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          8.1   Introduction    

 Orthodontics developed as a specialty of dentistry almost a century ago. Historical 
proofs clearly demonstrate that the history of orthodontics extends back to the 
ancient years. It seems that man very early realized the need for orthodontic treat-
ment in order to accomplish correct function and to improve esthetics of the stom-
atognathic system and more importantly of the whole face. 

 The great Edward Angle, the father of modern orthodontics, categorized maloc-
clusion and introduced his treatment principles. These principles were subsequently 
improved by other great  fi gures in orthodontics, Charles Tweed, Raymond Begg, 
Joseph Jarabak, and Robert Strang, just to mention a few. 

 Orthodontic treatment at the beginning was more or less empirical, focusing 
mainly on the technicalities of tooth movement. Scienti fi c evidence in the form of 
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histological  fi ndings and tissue reactions to orthodontic tooth movement was 
 developed later with the classic work of Kaare Reitan from Norway, who introduced 
the tension and compression theory based on histological  fi ndings  [  1,   2  ] . 

 In Europe, orthodontics took a different route, that of dentofacial orthopedics. 
Later, the concept of orthopedic treatment of dentofacial anomalies found substantia-
tion in Moss’s functional matrix theory  [  3  ] . Function affects the structure and form of 
the jaws and face, and treatment based on a functional approach helps correct certain 
forms of skeletal anomalies. This orthopedic approach found its scienti fi c support in 
the classical histologic work of James McNamara. The scienti fi c impact of this work 
was extreme, and its publication was the turning point for orthodontics worldwide. 

 One of the most important researchers, teachers, and visionaries in the history of 
orthodontics and at that time the editor of the prestigious  American Journal   of 
Orthodontics , Thomas M. Graber, to whom this book is dedicated, added the words 
Dentofacial Orthopedics to the title of the journal, putting orthodontics on a route 
toward the twenty- fi rst century. 

 In recent years, the  fi eld of orthodontics and dentofacial orthopedics follows 
closely the scienti fi c advances in medical biology, mainly bone biology. Many com-
plicated biochemical techniques are now being used in order to identify speci fi c 
tissue reactions to orthodontic tooth movement, or more clearly to force-induced 
alveolar bone remodeling. Moreover, histology and molecular biology provided us 
with the tools to identify the biological events that follow the application of external 
mechanical stimulation/loading to alveolar bone and cartilage tissue. Complete elu-
cidation of the biochemical bone tissue response will greatly improve our diagnos-
tics, treatment planning, and outcome. 

 In the following sections, the main histological and histochemical protocols, as 
well as the major osteoblast and osteoclast cell tissue techniques, are presented. In 
addition, techniques and systems for external mechanical force application are 
described.  

    8.2   Histological Methods 

    8.2.1   Decalci fi cation 

 The study of bone and cartilage cell morphology is of paramount importance for 
understanding the function of these cells. However, the physical rigidity of these 
tissues poses signi fi cant dif fi culties for the cutting of sections. These dif fi culties are 
mainly due to the intimate mixture of hard (bone and teeth) and soft tissues (osteoid, 
cartilage, and fat) within the same biopsy sample  [  4  ] . In order to obtain adequate 
sections, the embedded material should undergo a speci fi c  softening  procedure, 
called decalci fi cation. A more accurate term for this process should be  demineral-
ization  since, except for calcium, other minerals are also removed. In general, 
decalci fi cation methods are divided into two categories: acid (mainly nitric, hydro-
chloric, and formic) and neutral ( e thylene d iamine t etraacetic acid—EDTA). Mineral 
(nitric and hydrochloric) and organic (formic) acids are preferable for routine 
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decalci fi cation because they remove large quantities of calcium at a rapid rate. 
However, they may damage cellular morphology, and therefore they are not recom-
mended for small samples of hard tissue. On the other hand, neutral decalci fi cation 
is the method of choice for small quantities of tissue since it preserves perfectly the 
cellular characteristics. Nevertheless, it penetrates tissue very slowly and is com-
paratively expensive when large amounts are used. A series of studies have shown 
that EDTA decalci fi cation preserves proteins and nucleic acids for immunohis-
tochemical, FISH, ISH, and CGH analyses  [  4–  6  ] . However, some investigators 
believe that this procedure reduces enzyme activity and affects DNA and RNA 
function  [  7–  9  ] . Therefore, they suggest that fresh-frozen specimens must be pro-
cessed in an undecalci fi ed way and sectioned with technologically advanced cryo-
tomes (such as the CryoJane® Tape-Transfer System), which unfortunately are not 
available in most histology laboratories  [  10,   11  ] .  

    8.2.2   Histochemical Methods 

 Hematoxylin and eosin (H&E) stain is an excellent method for visualizing the cell 
nucleus and cytoplasm, especially after tissue decalci fi cation. The hematoxylin 
solution highlights nuclei, whereas eosin is bound on proteins and thus stains 

  Fig. 8.1    Hematoxylin/eosin staining ( left panels ) and polarized light ( right panels ) micrographs 
of cortical bone of mouse proximal tibia (original magni fi cation ×4)       
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 primarily the cytoplasm (Fig.  8.1 ). However, the study of bone biology requires 
more accurate detection and characterization of the cells involved in bone metabo-
lism. Therefore, special histochemical stains have been developed.  

 Cells of mononuclear origin express the band 5 isoenzymes of tartrate-resistant 
acid phosphatase (TRAP)  [  12,   13  ] . This enzyme is characterized by cathodal electro-
phoretic mobility at pH 4 and by resistance to inhibition by L(+)-tartate  [  14  ] . In mam-
mals, TRAP has been detected in several tissue systems as a minor acid phosphatase 
isoenzyme  [  15,   16  ] . Nonetheless, it is primarily expressed in bone-resorbing multi-
nucleated osteoclasts of the skeleton  [  12,   17  ] . The function of TRAP remains obscure. 
Several studies have proposed that in resorbing osteoclasts, TRAP is localized in the 
ruf fl ed border or in the Howship lacunae  [  18  ] . However, in vitro and immunoelectron 
microscopy studies have documented that TRAP is also located in large transcytotic 
vesicles  [  19,   20  ] . Therefore, degradation of extracellular matrix proteins (namely, 
bone sialoproteins, osteopontin, and osteonectin) occurs in both the Howship lacunae 

