
Intertwining Lean and Design Thinking:
Software Product Development from
Empathy to Shipment

Tobias Hildenbrand and Johannes Meyer

Abstract

A few years back, everybody in the industry seemed to be talking about how

“Lean Thinking” can improve software development. Best practices emerged,

books were written and Lean Thinking, associated with agile process frameworks

became somewhat of a standard work culture in software development. Now that

many people are actually practicing lean and agile development, they have

started to wonder about something called “Design Thinking”. When we coach

development teams in a large software company, we’re frequently being asked

whether Design Thinking is the next big thing substituting lean software devel-

opment. After having guided several teams through successful projects, our

verdict is: Design Thinking is not Lean’s heir; in fact the two schools can be

intertwined in many ways and complement each other very well. As we will

elaborate in this case study, they share some integral core values and goals, and

can therefore be applied in the same project without corrupting each other. As a

proof of concept, we combined and utilized the underlying set ofmethods in order

to explore a yet relatively unknown and unusual domain for SAP business

applications: Software for professional sailors and their coaches that helps them

to optimize their training experience and competitive performance.

1 Introduction: Related Work and Research Objective

Before we get into the actual sailing case study, it is important to note that SAP,

world market leader in business software for large enterprises, has started a broad

initiative to educate teams in Design Thinking, not only in development but across

T. Hildenbrand (*)

SAP AG, Walldorf, Germany

e-mail: tobias.hildenbrand@sap.com

J. Meyer

Hasso-Plattner-Institut Academy GmbH, Potsdam, Germany

e-mail: johannes.meyer@hpi-academy.de

A. Maedche et al. (eds.), Software for People, Management for Professionals,

DOI 10.1007/978-3-642-31371-4_13, # Springer-Verlag Berlin Heidelberg 2012

217

mailto:tobias.hildenbrand@sap.com
mailto:johannes.meyer@hpi-academy.de


all business areas. The work culture we describe is not restricted to this project, but

is currently being broadly adopted in the company. Why would the teams that

already practice lean and agile development for several years (Schnitter and

Mackert 2011) need additional values, practices and another set of tools to do

their job?

Let us be frank here from the beginning: developing business software is

becoming more and more challenging. Together with the transforming

requirements of business customers in different industries, products have to be in

a constant cycle of innovation and adapt to ever new environments (Smith and

Reinertsen 1992). Operating in such an environment, a steady flow of good ideas is

the only justification for a business software company to flourish (Reinertsen 1997,

2009). Such a company therefore needs a structured framework not only on how it

turns ideas into sellable products, but also on how to come up with those ideas in the
first place. Design Thinking is such a framework, intended to increase the likeli-

hood and reliability of innovations developed in teams (Brown 2009; Martin 2009).

Lean Thinking, on the other hand, has proven to make teams and organizations

more efficient and transparent for almost 20 years, if you take Scrum as an

exemplary process framework (Schwaber 1995; Sutherland and Schwaber 2011).

However, Scrum assumes that teams already start with a “product vision” and a

“product backlog” without a clear picture as to where that vision will come from

(Highsmith 2009; Pichler 2010). On the enterprise level, Lean Thinking tells us to

“focus on customer value” (Womack and Jones 1990, 2003), but besides a basic

definition of “value”, i.e. “what the customer is willing to pay for”, Lean Thinking

does not provide according guiding principles on how to find out what is actually

valuable to the customer.

Besides pressure for innovation (Martin 2009), there are other good reasons why

both Lean and Design Thinking make particular sense together and have their

respective niche in the business software domain: First of all, business software

projects for large enterprises can get rather bulky, delivering complex products with

the help of many different teams (Larman and Vodde 2008). Without frameworks

like Scrum and the ability to scale beyond single teams, it’s almost certain that

resources will be wasted, especially because software is not as transparent as other

products (Leffingwell 2011).Moreover, developers in business software companies

are often not actual users of their own products. Instead, they are expected to deliver

something that their – often very IT-skilled – customers would not be able to build

at the same price; however, most often without being experts for their customers’

respective business domain and business processes. Hence, empathy is needed to

take the famous walk in the customers’ shoes and discover potentials for innovative

applications. Once these opportunities have been discovered, it’s not enough if they

are just desirable to the customer (Pichler 2010): To be reasonable as a product,

they also have to be viable in terms of business value, i.e. generate revenue for the

software company, and feasible to be developed in the first place. Hence, an

innovative and successful software product has to be desirable, viable, and feasible

at the same time (Meinel and Leifer 2011). Design Thinking has successfully

218 T. Hildenbrand and J. Meyer



proven to help teams and organizations balance these “three spaces of innovation”

for products, services, and customer experiences (Brown 2009).

It is therefore no surprise that both thinking schools share a fundamental set of

core values and commonalities: First, both recommend forming and empowering

interdisciplinary or so-called “cross-functional” teams (Schwaber 1995; Kelley

2008; Brown 2009; Blau et al. 2011b). This means that a team contains all skills

required to address a certain market or customer need and control is decentralized

as far as possible (Reinertsen 2009; Sutherland and Schwaber 2011). Second, both
are about taking an economic perspective on product development, i.e. taking

business value, viability, and revenue streams into account when managing the

overall product portfolio and prioritizing requirements for particular products

(Brown 2009; Reinertsen 2009). Third, the development process leverages on fast

feedback cycles and gaining additional insights for further iterations. The principle

of inspecting and adapting both product and process is inherent to lean and agile

development (Reinertsen 2009; Sutherland and Schwaber 2011). In the same vein,

Design Thinking suggests early, regular, and cheap prototyping to “deliver fast

results and generate useful feedback” (Brown 2009, p. 87; Ries 2011).

