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Abstract. Regular algebras axiomatise the equational theory of reg-
ular expressions. We use Isabelle/HOL’s automated theorem provers
and counterexample generators to study the regular algebras of Boffa,
Conway, Kozen and Salomaa, formalise their soundness and complete-
ness (relative to a deep result by Krob) and engineer their hierarchy.
Proofs range from fully automatic axiomatic and inductive calculations
to integrated higher-order reasoning with numbers, sets and monoid
submorphisms. In combination with Isabelle’s simplifiers and structur-
ing mechanisms, automated deduction provides powerful support to the
working mathematician beyond first-order reasoning.

1 Introduction

Regular languages, regular expressions and finite automata belong to the foun-
dations of computing. Regular algebras are the mathematical structures that
underly these formalisms. Originally proposed for axiomatising the equational
theory of regular expressions, they have since found wide applications in various
fields of computing.

Work on regular algebras has spanned decades. Salomaa gave two axiom sys-
tems, proved completeness of the first and conjectured it of the second [12].
Conway, in his influential monograph, conjectured completeness of several alter-
native axiomatisations [6]. Krob gave a long and intricate completeness proof
of Conway’s so-called classical axioms extended by a system of monoid identi-
ties [10]. Boffa proved completeness of two particularly simple algebras relative
to Krob’s result [3,4]. Relative to Boffa’s algebras, Krob, in turn, verified some
of Conway’s remaining conjectures. Kozen proved completeness of a simplified
algebra of Conway [8], which under the name Kleene algebra has been widely
studied and applied since. Boffa, in turn, showed completeness of a simplified
version of Kleene algebra.

Within the programme of enhancing mathematics by theorem provers, regular
algebras yield an interesting test case: they include pure first-order as well as
higher-order structures axiomatised by inductive families of identities and with
elements generated by finite monoids via submorphisms. Proofs include equa-
tional calculations and integrated higher-order reasoning about algebra, num-
bers, sets (of lists), infinite suprema and functions. Our main motivation is the
following question: How far can first-order automated theorem provers support
the working mathematician in such a heterogeneous environment?
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Fig. 1. Fine structure of regular algebra

Automated theorem proving alone, is of course too limited for our study. It
is only possible due to Isabelle/HOL’s [11] recent integration of first-order proof
and counterexample search technology into a higher-order interactive theorem
proving environment (cf. [2] for an overview). In a nutshell, Isabelle’s Sledgeham-
mer tool delegates proof goals to external automated theorem provers (ATPs)
and satisfiability modulo theories (SMT) solvers. A relevance filter gathers hy-
potheses for the external tools. Their proof outputs are reconstructed within
Isabelle to increase trustworthiness. ATP in Isabelle is complemented by the
Nitpick and Quickcheck counterexample search tools. This integration supports
a very natural new style of computer enhanced mathematics. Traditionally, work
with Isabelle was driven by its simplifiers and direct applications of theorems
from its libraries. Now, paper and pencil proofs can be typed directly into Is-
abelle’s proof scripting language and verified step by step by an ATP system
using the hypotheses it gathers. With this approach, an Isabelle repository for
Kleene and relation algebras with more than 2000 facts has already been im-
plemented1. But the fine structure of regular algebras with their higher-order
features has not yet been considered. Our main contributions are as follows:

We implement the algebras of Boffa, Conway (without monoid identities),
Kozen and Salomaa as abstract type classes in Isabelle and develop a library of
regular identities and auxiliary concepts for Boffa’s algebras.

We use Isabelle’s locale mechanism in combination with Nitpick to capture
meta-theorems that relate these algebras. We reconstruct known completeness
results for regular algebras and add some new ones: equipollence (mutual de-
ducibility) of Boffa’s algebras, and of some of Conway’s algebras and Kleene al-
gebras, a simple completeness proof for Salomaa’s first algebra, a gap in Boffa’s
completeness proof for his second one, and proofs that various subclasses are
proper. The main relationships are shown in Figure 1. Nodes represent equipol-
lent algebras; arrows the implication preorder. All completeness proofs are rela-
tive to Krob’s result; they are based on implications between axiom systems.

1 http://www.dcs.shef.ac.uk/~georg/isa

http://www.dcs.shef.ac.uk/~georg/isa
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We establish soundness of regular algebras relative to regular languages.
Soundness of Salomaa’s algebra and Kleene algebra is automatically propagated
down the hierarchy by Isabelle’s sublocale mechanism.

We reconstruct Boffa’s completeness result relative to Conway’s classical ax-
ioms with monoid identities. This requires an alternative implementation of
Boffa’s algebras with explicit carrier sets and additional theory infrastructure.
In this case, the sublocale mechanism propagates completeness up the hierarchy.