  Fig. 8.2    Tartrate-resistant 
acid phosphatase (TRAP) 
labeling of mouse femur. 
Note densely colored areas 
that represent bone-resorbing 
osteoclasts (original 
magni fi cation ×4)       

  Fig. 8.3    Higher-
magni fi cation micrograph of 
area shown in Fig.  8.1 , 
highlighting TRAP-positive 
osteoclasts (original 
magni fi cation ×20)       
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and the intracellular transcytotic vesicles  [  21  ] . TRAP can  function as an excellent, 
highly speci fi c osteoclast marker, which can be easily detected by commercially avail-
able histochemical kits. The histochemical TRAP staining results can be evaluated 
under light microscopy. The TRAP-positive osteoclast surface and the TRAP-positive 
osteoclast number can be calculated either manually or with the use of proper soft-
ware  [  22,   23  ] . This stain can be applied on both decalci fi ed and non-decalci fi ed tis-
sues  [  12,   17,   23  ] . The development of more sophisticated TRAP protocols, such as 
 fl uorescent-based TRAP stains, holds promise for better visual results and can be 
combined with other immuno fl uorescent, as well as immunohistochemical methods 
 [  24  ] . Example of TRAP labeling is shown in Figs.  8.2  and  8.3 .   

 A commonly used marker of osteogenic development is alkaline phosphatase, an 
enzyme that was discovered by Robison in 1923  [  25  ] . The term  ALP  was subse-
quently introduced in 1979 by McComb and colleagues  [  26  ] . Four distinct genes that 
encode for 4 different ALP isoenzymes have been discovered in humans: intestinal, 
placental germ-like, and tissue-non-speci fi c (TNS). TNSALP is expressed in liver, 
bone, and kidney  [  27,   28  ] . The biological role of this protein is largely unknown. 
Within bone tissue and teeth, ALP is produced by osteoblasts and is involved in the 
process of osteoid mineralization  [  29  ] . This function is facilitated by local elevation 
of inorganic phosphate and destruction of inhibitors of hydroxyapatite crystal growth, 
phosphate transportation, and ATPase or tyrosine-speci fi c phosphoprotein phos-
phatase activity  [  30  ] . Numerous studies of bone and cartilage development have 
highlighted the importance of measurement of ALP for the evaluation of osteoblastic 
activity. The identi fi cation of ALP activity in tissue sections is made primarily by 
histochemical methods  [  31,   32  ] . These methods are applied mainly to non-decalci fi ed, 
frozen bone, and cartilage tissues. Indeed, ALP is sensitive to decalci fi cation proce-
dures since they remove the zinc and magnesium ions that are essential for ALP 
activity  [  31  ] . ALP is expressed in stimulated osteoblasts, bone-lining cells, and some 
newly formed osteocytes as well as in pre-apoptotic chondroblasts. Recently, his-
tochemical methods that can be applied to decalci fi ed, paraf fi n-embedded skeletal 
tissue have been developed  [  33,   34  ] . These methods are relatively easy, cheap, and 
reproducible and can be used in conventional pathology/histology laboratories. 

 In addition to histochemisty, immunohistochemical methods have been devel-
oped for the detection of ALP activity and localization  [  32,   35  ] , using polyclonal 
antibodies against TNSAP or tissue-speci fi c monoclonal antibodies against the 
bone isoform  [  32,   36,   37  ] . Histochemical and immunohistochemical approaches 
provide an in situ estimation of ALP localization and function, as they reveal dif-
ferential localization of the examined enzyme during the different steps of bone and 
cartilage development and maturation. 

 Another commonly used assay for the study of bone maturation and mineraliza-
tion was described in 1901 by von Kossa  [  38  ] . An example of this assay is shown in 
Fig.  8.4 .  

 The von Kossa assay is an excellent method for the detection of calcium deposi-
tions. Notably, this stain does not react with calcium but with phosphate and carbon-
ate ions in the presence of acid material  [  39  ] . More speci fi cally, this method is based 
upon the principle that cationic silver ions can be removed from solution by 
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 carbonate or phosphate ions because of their respective positions in the electro-
chemical series. When undecalci fi ed tissue sections are treated with 5 % silver nitrate 
solution, cationic silver replaces calcium in the original salt and forms a silver salt 
that can be displayed by a reduction to metallic silver. This reaction is photochemi-
cal, and the activation energy is supplied from strong violet or ultraviolet light  [  40, 
  41  ] . Silver ions are associated with phosphate ions, and therefore they are consid-
ered to indirectly uncover calcium deposits. After the treatment with silver nitrate 
and aqueous sodium thiosulfate, counterstaining is required. For this purpose, van 
Gieson and hematoxylin-eosin stains are recommended. It can be seen in Fig.  8.4  
that when the von Kossa assay is completed, sites of calcium deposition are stained 
black, and the osteoid and collagen are stained red, whereas  fi brous tissue and red 
blood cells are stained yellow. 

 In addition, the H&E stain highlights the cellular components of the examined 
sections, providing important information regarding the histology of the examined 
tissues. The von Kossa assay is a very simple, accurate, and inexpensive technique 
for the study of bone maturation and mineralization. Furthermore, von Kossa-
stained sections can be used for histomorphometric analyses. The purpose of his-
tomorphometry is the evaluation of the structural integrity of the skeleton, the 
degree of bone formation and mineralization, and the rate of bone resorption. The 
tested parameters that re fl ect skeleton structural integrity are the total bone vol-
ume, the volume of cancellous bone, and the amount of trabecular osteoid. The 
parameters that are associated with bone formation and mineralization are the sur-
face of the trabecular osteoid, the surface of mineralization, the distance between 
two tetracycline-pulse labels per day (see Sect.  8.2.3 ), and the mineralization lag 
time. Finally, the factors that indicate osteoclast-resorption function are: the trabe-
cular, cortical, and periosteal resorptive surfaces; the trabecular osteoclast count 
(number of osteoclasts per area); and the cortical porosity (percentage of the cortex 
that contains pores without osteoclasts)  [  42,   43  ] . Histomorphometry is a method of 
choice for the study of conditions such as metabolic bone diseases, neoplasias, 
bone remodeling, and fracture repair, as well as bone-cartilage response to biome-
chanical stress  [  43  ] .  

