
Solving Non-linear Arithmetic

Dejan Jovanović1 and Leonardo de Moura2

1 New York University
2 Microsoft Research

Abstract. We present a new algorithm for deciding satisfiability of non-
linear arithmetic constraints. The algorithm performs a Conflict-Driven
Clause Learning (CDCL)-style search for a feasible assignment, while
using projection operators adapted from cylindrical algebraic decompo-
sition to guide the search away from the conflicting states.

1 Introduction

From the early beginnings in Persian and Chinese mathematics until the present
day, polynomial constraints and the algorithmic ways of solving them have been
one of the driving forces in the development of mathematics. Though studied for
centuries due to the natural elegance they provide in modeling the real world,
from resolving simple taxation arguments to modeling planes and hybrid sys-
tems, we are still lacking a practical algorithm for solving a system of polynomial
constraints. Throughout the history of mathematics, many brilliant minds have
studied and algorithmically solved many of the related problems, such as root
finding and factorization of polynomials. But, it was not until Alfred Tarski [26]
showed that the theory of real closed fields admits elimination of quantifiers
that it became clear that a general decision procedure for solving polynomial
constraints was possible. Granted a wonderful theoretical result of landmark
importance, with its non-elementary complexity, Tarski’s procedure was unfor-
tunately totally impractical.

As one would expect, Tarski’s procedure consequently has been much im-
proved. Most notably, Collins [10] gave the first relatively effective method of
quantifier elimination by cylindrical algebraic decomposition (CAD). The CAD
procedure itself has gone through many revisions [8]. However, even with the
improvements and various heuristics, its doubly-exponential worst-case behavior
has remained as a serious impediment. The CAD algorithm works by decompos-
ing R

k into connected components such that, in each cell, all of the polynomials
from the problem are sign-invariant. To be able to perform such a particular
decomposition, CAD first performs a projection of the polynomials from the
initial problem. This projection includes many new polynomials, derived from
the initial ones, and these polynomials carry enough information to ensure that
the decomposition is indeed possible. Unfortunately, the size of these projec-
tion sets grows exponentially in the number of variables, causing the projection
phase, and its consequent impact on the search space, to be a key hurdle to CAD
scalability.

B. Gramlich, D. Miller, and U. Sattler (Eds.): IJCAR 2012, LNAI 7364, pp. 339–354, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



340 D. Jovanović and L. de Moura

We propose a new decision procedure for the existential theory of the reals
that tries to alleviate the above problem. As in [16,20,17], the new procedure
performs a backtracking search for a model in R, where the backtracking is pow-
ered by a novel conflict resolution procedure. Our approach takes advantage of
the fact that each conflict encountered during the search is based on the cur-
rent assignment and generally involves only a few constraints, a conflicting core.
When in conflict, we project only the polynomials from the conflicting core and
explain the conflict in terms of the current model. This means that we use pro-
jection conservatively, only for the subsets of polynomials that are involved in
the conflict, and even then we reduce it further. As another advantage, the con-
flict resolution provides the usual benefits of a Conflict-Driven Clause Learning
(CDCL)-style [24] search engine, such as non-chronological backtracking and the
ability to ignore irrelevant parts of the search space. The projection operators
we use as part of the conflict resolution need not be CAD based and, in fact,
one can easily adapt projections based on other algorithms (e.g [19,3]).

Due to the lack of space and the volume of algorithms and concepts involved,
we concentrate on the details of the decision procedure in this paper and refer
the reader to the existing literature for further information [7,8,9].1

2 Preliminaries

As usual, we denote the ring of integers with Z, the field of rational numbers
with Q, and the field of real numbers as R. Unless stated otherwise, we assume
all polynomials take integer coefficients, i.e. a polynomial f ∈ Z[y, x] is of the
form

f(y, x) = am · xdm + am−1 · xdm−1 + · · ·+ a1 · xd1 + a0 ,

where 0 < d1 < · · · < dm, and the coefficients ai are in Z[y] with am �= 0. We
call x the top variable. The highest degree dm is the degree of the polynomial
f in variable x, and we denote it with deg(f, x). The set of coefficients of f is
denoted as coeff(f, x). We call am the leading coefficient in variable x, and denote
it with lc(f, x). If we exclude the first k terms of the polynomial f , we obtain
the polynomial Rk(f, x) = am−kx

dm−k + · · ·+ a0, called the k-th reductum of f .
We write R∗(f, x) for the set {R0(f, x), . . . ,Rm(f, x)} containing all reductums.
We denote the set of variables appearing in a polynomial f as vars(f) and call
the polynomial univariate if vars(f) = {x} for some variable x. Otherwise the
polynomial is multivariate, or a constant polynomial (if it contains no variables).
Given a set of polynomials A ⊂ Z[x1, . . . xn], we denote with Ak the subset of
polynomials in A that belong to Z[x1, . . . , xk], i.e. Ak = A ∩ Z[x1, . . . , xk].

1 The website http://cs.nyu.edu/~dejan/nonlinear/ contains a technical report,
our prototype nlsat, and experimental results. The technical report contains addi-
tional examples, proofs of all main theorems, additional references, and implemen-
tation details.

http://cs.nyu.edu/~dejan/nonlinear/


Solving Non-linear Arithmetic 341

A number α ∈ R is a root of the polynomial p ∈ Z[x] iff f(α) = 0. We call a
real number α ∈ R algebraic iff it is a root of a univariate polynomial f ∈ Z[x],
and we denote the field of all real algebraic numbers by Ralg. We can represent
any algebraic number α as (l, u)f , with l, u ∈ Q, where α is a root of a polynomial
f , and the only root in the interval (l, u).

