZI /; @aW� D 2.ea

I NGI � eaI NZI / ;

@aW3 D qa C eIa
Q
I � eaI 


I C fap
0 � fabpb : (2.111)

To solve the vacuum equations (2.88)–(2.91) in full generality is a challenging
problem that goes beyond the scope of this paper. In the following we present some
simple solutions as prototypes of the general case.

2.6.4.1 Only Universal Hypermultiplet

We start by considering the case of a gauged supergravity with a single
hypermultiplet, which we identify with the universal hypermultiplet of string
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compactifications. Concerning the vector multiplets, we allow for an arbitrary
number of them, and we just require that the associated special Kähler scalar
manifold is symmetric and has a cubic prepotential,2 specified by the 3-tensor dabc .
As it will be clear in the following, the latter assumption will allow us to perform
computations in a more explicit fashion. In addition we assume that the only non-
vanishing entries of the charge matrix Q be ea0 � ea. We remark that this choice
might be generalized by using U-duality rotations. The constraints (2.78) require
that eapa D 0 . For this choice of charges the prepotentials become

WC D W� D �2eaxa ;

W3 D q0 C .qa � ea
/xa C p0f � pafa ; (2.112)

where all along this subsection we denote 
 � 
0.
It is convenient to introduce the following shifted variables (assuming p0 ¤ 0):

xa D xa � pa

p0
; q0 D q0 C qap

a

p0
� 2P

.p0/2
; qa D qa � Pa

p0
;

(2.113)
with

P D 1
6
dabcp

apbpc ; Pa D 1
2
dabcp

bpc : (2.114)

In terms of these variables one finds

WC D W� D �2eaxa ; @aWC D @aW� D �2ea ;

W3 D q0 C .qa � 
ea/xa C p0f ; @aW3 D qa � 
ea C p0fa ; (2.115)

with
f D 1

6
dabcxaxbxc; fa D 1

2
dabcxbxc : (2.116)

In writing (2.115) we have used that eapa D 0. Notice that since xa2 � xa2 ,
the expressions in (2.107) can be equivalently written with the bold variable.
The advantage of using the bold variables introduced above is that the explicit
dependence on pa is entirely removed. Finally we introduce the following quantities
built from the geometric fluxes ea:

R D 1
6
dabceaebec ; Ra D 1

2
dabcebec ; (2.117)

2In particular, the second property is relevant for type IIA compactifications on 6d manifolds M6

with SU.3/ structure, where the Kähler potential K2 is expected to take the cubic form e�K2 D
4
3

R
M6
J ^ J ^ J , where J is the almost symplectic 2–form on M6. See Appendix A.1 for more

details.
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where dabc is the contravariant tensor of the symmetric special Kähler geometry
satisfying

dabc d
b.d1d2 d d3d4/c D 4

3
ı.d1a dd2d3d4/: (2.118)

Solutions of the vacuum equations can be found starting from the simple ansatz

xa D x Ra ; qa D 0 ; (2.119)

with x D x1 C ix2 a complex function of the charges to be determined. This ansatz
can be motivated by noticing that once qa is taken to zero, the only contravariant
vector one can build with ea’s variables is Ra. Using (2.118) one finds the following
relations:

dabc R
bRc D 2R ea ; Ra ea D 3R ;

V D .x2/
3R2 ; Va D .x2/

2R ea ; f D x3R2 ; fa D x2R ea ;

W˙ D �6R x ; W3 D .q0 � 3R 
 x C p0R2x3/ ;

@aWC D @aW� D �2ea ; @aW3 D . p0R x2 � 
 /ea ;

e�K1 D 2 ; e�K2 D �8V : (2.120)

Moreover, the covariant derivatives of the prepotentials take the form

DaWx D iVa
2V ˛xWx ; (2.121)

with

˛˙ D 1 � 2ix2

3x
; ˛3 D 1 � 2ix2R. p

0R x2 � 
 /

q0 � 3R 
 x C p0R2x3
: (2.122)

Using the relations (here there is no sum over x):

ga
NbDaPx ND NbPx D 3j˛xPx j2 ;

iCabc g
b Nb gc Nc ND NbPx

ND NcPx D 2 N̨ 2xP
2

x

iVa
2V ; (2.123)

the scalar potential reads

V D eK1CK2C2' .3j˛Cj2 � 2/jWCj2 C eK2C4' .3j˛3j2 C 1/jW3j2 : (2.124)
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Extermizing with respect to x1;2; 
; ' one finds the solutions

• Solution A (N D 0) :

x1 D 
 D 0; x2 D �5�1=6
�

q0
p0R2

�1=3
; e' D 1

2
p
2
5
5
6

�
R

p0q20

�1=3
;

V D � 75
64
5
5
6

�
R4

p0q50

�1=3
: (2.125)

• Solution B (N D 0) :

x1D� 1p
3
x2 D

�
q0

20p0R2

�1=3
; 
 D

�
4p0q20
25R

�1=3
; e' D

p
2

p
3

�
25R

4p0q20

�1=3
;

V D � 5p
3

�
25R4

4p0q50

�1=3
: (2.126)

• Solution C (N D 1) :

x1D 1p
15
x2 D � 1

2

�
q0

20p0R2

�1=3
; 
 D �

 
p0q20
50R

!1=3
; e' D

p
2p
3
5
1
6

 
2R

p0q20

!1=3
;

V D �8p3 5� 5
6

 
2R4

p0q50

!1=3
: (2.127)

One also has to ensure e' > 0 and the positivity of the metric on the compact
space M6. The latter condition in this case amounts to xa2 < 0. The above solutions
generalize to an arbitrary number of vector multiplets the ones derived in [31]
in the context of flux compactifications of massive type IIA on coset manifolds.
Furthermore, they allow for non-vanishing charges pa; qa (satisfying p0qa D Pa).

One can easily check that the solutions we found fall into the linear ansatz
described in the last section with u; v; � given by

A .N D 0/ W u D 3v D 2

q
6
5
; ei� D

q
1
6
.
p
5 � i/

B .N D 0/ W u D v D 2; ei� D 1
2
.1 � i

p
3/

C .N D 1/ W u D 2v D 2; ei� D 1 :
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2.6.4.2 Adding Hypermultiplets

The three solutions above can be generalized to the case of a cubic supergravity with
arbitrary number of vector multiplets and hypermultiplets. For simplicity we focus
again to the case where the vector multiplet scalar manifold is symmetric. Here we
consider a vacuum configuration with non-trivial charges: eai , ea � ea0, p0, q0,
while qa and all remaining charges in QI

A
are set to zero. Recalling (2.113), the

prepotentials and their derivatives are now given by

WC D 2xa.eaigi � ea/; @aWC D 2.ea
igi � ea/ ; @iWC D 2xaeaj gij ;

W� D 2xa.eai Ngi � ea/; @aW� D 2.ea
i Ngi � ea/; @NiW� D 2xaeaj Ngij ;

W3 D q0 C xa.eai Q
i � ea
0/C p0f; @aW3 D ea
i Q
i � ea
0 C p0fa ;

(2.128)

where gij D dijkzk . Again we follow an educated ansatz

xa D x Ra; zi D zSi ; Q
i D � Ti ; (2.129)

where we defined

Ra D 1
2
dabcebec; R D 1

6
dabceaebec

Si D ea
iRa; T D 1

6
dijkS

iSjSk; Ti D 1
2
dijkS

jSk: (2.130)

In addition we impose the following relation between the NSNS charges

dijkea
i eb

j ekc D ˇ dabc ) Tiea
i D ˇ R ea; T D ˇ R2; (2.131)

for a positive number ˇ. With these assumptions, one has the following simplifica-
tions

V D .x2/
3 R2; Va D .x2/

2 R ea; f D x3R2; fa D x2R ea ;

QV D .z2/
3 T; QVi D .z2/

2 Ti ; g D z3 T; gi D z2 Ti

WC D 6R x .z2ˇR � 1/; @aWC D 2.z2ˇR � 1/ea; @iWC D 4 x zTi

W3 D q0 � 3R x O
 C p0R2x3; @aW3 D . p0R x2 � O
 / ea ; (2.132)

where we introduced
O
 D 
0 � ˇR � : (2.133)
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The new equations in the presence of additional hypermultiplets can be solved by
taking

z D �i
s

3

ˇR
: (2.134)

Plugging this into W˙ and DaW˙ one gets W˙ D �24xR and DaW˙ D �8ea.
Comparing with (2.120), one finds that the Killing prepotentials Px are related to
those found in the last section after the replacements

' ! O' 
 ! O
 V ! e2c V (2.135)

with

e2' D e2 O'Cc O
 D 
0 � ˇR � ec D 64 eK1 D
�
64 ˇ

33 R

� 1
2

(2.136)

More precisely the Killing potentials in the cases of h1 > 0 and h1 D 0 are related
via Ph1>0

x .'; 
/ D ec Ph1D0
x . O'; O
/. This implies that the three solutions (2.125)–

(2.127) generalize to the case of arbitrary number of vector and hypermultiplets
after the replacements (2.135) leading to

x �
�

q0
p0R2

�1=3
; O
 �

�
p0q20
R

�1=3
e' �

 
R

1
4 ˇ

3
4

p0q20

! 1
3

;

V �
�
Rˇ3

p0q50

� 1
3

: (2.137)

where we omit numerical coefficients depending on the particular solution A;B;C.
Notice that the combination 
0 C ˇR � is a flat direction of the potential.

2.6.5 U-Invariant Cosmological Constant

In this section, we propose a U-duality invariant formula for the dependence on
NSNS and RR fluxes of the scalar potential V at its critical points. This defines the
cosmological constant D V j@VD0 .

As considered in the treatment above, the setup is the following. The vectors’
and hypers’ scalar manifolds are given by M2 D G=H and MQ. Here, G=H is a
symmetric special Kähler manifold with cubic prepotential (d -special Kähler space,
see e.g. [22]), with complex dimension h2, coinciding with the number of (abelian)
vector multiplets. On the other hand, MQ is a symmetric quaternionic manifold,
with quaternionic dimension h1C1, corresponding to the number of hyermultiplets.
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The manifold MQ is the c-map [20] of the symmetric d -special Kähler space
M1 D G =H ¨ MQ, with complex dimension h1. Thus, the overall U-duality
group is given by

U � G � G ¨ Sp .2h2 C 2;R/ � Sp .2h1 C 2;R/ : (2.138)

The Gaillard-Zumino [34] embedding of G and G is provided by the symplectic
representations RG and RG , respectively spanned by the symplectic indices A

and I. The RR fluxes sit in the .2h2 C 2/ vector representation RG (as above,
a D 1; : : : ; h2 and i D 1; : : : ; h1 throughout)

cA �

0
BB@
p0

pa

q0

qa

1
CCA; (2.139)

whereas the NSNS fluxes fit into the .2h2 C 2/� .2h1 C 2/ bi-vector representation
RG � RG

QAI D C
AB

2 Q I

B
D
 
mAI mA

I

�eIA �eAI

!
: (2.140)

A priori, in presence of cA andQAI, various .G � G /-invariants, of different orders
in RR and NSNS fluxes, can be constructed. Below we focus our analysis on
invariants of total order 4 and 16 in fluxes, which respectively turn out to be relevant
for the U-invariant characterization of  for the solutions A, B, C of Sects. 2.6.4.1
and 2.6.4.2.

2.6.5.1 Only Universal Hypermultiplet

Special Kähler symmetric spaces are characterized by a constant completely
symmetric symplectic tensor dA1A2A3A4 . This tensor defines a quartic G-invariant
I4
�
c4
�

given by

I4
�
c4
� D dA1A2A3A4c

A1 : : : cA4 (2.141)

D �.p0q0 C paqa/
2 C 2

3
dabc q0p

apbpc � 2
3
dabc p0qaqbqc

Cdabcdaef pbpcqeqf :

A similar definition holds for the symplectic tensor dI1I2I3I4 of the symmetric coset
G =H .
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For the explicit solutions we have found, we take RR fluxes cA with p0 ¤ 0 and

qa � 1

2

dabcp
bpc

p0
: (2.142)

Plugging this into (2.141) and using the relation (2.118) (holding in homogeneous
symmetric d -special Kähler geometries) one finds

I4
�
c4
� D � �p0�2 q20 with q0 � q0 C 1

6

dabcp
apbpc

.p0/
2

:

(2.143)
Notice that the full dependence on pa is encoded in the shift q0 ! q0 and therefore
we can, without loosing in generality, restrict ourselves to the simple choice cA D
.p0; 0;q0; 0/. The NSNS and RR fluxes are then given by

cA �

0
BB@
p0

0

q0
0

1
CCA ; QA

0 �

0
BB@

0

0

0

�ea

1
CCA ; QA0 D 0 : (2.144)

Besides I4.c4/ one can build the following non-trivial quartic invariant

I4.cQ3/ D dA1A2A3A4c
A1 Q

A2

0 Q
A3

0 Q
A4

0 D � 1
6
p0dabceaebec D �p0R : (2.145)

Let us remark that I4.cQ3/ is also invariant under the group SO.2/ D U.1/ which,
due to the absence of special Kähler scalars zi in the hypersector, gets promoted
to global symmetry. G D SO.2/ is thus embedded into the symplectic group
Sp.2;R/ via its irrepr. 2, through which it acts on symplectic sections .Z0;G0/.
The SO.2/-invariance of I4.cQ3/ is manifest, because the latter depends on the
SO.2/-invariant I2

�
.QA/

2
� D .QA0/

2 C .Q0
A
/2 D .QA0/

2 (no sum over A is
understood).

It is easy to see that solutions A, B, C given in Eqs. (2.125)–(2.127) depend
only on the two combinations I4.c4/ and I4.cQ3/ given in (2.141) and (2.145)
respectively. Upgrading these combinations to their U-duality invariant forms we
can then write a manifestly .G �U.1//-invariant formula for the AdS cosmological
constant at the critical points

 D V � �I4=34

�
cQ3

�
jI4 .c4/j5=6

� Q4

c2
: (2.146)

Notice that RR and NSNS fluxes play very different roles in their contribution
to . Indeed, the cosmological constant grows quartically on NSNS fluxes and fall
off quadratically on RR charges. It would be nice to understand whether this is a
general scaling feature of the gauged supergravities under study.
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2.6.5.2 Many Hypermultiplets

Next let us consider the case with arbitrary number of hypermultiplets. From
(2.137), it follows that the solutions in this case depend only on the combinations
I4 D .p0q0/2 and I16 � .p0/4Rˇ3 � c4Q12. In order to write the solutions in a
U-duality invariant form we should then find an invariant I16 built out of 12Q’s and
4 c’s that reduce to .p0/4Rˇ3 on our choice of RR and NSNS fluxes. The following
.G � G /-invariant quantity does the job

I16
�
c4Q12

� � dI1I2I3I4dI5I6I7I8dI9I10I11I12dA1B1B2B3dA2B5B6B7dA3B9B10B11 �
�dA4B4B8B12cA1cA2 cA3 cA4QB1I1 : : : QB12I12 : (2.147)

The explicit expression of I16
�
c4Q12

�
is rather intricate. Nevertheless, this formula

undergoes a dramatic simplification when considering the configuration of NSNS
and RR fluxes, supporting the solutions found in Sect. 2.6.4. As before we encode
the full dependence on pa in the shift q0 ! q0 and therefore we restrict ourselves
to the charge vector choice cA D .p0; 0;q0; 0/. More precisely, we take NSNS and
RR fluxes with all components of QAI, cA zero except for

Q i
a D �eai ; Qa0 D �ea; c0 D p0; c0 D q0 ; (2.148)

where e ia satisfy the constraint (2.131) for some ˇ 2 RC. A simple inspection to
(2.147), shows that contributions to I16 come only from the components d0ijk D
� 1
6
dijk of dI1::I4 and db1b2b30 D � 1

6
dabc of dAB1B2B3 . Indeed using (2.118) one finds

I16
�
c4Q12

� D �
�
p0
�4
R ˇ3; (2.149)

with3

� � 1

66
.dabcdabc C h2 C 3/3: (2.150)

We conclude that the explicit vacuum solutions A, B, C obtained in Sect. 2.6.4
can be written in a manifestly U-duality invariant form in terms of the U-duality
invariants I4.c4/ and I16.c4Q12/. In particular the value of the cosmological
constant is given by the .G � G/-invariant formula

 D V � I1=316

�
c4Q12

�
jI4 .c4/j5=6

� Q4

c2
: (2.151)

3Interestingly, the quantity dabcdabc , appearing in (2.150) is related to the Ricci scalar curvature R
of the vector multiplets’ scalar manifold G=H , whose general expression for a d -special Kähler
space reads R D � .h2 C 1/ h2 C dabcdabc , see [35–37].
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Appendix

A.1 Flux/Gauging Dictionary for IIA on SU(3) Structure

Gauged N D 2 supergravities with a scalar potential of the form studied in this
paper can be derived by flux compactifications of type II theories on SU.3/ and
SU.3/�SU.3/ structure manifolds. While we refer to the literature (see e.g. [25,27,
29–31, 38–40]) for a detailed study of such general N D 2 dimensional reductions
and the related issues,1 in this appendix we provide a practical dictionary between
the 10d and the 4d quantities, with a focus on the scalar potential derived from
SU.3/ structure compactifications of type IIA. In particular, we illustrate how the
expressions one derives for VNS and VR are consistent with the scalar potential (2.79)
studied in the main text.

A.1.1 SU(3) Structures and Their Curvature

An SU.3/ structure on a 6d manifold M6 is defined by a real 2–form J and a
complex, decomposable2 3–form˝ , satisfying the compatibility relation J^˝ D 0

as well as the non-degeneracy (and normalization) condition

i
8
˝ ^ N̋ D 1

6
J ^ J ^ J D vol6 ¤ 0 everywhere : (A.1)

˝ defines an almost complex structure I , with respect to which is of type .3; 0/.
In turn, I and J define a metric on M6 via g D JI . The latter is required to be
positive-definite, and vol6 above denotes the associated volume form.
SU.3/ structures are classified by their torsion classes Wi ; i D 1; : : : 5, defined

via [46]:

dJ D 3
2
Im.W 1˝/CW4 ^ J CW3

d˝ D W1 ^ J ^ J CW2 ^ J CW 5 ^˝ ; (A.2)

where W1 is a complex scalar, W2 is a complex primitive (1,1)–form (primitive
means W2 ^ J ^ J D 0), W3 is a real primitive (1,2) + (2,1)–form (primitive
, W3 ^ J D 0), W4 is a real 1–form, and W5 is a complex (1,0)–form.

Reference [47] provides a formula for the Ricci scalar R6 in terms of the torsion
classes. We will restrict to W4 D W5 D 0, in which case the formula is

R6 D 1
2

�
15jW1j2 �W2yW 2 �W3yW3

�
: (A.3)

1In this context, see also [41–45] for studies of compactifications preserving N D 1.
2A p–form is decomposable if locally it can be written as the wedging of p complex 1–forms.
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This can equivalently be expressed as

R6 vol6 D � 1
2

�
dJ ^ 	dJ C d˝ ^ 	d N̋ � .dJ ^˝/ ^ 	.dJ ^ N̋ / 	 ; (A.4)

as it can be seen recalling (A.2) and computing

d˝ ^ 	d N̋ D 12jW1j2vol6 � J ^W2 ^W 2

D �
12jW1j2 CW2yW 2

�
vol6

dJ ^ 	dJ D �
9jW1j2 CW3yW3

�
vol6

.dJ ^˝/^ 	.dJ ^ N̋ / D 36jW1j2vol6 : (A.5)

A.1.2 The Scalar Potential from Dimensional Reduction

The 4d scalar potential receives contributions from both the NSNS and the RR
sectors of type IIA supergravity. These are respectively given by

VNS D e2'

2V
Z
M6

�
1
2
H ^ 	H �R6 	 1 �

D e2'

4V
Z
M6

h
H ^ 	H C dJ ^ 	dJ C d˝ ^ 	d N̋

�.dJ ^˝/ ^ 	.dJ ^ N̋ /
i
; (A.6)

VR D e4'

2

Z
M6

�
F 2
0 	 1 C F2 ^ 	F2 C F4 ^ 	F4 C F6 ^ 	F6

�
; (A.7)

and the total potential reads V D VNS C VR. In (A.6), H is the internal NSNS
field-strength, V D R

M6
vol6, and ' is the 4d dilaton e�2' D e�2�V , where we are

assuming that the 10d dilaton � is constant alongM6. The k–forms Fk appearing in
expression (A.7) are the internal RR field strengths, satisfying the Bianchi identity
dFk�H^Fk�2 D 0. TheF6 form can be seen as the Hodge-dual of the F4 extending
along spacetime, and the term F6^	F6 arises in a natural way if one considers type
IIA supergravity in its democratic formulation [48].

A.1.2.1 Expansion Forms

In order to define the mode truncation, we postulate the existence of a basis
of differential forms on the compact manifold in which to expand the higher
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dimensional fields. For a detailed analysis of the relations that these forms need
to satisfy in order that the dimensional reduction go through, see in particular [27].

We take !0 D 1 and Q!0 D vol6
V , and we assume there exist a set of 2–forms !a

satisfying

!a ^ 	!b D 4 gab vol6; !a ^ !b D �dabc Q!c; (A.8)

where gab should be independent of the internal coordinates, dabc should be a
constant tensor, and the dual 4–forms Q!a are defined as

Q!a D � 1
4V g

ab 	 !b : (A.9)

From the above relations, we see that

!a ^ Q!b D �ıba Q!0; !a ^ !b ^ !c D dabc Q!0 : (A.10)

We also assume the existence of a set of 3–forms ˛I ; ˇI , satisfying

˛I ^ ˇJ D ıJI Q!0: (A.11)

Adopting the notation !A D . Q!A; !A/T D . Q!0; Q!a; !0; !a/T and ˛I D
.ˇI ; ˛I /

T , we see that the symplectic metrics C appearing in the main text are here
given by

C
IJ

1 D �
Z
˛I ^ ˛J; C

AB

2 D �
Z

h!A; !Bi ; (A.12)

where the antisymmetric pairing h ; i is defined on even forms �; � as h�; �i D
Œ�.�/ ^ ��6, with �.�k/ D .�/ k2 �k , k being the degree of �, and Œ �6 selecting the
piece of degree 6.

The basis forms are used to expand˝ as

˝ D ZI˛I � GI ˇI D e�K1
2 ˘ I

1 ˛I ; (A.13)

and J together with the internal NS 2–form B as:

J D va!a; B D ba!a ) e�B�iJ D XA!A � FA Q!A D e�K2
2 ˘A

2 !A ;

(A.14)

where in the last equalities we define ˛I D CIJ˛
J D .˛I ;�ˇI /T and !A D

CAB!
B D .!A;� Q!A/T , and we adopt the symplectic notation defined in (2.76).

Here, .ZI ;GI / and .XA;FA/ represent the holomorphic sections on the moduli
spaces of ˝ and B C iJ expanded as above, which (under some conditions
[26–28]) indeed exhibit a special Kähler structure, and correspond respectively to
the manifolds M1 and M2 of the main text. Notice that here XA � .X0;Xa/ �
.1; xa/ D .1;�ba � iva/, while FA D @F

@XA
, where the cubic holomorphic function
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F D 1
6
dabc

XaXbXc

X0
is identified with the prepotential on M2. The Kähler potentials

on M1 and M2 are recovered fromK1 D � log i
R
˝^ N̋ and K2 D � log 4

3

R
J ^

J ^J , the latter yielding the metric gab appearing in (A.8). Notice that (A.1) implies
e�K1 D e�K2 D 8V .

The matrices M defined in (2.81) are given by

M1;IJ D �
Z
˛I ^ 	˛J; M2;AB D �

X
k

Z
.eB!A/k ^ 	.eB!B/k ;

(A.15)
and from the second relation one finds that the period matrix N2 on M2 reads

ReNAB D �
 
1
3
dabcb

abbbc 1
2
dabcb

bbc

1
2
dabcb

bbc dabcb
c

!
; ImNAB D �4V

 
1
4

C gabb
abb gabb

b

gabb
b gab

!
;

(A.16)

which is in agreement with the expression derived from F via the standard formula
[49]

NAB D FAB C 2i
ImFADX

DImFBEX
E

XC ImFCEXE
; FAB � @2F

@XA@XB
: (A.17)

Finally, we also require the following differential conditions on the basis forms:

d!a D eIa˛I; d˛I D eIa Q!a; d Q!a D 0 ; (A.18)

where the eIa D .ea
I ; eaI / are real constants, usually called ‘geometric fluxes’.

Defining the total internal NS 3–form as H D H fl C dB , and expanding its flux
part as

H fl D �e0I ˛I C e0Iˇ
I � �eI0˛I ; (A.19)

with constant eI0, we can define eIA D .eI0; e
I

a/
T , and thus fill in half of the charge

matrixQ introduced in (2.77):

QI

A
D
�
eIA
0

�
: (A.20)

As noticed in [28], more general matrices, involving the mI

A charges as well, can
be obtained by considering non-geometric fluxes, or SU.3/ � SU.3/ structure
compactifications. The nilpotency condition d2 D 0 applied to (A.18), together
with the Bianchi identity dH D 0, translates into the constraint

eIAeBI D 0 with eAI D CIJe
J

A; (A.21)

which, taking into account (A.20), is consistent with (2.78).
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In the following, by using the above relations we recast in turn expressions
(A.6) and (A.7) for VNS and VR in terms of 4d degrees of freedom, and show their
consistency with (2.79).

A.1.2.2 Derivation of VNS

Recalling the expansions of J , H and ˝ defined above, using the assumed
properties of the basis forms, and adopting the notation introduced in (2.76), one
finds

Z
dJ ^ 	dJ D �vavb eIaM1;IJe

J

b;

Z
H ^ 	H D �bAbB eIAM1;IJe

J

B ;

Z
d˝ ^ 	d N̋ D e�K1

4V ˘ I

1eaIg
abebJ˘

J

1;

Z
.dJ ^˝/ ^ 	.dJ ^ N̋ /

D e�K1

V ˘ I

1eaIv
avbebJ˘

J

1;

where we define bA D .�1; ba/. Plugging this into (A.6), we get the NSNS
contribution to V , expressed in a 4d language:

VNS D �e
2'

4V
h
XAeIAM1;IJe

J

B X
B � e�K1

4V ˘ I

1eaI.g
ab � 4vavb/ebJ˘

J

1

i
: (A.22)

Recalling (A.16), noticing that 1
4V .g

ab � 4vavb/ D �.ImN2/
�1 ab � 4eK2.XaX

b C
X
a
Xb/, and recalling that e�K1 D e�K2 D 8V , we conclude that (A.22) is

consistent with (2.79).

A.1.2.3 Derivation of VR

We consider the modified field-strengthsGk � �
e�BF

	
k
, which satisfy the Bianchi

identity dGk �H fl ^Gk�2 D 0, and we define the expansions

G0 D p0; G2 D pa!a; A3 D 
I˛I

G4 D Gfl
4 CdA3 D .qa�eaI
I/ Q!a; G6 D Gfl

6 �H fl ^A3 D .q0�e0I 
I/ Q!0:
The Bianchi identities then amount just to the following constraint among the
charges

pAeIA D 0 ; (A.23)

which, recalling (A.20), gives the last equality in (2.78). Then the integral in (A.7)
reads
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X
k

Z
Fk^	Fk D

X
k

Z
.eBG/k^	.eBG/k D .cCeQ
/TM2.cCeQ
/ ; (A.24)

where for the second equality we use (A.15), and here .c C eQ
/A D .pA; qA �
eAI


I/T . The expression for VR we obtain is therefore consistent with (2.79).
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Chapter 3
Extremality, Holography and Coarse Graining

Joan Simón

I discuss some of the concepts at the crossroads of gravitational thermodynamics,
holography and quantum mechanics. First, the origin of gravitational thermody-
namics due to coarse graining of quantum information is exemplified using the
half-BPS sector of ND 4 SYM and its LLM description in type IIB supergravity.
The notion of black holes as effective geometries, its relation to the fuzzball
programme and some of the puzzles raising for large black holes are discussed.
Second, the semiclassical analysis giving rise to the extremal black hole/CFT
conjecture. The latter is examined from the AdS3/CFT2 perspective.

3.1 Introduction

The equivalence principle linked gravitational physics with the geometry of space-
time [78]. The extensive research on solutions to Einstein’s equations, or generali-
sations thereof, and the study of their properties gave rise to many interesting facts
and puzzles, especially when interpreted in the light of other branches of physics

• The connection between black hole physics and thermodynamics [26, 34, 91]
• The existence of curvature singularities [93, 94, 132] and observer dependent

horizons
• The quantum nature of spacetime and its emergence in the classical limit.

General Relativity is viewed as an effective field theory. This follows, for exam-
ple, from its lack of renormalizability or the existence of singularities. It suggests
that a proper understanding of gravity requires the identification of the relevant
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degrees of freedom in the ultraviolet (UV). The same conclusion may be reached
using its connection to thermodynamics, through black hole physics. Thermody-
namics is a universal branch of physics relatively independent of the microscopic
details of the system under consideration. The birth of statistical mechanics, initiated
with Boltzmann’s work explaining the properties of macroscopic systems in thermal
equilibrium in terms of the statistical averages of their microscopic degrees of
freedom [44], further motivates the search for a quantum theory of gravity. The
assignment of entropy to a classical spacetime raises the question as for what the
microscopic degrees of freedom responsible for it are, i.e. what the analogue of the
molecules in a gas is for spacetime.

The universality of gravity, in the sense that any energy source gravitates, may
suggest that its proper formulation should follow from a first principle capturing
the intricate structure one sees in its classical limit. This is what the holographic
principle attempts [150, 152]. It states that the number of degrees of freedom N ,
understood as independent quantum states, describing a region B of spacetime,
understood as an emergent structure from a more fundamental theory of matter and
Lorentzian geometries, is bounded by the area A.B/ of its boundary @B

N � A.B/

4GN
; (3.1)

where GN stands for Newton’s constant. For a review on the holographic principle,
where a more mathematically accurate statement is given in terms of the covariant
entropy bound [45] can be found in [46] (Fig. 3.1).

The holographic principle challenges the standard quantum field theory descrip-
tion of matter, stresses the non-local nature that gravity manifests in black hole
physics, extends it to a general principle, going beyond the notion of event horizons,
and emphasises that we can associate entropy and consequently, information, to any
region of spacetime. Importantly, it does not provide an answer for what the degrees
of freedom responsible for this entropy are.
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String theory provides a mathematically well defined framework where to test
some of these ideas. The importance of duality symmetries [99, 154], the discovery
of D-branes as capturing non-perturbative aspects of string theory [134] and the
formulation of the anti de Sitter (AdS) – conformal field theory (CFT) correspon-
dence conjecture [85, 111, 155] are among the most important developments that
have allowed to make both technical and conceptual progress in some of these
issues. For example, string theory does provide with additional UV degrees of
freedom, it allows to view certain black holes as bound states of D-branes [149]
and the AdS/CFT correspondence provides an explicit realisation of the holographic
principle itself.

In these lectures, I will mainly be concerned with

• The origin of gravitational thermodynamics in black hole physics through the
coarse graining of quantum information and the use of the holographic principle
to argue that such information loss is not necessarily confined to the black hole
singularity, allowing us to view a black hole as a coarse grained object matching
its standard thermal state interpretation. These ideas will be exemplified using the
half-BPS sector of N D 4 SYM and its LLM description in type IIB supergravity
to describe the emergence of classical spacetime, singularities and entropy
through coarse graining defined as a renormalization group (RG) transformation
in a phase space description of quantum mechanics. The exposition will briefly
cover the relation to the fuzzball programme, some speculative technical remarks
on the information paradox [92] and will conclude with a discussion on some of
the difficulties and puzzles appearing when trying to extend these ideas to large
black holes.