  Fig. 8.4    Von Kossa assay: 
micrograph of mouse femur. 
 Black areas  represent sites of 
calcium deposition, whereas 
 red areas  correspond to 
osteoid (non-calci fi ed bone) 
and collagen (original 
magni fi cation ×4)       
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    8.2.3   Fluorescent Labeling 

 Bone tissue continually undergoes shape and structure changes. Accretions in length 
and thickness, modeling, and drift activities lead to morphologic alterations that 
determine the relative position between various skeletal parts. Metabolic bone dis-
eases, bone repair processes, mechanical stress, and aging create new functional 
demands and are responsible for the subsequent structural adaptations. An accurate 
method for the detection of such structural/functional modi fi cations is  fl uorescent 
labeling  [  44  ] . Fluorescent double-labeling is used to calculate kinetic data on bone 
turnover. The  fl uorochromes are administrated systematically and form long-lasting 
chelate complexes with apatite, via their active iminodiacetic acid groups. Hence, 
they can serve as markers that allow the identi fi cation of mineralized tissues  [  45  ] . 
Different types of  fl uorochromes, such as yellow tetracyclines, xylenol orange, aliz-
arin red derivatives, or green  fl uorescein derivatives like calcein (Fig.  8.5 ) or DCAF, 
which produce different colors, are available  [  46,   47  ] . The  fi rst dose of  fl uorescent 
dye is incorporated in the newly formed bone at the bone-osteoid interface, where it 
appears as a linear  fl uorescence under UV light microscopy. The second dose is 
administrated 3–14 days after the  fi rst. The amount of bone that has been synthe-
sized during this time period can be calculated by measuring the width between the 
two lines of  fl uorescence. Dosing of the tetracycline is dependent upon the model 
individual, such as human, rat, or rabbit.   

    8.2.4   Immunohistochemistry (IHC) 

 Immunohistochemistry is used in everyday practice at pathology and histology lab-
oratories. It is a relatively simple method for the in situ detection of proteins. IHC is 
based on the principle that speci fi c intra- or extracellular antigens are bound to 
monoclonal or polyclonal antibodies that are associated with speci fi c enzymes. The 
detection of the antigen-antibody complex is achieved with the use of chromogens. 

  Fig. 8.5    Epi fl uorescence 
images of vertebral body 
from mouse following 
administration of two calcein 
labels, 3 days apart (original 
magni fi cation ×10)       
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The principal enzyme that facilitates the antibody detection is peroxydase, and the 
chromogen that is most commonly used is 3,3 ¢ -diaminobenzidine tetrahydrochlo-
ride (DAB). There are two major categories of IHC methods: direct and indirect. 
Indirect IHC methods include peroxydase-antiperoxydase (PAP), avidin-biotin 
complex (ABC), and biotin-streptavidin assay (B-SA), which is the most popular 
 [  48  ] . The B-SA IHC method relies on the non-immunologic binding of biotin to 
streptavidin (a 60-kD protein), produced by  Streptomyces avidinii . Three reagents 
are used: (a) the primary antibody, which is speci fi c for the antigen of interest; (b) 
the secondary (biotinylated) antibody that binds the  fi rst one; and (c) the streptavi-
din-peroxidase reagent that is associated to the secondary antibody. IHC provides 
an in situ approach to investigate the expression and activation status of the exam-
ined proteins. 

 Furthermore, this is a useful method for bone biology studies since it detects the 
expression levels of several proteins implicated in bone development and growth. 
Among them, osteonectin (ON) and osteocalcin (OC) are the most signi fi cant. 
Examples are shown in Figs.  8.6  and  8.7 . ON is a 35–45-kD protein that has the 
ability to bind to Ca +2  , hydroxyapatite, and collagen  [  49  ] . Among its structural 
features, the two EF-hand high-af fi nity calcium-binding sites are functionally the 
most signi fi cant. ON mediates the deposition of hydroxyapatite and is involved in 
the regulation of the osteoblastic cell cycle and bone maturation. OC (also called 
 bone gla   protein ) is a 5-kD protein that belongs to a family of extracellular matrix 

  Fig. 8.6    Immunohistochemical method for detection of osteonectin that highlights the osteoid in 
high-grade osteogenic sarcoma (original magni fi cation ×10)       
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proteins named  gla proteins . OC possesses one disul fi de bridge, and the gla residues 
are located in  a  helical region. A large volume of in vitro and in vivo studies have 
documented that OC plays a central role in bone remodeling and skeletal develop-
ment. More speci fi cally, it activates osteoclasts and recruits their precursors, deter-
mining the transition from bone resorption to bone formation  [  50–  53  ] . 
Immunohistochemical detection of ON characterizes early stages of bone develop-
ment, whereas OC typically determines later steps of skeletal growth and osteoid 
mineralization. Other proteins such as Cbfa1/Runx2 and AP-1 transcription factors 
have also been found to participate in chondroblastic/osteoblastic differentiation 
and maturation  [  54,   55  ] . Very recent IHC data on rat TMJs have shown that these 
proteins are selectively expressed in bone and cartilage tissue and that their differ-
ential expression highlights different maturation levels during the process of 
chondro-osteogenesis  [  56,   57  ] . Therefore, they support the notion that Runx2 and 
AP-1 (c-Jun/c-Fos heterodimer) can be used as bone/cartilage markers and indica-
tors of chondro-osteoblastic maturation.    

