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Preface

This volume contains the proceedings of the 6th International Joint Confer-
ence on Automated Reasoning (IJCAR 2012) held during June 26–29, 2012, in
Manchester, UK. This year’s meeting was a merging of several leading events in
automated reasoning, namely, CADE (International Conference on Automated
Deduction), FroCoS (International Symposium on Frontiers of Combining Sys-
tems), FTP (International Workshop on First-Order Theorem Proving), and
TABLEAUX (International Conference on Automated Reasoning with Analytic
Tableaux and Related Methods). During the meeting there were four different
systems competitions and, during the two days following the meeting, there were
15 workshops. IJCAR 2012 was part of the Alan Turing Year 2012 and colocated
with The Alan Turing Centenary Conference held June 22–25, 2012. Previous
editions of IJCAR took place in Siena, Italy (2001), Cork, Ireland (2004), Seattle,
USA (2006), Sydney, Australia (2008) and Edinburgh, UK (2010).

The call for papers invited authors to submit either full papers (of 15 pages) or
system descriptions (of seven pages). We received a total of 116 submissions and
eventually accepted 32 full papers and nine system descriptions. Each submission
was reviewed by at least three Program Committee members and their selected
reviewers.

We are pleased that Nikolaj Bjørner, Yuri Matiyasevich, Robert Nieuwenhuis,
and Nicole Schweikardt accepted to give invited talks during the technical part of
the program. We are also honored that Peter Andrews, Martin Davis, and John
Alan Robinson, three pioneers in automated reasoning, accepted to give evening
talks. Another highlight was the Herbrand Award ceremony, where CADE Inc.
honored Melvin Fitting for his exceptional contributions to the field of automated
deduction.

We wish to thank the Program Committee members and their reviewers for
their efforts in helping to evaluate the submissions. They have generously shared
their knowledge of the field and provided the authors with helpful feedback: it
has been a pleasure to work with them. The EasyChair conference management
system was a great help in dealing with all aspects of putting together our
program and the proceedings.

We also wish to thank the sponsors of this meeting: the Artificial Intelligence
Journal, Microsoft Research, and the University of Manchester.

The local organization of the conference as well as the organization of its
satellite events and competitions are challenging, time-consuming tasks, and
we are extremely thankful to everybody who volunteered to contribute to these,
in particular but not restricted to Vicki Chamberlin, Birte Glimm, Konstantin
Korovin, Ruth Maddocks, Rina Srabonian, Geoff Sutcliffe, and Andrei Voronkov.
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Finally, we would like to thank all authors for submitting their work to IJCAR
2012: this resulted in what we believe was an exciting technical program.

May 2012 Bernhard Gramlich
Dale Miller
Uli Sattler
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Taking Satisfiability to the Next Level with Z3

(Abstract)

Nikolaj Bjørner

Microsoft Research
nbjorner@microsoft.com

Several applications from program analysis, design and testing rely critically on
solving SMT problems. Many applications build on top of SMT solvers in so-
phisticated ways by carefully crafting the solver interaction. We illustrate partial
correctness checking as an SMT problem and we introduce a procedure for model
finding of recursive Horn clauses with arithmetic.

The Satisfiability Modulo Theories [1, 2] (SMT) solver Z3 [3], from Microsoft
Research, is a core of several advanced program analysis, testing and model-
based development tools. These tools rely on components using logic for de-
scribing states and transformations between system states. Consequently, they
require a logic inference engine for reasoning about the state transformations.
Z3 is particularly appealing because it combines specialized solvers for domains
that are of relevance for computation and it integrates crucial innovations in
automated deduction. It is tempting to build custom ad-hoc solvers for each
application, but extending and scaling these require a high investment and will
inevitably miss advances from automated deduction. New applications introduce
new challenges for Z3 and provide inspiration for improving automated deduc-
tion techniques. It is not uncommon that when improvements to Z3 are made
based on one application, other applications benefit as well.

A different dimension for advancing SMT solving is by raising the bar for
interfacing with SMT. We describe recent progress in the context of Z3 on
supporting property checking of recursively defined predicates. This includes
symbolic software verification of safety properties as an SMT problem. While
symbolic software model checkers have been developed for more than a decade
now, comparisons and evaluation was only recently introduced [4] for tools ca-
pable of analyzing C programs. In spite of a high overlap of methodology in the
underlying deduction problems, currently separate techniques are developed for
other programming languages. We will illustrate SMT as a basis for symbolic
software model checking of safety properties. This perspective is not limited to
safety properties; besides making the case promoted here, [5] shows how to also
formulate termination by including second-order predicates.

1 Some Applications of Z3

Figure 1 shows a number of Microsoft tools using Z3. Most can be tried online
at http://rise4fun.com. The program verification systems F� [6] that inte-
grates a rich refinement type system, VCC [7] that was used to verify large

B. Gramlich, D. Miller, and U. Sattler (Eds.): IJCAR 2012, LNAI 7364, pp. 1–8, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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2 N. Bjørner

portions of the Viridian Hyper-V product, HAVOC [8] that has been used to
check Windows kernel code and Dafny [9] use the Boogie1 verification condi-
tion generator. Boogie converts programs with contracts into SMT formulas.
The SLAyer [10] system, that works on Windows device drivers, uses separation
logic when checking memory safety of systems code. The Symbolic Difference
tool SymDiff [11], that is used actively for compiler verification and validation,
uses procedure summaries when checking for equivalence of procedures from two
different programs. We have in a rough manner categorized these systems as
property driven, as they share a common trait of taking contracts (pre/post con-
ditions and invariant annotations) and refining these according to the control-
flow graph. A different set of tools takes advantage of symbolic simulation of
program executions. We say they are execution guided, by either over or under-
approximations of executions. These include the SLAM/SDV [12] static driver
verifier that ships with Windows Server editions as part of the Driver Develop-
ment Kit, the Terminator tool [13], Poirot [14], Yogi [15] that is now also being
added to the SDV distribution, Pex and SAGE [16] that use dynamic symbolic
execution. Pex is used by thousands of .NET developers to enhance unit-testing,
and SAGE is used heavily internally at Microsoft to find security vulnerabilities
in media readers. The right column of the figure containsmodel-based tools. They
rely on a model to either test [17], develop [18, 19] or synthesize software [20].
There are several other remarkable systems, including [21–25], that integrate
and develop creative algorithms around Z3.

Fig. 1. Some Microsoft Systems using Z3

1 http://research.microsoft.com/~leino/papers/krml178.pdf

http://research.microsoft.com/~leino/papers/krml178.pdf


Taking Satisfiability to the Next Level with Z3 3

2 Solving Recursive Predicates

This section recalls connections with program properties as recursive predicates
and invariants as solutions to the predicates [26, 5].

2.1 Solving Recursive Predicates Is an SMT Problem

The set of reachable states of a transition system is a recursively defined pred-
icate. The set of reachable configurations of a procedural program is also a
recursively defined predicate. Partial correctness checking relies on establishing
that the least fixed-point of the recursively defined predicates is contained in the
specification property. A way to specify recursive predicates is by using Horn
clauses in the style of pure Prolog. The central tool for establishing partial cor-
rectness of programs is to find inductive invariants that imply the specification
property. Inductive invariants are interpretations of predicates that satisfy the
Horn clauses. Correctness of a specification property amounts to checking that
it is implied by the least fixed-point of the recursive predicates. Equivalently,
there is an inductive invariant that implies the specification property. In other
words, checking partial program correctness is simply put a first-order Satisfia-
bility Modulo Theories problem: it suffices to find an interpretation (inductive
invariant) for the Horn clauses from the recursive relation and for the implication
to the specification property.

Nevertheless, SMT solvers have been mainly targeted at large quantifier-free
problems and for checking unsatisfiability of quantified formulas, and mostly
used as stepping stones for finding models of (recursive) Horn clauses. The model
finding problem for such clauses requires finding (or at least establishing that
there are) interpretations for formulas with quantifiers and theories. In particu-
lar, arithmetic is prolific in some applications extracted from software analysis,
which makes the model finding problem highly intractable. SMT solvers today
are not directly targeted at formulas from symbolic model checking applications.
Many symbolic software model checking tools are still able to successfully use
SMT solving. They integrate with SMT solvers using abstraction refinement
loops based on interpolants, predicate abstraction and other techniques that
have been developed with program verification in mind. The number of tech-
niques developed for automatically checking specification properties is abundant.
Regardless, in a nutshell they solve an SMT problem.

2.2 From Programs and Properties to SMT

Let us illustrate how partial correctness properties of programs correspond to
SMT. Consider a two-process version of Lamport’s Bakery algorithm.

initially y1 := y2 := 0;

P1 ::

⎡⎢⎢⎢⎢⎣
loop forever do⎡⎢⎢⎣
�0 : y1 := y2 + 1;
�1 : await y2 = 0 ∨ y1 ≤ y2;
�2 : critical;
�3 : y1 := 0;

⎤⎥⎥⎦
⎤⎥⎥⎥⎥⎦ || P2 ::

⎡⎢⎢⎢⎢⎣
loop forever do⎡⎢⎢⎣
�0 : y2 := y1 + 1;
�1 : await y1 = 0 ∨ y2 ≤ y1;
�2 : critical;
�3 : y2 := 0;

⎤⎥⎥⎦
⎤⎥⎥⎥⎥⎦
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The safety property of interest is mutual exclusion: processes P1 and P2 cannot
simultaneously execute critical. We can capture the set of reachable states of
this program and the safety property as a set of Horn clauses that are satisfiable
if and only if the safety property holds.

The relation R encodes the reachable configurations for the control locations
for P1 and P2 and the two variables y1, y2. The first clause states that the state
where both processes are at �0 and y1 = y2 = 0 is reachable. The next two
clauses encode a step by either P1 or P2. The transition relation T encodes each
of the steps. For example, if y1 ≤ y2 ∨ y2 = 0, then P1 can move from �1 to �2.
We exploit that P1 and P2 are symmetric by swapping y1 and y2 so we can reuse
the transition relation. Capitalized variables are implicitly universally quantified
in the clauses.

R(�0, �0, 0, 0).
R(L′,M, Y ′

1 , Y2)← R(L,M, Y1, Y2) ∧ T (L,L′, Y1, Y2, Y
′
1).

R(L,M ′, Y1, Y
′
2)← R(L,M, Y1, Y2) ∧ T (M,M ′, Y2, Y1, Y

′
2).

T (�0, �1, Y1, Y2, Y2 + 1).
T (�1, �2, Y1, Y2, Y1)← Y1 ≤ Y2 ∨ Y2 = 0.
T (�2, �3, Y1, Y2, Y1).
T (�3, �0, Y1, Y2, 0).

false ← R(�2, �2, Y1, Y2).

The interpretation R(L,M, Y1, Y2) := S(L,M, Y1, Y2) ∧ S(M,L, Y2, Y1) where

S(L,M, Y1, Y2) :=

((L = �1 ∨ L = �2 ∨ L = �3)→ Y1 > 0)
∧ (L = �0 → Y1 = 0)
∧ ((L = �2 ∧ (M = �3 ∨M = �4))→ Y2 < Y1)
∧ ((L = �2 ∧M = �2)→ Y1 �= Y2)

satisfies the Horn clauses.
To illustrate recursive procedures we use a (contrived) program P that bal-

ances the values of variables y1, y2. The corresponding Horn clauses are listed on
the right. They are satisfiable if and only if y1, y2 are unchanged after P returns
.

P (var y1, var y2) ::⎡⎢⎢⎢⎢⎣
if � then⎡⎢⎢⎣
�0 : y1 := y1 + 1;
�1 : P (y2, y1);
�2 : P (y1, y2);
�3 : y1 := y1 − 1;

⎤⎥⎥⎦
⎤⎥⎥⎥⎥⎦

P (Y1, Y2, Y1, Y2).

P (Y1, Y2, Y5 − 1, Y6)←
[

P (Y2, Y1 + 1, Y3, Y4)
∧ P (Y4, Y3, Y5, Y6)

]
.

false ←
[

P (Y1, Y2, Y3, Y4)
∧ ((Y1 �= Y3) ∨ (Y2 �= Y4))

]
.

The relevant inductive property is P (Y1, Y2, Y3, Y4) := Y1 = Y3 ∧ Y2 = Y4.

2.3 Generalized Property Directed Reachability

The IC3 algorithm [27] is a new algorithm that has so far been used success-
fully in the context of hardware model checking. IC3 is most often referred to
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as PDR, which is a shorthand for Property Directed Reachability. Z3 contains
an implementation of PDR, where the algorithm is generalized to handle both
programs with procedure calls and constraints using arithmetic [28]. The PDR
algorithm has striking analogies with Conflict Directed Clause Learning [29],
a basis of modern DPLL-based SAT solvers. PDR simultaneously strengthens
an abstraction of reachable states and prunes a search for counter-examples. It
maintains the original transition relations, and only requires creating abstrac-
tions of reachable states as conjunctions of state properties (as conflict clauses).
A clever use of induction, reminiscent of subsumption and clause minimization,
allows strengthening state properties.

We will not spell out the entire formal apparatus of our generalization of PDR
here, but we now give an intuition of the PDR generalization using Bakery. The
Horn clauses that are used to define R correspond to a predicate transformer F
(likely better known as the strongest post-condition):

F(R)(L,M, Y1, Y2) :=
Θ ∨
(∃L0, Y0 . T (L0, L, Y0, Y2, Y1) ∧R(L0,M, Y0, Y2)) ∨
(∃M0, Y0 . T (M0,M, Y0, Y1, Y2) ∧R(L,M0, Y1, Y0))

where Θ := L = M = �0 ∧ Y1 = Y2 = 0. The safety property of interest is
S := ¬(L = �2 ∧M = �2).

S Ri+1

↖ ↗ ↖
Ri F(Ri)

(1)

The algorithmmaintains over-approximations
of reachable states R0, . . . , RN satisfying, for
every 0 ≤ i < N the implications in (1),
and also R0 := Θ. In our notation, each ar-
row stands for one implication. The implica-
tions in (1) are therefore Ri → S, Ri → Ri+1 and F(Ri) → Ri+1. Initially,
N := 0 and R1 := R2 := . . . := true. The algorithm increments N ev-
ery time it can establish that RN → S. It concludes that S is invariant if
there is an i, such that Ri+1 → Ri (together with the invariant (1), this im-
plies that Ri is an inductive invariant that implies S). Since R0 → S because
R0 = Θ = (L = M = �0 ∧ Y1 = Y2 = 0) and S = ¬(L = M = �2) we can
set N := 1. The next action is to check if RN ∧ ¬S is satisfiable. It is, and one
possible model is denoted by M := L = M = �2 ∧ Y1 = Y2 = 0. This state
violates the safety property, but is it reachable from the current unfolding? It
would be if F(R0) ∧M were satisfiable. It is not satisfiable. There are several
unsatisfiable cores explaining unsatisfiability. One is L = �0 ∨M = �0, which we
can conjoin to R1. In other words, we update R1 := R1 ∧ (L = �0 ∨M = �0) and
N := 2. After a few steps, yada-yada-yada, we arrive to the point where N = 4,
R4 = true and we examine whether R4 ∧ ¬S is satisfiable. Again, a possible
assignment isM := L = M = �2 ∧ Y1 = Y2 = 0. The formula F(R3)∧M is also
satisfiable, and extends to a model M3 that assigns values to the existentially
quantified variables that are used in the recursive invocation of R. For example
M3 := L = �1 ∧M = �2 ∧ Y1 = Y2 = 0.

We can repeat this backwards propagation a few steps to drive the counter-
example candidate to the initial state. The attempt is illustrated on the right.
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During propagation, F(R2)∧M3 is satisfiable and there is a model of the argu-
ments to the recursive invocation of R, M2 := L = M = �1 ∧ Y1 = Y2 = 0. One
more time: F(R1) ∧M2 is satisfiable and a model for the recursive arguments
is M1 := L = �0 ∧M = �1 ∧ Y1 = −1 ∧ Y2 = 0.

L =M = �2 ∧ Y1 = Y2 = 0 |= F(R3) ∧ ¬S
↑

L = �1 ∧M = �2 ∧ Y1 = Y2 = 0 |= F(R2)
↑

L = �1 ∧M = �1 ∧ Y1 = Y2 = 0 |= F(R1)
...

L = �0 ∧M = �1 ∧ Y1 = −1 ∧ Y2 = 0 |= ¬F(R0)

We are almost done, but
the final push to F(R0) ∧
M1 fails because R0 implies
Y1 = 0. We could add the
clause Y1 �= −1 to R1 to rule
out this spurious counter-
example, but we can do
better.

The approach is to iden-
tify the strongest conflict lemma that contradicts M1 to prune the maximal
number of spurious counter-examples. In this case, the strongest conflict lemma
is Y1 ≥ 0. Z3 uses Farkas lemma. Recall that Farkas lemma justifies so-called the-
ory conflicts for real linear arithmetic; it establishes that a conjunction of linear
inequalities is infeasible iff there is a linear combination that adds up to an in-
feasible constraint 1 ≤ 0. Z3 uses Farkas lemma to find strongest conflict lemma
during proof search. The theory conflicts use literals that come from either M1

or F(R0). For example Y1 ≤ −1 ∧ Y1 ≥ 0 is a theory conflict, where Y1 ≤ −1
is an inequality of M1. The other inequality in the theory conflict comes from
F(R0). The basic idea is that we could have weakened M1 to be the negation
Y1 < 0 and still use this theory conflict. In general, Farkas lemma ensures that
there are suitable coefficients to the literals from F(R0), such that the linear
combination multiplied by these coefficients is a conflict lemma to M1.

It takes generalized PDR a few iterations to converge on an inductive invariant
for Bakery. We show [28] that this abstraction refinement technique is a decision
procedure for timed push-down systems, and in spite of the general problem being
highly intractable, this method alone also suffices for several applications from
software verification. It is still very easy to produce examples where this method
diverges. The quest is on for extending this approach with other methods that can
produce sufficient inductive invariants on a broader range of applications.

There is an intimate connection with our generalization of PDR with inter-
polation [30]. Every time PDR increments N , the labeling of predicates are
interpolants for a bounded DAG unfolding of the Horn clauses [31, 32] (pred-
icates are given fresh names based on their depth in the DAG). Our method
interleaves the generation of the DAG interpolant with satisfiability search and
leverages the partial results (conflict clauses) to prune the search space. Current
work includes extending the method to synthesize interpolants for uninterpreted
functions, and by reduction also the theory of arrays and algebraic data-types.

3 Conclusions

Several applications from program analysis, design and testing rely critically
on solving SMT problems. Many applications build on top of SMT solvers in
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sophisticated ways by carefully crafting the solver interaction. We illustrated
partial correctness checking as an SMT problem and we introduced a procedure
for model finding of recursive Horn clauses with arithmetic.

Acknowledgments. Z3 is developed by Leonardo de Moura, Christoph Win-
tersteiger and the author. The perspective of symbolic software analysis as SMT
owes to discussions with Leonardo de Moura, Andrey Rybalchenko, Ken McMil-
lan, Tony Hoare, Josh Berdine, Ethan Jackson and Karthick Jayaraman. The
generalization of PDR is joint work with Kryštof Hoder.
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Enlarging the Scope of Applicability

of Successful Techniques
for Automated Reasoning in Mathematics

Yuri Matiyasevich

Steklov Institute of Mathematics, St. Petersburg, Russia

In mathematics sometimes methods from one area can be fruitfully applied
for getting results in another area, occasionally looking very remote from the
other area. A well-known example is given by analytic geometry that enables
us, besides proving “elementary” geometrical theorems, to establish otherwise
untractable results like unsolvability of the problems of angle trisection and
doubling the cube by compass and straightedge and to reduce calculation of
the kissing numbers of spheres to verification of a first-order formula about real
numbers (and that could be done, in principle, by Tarski algorithm).

In automated reasoning in mathematics we witness spectacular achievements
in some narrow areas such as integration in closed form or proving combinatorial
identities. The author’s suggestion is to try to enlarge the scope of applicabil-
ity of such successful techniques by proper (mathematical) reductions of other
problems to the required forms. This will be illustrated on the expressive power
of the language of binomial coefficients [1,2].
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SAT and SMT Are Still Resolution:

Questions and Challenges

Robert Nieuwenhuis�

Abstract. The aim of this invited talk is to discuss strengths, limita-
tions and challenges around one of the simplest yet most powerful practi-
cal automated deduction formalisms, namely propositional SAT and its
extensions. We will see some of the reasons why CDCL SAT solvers are
so effective for finding solutions to so diverse real-world problems, using
a single fully automatic push-button strategy, and, by extending them to
SAT Modulo Theories (SMT), also to optimization problems and prob-
lems with complex (e.g., arithmetic) constraints for which a full encoding
into SAT would be too large and/or inefficient. We will give some exam-
ples of trade-offs regarding full SAT encodings vs SMT theory solvers,
and discuss why SAT and even SMT are just binary resolution strategies,
the consequences of this fact, and possible ways to overcome it. Many
aspects of the discussion carry over to first-order logic and beyond.

SAT. In spite of its simplicity, SAT has become very important for practical
applications, especially in the multi-billion industry of electronic design automa-
tion (EDA), and, in general, hardware and software verification. Research on
SAT has been pushed by huge industrial needs and resources and, as a result,
modern Conflict-Driven Clause Learning (CDCL) SAT solvers also work impres-
sively well on real-world problems from many other sources, using a single, fully
automatic, push-button strategy (see the handbook [BHvMW09] for all details
and further references on SAT and SAT encodings). Hence, modeling and using
SAT has essentially become a declarative task. On the negative side, proposi-
tional logic is a low-level language and hence modeling and encoding tools are
required.

Example: As a running example, consider the simple well-known NP-complete
problem of vertex cover : given a graph, find a subset of at most K of its ver-
tices containing for each edge (v, v′) at least one of v and v′. For a graph with
vertices v1, . . . , vn, this problem can be encoded into SAT using n propositional
variables xi meaning “vertex vi is in the cover”, having for each edge (vi, vj) a
propositional clause xi∨xj , and adding more clauses for expressing that at most
K of the variables x1, . . . , xn can be true, i.e., adding a SAT encoding for the
cardinality constraint x1 + . . .+ xn ≤ K, which can be, for example, a cardinal-
ity network [ANORC11], using O(n log2K) auxiliary variables and O(n log2K)
clauses.

� Technical Univ. of Catalonia (UPC), Barcelona, Spain. Partially supported by
Spanish Min. of Science &Innovation, SweetLogics project TIN2010-21062-C02-01.

B. Gramlich, D. Miller, and U. Sattler (Eds.): IJCAR 2012, LNAI 7364, pp. 10–13, 2012.
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SMT. Even though a lot of work has been done on defining good SAT en-
codings for cardinality and other complex (not only arithmetic) constraints,
such encodings may become too large and/or inefficient. SAT Modulo Theories
(SMT) was developed as an answer to this situation (see [NOT06, BSST09]). The
idea is to encode only part of the constraints into SAT and considering the re-
maining constraints as a background theory. Similarly to the filtering algorithms
in Constraint Programming, during the CDCL SAT solving process a theory
solver uses efficient specialized algorithms to detect additional propagations (and
inconsistencies) with respect to this theory.

Example (cont.): For the cardinality constraint x1+ . . .+xn ≤ K of our vertex
cover example, each time the CDCL SAT solver reaches a partial model with K
true variables y1 . . . yK

, the theory solver can propagate, setting all other xi to
false. If ¬xi then becomes part of a conflict, conflict analysis will use the clause
¬y1 ∨ . . . ∨ ¬yK ∨ ¬xi provided by the theory solver as the reason explaining
the propagation of ¬xi. This is similar to the lazy clause generation approach of
[OSC09].

Trade-Offs. Many problems have numerous large (arithmetic and other) con-
straints. For example, in certain industrial scheduling contexts, one has to ex-
press that resources’ capacities are never exceeded. If ti,h denotes that task i
is active at hour h, and task i uses ai units of a certain resource, e.g., trucks,
of which K units are available, then for each h and resource there will be a
pseudo-Boolean constraint of the form a1 · t1,h + . . . + an · tn,h ≤ K (if there
are n tasks). If the number of available trucks is not an important bottleneck,
the propagations caused by the “truck constraints” will cause relatively few con-
flicts, few reason clauses will have to be generated, and then the SMT approach
behaves very efficiently. But if due to the limited number of trucks the problem
is (close to) unsatisfiable, the theory solver may end up enumerating reasons
that amount to the full SAT encoding, and moreover a very naive one! It would
probably be better not to handle the trucks resource only with SMT, and use, for
certain hours h, a more compact propositional encoding with auxiliary variables
instead.

Example (cont.): If a cardinality constraint x1 + . . .+ xn ≤ K like the one of
our vertex cover example is a bottle neck in a problem, causing it to be (close
to) unsatisfiability, then the theory solver is likely to enumerate most, if not all,
exponentially many

(
n

K+1

)
reasons of the form ¬y1∨. . .∨¬yK

∨¬xi. Indeed, on an
unsatisfiable input problem with two cardinality constraints x1 + . . .+ xn ≤ K
and x1 + . . . + xn > K, the SMT approach would need to generate all these
reasons. In this case one could have used a cardinality network encoding.

Of course it is hard to know in advance which constraints are bottle necks and
which ones are not. A very nice first answer to this challenge can be found in
recent work by Ab́ıo and Stuckey [AS12], showing how to generate the efficient
compact SAT encoding on demand: initially a constraint is handled in SMT
mode, but a cardinality network is built piece by piece only for those variables
that trigger many conflicts. In the extreme case this can cause the full cardinality
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network to be generated. Indeed, this hybrid approach frequently behaves much
better than any of its two ingredients, and is never importantly worse, both
for cardinality constraints and for pseudo-Boolean ones. Interesting challenges
remain, such as: how to do this for other types of constraints? is there a general,
i.e., not constraint-specific method for this? can the CDCL SAT solver further
improve with special heuristics for splitting on the auxiliary variables?

Resolution. It is well-known that CDCL SAT solvers, when given an unsat-
isfiable problem, can generate a trace from which one can reconstruct a binary
resolution refutation [ZM03]. It is easy to see that CDCL SAT indeed amounts
to a model-search-driven resolution strategy, and, as a consequence, the run-
time of the SAT solver is lower bounded by the size of the resolution refutation.
SMT solvers do not escape from this limitation: the trace produces a resolution
refutation from the initial clauses and the set of all generated reasons.

The challenge is of course to overcome this limitation of CDCL and SMT
solvers, for example, by (roughly) introducing definitions of new variables, thus
obtaining the power of the extended resolution rule. Some first steps in this
direction have been taken [AKS10, Hua10], but in terms of practical performance
this challenge remains wide open.

Optimization. In many practical applications in fact one deals with optimiza-
tion problems of the form (S, cost), where S is a clause set over Boolean variables
x1 . . . xn, with an cost function cost : Bn → R, and the aim is to find a model A
of S such that cost(A) is minimized.

Example (cont.): The problem of finding a minimum vertex cover, i.e., finding
the smallest possible K, is a classical optimization problem. In a SAT encoding
using a cardinality network for the constraint x1 + . . .+ xn ≤ K, one can start
with a large K and, due to the characteristics of the cardinality network, each
time a solution is found, by adding unit clauses one can progressively strengthen
the constraint lowering the K one by one (see e.g., [ANORC11]).

A more general approach is branch and bound. Following the ideas of [NO06],
the cost function is dealt with as an SMT theory that becomes progressively
stronger: each time a solution is found, the theory is strengthened to allow only
lower cost solutions from then on. Not surprisingly, the closer the problem comes
to unsatisfiability, the harder it gets.

By the same line of reasoning as before, it turns out that such branch-and-
bound solvers can generate resolution-like independently verifiable optimality
proof certificates, even in the presence of theory-based (i.e., cost-based) lower
bounding, propagation and backjumping [LNORC11]. Again, in this context the
resolution-related limitations apply.

Many challenges remain in the context of optimization: better lower bound-
ing procedures for improved propagation, and more knowledge about variable
selection and polarity choice heuristics in the context of branch and bound.
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Abstract. Unification modulo the theory defined by a single equation
which specifies that a binary operator distributes synchronously over
another binary operator is shown to be undecidable. It is the simplest
known theory, to our knowledge, for which unification is undecidable:
it has only one defining axiom and moreover, every congruence class is
finite (so the matching problem is decidable).
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1 Preliminaries

It is well known that unification plays a very major role in all formal deduc-
tion mechanisms. Syntactic unification – also known as unification modulo the
empty theory – is known to be decidable from around 1930, and optimized al-
gorithms for it are well-known as well [2]. Semantic (or equational) unification
is an extension of syntactic unification, to meet the situation where terms in
the underlying signature are bound by some given equational theory. Several
such theories are of great practical interest, in particular the theories of commu-
tativity, associativity, associativity-commutativity; and decision procedures for
unification modulo these theories are well-known from around 1970-1980 [3]. An-
other equational theory of practical interest is distributivity, which specifies that
a binary operator distributes over another binary operator – a typical example
being that of multiplication over addition on integers. Unification modulo such
a distributivity is known to be decidable [11,13]. Note that the distributivity of
multiplication over addition on integers is ‘asynchronous’ when used two-sided,
in the sense that it then works ‘argument-wise’ below addition. There are other
instances of distributivity for which a different theory is needed; for instance,
if B stands for the division operation on nonzero rational numbers and ∗ for
multiplication, then the following property is satisfied:
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E : B(u, x) ∗B(v, y) = B(u ∗ v, x ∗ y)

In contrast with the example mentioned earlier, here the binary operator B
distributes over ∗ synchronously, i.e., in parallel on its arguments. Note that
the property E is also satisfied by the RSA-based implementation of the blind
signature scheme for cryptography [4] (B stands in this case for the product
of an integer m with a random number r raised to a given key e, and ∗ is the
usual product on integers). Yet another model for E , of practical interest, is the
‘Exchange Law for concurrent processes’ as defined in [5]. The equation E can
be turned easily into a terminating rewrite rule, oriented either way; it forms a
convergent rewrite system in both cases. The theory defined by this equation E
will also be referred to as E in the sequel.