• The description of the semiclassical methods that have recently been developed
for extremal black holes in an attempt to understand more realistic black
holes, explaining their macroscopic entropy, given by the universal Bekenstein-
Hawking formula

SBH D A

4GN
; (3.2)

where A stands for the area of the black hole event horizon, in terms of the
degrees of freedom living on a 2-dimensional (2d) CFT related to the black hole
horizon, whose number of independent quantum states is universally controlled
(at large temperatures) by Cardy’s formula [52]

SCFT D 2�

r
c
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�
; (3.3)

where c; Nc stand for the 2d non-chiral CFT central charges and L0 ˙ NL0 are
related to the conformal dimension and spin of the quantum states.



92 J. Simón

3.2 Black Holes, Thermodynamics and Fuzzball

The main goal of this section is to explore the origin of gravitational thermodynam-
ics in the context of black hole physics, focusing in the relation between entropy
and the emergence of spacetime and classical singularities through coarse graining
of quantum information at microscopic scales.

The connection between black holes physics and thermodynamics has long been
known [26, 34, 91]. The latter is a branch of physics dealing with systems of
an effective infinite number of degrees freedom whose individual interactions are
not measurable by a macroscopic observer. They are instead replaced by a coarse
grained description involving an effective infinite reduction in the number of degrees
of freedom at the price of introducing entropy, a magnitude measuring the amount
of information lost in the reduction.

This last remark assumes the existence of a different physical description of the
system at smaller scales not available to the macroscopic observer. One way to
motivate quantum gravity is certainly to appeal to the universal link between statisti-
cal mechanics and thermodynamics when studying the black hole-thermodynamics
relation. In black hole physics, it has long believed that the information loss about
the true microscopic state of the system, responsible for the existence of entropy, is
fully localised at the curvature singularity lying in the deep interior of the black hole.
But this expectation is challenged by the holographic principle. Indeed, information
takes space, and for a black hole, it involves a classical scale, the horizon scale. This
would suggest that information about the state of the black hole, even if typically
encoded in Planck scale .`p/ physics, may be spread over macroscopic scales, such
as the horizon scale, and not being merely localised to the singularity [121].

It is interesting to explore this observation a bit further. Whenever a quantum
mechanical formulation is available, black holes are described by a density matrix �.
The latter carries an intrinsic entropy

S� D �Tr .� log �/ : (3.4)

This is a thermal description of the system, which differs from a microcanonical
one, in which one would account for the black hole entropy by counting pure states
fj�Aig having the same charges as the black hole. Quantum mechanically, density
matrices and pure states are distinct. In principle, one can tell their difference apart
by computing expectation values of operators O

Tr .�O/ vs h�AjOj�Ai : (3.5)

But, how large are these differences? More importantly for the current discussion,
do they manifest in classical gravitational physics? The answer to this question must
necessarily be related to whether the information on the state of the black hole is
fully encoded in the singularity or whether it spreads all the way to the horizon, as
suggested by the holographic principle, though typically in `p cells.
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Fig. 3.2 From black holes to statistical mechanics and CFT and back using fuzzball ideas

The above digression suggests a very conservative approach to the origin
of gravitational thermodynamics: the existence of some scale L such that after
coarse graining all the microscopic information at smaller scales, all individual
microstates would typically look alike. If true, a black hole should be understood
as a coarse grained object, matching the standard density matrix description in
quantum mechanics. Once more, one may be tempted to associate the scale L with
`p, but this may well depend on the degeneracy of states encoded in the holographic
relation dictated by the Bekenstein-Hawking formula (3.2). In string theory, if we
generically denote the number of constituents of a given system byN , the scale that
controls the classical gravitational curvature is proportional to `p N j˛j. This was
checked by explicit calculations in some particularly symmetric configurations (see
[121] and references therein) (Fig. 3.2).

Given the relation between black holes and thermal states, it is natural to wonder
whether pure states allow any kind of reliable classical description in gravity.
Generically, we would not expect this, but in the presence of enough supersymmetry,
dynamics may be constrained enough so that as classical gravity becomes reliable,
the information on some of these states may remain.1 If these geometries exist, one
would expect them to have the remarkable global property of being horizonless, to
carry no entropy, matching their pure state nature.

This research programme was initiated in [108, 110]. The starting mathematical
problem consists in determining the classical moduli space of configurations

1The language used in this argument may induce some readers to think of a transition between
an open string (gauge theory) description to a closed string (gravitational) description. This may
indeed be helpful, but the argument is more generic. If one assumes the existence of a fully quantum
mechanical description of gravity, there is no guarantee that a typical pure state in such Hilbert
space allows a reliable description in terms of a classical geometry when taking the classical limit.
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having the same asymptotics and charges as a black hole, but having no horizon,
being smooth and free of causal closed curves. Any configuration satisfying these
requirements will be referred to as a fuzzball configuration. There exists an extensive
literature on the subject. I refer the readers to some excellent reviews (and references
therein): for the importance of fuzzball ideas to the resolution of the information
paradox, see [120,124]; for the construction and interpretation of supergravity multi-
center configurations, see [36, 146]; for the use of phase space quantisation, the
importance of typicality and the nature of black holes as effective geometries, see
[17, 146]. The intuitive idea consists in searching for configurations with the same
asymptotics as a given black hole, but whose interior differs by removing the horizon
and replacing the singularity by a smooth capped space. In some vague sense, the
potentially complicated structure emerging in this inner region is reminiscent of
Wheeler’s ideas [11, 153].

Even if such classical moduli space exists, the connection to black hole entropy
is still not apparent. This requires to quantise this moduli space, constructing a
Hilbert space enabling us to count states with a given set of charges. This step
can in principle be achieved through geometric quantisation, following Crnkovic
and Witten [64] by quantising the phase space of such configurations. This is the
approach reviewed in [17]. A priori, there is no guarantee this programme may
work in a general non-extremal situation. On the contrary, the addition of generic
non-extremal excitations may suggest the appearance of singularities in classical
gravity. But, for highly supersymmetric configurations, where these solutions have
been constructed explicitly, it has provided important insights into the nature of
gravitational thermodynamics and the resolution of the information paradox.

In the following, we first discuss a universal statistical feature emerging when
describing the differences between pure states quantum mechanically, correlating
the difficulty in telling the individual states apart with the entropy of the system.
Then, we will review the half-BPS sector of N D 4 SYM and type IIB supergravity
in AdS5 � S5 where the amount of supersymmetry will allow us to explore the
emergence of classical spacetime and singularities as quantum information about the
precise state of the system is lost. This discussion will provide explicit evidence that
in the case L ! 0 there exists an intricate “spacetime” fuzzball, which generically
does not allow for a reliable classical description, but which can effectively be
replaced by a singular configuration whose quantum mechanical description agrees
with a coarse grained description of the exact quantum mechanical description of the
system and which can not be told apart, by a semiclassical observer, from a typical
pure state characterised by statistical mechanics considerations. We will conclude
with a discussion regarding the important difficulties emerging when trying to
extend these ideas to large black holes, i.e. L  `p .

3.2.1 Distinction of States, Typicality and Fuzzballs

By first principles, quantum mechanical density matrices and pure states are
different. Their differences can be encoded in expectation values (observables).
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Assume a large black hole allows a quantum mechanical description. There will
exist a large degeneracy of pure microstates encoded in its entropy S . Consequently,
there must exist an statistical description of these states. The latter should allow
us to mathematically determine the notion of typical state, i.e. how most of these
degenerate pure microstates look like. Even more, in principle, it should be possible
to determine the typical differences in observables among these typical pure states
and the thermal state (density matrix), in an statistical sense.

These are quantum mechanical questions. Here one will also be interested in
encoding the amount of information that survives the classical limit giving rise to
a spacetime description that one calls black hole. This seems particularly relevant
given the semiclassical nature of the calculations usually used to probe black hole
physics. The main idea behind these statistical considerations is to provide some
mathematically sounded ground where to compute the deviations from the averaged
thermal answers and interpret them gravitationally: the black hole, viewed as a
coarse grained effective geometry, will capture the averaged observable answer, but
will differ from the exact quantum mechanical one in a given pure microstate. One
would like to know by how much and what the most efficient observables are to
highlight these differences.

It should not come as a surprise, that such deviations are highly suppressed. It was
shown in [18] that the variances in local observables over the relevant Hilbert space
of pure states are suppressed by a power of e�S . To see this, consider a basis of the
quantum mechanical Hilbert space of states with energy eigenvalues betweenE and
E C�E

Mbas D f jsi W H jsi D esjsi I E � es � E C�Eg : (3.6)

The full set of states in this sector of the theory is

Msup D
(

j� i D
X
s

c s jsi ;
X
s

jcsj2 D 1

)
: (3.7)

If the entropy of the system is S.E/, then the basis in (3.6) has dimension eS.E/:

1C dimMsup D jMbasj D eS.E/: (3.8)

Take any local operator O and compute local observables of the form

ck .x
1; : : : ; xk/ D h� jO.x1/ � � �O.xk/j� i : (3.9)

To measure how these vary over the ensemble Msup, define their averages and
variances as
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hc.x1; : : : ; xk/iMsup D
Z
D� c .x

1; : : : ; xk/ (3.10)

varŒc.x1; : : : ; xk/�Msup D
Z
D�

h
.c .x

1; : : : ; xk//2 � hc.x1; : : : ; xk/i2Msup

i

The differences between states in Msup in their responses to O will be captured by
the standard-deviation to mean ratios

�Œc.x1; : : : ; xk/�Msup

hc.x1; : : : ; xk/iMsup

D
q

varŒc.x1; : : : ; xk/�Msup

hc.x1; : : : ; xk/iMsup

(3.11)

It was shown in [18] that

varŒc.x1; : : : ; xk/�Msup <
1

eS C 1
varŒc.x1; : : : ; xk/�Mbas : (3.12)

This is a general result arising merely from statistical considerations. In partic-
ular, it is independent on the dynamical details of the theory. There are two ways
to overcome this statistical suppression: given a fixed operator O, one can wait for
long time scales or given a fixed time scale, one can probe the state with operators
having large statistical responses. Concerning the first option, it was pointed out
that in lorentzian signature there was generically no time scale smaller than the
Poincaré recurrence time to overcome these statistical factors [18], in agreement
with previous claims in the literature [112]. On the other hand, extending previous
work [104], it was shown that the analytic structure of these correlation functions,
when working with euclidean signature in the complex plane, allowed the reduction
of this time scale. It is unfortunately not clear whether these euclidean correlations
can actually be measured by a single observer. The second option can provide a
slightly different perspective on the comparison between exact quantum correlations
and results derived from semiclassical considerations. In particular, the average
correlation (3.10) will equal the thermal answer. The latter can be computed in a
semiclassical approximation by doing a quantum field theory calculation in a black
hole background. Our considerations above suggest

h� j˚.x1/ � � �˚.xN /j� iexact D h� j˚.x1/ � � �˚.xN /j� ieft C O


e�.S�N/

�
(3.13)

This observation was also made in [3], building on [131]. It must be interpreted
with care. It means that for a fixed time scale below the Poincaré recurrence, one
should expect to find deviations from the thermal answer when the size of the probe
operator is comparable to the entropy of the system. In the case of a CFT, size could
stand for the conformal dimension of the probe operator, and operators generating
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black hole microstates themselves would be intuitive examples for this mechanism
to be realised.

The importance of this statistical e�S suppression in the context of the
information paradox has been recently emphasised in [6]. Readers interested in a
review on the information paradox itself and the perspective offered by the fuzzball
ideas are referred to [122, 123]. For recent discussions regarding the physics of
infalling observers in this context, see [125, 126].

These field theoretic considerations suggest that black hole backgrounds pro-
vide very accurate descriptions of the physics accessible to a classical observer
[12, 13, 17, 109]. It is natural to ask, especially in an AdS/CFT context, whether the
deviations in correlation functions mathematically described in terms of variances
translate into some non-trivial spacetime scale and whether the latter survives the
semiclassical limit. As mentioned before, a priori, this sounds improbable, since one
would expect all these effects to be confined to the Planck scale. It is also technically
hard to find reliable and precise results in the field theory side. Even if we restrict to
highly supersymmetric sectors, the machinery for computing correlation functions
in heavy states is still not fully developed, but there has been important progress
towards achieving this goal in [62, 72, 73]. In the context of large black holes in
the AdS5/CFT4 correspondence, these heavy states will have conformal dimension
� � N2. Thus, even if working in a large N limit, the degeneracy of states is so
large that standard large N perturbative diagrammatic counting arguments are not
guaranteed to apply.

3.3 Half-BPS States in N D 4 SYM Versus LLM Geometries

As an explicit example of the ideas outlined above, I will review the gauge and
gravity descriptions for half-BPS states in N D 4 Super Yang-Mills (SYM) and
type IIB supergravity, respectively. These states are characterised by their R-charge
J , since supersymmetry forces them to saturate the bound� D J , where� is their
conformal dimension. This set-up has two important advantages: its large amount of
symmetry and its microscopic interpretation in terms of spherical rotating D-branes.
The first guarantees that perturbative gauge theory states can be compared with their
strongly coupled descriptions in supergravity. The second will help us to establish a
dictionary between these two different descriptions. Unfortunately, the degeneracy
of these states is not large enough to generate a macroscopic horizon. Hence, this
sector of N D 4 SYM will not be good enough to test our ideas for large black
holes.

The particular half-BPS black holes we will be interested in were first found
in [33]. These are type IIB .U.1//2 � SO.4/ � SO.4/ invariant supergravity
configurations with constant dilaton and non-trivial metric and Ramond-Ramond
(RR) four-form potential C4
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ds2 D �
p
�

H
f dt2 C

p
�

f
dr2 C p

� r2 ds2
S3

C p
� L2 d�2 C L2p

�
sin2 � ds2QS3

C 1p
�

cos2 � ŒL d� C .H�1 � 1/ dt�2 ; (3.14)

C4 D �r
4

L
� dt ^ d3˝ � Lq cos2 � .Ld� � dt/ ; (3.15)

whereH D 1Cq=r2, f D 1Cr2 H=L2, � D 1Cq sin2 �=r2 andL4 D 4� gsN l4s
is the radius of AdS5, with gs the string coupling and ls the string scale. These are
asymptotically global AdS5�S5 singular configurations with vanishing horizon size
carrying charge

� D J D !
N2

2
; ! D q

L2
; (3.16)

These were coined superstars in [129], where they were interpreted as a distribution
of giant gravitons [127]. A single giant graviton corresponds to a D3-brane wrapping
QS3 while rotating at the speed of light in the � direction. They preserve the same

half of the supersymmetries as a point particle graviton, but they carry an R-charge
of order N, i.e. J / N . Such N scaling is easy to understand: the dimensionless
mass carried by the giant �giant must be proportional to the D3-brane tension
TD3 D 1=.8�3gs l

4
s / and its worldvolume

�giant / TD3L
4 / N : (3.17)

Physically, a pointlike graviton carrying R-charge of order N expands to an spherical
D3-brane, through Myers’ effect [128]. The solution (3.14)–(3.15) sources a certain
number NC of such giants that can be determined through the flux quantisation
condition

NC D 1

16�G10TD3

Z
S5
F5 d

5˝ D ! N ; (3.18)

where F5 D dC4 is the RR five-form field strength.
In the forthcoming sections, our main goal is to provide evidence that the

superstar (3.14) corresponds to a coarse grained configuration emerging from
integrating the quantum data of the exact quantum mechanical wave function.

3.3.1 Gauge Theory Description and Typicality

Due to the state–operator correspondence, highest weight half-BPS states in N D 4

SYM correspond to multi-trace operators, O D Q
n;m .Tr .Xm//n, built of a single

real scalar field X transforming in the adjoint representation. In [41, 62], it was
shown that the degrees of freedom describing these states are equivalent to N

fermions fq1; : : : ; qN g in a one dimensional harmonic potential. The number of
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these operators with conformal dimension� � N2 at very small chemical potential
ˇ [42, 102]

S1=2�BPS / N logN ; (3.19)

captures the large temperature behaviour of N harmonic oscillators plus an 1=N Š
statistical factor, in agreement with its fermionic interpretation. Given the exact
nature of the half-BPS partition function, one can extrapolate this answer to strong
coupling and estimate the size of an stretched horizon �h by comparing the field
theory entropy with the Bekenstein-Hawking entropy (3.2)

Sgrav D S1=2�BPS � N2

�h
L

�3 ) �h

L
� 1 : (3.20)

One concludes the degeneracy of states is not large enough to generate a large
horizon.

The fermionic description corresponds to an integrable system with ground state,
the filled Fermi sea, consisting of fermions with energiesEg

i D .i � 1/„ C „=2 for
i D 1; : : : ; N . Every excitation corresponds to a half-BPS state where the energy
of the individual fermions is Ei D fi„ C „=2. Thus, there exists a correspondence
between states and a set of unique non-negative ordered integers fi . Exchanging
these with a new set of integers ri D fi � iC1, describing the excitations above the
ground state, one establishes a correspondence between states and Young diagrams
with N rows having as many boxes ri as the excitation spectrum.

These diagrams are equally determined using the set of variables

cN D r1 I cN�i D riC1 � ri I i D 1; 2; : : : ; .N � 1/ : (3.21)

These cj count the number of columns in the Young diagram of length j . These
are particularly relevant when looking for a microscopic interpretation of gravity
configurations with � � N2. This is because giant gravitons, as stressed before,
have� � O.N / and the operator dual to a single giant graviton is a subdeterminant
[9]. In terms of Young diagrams, this operator corresponds to a single column. Thus,
the number of columns in the diagram corresponds to the number of giant gravitons.

Given the large degeneracy of states having conformal dimension N2, it is
natural to use the statistical mechanics of the N fermions to identify how most
of these states look like. Using the correspondence with Young diagrams, this will
provide the shape of the typical diagram with these number of boxes. Since the
superstar configuration (3.14) supports NC giant gravitons, it is natural to consider
an ensemble of Young diagrams in which the number of columns is held fixed [13].2

Implementing this with a Lagrange multiplier �, the canonical partition function
equals

2There is more than one ensemble achieving this, see [71] for a discussion on this point.
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Z D
1X

c1;c2;��� ;cND1
e�ˇPj jcj��.Pj cj�NC / D ��NC Y

j

1

1 � � qj
; � D e�� :

(3.22)
The ensemble chemical potential ˇ is fixed by requiring

hEi D � D q@q logZ.�; q/ D
NX
jD1

j � qj

1 � � qj
; (3.23)

whereas the Lagrange multiplier, or equivalently �, is fixed by

NC D
NX
jD1

hcj i D
NX
jD1

� qj

1 � � qj ; (3.24)

where we already computed the expected number of columns of length j , i.e. hcj i.
It is important to appreciate that the statistical properties of the system change

considerably due to the constraint on the number of columns. Indeed, without the
constraint, the amount of energy of the system, i.e. the number of boxes in the
Young diagram, can grow without bound. Thus one expects the energy and entropy
to increase monotonically as the system heats up. In the current set-up, this is no
longer true. Our ensemble is characterised by the pair .N; NC / and the conformal
dimension� lies in a finite interval:

hEi D � 2 ŒNC ; N �NC � : (3.25)

The lower bound corresponds to a single row Young diagram with NC boxes;
whereas the upper bound corresponds to a rectangular diagram in which all N
rows have NC boxes. Clearly, both bounds have a unique microstate, and so we
can conclude our system has vanishing entropy in both situations.

Intuitively, one expects that as one increases the energy slightly above NC ,
the entropy increases, heating up the system to a finite positive temperature. This
behaviour should continue until the entropy reaches a maximum, which is achieved
at �s D NC.N C 1/=2, when half of the allowed boxes are filled in. If the energy
goes beyond this value, we expect the entropy to start decreasing as the degeneracy
of microstates will decrease. Indeed, there is a one-to-one map between Young
diagrams with � boxes and NC.N C 1/ � � boxes. Thus, S.�/ D S.NC .N C
1/ � �/. This shows that in this regime our system will have negative chemical
potential. This discussion strongly suggests that the system achieves a vanishing
chemical potential, i.e. ˇ ! 0, when the entropy is maximised.

Let us examine different regimes in this ensemble, keeping N fixed and
varyingˇ. First, consider the large-ˇ expansion. If the chemical potential is positive,
this corresponds to the approximation q D e�ˇ � 1. In such regime, both sums in
(3.23) and (3.24) are dominated by their first term. This allows us to conclude
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� � NC � hc1i D �q

1 � �q
; (3.26)

which indeed corresponds to a diagram with a single row of NC boxes since the
dominant contribution comes from columns of length one.

If the chemical potential is negative, corresponding to the approximation
q D e�ˇ  1, the number of columns

NC � hcN i D �qN

1 � �qN
; (3.27)

is dominated by the number of columns of lengthN . This is so because the function
x=.1 � x/ is monotonically increasing in x. Thus the corresponding diagram is a
rectangular one, as expected. To further check this interpretation, we can compute
the dominant contribution to the energy (3.23)

� D
1X
sD1

�s
NX
jD1

j qsj

D
1X
sD1

�s

qs
1 � qsN

1� qs
C q2s

1 �N q.N�1/s C .N � 1/qNs
.1� qs/2

�

� N

1X
sD1
.� qN /s D N NC ; (3.28)

which indeed agrees with the energy of a rectangular diagram with N rows of NC
boxes each.

Consider now the small-ˇ expansion. I shall treat both the positive and negative
chemical potentials together including a sign in the definition of the expansion
parameter .ˇ/. To prove the entropy goes through a maximum in this regime,
we need to compute its expansion to second order in ˇ. Using the identity,

S D ˇ�C logZ D ˇ � �NC log � �
NX
jD1

log.1 � � qj / ; (3.29)

we realise we need to work out the expansions for � and� at second and first order,
respectively. Expanding (3.24) and inverting the corresponding equation, we can
find the expression for �:

�.N; NC / D !

1C !

�
1C ˇ

A1

N
C ˇ2

N C 1

12
..N C 2/� !.N � 1//

�
C O.ˇ3/ :

(3.30)
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In the above expression we have introduced the notation:

! � NC

N
; A1 D

NX
jD1

j D N.N C 1/

2
: (3.31)

Expanding (3.23), the conformal dimension at first order is

� D ! A1 � ˇ
A1

6
!.1C !/ .N � 1/C O.ˇ2/ : (3.32)

Notice that at large-N , the dominant energy is the one computed for the superstar in
[129], suggesting that the ˇ ! 0 limit the large-N typical state is described in
spacetime as the superstar. We will explicitly show this later. The typical states
in this vanishing chemical potential ensemble correspond to Young diagrams that
are nearly triangular. That is, on average, there is a constant gap .!/ of energy
between the excitations of the .j C1/-st and j -th fermions, the first fermion having
an average energy ! itself. Moreover, having computed the linear ˇ dependence
allows us to confirm that for positive ˇ, the conformal dimension is smaller than the
superstar energy, whereas for negative ˇ, it can exceed the latter, in agreement with
our general entropic arguments.

Finally, if the superstar ensemble maximises the entropy, the entropy expansion
in ˇ should have no linear dependence in it and its second order coefficient must be
negative for all values of N; NC . Carrying out the computation, we obtain

S D � log

�
!NC

.1C !/NCNC

�
� ˇ2

!.1C !/

24
N.N 2 � 1/C O.ˇ4/ : (3.33)

Since N � 1, the coefficient of ˇ2 is negative, for any value of .N; NC /,
as expected. According to our discussion, we should identify the first term above
as a microscopic derivation for the entropy of the superstar.

3.3.1.1 Limit Curve

Let us introduce two coordinates x and y along the rows and columns of the
Young diagram. In my conventions, the origin .0; 0/ is the bottom left corner of
the diagram, x increases going up while y increases to the right. In the fermion
language, x labels the particle number and y its excitation above the vacuum.
Determining the typical state consists in computing the curve y.x/ describing the
shape of the Young diagram. This can be done by identifying this mathematical
object with the expectation value

y.x/ D
NX

iDN�x
hci i : (3.34)
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In the limit „ ! 0, N ! 1, keeping the Fermi level „N fixed, we can treat x and
y as continuum variables, replace the summation by an integral, and derive the limit
curve [13]

y.x/ D log.1� e�ˇN /
ˇ

� log.1 � e�ˇ.N�x//
ˇ

: (3.35)

For a discussion concerning the size of the fluctuations, see [13, 71]. We will be
particularly interested in the ˇ ! 0 limit of this limit curve. Before studying
this further, let us review the classical gravitational description for these half-BPS
configurations.

3.3.2 Gravity Description

All the relevant U.1/ � SO.4/ � SO.4/ half-BPS supergravity backgrounds for our
discussion were constructed in [105]. These involve a metric

ds2 D �h�2.dtCVidx
i /2Ch2.d�2Cdxidxi /C� eGd˝2

3 C� e�Gd Q̋ 2
3 ; (3.36)

and a self-dual five-form field strength F.5/ D F ^ d˝3 C QF ^ d Q̋
3, where d˝3

and d Q̋
3 are the volume forms of the two three-spheres where the two SO.4/s are

geometrically realised. The full configuration is uniquely determined in terms of a
single scalar function z D z.�; x1; x2/ satisfying the linear differential equation (see
[105] for a complete discussion)

@i@i z C �@�

�
@�z

�

�
D 0 : (3.37)

Notice ˚.�I x1; x2/ D z ��2 satisfies the Laplace equation for an electrostatic
potential in six dimensions being spherically symmetric in four of them. The
coordinates x1; x2 parametrize an R

2, while � is the radial coordinate in the
transverse R4 in this auxiliary six-dimensional manifold. Thus, the general solution

z.�I x1; x2/ D �2

�

Z
dx0

1 dx
0
2

z.0I x0
1; x

0
2/

Œ.x � x0/2 C �2�2
; (3.38)

depends on the boundary condition z.0I x1; x2/. To be complete, we remind the
reader of the relations determining the full configuration in terms of this scalar
function

h�2 D 2� coshG; (3.39)

�@�Vi D �ij @j z; �.@iVj � @j Vi / D �ij @�z (3.40)
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z D 1

2
tanhG (3.41)

F D dBt ^ .dt C V /C BtdV C d OB ;
QF D d QBt ^ .dt C V /C QBtdV C d OQB (3.42)

Bt D �1
4
�2e2G; QBt D �1

4
�2e�2G (3.43)

d OB D �1
4
�3 	3 d.

z C 1
2

�2
/ ; d OQB D �1

4
�3 	3 d.

z � 1
2

�2
/ (3.44)

It was shown in [105] that regularity forces the boundary condition

z.0I x1; x2/ D ˙1=2 : (3.45)

Introducing u.0I x1; x2/ D 1=2 � z.0I x1; x2/, the energy and flux quantisation
condition are

� D
Z
R2

d 2x

2�„
1

2

x21 C x22
„ u.0I x1; x2/ � 1

2

�Z
R2

d 2x

2�„ u.0I x1; x2/
�2

; (3.46)

N D
Z
R2

d 2x

2�„ u.0I x1; x2/ ; (3.47)

where „ D 2�`4p due to the non-standard units carried by fx1; x2g. These
expressions resemble expectation values computed in the phase space of one of
the fermions appearing in our gauge theory discussion, suggesting the function
u.0I x1; x2/ should be identified with the semiclassical limit of the quantum single-
particle phase space distributions of the dual fermions.

3.3.3 Gauge-Gravity Correspondence and Coarse Graining

The classical moduli space of configurations described in [105] was geometrically
quantised in [84, 118].3 The Hilbert space they constructed when restricting to the
subspace of BPS configurations was isomorphic to the one describing N fermions
in a one dimensional harmonic oscillator appearing in the gauge theory. This
automatically guarantees that the gauge theory and gravity counting of states match.
In the following, we will focus on the information loss by coarse graining of
quantum information.

3The same methods were applied to the D1–D5 system in [135].
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The matching of the gauge theory and gravity descriptions requires a dictionary.
Focusing on U.1/ invariant configurations in the x1; x2 plane, it was proposed in
[13] that in the semiclassical limit „ ! 0 with „N fixed, the integral formulae
(3.46) and (3.47) extend to differential relations

u.0I r2/
2„ dr2 D dx ;

r2 u.0I r2/
4„2 dr2 D .y.x/C x/ dx : (3.48)

The first equation relates the number of particles in phase space within a band
between r and r C dr to the number of particles as determined by the rows of the
associated Young diagram. The second equation matches the energy of the particles
in phase space within a ring of width dr to the energy in terms of the Young diagram
coordinates. This is equivalent to identifying the y D 0 plane in the bulk with the
semiclassical limit of the phase space of a single fermion [84, 117, 151].

Combining both equations in (3.48), we find y.x/ C x D r2=.2„/ and taking
derivatives,

u.0I r2/ D 1

1C y0 , z.0I r2/ D 1

2

y0 � 1

y0 C 1
: (3.49)

This establishes a dictionary between the boundary condition u.0I x1; x2/ in super-
gravity and the slope (y0.x/ D dy=dx) of the Young diagram of the corresponding
field theory state.

We will now rederive Eq. (3.49) from a different perspective, emphasising the
intrinsic loss of information involved in the semiclassical limit we are taking.
Given the exact quantum mechanical phase space distribution, one can seek a new
distribution function that is sufficient to describe the effective response of coarse
grained semiclassical observables in states that have a limit as „ ! 0. The latter
will be called the coarse grained or grayscale distribution. Since we are interested
in single Young diagram states, it can only depend on the energyE D .p2 C q2/=2.
To derive this, let �E be a coarse graining scale such that �E=„ ! 1 in the
„ ! 0 limit. The grayscale distribution g.E/must equal the quotient of the number
of fermions with energies between E and E C�E4

R.E;�E/ D 2�„
Z EC�E

E

dq dpHu.q; p/; (3.50)

by the area of phase space between these scales

Area D
Z EC�E

E

dq dp D 2��E : (3.51)

4We are using the Husimi distribution Hu.q; p/ given its nice properties in the classical limit. For
further discussion, see [13]. For a review on phase space distributions, see [98].
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Fig. 3.3 From pure states, to typical states and their coarse grained phase space density description
providing a gravity boundary condition

Hence, the grayscale distribution equals

g.E/ D 2�„
�
R.E;�E/

2��E

�
: (3.52)

Since the number of fermions in this area is related to the continuous coordinate x
and the area to the energy, we conclude

g.E/ D „�x
�E

D „
@E=@x

D 1

1C y0 : (3.53)

where the gauge-gravity proposal E D „.x C y.x// was used (Fig. 3.3).
Remarkably, this is precisely the quantity (3.49) that we proposed on general

grounds to determine the classical supergravity half-BPS solution associated to a
Young diagram. Thus, explicitly, the proposal is

u.0I r2/ D g.r2=2/ D 1

1C y0 (3.54)

for all half-BPS states that are described by single Young diagrams in the semiclas-
sical limit.
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3.3.3.1 Matching the Superstar Geometry

As argued in [13], the entropy of the superstar ensemble is maximised at vanishing
chemical potential ˇ. This is the regime in which we plan to compare the geometry
(3.14) with the one obtained out of the proposal (3.54). First, the ˇ ! 0 limiting
behaviour of the finite chemical potential limit curve (3.35) describing the typical
state of the superstar ensemble becomes a straight line

y D NC

N
x � ! x : (3.55)

The grayscale distribution (3.53) will then be a constant fixing the superstar scalar
function zS .0I r2/ to be

zS .0I r2/ D
(

1
2

NC =N�1
NC =NC1 if r2=2„ � N CNC ;

1
2

if r2=2„ > N CNC :
(3.56)

Since, within the droplet region, i.e. r2=2„ � NCNC , this number is different from
˙1=2, the spacetime is singular. Noting that the coarse grained phase space density
derived from our proposal equals

uS .0I r2/ D 1

2
� zS .0I r2/ D 1

NC=N C 1
; (3.57)

in the region of the phase space plane between r2=2„ D 0 and r2=2„ D N C NC ,
and vanishes otherwise, it is straightforward to check, using (3.46) and (3.47), that
(3.56) reproduces (3.16).