Besides these and other inherent commonalities, another reason why Lean and

Design Thinking don’t collide is that they focus on different challenges and aspects

in a development project lifecycle: While Lean Thinking and agile practices help

organizations to build and ship products right, meaning e.g. in time and in quality,

Design Thinking focuses on building the right product in the first place. Hence, it

can help teams to understand the full context of a problem space from the

perspectives of potential users and relevant stakeholders. Building on this under-

standing, teams can develop a product vision and derive requirements for what the

product could actually do for the users within their respective context. Lean

Thinking and agile methods, such as Scrum, Extreme Programming (XP, Beck

1999; Beck et al. 2001; Hildenbrand et al. 2008), and Clean Code (Martin 2008), for

instance, provide the process framework for development organizations as well as

concrete engineering principles to efficiently bring the product vision to life as

shippable software (Chow and Cao 2008; cp. Fig. 1).

It is thus understandable that business software companies are particularly

interested in introducing practices that ensure continuous and reliable innovation

through empathy and streamline development processes with minimal waste.

Nevertheless we are at the start of this journey and Design Thinking is just now

spreading from consultancies into in-house product development teams, just like

Lean Thinking spread from manufacturing into the software industry via agile

practices a few years ago (Poppendieck 2002; Poppendieck and Poppendieck

2003; Larman and Vodde 2008).

Research Objective: Based on the commonalities and possibly conflicting areas

inherent to software development as outlined above, our case study intends to shed

light on how to leverage Lean and Design Thinking in order to build the right
software right in one practical project setting. In particular, we investigate the

underlying research question of how to come up with an innovative product vision
and derive requirements in a yet unknown domain.

Intertwining Lean and Design Thinking: Software Product Development. . . 219



Methodologically, this work follows a design science approach (Hevner et al.

2004). In doing so, our main “artifact” is the team-based process from the initial

challenge or “project brief” (cf. Brown 2009) to a first working and potentially

shippable software increment that users can apply and assess in their environment

(Schwaber 1995; see also approach in Fig. 2). Hence, we later evaluate the

usefulness of our process by customer adoption, development team satisfaction,

and other types of feedback. Our case study therefore serves as observational design

evaluation for the integrated approach described in Sect. 3.1 and Fig. 2 in particular

(Hevner et al. 2004, p. 86). The constituents of this process are based on a

combination of Lean and Design Thinking principles and practices. Moreover, we

also evaluate the process from an internal team perspective, i.e. team learning and

satisfaction as well as the “fun factor” within our development team. Our evaluation

approach is based on a single case study setting within SAP as the organizational

XP

Scrum

Agile

Lean Thinking

Scope

C
on

cr
et

en
es

s

Fig. 1 From lean thinking to concrete software engineering techniques

Phase 1: Phase 2:
LEAN & Agile Practices

Research,  
Envisioning
& Trainings
(Scrum Mode)

Synthesis
Vision 

Refinement,
Story Map
& Backlog 
Elaboration

Development with Scrum incl. Continuous
Backlog Refinement („Grooming“) and
Prototyping Sessions

360° Research

Kiel
Week

World
Championship
(venue: Perth)

German
Championship

(venue: Travemuende)

Olympic Games
2012

(venue: London)

...

Design Thinking Methods

Phase 3 (ongoing):

Fig. 2 Integrated approach for sailing team Germany project at SAP

220 T. Hildenbrand and J. Meyer



context (Eisenhardt 1989; Yin 2008, 2011) and we derive an initial set of

conclusions under the particular contingencies of this case as a first step towards

an integrated theory of efficient and effective software product development with a

combination of Lean and Design Thinking principles and practices (Van de Ven

and Drazin 1985).

The rest of this book chapter is structured as follows: the following Sect. 2

presents a brief overview of the case study setting and the respective customer, i.e.

SAP’s Sailing Program for Audi Sailing Team Germany. Section 3 then describes

the process as set of practices that we designed, adapted, and intertwined for this

particular team and setting. Section 4 will evaluate and discuss our methodological

approach based on observations from the case study, while Sect. 5 will draw

conclusions for software product development and provide an outlook on future

development projects applying our approach and upcoming research programs in

our pipeline.

2 SAP’S Sailing Program and Sailing Team Germany

As of 2011, SAP is sponsoring Audi Sailing Team Germany (STG), a recent

initiative geared at promoting athletic sailing and building a common organiza-

tional structure between Germany’s many diverse and clustered sailing clubs. As

Marcus Baur, former Olympic sailor and co-head of STG, points out in an inter-

view: “Sailing Team Germany has come together to achieve the goal of making

Germany one of the best sailing nations in the world again” (STG 2011).

When analyzing the domain, many people underestimate that sailing is a highly

strategic sport. In the majority of boat classes, it is not so much physical fitness, but

experienced judgment of weather, water conditions and venues that make teams

win. It is finding the adequate trim settings, being on the right side of the venue and

anticipating events before they actually occur.

SAP as a software vendor chose to support STG’s ambitious goal with software.

Besides the classical support of a sponsor, SAP is particularly interested in show-

casing its technology and ways of working by building software that provides true

value to the sport. In an initial analysis of what SAP technology could do for the

sailing domain, one of several emerging challenges was How might we improve
knowledge transfer among sailors and coaches so they can benefit from each
other’s experience and improve performance? According to Marcus Baur, a fast

knowledge transfer from experienced to younger sailors would offer a powerful and

sustainable competitive advantage for the German sailing team towards the Olym-

pic Games in London in 2012 and beyond (STG 2011).

You can call it lucky or not that the team that was selected to work on this

challenge had not been in contact with the sailing domain before. The team

included five developers, one Scrum Master, one Product Owner, as well as several

part-time experts e.g. for user interface design, mobile applications, and Java

platform services. From the beginning it was clear that there was a lot of learning

Intertwining Lean and Design Thinking: Software Product Development. . . 221



to do before the team would get to a solid idea of what their product should do and

what their impact on the users’ daily experience should be.

On the other hand, starting a project without any assumptions gave us as coaches

the chance to also intertwine our respective experience from both Lean and Design

Thinking. This way, we developed a custom-made, integrated approach that was

supposed to help the team get up to speed with sailing and build shippable software

eventually. To be able to do so, they first needed to understand the sailors’

problems, come up with an innovative product vision and derive high-level

requirements for this yet unknown domain.

