
Making Design Tangible in Software
Development Projects

Lennart Hennigs

Abstract

User Experience (UX) Professionals often face the problem that their role and

their contribution to software development projects are misunderstood. They are

confronted with new challenges when they join agile or lean project teams. Over

the following pages I will explain how UX professionals can make design

tangible. I will describe how they can guide software development projects,

how they can create a common understanding of the targeted User Experience

and how they can involve others in the shaping of the design. After outlining the

current challenges, I will explain how activities such as Design Studios,
Sketching and Prototyping can be used to foster an understanding of the design

rationale, and how artifacts like Product Vision Statements, Design Tenets,
Personas, User Scenarios, Wireframes and UI Flows help to frame the design

problem and document the design solution. Using these activities and artifacts

will lead to smoother project operations and better results.

1 Introduction

User-Centered Design (UCD) and User Experience (UX) practices focus on creat-

ing products and services with a high level of usability. In the ‘early days’ of our

discipline the main challenges were to create an understanding of UCD within

companies and ‘fight’ to be included in the existing software development

processes.

As our discipline matured, we moved away from simply recommending usabil-

ity testing at the end of the product development cycle, when the product was

almost done and we started to develop full User-Centered Design process models

L. Hennigs

Deutsche Telekom AG, Bonn, Germany

e-mail: Lennart.Hennigs@telekom.de

A. Maedche et al. (eds.), Software for People, Management for Professionals,

DOI 10.1007/978-3-642-31371-4_9, # Springer-Verlag Berlin Heidelberg 2012

151

mailto:Lennart.Hennigs@telekom.de


that describe the various activities and documents needed to ensure user-centricity

throughout software development projects (Mayhew 1999, Constantine &

Lockwood 1999 and ISO 2011). It was during this time that our view of how usable

products ought to be created was shaped, along with our view of our role of within

software development. Simply focusing on ease of use it not sufficient, we need to

think ‘outside our own box’. Don Norman (1999) used the metaphor of the three-
legged stool to describe the three factors (or ‘legs’) a successful product needs:

Technology, Business and User Needs. He states that a product can only be

successful if these three factors are equally taken into account. Cut short on one

of them and a product will ‘fall’.

Nowadays, most of the software development industry has a general understand-

ing of the concept of usability. The term is known and UX practitioners don’t need

to explain their value every time they join a project. However our challenges did not

diminish – they merely shifted.

Where we previously had to find our place within software development

projects, we now have to rethink our way of working in line with new software

development methodologies. The waterfall approach to software development1 is

less frequently used and more agile and lean software projects (Schwaber &

Sutherland (2011); Poppendieck 2004) are carried out. Agile and lean development

provides less time for upfront conception and design work. They are less structured

and put more emphasis on self-organized, interdisciplinary teams that work auton-

omously. They suggest short development cycles and quick iterations, in which

parts of the final product are being designed, developed, tested and deployed. We

have to adjust our current practice to meet these new challenges. A step-by-step

approach will not work. We need to offer a toolbox of activities and documents to

meet the demands of agile software development approaches.

Questions we need to answer are:

• How can UX practitioners provide value to an interdisciplinary team?

• What activities are the best fit in an agile software development environment?

• How can you involve your team members in describing the targeted User

Experience?

• What is the right document to communicate the design to your team?

Being able to work with and to provide value to an interdisciplinary team

becomes even more important in an agile environment. We need to understand

what the other people involved are contributing and how we can best support them.

We need a set of activities and artifacts that can create and document the common

understanding of the targeted user experience. And last but not least we need the

other team members to contribute to our own activities.

Artifacts that allow different disciplines to share their knowledge are called

boundary objects, first described by Susan Leigh Star & James R. Griesemer

(1989). They are “scientific objects which both inhabit several intersecting social

worlds [. . .] and satisfy the informational requirements of each of them.” They are

1 http://en.wikipedia.org/wiki/Waterfall_model

152 L. Hennigs

http://en.wikipedia.org/wiki/Waterfall_model


“both plastic enough to adapt the local needs and constraints of the several parties

employing them, yet robust enough to maintain a common identity across sites.”

The good news is I strongly believe that we already have the documents

available that can serve as boundary objects for interdisciplinary teams communi-

cating the design. We also have the skills to support and guide interdisciplinary

teams. We are able to establish a common mindset for the problem domain. We can

capture the design rationale in such a way that it can offer guidance throughout the

software development process. With our focus on the user, on their tasks and on the

context of use, we have a broader perspective of the problem domain than most

other disciplines involved. Our discipline strongly embraces the idea of a designed

user experience – an experience tailored to the user’s needs and expectations. This

is more than just addressing usability and ease-of-use issues: we are trying to

delight our users with the products and service we design.

Activities like Design Studios, Sketching and Prototyping are easy to explain to

and carry out with non-UX professionals. They are low-fidelity approaches, fast

paced and allow members of a development team to contribute to the design of the

product. Artifacts like Product Vision Statements, Design Tenets, Personas, User
Scenarios, Wireframes and UI Flows are fairly easy to read and understand for non-
UX professionals. They are more compact than typical software development

documents (such as Requirement Specifications or Product Definition documents),

but they capture the essence of the problem domain and the solution and foster a

common understanding.