Equation (3.56) is a prediction from our proposal and our gauge theory analysis
concerning the description of the typical states in the semiclassical limit. We want
to reproduce this prediction by explicit analysis of the configuration (3.14). If we
compare the physical size of the two three-spheres appearing in the superstar metric
(3.14) with their parametrisation in [105], we obtain the conditions:

� eG D p
� r2 ; � e�G D L2 sin2 �1p

�
: (3.58)

Using the fact that z D .1=2/ tanhG [105], then

z D 1

2

r2� � L2 sin2 �1
r2� C L2 sin2 �1

: (3.59)

Since it is the value z.� D 0/ that is related to the semiclassical distribution function,
we must analyse the behaviour of G at � D 0. We observe there are two different
regimes where this applies:
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1. When sin �1 D 0, z.� D 0/ D 1=2. Vanishing sin �1 implies the vanishing of
the giant graviton distribution. Consequently, it should correspond to absence of
fermion excitations in the gauge theory picture. This is precisely reflected in the
boundary condition z.� D 0/ D 1=2.

2. When r D 0, the giant distribution is non-vanishing. One gets

z.r D 0/ D 1

2

! � 1

! C 1
: (3.60)

The gravity distribution (3.60) identically matches the one derived from purely
field theoretic and statistical mechanical considerations (3.56). This establishes the
singular superstar configuration corresponds to a coarse grained object matching the
notion of typical state emerging from the canonical ensemble analysis.

3.3.4 Measurability, Coarse Graining and Entropy

The integrability of the system of N fermions and the non-renormalisation properties
of this sector of the theory allow us to do better. First, we can be more precise
about the kind of information loss occurring when taking the semiclassical limit
and the subset of quantum states allowing a reliable gravitational description in
that regime. Second, we can derive the semiclassical partition function from a first
principle calculation on the gauge theory side that will highlight the definition of
coarse graining as a renormalization group transformation in phase space.

To make integrability more explicit, one can either specify a basis of states in
terms of the energies ff1; � � �fN g or in terms of the gauge invariant moments

Mk D
NX
iD1

f k
i D Tr.Hk

N=„k/ I k D 0; � � �N ; (3.61)

whereHN is theN fermion Hamiltonian with the zero point energy removed. These
Mk are conserved charges of the system of fermions in a harmonic potential [75]
and allow a reconstruction of the spectrum F D ff1; � � �fN g [14].

We are interested in reading this information from the bulk. Since the phase
space distribution was identified with the scalar function u.0I r2/, we search for the
spectrum fM1; � � �MN g in its multipole expansion. After some algebra, one finds
[14]

u.�; �/ D 2 cos2 �
1X
lD0

„lC1Pf 2F Al.f /
�2lC2

.�1/l .l C 1/ 2F1.�l; l C 2; 1I sin2 �/;

(3.62)
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where 2F1 is the hypergeometric function, Al.f / is a polynomial of order l in f

An.f / �
fX
sD0

.�1/f�s2sf Š
.f � s/ŠsŠ .s C 1/n ; (3.63)

and .˛/n D .˛Cn�1/Š
.˛�1/Š is the Pochhammer symbol. Thus, the data about the

underlying state F enters the l-th moment in sums of the form

X
f 2F

Al.f / D
lX

kD0
ck Mk (3.64)

where ck is the coefficient of f k in the polynomial expansion of Al.f /. Thus
a measurement of the first N multipole moments of the metric functions can be
inverted to give the set of charges Mk of the underlying state, from which the
complete wave function can be reconstructed.

The question is whether the above formal considerations survive the semiclas-
sical limit. The latter consists of „ ! 0 with „N fixed. Moments Mk scale like
Ml D mlN

lC1. Hence, the multipole expansion reduces to [14]

u.�; �/ D 2 cos2 �
1X
kD0

2khMki
�2kC2 .�1/k.k C 1/ 2F1.�k; k C 2; 1I sin2 �/ : (3.65)

Thus, there is a one–to–one correspondence between the bulk u.�; �/ multipole
moments and the spectrum of the basis states encoded in the set Mk .

Since semiclassical observers have finite resolutions, we do not expect them to
be able to measure all the required moments to identify the basis state. Indeed,
to measure the l-th multipole in (3.65) one needs the (2l)-th derivative of the metric
functions or any suitable invariant constructed from them. If the measuring device
has finite size �, the k-th derivative of a quantity within a region of size � will probe
scales of order �=k. However, semiclassical devices can only measure quantities
over distances larger than the Planck length. Thus,

�

k
> lp D g1=4s ls (3.66)

Setting the size � to be a fixed multiple of the AdS scale � D �L, this says that

k < �N1=4 (3.67)

for a derivative to be semiclassically measurable. Since we require O.N /multipoles
to determine the quantum state and N1=4=N ! 0 as N ! 1, we conclude
that semiclassical observers have access to a negligible fraction of the information
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needed to identify the quantum state. Reversely, it was shown in [14] that the
distribution of low moments is universal, in the sense that the standard deviation
to mean ratio of the momentsMk vanishes in the semiclassical limit. Thus, classical
configurations have essentially identical low order multipoles, and their differences
can not be observed.

These considerations are fairly generic, as argued in [15]. Assuming black holes
are quantum mechanically described by a finite number of states, and consequently
involve a discrete spectrum, it is clear that different quantum states can in principle
be distinguished. The latter would imply there is no information loss. The catch
is, once again, the necessary measurements required to tell these different quantum
states apart involve Planck scale precision or waiting of the order of ıt � eS , due
to the Heisenberg uncertainty principle.

So far we focused on the semiclassical measurability of states in the bulk, but
nothing was explicitly mentioned about which subset of quantum states allows such
a description. This is important because this process is intimately related to the
emergence of entropy from the bulk perspective. To gain some insight into this issue,
a second quantised formalism was developed in [16] to define an operator Ou.˛/
whose expectation value in a generic state j� i equals the one of the one-particle
Husimi distribution5

h� jOu.˛/j� i D �Hu�1.˛/ : (3.68)

The operator in question is

Ou.˛/ � b�.˛/b.˛/ : (3.69)

Here b�.˛/ stands for a fermion creation operator, whereas j˛i equals a coherent
state localised in some point of phase space ˛ D x1Ci x2p

2„ ,

j˛i D e�j˛j2=2
1X
nD0

˛np
nŠ

jni �
1X
nD0

cn.˛/jni : (3.70)

Coherent states can be thought of states inhabiting a lattice of unit cell area 2�„
[5, 27, 133]. Since a semiclassical observer measures the phase plane at an area
scale ıA D 2�„M  2�„, she is only sensitive to a smooth, coarse grained
Wigner distribution 0 � „Wc D uc � 1 erasing many details of the underlying
precise microstates. The region ıA consists ofM D ıA=2�„ lattice sites, a fraction
uc D „Wc of which are occupied by coherent states. Then the entropy of the local
region ıA is

5The exact quantum state is an N-particle state. Thus, there is generically information loss when
going from this to the one particle description. In the large N limit, this is typically expected to be
a subleading effect not emerging in the classical gravitational description. See [16] for a discussion
on this matter.
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ıS D log

 
M

„Wc M

!
� � ıA

2�„ log uuc
c .1 � uc/

1�uc ; (3.71)

when „Wc is reasonably far from 0 and 1. For the total entropy this gives [16]

S D
Z
ıS D �

Z
dA

uc log uc C .1 � uc/ log .1 � uc/

2�„ : (3.72)

Thinking about uc D „Wc as the probability of occupation of a site by a coherent
state, this is simply Shannon’s formula for information in a probability distribution
[144].6 This procedure shows in a rather explicit way how entropy is generated by
integrating out quantum data at smaller scales. The large amount of supersymmetry
allows us to interpret this as gravitational entropy by providing a bridge connecting
the gauge and gravity theory descriptions in the large N limit.

This picture allows us to compute the semiclassical partition function

Z D
Z

Du.x1; x2/ �.u/ e
�ˇ.H.u/��N.u// ; (3.73)

where the measure �.u/ reflects not only the Jacobian in transforming between
the supergravity fields and u, but also the number of underlying microscopic
configurations that give rise to the same macroscopic spacetime. Our previous
considerations suggest

�.u/ D e� R dx1 dx2
2�„

.u ln uC.1�u/ ln.1�u// D eS.u/ ; (3.74)

where S is understood as the entropy of the spacetime. In the semiclassical limit,
a spacetime is nonsingular if u D 0; 1 everywhere. In that case, S.�/ D 0 and the
measure � is 1. In other words, semiclassical half-BPS spacetimes have an entropy
if and only if they are singular.

Evaluating the partition function by the method of saddle point gives

lnZ D
Z
d2x

2�„ ln.1C e�ˇ x
2
1Cx22
2„

Cˇ�/ D
Z 1

0

ds
s

es�ˇ� C 1
� 1

ˇ
F2.e

ˇ�/ ; (3.75)

where s D ˇ.x21 C x22/=2 and F2 is a Fermi-Dirac function (Fig. 3.4).
This result can be derived from first principles by coarse graining the scale of

the fundamental cells in the exact gauge theory partition function. This is defined
as a renormalization group (RG) transformation in this space. Consider a lattice
whose cells are M � M (in Planck units). From the microscopic point of view,

6This result was independently obtained by Masaki Shigemori in an unpublished work by
considering a gas of fermionic particles in phase space.
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the energy of each distribution of populated Planck scale cells is different, but in the
limit M ! 1, almost all distributions cluster close to a certain typical distribution
in theM �M cell, and thus observers at these scales will assign the same energy to
all of them. Another way to look into this transformation is more analogous to the
one taken in the semiclassical limit in gravity

`p ! 0 ; L ! 0 ;
L

`p
! 1 (3.76)

L is the emergent continuous scale in the classical limit. It can be viewed as
L D M `p . Before taking the limit, the coarse grained function u will take values
0; 1

M2 ;
2
M2 ; : : : ; 1 in the M � M cells. This can also be inferred by requiring the

phase space to describe N particles. Comparing the two lattices of sizes M � M

and 1 � 1, in Planck units, one finds that

N D
X

fx1; x2g
u.x1; x2/ D M2

X
fxM1 ; xM2 g

uM.xM1 ; x
M
2 / ; (3.77)

allowing to derive that

uM.xM1 ; x
M
2 / D 1

M2

X
fx1; x2g

2fxM1 ; xM2 g

u.x1; x2/ ; (3.78)

where variables with superscript M are defined in the M � M lattice and in the
second equality we are summing over all Planck-scale lattice sites inside a single
M � M cell labelled by .xM1 ; x

M
2 /. This sum computes the fraction of populated

sites in the coarse grained cell. Finally, the sum over all possible uM configurations
at cell location .xM1 ; x

M
2 / becomes

X
uM

e�f uM D 1C
 
M2

1

!
e

�f 1

M2 C
 
M2

2

!
e

�f 2

M2 C: : :Ce�f M2

M2 D
�
1C e

�f

M2

�M2

:

(3.79)
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where f .x1; x2/ D ˇ
�
.x21 C x22/=2� �� =.2�„/. The factors in front of each

exponential count how many ways a given value of uM in the coarse grained lattice
can be attained in terms of the Planck scale lattice. These combinatorial factors equal
the ones already argued for in the semiclassical considerations in (3.71). This is the
precise origin of entropy when implementing the coarse graining transformation in
the limit (3.76). The complete partition function becomes

ZM�M D
Y

x1;x22MZ

 
1C e

� ˇ

M2 .
x21Cx22

2 ��/
!M2

D M2

ˇ
F2.e

ˇ�

M2 / : (3.80)

This derivation reproduces the semiclassical computation if we identify ˇ in (3.75)
with the rescaled potential ˇ=M2 due to the renormalization group transformation.
One could interpret the computation (3.80) as a derivation for the entropy formula
(3.71).

What this derivation highlights is that as soon as one observer has no access to
Planck scale physics, the measured coarse grained phase space density will typically
be fractional. The advantage of the system discussed above is that we can also
explicitly see this in gravity in terms of singular configurations. This is a satisfactory
explanation for the source of entropy in the semiclassical description.

3.3.5 Large Black Holes, Fuzzball and Ensembles

Testing the ideas behind the fuzzball conjecture has been reasonably successful for
small supersymmetric black holes, the example discussed above being one particular
example. See [17, 36, 120, 124, 146] for discussions and references involving other
set-ups. It is natural to wonder how general and testable these ideas are for generic
supersymmetric and non-supersymmetric black holes.

Even in the context of small supersymmetric black holes, it was pointed out
in [143] that the existence of classical fuzzball configurations depends on the
U-dual frame being considered. Even more, it was noticed there, that for all known
examples, whenever such solutions do not exist, the small black hole develops a
horizon through higher order corrections, whereas when it can be argued that the
horizon scale remains of vanishing size, fuzzball configurations already exist at
tree level. Sen conjectured this to be a generic fact [143]. This observation starts
emphasising the importance of both ˛0 and gs corrections in these considerations,
since both are not U-duality invariant.

What about large black holes? There exist candidate supersymmetric fuzzball
configurations starting with the multi-center configurations in [31,35,43], including
the scaling solutions [37, 74], where the coordinate distance between such centers
goes to zero, and also more recent work [40] involving configurations with arbitrary
functions. Their (classical) moduli spaces are much more complex than the ones
for small black holes. Hence our understanding is far from complete (see [17] for
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a summary on the state of this important matter). But if fuzzball ideas were to
be borrowed to these large black holes, one would ideally expect, at least in an
euclidean path integral approach, that the partition function equals [146]

Z D
Z
fa

DŒga�DŒ˚a� e
�Ifa D e�IfaCS D e�IBH ; (3.81)

where the sum is only carried over the fuzzball configurations fa, with metric ga,
matter fields ˚a and IBH is the action for the black hole having the same mass and
charges as the set ffag. Notice that the absence of a horizon for all fa implies that
the on-shell Euclidean action should satisfy

Ifa D ˇ .E � �i Qi/ ; (3.82)

where the set fE; Qi g stands for the mass and charges carried by the black hole.
Notice the above argument also used there is a total degeneracy D D eS obtained
after quantisation of the space of classical fuzzball solutions.

Using this formalism provides intuition, but its assumptions may not be gener-
ically fulfilled, especially in the semiclassical regime where they are technically
applied. It is still useful to present some of the puzzles on the subject. The identity
(3.81) assumes both the existence of solutions to the equations of motion of the
effective action governing gravity and that their number explains the entropy of the
original macroscopic black hole.

Let us put these assumptions in perspective with our previous discussions [145].
First, our knowledge on this effective action typically reduces to its tree level
classical part. Thus, geometric quantisation deals with quantisation of a classical
moduli space of configurations of a classical theory which is known to receive both
˛0 and gs corrections. Since the most conservative expectation is that information
about individual microstates is stored in Planck scale physics, the use of the
classical action is typically not justified to begin with. Thus, we expect not to be
able to reproduce the entropy of the black hole from these considerations. Indeed,
preliminary work in this direction [68, 69] confirms this expectation.

Second, there are matters of principle arising. Large lorentzian black holes
typically have curvature singularities in their deep interior. Thus, they are not
solutions to the classical equations of motion. Their euclidean continuations,
however, are smooth when suitable boundary conditions are imposed, at the expense
of removing the interior of the geometry. These euclidean configurations are saddle
points of the semiclassical partition function and provide the dominant contributions
to the macroscopic entropy dmacro by construction. But saddle points are believed not
to provide a semiclassical description of states with well-defined mass and spin in
a quantum gravity Hilbert space [77]. Thus, in an euclidean formalism, which is
intrinsically canonical in nature, ensemble wise, the euclidean black hole definitely
knows about the total number of states, but the information about the microstates
seems to be lost (or it is not manifest in our current understanding).
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The above remarks are consistent with the different available formulations
of the AdS/CFT correspondence. The euclidean path integral allows to compute
the partition function, and to extract the total number of states by saddle point
approximation, but we also know that the use of lorentzian geometry is essential
to capture the difference between microstates through the expectation values of the
different gauge invariant operators encoded in the boundary fall-off conditions of
the different bulk fields [8].

Furthermore, this discussion also highlights our ignorance on how to define
path integrals more accurately. Indeed, in the examples were candidate fuzzball
configurations are known, their euclidean continuations involve complex metrics,
whereas their on-shell actions remain real.7 Clearly, it is important to understand
the space of euclidean configurations one needs to sum over. A different way of
stressing this point is to notice that “thermal” circles in euclidean black holes are
contractible, whereas the ones for known fuzzball configurations are not, suggesting
topology can play a role in these considerations.

It is interesting to revisit our half-BPS sector of N D 4 SYM discussion. This
describes a small black hole in the bulk and it was argued in [145] that quantum
corrections would not generate a macroscopic horizon. The large symmetry in this
sector of the theory allowed us to match the semiclassical partition function with a
first principle (quantum mechanical) derivation. The outcome of this matching
was the derivation of the non-trivial measure �.u/ in (3.74). The correct partition
function was obtained by summing over smooth and singular configurations in the
semiclassical limit. If we would have ignored the non-trivial measure, the partition
function would have reduced to

ln QZ D
Z
d2x

2�
ln

0
@1 � e.�ˇ x

2
1Cx22
2 Cˇ�/

ˇ
x21Cx22
2

� ˇ�

1
A D 1

ˇ

Z 1

0

ds ln

�
1 � e�s�ˇ�

s � ˇ�

�
: (3.83)

There are two important points to be made. First, this integral diverges at the upper
limit. Second, it would only reproduce (3.75) if one restricts the partition sum to be
over smooth geometries (u D 0; 1) with u taking constant values within elementary
cells at the Planck scale. Even though this would geometrically mimic the coherent
state analysis in quantum mechanics, its validity is certainly doubtful in a manifest
semiclassical treatment applicable all the way to the Planck scale.

It is interesting to point out the different role that different ensembles also play
in Sen’s independent approach to explain the entropy of supersymmetric extremal
black holes with charges Q having AdS2 throats from an entirely macroscopic
perspective [141, 142]. Sen’s proposal is

7This observation may not be that surprising since we know of examples in quantum mechanics in
which the saddle point approximation involves a complex configuration. It seems still meaningful
to appreciate its conceptual consequences beyond its purely technical nature.
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dmacro.Q/ D
X
s

Ps
iD1 QiCQhairDQX

Qi ;Qhair

n sY
iD1

dhor.Qi/
o
dhair.QhairI fQig/ : (3.84)

The s-th term represents the contribution from an s-centered black hole configu-
ration; dhor.Qi/ stands for the degeneracy associated with the horizon of the i-th
black hole center carrying charge Qi ; and dhair.QhairI fQig/ stands for the hair
degeneracy, i.e. smooth black hole deformations supported outside the horizon and
sharing the same asymptotics.

Sen’s prescription uses a mixture of formulations. Indeed, whereas the con-
tribution from the degrees of freedom localised at the horizon is captured by
an euclidean path integral, both the contribution from horizonless configurations,
through geometric quantisation, and hair modes employ entirely lorentzian methods.
At any rate, a better understanding on how to formulate gravitational path integrals
more rigorously is clearly desirable from many points of view.

Even though the above arguments strongly suggest the fuzzball programme
should not work at tree level for non-supersymmetric configurations, this does not
forbid, a priori, the existence of non-typical non-extremal fuzzball configurations
solving the classical equations of motion. The first known examples of these
were found in [101]. Remarkably, there exists an interesting body of work for
some of these non-extremal configurations giving evidence that some features
of these fuzzball ideas are still realised in less symmetric situations [58]. More
recently, there has also been some progress in finding non-extremal fuzzball like
configurations [38, 39] and explicit multi-center extremal non-BPS solutions (see
[67] and references there in).

3.4 Extremal Black Holes

In the seminal work of Strominger and Vafa [149] the entropy of a certain
supersymmetric black hole was accounted for by identifying its degrees of freedom
with those of a 2d CFT. Later, it was realised [147] that matching the universality of
the 2d CFT Cardy’s formula (3.3) with the universality of the Bekenstein-Hawking
entropy formula (3.2) follows from the seminal work of Brown and Henneaux [50]
analysing the asymptotic symmetry group in the AdS3 region emerging near the
horizon of the original black hole.

The above synthesises the two most common approaches used in the string
theory community to explain the macroscopic entropy of a given black hole.
The first one is microscopic in nature. One maps black hole charges to D-brane
charges (possibly) wrapping some internal cycles in some compact manifold. These
provide an open string (gauge theory) description in which one counts the number
of microstates compatible with the given conserved charges. The matching with
the gravitational macroscopic result relies on the existence of non-renormalisation
theorems guaranteeing the number of states does not change as the gauge coupling
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increases, which is what generates the gravity description. The second method
is semiclassical in nature. It constructs a Hilbert space out of the study of the
asymptotic symmetry group of a given spacetime. The emergence of a 2d conformal
field theory realising two Virasoro algebras allows one to use Cardy’s result (3.3)
to account for the entropy of the black hole in terms of the number of operators
carrying its charges.

The main goal of this section is to review part of the recent work devoted to
extend the second approach to extremal, non necessarily BPS, black holes. More
precisely, the Kerr/CFT correspondence [87] and its generalisation to extremal black
holes/CFT [90].

3.4.1 Extremal Black Holes and Conformal Field Theory

Let me consider the semiclassical approach initiated by Brown and Henneaux
in [50]. One of the virtues of this seminal work is to provide a semiclassical
construction of a Hilbert space in a classical gravity theory given some boundary
conditions. The heuristic idea is as follows. Given a reference metric g (global AdS3
in [50]), one determines the subset of non-trivial diffeomorphisms � preserving
some set of boundary conditions h (at infinity in [50])

L� .g C h/ � h ; (3.85)

where L�g stands for the Lie derivative of the metric g along the vector field �.
These are understood as normalisable excitations of the background metric g. By
non-trivial here, one means the associated conserved chargeQ�Œg� does not vanish.
One is interested in computing the algebra closed by these conserved charges under
Dirac brackets, since the states in this semiclassical approximation will fit into
representations of the latter. Thus one needs surface integrals defining them in terms
of the given diffeomorphism � and the background metric g. Here, I follow the
covariant formalism developed in [29, 30], based on [1] and further developed in
[28, 59]. The charges generating � are

Q� D 1

8�G

Z
@˙

k�Œh; g� ; (3.86)

where G is Newton’s constant, @˙ the boundary of a spatial slice and

k�Œh; g� D 1

2
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��r�h � ��r�h�

� C ��r�h�
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2
hr��� � h�

�r���
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2
h�� .r��

� C r���/
i

	.dx� ^ dx�/ ; (3.87)
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All raised indices are computed using g�� . The Dirac bracket algebra of the
asymptotic symmetry group is then computed by varying the charges

fQ�m;Q�ngD:B: D QŒ�m;�n� C
1

8�G

Z
@˙

k�mŒL�ng; g� : (3.88)

Notice the resulting algebra can include a central term [29] if the last term does not
vanish.

Recently, this philosophy was applied to extremal Kerr

ds2 D ��

�2



d Ot � a sin2 � d O�

�2 C sin2 �

�2



.r2 C a2/ d O� � a d Ot

�2 C �2

�
dr2 C �2 d�2 ;

(3.89)

where � D .r � a/2 and �2 D r2 C a2 cos2 � . The Bekenstein-Hawking entropy
equals

S D 2� J ; with J D M2

G
� GM2

ADM : (3.90)

Taking a near horizon limit [25]

t D � Ot
2M

; y D �M

r �M
; � D O� � Ot

2M
; � ! 0 (3.91)

keeping .t; y; �; �/ fixed, leads to the near-horizon extreme Kerr (NHEK)
geometry

ds2 D 2GJ˝2

 
�dt2 C dy2

y2
C d�2 C2

�
d� C dt

y

�2!
; (3.92)

where ˝2 � .1 C cos2 �/=2 and  � 2 sin �=.1C cos2 �/. This has an enhanced
SL.2;R/ � U.1/ isometry group acting on the fixed polar angle � 3d slices, whose
geometry is that of a quotient of warped AdS3 and describes an S1 bundle over an
AdS2 base.

To study the semiclassical excitations around NHEK, one studies its asymptotic
symmetry group. To do that we impose the boundary conditions [87]

0
BB@
h		 D O.r2/ h	' D O.1/ h	� D O.r�1/ h	 r D O.r�2/
h'	 D h	' h'' D O.1/ h'� D O.r�1/ h'r D O.r�1/
h�	 D h	� h�' D h'� h�� D O.r�1/ h�r D O.r�2/
hr	 D h	r hr' D h'r hr� D h�r hrr D O.r�3/

1
CCA ; (3.93)

where the radial coordinate r in the global AdS2 coordinates was used
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y D
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p
1C r2 C r
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t D y sin 	
p
1C r2 ; (3.94)
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The most general diffeomorphism preserving these boundary conditions is [87]

� D ��r�0.'/C O.1/
�
@r C �

C C O.r�3/
�
@	 C �

�.'/C O.r�2/
�
@' C O.r�1/@� ;

where �.'/ is an arbitrary smooth function of the periodic boundary coordinate '
and C is an arbitrary constant. Expanding �.'/ into Fourier modes and defining
dimensionless quantum versions of the Qs by „Ln � Q�n C 3J

2
ın plus the usual

rule of Dirac brackets to commutators as f:; :gD:B: ! �i=„ Œ:; :�, the quantum charge
algebra is then [60, 87]

ŒLm;Ln� D .m � n/LmCn C J

„m.m
2 � 1/ımCn;0 : (3.95)

This is a Virasoro algebra with central charge

cL D 12J

„ : (3.96)

3.4.1.1 CFT Origin of the Gravitational Entropy

If the gravitational entropy of extremal Kerr allows a microscopic interpretation in
terms of a chiral CFT as suggested by the chiral Virasoro algebra emerging from the
previous semiclassical considerations, one is left to determine the temperature of
the mixed state describing the NHEK geometry. To identify it, remember the state
of an scalar quantum field in the Kerr background after integrating out its interior is
given by a density matrix with eigenvalues

e
�„ !�˝Hm

TH ; with ˝H D a

2MrC
; TH D rC �M

4� M rC
(3.97)

Here ˝H is the angular velocity of the horizon and TH is its Hawking temperature.
We can relate these eigenvalues to the ones associated to the Killing vector fields @�
and @t naturally appearing in the near-horizon region through the identity

e�i! OtCim O� D e� i
� .2M!�m/tCim� D e�inRtCinL� (3.98)
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where

nL � m; nR � 1

�
.2M! �m/ : (3.99)

In terms of these variables the Boltzmann factor (3.97) is

e
�„ !�˝Hm

TH D e
� nL
TL

� nR
TR ; (3.100)

where the dimensionless left and right temperatures are

TL D rC �M

2� .rC � a/
; TR D rC �M

2��rC
: (3.101)

In the extremal limit M2 ! GJ , these reduce to [87]

TL D 1

2�
; TR D 0 : (3.102)

The left-movers are then thermally populated with the Boltzmann distribution at
temperature 1=2�:

e�2�nL ; (3.103)

while only the purely reflecting modes survive the limit since ! D m=.2M/. Thus,
even though extreme Kerr has zero Hawking temperature, the quantum fields outside
the horizon are not in a pure state.

Assuming the existence of a unitary chiral CFT with central charge (3.96), one
is tempted to appeal to Cardy’s formula to account for the CFT entropy8

SCFT D �2

3
cLTL: (3.104)

Using (3.102) and (3.96), one reproduces the entropy of extremal Kerr (3.90) [87]

Smicro D 2�J

„ D SBH : (3.105)

Notice this approach uses the symmetries emerging in the semiclassical analysis and
the universality of Cardy’s formula, but does not provide any explicit microscopic
description of the system. This is a common feature of this kind of considerations.

This evidence was used in [87] to conjecture a new duality between quantum
gravity in the near horizon of extremal Kerr and (a chiral half of) a two dimensional
conformal field theory, the so called Kerr/CFT correspondence. By considering
near-extremal Kerr, it was shown in [48] that the superradiant scattering of an scalar

8Cardy’s formula requires the temperature to be large. See [100] for a justification on the validity
of Cardy’s regime for extremal Kerr.
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field by a near-extreme Kerr black hole was fully reproduced by a two dimensional
conformal field theory in which the black hole corresponds to a thermal state and the
scalar field to a specific operator in the dual CFT, extending the standard AdS/CFT
framework.

In the following, I briefly discuss how this same structure emerges for any
extremal black hole giving rise to the extremal black hole/CFT conjecture [90,107].
For preliminary work on the subject regarding the entropy of near-extremal black
holes and the AdS2/CFT1 correspondence, see [130]. For a more complete set of
references on the subject, see the recent review [49].

3.4.1.2 General Extremal Black Holes and Conformal Field Theory

Consider any asymptotically globally AdS (or Minkowski) extremal black hole
solution to a general theory of D D 4; 5 Einstein gravity coupled to some arbitrary
set of Maxwell fields F I and neutral scalars �A. Extremality requires the existence
of more than one charge besides mass. That is, either angular momentum, as in
Kerr, or electric/magnetic charges. It was shown in [103] that assuming the black
hole has a regular horizon and an R�U.1/D�3 isometry group, Einstein’s equations
guarantee the corresponding near-horizon geometry is

ds2 D � .�/

�
�r2dt2 C dr2

r2

�
C d�2 C �ij .�/.dx

i C ki rdt/.dxj C kj rdt/

F I D dŒeI rdt C bIi .�/.dx
i C kiI rdt/�

�A D �A.�/ (3.106)

where i D 1; : : :D � 3, r D 0 is the horizon, � .�/ > 0, f@=@t; @=@xi g are Killing
vector fields, and ki ; e are constants. The precise form of the �-dependent functions
depends on the subset of field equations that have not yet been integrated. This
metric has several S1 bundles over AdS2, the latter spanned by ft; rg. Thus, there
exists an enhancement of symmetry to SO.2; 1/ � U.1/D�3. The presence of these
bundles will be crucial to extend the previous semiclassical considerations leading
to the existence of the chiral Virasoro algebra (3.95) for extremal Kerr. If the initial
black hole only carries electric charges, this can be viewed as “rotation” using
a convenient KK reduction from higher dimensions. Thus, the conclusions below
would end up being the same [90].

To see how the ideas developed for extremal Kerr extend to more general
situations, consider the most general near horizon geometry in 5d:

ds25 D A.�/

�
�r2dt2 C dr2

r2

�
C F.�/d�2 CB1.�/ Qe21 C B2.�/. Qe2 C C.�/ Qe1/2 ;

Qe1 D d�1 C k1r dt ; Qe2 D d�2 C k2r dt ; (3.107)
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whereA,Bi , C andF are functions of the latitude coordinate � (the analogue of � in
(3.106)). The metric can be viewed as an S3 bundle over AdS2 and its Bekenstein–
Hawking entropy is

SBH D 1

4

Z
d�
p
B1B2F

Z
d�1d�2 : (3.108)

It was shown in [57] that this near horizon geometry has a pair of commuting
diffeomorphisms that generate two commuting Virasoro algebras

�1 D �e�in�1
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� in r e�in�1

@
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: (3.109)

Using the covariant formalism reviewed before, one can compute the central
charges ci in these Virasoro algebras [57]

ci D 3
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B1B2F

Z
d�1d�2 D 6kiSBH

�
; i D 1; 2 (3.110)

They reproduce the entropy of the original black hole, through Cardy’s formula,

SBH D �2

3
c1T1 D �2

3
c2T2 ; (3.111)

if the constants k1 and k2 are related to the CFT temperatures by

ki D 1

2�Ti
: (3.112)

It is reassuring to check that these are precisely the values that these constants take
when we consider the near horizon of a given extremal black hole. Indeed, in that
case,

Ti D lim
rC!r0

TH

˝0
i �˝i

D � T
0 0

H

˝ 0 0
i

; (3.113)

where ˝i describe the angular velocities of the black hole at the horizon, TH its
Hawking temperature and quantities with a 0 label refer to their extremal values.
These results can be generalised to higher dimensions [57].