3 Intertwining Lean and Design Thinking

This section presents the integrated process and its application as part of the case

study. In the overview, the different phases and objectives of the project are

described along with the respective methods, practices, and techniques from Lean

and Design Thinking.

3.1 Our Overall Approach

Lean software product development (Larman and Vodde 2008; Reinertsen 2009;

Larman and Vodde 2010; Leffingwell 2011) has been adopted as a standard

approach in SAP development for almost 3 years starting in 2009 (Schnitter and

Mackert 2011; Blau et al. 2011a).

SAP’s change template for this transition included (1) Lean Thinking principles

as a basis (Womack and Jones 2003), (2) agile principles from the Agile Manifesto

(Beck et al. 2001), (3) standard agile process frameworks such as Scrum

(Sutherland and Schwaber 2011) and Kanban (Anderson 2010), as well as (4)

well-established agile engineering techniques, e.g. from XP and Clean Code

(Beck 1999; Martin 2009). The latter is seen as critical success factor in most

Agile projects and missing link to the actual software “shop floor”, i.e. the devel-

opment teams, in large-scale Lean implementations (Chow and Cao 2008).

Figure 1 shows how Lean, agile principles, Scrum as a process framework, and

agile engineering techniques such as XP can build upon and complement each other

within SAP’s overall “Lean Development Model” to enable successful software

projects (Chow and Cao 2008):

Taken together, this new approach SAP is taking can be summarized for

particular lines of business or bigger solutions as follows: instead of a large group

spending a long time building a big piece of software, many smaller teams spend a

short time (2–4 week iterations) building small pieces of software, while integrating

regularly to see the whole (cp. also Kniberg 2007).

SAP’s lean development approach, as described above, however, does not

directly tell you how to come up with an innovative product vision and a good

product backlog that includes the relevant requirements as “user stories”

222 T. Hildenbrand and J. Meyer



(Leffingwell 2011), ordered according to customer value or other criteria

(Sutherland and Schwaber 2011).

When we started to design a suitable approach to achieve this for our sailing

project, it turned out to be necessary to synchronize on some of the terminology that

Lean and Design Thinking use. As a result of this discussion, we came across

overlaps for the following descriptions:

Table 1 contrasts selected terminology from our perspective: what Lean thinking

calls requirements (Reinertsen 2009; Leffingwell 2011), may be what Design

Thinking understands as “needs” coming out of a research phase. In both worlds,

a persona embodies an archetypical user or user category (Patton 2008; Brown

2009). However, agile methods for requirements engineering (Hildenbrand et al.

2008) such as story mapping usually do not accurately distinguish as-is and to-be

descriptions while Design Thinking clearly separates the problem space (as-is

scenario) and the solution space (to-be scenario, see Meinel and Leifer 2011, for

instance).

Moreover, lean and agile practices such as Scrum suggest decomposing the

“solution idea” or “prototype” (Brown 2009) into a “product backlog” consisting

of “backlog items” (Sutherland and Schwaber 2011) to answer the question what it

actually takes to “bring the product to life” (Pichler 2010). Backlog items can be

described as requirements from a user perspective in the form of so-called “user

stories” (Cohn 2004). Larger, coarse-grained user stories are often called “epics”

(Leffingwell 2011) and correspond to the to-be scenarios used in Design Thinking

projects, e.g. prototyped with storyboards (Kelley 2001; Brown 2009).

After synchronizing on language and terminology, we derived our development

approach based on the goals and boundary conditions given in the STG project. For

instance, the team already decided to visit Kiel Week in June 2011 to meet the

sailors and a preliminary shipment of useable software was planned for the German

Championships in Travemuende in September 2011.

Figure 2 shows how we planned the transition from Design Thinking-driven user

research to lean and agile development practices in later phases of the project. Our

intention was to allow for an initial phase in which the team would not “think code”

yet but just concentrate on the user:

While this visualization may suggest that agile practices played no role at the

beginning of the project that is not the case: In fact, before our first project

milestone, Kiel Week in June 2011, the team also maintained a backlog of things

Table 1 Overlapping terminology in lean and design thinking

Lean thinking and agile practices Design thinking

Requirement User need

Persona Persona

Usage sequence As-is scenario

Product vision Solution

Epic (i.e. a coarse-grained user story) To-be scenario

Product backlog item, e.g. as user story Solution idea, prototype, implementation

Intertwining Lean and Design Thinking: Software Product Development. . . 223



to develop and prepare, e.g. interview guides, appointments, and other logistics,

with the “sprint goal” of preparing the user- and venue research (Sutherland and

Schwaber 2011). Despite not developing any software yet, we used a Scrum-like

process to learn as a team, get the most important things done prior to Kiel and

make efficient use of the time at the sailing event. With the input gathered during

these preparations and at the actual event, we then wanted to agree on our product

vision and derive the “real backlog” in order to start continuous development and

backlog refinement activities (cp. Fig. 2). That is, later on we wanted to run the

project in a rather “standard lean and agile mode”, as it was familiar to the team

from previous development projects at SAP.

However, we think the process shown in Fig. 2 is only one of many possible

ways in which a combination and intertwining of Lean and Design Thinking

practices can be realized. In our particular case, it helped us to manage the transition

from zero sailing domain knowledge to actually building shippable software for

professional sailors and their coaches.

As indicated in Fig. 2, we therefore define three major phases: Phase 1 includes

user research, envisioning, and training of the team. In Phase 2, our goal was to
merge all the findings from Phase 1 and come out with a stable product vision and a

first set of requirements as user stories in the team’s product backlog. Phase 3
would then cover the actual coding and continuous feedback loops with

stakeholders.

3.2 User Research, Envisioning, and Trainings (Phase 1)

Since the development team, including the product owner, did not have much

experience in the sailing domain, we guided them through research to build up

empathy for the potential users and a basic understanding of the domain. Classical

Design Thinking (Meinel and Leifer 2011) suggests “observation” as the first

diverging phase in an innovation project. In our software development domain,

this has been extended to “360� Research”, referring to observation and interviews

with users plus secondary sources like analysts and thought leaders, competitors,

analogous and adjacent domains.

