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Abstract. Researching into the incomplete information games (IIG) field re-
quires the development of strategies which focus on optimizing the decision 
making process, as there is no unequivocal best choice for a particular play. As 
such, this paper describes the development process and testing of an agent able 
to compete against human players on Poker – one of the most popular IIG. The 
used methodology combines pre-defined opponent models with a reinforcement 
learning approach. The decision-making algorithm creates a different strategy 
against each type of opponent by identifying the opponent’s type and adjusting 
the rewards of the actions of the corresponding strategy. The opponent models 
are simple classifications used by Poker experts. Thus, each strategy is con-
stantly adapted throughout the games, continuously improving the agent’s per-
formance. In light of this, two agents with the same structure but different  
rewarding conditions were developed and tested against other agents and each 
other. The test results indicated that after a training phase the developed strate-
gy is capable of outperforming basic/intermediate playing strategies thus vali-
dating this approach. 

Keywords: Incomplete Information Games, Opponent Modeling, Reinforce-
ment Learning, Poker. 

1 Introduction 

One of the fields with large focus on AI research is games. Because games have a 
limited set of well-defined rules, studying them allows for easy testing of new ap-
proaches making it possible to accurately measure their degree of success. This is 
done by comparing results of many games played against programs based on other 
approaches or against human players, meaning that games have a well-defined metric 
for measuring the development progress [1]. It is then possible to determine with 
more accuracy whether if the solution is optimal to solve a given problem. Also, the 
fact that games have a recreational dimension and present an increasing importance 
for the entertainment industry today motivates further research on this domain. 
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Remarkable results were achieved in games research, such as the well-known Deep 
Blue Computer, which was the first computer to ever defeat a human chess champion 
[2]. However such success has not yet been achieved for incomplete information 
games. This is because that their game state is not fully visible which means that there 
are hidden variables/features. Therefore decision making in these games is more diffi-
cult, because predictions about the missing data must be made. This makes it almost 
impossible to obtain an optimal solution. Poker is a very popular game that presents 
these characteristics because players do not know the cards of their opponents. 

The research on Computer Poker has been active in the past years. Several Poker 
playing agents were developed but none of them has reached a level similar to a ex-
pert human player. In order to overcome the limitations found in previously devel-
oped agents, a new agent has been developed. This approach tries to mimic human 
players by combining opponent models used by expert players and a reinforcement 
learning method. The usage of reinforcement learning in the conception of the agent’s 
strategy allowed for good adaption of the agent to several pre-defined opponent types. 
Two different versions of this agent were implemented and they differ (only) in what 
regards the reward calculation. 

The rest of the paper is organized as follows. Section 2 briefly shows this paper’s 
background by presenting the game of Poker and basic opponent modeling. Section 3 
describes related work, with particular emphasis on Computer Poker. Section 4 
presents this paper’s approach to create a Poker agent. Section 5 describes the valida-
tion process of this approach by indicating the experimental procedure and results. 
Finally, some conclusions are drawn and future research recommendations are as well 
suggested in section 6. 

2 Background 

Poker is a generic name for hundreds of games with similar rules [3], which are called 
variants. This work is focused on a simplified version of the Texas Hold’em variant, 
which is probably the most popular nowadays. Hold’em rules also have specific cha-
racteristics that allow for new developed methodologies to be adapted to other va-
riants with reduced effort [4]. 

The game is based upon the concept of players betting that their current hand is 
stronger than the hands of their opponents. All bets throughout the game are placed in 
the pot and, at the end of the game, the player with the highest ranked hand wins. 
Alternatively, it is also possible to win the game by forcing the opponents to fold their 
hands by making bets that they are not willing to match. Thus, since the opponents’ 
cards are hidden it is possible to win the game with a hand with lower score This is 
done by bluffing - convincing the opponents that one’s hand is the highest ranked one. 

2.1 Hand Ranking 

A Poker hand is a set of five cards that defines the player’s score. The hand rank at 
any stage of the game is the score given by the 5 card combination composed by 
player cards and community cards that has the best possible score. The possible hand 
ranks are (from stronger to weaker): Straight Flush (sequence of same suit), Four of a 
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Kind (4 cards with same rank), Full House (Three of a Kind + Pair), Straight (se-
quence), Three of a Kind (3 cards with same rank), Two Pair, One Pair (2 cards with 
same rank) and Highest Card (when not qualified to other ranks). 