These constants Ti appear naturally when expanding quantum fields in eigen-
modes of the asymptotic charges. For an scalar field, after tracing over the interior
of the black hole, the vacuum is a diagonal density matrix with eigenvalues

e�.!�˝1m1�˝2m2/=TH : (3.114)
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Expanding TH D T 0
H x and˝i D ˝0

i C˝ 0
i x, where x measures the distance to the

extremal point, one concludes the density matrix after the extremal limit is given in
terms of

e
�m1
T1

�m2
T2 ; (3.115)

with Ti defined as in (3.113). Thus these quantities can be interpreted as the
Frolov–Thorne temperatures [82] associated with two CFTs, one for each azimuthal
angle �i . Furthermore, the above requires the relation ! D ˝0

1m1 C˝0
2m2 among

the different quantum numbers. These are the modes that are fully reflected from
the black hole (no energy absorbed by the black hole) [25].

The existence of more than one CFT description may appear to be surprising. But
we are well aware of this same fact for the black holes described in [149]. There,
the entropy only depends on two of the three charges carried by the black holes, and
depending on the U-duality frame being used, there are different available CFTs. In
the current context, the existence of a lattice of CFTs was argued for in [106]. It is
not clear whether the SL.2; R/ transformations acting on the moduli characterising
the 5d near horizon geometry can be interpreted as a U-duality transformation.
Embedding these systems in string theory, as in [100], could clarify this point.

The superradiant scattering of an scalar field by these backgrounds also matches
the analogous calculation in a chiral 2d CFT, using the appropriate dual opera-
tor [65]. This provides similar evidence to the one reported for extremal Kerr. It is
interesting to point out the work in [32], where besides providing further evidence
for this correspondence, bulk correlators are computed for asymptotically flat black
holes using the same recipe developed in the AdS/CFT correspondence, perhaps
pointing towards the existence of new holographic relations for this different
asymptotics.

Before closing this discussion, it is interesting to mention the potential connec-
tion between the results reviewed and further existent work in the literature. Prior to
the Kerr/CFT conjecture, it was already observed that a quantum theory of gravity
in 2d with negative cosmological constant coupled to an electric field could allow a
non-trivial central charge under a suitable set of boundary conditions [89]. These
were responsible for twisting the energy momentum tensor T˙˙ generating 2d
conformal transformations by the U.1/ gauge current j˙ generating U.1/ gauge
transformations as

QT˙˙ D T˙˙ ˙ ˛ @˙j˙ : (3.116)

The constant ˛ depends on the details of the theory (the AdS2 radius ` and the
electric field E in this case). Notice this twisting is responsible for generating a
non-trivial central charge, since the original T˙˙ has c D 0, as is customary in
two spacetime dimensions. This mechanism was explicitly realised in a holographic
formulation of AdS2 black holes cross-checked from Kaluza-Klein compactification
of the standard AdS3/CFT2 dictionary [54]. This may essentially be the same
phenomena that is happening in the generic extremal near horizon geometry
described in this section. If the starting extremal black hole has a compact horizon,
its near horizon geometry (3.106) will allow, in principle, an effective description in
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terms of 2d gravity coupled to matter fields. One crucial property of the solutions
to this theory is that all effective electric fields in 2d diverge at infinity. This is
the reason why standard 2d conformal transformations must be accompanied by a
U.1/ gauge transformation to preserve the physical boundary conditions analysed
in [89]. In other words, the singular behaviour of the electric field at infinity is the
origin of the twisting. Interestingly, this twisting is reminiscent of the large gauge
transformation that takes place in any near horizon limit for any extremal black hole.
As one can see from (3.91), this limit involves two transformations

1. An IR limit, due to the red shift inherited by exploring the near horizon region of
the starting extremal black hole, i.e. r D rh C �y with � ! 0

2. A large gauge transformation t D 	
�

and � D ' C˝0 	
�

.

The large gauge transformation acts non-trivially on the generators of isometries @t
and @� on any quantum field propagating in this fixed background. At the level of the
full theory, these symmetries are generated by the energy momentum tensor T˙˙
and the U.1/ gauge current j˙. Thus, the large gauge transformation implements
the CFT twisting described in [89] at the level of the geometry. In the particular
case where there is an available AdS/CFT description in the UV, one is tempted to
view this near horizon limit as effectively implementing a non-trivial RG-flow in
the field theory, by integrating out the spacetime outside of the black hole horizon.
The non-trivial singular large gauge transformation required to keep the solution on-
shell identifies the appropriate hamiltonian in the IR. For related discussions having
condensed matter applications in mind, see the recent work [95].

3.4.1.3 Comments on the Existence of Non-trivial Dynamics

There are several arguments challenging whether the extremal BH/CFT correspon-
dence has any dynamical content on it and just contains the degeneracy of the
“vacuum” state

1. The existence of AdS2 fragmentation [114] in the two-dimensional Einstein-
Maxwell-Dilaton theory with a negative cosmological constant states that, at least
classically, any matter excitation satisfying the null energy condition with
support in the AdS2 base will back-react strongly, modifying the spacetime
boundary structure. This suggests there should be no states charged under the
SL.2;R/ isometry group whenever this energy condition is satisfied and the
physics we are interested in are described by the same effective 2d Einstein-
Maxwell-Dilaton theory.

2. There are no normalisable linear perturbations of the NHEK geometry [2, 76]
satisfying the boundary conditions described in [87]. In [2], it was further argued
that the same conclusion holds for non-linear perturbations, which would match
the above expectation in the semiclassical approximation.

3. Sen’s work on extremal black holes reproducing microscopic results from
a purely macroscopic point of view [138, 139], also concluded that when
applying the straight AdS/CFT correspondence to the particular AdS2/CFT1
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correspondence, the dual conformal quantum mechanics only includes the
degeneracy of the vacuum, as also argued below [88, 140].

For asymptotically AdS black holes, this expectation can be understood as follows.
Extremal black holes represent complicated mixed states in the dual UV CFT. Their
excitations will have a gap if this CFT is non-singular and defined on the cylinder
R�Sd�1. At sufficiently low energies above, less than the size of the gap, there will
be no dynamics left, and no non-trivial theory remains. In the next subsection, we
will see how this mechanism operates in AdS3/CFT2.

This argument already suggests a couple of ways to circumvent its conclusion

1. If the field theory lives on a non-compact space, its spectrum will be continuous.
Thus the effective two dimensional Newton constant in AdS2 will vanish,
allowing us to bypass the fragmentation argument. This feature has appeared
prominently in some recent applications of the AdS/CFT to condensed matter
systems.9

2. Reduce the gap of the dual CFT by taking a large central charge or large N
limit, since the gap typically scales with an inverse power of N or c. For finite
size extremal black holes this would lead to a divergent entropy for a fixed
temperature T . To obtain a finite entropy, it is tempting to consider largeN limits
together with a vanishing horizon limit.

Interestingly, it had previously been observed that under certain circumstances,
whenever the horizon area of extremal black holes can be tuned to zero, their near-
horizon geometries develop local AdS3 throats [19, 25, 79, 80]. This is remarkable
for at least two reasons

1. Given the AdS3/CFT2 correspondence, these particular points in the moduli
space of extremal black holes may provide independent derivations for the
existence of an IR CFT description of the black hole degrees of freedom.

2. Since these configurations are continuously connected to large extremal black
holes where our previous considerations apply, one may identify the operator
deforming the 2d CFT dual to AdS3 and hope to be able to identify the finite
deformation induced by it on the initial 2d CFT. This way, one could in principle
try to derive whether the extremal black hole/CFT conjecture holds.

A general caveat about these classical configurations is its singular nature, and
what their fate is when corrections are included in the bulk. There is an important
distinction to be made in the cases discussed so far in the literature: when the
system is near-extremal but far from BPS, the near horizon geometry involve
a non-supersymmetric pinching ZN orbifold of AdS3,10 whereas in the near BPS
situation the transverse space decompactifies, but has an smooth 3d AdS throat.

9The amount of literature here is immense. We refer the reader to a subset of reviews and references
therein [97].
10The action of this orbifold at the AdS3 boundary is like the one of a conical defect. It would
be interesting to see whether the techniques developed in [119] to compute the worldsheet string
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Even though this direction will not be reviewed in these notes, it is worth
mentioning two different approaches that have been followed

1. Given a near extremal black hole in AdS providing a well defined UV CFT
dual description, one interprets the near horizon limit as a large N IR limit of
the original CFT focusing in some low energy excitations of a definite sector of
its Hilbert space selected by the large gauge transformations accompanying the
near horizon limit. This is the approach followed in [19, 79, 80]. In this context,
the conjectured CFT appearing in the extremal black hole/CFT correspondence
emerges as an effective description for these excitations.

2. When no UV dual description is available, embedding the given black hole into
string theory may provide with the existence of some points in the U-duality
orbit where there exists a CFT dual. Tuning the charges of the black hole in that
U-dual frame may allow the emergence of a local AdS3 throat in the near horizon
limit. One then identifies its central charge and temperature, matching the bulk
entropy. Moving away from the point in charge space where the AdS3 exists, one
computes the linear deformation in the geometry allowing to identify the dual
marginal operator deforming its dual 2d CFT dual. Ideally, the finite integration
of this marginal deformation would connect the 2d CFT dual to AdS3 to the
one emerging in the extremal BH/CFT correspondence. This was the approach
followed in [61, 86].

Despite these observations, one may still be interested in investigating whether
the chiral CFT structure emerging in the strict extremal limit hides the existence
of a non-chiral CFT as non-extremality is turned on. This is the direction pursued
in [53, 55] for small non-extremality and in [32, 56] for finite non-extremality. The
conclusion in all these works is affirmative, but further work is required to settle
this very important question regarding non-extremal black holes. Both, research in
extremal black hole microscopics and its applications to strongly coupled condensed
matter systems suggest that the emergence of these CFTs appears at scales below a
certain cut-off. Beyond it, extra degrees of freedom are necessary, and whether their
interactions allow a CFT description remains an open question.

3.4.2 The AdS3 Perspective

The physics of AdS3 provides an excellent arena where to test the ideas previously
described. First, AdS3 allows a perturbative description as a 2d CFT string world-
sheet [113]. Second, due to the lack of bulk degrees of freedom in three dimensions,
black holes in 3d gravity with a negative cosmological constant correspond to
quotients of global AdS3 [23]. The latter also allow a perturbative worldsheet

perturbative spectrum can be extended to this case, and whether there is any interesting structure
emerging in the large N limit.
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description [115]. Third, due to the well-established AdS3/CFT2 correspondence,
the system has a UV description in terms of a 1C 1 non-chiral CFT, prior to any
low energy (near horizon) being considered. Finally, we already know that the
two Virasoro algebras in this CFT are realised, in the semiclassical approximation,
as a set of non-trivial diffeomorphisms preserving some set of boundary conditions
defining the AdS3 asymptotics [50].

In the following, our goal will be to understand the previous IR limits in terms
of AdS3/CFT2. Let us first review both the bulk and CFT description of BTZ black
holes [22]. These are asymptotically AdS3 spacetimes with metric

ds2 D � .r
2 � r2C/.r2 � r2�/

r2`2
dt2 C `2r2

.r2 � r2C/.r2 � r2�/
dr2 C r2.d� � rCr�

`r2
dt/2 :

(3.117)

The periodicity � � �C2� makes them a quotient of AdS3 [23]. Their ADM mass
and angular momentum are

M` D r2C C r2�
8G3`

; J D rCr�
4G3`

: (3.118)

These depend on the radius of AdS3 `, 3d Newton’s constant G3 and both the inner
and outer horizons, r� and rC, respectively.

Their dual interpretation is in terms of thermal states in a 1 C 1 non-chiral CFT
with left and right temperatures

TL D rC C r�
2�`

; TR D rC � r�
2�`

; (3.119)

related to the Hawking temperature of the BTZ black hole TH by 2
TH

D 1
TL

C 1
TR

.
The connection between the gravity and CFT descriptions is most easily reviewed

following the asymptotic symmetry group analysis of Brown and Henneaux [50].
To do so, it is more convenient to work with lightlike coordinates Ou D t=` � � and
Ov D t=` C �, in which the global AdS3 metric is ds2 D `2. dr

2

r2
� 2r2d Oud Ov/. The

boundary conditions at large r are [50]

ıgOuOu � ıgOvOv � ıgOuOv � O.1/; ıgrr � O
�
r�4� ; ıgr Ou � ıgr Ov � O

�
r�3� :

(3.120)
That order one fluctuations in ıgOuOu, ıgOvOv correspond to normalisable modes in the
2d CFT can be inferred by writing the BTZ black hole metric in these coordinates
and examining its asymptotics. In this way, order O.1/ fluctuations in ıgOuOu, ıgOvOv are
seen to independently change the mass and angular momentum in the dual 2d CFT.

The set of non-trivial charges constructed out of the diffeomorphisms preserving
these boundary conditions close two commuting Virasoro algebras
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ŒLm; Ln� D .m � n/ LmCn C c

12
m.m2 � 1/ımCn;0 ;

� NLm; NLn
	 D .m � n/ NLmCn C Nc

12
m.m2 � 1/ımCn;0 ; (3.121)

with central charges

c D Nc D 3`

2G3
: (3.122)

The generatorsLn and NLn are given by

Ln � c

24
ın;0 D einOv @

@Ov ;
NLn � Nc

24
ın;0 D einOu @

@Ou ; (3.123)

whereas their zero modes are related to the bulk charges by

L0 � c

24
D M`C J

2
; NL0 � Nc

24
D M`� J

2
: (3.124)

The states in the Hilbert space thus constructed arrange themselves into represen-
tations of these Virasoro algebras. It is then a universal result that the number of
highest weight operators/states carrying conformal dimension � D L0 C NL0 and
spin L0 � NL0 is given by Cardy’s formula (3.3) [52]. Using the dictionary described
above

SCardy D 2�

r
c

6



L0 � c

24

�
C 2�

s
Nc
6

�
NL0 � Nc

24

�
D 2�rC

4G3
D SB-H ; (3.125)

one always reproduces the Bekenstein-Hawking formula (3.2) using the BTZ metric
(3.117).

3.4.2.1 Near Horizon of Extremal BTZ Black Holes

Consider the subset of extremal BTZ black holes for which the inner horizon
coincides with the outer one. Denote the horizon by rh D rC D r�, then

ds2 D � .r
2 � r2h/2
r2 `2

dt2 C `2 r2

.r2 � r2h/2
dr2 C r2

�
d� � r2h

r2
dt

`

�2
: (3.126)

The UV dual description of this limit, M` D J , involves setting the right-movers
to their ground state

NL0 D c

24
I TR D 0 ; (3.127)

while the left moving temperature TL D rh
�`

and L0 remain arbitrary.
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Following the philosophy discussed for generic extremal black holes in four and
five dimensions, we want to recover the same physics from the low energy limit
involved when taking the near horizon limit of these black holes. To study the latter,
introduce new coordinates

Ou D t=` � � ; Ov D t=`C �; r2 � r2h D `2e2� ; (3.128)

in which the metric (3.126) takes the form

ds2 D r2h d Ou2 C `2 d�2 � `2e2� d Oud Ov : (3.129)

The near horizon limit consists of taking �0 ! �1

� D �0 C r; u D Ou rh
`
; v D e2�0

`

rh
Ov; fu; vg � fu � 2�

rh

`
; v C 2�

`

rh
e2�0g

(3.130)
while keeping r; u; v and rh fixed. The resulting near horizon metric

ds2 D `2.du2 C dr2 � e2r du dv/ (3.131)

is locally identical to (3.129) but the boundary periodicities in the limit are

fu; vg � fu � 2�
rh

`
; vg : (3.132)

Thus, the boundary of (3.131) (r ! 1) is a “null cylinder” – it has a metric
conformal to du dv, the standard lightcone metric on a cylinder, but has a single
compact null direction (u).

The metric (3.131) is the spacelike self-dual orbifold [10, 63],11 an S1 fibration
over an AdS2 base with isometry group SL.2;R/� U.1/, which is more easily seen
when written as

ds2 D `2

4

d�2

�2
� �2

r2h

d	2

`2
C r2h

�
d' C �

r2h

d	

`

�2
D `23

4

d�2

�2
C 2

�

`
d	d' C r2hd'

2 :

(3.133)
To understand the physical meaning of a null boundary cylinder, introduce a UV

cut-off in the dual CFT by considering bulk surfaces of fixed large r

ds2 D du2 � e2r du dv : (3.134)

It was shown in [10] that (3.134) is conformal to a boosted cylinder. As r ! 1 the
boost becomes infinite, precisely matching the procedure defined by Seiberg [137]

11The importance of this geometry for the physics of extremal black holes was already emphasised
some time ago in [10, 148].
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for realising the Discrete Light Cone Quantization (DLCQ) of a field theory.12 This
suggests the spacelike self-dual orbifold is dual to the DLCQ of the original 1 + 1
non-chiral CFT. We will see later the latter only keeps one chiral sector of the
original UV CFT, in agreement with our previous Kerr/CFT considerations. The
only parameter of the spacelike self-dual orbifold metric, rh, is then related to the
value of the light-cone momentum pC defining the DLCQ sector

pC D c

6


 rh
`

�2
: (3.135)

This conclusion can also be reached by computing its boundary stress-tensor [21].
The spacelike self-dual orbifold (3.133) has a finite temperature [20]13

Tself�dual D rh

�`
D
r
6pC
�2c

; (3.136)

agreeing with TL in the UV description. This same temperature could have been
derived using the general discussion in Sect. 3.4.1.2. In particular, using the relation
(3.112) between the CFT temperatures Ti and the constants ki appearing in the near
horizon extremal geometries using the same normalisation as in (3.106).

The rh ! 0 limit of the spacelike self-dual orbifold sends the temperature
(3.136) to zero and yields the metric

ds2 D r2dxCdx� C `2
dr2

r2
; x� � x� C 2� ; (3.137)

where we have conveniently renamed � D r2, ' D x� and 	 D 2`xC. The
causal character of the compact direction x� has changed, from an everywhere
spacelike direction (except at the boundary) to an everywhere null direction. Thus,
(3.137) should be identified with the null self-dual orbifold.14 By construction, this
spacetime contains closed lightlike curves but it has the same boundary as (3.133).
Thus, it can be viewed as a different state belonging to the same DLCQ CFT.

12The precise definition of DLCQ in quantum field theory is rather subtle. As emphasised in [96],
amplitudes computed in these theories diverge order by order in perturbation theory due to strong
interactions among longitudinal zero modes. This quantization scheme was argued to be well
defined non-perturbatively.
13There are different ways of arguing the existence of this temperature. From the global version
of the spacelike self-dual orbifold [10, 21] containing two disjoint causally connected boundaries,
the finite temperature originates from entanglement entropy after integrating out part of the space
leading to the single boundary metric (3.133), pretty much in the same way Rindler space has a
finite temperature when viewed as a local patch of the full Minkowski spacetime.
14Readers interested in the supersymmetric properties of this orbifold, see [63, 81]. In particular,
[81] discusses the embedding of this orbifold in higher dimensional supergravities stressing the
importance of the fermion chirality to assess the supersymmetry of this quotient.
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Since the rh ! 0 limit corresponds to pC ! 0, the null self-dual orbifold should
correspond to the pC D 0 sector of the DLCQ CFT.

Since taking rh ! 0 in (3.126) corresponds to the massless BTZ black hole

ds2 D r2d QxCd Qx� C `2
dr2

r2
Qx˙ D � ˙ t=` ; � � � C 2� ; (3.138)

it is natural to view the null self-dual orbifold as its near horizon geometry. Indeed,
consider

r D �� ; Qx� D x� ; QxC D xC

�2
; � ! 0 : (3.139)

The lightlike direction QxC effectively decompactifies, while x� remains compact
x� � x� C 2� . Thus, the near horizon limit (3.139) of a massless BTZ black hole
is the null self-dual AdS3 orbifold (3.137).

3.4.2.2 Exciting the Null Self-Dual Orbifold

If our interpretation is correct, the spacelike self-dual orbifold (3.133) should be
viewed as an excitation over the null self-dual orbifold (3.137). In particular,
injecting some chiral momentum into the system keeping its causal null cylinder
boundary should correspond to the spacelike self-dual orbifold. This is achieved by
adding some wave to the conformally flat metric

ds2 D `2

z2
�
dxCdx� C kz2.dx�/2 C d z2

	
: (3.140)

Since there are no propagating degrees of freedom in d = 3, the latter is locally AdS3,
and it is indeed isometric to the spacelike self-dual orbifold (3.133), with r2h being
replaced with k`2.

All these observations are consistent with the well-known fact that extremal BTZ
is a chiral excitation above the massless BTZ black hole [47, 66]. This is the three
dimensional counterpart of the easiest constructions of non-relativistic gravity duals
to DLCQ CFTs in higher dimensions [83, 116], the main difference here being the
non-dynamical character of 3d gravity. Notice the only non-singular non-relativistic
gravity dual corresponds to the sector of large pC, as is customary in gauge/gravity
theory dualities and Matrix theory [7, 24].

3.4.2.3 The Pinching ZN Orbifold

There exists a second inequivalent near horizon limit one could take from (3.138)

r D �� ; Ox˙ D � x˙ : (3.141)
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limits and their dual
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The resulting geometry is locally AdS3

ds2 D �2d OxC d Ox� C `2
d�2

�2
Ox˙ � Ox˙ C 2�� : (3.142)

I will refer to it as a pinching AdS3 orbifold [70] given its action on the boundary,
which becomes a pinching cylinder,R�S1=ZN , withN D 1=�. In the bulk though,
the quotient is that of a massless BTZ with periodicity scaling to zero.15 One way
of getting some intuition for what this may mean is to consider the identity [70]

BTZ.M�2; J�2I 2�/ � BTZ.M; J I 2��/ ; (3.143)

This states that a BTZ black hole with pinching periodicity 2�� is classically
equivalent to a BTZ black hole with standard periodicity but mass and angular
momentum scaled by �2. At any rate, all these geometries are singular, and a
proper understanding of the physics for these values of the parameters requires to go
beyond the classical gravitational approximation. Since the pinching orbifold is not
equivalent to the null self-dual orbifold, this establishes that different near horizon
limits can indeed capture different physics, as we will argue below (Fig. 3.5).

3.4.2.4 Low Energy IR Limits of 2d Non-chiral CFTs

Let us interpret the bulk near horizon limits in the dual CFT theory. Consider a
non-singular non-chiral 2d CFT on a cylinder of radius R

ds2 D �dt2 C d�2 D �du0 dv0 I u0 D t � �; v0 D t C � : (3.144)

15The same structure appears in the near horizon of extremal black holes with vanishing horizon.
See [4] for different examples of its appearance.
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Since � � � C 2�R, the light-like coordinates satisfy fu0; v0g � fu0 � 2�R;

v0 C 2�Rg. Let P u0

and P v0

denote momentum operators in the v0 and u0 directions
respectively. Their eigenvalues

P v0 D


hC n � c

24

� 1
R
; P u0 D



h � c

24

� 1
R
; n 2 Z (3.145)

are given in terms of the quantised momentum n along the S1, the 2d central
charge c and an arbitrary value of h with h � 0 and h C n � 0 due to unitarity
constraints. These are related to the eigenvalues of the standard operators L0; NL0
used in radial quantisation on the plane by NL0 D hC n and L0 D h.

Let us first show the DLCQ of this 2d non-chiral CFT is a 2d chiral CFT.
Following Seiberg [137], we will study the consequences of the kinematics of
an infinite boost on the discrete spectrum of the theory. We do this because the
boundary structure of the near horizon bulk geometry was interpreted above as an
infinitely boosted cylinder. Consider a boost with rapidity � and take the double
scaling limit

u0 ! e�u0; v0 ! e��v0 ; � ! 1 ; R� � R e� fixed (3.146)

The metric is invariant but the cylinder periodicities become

�
�

t

�
�
�
�

t

�
C
�
2�R

0

�
� infinite boost !

�
u0
v0
�

�
�

u0
v0
�

C
� �2�R�
2�R�e�2�

�

(3.147)
We can now identify fu0; v0g with the light-like boundary coordinates of AdS3 in
(3.130) via u0 D u.`=rC/R� and v0 D v.rC=`/R�. Comparing (3.130) and (3.147),
we conclude that the action of the near horizon limit on u; v precisely reproduces
the identifications induced by the double scaling limit (3.146). Thus, the dual to the
near-horizon geometry of the extremal BTZ black hole should be the DLCQ of the
1C 1 dimensional CFT dual to AdS3.

Let us study the states that survive the double scaling limit (3.146). First, because
of the kinematics of the DLCQ boosts,

P v0 D


hC n � c

24

� e��

R
; P u0 D



h� c

24

� e�
R
: (3.148)

Keeping P u0

finite in the � ! 1 limit requires h D c=24. This leads to

P v0 D n � e
��

R
D n

R�
: (3.149)

The DLCQ limit generates an infinite energy gap in the right-moving sector. Thus,
keeping only finite energy excitations, it freezes to its ground state. The energy gap
in the left-moving sector is kept finite. All physical finite energy states only carry
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momentum along the compact null direction u0. Therefore, the Hilbert space H of
the DLCQ of the original 2d non-chiral CFT is

H D fjanythingiL ˝ jc=24iRg : (3.150)

The chirality of the DLCQ theory spectrum can also be seen by studying which
subset of the original AdS3 Virasoro generators (3.121) remains under the double
scaling limit (3.146) [20].

The null self-dual orbifold is now easily interpreted. Since it has the same
boundary structure as the spacelike self-dual orbifold, it also corresponds to a state
in the DLCQ theory. But, it describes its vanishing momentum pC D 0 sector.

The physical interpretation of the pinching ZN orbifold must be different. Since
the latter corresponds to sending the radius R of the limiting boundary cylinder to
zero, R � � ! 0, it certainly generates an infinite gap in the untwisted sector
for both chiral sectors of the initial 2d CFT. The only surviving untwisted finite
excitations are those corresponding to h D n D 0. Thus, given a CFT with a
fixed central charge c, this near horizon limit freezes out both left and right moving
sectors, leaving us with the Hilbert space:

H D fjc=24iL ˝ jc=24iRg : (3.151)

But this simple argument does, a priori, not capture the full perturbative string
spectrum. It would be interesting to extend the results in [119] for this case,
clarifying whether there exists any massless twisted modes and whether their
dynamics simplifies in the N ! 1 limit.

3.4.2.5 Asymptotic Symmetries and the Chiral Virasoro Algebra

Our arguments above suggest that half of the available UV Virasoro generators
become irrelevant for the IR physics captured by the near horizon extremal
geometry. One way of checking this would be to study how these generators (3.123)
transform under the infinite Lorentz boost defining the DLCQ limit of the original 2d
non-chiral CFT. Instead, one can study the asymptotic symmetry group preserving
the near horizon geometry.

The problem is then to identify the subset of non-trivial diffeomorphisms
preserving the boundary conditions defining an asymptotically spacelike self-dual
orbifold. Since these spaces are locally AdS3, the analysis must be very similar to
the one in [50]. The main physical insight comes from the observation that a general
deformation of ıgOuOu, ıgOvOv would be non-extremal and would thus excite both chiral
sectors of the UV dual CFT. By contrast, we want to restrict to extremal excitations.
Imposing the extremality condition L0 D c=24 requires a more stringent boundary
condition on the variations in gOvOv. In [20], it was suggested to replace the boundary
condition on gOvOv by

ıgOvOv � O.r�2/ : (3.152)



3 Extremality, Holography and Coarse Graining 135

The connection to the Brown-Henneaux diffeomorphisms is now made explicit: the
diffeomorphisms generated by � D �˛@˛ are exactly of the form

�u D 2f .u/C 1

2r2
g00.v/C O.r�4/ (3.153a)

�v D 2g.v/C 1

2r2
f 00.u/C O.r�4/; (3.153b)

�r D �r �f 0.u/C g0.v/
�C O.r�1/ (3.153c)

They satisfy the constraint

g000.v/ D 0 H) g.v/ D AC B v C C v2 : (3.154)

implementing the boundary condition (3.152). Thus, one set of allowed diffeo-
morphisms is specified by a periodic function f .u/ D f .u C 2�/. The analysis
of generators of these diffeomorphisms follows directly from those of Brown and
Henneaux, leading to a chiral Virasoro algebra at central charge c D 3`=2G3.
The remaining three parameter family of diffeomorphisms in (3.154) describes
the SL.2;R/ isometries of the spacelike self-dual orbifold and act trivially on the
Hilbert space [20].

Notice this construction mimics the phenomena reported for extremal Kerr and
for general extremal black holes in d D 4,5 dimensions described in Sect. 3.4.1.2.
Indeed, one starts with an extremal BTZ black hole, whose near horizon geometry
consists of an S1 fibration over AdS2. The latter has isometry group SL.2; R/�U.1/.
This gets enlarged to a full chiral Virasoro, but the infinite asymptotic symmetry
algebra extends its U.1/ global part, whereas the SL.2; R/ acts trivially.

The virtue of the AdS3 set-up is the existence of a well-defined UV dual CFT
description allowing us to interpret the near horizon limit as an IR limit that turns
out to be equivalent to a DLCQ limit. This gives some validity to the general
arguments given in previous sections, but it does not clarify whether the Kerr/CFT
correspondence is correct. Indeed, one of the original motivations in [20] was to
argue that the mechanism behind the Kerr/CFT conjecture was three dimensional in
nature. Some further supporting evidence was given in [55], where it was explicitly
checked that the twisted CFT advocated in [89] was consistent with an AdS3
reduction to AdS2.16

3.4.2.6 Large N Limits, Double Scaling Limits and Existence of Dynamics

The double scaling limit discussed in Sect. 3.4.1.3 is easy to implement in the AdS3
context [70]. In gravity, one is forced to consider a vanishing horizon limit, r˙ !
�r˙ with � ! 0, while scaling Newton’s constant G3 ! �G3, to keep the full

16For a different emphasis on how to use the AdS3/CFT2 correspondence to learn how to formulate
the AdS2/CFT1 correspondence, see [88].
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entropy finite. One can achieve this on BTZ metrics by combining a near horizon
limit with this double scaling limit

r˙ D ��˙ ; r D ��C C �� ; t D ��1	 ; � D ��1 ; G3 D � QG3 � ! 0 :

(3.155)
This reproduces the double scaling limit one could have considered in terms of 2d
CFT data. Indeed, the latter corresponds to R ! 0; c ! 1; cR D fixed, where R
stands for the radius of the original cylinder. Notice the scaling of R is related to
the presence of a pinching orbifold in the gravity construction. Both transformations
achieve c ! c=�, L0 � c

24
! �.L0 � c

24
/ and NL0 � c

24
! �. NL0 � c

24
/ as required.

One can gain some intuition about the different 2d CFT’s appearing in this
discussion by thinking about the CFT dual to the D1–D5 system. This 2d CFT can
be described by a 2d sigma model with N D .4; 4/ supersymmetry with a target
which can be thought of as a suitable symmetric product SymN1N5.M4/. Rescaling
the central charge is like rescaling N1N5. Therefore, one expects a relation of the
form

CFTnew � SymK.CFTold/: (3.156)

This clearly only makes sense whenK D 1=� is an integer. The new CFT has a long
string sector which is directly inherited from the old theory. Its Virasoro algebra is
related to that of the original CFT using standard orbifold technology. Explicitly,
given a set of generators fLng, consider the subalgebra with generators17

ln � 1

K
LnK ; n ¤ 0 ; l0 � 1

K
.L0 � c

24
/C c

24
K : (3.157)

It is then straightforward to see that ln also form a Virasoro algebra with central
charge c0 D cK and that the spectrum of l0 has a spacing of 1=K compared to that
of L0.

