
The Relationship Between Scrum
and Release Planning Activities:
An Exploratory Case Study

Michail Theuns, Kevin Vlaanderen, and Sjaak Brinkkemper

Abstract

In modern product software development settings, it becomes increasingly

important to deal with rapid changes in scope, large numbers of users, and

regular releases. These circumstances are ideal for an agile development

method such as Scrum to prove its value. However, the implications that

Scrum has on software product management (SPM) processes have not been

investigated in detail. In this paper, we provide more insight into the link

between release planning processes and Scrum, by performing a case study at

a large Dutch social network provider. The results show an evolutionary

approach to the implementation of Scrum, and the relation between several

Scrum concepts and SPM capabilities. The findings presented in this paper

contribute to more insight into the link between Scrum and SPM and can be of

help to product software organizations that employ the Scrum development

method.

1 Introduction

In contrast to traditional software packages tailored to satisfy one specific customer,

today’s software market shows a variety of product software packages that are

aimed to serve an entire market with many customers (Regnell and Brinkkemper

2005). Because product software is released for an entire market instead of for just

one customer, the development and management of product software is more

complex. For example, while a customer-specific software package has to deal

with a limited number of requirements coming from just one customer, product

M. Theuns • K. Vlaanderen (*) • S. Brinkkemper

Utrecht University - Department of Information and Computing Sciences, Utrecht,

the Netherlands

e-mail: m.theuns@uu.nl; k.vlaanderen@uu.nl; s.brinkkemper@uu.nl

A. Maedche et al. (eds.), Software for People, Management for Professionals,

DOI 10.1007/978-3-642-31371-4_14, # Springer-Verlag Berlin Heidelberg 2012

239

mailto:m.theuns@uu.nl
mailto:k.vlaanderen@uu.nl
mailto:s.brinkkemper@uu.nl


software has to deal with both an increasing amount of internal and external

stakeholders (Ebert 2007), a large amount of requirements and often a much higher

release frequency (Weerd et al. 2006).

These circumstances form an ideal environment for agile software development

methods. Agile software development methods such as DSDM (Stapleton 1997),

Extreme Programming (Beck 1999) and Scrum (Schwaber 1995) enable software

companies to dynamically respond to changes in both development environment

and target environment (Schwaber 1995). The benefits of agile software develop-

ment already gained a lot of attention in scientific literature (Dingsøyr et al. 2006;

Fitzgerald et al. 2006; Mann and Maurer 2005) and even the applicability of agile

principles to the domain of software product management (SPM) gained some

attention recently (Vlaanderen et al. 2011), although more research should reveal

its applicability to other areas as well (Maglyas et al. 2011). However, the effects or

implications of the implementation of agile development methods for a company’s

SPM processes haven’t been investigated in detail yet. In this paper, we describe the

implementation of Scrum at a large Dutch online social network provider. Using the

situational assessment method (Bekkers et al. 2010), we identify the steps that were

taken during the Scrum implementation and the effects it had on the company’s

SPM processes. The scope of the changes to the SPM processes at the case company

is too large to present in this paper entirely. For this reason, we limit our results to

the effects of Scrum on the release planning processes. Release planning is often

concerned with large amounts of requirements and a high release frequency (Weerd

et al. 2006), making it a critical task in the process of developing a successful

product. The results can help companies on the verge of implementing an agile

development method by providing guidance on how to prepare their SPM processes

to facilitate a smooth and successful implementation. In addition, the results form a

valuable addition to the knowledge infrastructure (Weerd et al. 2006; Vlaanderen

et al. 2011) that is being developed to support product managers in improving their

SPM processes.

The remainder of this paper is structured as follows. In the following section, we

describe the research approach followed during this project. In Sect. 3, we position

our work within existing scientific literature, after which we present our case study

results in Sect. 4. We analyze the results in Sect. 5, where we link Scrum elements

to release planning capabilities. We conclude with a discussion of our research in

Sect. 6, and some pointers towards open research areas in Sect. 7.

2 Case Study Research Design

2.1 Research Question

This research aims at elaborating the relation between Scrum concepts and release

planning processes. This information can be of value to companies that struggle

with the interaction between agile release planning and the management of software

products. By presenting the link between Scrum concepts and (in this case) release

240 M. Theuns et al.



planning processes, and the growth in maturity that can be expected when

implementing Scrum concepts, companies are given a handhold that shows which

release planning capabilities can be implemented by the introduction to Scrum,

allowing them to focus on implementing other software product management

capabilities. To guide this research, the following main research question is

answered throughout this paper:

How are release planning capabilities related to the activities and concepts within the

Scrum development method?

As acknowledged by Levy and Ellis (2006), building a solid theoretical founda-

tion that is based on high quality resources enables researcher to better explain as

well as understand the problems under investigation. Hence, we first focus on

providing the reader with a clear description of software product management in

general and release planning in particular. Furthermore, since this paper aims at

discovering the relation between Scrum concepts and release planning processes,

we will explain the concept of the Scrum development method and the elements

associated with it. The next two subsections explain how we gathered and analyzed

our data at the case company.