Example 1. Consider the univariate polynomial f1 = 16x3 − 8x2 + x+ 16. This
polynomial has only one root, the irrational number α1 ≈ −0.840661 and we
can represent it as (−0.9,−0.8)f1.

Given a set of variables X = {x1, . . . , xn}, we call υ a variable assignment if it
maps each variable xk to a real algebraic number υ(xk), the value of xk under υ.
We overload υ, as usual, to obtain the value of a polynomial f ∈ Z[x1, . . . , xn]
under υ and write it as υ(f). We say that a polynomial f vanishes under υ
if υ(f) = 0. We can update the assignment υ to map a variable xk to the
value α, and we denote this as υ[xk �→ α]. Under a variable assignment υ
that interprets the variables y, some coefficients of a polynomial f(y, x) may
vanish. If ak is the first non-vanishing coefficient of f , i.e., υ(ak) �= 0, we
write R(f, x, υ) = akx

dk + · · · + a0 for the reductum of f with respect to υ
(the non-vanishing part). Given any sequence of polynomials f = (f1, . . . , fs)
and a variable assignment υ we define the vanishing signature of f as the se-
quence v-sig(f , υ) = (f1, . . . , fk), where k ≤ s is the minimal number such that
υ(fk) �= 0, or s if they all vanish. For the polynomial f(y, x) as above, we define
the vanishing coefficients signature as v-coeff(f, x, υ) = v-sig(am, . . . , a0, υ).

A basic polynomial constraint F is a constraint of the form f � 0 where f is
a polynomial and � ∈ {<,≤,=, �=,≥, >}. We denote the polynomial constraint
that represents the negation of a constraint F with ¬F .2 In order to identify the
polynomial f of the constraint F , and the variables of F , we write poly(F ) and
vars(F ), respectively. We normalize all constraints over constant polynomials to
the dedicated constants true and false with the usual semantics. We write υ(F )
to denote the evaluation of F under υ, which is the constraint υ(f)� 0. If f does
not evaluate to a constant under υ, then υ(F ) evaluates to a new polynomial
constraint F ′, where poly(F ′) can contain algebraic coefficients.

Borrowing from the extended Tarski language [4, Chapter 7], in addition to the
basic constraints, we will also be working with extended polynomial constraints.
An extended polynomial constraint F is of the form x �r root(f, k), where
�r ∈ {<r,≤r,=r, �=r,≥r, >r}, f is a polynomial in Z[y, z̃], with x �∈ vars(f), and
the natural number k ≤ deg(f, z̃) is the root index. Variable z̃ is a distinguished
free variable that cannot be used outside the root object. To be able to extract
the polynomial of the constraint, we define poly(F ) = f(y, x). Note that poly(F )
replaces z̃ with x. The semantics of the predicate �r under a variable assignment
υ is the following. If the polynomial υ(f) is univariate, and υ assigns x to α, the
(Boolean) value of the constraint can be determined as follows. If the univari-
ate polynomial υ(f) ∈ Ralg[z̃] has the roots β1 < · · · < βn, with k ≤ n, and α�βk

2 For example ¬(x2 + 1 > 0) ≡ x2 + 1 ≤ 0.



342 D. Jovanović and L. de Moura

holds, then the predicate evaluates to true. Otherwise it evaluates to false. We
denote the number of real roots of a univariate polynomial f as rootcount(f).
Naturally, if F is an extended polynomial constraint, so is the negation ¬F .3

A polynomial constraint is either a basic or an extended one. Given a set of
polynomial constraints F , we say that the variable assignment υ satisfies F if it
satisfies each constraint in F . If there is such a variable assignment, we say that
F is satisfiable, otherwise it is unsatisfiable. A clause of polynomial constraints
is a disjunction C = F1 ∨ . . . ∨ Fn of polynomial constraints. We use literals(C)
to denote the set {F1,¬F1, . . . , Fn,¬Fn}. We say that the clause C is satisfied
under the assignment υ if some polynomial constraint Fj ∈ C evaluates to true
under υ. Finally, a polynomial constraint problem is a set of clauses C, and it is
satisfiable if there is a variable assignment υ that satisfies all the clauses in C. If
the clauses of C contain the variables x1, . . . , xn then, for k ≤ n, we denote with
Ck the subset of the clauses that only contains variables x1, . . . , xk.

3 An Abstract Decision Procedure

We describe our procedure as an abstract transition system in the spirit of
Abstract DPLL [21]. The crucial difference between the system we present is that
we depart from viewing the Boolean search engine and the theory reasoning as
two separate entities that communicate only through existing literals. Instead, we
allow the model that the theory is trying to construct to be involved in the search
and in explaining the conflicts, while allowing new literals to be introduced so
as to support more complex conflict analyses. The transition system presented
here applies to non-linear arithmetic, but it can in general be applied to other
theories.

The states in the transition system are indexed pairs of the form 〈M, C〉n,
where M is a sequence (usually called a trail) of trail elements, and C is a set of
clauses. The index n denotes the current stage of the state. Trail elements can be
decided literals, propagated literals, or a variable assignment. A decided literal
is a polynomial constraint F that we assume to be true. On the other hand,
a propagated literal, denoted as E→F , marks a polynomial constraint F ∈ E
that is implied to be true in the current state by the clause E (the explana-
tion). In both cases, we say that the constraint F appears in M , and write
this as F ∈ M . We denote the set of polynomial constraints appearing in M
with constraints(M). We say M is non-redundant if no polynomial constraint
appears in M more than once. A trail variable assignment, written as x �→α, is
an assignment of a single variable to a value α ∈ Ralg. Given a trail M , con-
taining variable assignments xi1 �→α1, . . . , xik �→αk, in order, we can construct
an assignment υ[M ] = υ0[xi1 �→ α1] . . . [xik �→ αk], where υ0 is an empty
assignment that does not assign any variables.