Most subclass and equipollence proofs are fully automatic. This demonstrates
the impressive power of ATP in algebraic reasoning. Automating more complex
results requires specific elimination rules for higher-order structure and an inter-
play with Isabelle’s simplifier. As soon as supporting libraries were developed, all
proofs could be implemented at least at textbook-level granularity in a natural
mathematical style. Some formalisation tasks, in particular the construction of
infinite counterexamples, are deliberately left open to demonstrate not only the
potential, but also the limitations of our lightweight ATP-based approach.

This paper can only highlight some main features of our work. The com-
plete Isabelle implementation can be accessed through our repository. We must
also assume familiarity with the basics of Isabelle. We refer to the excellent on-
line documentation, in particular the locale tutorial [1] and the references given
therein, for further information. The paper itself has been processed by Isabelle’s
document preparation system, including the verification of its technical results.
The following numbers underpin the success of ATP in analysing regular al-
gebra: our implementation contains 303 proof goals. 242 were fully automatic
(apart perhaps from calling an induction or case analysis tactic); 35 were fully
automatic after invoking a simplifier; 26 required moderate user interaction.

2 Dioids, Powers and Finite Sums

All regular algebras can be based on dioids or idempotent semirings. Implemen-
tations of these structures and a library of facts can be found in the repository.

Formally, a semiring is a structure (S,+, ·, 0, 1) where (S,+, 0) is a commuta-
tive monoid, (S, ·, 1) is a monoid, and the distributivity laws x·(y+z) = x·y+x·z
and (x + y) · z = x · z + y · z, and annihilation laws x · 0 = 0 and 0 · x = 0
hold. A semiring is idempotent—a dioid—if x + x = x. In this case the reduct
(S,+) forms a semilattice, and can be endowed with the usual semilattice order
x ≤ y ↔ x + y = y. The least element of this order is 0 and the operations of
addition and multiplication are isotone. An important concept in semiring the-
ory is duality with respect to opposition. It is based on the opposite multiplica-
tion x ◦ y = y · x. We have implemented this duality in Isabelle and shown that
(S,+, ◦, 0, 1) is a dioid whenever (S,+, ·, 0, 1) is. Duals of theorems in dioids are
available for free in Isabelle. This also yields automatic completeness proofs for the
duals of all structures in this paper (e.g. the righthanded algebras in Figure 1).

For most of the development in this paper, implementing algebras by ax-
iomatic type classes is sufficient. Consequently, their carrier sets are left implicit.
This is common mathematical practice, beneficial to automation, but insufficient
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for more advanced mathematics (cf. Section 9). Some axiomatisations of regular
algebras require powers and finite sums. Powers can be defined recursively.

primrec power :: ′a ⇒ nat ⇒ ′a (-- [101,50] 100)
where x0 = 1
| xSuc n = x ·xn

We have developed a basic library for powers. Typical facts are xn · x = x · xn

or y · x ≤ y → y · xn ≤ y. Apart from induction, proofs are mostly automatic.
The following example illustrates the style of reasoning.

Lemma power-add : xm·xn = xm+n

Proof (induct m)
case 0 show ?case by (metis add-0-left mult-onel power .simps(1))
case (Suc m) show ?case by (smt Suc add-Suc mult-assoc power .simps(2))

qed

Isabelle’s induction tactic is called to generate proof obligations for the base
case and the induction step. Sledgehammer is then called on both cases. The
first case is discharged by Metis, an internally verified ATP system. The second
one uses SMT proof reconstruction. The proof uses the clauses in the definition
of power, induction hypothesis Suc and facts about dioids and numbers. All have
been gathered by the relevance filter.

Next we define a function that sums up powers: xn
m =

∑n+m
i=m xi. Avoiding

Isabelle’s library function setsum yields better control over proof automation,
but ultimately, an integration with existing Isabelle libraries is desirable (cf. [7]).

primrec powsum :: ′a ⇒ nat ⇒ nat ⇒ ′a (--
- [101,50,50] 100)

where xn
0 = xn

| xnSuc m = xn
m+xn+Suc m

Again we have proved a number of basic facts by ATP, often by induction, and
sometimes calling Isabelle’s simplifier before Sledgehammer.

3 Conway’s Classical Axioms

Regular algebras are dioids expanded by the regular operation ∗. We implement
Conway’s classical axioms (p.25 in his monograph) using Isabelle’s axiomatic
type classes; hence again without explicit carrier sets.