    8.2.5   In Situ Hybridization 

 In situ hybridization (ISH) is a valuable molecular method in the  fi eld of bone 
research and diagnosis since it detects the localization of speci fi c nucleic acids at 
the level of individual cells or complex tissue sections, combining histochemistry 
with recombinant DNA technology  [  58–  60  ] . It was  fi rst described in 1969 and is 
based on the speci fi c binding of a labeled nucleotide probe to target DNA or RNA 
sequences  [  61,   62  ] . Probes for ISH (double-stranded DNA, single-stranded anti-
sense RNA, single-stranded DNA probes generated by polymerase chain reaction 
procedure, synthetic oligodeoxynucleotides, or oligoprobes) are usually 50–300 
bases long. Originally, they were labeled with radioisotopes that limited ISH utility 
for research and diagnostic purposes  [  60  ] . Nonetheless, the introduction of 

  Fig. 8.7    Same tumor 
shown in Fig.  8.6 , now 
immunostained for 
bone-speci fi c marker 
osteocalcin (original 
magni fi cation ×10)       
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 non-isotopic labels and development of detection methods based on classical his-
tochemical and immunohistochemical assays reduced the background and improved 
the signal resolution, expanding the range of ISH applications. In the  fi elds of ortho-
pedic and orthodontic research, ISH can be applicable for both cytogenetic and 
archival preparations  [  23,   63–  67  ] . A key advantage of histologic sections is that the 
examined cells are evaluated in their native architecture and localization. This is 
often essential, for example, in the study of conditions such as response to stress or 
metabolic bone diseases, where differential localization of cells with distinct molec-
ular and biochemical properties determines the degree and the quality of bone 
growth. Furthermore, since locus-speci fi c ISH can be detected by non fl uorescence 
reagents, it can be easily visualized with bright- fi eld microscopy. The role of  fi xation 
is of great importance for ISH since it ensures the integrity of the nucleic acids and 
the preservation of tissue morphology. Cross-linking  fi xatives such as formalin and 
glutaraldehyde seem to provide the best results  [  68–  70  ] . The degree of DNA/RNA 
damage caused by decalci fi cation procedures is controversial  [  64,   65  ] . However, the 
combination of EDTA decalci fi cation with formalin  fi xation seems to be ef fi cient. 
After  fi xation and decalci fi cation, unstained sections are transferred onto coated 
glass slides with advanced adherence properties that prevent tissue  fl oating during 
the ISH process. Afterward, tissues are treated with pepsin and proteinase K that 
digest cellular proteins and facilitate probe access to targeted nucleic acids. 
Optimization of tissue preparation is a major technical challenge. The optimal pro-
tein digestion conditions are basically determined empirically for each tissue and 
probe combination. In order to evaluate whether the signal visualized by ISH is 
speci fi c for the target DNA or RNA sequence, the use of controls (hybridization of 
samples from the same tissue with a probe complementary to the assessed probe and 
identical to the targeted sequence that does not generate any signal) is essential. 

 The applications of ISH in the areas of bone and dental research are numerous. 
For instance, it can be performed in order to determine the spatial and temporal 
distributions of speci fi c mRNA sequences, especially in cases where the gene prod-
ucts are below the threshold of IHC detection. Indeed, by using ISH, the role of 
genes (namely, Ihh, PTHrP, TRAP, OC, ON, OPN, collagen type II, and Runx1, 
-2, -3) that are involved in cartilage-bone growth, development, and remodeling has 
been investigated. Furthermore, ISH has proved to be a valuable tool in the study of 
pathologic conditions such as metabolic and in fl ammatory bone and teeth diseases 
and neoplasias  [  23,   63,   66,   67,   71,   72  ] . In situ end-labeling (ISEL) is an ISH-related 
method that is performed on formalin- fi xed, paraf fi n-embedded tissues for the 
identi fi cation of cells that undergo programmed cell death. ISEL detects the pres-
ence of DNA strand breaks that are generated by activated endogenous nucleases 
during apoptosis  [  73–  75  ] . More speci fi cally, in the presence of DNA polymerase, 
the DNA strand breaks are hybridized with non-isotopic reporter molecules, which 
can be detected with IHC methods. The ISEL assay can be applied as a corollary to 
the TdT-mediated dUTP-dioxigenin nick-end-labeling (TUNEL) method, which 
speci fi cally labels the 3 ¢ -hydroxyl terminal of DNA strand breaks. Apoptotic cells 
are recognized by their dark nuclei (TUNEL-positive reaction). During the process 
of endochondral bone formation, chondrocyts and osteocytes progressively mature 
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and undergo programmed cell death. Osteoclasts are also susceptible to apoptosis in 
the absence of trophic and growth-stimulating factors, such as M-CSF and RANKL 
 [  75,   76  ] . Obviously, skeletal conditions that induce apoptosis (such as mechanical 
or biochemical stress and in fl ammatory or neoplastic diseases) are under intense 
scrutiny. ISEL and TUNEL are the methods of choice for the investigation of these 
apoptotic phenomena.   

    8.3   Polymerase Chain Reaction (PCR) and Reverse 
Transcriptase PCR (RT-PCR) 

 The polymerase chain reaction (PCR) assay is a recently developed molecular 
method for the detection, ampli fi cation, and quantization of nucleic acids  [  77  ] . 
Karry Mullis  fi rst described it in 1985  [  78,   79  ] , winning a Nobel Prize for his 
achievement. The reagents that are required for PCR include: (a) the dsDNA (tem-
plate DNA); (b) two PCR primers, which are oligonucleotide sequences of single-
stranded DNA that match the sequences at either end of the targeted DNA segment; 
(c) a thermostable enzyme to synthesize DNA copies; (The most commonly used 
enzyme is Taq polymerase from the heat-resistant bacterium,  Thermus aquaticus .); 
(d) a pool of four deoxynucleotides (dATP, dCTP, dGTP, dTTP) that will be con-
sumed by polymerase for the synthesis of the new DNA; and (e) buffers containing 
magnesium that are necessary for the function of Taq polymerase. A single PCR 
cycle is composed of three sequential steps: denaturation of the dsDNA at 92–96°C, 
primer annealing or hybridization at 55–72°C, and the synthesis or extension step at 
72°C. During the denaturation step, the high temperature facilitates the breaking of 
hydrogen bonds between complementary bases, resulting in the separation of the 
dsDNA into two single strands. During the annealing step, the temperature drops, 
allowing the primers to hybridize to the complementary sequences on the template 
strands. Usually the primers are 20–30 bases long. The longer the primer, the more 
speci fi c the binding on the target sequence. During the  fi nal step, new DNA strands 
are produced by Taq polymerase at 72°C. The elongation of the new DNA strands 
begins by using the oligonucleotide primers as starting points. DNA synthesis pro-
gresses from 5 ¢  to 3 ¢  for both new strands. Taq polymerase has the ability to synthe-
size approximately 1,000 base pairs per minute. The aforementioned three-step 
procedure is repeated from 30 to 50 times, leading to the synthesis of more than 
1 × 10 9  copies of the original DNA template sequence. 

