
Extended Caching, Backjumping
and Merging for Expressive Description Logics

Andreas Steigmiller1, Thorsten Liebig2, and Birte Glimm1

1 Ulm University, Ulm, Germany
firstname.lastname@uni-ulm.de

2 derivo GmbH, Ulm, Germany
liebig@derivo.de

Abstract. With this contribution we push the boundary of some known optimi-
sations such as caching to the very expressive Description Logic SROIQ. The
developed method is based on a sophisticated dependency management and a
precise unsatisfiability caching technique, which further enables better informed
tableau backtracking and more efficient pruning. Additionally, we optimise the
handling of cardinality restrictions, by introducing a strategy called pool-based
merging.

We empirically evaluate the proposed optimisations within the novel reason-
ing system Konclude and show that the proposed optimisations indeed result in
significant performance improvements.

1 Motivation

Tableau algorithms are dominantly used in sound and complete reasoning systems,
which are able to deal with ontologies specified in the OWL 2 DL ontology language
[16]. Such algorithms are usually specified in terms of Description Logics (DLs) [1],
which provide the formal basis for OWL, e.g., OWL 2 is based on the DL SROIQ [11].

To our knowledge, all competitive systems for reasoning with SROIQ knowledge
bases such as FaCT++ [19], HermiT,1 jFact,2 or Pellet [17] use a variant of the tableau
method – a refutation-based calculus that systematically tries to construct an abstraction
of a model for a given query by exhaustive application of so called tableau rules.

Due to the wide range of modelling constructs supported by expressive DLs, the
typically used tableau algorithms have a very high worst-case complexity. Developing
optimisations to nevertheless allow for highly efficient implementations is, therefore, a
long-standing research area in DLs (see, e.g., [13,20]). A very effective and widely im-
plemented optimisation technique is “caching”, where one caches, for a set of concepts,
whether they are known to be, or can safely be assumed to be, satisfiable or unsatisfi-
able [4]. If the set of concepts appears again in a model abstraction, then a cache-lookup
allows for skipping further applications of tableau rules. Caching even allows for im-
plementing worst-case optimal decision procedures forALC [6].

Unfortunately, with increasing expressivity some of the widely used optimisations
become unsound. For instance, naively caching the satisfiability status of interim

1 http://www.hermit-reasoner.com
2 http://jfact.sourceforge.net/

B. Gramlich, D. Miller, and U. Sattler (Eds.): IJCAR 2012, LNAI 7364, pp. 514–529, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.hermit-reasoner.com
http://jfact.sourceforge.net/

Extended Caching, Backjumping and Merging 515

results easily causes unsoundness in the presence of inverse roles due to their possi-
ble interactions with universal restrictions [1, Chapter 9]. On the other hand, for fea-
tures such as cardinality restrictions there are nearly no optimisations yet. An attempt
to use algebraic methods [9,5], i.e., by combining a tableau calculus with a proce-
dure to solve systems of linear (in)equations, performs well, but requires significant
changes to the calculus and has not (yet) been extended to very expressive DLs such as
SROIQ.

Our contribution in this paper is two-fold. We push the boundary of known optimi-
sations, most notably caching, to the expressive DL SROIQ. The developed method is
based on a sophisticated dependency management and a precise unsatisfiability caching
technique, which further enables better informed tableau backtracking and more effi-
cient pruning (Section 3). In addition we optimise the handling of cardinality restric-
tions, by introducing a strategy called pool-based merging (Section 4). Our techniques
are grounded in the widely implemented tableau calculus for SROIQ [11], which
makes it easy to transfer our results into existing tableau implementations. The pre-
sented optimisations are implemented within a novel reasoning system, called Kon-
clude [15]. Our empirical evaluation shows that the proposed optimisations result in
significant performance improvements (Section 5).

2 Preliminaries

Model construction calculi, such as tableau, decide the consistency of a knowledge
base K by trying to construct an abstraction of a model for K , a so-called “completion
graph”. A completion graph G is a tuple (V, E,L, �̇), where each node x ∈ V represents
one or more individuals, and is labelled with a set of concepts,L(x), which the individ-
uals represented by x are instances of; each edge 〈x, y〉 represents one or more pairs of
individuals, and is labelled with a set of roles, L(〈x, y〉), which the pairs of individuals
represented by 〈x, y〉 are instances of. The relation �̇ records inequalities, which must
hold between nodes, e.g., due to at-least cardinality restrictions.

The algorithm works by initialising the graph with one node for each Abox indi-
vidual/nominal in the input KB, and using a set of expansion rules to syntactically
decompose concepts in node labels. Each such rule application can add new concepts
to node labels and/or new nodes and edges to the completion graph, thereby explicat-
ing the structure of a model. The rules are repeatedly applied until either the graph is
fully expanded (no more rules are applicable), in which case the graph can be used to
construct a model that is a witness to the consistency ofK , or an obvious contradiction
(called a clash) is discovered (e.g., both C and ¬C in a node label), proving that the
completion graph does not correspond to a model. The input knowledge baseK is con-
sistent if the rules (some of which are non-deterministic) can be applied such that they
build a fully expanded, clash free completion graph. A cycle detection technique called
blocking ensures the termination of the algorithm.