Class regalg-base = dioid-one-zero + star-op + plus-ord +
assumes C11: (x+y)∗ = (x∗·y)∗·x∗

and C12: (x ·y)∗ = 1+x ·(y ·x)∗·y

Class conway = regalg-base +
assumes C13: (x∗)∗ = x∗

Class conway-classical = conway +
assumes C14: x∗ = (xn+1)∗·x0n
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The class regalg-base is reused for Boffa’s first axiomatisation. In class conway,
axiom schema C14—also called powerstar axiom—has been removed from the
classical axioms, since it is not needed for most of our results.

Conway himself uses semirings instead of dioids. He shows that x + x = x
can be derived from that basis; hence both variants are equipollent. We use
dioids for the sake of uniformity across the paper. Conway has shown that the
classical axioms are incomplete with respect to (the equational theory of) regular
languages (p. 118). He has also analysed the role of axiom C13 (p. 104). We could
easily automate his analysis with Nitpick: a 3-element counterexample shows
irredundancy of C13 in the semiring setting; in its absence, x+x = x (3-element
counterexample) and x∗ · x∗ = x∗ (5-element counterexample) could be refuted.
In the dioid setting, however, we could neither prove nor refute x∗ · x∗ = x∗

automatically in the absence of C13 within Isabelle’s default time limits. In the
presence of powerstar, Nitpick uniformly failed. In fact, Conway constructs an
infinite model of a semiring in which the classical axioms except C13 hold and
in which C13 fails (p.104). We have not attemtped to formalise his model.

4 Boffa’s Axioms

Boffa [3,4] presented two axiom systems for regular algebra. His first axioma-
tisation adds a very simple quasi-identity to Conway’s classical axioms. In his
second paper he shows that some of Conway’s axioms—including powerstar—
are redundant. He also shows that his second axiomatisation implies the first.
We can base the first axiomatisation on regalg-base.

Class boffa-1 = regalg-base +
assumes R: x ·x = x → x∗ = 1+x

Class boffa-2 = dioid-one-zero + star-op +
assumes B1: 1+x ≤ x∗

and B2: x∗·x∗ = x∗

and B3: 1+x ≤ y ∧ y ·y = y → x∗ ≤ y

Boffa algebras are closed under duality since all axioms are self-dual.
We first show that boffa-1 and boffa-2 are equipollent (boffa-1 = boffa-2). Boffa

has already shown that boffa-2 ⊆ boffa-1—the first is a subclass of the second—
whereas the converse inclusion is new. Following Boffa, we then relate Boffa’s
algebras with Conway’s classical axioms. In Isabelle, subclass relationships can
be captured by subclass or sublocale proofs. We use sublocales simply because
the associated syntax leads to more readable statements. In general, an under-
standing of Isabelle’s subclass and locale mechanisms is not needed to grasp the
mathematical statements in this paper.

Sublocale boffa-1 ⊆ boffa-2

Isabelle dictates the proof obligations: all boffa-2 axioms must be derived from
boffa-1. In fact, only B1-B3 need to be verified. Isabelle recognises that both
algebras extend the class dioid-one-zero. All proof obligations were discharged
by ATP. All theorems for boffa-2 are now automatically available for boffa-1.
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Proving the converse sublocale relationship is more involved. A direct au-
tomated proof was impossible within Isabelle’s time limits. First, we therefore
verified all regular identities that have been proved for Kleene algebras in the
repository in the weaker context of boffa-2. These 46 facts include well known
identities such as 1 ≤ x∗, x ≤ x∗, x∗ · x∗ = x∗, x∗∗ = x∗, 1∗ = 1, 0∗ = 1,
1+x ·x∗ = x∗, (x ·y)∗ ·x = x · (x ·y)∗, and (x+y)∗ = x∗ · (y ·x∗)∗. 41 proofs were
automatic; for the remaining ones, paper and pencil proofs could be translated.
Consider the following proof of C12 as an example.

Proof −
have ∀ x y . 1+x ·(y ·x)∗·y = (1+x ·(y ·x)∗·y)·(1+x ·(y ·x)∗·y) — by smt
hence ∀ x y . (x ·y)∗ ≤ 1+x ·(y ·x)∗·y — by metis
hence 1+x ·(y ·x)∗·y ≤ 1+x ·y+x ·y ·(x ·y)∗·(x ·y) — by smt
hence 1+x ·(y ·x)∗·y ≤ (x ·y)∗ — by smt ...
thus ?thesis — by metis ...

qed

The remaining half of boffa-1 = boffa-2 is then fully automatic.

Sublocale boffa-2 ⊆ boffa-1

All regular identities are now available also in boffa-1.
Deriving Conway’s classical axioms from Boffa’s algebras again requires some

preparation. We need a few general lemmas about the interaction of the star
with (sums of) powers, for instance, that xn ≤ x∗, xk · (xn)∗ = (xn)∗ · xk and
xk
0 · (xn)∗ = (xn)∗ · xk

0 for k ≤ n, and xn
m ≤ x∗. Most of them are automatic

up to induction. Finally, to derive powerstar from B3, it suffices to prove the
following two facts.