3 Note that, for example, ¬(x <r root(f, k)) is not necessarily equivalent to x ≥r

root(f, k).



Solving Non-linear Arithmetic 343

We say that the sequence M is stage increasing when the sequence is of the
form

M = �N1, x1 �→α1, . . . , xk−1 �→αk−1, Nk, xk �→αk, . . . , xn−1 �→αn−1, Nn� ,

where, for each k ≤ n, the sequence Nk does not contain any variable assign-
ments, each constraint F ∈ constraints(Nk) contains the variable xk, and (op-
tionally) the variables x1, . . . , xk−1 (and z̃). In such a sequence M , we denote
with stage(M) = n the stage of the sequence. If F = constraints(M), we say that
M is feasible, when the set of univariate polynomial constraints υ[M ](F) has a
solution. We write feasible(M) to denote the feasible set of υ[M ](F). Given an
additional polynomial constraint F ∈ Z[x1, . . . , xn], we say that F is compatible
with the sequence M , when feasible(�M,F �) �= ∅ and denote this with a predi-
cate compatible(F,M). The technical report contains additional details on how
these procedures are implemented.

Our transition system will work over states that are well-formed. Intuitively,
in such a state, we commit to the variable assignment, but make sure that
the current stage is consistent on the Boolean level. With this in mind, given
a polynomial constraint F with vars(F ) ⊆ {x1, . . . , xn}, and a state M with
stage(M) = n, we define the state value of F in M as

value(F,M) =

⎧
⎪⎪⎨

⎪⎪⎩

υ[M ](F ) xn �∈ vars(F ) ,

true F ∈ constraints(M) ,

false ¬F ∈ constraints(M) ,

undef otherwise.

Naturally, we overload value to also evaluate clauses of polynomial constraints,
and sets of clauses, i.e. for a clause C we define value(C,M) to be true, if any
of the literals evaluates to true, false if all literals evaluate to false, and undef
otherwise.

Definition 1 (Well-Formed State). We say a state 〈M, C〉n is well-formed
when M is non-redundant, stage increasing with stage(M) = n, and all of the
following hold.

1. Clauses up to stage n are satisfied, i.e. we have that value(Cn−1,M) = true.
2. The state is consistent, i.e. feasible(M) �= ∅ and for each F ∈ constraints(M)

we have that that value(F,M) = true.
3. Propagated literals E→F are implied, i.e. for all literals F ′ �= F in E,

value(F ′,M) = false.

We are now ready to define the transition system. We separate the transition
rules into three groups: the search rules, the clause processing rules, and the
conflict analysis rules. The search rules are the main driver of the procedure,
with the responsibility for selecting clauses to process, creating the variable
assignment while lifting the stages, and detecting Boolean conflicts. The search
rules operate on well-formed states 〈M, C〉n. If the search rules select a clause



344 D. Jovanović and L. de Moura

C to process, we switch to a state 〈M, C〉n � C, where we can apply the set
of clause processing rules. The notation � C designates that we are performing
semantic reasoning in order to assign a value to a literal of C. If the search rules
detect that in the current state some clause C ∈ C is falsified, we switch to a
state 〈M, C〉n � C, where we can apply the conflict analysis rules. The notation
� C denotes that we are trying to produce a proof of why C is inconsistent in
the current state.

Finally, given a polynomial constraint problem C, with vars(C) = {x1, . . . , xn},
the overall goal of the procedure is, starting from an initial state 〈��, C〉1, and
applying the rules, to end up either in a state 〈υ, sat〉, indicating that the initial
set of clauses C is satisfiable where the assignment υ is the witness, or derive
unsat, which indicates that the set C unsatisfiable.

Search Rules. Fig 1 presents the set of search rules. The Select-Clause rule
selects one of the clauses of the current stage, whose state value is still unde-
termined, and transitions into the clause processing mode that will hopefully
satisfy the clause. The Conflict rule detects if there is a clause of the current
stage that is inconsistent in the current state, and transitions into the conflict
resolution mode that will explain the conflict and backtrack appropriately. On
the other hand, if all the clauses of the current stage are satisfied, we can either
transition to the next stage, using the Lift-Stage rule, or conclude that our
problem is satisfiable, using the Sat rule. Since at this point the current stage is
consistent, in addition to formally introducing the new stage, the Lift-Stage
rule selects a particular value for the current variable from the feasible set of
the current stage. Note that once we move to the next stage, all the clauses
of previous stages have values in the state, and can never be selected by the
Select-Clause or the Conflict rules. We conclude this set of rules with the
Forget rule that can be used to eliminate any learnt clause (a clause added
while analyzing conflicts) from the current set of clauses.