516 A. Steigmiller, T. Liebig, and B. Glimm

2.1 Dependency Tracking

Dependency tracking keeps track of all dependencies that cause the existence of con-
cepts in node labels, roles in edge labels as well as accompanying constrains such as
inequalities that must hold between nodes. Dependencies are associated with so-called
facts, defined as follows:

Definition 1 (Fact). We say that G contains a concept fact C(x) if x ∈ V and C ∈ L(x),
G contains a role fact r(x, y) if 〈x, y〉 ∈ E and r ∈ L(〈x, y〉), and G contains an inequality
fact x �̇ y if x, y ∈ V and (x, y) ∈ �̇. We denote the set of all (concept, role, or inequality)
facts in G as FactsG.

Dependencies now relate facts in a completion graph to the facts that caused their exis-
tence. Additionally, we annotate these relations with a running index, called dependency
number, and a branching tag to track non-deterministic expansions:

Definition 2 (Dependency). Let d be a pair in FactsG × FactsG. A dependency is of
the form dn,b with n ∈ IN0 a dependency number and b ∈ IN0 a branching tag.

We inductively define the dependencies for G, written DepG. If G is an initial com-
pletion graph, then DepG = ∅. Let R be a tableau rule applicable to a completion
graph G with {c0, . . . , ck} a minimal set of facts in G that satisfy the preconditions of
R. If DepG = ∅, then nm = bm = 0, otherwise, let nm = max{n | dn,b ∈ DepG} and
bm = max{b | dn,b ∈ DepG}. If R is non-deterministic, then bR = 1 + bm, otherwise
bR = 0. Let G′ be the completion graph obtained from G by applying R and let c′0, . . . , c

′
�

be the newly added facts in G′, then

DepG′ = DepG ∪ {(c′j, ci)n,b | 0 ≤ i ≤ k, 0 ≤ j ≤ �, n = nm + 1 + (j ∗ k) + i,
b = max{{bR} ∪ {b′ | (ci, c)n′,b′ ∈ DepG}}}.

The branching tag indicates which facts were added non-deterministically:

a0

x1

x2

L(a0) = {

L(x1) = {

L(x2) = {

(∃r.(A � (∃r.(∀r−.B)))) , (∀r.¬B) , (C � D) , C }

r }

(A � (∃r.(∀r−.B))) , ¬B , A , (∃r.(∀r−.B)) , B }

r }

(∀r−.B) }

L(〈a0, x1〉) = {

L(〈x1, x2〉) = {

b2,0

c3,0

f 6,0
g7,0

d4,0
e5,0

a1,1

h8,0

i9,0

j10,0

k11,0

Fig. 1. Tracked dependencies for all facts in the generated completion graph

Extended Caching, Backjumping and Merging 517

Definition 3 (Non-deterministic Dependency). For dn,b ∈ DepG with d = (c1, c2), let
Dd = {(c2, c3)n′ ,b′ | (c2, c3)n′ ,b′ ∈ DepG}. The dependency dn,b is a non-deterministic
dependency in G if b > 0 and either Dd = ∅ or max{b′ | (c, c′)n′,b′ ∈ Dd} < b.

Figure 1 illustrates a completion graph obtained in the course of testing the consistency
of a knowledge base with three concept assertions:

a0 : (∃r.(A � (∃r.(∀r−.B)))) a0 : (∀r.¬B) a0 : (C � D).

Thus, the completion graph is initialised with the node a0, which has the three con-
cepts in its label. Initially, the set of dependencies is empty. For the concepts and roles
added by the application of tableau rules, the dependencies are shown with dotted lines,
labelled with the dependency. The dependency number increases with every new de-
pendency. The branching tag is only non-zero for the non-deterministic addition of C to
the label of a0 in order to satisfy the disjunction (C � D). Note the presence of a clash
due to B and ¬B in the label of x1.

3 Extended Caching and Backtracking

In the following we introduce improvements to caching and backjumping by present-
ing a more informed dependency directed backtracking strategy that also allows for
extracting precise unsatisfiability cache entries.

3.1 Dependency Directed Backtracking

Dependency directed backtracking is an optimisation that can effectively prune irrele-
vant alternatives of non-deterministic branching decisions. If branching points are not
involved in clashes, it will not be necessary to compute any more alternatives of these
branching points, because the other alternatives cannot eliminate the cause of the clash.
To identify involved non-deterministic branching points, all facts in a completion graph
are labelled with information about the branching points they depend on. Thus, the
united information of all clashed facts can be used to identify involved branching points.
A typical realisation of dependency directed backtracking is backjumping [1,20], where
the dependent branching points are collected in the dependency sets for all facts.

3.2 Unsatisfiability Caching

Another widely used technique to increase the performance of a tableau implementation
is caching, which comes in two flavours: satisfiability and unsatisfiability caching. For
the former, one caches sets of concepts, e.g., from node labels, that are known to be
satisfiable. In contrast, for an unsatisfiability cache, we cache sets of concepts that are
unsatisfiable. For such a cached set, any superset is also unsatisfiable. Thus, one is
interested in caching a minimal, unsatisfiable set of concepts. Although the caching of
satisfiable and unsatisfiable sets of concepts is often considered together, we focus here
on the unsatisfiability caching problem since the two problems are quite different in
nature and already the required data structure for an efficient cache retrieval can differ
significantly.

518 A. Steigmiller, T. Liebig, and B. Glimm

Definition 4 (Unsatisfiability Cache). Let K be a knowledge base, ConK the set of
(sub-)concepts that occur in K . An unsatisfiability cache UCK for K is a subset of
2ConK such that each cache entry S ∈ UCK is an unsatisfiable set of concepts. An un-
satisfiability retrieval for UCK and a completion graph G for K takes a set of concepts
S ⊆ ConK from a node label of G as input. If UCK contains a set S⊥ ⊆ S , then S⊥ is
returned; otherwise, the empty set is returned.