2.2 Data Gathering

Because we want to examine a phenomenon in its natural setting by gathering

information from one or more entities (Benbasat et al. 1987), this research is set up

as a case study. The case study is performed at a large Dutch online social network

provider, which is explained in more detail in Sect. 4. Several methods for data

collection during case studies are described in literature (Yin 2009). For our

research, we initially conduct semi-structured interviews with four employees

that were actively involved in improving the SPM processes and the implementa-

tion of Scrum. In order to obtain a clear and correct understanding of the evolution

of the release planning processes at the case company as they implemented Scrum,

we interviewed a developer, two product managers, and the head of product (also a

member of the company board). The interviews were done in retrospect, meaning

that the process improvements that are subject to this research were already

implemented at the time of the interviews. However, all of the interviewees have

been employed at the case company for at least 3 years, so they were involved in the

process improvements from the beginning. This allowed us to gain a complete and

correct picture of both operational and strategic processes, and the effects the

implementation of Scrum had on these processes. To guide the interviews, a

predefined questionnaire was used to ensure we would gather all the data needed

to determine the maturity of the release planning processes over time, as we will

describe in the next section. The one and a half hour interviews were semi-

structured, because they are both well suited for the reconstruction of the process

changes, as well as for the exploration of the perceptions and opinions of

respondents regarding complex and sometimes sensitive issues. In addition, they

The Relationship Between Scrum 241



enable probing for more information and clarification of answers (Barribal and

While 1994). By comparing and contrasting the interview data from several

interviewees, along with several related documents, we obtained a complete and

correct overview of the evolution of SocialComp’s Scrum and SPM processes over

time.

2.3 Data Analysis

We first describe the implementation of Scrum, based on what we learned during

the interviews. Next, we use the situational assessment method (Bekkers et al.

2010; Bekkers and Spruit 2010) to create four maturity matrices that illustrate the

state of the software product management processes at different points in time. The

situational assessment method was designed to aid product managers in improving

their software product management practices. The maturity matrices present all of

the important practices (called capabilities) related to the management of software

products in a best practice order for implementation. Each capability is associated

with a certain level of maturity, making the maturity matrices a convenient tech-

nique to visualize which capabilities are implemented in an organization and which

capabilities should ideally be implemented. By comparing the four maturity matri-

ces, we can identify the process improvements that were implemented over a period

of 3 years, and thus reveal the evolution of the case company’s software product

management processes.

Next, we extend the situational assessment method by following a similar

approach as used by Weerd, Brinkkemper and Versendaal (2010) and model the

release planning processes in process-deliverable diagrams. A process-deliverable

diagram consists of a process-side (based on UML activity diagrams) and a

deliverable-side (based on UML class diagrams), and can be used to design and

analyze the meta-models of methods, revealing both the activities and artifacts of a

certain process (Weerd and Brinkkemper 2008). By modeling a snapshot of a

process in retrospect and comparing it to a snapshot of the same process in a later

point in time, we can identify the process steps or method increments that led to the

process’s current state. This provides us with much more detail about the release

planning processes, and the improvements that were implemented over time.

A method increment is basically any adaption in order to improve the overall

performance of the method of subject (Weerd et al. 2007).

The result is four maturity matrices and four process-deliverable diagrams of the

release planning processes, associated with four distinct points in time. We then

compare these ‘snapshots’ of the software product management processes with the

information we gathered about the implementation of Scrum. By analyzing which

Scrum elements, and which software product management capabilities were

implemented at different points in time, we can reveal the relation between the

implementation of various Scrum elements and the evolution of the release

planning processes.

242 M. Theuns et al.



3 Related Literature

3.1 Software Product Management

In order to create a profitable software product, software vendors have to take into

account all the market requirements coming from the target market. As software

products get bigger and more complex, proper management of these software

products has become of critical value to the success of the software products

(Ebert 2007; Weerd et al. 2006). This led to a new field of research called software

product management, which can be defined as “the discipline that governs a product

(or solution or service) over its whole lifecycle, from its inception to the market/

customer delivery, in order to generate the biggest possible value to the business”

(Ebert 2007). Although software product management has many similarities with

product management in other sectors, managing software products is usually more

complex due to higher release frequencies, difficulties tracking changes in the

design of the software products and the fact that product managers often have little

authority over the development department (Weerd et al. 2006). To aid companies

in improving their software product management practices, a reference framework

called the SPM Competence Model has been developed (Weerd et al. 2006;

Bekkers et al. 2010).

The SPM Competence Model (Fig. 1) presents an overview of all the aspects that

are important to software product management, including the relevant external and

internal stakeholders. The model addresses 15 focus areas, divided over 4 main

business functions.

On a strategic level, the software product manager is responsible for managing

the product portfolio, by developing product strategies, making decisions about

product lifecycles and establishing partnerships with other companies in the

software’s ecosystem (Jansen, Finkelstein, and Brinkkemper, 2009). The goal of

the portfolio management function is to maximize the products’ value, spread risks

and align with the company’s strategy (Cooper et al. 2001).

On a more tactical level, the software product manager is concerned with

translating the product strategy into a comprehensive roadmap which forecasts

and plans future development steps in terms of release contents, time-to-market

and stakeholders involved (V€ah€aniitty et al. 2002). Hence, the product planning

function is mainly concerned with gathering information about a software product

(line) and processing this information into product roadmaps that illustrate the

ipcoming product releases over a time frame of approximately 3–5 years (Regnell

and Brinkkemper 2005), and the use of resources, elements, and their structural

relationships in that period (V€ah€aniitty et al. 2002).