Clause Processing Rules. In this set of rules, presented in Fig 2, we are trying
to assign a currently unassigned literal of the given clause C, hoping to satisfy
the clause. When one of the clause processing rules is applied, we immediately
switch back to the search rules. As usual in a CDCL-style procedure, the sim-
plest way to satisfy the clause C is to perform the Boolean unit propagation,
if applicable, by using the B-Propagate rule. We restrict the application of
this rule so that adding the constraint to the state keeps it consistent, i.e., it
is compatible with the current set of constraints. If this is the case, we add the
constraint to the state together with the explanation (clause C itself). To allow
more complex propagations, the ones that are valid in R modulo the current
state, we provide the R-Propagate rule. This rule can propagate a constraint
from the clause, if assuming the negation would be incompatible with the current
state. The R-Propagate rule is equipped with an explanation function explain.
The explain function, given a polynomial constraint F , and the trail M , returns
the explanation clause E = explain(F,M) that is valid in R, and implies the
constraint F under the current assignment i.e., F ∈ E, and all literals in E but



Solving Non-linear Arithmetic 345

Select-Clause

〈M, C〉k −→ 〈M, C〉k � C if
C ∈ Ck

value(C,M) = undef

Conflict

〈M, C〉k −→ 〈M, C〉k 
 C if
C ∈ Ck

value(C,M) = false

Sat

〈M, C〉k −→ 〈υ[M ], sat〉 if xk �∈ vars(C)
Lift-Stage

〈M, C〉k −→ 〈�M,xk �→ α�, C〉k+1 if

xk ∈ vars(C)
α ∈ feasible(M)
value(Ck,M) = true

Forget

〈M, C〉k −→ 〈M, C \ {C}〉k if
C ∈ C
C is a learnt clause

Fig. 1. The search rules

F are false in the state. The clause E may contain new literals that do not occur
in C, as long as they evaluate to false in the state. To simplify the presentation,
in the R-Propagate rule, the explanation clause E is eagerly generated, but
in our actual implementation, we compute them only if they are needed during
conflict resolution. Finally, if we cannot deduce the value of an unassigned literal,
we can assume a value for such a literal using the Decide-Literal rule.

Conflict Analysis Rules. The conflict analysis rules start from an initial proper
state 〈M, C〉n � C, where C ∈ C is the conflicting clause. The conflict analysis is
a standard Boolean conflict analysis [24] with a model-based twist. As the rules
move the state backwards, the goal is to construct a new resolvent clause R,
that will explain the conflict and ensure progress in the search. This means that,
when we backtrack the sequence M just enough, the addition of R will ensure
progress in the search by eliminating the inconsistent part from the state, and
thus forcing the search rules to change some of the choices made. On the other
hand, if the conflict analysis backtracks the state all the way into an empty state,
this will be a signal that the original problem is unsatisfiable. Once the conflict
analysis backtracks enough and deduces the resolvent R, then we pass it to the
clause processing immediately.4

Termination. Our decision procedure consists of all three sets of rules described
above. Any derivation will proceed by switching amongst the three distinct
modes. Proving termination in the basic CDCL(T ) framework is usually a fairly
straightforward task, as the new explanation and conflict clauses always contain

4 This is crucial in order to ensure termination.



346 D. Jovanović and L. de Moura

Decide-Literal

〈M, C〉k � C −→ 〈�M,F1�, C〉k if

F1, F2 ∈ C
∀i : value(Fi,M) = undef
compatible(F1,M)

B-Propagate

〈M, C〉k � C −→ 〈�M,C→F �, C〉k if

C = F1 ∨ . . . ∨ Fm ∨ F
value(F,M) = undef
∀i : value(Fi,M) = false
compatible(F,M)

R-Propagate

〈M, C〉k � C −→ 〈�M,E→F �, C〉k if

F ∈ literals(C)
value(F,M) = undef
¬ compatible(¬F,M)
E = explain(F,M)

Fig. 2. The clause satisfaction rules

only literals from the finite set of literals in the initial set of constraints. In our
case, the main conundrum in proving termination is that we allow the expla-
nations to contain fresh constraints, which, if we are not careful, could lead to
non-termination. We therefore require the set of new constraints to be finite.
We call an explanation function explain a finite basis explanation function with
respect to a set of constraints C, when there is a finite set of polynomial con-
straints B such that for any derivation of the proof rules, the clauses returned by
applications of explain always contain only constraints from the basis B. Having
such an explanation function will therefore provide us with a termination argu-
ment, and we will provide one such explanation function for the theory of reals
in the next section.

Theorem 1. Given a set of polynomial constraints C, and assuming a finite
basis explanation function explain, any derivation starting from the initial state
〈��, C〉1 will terminate either in a state 〈υ, sat〉, where the assignment υ satisfies
the constraints C, or in the unsat state. In the later case, the set of constraints
C is unsatisfiable in R.

4 Producing Explanations

Given a polynomial constraint F with poly(F ) ∈ Z[y, x], and a trail M such that
¬F is not compatible with M , the procedure explain(F,M) returns an explana-
tion clause E that implies F in the current state. In principle, for any theory
that admits elimination of quantifiers, it is possible to construct an explanation
function explain. In this section, we describe how to produce an explain proce-
dure for theory of the reals based on cylindrical algebraic decomposition (CAD).
Before that, we first make a short interlude into the world of CAD.



Solving Non-linear Arithmetic 347

Resolve-Propagation

〈�M,E→F �,C〉k 
 C −→ 〈M, C〉k 
 R if
¬F ∈ C
R = resolve(C,E, F )

� resolve returns the standard Boolean resolvent

Resolve-Decision

〈�M,F �, C〉k 
 C −→ 〈M, C ∪ {C}〉k � C if ¬F ∈ C

Consume

〈�M,F �, C〉k 
 C −→ 〈M, C〉k 
 C if ¬F �∈ C

〈�M,E→F �,C〉k 
 C −→ 〈M, C〉k 
 C if ¬F �∈ C

Drop-Stage

〈�M,xk+1 �→α�, C〉k+1 
 C −→ 〈M, C〉k 
 C if value(C,M) = false

〈�M,xk+1 �→α�, C〉k+1 
 C −→ 〈M, C ∪ {C}〉k � C if value(C,M) = undef

Unsat

〈��, C〉1 
 C −→ unsat

Fig. 3. The conflict analysis rules

4.1 Cylindrical Algebraic Decomposition

A crucial role in the theory of CADs and in the construction of our explain
procedure is the property of delineability. Following the terminology used in
CAD, we say that a connected subset of Rk is a region. A set of polynomials
{f1, . . . fs} ⊂ Z[y, x], with y = (y1, . . . , yn), is said to be delineable in a region
S ⊆ R

n if for every fi (and fj) from the set, the following properties are invariant
for any α ∈ S:

1. the total number of complex roots of fi(α, x);
2. the number of distinct complex roots of fi(α, x);

3. the number of common complex roots of fi(α, x) and fj(α, x).