Deciding when we can safely create a cache entry rapidly becomes difficult with in-
creasing expressivity of the used DL. Already with blocking on tableau-based systems
for the DL ALC care has to be taken to not generate invalid cache entries [7]. There
are some approaches for caching with inverse roles [2,3,6], where possible propagations
over inverse roles from descendant nodes are taken into account. The difficulty increases
further in the presence of nominals and, to the best of our knowledge, the problem of
caching with inverses and nominals has not yet been addressed in the literature. In this
setting, it is difficult to determine, for a node x with a clash in its label, which nodes
(apart from x) are also labelled with unsatisfiable sets of concepts. Without nominals
and inverse roles, we can determine the ancestor y of x with the last non-deterministic
expansion and consider the labels of all nodes from x up to y as unsatisfiable. With
inverse roles, a non-deterministic rule application on a descendant node of x can be
involved in the creation of the clash, whereby the node labels that can be cached as
unsatisfiable become limited.

In order to demonstrate the difficulties with inverse roles, let us assume that the
example in Figure 1 is extended such that ((∀r−.B) � E) ∈ L(x2) and that (∀r−.B) ∈
L(x2) results from the non-deterministic expansion of the disjunction. For the resulting
clash in L(x1), it is not longer sufficient to consider only non-deterministic expansions
on ancestor nodes. The label of x2 cannot be cached because some facts (¬B) involved
in the clash are located on different nodes (x1). Furthermore, if trying the disjunct E also
leads to a clash, the disjunction ((∀r−.B) � E) in L(x2) is unsatisfiable in the context
of this completion graph. Nevertheless, a cache entry cannot be generated because (at
least) the first disjunct involves facts of an ancestor node. In order to also handle inverse
roles, it would, therefore, be necessary to remember all nodes or at least the minimum
node depth involved in the clashes of all alternatives. In the presence of nominals, it
further becomes necessary to precisely manage the exact causes of clashes, e.g., via
tracking the dependencies as presented in Section 2.1. If such a technique is missing,
often the only option is to deactivate caching completely [17,20].

Since node labels can have many concepts that are not involved in any clashes, the
precise extraction of a small set of concepts that are in this combination unsatisfiable
would yield better entries for the unsatisfiability cache. With an appropriate subset re-
trieval potentially more similar also unsatisfiable node labels can be found within the
cache. We call this technique precise caching. Although techniques to realise efficient
subset retrieval exist [10], unsatisfiability caches based on this idea are only imple-
mented in very few DL reasoners [8]. Furthermore, the often used backjumping only
allows the identification of all branching points involved in a clash, but there is no in-
formation about how the clash is exactly caused. As a result, only complete node labels
can be saved in the unsatisfiability cache. We refer to this often used form of caching
combined with only an equality cache retrieval as label caching.

Extended Caching, Backjumping and Merging 519

For precise caching, the selection of an as small as possible but still unsatisfiable
subset of a label as cache entry should be adjusted to the cache retrieval strategy, i.e.,
the strategy of when the cache is queried in the tableau algorithm. Going back to the
example in Figure 1, for the node x1 the set {¬B, (∃r.(∀r−.B))} could be inserted into the
cache as well as {¬B, (A� (∃r.(∀r−.B)))}. The number of cache entries should, however,
be kept small, because the performance of the retrieval decreases with an increasing
number of entries. Thus, the insertion of concepts for which the rule application is cheap
(e.g., concept conjunction) should be avoided. Concepts that require the application
of non-deterministic or generating rules are more suitable, because the extra effort of
querying the unsatisfiability cache before the rule application can be worth the effort.
Optimising cache retrievals for incremental changes further helps to efficiently handle
multiple retrievals for the same node with identical or slightly extended concept labels.

The creation of new unsatisfiability cache entries based on dependency tracking can
be done during backtracing, which is also coupled with the dependency directed back-
tracking as described next. Basically all facts involved in a clash are backtraced to
collect the facts that cause the clash within one node, whereby then an unsatisfiability
cache entry can be created.

3.3 Dependency Backtracing

The dependency tracking defined in Section 2.1 completely retains all necessary infor-
mation to exactly trace back the cause of the clash. Thus, this backtracing is qualified
to identify all involved non-deterministic branching points for the dependency directed
backtracking and also to identify small unsatisfiable sets of concepts that can be used
to create new unsatisfiability cache entries.

Algorithm 1 performs the backtracing of facts and their tracked dependencies in the
presence of inverse roles and nominals. If all facts and their dependencies are collected
on the same node while backtracing, an unsatisfiability cache entry with these facts can
be generated, assuming all facts are concept facts. As long as no nominal or Abox indi-
vidual occurs in the backtracing, the unsatisfiability cache entries can also be generated
while all concept facts have the same node depth. Thus, an important task of the back-
tracing algorithm is to hold as many facts as possible within the same node depth to
allow for the generation of many cache entries. To realise the backtracing, we introduce
the following data structure:

Definition 5 (Fact Dependency Node Tuple). A fact dependency node tuple for G is
a triple 〈c, dn,b, x〉 with c ∈ FactsG, dn,b ∈ DepG and x ∈ V. Abbreviatory we also write
〈C, dn,b, x〉 if c is the concept fact C(x).