Our objective in this paper is two-fold. We first present (in Section 2) a sound
and complete set of inference rules for the E-unification problem. A dependency
graph is associated in a natural manner with any E-unification problem P , given
in a ‘standard form’ (see definition below); and it is shown that the problem
admits a solution if and only if the dependency graph remains bounded under
the inferences. We then show that the E-unification problem is undecidable in
general, by reduction from the boundedness problem for deterministic Intercell
Turing Machines (ITM), which is known to be undecidable [10]; this is done
in Section 5. Such a reduction is rendered possible by suitably encoding the
relations between the nodes and the paths on the dependency graph of P as
string rewrite relations (string equations), which can be subsequently interpreted
as the transition rules of an ITM1; the technical developments needed for this
are presented in Sections 3 and 4.

2 A Set of Inference Rules for Elementary E-Unification

Our signature consists of a (countably infinite) set of variables X and the two
binary symbols B and ‘∗’; the variables of X will be denoted by lower or upper
case letters from u or U , to z or Z, with or without suffixes and primes. Note
that B and ‘∗’ are cancellative: by this, we mean that for all terms s1, t1, s2, t2,
B(s1, t1) =E B(s2, t2) if and only if s1 =E s2 and t1 =E t2; similarly for ‘∗’.
(One easy way to show this is to use E as a rewrite rule B(u ∗ v, x ∗ y) →
B(u, x) ∗B(v, y).)

Without loss of generality, the equations of the given unification problem P
are assumed to be in a standard form, i.e., in one of the following forms:

X =? V, X =? B(V, Y ), X =? V ∗ Y
where X,Y, V are variables. A set of equations is said to be in dag-solved form
(or d-solved form) if and only if they can be arranged as a list

x1 =? t1, . . . , xn =? tn

1 The reader can see that our undecidability proof is influenced by the techniques
in [10] and [7].
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where (a) each left-hand side xi is a distinct variable, and (b) ∀ 1 ≤ i ≤ j ≤ n:
xi does not occur in tj ([8]). The following relations on the variables of P will
be needed in the sequel:

– U �r∗ V iff there is an equation U =? Y ∗ V
– U �l∗ V iff there is an equation U =? V ∗ Y
– U �rB V iff there is an equation U =? B(Y, V )
– U �lB V iff there is an equation U =? B(V, Y )
– U �∗ V iff U �r∗ V or U �l∗ V
– U �B V iff U �rB V or U �lB V

The following transformation (inference) rules for E-unification are given, where
EQ stands for a set of equations in the problem P , the symbol � stands for
disjoint set union, and ∪ is usual set union.

(1) Variable Elimination:
{X =? V } � EQ

{X =? V } ∪ [V/X](EQ)
if X occurs in EQ

(2) Cancellation on B:

EQ � {X =? B(V, Y ), X =? B(W,T )}
EQ ∪ {X =? B(W,T ), V =? W, Y =? T}

(3) Cancellation on ‘∗’:
EQ � {X =? V ∗ Y, X =? W ∗ T}

EQ ∪ {X =? W ∗ T, V =? W, Y =? T}
(4) Splitting:

EQ � {X =? B(V, Y ), X =? W ∗ Z}
EQ ∪ {X =? W ∗ Z, W =? B(V0, Y0), Z =? B(V1, Y1), V =? V0 ∗ V1, Y =? Y0 ∗ Y1}
(5) Occur-Check:

EQ
FAIL

if X (�∗ ∪ �B)
+ X for some X

An outline of the algorithm is as follows: As long as the rules are applicable,
rule (5) (“Occur-Check”), and rule (1) (“Variable Elimination”), are to be ap-
plied most eagerly; the cancellation rules (2) and (3) come next. The splitting
rule (4) is applied with the lowest priority, i.e., only when no other rule is appli-
cable.

The variable X in the specification of the splitting rule is referred to as a peak.
In other words, a peak is any variable Z such that Z �l∗ U , Z �r∗ V , Z �lB X
and Z �rB Y for some variables U, V,X, Y . Note that rule (4) introduces fresh
variables; it also moves some variables from the right side to the left. This may
give rise to further applications of (2) and (3). Furthermore, splitting may not
terminate. For instance, U =? B(Y,X) and U =? Y ∗ Z will cause an infinite
loop, by using rule (4) forever. It is easy to conclude that there will be no solution
in such a situation. The proof of correctness for this algorithm is similar to the
one in Tiden-Arnborg [13].

We define a relation⇒ between sets of equations S and S ′ as follows: S ⇒ S ′

if and only if S ′ can be obtained from S by applying one of the rules (1) – (5).
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Lemma 1. Rules (1) – (5) are sound and complete for unification modulo E.

Proof. The soundness of rules (1), (2) and (3) is easily seen2. Now, if there is an
occur-check cycle of any length for a variable X , then clearly there is no solution
for EQ; and it is obvious that rule (5) catches such cycles in the problem if they
exist. Hence rule (5) is also sound. We now show, explicitly, that the splitting
rule (4) is sound.

Let S = EQ � {X =? B(V, Y ), X =? W ∗ Z)} where EQ is a set of equations and
V,W,X, Y, Z are variables. And let S ′ be

EQ ∪ {X =? W ∗ Z, W =? B(V0, Y0), Z =? B(V1, Y1), V =? V0 ∗ V1, Y =? Y0 ∗ Y1}

where V0, V1, Y0, Y1 are new variables not occurring in V ar(S), the set of variables
that occur in S. Thus S ⇒ S ′ by rule (4). We have then:

Claim (i) Any unifier of S ′ is a unifier of S: Indeed, suppose θ is a unifier of S ′.
It is easy to check then that θ(X) =E θ(B(V, Y )).

Claim (ii) Let σ be a unifier of S. Then there is a substitution σ′ such that σ′ is
an extension of σ and σ′ is a unifier of S ′: For proving this we reason on terms
in normal form under the convergent rewrite system:

B(u ∗ v, x ∗ y) → B(u, x) ∗B(v ∗ y).
Since σ is a unifier of S, the normal forms of σ(V ) and σ(Y ) must be product
terms, i.e., terms of the form s0∗s1 and t0∗t1 respectively. Then σ(W ) = B(s0, t0)
and σ(Z) = B(s1, t1). Thus σ ◦ {V0 := s0, V1 := s1, Y0 := t0, Y1 := t1} is a unifier
of S ′; this proves (ii).

To show completeness, first note that if the algorithm terminates on S with-
out failure, the resulting system is in d-solved form. On the other hand, if the
algorithm does not terminate, then it has to be because there is infinite splitting
— i.e., the splitting rule (4) is applied infinitely often.

Claim (iii) If there is infinite splitting there is no unifier: Assume the contrary.
Let θ be a normalized unifier of S. If there is infinite splitting, then there is
an infinite sequence of variables Vi = Vi1 � Vi2 � . . . where Vi ∈ Dom(θ).
From what was shown above, there must also be an infinite sequence of unifiers
θ = θ1, θ2, . . . where each unifier is an extension of the previous one. But this
leads to a contradiction, since if γ is a unifier, V, V ′ ∈ Dom(γ) and V � V ′,
then |γ(V )| > |γ(V ′)|. ��
A sufficient condition for nonunifiability, an E-unification problem to be unsat-
isfiable can be formulated as cycle checking, on suitably defined relations on the
variables of P over some of the models for the equation E ; see [1].

3 From E-Unification Problems to Thue Systems

Before we give the reduction proving the undecidability of this unification prob-
lem, we need a few preliminaries.

2 A general proof for soundness of these rules can be found in [12].
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As explained in the previous section, the set of variables in a problem could
get larger since fresh variables may be created when splitting occurs. If a variable
X is split, then we add the equation X = X0 ∗X1 to the problem. In general,
new variables may be split further and starting from a variable X we may obtain
a variable Xβ where β is a string of 0s and 1s. We shall agree that the general
discipline for creating new variables is specified as: Xβ = Xβ0 ∗ Xβ1, where
β ∈ {0, 1}∗. Note that if β = λ, the empty string, then Xβ = X , an original
variable in the problem. For a set of variables V , we define V = {Xβ | X ∈
V, β ∈ {0, 1}∗} to denote the set of all variables which may originate from V
through splitting. In the next section we define our dependency graph notation
and describe splitting and variable elimination in a graph setting.

3.1 The Dependency Graph

It is common to represent the problems by dependency graphs induced by the
relations (�l∗ etc.) among the variables. Each node corresponds to a variable
and each directed edge is labeled w.r.t. the relation among the variables in the
nodes. Interpretation of the unification problems through the relations among
variables in a graph setting was used in [13]. Here we have four types of edges in
the dependency graph: l∗, r∗, lB and rB. If two variables X and Y are related
through �l∗ , then nodes induced by X and Y are connected by a directed edge
labeled as l∗; similarly for the other relations. For instance, for the problem given
as: U =? V, U =? U0 ∗ U1, U =? B(X,Y ), the dependency graph is given in
Figure 1; note that V does not appear as a node on this graph.

rBlB l* r*

U0 U1

U

X Y

Fig. 1. Graph for: U =? V, U =? U0 ∗ U1, U =? B(X,Y )

Let S be the initial set of equations of the problem, and let G0 be its depen-
dency graph. Dependency graphs are not stable; they get updated each time an
inference rule applies; thus we get a sequence of graphs G0, G1, G2, . . .. Recall,
in particular that rule (1) is applied eagerly, e.g., when there is an equation of
the form U =? V . The consequence of its application is that U then merges into
V , more precisely V replaces U in the problem as well as on the dependency
graph. The problem just considered thus becomes:

U =? V, V =? U0 ∗ U1, V =? B(X,Y ).

Its dependency graph is obtained from the one in Figure 1, by changing the label
of the node U to V . It is important to note that the variable U has not been
deleted from the problem, which still contains the equation U =? V ; the only
change is that V now represents U on the graph. In intuitive terms, we shall
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say: on applying rule (1), two (or more) nodes merge on the dependency graph,
and two (or more) paths merge by merging their end nodes; and any variable of
the problem has a unique representative node on the dependency graph, up to
variable equality. Alternatively, one could label the nodes of the graph with the
equivalence classes of the variables of the problem, the equivalence being defined
up to variable equality.

To suit our purposes in the sequel, we agree to shorten the labels of the edges
of the dependency graph as follows: We replace l∗ by 0 and r∗ by 1; and we also
replace lB by L and rB by R.

The splitting rule (4) is the only rule that adds nodes to the dependency
graph, and new edges joining these new nodes. When a variable is split, 0- and
1-edges are added; the other equations introduced by rule (4) cause L- and R-
edges to be added too. Thus, for the problem just mentioned above, (after having
applied rule (1)) we apply splitting, and the problem thus derived is:

U =? V, V =? U0∗U1, X =? X0∗X1, Y =? Y0∗Y1, U0 =? B(X0, Y0), U1 =? B(X1, Y1)

The dependency graph for the problem thus derived is given in Figure 2, using
the short labels for its edges. Note that the edges from (U or) V to X and Y
have been dropped out from the earlier graph (as well as the equations to which
they corresponded).

U0

X0 Y0X1 Y1

U1

X Y

0 1

L R

0 1L R

V

Fig. 2. Graph for the problem of Figure 1 after applying rules (1) and (4)

It is in general necessary to use other rules again after applying rule (4). For
instance, consider the problem given as: {X =? B(Y, Z), X =? X0∗X1, X0 =?

B(U, V )}. Variables Y and Z split and we obtain X0 =? B(Y0, Z0) as one of the
resulting equations. Therefore it is now necessary to apply first rule (2), followed
by rule (1) to the equations Y0 =? U and Z0 =? V thereby derived.

For the purpose of proving the undecidability of E-unification, we slightly
modify our view of the dependency graph representation. Mainly, we don’t ex-
plicitly delete any nodes or edges from the graph – all we do is to merge nodes.
This leads to a more general vision of the dependency graph, that could be said
to be the relation graph. Since nodes are merged, we assume that a node may
have several labels. (See Figure 3.) Thus there is an onto function φ defined from
V ar(S) to V (G), the set of vertices of the graph. That is, each variable points
to exactly one node in the graph but a node can be pointed to by more than
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W V Y T

L R
L R

U

L R

U

W
V

Y
T

Fig. 3. Applying the cancellation rule (2)

one variable. Now using φ define a relation as a tuple (X,μ, Y ) where X and Y
are variables and μ is either L or R. In other words, (X,μ, Y ) holds if and only
if φ(X) and φ(Y ) are connected with an edge labelled as μ.

Given a problem P , let G = G∞ be the set of persistent nodes and edges
(i.e., those not dropped out) in the sequence G0 ∪ G1 . . ., of graphs, updated
along the inferences. We now characterize this graph in terms of string relations
(equalities) over V ar(S) ∪ {L,R}. IfX and Y are two distinct variables such that
φ(X) = φ(Y ), then we write X =G Y . If there is a directed path Γ ∈ {L,R}∗
from φ(X) to φ(Y ) on G, then we express this ‘path relation’ between X and
Y as Γ revX =G Y , where Γ rev is the reverse string of Γ . For paths of 0- and
1-edges, we define a similar relation: if there is a directed path β ∈ {0, 1}∗ from
φ(X) to φ(Y ) on G, we write Xβ =G Y .

We denote the length of any string Π ∈ {L,R}∗ (resp. β ∈ {0, 1}∗) as |Π|
(resp. as |β|). We say that a variable X ∈ X “exists” (in G) if there is a node
in G with X as one of its labels.

Lemma 2. (i) Let ν ∈ {L,R}, U, Y ∈ X such that ν U =G Y . If U0 exists (and
also U1, i.e., U splits), then ν U0 =G Y0 and ν U1 =G Y1.

(ii) Let Π ∈ {L,R}+, U, Y ∈ X such that ΠU =G Y . If U0 exists (and also
U1, i.e., U splits), then ΠU0 =G Y0 and ΠU1 =G Y1.

(iii) Let Π ∈ {L,R}+, β ∈ {0, 1}∗ such that ΠX =G Yβ. If X0 exists (and
also X1, i.e., X splits), then ΠX0 =G Yβ0 and ΠX1 =G Yβ1.

Proof. Assertion (i) follows from seeing G as the relation graph on V ar(S), in
the sense defined above. Assertions (ii) and (iii) are proved by induction on the
lengths of Π and β; see [1] for the details. ��

Lemma 3. Let Π ∈ {L,R}+, α, β ∈ {0, 1}∗ and X,Y such that ΠX =G Yβ.
If Xα exists then ΠXα =G Yβα.

Proof. By induction on the length of α, and Lemma 2 ��

3.2 Thue Systems Associated with E-Unification Problems

We henceforth speak of any E-unification problem as a set of equations in stan-
dard form, often denoted as S. With any given E-unification problem S, we shall
associate a Thue system (i.e., string rewrite system), and subsequently relate the
Thue congruence thus obtained, to the path relations on the dependency graph
of S, as defined in the previous section.
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Let V = V ar(S) be the set of variables of the given problem S. The alphabet
over which the Thue system is defined is Σ = V ∪ {L,R} ∪ {0, 1}. We obtain
string equations from an E–unification problem as follows. For equations of the
form X =? B(Y, Z) we create string equations LX = Y and RX = Z. For
X =? U ∗ Y , we form X0 = U and X1 = Y . (Notice the connection between
these and the binary relations defined in Section 3 - e.g. if X �lB Y , then
LX = Y .) Let STh denote the set of string equations (the Thue system) thus
associated with S. Every such string equation is either of the form μX = Y for
μ ∈ {L,R}, or of the form Xν = Y for ν ∈ {0, 1}, with X,Y ∈ V . There is a
close connection between the congruence on strings over Σ, modulo these string
equations, denoted by =STh

, and the congruence in the graph context, denoted
by =G, that was introduced in the previous section, on the dependency graph
G of the problem S.

The next couple of results show the relation between =STh
and =G; it is

assumed in their statements that X,Y ∈ V ar(S), Π ∈ {L,R}∗, α, β ∈ {0, 1}∗:

Proposition 1. For every X,Y,Π, α, β, ΠXα =STh
Y β if and only if there

exists α′, β′, γ ∈ {0, 1}∗ such that α = α′γ, β = β′γ and ΠXα′ =G Yβ′ .

Corollary 1. For every X,Y,Π, β, ΠX =STh
Y β if and only if ΠX =G Yβ.

The “if” part of the above Proposition is easy; its “only if” part, as well as
the above Corollary, are proved by induction on the number of derivation steps
needed to deduce that ΠXα =STh

Y β; for the details, see [1].
Let S be an E-unification problem and STh its associated Thue system. We

now relate the path relation on the graph of S and the Thue congruence as-
sociated with S. For a variable X ∈ V ar(S), we define its extent3 ext(X) as
follows:

ext(X) = {Π ∈ {L,R}∗ | ∃Y ∈ V ar(S) ∧ β ∈ {0, 1}∗ such that STh 	 ΠX = Y β }

The finiteness of ext(X) for everyX is closely connected to the unifiability of the
problem. If ext(X) is infinite for X , it obviously means that X splits infinitely
many times and vice versa4. The following result is given without proof since it
is (now) obvious:

Proposition 2. An E-unification problem S is solvable if and only if no failure
rule applies and ext(X) is finite for every X in V ar(S).

We define this as a general concept for Thue systems. Let T be a Thue system
with the alphabet Σ. Let Δ be a nonempty subset of Σ. T is said to have finite
Δ-span if and only if ∀q ∈ Δ, ext(q) is finite where

ext(q) = {Π ∈ (Σ �Δ)∗ | ∃ q′ ∈ Δ ∧ β ∈ (Σ �Δ)∗ such that Πq =T q′β }

3 This follows the definition of extent by Jahama and Kfoury [7].
4 Note that if ext(X) is finite when X splits infinitely, then there exist a longest path
Π ∈ {L,R}∗ with length k. But this is a contradiction since one can find another
path Π′ s.t. |Π′| > k since X splits infinitely.
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4 Thue Systems and Intercell Turing Machines

We give a review of relevant literature, mainly based on the notation used in
[10]. An Intercell Turing Machine (ITM) is defined as a triple M = 〈Q,Σ, δ〉,
where Q is a set of states, Σ is a finite tape alphabet, and δ is a transition
relation defined as δ ⊆ Q×D × Σ × Σ ×Q. Here D points to the direction of
the move of the tape head (assumed placed between two tape cells) and is one
of {−1,+1}. An instantaneous description (ID) of M is defined as a quadruple
〈w1, q,m,w2〉 where q is the current state of the machine, w1w2 is the string
over Σ that forms the current tape content, m is an integer, and the header is
between the cells m− 1 and m, and it also separates w1 and w2. A move of M ,
from one ID to another, is denoted as a relation �M formally defined as follows,
where s, t ∈ Σ, w1, w2 ∈ Σ∗ and q1, q2 ∈ Q, and q1 is the current state:

• left-move: For 〈q1,−1, s, t, q2〉 ∈ δ, 〈w1s, q1,m,w2〉 �M 〈w1, q2,m− 1, tw2〉
• right-move: For 〈q1,+1, s, t, q2〉 ∈ δ, 〈w1, q1,m, sw2〉 �M 〈w1t, q2,m+1, w2〉

An ITM is said to be deterministic if and only if:

(i) the set of states Q splits as left-move and right-move states Ql and Qr

so that δ ⊆ (Ql × {−1} ×Σ ×Σ ×Q) ∪ (Qr × {+1} ×Σ ×Σ ×Q); and
(ii) δ is partial function from Q×D ×Σ to Σ ×Q.

This implies that there is at most one possible move from any given ID of a
deterministic ITM: a left-move or a right-move.

The symmetric closure of an ITM M = 〈Q,Σ, δ〉 is defined as the ITM Ms =
〈Q,Σ, δs〉 where:

δs = δ ∪ {〈q1,−x, a, b, q2〉 | 〈q2, x, b, a, q1〉 ∈ δ}
An ITM M is said to be symmetric iff M =Ms holds. An ITM M is said to be
bounded iff there exists a positive integer n such that for any arbitrary ID I of
M , the number of different IDs reachable by M from I is at most n.

The following results on the boundedness problem are shown in [10] by using
the ideas from [6].

Lemma 4. It is undecidable to check whether a deterministic ITM is bounded.

Lemma 5. A deterministic ITM M is bounded if and only if its symmetric
closure Ms is bounded.

Corollary 2. Given a deterministic ITM M , it is undecidable to check whether
its symmetric closure Ms is bounded.

Let M = 〈Q,Σ, δ〉 be a deterministic ITM with tape alphabet Σ = {0, 1}.
We shall use L,R to represent tape symbols 0, 1 respectively, to the left of the
tape head. Under such a vision, any transition ofM can be expressed as a string
rewrite rule of the form:

q1a ∼ bq2

where a ∈ {0, 1}, b ∈ {L, R}, and ∼∈ {←, →}. For instance, q2 t ← L q1
represents the left-move 〈q1,−1, 0, t, q2〉; and q1 s → Rq2 represents the right-
move 〈q1,+1, s, 1, q2〉 of the ITM.
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Let RM be the string rewrite system consisting of all these rules and let SM

be the Thue system obtained by symmetrizing the rewrite rules, i.e., making
them bidirectional.

The extent of a state q in the ITM M is defined in terms of the system SM :
ext(q) = {Π ∈ {L,R}∗ | ∃ q′ ∈ Q ∧ β ∈ {0, 1}∗ such that SM � Πq = q′β }
Lemma 6. Let M = 〈Q,Σ, δ〉 be a deterministic ITM. Then M is bounded if
and only if ext(q) is finite for every state q in M .

Proof. If ext(q) is infinite for some state q in M , then clearly M is unbounded.
On the other hand, supposeM is unbounded, and assume that ext(q) is finite for
every q ∈ Q. Let k be the length of the longest string that appears in any ext(q).
(Recall that Q is finite.) Since M is unbounded, there are configurations C and
C ′ such that C = 〈Π, q, m, wβ〉 and C′ = 〈ΠB, q′, m+ p, β〉, such that C′ is
reachable from C, with p = |w| = |B| > k, and the head never moves left past
themth cell, nor right past the (m+p)th cell. Then the configurations 〈ε, q, m, w〉
and 〈B, q′, m+p, ε〉 are reachable from each other as well by definition, and thus
qw ↔∗

SM
Bq′. Since |B| > k this contradicts the assumption that k is the length

of the longest string in any ext(q). ��
Corollary 3. Let M = 〈Q,Σ, δ〉 be a deterministic ITM. Then M is bounded
if and only if SM has a finite Q-span.

5 The Undecidability of Elementary E-Unification

The undecidability result is by a reduction of the boundedness problem for de-
terministic ITMs. We shall proceed as follows: for each transition t of M we add
two new (dummy) states along with their transitions — the reason for this will
be clear later — but making sure that the resulting system, denoted M ′, is still
deterministic, and furthermore, M ′ is bounded if and only if M is bounded. We
then symmetrize M ′ to obtain M ′

s. Thus M
′
s is bounded if and only if M ′ is

bounded (by Lemma 5) if and only if M is bounded. We shall finally show how
to construct an E-unification problem such that the problem is solvable if and
only if M ′

s is bounded.
For any deterministic ITMM = 〈Q,Σ, δ〉 with tape alphabet Σ = {0, 1}, we

construct another deterministic ITMM ′ based onM . For that, we first introduce
the following notation: for a ∈ {0, 1}, we set 1−a = 1 if a = 0, and 1−a = 0 if
a = 1. Analogously, for b ∈ {L,R} we let b = R if b = L and b = L if b = R.
Recall that in Section 4 a move of M was specified as q1a ∼ bq2 where ∼ is
either ← or →. Let us consider first the (rightward) move q1a → bq2; we then
add a left-move state and a right-move state, denoted as w′ and w respectively,
for each transition of M along with the following transitions:

q1 (1 − a) ← bw′

wa → bq2

w (1 − a) → bw′

w (1 − a) ← bw′
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The construction is the same for the leftward move q1a ← bq2: the same set of
states and transitions get added, i.e., the direction of the move does not affect the
modifications. In all other cases, different state pairs are added toM ′ for different
transitions of M ; one could thus adopt the notation wt and w

′
t corresponding to

every transition t in M . So the extension M ′ is defined as the ITM 〈Q′, Σ, δ′〉,
where:

Q′ = Q ∪ {wt, w
′
t | for each corresponding transition t of M }

and δ′ consists of δ plus the new transitions induced by the extra moves above.
M ′ is also deterministic because every state in Q′ has only one possible move.
Note that M and M ′ have the same tape alphabet Σ = {0, 1}. (See illustrative
Figure 4 for the right-move q10 → Lq2 of M , and the corresponding part in the
extended ITM M ′.)

q
1

q
2

0 L

1 R
0 R

R  1

L 1

w’ w

Fig. 4. Extension M ′ of a deterministic ITM M . Edges/Nodes not in M are dashed.

Lemma 7. M is bounded if and only if M ′ is bounded.

Proof. The “if” part is trivial, due to the fact that M ′ includes all transitions of
M . For the “only if” part, we need to show that any ID involving w or w′ can
reach finitely many different IDs. Note that the move w (1−a) ↔ bw′ will cause
only one different ID for both types of IDs. The moves back and forth between
IDs corresponding to w (1− a) and bw′ don’t affect the number of different IDs
reachable from them. In the remaining transitions w reaches an ID with q2 and
w′ to an ID with q1. Then we are done since we assume M is bounded and q1
and q2 are from M . ��
Both M and M ′ are deterministic but not symmetric. For our purpose we sym-
metrize M ′. This is done by first finding symmetric closure M ′

s ofM
′ along with

the transition set δ′s as defined in Section 4. Thus we get M ′
s = 〈Q′, Σ, δ′s〉. And

we deduce the following, from Lemma 5.

Lemma 8. M is bounded if and only if M ′
s is bounded.

Let SM ′
s
be the Thue system for the symmetric ITM M ′

s. For each transition
q1a ∼ bq2 of M , SM ′

s
will contain string equalities of the following forms:
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q1a↔ bq2

q1 (1 − a)↔ bw′

wa↔ bq2

w (1 − a)↔ bw′

Obviously SM ′
s
is an extension of SM , the Thue system ofM . But note that SM ′

and SM ′
s
are the same.

We now show how each string equality can be simulated using unification
problems. Let S be the set of equations that we create. We first look at original
transitions in M . Note that depending on what a and b are in a transition t we
have four possible types of moves. Then, we construct M ′

s as described above.
The variables of the unification problem are exactly the states of M ′

s. Therefore
for each possible pair (a, b) that t involves a unique equation modulo E with
variables q1, q2, w and w′ is constructed as shown below:

Case 1: If the transition of M ′
s is q10 ↔ Lq2, then we (effectively) add the

following equation to S:
B(q1, w) =

?
E q2 ∗ w′ (1)

Since we assume that S is in standard form in our unification procedure, we
transform this into standard form by using another new variable. Hence we
create the equations: u =?

E B(q1, w), u =?
E q2 ∗ w′, where u is fresh. Note that

if we apply the splitting rule to (1), we get:

u = q2 ∗ w′, q1 = q10 ∗ q11, w = w0 ∗ w1, q2 = B(q10, w0), w
′ = B(q11, w1) (2)

Therefore we see that the string equation (and hence the move of M) indeed
corresponds to one of the relations among variables in (2). Note that q10 = q10
and Lq2 = q10. This is the motivation behind the reduction. In addition there
are three other similar relations which can be observed in (2).

q1 1 = Lw′

w 0 = Rq2

w 1 = Rw′

The motivation for the construction of M ′ and M ′
s should now be clear. In fact,

the equalities above are included in SM ′ . Recall that in Section 3.2 we defined
the Thue system for a E-unification problem S and denoted it as STh. Hence the
congruence induced by SM ′ is subsumed by STh, or, ↔∗

S
M′
⊂ ↔∗

STh
.

Case 2: If the move of M ′
s is q11 ↔ Lq2, then we add:

u =?
E B(q1, w), u =?

E w
′ ∗ q2

Case 3: If the move of M ′
s is q11 ↔ Rq2, then add:

u =?
E B(w, q1), u =?

E w
′ ∗ q2
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Case 4: If the move of M ′
s is q10 ↔ Rq2, then add:

u =?
E B(w, q1), u =?

E q2 ∗ w′

We proceed now to show the following in several steps: STh has finite V ar(S)-
span if and only if SM ′ has finite Q′-span; the “if” part is easy to prove:

Lemma 9. If STh has finite V ar(S)-span then SM ′ has finite Q′-span.

Proof. Trivial since the congruence induced by SM ′ is a subset of the congruence
induced by STh and Q′ ⊆ V ar(S) = Q′ ∪ {ut | for each transition t in M ′

s}.
��

We next prove the converse of Lemma 9, i.e., that finite Q′-span of SM ′ implies
finite V ar(S)-span of STh. For that we consider the string rewrite systems which
are obtained by orienting equations in STh and SM ′ according to the order
defined below. We then apply Knuth-Bendix completion to those systems as
specified in [9]. It was shown there that those final string rewrite systems are
possibly infinite and lex-confluent5. Hence for any Thue system T there exists a
lex-confluent system equivalent to it.

Let Σ′ be the alphabet of SM ′ . Note that Σ′ = Σ ∪ Q′. Let U be the set
of variables ut that are added to ensure that the unification problem S is in
standard form. Then the alphabet of STh is Σ′′ = Σ′ ∪ U . Equations in SM ′

can be oriented with the help of a length+lexicographical ordering on strings in
Σ′∗ induced by a total ordering � on Σ′. One such ordering can be defined as
x > y if and only if:

(1) Either |x| > |y|;
(2) Or |x| = |y|, x = ax′, y = by′ where a, b ∈ Σ′; and,

either a � b or (a = b and x′ > y′).

with the following assumptions on the symbol ordering �:
Symbols in Σ are ordered as L � R � 0 � 1
Symbols in Q are ordered as q1 � q2 � . . .
For any X ∈ Σ and Y ∈ Q, we assume X � Y .

Let C∗
M ′ be the resulting confluent system. A total length+lexicographic ordering

on Σ′′ can be defined similarly with an additional assumption such that the
variables ut are greater than the symbols in Q′. Thus every equation in STh will
be oriented in such a way that the variables ut are on the left. We denote by−−→
STh this new rewrite system.

Lemma 10. C∗
M ′ ∪

−−→
STh is confluent.