Based on the roadmap, it is the software product manager’s task to determine the

set of requirements for the next release while keeping in mind all stakeholder

demands, effectively managing scope changes to prevent delays and ultimately

launch the release to the market. This is done in the release planning function,

which comprises the process of selecting an optimal subset of requirements through

the prioritization of requirements in accordance with all relevant stakeholders

The Relationship Between Scrum 243



(Carlshamre 2002) in order to plan, manage and launch a new release (Bekkers et al.

2010). The release plan contains a detailed description of the requirements to be

included in the next release, a planning to ensure the release can be delivered on

time, as well as various important technical, resource, budget, and risk constraints

(Ruhe and Saliu 2005).

Since a release consists of a multitude of requirements, varying in size and

quality, and coming from both internal and external stakeholders, the software

product manager is also responsible for effectively managing all requirements.

Requirements management encompasses all the activities involved in discovering,

documenting, organizing and managing the large volumes of requirements of a

software product (Sommerville 2007), the complex dependencies between the

requirements (Carlshamre et al. 2001) and the involvement of all the stakeholders

(Berander and Andrews 2005). It ensures that requirements are efficiently elicited

from all relevant stakeholders (Browne and Rogich 2001), and organized in such a

way that they are comprehensible for the development teams.

Each focus area represents a strongly coherent group of predefined goals (also

called capabilities) that need to be achieved to reach the maturity levels with which

they are associated (Bekkers et al. 2010). To measure the maturity of an

organization’s SPM processes, a situational assessment method was developed

(Bekkers et al. 2010). This situational assessment method employs a capability

maturity matrix to determine which capabilities are implemented in an organization

and which capabilities should ideally be implemented. A comparison between the

current and optimal situation results in an overview of the problem areas that need

improvement in order to reach a higher maturity level.

Fig. 1 SPM Competence Model (Bekkers et al. 2010)

244 M. Theuns et al.



3.2 Scrum

The goal of Scrum is to deliver as much quality software functionality as possible

within a series of short time-boxed sprints (Sutherland 2001). Scrum has several

distinctive characteristics. The product backlog is a prioritized, non-exhaustive list

of functionality to be developed. Usually, product backlog items are not yet well-

defined requirements, but rather express functionality in the form of a short

description of the feature, defined using the terminology and context of the cus-

tomer, also referred to as user stories. The product backlog is prioritized by the

product owner, so that during the sprint planning meeting, a team of developers can

easily pick the top priority items and commit to completing them within the next

sprint. The list of top priority features to be developed during the next sprint is

called the sprint backlog. During a sprint, the items to be developed are set and

cannot change. This helps the development team to remain focused on the goal of

the sprint. During a sprint, a storyboard is used to track progress on each sprint

backlog item by categorizing them with respect to their status. Furthermore, daily

Scrum meetings during which the completed tasks, the work remaining, and any

obstacles encountered are discussed help the stakeholders to get an excellent

understanding of the sprint progress (Rising and Janoff 2000).

Embedding Scrum within the context of a product software company is not a

trivial task. This is recognized by several authors, including one of the founders of

the Agile Alliance (Nerur et al. 2005). While agile methodologies can provide

significant advantages to a software producing company, there are many challenges

that can inhibit a successful move from traditional software development

approaches to an agile environment, such as developer resistance, changes in

decision making, and the need for increased customer involvement (Boehm and

Turner 2005; Moe et al. 2008). Several Scrum implementations have been

described in literature. For example, Sutherland (2001) reports on the introduction

of Scrum into five different organizations with different technologies. In all five

organizations, Scrum improved communication and de-livery of working function-

ality. Rising and Janoff (2000) describe the experiences three different develop-

ment teams had with Scrum. The paper acknowledges similar benefits as described

by Dingsøyr et al. (2006) and by Mann and Maurer (2005), such as improved

customer satisfaction and more flexibility and transparency in the development

process. Scrum also proved to be useful in a global, distributed software develop-

ment environment (Hansen and Baggesen 2009). By employing an virtual task

board during online Scrum meetings and moving Product Owners back and forth

between the cross-continental locations, they were able to increase code quality and

improve trust and understanding between members of distributed development

teams, although resource estimation can be a tedious task (Dingsøyr et al. 2006).

Due to the perceived benefits of agile development methods such as Scrum, re-

searchers are now also investigating the applicability of agile principles to other do-

mains. For example, Towill and Christopher (2010) describe the combination of

lean and agile principles in supply chain management, while Vlaanderen et al.

(2011) apply Scrum principles to SPM to create a regular heartbeat in the SPM

process in support of the development process.

The Relationship Between Scrum 245



4 Case Study Results

4.1 Case Company Introduction

SocialComp was founded in 2004 on the premise of providing a platform through

which people could connect and discuss about their everyday lives. Already after

10 months, they reached one million members internationally, with over 80 million

page views per month just from the Netherlands. This rapid growth required for

several organizational changes. A CEO was appointed to lead the company at

corporate level, and several product managers were hired to manage the develop-

ment department, which grew from only 1 developer in 2004 to over 30 in 2008.

After 2008, the number of developers gradually grew to 36, the reason for this

declined pace of growth being their high hiring standards and an overall shortage of

highly educated developers in the Dutch labor market.