If a clash is discovered in the completion graph, a set of fact dependency node tuples
is generated for the backtracing. Each tuple consists of a fact involved in the clash, an
associated dependency and the node where the clash occurred. The algorithm gets this
set T of tuples as input and incrementally traces the facts back from the node with the
clash to nodes with depth 0 (Abox individuals or root nodes).

In each loop round (line 3) some tuples of T are exchanged with tuples, whose facts
are the cause of the exchanged one. To identify which tuple has to be traced back first,
the current minimum node depth (line 4) and the maximum branching tag (line 5) are

520 A. Steigmiller, T. Liebig, and B. Glimm

Algorithm 1. Backtracing Algorithm
Require: A set of fact dependency node tuples T obtained from clashes
1: procedure dependencyBacktracing(T)
2: pendingUnsatCaching ← f alse
3: loop
4: minD ←minimumNodeDepth(T)
5: maxB ←maximumBranchingTag(T)
6: A← {t ∈ T | nodeDepth(t)> minD ∧ hasDeterministicDependency(t)}
7: C ← ∅
8: if A � ∅ then
9: pendingUnsatCaching ← true

10: for all t ∈ A do
11: T ← (T \ t) ∪ getCauseTuplesByDependency(t)
12: end for
13: else
14: B← {t ∈ T | nodeDepth(t)> minD ∧ branchingTag(t)= maxB}
15: if B = ∅ then
16: if pendingUnsatCaching = true then
17: pendingUnsatCaching ←tryCreateUnsatCacheEntry(T)
18: end if
19: if hasNoDependency(t) for all t ∈ T then
20: pendingUnsatCaching ←tryCreateUnsatCacheEntry(T)
21: return
22: end if
23: C ← {t ∈ T | branchingTag(t)= maxB}
24: end if
25: t ←anyElement(B∪C)
26: if hasDeterministicDependency(t) then
27: T ← (T \ t) ∪ getCauseTuplesByDependency(t)
28: else
29: b←getNonDeterministicBranchingPoint(t)
30: if allAlternativesOfNonDetBranchingPointProcessed(b) then
31: T ← T ∪ loadTuplesFromNonDetBranchingPoint(b)
32: T ← (T \ t) ∪ getCauseTuplesByDependency(t)
33: T ←forceTuplesBeforeBranchingPoint(T,b)
34: pendingUnsatCaching ←tryCreateUnsatCacheEntry(T)
35: else
36: T ←forceTuplesBeforeBranchingPoint(T,b)
37: saveTuplesToNonDetBranchingPoint(T, b)
38: jumpBackTo(maxB)
39: return
40: end if
41: end if
42: end if
43: end loop
44: end procedure

Extended Caching, Backjumping and Merging 521

extracted from the tuples of T . All tuples, whose facts are located on a deeper node and
whose dependencies are deterministic, are collected in the set A. Such tuples will be
directly traced back until their facts reach the current minimum node depth (line 10-
12). If there are no more tuples on deeper nodes with deterministic dependencies, i.e.,
A = ∅, the remaining tuples from deeper nodes with non-deterministic dependencies
and the current branching tag are copied into B (line 14) in the next round. If B is not
empty, one of these tuples (line 25) and the corresponding non-deterministic branching
point (line 29) are processed. The backtracing is only continued, if all alternatives of the
branching point are computed as unsatisfiable. In this case, all tuples, saved from the
backtracing of other unsatisfiable alternatives, are added to T (line 31). Moreover, for c
the fact in t, t can be replaced with tuples for the fact on which c non-deterministically
depends (line 32).

For a possible unsatisfiability cache entry all remaining tuples, which also depend on
the non-deterministic branching point, have to be traced back until there are no tuples
with facts of some alternatives of this branching point left (line 33). An unsatisfiability
cache entry is only generated (line 34), if all facts in T are concept facts for the same
node or on the same node depth.

Unprocessed alternatives of a non-deterministic branching point have to be com-
puted before the backtracing can be continued. It is, therefore, ensured that tuples do
not consist of facts and dependencies from this alternative, which also allows for re-
leasing memory (line 36). The tuples are saved to the branching point (line 37) and the
algorithm jumps back to an unprocessed alternative (line 38).

If B is also empty, but there are still dependencies to previous facts, some tuples
based on the current branching tag have to remain on the current minimum node depth.
These tuples are collected in the set C (line 23) and are processed separately one per
loop round, similar to the tuples of B, because the minimum node depth or maximum
branching tag may change. The tuples of C can have deterministic dependencies, which
are processed like the tuples of A (line 27). If all tuples have no more dependencies to
previous facts, the algorithm terminates (line 21).

Besides the creation of unsatisfiability cache entries after non-deterministic depen-
dencies (line 34), cache entries may also be generated when switching from a deeper
node to the current minimum node depth in the backtracing (line 9 and 17) or when the
backtracing finishes (line 20). The function that tries to create new unsatisfiability cache
entries (line 17, 20, and 34) returns a Boolean flag that indicates whether the attempt
has failed, so that the attempt can be repeated later.