Proof. It is not hard to see the forms of the rules in both subsystems.
−−→
STh has

rules of the form Πut → q′ or utβ → q for ut and Π ∈ {L,R} and β ∈ {0, 1}.
On the other hand, C∗

M ′ (possibly infinite) includes rules like Πq → q′β with Π
and β defined as before. We already know that C∗

M ′ is confluent, i.e., any critical

pair in C∗
M ′ is joinable. Note that left-hand sides in

−−→
STh do overlap and thus give

5 This is abbreviation for length+lexicographic confluence, which was introduced in [9].
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rise to critical pairs. But these critical pairs are joinable by the rules of C∗
M ′ .

For instance suppose
−−→
STh has Lut → q and ut0 → q′. Here Lut0 is an overlap

which gives rise to the critical pair (Lq′, q0). But we have Lq′ → q0 already in
C∗

M ′ by definition. ��
To prove the converse of Lemma 9, we assume that SM ′ has finite Q′-span

in the sense we explained earlier; we begin by showing that the state variables
have finite extent in both STh and SM ′ .

Lemma 11. Let Π ∈ {L,R}∗ and β ∈ {0, 1}∗ and q1, q2 ∈ Q′ be two states in
M ′, where q1, q2 ∈ V ar(S). Then Πq1 ↔∗

SM′ q2β if and only if Πq1 ↔∗
STh

q2β.

Proof. The “only if” part is obvious since ↔∗
SM′ is subsumed by ↔∗

STh
. Con-

versely, suppose Πq1 ↔∗
SM′ q2β holds. In this case note that the only applicable

rules in C∗
M ′ ∪

−−→
STh are the rules in C∗

M ′ . By Lemma 10 C∗
M ′ ∪

−−→
STh is confluent

and then by assumption, Πq1 and q2β will rewrite to the same term w.r.t. SM ′ .
Then the rules involving the non-state variables ut do not affect the derivation

and hence
−−→
STh does not affect the rewrite steps. As a result Πq1 and q2β will

have the same rewrite proof w.r.t. STh. ��

The next couple of results are easy consequences of the above lemmas:

Lemma 12. Let Π ∈ {L,R}∗, β ∈ {0, 1}∗, q ∈ Q′, ut ∈ U . Then Πq ↔∗
STh

utβ if and only if there exist b ∈ {0, 1}, q′ ∈ Q′, β′ ∈ {0, 1}∗ and a rule

utb→ q′ in
−−→
STh such that: (i) β = bβ′, and (ii) Πq ↔∗

SM′ q
′β′

Proof. The “if” part follows from Lemma 11, thanks to conditions (i) and (ii).
For the “only if” part, the assumption implies the existence of b ∈ {0, 1}, such
that β = bβ′. By the construction of

−−→
STh, there exists a state q′ and a rule

utb→ q′; it is not hard then to show that Πq ↔∗
SM′ q

′β′. ��

Corollary 4. Let q ∈ Q′ be a state of M ′. If ext(q) is finite with respect to
SM ′ then it is also finite with respect to STh.

It follows then that the new variables ut in V ar(S) have finite extent in STh,
under the assumption that SM ′ has finite Q′-span:

Lemma 13. Let Π ∈ {L,R}∗ and β ∈ {0, 1}∗, and ut ∈ V ar(S). If ext(ut) is
infinite then there is a state q ∈ Q′ such that ext(q) is infinite.

Proof. Note that
−−→
STh has rules of the form utb → q′ with b ∈ {0, 1}. Thus the

result follows from the definition of ext. ��

Corollary 5. If SM ′ has finite Q′-span, then STh has finite V ar(S)-span.

Lemma 14. SM ′ has finite Q′-span if and only if STh has finite V ar(S)-span.

Proof. The “only if” assertion is the preceding Corollary; and the “if” assertion
is Lemma 9. ��
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Lemma 15. M ′
s is bounded if and only if S is unifiable.

Proof. In Sections 3.1 and 3.2 we showed that the unification problem S is
solvable if and only if STh has finite V ar(S)-span. By Lemma 14 STh has finite
V ar(S)-span if and only if SM ′ has finite Q′-span. Finally the result follows since
M ′ is bounded iff SM ′ has finite Q′-span by Corollary 3. ��

From the lemmas established in this section, we finally get our main result:

Theorem 1. Unifiability modulo E is undecidable.

6 Conclusion

The equational theory E studied in this paper is defined by a single equation,
which is orientable either way to give a convergent term rewrite system, and
for which every congruence class is finite. It is surprising that the unification
problem could be undecidable for such a “weak” theory.

Since elementary unification modulo E is undecidable, so are unification with
free constants and general unification. Matching modulo E appears actually to
be tractable (decidable in polynomial time); this could be of some interest.
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Abstract. Unification in Description Logics has been proposed as an in-
ference service that can, for example, be used to detect redundancies in
ontologies. For the Description Logic EL, which is used to define several
large biomedical ontologies, unification is NP-complete. An NP unifica-
tion algorithm for EL based on a translation into propositional satisfia-
bility (SAT) has recently been presented. In this paper, we extend this
SAT encoding in two directions: on the one hand, we add general concept
inclusion axioms, and on the other hand, we add role hierarchies (H) and
transitive roles (R+). For the translation to be complete, however, the
ontology needs to satisfy a certain cycle restriction. The SAT translation
depends on a new rewriting-based characterization of subsumption w.r.t.
ELHR+ -ontologies.

1 Introduction

The Description Logic (DL) EL, which offers the constructors conjunction (�),
existential restriction (∃r.C), and the top concept (�), has recently drawn con-
siderable attention since, on the one hand, important inference problems such
as the subsumption problem are polynomial in EL, even in the presence of gen-
eral concept inclusion axioms (GCIs) [11,4]. On the other hand, though quite
inexpressive, EL can be used to define biomedical ontologies, such as the large
medical ontology SNOMEDCT.1

Unification in DLs has been proposed in [8] as a novel inference service that
can, for instance, be used to detect redundancies in ontologies. For example,
assume that one developer of a medical ontology defines the concept of a patient
with severe injury of the frontal lobe as

∃finding.(Frontal_lobe_injury � ∃severity.Severe), (1)

whereas another one represents it as

∃finding.(Severe_injury � ∃finding_site.∃part_of.Frontal_lobe). (2)

These two concept descriptions are not equivalent, but they are nevertheless
meant to represent the same concept. They can obviously be made equivalent by
� Supported by DFG under grant BA 1122/14-1.
1 See http://www.ihtsdo.org/snomed-ct/

B. Gramlich, D. Miller, and U. Sattler (Eds.): IJCAR 2012, LNAI 7364, pp. 30–44, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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treating the concept names Frontal_lobe_injury and Severe_injury as variables,
and substituting the first one by Injury � ∃finding_site.∃part_of.Frontal_lobe
and the second one by Injury � ∃severity.Severe. In this case, we say that the
descriptions are unifiable, and call the substitution that makes them equivalent
a unifier.

To motivate our interest in unification w.r.t. GCIs, role hierarchies, and tran-
sitive roles, assume that the developers use the descriptions (3) and (4) instead
of (1) and (2):

∃finding.∃finding_site.∃part_of.Brain �
∃finding.(Frontal_lobe_injury � ∃severity.Severe) (3)

∃status.Emergency �
∃finding.(Severe_injury � ∃finding_site.∃part_of.Frontal_lobe) (4)

The descriptions (3) and (4) are not unifiable without additional background
knowledge, but they are unifiable, with the same unifier as above, if the GCIs

∃finding.∃severity.Severe � ∃status.Emergency,

Frontal_lobe � ∃proper_part_of.Brain

are present in a background ontology and this ontology additionally states that
part_of is transitive and proper_part_of is a subrole of part_of.

Most of the previous results on unification in DLs did not consider such addi-
tional background knowledge. In [8] it was shown that, for the DL FL0, which
differs from EL by offering value restrictions (∀r.C) in place of existential restric-
tions, deciding unifiability is an ExpTime-complete problem. In [5], we were able
to show that unification in EL is of considerably lower complexity: the decision
problem is NP-complete. The original unification algorithm for EL introduced in
[5] was a brutal “guess and then test” NP-algorithm, but we have since then also
developed more practical algorithms. On the one hand, in [7] we describe a goal-
oriented unification algorithm for EL, in which nondeterministic decisions are
only made if they are triggered by “unsolved parts” of the unification problem.
On the other hand, in [6], we present an algorithm that is based on a reduction
to satisfiability in propositional logic (SAT). In [7] it was also shown that the
approaches for unification of EL-concept descriptions (without any background
ontology) can easily be extended to the case of an acyclic TBox as background
ontology without really changing the algorithms or increasing their complex-
ity. Basically, by viewing defined concepts as variables, an acyclic TBox can be
turned into a unification problem that has as its unique unifier the substitution
that replaces the defined concepts by unfolded versions of their definitions.

For GCIs, this simple trick is not possible, and thus handling them requires
the development of new algorithms. In [1,2] we describe two such new algorithms:
one that extends the brute-force “guess and then test” NP-algorithm from [5] and
a more practical one that extends the goal-oriented algorithm from [7]. Both al-
gorithms are based on a new characterization of subsumption w.r.t. GCIs in EL,
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which we prove using a Gentzen-style proof calculus for subsumption. Unfortu-
nately, these algorithms are complete only for cycle-restricted TBoxes, i.e., finite
sets of GCIs that satisfy a certain restriction on cycles, which, however, does not
prevent all cycles. For example, the cyclic GCI ∃child.Human � Human satisfies
this restriction, whereas the cyclic GCI Human � ∃parent.Human does not.

In the present paper, we still cannot get rid of cycle-restrictedness of the
ontology, but extend the results of [2] in two other directions: (i) we add transitive
roles (indicated by the subscript R+ in the name of the DL) and role hierarchies
(indicated by adding the letter H to the name of the DL) to the language, which
are important for medical ontologies [17,15]; (ii) we provide an algorithm that is
based on a translation into SAT, and thus allows us to employ highly optimized
state-of-the-art SAT solvers [10] for implementing the unification algorithm. In
order to obtain the SAT translation, using the characterization of subsumption
from [2] is not sufficient, however. We had to develop a new rewriting-based
characterization of subsumption.

In the next section, we introduce the DLs considered in this paper and the
important inference problem subsumption. In Section 3 we define unification
for these DLs and recall some of the existing results for unification in EL. In
particular, we introduce in this section the notion of cycle-restrictedness, which
is required for the results on unification w.r.t. GCIs to hold. In Section 4 we then
derive rewriting-based characterizations of subsumption. Section 5 contains the
main result of this paper, which is a reduction of unification in ELHR+ w.r.t.
cycle-restricted ontologies to propositional satisfiability. The proof of correctness
of this reduction strongly depends on the characterization of subsumption shown
in the previous section.

2 The Description Logics EL, EL+, and ELHR+

The expressiveness of a DL is determined both by the formalism for describing
concepts (the concept description language) and the terminological formalism,
which can be used to state additional constraints on the interpretation of con-
cepts and roles in a so-called ontology.

Syntax and Semantics

The concept description language considered in this paper is called EL. Starting
with a finite set NC of concept names and a finite set NR of role names, EL-concept
descriptions are built from concept names using the constructors conjunction (C�
D), existential restriction (∃r.C for every r ∈ NR), and top (�).

Since in this paper we only consider EL-concept descriptions, we will some-
times dispense with the prefix EL.

On the semantic side, concept descriptions are interpreted as sets. To be more
precise, an interpretation I = (ΔI , ·I) consists of a non-empty domain ΔI and
an interpretation function ·I that maps concept names to subsets of ΔI and
role names to binary relations over ΔI . This function is extended to concept
descriptions as shown in the semantics column of Table 1.
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Table 1. Syntax and semantics of EL

Name Syntax Semantics

concept name A AI ⊆ ΔI

role name r rI ⊆ ΔI × ΔI

top � �I = ΔI

conjunction C � D (C � D)I = CI ∩ DI

existential restriction ∃r.C (∃r.C)I = {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
general concept inclusion C 	 D CI ⊆ DI

role inclusion r1 ◦ · · · ◦ rn 	 s rI1 ◦ · · · ◦ rIn ⊆ sI

Ontologies

A general concept inclusion (GCI) is of the form C � D for concept descriptions
C, D, and a role inclusion is of the form r1◦· · ·◦rn � s for role names r1, . . . , rn, s.
Both are called axioms. Role inclusions of the form r◦r � r are called transitivity
axioms and of the form r � s role hierarchy axioms. An interpretation I satisfies
such an axiom if the corresponding condition in the semantics column of Table 1
holds, where ◦ in this column stands for composition of binary relations.

An EL+-ontology is a finite set of axioms. It is an ELHR+-ontology if all its
role inclusions are transitivity or role hierarchy axioms, and an EL-ontology if
it contains only GCIs. An interpretation is a model of an ontology if it satisfies
all its axioms.

Subsumption, Equivalence, and Role Hierarchy

A concept description C is subsumed by a concept description D w.r.t. an on-
tology O (written C �O D) if every model of O satisfies the GCI C � D. We
say that C is equivalent to D w.r.t. O (C ≡O D) if C �O D and D �O C. If
O is empty, we also write C � D and C ≡ D instead of C �O D and C ≡O D,
respectively. As shown in [11,4], subsumption w.r.t. EL+-ontologies (and thus
also w.r.t. ELHR+ - and EL-ontologies) is decidable in polynomial time.

Since conjunction is interpreted as intersection, the concept descriptions (C �
D)�E and C�(D�E) are always equivalent. Thus, we dispense with parentheses
and write nested conjunctions in flat form C1 � · · · � Cn. Nested existential
restrictions ∃r1.∃r2. . . . ∃rn.C will sometimes also be written as ∃r1r2 . . . rn.C,
where r1r2 . . . rn is viewed as a word over the alphabet of role names, i.e., an
element of N∗

R.
The role hierarchy induced by O is a binary relation �O on NR, which is

defined as the reflexive-transitive closure of the relation {(r, s) | r � s ∈ O}.
Using elementary reachability algorithms, the role hierarchy can be computed
in polynomial time in the size of O. It is easy to see that r �O s implies that
rI ⊆ sI for all models I of O.
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3 Unification

In order to define unification, we first introduce the notion of a substitution
operating on concept descriptions. For this purpose, we partition the set NC of
concepts names into a set Nv of concept variables (which may be replaced by
substitutions) and a set Nc of concept constants (which must not be replaced by
substitutions). A substitution σ maps every variable to an EL-concept descrip-
tion. It can be extended from variables to EL-concept descriptions as follows:

– σ(A) := A for all A ∈ Nc ∪ {�},
– σ(C �D) := σ(C) � σ(D) and σ(∃r.C) := ∃r.σ(C).

A concept description C is ground if it does not contain variables, and a substi-
tution is ground if all concept descriptions in its range are ground. Obviously, a
ground concept description is not modified by applying a substitution, and if we
apply a ground substitution to any concept description, then we obtain a ground
description. An ontology is ground if it does not contain variables.

Definition 1. Let O be a ground ontology. A unification problem w.r.t. O is a
finite set Γ = {C1 �? D1, . . . , Cn �? Dn} of subsumptions between EL-concept
descriptions. A substitution σ is a unifier of Γ w.r.t. O if σ solves all the sub-
sumptions in Γ w.r.t. O, i.e., if σ(C1) �O σ(D1), . . . , σ(Cn) �O σ(Dn). We say
that Γ is unifiable w.r.t. O if it has a unifier w.r.t. O.

We call Γ w.r.t. O an EL-, EL+-, or ELHR+ -unification problem depending on
whether and what kind of role inclusions are contained in O.

Three remarks regarding the definition of unification problems are in order.
First, note that some of the previous papers on unification in DLs used equiv-
alences C ≡? D instead of subsumptions C �? D. This difference is, however,
irrelevant since C ≡? D can be seen as a shorthand for the two subsumptions
C �? D and D �? C, and C �? D has the same unifiers as C �D ≡? C.

Second, note that—as in [2]—we have restricted the background ontologyO to
be ground. This is not without loss of generality. In fact, if O contained variables,
then we would need to apply the substitution also to its axioms, and instead of
requiring σ(Ci) �O σ(Di) we would thus need to require σ(Ci) �σ(O) σ(Di),
which would change the nature of the problem considerably. The treatment of
unification w.r.t. acyclic TBoxes in [7] actually considers a more general setting,
where some of the primitive concepts occurring in the TBox may be variables.
The restriction to ground general TBoxes is, however, appropriate for the ap-
plication scenario sketched in the introduction. In this scenario, there is a fixed
background ontology, which is extended with definitions of new concepts by sev-
eral knowledge engineers. Unification w.r.t. the background ontology is used to
check whether some of these new definitions actually are redundant, i.e., define
the same intuitive concept. Here, some of the primitive concepts newly intro-
duced by one knowledge engineer may be further defined by another one, but we
assume that the knowledge engineers use the vocabulary from the background
ontology unchanged, i.e., they define new concepts rather than adding definitions
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for concepts that already occur in the background ontology. An instance of this
scenario can, e.g., be found in [12], where different extensions of SNOMEDCT
are checked for overlaps, albeit not by using unification, but by simply testing
for equivalence.

Third, though arbitrary substitutions σ are used in the definition of a unifier,
it is actually sufficient to consider ground substitutions such that all concept
descriptions σ(X) in the range of σ contain only concept and role names occur-
ring in Γ or O. It is an easy consequence of well-known results from unification
theory [9] that Γ has a unifier w.r.t. O iff it has such a ground unifier.

Relationship to Equational Unification

Unification was originally not introduced for Description Logics, but for equa-
tional theories [9]. In [7] it was shown that unification in EL (w.r.t. the empty
ontology) is the same as unification in the equational theory SLmO of semilat-
tices with monotone operators [16]. As argued in [2], unification in EL w.r.t. a
ground EL-ontology corresponds to unification in SLmO extended with a finite
set of ground identities. In contrast to GCIs, role inclusions add non-ground
identities to SLmO (see [16] and [3] for details).

This unification-theoretic point of view sheds some light on our decision to
restrict unification w.r.t. general TBoxes to the case of general TBoxes that
are ground. In fact, if we lifted this restriction, then we would end up with a
generalization of rigid E-unification [14,13], in which the theory SLmO extended
with the identities expressing role inclusions is used as a background theory. To
the best of our knowledge, such variants of rigid E-unification have not been
considered in the literature, and are probably quite hard to solve.

Flat Ontologies and Unification Problems

To simplify the technical development, it is convenient to normalize the TBox
and the unification problem appropriately. To introduce this normal form, we
need the notion of an atom.

An atom is a concept name or an existential restriction. Obviously, every EL-
concept description C is a finite conjunction of atoms, where � is considered to
be the empty conjunction. We call the atoms in this conjunction the top-level
atoms of C. An atom is called flat if it is a concept name or an existential
restriction of the form ∃r.A for a concept name A.

The GCI C � D or subsumption C �? D is called flat if C is a conjunction of
n ≥ 0 flat atoms and D is a flat atom. The ontology O (unification problem Γ )
is called flat if all the GCIs in O (subsumptions in Γ ) are flat. Given a ground
ontology O and a unification problem Γ , we can compute in polynomial time
(see [3]) a flat ontology O′ and a flat unification problem Γ ′ such that

– Γ has a unifier w.r.t. O iff Γ ′ has a unifier w.r.t. O′;
– the type of the unification problem (EL, EL+, or ELHR+) is preserved.

For this reason, we will assume in the following that all ontologies and unification
problems are flat.
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Cycle-Restricted Ontologies

The decidability and complexity results for unification w.r.t. EL-ontologies in [2],
and also the corresponding ones in the present paper, only hold if the ontologies
satisfy a restriction that prohibits certain cyclic subsumptions.

Definition 2. The EL+-ontology O is called cycle-restricted iff there is no
nonempty word w ∈ N+

R and EL-concept description C such that C �O ∃w.C.

Note that cycle-restrictedness is not a syntactic condition on the form of the ax-
ioms in O, but a semantic one on what follows from O. Nevertheless, for ELHR+ -
ontologies, this condition can be decided in polynomial time [3]. Basically, one
first shows that the ELHR+ -ontology O is cycle-restricted iff A �O ∃w.A holds
for all nonempty words w ∈ N+

R and all A ∈ NC ∪ {�}. Then, one shows that
A �O ∃w.A for some w ∈ N+

R and A ∈ NC ∪ {�} implies that there are n ≥ 1
role names r1, . . . , rn and A1, . . . , An ∈ NC ∪ {�} such that

(∗) A �O ∃r1.A1, A1 �O ∃r2.A2, . . . , An−1 �O ∃rn.An and An = A.

Using the polynomial-time subsumption algorithm for ELHR+ , we can build a
graph whose nodes are the elements of NC ∪ {�} and where there is an edge
from A to B with label r iff A �O ∃r.B. Then we can use standard reachability
algorithms to check whether this graph contains a cycle of the form (∗). The
restriction to ELHR+ stems from the fact that the proof of correctness of this
algorithm is based on Lemma 7 below, which we cannot show for EL+.

The main reason why we need cycle-restrictedness of O is that it ensures that
a substitution always induces a strict partial order on the variables.2 To be more
precise, assume that γ is a substitution. For X, Y ∈ Nv we define

X >γ Y iff γ(X) �O ∃w.γ(Y ) for some w ∈ N+
R . (5)

Transitivity of >γ is an easy consequence of transitivity of subsumption, and
cycle-restrictedness of O yields irreflexivity of >γ .

Lemma 3. If O is a cycle-restricted EL+-ontology, then >γ is a strict partial
order on Nv.

4 Subsumption w.r.t. EL+- and ELHR+-Ontologies

Subsumption w.r.t. EL+-ontologies can be decided in polynomial time [4]. For
the purpose of deciding unification, however, we do not simply want a decision
procedure for subsumption, but are more interested in a characterization of
subsumption that helps us to find unifiers. The characterization of subsumption
derived here is based on a rewrite relation that uses axioms as rewrite rules from
right to left.
2 Why we need this order will become clear in Section 5.
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Proving Subsumption by Rewriting

Throughout this subsection, we assume that O is a flat EL+-ontology. Intuitively,
an axiom of the form A1� . . .�An � B ∈ O is used to replace B by A1� . . .�An

and an axiom of the form r1 ◦ . . .◦ rn � s ∈ O to replace ∃s.C by ∃r1 . . . rn.C. In
order to deal with associativity, commutativity, and idempotency of conjunction,
it is convenient to represent concept descriptions as sets of atoms rather than as
conjunctions of atoms.

Given an EL-concept description C, the description set s(C) associated with
C is defined by induction:

– s(A) := {A} for A ∈ NC and s(�) := ∅;
– s(C �D) := s(C) ∪ s(D) and s(∃r.C) := {∃r.s(C)}.

For example, if C = A � ∃r.(A � ∃r.�), then s(C) = {A, ∃r.{A, ∃r.∅}}. We call
set positions the positions in s(C) at which there is a set. In our example, we
have three set positions, corresponding to the sets {A, ∃r.{A, ∃r.∅}}, {A, ∃r.∅},
and ∅. The set position that corresponds to the whole set s(C) is called the root
position.

Our rewrite rules are of the form N ← M , where N, M are description sets.
Such a rule applies at a set position p in s(C) if the corresponding set s(C)|p
contains M , and its application replaces s(C)|p by (s(C)|p \M) ∪N (see [3] for
a more formal definition of set positions and of the application of rewrite rules).

Given a flat EL+-ontology O, the corresponding rewrite system R(O) consists
of the following rules:

– Concept inclusion (Rc): For every C � D ∈ O, R(O) contains the rule

s(C)← s(D).

– Role inclusion (Rr): For every r1 ◦ · · · ◦ rn � s ∈ O and every EL-concept
description C, R(O) contains the rule

s(∃r1 . . . rn.C) ← s(∃s.C).

– Monotonicity (Rm): For every atom D, R(O) contains the rule

s(D)← ∅.

Definition 4. Let N, M be description sets. We write N ←O M if N can be
obtained from M by the application of a rule in R(O). The relation ∗←O is defined
to be the reflexive, transitive closure of ←O, i.e., N

∗←O M iff there is a chain

N = M� ←O M�−1 ←O . . .←O M0 = M

of � ≥ 0 rule applications. We call such a chain a derivation of N from M
w.r.t. O. A rewriting step in such a derivation is called a root step if it applies

a rule of the form (Rc) at the root position. We write N
(n)←−−O M to express

that there is a derivation of N from M w.r.t. O that uses at most n root steps.
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For example, if O contains the axioms � � ∃r.B and s � r, then the following
is a derivation w.r.t. O:

{A, ∃s.{A}} ←O {A, ∃r.{A}} ←O {A, ∃r.{A, ∃r.{B}}} ←O {A, ∃r.{A, ∃r.∅}}

This is a derivation without a root step, which first applies a rule of the form
(Rm), then one of the form (Rc) (not at the root position), and finally one of

the form (Rr). This shows s(A � ∃s.A)
(0)←−−O s(A � ∃r.(A � ∃r.�)).

The following theorem states that subsumption w.r.t. O corresponds to the
existence of a derivation w.r.t. O whose root steps are bounded by the number
of GCIs in O (see [3] for a proof of this result).

Theorem 5. Let O be a flat EL+-ontology containing n GCIs and C, D be two

EL-concept descriptions. Then C �O D iff s(C)
(n)←−−O s(D).

A Structural Characterization of Subsumption in ELHR+

Our translation of unification problems into propositional satisfiability problems
depends on a structural characterization of subsumption, which we can unfortu-
nately only show for ELHR+ ontologies. Throughout this subsection, we assume
that O is a flat ELHR+ -ontology. We say that r is transitive if the transitivity
axiom r ◦ r � r belongs to O.

Definition 6. Let C, D be atoms. We say that C is structurally subsumed by
D w.r.t. O (C �s

O D) iff

– C = D is a concept name,
– C = ∃r.C′, D = ∃s.D′, C′ �O D′, and r �O s, or
– C = ∃r.C′, D = ∃s.D′, and C′ �O ∃t.D′

for a transitive role t with r �O t �O s.

On the one hand, structural subsumption is a stronger property than C �O D
since it requires the atoms C and D to have “compatible” top-level structures.
On the other hand, it is weaker than subsumption w.r.t. the empty ontology, i.e.,
whenever C � D holds for two atoms C and D, then C �s

O D, but not necessarily
vice versa. If O = ∅, then the three relations �, �s

O, �O coincide on atoms. Like
� and �O, �s

O is reflexive, transitive, and closed under applying existential
restrictions (see [3] for proofs of the results mentioned in this paragraph).

Using the connection between subsumption and rewriting stated in Theo-
rem 5, we can now prove a characterization of subsumption in the presence of an
ELHR+ -ontology O that expresses subsumption in terms of structural subsump-
tions and derivations w.r.t.←O. Recall that all EL-concept descriptions are con-
junctions of atoms, that C �O D1�· · · �Dm iff C �O Dj for all j ∈ {1, . . . , m},
and C �O D iff there is an � such that s(C)

(�)←−−O s(D).
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Lemma 7. Let O be a flat ELHR+-ontology, C1, . . . , Cn, D be atoms, and � ≥ 0.

Then s(C1 � · · · � Cn)
(�)←−−O s(D) iff there is

1. an index i ∈ {1, . . . , n} such that Ci �s
O D; or

2. a GCI A1 � · · · �Ak � B in T such that
a) for every p ∈ {1, . . . , k} we have s(C1 � · · · � Cn)

(�−1)←−−−O s(Ap),

b) s(C1 � · · · � Cn)
(�)←−−O s(B), and

c) B �s
O D.

A detailed proof of this lemma is given in [3]. Here, we only want to point out
that this proof makes extensive use of the transitivity of �s

O, and that this is the
main reason why we cannot deal with general EL+-ontologies. In fact, while it is
not hard to extend the definition of structural subsumption to more general kinds
of ontologies, it is currently not clear to us how to do this such that the resulting
relation is transitive; and without transitivity of structural subsumption, we
cannot show a characterization analogous to the one in Lemma 7.

5 Reduction of Unification w.r.t. Cycle-Restricted
ELHR+-Ontologies to SAT

The main idea underlying the NP-membership results in [5] and [2] is to show
that any EL-unification problem that is unifiable w.r.t. the empty ontology and
w.r.t. a cycle-restricted EL-ontology, respectively, has a so-called local unifier.
Here, we generalize the notion of a local unifier to the case of unification w.r.t.
cycle-restricted ELHR+ -ontologies, but then go a significant step further. Instead
of using an algorithm that “blindly” generates all local substitutions and then
checks whether they are unifiers, we reduce the search for a local unifier to a
propositional satisfiability problem.

Local Unifiers

Let Γ be a flat unification problem and O be a flat, cycle-restricted ELHR+ -
ontology. We denote by At the set of atoms occurring as subdescriptions in
subsumptions in Γ or axioms in O and define

Attr := At ∪ {∃t.D′ | ∃s.D′ ∈ At, t �O s, t transitive}.

Furthermore, we define the set of non-variable atoms by Atnv := Attr\Nv. Though
the elements of Atnv cannot be variables, they may contain variables if they are
of the form ∃r.X for some role r and a variable X . We call a function S that
associates every variable X ∈ Nv with a set SX ⊆ Atnv an assignment. Such an
assignment induces the following relation >S on Nv: >S is the transitive closure
of

{(X, Y ) ∈ Nv ×Nv | Y occurs in an element of SX}.
We call the assignment S acyclic if >S is irreflexive (and thus a strict partial
order). Any acyclic assignment S induces a unique substitution σS , which can
be defined by induction along >S :
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– If X is a minimal element of Nv w.r.t. >S , then we set σS(X) :=
�

D∈SX
D.

– Assume that σ(Y ) is already defined for all Y such that X >S Y . Then we
define σS(X) :=

�
D∈SX

σS(D).

We call a substitution σ local if it is of this form, i.e., if there is an acyclic
assignment S such that σ = σS . Since Nv and Atnv are finite, there are only
finitely many local substitutions. Thus, if we know that any solvable unification
problem has a local unifier, then we can enumerate (or guess, in a nondetermin-
istic machine) all local substitutions and then check whether any of them is a
unifier. Thus, in general many substitutions will be generated that only in the
subsequent check turn out not to be unifiers. In contrast, our SAT reduction will
ensure that only unifiers are generated.

The Reduction

Here, we reduce unification w.r.t. cycle-restricted ELHR+ -ontologies to the satis-
fiability problem for propositional logic, which is NP-complete. This shows that
this unification problem is in NP. But more importantly, it immediately allows
us to apply highly optimized SAT solvers for solving such unification problems.