2 The Situation Today

Software development and design projects are Wicked Problems (Poppendieck

2002; Dorst 2003). They belong to a family of problems that share certain attributes

that makes them hard (or wicked) to solve. Wicked problems are typically

characterized by the involvement of different stakeholder with different views

and priorities. Furthermore, the requirements of such a project are complex and

interlinked. The problem is hard to describe and keeps changing while we are trying

to solve it. Its solution will be unique – there is no precedent for it. There is no prior

indication as to what an optimal solution will look like – there are no ‘boxes to tick’

while developing our solution. Only the end product will show how well it is suited

solving the problem. However, there are some best practices that can ease the

problem’s ‘wickedness’. John C. Camillus (2008) who analyzed company strategy

creation recommends the following steps when faced with a wicked problem:

1. Define a common vision.

2. Document ideas and communicate.

3. Involve stakeholders.

4. Take small steps forward and evaluate and iterate.

As UX professionals we are already are doing these steps (to some degree) in our

projects and day-to-day work. The following sections will discuss methods and

documents fitting these recommendations and the benefit they provide during

software development.

Making Design Tangible in Software Development Projects 153



2.1 Define a Common Vision

There are two aspects of design relevant to software development projects: problem

setting and problem solving. In other words, defining what it is we want to solve and

how we approach it.

Since software development projects are wicked problems, agreeing what is to

be achieved (setting the problem) is key. Here, the problem space is being explored:

what constraints does the team want to place on themselves; what are their working

assumptions, etc.?

2.1.1 The Product Vision Statement
To create a common goal you first need to establish a common understanding of the

expectations and the requirements of the different parties involved in your project.

You need to come to some form of agreement on the project scope and its targets.

You need to define the criteria for the projects’ success. You need to understand

what the other parties can contribute and how you will be able to support each other.

This is typically done in some form of kick-off meeting. One key artifact that

should be created during a kick-off meeting is the Product Vision Statement.
It describes the characteristics of the final product in a few sentences and explains

the targeted user experience. It needs to be brief and to the point in order to make

the statement easy to remember, easy to communicate and relate to.

A good example is the product vision statement of Metro, the design language of

Windows Phone 7 shown in Fig. 1: “Metro is our design language. We call it Metro

because it’s modern and clean. It’s fast and in motion. It’s about content and

typography. And it’s entirely authentic.” (Shum 2010)

Another way to create a vision statement is to use the elements described by

Geoffrey Moore (2002) in his book “Crossing the Chasm”: the target audience for

the product, their needs, the product category, the key functionality and the major

benefits, current practice/competition and key differentiators. These can be used to

fill in the blanks in the following sentences “For _____ who are dissatisfied

with_____. Our product is a ______ that provides ______ unlike_____, we have

assembled_____.”

2.1.2 Design Tenets
Ideally, after you have created the Product Vision Statement you should create a

short set of guidelines (less than 10) describing the Product Vision in more depth.

These guidelines are often referred to as Design Principles or Design Tenets.
“Design principles are short, insightful phrases that act as guiding lights and support

the development of great product experiences. Design principles enable you to be

true to your users and true to your strategy over the long term.” (Buley 2009)

The goal is to have a set of principles that can help when faced with design

decisions. They should inspire the team and guide their decisions. They function as

a beacon, highlighting how the user experience of the finished product ought to be.

Good principles are specific to your project, concrete and non-ambiguous, catchy

154 L. Hennigs



and describe differentiating properties (and not only a single feature) of your

product (Saffer 2009; Anderson 2011; Spool 2001).

Good examples of design tenets are the principles behind the HTC Sense User

Interface (UI) that was introduced on the HTC Hero mobile phone in 2009. With

this HTC was the first company to offer a customized version of Google’s Android

mobile operating system and the first company to create a more user-centric and

visually pleasing version of Android. Their Sense user interface was based on the

following principles.2

• Make it Mine: Personalization needs to reach a level never before possible.

• Stay Close: Staying in touch with the people in your life means managing a

variety of communication channels and applications.

• Discover the Unexpected: Many of the most memorable moments in your life

are experienced, not explained.

These principles not only offer insights on the targeted user experience. They are

also an example of how well defined design principles can be implemented and

utilized because HTC used them to explain its product and features (see Fig. 2).

A frequent point of discussion is whether design tenets should be general

statements like ‘easy to use’ or if they should be tailored to your project. I recommend

the latter. If your design tenets are too general they become ‘boilerplate phrases’. Of

course, everyone wants to create a product that is ‘easy to use’; no one would try to

design something that didn’t meet this criterion. Try to make your tenets specific to

your product, so that they help you with the design decision you will face.

Fig. 1 Product Vision Statement of Windows Metro (Copyright by Microsoft)

2 http://www.youtube.com/watch?v¼Kax24GN1458

Making Design Tangible in Software Development Projects 155

http://www.youtube.com/watch?v=Kax24GN1458
http://www.youtube.com/watch?v=Kax24GN1458


You can use general principles as a starting point to create your own, project-

specific design tenets. Good examples of general design principles are the “10

Principles of Good Design” by Dieter Rams (1993). In addition, Human Interface

Guidelines (HIG) contain general statements about the user experience for a

specific platform, e.g. for iOS or Windows Phone 7 (Microsoft 2011; Apple

2011). For each general principle you need to ask yourself what it means for your

product, your users, your context of use, your business, etc. By doing so you can

extract specific rules tailored to your problem.