For an example, we consider the clash {¬B, B} in the completion graph of Figure 1.
The initial set of tuples for the backtracing is T1 (see Figure 2). Thus, the minimum node
depth for T1 is 1 and the maximum branching tag is 0. Because there are no tuples on a
deeper node, the sets A and B are empty for T1. Since all clashed facts are generated de-
terministically, the dependencies of the tuples have the current maximum branching tag
0 and are all collected into the set C. The backtracing continues with one tuple t from
C, say t = 〈B, k11,0, x1〉. The dependency k of t relates to the fact (∀r−.B)(x2), which is a
part of the cause and replaces the backtraced tuple t in T1. The resulting set T2 is used in
the next loop round. The minimum node depth and the maximum branching tag remain
unchanged, but the new tuple has a deeper node depth and is traced back with a higher

522 A. Steigmiller, T. Liebig, and B. Glimm

T1 = {〈¬B,d4,0, x1〉, 〈¬B, e5,0, x1〉, 〈B, j10,0, x1〉, 〈B, k11,0, x1〉}↓
T2 = {〈¬B,d4,0, x1〉, 〈¬B, e5,0, x1〉, 〈B, j10,0, x1〉, 〈(∀r−.B), i9,0, x2〉}↓
T3 = {〈¬B,d4,0, x1〉, 〈¬B, e5,0, x1〉, 〈B, j10,0, x1〉, 〈(∃r.(∀r−.B)),g7,0, x1〉}↓
T4 = {〈¬B,d4,0, x1〉, 〈¬B, e5,0, x1〉, 〈r(x1, x2), h8,0, x1〉, 〈(∃r.(∀r−.B)),g7,0, x1〉}↓
T5 = {〈¬B,d4,0, x1〉, 〈¬B, e5,0, x1〉, 〈(∃r.(∀r−.B)),g7,0, x1〉}↓
T6 = {〈¬B,d4,0, x1〉, 〈(∀r.¬B),−, a0〉, 〈(∃r.(∀r−.B)),g7,0, x1〉}↓
T7 = {〈r(a0, x1), b2,0, x1〉, 〈(∀r.¬B),−, a0〉, 〈(A � (∃r.(∀r−.B))), c3,0, x1〉}↓
T8 = {〈(∃r.(A � (∃r.(∀r−.B))))−,a0〉, 〈(∀r.¬B),−, a0〉}
Fig. 2. Backtracing sequence of tuples as triggered by the clash of Figure 1

priority to enable unsatisfiability caching again. Thus, 〈(∀r−.B), i9,0, x2〉 is added to the
set A and then replaced by its cause, leading to T3. Additionally, a pending creation
of an unsatisfiability cache entry is noted, which is attempted in the third loop round
since A and B are empty. The creation of a cache entry is, however, not yet sensible
and deferred since T3 still contains an atomic clash. Let t = 〈B, j10,0, x1〉 ∈ C be the
tuple from T3 that is traced back next. In the fourth round, the creation of a cache entry
is attempted again, but fails because not all facts are concepts facts. The backtracing
of 〈r(x1, x2), h8,0, x1〉 then leads to T5. In the following round an unsatisfiability cache
entry is successfully created for the set {¬B, (∃r.(∀r−.B))}. Assuming that now the tuple
〈¬B, e5,0, x1〉 is traced back, we obtain T6, which includes the node a0. Thus, the mini-
mum node depth changes from 1 to 0. Two more rounds are required until T8 is reached.
Since all remaining facts in T8 are concept assertions, no further backtracing is possible
and an additional cache entry is generated for the set {(∃r.(A� (∃r.(∀r−.B)))), (∀r.¬B)}.

If a tuple with a dependency to node a0 had been traced back first, it would have
been possible that the first unsatisfiability cache entry for the set {¬B, (∃r.(∀r−.B))}
was not generated. In general, it is not guaranteed that an unsatisfiability cache entry
is generated for the node where the clash is discovered if there is no non-deterministic
rule application and if the node is not a root node or an Abox individual. Furthermore,
if there are facts that are not concept facts, these can be backtraced with higher priority,
analogous to the elements of the set A, to make unsatisfiability cache entries possible
again. To reduce the repeated backtracing of identical tuples in different rounds, an
additional set can be used to store processed tuples for the alternative for which the
backtracing is performed.

The backtracing can also be performed over nominal and Abox individual nodes.
However, since Abox and absorbed nominal assertions such as {a} � C have no previous
dependencies, this can lead to a distributed backtracing stuck on different nodes. In this
case, no unsatisfiability cache entries are possible.

A less precise caching can lead to an adverse interaction with dependency directed
backtracking. Consider the example of Figure 3, where the satisfiability of the combina-
tion of the concepts (∃r.(∃s.(A�B))), ((C1�∀r.C)�(C2�∀r.C)), and ((D1�∀r.(∀s.¬A))�
(D2�∀r.(∀s.¬A))) is tested. Note that, in order to keep the figure readable, we no longer

Extended Caching, Backjumping and Merging 523

L(x0) = {(∃r.(∃s.(A� B))), ((C1 � ∀r.C) � (C2 � ∀r.C)),
((D1 � ∀r.(∀s.¬A)) � (D2 � ∀r.(∀s.¬A)))}

x0

x0
L(x0) ∪ {(C1 � ∀r.C)1} x0

x0 L(x0) ∪ {(D1 � ∀r.(∀s.¬A))2} x0
L(x0) ∪ {(D2�
∀r.(∀s.¬A))2}

x1 L(x1) = {(∃s.(A � B)),C1, (∀s.¬A)2} x1
a. entire label cached,

dependency set {1, 2}
b. concepts precisely cached,

dependency set {2}x2 L(x2) = {(A � B),A, B,¬A2}
clash {A,¬A}, dependency set {2}

�1 �1

�2 �2

r r

s backjumping

a. backjumping

b. backjumping

Fig. 3. More pruned alternatives due to dependency directed backtracking and precise caching
(b.) in contrast to label caching (a.)