Example 2. Consider the polynomial f = x2+y2+z2−1, with zeros of f depicted
in Fig 4(a) together with two squiggly regions of R2. In the region S1 that does
not intersect the sphere, polynomial f is delineable, as the number of complex
(and real) roots of f(α, x) is 2 for any α in S1. In the region S2 that intersects
the sphere, f is not delineable, as the number of real roots of f varies from 0
(α’s outside the unit circle), 1 (on the circle), and 2 (inside the unit circle).

We will call a projection operator any map P that, given a variable x and set
of polynomials A ⊂ Z[y, x], transforms A into a set of polynomials P(A, x) ⊂
Z[y]. We call P(A, x) the projection of A under P with respect to variable x.
In his seminal paper [10], Collins introduced a projection operator which we
denote with Pc. In order to define the operator Pc, we first need to define some
“advanced” operations on polynomials, and we refer the reader to [18,3,6] for a
more detailed exposition.



348 D. Jovanović and L. de Moura

Let f, g ∈ Z[y, x] be two polynomials with n = min(deg(f, x), deg(g, x)). For
k = 0, . . . , n−1, we denote with Sk(f, g, x) the k-th subresultant of f and g. The
k-th subresultant is defined as the determinant of the k-th Sylvester-Habicht
matrix of f and g, and is a polynomial of degree ≤ k in x with coefficients in
Z[y]. The matrix in question is a particular matrix containing as elements the co-
efficients of f and g. Additionally, we denote with psck(f, g, x) the k-th principal
subresultant coefficient of f and g, which is the coefficient of xk in the polyno-
mial Sk(f, g, x), and define pscn(f, g, x) = 1. We denote the sequence of principal
subresultant coefficients as psc(f, g, x) = (psc0(f, g, x), . . . , pscn(f, g, x)).

Definition 2. Given a set of polynomials A = {f1, . . . , fm} ⊂ Z[y, x] the Collins
projector operator Pc(A, x) is defined as

⋃

f∈A

coeff(f, x) ∪
⋃

f∈A
g∈R∗(f,x)

psc(g, g′x, x) ∪
⋃

i<j
gi∈R∗(fi,x)
gj∈R∗(fj ,x)

psc(gi, gj , x) .

Let A = {f1, . . . , fm} ⊂ Z[y] be a set of polynomials, where y = (y1, . . . , yn),
and S be a region of Rn. If for any assignment υ such that υ(y) = α ∈ S, the
polynomials in A have the same sign under υ, we say that A is sign-invariant
on S.

Theorem 2 (Theorem 4 in [10]). Given a finite set of polynomials A ⊂
Z[y, x], where y = (y1, . . . , yn), and let S be a region of Rn. If Pc(A) is sign
invariant on S, then A is delineable over S.

A sign assignment for a set of polynomials A is a mapping σ, from polynomials
in A to {−1, 0, 1}. Given a set of polynomials A ⊂ Z[y, x], we say a sign as-
signment σ is realizable with respect to some α in R

n, if there exists a β ∈ R

such that every f ∈ A takes the sign corresponding to its sign assignment, i.e.,
sgn(f(α, β)) = σ(f). The function sgn maps a real number to its sign {−1, 0, 1}.
We use signs(A,α) to denote the set of realizable sign assignments of A with
respect to α.

Lemma 1. If a set of polynomials A ⊂ Z[y, x] is delineable over a region S,
then signs(A,α) is invariant over S.

4.2 Projection-Based Explanations

Suppose that we need to produce an explanation for propagating a polynomial
constraint F , i.e. we are in a state such that ¬ compatible(¬F,M), with poly(F ) ∈
Z[y, x], where y = (y1, . . . , yn). To simplify the presentation, in the following,
we write υ for υ[M ]. The explanation procedure explain(F,M) consists of the
following steps.

IsolateCore: Find a minimal set F of literals in M such that υ(F∪{¬F}) does
not allow a solution for x. We call the set F ∪ {¬F} set a conflicting core.



Solving Non-linear Arithmetic 349

Project: Construct a region S of Rn where A = poly(F ∪ {F}) is delineable,
and υ(y) is in S. Note that, from Lemma 1, ¬F is incompatible with F for
any other α′ in S.

Explain: Define the region S using extended polynomial constraints, obtaining
a set of constraints E . Then, we define explain(F,M) ≡ (E ∧ F) =⇒ F .

We focus here on the second step of the procedure. To obtain the region S we
will use a projection operator which, with insights of Theorem 2, will ensure
delineability. Since our procedure requires a region S that contains the current
assignment υ(y) = α, we add the assignment υ as an additional argument to
the projection operator, and call such a projection operator model-based. Given
a variable assignment υ, we denote the vanishing signature of a principal subre-
sultant sequence as v-psc(f, g, x, υ) = v-sig(psc0(f, g, x), . . . , pscn(f, g, x), υ), and
define our model-based projection operator Pm(A, x, υ) as follows.

