
A PLTL-Prover Based on Labelled

Superposition with Partial Model Guidance

Martin Suda1,2,3,� and Christoph Weidenbach1,��

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
2 Saarland University, Saarbrücken, Germany
3 Charles University, Prague, Czech Republic

Abstract. Labelled superposition (LPSup) is a new calculus for PLTL.
One of its distinguishing features, in comparison to other resolution-
based approaches, is its ability to construct partial models on the fly.
We use this observation to design a new decision procedure for the logic,
where the models are effectively used to guide the search. On a repre-
sentative set of benchmarks, our implementation is then shown to con-
siderably advance the state of the art.

1 Introduction

Labelled superposition (LPSup) is a new calculus for Propositional Linear Tem-
poral Logic (PLTL). In previous work [7] we have shown a saturation based
approach to deciding PLTL with LPSup. Here we instead rely on the ability of
LPSup to generate partial models on the fly and use a SAT solver to drive the
search and select inferences. This typically leads to a fast discovery of models,
but also drastically reduces the number of inferences that need to be performed
before an instance can be shown unsatisfiable.

Our method doesn’t work with PLTL formulas directly, but instead relies on
a certain normal form, which we review in Sect. 2. Algorithms for deciding PLTL
formulas are inherently complicated, because one needs to show the existence
of an infinite path through the world structure. Our algorithm is described in
two steps in Sect. 3. First we show how a certain modification of bounded model
checking can be turned into a complete method for the reachability tasks. This is
then used as a subroutine to decide whole PLTL. Although the ideas underlying
our algorithm rely on the theory of [7] that cannot be repeated here in full due to
lack of space, we provide the most important ideas to understand our approach.
In the final section 4, we compare LS4, an implementation of our algorithm, to
other existing PLTL-provers on a representative set of benchmarks. The results
clearly indicate that partial model guidance considerably improves the state of
the art of symbolic based approaches to PLTL satisfiability checking.

� Supported by Microsoft Research through its PhD Scholarship Programme.
�� Supported by the German Transregional Collaborative Research Center SFB/TR 14

AVACS.

B. Gramlich, D. Miller, and U. Sattler (Eds.): IJCAR 2012, LNAI 7364, pp. 537–543, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

538 M. Suda and C. Weidenbach

2 Preliminaries

The language of propositional formulas and clauses over a given signature Σ =
{p, q, . . .} of propositional variables is defined in the usual way. By propositional
valuation, or simply a world, we mean a mapping W : Σ → {0, 1}. We write
W |= P if a propositional formula P is satisfied by W . The syntax of PLTL is
an extension of the propositional one by temporal operators �,♦,U, . . . We do
not detail the syntax here, due to lack of space, but will instead directly rely
on so called Separated Normal Form (SNF) to which any PLTL formula can
be translated by a satisfiability preserving transformation with at most linear
increase in size [6]. The semantics of PLTL is based on a discrete linear model
of time, where the structure of possible time points is isomorphic to N: An
interpretation is an infinite sequence (Wi)i∈N of worlds. In order to talk about
two neighboring worlds at once we introduce a primed copy of the basic signature:
Σ′ = {p′, q′, . . .}. Primes can also be applied to formulas and valuation with the
obvious meaning. Formulas over Σ ∪ Σ′ can be evaluated over the respective
joined valuation: When bothW1 andW2 are valuations overΣ, we write [W1,W2]
as a shorthand for the mapping W1 ∪ (W2)

′ : (Σ ∪Σ′) → {0, 1}.
The input of our method is a refinement of SNF based on the results of [3]:

Definition 1. A PLTL-specification S is a quadruple (Σ, I, T,G) such that

– Σ is a finite propositional signature,

– I is a set of initial clauses Ci (over the signature Σ),

– T is a set of step clauses Ct ∨D′
t (over joined signature Σ ∪Σ′),

– G is a set of goal clauses Cg (over the signature Σ).1

An interpretation (Wi)i∈N is a model of S = (Σ, I, T,G) if

1. for every Ci ∈ I, W0 |= Ci,

2. for every i ∈ N and every Ct ∨D′
t ∈ T , [Wi,Wi+1] |= Ct ∨D′

t,

3. there is infinitely many indices j such that for every Cg ∈ G, Wj |= Cg.