The 36 developers were divided over development teams of approximately 10

developers per team, each team being directed by a product manager. However,

despite having appointed a new CEO, the founders stayed actively involved in the

development of the social platform. The product managers were often hampered in

their work due to conflicting ideas between them and the founders, who were used

to address developers directly instead of growing through a layer of product

managers. This caused a chaotic working environment, since development teams

were often ad hoc assigned to new development projects by the founders, before

they could finish their work in progress. During this stage, there was no formal

prioritization method in place to determine which projects to develop first. In fact,

even a basic process to structurally gather, identify and organize requirements was

missing. Prioritization was mainly done according to managers’ gut feeling. To

make things more complicated, the development teams worked according to the

waterfall development model. However, the ever changing requirements made it

difficult to finish a phase of the waterfall model since designs often had to be

modified to accommodate new requirements. This caused a lot of stress and

confusion amongst developers and product managers.

4.2 Implementation of Scrum and Software Product
Management

Once the social network grew to be such a large service (over 11 million members

in 2011 internationally with over six billion page views per day), the large amount

of requirements and the lack of structure of the development department became

serious threats to productivity. Therefore, they started searching for alternatives

practices to increase productivity and reduce waste of time and resources. Based on

the interview results, we could identify four phases in the overall improvement

process and the implementation of Scrum and software product management. As

described in Sect. 4.1, software product management encompasses many focus

areas and capabilities. These focus areas and capabilities are shown in Table 1.

246 M. Theuns et al.



We chose to only include the changes of the release planning processes in this paper

because of two reasons. The main reason is that release planning has many

similarities to Scrum and is therefore affected more by the implementation of

Scrum than other software product management processes. The second reason is

that we wanted to keep this section as concise as possible.

During the first phase (depicted in Table 2 Reference source not found. in the

lighter shaded boxes), some capabilities were already implemented, but Scrum and

software product management weren’t implemented officially yet. Around fall

2010, they began experimenting with Scrum, mainly because of positive prior

experiences among some employees. They began by cutting up the fairly large

development teams into smaller, independent teams consisting of a maximum of

six developers and a product manager, who was assigned the role of product owner.

Although the product owners consulted the various stakeholders to determine which

set of requirements to develop next, the product owners were now the only ones to

direct their development teams. This required the organization to improve its

internal communication about the contents of upcoming releases in order tomaintain

stakeholder satisfaction. This is reflected in Table 2 by ‘release definition C’ and

‘release definition validation A’. ‘Requirements prioritization D’ shows that they

started to take expected costs and revenues of requirements into account during

prioritizing, although we could not ascribe this improvement to the implementation

of Scrum.

Next, they introduced the 2-week sprints. At the beginning of each sprint cycle,

the Product Owners would determine the requirements to be developed during the

2-week sprint during sprint planning meetings. Internal stakeholders were invited to

attend the sprint planning meetings and voice their opinion about what to develop

next, which is reflected by ‘requirements prioritization A’ in Table 3. During

Table 1 Focus areas and capabilities for the release planning domain

Requirements prioritization Release definition Launch preparation

RP:A Int. stakeholder involvement RD:A Basic req. selection LP:A Internal communication

RP:B Prioritization methodology RD:B Standardization LP:B Formal approval

RP:C Customer involvement RD:C Internal

communication

LP:C External

communication

RP:D Cost/revenue consideration RD:D Advanced req.

selection

LP:D Training

RP:E Partner involvement RD:E Multiple releases LP:E Launch impact analysis

LP:F Sales & marketing

support

Release definition validation Build validation Scope change management

RDV:A Internal validation BV:A Internal validation SCM:A Event notification

RDV:B Formal approval BV:B External validation SCM:BMilestone monitoring

RDV:C Business case BV:C Certification SCM:C Impact analysis

SCM:D Scope change

handling

The Relationship Between Scrum 247



sprints, the set of requirements to be developed is frozen, so it is very important that

a set of requirements is chosen that can be delivered when the sprint ends. This is

reflected in Table 3 by the implementation of ‘release definition A’, which means

that constraints concerning engineering capacity were taken into account during

requirements selection for the next release. Furthermore, the time-boxed nature of

Scrum sprints (i.e. the start and end dates are set and do not change) required them

to get a much better grip on the development process by monitoring milestones and

keeping track of the remaining work. The disorganized funnel was gradually

replaced by a structured, prioritized product backlog. This made planning which

requirements to develop during the next sprint much easier. In consultation with the

Product Owners, development teams could pick a set of requirements from the top

of the product backlog, based on the estimated time needed to complete the various

requirements. This resulted in several sprint backlogs, for each of the development

teams. They introduced a planning board on which the development teams could

adjust their sprint backlog items by marking requirements that are completed and

estimating the time needed to complete remaining requirements. A burn down chart

was introduced to give an overview of the sprint progress. In Table 3, these

improvements are reflected by ‘scope change management B’, which represents

the process of milestone monitoring. They also introduced daily standup meetings

Table 2 The evolution of the release planning processes during phases 1 and 2

Maturity 
Process 0 1 2 3 4 5 6 7 8 9 10

Release planning
Requirements prioritization A B C D E
Release definition A B C D E
Release definition validation A B C
Scope change management A B C D
Build validation A B C
Launch preparation A B C D E F

Table 3 The evolution of the release planning processes during phases 2 and 3

Maturity 

Process 
0 1 2 3 4 5 6 7 8 9 10

Release planning
Requirements prioritization A B C D E
Release definition A B C D E
Release definition validation A B C
Scope change management A B C D
Build validation A B C
Launch preparation A B C D E F