Definition 3. Given a set of polynomials A = {f1, . . . , fm} ⊂ Z[y, x] and a
variable assignment υ, the model-based Collins projector operator Pm(A, x, υ) is
defined as

⋃

f∈A

v-coeff(f, x, υ) ∪
⋃

f∈A
g=R(f,x,υ)

v-psc(g, g′x, x, υ) ∪
⋃

i<j
gi=R(fi,x,υ)
gj=R(fj ,x,υ)

v-psc(gi, gj, x, υ) .

Example 3. Consider the variable assignment υ, with υ(x) = 0, and the set A
containing two polynomials f2 = x2 + y2 − 1 and f3 = −4xy − 4x+ y − 1. The
projection operator Pm maps the set A into Pm(A, y, υ)

{ (16x3 − 8x2 + x+ 16
︸ ︷︷ ︸

f1

)x, −4x+ 1, 4(x+ 1)(x− 1), 2, 1 } , (1)

where f1 is the polynomial from Ex. 1. The zeros of f2 and f3 are depicted in
Fig. 4(b), together with a set of important points {−1, α1, 0,

1
4 , 1}, where α1 is the

algebraic number from Ex. 1. These points are exactly the roots of the projection
polynomials (1). It is easy to see that f2 and f3 are delineable in the intervals
defined by these points. But, considering a polynomial f4 = x3 + 2x2 + 3y2 − 5,
we can see that it is not delineable on the interval (1,+∞).

We will use the projection operator Pm to compute the required region S, and
show that A is delineable in S. First, we close the set of polynomials A ⊂
Z[y1, . . . , yn, x] under the application of a projection operator Pm. We compute
this closure by computing sets of polynomials Pn, . . . ,P1 iteratively, starting
from Pn = Pm(A, υ, x), and then for k = n, . . . , 2, compute the subsequent
ones as Pk−1 = Pm(Pk, yk, υ) ∪ (Pk ∩ Z[y1, . . . , yk−1]). Each set of polynomials
Pk ⊆ Z[y1, . . . , yk] is obtained by projecting the previous set Pk+1 and adding
all the polynomials from Pk+1 that do not involve the variable yk+1.

Now, we can build the region S inductively, in a bottom-up fashion, by con-
structing a sequence of regions Sk ⊂ R

k such that each Pk is sign invariant in



350 D. Jovanović and L. de Moura

Sk, and Pk+1 is delineable in Sk. Assume that Sk−1, and its defining constraints
Ek−1, have already been constructed. Now, consider the set of root objects

Rk =
{
root(f, i) | f ∈ Pk, 1 ≤ i ≤ rootcount(υ(f))

}
.

Under the assignment υ each of the root objects root(f, i) is defined and evaluates
to some value ωi

f ∈ Ralg. The values ωi
f partition the real line into maximal

intervals where the polynomials f ∈ Pk are sign invariant. We pick the one
interval that contains υ(yk) = αk and construct the defining constraints Ek of
the region Sk by selecting one of the appropriate cases

αk ∈ (ωi
f , ω

j
g) =⇒ Ek = Ek−1 ∪ { yk >r root(f, i), yk <r root(g, j) } ,

αk ∈ (−∞, ωi
f) =⇒ Ek = Ek−1 ∪ { yk <r root(f, i) } ,

αk ∈ (ωi
f ,+∞) =⇒ Ek = Ek−1 ∪ { yk >r root(f, i) } ,

αk = ωi
f =⇒ Ek = Ek−1 ∪ { yk =r root(f, i) } .

Finally, we guarantee that Pk+1 is delineable in Sk because polynomials in P∗ =
P1 ∪ . . . ∪ Pk are by construction sign invariant in Sk. Once we have computed
the regions S1, . . . , Sn, we can use the region S = Sn and the corresponding
constraints E = En to explain why ¬F is incompatible with F . Thus, we set
explain(F,M) ≡ (E ∧ F) =⇒ F .

Theorem 3. The explanation function explain(F,M) is a finite-basis explana-
tion function for the existential theory of real closed fields.

Example 4. Consider the polynomial f = x2 + y2 + z2 − 1, from Ex. 2, and the
constraint f < 0 corresponding to the interior of the sphere in Fig. 4(a). Under
an assignment υ with υ(x) = 3

4 and υ(y) = − 3
4 this constraint does not allow a

solution for z (it evaluates to z2 < − 1
8 ). In order to explain it, we can compute

the projection closure of A = {f}, using Pm, obtaining P3 = A and

P2 = { 4x2 + 4y2 − 4, 2, 1 } , P1 = { 256x2 − 256, 8, 4, 2, 1 } .

The sets of root objects under υ are then

R2 = { root(z̃2 +x2 − 1, 1), root(z̃2 +x2 − 1, 2) } ,

R1 = { root(z̃2 −1, 1), root(z̃2 −1, 2) } .

Since υ(x) = 3
4 = 0.75 and the root objects of R1 evaluate to −1 and 1, re-

spectively, the constraints corresponding to the region S1 are (x > −1) and

(x < 1). The root objects of R2 evaluate to −
√
7
4 ≈ −0.6614 and

√
7
4 ≈ 0.6614.

Since υ(y) = − 3
4 = −0.75, and we describe the region S2 with the additional

constraint (y < root(z̃2 −x2−1, 1)). Using the constraints defining the region S2

we construct the explanation explain(f < 0, υ) as

(x ≤ −1) ∨ (x ≥ 1) ∨ ¬(y < root(z̃2 −x2 − 1, 1)) ∨ (f ≥ 0) .

The explanation clause states that, in order to fix the conflict under υ, we must
change υ so as to exit the region −1 < x < 1 below (in y) the unit circle.