A PLTL-specification S is satisfiable if it has a model.
Our algorithm for deciding satisfiability of PLTL-specifications to be described

next relies on incremental SAT solver technology as described in [5]. There each
call to the SAT solver is parameterized by a set of unit assumptions. It either
returns a model of all the clauses inserted to the solver that also satisfies the given
assumptions, or the UNSAT result along with a subset of the given assumptions
that were needed in the proof. Negation of literals from the returned subset can
be seen as a new conflict clause that has just been shown semantically entailed
by the clauses stored in the solver.

1 The specification stands for the PLTL formula (
∧

Ci)∧� (
∧
(Ct ∨©Dt))∧�♦ (

∧
Cg)

and can be understood as a symbolic representation of a Büchi automaton recogniz-
ing the set of all models of the original input formula.

A PLTL-Prover Based on Labelled Superposition 539

3 The Algorithm

In order to explain the basic mechanics of our algorithm we first focus on a
simpler problem of reaching a goal world only once. That is, given a specification
S = (Σ, I, T,G), we first try to establish whether there is a finite sequence of
worldsW0,W1, . . . ,Wk such thatW0 |= I,Wk |= G and [Wi,Wi+1] |= T for every
two neighboring worldsWi and Wi+1. An algorithm for this problem known from
verification is called Bounded Model Checking (BMC) [2], where one looks for
such a sequence by successively trying increasing values of k (starting with k = 0)
and employs a SAT solver to answer the respective satisfiability queries2 until
a model for the sequence is found. We modify this approach in order to gain
more information from the individual runs with answer UNSAT and to be able
to ensure termination in the case of an overall unsatisfiable input.

The idea is to use multiple instances of the solver, as many as there is worlds
in the current sequence, and build the sequence progressively, from the beginning
towards the end. Each individual solver instance contains variables of the joined
signature (Σ∪Σ′) and thus represents two neighboring worlds. However, only the
primed part is actually used for SAT solving. As the search proceeds forward, the
world model constructed over Σ′-variables in the solver instance i is transformed
to a set of assumptions over the Σ-variables for the instance (i + 1). If a world
model cannot be completed in the instance (i + 1) due to inconsistency (the
current world sequence cannot be extended by one more step) the instance (i+1)
returns a conflict clause over its assumptions on Σ-variables, which is propagated
back and added to the solver instance i as a clause over Σ′. Thus the instance
i will now produce a different world model, a model which additionally satisfies
the added conflict clause. The whole situation is depicted in Fig. 1. We can
also see from there how the individual solver instances are initialized. The first
contains only the clauses from I (and doesn’t depend on assumptions), all the
other instances contain clauses from T , and the last instance, additionally, the
clauses from G.

One round of the algorithm (for a specific value of k) ends either by building
an overall sequence of worlds of length k + 1, which is a reason for termination
with result SAT, or by deriving an empty clause in the first solver instance.
Standard BMC would then simply increase k and continue searching for longer
sequences. We can do better than that. By analyzing the overall proof3 of the
empty clause, we may discover it doesn’t depend on (has not been derived with
the help of) I or G in which case we terminate and report overall UNSAT: the
same proof will also work for larger values of k. Even if the proof depends on
both I, G (and of course T), we can still perform the following check: Define layer
j as the set of all clauses that depend on G and have been propagated to the
solver instance that lies j steps before the last one. Formally, we set layer 0 to be

2 For every fixed k the question becomes whether there exist a model over
⋃k

i=0 Σ
(k)

of the formula I(0) ∧∧k−1
i=0 T (i) ∧G(k), where T (i) stands for T primed i times, etc.

3 Proof recording is not needed on the SAT solver side. The described analysis can be
implemented with the help of so called marker literals as explained, e.g., in [1].

540 M. Suda and C. Weidenbach

012Layers: . . .

I

model

conflictT

T

T Gassumptions

clause

. . .W2W1Worlds: W0

Fig. 1. The information exchanged between the individual solver instances. Completed
world model is passed forward as a set of variable assumptions for the next instance.
Failed run delivers a conflict clause over the variable assumptions so that the previous
instance can be updated and SAT checking may find a different model. The very first
solver instance doesn’t depend on assumptions. When the last instance reports SAT,
we have an overall model for the reachability task.

equal to G. Now, if there are indices j1 �= j2 such that layers j1 and j2 are equal,
we also terminate the algorithm with result UNSAT: we have just discovered a
layer repetition in the proof, which means we know how we would derive empty
clauses also in any of the rounds to come.4 Note that the case of repeating layers
is bound to occur, if not preceded by a different reason for termination, as there
are only finitely many different sets of clauses over Σ. This shows the overall
termination, and thus completeness, of our modification of BMC.