Since the long string sector in an orbifold theory tends to dominate the entropy,
this provides a natural explanation for the constancy of the entropy in the bulk.
Further work is required to clarify the fate of these constructions given theK ! 1
nature of the limit and the role twisted states must play in the resolution of the
singular classical geometries corresponding to the nearly massless BTZ and its near
horizon geometries involved in these limits.

17Notice the transformation for the generator l0 is due to the fact that we were working on the
plane. Indeed, if we would have worked on the cylinder, the transformation is the expected one:

lcyl
n � 1

K
L

cyl
nK ; n ¤ 0 ; l

cyl
0 � 1

K
L

cyl
0 :

We now see that the transformation quoted on the plane makes sure the above cylinder transforma-
tion brings us back to the plane.
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Fig. 3.6 Different perspectives on gravitational first principle approaches

3.5 Interesting Future Directions

In these lectures, I focused my attention in two particular corners of string theory, the
half-BPS sector of N D 4 SYM and AdS3/CFT2, to highlight recent developments
in the field, but always attempting to describe them in the bigger context of some
of the most fundamental questions in theoretical physics, especially when involving
gravity issues. Such broader frame is summarised in Fig. 3.6.

There are many important foundational questions that remain open. Given the
topics covered in these notes, it is natural to highlight the following subset

• Develop new ideas to understand the microscopics of non-extremal black holes
and whether there exists any relation with the physics of Rindler space (its near-
horizon geometry).

• Develop gauge theory techniques to compute correlations functions in the
AdS/CFT correspondence in non-trivial heavy states to achieve a more accurate
mathematical formulation of the information paradox [92] along the lines
outlined in Sect. 3.2.1.

• Develop the formulation of holography in de Sitter and Minkowski spacetimes.
Apply some of the black hole ideas reviewed here to more general holographic
scenarios such as time dependent ones, cosmology and their classical singular-
ities. It is tempting to speculate that the Big Bang singularity is a consequence
of the loss of quantum information regarding the initial state of the universe.
Entanglement entropy [51] and its AdS/CFT formulation [136] could provide
some technical tools to handle some of these time dependent questions.

There is a large body of literature giving evidence, from different perspectives,
that classical gravity is thermodynamical in nature. The universal connection
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between thermodynamics and statistical mechanics led the way to the notion of
holography. The duality between open and closed strings led to the discovery of
the AdS/CFT correspondence. They all definitely shed new light in the fascinating
quest to understand what gravity and spacetime are. The future will bring, no doubt,
further surprises and revelations in the resolution of some of the more fundamental
puzzles in theoretical physics.
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Chapter 4
Issues on Black Holes in Four Dimensional
Supergravity

L. Andrianopoli, R. D’Auria and M. Trigiante

4.1 Introduction

Black holes have played a major role in understanding non-perturbative aspects of
string/M-theory [5]. Reproducing the Bekenstein-Hawking “area law” formula for
the black hole entropy through direct microstate counting for specific static BPS
black holes, has been one of the major successes of string theory [36]. This was
largely possible due to the residual supersymmetry of the solution, which made
the degeneracy of its microstates independent of the scalar moduli coupled to it,
including the string coupling constant. In this way the result of the string microstate
counting, only possible in the weak coupling regime, could be compared with
the area-law prediction for the entropy in the supergravity limit (large charges).
Extremal (i.e. zero-temperature) static regular black holes include the BPS solutions
as a subclass and share with them some common properties. Indeed they all
exhibit the attractor mechanism [21]: The scalar fields which are coupled to the
solution flow from their values at radial infinity towards a fixed point in the scalar
manifold, in correspondence to the horizon of the solution, which only depends
on the quantized charges. The near horizon geometry of four dimensional regular
extremal solutions has the form AdS2 � S2, where the S2 factor describes the
horizon of the solution and its radius RH only depends on the quantized charges.
The independence of the near horizon geometry on the moduli at infinity, and
thus on the string coupling constant, suggests that the statistical entropy computed
by string microstate counting in the weak string-coupling regime, can reproduce
the expression for the entropy evaluated on extremal supergravity solutions. The
extremality property of a solution seems to be, in this respect, more fundamental
than supersymmetry [18].
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Dualities have played a major role in understanding the non-perturbative aspects
of superstring theory [38]. They define (non-perturbative) relations between various
superstring-theories realized on different backgrounds, as if they were distinct
descriptions of the same microscopic degrees of freedom. The known dualities
were conjectured [31] to be encoded in the global symmetry group (duality group)
of the supergravity model describing the low energy dynamics of string/M-theory
compactifications. It is natural to expect the entropy of a black hole, which
counts the number of micro-states realizing the given macroscopic state (i.e. the
supergravity solution), to be independent of the description of the former, namely
to be described by a duality-invariant quantity. This is consistent with the property
of the entropy of extremal static, asymptotically flat black holes in supergravity,
computed in terms of the area of their horizon, to be described by a function of
the quantized electric and magnetic charges, which is invariant with respect to the
duality group of the classical theory (see [5] and references therein).

In this report we shall restrict ourselves to extremal, spherically symmetric and
asymptotically flat black holes in four dimensional extended supergravities. It is
possible to associate with these solutions a characteristic function W of the scalar
fields of the theory and of the quantized electric-magnetic charges, known in the
literature as fake-superpotential [4, 6, 15, 16], which monotonically interpolates
between the ADM mass at radial infinity and the entropy at the horizon (minimum
value). This function allows to describe the radial evolution of the scalar fields
and the warp factor of the metric by means of a first-order gradient-flow system
of equations, which exhibits an asymptotically stable equilibrium point (stable
attractor) in correspondence to the horizon of the solution, where the function W
has a minimum. Being W invariant, just as the entropy is, under the action of the
global symmetries of the classical model (duality invariant) [4,6,16], it is natural to
expect it to be related to some intrinsic microscopic properties of the solution. For
the same reason one would in general expect all the duality invariant properties of
extremal solutions to be of special physical relevance. It is useful in this respect to
classify extremal solutions in orbits of the duality group of the supergravity model,
each labeled by different values of duality invariants [10]. Each duality orbit can be
conveniently characterized in terms of a generating (or seed) solution, defined as
the simplest solution which captures all the duality invariant features of the most
general one (entropy, flat directions etc.).1

Here we wish to review some general properties of the W function which
naturally arise from its identification with the Hamilton’s characteristic function of
a suitable autonomous Hamiltonian system [6].

This report is organized as follows. In Sect. 4.2 we review the basic facts about
the global on-shell symmetries of extended supergravities. In Sect. 4.3 we focus on
spherically symmetric, asymptotically flat black hole solutions and introduce the
autonomous Hamiltonian system describing the radial flow of the warp function

1The generating solutions for BPS and extremal non-BPS black holes were constructed in [3] and
[27], respectively.
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and of the scalar fields coupled to the solution. This will allow us to review the
characterization of the fake-superpotential as a solution to the Hamilton-Jacobi
equation and to illustrate some of its general features such as duality-invariance and
flat-directions. We shall then comment on the duality orbit with I4 < 0 for which
a closed-form expression for W is not known yet. In Sect. 4.5 we review the basic
facts about the description of spherically symmetric D D 4 black holes in terms of
geodesics on the scalar manifold of a suitable Euclidean D D 3 theory. We shall
define the W -function in this new setting and relate it to the superpotential in the
D D 4 theory. We end with few concluding remarks.

4.2 Duality in Extended Supergravities

We shall restrict ourselves to four-dimensional extended (i.e.N � 2) supergravities.
The bosonic section consists of the graviton g��.x/, nV vector fields A�.x/, ƒ D
0; : : : ; nV � 1, and ns scalar fields �r.x/, r D 1; : : : ; ns . The latter are described by
a non-linear sigma-model, namely are coordinates of a non-compact, Riemannian,
simply-connected manifold Mscal. For N > 2 this manifold is homogeneous
symmetric of the form Mscal D G=H , where G is the semisimple isometry Lie
group andH its maximal compact subgroup. In theN D 2 case (eight supercharges)
Mscal need not even be homogeneous. We shall however restrict ourselves to models
exhibiting a homogeneous symmetric scalar manifold of the form Mscal D G=H

(symmetric models). The action of an isometry transformation g 2 G on the
scalar fields �r parametrizing Mscal is defined by means of a coset representative
L.�/ 2 G=H as follows:

g � L.�r / D L.g ? �r/ � h.�r ; g/ ; (4.1)

where g?�r denote the transformed scalar fields, non-linear functions of the original
ones �r , and h.�r ; g/ is a compensator in H . The coset representative is defined
modulo right action ofH and is fixed by the chosen parametrization of the manifold.

We shall also limit our analysis to ungauged supergravities, namely to models
in which the vector fields are not minimally coupled to any other field. All these
models have a U.1/nV gauge symmetry with respect to which all fields are neutral
and the vector fields transform as gauge connections: Aƒ� ! Aƒ� C @�


ƒ.
Setting �2 D 8� GN D „ D c0 D 1, (c0 being the speed of light, not to be

confused with the extremality parameter to be introduced in the following), the
bosonic action reads:

S4 D
Z
d4x

p
jgjL4 D

Z
d4x

p
jgj
�
RŒg�

2
� 1

2
Grs.�/ @��

r@��s

C 1

4
Fƒ
��Iƒ†.�/ F

†�� C 1

8
pjgj �����F

ƒ��Rƒ†.�/ F
†��

#
; (4.2)
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where jgj � jdet.g��/j and we are using the “mostly plus” signature for the
metric g�� .2 The scalar-dependent matrix Grs.�/ represents the positive definite
metric on Mscal, where we have collectively denoted the scalar fields by the
short-hand notation � � .�r/. The vector field strengths are defined as usual:
Fƒ
�� � @�A

ƒ
� � @�A

ƒ
� . The above action shows a general feature of all supergravity

theories: The scalar fields are non-minimally coupled to the vector fields through the
symmetric nV �nV matrices Iƒ†.�/; Rƒ†.�/. The former enters the kinetic term of
the vector fields as a generalized coupling constant matrix, while the latter defines a
generalized theta-term. The absence of ghosts requires the coupling constant matrix
Iƒ†.�/ to be negative definite.

The scalar fields are defined by the solvable parametrization of the manifold,
that is the isotropy group H can be fixed at each point of the manifold in such a
way that the coset representative L.�/ belong to the solvable Lie group of the form
exp.Solv4/, defined by the Iwasawa decomposition of G with respect to H . The
scalar fields are then parameters of the solvable Lie algebra Solv4:

L.�r / D e�
r Tr 2 exp.Solv4/ ; (4.3)

where fTrgrD1;:::;ns is a basis of Solv4. On Solv4 a positive definite scalar product
.�; �/ W Solv4 � Solv4 ! R can be defined which induces a metric on the group
manifold exp.Solv4/ that reproduces the Riemannian metric on Mscal:

ds2 D d�rGrs.�/d�
s D �

L
�1dL.�/; L�1dL.�/

�
: (4.4)

The above description also applies to homogeneous non–symmetric scalar mani-
folds in N D 2 which however admit a solvable isometry group with a simple,
transitive action on it [1]. Note that, having defined the scalar fields as the parameters
of exp.Solv4/, the solvable parametrization is required to be global on the scalar
manifoldMscal. This is possible only if Mscal is simply connected since the manifold
exp.Solv4/ does not have unshrinkable cycles.3

It is useful to introduce the dual field strengthsGƒ�� defined as:

Gƒ�� � �
p

jgj ����� @L4
@F ƒ

��

D Rƒ† F
†
�� � Iƒ†

�F†
�� ; (4.5)

where

�F†
�� �

pjgj
2

����� F
ƒ�� : (4.6)

2We also use the convention �0123 D 1.
3If the solvable group manifold contained a non-trivial cycle, this would be generated by a compact
isometry which is absent in Solv4.
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The equations of motion for the scalar and vector fields read:

D�.@
��r/ D 1

4
Grs

h
Fƒ
��@sIƒ† F

†�� C Fƒ
��@sRƒ†

�F†��
i
;

r�.
�Fƒ��/ D 0 I r�.

�Gƒ��/ D 0 ; (4.7)

where @s � @
@�s

, r� is the covariant derivative containing the Levi-Civita
connection on space-time, while D� also contains the connection� on Mscal:

D� � r� C @��
r �r : (4.8)

Using (4.5) and the property that ��Fƒ D �Fƒ, we can express �Fƒ and �Gƒ as
linear functions of Fƒ and Gƒ:

�Fƒ D I�1ƒ† .R†� F � �G†/ I �Gƒ D .RI�1RC I /ƒ† F
† � .RI�1/†ƒ G† ;

(4.9)

where, for the sake of simplicity, we have omitted the space-time indices. It is useful
to arrange Fƒ and Gƒ in a single 2nV -dimensional vector F � .FM/ of two-forms:

F�� �
 
Fƒ
��

Gƒ��

!
; (4.10)

in terms of which Eq. (4.9) are easily rewritten in the following compact form:

�
F D �CM.�r/F ; (4.11)

where

C D .CMN/ �
�

0 1
�1 0

�
; (4.12)

1, 0 being the nV � nV identity and zero-matrices, respectively, and

M.�/ D .M.�/MN/ �
�
.RI�1RC I /ƒ† �.RI�1/�ƒ

�.I�1R/"† I�1"�
�
; (4.13)

is a symmetric, negative-definite matrix, function of the scalar fields.
While the Maxwell equations r�.

�
F
M ��/ D 0 are invariant with respect to a

generic linear transformation on F, the definition of Gƒ or, equivalently, Eq. (4.11)
is not. On the other hand the isometry group G is a global symmetry of the scalar
action, but it will in general alter the action for the vector fields as a consequence of
the scalar field-dependence of the matrices I and R.

One of the most intriguing features of extended supergravities is the fact that the
global invariance of the scalar action, described by G, can be extended to a global
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symmetry of the full set of equations of motion and Bianchi identities [24] (though
not in general of the whole action). This is possible by virtue of the existence of a flat
Sp.2nV ;R/-bundle on Mscal which allows to associate with each isometry g 2 G a
symplectic matrix DŒg� D .DŒg�MN / acting on the fiber. In other words there exists
an embedding D of G inside Sp.2nV ;R/

G
D
,! Sp.2nV ;R/ , g 2 G ! DŒg� 2 Sp.2nV ;R/ ;

DŒg�MN C
NPDŒg�LP D C

ML , DŒg�MN CMLDŒg�
L
P D CNP ; (4.14)

where in the second line we have written the general property defining a symplectic
matrix: DŒg�CDŒg�T D DŒg�TCDŒg� D C, .CMN/ having the same matrix form as
the matrix .CMN/ in (4.12).

The symplectic bundle completely fixes the non-minimal coupling of the scalar
fields to the vectors, namely the matrices I.�/ andR.�/ or, equivalently, the matrix
M.�/. In particular M.�/ is a symplectic, symmetric matrix, that is it satisfies the
relation:

M.�/MPC
PLM.�/LN D CMN , M.�/�1 D �CM.�/C ; (4.15)

and it transforms under an isometry g 2 G as follows:

M.g ? �/ D DŒg��TM.�/DŒg��1 ; (4.16)

where DŒg��T � .DŒg��1/T . We emphasize here that the existence of a flat
symplectic bundle on the scalar manifold is a general feature of all extended
supergravites, including those N D 2 models in which the scalar manifold is not
even homogeneous (i.e. the isometry group, if it exists, does not act transitively
on the manifold itself). In the N D 2 case only the scalar fields belonging to the
vector multiplets are non-minimally coupled to the vector fields, namely enter the
matrices I.�/; R.�/, and they span a special Kähler manifold. On this manifold a
flat symplectic bundle is defined,4 which fixes the scalar dependence of the matrices
I.�/; R.�/ and the matrix M.�/ defined in (4.13), satisfies the properties (4.15)
and (4.16).

For homogeneous manifolds we can express M.�/ in terms of the coset
representative:

M.�/MN D CMPL.�/
P
LL.�/

R
L CRN , M.�/ D CDŒL.�/�DŒL.�/�T C ; (4.17)

4A special Kähler manifold is in general characterized by the product of a U.1/-bundle, associated
with its Kähler structure (with respect to which the manifold is Hodge Kähler), and a flat symplectic
bundle. See for instance [2] for an in depth account of this issue.
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where summation over the index L is understood and L
P
L are the entries of the

symplectic matrix DŒL.�/� associated with L.�/ as an element of G. Since D is
a homomorphism, Eq. (4.1) can also be written in terms of symplectic matrices as
follows:

DŒg�DŒL.�/� D DŒL.g ? �/�DŒh.g; �/� : (4.18)

We see that from (4.17) and (4.18), properties (4.15) and (4.16) easily follow. Let
us derive (4.16):

M.g ? �/ D CDŒL.g ? �/�DŒL.g ? �/�T C

D CDŒg�DŒL.�/�DŒh��1 DŒh��TDŒL.�/�TDŒg�T C

D DŒg��T CDŒL.�/�DŒL.�/�T CDŒg��1 ; (4.19)

where we have used the property that DŒg� is symplectic, CDŒg� D DŒg��T C,
and that DŒh� � DŒh.g; �/� is orthogonal, being in a real representation of U.nV /:
DŒh�T D DŒh��1. The latter property in particular implies that M.�/, as defined
in (4.17), is H -invariant, namely it does not depend on the choice of the coset
representative, but only on the point � of the manifold, as it should be.

We can now easily verify that the simultaneous action of G on the scalar fields
and on the field strength vector FM�� :

g 2 G W
(
�r ! g ? �r

F
M
�� ! F

0M
�� D DŒg�MN F

N
��

; (4.20)

is a symmetry of the scalar and vector field equations. It is clearly a symmetry of the
former, being G the isometry group of the scalar manifold. We just need to show
that the above transformation leaves (4.11) invariant, namely that is holds in the
transformed fields as well. Using (4.20), Eq. (4.11) can indeed be written in the new
quantities as follows:

DŒg��1�F0 D �CDŒg�TM.g?�/DŒg�DŒg��1F0 D �DŒg��1CM.g?�/F0 ; (4.21)

which is equivalent to �
F

0 D �CM.g ? �/F0.
The action of G on the field strengths and their magnetic duals, defined by the

symplectic embeddingD, is a generalized electric-magnetic duality transformation,
which promotes the isometry group of the scalar manifold to a global symmetry
group of the full set of field equations and Bianchi identities. For this reason G
is also referred to as the duality group of the classical theory.5 Note however that
G will contain transformations g whose duality action DŒg� is non-perturbative,

5Quantum effects imply a quantization of the electric and magnetic charges, so that the global
symmetry group breaks down to a suitable discrete subgroup of G (quantum duality group), which
preserves the electric-magnetic charge lattice [11].
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namely under whichFƒ ! F 0ƒ D Aƒ† F
†CBƒ† G† andGƒ ! G0

ƒ D Cƒ† F
†C

D†
ƒ G†, with Cƒ†; Bƒ† ¤ 0 . These are not a symmetry of the action but only of

the field equations and Bianchi identities (on-shell symmetry).
The relevance of the (quantum) duality group resides in the existence of

important evidence that it (or a suitable extension of it) might encode all the known
string/M-theory dualities [31].

Let us end this section by giving the Einstein equations in a manifestly duality
invariant form:

R�� � 1

2
g�� R D T .S/�� C T .V /�� ; (4.22)

where the energy-momentum tensors for the scalar and vector fields can be cast in
the following general form

T .S/�� D Grs.�/ @��
r@��

s � 1

2
g�� Grs.�/ @��

r@��s ; (4.23)

T .V /�� D �1
2
F
T
��M.�/F

�
� : (4.24)

The duality invariance of the space-time metric and the scalar action imply the
same property for the Einstein tensor and T .S/�� . As for T .V /�� it is manifestly duality
invariant since:

F
T
��M.�/F

�
� D F

0T
��DŒg�

�T DŒg�TM.g ? �/DŒg�DŒg��1F0�
� D F

0T
��M.g ? �/F

0�
� :

(4.25)

4.3 Spherically Symmetric, Asymptotically Flat Black Hole
Solutions

We shall now restrict our discussion to static, spherically symmetric and asymptot-
ically flat black hole solutions. The general ansatz for the metric has the following
form:

ds2 D �e2U dt2 C e�2U
�

c4

sinh4.c	/
d	2 C c2

sinh2.c	/
d�2

�
; (4.26)

where U D U.	/ and the coordinate 	 is related to the radial coordinate r by the
following relation:

c2

sinh2.c	/
D .r � r0/2 � c2 D .r � r�/ .r � rC/ : (4.27)

Here c2 � 2ST is the extremality parameter of the solution, with S the entropy and
T the temperature of the black hole. When c is non-vanishing the black hole has
two horizons located at r˙ D r0 ˙ c. The outer horizon is located at rH D rC
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corresponding to 	 ! �1. The extremality limit at which the two horizons
coincide, rH D rC D r� D r0, is c ! 0. Spherical symmetry further requires
the scalar fields in the solution to depend only on 	 : �r D �r.	/. The solution is
also characterized by a set of electric and magnetic charges defined as follows:

mƒ D 1

4�

Z
S2
F ƒ eƒ D 1

4�

Z
S2
Gƒ ; (4.28)

where S2 is a spatial two-sphere in the space-time geometry of the dyonic solution
(for instance, in Minkowski space-time the two-sphere at radial infinity S21). In
terms of these charges the general ansatz for the electric-magnetic field strength
vector FM reads6:

F D
 
Fƒ
��

Gƒ��

!
dx� ^ dx�

2
D e2UC � M4.�

r / � � dt ^ d	 C � sin.�/ d� ^ d' ;

� D .�M / D
�
mƒ

eƒ

�
D 1

4�

Z
S2

F : (4.29)

It is straightforward to verify that the above ansatz solves the Maxwell equations.
Note that the radial evolution of the scalar fields in the presence of a black hole
is a feature of this kind of solutions in supergravity and is due to the non-minimal
coupling of the scalars to the vector fields through the matrices Iƒ†.�/; Rƒ†.�/.
We can associate with a black hole a set of scalar-dependent charges, which are the
physical charges measured at radial infinity. They comprise the central charges of
the supersymmetry algebraZAB , A;B D 1; : : : ; N , and chargesZI associated with
the vector multiplets (matter charges). These can be grouped into a complex vector
related to the vector � of quantized charges as follows:

Z OM.�
r ; �/ D

0
BB@
ZAB
ZI
NZAB

NZI

1
CCA D L.�r /NOM CNL �

L ; (4.30)

where the matrix .L.�r /NOM / is obtained from the real symplectic matrix .L.�r /NM /
by the action of a Cayley transformation on the right index:

L.�r /NOM � L.�r /NM .A
�/MOM where A � 1p

2

�
1 i 1
1 �i 1

�
: (4.31)

6The reader can easily verify that this ansatz satisfies Eq. (4.11) by using the property �.dt^d	/ D
�e�2U sin.�/ d� ^ d'.
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By substituting the general ansatz in the equations of motion, the resulting equations
for the metric and the scalar fields, written in terms of the evolution parameter 	 ,
take the following simple form:

d2U

d	2
D V.�I e;m/ e2U ; (4.32)

D2�r

D	2
D Grs.�/

@V.�I e;m/
@�s

e2U ; (4.33)

with the constraint

�
dU

d	

�2
C 1

2
Grs.�/

d�r

d	

d�s

d	
� V.�I e;m/ e2U D c2 ; (4.34)

where V.�I �/ D V.�I e;m/ is a positive definite function of the scalars and of the
electric and magnetic charges of the theory, defined by:

V.�I �/ D �1
2
�T M.�/ � > 0 : (4.35)

The second order derivative on the left hand side of the scalar field equation is
defined as follows:

D2�r

D	2
� R�r C �rst

P�s P�t ; (4.36)

�rst being the Levi-Civita connection on the scalar manifold and we have used the
short-hand notation P�s � d�s

d	
.

The solution is then characterized by the following conditions at radial infinity
	 D 0:

�r.	 D 0/ D �r0 ; U.	 D 0/ D 0 ; (4.37)

the latter corresponding to the requirement that the asymptotic geometry be
Minkowski space-time. The ADM mass of the solution is computed at radial infinity
and depends on the boundary values of the scalar fields and on the electric-magnetic
charges:

MADM.�0I �/ D lim
	!0�

PU : (4.38)

The horizon area AH has the following general form:

AH D lim
	!�1

Z
S2

p
g��g'' d� d' D lim

	!�1 4� e�2U c2

sinh2.c	/
: (4.39)

Regular solutions have their singularity hidden by a finite horizon: AH > 0. This
implies for the warp factor the following near-horizon behavior: e�2U � AH

4�
e�2c	

4c2
.

In the extremal limit c ! 0 Eq. (4.27) simplifies to 	 D �1=r . Regularity
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then requires the warp factor to exhibit the following behavior near the horizon
(	 ! �1):

e�2U � AH

4�
	2 : (4.40)

Regularity of the extremal solution further demands the scalar fields not to blow-
up at the horizon but to flow in the limit 	 ! �1 towards finite values:
lim	!�1 �r.	/ D �r�. General regularity conditions of the scalar fields near the
horizon then imply7

lim
	!�1 	 P�r .	/ D lim

	!�1 	2 R�r .	/ D 0 , lim
	!�1 e�U P�r .	/ D lim

	!�1 e�2U R�r .	/ D 0 :

(4.41)

Multiplying both sides of Eq. (4.33) times e�2U and taking the near horizon limit,
properties (4.41) imply that �� � .�r�/ is an extremum of the potential V :

@V

@�r

ˇ̌
ˇ̌
��

D 0 : (4.42)

Since in general V may not depend on all the scalar fields, but have flat directions,
the above equations will fix those scalars along the non-flat directions as functions
of the electric and magnetic charges only. As a consequence, the value of V
at the extremum will just depend on the electric and magnetic charges: Vex D
V.��I e;m/ D Vex.e;m/. From Eqs. (4.32) and (4.40) it follows that the area of
the horizon can be expressed trough Vex.e;m/ in terms of the electric and magnetic
charges only:

AH D 4� Vex.e;m/ D AH.e;m/ : (4.43)

The near horizon geometry can be easily computed, using (4.40), to have the form
AdS2�S2, the metric only depending on the areaAH of the horizon S2. It therefore
only depends on the quantized charges of the solution and not on the boundary
values �0 � .�r0/ of the scalar fields. This is the essence of the attractor mechanism
[21]: The scalars along the non-flat directions of the potential V (namely which are
non-trivially coupled to the black hole) flow from their values at radial infinity �0
towards fixed values at the horizon ��, solution to Eq. (4.42) and only depending on
the quantized charges.

Regular extremal black holes (also called large extremal black holes) are then
completely defined by the values of the electric and magnetic charges e; m and
by boundary values �0 of the scalar fields. We shall denote such solution by
U.	; �0/; �

r .	; �0/.

7The proper distance from the horizon is measured by the variable ! such that e�2U dr2 D d!2.
Near the horizon ! D log.r/ D log.�1=	/ and requiring lim!!�1 �r .!/ D �r� < 1 we have

lim!!�1
dk

d!k
�r D 0, k D 1; 2; : : : , from which (4.41) follow.
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Equations 4.32 and 4.33 can be derived from the effective action:

Seff D
Z

Leff d	 D
Z �

PU 2 C 1

2
Grs.�/ P�r P�s C e2U V .�I �/

�
d	 ; (4.44)

together with the Hamiltonian constraint:

H D PU 2 C 1

2
Grs.�/ P�r P�s � e2U V .�I �/ D c2 : (4.45)

We see that the radial evolution of the scalar fields �r.	/ and of the warp function
U.	/ is described by an autonomous Hamiltonian system in which 	 plays the role
of time and c2 of the conserved energy. We are interested in those solutions for
which c2 � 0. Note that in the analogy with ordinary Hamiltonian mechanics, the
system is characterized by a negative definite potential �e2U V .�I �/ < 0, much
like a Kepler system with conserved “energy” c2.8

4.3.1 Radial Evolution from an Autonomous Hamiltonian
System

Just as for a mechanical system, let us treat the warp function and the scalar fields as
generalized coordinates qi .	/ D .U.	/; �r .	//, i D 1; : : : ; n D ns C1, and rewrite
the effective lagrangian in the following form

Leff D 1

2
Gij .q/ Pqi Pqj C V.q/ ; (4.46)

where we have defined the metric in the “kinetic energy” term as follows

Gij .q/ D
�
2 0
0 Grs.�/

�
; (4.47)

and V.q/ � e2U V .�/. Next we move to the Hamiltonian formalism by introducing
conjugate momenta pi

pi D ıLeff

ı Pqi D Gij Pqj : (4.48)

8That with the Kepler problem is an instructive, though only qualitative, analogy. The non-extremal
solutions c2 > 0 correspond to elliptical (positive energy) trajectories, while the extremal ones
c2 D 0 to parabolic trajectories.
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In terms of the phase-space variables qi and pi the Hamiltonian H.p; q/ then reads:

H.p; q/ D 1

2
pi G

ij pj � V.q/ D 1

2
Pqi Gij .q/ Pqj � V.q/ : (4.49)

This is consistent with the constraint (4.34) that acquires the meaning of “energy
conservation”:

H.p; q/ D c2 , 1

2
Pqi Gij .q/ Pqj � V.q/ D c2 : (4.50)

Let us recall how the solutions to the equations of motion can be obtained
by applying the machinery of the Hamilton–Jacobi theory [6]. We consider the
principal Hamiltonian function S.q; P; 	/ depending on qi and on new constant
momenta Pi . It is defined by the set of first order equations:

@S

@qi
D pi ;

@S

@Pi
D Qi ;

@S

@	
D �H ; (4.51)

where Pi ; Qi are new constant canonical variables which can be expressed in
terms of the initial values of qi and pi . From the general theory of canonical
transformations, see for instance [7], it is known that the above transformation
generated by S always exists locally in the p; q space, in a neighborhood of any
point which is not critical, namely in which . @H

@q
; @H
@p
/ ¤ .0; 0/.

We shall leave the dependence of S on the constant Pi implicit and focus on its
dependence on the qi .
From the last and the first equations of (4.51) and from the Hamiltonian con-
straint (4.50) we have:

S.q; 	/ D W.q/ � c2 	 I pi D @W

@qi
; (4.52)

H.q; @qW/ � 1

2
@iWGij @jW � V.q/ D c2 ; (4.53)

where (4.53) defines the Hamilton–Jacobi equation for the function W, usually
called Hamilton characteristic function.

From Eqs. (4.52) and (4.48) we finally get

Pqi D Gij pj D Gij @W

@qj
: (4.54)

Whenever W D W.q; P I�/ exists, the radial evolution of the scalar fields and the
warp function is governed by a first order “gradient-flow” system of equations. The
existence of the general solution to the Hamilton-Jacobi problem posed above is
strictly related to the Liouville-integrability of the model, since the quantities Pi
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provide n prime integrals in involution. In this respect a special role is played by
those supergravity models which have a homogeneous symmetric scalar manifold
(symmetric models), since these were shown in [17] to be related to Liouville-
integrable systems. We would like to stress at this point that we are not interested
in the most general solution W to the Hamilton-Jacobi equations. This would just
mean to describe the totality of the solutions to the second order equations. We shall
be interested only in the W-function associated with specific classes of solutions: the
regular black holes. Under very general requirements, as we shall show below for
the extremal solutions, such function exists and can be given in an integral form [6].