 The use of RNA, such as messenger RNA (mRNA), as a template for PCR 
ampli fi cation is accomplished by a modi fi ed PCR assay, named reverse transcriptase 
PCR (RT-PCR)  [  60,   80  ] . In a typical RT-PCR, mRNA is extracted from tissue sam-
ples or cells and then is copied into DNA (complementary DNA—cDNA) via 
reverse transcription, which is facilitated by the function of an enzyme called reverse 
transcriptase. This step is fundamental since Taq polymerase cannot use RNA as a 
template for the synthesis of PCR products. Several primers (such as random hex-
amers and oligo-dT) can be used for the reverse transcription step of PCR. The 
cDNA that is produced serves as the substrate for a classic PCR, as described 
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 earlier. In contrast to classic PCR that ampli fi es genomic DNA (which contains 
introns and exons), RT-PCR ampli fi es cDNA (which contains only exons) and 
therefore only useful genetic information. 

 The evaluation and analysis of PCR and RT-PCR products are usually made by 
gel electrophoresis. Electrophoresis is used for the separation of negatively charged 
nucleic acids, which are mobilized through a liquid or solid matrix by an electric 
 fi eld. Separation is based either on their molecule size or on their three-dimensional 
conformation. Agarose gel permits the separation of large DNA fragments (1–20 kb), 
whereas acrylamide gel is optimal for smaller (up to several base pairs) fragments. 
DNA molecules are visualized by ethidium bromide. The application of PCR in the 
 fi elds of orthopedics and orthodontics is numerous. More speci fi cally, in the area of 
bone pathology and oncology, this method can be used for the detection of muta-
tions, polymorphisms, and other genomic alterations in oncogenes and tumor sup-
pressor genes that are involved in tumorigenesis (such as p53, Rb1, p16, HER2/neu, 
EGF-R, and EXT2)  [  60  ] . Regarding skeletal biology, PCR can be used for the detec-
tion and quantitative assessment of genes and growth factors that are implicated in 
several molecular processes, including metabolic bone diseases, tumors, and cellu-
lar response to stress factors  [  81,   82  ] . Technologic advantages, such as real-time 
PCR and real-time quantitative TaqMan RT-PCR, are very sensitive, accurate, and 
highly reproducible methods for the study of gene expression and precise 
quanti fi cation of PCR products  [  60,   83,   84  ] . In addition, the development of the in 
situ PCR assay is an ideal combination of PCR and in situ hybridization that permits 
the selective ampli fi cation and evaluation of speci fi c genetic loci within intact cells 
 [  85  ] . This method can be applied to cells, frozen sections, and sections from archived 
paraf fi n-embedded material and has the unique advantage of detecting speci fi c 
genes within their native environment.  

    8.4   Microdissection Techniques 

 Formalin- fi xed, paraf fi n-embedded tissues (FFPET) are some of the most widely 
available and quality-controlled materials for clinical and basic science studies. 
However, FFPET are complex, three-dimensional structures, composed of differ-
ent cell populations with distinct functions. In bone biology, a large volume of 
studies is focused on the morphologic characteristics and the functional interac-
tions between different cell populations (osteoblasts—osteocytes—chondroblasts). 
Profoundly, cellular heterogeneity constitutes a major drawback for molecular 
genetic analyses. Tissue microdissection (TM) represents a reliable method to iso-
late morphologically well-de fi ned cells and obtain relatively pure cellular popula-
tions  [  81,   83,   84,   86  ] . DNA or RNA extracted from these populations can be 
ampli fi ed by PCR and then undergo molecular studies for the detection of genetic 
characteristics and the quanti fi cation of genomic alterations. TM can be performed 
by several different techniques ranging from simple, inexpensive manual TM to 
more sophisticated (but signi fi cantly more expensive) methods such as laser- 
captured microdissection (LCM). 
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 Manual TM is performed under direct optical visualization of the tissue sample 
with the use of a stereomicroscope. The target cells are identi fi ed on 5- m m thick 
tissue sections and then dissected with sharp and accurate instruments such as a 
30-gauge needle or surgical blade. For better results, tissue sections should undergo 
deparaf fi nization prior to microdissection  [  86  ] . Tissue fragments are collected in 
tubes and prepared for nucleic acid extraction and PCR analysis. The primers should 
be designed to generate small PCR products (<200 bp), since PCR with larger tar-
gets may fail. MTM is a fast, cost-effective method that can be applied to any tissue 
and does not require expensive instrumentation. Nonetheless, neighboring tissues 
and cells, such as lymphocytes and red blood cells, can very easily contaminate the 
cell population of interest. In order to obtain uncontaminated cell populations, LCM 
is the method of choice. LCM was  fi rst described by Emmert-Buck in 1999  [  87,   88  ] , 
and several commercially available microdissection systems that use laser technol-
ogy were developed soon after. The major components of an LCM system are an 
inverted microscope, an infrared laser, a control unit for the laser, a control mecha-
nism for the microscope stage, a digital camera, and a monitor  [  89  ] . LCM can be 
applied on both frozen and FFPE tissues. Importantly, deparaf fi nization is required 
prior to microdissection  [  90  ] . The major disadvantage of LCM is the prerequisite of 
very expensive equipment and well-trained technical stuff. TM is one of the most 
promising FFPET-based techniques that bridge the gap between morphology and 
molecular/genetic characteristics.  