As before, we assume that Γ is a flat unification problem and O is a flat,
cycle-restricted ELHR+ -ontology. Let T be the subset of O that consists of the
GCIs in O. We define the set

Left := At ∪ {C1 � · · · � Cn | C1 � · · · �Cn �? D ∈ Γ for some D ∈ At}

that contains all atoms of Γ and O and all left-hand sides of subsumptions from
Γ . For L ∈ Left and C ∈ At, we write “C ∈ L” if C is a top-level atom of L.

The propositional variables we use for the reduction are of the form [L �
D]i for L ∈ Left, D ∈ Attr, and i ∈ {0, . . . , |T |}. The intuition underlying
these variables is that every satisfying propositional valuation induces an acyclic
assignment S such that the following holds for the corresponding substitution
σS : [L � D]i is evaluated to true by the assignment iff s(σS(L)) can be derived

from s(σS(D)) using at most i root steps, i.e., s(σS(L))
(i)←−O s(σS(D)).

Additionally, we use the propositional variables [X > Y ] for X, Y ∈ Nv to
express the strict partial order >S induced by the acyclic assignment S.

The auxiliary function Dec is defined as follows for C ∈ At, D ∈ Attr:

Dec(C � D) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if C = D

[C � D]|T | if C and D are ground
Trans(C � D) if C = ∃r.C′, D = ∃s.D′, and r �O s

[C � D]|T | if C is a variable
0 otherwise

,

Trans(C � D) = [C′ � D′]|T | ∨
∨

t transitive
r�Ot�Os

[C′ � ∃t.D′]|T |.
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Note that C′ ∈ At and D′, ∃t.D′ ∈ Attr by the definition of Attr and since Γ and
O are flat. Here, 0 and 1 are Boolean constants representing the truth values 0
(false) and 1 (true), respectively.

The unification problem will be reduced to satisfiability of the following set of
propositional formulae. For simplicity, we do not use only clauses here. However,
our formulae can be transformed into clausal form by introducing polynomially
many auxiliary propositional variables and clauses.

Definition 8. Let Γ be a flat unification problem and O a flat, cycle-restricted
ELHR+ -ontology. The set C(Γ,O) contains the following propositional formulae:

(I) Translation of the subsumptions of Γ . For every L �? D in Γ , we intro-
duce a clause asserting that this subsumption must hold:

→ [L � D]|T |.

(II) Translation of the relevant properties of subsumption.
1) For all ground atoms C ∈ At, D ∈ Attr and i ∈ {0, . . . , |T |} such that

C �O D, we introduce a clause preventing this subsumption:

[C � D]i → .

2) For every variable Y , B ∈ Atnv, i, j ∈ {0, . . . , |T |}, and L ∈ Left, we
introduce the clause

[L � Y ]i ∧ [Y � B]j → [L � B]min{|T |,i+j}.

3) For every L ∈ Left \ Nv and D ∈ Attr, we introduce the following
formulae, depending on L and D:
a) If D is a ground atom and L is not a ground atom, we introduce

[L � D]i →
∨

C∈L

Dec(C � D) ∨∨
A1�···�Ak�B∈O

B�OD

([L � A1]i−1 ∧ · · · ∧ [L � Ak]i−1)

for all i ∈ {1, . . . , |T |} and

[L � D]0 →
∨

C∈L

Dec(C � D).

b) If D is a non-variable, non-ground atom, we introduce

[L � D]i →
∨

C∈L

Dec(C � D)∨
∨

A atom of O
([L � A]i ∧Dec(A � D))

for all i ∈ {1, . . . , |T |} and

[L � D]0 →
∨

C∈L

Dec(C � D).
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(III) Translation of the relevant properties of >.
1) Transitivity and irreflexivity of > is expressed by the clauses

[X > X ]→ and [X > Y ] ∧ [Y > Z]→ [X > Z]

for all X, Y, Z ∈ Nv.
2) The connection between > and � is expressed using the clause

[X � ∃r.Y ]i → [X > Y ]

for every X, Y ∈ Nv, ∃r.Y ∈ Attr, and i ∈ {0, . . . , |T |}.

It is easy to see that the set C(Γ,O) can be constructed in time polynomial in
the size of Γ and O. In particular, subsumptions B �O D between ground atoms
B, D can be checked in polynomial time in the size of O [4].

There are several differences between C(Γ,O) and the clauses constructed
in [6] to solve unification in EL w.r.t. the empty ontology. The propositional
variables employed in [6] are of the form [C � D] for atoms C, D of Γ , i.e., they
stand for non-subsumption rather than subsumption. The use of single atoms
C instead of whole left-hand sides L also leads to a different encoding of the
subsumptions from Γ in part (I). The clauses in (III) are identical up to negation
of the variables [X � ∃r.Y ]i. But most importantly, in [6] the properties of
subsumption expressed in (II) need only deal with subsumption w.r.t. the empty
ontology, whereas here we have to take a cycle-restricted ELHR+ -ontology into
account. We do this by expressing the characterization of subsumption given in
Lemma 7. This is also the reason why the propositional variables [L � D]i have
an additional index i: in fact, in Lemma 7 we refer to the number of root steps
in the derivation that shows the subsumption, and this needs to be modeled in
our SAT reduction.

Theorem 9. The unification problem Γ is solvable w.r.t. O iff C(Γ,O) is sat-
isfiable.

Since C(Γ,O) can be constructed in polynomial time and SAT is in NP, this
shows that unification w.r.t. cycle-restricted ELHR+ -ontologies is in NP. NP-
hardness follows from the known NP-hardness of EL-unification w.r.t. the empty
ontology [5].

Corollary 10. Unification w.r.t. cycle-restricted ELHR+-ontologies is an NP-
complete problem.

To prove Theorem 9, we must show soundness and completeness of the reduction.

Soundness of the Reduction. Let τ be a valuation of the propositional vari-
ables that satisfies C(Γ,O). We must show that then Γ has a unifier w.r.t. O.
To this purpose, we use τ to define an assignment S by

SX := {D ∈ Atnv | ∃i ∈ {0, . . . , |T |} : τ([X � D]i) = 1}.
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Using the clauses in (III), it is not hard to show [3] that X >S Y implies τ([X >
Y ]) = 1. Due to the irreflexivity clause in (III), this yields that the assignment
S is acyclic. Thus, it induces a substitution σS . A proof of the following lemma
can be found in [3].

Lemma 11. If τ([L � D]i) = 1 for L ∈ Left, D ∈ Attr, and i ∈ {0, . . . , |T |},
then σS(L) �O σS(D).

Because of the clauses in (I), this lemma immediately implies that σS is a unifier
of Γ w.r.t. O.

Completeness of the Reduction. Given a unifier γ of Γ w.r.t. O, we can
define a valuation τ that satisfies C(Γ,O) as follows.

Let L ∈ Left and D ∈ Attr and i ∈ {0, . . . , |T |}. We set τ([L � D]i) := 1 iff

s(γ(L))
(i)←−O s(γ(D)). According to Theorem 5, we thus have τ([L � D]i) = 0

for all i ∈ {0, . . . , |T |} iff γ(L) �O γ(D). Otherwise, there is an i ∈ {0, . . . , |T |}
such that τ([L � D]j) = 1 for all j ≥ i, and τ([L � D]j) = 0 for all j < i.

To define the valuation of the remaining propositional variables [X > Y ] with
X, Y ∈ Nv, we set τ([X > Y ]) = 1 iff X >γ Y , where >γ is defined as in (5),
i.e., X >γ Y iff γ(X) �O ∃w.γ(Y ) for some w ∈ N+

R .
The following lemma, whose proof can be found in [3], shows completeness of

our reduction using Lemma 7.

Lemma 12. The valuation τ satisfies C(Γ,O).

Note that cycle-restrictedness ofO is needed in order to satisfy the irreflexivity
clause [X > X ] → (see Lemma 3). We cannot dispense with this clause since
it is needed in the proof of soundness to obtain acyclicity of the assignment S
constructed there. In fact, only because S is acyclic can we define the substitution
σS , which is then shown to be a unifier.

6 Conclusions

We have shown that unification w.r.t. cycle-restricted ELHR+ -ontologies can be
reduced to propositional satisfiability. This improves on the results in [1,2] in two
respects. First, it allows us to deal also with ontologies that contain transitivity
and role hierarchy axioms, which are important for medical ontologies. Second,
the SAT reduction can easily be implemented and enables us to make use of
highly optimized SAT solvers, whereas the goal-oriented algorithm in [1], while
having the potential of becoming quite efficient, requires a high amount of ad-
ditional optimization work. The main topic for future research is to investigate
whether we can get rid of cycle-restrictedness.
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Abstract. UEL is a system that computes unifiers for unification prob-
lems formulated in the description logic EL. EL is a description logic
with restricted expressivity, but which is still expressive enough for the
formal representation of biomedical ontologies, such as the large medical
ontology SNOMEDCT. We propose to use UEL as a tool to detect redun-
dancies in such ontologies by computing unifiers of two formal concepts
suspected of expressing the same concept of the application domain. UEL
can be used as a plug-in of the popular ontology editor Protégé, or as a
standalone unification application.

1 Motivation

The description logic (DL) EL, which offers the concept constructors conjunction
(�), existential restriction (∃r.C), and the top concept (�), has recently drawn
considerable attention since, on the one hand, important inference problems such
as the subsumption problem are polynomial in EL [1,8,2]. On the other hand,
though quite inexpressive, EL can be used to define biomedical ontologies, such
as the large medical ontology SNOMEDCT.1

Unification in DLs has been proposed in [6] as a novel inference service that
can, for instance, be used to detect redundancies in ontologies. For example,
assume that one developer of a medical ontology defines the concept of a patient
with severe head injury as

Patient � ∃finding.(Head injury � ∃severity.Severe), (1)

whereas another one represents it as

Patient � ∃finding.(Severe injury � ∃finding site.Head). (2)

These two concept descriptions are not equivalent, but they are nevertheless
meant to represent the same concept. They can obviously be made equivalent
by treating the concept names Head injury and Severe injury as variables, and
substituting the first one by Injury � ∃finding site.Head and the second one by
Injury � ∃severity.Severe. In this case, we say that the descriptions are unifiable,

1 See http://www.ihtsdo.org/snomed-ct/

B. Gramlich, D. Miller, and U. Sattler (Eds.): IJCAR 2012, LNAI 7364, pp. 45–51, 2012.
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Table 1. Syntax and semantics of EL

Name Syntax Semantics

concept name A AI ⊆ ΔI

role name r rI ⊆ ΔI ×ΔI

top � �I = ΔI

conjunction C �D (C �D)I = CI ∩DI

existential restriction ∃r.C (∃r.C)I = {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
concept definition A ≡ C AI = CI

and call the substitution that makes them equivalent a unifier. Intuitively, such
a unifier proposes definitions for the concept names that are used as variables: in
our example, we know that, if we define Head injury as Injury�∃finding site.Head
and Severe injury as Injury � ∃severity.Severe, then the two concept descriptions
(1) and (2) are equivalent w.r.t. these definitions. Of course, this example was
constructed such that the unifier actually provides sensible definitions for the
concept names used as variables. In general, the existence of a unifier only says
that there is a structural similarity between the two concepts. The developer that
uses unification as a tool for finding redundancies in an ontology or between two
different ontologies needs to inspect the unifier(s) to see whether the definitions
it suggests really make sense.

In [3] it was shown that unification in EL is an NP-complete problem. Basi-
cally, this problem is in NP since every solvable unification problem has a “local”
unifier, i.e., one built from parts of the unification problem. The NP algorithm
introduced in [3] is a brutal “guess and then test” algorithm, which guesses a
local substitution and then checks whether it is a unifier. In [5], a more practi-
cal EL-unification algorithm was introduced, which tries to transform the given
unification problems into a solved form, and makes nondeterministic decisions
only if triggered by the problem. While having the potential of becoming quite
efficient, this algorithm still requires a high amount of additional optimization
work before it can be used in practice. Our system UEL2 is based on a third kind
of algorithm, which encodes the unification problem into a set of propositional
clauses [4], and then solves it using an existing highly optimized SAT solver.

2 EL and Unification in EL

In order to explain what UEL actually computes, we need to recall the relevant
definitions and results for EL and unification in EL (see [7,1,5] for details).

Starting with a finite set NC of concept names and a finite set NR of role
names, EL-concept descriptions are built from concept names using the con-
structors conjunction (C � D), existential restriction (∃r.C for every r ∈ NR),
and top (�). On the semantic side, concept descriptions are interpreted as sets.

2 Version 1.0.0 of this system, as described in this paper, is available for download at
http://sourceforge.net/projects/uel/files/uel/1.0.0/
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To be more precise, an interpretation I = (ΔI , ·I) consists of a non-empty do-
main ΔI and an interpretation function ·I that maps concept names to subsets
of ΔI and role names to binary relations over ΔI . This function is extended to
concept descriptions as shown in the semantics column of Table 1.

A concept definition is of the form A ≡ C for a concept name A and a
concept description C. A TBox T is a finite set of concept definitions such that
no concept name occurs more than once on the left-hand side of a definition in
T . The TBox T is called acyclic if there are no cyclic dependencies between its
concept definitions. Given a TBox T , we call a concept name A a defined concept
if it occurs as the left-side of a concept definition A ≡ C in T . All other concept
names are called primitive concepts. An interpretation is a model of a TBox T
if AI = CI holds for all definitions A ≡ C in T .

Subsumption asks whether a given concept description C is a subconcept
of another concept description D: C is subsumed by D w.r.t. T (C  T D) if
every model of T satisfies CI ⊆ DI . We say that C is equivalent to D w.r.t. T
(C ≡T D) if C  T D and D  T C. For the empty TBox, we write C  D and
C ≡ D instead of C  ∅ D and C ≡∅ D, and simply talk about subsumption and
equivalence (without saying “w.r.t. ∅”).

In order to define unification, we partition the set NC of concept names into
a set Nv of concept variables (which may be replaced by substitutions) and
a set Nc of concept constants (which must not be replaced by substitutions).
Intuitively, Nv are the concept names that have possibly been given another
name or been specified in more detail in another concept description describing
the same notion. A substitution σ maps every variable to a concept descrip-
tion. It can be extended to concept descriptions in the usual way. Unification in
EL was first considered w.r.t. the empty TBox [3]. In this setting, an EL-uni-
fication problem is a finite set Γ = {C1 ≡? D1, . . . , Cn ≡? Dn} of equations.
A substitution σ is a unifier of Γ if σ solves all the equations in Γ , i.e., if
σ(C1) ≡ σ(D1), . . . , σ(Cn) ≡ σ(Dn). We say that Γ is solvable if it has a unifier.

As mentioned before, the main reason for solvability of unification in EL to be
in NP is that any solvable unification problem has a local unifier. Basically, any
unification problem Γ determines a polynomial number of so-called non-variable
atoms, which are concept constants or existential restrictions of the form ∃r.A
for a role name r and a concept constant or variable A. An assignment S maps
every concept variable X to a subset SX of the set Atnv of non-variable atoms
of Γ . Such an assignment induces the following relation >S on Nv: >S is the
transitive closure of {(X,Y ) ∈ Nv×Nv | Y occurs in an element of SX}.We call
the assignment S acyclic if >S is irreflexive (and thus a strict partial order). Any
acyclic assignment S induces a unique substitution σS , which can be defined by
induction along >S :

– IfX is a minimal element ofNv w.r.t.>S , then we define σS(X) :=
�

D∈SX
D.

– Assume that σ(Y ) is already defined for all Y such that X >S Y . Then we
define σS(X) :=

�
D∈SX

σS(D).

We call a substitution σ local if it is of this form, i.e., if there is an acyclic
assignment S such that σ = σS . In [3] it is shown that any solvable unification
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problem has a local unifier. Consequently, one can enumerate (or guess, in a
nondeterministic machine) all acyclic assignments and then check whether any
of them induces a substitution that is a unifier. Using this brute-force approach,
in general many local substitutions will be generated that only in the subsequent
check turn out not to be unifiers.

In contrast, the SAT reduction introduced in [4] ensures that only assign-
ments that induce unifiers are generated. The set of propositional clauses C(Γ )
generated by the reduction contains two kinds of propositional letters: [A � B]
for A,B ∈ Atnv and [X > Y ] for concept variables X,Y . Intuitively, setting
[A � B] = 1 means that the local substitution σS induced by the corresponding
assignment S satisfies σS(A) � σS(B), and setting [X > Y ] = 1 means that
X >S Y . The clauses in C(Γ ) are such that Γ has a unifier iff C(Γ ) is sat-
isfiable. In particular, any propositional valuation τ satisfying C(Γ ) defines an
assignment Sτ with Sτ

X := {A | τ([X � A]) = 0, A ∈ Atnv}, which induces a
local unifier of Γ . Conversely, any local unifier of Γ can be obtained in this way.
Thus, by generating all propositional valuations satisfying C(Γ ) we can generate
all local unifiers of Γ .

In [5], unification w.r.t. an acyclic TBox T was introduced. In this setting, the
concept variables are a subset of the primitive concepts of T , and substitutions
are applied both to the concept descriptions in the unification problem and to the
right-hand sides of the definitions in T . To deal with such unification problems,
one does not need to develop a new algorithm. In fact, by viewing the defined
concepts of T as variables, one can turn T into a unification problem, which
one simply adds to the given unification problem Γ . As shown in [5], there is a
1–1-correspondence between the unifiers of Γ w.r.t. T and the unifiers of this
extended unification problem.

3 Things Not Mentioned in the Theoretical Papers

When implementing UEL, we had to deal with several issues that are abstracted
away in the theoretical papers describing unification algorithms for EL.

Primitive Definitions. In addition to concept definitions, as introduced above,
biomedical ontologies often contain so-called primitive definitions A  C where
A is a concept name and C is a concept description. Models I of A  C need
to satisfy AI ⊆ CI . Thus, primitive definitions formulate necessary conditions
for concept membership, but these conditions are not sufficient. SNOMEDCT
contains about 350,000 primitive definitions and only 40,000 concept definitions.

By using a trick first introduced by Nebel [9], primitive definitions A  C can
be turned into concept definitions A ≡ C � A UNDEF , where A UNDEF is a
new concept name that stands for the undefined part of the definition of A. In
the resulting acyclic TBox, these new concept names are primitive concepts, and
thus can be declared to be variables. In this case, a unifier σ suggests how to
complete the definition of A by providing the concept description σ(A UNDEF ).
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Unifiers as Acyclic TBoxes. Given an acyclic assignment S computed by the
SAT reduction, our system UEL actually does not produce the corresponding
local unifier σS as output, but rather the acyclic TBox TS := {X ≡

�
D∈SX

D |
X ∈ Nv}. This TBox solves the input unification problem Γ w.r.t. T in the sense
that C ≡T ∪TS D holds for all equations C ≡? D in Γ . This is actually what
the developer that employs unification wants to know: how must the concept
variables be defined such that the concept descriptions in the equations become
equivalent? Another advantage of this representation of the output is that the
size of S and thus of TS is polynomial in the size of the input Γ and T , while
the size of the concept descriptions σS(X) may be exponential in this size. In
the following, we will also call the TBoxes TS unifiers.

Internal Variables. The unification algorithms for EL actually assume that
the unification problem is first transformed into a so-called flat form. This form
can easily be generated by introducing auxiliary variables. These new variables
have system-generated names, which do not make sense to the user. Thus, they
should not show up in the output acyclic TBox TS . By replacing such auxiliary
defined concepts in TS by their definitions as long as auxiliary names occur, we
can transform TS into an acyclic TBox that satisfies this requirement, actually
without causing an exponential blow-up of the size of the TBox.

Reachable sub-TBox. As mentioned above, acyclic TBoxes are treated by
viewing them as part of the unification problem. For very large TBoxes like
SNOMEDCT, adding the whole TBox to the unification problem is neither vi-
able nor necessary. In fact, it is sufficient to add the reachable part of the TBox,
i.e., the definitions onto which the concept descriptions in the unification problem
depend. This reachable part is usually rather small, even for very large TBoxes.

Enumeration of All Local Unifiers. Depending on how many concept names
are turned into variables, a unification problem can have many local unifiers. If
the SAT solver has provided a satisfying propositional valuation, we can add
a clause to the SAT problem that prevents the re-computation of this unifier,
and call the SAT solver with this new SAT instance. While computing a single
unifier is usually quite fast, computing all of them can take much longer. Thus,
we enable the user to compute and then inspect one unifier at a time. If this
unifier makes sense, i.e., suggests reasonable definitions for the variables, then
the user can stop. Otherwise, by pressing a button, the computation of the next
local unifier can be initiated. For this to work well, it is important that “good”
unifiers are computed first. For the moment, we have interpreted “good” as
meaning small, i.e., we want to compute those unifiers first that are generated
by acyclic assignments for which the sets SX are small. It has turned out that
the SAT reduction sketched above actually leads to computing unifiers in the
opposite order, at least if we use a SAT solver that tries to minimize the number
of propositional letters that are set to 1. In fact, setting a letter of the form
[X � A] for X ∈ Nv and A ∈ Atnv to 0 rather than 1 adds A to SX . This
problem can be overcome by using propositional letters [A  B] with the obvious
meaning, and basically replacing [A � B] in the SAT reduction by ¬[A  B].
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4 The System UEL and How to Use It

UEL was implemented in Java 1.6 and is compatible with Java 1.7. It uses
the OWL API 3.2.43 to read ontologies. It has a visual interface that can be
used as a Protégé 4.1 plug-in, or as a standalone application. The unification
problem generated by the user through this interface is translated into a propo-
sitional formula in conjunctive normal form using the DIMACS CNF format,4

which is the most popular format used by SAT solvers. As SAT solver, we cur-
rently use SAT4J,5 which is implemented in Java. This configuration is, however,
parametrized and can be easy changed to any SAT solver that accepts DIMACS
CNF input and returns the computed satisfying propositional valuation.

After opening UEL’s visual interface, the first step is to open one or two
ontologies. The second option enables unification of concepts defined in differ-
ent ontologies. The user can then choose two concepts to be unified.6 This is
done by choosing two concept names that occur on the left-hand sides of con-
cept definitions or primitive definitions. UEL then computes the subontologies
reachable from these concept names, and turns the primitive definitions in these
subontologies into concept definitions.

After choosing the concepts to be unified, pressing the button opens a dia-
log window in which the user is presented with the primitive concepts contained
in these subontologies (including the ones with ending UNDEF ). The user can
then decide which of these primitive concepts should be viewed as variables in
the unification problem

Once the user has chosen the variables, UEL computes the unification problem
defined this way, and transforms it into a clause set in DIMACS CNF format.
It also opens a dialog window with control buttons. By pressing the button ,
the user triggers the computation of the first unifier (or later, of the next one).
Each computed unifier is shown (as an acyclic TBox) in the dialog window. The
button can be used to go back to the previously computed unifier. The button

can be used to trigger the computation of all (remaining) unifiers, and the
button allows to jump back to the first unifier. Unifiers already computed
are stored, and thus need not be recomputed during navigation. Each unifier
(i.e., the acyclic TBox representing it) can be saved using the RDF/OWL or the
KRSS format by pressing the button . The format for saving is determined
by the file ending typed by the user (.krss or .owl).

The user can use the button to retrieve internal details about the compu-
tation process. These details include the unification problem created internally
by UEL, the number of all concept variables (user chosen and internal variables),
the number of propositional letters, and the number of propositional clauses that
are checked for satisfiability by the SAT solver.

3 http://owlapi.sourceforge.net
4 http://www.satcompetition.org/2004/format-solvers2004.html
5 http://www.sat4j.org
6 Note that a finite set of equations {C1 ≡? D1, . . . , Cn ≡? Dn} can always be encoded
into the single equation {∃r1.C1 � . . . � ∃rn.Cn ≡? ∃r1.D1 � · · · � ∃rn.Dn}, where
r1, . . . , rn are pairwise distinct role names.

http://owlapi.sourceforge.net
http://www.satcompetition.org/2004/format-solvers2004.html
http://www.sat4j.org
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5 An Example

We consider a modified version of our example in the first section, where the
TBox gives (1) as definition for the concept name Patient with severe head injury
and (2) as definition for the concept name Patient with severe injury at head. In
addition, the TBox contains two primitive definitions, saying that Head injury
and Severe injury are subconcepts of Injury. We load this TBox into UEL and
choose Patient with severe head injury and Patient with severe injury at head as
the concepts to be unified. The system then offers us the primitive concepts
Patient, Severe, Head as well as Head injury UNDEF, Severe injury UNDEF as pos-
sible variables, of which we choose only the latter two.

The SAT translation generates a SAT problem consisting of 3976 clauses and
containing 320 different propositional letters. The first unifier computed by UEL
is the substitution

{Head injury UNDEF "→ ∃finding site.Head,

Severe injury UNDEF "→ ∃severity.Severe}.

This unifier thus completes the primitive definitions of the concepts Head injury
and Severe injury to concept definitions Head injury ≡ Injury � finding site.Head
and Severe injury ≡ Injury � ∃severity.Severe.

However, the unification problem has 127 additional local unifiers. Some of
them are similar to the first one, but contain “redundant” conjuncts. Others do
not make much sense in the application (e.g., ones where Patient occurs in the
images of the variables). Computing all 128 local unifiers at once (after pressing
the button ) takes less than 1 second.
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Abstract. We provide a systematic and modular method to define non-
deterministic finite-valued semantics for a natural and very general fam-
ily of canonical labelled calculi, of which many previously studied sequent
and labelled calculi are particular instances. This semantics is effective,
in the sense that it naturally leads to a decision procedure for these cal-
culi. It is then applied to provide simple decidable semantic criteria for
crucial syntactic properties of these calculi, namely (strong) analyticity
and cut-admissibility.

1 Introduction

There are two contrary aims in logic: the first is to find calculi that characterize
a given semantics, the second is to find semantics for a logic that is only given
as a formal calculus. Roughly speaking, the former aim has been reached for
all (ordinary) finite-valued logics (including, of course, classical logic), as well
as for non-deterministic finite-valued logics ([2, 3]). As for the latter, there is
no known systematic method of constructing for a given general calculus, a
corresponding “well-behaved” semantics. By “well-behaved” here we mean that
it is effective in the sense of naturally inducing a decision procedure for its
underlying logic. Moreover, it is desirable that such semantics can be applied to
provide simple semantic characterization of important syntactic properties of the
corresponding calculi, which are hard to establish by other means. Analyticity
and cut-admissibility are just a few cases in point.

In [6] and [4] two families of labelled sequent calculi have been studied in this
context.1 [6] considers labelled calculi with generalized forms of cuts and identity

� Supported by The Israel Science Foundation (grant no. 280-10) and by FWF START
Y544-N23.

1 A remark is in order here on the relationship between the labelled calculi studied
here and the general framework of labelled deductive systems (LDS) from [8]. Both
frameworks consider consequence relations between labelled formulas. Methodolog-
ically, however, they have different aims: [8] constructs a system for a given logic
defined in semantic terms, while we define a semantics for a given labelled system.
Moreover, in LDS anything is allowed to serve as labels, while we assume a finite set
of labels. In this sense, our labelled calculi are a particular instance of LDS.

B. Gramlich, D. Miller, and U. Sattler (Eds.): IJCAR 2012, LNAI 7364, pp. 52–66, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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axioms and a restricted form of logical rules, and provides some necessary and
sufficient conditions for such calculi to have a characteristic finite-valued matrix.
In [4] labelled calculi with a less restrictive form of logical rules (but a more
restrictive form of cuts and axioms) are considered. The calculi of [4], satisfying
a certain coherence condition, have a semantic characterization using a natural
generalization of the usual finite-valued matrix called non-deterministic matrices
([2, 3]). The semantics provided in [6, 4] for these families of labelled calculi is
well-behaved in the sense defined above, that is the question of whether a sequent
s follows in some (non-deterministic) matrix from a finite set of sequents S, can
be reduced to considering legal partial valuations, defined on the subformulas of
S ∪ {s}. This naturally induces a decision procedure for such logics.

In this paper we show that the class of labelled calculi that have a finite-valued
well-behaved semantics is substantially larger than all the families of calculi con-
sidered in the literature in this context. We start by defining a general class of
fully-structural and propositional labelled calculi, called canonical labelled cal-
culi, of which the labelled calculi of [6, 4] are particular examples. In addition to
the weakening rule, canonical labelled calculi have rules of two forms: primitive
rules and introduction rules. The former operate on labels and do not mention
any connective. The generalized cuts and axioms of [6] are specific instances
of such rules. As for the latter, each such rule introduces one logical connec-
tive of the language. To provide semantics for such calculi in a systematic and
modular way, we generalize the notion of non-deterministic matrices to partial
non-deterministic matrices (PNmatrices), by allowing empty sets of options in
the truth tables of logical connectives. Although applicable to a much wider
range of calculi, the semantic framework of finite PNmatrices shares a crucial
property with both standard and non-deterministic matrices: any calculus that
has a characteristic PNmatrix is decidable. Moreover, as opposed to the results
in [6, 4], no conditions are required for a canonical labelled calculi to have a
characteristic PNmatrix: all such calculi have one, and so all of them are decid-
able. We then apply PNmatrices to provide simple decidable characterizations of
two crucial syntactic properties: strong analyticity and strong cut-admissibility.

Due to lack of space, most proofs are omitted, and will appear in an extended
version.

2 Preliminaries

In what follows L is a propositional language, and £ is a finite non-empty set
of labels. We assume that p1, p2, . . . are the atomic formulas of L. We denote by
FrmL the set of all wffs of L. We usually use ϕ, ψ as metavariables for formulas,
Γ,Δ for finite sets of formulas, l for labels, and L for sets of labels.

Definition 1. A labelled formula is an expression of the form l : ψ, where l ∈ £
and ψ ∈ FrmL. A sequent is a finite set of labelled formulas. An n-clause is a
sequent consisting of atomic formulas from {p1, . . . , pn}. Given a set L ⊆ £, we
write (L : ψ) instead of (the sequent) {l : ψ | l ∈ L}.
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Given a labelled formula γ, we denote by frm[γ] the (ordinary) formula appearing
in γ, and by sub[γ] the set of subformulas of the formula frm[γ]. frm and sub
are extended to sets of labelled formulas and to sets of sets of labelled formulas
in the obvious way.