Lemma conway-powerstar1: (xn+1)∗·x0n·(xn+1)∗·x0n = (xn+1)∗·x0n

Lemma conway-powerstar2: 1+x ≤ (xn+1)∗·x0n

Their proofs require a case analysis on n. While the n = 0 cases are automatic,
those for n �= 0 translate paper and pencil proofs. powerstar can then be derived
automatically in two steps (≤ and ≥), and the desired sublocale statement is
automatic as well.

Theorem powerstar : x∗ = (xn+1)∗·x0n

Sublocale boffa-2 ⊆ conway-classical

All theorems of Boffa’s algebras are now available for Conway’s classical axioms.
The subclass relationship is strict. Boffa has shown that his algebras are

complete (relative to Krob’s result, cf. Section 9); Conway has shown that
his classical axioms are not (p. 118). This implies that R cannot be derived
in conway-classical. We have tried unsuccessfully to test this fact with Sledge-
hammer and Nitpick. This is not surprising because Conway’s counterexample
is constructed inductively. Again we have not further attempted to formalise
Conway’s proof.
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5 Conway’s Conjectures

Conway presents several extensions of his classical axioms and conjectures their
completeness (p. 103). Boffa has verified one of them, Krob the remaining ones
relative to boffa-1 (p. 329f). All completeness results are relative to Krob’s com-
pleteness proofs of Conway’s classical axioms with monoid indentities. Following
Boffa, these axioms are derived from Boffa’s algebras in Section 9, which shows
that Boffa’s algebras are complete as well. The (relative) completeness results
in this section are obtained by deriving Boffa’s axioms. We automatically re-
construct Boffa and Krob’s results in the weaker setting of conway without
powerstar by deriving the axioms of boffa-1 from them. We also establish new
equipollence results for Conway’s variants. Conway considers dual lefthanded
and righthanded variants as well as their combinations. Here we only present
the lefthanded ones. Their duals and all dual statements can be found in the
repository.

Class conway-p0 = conway +
assumes P0: x ·y = y ·z → x∗·y = y ·z∗

Class conway-p1l = conway +
assumes P1l : x ·y ≤ y ·z → x∗·y ≤ y ·z∗

Class conway-p2l = conway +
assumes P2l : x = y ·x → x = y∗·x

Class conway-p3l = conway +
assumes P3l : x ·y ≤ y → x∗·y ≤ y

The rule P3l and its dual will reappear in Kozen’s axiomatisation.
We establish two results. First, we show that conway-p2l is complete. Second,

we prove that all lefthanded variants are equipollent, hence complete as well.
The following result is automatic:

Sublocale conway-p2l ⊆ boffa-1

The question whether conway-p2l = boffa-1 remains open. We could neither
prove nor refute the remaining inclusion within Isabelle’s default time limits,
despite the fact that all our regular identities are available in Boffa’s algebras.

The regular identities can now be used in conway-p2l to prove equipollence
of Conway’s variants in a completely automatic fashion. As usual, the sublocale
mechanism takes care of metalogical aspects such as theorem propagation.

Sublocale conway-p2l ⊆ conway-p3l

Sublocale conway-p3l ⊆ conway-p1l

Sublocale conway-p1l ⊆ conway-p2l

Finally we show for i = 1, 2, 3 that the combination of conway-pil and conway-pir
is equipollent to conway-p0. Here we only present the result for i = 2.
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Class conway-p2 = conway-p2l + conway-p2r

Sublocale conway-p0 ⊆ conway-p2

Sublocale conway-p2 ⊆ conway-p0

6 Kozen’s Kleene Algebras

Kozen’s Kleene algebras are essentially conway-p3 with C11-C13 replaced by
a simpler axiom. Kozen gave an elementary completeness proof for his variant
based on Conway’s trick of encoding finite automata in terms of a matrix regular
algebra over a regular algebra. This proof has recently been formalised in the
proof assistant Coq [5]. Boffa proved completeness for left Kleene algebras, where
axiom P3r is absent, relative to boffa-2 (it seems that Kozen’s proof does not
go through in this weaker context).

We reconstruct Boffa’s completeness result and prove new results that estab-
lish equipollence of Kleene algebras and Conway’s variants. Finally, we reproduce
well known equipollence results between two variants of Kleene algebra intro-
duced by Kozen. As usual, we stick to the left. Dual classes and statements can
be found in the repository.