248 M. Theuns et al.



of approximately 15 min, in which team members were asked to discuss what they

did the day before, what they plan on doing today and what obstacles may have

occurred. This helped them to gain better understanding of the work that has been

done and the work that still remains. Finally, the introduction of demo meetings at

the end of each sprint allowed for stakeholder involvement during the validation of

the built functionality (‘build validation B’). In this case, partner companies were

even allowed the opportunity to test functionality before it was released to the

public. Table 4 shows the fourth phase of the improvement process, which

represents the current state at the case company. Two more improvements could

be identified recently. Although the implementation of Scrum already contributed

to the improvement of their requirements prioritization process, it was formalized

during this phase with the introduction of Scrum’s planning poker. Everyone in the

organization, whether he is a developer, a product manager or a member of the

board, now knows how to voice his opinion about the contents of upcoming releases

without hampering the development process. This was not yet the case in the third

phase, which is why we included ‘requirements prioritization B’ in Table 4.

Furthermore, the contents of the release definition (i.e. the sprint backlog) became

more structured by adding aspects such as the time path and needed capacity. This

can also be attributed to the formalization process, and is reflected by ‘release

definition B’ in Table 4

5 Analysis

Since Scrum was largely implemented during the transition from phase 2 to phase 3,

we decided to take a closer look into the actual changes that occurred during the

transition and to visualize the release planning evolution in the PDD depicted in

Fig. 2. The left-hand side of the PDD shows activities performed during the method

(based on a UML activity diagram), whereas the right-hand side of the PDD shows

the concepts delivered by the activities (based on a UML class diagram). According

to the modeling conventions used by Weerd, Brinkkemper and Versendaal (2007),

Table 4 The evolution of the release planning processes during phases 3 and 4

Maturity 

Process 
0 1 2 3 4 5 6 7 8 9 10

Release planning
Requirements prioritization A B C D E
Release definition A B C D E
Release definition validation A B C
Scope change management A B C D
Build validation A B C
Launch preparation A B C D E F

The Relationship Between Scrum 249



we used gray markings to visualize the method increments that were inserted,

whereas the shadings exhibit deleted parts. Note that the gray marked areas

correspond with the darker shaded boxes in Table 3.

Based on our observations, we could relate several SPM capabilities

implemented at SocialComp to Scrum concepts (see Fig. 3). The shadowed boxes

represent Scrum concepts such as the product and sprint backlogs, the burn down

chart and the product increment the sprint delivers. The rounded boxes symbolize

Scrum activities such as the various Scrum meetings. It provides a simple overview

of the capabilities for which Scrum concepts and activities can account.

As described earlier, sprints are time-boxed events. Hence, it is important to

choose a set of requirements that can be completed during one sprint. Before the

process improvements started, developers were often hampered in their work by

intervening requirements coming from the management team. The implementation

of the product backlog required them to estimate the time and resources required for

each backlog item, which is why we associated ‘release definition A’ with the

implementation of the product backlogs. As sprints came closer, more detailed

information was added to the backlog items, and sprint backlog items became more

standardized. Hence, we can say that the introduction of sprint backlogs is

associated with the implementation of ‘release definition B’ which stands for

standardization of release contents.

The sprint planning meetings could be associated with multiple capabilities.

Whereas the management team was used to address developers directly, passing by

the product managers, the sprint planning meetings created a place to discuss the

contents of upcoming releases and sprints. It allowed internal stakeholders to voice

their opinion about which requirements to develop (‘requirements prioritization A’;

‘release definition A’), without hampering the development process. Since the

internal stakeholders were involved in the process of selecting and prioritizing

requirements, ‘release definition validation A’ was automatically covered. Natu-

rally, the implementation of the sprint planning meetings improved internal com-

munication (‘release definition C’) greatly.

Fig. 2 Revealing the method increments of the release planning process (from phase 2 to 3)

250 M. Theuns et al.



Fig. 3 Relating the SPM capabilities to Scrum concepts

The Relationship Between Scrum 251



The capability ‘scope change management B’ was associated with both the daily

standup meetings and the burn down chart. The capability reflects the process of

monitoring milestones in the development process, which is exactly what they

gained from introducing daily standup meetings and the burn down chart. It allowed

them to get a better grip on the development process, to identify possible difficulties

early on, and monitor the development progress by updating the burn down chart

when a task is finished.

‘Build validation A’ could be associated with the introduction of sprint review

meetings, during which the development teams would demonstrate built function-

ality to the product managers and the management team.

Note that of all the release planning capabilities implemented, five could not be

associated with the implementation of Scrum. For example, ‘requirements prioriti-

zation D’ was implemented in phase 2, which means they started to take prospected

costs and revenues into account during the prioritization process. There is no Scrum

element that prescribes cost/revenue consideration, and it was mainly caused by a

change of management. The same holds for the business plan that was introduced to

justify for each release plan (‘release definition C’). Both were improvements

imposed by the new management, who wanted to base their decisions on financial

figures rather than on their gut feeling.