Solving Non-linear Arithmetic 351

�1

0

1

�1

0

1

�1.0

� 0.5

0.0

0.5

1.0

(a)

� 2 �1 1 2

� 2

�1

1

2

(b)

Fig. 4. (a) The sphere corresponding to the roots of x2 + y2 + z2 − 1, and regions of
Ex 2 and Ex 4. (b) Solutions of f2 = x2 + y2 − 1 = 0, f3 = −4xy − 4x + y − 1 = 0,
and f4 = x3 + 2x2 + 3y2 − 5 = 0, with the solution set of {f2 < 0, f3 > 0, f4 < 0}
emphasized. The dashed lines represent the zeros of the projection set (1).

.
Isolating the conflicting core. Given a constraint F incompatible with a trail M ,
we can compute a minimal set of constraints F from M that is not compatible
with F by taking the constraints that that caused the inconsistency and then
refine it by trying to eliminate the constraints one by one.

Example 5. Consider the set of polynomial constraints C = {f2 < 0, f3 > 0, f4 <
0}, where the polynomials f2 and f3 are from Ex. 3. The roots of these polynomi-
als and the feasible region of C are depicted in Fig. 4(b). Assume the transition
is in the state 〈�x �→ 0, (f2 < 0), (f4 < 0), E→(f3 ≤ 0)�, C〉2, and we need to com-
pute the explanation E of the last propagation. Although the propagation was
based on the inconsistency of C underM , we can pick the subset {f2 < 0, f3 > 0}
to produce the explanation. It is a smaller set, but sufficient, as it is also inconsis-
tent with M . Doing so we reduce the number of polynomials we need to project,
which, in CAD settings, is always an improvement.

5 Related Work and Experimental Results

In addition to CAD, a number of other procedures have been developed and
implemented in working tools since the 1980s, including Weispfenning’s method
of virtual term substitution (VTS) [28] (as implemented in Reduce/Redlog),
and the Harrison-McLaughlin proof producing version of the Cohen-Hörmander
method [19]. Abstract Partial Cylindrical Algebraic Decomposition [22] com-
bines fast, sound but incomplete procedures with CAD. Tiwari [27] presents
an approach using Gröbner bases and sign conditions to produce unsatisfiabil-
ity witnesses for nonlinear constraints. Platzer, Quesel and Rümmer combine
Gröbner bases with semidefinite programming [23] for the real Nullstellensatz.



352 D. Jovanović and L. de Moura

In order to evaluate the new decision procedure we have implemented a new
solver nlsat, the implementation being a clean translation of the decision proce-
dure described in this paper. We compare the new solver to the following solvers
that have been reported to perform reasonably well on fragments of non-linear
arithmetic: the z3 3.2 [11], cvc3 2.4.1 [2], and MiniSmt 0.3 [29] SMT solvers;
the quantifier elimination based solvers Mathematica 8.0 [25], QEPCAD 1.65 [5],
Redlog-CAD and Redlog-VTS [12]; and the interval based iSAT [13] solver.5

We ran all the solvers on several sets of benchmarks, where each benchmark set
has particular characteristics that can be problematic for a non-linear solver. The
meti-tarskibenchmarks are proof obligations extracted from theMetiTarski project
[1], where the constraints are of high degree and the polynomials represent approxi-
mations of the elementary real functions being analyzed. The keymaera benchmark
set contains verification conditions from the Keymaera verification platform [23].
The zankl set of problems are the benchmarks from the QF NRA category of the
SMT-LIB library, with most problems originating from attempts to prove termi-
nation of term-rewrite systems [14]. We also have two crafted sets of benchmarks,
the hong benchmarks,which are a parametrizedgeneralizationof the problem from
[15], and the kissing problems that describe some classic kissing number problems,
both sets containing instances of increasing dimensions.

Table 1. Experimental results

meti-tarski (1006) keymaera (421) zankl (166) hong (20) kissing (45) all (1658)

solver solved time (s) solved time (s) solved time (s) solved time (s) solved time (s) solved time (s)

nlsat 1002 343 420 5 89 234 10 170 13 95 1534 849

Mathematica 1006 796 420 171 50 366 9 208 6 29 1491 1572

QEPCAD 991 2616 368 1331 21 38 6 43 4 5 1390 4036

Redlog-VTS 847 28640 419 78 42 490 6 3 10 275 1324 29488

Redlog-CAD 848 21706 363 730 21 173 6 2 4 0 1242 22613

z3 266 83 379 1216 21 0 1 0 0 0 667 1299

iSAT 203 122 291 16 21 24 20 822 0 0 535 986

cvc3 150 13 361 5 12 3 0 0 0 0 523 22

MiniSmt 40 697 35 0 46 1370 0 0 18 44 139 2112

All tests were conducted on an Intel Pentium E2220 2.4 GHz processor, with
individual runs limited to 2GB of memory and 900 seconds. The results of our
experimental evaluation are presented in Table 1. The rows are associated with
the individual solvers, and columns separate the problem sets. For each problem
set we write the number of problems that the solver managed to solve within
the time limit, and the cumulative time (rounded) for the solved problems.

The results are both revealing and encouraging. On this set of benchmarks, ex-
cept for nlsat and the quantifier elimination based solvers, all other solvers that
we’ve tried have a niche problem set where they perform well (or reasonably well),

5 We ran the solvers with default settings, using the Resolve command of Mathemat-
ica, the rlcad command for Redlog-CAD, and the rlqe for Redlog-VTS.