In the sailing case, this meant that the team actually talked to sailors and coaches

in their natural environment and observed their current behaviors, scrutinized

existing “tools” (both on paper and electronic ones) and analyzed their goals and

feelings. Secondly, they looked at sailing competitions and similar domains such as

show jumping, formula one, and gliding, to name just a few. Third, they informed

themselves and plunged into the sailing domain by analyzing books and articles, as

well as computer-based sailing simulators.

To get some real-world and direct user experience, the team went to Kiel Week,

one of Germany’s biggest annual sailing events. Within this week, 15 interviews

with various sailors, coaches, and other experts were scheduled and conducted by

sub-teams of two members of the team including the developers, product owner,

Scrum master, etc. Moreover, we reserved time for the observation of race

224 T. Hildenbrand and J. Meyer



preparations and actual regattas at the venue site. Last but not least, a full immer-

sion into the topic was achieved by actually sailing as a team in Kiel.

Researching openly, without a direct objective for the product design, was also

lots of fun for the team and within an impressively short time, they grew both

together as a team, and into experts in their new domain.

3.3 Synthesis, Vision, and Backlog Elaboration (Phase 2)

Our clothes still soaked with salt water, we returned from Kiel to SAPWalldorf and

started synthesizing what we had learned so far as a team. As part of our overall

process (see Fig. 2), us coaches suggested conducting a 3-day workshop to develop

the product vision, derive a backlog and start development team work. Table 2.

summarizes the overall workshop agenda:

Workshop Day 1 – Back in the office, we applied Design Thinking practices

such as time-boxed synthesis of key statements by our potential users. Each of the

interviews was reported by the respective interviewers from the team in a round of

so-called “storytelling”; information about user needs, pain points, and other

potential insights was put on post-its (see Fig. 3).
In our setup, storytelling allowed six minutes per research area and no

discussions, with questions being parked on a designated parking lot flip chart.

That way, each team member was able to absorb the insights from all other

interviews, including the ones they had not attended themselves.

After collecting about 250 of these data points, we clustered them into topic

groups. We selected “silent clustering” for efficiency reasons, i.e. the participants

put their share of the data points on a pin board and placed related ones close to each

other. The overall arrangement could be changed by everyone until the clusters

converge. With the highlights of about 20 clusters in mind (the clusters we found

included “audio/video support”, “trimming”, and “tracking the boats”, for

instance), we developed our first two personas as stereotypical users: Tina the

professional sailor and Thomas, a coach. The persona descriptions included their

age, profession, boat class, background, motivation, and pain points. Design Think-

ing recommends this synthesis to get from diverging into converging mode and

make empathy possible through focused formats.

Table 2 Overall workshop agenda for synthesis, vision, and backlog elaboration (phase 2)

Workshop Day 1 Workshop Day 2 Workshop Day 3

Synthesis: storytelling and

clustering of observations

Product vision: statement Recap: Lean/agile development,

Scrum and Kanban

Point-of-view: personas for
expected users

Story map: usage sequence,
personas, epics (backbone)

Overview of concrete agile
software engineering practices

Ideation and prototyping User story writing in pairs Working model and charter,

tool support required

Vision: product box Story map review,
prioritization and “slicing” of

map

Review of overall workshop

results with Marcus (STG)

Intertwining Lean and Design Thinking: Software Product Development. . . 225



With these “flesh-and-blood” users and lots of fresh impressions from Kiel in

mind, we were ready to switch on the “solution engine” and finally start to think

about solution ideas to address some of the users’ problems. Within three intense

days in the field (2 days interviews, 1 day processing), the team had “build up a deep

understanding of the sailing domain from a user perspective”, as they mentioned in

one of the later retrospective meetings. Now they were able to make the right

decisions on the product features most useful and desirable to their personas.

With a structured view on needs and pain points, the first ideas started to spark

and the team went into their first ideation session where they developed rough drafts

of screens and to-be usage scenarios (cp. Table 1) the user could possibly go

through in the future.

Figure 4 depicts an example of how a sailor could use our software on a mobile

tablet device to record and share their experience after sailing while receiving post-

race physiotherapy:

This “educated brain dump” was also a perfect warm-up for developing the

product vision in the form of a sneak preview software package (called a “vision

box”, Highsmith 2009) with a product name, unique selling propositions, and some

key features on it. We concluded day 1 with a first rough overall product vision in

the form of the vision box and a brief vision statement:

Sail Better provides easy access to training, trim, and venue data from various sources,

allows you to log your own experience and learn from others – fostering collaboration

between coaches and sailors to optimize your sailing performance

Workshop Day 2 – with our common product vision and personas already in

place, we had an ideal starting point for developing our first product backlog. At this

point some great ideas were on the table, but the team including product owner was

not even close to having requirements as concrete backlog items to start develop-

ment yet. Our agile tool of choice to get a full end-to-end picture of the users’

processes and possible backlog items was thus a user story map (Patton 2008, see

outline and data model in Fig. 5; cp. also terminology in Table 1):

Fig. 3 Example observations from storytelling in synthesis phase of workshop day 1

226 T. Hildenbrand and J. Meyer



Fed by the ideas that had come up as prototypes in our day 1 ideation session and

based on all the newly acquired knowledge about the daily lives of the user roles, it

proved to be surprisingly easy for the team to first come up with an overarching

usage sequence for sailors and coaches along the course of one season (i.e. one

calendar year), and then fill this “backbone” with insight-based epics and user

stories (Patton 2008; Leffingwell 2011). As the product owner put it:

The team was so well warmed up, that we could write the user stories and immediately fill

the story map as basis for our product backlog. This made my job a lot easier at this point in

time.