Furthermore, allowing partner companies, e.g. companies with a branded mar-

keting campaign on the social network site, to test new functionality before going

live (‘build validation B’) was a way of improving customer satisfaction rather than

something prescribed by Scrum. Lastly, SocialComp has always communicated

about upcoming releases. Internal (e.g. management or the sales department) and

external (e.g. the users) stakeholders were kept informed about upcoming releases

and new functionality ever since the start of SocialComp. This is also visible in

Table 2, where ‘launch preparation A’ and ‘launch preparation C’ were already

implemented in the first phase.

6 Discussion and Limitations

Although we used the four validity criteria as described in (Yin 2009) to ensure the

quality and reliability of our work., it should be noted that this research is subject to

some limitations. The findings presented in this paper are based on information

regarding the SPM processes at one case company, posing a threat to the external

validity. The external validity entails the possibility to generalize the research

findings, so validating our findings at other web companies that recently

implemented Scrum should eliminate this threat. Furthermore, although we also

modeled the other business functions, we only studied the release planning pro-

cesses in detail. Consequently, we only identified the relations between Scrum

elements and release planning processes. In order to get a more comprehensive

view of the relation between Scrum and SPM, future research should include the

business functions requirements management, product roadmapping and portfolio

management as well.

252 M. Theuns et al.



The construct validity, which concerns the operationalization and correct mea-

surement of the concepts being studied, is safeguarded by validating the maturity

matrices and PDDs that were created based on the data collected during the

interviews in a second round of interviews. The internal validity concerns the

completeness of concepts and the consistency between concepts. This is partly

satisfied because we double-checked our information gathered and partly because

we were able to link Scrum concepts to SPM capabilities. It should be noted though,

that these links should be validated in follow-up research to completely satisfy

internal validity. Furthermore, the case study report was reviewed by peer-

researchers to ensure a reliable research approach. The empirical validity concerns

the reproducibility of the research and is preserved by following a case study

protocol. Furthermore, the interview results can be reproduced easily because we

based the interviews on the situational assessment method (Bekkers et al. 2010).

Finally, the situational assessment method employs a questionnaire and a matu-

rity model to determine the capabilities implemented in an organization and to

reveal the areas that need improvement. We noticed during interviewing, that some

of the capabilities are not applicable to agile software companies with a very

informal organizational culture (for example, capabilities that prolong decision-

making because all stakeholders have to get involved). By extending the situational

assessment method with PDDs, we gain more insight in the actual processes and the

associated capabilities. By modeling the processes, we were able to determine

SocialComp’s SPM maturity more accurately. Furthermore, the method offers a

way to translate the maturity matrix to PDDs by adding information regarding the

implemented capabilities to the activities depicted in the PDDs. A difficulty

associated with the model-driven assessment method is that it is often challenging

to get a correct picture of the entire process, since processes can be very complex

with multiple concurrent activities and related concepts. While PDDs provide more

detail about a certain process, areas that need improvement are not as conspicuous

as in the maturity matrix. Furthermore, revealing method increments in PDDs is

somewhat cumbersome, because the approach officially dictates that deleted and

adapted activities or concepts should still be modeled.

7 Conclusions and Further Research

In this paper, we have described the results from a case study performed at a large,

Dutch social network provider. We have gathered data regarding the implementa-

tion of Scrum, and the linkage between Scrum concepts and SPM capabilities. This

data has been used to provide more insight into the effects of Scrum on SPM, and

the co-evolution of Scrum and SPM when Scrum is implemented in an incremental

manner.

The research presented in this paper forms yet a step towards a knowledge

infrastructure that helps product managers in incrementally improving the SPM

processes in their organizations. As noted by Vlaanderen et al. (2010), in order to

establish a successful product software knowledge infrastructure, it is important to

The Relationship Between Scrum 253



determine how certain methods in the SPM domain can change, what method

increments are commonly found in practice and how method fragments can be

analyzed. This research forms an addition to the existing knowledge base on

method increments found in practice.

We are convinced that case study descriptions such as the one presented in this

paper are a valuable addition to both scientific as well as the industrial software

engineering field. However, in order to make such descriptions more concise and

better comparable, we are in need of a more structured approach of modeling

increments. Such an approach should be able to reflect changes in the process in

relation to organization’s contextual factors. Moreover, this research further

matures the scientific literature on Scrum and release planning by revealing the

link between the two. Providing insight into the association between Scrum

concepts and the implementation of SPM capabilities can be of vital help to

companies that want to implement either or both, as it provides insight into the

maturity levels that can be expected.

References

Barribal, K. L., & While, A. (1994). Collecting data using a semi-structured interview: A

discussion paper. Journal of Advanced Nursing, 19(2), 328–335. doi:10.1111/j.1365-

2648.1994.tb01088.x.

Beck, K. (1999). Extreme programming explained: Embrace change. Boston: Addison-Wesley.

Bekkers, W. & Spruit, M. (2010). The situational assessment method put to the test: Improvements

based on case studies. Proceedings of the 4th international workshop on software product
management, Sydney (pp. 7–16). doi: 10.1109/IWSPM.2010.5623871

Bekkers, W., Spruit, M., Weerd, I. van de, Vliet, R. van, & Mahieu, A. (2010). A situational

assessment method for software product management. Proceedings of the 18th European
conference on information systems, Pretoria (pp. 22–34). Retrieved from http://dblp.uni-

trier.de/db/conf/ecis/ecis2010.html

Bekkers, W., van de Weerd, I., Spruit, M., & Brinkkemper, S. (2010). A framework for process

improvement in software product management. In A. Riel, R. O’Connor, S. Tichkiewitch, & R.