A frequently asked question is whether the product vision and the design tenets

should be created prior to user research, or afterwards. The answer is: there is no

best way. Usually it is advisable to do research first, before establishing your design

idea but Don Norman (2011) states that reversing the sequence will also work:

Create the design tenets and validate them afterwards.

2.2 Document Ideas and Communicate

Another recommended activity to solve a wicked problem is to document your ideas

and communicate them frequently to your team and the involved stakeholders. These

are the two key tasks for creating a consistent user experience – but also the key

success factors. As Bill Buxton (2007) states: “Successful execution of a design

depends on communication, and capturing the design rationale is an important

component in this.”

Why are these two factors so important? Because design (as an activity) consists

of a large set of small decision that results in how the product or service that we

create looks, feels and behaves. Thus these design decisions make up the product

Fig. 2 Screenshot from the HTC Hero Product Tour Video (Copyright by HTC, http://www.

youtube.com/watch?v¼kshGq8COSiM)

156 L. Hennigs

http://www.youtube.com/watch?v=kshGq8COSiM
http://www.youtube.com/watch?v=kshGq8COSiM
http://www.youtube.com/watch?v=kshGq8COSiM


experience – the perceived effect your product or service will have on the user.

Being consistent in these small decisions creates a certain style that will be reflected

in the product’s experience. However, creating a consistent user experience is

easier for a single individual than for a team: “The solo designer or artist produces

works with this integrity subconsciously; he tends to make each micro decision the

same way every time he encounters it.” (Brooks 2010) That is why it is of utmost

importance that a team has an agreed common vision and documents and

communicates their ideas so that all team members consciously or unconsciously

shape, share and adapt a common style in their design work.

2.2.1 Sketching
We commonly use diagrams and sketches for different purposes when working on a

design. It can be said that sketching out our ideas and thoughts serves as a means for

(visual) conversations we have with the problem, ourselves and others. We use it to

frame the problem and to solve it. While sketching our thoughts, new ideas will

emerge – that is why sketching is generative: sketching sparks new ideas in us as

well as capturing the ideas we already have.

Another strength of sketching is that it is done on paper. As Sellen and Harper

(2003) point out: “[Paper] will continue to predominate in activities that involve

knowledge work, including browsing through information, reading and make sense

of information; organizing and structuring and reminding of ideas; [. . .] and

activities that involve showing and demonstrating ideas and actions to others.”

This is due to the affordance of paper (for details on the concept of affordance see

Soegard 2008) – i.e. paper can easily be used for these types of human activity,

more so than digital media.

Another advantage of sketches is that they are low-fidelity. Sketches are quick

and easy to make, inexpensive and easy to dispose of (so you won’t grow too

attached to them), they suggest new ideas due to their ambiguity and don’t offer too

much detail. “Learning from sketches is based largely on the ambiguous nature of

their representation. That is, they do not specify everything and lend themselves to,

and encourage, various interpretations that were not consciously integrated into

them by their creator.” (Buxton 2007)

The following best practices are suggested by Brown (2011) to create better

sketches: Initially list the information you have and you want to capture, make a

first set of sketches, get some feedback, iterate your concepts and sketch out a

different angle to the problem. Re-order elements to see where it leads, review your

results with the input you started with and use conventions in your sketches to make

the consistent and easier to understand. Use color sparingly and label your sketches

to make them easy to read for others.

What do we sketch? We sketch the problem domain: We picture our understand-

ing of the current situation – how things relate to each other, what steps the user

currently needs to take with the current solution, etc. But we also sketch the

solution: We picture the situation as we plan it to be. Our solution can be depicted

in Information Architecture Diagrams, Wireframes or User Interface Flows. These
different types of diagrams will be described later on.

Making Design Tangible in Software Development Projects 157



While sketches encourage the discussion a designer has “with himself” they also

foster the discussion among team members. Whether you use them in structured

meetings such asDesign Studios, which will be introduced later, or used ‘ad-hoc’ to
discuss ideas, sketches often ‘say’ more than 1,000 words.

Depending on the concept you are trying to capture and how you sketch it (i.e. the

type of diagram you use) your sketches will vary in fidelity. One dimension of fidelity

is the level of granularity. A sketch could describe things from a 30,000 ft point of

view or provide a micro view of a specific detail. An Information Architecture
Diagram, for example, provides a high level view of the elements of an application

or web site. The other dimension is sketching is the level of abstraction used. A sketch

can roughly lay out an idea or be very detailed. SometimesWireframes contain only

the general content of a page, and sometimes they are very specific and show the

visual design and the interface elements to be used. Of course, this depends what you

want to document in or communicate with your sketch.