We now move to providing an algorithm for the general case, where a goal
world is required to be shown reachable infinitely many times. In that algorithm
we use the above described procedure as a basic building block. In fact, we call
the configuration of solver instances as the one in Fig. 1 a block. The algorithm
starts by building the first block exactly as described above. If this first step
doesn’t succeed in providing a sequence of worlds, leading from a world satisfying
I to a one satisfying G, we terminate with result UNSAT. Otherwise we continue
adding new blocks, but now the first solver instance of each new block no longer
contains the clauses from I and is instead connected via the model/assumptions
link described before to the world represented by the last solver instance of
the previous block. This way we continue producing a sequence of blocks, each
block being itself a sequence of solver instances (see Fig. 2), the whole thing
representing a partial (unfinished) overall model of the given specification. As
in the above procedure, each block grows from its initial length 1, and is only
extended when necessary and just by one solver instance at a time.

For termination, we perform the following model repetition check to recognize
a satisfiable specification. Each time a particular run of the SAT solver constructs

4 Intuitively, the proof can be ”cut” at the index j1, and the part between j1 and j2
inserted arbitrarily many times, thus giving rise to proofs of arbitrary length.

A PLTL-Prover Based on Labelled Superposition 541

I G G G

block 1 block 2 block 3 . . .

Fig. 2. The layout of blocks as the search proceeds forward. The copies of clauses form
T that occupy the positions of every pair of neighboring worlds are not depicted.

a new world model, i.e. a new world in the sequence, we scan all the worlds of
previous blocks, and if one of them is equal to the new one, we terminate and
report SAT. Note that only the worlds of previous blocks are eligible for the test,
because we need to ensure that at least one world satisfying the clauses from G
lies between the two repeating ones. The particular infinite sequence formally
required as a model of the specification in now easily seen to be represented by
the world sequence constructed so far, where the segment of worlds between the
repetition will be traversed infinitely often.

Recognizing unsatisfiable specifications is again based on proof analysis. Note
that now more than one block (or more precisely the set of goal clauses thereof)
may be involved in the derivation of the empty clause. Each time an empty clause
is derived, we extend the latest block involved in the proof by one additional
solver instance and discard any blocks further to the right of it (in the sense of
Fig. 2). Then we resume the search. As before each block maintains a sequence
of layers of clauses. This time layer j contains the clauses that depend on the
block’s own copy of G and have been propagated to a solver instance that lies
j steps before its last one. Detecting layer repetition for the first block incurs
termination with the result UNSAT as before. If we detect repetition in a block
which is not the first one, we perform a so called leap inference: A particular
repeating layer is selected (see [7] for the details) and its clauses are globally
added to the set G. Then the current block is discarded and the search continues
from the last solver instance of the previous block. By construction,5 this last
instance currently doesn’t provide a model for the strengthened set G, which is
a key observation for proving overall termination of the algorithm, because it
implies that the leap inference can only be applied finitely many times.

4 Experimental Evaluation

We implemented our algorithm in C++ with Minisat [5] version 2.2 as the
backend solver. Although a more efficient implementation with just one solver
instance (over an extended signature and special decision heuristic) seems pos-
sible, we really use multiple instances of the solver as described before, because
it allows us to use the solver in a blackbox manner. An additional abstraction

5 The intuition behind the leap inference is the following: We have just discovered that
none of the successor worlds of the lastly visited G-world is itself a G-world. Thus
the lastly visited G-world doesn’t have the vital property of lying on a loop in the
state space and may be safely discarded from consideration.

542 M. Suda and C. Weidenbach

layer over the solver has been developed that allows us to mark any clause by
a set of block indices it depends on in a form of marker literals [1]. That is
how we perform the proof analysis described in the previous section without an
actual need of true proof recording on the SAT solver side. The standard set

container is used to represent layers and a simple linear pass implements both
the model repetition check and the layer repetition check. We found out that
most of the overall running time is typically spent inside individual calls to Min-
isat and therefore didn’t attempt any further optimizations of the checks. As an
additional trick we adapted the variable and clause elimination preprocessing of
Minisat [4] to be also used on our inputs. This is done only once, before the ac-
tual algorithm starts. Special care needs to be taken, because of the dependency
between the variables in Σ and Σ′. Moreover, we still need to be able to separate
the clauses after elimination into sets I, T and G, which can be achieved by a
clever use of marker literals.