Messnarz (Eds.), Systems, software and services process improvement (pp. 1–12). Berlin/
Heidelberg: Springer. doi:10.1007/978-3-642-15666-3_1.

Benbasat, I., Goldstein, D. K., & Mead, M. (1987). The case study research strategy in studies of

information systems. MIS Quarterly, 11(3), 369–386. doi:10.2307/248684.
Berander, P., & Andrews, A. (2005). Requirements prioritization. In A. Aurum & C. Wohlin

(Eds.), Engineering and managing software requirements (pp. 69–94). Berlin/Heidelberg:

Springer.

Boehm, B., & Turner, R. (2005). Management challenges to implementing agile processes in

traditional development organizations. IEEE Software, 22(5), 30–39. doi:10.1109/

MS.2005.129.

Browne, G. J., & Rogich, M. B. (2001). An Empirical Investigation of User Requirements

Elicitation: Comparing the Effectiveness of Prompting Techniques. Journal of Management

Information Systems, 17(4), 223–249.

Carlshamre, P. (2002). Release planning in market-driven software product development:

Provoking an understanding. Requirements Engineering, 7(3), 139–151. doi:10.1007/

s007660200010.

Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., & Natt och Dag, J. (2001). An industrial

survey of requirements interdependencies in software product release planning. Proceedings of

254 M. Theuns et al.

http://dx.doi.org/10.1111/j.1365-2648.1994.tb01088.x
http://dx.doi.org/10.1111/j.1365-2648.1994.tb01088.x
http://dx.doi.org/10.1109/IWSPM.2010.5623871
http://dblp.uni-trier.de/db/conf/ecis/ecis2010.html
http://dblp.uni-trier.de/db/conf/ecis/ecis2010.html
http://dx.doi.org/10.1007/978-3-642-15666-3_1
http://dx.doi.org/10.2307/248684
http://dx.doi.org/10.1109/MS.2005.129
http://dx.doi.org/10.1109/MS.2005.129
http://dx.doi.org/10.1007/s007660200010
http://dx.doi.org/10.1007/s007660200010


the 5th IEEE international symposium on requirements engineering, Toronto (pp. 84–91). doi:
10.1109/ISRE.2001.948547

Cooper, R. G., Edgett, S. J., & Kleinschmidt, E. J. (2001). Portfolio Management for New Product

Development: Results of an Industry Practices Study. R&D Management, 31(4).

Dingsøyr, T., Hanssen, G. K., Dybå, T., Anker, G., & Nygaard, J. O. (2006). Developing software

with scrum in a small cross-organizational project. In I. Richardson, P. Runeson, &

R. Messnarz (Eds.), Lecture notes in computer science (Software process improvement, Vol.

4257, pp. 5–15). Berlin/Heidelberg: Springer. doi:10.1007/11908562_2.

Ebert, C. (2007). The impacts of software product management. Journal of Systems and Software,
80(6), 850–861. doi:10.1016/j.jss.2006.09.017.

Fitzgerald, B., Hartnett, G., & Conboy, K. (2006). Customising agile methods to software practices

at Intel Shannon. European Journal of Information Systems, 15(2), 200–213. doi:10.1057/
palgrave.ejis.3000605.

Hansen, M. T., & Baggesen, H. (2009). From CMMI and isolation to scrum, agile, lean and

collaboration. Proceedings of the agile conference, Chicago (pp. 283–288). doi: 10.1109/

AGILE.2009.18

Jansen, S., Finkelstein, A., & Brinkkemper, S. (2009). A sense of community: A research agenda

for software ecosystems. International Conference on Software Engineering (pp. 187–190).

IEEE.

Levy, Y., & Ellis, T. J. (2006). A systems approach to conduct an effective literature review in

support of information systems research. Informing Science, 9(1), 181–212. Retrieved from

http://www.informingscience.us/icarus/journals/informingscij

Maglyas, A., Nikula, U., & Smolander, K. (2011). What do we know about software product

management?. A systematic mapping study. Proceedings of the 5th international workshop on
software product management, Trento (pp. 26–35). doi: 10.1109/IWSPM.2011.6046201

Mann, C., & Maurer, F. (2005). A case study on the impact of Scrum on overtime and customer

satisfaction. Proceedings of the agile development conference, Denver (pp. 70–79). doi:

10.1109/ADC.2005.1

Moe, N. B., Dingsøyr, T., & Dybå, T. (2008). Understanding self-organizing teams in agile

software development. Proceedings of the 19th Australian conference on software engineer-
ing, Perth (pp. 76–85). doi: 10.1109/ASWEC.2008.4483195

Nerur, S., Mahapatra, R., & Mangalaraj, G. (2005). Challenges of migrating to agile

methodologies. Communications of the ACM – Adaptive Complex Enterprises, 48(5), 72–78.
doi:10.1145/1060710.1060712.

Regnell, B., & Brinkkemper, S. (2005). Market-driven requirements engineering for software

products. In A. Aurum & C. Wohlin (Eds.), Engineering and managing software requirements
(pp. 287–308). Berlin/Heidelberg: Springer.

Rising, L., & Janoff, N. S. (2000). The scrum software development process for small teams. IEEE
Software, 17(4), 26–32. doi:10.1109/52.854065.