2.2 Rules of Simplified Texas Hold’em 

The rules of the Poker variant used in this study represent a subset of the rules of Tex-
as Hold'em, but only the initial round of the game is considered and it only allows for 
two players. In each game one of the players posts a mandatory minimum bet and the 
other one must bet half of that value. These players are called respectively big-blind 
and small-blind. After that, each player receives two cards – pocket cards – that are 
only seen by the player. The first player to act is the small-blind player and then the 
players play in turns. In each turn they can either match the highest bet (Call), in-
crease that bet (Raise) or forfeit the game and lose the pot (Fold). When one of the 
players calls (except on the first big-blind player turn) five community cards are 
drawn from the deck and both players show their cards. The winning player is the one 
with the highest hand rank. If one of the players folds the other one wins the pot.  

2.3 Opponent Modeling 

One way of classifying opponents in this Poker variant is through VPIP and the ag-
gression factor (AF) of the player [3]. The VPIP is the percentage of games in which 
the players raises at least one time. The aggression factor is the ration between the 
number of ‘aggressive’ actions and the number of ‘passive’ actions (equation 1). 

ܨܣ  ൌ ே௨௠ோ௔௜௦௘௦ே௨௠஼௔௟௟௦  (1) 

Poker experts classify opponents according to table 1, using the aforementioned  
indicators. 

Table 1. Classifying Poker players using Agression Factor and VPIP 

ࡼࡵࡼࢂ  ൏ ૙, ૛ૡ ࡼࡵࡼࢂ ൒ ૙, ૛ૡ ࡲ࡭ ൒ ૚ TightAgressive LooseAgressive ࡲ࡭ ൏ ૚ TightPassive LoosePassive 

3 Related Work 

The first approach to build Poker agents was a rule-based approach which involves 
specifying the action that should be taken for a given game state [1]. The following 
approaches were based on simulation techniques [1, 5-7], i.e. generating random in-
stances in order to obtain a statistical average and decide the action. These approaches 
led to the creation of agents that were able to defeat weak human opponents. 
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The great breakthrough in Poker research began with the use of Nash’s equilibrium 
theory [8, 9]. Since then, several approaches based on Nash Equilibrium emerged: 
Best Response [10], Restricted Nash Response [1, 11] and data-biased response [12]. 
Currently, the best Poker agent Polaris [12] uses a mixture of these approaches. 

Other recent methodologies were based on pattern matching [13, 14] and on the 
Monte Carlo Search Tree algorithm [14, 15]. 

A successful work closely related to this approach is [16]. It presents a reinforce-
ment learning methodology to another simplified version of Poker – 1 card Poker. 
This approach uses Q-Learning to learn how to play against several opponent types. 

Despite all the breakthroughs achieved, there is no known approach in which the 
agent has reached a level similar to a competent human player. 

4 Proposed Approach 

This section describes the structure of the two agents. These agents are similar in 
every aspect except reward conditions. 

4.1 Common Structure 

The agents were developed with a Q-Table containing the state-action pairs. The state 
 :ሻ is defined as࣌)

─ G: A value representing a pair of cards that make the player’s hand. This is useful 
since many hands have the same relative value (e.g. {2♣, 4♥} and {2♦, 4♣}). 

─ P: The player’s seat on the table (big-blind or small-blind). 
─ T: A value representing the opponent type (Tight Aggressive, Tight Passive, Loose 

Aggressive and Loose Passive). 
─ A: A value representing the last action before the agent’s turn (Call, Raise). 

Each state has a direct correspondence to tuple (C – call weight, R – raise weight) as 
described in equation 2. ߪሺܩ, ܲ, ܶ, ሻܣ ՜ ሺܥ, ܴሻ ׷ ܥ ൅ ܴ ൑ ܩ ;1 א ሼ0 … 127ሽ; ܲ א ሼԢ݃݅ܤ,ᇱ ݈݈ܵ݉ܽᇱሽ; ܶ א ሼԢܶܣᇱ,ᇱ ܶܲᇱ,ᇱ ᇱ,ᇱܣܮ ܣ ᇱሽ;  (2)ܲܮ א ሼᇱ݈݈ܽܥᇱ,ᇱ ;ᇱሽ݁ݏܴ݅ܽ ,ܥ  ܴ א ሾ0,1ሿ 
The Q-Table is initially empty and the weights are filled up with random numbers as 
there is need for them. The value of the weights stabilizes as the games proceed, so as 
to choose the option which maximizes profit. However convergence to stable weight 
values is not guaranteed because the game state to action mapping may not be suffi-
cient to fully describe the defined opponent types. 