Table 1. Number of problems (SAT/UNSAT) solved by each prover – timelimit 60s

problem set # problems LS4 trp++ ‘satisfiable’ ‘model’

TRP-suite 22 2/20 2/19 2/13 2/13
HW-reach 465 38/55 3/30 0/0 0/0
HW-live 118 38/15 7/7 3/4 0/1

We compared our implementation6, which we call LS4, with clausal temporal
resolution prover trp++7 version 2.1 and two tableaux-based decision procedures
implemented in the PLTL module of the Logics Workbench8 Version 1.1, namely
the ‘satisfiable’ function and the ‘model’ function. All the tests were performed
on our servers with 3.16 GHz Xeon CPU, 16 GB RAM, running Debian 5.0. We
collected several benchmark sets from different sources. The TRP-suite consists
of 22 problems available on the web page of trp++7 in the TOY and FO subdirec-
tories. Further, we translated into PLTL the benchmarks from Hardware Model
Checking Competition (HWMCC) 20119. We obtained a set of 465 problems,
here denoted HW-reach, from the safety checking track, and 118 problems from
the liveness track, HW-live. Note that the competition examples are natively
described as circuits in the form of And-Inverter Graphs; these were translated
into clause form by standard techniques. The results from these benchmarks are
summarized in Table 1. For each prover we report the number of satisfiable and
unsatisfiable problems solved in 60 seconds. For a second test we generated for-
mulas from several scalable families6 and in Table 2 we report for each family
the maximal size a prover was able to solve in 60 seconds.

We can see that LS4 is the only system to solve all the problems in the TRP-
suite in the given time limit. It also by far outperforms the other systems on

6 http://www.mpi-inf.mpg.de/~suda/ls4.html
7 http://www.csc.liv.ac.uk/~konev/software/trp++/
8 http://www.lwb.unibe.ch/
9 http://fmv.jku.at/hwmcc11/

http://www.mpi-inf.mpg.de/~suda/ls4.html
http://www.csc.liv.ac.uk/~konev/software/trp++/
http://www.lwb.unibe.ch/
http://fmv.jku.at/hwmcc11/

A PLTL-Prover Based on Labelled Superposition 543

Table 2. Maximal formula size (from the range) solved in 60s by the provers.

formula family size range LS4 trp++ ‘satisfiable’ ‘model’

C1 1-100 100 100 3 100
C2 2-20 19 20 3 2
bincnt u 1-16 10 16 11 6
bincnt s 1-16 10 11 11 7
binflip u 2-10 10 5 6 3
binflip a 2-10 10 5 6 4

the problems coming from verification.10 The formula families let us see that
guidance by a partial model is not always an advantage. For example, on the
bincnt u family, LS4 has to construct an exponentially long path before it starts
deriving conflict clauses. Moreover, these need to be propagated back trough all
the worlds of the path before the final contradiction is reached. On the other
side, the binflip families are already more difficult for the saturation based prover
trp++. For example, on binflip u of size 5, trp++ generates 1494299 resolvents
before deriving the empty clause (in 3.67s), while LS4 needs only 1891 calls to
Minisat and derives 936 non-empty conflict clauses before reaching the same con-
clusion (and spends 0.01s on that). To sum up, our test results demonstrate that
LS4 considerably advances the state of the art in PLTL satisfiability checking.

References

[1] Aśın, R., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: Efficient Gen-
eration of Unsatisfiability Proofs and Cores in SAT. In: Cervesato, I., Veith, H.,
Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 16–30. Springer,
Heidelberg (2008)

[2] Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

[3] Degtyarev, A., Fisher, M., Konev, B.: A Simplified Clausal Resolution Procedure
for Propositional Linear-Time Temporal Logic. In: Egly, U., Fermüller, C. (eds.)
TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 85–99. Springer, Heidelberg (2002)

[4] Eén, N., Biere, A.: Effective Preprocessing in SAT Through Variable and Clause
Elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005)

[5] Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

[6] Fisher, M., Dixon, C., Peim, M.: Clausal temporal resolution. ACM Trans. Comput.
Logic 2, 12–56 (2001)

[7] Suda, M., Weidenbach, C.: Labelled Superposition for PLTL. In: Bjørner, N.,
Voronkov, A. (eds.) LPAR-18. LNCS, vol. 7180, pp. 391–405. Springer, Heidelberg
(2012)

10 Note that a dedicated tool suprove, the winner of the safety checking track of
HWMCC 2011, solved 395 problems in 900s. The winner of the liveness track, the
tool tip, solved 77 problems within the same timelimit.

	A PLTL-Prover Based on Labelled Superposition with Partial Model Guidance
	Introduction
	Preliminaries
	The Algorithm
	Experimental Evaluation
	References