show complete dependencies, but only the branching points for non-deterministic deci-
sions. First, the two disjunctions are processed. Assuming that the alternative with the
disjuncts (C1 � ∀r.C) and (D1 � ∀r.(∀s.¬A)) is considered first (shown on the left-hand
side of Figure 3), an r-successor x1 with label {(∃s.(A � B)),C1, (∀s.¬A)2} is gener-
ated. The branching points indicate which concepts depend on which non-deterministic
decision. For example, C is in L(x1) due to the disjunct (C1 � ∀r.C) of the first non-
deterministic branching decision (illustrated in Figure 3 with the superscript 1). In
the further generated s-successor x2 a clash is discovered. For the only involved non-
deterministic branching point 2, we have to compute the second alternative. Thus, an
identical r-successor x1 is generated again for which we can discover the unsatisfiability
with a cache retrieval. If the entire label of x1 was inserted to the cache, the dependent
branching points of all concepts in the newly generated node x1 would have to be con-
sidered for further dependency directed backtracking. Thus, the second alternative of
the first branching decision also has to be evaluated (c.f. Figure 3, a.). In contrast, if the
caching was more precise and only the combination of the concepts (∃s.(A � B)) and
(∀s.¬A) was inserted into the unsatisfiability cache, the cache retrieval for the label of
node x1 would return the inserted subset. Thus, only the dependencies associated to the
concepts of the subset could be used for further backjumping, whereby it would not be
necessary to evaluate the remaining alternatives (c.f. Figure 3, b.).

4 Optimised Merging

At-most cardinality restrictions require the non-deterministic merging of role neigh-
bours until the cardinality restriction is satisfied. Only for cardinalities of 1, merging
is deterministic. The usual merging approach [11], which can still be found in several

524 A. Steigmiller, T. Liebig, and B. Glimm

available reasoner implementations, employs a ≤-rule that shrinks the number of role
neighbours by one with each rule application. Each such merging step gathers pairs of
potentially mergeable neighbouring nodes. For each merging pair a branch is gener-
ated in which the merging of the pair is executed. Without optimisations, this approach
leads to an inefficient implementation since for merging problems that require more
than one merging step, several identical merging combinations have to be evaluated
multiple times. Throughout this section, we consider the following example: a node
in the completion graph has four r-neighbours w, x, y and z, which have to be merged
into two nodes. The naive approach described above leads to eighteen non-deterministic
alternatives: in the first of two necessary merging steps there are

∑n−1
i=1 i, i.e., six pos-

sible merging pairs. A second merging step is required to reduce the remaining three
nodes to two. If the merging rule is applied again without any restrictions, each sec-
ond merging step generates three more non-deterministic alternatives. However, only
seven of these eighteen alternatives overall are really different. For example, the com-
bination wxy, z, where the nodes w, x and y have been merged, can be generated by
merge(merge(w, x), y), merge(merge(w, y), x) and merge(merge(x, y),w).

The problem is very similar to the syntactic branching search [1], where unsatisfi-
able concepts of non-disjoint branches might have to be evaluated multiple times. The
semantic branching technique is commonly used to avoid such redundant evaluations
and in the merging context an analogous approach can be very beneficial.

In order to apply this technique, all nodes of previously tested merging pairs are
set to be pairwise distinct. For example, when merging (w, x) in the first merging step
leads to a clash, w and x are set to be distinct because this combination has been tested
and should be avoided in future tests. In the second alternative, the nodes w and y
are merged, which leads to wy�̇x. As a result of the inequality, merge(merge(w, y), x)
is never tested in the second merging step (Figure 4). If also merging w and y fails,
a further inequality w�̇y is added. Finally, for the last two alternatives of the first
merging step the inequality constraints prevent further merging and show that these
alternatives are unsatisfiable. Summing up, with the inequalities the total number of
non-deterministic alternatives can be reduced to nine in this example. Unfortunately,
similarly sophisticated merging techniques can hardly be found in current reasoners.

w, x, y, z

wz, x, y
wz�̇x,wz�̇y

wy, x, z
wy�̇x

wx, y, z w, xy, z
w�̇xy,w�̇z

w, xz, y
w�̇xz,w�̇y

xz�̇y

w, x, yz
w�̇x,w�̇yz

x�̇yz

merge(w,
x)

merg
e(w
, y

)

m
erge(w

,z)

merge(x, y)

merge(x, z)
merge(y, z)

wxy, z wxz, y
wxz�̇y

wx, yz
wx�̇yz

wyz, x
wyz�̇x

wy, xz
wy�̇xz

wz, xy
wz�̇xy

w, xyz
w�̇xyz

m
erge(w

x,y)

merge(wx, z)

merge(y, z)

merge(wy, z)

merge(x, z)
merge(x, y)

merge(xy, z)

Fig. 4. Non-deterministic merging alternatives with added inequality information

Extended Caching, Backjumping and Merging 525

−,−

w,−

wx,− w, x

wx, ywxy,− wy, x w, xy

wx, yzwxz, y wyz, x wy, zx wz, xy w, xyz

merge(−,w)

merge(w, x) merge(−, x)

merge(−, y)merge(wx, y) merge(w, y) merge(x, y)

merge(y, z)merge(wx, z)
merge(wy, z)

merge(x, z)
merge(w, z)

merge(xy, z)

Fig. 5. Pool-based merging approach to avoid redundant evaluation of previous merging attempts

Apart from using the inequality information, the pool-based merging method that
we propose also prevents the redundant evaluation of previously computed merging at-
tempts. Furthermore it works very well in combination with dependency directed back-
tracking due to the thin and uniform branching tree.