Class kozen-base-l = dioid-one-zero + star-op +
assumes star-unfoldl ′: 1+x ·x∗ ≤ x∗

Class kozen-1l = kozen-base-l +
assumes star-inductl : x ·y ≤ y → x∗·y ≤ y

Class kozen-2l = kozen-base-l +
assumes star-inductl-var : z+x ·y ≤ y → x∗·z ≤ y

Class kozen = kozen-1l + kozen-1r

Conceptually, completeness of kozen-1l (and its dual) follows from the equipol-
lence results below. Technically, however, the corresponding sublocale proof is
particularly simple and automatic; it also brings the regular identities into the
scope of kozen-1l for equipollence proofs.

Sublocale kozen-1l ⊆ boffa-2

Sublocale kozen-1l ⊆ conway-p2l

Sublocale conway-p2l ⊆ kozen-1l

Sublocale kozen ⊆ conway-p0

Sublocale conway-p0 ⊆ kozen

All proofs are fully automatic. They show that conway-pil = kozen-1l and
conway-pi = kozen. Finally, we establish equipollence of Kozen’s variants.
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Sublocale kozen-1l ⊆ kozen-2l

Sublocale kozen-2l ⊆ kozen-1l

Once more we were unsuccessful in testing whether Kozen’s algebras are equipol-
lent to Boffa’s within Isabelle’s default time limits.

7 Salomaa’s Axioms

Salomaa’s axioms are based on dioids without 1, since in the presence of the
Kleene star, 1 can be defined as 0∗. Boffa has observed that idempotency is
redundant in this setting. As before we base Salomaa’s axiomatisation on dioids
to keep the development simple and uniform.

Salomaa presents two axiom systems, proves completeness for the first and
conjectures that property for the second one. His completeness proof uses an
algebraic abstraction of Arden’s well known rule for solving linear equations
over regular languages (axiom salomaa). Since a precondition of Arden’s rule
is the absence of the empty word property—some language must not contain
the empty word—Salomaa inductively defines the negation of property ewp for
regular algebra terms (or regular expressions). Due to this, one of his axioms is
not defined for first-order variables, but for substitution instances of terms.

To circumvent this complication we define ewp abstractly with respect to a
property that holds in the case of regular languages, as we show in the next sec-
tion. This property suffices for our completeness proof. It can safely be replaced
by stronger (inductive) properties that imply it.

Class salomaa-ewp = dioid-one-zero + star-op +
fixes ewp :: ′a ⇒ bool
assumes S11: (1+x)∗ = x∗

and S12: x∗ = 1+x∗·x
and ewp-form : ewp x ↔ (∃ y . x = 1+y ∧ ¬ ewp y)

Class salomaa = salomaa-ewp +
assumes salomaa : (¬ ewp y) ∧ x = x ·y+z → x = z ·y∗

Class salomaa-conj = salomaa-ewp +
assumes salomaa-small : (¬ ewp y) ∧ x = x ·y+1 → x = y∗

Property ewp-form states that the empty word can be isolated from every lan-
guage that contains it. We can easily reconstruct the following relationship [3].

Sublocale salomaa ⊆ salomaa-conj

salomaa = salomaa-conj could be refuted by a 3-element counterexample. We
have not tested whether this would still hold for stronger variants of ewp.

Boffa has presented a completeness proof of salomaa-conj relative to boffa-1.
We provide a new direct completeness proof of salomaa relative to kozen-1r and
briefly argue why Boffa’s proof contains a gap.

Proving star-inductr-var from salomaa yields completeness automatically.
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Lemma kozen-induct : y ·x+z ≤ y → z ·x∗ ≤ y
Proof (cases ewp x)
case False thus ?thesis — one step by metis

next
case True thus ?thesis — several steps by metis and smt, using ewp-form

qed

Sublocale salomaa ⊆ kozen-2r

The proof of kozen-induct illustrates the fact that reasoning with Salomaa’s
axioms typically requires case analyses on ewp and the trick of using ewp-form
to reduce the negative case to one where salomaa can again be applied.

Such a case analysis is needed in the completeness proof of salomaa-conj, but
omitted by Boffa [3]. We have attempted a complete case analysis for C11 but
failed with manual proofs based on Boffa’s paper as well as with automated and
interactive attempts. Also, Nitpick could not find a counterexample. As far as
we can tell, completeness of salomaa-conj therefore remains open.

8 Soundness

We now prove soundness of Salomaa’s axioms and Kleene algebras, which in
this context means that the regular languages form models of these axioms.
By our sublocale relationships this implies soundness of all the other regular
algebras investigated (cf. Figure 1). The main step is proving Arden’s lemma (i.e.
axiom salomaa) at the language level, for which we could have reused a previous
formalisation in Isabelle [9]. Access to the algebraic level, however, significantly
simplifies this previous development. Only a few non-automatic non-algebraic
proofs are needed.