Locally, in the neighborhood of a point Qq � . Qqi / we can trade the integration
constants Pi with Qqi and write the general solution W to the Hamilton-Jacobi
equation in the form (see for instance [7])

W.q0; Qq/ D W. Qq/C
Z 	0; q0

Q	; Qq

h
c2 C L.q; Pq/

i
d	 D W. Qq/C 2

Z 	0 q0

Q	; Qq

h
c2 C V.q/

i
d	 ;

(4.55)

where we have used the Hamiltonian constraint and the integral is performed along
the characteristic trajectory � D .qi .	//, i.e. the solution of Hamilton’s equations,
such that:

qi . Q	/ D Qqi ; qi .	0/ D qi0 : (4.56)

Example 1. Let us review the construction of W for the Reissner-Nordström black
hole [32]. The qi variables now consist of the function U alone. This is for instance
a solution to N D 2 pure supergravity. With respect to the only vector field of the
theory (the graviphoton) the solution can have in general an electric and a magnetic
charge e; m. The geodesic potential reads:

V.U; e; m/ D e2U Q2 ; Q2 � 1

2
.e2 Cm2/ : (4.57)

The Hamiltonian constraint and the Hamilton–Jacobi equation read:

PU 2 D .@UW/
2 D c2 C e2U Q2 : (4.58)

We can then readily apply Eq. (4.55) to find, upon changing variables from 	 to U :

W.U / D W0 C 2

Z U;	

U0;	0

�
c2 C e2U Q2

	
d	 D W0 C 2

Z U

U0

�
c2 C e2U Q2

	 dU
PU

D W0 C 2

Z U

U0

p
c2 C e2U Q2 dU

D W0 C 2

"p
c2 C e2U Q2 � c

2
log

 p
c2 C e2U Q2 C cp
c2 C e2U Q2 � c

!#
: (4.59)
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4.3.2 Critical Points as Attractors

The first order system (4.54) may have equilibrium points in the space of the qi s,
namely points .qi�/ in which its right hand side vanishes: @iWjq�

D 0. From the
Hamilton–Jacobi equation it is clear that such points may exist only in the extremal
case, since the right hand side of the equation

@iWGij @jW D 2 .c2 C e2U V .�// ; (4.60)

being V � 0, may vanish only if c D 0. In the extremal case we can make the
ansatz W.U; �r/ D 2 eU W.�r/ and the Hamilton–Jacobi equation translates in the
following equation for W.�r/:

W 2 C 2Grs @W

@�r
@W

@�s
D V.�r/ : (4.61)

The functionW.�r I �/ is known in the literature as the fake-superpotential [15]. In
terms of it the first order flow-equations read:

PU D eU W ; P�r D 2 eU Grs @sW ; (4.62)

Notice that the horizon points �� defined by Eq. (4.42) and reached by extremal
solutions in the limit 	 ! �1, are equilibrium points of both systems (4.54)
and (4.62), by virtue of Eqs. (4.40) and (4.41). In particular

@W

@�r

ˇ̌
ˇ̌
��

D 0 : (4.63)

As we shall prove below, the W -function for extremal solutions have the same
symmetry properties of V and thus the same flat-directions. The value of W at
its extremum �� can be read from (4.61) and coincides with Vex.e;m/, namely with
the horizon area:

W.��I e;m/ D Vex.e;m/ D AH.e;m/

4�
: (4.64)

From the first of Eq. (4.62) we find thatW computed on the solution at radial infinity
coincides with the ADM mass:

W.�0I�/ D MADM.�0I�/ ; (4.65)

where �r0 are the values of the scalar fields at radial infinity.
Consider now regular extremal solutions �r.	; �0; U0/; U.	; �0; U0/, defined by

a given vector of electric and magnetic charges � and by the boundary values of
the fields at a generic 	 D 	0 � 0 (not necessarily corresponding to the radial
infinity). The scalar fields �r.	; �0; U0/ and the warp function U.	; �0; U0/ of the
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solution flow from the values �r0 ; U0 at 	0 to �r� at 	 ! 	� D �1, where
�r� satisfy both Eqs. (4.42) and (4.63) for the given electric-magnetic charges and
U� D lim	!�1 U D �1. As previously emphasized, the point �� is not uniquely
expressed in terms of � , since both V and W in general admit a locus of flat
directions .�a/, a D 1; : : : ; nf , depending on � . It is however uniquely defined
through the flow �r.	; �0/ by the boundary values �r0 of the scalar fields. We can
therefore write in general �r� D �r�.�0I �/, where only the values �a� along the flat
directions of the potential V may depend on �0.

Let us associate with such class of solutions a W -function by using the general
Eq. (4.55) in which we take Q	 D 	� D �1 and Qq D fU�; �r�g. The characteristic
curves are just the extremal solutions �r.	; �0; U0/; U.	; �0; U0/. Since �r� D
�r�.�0I �/, we shall use the short-hand notation W.�0I�/ D W.�0; ��.�0I �/I�/
and write [6]:

eU0 W.�0I �/ D eU� W.��I �/C
Z 	0

	�

e2U.	 IU0;�0/ V .�.	 IU0; �0/I �/ d	 ; (4.66)

Note that the general properties of our class of solutions imply the following
boundary condition for W : eU� W.��I �/ D eU� Vex.e;m/ D 0. We can directly
check that Eq. (4.66) yields Eq. (4.62). For the sake of simplicity we shall omit the
dependence on 	 and on the boundary values of the fields in the integrand. Since the
integral is computed along solutions, we can use the Hamiltonian constraint (4.45)
to rewrite W as follows:

eU0 W.�0I �/ D eU� W.��I �/C 1

2

Z 	0

	�

�
e2U V .�I �/C PU 2 C 1

2
Grs P�r P�s

�
d	

D eU� W.��I �/C 1

2

Z 	0

	�

Leff .U; �; PU ; P�/ d	 : (4.67)

Let us perform an infinitesimal variation of the boundary conditions:U0 ! U0CıU0
and �0 D �0 C ı�0. This will determine a new solution within the same class:

U.	 I�0 C ı�0; U0 C ıU0/ D U.	 I�0; U0/C ıU.	/ ;

�.	 I�0 C ı�0; U0 C ıU0/ D �.	 I�0; U0/C ı�.	/ : (4.68)

Varying both sides of (4.67) under (4.68), integrating by parts and using the
equations of motion we find:

ıU0 e
U0 W.�0I �/C eU0 @rW.�0I �/ ı�r0 D ı.eU� W.��I �//

C 1

2

Z 	0

	�

��
@

@U
Leff � d

d	

@

@ PU Leff

�
ıU C

�
@

@�r
Leff � d

d	

@

@ P�r Leff

�
ı�r

�

C . PUıU C 1

2
Grs P�s ı�r /

ˇ̌
ˇ̌	0
	�

D ı.eU� W.��I �//C . PUıU C 1

2
Grs P�s ı�r /

ˇ̌
ˇ̌	0
	�

:

(4.69)
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Having chosen 	� D �1, all terms computed at 	� in the above equation vanish by
virtue of the near horizon behavior of the regular extremal solutions. Equating the
variations at 	0 on both sides we find:

PU .	0/ D eU0 W.�0I �/ ; P�s.	0/ D 2 eU0 Grs.�0/ @rW.�0I �/ : (4.70)

Being 	0 generic, we find that W defines the first order Eq. (4.62) for the fields and
thus it is a solution to the Hamilton-Jacobi equation.

Note however thatW , as defined in (4.66), may in principle depend on the chosen
value of 	0, that is W D W.U0; �0; 	0I �/. Let us show that this is not the case,
namely that W.U0; �0; 	0 C ı	 I �/ D W.U0; �0; 	0I �/, for a generic ı	 . To do
this we vary 	0 ! 	0 C ı	 , keeping the boundary values of the fields fixed. This
requires to change the solution on which the integral is computed from U.	/; �.	/

to U 0.	/; �0.	/ such that:

U 0.	0 C ı	/ D U.	0/ D U.	0 C ı	/� PU .	0/ ı	 ;
�0.	0 C ı	/ D �.	0/ D �.	0 C ı	/� P�.	0/ ı	 : (4.71)

and thus amounts to performing, along the flow, the transformation U ! U �
PU ı	; � ! � � P� ı	 , besides changing the domain of integration, ı	 being chosen

along the flow so that ı	� D 0. After some straightforward calculations we find:

eU0 .W.U0; �0; 	0 C ı	 I �/ �W.U0; �0; 	0I �// D H j	0 ı	 D 0 ; (4.72)

in virtue of the Hamiltonian constraint. Since the function W of the moduli space,
as defined by (4.66), does not depend on the choice of 	0, we can choose 	0 D 0,
where U0 D 0 and then find:

W.�0I �/ D
Z 0

�1
e2U.	 I�0/ V .�.	 I�0/I�/ d	 : (4.73)

Note that, being V positive definite, W is positive definite as well. Moreover if we
computeW on a solution and defineW.	/ � W.�.	//, its 	-derivative is positive:

d

d	
W.	/ D P�r @rW D 2Grs@rW @sW > 0 	 > �1 ; (4.74)

ThereforeW.	/monotonically increases from its value AH.e;m/=.4�/ at the hori-
zon to MADM.�0I e;m/ at radial infinity. The superpotential W has the properties
of a Liapunov function [6]9 which implies that �� is an asymptotically stable
equilibrium point ( or stable attractor point) for the scalar dynamical system

9See for instance [29] for a definition of stability according to Liapunov and of a Liapunov’s
function.
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in (4.62). In general the very existence of a solution W to the Hamilton-Jacobi
equation, even just in a neighborhood of its critical point �� guarantees (by
Liapunov’s theorem [29]) that the point is a stable attractor for the scalar fields
of the corresponding solution.10

The correspondence illustrated above, between the class of regular extremal
solutions associated with a given vector of electric-magnetic charges and a
W -function, is general, namely it holds for any supergravity model, including
those with non-homogeneous scalar manifolds, which are in general not integrable.
We stress here that the W function constructed above is far from being the general
solution to the Hamilton-Jacobi equation, which itself may not exist.

4.4 Duality

Let us now consider the effect of the global symmetries discussed in Sect. 4.2, on
black hole solutions. A duality transformation g 2 G will map a black hole solution
U.	/; �r.	/ with charges � into a new solution U 0.	/ D U.	/; �0 r .	/ D g ?

�r.	/ with charges � 0 D D.g/ � . More specifically, if U.	/; �r .	/ is defined by
the boundary condition �0 for the scalar fields, U 0.	/ D U.	/; �0 r .	/ is the unique
solution, within our class, with charges � 0 defined by the boundary condition �0

0 D
g ? �0

g 2 G W

8̂
<̂
ˆ̂:
U.	 I �0/
�.	 I �0/
�

�!

8̂
<̂
ˆ̂:
U 0.	 I g ? �0/ D U.	 I �0/
�0.	 I g ? �0/ D g ? �.	 I �0/
� 0 D D.g/ �

: (4.75)

The central and matter charges defined in Eq. (4.30), on the other hand, under
a transformation (4.75) only transform with the H -compensating transformation
h.�r ; g/ in (4.1). To see this let us write (4.30) in matrix notation, denoting by Z
the vector .Z OM / (we ignore the Cayley matrix since it just amounts to a change of
basis):

Z.�; �/ D DŒL.�/�TC� : (4.76)

Upon a duality transformation (4.75) we find:

Z.g ? �;DŒg� �/ D DŒL.g ? �/�TCDŒg� � D DŒh.g; �/��TDŒL.�/�TDŒg�TCDŒg� �

D DŒh.g; �/��T Z.�; �/ : (4.77)

Using (4.16) and the definition (4.35), we see that the effective potential is invariant
if we act on �r and � by means of G simultaneously:

V.�I �/ D V.g ? �I D.g/ �/ : (4.78)

10See the second of [6] for a discussion of subtleties related to the existence of flat directions.
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This implies that V , as a function of the scalar fields and quantized charges, is
G-invariant. From this property of V it follows that the effective action (4.44) and
the extremality constraint (4.45) are manifestly duality invariant.

All the duality-invariant functions of the scalars and the electric-magnetic
charges can be built as H -invariant functions of the central and matter charges.
For instance the scalar potential V.�I �/ can be written in the following form:

V.�I �/ D 1

2
NZABZAB C NZI ZI D Z�Z : (4.79)

Let us show now that the W function shares with V the same symmetry
property (4.78), namely that it is G-invariant as well:

W.�I �/ D W.g ? �I D.g/ �/ : (4.80)

This is easily shown using the general form Eqs. (4.73) and (4.75):

W.g ? �0I D.g/ �/ D
Z 0

�1
e2U

0.	 I g?�0/ V .�0.	 Ig ? �0/I D.g/ �/ d	

D
Z 0

�1
e2U.	 I �0/ V .g ? �.	 I�0/I D.g/ �/ d	

D
Z 0

�1
e2U.	 I �0/ V .�.	 I�0/I �/ d	 D W.�0I �/ :(4.81)

Being the ADM mass expressed in terms of W , see Eq. (4.65), it is a G-invariant
quantity as well:

MADM.�0I �/ D MADM.g ? �0I D.g/ �/ : (4.82)

Extremal black-holes can be grouped into orbits with respect to the duality action
(4.75) of G. These orbits are characterized in terms of G-invariant functions
of the scalar fields and the quantized charges, which are expressed in terms of
H -invariant functions of the central and matter charges. Expressing W as an
H -invariant combination of theZ OM is in general a rather difficult task. It was partly
accomplished in [4,16] for various duality orbits of extremal black holes. For certain
classes of solutions this invariant function is not known yet (see Sect. 4.4.2).

Let us now consider the value Vex.�/ of the scalar potential V.�I �/ in its
extremum ��. As pointed out earlier, it only depends on the electric and magnetic
charges. Moreover, since both V and the Eq. (4.42) are G-invariant, Vex.�/ should
be a duality invariant function of the quantized charges only:

Vex.DŒg��/ D Vex.�/ : (4.83)
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There is only one such invariant function, and it is the quartic invariant I4.�/ of the
symplectic representation of G in which � transforms. It turns out that the scalar
potential at its extremum can be expressed as follows:

Vex.�/ D
p

jI4.�/j : (4.84)

This implies, using Eq. (4.43), that the horizon area AH.e;m/ of regular extremal
black holes can be expressed in terms of the quartic invariant of the duality
group G: AH.e;m/ D 4�

pjI4.�/j. In fact I4 is the only G-invariant which
characterizes the near horizon geometry of extremal black holes. An other duality
invariant feature of black holes is the amount of supersymmetry they preserve. In an
N -extended supergravity, regular black holes can preserve at most the N th part of
the supersymmetry of the theory. These are the BPS regular black holes, which have
played an important role in the microscopic description of the black hole entropy, as
recalled in the introduction. They are extremal solutions and the corresponding first
order dynamical system (4.62) can be derived from the Killing spinor equations,
the W function being expressed in terms of the modulus of the skew-eigenvalue of
the central charge matrix ZAB associated with the preserved supersymmetry. For
N D 2 theories, the central charge matrix can be written as ZAB D Z �AB and
W.�I �/ D jZ.�; �/j (see below). The quartic invariant for regular BPS black
holes is positive.

Extremal solutions, as anticipated in the introduction, can also be non-
supersymmetric. In this case I4 need not be positive and in fact, for a certain class
of non-supersymmetric extremal solutions it is negative. A thorough classification
of regular extremal black holes according to their duality-invariant near-horizon
geometries was performed in [10].

Electric-magnetic charge orbits for which I4.�/ D 0 define extremal solutions
with vanishing horizon area. These are the so called small black holes. They are
characterized by the following power-law behavior of the warp function as 	 !
�1: e�2U � 	˛ with ˛ < 2. Such solutions can be obtained from the regular ones
by setting some of the charges to zero and the duality invariant properties associated
with their electric-magnetic charges were studied in [14, 20]. For small black holes
the value of the potential (and thus of the W -function) vanishes along the solution
as 	 ! �1 since Vex.e;m/ D 0. Since V , defined in (4.35), is positive definite, it
can be zero only in the limit in which some of the scalar fields run to infinity. This
implies that the point �r� reached by the scalar fields as 	 ! �1 belongs to the
boundary of the scalar manifold.

4.4.1 The Issue of Flat Directions

Let us denote by G0 � G the little group (or stabilizer) of the orbit of the quantized
charges � under the action of G [10, 14]:

g0 2 G0 W D.g0/ � D � : (4.85)
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Table 4.1 Summary of
regular, extremal black hole
orbits in the various
supergravities. The symbols I,
II, III denote the 1

N
-BPS, the

non-BPS (I4 > 0) and the
non-BPS (I4 < 0) orbits
respectively. For those
solutions with non-trivial
moduli spaces G0

H0
(i.e. G0

non-compact)

N G
H

Orbit G0
H0

I
E6.2/

SU.2/�SU.6/

8
E7.7/
SU.8/ III

E6.6/
USp.8/

I SU.4;2/
SŒU.4/�U.2/�

6 SO�.12/

U.6/ II �
III SU�.6/

USp.6/

5 SU.5;1/
U.5/ I SU.2;1/

U.2/

I SO.4;n/
SO.4/�SO.n/

4
SL.2;R/
SO.2/ �

� SO.6;n/
SO.6/�SO.n/

II SO.6;n�2/

SO.6/�SO.n�2/

III SO.1; 1/ � SO.5;n�1/

SO.5/�SO.n�1/

I SU.2;n/
SŒU.2/�U.n/�

3 SU.3;n/
SŒU.3/�U.n/� II SU.3;n�1/

SŒU.3/�U.n�1/�

I �
SU.1;nC1/

U.nC1/
II SU.1;n/

U.n/

I �
SL.2;R/
SO.2/ �

� SO.2;nC2/

SO.2/�SO.nC2/

II SO.2;n/
SO.2/�SO.n/

III SO.1; 1/ � SO.1;nC1/

SO.nC1/

I �
Sp.6/
U.3/ II SU.2;1/

U.2/

III SL.3;R/
SO.3/

I �
2 SU.3;3/

SŒU.3/�U.3/� II



SU.2;1/
U.2/

�2
III SL.3;C/

SU.3/

I �
SO�.12/

U.6/ II SU.4;2/
SŒU.4/�U.2/�

III SU�.6/

USp.6/

I �
E7.�25/

U.1/�E6
II

E6.�14/

U.1/�SO.10/

III
E6.�26/

F4

Of course the embedding of G0 within G depends in general on � . Let us show
that the scalar fields 'a spanning the submanifold G0=H0, H0 being the maximal
compact subgroup of G0, are flat directions of the potential and of the W -function,
namely that neither V nor W , depend on 'a. Since we are interested in the part of
the little group which has a free action on the moduli, we shall define G0 modulo
compact group-factors. For instance if the little group is SU.3/�SU.2; 1/, we define
G0 to be SU.2; 1/ and thus H0 D U.2/. For a summary of the orbits of regular
extremal black holes in the various theories and of the corresponding moduli spaces
G0=H0 see Table 4.1.
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To prove that 'a are flat directions of both V and W , let us decompose the n
scalar fields �r into the 'a scalars parametrizing the submanifoldG0=H0 and scalars
'k, which can be chosen to transform linearly with respect to H0. Let us stress at
this point that the coordinates 'a; 'k will in general depend on the original ones �r

and on the electric and magnetic charges, namely:

'a D 'a.�r ; pƒ; qƒ/ ; 'k D 'k.�r ; pƒ; qƒ/ : (4.86)

Let us choose, for convenience, a basis of coordinates in the moduli space such
that the first nf components of �r coincide with the 'a, the others being 'k, that
is �a D 'a, �k D 'k . We can move along the �a direction through the action of
isometries in G0. Let us consider infinitesimal isometries in G0 whose effect is to
shift the a-scalars only:

g0 2 G0 W �r ! .g0 ? �/
r D �r C ıra ı�

a ; � ! � 0 D � C ı� D � ;

where we have used the definition of G0, (4.85). Let us now use Eqs. (4.78)
and (4.80) to evaluate the corresponding infinitesimal variations of V andW :

V.�r I �/ D V.�r C ı�r I � C ı�/ D V.�k; �a C ı�aI �/ :
W.�r I �/ D W.�r C ı�r I � C ı�/ D W.�k; �a C ı�aI �/ : (4.87)

We conclude that @V
@�a

D @W
@�a

D 0, namely that �a are flat direction of both
functions. Using Eq. (4.65) we see that the same property holds for the ADM mass:
@
@�a
MADM D 0.
Let us now give a general characterization of the W -function in terms of the

central and matter charges. We can write the coset representative L.�r / of Mscal

as the product of the G0=H0 coset representative L0.�
a/ times a matrix L1.�

k/

depending on the remaining scalars:

L.�r / D L.�a; �k/ D L0.�
a/L1.�

k/ : (4.88)

Correspondingly the vector Z.�; �/ of central and matter charges, as defined in
(4.30) can be written as follows (as usual we omit the Cayley transformation):

Z.�r ; �/ D DŒL1.�
k/�T DŒL0.�

a/�T C� ; (4.89)

Now we can use the property that L0.�
a/ belongs to G0 in the symplectic

representation, so that DŒL0�T C� D CDŒL0�
�1 � D C� and write:

Z.�a; �k; �/ D DŒL1.�
k/�T C� D Z.0; �k; �/ ; (4.90)



4 Issues on Black Holes in Four Dimensional Supergravity 165

that is the central and matter charges do not depend on �a at all:

@

@�a
ZAB D @

@�a
ZI D 0 : (4.91)

Let us now describe the effect of a generic transformation g0 in G0 on the
central charges. From the general properties of coset representatives we know that
g0 L0.�

a/ D L0.g0 ? �
a/ h0, h0 being a compensator in H0 depending on g0 and

�a. Now, using the property that �k transform in a linear representation of H0, we
can describe the action of g0 on a generic point � as follows:

g0 L.�
r / D g0 L0.�

a/L1.�
k/ D L0.g0 ? �

a/ h0 L1.�
k/ h�1

0 h0

D L0.g0 ? �
a/L1.�

0 k/ h0 D L.g0 ? �
r/ h0 ; (4.92)

where �0 k is the transformed of �k by h0, and .g0 ? �a; �0k/ define the transformed
g0 ? �

r of �r by g0. From (4.92) and the definition (4.30) we derive the following
property:

8g0 2 G0 W Z.g0 ? �r; �/ D DŒh0�
�T Z.�r ; �/ : (4.93)

Now consider the W function as a function of �r and � through the central and
matter chargesZ OM :

W.�r I �/ D bW ŒZ.�r ; �/� : (4.94)

From the duality-invariance of W it follows that, for any g0 2 G0 we have

W.�r I �/ D W.g0 ? �
r I DŒg0� �/ D W.g0 ? �

r I �/ : (4.95)

Furthermore, using Eqs. (4.93) and (4.94) we find:

bW ŒZ.�r ; �/� D W.�r I �/ D W.g0 ? �
r I �/ D bW ŒZ.g0 ? �r ; �/�

D bW ŒDŒh0��T Z.�r ; �/� : (4.96)

The above equality holds for any g0 2 G0 and thus for any h0 2 H0. We conclude
from this that W can be characterized, for a given orbit of solutions, as an H0-
invariant function of the central and matter charges. Let us stress once more that
we have started from a generic charge vector � , so that the definition ofG0, and thus
of H0, is charge dependent. We could have started from a given G0 inside G and
worked out the representative �0 of the G-orbit having G0 as manifest little group.
In this case, by construction, the .�a; �k/ parametrization is charge-independent.

4.4.2 The W -Function for the I4 < 0 Orbit

As mentioned earlier, in the case of symmetric models, the W superpotential has
been found for almost all duality orbits (of extremal solutions), with the important
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exception of the non-supersymmetric solutions characterized by I4 < 0 (solutions
III of Table 4.1). The generic representative of this class is in principle known, since
the corresponding generating solution, that is the simplest solution11 capturing all
the duality invariant features of the most general one, has been constructed in [27].
Knowing the generic representative of this duality orbit �r.	; �0/; U.	; �0/ for a
given charge vector � , the general Eq. (4.73) provides the corresponding (duality
invariant)W -superpotential as a free function of the point �0 on the scalar manifold
and of the charges.12 Such expression is however not handy since it would be given
in terms of an integral in 	 from �1 to 0 of a function of 	; �0 and � . In [16],
the explicit form of W as a free function of the scalar fields and � , was given in
a specific N D 2 model, the t3-model, characterized by a single complex scalar t
spanning the manifold SL.2;R/=SO.2/. Its expression in terms of duality-invariant
quantities was also given. In a genericN D 2 supergravity however, such solutions
are characterized by nf D nV � 2 flat directions and the explicit form of W is still
missing.

A partial answer to the problem was given in [16] where a certain (not duality-
invariant) subset of these black holes was described in terms of a solution W˛a to
the Hamilton-Jacobi equation, where the parameters .˛a/, a D 1; : : : ; nf , define
such subset. Let us comment on relation between this function and W in the light
of our discussion in Sect. 4.3.2 on the solutions to the Hamilton-Jacobi equations.
In a generic N D 2 symmetric model, given a vector � of electric and magnetic
charges in the orbit I4.�/ < 0, the scalar potential V.�I �/ admits a submanifold
Mc � G0=H0 of critical points of dimension nf D nV � 2, see Table 4.1. The
corresponding regular black hole solution �r.	; �0/ interpolates between a point
�0 D .�r0/ at radial infinity and a point �� in Mc which is uniquely determined
by the electric-magnetic charges and by �0 (the dependence on �0 is due to the
presence of flat directions): �r� D �r�.�0I �/. The corresponding superpotential
W.�I �/ describing such set of solutions is computed by evaluating the integral on
the right hand side of Eq. (4.73) on such solutions �r.	; �0/; U.	; �0/.

We could fix a point �r�.˛a/ on Mc and consider the set of all solutions
�0r .	; �0/; U 0.	; �0/ to the second order field equations for the same electric and
magnetic charges interpolating between a generic point �0 at radial infinity and the
chosen point �r�.˛a/. Clearly only a subset of such solutions will describe regular
black holes, namely those originating at spatial infinity from the submanifold M˛a

of points �0 satisfying the condition:

�r�.�0I �/ D �r�.˛a/ : (4.97)

11By simplest here we mean depending on the least number of independent parameters.
12Notice that the electric and magnetic charges also enter the functional form of the solution
�r.	; �0/; U.	; �0/ through harmonic functions.
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Fig. 4.1 Figurative description of the difference between W and W˛a : the former (a) is evaluated
as the integral (4.73) over the full set of regular black holes pertaining to the chosen set of electric
and magnetic charges (thick, red lines in a); the latter as the same integral over the set of solutions
(b) interpolating a generic point �0 with a fixed ��.˛

a/ in Mc , of which only a subset describes
regular black holes (thick, red line)

The W˛a function is obtained by evaluating the integral in Eq. (4.55) over this class
of solutions, which means choosing 	0 D 0, U0 D 0, Q	 D 	� D �1, QU D U� D
�1, but now Q�r D �r�.˛a/. In formulas we can write:

W.�0I �/ D W.�0; ��.�0I �/I �/ D
Z 0; �0

�1; ��.�0I�/
e2U.	 I�0/ V .�.	 I�0/I�/ d	 ;

W˛a.�0I �/ � W.�0; ��.˛a/I �/ D
Z 0; �0

�1; ��.˛a/

e2U
0.	;�0/ V .�0.	; �0/I �/ d	 :

(4.98)

The difference between the two solutions W and W˛a to the Hamilton-Jacobi
equation is figuratively described in Fig. 4.1.

The class of solutions �0r .	; �0/; U 0.	; �0/ interpolating between a generic
point �0 on the scalar manifold and �r�.˛a/ is clearly not invariant under duality
transformations since �r�.˛a/ is not. In fact, by a derivation analogous to the one
used in Sect. 4.4 to prove the duality invariance of W , one can easily show that, for
any g 2 G:

W.�0; ��.˛a/I �/ D W.g ? �0; g ? ��.˛a/I DŒg� �/ : (4.99)

In [16] it was suggested that the W -function associated with the regular black
holes of the I4 < 0 orbit, can be obtained by extremising W˛a with respect to the
parameters ˛a, seen as auxiliary fields
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W.�I �/ D W N̨a .�I �/ I @W˛a

@˛b

ˇ̌
ˇ̌

N̨a
D 0 : (4.100)

The search for the W -function associated with the I4 < 0 orbit, as an analytic
function of the scalar fields and the charges, is still an open problem. In [12] W 2

was characterized as a zero of a degree-6 polynomial, suggesting that an algebraic
expression for W may not even exist.

4.5 Time-Reductions to D D 3

It is known, since the pioneering paper by Breitenlohner et al. [13], that stationary
solutions in D D 4 supergravity can be described within an Euclidean D D 3

supergravity which is formally obtained by dimensional reduction along the time-
direction of the four-dimensional one (and further dualization of all the vector fields
to scalars). The advantage of this approach is that the global symmetry group G3
of the resulting lower-dimensional model is sensibly greater than the one in four-
dimensions. In factG3 contains the product ofG and of the Ehlers group SL.2;R/E
which acts transitively on the moduli arising from the four-dimensional metric.
Static (shperically symmetric) solutions are described by geodesics on the scalar
manifold M

.3/

scal of the three-dimensional theory.
Let us briefly review this approach and the definition of the Euclidean three-

dimensional theory. To implement the reduction along the time direction, let us start
from the following general ansatz for a stationary metric [13]13:

ds24 D �e2U .dt CA0i dx
i /2 C e�2U g.3/ij dx

i dxj ; (4.101)

where xi , i D 1; 2; 3, are the coordinates of the final Euclidean space and g.3/ij is the
corresponding positive defined metric. Denoting the time-components of the vector
fields Aƒ� by �ƒ, we can define the dimensionally reduced vectors QAƒ D QAƒi dxi as
follows:

Aƒ D Aƒ� dx
� D QAƒ C �ƒ .dt C A0i dx

i / : (4.102)

The vector field-strengths decompose correspondingly:

Fƒ D QFƒ C d�ƒ ^ .dt C A0i dx
i / ; (4.103)

where

QFƒ
ij � @i QAƒj � @j QAƒi C �ƒ F 0

ij I F 0
ij � @iA

0
j � @jA0i : (4.104)

13This metric describes stationary solutions, in the static case A0i D 0.
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Using the property
pjgj D e�2U pjg.3/j and replacing the above ansätze for the

fields into the four dimensional Lagrangian we find

p
jgjL4 D

q
jg.3/jL0

3 D
q

jg.3/j
�
1

2
RŒg.3/� � @iU @iU � 1

2
Grs @i�

r@i�s

C e4U

8
F 0
ij F

0 ij C e2U

4
QFƒ
ij Iƒ† F

†ij C 1

2
pjg.3/j

QFƒ
ij Iƒ†@k�

†

� e�2U

2
@i �

ƒIƒ† @
i �†

�
: (4.105)

Next we dualize the three-dimensional vector fields QAƒi ; A0i into nV C1 scalar fields
Q�ƒ; Qa. This is effected by adding to the Lagrangian L0

3 the following Chern-Simons
terms14:

q
jg.3/jL3 D

q
jg.3/jL0

3 C �ijk
�
�@i QAƒj @k Q�ƒ C 1

2
@iA

0
j @k Qa

�
: (4.106)

We now extremize the above Lagrangian with respect to the vector field-strengths
and find:

@L3

@ QFƒ
ij

D 0 ) QFƒij D e�2Upjg.3/j �
ijk I�1ƒ† 
@k Q�† � R†�@k�

�
�
;

@L3

@F 0
ij

D 0 ) F 0 ij D � e�4Upjg.3/j �
ijk !k ; (4.107)

where

!k � @k QaC 2 �ƒ@k Q�ƒ D @ka C �ƒ@k Q�ƒ � Q�ƒ@k�ƒ D @ka C ZTC@kZ ; (4.108)

and we have defined the scalar a and the symplectic vector of electric and magnetic
potentials Z as follows:

Z D .ZM/ �
�
�ƒ

Q�ƒ
�
; Qa � a � �ƒ Q�ƒ : (4.109)

Replacing (4.107) into L3 we end up with a D D 3 action of the form

S3 D
Z
d3x

q
jg.3/j

�
1

2
R3 � 1

2
GIJ .ˆ/ @iˆ

I @iˆJ
�
;

14In our conventions �123 D �123 D C1.
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which describes a sigma-model coupled to gravity. The ns C 2nV C 2 scalar fields
of the model areˆI � .U; �r ; a; ZM/ and span a scalar manifold M3 on which the
following metric is defined:

GIJ .ˆ/ dˆ
I dˆJ D 2dU2 CGrs d�

r d�s C e�4U

2
!2 C e�2U dZT M dZ ;

where M D .MMN/ is the symmetric, symplectic matrix defined in (4.13). Being
M.�r/ negative definite, we see that the metric on M

.3/
scal has indefinite signature,

with 2nV negative-signature directions, namely M
.3/
scal is pseudo-Riemannian. The

manifold M
.3/
scal contains the scalar manifold in Mscal in the D D 4 model as a

submanifold and is homogeneous (symmetric) if and only if its four dimensional
counterpart is. In particular if Mscal is homogeneous symmetric of the form G=H ,
M

.3/
scal will have the general form:

M
.3/
scal D G3

H� ; (4.110)

where now, as opposed to theD D 4 case,H� is not the maximal compact subgroup
H3 of the semisimple Lie group G3, but rather a non-compact real form of the
comlexificationHC

3 ofH3. This is related to the indefinite signature of the metric on
this manifold. The real formH� is characterized by the property that the symmetric
cosetH�=Hc ,Hc being the maximal compact subgroup ofH�, has dimension 2nV .
The isometry group G3 of M.3/

scal is the global symmetry group of the D D 3 theory
and is an off-shell symmetry since there is no issue about electric-magnetic duality
as there was in four dimensions.