2.2.2 Wireframes and User Interface Flows
Wireframes depict the layout of a user interface. They describe the structure,

navigation, content and behavior of a single screen (or parts of it); its visual design

is not shown. “The aim is to focus the team’s attention and encourage conversation

about what a screen does, not what it looks like.” (Brown 2011) Wireframes are one

of the key deliverables of UX professionals because they “are a means of

documenting the features of a product, as well as the technical and business logic

that went into those features, with only a veneer of visual design [. . .]. They are the
blueprints of a product.” (Saffer 2009)

A User Interface Flow is a set of wireframes visualizing an ‘interaction path’;

highlighting what interface elements were used through the flow (e.g. a mouse click

or gesture on a touch interface) and how the system responded (e.g. with

animations, transitions, pop-up dialogs, the next screen) while working with the

system. Sometimes conditions are visualized as well (e.g. error cases) to showcase

important variations of the user interface.

A wireframe shows the relationship and the hierarchy of the page elements.

Questions a wireframe should answer are: What are the main components of the

user interface? How is it organized? What information is important? What infor-

mation is secondary?

A wireframe highlights the navigational structure of a UI. It should explain the

navigational elements that are used, how the user knows where he is, how he can he

navigate away from the current screen and what his options are.

A wireframe explains the content of a user interface. Related questions include:

What type of content is needed? How is it displayed? Can the user interact with it?

What content is important and how is this communicated?

A wireframe showcases the behavior of a UI. It highlights the interactive

elements, their relationship to each other and how the user gets feedback from the

product.

Wireframes usually contain annotations to explain certain details. They some-

time highlight a design decision, explain how to interact with an element, explain its

158 L. Hennigs



content, and point out a special case or an open issue in the wireframe. Points of

interest are numbered and explained in a sidebar or highlighted by arrows,

depending on personal preference.

Wireframes can be created with different levels of fidelity. Their visual, func-

tional and content fidelity can be differentiated.3 The simplest wireframes are

typically sketches (as shown in Fig. 3) done on paper. Low-fidelity wireframes

are fast to create and to discard. UX professionals create them to try out different

variations of the user interface and to see if an idea could work (Boersma 2010;

Johnson 2011). If a set of sketches is ‘stable’ enough (i.e. they correctly answer the

questions the UX practitioners created them for) they are transferred into higher

fidelity wireframes. These are usually created with dedicated wireframing tools and

will be closer to the final design of the product. Ward (2008) showcases wireframes

of the same screen in different stages of completion and different levels of fidelity.

2.2.3 Information Architecture Diagrams
Information Architecture Diagrams (IA diagrams) provide the 30,000 ft point of

view of an application or web site. They visualize the different areas of a product

Fig. 3 Low-fidelity wireframes (of a mobile application). Copyright by the author

3 Different styles of wireframes can be viewed at http://wireframes.tumblr.com/

Making Design Tangible in Software Development Projects 159

http://wireframes.tumblr.com/


and how they are connected to each other. They provide an overview of the scale of

the overall solution and indicate what paths a user can take within the product. They

are the ‘floor plan’ of your solution. For web sites IA diagrams are often called

Sitemaps.
Together with wireframes they are also a key deliverable of UX professionals

because IA diagrams provide a high-level view of the solution, while wireframes

show the content of the different areas (Fig. 4).

Different notations exist for IA diagrams, such as Jesse James Garrett’s “Visual

Vocabulary” (2002) or Jacob Linowski’s “Interactive Sketching Notation” (2011).

Information Architecture diagrams consist of a set of nodes connected to each

other via arrows showing the possible navigation paths. Sometimes different types

of nodes are used (e.g. for different types of content) and similar items belonging

together (e.g. part of the same page or area) are grouped. Nodes are labeled to

explain their purpose and make them distinct. Sometimes flowchart elements (such

as diamonds visualizing decision points) are also added for clarification.

2.2.4 Personas
Personas are an established means of documenting knowledge about the targeted

user groups, first described by Alan Cooper (1999) in his book “The Inmates are

running the Asylum” (see also Pruitt and Adlin 2010; Mulder and Yaar 2006).

Fig. 4 Information architecture diagram (Photo by Gary Barber, http://www.flickr.com/photos/

cannedtuna/4853380320/in/photostream/)

160 L. Hennigs

http://www.flickr.com/photos/cannedtuna/4853380320/in/photostream/
http://www.flickr.com/photos/cannedtuna/4853380320/in/photostream/


A persona is a human-friendly format for user-research related facts. It is a

description of an intended user of the solution to be designed. It distills the

information about a specific user group into a fictitious user profile.

Persona descriptions usually include some background information about the per-

sona (name, a picture showing the person, age, gender, and a product-related quote),

the persona’s needs and requirements and often a scenario describing the persona’s

typical day or an event where the solution we are trying to design would benefit them.

These are called User Scenarios, which will be described in the next section (Fig. 5).

The strength of personas is that they offer a tangible and accessible format for

user research findings – they literally give mere facts ‘a human face.’ People will

relate to them as if they were real people, and when discussing design decisions

they will, for example, say: “If we do it this way we won’t help Peter.” Personas

leave a longer lasting impression than a simple bullet-point list stating facts.