As usual in Isabelle, words are represented as lists; @ denotes word concate-
nation. To enhance automation we introduce elimination rules for higher-order
concepts. They can be used for simplification before calling Sledgehammer.

type-synonym ′a lan = ′a list set

Definition l-prod :: ′a lan ⇒ ′a lan ⇒ ′a lan (infixr · 75)
where X ·Y = {v@w | v w . v∈X ∧ w∈Y }

Lemma l-prod-elim: w∈X ·Y ↔ (∃ u v . w = u@v ∧ u∈X ∧ v∈Y )

We can directly show by an interpretation statement that regular languages form
dioids (though that might not be immediately evident from Isabelle’s syntax).

Interpretation dioid-one-zero (op ∪) l-prod (op ⊆) (op ⊂) {[]} {}
We can now use the function power from dioid-one-zero to define the Kleene

star of a language as usual (powsum would only yield finite sums). We also define
the empty word property in the obvious way.

Definition star :: ′a lan ⇒ ′a lan (-∗ [101] 100)
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where X ∗ = (
⋃

n. X n)

Definition l-ewp X ↔ {[]} ⊆ X

Lemma star-elim: x∈X ∗ ↔ (∃ k . x∈X k)

To show that regular languages form Kleene algebras, only two continuity prop-
erties are needed. Both are automatic after calling Isabelle’s simplifier.

Lemma star-contl : X ·Y ∗ = (
⋃

n. X ·Y n)

Lemma star-contr : X ∗·Y = (
⋃

n. X n·Y )

Interpretation kozen (op ∪) l-prod (op ⊆) (op ⊂) {[]} {} star

Only the verification of the unfold rules required a few interactions. All reg-
ular identities are now available for regular languages and can be used in the
remaining step; the derivation of Arden’s rule, which verifies axiom salomaa.

In fact, only an inequality remains to be shown since one half of the proof
is already covered by axiom star-inductr-var of Kleene algebra. Part of this
inequality can be captured at the abstract algebraic level as well.

Lemma (in boffa-1) arden-aux : y ≤ y ·x+z → y ≤ y ·xSuc n+z ·x∗

Its proof translates an inductive paper and pencil argument. It now suffices
to show that—under the conditions of axiom salomaa interpreted in regular
languages— the term Y · XSuc n vanishes. Following the textbook proofs of
Arden’s lemma, this is the case since the length of minimal words in Y · Xn

grows proportionally to n, hence all words in Y die out in Y ·Xn for n sufficiently
large. We formalise this using two elementary facts about lower bounds of word
lengths in languages.

Lemma prod-lb: (∀w∈X . m≤|w | ) → (∀w∈Y . n≤|w | ) → (∀w∈X ·Y . m+n≤|w | )

Lemma power-lb: (∀w∈X . k≤|w | ) → (∀w . w∈X Suc n → n∗k≤|w | )

Lemma word-suicide: ¬ l-ewp X → Y �= {} → (∀w∈Y . ∃n. w /∈Y ·X Suc n)

Only power-lb requires induction and some user interaction in the induction
step. The proof of word-suicide is calculational with 3 intermediate steps. To-
gether with arden-aux it is used in the following soundness result, which now is
completely automatic.

Interpretation salomaa op ∪ l-prod op ⊆ op ⊂ {[]} {} star l-ewp

9 Relative Completeness

Krob has proved completeness of Conway’s classical axioms extended by the
following rule: If xi · xj ≤ xi◦j and (xi,i)

∗ = xi,i hold for all i, j ∈ I, then
(
∑

xi)
∗ =

∑
xi (p. 116 of Conway’s monograph). In this definition, I is a finite

monoid,
∑

indicates summation over I and xi,j =
∑

ik=j xk. The discussion
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of this schematic rule—which has been called monoid identities by Krob—and
of Krob’s proof requires group theory beyond the scope of this paper; a short
sketch can be found in Conway’s monograph.

Perhaps surprisingly, Boffa has shown that the monoid identities are deriv-
able from boffa-1 by purely elementary reasoning. Relative to Krob’s result, this
establishes completeness of boffa-1 (hence of all algebras in Figure 1).

We now reconstruct Boffa’s proof in Isabelle. While his original proof covers
just a few lines, a certain amount of theory infrastructure must be developed
in Isabelle beforehand. First, abstract axiomatic reasoning—as in the previous
sections—is no longer sufficient; an axiomatisation of Boffa’s algebras based on
carrier sets is needed. Second, finite sums need to be implemented for algebras
with carrier sets since they are not available in Isabelle’s standard library. Third,
elements of Boffa’s algebras must be modelled as functions from a finite monoid
into a Boffa algebra in order to capture indexing.