    8.5   Culture of Osteoclasts and Osteoblasts 

    8.5.1   Osteoclastic Cell Lineage 

 Bone resorption and bone synthesis are fundamental processes that determine nor-
mal bone morphology, skeletal mass, and calcium homeostasis. Any disturbances of 
this  fi nely tuned  interplay  result in pathologic conditions such as osteoporosis, 
osteopetrosis, metabolic bone diseases, fractures, and malignant hypercalcemia. 
The cells that are specialized to carry out bone resorption are the osteoclasts. 
Osteoclasts are derived from the pluripotential hematopoietic progenitor CFU-GM 
(colony-forming unit—granulocyte and macrophage), which also gives rise to 
monocytes and macrophage-committed precursors  [  91,   92  ] . The human mononu-
clear osteoclast precursor circulates in the monocyte fraction of the peripheral 
blood. It expresses the monocyte/macrophage integrins CD11b-c and the lipopoly-
saccharide receptor antigen CD14  [  93,   94  ] , as well as the macrophage-associated 
phenotypes NSE, Mac-1, and Mac-2. In contrast, they are negative for osteoclast-
speci fi c markers, namely, tartrate-resistant acid phosphatase (TRAP), vitronectin, 
and calcitonin receptors  [  95,   96  ] . Osteoclast activity is directly and speci fi cally 
inhibited by calcitonin  [  97  ] , and therefore receptors that bind calcitonin are consid-
ered to be reliable and highly speci fi c markers of mammalian osteoclasts  [  98  ] . 
However, only a small fraction (approximately 2–5 %) of the monocyte/macrophage 
phenotype cells will eventually differentiate to mature osteoclasts  [  94  ] . Under the 
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in fl uence of the transcription factors PU-1 and MiTf, stem cells are committed into 
the myeloid lineage. In order to progress to the monocyte lineage and express the 
RANK receptor, M-CSF (macrophage colony-stimulating factor) is required. 
M-CSF is produced by mesenchymal/stromal cells, including osteoblasts, and is an 
absolute requirement for the proliferation and differentiation of osteoclast progeni-
tors  [  99  ] . M-CSF acts via a tyrosine kinase receptor, named c-fms  [  100  ] . Precursors 
need the presence of RANKL to truly commit to the osteoclast lineage and begin the 
differentiation program. RANKL is a member of the tumor necrosis factors (TNF) 
family, which is expressed on the surface of osteoblasts/stromal cells and released by 
activated T-cells. It binds to RANK receptors on osteoclast precursors and induces 
their maturation through the nuclear factor- k  B  (NF k  B ) and Jun N-terminal kinase 
pathways  [  101,   102  ] . A member of the tumor necrosis factor receptors superfamily 
called  osteoprotegerin  is a decoy receptor for RANKL that inhibits the differentiation 
and function of osteoclasts  [  103,   104  ] . The transition from mononuclear precursor 
cell to mature osteoclast involves a stepwise loss of macrophage markers and gradual 
acquisition of phenotypic characteristics speci fi c for osteoclasts. More speci fi cally, 
since postmitotic osteoclast precursors begin to differentiate into committed osteo-
clast precursors, they express osteoclast-associated phenotypes, such as TRAP and 
calcitonin receptors  [  105  ] . In contrast, some of the macrophage-related markers, 
namely, NSE and Mac-1, disappear during osteoclast maturation. Furthermore, they 
respond to hormones, including 1,25-dihydroxyvitamin D 

3,
  parathyroid hormone, 

and certain cytokines such as IL-1, IL-6, prostaglandins, and colony-stimulating fac-
tors. When differentiation of the precursors into pre-osteoclasts is completed, these 
mononuclear cells begin to fuse, giving genesis to the multinucleated fully mature 
osteoclasts. Recent evidence suggests that mature osteoclasts undergo apoptosis after 
a cycle of resorption, a process augmented by estrogens  [  106  ] .  

    8.5.2   Culture of Osteoclasts 

 Since osteoclasts originate from hemopoietic stem cells, bone marrow culture can 
be used for the study of osteoclast formation. Indeed, Testa and colleagues  fi rst 
demonstrated that multinucleated osteoclasts can be developed in long-term cul-
tures of feline marrow cells  [  107  ] . Traditionally, osteoclasts have been generated in 
cocultures of osteoblasts or stromal cells and hematopoietic cells derived from 
spleen or bone marrow. For these studies, murine bone marrow cells can be asepti-
cally extracted from long bones of 6–9-day-old mice, following removal of the 
adhering soft tissues  [  108  ] . Afterward, the ends of the bones are removed with scis-
sors, and the bone marrow cells are extracted by slow injection of  a -minimum 
essential medium ( a -MEM) into one end of the bone. Bone marrow cells are col-
lected and washed, suspended in  a -MEM, and evaluated for viability. Approximately 
1 × 10 7  bone marrow cells can be obtain from a tibia. Coculture methods rely upon 
the principle that osteoblasts secrete M-CSF and express RANKL after stimulation 
by 1,25-dihydroxyvitamin D 

3
  and dexamethasone. RANKL binds RANK receptors 

to monocytic osteoclast precursors, promoting their fusion and thus synthesis of 
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mature multinucleated osteoclasts  [  101  ] . Most of the coculture systems occupy 
UMR-106 rat osteosarcoma cell lines  [  109  ] . 

 More recently, following the discovery of RANKL in 1998  [  110  ] , it has become 
possible to generate bone-resorbing osteoclasts without the requirement of osteo-
blasts in the culture. RANKL ligand and M-CSF can be added directly to osteoclast-
precursor cultures, driving the formation of multinucleated, active bone-resorbing 
cells. This method is easier and more reliable than the coculture method since it 
employs cells from one single lineage. For osteoclastogenesis experiments that use 
bone marrow, the extracted cells are washed and cultured in  a -MEM with fetal bovine 
serum (FBS) (10 %), M-CSF (5 ng/mL), and penicillin/streptomycin (1 %) for 48 h. 
Non-adherent hematopoietic stem cell precursors can be puri fi ed with Ficoll-Paque 
Plus (Amersham Biotech). The interfacial cell layer is isolated for culture in  a -MEM 
with FBS (10 %), M-CSF (30–50 ng/mL), and RANKL (30–100 ng/mL). A TRAP 
kit can be used for osteoclast staining and counting. Other studies have described the 
development of osteoclasts from peripheral blood mononuclear cells (PBMNC)  [  105, 
  111,   112  ] . Brie fl y, 15 mL of blood is mixed with 15 mL of phosphate-buffered saline 
(PBS) (37°C), puri fi ed with 15 mL of Ficoll-Paque, and then centrifuged. Overlying 
cells are isolated, resuspended in 10 % PBS, diluted with 40 mL PBS, and centri-
fuged. Isolated PBMNC are placed in a 96-well plate and prewetted by soaking in 
100  m L complete  a -MEM containing 25 ng/mL M-CSF and 30 ng/mL recombinant 
RANKL at 37°C. The complete medium should be replaced every 2–3 days. The 
culture duration for both TRAP staining and pit assays is usually 2–3 weeks. 