Remark 1. The usual (two-sided) sequent notation ψ1, . . . , ψn ⇒ ϕ1, . . . , ϕm can
be interpreted as {f : ψ1, . . . , f : ψn, t : ϕ1, . . . , t : ϕm}, i.e. a sequent in the sense
of Definition 1 for £ = {t, f}.

Definition 2. An L-substitution is a function σ : FrmL → FrmL, which satis-
fies σ(#(ψ1, . . . , ψn)) = #(σ(ψ1), . . . , σ(ψn)) for every n-ary connective # of L. A
substitution is extended to labelled formulas, sequents, etc. in the obvious way.

3 Canonical Labelled Calculi

In this section we define the family of canonical labelled calculi. This is a general
family of labelled calculi, which includes many natural subclasses of previously
studied systems. These include the system LK for classical logic, the canonical
sequent calculi of [2], the signed calculi of [4] and the labelled calculi of [6].2

All canonical labelled calculi have in common the weakening rule. In addition,
they include rules of two types: primitive rules and introduction rules. Each rule
of the latter type introduces exactly one logical connective, while rules of the
former type operate on labels and do no mention any logical connectives. Next
we provide precise definitions.

Definition 3 (Weakening). The weakening rule allows to infer s ∪ s′ from s
for every two sequents s and s′.

Definition 4 (Primitive Rules). A primitive rule for £ is an expression of
the form {L1, . . . , Ln}/L where n ≥ 0 and L1, . . . , Ln, L ⊆ £. An application of
a primitive rule {L1, . . . , Ln}/L is any inference step of the following form:

(L1 : ψ) ∪ s1 . . . (Ln : ψ) ∪ sn
(L : ψ) ∪ s1 ∪ . . . ∪ sn

where ψ is a formula, and si is a sequent for every 1 ≤ i ≤ n.

Example 1. Suppose £ = {a, b, c} and consider the primitive rule {{a}, {b}}/
{b, c}. This rule allows to infer ({b, c} : ψ) ∪ s1 ∪ s2 from {a : ψ} ∪ s1 and {b :
ψ} ∪ s2 for every two sequents s1, s2 and a formula ψ.

2 The family of canonical labelled calculi also includes the systems dealt with in [9].
[9] extends the results of [2] by considering also “semi-canonical calculi”, which are
obtained from (two-sided) canonical calculi by discarding either the cut rule, the
identity axioms or both of them. Clearly, these systems are particular instances of
canonical labelled calculi, defined in this paper.
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Definition 5. A primitive rule for £ of the form ∅/L is called a canonical
axiom. Its applications provide all axioms of the form (L : ψ).

Example 2. Axiom schemas of two-sided sequent calculi usually have the form
ψ ⇒ ψ. Using the notation from Remark 1, it can be presented as the canonical
axiom ∅/{t, f}.

Definition 6. A primitive rule for £ of the form {L1, . . . , Ln}/∅ is called a
canonical cut. Its applications allow to infer s1 ∪ . . . ∪ sn from the sequents
(Li : ψ) ∪ si for every 1 ≤ i ≤ n (the formula ψ is called the cut-formula).

Example 3. Applications of the cut rule for two-sided sequent calculi are usually
presented by the following schema:

Γ1 ⇒ ψ,Δ1 Γ2, ψ ⇒ Δ2

Γ1, Γ2 ⇒ Δ1, Δ2

Using the notation from Remark 1, the corresponding canonical cut has the form
{{t}, {f}}/∅.

Definition 7 (Introduction Rules). A canonical introduction rule for an n-
ary connective # of L and £ is an expression of the form S/L : #(p1, . . . , pn),
where S is a finite set of n-clauses (see Definition 1) (called premises), and
L is a non-empty subset of £. An application of a canonical introduction rule
{c1, . . . , cm}/L : #(p1, . . . , pn) is any inference step of the following form:3

σ(c1) ∪ s1 . . . σ(cm) ∪ sm
(L : σ(#(p1, . . . , pn))) ∪ s1 ∪ . . . ∪ sm

where σ is an L-substitution, and si is a sequent for every 1 ≤ i ≤ m.

Example 4. The introduction rules for the classical conjunction in LK are usu-
ally presented as follows:

Γ, ψ, ϕ⇒ Δ

Γ,ψ ∧ ϕ⇒ Δ

Γ1 ⇒ Δ1, ψ Γ2 ⇒ Δ2, ϕ

Γ1, Γ2 ⇒ Δ1, Δ2, ψ ∧ ϕ

Using the notation from Remark 1, the corresponding canonical rules are:

r1 = {{f : p1, f : p2}}/{f} : p1 ∧ p2 r2 = {{t : p1}, {t : p2}}/{t} : p1 ∧ p2

Their applications have the forms:

{f : ψ, f : ϕ} ∪ s
{f : ψ ∧ ϕ} ∪ s

{t : ψ} ∪ s1 {t : ϕ} ∪ s2
{t : ψ ∧ ϕ} ∪ s1 ∪ s2

3 Note the full separation between a rule and its application: p1, . . . , pn appearing in
the rule serve as schematic variables, which are replaced by actual formulas of the
language in the application.
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Definition 8 (Canonical Labelled Calculi). A canonical labelled calculus
G for L and £ includes the weakening rule, a finite set of primitive rules for £,
and a finite set of introduction rules for the connectives of L and £. We say that
a sequent s is derivable in a canonical labelled calculus G from a set of sequents
S (and denote it by S �G s) if there exists a derivation in G of s from S.

Notation: Given a canonical labelled calculus G for L and £, we denote by
PG the set of primitive rules of G. In addition, for every connective # of L, we
denote by R	

G the set of canonical introduction rules for # of G.

Example 5. The standard sequent system LK can be represented as a canonical
labelled calculus for the language of classical logic and {t, f} (see Remark 1 and
Examples 2 to 4).

Henceforth, to improve readability, we usually omit the parentheses from the set
appearing before the “/” symbol in primitive rules and canonical introduction
rules.

Example 6. For £ = {a, b, c}, the canonical labelled calculus Gabc includes the
primitive rules ∅/{a, b}, ∅/{b, c}, ∅/{a, c}, and {a, b, c}/∅. It also has the following
canonical introduction rules for a ternary connective ◦:

{a : p1, c : p2}, {a : p3, b : p2}/{a, c} : ◦(p1, p2, p3)

{c : p2}, {a : p3, b : p3}, {c : p1}/{b, c} : ◦(p1, p2, p3)
Their applications are of the forms:

{a : ψ1, c : ψ2} ∪ s1 {a : ψ3, b : ψ2} ∪ s2
({a, c} : ◦(ψ1, ψ2, ψ3)) ∪ s1 ∪ s2

{c : ψ2} ∪ s1 {a : ψ3, b : ψ3} ∪ s2 {c : ψ1} ∪ s3
({b, c} : ◦(ψ1, ψ2, ψ3)) ∪ s1 ∪ s2 ∪ s3

Note that the canonical labelled calculi studied here are substantially more gen-
eral than the signed calculi of [4] and the labelled calculi of [6], as the primitive
rules of both of these families of calculi include only canonical cuts and axioms.
Moreover, in the latter only introduction rules which introduce a singleton are
allowed, which is not the case for the calculus in Example 6. In the former, all
systems have ∅/£ as their only axiom, and the set of cuts is always assumed to
be {{l1}, {l2}/∅ | l1 �= l2} (again leaving the calculus in Example 6 out of scope).

4 Partial Non-deterministic Matrices

Non-deterministic matrices (Nmatrices) are a natural generalization of the no-
tion of a standard many-valued matrix. These are structures, in which the truth
value of a complex formula is chosen non-deterministically out of a non-empty
set of options (determined by the truth values of its subformulas). For further
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discussion on Nmatrices we refer the reader to [2, 3]. In this paper we intro-
duce a further generalization of the concept of an Nmatrix, in which this set
of options is allowed to be empty. Intuitively, empty sets of options in a truth
table corresponds to forbidding some combinations of truth values. As we shall
see, this will allow us to characterize a wider class of calculi than that obtained
by applying usual Nmatrices. However, as shown in the sequel, the property
of effectiveness is preserved in PNmatrices, and like finite-valued matrices and
Nmatrices, (calculi characterized by) finite-valued PNmatrices are decidable.

4.1 Introducing PNmatrices

Definition 9. A partial non-deterministic matrix (PNmatrix for short) M for
L and £ consists of: (i) set VM of truth values, (ii) a function DM : £→ P (VM)
assigning a set of (designated) truth values to the labels of £, and (iii) a function
#M : VMn → P (VM) for every n-ary connective # of L. We say thatM is finite
if so is VM.

Definition 10. Let M be a PNmatrix for L and £.

1. An M-legal L-valuation is a function v : FrmL → VM satisfying the con-
dition v(#(ψ1, . . . , ψn)) ∈ #M(v(ψ1), . . . , v(ψn)) for every compound formula
#(ψ1, . . . , ψn) ∈ FrmL.

2. Let v be an M-legal L-valuation. A sequent s is true in v for M (denoted
by v |=M s) if v(ψ) ∈ DM(l) for some l : ψ ∈ s. A set S of sequents is true
in v for M (denoted by v |=M S) if v |=M s for every s ∈ S.

3. Given a set of sequents S and a single sequent s, S �M s if for everyM-legal
L-valuation v, v |=M s whenever v |=M S.

We now define a special subclass of PNmatrices, in which no empty sets of truth
values are allowed in the truth tables of logical connectives. This corresponds to
the case of Nmatrices from [2–4].

Definition 11. We say that a PNmatrix M for L and £ is proper if VM is
non-empty and #M(x1, . . . , xn) is non-empty for every n-ary connective # of L
and x1, . . . , xn ∈ VM.

Remark 2. Nmatrices in their original formulation can be viewed as proper PN-
matrices for L and £, where £ is a singleton. In this case DM is practically
a set of designated truth values. This is useful to define consequence relations
between sets of formulas and formulas in the following way: T �M ψ if whenever
the formulas of T are “true in v for M” (that is v(ϕ) ∈ DM for every ϕ ∈ T ),
also ψ is “true in v for M” (v(ψ) ∈ DM). However, in this paper we study con-
sequence relations of a different type, namely relations between a set of labelled
sequents and a labelled sequent. We need, therefore, a notion of “being true for
M” for every l ∈ £. This is achieved by taking DM to be a function from £
to P (VM). Finally, note that for simplicity of presentation, unlike in previous
works, we allow the set of designated truth values (for every l ∈ £) to be empty
or to include all truth values in VM.
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Example 7. Let £ = {a, b} and suppose that L contains one unary connective
�. The PNmatrices M1 and M2 are defined as follows: VM1 = VM2 = {t, f},
DM1(a) = DM2(a) = {t} and DM1(b) = DM2(b) = {f}. The respective truth
tables for � are defined as follows:

x �M1(x)
t {f}
f {t, f}

x �M2(x)
t ∅
f {t, f}

While both M1 andM2 are (finite) PNmatrices, only M1 is proper. Note that
in this case we have {a : p1} �M2 ∅, simply because there is no M2-legal L-
valuation that assigns t to p1.

Finally, we extend the notion of simple refinements of Nmatrices ([3]) to the
context of PNmatrices:

Definition 12. Let M and N be PNmatrices for L and £. We say that N is a
simple refinement ofM, denoted by N ⊆M, if VN ⊆ VM, DN (l) = DM(l)∩VN
for every l ∈ £, and #N (x1, . . . , xn) ⊆ #M(x1, . . . , xn) for every n-ary connective
# of L and x1, . . . , xn ∈ VN .

Proposition 1. Let M and N be PNmatrices for L and £, such that N ⊆M.
Then: (1) Every N -legal L-valuation is also M-legal; and (2) �M⊆�N .

4.2 Decidability

For a denotational semantics to be useful, it should be effective: the question
of whether some conclusion follows from a finite set of assumptions, should be
decidable by considering some computable set of partial valuations defined on
some finite set of “relevant” formulas. Usually, the “relevant” formulas are taken
as all subformulas occurring in the conclusion and the assumptions. Next, we
show that the semantics induced by PNmatrices is effective in this sense.

Definition 13. Let M be a PNmatrix for L and £, and let F ⊆ FrmL closed
under subformulas. AnM-legal F-valuation is a function v : F → VM satisfying
v(#(ψ1, . . . , ψn)) ∈ #M(v(ψ1), . . . , v(ψn)) for every formula #(ψ1, . . . , ψn) ∈ F .
|=M is defined for F-valuations exactly as for L-valuations. We say that an
M-legal F-valuation is extendable in M if it can be extended to an M-legal
L-valuation.

In proper PNmatrices, all partial valuations are extendable:

Proposition 2. Let M be a proper PNmatrix for L and £, and let F ⊆ FrmL
closed under subformulas. Then any M-legal F-valuation is extendable in M.

Proof. The proof goes exactly like the one for Nmatrices in [1]. Note that the
non-emptiness of VM is needed in order to extend the empty valuation. Clearly,
the different definition of DM is immaterial here. ��

However, this is not the case for arbitrary PNmatrices:
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Example 8. Consider the PNmatrixM2 from Example 7. Let v be theM2-legal
{p1}-valuation defined by v(p1) = t. Obviously, there is noM2-legal L-valuation
that extends v (as there is no way to assign a truth value to �p1). Thus v is not
extendable in M2.

Theorem 1. Let M be a PNmatrix for L and £ and F ⊆ FrmL closed under
subformulas. An M-legal F-valuation v is extendable in M iff v is N -legal for
some proper PNmatrix N ⊆M.

Corollary 1. Given a finite PNmatrix M for L and £, a finite F ⊆ FrmL
closed under subformulas. and a function v : F → VM, it is decidable whether v
is an M-legal F-valuation which is extendable in M.

Proof. Checking whether v is M-legal is straightforward. To verify that it is
extendable in M, we go over all (finite) proper PNmatrices N ⊆ M (there is
a finite number of them since M is finite), and check whether v is N -legal for
some such N . We return a positive answer iff we have found some N ⊆M such
that v is N -legal. The correctness is guaranteed by Theorem 1. ��

Corollary 2. Given a finite PNmatrix M for L and £, a finite set S of se-
quents, and a sequent s, it is decidable whether S �M s or not.

In the literature of Nmatrices (see e.g. [1]) effectiveness is usually identified with
the property given in Proposition 2.4 In this case Corollary 1 trivially holds: to
check that v is an extendable M-legal F -valuation, it suffices to check that it
is M-legal, as extendability is a priori guaranteed. However, the results above
show that this property is not a necessary condition for decidability. To guarantee
the latter, instead of requiring that all partial valuations are extendable, it is
sufficient to have an algorithm that establishes which of them are.

4.3 Minimality

In the next section, we show that the framework of PNmatrices provides a se-
mantic way of characterizing canonical labelled calculi. A natural question in this
context is how one can obtain minimal such characterizations. Next we provide
lower bounds on the number of truth values that are needed to characterize �M
of some PNmatrix M satisfying a separability condition defined below. More-
over, we provide a method to extract from a given (separable) PNmatrix an
equivalent PNmatrix with the minimal number of truth values.

Definition 14. Let M be a PNmatrix for L and £.

1. A truth value x ∈ VM is called useful in M if x ∈ VN for some proper
PNmatrix N ⊆M.

4 This property is sometimes called (semantic) analyticity. Note that in this paper the
term ‘analyticity’ refers to a proof-theoretic property (see Definition 20).
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2. The PNmatrix R[M] is the simple refinement of M, defined as follows:
VR[M] consists of all truth values in VM which are useful in M; for ev-
ery l ∈ £, DR[M](l) = DM(l) ∩ VR[M]; and for every n-ary connective # of
L and x1, . . . , xn ∈ VR[M], #R[M](x1, . . . , xn) = #M(x1, . . . , xn) ∩ VR[M].

Proposition 3. Let M be a PNmatrix for L and £, and let v be an M-legal
L-valuation. Then: (1) For every formula ψ, v(ψ) is useful inM; and (2) Every
M-legal L-valuation is also R[M]-legal.

Corollary 3. �M = �R[M] for every PNmatrix M.

Proof. One direction follows from Proposition 1, simply because R[M] is a sim-
ple refinement ofM by definition. The converse is easily established using Propo-
sition 3. We leave the details to the reader. ��

Definition 15. Let M be a PNmatrix for L and £. We say that two truth
values x1, x2 ∈ VM are separable in M for l ∈ £ if x1 ∈ DM(l)⇔ x2 �∈DM(l)
holds. M is called separable if every pair of truth values in VM are separable in
M for some l ∈ £.

We are now ready to obtain a lower bound on the number of truth values needed
to characterize �M for a given separable PNmatrix M:

Theorem 2. LetM be a separable PNmatrix for L and £. If �M=�N for some
PNmatrix N for L and £, then N contains at least |VR[M]| truth values.

Remark 3. As done for usual matrices, it is also possible to define �F , the con-
sequence relation induced by a family of proper PNmatrices to be

⋂
N∈F �N .

A PNmatrix can then be thought of as a succinct presentation of a family of
proper PNmatrices in the following sense. The consequence relation induced by
a PNmatrix M can be shown to be equivalent to the relation induced by the
family of all the proper PNmatrices N , such that N ⊆M. Conversely, for every
family of proper PNmatrices it is possible to construct an equivalent PNmatrix.

5 Finite PNmatrices for Canonical Labelled Systems

Definition 16. We say that a PNmatrix M (for L and £) is characteristic for
a canonical labelled calculus G (for L and £) if �M=�G.

Next we provide a systematic way to obtain a characteristic PNmatrixMG for
every canonical labelled calculus G. The intuitive idea is as follows: the primitive
rules of G determine the set of the truth values of MG, while the introduction
rules for the logical connectives dictate their corresponding truth tables. The
semantics based on PNmatrices is thus modular: each such rule corresponds to a
certain semantic condition, and the semantics of a system is obtained by joining
the semantic effects of each of its derivation rules.
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Definition 17. Let r = {L1, . . . , Ln}/L0 be a primitive rule for £. Define:

r∗ = {L ⊆ £ | Li ∩ L = ∅ for some 1 ≤ i ≤ n or L0 ∩ L �= ∅}

Example 9. For an axiom r = ∅/L0, we have r∗ = {L ⊆ £ | L0 ∩ L �= ∅}. For
a cut r = {L1, . . . , Ln}/∅, r∗ = {L ⊆ £ | Li ∩ L = ∅ for some 1 ≤ i ≤ n}. In
particular, continuing Examples 2 and 3 (for £ = {t, f}), r∗ = {{t}, {f}, {t, f}}
for the classical axiom, and r∗ = {∅, {t}, {f}} for the classical cut.

Definition 18. Let # be an n-ary connective, and let r = S/L0 : #(p1, . . . , pn)
be a canonical introduction rule for # and £. For every L1, . . . , Ln ⊆ £, define:

r∗[L1, . . . , Ln] =

{
{L ⊆ £ | L0 ∩ L �= ∅} ∀s ∈ S .((L1 : p1) ∪ . . . ∪ (Ln : pn)) ∩ s �= ∅
P (£) otherwise

Example 10. Let £ = {t, f}. Recall the usual introduction rules for conjunction
from Example 4. By Definition 18:

r∗1 [L1, L2] =

{
{{f}, {t, f}} f ∈ L1 ∪ L2

P ({t, f}) otherwise

r∗2 [L1, L2] =

{
{{t}, {t, f}} t ∈ L1 ∩ L2

P ({t, f}) otherwise

Definition 19 (The PNmatrix MG). Let G be a canonical labelled calculus
for L and £. The PNmatrix MG (for L and £) is defined by:

1. VMG = {L ⊆ £ | L ∈ r∗ for every r ∈ PG}.
2. For every l ∈ £, DMG(l) = {L ∈ VMG | l ∈ L}.
3. For every n-ary connective # of L and L1, . . . , Ln ∈ VMG :

#MG(L1, . . . , Ln) = {L ∈ VMG | L ∈ r∗[L1, . . . , Ln] for every r ∈ R	
G}

Example 11. Let £ = {t, f} and consider the calculus G∧ whose primitive rules
include only the classical axiom, and the classical cut (see Examples 2 and 3),
and whose only introduction rules are the two usual rules for conjunction (see
Example 4). By Example 9 and the construction above, VMG∧ = {{t}, {f}},
DMG∧ (t) = {t}, and DMG∧ (f) = {f}. Using Example 10, we obtain the follow-
ing interpretation of ∧:

∧MG∧ {t} {f}
{t} {t} {f}
{f} {f} {f}

Example 12. Let £ = {a, b, c}, and assume that L contains only a unary con-
nective �. Let us start with the calculus G0, the primitive rules of which include
the canonical axiom ∅/{a, b, c} and the canonical cuts {a}, {c}/∅ and {a}, {b}/∅,
while G0 has no introduction rules. Here we have VMG0

= {{a}, {b}, {c}, {b, c}},
DMG(a) = {{a}}, DMG(b) = {{b}, {b, c}} and DMG(c) = {{c}, {b, c}}. �MG0

is
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given in the table below (it is completely non-deterministic). One can now obtain
a calculus G1 by adding the rule {a : p1}/{b, c} : �p1. This leads to a refinement
of the truth table, described below. Finally, one can obtain the calculus G2 by
adding {b : p1}/{a} : �p1, resulting in another refinement of truth table, also
described below.

x �MG0
(x) �MG1

(x) �MG2
(x)

{a} {{a},{b},{c},{b, c}} {{b},{b, c}} {{b},{b, c}}
{b} {{a},{b},{c},{b, c}} {{a},{b},{c},{b, c}} {{a}}
{c} {{a},{b},{c},{b, c}} {{a},{b},{c},{b, c}} {{a},{b},{c},{b, c}}
{b, c} {{a},{b},{c},{b, c}} {{a},{b},{c},{b, c}} {{a}}

Theorem 3 (Soundness and completeness). For every canonical labelled
calculus G, MG is a characteristic PNmatrix for G.

Corollary 4 (Decidability). Given a canonical labelled calculus G, a finite
set S of sequents, and a sequent s, it is decidable whether S �G s or not.

Corollary 5. The question whether a given canonical labelled calculus G is con-
sistent (i.e. ��G∅) is decidable.

MG provides a semantic characterization for G, however it may not be a min-
imal one (in terms of the number of truth values). For a minimal semantic
representation, we should consider the equivalent PNmatrix R[MG]:

Corollary 6 (Minimality). For every canonical labelled calculus G, R[MG]
is a minimal (in terms of number of truth values) characteristic PNmatrix for
G.

Proof. The claim follows by Theorem 2 from the fact that MG is separable for
every system G. ��

6 Proof-Theoretic Applications

In this section we apply the semantic framework of PNmatrices to provide decid-
able semantic criteria for syntactic properties of canonical labelled calculi that
are usually hard to generally characterize by other means. We focus on the no-
tions of analyticity and cut-admissibility, extended to the context of reasoning
with assumptions.

6.1 Strong Analyticity

Strong analyticity is a crucial property of a useful (propositional) calculus, as it
implies its consistency and decidability. Intuitively, a calculus is strongly analytic
if whenever a sequent s is provable in it from a set of assumptions S, then s can
be proven using only the formulas available within S and s.
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Definition 20. A canonical labelled calculus G is strongly analytic if whenever
S �G s, there exists a derivation in G of s from S consisting solely of (sequents
consisting of) formulas from sub[S ∪ {s}].
Below we provide a decidable semantic characterization of strong analyticity of
canonical labelled calculi:

Theorem 4 (Characterization of Strong Analyticity). Let G be a canon-
ical labelled calculus for L and £. Suppose that G does not include the (trivial)
primitive rule ∅/∅. Then, G is strongly analytic iff MG is proper.

Corollary 7. The question whether a given canonical labelled calculus is strongly
analytic is decidable.

6.2 Strong Cut-Admissibility

As the property of strong analyticity is sometimes difficult to establish, it is
traditional in proof theory to investigate the property of cut-admissibility, which
means that whenever s is provable in G, it has a cut-free derivation in G. In
this paper we investigate a stronger notion of this property, defined as follows
for labelled calculi:

Definition 21. A labelled calculus G enjoys strong cut-admissibility if when-
ever S �G s, there exists a derivation in G of s from S in which only formulas
from frm[S] serve as cut-formulas.

Due to the special form of primitive and introduction rules of canonical calculi
(which, except for canonical cuts, enjoy the subformula property), the above
property guarantees strong analyticity:

Proposition 4. Let G be a canonical labelled calculus. If G enjoys strong cut-
admissibility, then G is strongly analytic.

Although for two-sided canonical sequent calculi the notions of strong analyticity
and strong cut-admissibility coincide (see [3]), this is not the case for general
labelled calculi, for which the converse of Proposition 4 does not necessarily
hold, as shown by the following example:

Example 13. Let £ = {a, b, c}, and assume that L contains only a unary connec-
tive �. LetG be the canonical labelled calculusG for L and £, the primitive rules
of which include only the canonical cuts {a}, {b}/∅, {a}, {c}/∅, and {b}, {c}/∅,
and its only introduction rules are {a : p1}/{a, b} : �p1 and {a : p1}/{b, c} : �p1.
To see that this system is strongly analytic, by Theorem 4, it suffices to con-
struct MG and check that it is proper. The construction proceeds as follows:
VMG = {∅, {a}, {b}, {c}}, DMG(l) = {l} for l ∈ {a, b, c}, and the truth table for
� is the following:

x �MG(x)
∅ {∅, {a}, {b}, {c}}
{a} {{b}}
{b} {∅, {a}, {b}, {c}}
{c} {∅, {a}, {b}, {c}}
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This is a proper PNmatrix, and so G is strongly analytic. However, it impossible
to derive the sequent {b : �p1} from the singleton set {{a : p1}} using only p1 as
a cut-formula. This is possible by applying the two introduction rules of G and
then using the cut {a}, {c}/∅ (with �p1 as the cut-formula). Thus although this
system is strongly analytic, it does not enjoy strong cut-admissibility.

The intuitive explanation is that non-eliminable applications of canonical cuts
(like the one in the above example) are not harmful for strong analyticity be-
cause they enjoy the subformula property. Thus, the equivalence between strong
analyticity and cut-admissibility can be restored if we enforce the following con-
dition:

Definition 22. A canonical labelled calculus G for L and £ is cut-saturated if
for every canonical cut {L1, . . . , Ln}/∅ of G and l ∈ £, G contains the primitive
rule {L1, . . . , Ln}/{l}.

Proposition 5. For every canonical labelled calculus G, there is an equivalent
cut-saturated canonical labelled calculus G′ (i.e. �G=�G′).

Example 14. Revisiting the system from Example 13, we observe that G is not
cut-saturated. To obtain a cut-saturated equivalent system G′, we add (among
others) the three primitive rules: r1 = {{a}, {b}}/{c}, r2 = {{a}, {c}}/{b}, and
r3 = {{b}, {c}}/{a}. Note that the addition of these rules does not affect the set
of truth values, i.e., VMG = VMG′ . However, we can now derive {b : �p1} from
{{a : p1}} without any cuts by the two introduction rules and the new rule r2.
Moreover, by Theorem 5 below, G′ does enjoy strong cut-admissibility.

We are now ready to provide a decidable semantic characterization of strong
cut-admissibility.

Theorem 5. Let G be a cut-saturated canonical labelled calculus for L and £.
Suppose that G does not include the (trivial) primitive rule ∅/∅. Then the follow-
ing statements concerning G are equivalent: (i)MG is proper, (ii) G is strongly
analytic, and (iii) G enjoys strong cut-admissibility.

7 Conclusions and Further Research

Establishing proof-theoretical properties of syntactic calculi is in many cases
a complex and error-prone task. For instance, proving that a calculus admits
cut-elimination is often carried out using heavy syntactic arguments and many
case-distinctions, leaving room for mistakes and omissions. This leads to the need
of automatizing the process of reasoning about calculi. However, a faithful for-
malization is an elusive goal, as such important properties as cut-admissibility,
analyticity and decidability, as well as the dependencies between them are little
understood for the general case. We believe that the abstract view on labelled
calculi taken in this paper is a substantial step towards finding the right level of
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abstraction for reasoning about these properties. Moreover, the simple and decid-
able semantic characterizations of these properties for canonical labelled calculi
are a key to their faithful axiomatization in this context. To provide these char-
acterizations, we have introduced PNmatrices, a generalization of Nmatrices,
in which empty entries in logical truth tables are allowed, while still preserv-
ing the effectiveness of the semantics. A characteristic PNmatrix MG has been
constructed for every canonical labelled calculus, which in turn implies its de-
cidability. If in addition MG has no empty entries (i.e, is proper) — which is
decidable, G is strongly analytic. For cut-saturated canonical calculi, the latter
is also equivalent to strong cut-admissibility.

The results of this paper extend the theory of canonical sequent calculi of
[2], as well as of the labelled calculi of [6] and signed calculi of [4], all of which
are particular instances of canonical labelled calculi defined in this paper. More-
over, the semantics obtained for these families of calculi in the above mentioned
papers, coincide with the PNmatrices semantics obtained for them here. It is
particularly interesting to note that [6] provides a list of conditions, under which
a labelled calculus has a characteristic finite-valued logic. These conditions in-
clude (i) reducibility of cuts (which can be shown to be equivalent to the criterion
of coherence of [4]), which entails that MG is proper, and (ii) eliminability of
compound axioms,5 which entails thatMG is completely deterministic (in other
words, it can be identified with an ordinary finite-valued matrix). We conclude
that, as shown in this paper, none of the conditions required in any of the men-
tioned papers [2, 6, 4] from a “well-behaved” calculus are necessary when moving
to the more general semantic framework of PNmatrices, where any canonical la-
belled calculus has an effective finite-valued semantics.