Algebras with explicit carrier sets can be found in the Isabelle library, however,
the associated syntax is not well documented and some constructions used in this
section may therefore remain somewhat obscure. We have implemented dioids
along these lines and proved some essential properties.

locale dioid = weak-partial-order D for D (structure) +
assumes add-closed : [[x∈carrier D ; y∈carrier D ]] ⇒ x+y∈carrier D
— and further closure conditions
and mult-assoc: [[x∈carrier D ; y∈carrier D ; z∈carrier D ]] ⇒ x ·(y ·z) = (x ·y)·z
— and the remaining dioid axioms

Algebraic structures are now parametrised with respect to their carrier set, and
closure conditions for all operations must be added. ATP systems must check
these additional conditions, which involve some simple set expressions. At the
level of dioids, however, this has little impact on their performance.

The most natural way of defining finite sums over dioids with carrier sets
would be using a fold function, as does Isabelle’s setsum operator without car-
riers. For automated theorem proving, however, it turns out to be much simpler
to define this (partial) recursive function by locale extension.

locale dioid-finsup = dioid D for D (structure) +
assumes finsup-closed : [[finite A; A ⊆ carrier D ]] ⇒ ΣA∈carrier D
and finsup-empty : Σ{} = 0
and finsup-insert : [[A ⊆ carrier D ; finite A; x∈carrier D ]] ⇒ Σ(insert x A) = x+ΣA

We have developed a basic library for sums, in particular for their interaction
with the dioid operations. Typical examples are

∑
A ≤ y ↔ ∀x ∈ A.x ≤ y,∑

(A ∪ B) = (
∑

A) + (
∑

B), and (
∑

A) · (∑B) =
∑{a · b | a ∈ A, b ∈ B},

whenever A and B are finite sets. Their proofs are the least automatic ones in
the paper, since side conditions on the elements and sets involved need to be
processed. All individual proof steps, however, could still be discharged auto-
matically, sometimes after simplifying. We expect that the degree of automation
can significantly be increased in a more thoroughly designed library.

Next we axiomatise boffa1 with carrier sets.

locale boffa1 = dioid-finsup B for B (structure) +
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assumes star-closed : x∈carrier B ⇒ x∗∈carrier B
and C11: [[x∈carrier B ; y∈carrier B ]] ⇒ (x+y)∗ = (x∗·y)∗·x∗

and C12: [[x∈carrier B ; y∈carrier B ]] ⇒ (x ·y)∗ = 1+x ·(y ·x)∗·y
and R: x∈carrier B ⇒ x ·x = x → x∗ = 1+x

We now link this algebra with the index monoid I. First, we define I—parametrised
by the carrier of the algebra—as an arbitrary set that is mapped by a function
x—again parametrised by the carrier—into the regular algebra. The record ′a
boffa provides the signature for the locale boffa1.

record ( ′a, ′b) boffa-gen = ′a boffa +
gen-set :: ′b set (I ı)
gen :: ′b ⇒ ′a (x ı-)

locale boffa-gen = boffa1 G for G (structure) +
assumes gen-closed : i∈I ⇒ x i∈carrier G

We can then impose the monoid structure and finiteness constraint on I.

record ( ′a, ′b) boffa-monoid = ( ′a, ′b) boffa-gen +
comp :: [ ′b, ′b] ⇒ ′b (infix ◦ı 80)
unit :: ′b (eı)

locale boffa-monoid = boffa-gen G for G (structure) +
assumes gen-finite: finite I
and comp-closed : [[i∈I ; j∈I ]] ⇒ i◦j∈I
and unit-closed : e∈I
and comp-assoc: [[i∈I ; j∈I ; k∈I ]] ⇒ i◦(j ◦k) = (i◦j )◦k
and unit-left : i∈I ⇒ e◦i = i
and unit-right : i∈I ⇒ i◦e = i

This infrastructure allows us to write down Conway’s monoid identities in Is-
abelle. Deriving them requires about 10 additional lemmas on the interaction
of the monoid and the regular algebra. To shorten expressions we write {xi}
instead of {xi | i ∈ I} and similarly {xi · xj} or {xi◦j} when indices range over
I. We have shown, for instance, that the set {xi | i ∈ A} is a finite subset of
the carrier G of our algebra and that

∑{xi | i ∈ A} ∈ G, for every A ⊆ I.
Another example is that {xi · xj} is a finite subset of G and the sum over this
set an element of G. Finally, we have shown that the image of the monoidal unit
e under x can be isolated from sums:

∑{xi} = xe +
∑{xi| i ∈ (I −{e})}. Most

corresponding proofs are fully automatic.
The final missing step is the implementation of the pair notation xi,j .