 The multinucleated cells generated by cell cultures can be identi fi ed by the pres-
ence of certain osteoclast-speci fi c markers: cathepsin K, calcitonin receptor, TRAP, 
type II carbonic anhydrase, and vitronectin receptor. However, the hallmark of 
osteoclast identi fi cation is the presence of resorption areas on calci fi ed substrates, 
as de fi ned by osteoclast-resorption lacunae (pit) assays  [  105,   109,   112  ] .  

    8.5.3   Osteoblastic Cell Lineage 

 Osteoblasts arise from pluripotent mesenchymal stem cells, the colony-forming 
units— fi broblasts (CFU-Fs), which under appropriate stimulation can also give gen-
esis to lipoblasts, chondroblasts, myoblasts, and  fi broblasts  [  113,   114  ] . The bone 
morphogenic proteins (BMP) 2–7 and TGF-beta induce the upregulation of transcrip-
tion factors that mediate the commitment of CFU-Fs toward the osteogenic lineage. 
The runt homology domain Runx2/Cbfa1 and the zinc  fi nger protein osterix  [  54,   115,   116  ]  
are transcriptional regulators (Fig.  8.8 ) that facilitate the expression of genes (colla-
gen type I, osteopontin, and alkaline phosphatase) that de fi ne the phenotypic features 
of bone-forming cells. Therefore, these proteins are referred as  master regulators  of 
osteoblast morphology. In vivo experiments have documented that knock-out mice 
lacking Runx2/Cbfa1 and osterix genes do not produce bone  [  116,   117  ] . Locally act-
ing proteins, such as platelet-derived growth factor (PDGF),  fi broblast growth factor 
(FGF), insulin-like growth factor (IGF), and activator protein-1 (AP-1), as well as 
systemic, blood-circulating molecules, namely, corticosteroids, 1,25  dihydroxyvitamin 
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D 
3
 , parathyroid hormone, prostaglandins, and cytokines, are also implicated in 

speci fi c steps of osteoblastic proliferation and maturation  [  118  ] .   

    8.5.4   Osteoblastic Cell Cultures 

 The vast majority of the osteoblastic cell culture protocols use two complementary 
approaches for isolation of bone-forming cells. The  fi rst one utilizes freshly isolated 
short-term cultures of tissue-derived cells (primary or early passage cultures), 
whereas the second (permanent cell cultures) uses permanent cell lines, either from 
osteosarcoma tumors  [  119,   120  ]  or from osteoblastic cell clones selected from 
 primary cultures  [  121,   122  ] .  

    8.5.5   Primary and Early Passage Cultures 

 Short-term cultures are carried out on non-transformed cells that have not undergone 
genomic alterations mutations, and therefore they retain most of their native pheno-
typic characteristics  [  123  ] . In primary and early passage cultures, bone-forming cells 

  Fig. 8.8    Immunohistochemistry applied on section from mouse temporomandibular joint display-
ing strong reactivity for osteoblast-speci fi c transcriptional regulator Runx2/Cbfa1 (original 
magni fi cation ×20)       
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of different levels of differentiation can be encountered. Selective separation of these 
cells gives the investigators the opportunity to study the speci fi c features of each 
subgroup, as well as the biological interactions between the bone-forming cells sub-
populations  [  124  ] . Enzymatic digestion of bone matrix facilitated by proteases like 
collagenase or trypsin is the most commonly used method for the isolation of osteo-
producing cells. Enzymatic digestion has been performed on fetal, neonatal, and 
adult calvariae, as well on long bones from mice  [  125  ] , rats  [  126  ] , chickens  [  127  ] , 
cattle  [  128,   129  ] , and humans  [  130,   131  ] . Osteoblastic cells are collected at different 
times as the digestion proceeds. Cells from the later digests (after 40–120 min) 
express the most “osteoblast-like” phenotype  [  126  ] . Nevertheless, primary culture 
systems have some disadvantages. Enzymatic isolation may have cytotoxic effects 
on the cells, whereas proteases may digest several cell surface proteins, affecting the 
phenotype of osteoblasts. Additionally, studies on mouse bone-forming cells have 
shown that in short-term cultures osteoblasts preserve their phenotypic features for a 
short period of time  [  125,   132  ] . 

 Bone-forming cells can also be obtained from culture systems that use perios-
teum  [  133  ] , bone marrow stroma  [  134  ] , or periodontal ligaments  [  135–  137  ] . These 
tissues contain mesenchymal/osteoblast precursors, which can lead to the genesis of 
cells that occupy bone-forming features. Dexamethasone  [  135  ] , retinoic acid  [  138  ] , 
and BMP-2  [  134  ]  have been shown to augment the aforementioned phenomena. 
This method provides signi fi cant information regarding the biochemical and molec-
ular events that are implicated in the process of osteoblastic differentiation and 
maturation.  

    8.5.6   Permanent Cultures 

 Most of the permanent cell lines are derived from cells that have undergone malig-
nant transformation and become immortalized. Immortalized osteoblastic cells have 
not acquired all the genetic and morphologic characteristics of fully transformed, 
osteosarcoma cells, and they maintain their osteoblastic phenotype on a continuing 
basis, providing large amounts of stable cell populations that are ideal for biochemi-
cal studies. The most popular osteosarcoma cell lines are UMR-6 (rat) and ROS 
17–2 (rat). Each exhibits different features  [  124,   132  ]  and serves different purposes. 
 Osteoblast - like  cell lines (namely, SaOS, TE-85, MG-63, OHS-4) have also origi-
nated from human osteosarcomas  [  119,   120  ] . The greatest disadvantage of osteosar-
coma cell lines is that the process of immortalization-transformation may have 
affected the genotype and phenotype of the osteoblastic cells. In order to overcome 
this caveat, permanent osteoblastic cell lines, such as MC3T3-E1, have been devel-
oped from normal mouse calvarias  [  139  ] . Osteoblast characterization in cell cul-
tures is based upon biochemical and morphological elements. Osteoblast 
differentiation/maturation occupies distinct phases, identi fi ed by the expression of 
different sets of genes. 