That’s why it is essential that the persona is based on user-research findings. If it

is not, it is a work of fiction and it will not provide value. A persona needs to capture

the real needs and requirements of your intended users. Otherwise the persona will

not be of any use in guiding your design decisions. If you create a persona based on

assumptions, you need to validate them, similar to design tenets.

The format and layout of personas are also very important. Sometimes personas

are printed on posters, or poster boards are created of the personas to make them

visible and accessible to people. The documents should be easy to read, understand

Fig. 5 Persona descriptions (Photo by Gary Barber, http://www.flickr.com/photos/cannedtuna/

4852756417/in/photostream/)

Making Design Tangible in Software Development Projects 161

http://www.flickr.com/photos/cannedtuna/4852756417/in/photostream/
http://www.flickr.com/photos/cannedtuna/4852756417/in/photostream/


and remember, because you want your team to refer to them frequently. Last but not

least, all information that is not useful for making design decisions should be

removed from a persona, e.g. stating that a persona owns a dog is clutter unless

you are designing a pet-related product.

2.2.5 User Scenarios
User Scenarios are stories that describe a sequence of events leading up to an

outcome. They are less formal than Use Cases, which are used to capture

requirements, describing an interaction sequence and all its variations (Cockburn

2000).

User scenarios usually include some hints on the motivation, knowledge and

capabilities of the persona. They sometimes include tools and objects the persona

uses. They “provide insight into the reasons and motivations for those events.

Stories that accompany personas often describe something about their activities

or experiences.” (Quesenbery and Brooks 2010) They offer insights into the context

of use as well as the personas’ goals and motivations.4

Scenarios can be used for different purposes. If a scenario describes the current

situation, they are used to define and capture the problem (the problem setting). If a

scenario describes the vision of how the interaction will be with the future system, it

describes the solution. Rosson and Carrol (2002) refer to the first type as scenarios

as Problem Scenarios and to the second as Design Scenarios. In addition, scenarios
can be used to describe a specific context of use or illustrate a current shortcoming

or a pain-point of the existing solution. Scenarios should be only about one or two

paragraphs long and describe a single topic.

Just like Design Tenets and Personas, User Scenarios require input and verifi-

cation through user research because they are tools for capturing user insights and

design decisions.

2.3 Involve Stakeholders

Due to their role UX practitioners are always ‘caught in the middle’ between the

different stakeholders involved in a software development project. We negotiate with

Product Managers about features and priorities, we discuss how the solution should

look and behave with Developers, we talk to Marketing to understand their targeted

customers, and we join System Analysts on site visits, etc. We therefore often have a

broader view of the various complexities and interdependencies of a project.

Interdisciplinary work poses the following challenges to UCD practitioners:

• We are always under-represented within projects. Close cooperation with the

other stakeholders and involving them in our own work is therefore a necessity

for UCD practitioners.

4 An example of a user scenario combined with some persona information can be found at: http://

www.flickr.com/photos/rosenfeldmedia/4459979060/

162 L. Hennigs

http://www.flickr.com/photos/rosenfeldmedia/4459979060/
http://www.flickr.com/photos/rosenfeldmedia/4459979060/


• Usability is known as a term, its value is understood but its place within the

project (not only after the development is complete) within the project is often

misunderstood as is the impact it will have on the project (UX practitioners will

discuss requirements, challenge design decisions, etc.)

That is why we need to make the other parties involved aware of the

consequences of design decisions being taken during the development of a product.

2.3.1 Design Studio
A well-suited method of involving the other parties in the creation of a product is

the Design Studio (Ungar 2008; Evans 2011; Lindstrom 2011). This approach is

borrowed from Industrial Design and Architecture and offers a structured approach

to problem solving and innovating. It essentially involves a meeting in which the

participants sketch different design options, discuss their sketches and agree on a

direction to move forward. It is independent of the software development model

used – it works both for waterfall or agile processes. As Ungar (2008) states: “The

design studio is a collaborative workshop that fits well within the timeframes Agile

software development practices while incorporating the benefits of UCD research.”

It is an iterative design and critique process where non-UX professionals can

participate. Design Studio sessions are usually hosted by a moderator who keeps

track of the time, as each activity is intended to be completed quickly, within a

rather short time frame. The critique sessions are also moderated.

A typical design studio session comprises of the following steps: First, the

problem you want to solve is briefly described. Then, each participant is given

some time to brainstorm ideas and sketch them out – e.g. several screens of a

product or website or steps of a process. Afterwards, each participant presents their

ideas and gets feedback from their peers. The feedback needs to point out the

strengths of the presented concepts and highlight areas that still need improvement.

The participants are then given time to improve their concepts. At the end, the best

elements of each concept are selected and combined into a final concept (Fig. 6).

A Design Studio session combines several techniques to rapidly create and

evaluate design alternatives. The result of (individual) brainstorming sessions are

visualized and criticized by the team. This is the idea generation phase. Individuals

then improve their best idea, which is ultimately combined into the best-fitting

solution. This is the idea refinement phase.

The session allows non-UX practitioners to participate in concept creation,

offering them first-hand experience of design. It facilitates the knowledge transfer

among the participants. Non-UX professionals gain a better understanding of how

UX practitioners work, and in return they have the chance to the other participants’

points of view. It creates a common understanding of the design decisions taken by

the team and the implications of these, and last but not least it supports the team’s

commitment to the design.