Definition mon-pair :: ( ′a, ′b, ′c) boffa-monoid-scheme ⇒ ′b ⇒ ′b ⇒ ′a (x ı-,-)
where xGi,j = ΣG{xGk | k . k∈IG ∧ i◦Gk = j }

For syntactic reasons, the index G refers to the underlying carrier set. The
following lemma corresponds to the first step in Boffa’s proof [3].

Lemma mon-pair-split : (∀ i∈I . ∀ j∈I . x i,j∗ = x i,j) ⇒ Σ{x i} = 1+Σ{x i}
Its proof translates Boffa’s reasoning more or less directly. The remaining two
lemmas formalise properties that have been left implicit in Boffa’s next steps.
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Lemma aux1: {x i◦j} = {x i}

Lemma aux2: (∀ i∈I . ∀ j∈I . x i·x j ≤ x i◦j) ⇒ Σ{x i·x j} ≤ Σ{x i◦j}
By Lemma aux1, summing over all elements i ◦ j of I means summing over all
elements i. Lemma aux2 helps to lift the assumption in Conway’s rule that x is
a submorphism to the level of suprema. Therefore, the map x from the monoid
I into the Boffa algebra B is “almost” an embedding.

Finally, these three lemmas allow us to feed Boffa’s remaining proof of Con-
way’s rule directly into Isabelle, verifying all his proof steps automatically.

Theorem mon-id : (∀ i∈I . ∀ j∈I . x i·x j ≤ x i◦j ∧ x i,j
∗ = x i,j) ⇒ (Σ{x i})∗ = Σ{x i}

Proof −
assume ∀ i∈I . ∀ j∈I . x i·x j ≤ x i◦j ∧ x i,j

∗ = x i,j
— preparatory steps on the assumption

have (Σ{x i})·(Σ{x i}) = (1+Σ{x i})·(1+Σ{x i}) — by smt
also have ... = 1+(Σ{x i})+(Σ{x i})·(Σ{x i}) — by smt
also have ... = 1+(Σ{x i}+Σ{x i·x j}) — by simplification
ultimately have (Σ{x i})·(Σ{x i}) = Σ{x i} — by smt
thus (Σ{x i})∗ = Σ{x i} — by smt, essentially R and mon-pair-split

qed

This last theorem establishes completeness of all regular algebras in our hierarchy
relative to Krob’s proof (cf. Figure 1). Formalising this result fully in Isabelle
would require linking our abstract implementations of algebras with the carrier
based ones. Unfortunately, to our knowledge, this is impossible. Alternatively,
we could have based the entire development on carrier sets. But that seems
mathematically rather unnatural and it hampers proof automation.

10 Conclusion

We have reconstructed the fine structure of regular algebras within Isabelle based
on the Sledgehammer tool for automated theorem proving and on automated
counterexample search. The main emphasis was on known completeness results,
yet some new findings clarify the overall picture in Figure 1.

As an exercise in computer enhanced mathematics, our study underlines the
impressive potential of integrated automated and interactive proof technology
for the working mathematician. Automation of axiomatic algebraic reasoning left
little to desire; that of moderately difficult higher-order and integrated reasoning
(e.g. by induction, with algebra, numbers or sets) was still reasonably high. The
most complex proofs could be translated directly and rather quickly from paper
and pencil proofs and automated step by step. The hardest work was certainly in
library design. Overall, formalising regular algebras in this new kind of integrated
environment seems reasonably lightweight and natural from a mathematician’s
point of view. Results that eminent scientists found worth publishing could be
reconstructed with relative ease and a high degree of automation.

We end with some remarks on proof technology. Isabelle proof reconstruction
often requires proof search. This remains a bottleneck. Standardised detailed
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ATP output would support fast microstep proof reconstruction even when proof
search takes time. Standardised type support for ATP seems desirable for het-
erogeneous mathematical reasoning. Sledgehammer calls five ATP systems and
the SMT solver Z3 (cf. [2]). Having them all is certainly a gain, but Z3 showed
definitely the most consistent performance. In Isabelle, the gap between abstract
and carrier-based structures inhibits smooth mathematical reasoning. A less rigid
proof scripting language could yield simpler and less verbose ATP-based proofs:
assumption contexts are managed by the relevance filter; hence detailed control
at command level—which determines the scripting syntax— seems unnecessary.

Acknowledgements. We are grateful to Geoff Sutcliffe and the München
Isabelle group for making ATP/SMT systems freely available over the Internet.
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