An immediate direction for further research is investigating the applications
of the theory of canonical labelled calculi developed here. One possibility is ex-
ploiting this theory for sequent calculi, whose rules are more complex than the
canonical ones, but which can be reformulated in terms of canonical labelled cal-
culi. This applies, e.g., to the large family of sequent calculi for paraconsistent
logics given in [5]. For example, consider the (two-sided) Gentzen-type system
GK of [5] over the language LC = {∧,∨,⊃, ◦,¬}, obtained from LK by discard-
ing the left rule for negation and adding the following schemas for the unary
connective ◦:

(◦ ⇒)
Γ1 ⇒ ψ,Δ1 Γ2 ⇒ ¬ψ,Δ2

Γ1, Γ2, ◦ψ ⇒ Δ1, Δ2
(⇒ ◦) Γ, ψ,¬ψ ⇒ Δ

Γ ⇒ ◦ψ,Δ

Clearly, these schemas cannot be formulated as canonical rules in the sense
of [2] (since they use ¬ψ as a principal formula). However, we can reformu-
late GK in terms of canonical labelled calculi by using the set of labels £4 =
{t+, t−, f+, f−}, where t and f denote the side on which the formula occurs,
and + and − determine whether its occurrence is positive or negative (i.e. pre-
ceded with negation). Now each (two-sided) rule of GK can be translated into

5 This property intuitively means that compound axioms can be reduced to atomic
ones. It is called ‘axiom-expansion’ in [7].
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a labelled canonical rule over £4. For instance, (◦ ⇒) and (⇒ ◦) above are
translated into {t+ : p1}, {t− : p1}/{f+} : ◦p1 and {f+ : p1, f

− : p1}/{t+} : ◦p1
respectively. Adding further rules, it can be shown that for each (non-canonical)
two-sided calculus G from [5], an equivalent labelled canonical calculus G′ can
be constructed (this automatically implies the decidability of the calculi from
[5]). Detailed analysis of such situations is left for future work. Another direc-
tion is generalizing the results of this paper to more complex classes of labelled
calculi, e.g., like those defined in [10] for inquisitive logic. Extending the results
to the first-order case is another future goal. Finally, it would be interesting to
explore the relation between the systems studied in this paper and the resolution
proof systems of [11].
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2 INRIA Saclay–Île-de-France, Orsay, F-91893

Abstract. This paper describes a novel decision procedure for
quantifier-free linear integer arithmetic. Standard techniques usually re-
lax the initial problem to the rational domain and then proceed either by
projection (e.g. Omega-Test) or by branching/cutting methods (branch-
and-bound, branch-and-cut, Gomory cuts). Our approach tries to bridge
the gap between the two techniques: it interleaves an exhaustive search
for a model with bounds inference. These bounds are computed pro-
vided an oracle capable of finding constant positive linear combinations
of affine forms. We also show how to design an efficient oracle based on
the Simplex procedure. Our algorithm is proved sound, complete, and
terminating and is implemented in the alt-ergo theorem prover. Exper-
imental results are promising and show that our approach is competitive
with state-of-the-art SMT solvers.

1 Introduction

Linear arithmetic is ubiquitous in many domains ranging from software and
hardware verification, linear programming, compiler optimization to planning
and scheduling. Decision procedures for the quantifier-free linear fragment over
integers (QF-LIA) are widely studied in Satisfiability Modulo Theories. Most of
the procedures used by state-of-the-art SMT solvers are extensions of either the
Simplex algorithm or the Fourier-Motzkin method. Both techniques first relax
the initial problem to the rational domain and then proceed by branching/cutting
methods or by projection.

Given a conjunction
∧

i

∑
j ai,j xj + bi ≤ 0 of constraints over rationals, the

Simplex algorithm [16] finds an instantiation of the variables xj satisfying these
constraints or a contradiction if they are unsatisfiable. Three well-known exten-
sions of this method to decision procedures over integers are branch-and-bound,
Gomory’s cutting-planes, and branch-and-cut [16]. Intuitively, these extensions
prune non-integer solutions from the search space until they find an integer as-
signment or a contradiction. The Simplex algorithm is exponential in the worst
case but behaves rather well in practice. On the other hand, the complexity of
� Work financially supported by the French ANR project ANR-08-005 DeCert.
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QF-LIA is NP-complete [16] and known algorithms are not as efficient in practice
as the Simplex on the rational case.

By contrast, the idea behind the Fourier-Motzkin [16] algorithm is to perform
successive variable eliminations in a breadth-first manner generating additional
constraints with fewer variables. The original system is satisfiable in the ratio-
nals if a fixpoint is reached without deriving a trivially inconsistent inequality
c ≤ 0 where c is a positive rational. In the opposite case we conclude that the
system is unsatisfiable. The Omega-Test [15] extends this algorithm to a decision
procedure over integers by performing additional projection-based checks when
the constraints are satisfiable in the rationals. These methods do not scale in
practice because they introduce a (double) exponential number of inequalities,
which saturates the memory.

In this paper, we present a novel decision procedure for conjunctions of
quantifier-free linear integer arithmetic constraints. Our approach is not an in-
stance of any of the above techniques. Roughly speaking, it interleaves an ex-
haustive search for a model with bounds inference. New bounds are computed by
solving auxiliary linear optimization problems using the Simplex algorithm. Intu-
itively, each auxiliary problem simulates a run of the Fourier-Motzkin algorithm
that would eliminate all the variables at once. In order to facilitate the reading
of this article, we summarize hereafter the main ideas of our contribution.

After recalling some useful notations and mathematical background, we char-
acterize in Section 2 when the solution set described by a conjunction of con-
straints can be effectively bounded along some direction. If there is no such
bound, we prove that the solution set contains infinitely many integer solutions.

This characterization is based on finding constant positive linear combinations
of affine forms. In Section 3, we first show that Fourier-Motzkin is a suitable
algorithm to compute such combinations. Then, we explain how to cast this
problem into a linear optimization problem, which can hence be solved by an
efficient Simplex-based algorithm.

In Section 4, we show how to build a decision procedure for QF-LIA. The
procedure uses the algorithms of Section 3 to find bounds on the solution set. If
there are none, then the procedure stops since there are infinitely many integer
solutions. Otherwise it performs a case-split analysis along the bounded direction
and calls itself recursively to solve the simpler subproblems.

We have implemented our framework in the alt-ergo theorem prover [4]. In
Section 5, we measure its performances on a subset of the QF-LIA benchmark
and compare its performances with some state-of-the-art SMT solvers. Section 6
presents future and related works.

2 Preliminary Results

2.1 Background and Notations

In all what follows, if m, n ∈ N, then [|m, n|] denotes the integer interval bounded
by m and n. We denote matrices by upper case letters like A and column vectors
by lower case letters like x. We denote At the transpose of the matrix A and
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Ax denotes the matrix product of the matrix A by the vector x. If A is a m× n
matrix, ai,j denotes the element of A at position (i, j), ai denotes the i-th row
vector of A (of size n), and Aj the j-th column vector of A (of size m). If x is a
vector, xi denotes its i-th coordinate. If x and y are n-vectors of the same ordered
vector space, x ≥ y denotes the conjunction of constraints ∀i ∈ [|1, n|], xi ≥ yi,
with similar notations for ≤ and the associated strict orders. For instance, if x
is a vector, x > 0 denotes the conjunction of constraints ∀i ∈ [|1, n|], xi > 0. We
equip Qn with the usual scalar product associated with its canonical basis. We
measure distances using the supremum norm ‖ ·‖∞. B∞(x, r) denotes the closed
ball centered in x and of radius r for that norm.

We recall that affine maps ψ : Qn → Qm are the maps of shape ψ = φ + tc,
with φ : Qn → Qm a linear map and tc the translation of direction c ∈ Qm. An
affine map ψ : Qn → Q is called an affine form on Qn. For instance, a constant
map ψc : Qn → Qm, with value c, is an affine map since it is the sum of the zero
linear map and of the translation of direction c ∈ Qm.

Definition 1 (Positive linear combination of affine forms). Let (ψi)i∈[|1,k|]
be a family of affine forms on Qn. An affine form ψ on Qn is a positive linear
combination of the (ψi)i∈[|1,k|] if there exists (λi)i∈[|1,k|] a family of nonnegative
scalars such that

ψ =
k∑

i=1

λiψi and
k∑

i=1

λi > 0

We recall the original formulation of Farkas lemma [16,9] on rationals:

Theorem 1 (Farkas’ lemma). Given a matrix A ∈ Qm×n, and c a vector in
Qn, then

∃x ∈ Qm, x ≥ 0 ∧ Ax = c ⇔ ∀y ∈ Qn, ytA ≥ 0⇒ ytc ≥ 0

In the sequel, we use the following equivalent formulation:

Theorem 2 (Theorem of alternatives). Let A be a matrix in Qm×n and b a
vector in Qm. The system Ax + b ≤ 0 has no solution if and only if there exists
λ ∈ Qm such that λ ≥ 0 and Atλ = 0 and btλ > 0.

2.2 Convex Polytopes with an Infinite Number of Integer Points

We consider a closed convex subset K ⊂ Qn defined by a linear system of
constraints:

K := {x ∈ Qn | Ax + b ≤ 0}
where A ∈ Qm×n, b ∈ Qm. By definition, K is the convex polytope of the
(rational) solutions of the linear system Ax + b ≤ 0. We want to determine
whether K∩Zn is empty or not, or in other words, whether the system Ax+b ≤ 0
has integer solutions. For i ∈ [|1, m|], we denote by Li the following affine forms:

Li : Qn −→ Q
x �−→ (Ax + b)i
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Theorem 3. If there is no constant positive linear combination of the linear
forms (Li), then for all R ∈ Q+, K contains a ball B∞(w, R) with w ∈ Qn.

Proof. Let R ∈ Q+. We define γ ∈ Qm such that for every i ∈ [|1, m|]:

γi := R‖ai‖1 = R
∑

j

|ai,j |

and we consider the convex K ′ := {x ∈ Qn | Ax + γ + b ≤ 0}. Suppose for
contradiction that K ′ is empty. Hence by Theorem 2, there exists λ ∈ Qm such
that Atλ = 0. So, λt(Ax + b) =

∑
i λiLi is constant, which contradicts the

hypothesis.
Therefore K ′ is not empty and contains a vector w such that Aw + b + γ ≤ 0.

We now prove that B∞(w, R) ⊆ K. Let u be a vector such that ‖u‖∞ ≤ R. By
triangular inequality we have

∀i ∈ [|1, . . . , m|] (Au)i ≤ |(Au)i| ≤ ‖ai‖1‖u‖∞ ≤ R‖ai‖1 = γi

hence
A(w + u) + b = Aw + b + Au ≤ Aw + b + γ ≤ 0

which proves that w + u belongs to the convex K. ��

Corollary 1. If there is no constant positive linear combination of the (Li) then
K ∩ Zn contains infinitely many points, for n > 0.

Proof. For any N ∈ N and any x ∈ Qn, the ball B∞(x, N) contains at least
(2N)n points with integer coordinates. ��

Lemma 1. If
∑

i λiLi is a positive linear combination of the (Li) equal to a
constant c, then

– if c is positive, then K should be empty;
– otherwise for every k such that λk = 0, and for any x ∈ K, Lk(x) is bounded

by c
λk
≤ Lk(x) ≤ 0

Proof. For any x ∈ K, we have λiLi(x) ≤ 0 by definition of K and non-
negativeness of λi. Hence

∑
i λiLi(x) ≤ 0, which concludes the first case.

Since
∑

i λiLi = c, then for k such that λk = 0 and for any x ∈ K, we have
c− λkLk(x) =

∑
i	=k λiLi(x) ≤ 0, which concludes the second case. ��

Note that, if the constant c is zero, then all the inequalities Lk ≤ 0 associated
to a nonzero λk are in fact equalities.

2.3 Intersection with an Affine Subspace

In addition to K, we now consider another convex K ′ ⊂ Qn defined by � equa-
tions:

K ′ := {x ∈ Qn | A′x + b′ = 0}
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where A′ ∈ Z�×n, b′ ∈ Z�, and study the intersection K ∩K ′ ∩ Zn. We prove a
sufficient condition for this intersection to contain an infinite number of points
when K ∩ Zn is known to be infinite.

Let (e1, . . . , en) be the canonical basis of Qn. We suppose that there exists
i1, . . . , ij such that K is invariant by any translation of direction eik

for k ∈
[|1, j|]. Hence if we pose E := 〈ei1 , . . . , eij 〉 the vector space generated by these
vectors, K is invariant by any translation of direction e ∈ E. We denote π : Qn →
Qn−j the orthogonal projection along E (on the orthogonal complement E⊥

of E). Note that since we consider vectors as column matrices of their coordinates
on the canonical basis, computing the projection π(x) of a vector x boils down
to annihilating the coordinates i1, . . . , ij of x.

Theorem 4. Assume that there are no constant positive linear combinations of
the (Li) and that K ′ ∩ Zn contains at least one point. Then if π(K) ⊆ π(K ′),
K ∩K ′ ∩ Zn contains infinitely many points.

See http://hal.inria.fr/hal-00687640 for the detailed proof.

3 Constant Positive Linear Combinations of Affine Forms

In this section, we are interested in computing constant positive linear combina-
tions of affine forms. More precisely, we intend to build an oracle which takes as
input a set of affine forms (Li) (or equivalently, a matrix A and a vector b) and
meets the following specifications:

1. if there is no constant positive linear combination of the (Li), it says so;
2. otherwise, it returns such a combination

∑
i λiLi.

We first present a method based on the Fourier-Motzkin procedure. Then, we
describe an efficient implementation based on the Simplex algorithm and prove
its soundness, completeness, and termination.

3.1 The Fourier-Motzkin Procedure

Let K := {x ∈ Qn | Ax + b ≤ 0} be a closed convex where A ∈ Qm×n and
b ∈ Qm, and C the set of the affine forms Li : x �→ (Ax + b)i. Fourier-Motzkin
can be seen as an algorithm that attempts to compute constant positive linear
combinations

∑
λiLi in order to decide whether K is empty or not. For that

purpose, it eliminates iteratively all the variables from the set of affine forms.
More precisely, the iteration k of the procedure consists in

1. choosing a variable xk to eliminate,
2. partitioning the current set Ck of affine forms into a set C0

xk
not containing xk

and a set C+
xk

(resp. C−
xk

) where xk has positive (resp. negative) coefficients,
3. computing the set Ck+1 of new affine forms:

Ck+1 := C0
xk
∪ Π(C+

xk
× C−

xk
)

where Π calculates a positive combination Li,j = αi,jLi + βi,jLj not con-
taining xk for each Li ∈ C+

xk
and Lj ∈ C−

xk
.

http://hal.inria.fr/hal-00687640
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Notice that if either C+
xk

or C−
xk

is empty, then Π returns an empty set. The
iterative process terminates when all the variables are eliminated and it returns
a (possibly empty) set Cf of constant affine forms. We know that K is empty if
there exists c ∈ Cf such that c > 0. Moreover, given a constant c ∈ Cf , it is easy
to retrieve a positive linear combination

∑
i λiLi = c. For that, we recursively

unfold the definitional equalities Li,j = αi,jLi + βi,jLj computed by Π .

Example 1. Consider the following set of affine forms:

C1 :
{

L1 = 2x + y, L2 = −2x + 3y − 5, L3 = x + z + 1,

L4 = x + 5y + z, L5 = −x− 4y + 3, L6 = 3x− 2y + 2

}
Eliminating z from C1 is immediate since it only appears positively:

C2 :
{

L1 = 2x + y, L2 = −2x + 3y − 5, L5 = −x− 4y + 3,

L6 = 3x− 2y + 2

}
We eliminate the variable x and compute the set C3 below using the combina-
tions: L7 = L1 + L2, L8 = L1 + 2L5, L9 = 2L6 + 3L2, L10 = L6 + 3L5

C3 :
{

L7 = 4y − 5, L8 = −7y + 6, L9 = 5y − 11,
L10 = −14y + 11

}
Finally, the variable y is in turn eliminated thanks to the following combinations:
L11 = 7L7 + 4L8, L12 = 7L7 + 2L10, L13 = 7L9 + 5L8, L14 = 14L9 + 5L10

The iterative process terminates and returns the set

C4 : {L11 = −11, L12 = −13, L13 = −47 L14 = −99 }

Moreover, unfolding the equalities introduced by Π yields⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−11 = L11 = 7L7 + 4L8 = · · · = 11L1 + 7L2 + 8L5

−13 = L12 = 7L7 + 2L10 = · · · = 7L1 + 7L2 + 6L5 + 2L6

−47 = L13 = 7L9 + 5L8 = · · · = 5L1 + 21L2 + 10L5 + 14L6

−99 = L14 = 14L9 + 5L10 = · · · = 42L2 + 15L5 + 33L6

A constant positive linear combination c =
∑

λi Li can now be used in conjunc-
tion with Lemma 1 to refine the bounds on the initial set of affine forms. Since for
any vector x ∈ K, and for any j, Lj(x) ≤ 0, we have c =

∑
λi Li(x) ≤ λjLj(x),

and we obtain a lower bound c
λj

on Lj as soon as λj = 0.

Example 2. Using the linear combination 11L1 + 7L2 + 8L5 = −11, we can
make the deductions −1 ≤ L1, − 11

7 ≤ L2 and − 11
8 ≤ L3 in the rationals.

Furthermore, these deductions are refined as follows in the integers: −1 ≤ L1,⌈
− 11

7

⌉
= −1 ≤ L2 and

⌈
− 11

8

⌉
= −1 ≤ L3.
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3.2 Computing the Linear Combinations Using a Simplex

While the Fourier-Motzkin algorithm can be used to compute all the relevant
constant positive linear combinations of affine forms, it does not scale in practice.
In the following, we describe an efficient Simplex-based alternative and show its
soundness, completeness, and termination. As opposed to the Fourier-Motzkin
algorithm, this new approach will only attempt to compute one particular con-
stant positive linear combination.

Let K := {x ∈ Qn | Ax + b ≤ 0} be a closed convex where A ∈ Qm×n and
b ∈ Qm, and C the set of the affine forms Li : x �→ (Ax + b)i of the form∑n

j=1 ai,j xj + bi. Consider the combination
∑

λi Li of the affine forms. This
sum unfolds as follows:

λ1 (
n∑

j=1

a1,j xj + b1) + · · · + λm (
n∑

j=1

am,j xj + bm)

and factorizing the xi gives:

x1 (
m∑

i=1

ai,1 λi) + · · · + xn (
m∑

i=1

ai,n λi) +
m∑

i=1

bi λi

Since we are only interested in computing constant positive linear combinations,
we require that for every k,

∑m
i=1 ai,k λi = 0, which eliminates the variable xk.

Moreover, we look for the combinations that maximize the value of
∑m

i=1 bi λi,
since this will improve efficiency, as described in Section 4.2. More precisely, we
compute such a constant positive linear combination by solving the following
problem in the rationals:

maximize
∑m

i=1 bi λi

subject to Atλ = 0 ∧
∑m

i=1 λi > 0 ∧
∧m

i=1 λi ≥ 0

This problem reminds of the dual Simplex input, but here we have equalities
Atλ = 0 instead of the usual inequalities and an extra constraint

∑
λi > 0.

In order to solve the above problem, we first introduce a slack variable s
and a positive parameter ε to transform the strict inequality

∑m
i=1 λi > 0 into∑m

i=1 λi− ε = s ∧ s ≥ 0, following Lemma 1 of [8]. Then we solve the system of
equalities in Q modulo the constraints

∧m
i=1 λi ≥ 0 ∧ s ≥ 0. This returns unsat

if this system is inconsistent in Q modulo the non-negativeness constraints, or a
matrix of the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 λ2 · · · s

λb1 �→ c1.1 c1.2 · · · c1.m+1

λb2 �→ c2.1 c2.2 · · · c2.m+1

...

λbn+1 �→ cn+1.1 cn+1.2 · · · cn+1.m+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Finally, we initialize the Simplex algorithm with this matrix and try to maximize
the objective function. The Simplex returns either unsat if the given system
has no solution, or unbound if the objective function has no upper bound, or a
maximum m and a valuation ν for the vector λ.

If the Simplex algorithm returns unsat, then the oracle answers that there
is no constant positive linear combination. If it returns unbound, the oracle just
returns a positive constant. Otherwise, the Simplex algorithm necessarily returns
a solution with a non-positive maximum for the objective function. Indeed, if the
maximum were to be positive, one could multiply coordinate-wise any solution λ
by a constant larger than 1 and obtain another solution with a larger objective
value. The oracle then returns the corresponding linear combination. Note that
as soon as the Simplex exploration discovers a positive value for the objective
function, the answer will eventually be unbound so it can exit immediately.

3.3 Soundness, Completeness, and Termination

On top of the Simplex algorithm we only add some substitutions, so the termi-
nation of this oracle follows directly from the one of the Simplex algorithm.

Let us justify that the introduction of the parameter ε does affect neither the
soundness nor the completeness of the oracle. Let us denote by P>0 the original
problem and by P≥ε the problem we actually send to the Simplex algorithm.
First, remember that for both problems, the answer is either unsat or unbound
or a solution with a non-positive evaluation of the objective function: indeed, if
ν is a solution, so is αν for any scalar α with the constraint α > 0 for P>0, and
α > 1 for P≥ε, and the value of the objective function is multiplied accordingly.
Moreover, any solution of P≥ε is obviously a solution of P>0. Let us now proceed
with the proof by case analysis.

1. If P>0 is unsat, so is P≥ε by inclusion of solutions.
2. If P≥ε is unsat, let us assume by contradiction that P>0 is not unsat, hence

has a solution ν. Then ε∑
νi

ν is a solution of P≥ε, a contradiction.
3. If P≥ε is unbound, so is P>0 by inclusion of solutions.
4. If P>0 is unbound, we show that P≥ε is also unbound. Let M be an arbitrary

large value. By hypothesis on P>0, there is a solution ν of P>0 with an
evaluation of the objective function greater than M . Then, if

∑
νi ≥ ε, ν is

a solution of P≥ε with an evaluation of the objective function greater than M .
Otherwise, ε∑

νi
ν is a solution of P≥ε, with an evaluation of the objective

function greater than ε∑
νi

M , hence greater that M since ε >
∑

νi.
5. If P>0 (resp. P≥ε) has a solution with a non-positive evaluation of the ob-

jective function, so has P≥ε (resp. P>0), since the other cases are impossible,
as shown above.

4 The Decision Procedure

Let us now build a decision procedure for QF-LIA based upon an oracle that
follows the interface described at the beginning of Section 3 and the theorems
presented in Section 2.
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4.1 The Algorithm

Let A ∈ Qm×n and b ∈ Qm. The procedure shall decide whether the system
Ax + b ≤ 0 has a solution x ∈ Zn. Let L = (Li)i∈[|1,m|] be the associated family
of affine forms. Figure 1 sketches the algorithm. It takes as input both the system
L of inequalities and an additional argument Eq representing affine relations
between variables, e.g. a set of equalities, or a substitution, or an echelon matrix,
etc. This last argument is initially empty. The result of the decision procedure is
stored in the sols variable. It is a finite set of integer solutions, possibly empty,
or an indeterminate infinite set of integer solutions.

1 global sols ← ∅
2 procedure lia(L = (Li),Eq)
3 remove trivial inequalities c ≤ 0 with c constant from L
4 if some c was positive then return
5 if L = ∅ then
6 sols ← sols ∪ check 1(Eq)
7 return
8 call oracle(L)
9 if there is no constant positive linear combination then

10 sols ← sols ∪ check∞(Eq)
11 return
12 let

∑
λiLi = c the constant positive linear combination found by the oracle

13 if c > 0 then return
14 choose k such that λk �= 0, and μ > 0 such that μLk has integer coefficients only
15 for all v from �μ c

λk
� to 0 do

16 create a substitution σ from μLk(x1, . . . , xn) = v
17 if there is no possible substitution then continue to next iteration
18 remove Lk from L
19 apply σ to L
20 call lia(L,Eq ∪ {σ})
21 return

Fig. 1. Algorithm for the decision procedure

The check functions at lines 6 and 10 compute the integer solutions of a
system of equations, but the special shape of the systems they deal with allows
important optimizations that will be detailed below.

The algorithm is recursive. Recursive calls are performed on smaller and
smaller systems L until complete resolution. Branching is caused by the loop on
line 15. The results are merged along the various branches at lines 6 and 10. One
can also consider that there are implicit statements sols ← sols ∪∅ at lines 4, 13,
and 17. Notice that the algorithm performs computations only when going from
the root to the leaves of the call tree. For the sake of clarity, we have described
a simple version of the algorithm. An actual implementation would likely be more
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complicated. For instance, it would exit as soon as a branch finds an infinity
of solutions or even a single solution if one is interested only in satisfiability. It
could also use splitting on demand [3] at line 15.

From lines 3 to 7, the algorithm deals with degenerate systems that contain
no inequalities or only trivial inequalities. It then calls the oracle on L. If it
answers that no suitable combination of the affine forms exists, Corollary 1
can be applied. There are infinitely many solutions with integer coordinates,
assuming Eq imposes no restriction (hence the call to check∞). The decision
procedure is done in this branch.

Otherwise, the oracle returns a constant positive linear combination
∑

i λiLi

equal to c. In that case, Lemma 1 can be applied. If c is positive, the procedure
is done too: the system has no solution.

Otherwise, we have c
λk
≤ Lk ≤ 0 for all k such that λk = 0. The decision

procedure chooses a value for k. Since the coefficients of μLk are in Z, for any
point x ∈ K ∩ Zn, μLk(x) is an integer between μ c

λk
and 0. For each integer

v ∈ [μ c
λk

, 0], the decision procedure considers the equality μLk = v from which
it infers a substitution if possible, applies the result to all the other affine forms
(Li)i	=k and removes Lk from the system while updating Eq with the substitu-
tion. The decision procedure is then called recursively. If no solution is found
after a complete exploration of all the possible integer values in [μ c

λk
, 0], then

the procedure returns at line 21 without updating sols . This is what happens if
L has rational solutions but no integer solutions.

Note that, if the constant c is zero, then several equalities might appear at
once. An optimized procedure should therefore compute a substitution taking
all of them into account, rather than one after the other, as is done in Figure 1.

We now give more details on the computations performed at the leaves of the
call tree by the check functions. The choice of these functions depends on the
substitution scheme at line 16. We describe here two possible scenarios.

Integer Substitution with Slack Variables. Let us first consider the case where
the substitution introduces slack variables. The variables x1, . . . , xn of Lk are
expressed as affine combinations of new variables xn+1, . . . , xn+�, such that the
integer solutions of Lk(x1, . . . , xn) = v are completely parameterized by these
new variables. Removing Lk from L and applying the substitution produces a
system equisatisfiable to L and solutions to the original system can be trivially
computed thanks to Eq.

A way to obtain the substitution is the Generalized GCD test [2] with the
approach given by Pugh in the Omega-Test [15]. Note that the substitution may
have only one solution, e.g. 2x = 6. The substitution may also not exist, e.g.
5x = 2, in which case, the exit case described line 17 applies.

In that case, functions check are implemented as follows. For check1, the so-
lutions are constrained purely by Eq . More precisely, the set of integer solutions
is parameterized by the set of variables that are never the target of substitution
in Eq . Moreover, the Eq system has been built only from adding successively (cf.
line 20) new substitutions not featuring the variables previously substituted (cf.
line 19), so it is never inconsistent. Therefore, only two situations are possible
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when Eq is passed to check1: either Eq involves all the variables of the system, in
which case there is exactly one solution, or it does not (some variables have not
been substituted) and there are infinitely many integer solutions. In this imple-
mentation Eq is always a system with integer coefficients, and function check∞
is trivial for integer substitutions. Indeed, it just returns an indeterminate infi-
nite set, whatever the value of Eq, since some variables have to be unsubstituted
at that point.

In some context, e.g. an SMT solver, one might need more information than
what this indeterminate set seems to carry. If one needs some explicit witnesses,
the proof of Theorem 3 explains how to effectively compute them from L. Wit-
nesses for the original system can then be deduced from Eq. If one needs to know
which equalities are implied by the system, then Eq describes them entirely. In-
deed, the decision procedure will not exit at line 11 if some constant positive
linear combination still exists in L.

Gaussian Elimination. Let us now consider the case of a substitution performed
by a simple Gaussian elimination on rational numbers; it does not introduce any
slack variables but the coefficients involved in the substitutions are rationals,
possibly non integers. Function check1 now has to test whether the set of equal-
ities Eq admits some solution and to return them. In this scenario, there can be
either zero solution, or one, or an infinite number of them. The implementation
of function check∞ can in that case take benefit of Theorem 4. The hypotheses
of the theorem are actually verified thanks to the Gaussian elimination, and the
vector space E of Theorem 4 is generated by the vectors of the canonical basis
associated with the variables already substituted. Since these variables have been
eliminated from L, the set of solutions of L is obviously invariant by translation
along these coordinates. By construction of Eq the hypothesis of inclusion of the
respective projections also holds. Therefore if the system of equalities Eq admits
at least one integer solution, then there are an infinite number of solutions for
the problem considered in the current branch. Otherwise there is no solution for
this branch.

Note that, whichever of these substitution schemes is used, the solver for linear
integer arithmetic embedded in the check functions has to deal with equations
only and is therefore simple.

Producing Explanations. An important feature when developing a decision pro-
cedure for SMT is to provide the most precise explanations that improve the
backtrack level when branching. In our setting, the explaination of each incon-
sistency or lower bound c

λk
inferred by the oracle is the explanations of the

inequalities Li ≤ 0 such that λi = 0. The explanations of the inequalities that
have not participated in the inference process are thus discarded.

4.2 Soundness, Completeness, and Termination

Termination is obvious, assuming the oracle is itself terminating. Indeed, at each
recursive call, one affine form at least is removed from the system. Note that it
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has to be effectively removed from the system; otherwise the oracle may just
return the linear combination that bounds this form again, hence causing the
procedure to enter an infinite recursion.

Soundness depends on the completeness of the oracle: if the oracle does not
find any constant positive linear combination, there should be none. Theorems
of Section 2.2 then cover all the possible cases. Completeness of the decision
procedure comes from termination and soundness.

While the oracle can return any constant positive linear combination, for
efficiency reasons, it should strive to find a positive constant if possible, and zero
if not. Indeed, this ensures that the algorithm will not branch too early.

5 Experimental Results

We implemented the decision procedure with the Simplex-based oracle in a mod-
ified version1 of alt-ergo [4]. Equalities are handled using a rewriting system
that relies on substitutions with integer slack variables [14]. Inequalities are
added to a dictionary associating affine forms with integer interval domains. The
case-split analysis is implemented as a recursive function with non-chronological
backtracking and uses a heuristic that privileges affine forms with smaller inter-
vals. In the current implementation, we do not use a traditional Simplex to cut
down the search space.