Later, the map served as central reference for the product owner, customers and

the team to see what the overall product is supposed to look like, what the current

progress to plan is in terms of user stories implemented and remaining work as well

as which ideas they want to implement next for which part of the user’s daily

conduct. Particular user stories are then pulled for sprint planning priority-wise and

broken down into smaller stories to fit the sprints (Sutherland and Schwaber 2011;

see also Sect. 3.4 and Table 3 for the team’s concrete approach to working with user

stories and done criteria along sprints).

Workshop Day 3 – on our last workshop day, we focused on how the team

wants to work with the backlog. After having compiled and ordered a decent set of

user stories, i.e. after having an actual backlog, we needed to discuss our working
model as a team. To facilitate this, we presented and recapitulated existing lean and

agile good practices to the team and decided afterwards which approach we start

Fig. 4 Example of an early paper prototype for an experience with a mobile application

Intertwining Lean and Design Thinking: Software Product Development. . . 227



F
ig
.
5

C
o
n
st
it
u
en
ts
an
d
m
et
h
o
d
o
lo
g
y
o
f
a
u
se
r
st
o
ry

m
ap

(B
as
ed

o
n
P
at
to
n
2
0
0
8
)

228 T. Hildenbrand and J. Meyer



with, and what our concrete “team parameters” for the Sail Better project would be,

e.g. sprint length, time for daily scrum meetings, done criteria for user stories, etc.

After discussing Scrum and Kanban as possible process frameworks and

highlighting some proven agile engineering practices at SAP, we put the major

parameters of our collaboration model such as initial sprint length, time for daily

stand-up meetings, time boxes for backlog grooming and retrospectives, etc. on a

team charter, “signed it with blood” (only in the figurative sense), and copied them

to our team wiki. The team also decided to conduct continuous ideation and

prototyping sessions for particular user stories. That is, the team iterates and ideates

on certain aspects of the solution that are not yet so well understood as part of our

development sprints (also called “spikes” in agile development, cf. Leffingwell

2011). We time-boxed these sessions to 1–2 h maximum and used paper

prototyping as primary low fidelity tool to communicate about ideas and get

feedback (see Sect. 3.4 and Table 3 in particular).

As a summary of post-Kiel workshop results, we had a clear product vision and

backlog which was validated and aligned with our customer, STG. The team had

agreed on a working model and our story map helped us to constantly maintain and

overview of our requirements and continuously refine the features. Especially the

personas (Tina and Thomas) keep us focused on our end users and facilitated

communication within the team:

Hey Chris, do you think Tina would find this radio button intuitive?

Paper prototypes and other cheap artifacts enabled us to continuously receive

fast feedback from customers and colleagues right from the beginning and reduced

risk tremendously.

One major problem we were facing was the fact that two developers had to go

back to Palo Alto (USA) and work from there most of the time. That meant we

needed to find suitable meeting times for both locations, had to get a sound station,

figure out how to ensure transparency on major decisions and updates also elec-

tronically, etc. The main part of the team in Walldorf, however, used the artifacts

from Kiel to “decorate” their shared office space and added lots of face-to-face

collaboration tools, e.g. whiteboards, a projector, stand-up tables, loads of post-its

as well as movable walls. Hence, the team room fosters communication (in terms of

quality and frequency) and collaboration by full overall transparency and visual

management. You would also often find pairs of developers discussing in the

nearby coffee corner.

Table 3 Three-level approach of implementing user stories to get feedback

Artifact Description and done criteria

1. Working

software

User story fully deployed and integrated into on-demand application so that it

can be tested in a browser on different devices

2. Hi-Fi

prototype

Digital representation of relevant screen including the application’s HTML5 UI

design (in Visio or PowerPoint format)

3. Lo-Fi

prototype

Paper prototype to communicate the basic idea, data fields, application

workflow, etc., e.g. wireframes on A4 paper or comic-style user stories

Intertwining Lean and Design Thinking: Software Product Development. . . 229



3.4 Scrum-Based Development and Continuous Design (Phase 3)

Literally on day four, i.e. day one after the workshop described above, the team

started elaborating the early prototypes and user stories while receiving continuous

feedback by STG.

As indicated in Fig. 2, we planned to get into a regular lean and agile develop-

ment mode after a first complete delivery of the software at the German

Championships in Travemuende. Since we were applying agile methods right

from the start (see Sect. 3.2), i.e. maintaining an ordered backlog, working in

iterations, etc., the transition from a predominantly Design Thinking-driven work-

ing mode to business-as-usual Scrum was very smooth. However, we never stopped

experimenting with Design Thinking methods and techniques during Sprints and

the team actively requested moderated breakout sessions when they approached

new and unclear user stories.

In order to realize regular feedback and gain as many additional insights as

possible from our STG users, the team agreed on three-levels of user story comple-

tion and according done criteria (cf. Sutherland and Schwaber 2011 and Table 3): if

the team could not deliver the story as working software within one sprint, they

tried to at least come up with a prototype to evaluate with STG. Sometimes a low-

fidelity prototype, e.g. wireframe on paper, was just enough to get feedback. High-

fidelity prototypes created with the help of professional user interface (UI)

designers and tools such as Visio and PowerPoint were also utilized to refine

paper prototype and get additional feedback on the actual look and feel before

implementing the screen in HTML5. When stories were deployed and integrated,

the users from STG could immediately access the new functionality via the on-

demand platform.

4 Evaluation and Discussion

As a result of implementing our process, the team managed to get from zero sailing

expertise in June 2011 to a first “shipment” to their customer, Audi Sailing Team

Germany, as part of the German Championships in Travemuende in September

2011, i.e. after about 3 months. The feedback on our initial backlog, first prototypes

and first software release was very positive and constructive. Due to the fact that we

had cheap paper prototypes very early, even during our first team workshop, and

continuously evaluated, discarded and/or refined these artifacts, the team received

constant feedback from Sailing Team Germany and thus began to “flow”.

4.1 Evaluation of Development Process from Empathy
to Shipment

After a first delivery of the software in September 2011 in Travemuende, Germany,

we collected feedback from the development team, Scrum Master, Product Owner,

and STG as customer: most importantly, our customer and the users from STG

230 T. Hildenbrand and J. Meyer



confirmed that what the team built within the given time frame of barely 3 months

went far beyond their expectations (STG 2011):

SAP Sail Better helps us to optimize what we do and it also helps us to innovate.