 More speci fi cally, during the  proliferation phase , osteoblasts express collagen 
type 1 and histone proteins, growth factors (TGF-beta), speci fi c transcription 
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 factors (c-Fos, c-Myc, Fra-1, c-Jun, JunD), and the osteoblastic  master regulato r 
Cbfa1/Runx2  [  140–  143  ] . As the differentiation of the progenitor cells proceeds and 
extracellular matrix begins to mature, proteins such as collagen type 1, alkaline 
phosphatase, osteopontin, osteonectin, bone sialoproteins, and PTH/RTHrP are 
upregulated. During the period of matrix mineralization, mature osteoblasts are 
characterized by the expression of osteocalcin, osteopontin, osteocalcin, and colla-
genase. Apoptotic cells are observed during the mineralization phase associated 
with the formation of bone nodules and the expression of the apoptosis-related fac-
tors Bax and the cell cycle regulator/tumor suppressor gene P53  [  106  ] . Both in vivo 
and in vitro studies have demonstrated that histologically similar osteoblasts in dif-
ferent proliferation and maturation stages display heterogeneous pro fi les in proteins 
and mRNA levels  [  140–  142,   144  ] . Notably, a recent immunohistochemical in situ 
hybridization study conducted on fetal rat calvaria has shown that ALP and PTHrP-R 
are globally expressed by all osteoblasts irrespective of their maturation status 
 [  140  ] . Ultimately, osteoblasts are identi fi ed by their histological con fi guration, his-
tochemical properties (i.e., ALP positive staining), and, most importantly, by their 
ability to synthesize bone matrix.  

    8.5.7   Mechanical Stretching of Cell Cultures 

 Mechanical forces are essential physiological factors that regulate the structural 
properties of bone tissue. Mechanical loading stimulates the osteoblastic func-
tion and plays a fundamental role in bone remodeling and skeletal homoestasis 
 [  145–  148  ] . In cell cultures, osteoblasts display signi fi cantly similar phenotypical 
and genotypic features with  fi broblasts. Therefore, osteoblasts have been character-
ized as  sophisticated  fi broblasts   [  143  ] . Human periodontal ligament (hPDL) is con-
nective tissue that lies between the tooth root and the alveolar bone  [  149  ] . PDL 
 fi broblasts comprise an osteoblast-like population, which may undergo osteoblastic 
differentiation under the in fl uence of a variety of extracellular stimuli, including 
mechanical loading in vivo and in vitro  [  136,   137,   150,   151  ] . This fact generated the 
notion that the development of a PDL  fi broblast stretch application device might 
have considerable contribution toward understanding the molecular events that 
underlie mechanical sensing, biochemical coupling, and the response to mechano-
transduction within the periodontal ligament tissue  [  152  ] . 

 The stretch devices, similarly to those used for stretch application to other tissues 
 [  153  ] , are mainly based on culturing cells in dishes with a  fl exible bottom. The cul-
ture surface can be stretched so that the cells attached to this surface are stretched 
also. HPDL  fi broblasts are obtained from explant cultures of PDL tissues dissected 
from roots of healthy teeth  [  152,   154,   155  ] . The explant is cultured in Dulbecco’s 
modi fi ed Eagle’s medium (DMEM) enhanced with 10 % (volume per volume) FCS, 
nonessential amino acids, and antibiotics (100 IU/mL penicillin, 100  m g/mL strepto-
mycin, and 0.25  m g/mL amphotericin). Cultures are maintained at 37°C in a 5 % CO 

2
  

environment and fed every 2 or 3 days. Fibroblastic cells from the explants start out-
growing 8–10 days after the culture initiation. The cells are trypsinized with 0.15 % 
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trypsin/0.5 mM EDTA, harvested by centrifugation, washed in PBS, transferred into 
75 cm 2   fl asks containing the complete medium, and cultured to con fl uence (Passage 
0). Following trypsin digestion, cells are subcultivated at a 1:4 split ratio on tissue 
culture dishes that carry a  fl exible, hydrophilic growth surface. PDL cells from third 
to sixth passages can be used for the experiments. The  fl exible bottom dishes can be 
altered from a  fl at position to a convex con fi guration by placing a Plexiglas template 
with a convex surface underneath and applying a weight on the top of the dish cover, 
thus forcing the membrane to adapt to the convex surface. The strain level can be 
measured by calculating the percentage of membrane expansion. The same effect 
can be also achieved by using more complicated systems with elaborate vacuums 
controlled by sophisticated software  [  156  ] . After continuous stretch application for 
the appropriate time intervals, the medium is removed, the cells are lysed, and pro-
teins are extracted for further biochemical analyses  [  157,   158  ] .        

      The future of orthodontics sounds bright and  fl ourishing! In an era of cells, 
molecules, and targeted pharmaceutical intervention, orthodontics cannot stay 
behind. Basic research focusing on the tissue and cells reactions within the 
periodontal ligament and the surrounding alveolar bone slowly but steadily 
unravels the inside biological phenomena responsible for restructuring the 
architecture of the area and the occurring orthodontic tooth movement. Surely, 
it is a very speci fi c research area that requires deep biological knowledge and 
dexterity with complex techniques far beyond the clinical interest of the 
everyday clinical orthodontist. 

 The techniques provided in this section focus on presenting the special tips 
and hinds required for those orthodontics who are involved in basic research, 
since general chapters do not covered such a speci fi c material. Main histologi-
cal and histochemical protocols, as well as speci fi c osteoblast and osteoclast 
cell tissue techniques, are pivotal tools in order to understand in depth the 
remodeling alveolar background. More important, the external force applica-
tion systems presented here show the variety of the parameters that should be 
taken into account when force application in biological systems is studied! 
One part is the cells and the molecules, but the second one, also decisive for 
the clinical outcome, is the force. And both parts up to date do not appear 
clear cut! 

 It is rather obvious that we, orthodontists, have reached our limits in terms 
of clinical intervention the classical way. It is the basic research that will give 
us that quantum leap that we need in optimizing our treatment: reduce the 
extent of treatment, abolish the cooperation, eliminate the invasive pin 
approaches, secure retention and treatment outcome, and last but not least 
teach how to use force magnitude and duration in a scienti fi c way! Furthermore, 
this will provide information to the industry for the development of even more 
ef fi cient orthodontic materials! 
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