In this section, we benchmark our implementation and compare its perfor-
mances with some leading state-of-the-art SMT solvers including mathsat5
v5.1.3 [11], z3 v3.2 [5] and yices2 v2.0-prototype [6]. We could not include
the mistral solver of [7] because it was not possible to obtain it. The test suite
contains 1070 instances taken from the QF-LIA category of SMT-LIB2. This
includes the following families:

– cav-2009: randomly-generated instances used in [7]. Most of them are sat-
isfiable. They are reported very hard for modern SMT solvers,

– slacks: reformulation of cav-2009 instances used in [12] that introduces
slack variables to bound all variables,

– cut-lemmas: crafted instances encoding the validity of cutting planes in Z,
– prime-cone: crafted instances used in [12] that encode a tight n-dimensional

cone around the point whose coordinates are the first n prime numbers.
– pidgeons (sic): crafted instances encoding the pigeonhole principle. They

are reported hard for any solver not using cutting planes [12],
– pb2010: industrial instances coming from the PB competition (2010),
– miplib2003: instances generated from some optimization problems in [1].

We have selected these families because they are known to be well-suited for
stressing the integer-reasoning part of solvers. Moreover, contrarily to some other
families, they do not require solvers to be especially efficient for other tasks:

1 A prototype is available at http://alt-ergo.lri.fr/ijcar2012/
2 The SMT-LIB library: http://www.smtlib.org

http://alt-ergo.lri.fr/ijcar2012/
http://www.smtlib.org
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preprocessing, if-then-else handling, SAT solving, theory propagation. In fact, a
large part of the QF-LIA benchmark, e.g. nec-smt, does not even require fast
LIA solvers [7].

All measures were obtained on a 64-bit machine with a quad-core Intel Xeon
processor at 3.2 GHz and 24 GB of memory. Provers were given a time limit
of 600 seconds and a memory limit of 2 GB for each test. The results of our
experiments are reported in Figure 2. The first two columns show the families
we considered and the number of their instances. For each prover, we report both
the number of solved instances within the required time for every family and the
time needed for solving them (not counting timeouts). The last rows summarize
the total number of solved instances and the accumulated time for each prover.

smt solvers alt-ergo mathsat5 mathsat5+cfp yices 2 z3

families #inst. solved time solved time solved time solved time solved time

cav-2009 591 590 253 588 4857 589 4544 386 11664 590 5195

slacks 233 233 67 166 3551 155 6545 142 6102 187 9897

cut-lemmas 93 93 216 62 3424 59 2775 92 1892 67 3247

prime-cone 37 37 0.4 37 1 37 2.2 37 2.3 37 14

pidgeons 19 19 2 19 0.16 19 0.16 19 0.01 19 0.28

pb2010 81 23 390 38 743 34 1540 25 8.3 64 1831

miplib2003 16 2 34.7 12 432 12 501 11 145.4 12 241

total 1070 997 963.1 922 13008 905 15907 712 19814 976 20425

total qf-lia3 5882 4410 68003 5597 47635 5524 50481 3220 71324 5597 54503

Fig. 2. Experimental results. Underlined values are for tools that have proved the most
instances. Bolded results are for tools that have proved both the most instances and
the fastest.

Although the first two families were reported very hard for modern SMT
solvers, our approach only requires 320 seconds to solve almost all the instances.
Thus, it significantly outperforms the other solvers’ approaches. This observation
also applies for the third and the fourth families. From the results of the sixth
and the seventh families, we notice that our technique does not perform well on
large difference-logic-like problems compared to mathsat5 and z3’s. We think
this is partly due to our naive implementation of the Simplex algorithm which
computes on dense matrices while sparse matrices would be better suited for
these problems. We plan to implement advanced techniques in the very near
future such as the revised Simplex method [16] to overcome this issue.

The last row of Table 2 shows the results for the whole QF-LIA benchmark.
There are two reasons for the poor results. First, alt-ergo has yet to be tuned
for parts other than the LIA solver. Second, some families, e.g. bofill, contain

3 The time limit is 180 seconds for the tests of the complete benchmark.
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large intervals that need splitting, and the decision procedure does not deal
efficiently with them. This will possibly require a combination of our approach
with other established techniques for integers.

6 Conclusion and Future Works

We have presented a new decision procedure for quantifier-free linear integer
arithmetic that combines a model search mechanism with bounds inference.
These bounds are discovered thanks to a Simplex-based oracle that computes
constant positive linear combinations of affine forms. We proved the soundness,
the completeness and the termination of our method and implemented it in the
alt-ergo SMT solver.

Designing efficient decision procedures for QF-LIA has been an active research
topic in the SMT community over the last decade. An efficient integration of
the Simplex algorithm in the DPLL(T ) framework has been proposed in [8].
This integration rests on a preprocessing step that enables fast backtracking and
efficient theory propagation. The contribution of [7] is seen as a generalization
of branch-and-bound. Using the notion of the defining constraints of a vertex,
it derives additional inequalities that prune higher dimensional subspaces not
containing integer solutions. In our setting, the Simplex algorithm is instead
used on auxiliary problems to refine the search space by bounds inference.

The approach described in [10] focuses on combining several existing tech-
niques using heuristics and layering to take advantage of each of them. We
believe that the ideas we described in this paper can naturally be used to en-
hance this combination approach. Yet another different contribution described
in [12] consists in extending the inference rules of the cdcl procedure with lin-
ear arithmetic reasoning. This tight integration naturally takes advantage of the
good cdcl properties: model search, dynamic variable reordering, propagation,
conflicts explanation, and backjumping. The extension of our framework with an
efficient conflict learning mechanism as done in [12] or in [13] for the rationals
would greatly improve our decision procedure.

As reflected by our contribution, the Simplex we use does not directly work on
the initial problem nor on its dual. Therefore, fast incrementality and backtrack-
ing techniques developed for Simplex-based approaches are not suitable for our
setting. To alleviate this issue, we have used memoization techniques to reuse
previously computed results at the expense of a larger memory footprint. In the
near future, we plan to better integrate with DPLL(T ) by extending our method
with a conflict resolution technique, a cleverer case-split analysis, and an effi-
cient theory propagation. We also believe that a combination, à la mathsat,
of state-of-the-art techniques with ours would be beneficial. Furthermore, the
use of advanced data-structures and algorithms such as sparse matrices and the
revised Simplex would greatly enhance our implementation.
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Abstract. Fuzzy Description Logics (DLs) with t-norm semantics have
been studied as a means for representing and reasoning with vague knowl-
edge. Recent work has shown that even fairly inexpressive fuzzy DLs be-
come undecidable for a wide variety of t-norms. We complement those
results by providing a class of t-norms and an expressive fuzzy DL for
which ontology consistency is linearly reducible to crisp reasoning, and
thus has its same complexity. Surprisingly, in these same logics crisp
models are insufficient for deciding fuzzy subsumption.

1 Introduction

Description logics (DLs) [1] are a family of logic-based knowledge representation
formalisms, which can be used to represent the knowledge of an application
domain in a formal way. In particular, they have been successfully used for the
representation of medical knowledge in large-scale ontologies like Snomed CT1

and Galen.2 However, in their standard form DLs are not suited for dealing
with imprecise or vague knowledge. For example, in the medical domain a high
body temperature is often a symptom for a disease. When trying to represent
this knowledge, it is not possible to give a precise characterization of the concept
HighTemperature: one cannot define a point where a temperature becomes high.
However, 37◦C should belong “less” to this concept than, say 39◦C.

Fuzzy variants of description logics have been proposed as a formalism for
modeling this kind of imprecise knowledge, by providing a degree of membership
of individuals to concepts—typically a number from the interval [0, 1]. One could
thus express that 36◦C and 39◦C belong to HighTemperature with degrees 0.7
and 0.9, respectively. A more thorough description of the use of fuzzy semantics
in medical applications can be found in [20].

A great variety of fuzzy DLs can be found in the literature (for two rele-
vant surveys see [18,12]). In fact, fuzzy DLs have several degrees of freedom for
defining their expressiveness. In addition to the choice of concept constructors
(e.g. conjunction � or existential restriction ∃), and the type of axioms allowed
(like acyclic concept definitions or general concept inclusions), which define the

� Partially supported by the DFG under grant BA 1122/17-1 and in the Collaborative
Research Center 912 “Highly Adaptive Energy-Efficient Computing”.

1 http://www.ihtsdo.org/snomed-ct/
2 http://www.opengalen.org/

B. Gramlich, D. Miller, and U. Sattler (Eds.): IJCAR 2012, LNAI 7364, pp. 82–96, 2012.
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underlying logical language, one must also decide how to interpret the different
constructors, through a choice of functions over the domain of fuzzy values [0, 1].
As in mathematical fuzzy logic [13], these functions are typically determined by
a continuous t-norm that interprets conjunction.

Research in fuzzy DLs has focused on three specific t-norms, namely the
Gödel, Łukasiewicz, and product t-norms. However, there are uncountably many
continuous t-norms, each with different properties. For example, under the prod-
uct t-norm semantics, existential restrictions (∃) and value restrictions (∀) are
not interdefinable, while under the Łukasiewicz t-norm they are. Even after fixing
the t-norm, one can still choose whether to interpret negation by the involutive
negation operator, or using the residual negation, which need not be involutive.
An additional level of liberty comes from selecting the class of models over which
reasoning is considered: either all models, or so-called witnessed models only [14].

The majority of the reasoning algorithms available have been developed for
the Gödel semantics, either by a reduction to crisp reasoning [6], or by a simple
adaptation of the known algorithms for crisp DLs [23,24,25,27]. However, meth-
ods capable of dealing with other t-norms have also been explored [7,8,9,26,22].
Usually, these algorithms reason w.r.t. witnessed models.3

Very recently, it was shown that the tableaux-based algorithms for logics
with semantics based on t-norms other than the Gödel t-norm and allowing
general concept inclusions were incorrect [2,5]. This raised doubts about the
decidability of the reasoning problems in these logics, and eventually led to a
plethora of undecidability results for fuzzy DLs [2,3,4,11]. These undecidability
results were then extended to a wide variety of fuzzy DLs in [10]. In fact, it has
been shown that for a large class of t-norms ontology consistency easily becomes
undecidable. More precisely, for every t-norm that “starts” with the Łukasiewicz
t-norm, consistency of crisp ontologies is undecidable for any fuzzy DL that can
express conjunction, existential restrictions and the residual negation.

In this paper we counterbalance these undecidability results by considering
continuous t-norms not starting with the Łukasiewicz t-norm—in particular, the
Gödel and product t-norms are of this kind. We show that consistency of fuzzy
ontologies is again decidable, even for the very expressive DL SHOI, which al-
lows for nominals and transitive and inverse roles, if negation is interpreted using
residual negation. Moreover, for any of these t-norms, an ontology is consistent
w.r.t. fuzzy semantics iff it is consistent w.r.t. to crisp semantics. Thus, ontology
consistency in fuzzy SHOI is ExpTime-complete for every t-norm not starting
with the Łukasiewicz t-norm; for all other t-norms, or if the involutive negation
is used, this problem is undecidable [10].

To some extent, the fact that fuzzy ontology consistency can be reduced to
crisp reasoning is not very surprising, since fuzzy logics are not, nor should they
be considered to be, a formalism for dealing with inconsistencies. Yet, it shines a
negative light on the capacity of fuzzy DLs for dealing with imprecise knowledge:
the decidable fuzzy DLs considered in this paper are not fuzzy, but mere syntactic
extensions of classical DLs. However, there are other DL reasoning problems for

3 In fact, witnessed models were introduced in [14] to correct the algorithm from [27].
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which this is not true: we show that crisp reasoning is insufficient for deciding
subsumption or instance checking. Thus, even for the logics considered in this
paper, where satisfiability is “crisp”, reasoning in general is fuzzy.

In the next section, we introduce some basic notions from t-norms and fuzzy
description logics. Section 3 shows some properties of t-norms that do not start
with the Łukasiewicz t-norm. In Sections 4 and 5 we prove that consistency and
satisfiability w.r.t. these t-norms are essentially crisp reasoning problems. In the
end we provide an example that shows that crisp reasoning is insufficient for de-
ciding subsumption or instance checking. Specifically, we provide a subsumption
relation that holds in every crisp and finite model, but does not hold in general.

2 Preliminaries

We first recall the basic notions of t-norms and mathematical fuzzy logic [17,13],
which we then use to define the semantics of fuzzy DLs.

2.1 Mathematical Fuzzy Logic

Mathematical fuzzy logic generalizes classical logic by replacing true and false by
a larger set of truth values. Here, we use the real interval [0, 1] as truth values and
generalize propositional conjunction ∧ by a t-norm: an associative, commutative,
and monotone binary operator on [0, 1] that has 1 as its unit element. Classical
implication is then generalized by the residuum ⇒ of the t-norm, if it exists.
The residuum is a binary operator on [0, 1] that satisfies x⊗ y ≤ z iff y ≤ x⇒ z
for all x, y, z ∈ [0, 1]. A consequence of this definition is that, for all x, y ∈ [0, 1],
– 1 ⇒ x = x and
– x ≤ y iff x⇒ y = 1.

A t-norm is called continuous if it is continuous as a function from [0, 1]2 to
[0, 1]. In this paper, we consider only continuous t-norms and often call them
simply t-norms. Any continuous t-norm ⊗ has a unique residuum ⇒ given by
x ⇒ y = sup{z ∈ [0, 1] | x ⊗ z ≤ y}. Based on the residuum, one can define a
unary residual negation by �x = x ⇒ 0. To generalize disjunction, the t-conorm
⊕ defined as x ⊕ y = 1 − ((1 − x) ⊗ (1 − y)) can be used. Notice that 0 is the
unit of the t-conorm, and hence

x⊕ y = 0 iff x = 0 and y = 0. (1)

Three important continuous t-norms, together with their t-conorms and residua,
are depicted in Table 1. These are fundamental in the sense that every continuous
t-norm can be constructed from these three as follows.

Definition 1 (ordinal sum). Let I be a set and for each i ∈ I let ⊗i be a
continuous t-norm and ai, bi ∈ [0, 1] such that ai < bi and the intervals (ai, bi)
are pairwise disjoint. The ordinal sum of the t-norms ⊗i is the t-norm ⊗ with

x⊗ y =

{
ai + (bi − ai)

(
x−ai

bi−ai
⊗i

y−ai

bi−ai

)
if x, y ∈ [ai, bi] for some i ∈ I,

min{x, y} otherwise.
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Table 1. The three fundamental continuous t-norms

Name t-norm (x ⊗ y) t-conorm (x ⊕ y) residuum (x ⇒ y)

Gödel min{x, y} max{x, y}
{

1 if x ≤ y

y otherwise

product x · y x + y − x · y
{

1 if x ≤ y

y/x otherwise
Łukasiewicz max{x + y − 1, 0} min{x + y, 1} min{1 − x + y, 1}

The ordinal sum of a class of continuous t-norms is itself a continuous t-norm,
and its residuum is given by

x ⇒ y =

⎧⎪⎪⎨⎪⎪⎩
1 if x ≤ y,

ai + (bi − ai)
(

x−ai

bi−ai
⇒i

y−ai

bi−ai

)
if ai ≤ y < x ≤ bi for some i ∈ I,

y otherwise,

where ⇒i is the residuum of ⊗i, for each i ∈ I. Intuitively, this means that
the t-norm ⊗ and its residuum “behave like” ⊗i and its residuum in each of the
intervals [ai, bi], and like the Gödel t-norm and residuum everywhere else.

Theorem 2 ([21]). Every continuous t-norm is isomorphic to the ordinal sum
of copies of the Łukasiewicz and product t-norms.

Motivated by this representation as an ordinal sum, we say that a continuous t-
norm ⊗ starts with the Łukasiewicz t-norm if in its representation as ordinal sum
there is an i ∈ I such that ai = 0 and ⊗i is isomorphic to the Łukasiewicz t-norm.

An element x ∈ (0, 1) is called a zero divisor for ⊗ if there is a z ∈ (0, 1)
such that x ⊗ z = 0. Of the three fundamental continuous t-norms, only the
Łukasiewicz t-norm has zero divisors. In fact, every element in the interval (0, 1)
is a zero divisor for this t-norm. A continuous t-norm can only have zero divisors
if it starts with the Łukasiewicz t-norm.

Lemma 3 ([17]). A continuous t-norm has zero divisors iff it starts with the
Łukasiewicz t-norm.

2.2 The Fuzzy Description Logic ⊗-SHOI
A fuzzy description logic usually inherits its syntax from the underlying crisp
description logic. In this paper, we consider the constructors of SHOI with the
addition of →, which in the crisp case can be expressed by � and ¬.

Definition 4 (syntax). Let NC, NR, and NI, be disjoint sets of concept, role,
and individual names, respectively, and N+

R ⊆ NR be a set of transitive role
names. The set of (complex) roles is NR ∪ {r− | r ∈ NR}. The set of (complex)
concepts is defined by the following syntax rule:

C ::= A | � | ⊥ | {a} | ¬C | C � C | C � C | C → C | ∃s.C | ∀s.C,

where A is a concept name, a is an individual name, and s is a complex role.
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The inverse of a complex role s (denoted by s) is s− if s ∈ NR and r if s = r−.
A role s is transitive if either s or s belongs to N+

R .
Let now ⊗ be a continuous t-norm. As a generalization of SHOI , where con-

cepts are interpreted by subsets of a domain, in the fuzzy DL ⊗-SHOI they are
interpreted by fuzzy sets, which are functions specifying the membership degree
of each domain element to the concept. The interpretation of the constructors
is based on the t-norm ⊗ and the induced operators ⊕, ⇒, and �.

Definition 5 (semantics). An interpretation is a pair I = (ΔI , ·I), where the
domain ΔI is a non-empty set and ·I is a function that assigns to every concept
name A a function AI : ΔI → [0, 1], to every individual name a an element
aI ∈ ΔI, and to every role name r a function rI : ΔI ×ΔI → [0, 1] such that
rI(x, y) ⊗ rI(y, z) ≤ rI(x, z) holds for all x, y, z ∈ ΔI if r ∈ N+

R . The function
·I is extended to complex roles and concepts as follows for every x, y ∈ ΔI ,

– (r−)I(x, y) = rI(y, x),
– �I(x) = 1, ⊥I(x) = 0,
– {a}I(x) = 1 if aI = x and 0 otherwise,
– (¬C)I(x) = �CI(x),
– (C1 � C2)I(x) = CI

1 (x)⊗ CI
2 (x),

– (C1 � C2)I(x) = CI
1 (x)⊕ CI

2 (x),
– (C1 → C2)I(x) = CI

1 (x) ⇒ CI
2 (x),

– (∃s.C)I(x) = supz∈ΔI sI(x, z)⊗ CI(z), and
– (∀s.C)I(x) = infz∈ΔI sI(x, z)⇒ CI(z).

An interpretation I is called finite if its domain ΔI is finite, and crisp if
AI(x), rI(x, y) ∈ {0, 1} for all A ∈ NC, r ∈ NR, and x, y ∈ ΔI .

Knowledge is encoded using DL axioms, which restrict the class of interpretations
that are considered. The fuzzy DL ⊗-SHOI extends the axioms of SHOI by
specifying a degree to which the restrictions should hold.

Definition 6 (axioms). An axiom is either an assertion of the form 〈a :C, �〉
or 〈(a, b):s, �〉, a general concept inclusion (GCI) of the form 〈C � D, �〉, or a
role inclusion of the form 〈s � t, �〉, where C and D are concepts, a, b ∈ NI, s, t
are complex roles, and � ∈ (0, 1]. An axiom is called crisp if � = 1.

An interpretation I satisfies an assertion 〈a :C, �〉 if CI(aI) ≥ � and an
assertion 〈(a, b):s, �〉 if sI(aI , bI) ≥ �. It satisfies the GCI 〈C � D, �〉 if
CI(x) ⇒ DI(x) ≥ � holds for all x ∈ ΔI . It satisfies a role inclusion 〈s � t, �〉
if sI(x, y) ⇒ tI(x, y) ≥ � holds for all x, y ∈ ΔI.

An ontology (A, T ,R) consists of a finite set A of assertions (ABox), a finite
set T of GCIs (TBox), and a finite set R of role inclusions (RBox). It is crisp
if every axiom in A, T , and R is crisp. An interpretation I is a model of this
ontology if it satisfies all its axioms.

The combination of axioms in an ontology may entail some knowledge of the
domain that is not explicitly represented. Reasoning can then be used to make
this knowledge explicit. We consider the standard reasoning problems of crisp
SHOI, extended with a degree to which they hold.
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Definition 7 (reasoning problems). Let O be an ontology, C, D be concepts,
a an individual, and � ∈ [0, 1]. O is called consistent if it has a model.

C is �-satisfiable w.r.t. O if there is a model I of O and x ∈ ΔI such that
CI(x) ≥ �. C is �-subsumed by D w.r.t. O with � ∈ [0, 1] if every model of O
satisfies the GCI 〈C � D, �〉. The individual a is an �-instance of C w.r.t. O if
every model of O satisfies the assertion 〈a :C, �〉.

The best satisfiability (subsumption, instance) degree of C (C and D, a and
C) w.r.t. O is the supremum of all � ∈ [0, 1] such that C is �-satisfiable (C is
�-subsumed by D, a is an �-instance of C) w.r.t. O.

Recall that the semantics of the quantifiers require the computation of a supre-
mum or infimum of the membership degrees of a possibly infinite set of elements
of the domain. As is standard in the fuzzy DL community, we restrict reasoning
to a special kind of models, called witnessed models [14]. For example, consider
the axiom 〈� � ∃r.�, 1〉. There are models where an individual has infinitely
many r-successors with role degree smaller than 1, as long as the supremum of
the role degrees is 1. Witnessed models prevent these situations and ensure that
there actually exists an r-successor with degree 1.

Definition 8 (witnessed). An interpretation I is called witnessed if for every
x ∈ ΔI, every role s and every concept C there are y1, y2 ∈ ΔI such that

(∃s.C)I(x) = sI(x, y1)⊗ CI(y1), (∀s.C)I(x) = sI(x, y2)⇒ CI(y2).

We will show that, if the t-norm ⊗ has no zero divisors, then consistency w.r.t.
witnessed models in ⊗-SHOI is effectively the same problem as consistency
in crisp SHOI. Moreover, the precise values appearing in the axioms in the
ontology are then irrelevant. The same is not true, however, for subsumption
or instance checking. To obtain these results, we exploit some properties those
t-norms.

3 Properties of T-Norms without Zero Divisors

By Lemma 3, continuous t-norms without zero divisors are exactly those that
do not start with the Łukasiewicz t-norm. In particular, this includes the two
other basic continuous t-norms, the Gödel and product t-norms.

Proposition 9. For any t-norm ⊗ without zero divisors and every x ∈ [0, 1],

1. x ⇒ y = 0 iff x > 0 and y = 0, and
2. �x = 0 iff x > 0.

Proof. We prove the if -direction of the first claim. Assume x > 0 and y = 0.
Then x ⇒ y = x ⇒ 0 = sup{z | z ⊗ x = 0}. Since ⊗ has no zero divisors,
z⊗x > 0 for all z > 0. Therefore {z | z⊗x = 0} = {0} and thus x ⇒ y = 0. The
only if -direction holds for all t-norms [17]. The second statement follows from
the first one since �x = x ⇒ 0. ��
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The main result of this paper is based on the function � that maps fuzzy truth
values to crisp truth values by defining, for all x ∈ [0, 1],

�(x) =

{
1 if x > 0
0 if x = 0.

For a t-norm without zero divisors it follows from Proposition 9 that �(x) = ��x
for all x ∈ [0, 1]. This function is compatible with negation, the t-norm, the
corresponding t-conorm, implication and suprema. It is also compatible with
minima, provided that they exist.
Lemma 10. Let ⊗ be a t-norm without zero divisors. For all x, y ∈ [0, 1] and
all non-empty sets X ⊆ [0, 1] it holds that
1. �(�x) = ��(x),
2. �(x⊗ y) = �(x) ⊗ �(y),
3. �(x⊕ y) = �(x) ⊕ �(y),
4. �(x ⇒ y) = �(x) ⇒ �(y),
5. � (sup{x | x ∈ X}) = sup{�(x) | x ∈ X}, and
6. if min{x | x ∈ X} exists then � (min{x | x ∈ X}) = min{�(x) | x ∈ X}.

Proof. It holds that �(�x) = � � �x = ��(x) which proves 1. Since ⊗ does
not have zero divisors it holds that x ⊗ y = 0 iff x = 0 or y = 0. This yields
�(x ⊗ y) = 0 iff �(x) = 0 or �(y) = 0. Because there are no zero divisors, this
shows that

�(x⊗ y) = 0 iff �(x) ⊗ �(y) = 0. (2)
Both �(x ⊗ y) and �(x) ⊗ �(y) can only have the values 0 or 1. Hence, (2) is
sufficient to prove the second statement. Following similar arguments we obtain
from (1) that �(x⊕ y) = 0 holds iff �(x)⊕ �(y) = 0. This suffices to prove 3. We
use Proposition 9 to prove 4:

�(x ⇒ y) =

{
1 iff x = 0 or y > 0
0 iff x > 0 and y = 0

=

{
1 iff �(x) = 0 or �(y) = 1
0 iff �(x) = 1 and �(y) = 0

= �(x) ⇒ �(y).

To prove 5, observe that sup X = 0 iff X = {0}, which yields

�
(
sup X

)
= 0⇔ sup X = 0 ⇔ X = {0}

⇔ {�(x) | x ∈ X} = {0} ⇔ sup{�(x) | x ∈ X} = 0.

Assume now that min X = xmin exists. Then we have

�(min X) = 0⇔ xmin = 0⇔ 0 ∈ {�(x) | x ∈ X} ⇔ min{�(x) | x ∈ X} = 0.

This shows that �(minX) = 0 iff min{�(x) | x ∈ X} = 0, which proves 6. ��
Notice that in general � is not compatible with the infimum. Consider for ex-
ample the set X = { 1

n | n ∈ �}. Then inf X = 0 and hence �(inf X) = 0, but
inf{�( 1

n ) | n ∈ �} = inf{1} = 1. This is the main reason why we consider wit-
nessed models only. In fact, the construction provided in the next section does
not work for general model reasoning.
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4 The Crisp Model Property

The existing undecidability results for Fuzzy DLs all rely heavily on the fact that
one can design ontologies that allow only models with infinitely many truth val-
ues. We shall see that for t-norms without zero divisors one cannot construct such
an ontology in ⊗-SHOI. It is even true that all consistent ⊗-SHOI-ontologies
have a crisp (and finite) model.

Definition 11. A fuzzy DL L has the crisp model property if every consistent
L-ontology has a crisp model.

For the rest of this paper we assume that ⊗ is a continuous t-norm that does
not have zero divisors. These t-norms share the useful properties described in
Section 3. In particular, Lemma 10 allows us to construct a crisp interpretation
from a fuzzy interpretation by simply applying the function �.

Let I be a witnessed fuzzy interpretation for the concept names NC and role
names NR. We construct the interpretation J over the domain ΔJ := ΔI by
defining, for all concept names A ∈ NC, all role names r ∈ NR, and all x, y ∈ ΔI ,

AJ (x) = �
(
AI(x)

)
and rJ (x, y) = �

(
rI(x, y)

)
.

To show that J is a valid interpretation, we first verify the transitivity condition
for all r ∈ N+

R and all x, y, z ∈ ΔJ . From Lemma 10, we obtain

rJ (x, y)⊗ rJ (y, z) = �
(
rI(x, y)

)
⊗ �

(
rI(y, z)

)
= �

(
rI(x, y) ⊗ rI(y, z)

)
.

Since I satisfies the transitivity condition and � is monotonic, we have

�
(
rI(x, y)⊗ rI(y, z)

)
≤ �

(
rI(x, z)

)
= rJ (x, z),

and thus rJ (x, y)⊗ rJ (y, z) ≤ rJ (x, z).

Lemma 12. For all complex roles s and x, y ∈ ΔI , sJ (x, y) = �(sI(x, y)).

Proof. If s is a role name, this follows directly from the definition of J . If s = r−

for some r ∈ NR, then sJ (x, y) = rJ (y, x) = �(rI(y, x)) = �(sI(x, y)).

In a similar way, the interpretation J preserves the compatibility of � to the
different constructors.

Lemma 13. For all complex concepts C and x ∈ ΔI, CJ (x) = �
(
CI(x)

)
.

Proof. We use induction over the structure of C. The claim holds trivially for
C = ⊥ and C = �. For C = A ∈ NC it follows immediately from the definition
of J . It also holds for C = {a}, a ∈ NI, because {a}I(x) can only take the values
0 or 1 for all x ∈ ΔI .

Assume now that the concepts D and E satisfy DJ (x) = �(DI(x)) and
EJ (x) = �(EI(x)) for all x ∈ ΔI . In the case where C = D � E, Lemma 10
yields that for all x ∈ ΔI

CJ (x) = DJ (x) ⊗ EJ (x) = �
(
DI(x)

)
⊗ �

(
EI(x)

)
= �

(
DI(x)⊗ EI(x)

)
= �

(
CI(x)

)
.
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Likewise, the compatibility of � with the t-conorm, the residuum, and the nega-
tion entails the result for the cases C = D �E, C = D → E, and C = ¬D.

For C = ∃s.D, where s is a complex role and D is a concept description
satisfying DJ (x) = �(DI(x)) for all x ∈ ΔI , we obtain

�
(
CI(x)

)
= �

(
(∃s.D)I(x)

)
= �

(
sup

y∈ΔI

{
sI(x, y)⊗DI(y)

})
= sup

y∈ΔI

{
�
(
sI(x, y)

)
⊗ �

(
DI(y)

)}
(3)

because � is compatible with the supremum and the t-norm. Lemma 12 yields

sup
y∈ΔI

{
�(rI(x, y))⊗ �(DI(y))

}
= sup

y∈ΔI

{
rJ (x, y)⊗DJ (y)

}
= (∃r.D)J (x). (4)

Equations (3) and (4) prove �(CI(x)) = CJ (x) for the case where C = ∃r.D. If
C = ∀r.D, we have

�
(
CI(x)

)
= �

(
inf

y∈ΔI

{
rI(x, y)⇒ DI(y)

})
. (5)

Since I is witnessed, there must exist some y0 ∈ ΔI such that

rI(x, y0) ⇒ DI(y0) = inf
y∈ΔI

{
rI(x, y) ⇒ DI(y)

}
;

that is, miny∈ΔI
{
rI(x, y) ⇒ DI(y)

}
exists. Thus, Part 6. of Lemma 10 is

applicable and �(CI(x)) = CJ (x) follows in analogy to the case for existential
restrictions. ��
With the help of this lemma we can show that the crisp interpretation J satisfies
all the axioms that are satisfied by I.