A variant of a Design Studio session uses sketchboards to showcase the concepts

created during the session, and was introduced by Adaptive Path, a design consul-

tancy firm. It puts a strong focus on idea generation and refinement and suggests a

Making Design Tangible in Software Development Projects 163



structured approach for the critique session. (For details see Schauer 2007;

Harrelson and Buley 2008; Downes 2010.)

2.4 Take Small Steps and Evaluate and Iterate

As explained before, Sketching and Design Studio are inherent iterative activities.

Artifacts such as Wireframes and Information Architecture Diagrams can be

created as low-fidelity paper versions before recreating them in a high-fidelity

digital format. “Sketches and prototypes are both instantiations of the design

concept however they serve different purposes, and therefore are concentrated at

different stages of the design process. Sketches are dominant the early ideation

stages, whereas prototypes are more concentrated at the later stages where things

are converging within the design funnel.” (Buxton 2007)

2.4.1 Prototyping
Prototyping is the practice of creating something to test your assumptions and

learning from its results. “Prototyping is practice for people who design and make

things. It’s not simply another tool for your design toolkit – it’s a design philoso-

phy.” (Warfel 2009)

Prototyping needs to be iterative, because each prototype shapes and improves

your understanding of the problem and the solution domain. With prototypes you

refine your design step by step. Unlike written requirements prototypes are able to

Fig. 6 A design studio sketchboard. Copyright by the author

164 L. Hennigs



show and not only tell how parts of the solution behave. You can create prototypes

to evaluate only a small aspect of the problem, or to look at the broad picture

instead.

In their simplest forms, your wireframe sketches can serve as paper prototypes

you evaluate by yourself, with colleagues or even with users (Snyder 2003). You

want to get feedback and new ideas about the design problem you are facing. If your

project is more advanced you might create high fidelity wireframes and prototypes

of the user interface to gather more feedback on different aspects of your design.

Just as with wireframes you can choose different levels of fidelity for your

prototypes. Again the dimensions are: visual, functional and content fidelity.

Prototypes with a low level of visual fidelity contain sketches of the user interface,

not showing the visual design. Prototypes with a low level functional fidelity will

consist of a set of still screens; higher fidelity prototypes will offer interactive

elements. Prototypes with a low level content fidelity can contain blind text

(‘Lorem ipsum’); higher fidelity version should showcase real content.

Prototypes should be created for the more complex aspects of your solution.

“Good candidates for prototyping include complex interactions, new functionality

and changes in workflow, technology or design.” (Cerejo 2010) The most used

functionality should also be prototyped – a good rule of thumb offers the Pareto

Principle: What is 20 % of the functionality that is going to be used 80 % of the

time?

Since prototyping is supposed to be done repeatedly and happen quickly you

should try not to spend too much time on polishing the details of your prototypes.

Your peers and test-users will understand that the prototype is not the real solution.

Last but not least don’t try to prototype the full solution. Prototypes are there to

demonstrate a behavior or functionality you want to explore. Keeping this in mind

will keep your prototypes’ scope smaller and you’ll be able to create them faster.

3 Summary

The previous sections described a set of low-fidelity activities and artifacts to

capture the User Experience of a product. As these are easy to do and create by

UX professionals, they also foster collaboration with non-UX people and create a

shared understanding of and responsibility for the design and the User Experience

of the product.

But the interesting question is: why do they work?

One reason is that they are people-friendly. Humans are visual creatures.

Sketching lets us explore the problem and the solution space visually; it allows us

to generate new ideas and see new connections. The same is true for Prototyping.
We can show and see how we envision the solution (or parts of it), and test it out to

gather feedback. We can show our sketches and prototypes to colleagues and team

members to foster a shared understanding and learn their point of view. We are able

to validate our assumptions and learn from our prototypes. We can later discard

them easily because creating them did not cost too much effort. Humans are also

Making Design Tangible in Software Development Projects 165



social creatures. Design Studio sessions foster teamwork and collaboration and

create a common understanding of the design.

Another reason can be found in the book “Made to Stick” (2007) by Chip and

Dan Heath. It describes six key characteristics to make ideas and concepts

understandable and memorable. ‘Sticky’ ideas are simple, unexpected, concrete,

credible, emotional and they tell a story. All of the techniques and artifacts

described above share some of these traits. The Product Vision Statement and the

Design Tenets are ‘simple’, in the sense that they describe the core design rationale

of the solution. They are concrete and often emotional. Personas give a ‘human

face’ to user research data, they become credible, while User Scenarios use stories
to communicate and frame the design problem and the solution.

References

Anderson, S. (2011). Principles to build by. IA Summit 2010. Available online at http://www.

slideshare.net/stephenpa/design-principles-to-build-by. Accessed 29 Jan 2012.

Apple Inc. (2011). iOS human interface guidelines. Available online at https://developer.apple.

com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/MobileHIG.pdf.

Accessed 29 Jan 2012.