Spherically symmetric black-hole solutions are described by geodesics ˆI .	/
on M

.3/

scal parametrized by the radial variable 	 [13]. We shall restrict ourselves to
spherically symmetric solutions with vanishing NUT charge, namely we shall take
!	 D 0. These solutions will be described by the following effective Lagrangian:

L3 D PU 2 C 1

2
Grs P�r P�s C e�2U

2
PZT M PZ D 1

2
G˛ˇ Pq˛ Pqˇ :

Let us introduce the following generalized coordinates q˛ � .U; �r ; ZM/ D
.qi ;ZM/. The conjugate momenta p˛ will read:

p˛ D G˛ˇ.q
i / Pq˛ D .pi ; pM / : (4.111)

In terms of q˛; p˛ we write the Hamiltonian:

H3.p; q/ D 1

2
G˛ˇ p˛ pˇ D 1

2
Gij .qi / pi pj C e2U

2
pM MMN.�r / pN D c2 ;



4 Issues on Black Holes in Four Dimensional Supergravity 171

where MMN denote the entries of the inverse matrix M�1 of MMN , given by: M�1 D
�CMC. Since ZM are cyclic, the corresponding momenta pM are constants of
motion. They are identified with the quantized charges as follows: pM D CMN �

N .
With this identification, the last term in H3 reads 1

2
e2U �T �M �� D �V.qi ; �/ and

H3 coincides with the Hamiltonian H defined in the previous sections. Therefore
the resulting equations of motion for pi ; qi are the same as those discussed earlier.
As far as the equation for ZM is concerned, it reads [4, 13]:

PZM D F
M
t	 D @H3

@pM
D e2U C

MN MNP �
P : (4.112)

This analysis can be viewed as an extension of that given in [33] since it includes in
the definition of the phase space also the four dimensional scalar fields.

In this enlarged Hamiltonian system we want now to define Hamilton’s charac-
teristic function, to be denoted by W3.q

˛; P˛/. By definition this function generates
the canonical transformation to the coordinates Q˛; P˛ , where P˛ are constants of
motion. Since also c2 is conserved, it will be a function of the P˛ , c2 D c2.P /.
It will indeed provide the Hamiltonian in the new coordinates. From the general
theory it is known that the coordinatesQ˛ are linear in 	 , i.e. harmonic functions:

Q˛ D
�
@c2

@P˛

�
	 CQ˛

0 : (4.113)

If we choose one of the Pi to coincide with c2, then only the correspondingQi will
be linear in 	 , the other Q˛ being constants. The function W3.q

˛; P˛/ satisfies the
following relations:

p˛ D @W3

@q˛
; (4.114)

Q˛ D @W3

@P˛
; (4.115)

c2 D H3.q
˛;
@W3

@q˛
/ ; (4.116)

the latter being the Hamilton–Jacobi equation. Since pM are already constant, W3

should be such that PM D pM . This function can be expressed in terms of the
four-dimensional Hamilton’s characteristic function W as follows:

W3.q
˛; P˛/ D W.qi ; Pi ; PM /C ZM PM ; (4.117)

where W was defined in (4.53). Equation 4.114, for ˛ D i , follows from (4.52) and,
for ˛ D M implies pM D PM . Therefore the dependence of W on PM is nothing
but the dependence of the four-dimensional W on the quantized charges

�M D �C
MN pN D �C

MN PN : (4.118)
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Equation (4.117) can then be rewritten in the form:

W3.q
˛; P˛/ D W.qi ; Pi ; �

M /C ZM CMN �
N : (4.119)

Let us now consider the component ˛ D M of Eq. (4.115):

@W3

@PM
D @W

@PM
C ZM D QM : (4.120)

The above equation can also be written, using (4.118):

ZM C C
MN @W

@�N
D QM : (4.121)

This is a non-trivial equation which implies that the combination on the left hand
side is a symplectic vector of harmonic functions. Since the QM can be chosen to
be constant, we can write:

ZM D �C
MN @W

@�N
C const : (4.122)

The above equation allows to compute the electric-magnetic potentials once the
W- prepotential is known on the solution as a function of all the quantized charges.

Below we shall illustrate the validity of Eq. (4.122) on the BPS solutions in
N D 2 supergravity.

4.5.1 The BPS Solution for the N D 2 Case

We shall refer to the usual N D 2 special geometry notations. Let zi denote the
complex scalar fields on the special Kähler manifold and let V M .z; Nz/; UM

i .z; Nz/ be
the covariantly holomorphic symplectic section and its covariant derivative:

V M D
�
Lƒ

Mƒ

�
; UM

i D DiV
M D

�
f ƒ
i

hƒi

�
: (4.123)

The matrix M D .MMN/ is related to the above quantities as follows:

CMC D �M�1 D V NV T C NV V T C gi N| Ui NUTN| C g N|i NU N| U T
i : (4.124)

The symplectic section V M also satisfies the property: V T
CV D i.

The central chargeZ is defined as follows:

Z D ��T CV D eƒ L
ƒ �mƒMƒ ; (4.125)
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The first order equations describing the spatial evolution of the BPS solution
originate from the Killing-spinor equations and read:

PU D eU jZj ; Pzi D 2eU gi N| @ N| jZj : (4.126)

The corresponding prepotential W has the following form W D 2 eU jZj:
We wish now to verify Eq. (4.122) for this class of solutions. To this end we

show that the derivative of the right hand side of this equation equals PZ, as given
from Eq. (4.112):

d

d	

@W

@�M
D CMN

PZN D �e2U MMN �
N : (4.127)

Let us define the quantity:

T D �HT
CV D HƒL

ƒ �HƒMƒ ; (4.128)

where we have introduced the symplectic vector HM of harmonic functions
HM.	/ � hM � p

2�M 	 . In terms of the above quantities, it was shown in [9]
that the BPS solution is defined by the following algebraic equations:

NT V M � T NV M D � ip
2
HM ; e�U D jT j ; (4.129)

with the condition that HT
C PH D 0. From the above relations and positions one

can prove the following properties:

Im.T NZ/ D 0 ; PT D �Z : (4.130)

Differentiating W D 2 eU jZj with respect to � and using (4.122) we find

ZM D �2 e
U

jZj Re. NZ V M / D �2 e2U Re. NT V M/ : (4.131)

Using (4.126) and (4.130) one finds:

d

d	
. NT V M/ D �



V M NV N � gi N| UM

i
NUNN|
�
CNP �

P ; (4.132)

and then

PZM D �4 jZj e3U Re. NT V M/C e2U .V M NV N C NV M V N � gi N| UM
i

NUN
N|

�g N| i NUMN| U N
i /CNP �

P : (4.133)
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Using (4.129), the first term on the right hand side of the above formula can be
rewritten as follows

4 jZj e3U Re. NT V M/ D 2 e2U .V M NV N C NV M V N /CNP �
P : (4.134)

Finally, using (4.124) and the above property, Eq. (4.133) then yields Eq. (4.127).

4.5.2 Geodesics and Duality

Let us end this report by recalling some basic facts about geodesics corresponding to
black holes in extended, symmetric supergravities, and their properties with respect
to the D D 3 global symmetry group (duality group)G3 [25].

Let us denote by g3 and H� the Lie algebras generatingG3 andH�, respectively.
On g3 we can define a (pseudo-) Cartan involution � with respect to which the
algebra decompose as follows:

g3 D H� ˚ K ; (4.135)

where the subalgebra H� and its orthogonal complement K are defined as the C1
and �1 eigenspaces of � , respectively. Working in a real representation of G3 one
can define anH�-invariant metric � such that the action of � on a generatorX 2 g3
reads: �.X/ D ��XT �.

Next we choose a parametrization of our coset. It turns out that the scalar fields
ˆI introduced in the previous subsection are the parameters of a solvable subalgebra
Solv3 of g3. Such subalgebra is defined by the Iwasawa decomposition of g3 with
respect to its maximal compact subalgebra H3:

g3 D H3 ˚ Solv3 : (4.136)

Since not every element of G3 can be written as the product of an element of eSolv3

times an element of H�, the solvable parametrization in terms of ˆI is not global
on G3=H�. This is to be contrasted with what happens for the scalar manifold in
four dimensions, since now G3=H

� is not simply connected. The fact that ˆI are
the physical scalars, however, suggests that we should refine our definition of scalar
manifold and restrict it to the solvable patch only:

M
.3/
scal � eSolv3 � G3

H� : (4.137)

Note that eSolv3 is not geodesically complete within G3
H� : There are geodesics on the

latter which hit the boundary of the solvable patch. This is where singularities of the
corresponding D D 4 solution arise: e�U ! 0. Therefore if we restrict ourselves
to geodesics originating from regular (or small) black holes, they completely unfold
in eSolv3 .
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Take now a coset representative V.ˆ/, ˆ � .ˆI /, in eSolv3 and compute it along
a geodesic described by the functionsˆI .	/:

V.	/ � V.ˆ.	// : (4.138)

We can evaluate the pull-back along the geodesic of the left-invariant one-form
V�1dV and decompose it in the two subspaces H�; K of g3:

V�1 d
d	

V D V.	/CW.	/ : (4.139)

The matrix V.	/, defined as the pull-back of the vielbein on the geodesic, is called
Lax operator since it satisfies a Lax-pair equation of the form:

d

d	
V.	/ D ŒW.	/ ; V .	/� : (4.140)

This is the equation describing the geodesics on our scalar manifold and V.	/ can be
thought of as the “velocity vector” along the geodesic, so that a geodesic is uniquely
defined by a complete set of “initial data”, consisting of an “initial point” ˆ0 �
.ˆI .	 D 0// and an “initial velocity” V0 � V.	 D 0/, see Fig. 4.2a. The conserved
charges of the solution are described by the Noether charge matrix:

Q D V.	/V .	/V.	/�1 D const: 2 g3 : (4.141)

The square of the extremality parameter is related to the Lax matrix as follows:

c2 D 1

2
GIJ .ˆ/ P̂ I P̂ J / Tr.V 2/ : (4.142)

Equation 4.140 suggests that the geodesics are described by a Liouville integrable
system. This is the case and this property was exploited in the study of black holes
in [17], where the complete system of prime integrals in involution was explicitly
computed.

The action of the global symmetry group G3 on a geodesic can be described as
follows: By means of a transformation G3=H? we can move the “initial point” ˆ0
at 	 D 0 anywhere on the manifold, while for a fixed initial point we can act by
means of H? on the “initial velocity vector”, namely on V0, see Fig. 4.2b. Since the
action ofG3=H? is transitive on the scalar manifold, we can always bring the initial
point to coincide with the origin (where all the scalar fields vanish) and classify the
geodesics according to the H?-orbit of the Lax matrix at radial infinity V0. Since the
evolution of the Lax operator occurs via a similarity transformation of V0 by means
of a 	-evolving element of the subgroup H?, it will unfold within a same H?-orbit.
Therefore studying the properties of geodesics with respect to the duality group G3
amounts to classifying all possible solutions by means of H?-orbits within K.
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Fig. 4.2 Action of G3 on a
geodesic

The regularity condition imposes severe constraints on theH?-orbit, see [25]. In
the case of extremal solutions Eq. (4.142) implies c2 D 0 D Tr.V 2/, and regularity
further requires V to be step-k nilpotent, namely

V k D 0 ; V k�1 ¤ 0 ; (4.143)

where k should not exceed 5 if V is computed in the adjoint representation of G3
[25, 28]. The study of extremal solutions and of their properties with respect to the
action of G3 therefore amounts to classifying nilpotentH?-orbits within K. This is
still an open mathematical problem. Recent progress in this direction was made in
[22, 34].

We shall not elaborate further on this issue since it would lead far from main
topic of the present dissertation.

4.6 Conclusions

In this report we concentrated only on few issues related to black holes in extended
supergravities, trying however to give a self-contained exposition. In particular we
discussed a general mathematical characterization of the W -superpotential which
defines the “gradient-flow” equations governing the radial evolution of the scalar
fields for the extremal static solutions. Such function, besides allowing a specific
mathematical description of duality invariant classes of extremal solutions, is likely
to have a deeper physical meaning, in relation to their microscopic description. It
is duality-invariant and monotonic in 	 along the solutions, so that, in the context
of QFT/gravity correspondence, it is a candidate for a c-function characterizing
the renormalization group flow towards the conformal fixed point [19, 23, 30, 37]
(corresponding to the AdS2 � S2 near-horizon geometry).
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It would be interesting to extend this first-order formalism to rotating or multi-
center solutions [8] that is to associate with them a duality invariantW -function (see
for instance [26] for a recent work in this direction).

An other interesting direction for further investigation is the first order descrip-
tion of non-extremal static solutions (c2 > 0), whose W-function must have the
general form (4.55) (see [4] for comment on this case and for [35] for a recent
work).
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Chapter 5
On the Classification of Two Center Orbits
for Magical Black Holes

Laura Andrianopoli, Riccardo D’Auria, and Sergio Ferrara

We report on recent work [4] concerning the determination of the two-centered
generic charge orbits of magical N D 2 and maximal N D 8 supergravity theories in
four dimensions. These orbits are classified by seven U -duality invariant polynomi-
als, which group together into four invariants under the horizontal symmetry group
SL .2;R/. These latter are expected to disentangle different physical properties of
the two-centered black-hole system. The invariant with the lowest degree in charges
is the symplectic product hQ1;Q2i, known to control the mutual non-locality of the
two centers.

5.1 Introduction

Suprgravity solutions for multi-centered extremal black holes in four dimensions
have been recently the subject of a deep investigation. Their study may unravel
non-perturbative aspects of string BPS states and their brane interpretation [17].
A generalisation of the attractor Mechanism [22, 23] (for a review, see e.g. [2]) has
been shown to occur, as firstly pointed out by Denef [16], called split attractor flow
for BPS N D 2 black holes [5, 16–18].
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Attempts to generally classify the two-centered solutions of supergravity theories
with symmetric scalar manifolds and electric-magnetic duality (U -duality1) symme-
try given by classical Lie groups have been considered [13,25–27,34]. In particular,
within the framework of the minimal coupling [35] of vector multiplets to N D 2

supergravity, it was shown in [25] that different physical properties, such as marginal
stability and split attractor flow solutions, can be classified by duality-invariant
constraints, which in this case involve two dyonic black-hole charge vectors, and
not only one.

This leads one to consider the mathematical issue of the classification of orbits
of two (or more) dyonic charge vectors in the context of multi-centered black-hole
physics. For the theories treated in [25,26], the charge vector lies in the fundamental
representation of U .1; n/ (minimally coupled N D 2 supergravity [35]) and in the
spinor-vector representation of SL .2;R/ � SO .q; n/, corresponding to reducible
cubic ND 2 sequence [15,31] for qD 2, and to matter-coupled N D 4 supergravity
for q D 6.

In [25], the two-centered U -invariant polynomials of the minimally coupled
theory were constructed, and shown to be four (dimension of the adjoint of the two-
centered horizontal symmetry U .2/). The same was done for the aforementioned
cubic sequence in [26], where the number of U -invariants were computed to be
seven for n > 2, six for n D 1 and five for the irreducible t3 model.

In the present contribution we report about the investigation, performed in [4],
in order to generalize these results to four-dimensional supergravity theories with
symmetric irreducible scalar manifolds, in particular to the N D 8 maximal theory
and to the N D 2magical models. They share the property that for all these theories
the field strengths of the vector fields and their magnetic dual transform in a single
(symplectic) irreducible representation of the U-duality group. In this respect, the
t3 model, whose U -duality group is SL .2;R/, provides a simple yet interesting
example, because it may be obtained both as rank-1 truncation of the reducible
symmetric models and as first, non-generic element of the sequence of irreducible
ND 2 symmetric models, which contains the four rank-3 magical supergravity
theories mentioned above.

We find that when the stabilizer of a two-centered charge orbit is non-compact,
the corresponding orbit is not unique. As we will consider in Sect. 5.3, this feature
is also exhibited by the classification of the orbits of two non-lightlike vectors in a
pseudo-Euclidean spaceEp;q of dimension pCq and signature .p; q/. A prominent
role is played by an emergent horizontal symmetry SLh .2;R/, whose invariants
classify all possible two-vector orbits.

The two-centered configurations and the generic (BPS) orbit O D SL .2;R/

of t3 model were studied in Sect. 7 of [26], in which it was pointed out that, as it
occurs also for the one-centered case [7], no stabilizer for the two-centered orbit

1 Here U -duality is referred to as the “continuous” symmetries of [11]. Their discrete versions are
the U -duality non-perturbative string theory symmetries introduced by Hull and Townsend [32].
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exists.2 The five components of the spin sD 2 horizontal tensor Iabcd (defined
in (5.85) below, and explicitly given by (5.88)–(5.92)) form a complete basis
of duality-invariant polynomials [26]; as a consequence, the counting (5.2) for
p D 2-centered black hole solutions in the t3 model simply reads 5 C 3 � 0 D
4 � 2, because IpD2 D 5 and dimR.Gp/ D 0. Moreover, there exist only two
independent ŒSLh .2;R/ � SL .2;R/�-invariant polynomials, which can be taken to
be the symplectic product W (of order 2 in charges, defined in (5.82) below) and I6
(of order 6 in charges, defined in (5.97) below); an alternative choice of basis for the
SL .2;R/-invariant polynomials is thus e.g. given by three components of Iabcd out
of the five (5.88)–(5.92), and the two horizontal invariants W and I6.

The plan of the paper is as follows.
In Sect. 5.2 we give a group theoretical method (based on progressive branchings

of symmetry groups, considered as complex groups) to find the multi-centered
charge orbits of a theory with a symmetric scalar manifold; we then apply it to all
irreducible symmetric cases. The analysis of this section will not depend on the real
form of the stabilizer of the orbit, and the results will then hold both for BPS and
all the non-BPS orbits of the given model. In Sect. 5.4 we propose a complete basis
for U -duality polynomials in the presence of two dyonic black-hole charge vectors
in irreducible symmetric models, and we also consider the role of the horizontal
symmetry in this framework. Section 5.3 extends the analysis of Sect. 5.2 to different
non-compact real forms of the stabilizer of one-centered charge orbits related to
Jordan algebras over the octonions, namely to N D 8 theory (whose 1

8
-BPS one-

centered stabilizer is E6.2/) and for exceptional magical N D 2 theory (whose BPS
and non-BPS I4 > 0 one-centered stabilizers are the compact E6.�78/ and the non-
compact E6.�14/, respectively).

Possible extensions of the present investigation may also cover composite
configurations with “small” constituents, as well as a detailed study of the multi-
centered charge orbits in N D 5; 6-extended supergravity theories.

5.2 Little Group of p Charge Vectors in Irreducible
Symmetric Models

We consider a p-center black hole solution in a Maxwell-Einstein supergravity
theory in d D 4 space-time dimensions.

The p dyonic black-hole charge vectors can be arranged as

Qa � ˚
QMa

�
MD1;:::;f ; (5.1)

where QMa sits in the irreducible representation .p;Sympl .G4// of the group
SLh .p;R/ � G4. p is the fundamental representation (spanned by the index

2As it holds for the magical JR

3 model, see Table I.
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a D 1; : : : ; p) of the horizontal symmetry group [26] SLh .p;R/ (see Sect. 5.4),
while Sympl .G4/ is the symplectic irreducible representation of the black-hole
charges, spanned by the index M D 1; : : : ; f of the U -duality group G4, where
f �dimR .Sympl .G4//.

Suppose there are Ip independent G4-invariant polynomials constructed out of
Qa, and let Gp denote the little group of the system of charges, defined as the largest
subgroup ofG4 such that Gp Qa D Qa 8a. Then, the following relation3 holds [26]:

Ip C dimR.G4/ � dimR.Gp/ D f p: (5.2)

Some preliminary general observations are in order:

• The group theoretical analysis of the present section does not depend on the real
form of G4 and Gp . We will then generally consider the complex groups. From
a physical point of view, the BPS and non-BPS cases in various supergravity
theories correspond to different choices of non-compact real forms of Gp (and
of G4, as well). However, for BPS orbits in N D 2 symmetric models, and in
particular for magical models, the stabilizer is always the compact form of the
relevant group (see Table 5.1 for the case p D 2).

• We shall generally assume Q1 to be in a representation corresponding to a “large”
black hole,4 namely such that the quartic invariant I4

�
Q41
� ¤ 0.

• We shall consider “generic” orbits, in which all Ip invariants are independent.
• There are two relevant cases, corresponding to different behaviors in the counting

of invariants:

(a) The largest subgroup commuting with Gp inside G4 is U.1/ � G4, so that
Gp � U.1/ � G.

(b) A U.1/ commuting with Gp inside G4 does not exist.

In the case (b), all the singlets in the decomposition of G4 ! Gp correspond
to p-center G4-invariant polynomials of Sympl .G4/. On the other hand, in the
case (a) the number of Gp-singlets corresponds to the number Ip of p-center
G4-invariant polynomials plus one if some of them are charged with respect
to U.1/, because one of the singlets can still be acted on by the corresponding
U.1/-grading.

• The general method for working out Gp and thus Ip , having solved the problem
for p � 1 centers, is to consider the pth charge vector Qp as transforming in a
(reducible) representation of the little group Gp�1 of the former p � 1 charges,
and solve the corresponding one-charge-vector problem.

3A necessary but not sufficient condition for Eq. (5.2) to hold is p < f , such that the p dyonic
charge vectors can all be taken to be linearly independent.
4Multi-center configurations with “small” constituents [5, 10, 29] can be treated as well, and they
will be considered elsewhere.
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In the next Subsections we will consider the cases p D 1 and p D 2 in all
irreducible symmetric cases pertaining to supergravity theories in d D 4 dimensions
(with the exception of the rank-1 t3 model, treated in [26]). In the case p D 1,
we will retrieve the well known result IpD1 D 1, whereas in the p D 2 case we will
obtain IpD2 D 7 for all theories under consideration.

Before entering into the details, we just recall that the magic models under con-
sideration are related to Euclidean Jordan algebras J A

3 of degree 3, whose elements
are in one-to-one correspondence with the vector fields of N D 2 five dimensional
theories. Under dimensional reduction to D D 4, such a correspondence gets
extended to a correspondence between the Freundenthal Triple System F.J3/ over
J A

3 and the four-dimensional vector fields and their duals or, equivalently, the
associated electric and magnetic charges. More precisely, one can associate an
element of F.J3/ with electric and magnetic charges fq0; qi ; p0:pi g 2 R

2nV C2 of
an N D 2 extremal black hole:

�
p0 pi

qi q0

�
2 F.J3/ (5.3)

where q0; p0 are real numbers while qi ; pi are the components of Jordan algebra
elements along a basis of J A

3 .
For the N D 2, DD 4 theories considered here, the scalar manifolds

are associated to the symmetric spaces E7.�25/=E6 � U.1/, SO�.12/=U.6/,
SU.3; 3/=S.U.3/ � U.3//, Sp.6/=U.3/ and are related to Jordan algebras J A

3

over the field A of octonions, quaternions, complex and real numbers respectively
[31]. Remarkably, Table 5.1 is in agreement with the results of [33] (see Table III at
page 201 of [33]).

Let us note that all the properties discussed in this section depend on the
symplectic representation pertaining to the electric and magnetic charges of the
U-duality group (coinciding with the isometry group of the corresponding scalar
manifolds), while they do not depend on their real form. This allows to extend
the discussion of this section to all (pure) supergravity theories with N > 4. In
particular, the N D 2 model based on J C

3 can be treated together with the N D 5

theory, as both theories have charges in the 20 of different real forms of SL.6;C/,
and the N D 2 model based on JO

3 can be treated together with the N D 8 theory,
both models having charges in the 56 of different real forms of E7. In a similar
way, the N D 2 model based on JH

3 , which has scalar manifold SO�.12/=U.6/
and 32 electric and magnetic field strengths (lying in the spinor representation of
SO�.12/), can be treated at the same time with the N D 6 theory, having exactly
the same bosonic field content and scalar manifold.5

5In this respect, we observe that theN D 3 theory coupled to three vector multiplets, whose scalar
manifold, SU.3; 3/=S.U.3/ � U.3//, coincides with the one of the magic model based on JC

3 ,
cannot be included in the discussion, since the bosonic field content of the two theories is different.
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Table 5.1 BPS generic charge orbits of two-centered
extremal black holes in N D 2, d D 4 magical models.
Conf

�
JA

3

�
denotes the “conformal” group of JA

3 (see
e.g. [30], and Refs. therein). By introducing A D R,
C, H, O, it is worth remarking that the stabilizer group
GpD2

�
JA

3

�
and the automorphism group Aut .t .A// of

the normed triality t .A/ in dimension dimRA D 1, 2,
4, 8 (given e.g. in Eq. (5) of [6]) share the same Lie
algebra. In other words, gpD2

�
JA

3

� 	 tri .A/, where
tri .A/ denotes the Lie algebra of Aut .t .A// itself (see
e.g. Eq. (21) of [6])

JA

3

OpD2;BPS D Conf .J A

3 /
GpD2.J A

3 /

J
O

3

E7.�25/

SO.8/

JH

3
SO�.12/

ŒSU .2/�
3

JC

3
SU .3;3/

ŒU.1/�
2

JR

3 Sp .6;R/

5.2.1 J
O

3
(N D 2), J

Os

3
(N D 8)

Let us start considering the exceptional case, based on the Euclidean degree-3
Jordan algebra JO

3 on the octonions O. Since, as mentioned earlier, we actually
work with complex groups, this case pertains also to maximal N D 8 supergravity,
based on the Euclidean degree-3 Jordan algebra JOs

3 on the split octonions Os .
In the complex field, G4 D E7 and Sympl .E7/ D Fund .E7/ D 56.

• Let us first solve the one-center problem (p D 1). G1 is a real form of E6; the
56 branches with respect to E6 as follows (subscripts denote the U .1/-charges
throughout):

56 ! 1�3 C 27�1 C 27C1 C 1C3 ; (5.4)

and correspondingly the charge vector Q1 (defined as
�
p; q

�
throughout)

decomposes as follows:

Q1 D .p0;p27; q0;q27/ : (5.5)
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Note that the branching (5.4) contains two E6-singlets, and E7 � E6 � U.1/ D
G1�U.1/. According to the previous discussion, one of the singlets can be freely
acted on by the U.1/. Thus, by acting with G4=G1 D E7=E6, the one-center
charge vector Q1 can be reduced as follows:

Q1

E7=E6�! .I .1/; 027;˙I .1/; 027/ : (5.6)

One is then left with only one independent singlet charge I .1/ related to the one-
center quartic invariant I4

�
Q41
�
; therefore, I1 D 1, as expected. This analysis is

consistent with the general formula (5.2), which in this case reads:

I1 C dimR.E7/� dimR.E6/ D 1C 133� 78 D 56 : (5.7)

• Let us now proceed to deal with the two charge-vector problem (p D 2). The
second charge vector is denoted as Q2 � .m; e/ throughout. Having solved
the problem for p D 1, we can decompose Q2 with respect to G1 D E6 using
(5.4), obtaining the decomposition

Q2 D .I .2/;m27; I
.3/; e27/; (5.8)

and then determine the corresponding little group inside E6. The little group of
the irreducible representation 27 of E6 is F4, under which

27 ! 1 C 26 ; (5.9)

and correspondingly

m27 ! .I .4/;m26/I e27 ! .I .5/; e26/: (5.10)

Note in particular that F4 is a maximal (symmetric) subgroup of E6, so that all
singlets correspond to extra E7-invariant polynomials, and that m26 can be set to
zero through the action of G1=F4 D E6=F4, thus yielding the result:

Q2

E6=F4�! .I .2/; I .4/; 026; I
.3/; I .5/; e26/: (5.11)

• The 26 of F4 has little group SO.8/, which does not commute with a U.1/ in F4.
Under this non-maximal embedding, the 26 branches as

26 ! 1 C 1 C 8v C 8s C 8c ; (5.12)

and correspondingly

e26 ! .I .6/; I .7/; e8v ; e8s ; e8c/ : (5.13)
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Therefore, by acting with F4=G2 D F4=SO.8/, Q2 can then be put in the form

Q2

F4=SO.8/�! .I .2/; I .4/; 026; I
.3/; I .5/; I .6/; I .7/; 08v ; 08s ; 08c/: (5.14)

In conclusion, we found that the little group of a two-centered black-hole solution
is G2 D SO.8/, and the corresponding two-centered charge orbits correspond to
different real forms of the quotient of complex groups

OpD2 D G4

G2
D E7

SO .8/
: (5.15)

The E7-invariant polynomials for a two-centered configuration are seven: I2 D 7;
indeed, the general formula (5.2) gives:

I2 C dimR.E7/� dimR.SO.8// D 7C 133� 28 D 112 D 2 � 56: (5.16)

5.2.2 JH

3
(N D 2 $ N D 6)

This model is based on the Euclidean degree-3 Jordan algebra JH

3 on the quaternions
H, and it is “dual” to N D 6 “pure” theory, because these theories share the same
bosonic sector [1, 3, 24, 31, 37].

In the complex field G4 D SO .12/, and Sympl .SO .12// D 32, the chiral
spinor irreducible representation of SO .12/.