Ruhe, G., & Saliu, M. O. (2005). Supporting software release planning decisions for evolving

systems. Proceedings of the 29th annual IEEE/NASA software engineering workshop, Green-
belt (pp. 14–26). doi: 10.1109/SEW.2005.42

Schwaber, K. (1995). SCRUM development process. Proceedings of the conference on object-
oriented programming systems, languages, and applications, workshop on business object
design and implementation (pp. 117–134).

Sommerville, I. (2007). Software engineering (8th ed.). Boston: Addison-Wesley.

Stapleton, J. (1997). DSDM: Dynamic systems development method. Boston: Addison-Wesley.

Sutherland, J. (2001). Agile can scale: Inventing and reinventing scrum in five companies. Cutter
IT Journal, 14(12), 5–11. Retrieved from http://www.cutter.com/itjournal.html

Towill, D., & Christopher, M. (2010). The supply chain strategy conundrum: To be lean or agile or

to be lean and agile? International Journal of Logistics Research and Applications, 5(3),
299–309. doi:10.1080/1367556021000026736.

The Relationship Between Scrum 255

http://dx.doi.org/10.1109/ISRE.2001.948547
http://dx.doi.org/10.1007/11908562_2
http://dx.doi.org/10.1016/j.jss.2006.09.017
http://dx.doi.org/10.1057/palgrave.ejis.3000605
http://dx.doi.org/10.1057/palgrave.ejis.3000605
http://www.informingscience.us/icarus/journals/informingscij
http://dx.doi.org/10.1109/IWSPM.2011.6046201
http://dx.doi.org/10.1109/ASWEC.2008.4483195
http://dx.doi.org/10.1145/1060710.1060712
http://dx.doi.org/10.1109/52.854065
http://dx.doi.org/10.1109/SEW.2005.42
http://www.cutter.com/itjournal.html
http://dx.doi.org/10.1080/1367556021000026736


V€ah€aniitty, J., Lassenius, C., & Rautiainen, K. (2002). An Approach to Product Roadmapping in

Small Software Product Businesses. Conference Notes of the 7th European Conference on
Software Quality (pp. 12–13). Helsinki: Finland.

van de Weerd, I., & Brinkkemper, S. (2008). Meta-modeling for situation analysis and design

methods. In M. R. Syed & S. N. Syed (Eds.), Handbook of research on modern systems
analysis and design technologies and applications (pp. 38–58). Hershey: Idea Group

Publishing.

van de Weerd, I., Brinkkemper, S., & Versendaal, J. (2007). Concepts for incremental method

evolution: Empirical exploration and validation in requirements management. In J. Krogstie,

A. Opdahl, & G. Sindre (Eds.), Lecture notes in computer science (Advanced information

systems engineering, Vol. 4495, pp. 469–484). Berlin/Heidelberg: Springer.

van de Weerd, I., Brinkkemper, S., & Versendaal, S. (2010). Incremental method evolution in

global software product management: A retrospective case study. Information and Software
Technology, 52(7), 720–732. doi:10.1016/j.infsof.2010.03.002.

Vlaanderen, K., Weerd, I. van de, & Brinkkemper, S. (2010). Model-driven assessment in software

product management. Proceedings of the 3rd international workshop on software product
management, Sydney (pp. 17–25). doi: 10.1109/IWSPM.2010.5623868

Vlaanderen, K., Jansen, S., Brinkkemper, S., & Jaspers, E. (2011). The agile requirements refinery:

Applying scrum principles to software product management. Information and Software Tech-
nology, 53(1), 58–70. doi:10.1016/j.infsof.2010.08.004.

Vlaanderen, K., Weerd, I. van de, & Brinkkemper, S. (2011). The online method engine: From

process assessment to method execution. Proceedings of the IFIP WG 8.1 working conference
on method engineering, Paris (pp. 108–122).

Weerd, I. van de, Brinkkemper, S., Nieuwenhuis, R., Versendaal, J., & Bijlsma, L. (2006). On the

creation of a reference framework for software product management: Validation and tool

support. Proceedings of the 1st international workshop on software product management,
Minneapolis/St. Paul (pp. 3–12). doi: 10.1109/IWSPM.2006.6

Weerd, I. van de, Versendaal, J., & Brinkkemper, S. (2006). A product software knowledge

infrastructure for situational capability maturation: Vision and case studies in product man-

agement. Proceedings of the 12th working conference on requirements engineering: Founda-
tion for software quality (pp. 97–112). Luxemburg: Luxemburg

Yin, R. K. (2009). Case study research: Design and methods (4th ed.). London: Sage Publications.

256 M. Theuns et al.

http://dx.doi.org/10.1016/j.infsof.2010.03.002
http://dx.doi.org/10.1109/IWSPM.2010.5623868
http://dx.doi.org/10.1016/j.infsof.2010.08.004
http://dx.doi.org/10.1109/IWSPM.2006.6

	The Relationship Between Scrum and Release Planning Activities: An Exploratory Case Study

	1 Introduction
	2 Case Study Research Design
	2.1 Research Question
	2.2 Data Gathering
	2.3 Data Analysis

	3 Related Literature
	3.1 Software Product Management
	3.2 Scrum

	4 Case Study Results
	4.1 Case Company Introduction
	4.2 Implementation of Scrum and Software Product Management

	5 Analysis
	6 Discussion and Limitations
	7 Conclusions and Further Research
	References