Boersma, P. (2010). Good design faster. Available online at http://www.slideshare.net/pboersma/

good-design-faster-at-design-by-fire-2010. Accessed 29 Jan 2012.

Brooks, F. P. (2010). The design of design. Boston: Pearson Education.

Brown, D. M. (2011). Communicating design: Developing web site documentation for design and
planning (2nd ed.). Berkeley: New Riders.

Buley, L. (2009). Design principles in a nutshell. Available online at http://www.adaptivepath.

com/ideas/d120209. Accessed 29 Jan 2012.

Buxton, B. (2007). Sketching user experiences. San Francisco: Morgan Kaufmann.

Camillus, J. C. (2008). Strategy as a wicked problem. Harvard Business Review, May 2008.

Cerejo, L. (2010).Design better and faster with rapid prototyping.Available online at http://www.
smashingmagazine.com/2010/06/16/design-better-faster-with-rapid-prototyping/. Accessed

29 Jan 2012.

Cockburn, A. (2000). Writing effective use cases. Boston: Addison-Wesley.

Constantine, L. L., Lockwood, L. (1999). Software for Use: A Practical Guide to the Models and

Methods of Usage-Centered Design, Reading, MA: Addison-Wesley.

Cooper, A. (1999). The inmates are running the asylum. Indianapolis: Sams.

Dorst, K. (2003). The problem of design problems. In N. Cross & E. Edmonds (Eds.), Expertise in
design (pp. 135–147). Sydney: Creativity and Cognition Studio Press.

Downes, J. (2010). Using sketchboards to design great user interfaces quickly. Available online at
http://www.boxuk.com/blog/using-sketchboards-to-design-great-user-interfaces. Accessed 29

Jan 2012.

Evans, W. (2011). Introduction to design studio methodology. Available online at http://uxmag.

com/articles/introduction-to-design-studio-methodology. Accessed 29 Jan 2011.

Garrett, J. J. (2002). A visual vocabulary for describing information architecture and interaction
design. Available online at http://www.jjg.net/ia/visvocab/. Accessed 29 Jan 2012.

Harrelson, D., & Buley, L. (2008). Sketchboards and prototypes. Available online at http://www.
slideshare.net/ugleah/sketchboards-prototypes-presentation. Accessed 29 Jan 2012.

Heath, C., & Heath, D. (2007). Made to stick: Why some ideas survive and others die. New York:

Random House.

ISO (2010). ISO 9241–210:2010: Ergonomics of human-system interaction – Part 210: Human-
centred design for interactive systems, Switzerland.

166 L. Hennigs

http://www.slideshare.net/stephenpa/design-principles-to-build-by
http://www.slideshare.net/stephenpa/design-principles-to-build-by
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/MobileHIG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/MobileHIG.pdf
http://www.slideshare.net/pboersma/good-design-faster-at-design-by-fire-2010
http://www.slideshare.net/pboersma/good-design-faster-at-design-by-fire-2010
http://www.adaptivepath.com/ideas/d120209
http://www.adaptivepath.com/ideas/d120209
http://www.smashingmagazine.com/2010/06/16/design-better-faster-with-rapid-prototyping/
http://www.smashingmagazine.com/2010/06/16/design-better-faster-with-rapid-prototyping/
http://www.boxuk.com/blog/using-sketchboards-to-design-great-user-interfaces
http://uxmag.com/articles/introduction-to-design-studio-methodology
http://uxmag.com/articles/introduction-to-design-studio-methodology
http://www.jjg.net/ia/visvocab/
http://www.slideshare.net/ugleah/sketchboards-prototypes-presentation
http://www.slideshare.net/ugleah/sketchboards-prototypes-presentation


Johnson, J. (2011). Close photoshop and grab a pencil: The lost art of thumbnail sketches.
Available online at http://designshack.net/articles/inspiration/close-photoshop-and-grab-a-

pencil-the-lost-art-of-thumbnail-sketches/. Accessed 29 Jan 2011.

Lindstrom, J. (2011). Design studio: The good, the bad and the science. Available online at http://
www.uxbooth.com/blog/design-studios-the-good-the-bad-and-the-science/. Accessed 29 Jan

2012.

Linowski, J. (2011). Interactive sketching notation. Available online at http://www.linowski.ca/

sketching. Accessed 29 Jan 2012.

Mayhew, D. (1999). The usability engineering lifecycle. San Francisco, CA: Morgan Kaufmann.

Microsoft (2011). Windows user experience interaction guidelines. Available online at http://

msdn.microsoft.com/en-us/library/windows/desktop/aa511258.aspx. Accessed 29 Jan 2011.

Moore, G. A. (2002). Crossing the chasm (Revised Edition). New York: Harper Business.

Mulder, S., & Yaar, Z. (2006). The user is always right: A practical guide to creating and using
personas for the web. Berkeley: New Riders.

Norman, D. A. (1999). The invisible computer: Why good products can fail, the personal computer
is so complex, and information appliances are the solution. Cambridge, MA: MIT Press.

Norman, D. A. (2011). Act first, do the research later.Available online at http://www.core77.com/

blog/columns/act_first_do_the_research_later_20051.asp. Accessed 29 Jan 2012.