The Sail Better software has been delivered as an on demand solution with

HTML5 UI. Thus, user stories for sailors and coaches could be evaluated in a real-

live user environment on the intended devices such as laptops and iPads. At the

World Championships in Perth in November, an extended shipment with all major

user stories was provided and evaluated by STG: The Sail Better software solution

is deemed highly useful to improve the preparations for the Olympic Games in

London in 2012 – or as one professional sailor put it in Perth last year (STG 2011):

It is a big advantage over all competitors that we race against [at the world championships].

STG was not only impressed by the software, but also by the methods that have

been applied. The product owner (PO) also underlined that the user story map

helped him a lot to communicate with both the customer and the development team.

Moreover, the PO appreciated that the team was able to nail down the first set of

relevant user stories based on their finding from research and the visit to Kiel.

Compared to other agile projects, this meant a tremendous boost on the way to

development start. PO, development team, and Scrum Master (cf. Sutherland and

Schwaber 2011) emphasized that in general the development of the team from

having no clue about sailing to being ready to develop after Kiel Week and the

workshop was amazing.

Based on our findings and evaluation results, the body of knowledge in both

Design Thinking and Lean software product development and our experience with

the STG project, we found some first themes to be discussed. The team is generally

very positive that the time taken “before actually coding” is deemed useful for their

result. All in all, they also claimed that

More projects should have an explicit Lean and Design Thinking coach.

Besides this general evaluation of the process, three main “patterns” which we

also observed at other projects at SAP have been reconfirmed as findings by our

case study:

(1) The story mapping technique (Patton 2008) helped us to synthesize and

leverage on the findings from user research and bring the “to-be perspective” from

Design Thinking into our backlog. (2) Despite the tight time frame, it paid off to

spend a considerable amount of time for better understanding the problem domain,

concrete user needs and impediments in the development project, i.e. we stopped to
think at defined points in time. (3) Ideation and prototyping sessions – both, at the

outset and within the sprints – enabled us to get fast feedback from our users.

Superficially, Lean Thinking might define this as waste, but creating tangible and

visual results very early potentially saved us from creating even more waste in the

course of the project (see example in Sect. 4.3).

Intertwining Lean and Design Thinking: Software Product Development. . . 231



4.2 Story Maps Can Bridge the Gap from Research to Backlog

Story Mapping proved to be a powerful tool to structure the features of a classical

prototype into a backlog. Especially in software product development it is impor-

tant to consider the full life- or usage cycle of a product, and story maps can help

raise awareness for details in the sequence. The team and especially the product

owner confirmed the story map to be a useful reference in sprint planning and

prioritization.

Story maps are structured and rather unemotional: because they follow the user’s

“Day in a Life” though, they can connect to Design Thinking much better than a

classical backlog representation as a flat list. The reuse of the synthesized personas

and thereby research data can help the team to empathize with the respective user

stories.

Nevertheless our process applied in the STG case study had its biggest weakness

at the point where the user story took over the results of our prototyping and product

vision exercises. There is one interesting pitfall that has to be analyzed in more

detail: As an innovation method, Design Thinking makes a strong point to differ-

entiate between as-is and to-be scenarios and processes from a user perspective.

While in “classical” agile requirements engineering (cf. Leffingwell 2011), these

two points of reference are often the same in order to support the current process,

Design Thinking has the very aim of disrupting the status quo with a true

innovation.

For the team in our STG case, this “little” difference turned out to be difficult.

Their feedback was that it was unclear what exactly should go on the story map.

While they were eager to reuse the artifacts they had developed in the Design

Thinking steps, there were two different sources they could draw from: The

research data that described as-is processes and the future scenarios described in

the prototypes. However, in agile development, there is only one map.

Our impression is that story mapping can be used for both, but with a clear

distinction. A story map that assembles an overview of the current process can be a

possible research artifact, but not automatically a basis for an innovative product

and the respective backlog. If the story map is supposed to feed the backlog, it has to

emerge from the usage scenario of the future solution. To make this transition

possible, the respective prototypes themselves must already have a strong emphasis

on the process (mockups are not enough), on the way they will influence the user’s

daily conduct in the future. On the other hand, it may help to enrich the story map to

create more empathy. The use of visuals and pictures, for example, may be a way to

improve the logical connection between prototypes and the story map. If we put

descriptions of usage processes into the prototype and emotions into our story maps,

they are likely to work even better.

232 T. Hildenbrand and J. Meyer



4.3 Take Your Time, Stop to Think

Design Thinking suggests to spent sufficient time for observing and conducting user

research to better understand the underlying problem space, customer needs, and

develop true empathy for future users. This enables teams and organizations to

build products that are desirable, feasible, and viable. Moreover, iteration in Design

Thinking accepts the fact that a complete restart might be required due to insightful

feedback from users (Brown 2009; Ries 2011).

Lean Thinking, on the other hand, reserves time to analyze which processes

directly contribute to customer value, which ones are non-value-adding but none-

theless necessary, and which ones are deemed obvious waste. Retrospectives in

Scrum (Derby and Schwaber 2006) and other methods, such as A3-based problem

solving (Rother 2010) give guidelines on how to achieve continuous improvement,

i.e. “sharpening the axe” efficiently and sustainably. In our STG project, for

instance, we also conducted regular retrospectives in order to streamline the team

processes.

Bottom line, both thinking schools reserve a reasonable amount of time for the

implementation of their core values such as identifying value-adding activities and

eliminating waste in recurring processes (in Lean Thinking) as well as developing

empathy for user needs and pains by taking a user perspective and investing in

exhaustive research and continuous prototyping (in Design Thinking). One could

say that they both “stop to think”, i.e. stop in order to think. In both cases, the time

spent for thinking in these respects is well invested. The successful shipment of the

“Sail Better” software to STG is one more proof point.