Solving Non-linear Arithmetic 353

whereas on others they perform poorly. The new nlsat solver, on the other hand, is
consistently one of the best solvers for each problem set, with impressive running
times, and, overall manages to solve the most problems, in much faster time.

6 Conclusion

We proposed a new procedure for solving systems of non-linear polynomial con-
straints. The new procedure performs a backtracking search for a model, where
the backtracking is powered by a novel conflict resolution procedure. In our ex-
periments, our first prototype was consistently one of the best solvers for each
problem set we tried, and, overall manages to solve the most problems, in much
faster time. We expect even better results after several missing optimizations in
the core algorithms are implemented. We see many possible improvements and
extensions to our procedure. We plan to design and experiment with different
explain procedures. One possible idea is to try explain procedures that are more
efficient, but do not guarantee termination. Heuristics for reordering variables
and selecting a value from the feasible set should also be tried. Integrating our
solver with a Simplex-based procedure is another promising possibility.

Acknowledgements. We would like to thank Grant Passmore for providing
valuable feedback, the Meti-Tarski benchmark set, and so many interesting tech-
nical discussions. We also would like to thank Clark Barrett for all his support.

References

1. Akbarpour, B., Paulson, L.C.: MetiTarski: An automatic theorem prover for real-
valued special functions. Journal of Automated Reasoning 44(3), 175–205 (2010)

2. Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)

3. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in real algebraic geometry. Springer
(2006)

4. Brown, C.W.: Solution formula construction for truth invariant CAD’s. PhD thesis,
University of Delaware (1999)

5. Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic sets using
CADs. ACM SIGSAM Bulletin 37(4), 97–108 (2003)

6. Brown, W.S., Traub, J.F.: On Euclid’s algorithm and the theory of subresultants.
Journal of the ACM 18(4), 505–514 (1971)

7. Buchberger, B., Collins, G.E., Loos, R., Albrecht, R. (eds.): Computer algebra.
Symbolic and algebraic computation. Springer (1982)

8. Caviness, B.F., Johnson, J.R. (eds.): Quantifier Elimination and Cylindrical Alge-
braic Decomposition. Texts and Monographs in Symbolic Computation. Springer
(2004)

9. Cohen, H.: A Course in Computational Algebraic Number Theory. Springer (1993)
10. Collins, G.E.: Quantifier Elimination for Real Closed Fields by Cylindrical Alge-

braic Decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33,
pp. 134–183. Springer, Heidelberg (1975)



354 D. Jovanović and L. de Moura

11. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

12. Dolzmann, A., Sturm, T.: Redlog: Computer algebra meets computer logic. ACM
SIGSAM Bulletin 31(2), 2–9 (1997)

13. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving
of large non-linear arithmetic constraint systems with complex Boolean struc-
ture. Journal on Satisfiability, Boolean Modeling and Computation 1(3-4), 209–236
(2007)

14. Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl,
H.: SAT Solving for Termination Analysis with Polynomial Interpretations. In:
Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 340–354.
Springer, Heidelberg (2007)

15. Hong, H.: Comparison of several decision algorithms for the existential theory of
the reals (1991)

16. Jovanović, D., de Moura, L.: Cutting to the Chase Solving Linear Integer Arith-
metic. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS,
vol. 6803, pp. 338–353. Springer, Heidelberg (2011)

17. Korovin, K., Tsiskaridze, N., Voronkov, A.: Conflict Resolution. In: Gent, I.P. (ed.)
CP 2009. LNCS, vol. 5732, pp. 509–523. Springer, Heidelberg (2009)

18. Loos, R.: Generalized polynomial remainder sequences. Computer Algebra: Sym-
bolic and Algebraic Computation, 115–137 (1982)

19. McLaughlin, S., Harrison, J.V.: A Proof-Producing Decision Procedure for Real
Arithmetic. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp.
295–314. Springer, Heidelberg (2005)

20. McMillan, K.L., Kuehlmann, A., Sagiv, M.: Generalizing DPLL to Richer Log-
ics. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 462–476.
Springer, Heidelberg (2009)

21. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T ).
Journal of the ACM 53(6), 937–977 (2006)

22. Passmore, G.O.: Combined Decision Procedures for Nonlinear Arithmetics, Real
and Complex. PhD thesis, University of Edinburgh (2011)

23. Platzer, A., Quesel, J.-D., Rümmer, P.: Real World Verification. In: Schmidt, R.A.
(ed.) CADE-22. LNCS, vol. 5663, pp. 485–501. Springer, Heidelberg (2009)

24. Silva, J.P.M., Sakallah, K.A.: GRASP: A search algorithm for propositional satis-
fiability. IEEE Transactions on Computers 48(5), 506–521 (1999)

25. Strzeboński, A.W.: Cylindrical algebraic decomposition using validated numerics.
Journal of Symbolic Computation 41(9), 1021–1038 (2006)

26. Tarski, A.: A decision method for elementary algebra and geometry. Technical
Report R-109, Rand Corporation (1951)

27. Tiwari, A.: An Algebraic Approach for the Unsatisfiability of Nonlinear Con-
straints. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 248–262. Springer,
Heidelberg (2005)

28. Weispfenning, V.: Quantifier elimination for real algebra - the quadratic case and
beyond. AAECC 8, 85–101 (1993)

29. Zankl, H., Middeldorp, A.: Satisfiability of Non-linear (Ir)rational Arithmetic. In:
Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 481–500.
Springer, Heidelberg (2010)


	Solving Non-linear Arithmetic
	Introduction
	Preliminaries
	An Abstract Decision Procedure
	Producing Explanations
	Cylindrical Algebraic Decomposition
	Projection-Based Explanations

	Related Work and Experimental Results
	Conclusion
	References