Poppendieck, M. (2002). Wicked projects. In Software Development Magazine. Available online
at http://drdobbs.com/184414851. Accessed 29 Jan 2012.

Poppendieck, M. (2004). An introduction to lean software development. Available online at http://

www.leanessays.com/2004/06/introduction-to-lean-software.html. Accessed 29 Jan 2012.

Pruitt, J., & Adlin, T. (2010). The essential persona lifecycle: Your guide to building and using
personas. San Francisco, CA: Morgan Kaufmann.

Quesenbery, W., & Brooks, K. (2010). Storytelling for user experience. Brooklyn: Rosenfeld
Media.

Rams, D. (1993). Ten principles for good design. Available online at http://www.vitsoe.com/en/

gb/about/dieterrams/gooddesign. Accessed 29 Jan 2012.

Rosson, J. M. & Carroll J. M. (2002). Usability Engineering: Scenario-Based Development of

Human-Computer Interaction, San Francisco , CA: Morgan Kaufmann.

Saffer, D. (2009). Design for interaction (2nd ed.). Berkeley: New Riders.

Schauer, B. (2007). Sketchboards: discover better + faster UX solutions. Available online at

http://www.adaptivepath.com/ideas/sketchboards-discover-better-faster-ux-solutions.

Accessed 29 Jan 2012.

Schwaber, K., & Sutherland, J. (2011). The scrum guide. Available online at http://www.scrum.

org/scrumguides/. Accessed 29 Jan 2012.

Sellen, A. J., & Harper, R. (2003). The myth of the paperless office. Cambridge, MA: MIT Press.

Shum, A. (2010). Designing windows phone 7 series. MIX 10, Las Vegas. Available online at

http://channel9.msdn.com/events/MIX/MIX10/CL14. Accessed 29 Jan 2012.

Soegard. (2008). Affordances. Available online at http://www.interaction-design.org/encyclopedia/

affordances.html. Accessed 29 Jan 2012.

Spool, J. (2001). Creating great design principles: 6 counter-intuitive tests. Available online at

http://www.uie.com/articles/creating-design-principles. Accessed 29 Jan 2012.

Star, S. L., & Griesemer, J. R. (1989). Institutional ecology, ‘translations’ and boundary objects.

Social Studies of Sciences, 19(3), 387–420.
Synder, C. (2003). Paper prototyping: The fast and easy way to define and refine user interfaces.

San Francisco: Morgan Kaufmann.

Ungar, J. (2008). The design studio: Interface design for agile teams. Agile 2008 conference, IEEE
Computer Society, Washington.

Ward, J. (2008). Sketches, wireframes and CSS. Available online at http://jeff.io/posts/user-

interface-wireframes. Accessed 29 Jan 2012.

Warfel, T. Z. (2009). Prototyping: A practitioner’s guide. Brooklyn: Rosenfeld Media.

Making Design Tangible in Software Development Projects 167

http://designshack.net/articles/inspiration/close-photoshop-and-grab-a-pencil-the-lost-art-of-thumbnail-sketches/
http://designshack.net/articles/inspiration/close-photoshop-and-grab-a-pencil-the-lost-art-of-thumbnail-sketches/
http://www.uxbooth.com/blog/design-studios-the-good-the-bad-and-the-science/
http://www.uxbooth.com/blog/design-studios-the-good-the-bad-and-the-science/
http://www.linowski.ca/sketching
http://www.linowski.ca/sketching
http://msdn.microsoft.com/en-us/library/windows/desktop/aa511258.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa511258.aspx
http://www.core77.com/blog/columns/act_first_do_the_research_later_20051.asp
http://www.core77.com/blog/columns/act_first_do_the_research_later_20051.asp
http://drdobbs.com/184414851
http://www.leanessays.com/2004/06/introduction-to-lean-software.html
http://www.leanessays.com/2004/06/introduction-to-lean-software.html
http://www.vitsoe.com/en/gb/about/dieterrams/gooddesign
http://www.vitsoe.com/en/gb/about/dieterrams/gooddesign
http://www.adaptivepath.com/ideas/sketchboards-discover-better-faster-ux-solutions
http://www.scrum.org/scrumguides/
http://www.scrum.org/scrumguides/
http://channel9.msdn.com/events/MIX/MIX10/CL14
http://www.interaction-design.org/encyclopedia/affordances.html
http://www.interaction-design.org/encyclopedia/affordances.html
http://www.uie.com/articles/creating-design-principles
http://jeff.io/posts/user-interface-wireframes
http://jeff.io/posts/user-interface-wireframes

	Making Design Tangible in Software Development Projects
	1 Introduction
	2 The Situation Today
	2.1 Define a Common Vision
	2.1.1 The Product Vision Statement
	2.1.2 Design Tenets

	2.2 Document Ideas and Communicate
	2.2.1 Sketching
	2.2.2 Wireframes and User Interface Flows
	2.2.3 Information Architecture Diagrams
	2.2.4 Personas
	2.2.5 User Scenarios

	2.3 Involve Stakeholders
	2.3.1 Design Studio

	2.4 Take Small Steps and Evaluate and Iterate
	2.4.1 Prototyping


	3 Summary
	References