Regarding the implementation of the pool-based merging method, the nodes that
have to be merged are managed in a queue. Each merging step takes the next node
from the queue and non-deterministically inserts this node into a so-called pool, where
the number of pools corresponds to the required cardinality. All pools are considered
as distinct and nodes within one pool are merged together. If there are several empty
pools, we will only generate one alternative, where the node is inserted in one of these
empty pools. If several empty pools were initialised with the same node, once again
redundant merging combinations would have to be evaluated. For the example, the gen-
erated merging combinations due to the pool based merging procedure are illustrated
in Figure 5. At the beginning, all nodes are in the queue and both pools are empty. In
the first merging step the node w is taken from the queue and inserted to the first empty
pool. In the second step the next node x is non-deterministically inserted into the first
pool together with the node w or into another empty pool. This process continues until
the cardinality restriction is satisfied. Note that z is not removed from the queue for
the alternative shown on the left-hand side since the cardinality is already satisfied. If
a clash occurs in an alternative, all relevant merging steps can be identified with the
dependency directed backtracking. Different insertion alternatives are, therefore, only
tested for nodes that are involved in the clashes. In the worst-case also the pool based
merging is systematically testing all possible combinations, but the different generation
of these alternatives prevents redundant evaluations. Other tableau expansions rules for
SROIQ, such as the choose- or the NN-rule, are not influenced by the merging method,
consequently also qualified cardinality restrictions are supported in combination with
the pool based merging.

5 Evaluation

Our Konclude reasoning system implements the enhanced optimisation techniques for
SROIQ described above. In the following, we first compare different caching methods.

526 A. Steigmiller, T. Liebig, and B. Glimm

Furthermore, we benchmark our pool-based merging technique against the standard
pair-based approach that is used in most other systems. A comparison of Konclude
with other reasoners can be found in the accompanying technical report [18].

We evaluate dependency directed backtracking and unsatisfiability caching with the
help of concept satisfiability tests from the well-known DL 98 benchmark suite [12] and
spot tests regarding cardinality restrictions and merging first proposed in [14]. From
the DL 98 suite we selected satisfiable and unsatisfiable test cases (with _n resp. _p
postfixes) and omitted those for which unsatisfiability caching is irrelevant and tests
that were too easy to serve as meaningful and reproducible sample.

With respect to caching, we distinguish between precise caching and label caching
as described in Section 3.2. To recall, precise caching stores precise cache entries con-
sisting of only those backtraced sets of concepts that are explicitly known to cause
an unsatisfiability in combination with subset retrieval, while label caching stores and
returns only entire node labels.

Independent of the caching method, we distinguish between unfiltered and relevant
dependencies for further dependency backtracing after a cache hit. Unfiltered depen-
dency denotes the backtracing technique that uses all the concept facts and their depen-
dencies within a node label, for which the unsatisfiability has been found in the cache.
In contrast, relevant dependency uses only those facts and dependencies of a node label
for further backtracing that caused the unsatisfiability (as if the unsatisfiability would
be found without caching).

Konclude natively maintains relevant dependencies and implements precise unsat-
isfiability caching based on hash data structures [10] in order to efficiently facilitate
subset cache retrieval. Figure 6 shows the total number of processed non-deterministic
alternatives for five configurations of caching precision and dependency handling for a
selection of test cases solvable within one minute. Note that runtime is not a reasonable
basis of comparison since all configuration variants of Figure 6 have been implemented
(just for the purpose of evaluation) on top of the built-in and computationally more
costly precise caching approach. System profiling information, however, strongly in-
dicate that building and querying the precise unsatisfiability cache within Konclude is

Fig. 6. Log scale comparison of processed alternatives for different caching methods

Extended Caching, Backjumping and Merging 527

Fig. 7. Processed alternatives (on a logarithmic scale) for different merging methods

negligible in terms of execution time compared to the saved processing time for dis-
regarded alternatives. However, we have experienced an increase of memory usage by
a worst-case factor of two in case of dependency tracking in comparison to no depen-
dency handling.

Figure 6 reveals that, amongst the tested configurations, precise caching provides the
most effective pruning method. For some test cases it can reduce the number of non-
deterministic alternatives by two orders of magnitude in comparison to label caching
with unfiltered dependencies. Particularly the test cases k_path_n/p are practically solv-
able for Konclude only with precise caching at their largest available problem size
(#21). The difference between relevant and unfiltered dependencies is less significant
at least within our set of test cases.

Figure 7 compares pool-based with pair-based merging in terms of non-deterministic
alternatives that have to be processed in order to solve selected test cases from [14]. In
addition to the built-in pool-based merging we also added pair-based merging to our
Konclude system. The test cases 10c and 10d are variants of the original test case 10a
in terms of different problem sizes (10c) as well as more hidden contradictions nested
within disjunctions (10d). The pool-based approach introduced in Sec. 4 clearly domi-
nates the naive pair-based merging, especially when dealing with satisfiable problems
(1b and 2b) and expressive DLs. Note that the test cases 1b and 2b are only solvable
with pool-based merging within a one minute timeout. The required reasoning times
strongly correlate to the number of processed alternatives for all test cases of Figure 7.