• Let us first solve the problem for p D 1. G1 is a real form of SU.6/, the relevant
(maximal symmetric) embedding is

SO.12/ � SU.6/� U.1/ D G1 � U.1/; (5.17)

and the 32 accordingly branches

32 ! 1�3 C 15�1 C 15C1 C 1C3 ; (5.18)

corresponding to the charge decomposition

Q1 D .p0;p15; q0;q15/ : (5.19)

The analysis here is completely analogous to the exceptional case above. The
branching (5.18) contains two SU.6/-singlets, but, by virtue of (5.17), one of
the singlets can be freely acted on by the U.1/. By acting with G4=G1 D
SO .12/ =SU.6/, Q1 can be reduced to
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Q1

SO.12/=SU.6/�! .I .1/; 015;˙I .1/; 015/ ; (5.20)

so that I1 D 1, corresponding to the one-center quartic invariant I4
�
Q41
�

only.
Indeed, the general formula (5.2) yields

I1 C dimR.SO.12//� dimR.SU.6// D 1C 66 � 35 D 32 : (5.21)

• Let us consider now the two-centered case (p D 2). Having solved the problem
for p D 1, we further decompose Q2 with respect to G1 D SU.6/:

Q2 D �
I .2/;m15; I

.3/; e15
�
; (5.22)

and find the corresponding little group. The little group of the 15 of SU.6/ is
USp .6/, under which such a representation branches as follows:

15 �! 1 C 14; (5.23)

yielding the charge decompositions

m15 �! �
I .4/;m14

� I e15 �! �
I .5/; e14

�
: (5.24)

Since USp .6/ is maximally (and symmetrically) embedded in SU .6/, all
singlets correspond to extra SO .12/-invariant polynomials, and m14 can be set
to zero through the action of G1=USp .6/ D SU .6/ =USp.6/, thus yielding the
result:

Q2

SU.6/=USp.6/�! �
I .2/; I .4/; 014; I

.3/; I .5/; e14
�
: (5.25)

• The 14 (rank-2 antisymmetric) of USp.6/ has little group ŒSU .2/�3, which does
not commute with a U .1/ in USp.6/. The 14 correspondingly branches as

14 �! .1; 1; 1/C .1; 1; 1/C .1; 2; 2/C .2; 2; 2/ ; (5.26)

and thus
e14 �! �

I .6/; I .7/; e.1;2;2/; e.2;2;2/
�
: (5.27)

Therefore, by acting with USp.6/=G2 D USp.6/= ŒSU .2/�3, Q2 can then be put
in the form

Q2

USp.6/=ŒSU .2/�3�! .I .2/; I .4/; 014; I
.3/; I .5/; I .6/; I .7/; 0.1;2;2/; 0.2;2;2//: (5.28)

In conclusion, we found that the little group of a two-centered black-hole
solution is G2 D ŒSU .2/�3, and the corresponding two-centered charge orbit reads
(in complexified form)
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OpD2 D G4

G2
D SO .12/

ŒSU .2/�3
: (5.29)

The SO .12/-invariant polynomials for a two-centered configuration are seven:
I2 D 7; indeed, the general formula (5.2) gives:

I2 C dimR.SO .12// � dimR.ŒSU .2/�
3/ D 7C 66 � 9 D 64 D 2 � 32: (5.30)

5.2.3 JC

3
(N D 2), M1;2 .O/ (N D 5)

Let us now consider the model based on the Euclidean degree-3 Jordan algebra J C

3

on C. Since, as mentioned earlier, we actually deal with groups on the complex field,
this case pertains also to “pure” N D 5 supergravity, which is based on M1;2 .O/,
the Jordan triple system (not upliftable to d D 5) generated by 2 � 1 matrices over
O [31].

In the complex field,G4 D SU .6/, and Sympl .SU .6// D 20, the real self-dual
rank-3 antisymmetric irreducible representation.

• Let us first solve the problem for p D 1. G1 is a real form of SU.3/�SU.3/, the
relevant (maximal symmetric) embedding is

SU.6/ � SU.3/� SU.3/� U.1/ D G1 � U.1/; (5.31)

and the 20 accordingly branches as

20 ! .1; 1/�3 C .3; 3/�1 C .3; 3/C1 C .1; 1/C3 ; (5.32)

corresponding to the charge decomposition

Q1 ! .p0;p.3;3/; q0;q.3;3// : (5.33)

The analysis here is analogous to the cases treated above. The branching
(5.32) contains two ŒSU.3/� SU.3/�-singlets, but, by virtue of (5.31),
one of the singlets can be freely acted on by the U.1/. By acting with
G4=G1 DSU .6/ = ŒSU.3/ � SU.3/�, Q1 can be reduced to

Q1

SU.6/=ŒSU.3/�SU.3/��! .I .1/; 0.3;3/;˙I .1/; 0.3;3// ; (5.34)

so that I1 D 1, which corresponds to I4
�
Q41
�

only. Indeed, formula (5.2) yields

I1 C dimR.SU .6// � dimR.SU.3/� SU.3// D 1C 35� 16 D 20 : (5.35)
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• Let us consider now the two-centered case (p D 2). Having solved the problem
for p D 1, we further decompose Q2 with respect to G1 D SU.3/ � SU.3/:

Q2 D .I .2/;m.3;3/; I
.3/; e.3;3//; (5.36)

and find the corresponding little group. The little group of the .3; 3/ of SU.3/�
SU.3/ is the diagonalSU.3/,which is maximal in SU.3/�SU.3/ (see e.g. [38]),
under which such a representation branches as follows:

.3; 3/ ! 1 C 8 ; (5.37)

yielding the charge decompositions

m.3;3/ ! .I .4/;m8/I e.3;3/ ! .I .5/; e8/:

The maximality of the embedding of the diagonal SU.3/ in SU.3/ � SU.3/

implies all singlets to correspond to extra SU .6/-invariant polynomials, and m8

can be set to zero through the action of G1=SU.3/ D ŒSU.3/� SU.3/� =SU.3/,
thus yielding the result:

Q2

ŒSU.3/�SU.3/�=SU.3/�! �
I .2/; I .4/; 08; I

.3/; I .5/; e8
�
: (5.38)

• The 8 (adjoint) of SU.3/ has little group ŒU.1/�2, which does not commute with
any U.1/ in SU.3/. The 8 correspondingly branches as

8 ! 10;0 C 10;0 C 10;2 C 10;�2 C 13;1 C 13;�1 C 1�3;1 C 1�3;�1 ; (5.39)

and thus

e8 �! .I .6/; I .7/; e0;2; e0;�2; e3;1; e3;�1; e�3;1; e�3;�1/: (5.40)

Therefore, by acting with SU.3/=G2 D SU.3/= ŒU.1/�2, Q2 can then be put in
the form

Q2

SU.3/=ŒU.1/�2�! .I .2/; I .4/; 08; I
.3/; I .5/; I .6/; I .7/; 06/; (5.41)

where 06 collectively denotes the six charges pertaining to the ŒU.1/�2-charged
representations 10;2, 10;�2, 13;1, 13;�1, 1�3;1, 1�3;�1 in the right-hand side of
(5.39).

In conclusion, we found that the little group of a two-centered black-hole
solution is G2 D ŒU.1/�2, and the corresponding two-centered charge orbit reads
(in complexified form)

OpD2 D G4

G2
D SU .6/

ŒU.1/�2
: (5.42)



192 L. Andrianopoli et al.

The SU .6/-invariant polynomials for a two-centered configuration are seven:
I2 D 7; indeed, the general formula (5.2) gives:

I2 C dimR.SU .6// � dimR.ŒU.1/�
2/ D 7C 35� 2 D 40 D 2 � 20: (5.43)

5.2.4 JR

3
(N D 2)

Finally, we consider the model based on the Euclidean degree-3 Jordan algebra J R

3

on R.
In the complex field,G4 D USp .6/, and Sympl .USp .6// D 140, the real rank-3

antisymmetric irreducible representation of USp .6/ (not to be confused with the
rank-2 antisymmetric irreducible representation 14 considered in Sect. 5.2.2).

• Let us first solve the problem for p D 1. G1 is a real form of SU.3/, the relevant
(maximal symmetric) embedding is

USp.6/ � SU.3/� U.1/ D G1 � U.1/; (5.44)

and the 140 accordingly branches as

140 ! 1�3 C 6�1 C 6C1 C 1C3; (5.45)

corresponding to the charge decomposition

Q1 ! .p0;p6; q0;q6/ : (5.46)

Once again, the analysis here is analogous to the cases treated above. The
branching (5.45) contains two SU.3/-singlets, but, by virtue of (5.44), one of
the singlets can be freely acted on by the U.1/. By acting with G4=G1 D
USp .6/ =SU.3/, Q1 can be reduced to

Q1

USp.6/=SU.3/�! .I .1/; 06;˙I .1/; 06/ ; (5.47)

so that I1 D 1, which corresponds to I4
�
Q41
�

only. Indeed, formula (5.2) yields

I1 C dimR.USp .6// � dimR.SU.3// D 1C 21 � 8 D 14 : (5.48)

• Let us consider now the two-centered case (p D 2). Having solved the problem
for p D 1, we further decompose Q2 with respect to G1 D SU.3/:

Q2 D .I .2/;m6; I
.3/; e6/; (5.49)
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and find the corresponding little group. The little group of the 6 of SU.3/ is
SO.3/,which is maximal in SU.3/, under which such a representation branches
as follows:

6 ! 1 C 5; (5.50)

yielding the charge decompositions

m6 ! .I .4/;m5/I e6 ! .I .5/; e5/: (5.51)

The maximality of SO.3/ in SU.3/ implies all singlets to corresponds to extra
USp .6/-invariant polynomials, and m6 can be set to zero through the action of
G1=SO.3/ D SU.3/=SO.3/, thus yielding the result:

Q2

SU.3/=SO.3/�! .I .2/; I .4/; 05; I
.3/; I .5/; e5/: (5.52)

• Note, however, that the little group of the 5 (rank-2 symmetric traceless)
irreducible representation of SO.3/ is the identity, so that G2 D I. The 5 then
trivially branches into five singlets, three of which can be rotated to zero through
the action of SO.3/=G2 D SO.3/:

Q2

SO.3/�! .I .2/; I .4/; 05; I
.3/; I .5/; I .6/; I .7/; 03/; (5.53)

where 03 collectively denotes such three singlets set to zero.

In conclusion, we found that the little group of a two-centered black-hole solution
is the identity itself: G2 D I, and the corresponding two-centered charge orbit reads
(in compact form)

OpD2 D G4

G2
D USp .6/ : (5.54)

The USp .6/-invariant polynomials for a two-centered configuration are seven:
I2 D 7; indeed, the general formula (5.2) yields:

I2 C dimR.USp.6// � dimR.I/ D 7C 21� 0 D 28 D 2 � 14: (5.55)

5.3 Two-Centered Orbits with Non-compact Stabiliser: the
N D 8 BPS and Octonionic N D 2 Non-BPS Cases

For N D 2 BPS two-centered extremal black holes, the stabiliser of the supporting
charge orbit is always compact, so the orbit is unique (see Table 5.1 for magical
models). This is no longer the case when the stabiliser is non-compact, as it holds for
N D 2 two-centered solutions with two non-BPS centers characterised by I4

�
Q41
�
>

0 and I4
�
Q42
�
> 0, and for N > 3 two-centered solutions with two 1

N
-BPS centers.
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These are interesting cases, in which a split attractor flow through a wall of marginal
stability has been shown to occur [9, 21].

We will consider here the 1
8
- BPS two-centered orbits in the maximal N D 8

theory (based on JOs

3 ) and the non-BPS two-centered orbits (of the aforementioned
type) in the exceptional N D 2 magic model, based on JO

3 . These two cases can be
obtained by repeating the analysis of Sect. 5.2.1 and choosing suitable non-compact
real forms of G4 and G2.

The one-centered charge orbits respectively read [7, 20]:

N D 8;
1

8
-BPS W OpD1 D E7.7/

E6.2/
I (5.56)

N D 2; J
O

3 nBPS I4 > 0 W OpD1 D E7.�25/
E6.�14/

: (5.57)

In the maximal case, the chain of relevant group branchings reads

N D 8;
1

8
-BPS W E7.7/ �! E6.2/ �! F4.4/ �! SO .5; 4/ �!

8<
:
SO .4; 4/

or
SO .5; 3/

;

(5.58)
such that two 1

8
-BPS, N D 8, two-centered charge orbits exist:

OND8; 18 -BPS;pD2;I D E7.7/

SO .4; 4/
(5.59)

OND8; 18 -BPS;pD2;II D E7.7/

SO .5; 3/
: (5.60)

In the N D 2 exceptional case, the chain of relevant group branchings reads

ND 2; J
O

3 nBPS WE7.�25/ �! E6.�14/ �! F4.�20/ �!

8̂
<̂
ˆ̂:

SO .9/ �! SO .8/
or

SO .8; 1/ �!
SO .8/
or
SO .7; 1/

;

(5.61)
such that two non-BPS, N D 2, two-centered charge orbits exist:

O
ND2;JO

3 ;nBPS;pD2;I D E7.�25/
SO .8/

(5.62)

O
ND2;JO

3 ;nBPS;pD2;II D E7.�25/
SO .7; 1/

: (5.63)

As it holds for the stabilizer of O
ND2;JO

3 ;BPS;pD2 (see Table 5.1), the Lie algebra

so .8/ of the stabilizer of O
ND2;JO

3 ;nBPS;pD2;I (5.62) is nothing but the Lie algebra
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tri .O/ of the automorphism group Aut .t .O// of the normed triality over the
octonionic division algebra O (see e.g. Eq. (21) of [6]). It is worth here to observe
that the Lie algebra so .4; 4/ of the stabilizer of OND8; 18 -BPS;pD2;I (5.59) enjoys an
analogous interpretation as the Lie algebra tri .Os/ of the automorphism group
Aut .t .Os// of the normed triality over the split form Os of the octonions. On
the other hand, a similar interpretation seems not to hold for the stabilizer of
OND8; 18 -BPS;pD2;II (5.60) as well as for the stabilizer of O

ND2;JO

3 ;nBPS;pD2;II (5.63).

We expect the N D 8 orbits (5.59) and (5.60), as well as the N D 2 orbits
(5.62) and (5.63), to be defined by different constraints on the four SLh .2;R/�G4
invariant polynomials given by Eq. (5.101); we leave this interesting issue for further
future investigation.

Here, we confine ourselves to present parallel results on pseudo-orthogonal
groups, which may shed some light on the whole framework. Let us consider
two vectors x and y in a pseudo-Euclidean .p C q/-dimensional space Ep;q with
signature .p; q/ and p > 1, q > 1. The norm of a vector is defined as, say

x2 � x21 C : : :C x2p � x2pC1 � : : : � x2pCq; (5.64)

and the scalar product as

x � y � x1y1 C : : :C xpyp � xpC1ypC1 � : : : � xpCqypCq: (5.65)

The one-vector orbits (for non-lightlike vectors) are

OpD1;timelike D SO .p; q/

SO .p � 1; q/ if x2 > 0I (5.66)

OpD1;spacelike D SO .p; q/

SO .p; q � 1/
if x2 < 0: (5.67)

It is intuitively clear that the two-vector orbits do depend on the nature of the vectors
themselves. Let us start and consider two timelike vectors (x2 > 0 and y2 > 0),
whose one-center orbits are separately given by OpD1;timelike. It is straightforward to
show that the two-center orbits supporting this configuration are

SO .p; q/

SO .p � 2; q/ if x2y2 > .x � y/2 I (5.68)

SO .p; q/

SO .p � 1; q � 1/
if x2y2 < .x � y/2 : (5.69)
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If both vectors are spacelike (x2 < 0 and y2 < 0), the two-center orbits read

SO .p; q/

SO .p; q � 2/
if x2y2 > .x � y/2 I (5.70)

SO .p; q/

SO .p � 1; q � 1/
if x2y2 < .x � y/2 : (5.71)

Finally, if one vector is timelike and the other one is spacelike (say, �x2 > 0 and
y2 < 0), the two-center orbit is unique:

SO .p; q/

SO .p � 1; q � 1/
; (5.72)

because in this case x2y2 < .x � y/2 always holds.
By introducing the SLh .2;R/�SO .p; q/ invariant polynomial (see [12,19] and

the last Ref. of [22])
I4 .x; y/ � x2y2 � .x � y/2 ; (5.73)

all orbits (5.68)–(5.72) can actually be recognised to correspond to only three orbits
(namely (5.68), (5.70), and (5.69)D(5.71)D(5.72)), respectively defined by the
ŒSLh .2;R/ � SO .p; q/�-invariant constraints: I4 > 0 (with x2 > 0 and y2 > 0);
I4 > 0 (with x2 < 0 and y2 < 0); I4 < 0. Note that in the compact case (Euclidean
signature: q D 0) I4 > 0 due to the Cauchy-Schwarz triangular inequality, and the
two-vector orbit is unique: SO.p/

SO.p�2/ . This is in analogy with the results (obtained in
the complex field) discussed in Sect. 5.2.

5.4 Invariant Structures and the Role of the Horizontal
Symmetry SLh .2;R/

We now propose a candidate for a complete basis of G4-invariant polynomials for
the p D 2 case, highlighting the role of the horizontal symmetry group [26] in the
classification of multi-center invariant structures.

Our treatment applies at least to the irreducible cubic geometries of symmetric
scalar manifolds of d D 4 supergravity theories [15] (which, with the exception of
the rank-1 t3 model,6 are the ones considered in the counting analysis of Sect. 5.2):

1. N D 2 magical Maxwell-Einstein supergravities (J A

3 , A D O;H;C;R), with the
case JH

3 encompassing also N D 6 “pure” supergravity [1, 3, 24, 31, 37];
2. N D 5 “pure” supergravity (M1;2 .O/);
3. N D 8 “pure” supergravity (JOs

3 ).

6As mentioned above, the irreducible rank-1 cubic case (the so-called N D 2, d D 4 t3 model,
associated to the trivial degree-1 Jordan algebra R) has been treated in [26].
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The simplest invariant structures of a simple Lie groupG (such as the U -duality
groupG4 of an irreducible symmetric model) are the Killing-Cartan metric g˛ˇ , the
structure constants f˛ˇ� and the symplectic metricCMN (the Greek indices are in the
adjoint representation ofG4, Adj .G4/, while the capital indices are in Sympl .G4/).
It is well known that the entries of the generators in Sympl .G4/

t˛jMN � t˛jMP
CPN D t˛j.MN/ (5.74)

are invariant structures, symmetric in the symplectic indices (for the notation, see
[14]).

In particular, one can construct the so-calledK-tensor7 [36]

KMNPQ � � 1

3	
t˛.MN t˛jPQ/ D � 1

3	

�
t˛MN t˛jPQ � 	 CM.PCQ/N

� D K.MNPQ/;

(5.75)
where 	 is a G4-dependent constant defined as

	 � 2d

f .f C 1/
; (5.76)

with d �dimRAdj .G4/ and f �dimR .Sympl .G4//. From its definition (5.75),
the K-tensor is a completely symmetric rank-4 G4-invariant tensor of Sympl .G4/.

In the presence of a single-centered black-hole background (p D 1) associated
to a dyonic black-hole charge vector QM in Sympl .G4/, the unique independent
G4-invariant polynomial reads [36]

I4
�
Q4
� � KMNPQQ

MQNQPQQ D � 1

3	
t˛MN t˛jPQQMQNQPQQ: (5.77)

On the other hand, in the presence of a multi-centered black-hole solution
(p > 2), the horizontal symmetry SLh .p;R/ [26] plays a crucial role in organizing
the variousG4-covariant and G4-invariant structures.

In the following we will consider the two-centered case (p D 2), the index
a D 1; 2 spanning the fundamental representation (spin s D 1=2) 2 of the horizontal
symmetry SLh .2;R/.

By using the symplectic representation (5.74) of the generators of G4, one can
introduce the tensor (homogeneous quadratic in charges)

T˛jab � t˛jMNQMa QNb D T˛j.ab/ D
�
T˛j11 T˛j12
T˛j12 T˛j22

�
; (5.78)

7With respect to the treatment given in [36], we fix the overall normalization constant of the K-

tensor to the value 
 D � 1
3	

D � f .fC1/
6d

, as needed for consistency reasons.
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lying in .3;Adj .G4// of SLh .2;R/ � G4, where 3 is the rank-2 symmetric
(spin s D 1) representation of SLh .2;R/. In irreducible models, T˛jab is the
analogue of the so-called T-tensor, introduced in [26] for reducible theories. Under
the centers’ exchange 1 $ 2, T˛j11 $ T˛j22, while T˛j12 is invariant.

Interestingly, one can prove that the quantity

N � g˛ˇ
�
T˛j11Tˇj22 � T˛j12Tˇj12

�
(5.79)

is not independent from lower order invariants. Indeed, at least in the aforemen-
tioned irreducible cases, it holds that

t˛MŒN t˛jP �Q D 	

2

�
CM.PCQ/N � CM.NCQ/P

	
: (5.80)

Thus, from (5.78) and (5.79) it follows that

N D 2t˛MŒN t˛jP �QQM1 QN1 Q
P
2 Q

Q
2

D �1
3

�
CM.PCQ/N � CM.NCQ/P

	
QM1 QN1 Q

P
2 Q

Q
2

D 1

2
W2; (5.81)

where

W � hQ1;Q2i � 1

2
CMN�

abQMa QNb (5.82)

is the symplectic product of the charge vectors Q1 and Q2, which is a singlet .1; 1/
of SLh .2;R/ �G4 (manifestly antisymmetric under 1 $ 2).

An important difference between the reducible models (studied in [26]) and the
irreducible treated in the present investigation is that, while the former generally
have a non-vanishing horizontal invariant polynomial X, the latter have it vanishing
identically. Indeed, the analogue of X (defined by Eq. (4.13) of [26]) for irreducible
models can be defined as

Xirred � N � 1

2
W2 D 0; (5.83)

where result (5.81) was used in the last step. The t3 model mentioned in the
Introduction is a non-generic irreducible model (studied in Sect. 7 of [26]); in this
case, the vanishing of X is given by Eq. (7.16) of [26].

By using theK-tensor (5.75), one can also define the tensor (homogeneous cubic
in charges)

QM jabc � KMNPQQ
N
a Q

P
b Q

Q
c D QM j.abc/; (5.84)
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lying in .4;Sympl .G4// of SLh .2;R/ � G4, where 4 is the rank-3 symmetric
representation (spin s D 3=2) of SLh .2;R/. Under 1 $ 2, we have QM j111 $
QM j222 and QM j112 $ QM j122.

By further contracting with a two-centered charge vector, one can introduce the
tensor (homogeneous quartic in charges)

Iabcd � KMNPQQ
M
a QNb Q

P
c Q

Q

d D I.abcd/; (5.85)

lying in .5; 1/ of SLh .2;R/ � G4, where 5 is the rank-4 symmetric representation
(spin s D 2) of SLh .2;R/. Under 1 $ 2, I1111 $ I2222, I1112 $ I1222, while I1122
is invariant.

Trivially, QM jabc and I.abcd/ are related by8

Iabcd D QM jabcQMd D C
MNQM jabcQN jd D hQabc ;Qd i I (5.86)

QM jabc D 1

4

@Iabcd
@QMd

: (5.87)

Note that only the completely symmetric part QM j.abcQMd/ survives the contraction

in (5.86), because QM jabcQMd �cd D 0 from the symmetry of theK-tensor (5.75) and
the definition (5.84) of QM jabc itself.

In order to generate G4-invariant polynomials, one can:

1. Multiply and contract on Adj .G4/ the three components of the quadratic tensor
T˛jab defined by (5.78), or

2. Contract all four components of QM jabc defined by (5.84) with three 2-center
charge vectors, in all possible ways, or

3. Contract all five components of Iabcd defined by (5.85) with four 2-center charge
vectors, in all possible ways.

By virtue of the various relations considered above, these three approaches give
equivalent results, which we now specify for the sake of clarity:

IC2
�
Q41
� � I4

�
Q41
� � I1111 D ˝eQ111;Q1˛ D KMNPQQ

M
1 QN1 Q

P
1 Q

Q
1

D � 1

3	
T ˛11T˛j11I (5.88)

IC1
�
Q31Q2

� � I1112 D ˝eQ111;Q2˛ D ˝eQ112;Q1˛ D KMNPQQ
M
1 QN1 Q

P
1 Q

Q
2

D � 1

3	
T ˛11T12j˛I (5.89)

8We remark that relation (5.87) characterizes Qabc as the two-center generalisation of the so-called
Freudenthal dual of the dyonic charge vector QM , introduced (with a different normalisation)
in [8]. Thus, Qabc can be regarded as the (polynomial) two-center Freudenthal dual of the
dyonic charge vector Qd . Furthermore, Eqs. (5.82), (5.86) and (5.97) imply that, under the formal
interchange QM

a $ C
MNQN jabc , Iabcd is invariant and W $ I6.
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I0
�
Q21Q

2
2

� � I1122 D ˝eQ112;Q2˛ D ˝eQ122;Q1˛ D KMNPQQ
M
1 QN1 Q

P
2 Q

Q
2

D � 1

9	

�
T ˛11T22j˛ C 2T ˛12T12j˛

� � 1

3	

�
T ˛11T22j˛ C 	W2

� I (5.90)

I�1
�
Q1Q

3
2

� � I1222 D ˝eQ122;Q2˛ D ˝eQ222;Q1˛ D KMNPQQ
M
1 QN2 Q

P
2 Q

Q
2

D � 1

3	
T ˛22T12j˛I (5.91)

I�2
�
Q42
� � I4

�
Q42
� � I2222 D ˝eQ222;Q2˛ D KMNPQQ

M
2 QN2 Q

P
2 Q

Q
2

D � 1

3	
T ˛22T22j˛: (5.92)

The subscripts in the G4-invariant polynomials IC2, IC1, I0, I�1 and I�2 defined
by (5.88)–(5.92) denote the polarization with respect to the horizontal symmetry
SLh .2;R/, inherited from the components of Iabcd (5.85); indeed, the five G4-
invariant polynomials (5.88)–(5.92) sit in the rank-4 symmetric representation (spin
s D 2) 5 of SLh .2;R/ itself [26].

In order to proceed further, it is worth mentioning the decomposition [36]

t N
˛jM tˇjNQ D �t˛jMP tˇjNQCPN D 1

2n
g˛ˇCMQ C 1

2
f˛ˇ

� t� jMQ C S.˛ˇ/ŒMQ� ;

(5.93)

where

S˛ˇjMN D S.˛ˇ/jŒMN � (5.94)

denotes an invariant primitive tensor of G4. From (5.93), the following identity for
the K-tensor can be derived [36] (recall Footnote 7):

KMNPQKRST UC
QR D � .f C 1/

6d
K.MN j.STCU/jP/ C

C .f C 1/

18d
C.M j.S jCjN jjT jCjP/jU/ C f 2 .f C 1/2

72d2
f˛ˇ� t

˛
.MN t

ˇ

P/.S t
�

T U / C

�f
2 .f C 1/2

36d2
t˛.MNS˛ˇjP/.S tˇT U/ ; (5.95)

where

S˛ˇj12 � S˛ˇjMNQM1 QN2 D S˛ˇjMNQŒM1 Q
N�
2 D �S˛ˇj21: (5.96)

A G4-invariant polynomial homogeneous sextic in charges can then be defined
as follows:
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I6
�
Q31Q

3
2

� � 1

8

˝
Qabc;Qdef

˛
�ad �be�cf D 1

8
C
MNQM jabcQN jdef �ad �be�cf

D 1

4
hQ111;Q222i C 3

4
hQ122;Q112i

D 1

4
KMNPQKRST UC

QR
�
QM1 QN1 Q

P
1 Q

S
2Q

T
2 Q

U
2 C

C3QM1 QN2 Q
P
2 Q

S
1Q

T
1 Q

U
2

�

D .f C 1/

36d
W3 C f 2 .f C 1/2

144d2
f˛ˇ�T

˛
11T

ˇ
12T

�
22 C

Cf 2 .f C 1/2

108d2



T ˛12T

ˇ
12 � T ˛11T ˇ22

�
S˛ˇj12: (5.97)

Note that I6 is manifestly antisymmetric under 1 $ 2. The first line of (5.97) is
manifestly ŒSLh .2;R/ �G4�-invariant, the second and third lines provide explicit
expressions, and in the fourth line the identity (5.95) was exploited.

The symplectic product W (defined in (5.82)) is different from zero when the
two charge vectors QM1 and QM2 are mutually non-local. The concept of mutual non-
locality is very important in the treatment of marginal stability in multi-center black
holes (see e.g. [5, 10, 16–18, 28, 29]).

The above treatment suggests that a candidate for a complete basis of
G4-invariant polynomials in the irreducible cases under consideration is given
by the seven polynomials:

.W; IC2; IC1; I0; I�1; I�2; I6/ ; (5.98)

respectively defined by (5.82), (5.88)–(5.92) and (5.97).
Let us now construct the corresponding candidate for a complete basis of

ŒSLh .2;R/ �G4�-invariant polynomials in the irreducible cases under considera-
tion. The spin s D 2 representation 5 of SLh .2;R/, whose components are the
G4-invariant polynomials IC2, IC1, I0, I�1 and I�2 (defined by (5.88)–(5.92)), can
be re-arranged as a 3 � 3 symmetric traceless matrix I [26]. The only independent
SLh .2;R/-singlets which can be built out of such a 3 � 3 symmetric matrix I, due
to its tracelessness are [26]:

Tr
�
I2
� D IC2I�2 C 3I20 � 4IC1I�1I (5.99)

Tr
�
I3
� D I30 C IC2I2�1 C I�2I2C1 � IC2I�2I0 � 2IC1I0I�1: (5.100)

which are homogeneous of order 8 and 12 in the charges respectively. Note that
Tr
�
I2
�

and Tr
�
I3
�

are both invariant under 1 $ 2.
We conclude that a possible candidate for a complete basis of ŒSLh .2;R/ �G4�-

invariant polynomials in the irreducible cases under consideration is then given by
the four polynomials



202 L. Andrianopoli et al.

�
W; I6; Tr

�
I2
�
; Tr

�
I3
��
; (5.101)

Note that, as shown by Kaç [33], the four invariants in Eq. (5.101) are a complete
basis of finitely generated invariant polynomials. In particular, I6 is unique and this
implies that there is one linear relation among the three structures which appear in
Eq. (5.97).

It is worth pointing out that the analysis of Sect. 5.2 and of the present section
can be easily generalized to p > 3 centers. The two-centered representation of spin
s D J=2 of SLh .2;R/ is then replaced by the completely symmetric rank-J tensor
representationRJ of SLh .p;R/ (J D 1; 2; 3; 4 are the values relevant for the above
analysis). On the other hand, W and I6 generally sit in the

�eR2; 1� representation of
SLh .p;R/�G4, whereeR2 is the rank-2 antisymmetric representation of SLh .p;R/
(which, in the case p D 2, becomes a singlet). However, due to the tree structure of
the split flow in multi-center supergravity solutions [5, 16–18], to consider only the
case p D 2 does not imply any loss in generality as far as marginal stability issues
are concerned.
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33. V.G. Kaç, Some remarks on nilpotent orbits. J. Algebr. 64, 190–213 (1980)
34. P. Levay, Two-center black holes, qubits and elliptic curves. Phys. Rev. D 84, 025023 (2011).

arXiv:1104.0144 (hep-th)
35. J.F. Luciani, Coupling of O(2) supergravity with several vector multiplets. Nucl. Phys. B132,

325 (1978)
36. A. Marrani, E. Orazi, F. Riccioni, Exceptional reductions. arXiv:1012.5797v1

(hep-th), J. Phys. A. A44, 155207 (2011)
37. D. Roest, H. Samtleben, Twin supergravities. Class. Quantum Gravity 26, 155001 (2009).

arXiv:0904.1344(hep-th)
38. R. Slansky, Group theory for unified model building. Phys. Rep. 79, 1 (1981)


	Supersymmetric Gravity and Black Holes
	Proceedings of the INFN-Laboratori Nazionalidi Frascati School on the AttractorMechanism 2009
	Preface
	Contents
	Chapter1 Black Holes in Supergravity: Flow Equations and Duality
	Chapter2 Intersecting Attractors
	Chapter3 Extremality, Holography and Coarse Graining
	Chapter4 Issues on Black Holes in Four Dimensional Supergravity
	Chapter5 On the Classification of Two Center Orbits for Magical Black Holes