When the agent plays, it searches the Q-Table to obtain the values of C and R so as 
to decide on the action to take. After retrieving these values, a random number 
(ܰ א ሾ0,1ሿ) is generated. The probability of choosing an action is as on equation 3: ݊݋݅ݐܿܣ ൌ ൝ , ݈݈ܽܥ ܰ א ሾ0, ,݁ݏሿܴܽ݅ܥ ܰ ,ܥሿ א ܥ ൅ ܴሿ݁ݏ݅ݓݎ݄݁ݐ݋ ݈݀݋ܨ    (3) 
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5.1 Procedure 

All tests were performed in a simulated environment. The simulator used was Open 
Meerkat [17], which is an open source simulator that provides an API that facilitates 
the implementation and test of Poker agents. Open Meerkat was specially modified to 
implement the rules described on section 2. The agent was tested against four agents: 

─ AlwaysCallAgent – an agent that matches every bet; 

─ AlwaysAllInAgent – an agent that always bets its full bankroll; 
─ MegaBot [13] – an agent that combines several tactics with a simple heuristic to 

choose the most appropriate tactic against each kind of opponent; 
─ SimpleBot [1] – this agent uses opponent modeling and calculates the expected 

utility of each action based on a Bayesian analysis from simulations. 

There were two stages to the agent testing phase. The first stage allowed the agent to 
build the Q-Table before actually testing its capabilities. Several simulations were run 
until the weights of actions for each state stabilized. The second stage was meant to 
test the agent against other agents as described above. There were 100.000 game si-
mulations for each opponent, with seat permutation, to reduce the variance of results, 
following [1]. The results are displayed in profit evolution charts (figure 2-6). 

5.2 Experiments 

In the first experiments the opponents were AlwaysCallAgent and AlwaysAllInAgent.  
 

 

Fig. 2. Profit of both agents when facing the AlwaysCallAgent 

 

Fig. 3. Profit of both agents when facing the AlwaysAllInAgent 

The results presented on Figure 2 and 3 show that this agent’s approach is capable of 
easily beating very basic agents. In both experiments, the WHSLearner performed bet-
ter. Figures 4 and 5 present the results of experiments where the agent played against 
more competitive opponents – MegaBot and SimpleBot. As can be seen, against more 
competitive opponents, the agents still got a positive profit. An interesting fact is that 
WHLearner performed better than WHSLearner against SimpleBot. This could be due 

0

10000

20000

Pr
of
it WHSLearner

WHLearner

0

10000

20000

Pr
of
it WHSLearner

WHLearner



226 L.F. Teófilo et al. 

to WHLearner having taken more advantage of the training stage than WHSLearner 
because of the number of wins of the first was higher than the number of good decisions 
of the former. 

 

 

Fig. 4. Profit of both agents when facing the MegaBot  

  

Fig. 5. Profit of both agents when facing the SimpleBot 

Finally, the last experiment opposed both agents. Results are shown on figure 6. 

 

Fig. 6. Profit of both agents when facing each other 

Like in most past tests, WHSLearner performed better. This means that adapting 
rewards using decision assessment is probably better than using the matches’ outcome. 

6 Conclusions and Future Work 

Results showed that this approach is a valid starting point to create a complete Texas 
Hold’em agent, since the agent outperformed every opponent in all experiments. 
Another important conclusion can be extracted for the differences between the  
performance of WHSLearner and WHLearner. In most experiences, WHSLearner 
performed better, which means that rewarding good decisions maybe better than re-
warding good outcomes in reinforcement learning algorithms. 

Future work in this project should focus on developing an agent that considers the 
whole set of rules of Texas Hold’em. Moreover, this approach should be tested with 
human players for a more proper assessment. Finally more variables can be intro-
duced to better represent the game state. 
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