4.4 Innovation Needs Some Waste

“Waste” is a term from Lean Thinking and lean production systems coined at

Toyota and Porsche, for instance. Waste denotes activities and processes that do

not add direct value for the end customer in the sense that value is defined as

“something the customer is willing to pay for” (Womack et al. 1990; Poppendieck

2002; Poppendieck and Poppendieck 2003; Womack and Jones 2003).

Innovation approaches such as Design Thinking, on the other hand, foster “real”

brainstorming and the creation of ideas in large quantities. Many of these ideas

might be discarded right away or later in the process based on relentless user

feedback. That is, they literally end up in the “waste bin”. Moreover, Design

Thinking also suggests rapid and cheap prototyping to get feedback in order to

“fail early and often” (Brown 2009, p. 87). Again, many of these prototypes will

end up in the waste bin after they served their purpose of leveraging feedback on

existing solution approaches or inspiring even better ideas.

Now, despite all the waste, can our two thinking schools intertwine to solve

problems for the software industry that neither one could on its own? We think so,

especially in standard software development processes. Just imagine this simple

example:

Intertwining Lean and Design Thinking: Software Product Development. . . 233



A development team combines Design Thinking and Scrum. They spend a serious amount

of time for user research, brainstorming, ideation, paper prototypes, etc. – similar to our

team developing “Sail Better” for STG. Let us say 20 percent of their ideas make it into the

final product which becomes a blockbuster – i.e. in Lean Thinking terms, ideation inferred

80 percent waste. On the other hand, another team does it the “textbook agile way” with

some requirements workshops, user story writing, and backlog grooming. They realize 80

percent of the initial backlog, but the product completely fails on the market despite

efficient development processes.

In Lean Thinking terms, the latter implies close to 100 % waste, since no

customer is willing to pay for the software eventually (see also the “Lean Startup”

approach by Ries 2011).

5 Conclusion and Outlook

To conclude, let’s summarize again why the combination of the two thinking

schools is so promising and how it helps software development teams to come up

with an innovative product vision and derive requirements in a yet unknown

domain:

While Lean Thinking and agile practices are meant to help us building products

right, i.e. in-time, in-quality, etc., Design Thinking can help us to build the right

product based on a valid customer problem in the first place. Both thinking schools

address responding to desire at the customer side and working efficiently as a team,

however with different emphasis: a lean development project, for example, expects

the agile team and the product owner in particular, to already have a product vision

ready. But where does that vision come from? Design Thinking, on the other hand,

provides various methods to build empathy with end users and other inspiration

sources for developing a solution idea or product vision as well as prototypes for

what the product should actually do for the end user. But after that, it lacks a clear

framework of the roles, artifacts, tools, and necessary steps that can take the vision

from prototype to a shippable product.

In our concrete case, the STG project, we learned that understanding and

developing empathy for the customers’ context and experience enables the team

to elaborate and choose the right backlog items and user stories to be developed.

This process is mainly driven by Design Thinking practices. Iterative development

and thus fast feedback reduces project risk and ensures efficient delivery and

shipment of the software. The development and delivery process of Sail Better is

mainly based on common Lean and Agile practices.

Besides the positive feedback from the team and the customers on both the

approach and the solution, three main findings evolved from our case study: (1)

User story maps can serve as a tool to bridge the gap from the empathy and insights

gained with Design Thinking practices and the backlog to build the solution, (2)

both thinking schools suggest to reserve a substantial amount of project time, i.e.

stop to think, for implementing their core values, such as developing empathy by

means of observation, user research, etc. as well as eliminating waste by reflecting

234 T. Hildenbrand and J. Meyer



the value-add created by particular processes, obvious waste, and according analy-

sis and improvement activities. (3) Innovation and great solutions do not come for

free and it may require a little “waste” due to scoping and prototyping from a Lean

perspective in order to gain fast feedback and succeed eventually. Moreover,

several core values of the two thinking schools are almost identical and hence

facilitate intertwining the respective methods and techniques: e.g. cross-functional

or multi-disciplinary teams working in iterations, continuous and fast feedback

loops (“inspect and adapt”) as well as a clear focus on customer value and desire.

Our future research on Lean and Design Thinking will include a multi-case study

across 10–50 so-called “early adopter” projects at SAP that implement Lean and

Design Thinking. In order to come closer to an integrated theory of both efficient

and innovative software product development with Lean and Design Thinking

principles and practices we need to better understand the contingencies in different

project settings (Van de Ven 1985). Particular process design challenges include the

smooth and efficient information and artifact flow from divergent and convergent

thinking in iterative problem scoping and solution development. As we already

experienced in the STG project, a clear distinction but smooth transition from as-is

to to-be scenarios is critical to maintain this information flow. Another research

trajectory revolves around scaling and embedding Design Thinking in a larger lean

and agile enterprise software development setting. By this overall research agenda

we try to address that managing the transition from traditional waterfall-like

development and scaling reliable innovation and efficient delivery for up to 100

development teams working on one complex solution for various customer

segments will be one of the major challenges in the software industry.

Acknowledgements We have to thank: Stefan Lacher, Jochen Guertler and his Innovation Center

team, as well as Marcus Baur as main representative for Sailing Team Germany.

References

Anderson, D. J. (2010). Kanban. Sequim, WA: Blue Hole Press.

Beck, K. (1999). Embracing change with extreme programming. Computer, 32(10), 70–77.
Beck, K., Beedle, M., Bennekum, A. V., Cockburn, A., Cunningham,W., Fowler, M., et al. (2001).

Agile manifesto.

Blau, B., & Hildenbrand, T. (2011b). Product line engineering in large-scale lean and agile

software product development environments – Towards a hybrid approach to decentral control

and managed reuse. Presented at the 6th international conference on availability, reliability
and security, Vienna.

Blau, B., Hildenbrand, T., Xu, Y., & Fassunge, M. G. (2011a). Incentives and performance in

large-scale lean software development – An agent-based simulation approach. Presented at the
6th international conference on evaluation of novel approaches to software engineering
(ENASE 2011), Beijing.