6 Conclusions

We have presented a range of optimisation techniques that can be used in conjunction
with the very expressive DL SROIQ. The presented dependency management allows
for more informed backjumping, while also supporting the creation of precise cache
unsatisfiability entries. In particular the precise caching approach can reduce the num-
ber of tested non-deterministic branches by up to two orders of magnitude compared

528 A. Steigmiller, T. Liebig, and B. Glimm

to standard caching techniques. Regarding cardinality constraints, the presented pool-
based merging technique also achieves a significant improvement and a number of test
cases can only be solved with this optimisation within an acceptable time limit. Both
techniques are well-suited for the integration into existing tableau implementations for
SROIQ and play well with other commonly implemented optimisation techniques.

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The De-
scription Logic Handbook: Theory, Implementation, and Applications, 2nd edn. Cambridge
University Press (2007)

2. Ding, Y., Haarslev, V.: Tableau caching for description logics with inverse and transitive
roles. In: Proc. 2006 Int. Workshop on Description Logics, pp. 143–149 (2006)

3. Ding, Y., Haarslev, V.: A procedure for description logic ALCFI. In: Proc. 16th European
Conf. on Automated Reasoning with Analytic Tableaux and Related Methods, TABLEAUX
2007 (2007)

4. Donini, F.M., Massacci, F.: EXPTIME tableaux forALC. J. of Artificial Intelligence 124(1),
87–138 (2000)

5. Faddoul, J., Farsinia, N., Haarslev, V., Möller, R.: A hybrid tableau algorithm forALCQ. In:
Proc 18th European Conf. on Artificial Intelligence (ECAI 2008), pp. 725–726 (2008)

6. Goré, R., Widmann, F.: Sound Global State Caching for ALC with Inverse Roles. In: Giese,
M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 205–219. Springer, Heidel-
berg (2009)

7. Haarslev, V., Möller, R.: Consistency Testing: The RACE Experience. In: Dyckhoff, R. (ed.)
TABLEAUX 2000. LNCS (LNAI), vol. 1847, pp. 57–61. Springer, Heidelberg (2000)

8. Haarslev, V., Möller, R.: High performance reasoning with very large knowledge bases: A
practical case study. In: Proc. 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001),
pp. 161–168. Morgan Kaufmann (2001)

9. Haarslev, V., Sebastiani, R., Vescovi, M.: Automated Reasoning in ALCQ via SMT. In:
Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 283–298.
Springer, Heidelberg (2011)

10. Hoffmann, J., Koehler, J.: A new method to index and query sets. In: Proc. 16th Int. Conf. on
Artificial Intelligence (IJCAI 1999), pp. 462–467. Morgan Kaufmann (1999)

11. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc.10th Int.
Conf. on Principles of Knowledge Representation and Reasoning (KR 2006), pp. 57–67.
AAAI Press (2006)

12. Horrocks, I., Patel-Schneider, P.F.: DL systems comparison. In: Proc. 1998 Int. Workshop on
Description Logics (DL 1998), vol. 11, pp. 55–57 (1998)

13. Horrocks, I., Patel-Schneider, P.F.: Optimizing description logic subsumption. J. of Logic
and Computation 9(3), 267–293 (1999)

14. Liebig, T.: Reasoning with OWL – system support and insights –. Tech. Rep. TR-2006-04,
Ulm University, Ulm, Germany (September 2006)

15. Liebig, T., Steigmiller, A., Noppens, O.: Scalability via parallelization of OWL reasoning.
In: Proc. Workshop on New Forms of Reasoning for the Semantic Web: Scalable & Dynamic
(NeFoRS 2010) (2010)

16. OWL Working Group, W.: OWL 2 Web Ontology Language: Document Overview. W3C
Recommendation (October 27, 2009), http://www.w3.org/TR/owl2-overview/

17. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL rea-
soner. J. of Web Semantics 5(2), 51–53 (2007)

http://www.w3.org/TR/owl2-overview/

Extended Caching, Backjumping and Merging 529

18. Steigmiller, A., Liebig, T., Glimm, B.: Extended caching, backjumping and merging for ex-
pressive description logics. Tech. Rep. TR-2012-01, Ulm University, Ulm, Germany (2012),
http://www.uni-ulm.de/fileadmin/website_uni_ulm/iui/Ulmer_Informatik
_Berichte/2012/UIB-2012-01.pdf

19. Tsarkov, D., Horrocks, I.: FaCT++ Description Logic Reasoner: System Description. In: Fur-
bach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 292–297. Springer,
Heidelberg (2006)

20. Tsarkov, D., Horrocks, I., Patel-Schneider, P.F.: Optimizing terminological reasoning for ex-
pressive description logics. J. of Automated Reasoning 39, 277–316 (2007)

http://www.uni-ulm.de/fileadmin/website_uni_ulm/iui/Ulmer_Informatik_Berichte/2012/UIB-2012-01.pdf
http://www.uni-ulm.de/fileadmin/website_uni_ulm/iui/Ulmer_Informatik_Berichte/2012/UIB-2012-01.pdf

	Extended Caching, Backjumping and Merging for Expressive Description Logics
	Motivation
	Preliminaries
	Dependency Tracking

	Extended Caching and Backtracking
	Dependency Directed Backtracking
	Unsatisfiability Caching
	Dependency Backtracing

	Optimised Merging
	Evaluation
	Conclusions
	References