Brown, T. (2009). Change by design: How design thinking transforms organizations and inspires
innovation. Harper Business.

Chow, T., & Cao, D. B. (2008). A survey study of critical success factors in agile software projects.

Journal of Systems and Software, 81(6), 961–971.

Intertwining Lean and Design Thinking: Software Product Development. . . 235



Cohn, M. (2004). User stories applied: For agile software development. Boston: Addison-Wesley

Professional.

Derby, E., Larsen, D., & Schwaber, K. (2006). Agile retrospectives: Making good teams great.
Raleigh: Pragmatic Bookshelf.

Eisenhardt, K. M. (1989). Building theories from case study research. Academy of Management
Review, 14(4), 532–550.

Hevner, A., March, S., Park, J., & Ram, S. (2004). Design science in information systems research.

MIS Quarterly, 28(1), 75–105.
Highsmith, J. A., & Highsmith, J. (2009). Agile project management: Creating innovative

products. Boston: Addison-Wesley Professional.

Hildenbrand, T., Geisser, M., Kude, T., Bruch, D., & Acker, T. (2008). Agile methodologies for

distributed collaborative development of enterprise applications. International conference on
complex, intelligent and software intensive systems. CISIS 2008 (pp. 540–545), Barcelona.

Kelley, T. (2001). The art of innovation. London: Profile Books Ltd.
Kelley, T. (2008). The ten faces of innovation. London: Profile Books Ltd.
Kniberg, H. (2007). Scrum and XP from the Trenches. InfoQ Enterprise Software Development

Series.
Larman, C., & Vodde, B. (2008). Scaling lean & agile development: Thinking and organizational

tools for large-scale Scrum. Boston: Addison-Wesley Professional.

Larman, C., & Vodde, B. (2010). Practices for scaling lean and agile development: Large,
multisite, and offshore product development with large-scale scrum. Addison-Wesley Profes-

sional. Upper Saddle River, NJ: USA

Leffingwell, D. (2011). Agile Software Requirements: Lean Requirements Practices for Teams,

Programs, and the Enterprise. Addison-Wesley Professional. Upper Saddle River, NJ: USA.

Martin, R. C. (2008). Clean code: A handbook of agile software craftsmanship. Upper Saddle
River: Prentice Hall.

Martin, R. L. (2009). The design of business: Why design thinking is the next competitive
advantage. Harvard Business School Press. Boston: USA.

Meinel, C., & Leifer, L. (2011). Design thinking: Understand – improve – apply. Berlin/

Heidelberg: Springer.

Patton, J. (2008). The new backlog. AgileProductDesign.com.

Pichler, R. (2010). Agile product management with scrum: Creating products that customers love.
Amsterdam: Addison-Wesley Professional.

Poppendieck, M. (2002). Principles of lean thinking. OOPSLA Onward.
Poppendieck, M., & Poppendieck, T. (2003). Lean software development: An agile toolkit. Upper

Saddle River: Addison-Wesley Professional.

Reinertsen, D. G. (1997).Managing the design factory: A product developer’s toolkit. New York:

Free Press.

Reinertsen, D. G. (2009). The principles of product development flow: Second generation lean
product development. Redondo Beach, CA: Celeritas Publishing.

Ries E. (2011). The lean startup: How constant innovation creates radically successful businesses.
Crown Publishing Group. London: UK.

Rother, M., & MyiLibrary. (2010). Toyota kata: managing people for improvement, adaptiveness,
and superior results. New York: McGraw Hill.

Sailing Team Germany Uses. (2011). SAP Sail Better. youtube.com.

Schnitter, J., & Mackert, O. (2011). Large-scale agile software development at SAP AG. Evalua-
tion of Novel Approaches to Software Engineering, 230, 209–220. doi:10.1007/978-3-642-
23391-3_15

Schwaber, K., et al. (1995). Scrum development process. In OOPSLA business object design and
implementation workshop (Vol. 27, pp. 10–19). Austin: TX.

Smith, P. G., & Reinertsen, D. G. (1992). Shortening the product development cycle. Research
Technology Management, 35(3), 44–49.

236 T. Hildenbrand and J. Meyer

http://dx.doi.org/10.1007/978-3-642-23391-3_15/
http://dx.doi.org/10.1007/978-3-642-23391-3_15/


Sutherland, J., & Schwaber, J. (2011). Scrum Guide, http://www.Scrum.org/scrumguides/ (cit.

2011).

Van de Ven, A. H., & Drazin, R. (1985). The concept of fit in contingency theory. Research in
Organizational Behavior, 7(3), 333–365.

Womack, J. P., Jones, D. T. & Daniel, R. (1990). The machine that changed the world. Free Press.
New York: USA.

Womack, J. P., & Jones, D. T. (2003). Lean thinking: Banish waste and create wealth in your
corporation. New York: Simon and Schuster.

Yin, R. K. (2008). Case study research: Design and methods (Vol. 4). Thousand Oaks: Sage

publications, Inc.

Yin, R. K. (2011). Applications of case study research (Vol. 34). Thousand Oaks: Sage

Publications, Inc.

Intertwining Lean and Design Thinking: Software Product Development. . . 237

http://www.Scrum.org/scrumguides/

	Intertwining Lean and Design Thinking: Software Product Development from Empathy to Shipment

	1 Introduction: Related Work and Research Objective
	2 SAP´S Sailing Program and Sailing Team Germany
	3 Intertwining Lean and Design Thinking
	3.1 Our Overall Approach
	3.2 User Research, Envisioning, and Trainings (Phase 1)
	3.3 Synthesis, Vision, and Backlog Elaboration (Phase 2)
	3.4 Scrum-Based Development and Continuous Design (Phase 3)

	4 Evaluation and Discussion
	4.1 Evaluation of Development Process from Empathy to Shipment
	4.2 Story Maps Can Bridge the Gap from Research to Backlog
	4.3 Take Your Time, Stop to Think
	4.4 Innovation Needs Some Waste

	5 Conclusion and Outlook
	References