Lemma 14. Let O = (A, T ,R) be a ⊗-SHOI-ontology. If I is a witnessed
model of O, then J is also a witnessed model of O.

Proof. We prove that J satisfies all assertions, GCIs, and role inclusions from
O. Let 〈a :C, �〉, � ∈ (0, 1], be a concept assertion from A. Since the assertion is
satisfied by I, CI(aI) ≥ � > 0 holds. Lemma 13 yields CJ (aJ ) = 1 ≥ �. The
same argument can be used for role assertions.

Let now 〈C � D, �〉 be a GCI from T . Let x be an element x ∈ ΔI . As the
GCI is satisfied by I, we get CI(x) ⇒ DI(x) ≥ � > 0. By Lemmata 10 and 13,
we obtain

CJ (x) ⇒ DJ (x) = �(CI(x)) ⇒ �(DI(x)) = �(CI(x) ⇒ DI(x)) = 1 ≥ �,

and thus J satisfies the GCI 〈C � D, �〉. A similar argument, using Lemma 12
instead of Lemma 13, shows that J satisfies all role inclusions in R. ��
The previous results show that by applying � to the truth degrees we obtain a
crisp model J from any fuzzy model I of a ⊗-SHOI-ontology O.

Theorem 15. ⊗-SHOI has the crisp model property if ⊗ has no zero divisors.

In the next section we will use this result to show that ontology consistency and
concept satisfiability can be decided in exponential time.
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5 Consistency and Satisfiability

For a given ⊗-SHOI-ontology O, we define crisp(O) to be the crisp SHOI-
ontology that is obtained from O by replacing all the truth values appearing in
the axioms by 1. For example, for the ontology

O =
{
〈a :C, 0.2〉, 〈(a, b):r, 0.8〉, 〈C � D, 0.5〉, 〈r � s, 0.1〉

}
we obtain

crisp(O) =
{
〈a :C, 1〉, 〈(a, b):r, 1〉, 〈C � D, 1〉, 〈r � s, 1〉

}
.

Lemma 16. Let O be a ⊗-SHOI-ontology and I be a crisp interpretation.
Then I is a model of O iff it is a model of crisp(O).

Proof. Assume that crisp(O) has a model I. Let 〈C � D, �〉, � > 0, be an axiom
from O. Since I is a model of crisp(O), it must satisfy 〈C � D, 1〉; that is,
CI(x) ⇒ DI(x) ≥ 1 ≥ � holds for all x ∈ ΔI . Thus I satisfies 〈C � D, �〉. The
proof that I satisfies assertions and role inclusions is analogous. Hence I is also
a model of O.

For the other direction, assume that I satisfies 〈C � D, �〉. As I is a crisp
interpretation it holds that CI(x) ⇒ DI(x) ∈ {0, 1} for all x ∈ ΔI . Together
with CI(x) ⇒ DI(x) ≥ � > 0 we obtain CI(x) ⇒ DI(x) = 1. Thus, I satisfies
the GCI 〈C � D, 1〉. The same argument can be used for role inclusions and
assertions. Thus, I is also a model of crisp(O). ��
In particular, a ⊗-SHOI-ontology O has a crisp model iff crisp(O) has a crisp
model. Together with Theorem 15, this shows that a ⊗-SHOI-ontology O is
consistent iff crisp(O) has a crisp model. Therefore, one can use reasoning in
crisp SHOI to decide consistency of ⊗-SHOI-ontologies. Reasoning in crisp
SHOI is known to be ExpTime-complete [15].

Corollary 17. Deciding consistency in ⊗-SHOI is ExpTime-complete.

Similar arguments show that satisfiability is decidable in ⊗-SHOI. Since any
concept is 0-satisfiable, we can assume in the following that the concept C is
�-satisfiable w.r.t. an ontology O with � > 0. Then there is a model I of O
satisfying CI(x) ≥ � > 0. Thus, the model J of O constructed in Section 4
also satisfies CJ (x) = 1 ≥ �. This shows that if C is �-satisfiable w.r.t. O for
some � > 0, it is also 1-satisfiable w.r.t. O, and in particular 1-satisfiable w.r.t.
crisp(O). Clearly, the implication in the other direction also holds.

Lemma 18. Deciding �-satisfiability in ⊗-SHOI is ExpTime-complete. Fur-
thermore, the best satisfiability degree of a concept C w.r.t. O is either 0 or 1
and can be computed in exponential time.

Lemma 16 and Corollary 15 still hold when we restrict the semantics to the
slightly less expressive logics ⊗-SHO, which does not allow for inverse roles,
or ⊗-SI which does not allow for nominals and role hierarchies. The crisp DLs
SHO and SI are known to have the finite model property [16,19], and ⊗-SI
and ⊗-SHO inherit the finite model property from their crisp ancestors.
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Theorem 19. The logics ⊗-SHO and ⊗-SI and their sublogics have the finite
model property.

This theorem contradicts a recent result stating that the sublogic Π-ALC of
⊗-SHOI, where ⊗ is the product t-norm, does not have the finite model prop-
erty [5, Theorem 3.8]. As a matter of fact, the proof from [5] is based on the
erroneous claim that every model I of the assertion 〈a :A, 0.5〉 must be such
that AI(aI) = 0.5. The case of an interpretation with AI(aI) = 1, which also
satisfies this assertion, is not considered in the induction argument.

6 Subsumption and Instance Checking

We now show that, despite the crisp model property, �-subsumption of concepts
w.r.t. ⊗-SHOI-ontologies cannot be decided using crisp reasoning. Moreover,
this holds even if the ontology is restricted to be crisp itself.

Consider first the ontology O1 containing only the GCI 〈� � A, �〉 for some
� ∈ (0, 1). Since � > 0, for every crisp model I of O1 and x ∈ ΔI , AI(x) = 1
holds. Thus, � is 1-subsumed by A w.r.t. O1 when reasoning is restricted to
crisp models. However, the interpretation I1 = ({x}, ·I1 ), where AI1(x) = �,
is also a model of O1, but violates the axiom 〈� � A, 1〉. In fact, the best
subsumption degree of � and A w.r.t. O1 is �, which is smaller than 1. Notice
that this example only assumes that the logic can express concept names, the top
concept, and fuzzy GCIs. Moreover, it is irrelevant which t-norm ⊗ was chosen
for the semantics.

Proposition 20. For every fuzzy DL ⊗-L that allows the top constructor and
fuzzy GCIs, �-subsumption cannot be decided over crisp models only.

If the logic uses a t-norm ⊗ without zero divisors and is able to express the
residual negation, then this proposition holds even if the ontology is crisp. Take
for instance the ontology O2 containing the axiom 〈� � ¬¬A, 1〉. As before,
it is easy to see that every crisp model of O2 also satisfies 〈� � A, 1〉. On the
other hand, the best subsumption degree of � and A w.r.t. O2 is 0.

To show this, we construct a model I2 of O2 that violates 〈� � A, �〉 for
every � > 0. The interpretation I2 = (�, ·I2) is given by AI2(i) = 1/i for every
i ≥ 1. I2 is indeed a model of O2 since AI2(i) > 0 and hence (¬¬A)I2 (i) = 1
for every i ≥ 1. However, for every � > 0 there is an i ∈ � such that 0 < 1/i < �
and hence I2 violates the axiom 〈� � A, �〉. Thus, the best subsumption degree
of � and A w.r.t. O2 is 0.

Proposition 21. Let ⊗ be a t-norm without zero divisors and ⊗-L be a fuzzy
DL with residual negation. Then �-subsumption cannot be decided over crisp
models only. This holds even for �-subsumption w.r.t. crisp ontologies.

In the special case where ⊗ is the product t-norm, the problem is more pro-
nounced, since reasoning cannot be restricted to finite models either, as we show
next. Consider the ontology

O = {〈� � ¬¬A, 1〉, 〈� � ∃r.�, 1〉, 〈∃r.A � A �A, 1〉}.
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1 2 4

A : 1
2

A : 1
4

A : 1
16

r : 1 r : 1

Fig. 1. A model where 〈� 	 A, �〉 does not hold for any � > 0.

We show that every finite model of O also satisfies the GCI 〈� � A, 1〉, but the
best subsumption degree of � and A w.r.t. O is 0.

Let first I be a model of O that violates 〈� � A, 1〉. We show that I
must be infinite. To do this, we show by induction that for every n ≥ 1 there
exist x1, . . . , xn ∈ ΔI such that 1 > AI(x1) > . . . > AI(xn) > 0; since
AI(xi) = AI(xj) for every i = j, this implies that ΔI must contain infinitely
many individuals.

For the induction base, since I violates 〈� � A, 1〉, there must be an x ∈ ΔI

such that AI(x) < 1. As I satisfies the first axiom of O, it also follows that
AI(x) > 0. Thus, if we set x1 = x, then the claim holds for n = 1. Suppose
now that it holds for n ≥ 1, we show that it also holds for n + 1. Since I is a
witnessed model of O, the second axiom implies that there must exist a y ∈ ΔI

such that rI(xn, y) = rI(xn, y)⊗�(y) = 1. The third axiom then implies that

AI(xn) >
(
AI(xn)

)2 ≥ (∃r.A)I(xn)

≥ rI(xn, y)⊗ AI(y) = AI(y).

Since I satisfies the first axiom, it additionally holds that AI(y) > 0. Thus,
setting xn+1 = y yields the result.

It remains only to show that the best subsumption degree of � and A w.r.t.
O is 0. We build a model I0 of O that violates 〈� � A, �〉 for every � > 0. Let
I0 = ({2i | i ≥ 0}, ·I0) be given by AI0(x) = 2−x, and

rI0(x, y) =

{
1 y = 2x

0 y = 2x

for all x, y ∈ ΔI0 (cf. Figure 1).
We verify that I0 is a model of O. First, since 2−i > 0 for every i ≥ 0, it

follows that AI0(x) > 0 for all x ∈ ΔI . Thus, I0 satisfies the first axiom of O.
For every x ∈ ΔI it also holds that

(∃r.�)I0(x) = rI0(x, 2x) = 1 and

(∃r.A)I0 (x) = rI0(x, 2x) ⊗AI0(2x)

= 2−2x = 2−x · 2−x = AI0(x)⊗AI0(x),

satisfying the remaining two axioms of the ontology. The fact that this model is
witnessed is a trivial consequence of the fact that every individual of the domain
has exactly one r-successor with degree different from 0.
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This all means that � is not �-subsumed by A w.r.t. O for any � > 0, but �
is subsumed by A with degree 1 in every finite model of O. Notice that all the
axioms in O are crisp. We thus have the following result.

Proposition 22. Let ⊗ be the product t-norm and ⊗-L be a fuzzy DL with
conjunction, existential restriction, and residual negation. Then �-subsumption
cannot be decided over finite models only. This holds even for �-subsumption
w.r.t. crisp ontologies.

Notice that the three ontologies O1,O2, and O presented in this section contain
only GCIs. In this case it follows that a concept C is �-subsumed by D iff
any individual a is an �-instance of the concept C → D. Likewise, the best
subsumption degree of C and D is equivalent to the best instance degree of a and
C → D. Thus, if the fuzzy DL allows for the constructor→, then Propositions 20,
21, and 22 also hold for �-instance checking, i.e. �-instances cannot be checked
by a reduction to crisp reasoning. This is true even if the ontology is crisp.
Moreover, under product t-norm semantics, finite models are insufficient for
instance checking w.r.t. crisp ontologies.

7 Conclusions

We have shown that for every t-norm ⊗ that does not have zero divisors, con-
sistency of ⊗-SHOI ontologies is ExpTime-complete. Indeed, to decide this
problem it suffices to test consistency of the crisp version of the ontology. For all
other t-norms—those having zero divisors—it was previously shown that consis-
tency becomes undecidable already for a fairly inexpressive DL, allowing only
for conjunction, existential restrictions and residual negation.

It is worth pointing out that the correctness of our reduction to crisp reasoning
strongly depends on the fact that⊗-SHOI ontologies, as presented in this paper,
cannot express upper bounds for the membership degrees. If one extends this
logic to allow for these upper bounds, either by the introduction of the involutive
negation 1 − x or by axioms of the form 〈α ≤ �〉, then ontology consistency
becomes undecidable for every t-norm except the Gödel t-norm.

In crisp DLs, ontology consistency is the “main” decision problem in the sense
that all other standard problems—like concept satisfiability, subsumption and
instance checking—are polynomially reducible to it. In crisp DLs, a is a (1-
)instance of C w.r.t. an ontology O iff the ontology obtained by adding the
assertion 〈a:¬C, 1〉 to O is inconsistent. However, for any t-norm without zero
divisors, this last axiom only states that aI(C) = 0 must hold in every model,
which is much stronger than the required condition aI(C) < 1. Indeed, despite
⊗-SHOI having the crisp model property, crisp reasoning is insufficient for de-
ciding subsumption and instance checking. Moreover, under the product t-norm
semantics, finite models cannot decide these problems, even for those sublogics
of ⊗-SHOI that have the finite model property.
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These results leave open the decidability status of subsumption and instance
checking in fuzzy DLs. This is one of the main problems we intend to examine in
future work. In this respect it is worth to point out that, so far, all the existing
decision procedures for fuzzy DLs depend on crisp- or finite-model reasoning.
This suggests that if, e.g. subsumption turns out to be decidable in these logics,
a different kind of decision procedure would have to be developed.

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F.: The
Description Logic Handbook: Theory, Implementation, and Applications. Cam-
bridge University Press (2003)

2. Baader, F., Peñaloza, R.: Are fuzzy description logics with general concept inclu-
sion axioms decidable? In: Proc. of the 2011 IEEE Int. Conf. on Fuzzy Systems
(FUZZ-IEEE 2011), pp. 1735–1742. IEEE Press (2011)

3. Baader, F., Peñaloza, R.: GCIs make reasoning in fuzzy DLs with the product
t-norm undecidable. In: Rosati, R., Rudolph, S., Zakharyaschev, M. (eds.) Proc. of
the 24th Int. Workshop on Description Logics (DL 2011), Barcelona, Spain. CEUR
Workshop Proceedings, vol. 745 (2011)

4. Baader, F., Peñaloza, R.: On the Undecidability of Fuzzy Description Logics with
GCIs and Product T-norm. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCos
2011. LNCS (LNAI), vol. 6989, pp. 55–70. Springer, Heidelberg (2011)

5. Bobillo, F., Bou, F., Straccia, U.: On the failure of the finite model property in
some fuzzy description logics. Fuzzy Sets and Systems 172(23), 1–12 (2011)

6. Bobillo, F., Delgado, M., Gómez-Romero, J., Straccia, U.: Fuzzy description logics
under Gödel semantics. International Journal of Approximate Reasoning 50(3),
494–514 (2009)

7. Bobillo, F., Straccia, U.: A fuzzy description logic with product t-norm. In: Proc.
of the 2007 IEEE Int. Conf. on Fuzzy Systems FUZZ-IEEE 2007, pp. 1–6. IEEE
Press (2007)

8. Bobillo, F., Straccia, U.: On qualified cardinality restrictions in fuzzy description
logics under Łukasiewicz semantics. In: Proc. of the 12th Int. Conf. on Information
Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU
2008), pp. 1008–1015 (2008)

9. Bobillo, F., Straccia, U.: Fuzzy description logics with general t-norms and
datatypes. Fuzzy Sets and Systems 160(23), 3382–3402 (2009)

10. Borgwardt, S., Peñaloza, R.: Undecidability of fuzzy description logics. In: Proc.
of the 13th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR 2012), Rome, Italy. AAAI Press (to appear, 2012)

11. Cerami, M., Straccia, U.: On the undecidability of fuzzy description logics with
GCIs with Łukasiewicz t-norm. Technical report, Computing Research Repository
(2011), arXiv:1107.4212v3 [cs.LO]

12. García-Cerdaña, Á., Armengol, E., Esteva, F.: Fuzzy description logics and t-norm
based fuzzy logics. International Journal of Approximate Reasoning 51, 632–655
(2010)

13. Hájek, P.: Metamathematics of Fuzzy Logic (Trends in Logic). Springer (2001)
14. Hájek, P.: Making fuzzy description logic more general. Fuzzy Sets and Sys-

tems 154(1), 1–15 (2005)



96 S. Borgwardt, F. Distel, and R. Peñaloza

15. Hladik, J.: A tableau system for the description logic SHIO. In: Proceedings of
the Doctoral Programme of IJCAR 2004. CEUR Worksop Proceedings, vol. 106,
pp. 21–25 (2004)

16. Horrocks, I., Sattler, U., Tobies, S.: A PSpace-algorithm for deciding ALCNIR+ -
satisfiability. LTCS-Report 98-08, RWTH Aachen, Germany (1998)

17. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Springer (2000)
18. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description

logics for the semantic web. Journal of Web Semantics 6(4), 291–308 (2008)
19. Lutz, C., Areces, C., Horrocks, I., Sattler, U.: Keys, nominals, and concrete do-

mains. Journal of Artificial Intelligence Research 23, 667–726 (2004)
20. Molitor, R., Tresp, C.B.: Extending Description Logics to Vague Knowledge in

Medicine. In: Szczepaniak, P., Lisboa, P.J.G., Tsumoto, S. (eds.) Fuzzy Systems in
Medicine. STUDFUZZ, vol. 41, pp. 617–635. Springer (2000)

21. Mostert, P.S., Shields, A.L.: On the structure of semigroups on a compact manifold
with boundary. Annals of Mathematics 65, 117–143 (1957)

22. Stoilos, G., Stamou, G.B.: A framework for reasoning with expressive continuous
fuzzy description logics. In: Grau, B.C., Horrocks, I., Motik, B., Sattler, U. (eds.)
Proc. of the 22nd Int. Workshop on Description Logics (DL 2009). CEUR Workshop
Proceedings, vol. 477 (2009)

23. Stoilos, G., Stamou, G.B., Tzouvaras, V., Pan, J.Z., Horrocks, I.: The fuzzy descrip-
tion logic f-SHIN . In: Proc. of the 1st Int. Workshop on Uncertainty Reasoning
for the Semantic Web (URSW 2005), pp. 67–76 (2005)

24. Stoilos, G., Straccia, U., Stamou, G.B., Pan, J.Z.: General concept inclusions in
fuzzy description logics. In: Proc. of the 17th Eur. Conf. on Artificial Intelligence
(ECAI 2006). Frontiers in Artificial Intelligence and Applications, vol. 141, pp.
457–461. IOS Press (2006)

25. Straccia, U.: Reasoning within fuzzy description logics. Journal of Artificial Intel-
ligence Research 14, 137–166 (2001)

26. Straccia, U., Bobillo, F.: Mixed integer programming, general concept inclusions
and fuzzy description logics. In: Proc. of the 5th EUSFLAT Conf (EUSFLAT 2007),
pp. 213–220. Universitas Ostraviensis (2007)

27. Tresp, C.B., Molitor, R.: A description logic for vague knowledge. In: Proc. of the
13th Eur. Conf. on Artificial Intelligence (ECAI 1998), Brighton, UK, pp. 361–365.
J. Wiley and Sons (1998)



Truthful Monadic Abstractions�

Taus Brock-Nannestad and Carsten Schürmann
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Abstract. In intuitionistic sequent calculi, detecting that a sequent is
unprovable is often used to direct proof search. This is for instance seen
in backward chaining, where an unprovable subgoal means that the proof
search must backtrack. In undecidable logics, however, proof search may
continue indefinitely, finding neither a proof nor a disproof of a given
subgoal.

In this paper we characterize a family of truth-preserving abstractions
from intuitionistic first-order logic to the monadic fragment of classical
first-order logic. Because they are truthful, these abstractions can be
used to disprove sequents in intuitionistic first-order logic.

1 Introduction

Two common methods of proof search in intuitionistic sequent calculi are forward
and backward chaining. In forward chaining, the hypotheses are used to derive
new facts. The proof succeeds if the goal is derived, and fails if this process
saturates (i.e. no new facts can be derived) without deriving the goal.

Backward chaining proceeds bottom-up from the goal, continually splitting
subgoals into other subgoals or closing subgoals if these are an immediate con-
sequence of what is in the context. Backtracking is employed if a subgoal can
be neither split nor immediately satisfied. In the case of backward chaining, the
proof search succeeds if all subgoals are satisfied, and it fails if backtracking
returns to the original goal without finding a proof.

In undecidable logics such as intuitionistic first-order logic, both of these ap-
proaches may fail to terminate. Forward chaining may fail to saturate, contin-
ually adding new facts to the context, and backward chaining may have an
unbounded number of points at which backtracking may occur. Consider, for in-
stance, an attempt to prove that 5 is an even number. Let the predicate D(x, y)
— signifying that y is twice the value of x — be given by the following context

Γ = D(z, z), ∀x.∀y.D(x, y) ⊃ D(s(x), s(s(y)))

The statement that 5 is even is equivalent to the following sequent

Γ =⇒ ∃x.D(x, s(s(s(s(s(z))))))
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for Strategic Research, Programme Commission on Strategic Growth Technologies.
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Clearly, attempting to prove the above sequent cannot succeed, but a naive
forward chaining proof attempt may fail to terminate, as any number of distinct
hypotheses D(s(z), s(s(z))), D(s(s(z)), s(s(s(s(z))))), . . . may be generated by
the left implication rule. Thus, the proof search never saturates, and we cannot
conclude that the above sequent is not derivable.

Of course, the above sequent fails to be derivable even in classical logic, hence
one might try to feed it to a classical first-order theorem prover, such as Spass [13]
or Vampire [11], or a countermodel generator, such as for example Paradox [2]
hoping to generate a counterexample. This technique will work for the above
simple example, but in general there is no guarantee that the tools will terminate
either, as we have reduced one undecidable problem to another.

If we insist on having decidability, we must let go of either soundness, in
which case whatever proofs we find are not necessarily correct, or completeness,
in which case we may not be able to find a proof even if a proof exists. Thus, if
we primarily care about disproving sequents, having an unsound but complete
and decidable procedure is sufficient.

In this paper, we define a family of truthful (or TI [3]) abstractions i.e. func-
tions that preserve provability. Thus, each abstraction is a function α that sat-
isfies the truthfulness condition:

Γ =⇒ A entails α(Γ ) −→ α(A)

where the sequent on the left is in the base logic, and the sequent on the right
is in the abstraction logic. By choosing a logic in which derivability is decidable,
we get the aforementioned decision procedure.

In our case, our abstractions map into the monadic fragment of classical first-
order logic which has the finite model property, and is thus decidable [4]. In the
monadic fragment, only unary predicates and functions may appear, but all other
connectives are allowed. Thus, the defining feature of the abstraction is how it
acts on atoms. This mapping can be intuitively understood as mapping arbitrary
terms — which may be seen as being tree-shaped — onto paths through these
trees. Thus, the following formula

P (f(g(a), b), c) ⊃ P (f(c, b), g(a))

will have the following abstractions:

P1(f1(g1(a))) ⊃ P1(f1(c))

P1(f2(b)) ⊃ P1(f2(b))

P2(c) ⊃ P2(g1(a))

Here, the subscripts indicate which argument became part of the path.
This paper is organized as follows. We reiterate the definition of intuitionistic

first-order logic, our choice of base logic, in Section 2. In Section 3 we define the
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P ∈ Γ
init

Γ =⇒ P
�R

Γ =⇒ �
⊥L

Γ,⊥ =⇒ C

Γ,A ∧B,A,B =⇒ C
∧L

Γ,A ∧B =⇒ C

Γ =⇒ A Γ =⇒ B
∧R

Γ =⇒ A ∧B

Γ =⇒ Ai

∨Ri

Γ =⇒ A1 ∨A2

Γ,A ∨B,A =⇒ C Γ,A ∨B,B =⇒ C
∨L

Γ,A ∨ B =⇒ C

Γ,A ⊃ B =⇒ A Γ,A ⊃ B,B =⇒ C
⊃L

Γ,A ⊃ B =⇒ C

Γ,A =⇒ B
⊃R

Γ =⇒ A ⊃ B

Γ, ∃x.A, [a/x]A =⇒ C
∃La

Γ,∃x.A =⇒ C

Γ =⇒ [t/x]A
∃R

Γ =⇒ ∃x.A
Γ, ∀x.A, [t/x]A =⇒ C

∀L
Γ, ∀x.A =⇒ C

Γ =⇒ [a/x]A
∀Ra

Γ =⇒ ∀x.A

Fig. 1. Base Logic: First-order intuitionistic logic

abstraction formally. Section 4 describes a few examples, illustrating the applica-
bility of the decision procedure. In Section 5 we sketch briefly an implementation
of truthful abstractions and report on our experimental results on the intuition-
istic fragment ILTP[10] of TPTP[12], using Spass as a decision procedure for the
monadic fragment of classical logic. We assess results, describe related work and
conclude in Section 6.

2 Base Logic

In this paper we focus on intuitionistic first-order logic as a base logic, which
is of particular interest to us because the result seems to scale to proof search
problems in type theories, which we plan to study in future work. In general,
the idea of truthful monadic abstractions is applicable in other settings as well.

In particular, we work with a sequent calculus formulation of first-order intu-
itionistic logic (FOL). The syntactic categories of terms and formulas are defined
as follows:

t ::= x | c | f(t1, . . . , tn)
A,B ::= P (t1, . . . , tn) | A ∧B | A ∨B | A ⊃ B | � | ⊥ | ∀x.A | ∃x.A

Here, x is a variable and c a constant. We let F denote the set of function symbols
f and assume there is a function Σ : F → N that records the arity of each
function symbol. The connectives and the inference rules depicted in Figure 1
are standard. The superscripted variables on the ∀R and ∃L rules indicate that
these rules are subject to the eigenvariable condition.
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3 Truthfulness

There are many different decidable fragments of classical first-order logic. Most of
these fragments impose restrictions on the shape of the formulas that may occur
e.g. by restricting the quantifier prefixes, number of variables or guardedness of
the formulas. For our purposes, we require that there is no restriction on the
shape of the formulas, hence these fragments are a priori not suitable as targets
for our abstraction.

The truthful abstraction that we present in this section maps sequents from
the base logic into the abstraction logic, the monadic fragment of classical first-
order logic, which we will not define in any more detail than to say that all
predicate and function symbol are required to be unary. Base and abstraction
logic formulas both share the same connectives, and as we will see in this section,
we will define the truthful abstraction as a composition of three conceptually
simpler abstractions through two intermediate logics.

1. Base logic: Intuitionistic first-order logic
2. Intermediate logic 1: Intuitionistic first-order logic with monadic predicates
3. Intermediate logic 2: Monadic intuitionistic first-order logic
4. Abstraction logic: Monadic classical first-order logic

Since the composition of truthful abstractions is again a truthful abstraction, we
are able to compose the three and obtain the desired truthful abstraction from
base to abstraction logic. The compositionality of truthful abstractions bears
another interesting opportunity: Any logic that can be mapped truthfully into
the base logic gives rise to a truthful abstraction into monadic first-order logic.

In the remainder of this section, we discuss each of the three abstractions in
turn, and establish the desired completeness result.

3.1 From Predicates to Monadic Predicates

We describe the mapping from the base logic into the intermediate logic 1,
i.e. from intuitionistic first-order formulas to intuitionistic first-order logic with
monadic predicates. An obvious candidate for such a mapping is a homomor-
phism that replaces predicates with monadic predicates, dropping all but one
argument. Notice, that the rules init, ∃R, and ∀L from Figure 1 pose a particu-
lar challenge in the proof of truthfulness, because abstraction and substitution
must commute in a suitable fashion for the proof to go through.

Let π be a function from the set of predicates to N such that π(P ) points to
a valid index, i.e. it is at most equal to the arity of P . We then define a map, α,
as follows:

α(�) = �
α(⊥) = ⊥

α(A(B) = α(A) ( α(B)

α(Qx.A) = Qx.α(A)

α(P (t1, . . . , tn)) = P (ti) where i = π(P )
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where ( is ∧,∨ or ⊃ and Q is either ∀ or ∃.
Since α is only defined on formulas and not terms, this definition behaves

nicely with regard to substitution, as the following lemma shows.

Lemma 1 (Substitutivity). For any term t, formula A, and α defined as
above, the equality α([t/x]A) = [t/x]α(A) holds.

Proof. By straightforward structural induction. �

Proving that α is a truthful abstraction is now easy.

Theorem 1 (Truthfulness). If Γ =⇒ A then α(Γ ) =⇒ α(A).

Proof. By structural induction on the derivation of Γ =⇒ A. Most cases are
immediate. We show here a few of the more interesting cases.

Case: D :: init
Γ, P (t1, . . . , tn) =⇒ P (t1, . . . , tn)

α(P (t1, . . . , tn)) = P (ti) for some i by definition of α.
α(Γ ), P (ti) =⇒ P (ti) by init.

Case:
D

Γ =⇒ [t/x]A
∃R

Γ =⇒ ∃x.A

α(Γ ) =⇒ α([t/x]A) by i.h. on D.
α(Γ ) =⇒ [t/x]α(A) by Lemma 1
α(Γ ) =⇒ ∃x.α(A) by ∃R.
α(Γ ) =⇒ α(∃x.A) by definition of α.

Case:
D

Γ, ∀x.A, [t/x]A =⇒ C
∀L

Γ, ∀x.A =⇒ C

α(Γ ), α(∀x.A), α([t/x]A) =⇒ α(C) by i.h. on D.
α(Γ ), ∀x.α(A), [t/x]α(A) =⇒ α(C) by definition of α and Lemma 1.
α(Γ ), ∀x.α(A) =⇒ α(C) by ∀L.
α(Γ ), α(∀x.A) =⇒ α(C) by definition of α.

��

With this abstraction in place, we may now assume (without loss of generality)
that all predicates are unary until the end of this section.



102 T. Brock-Nannestad and C. Schürmann

3.2 From Terms to Monadic Terms

We now tend to the most challenging part of the abstraction, a mapping from
intermediate logic 1 to intermediate logic 2 that maps intuitionistic first-order
logic with monadic predicates into monadic intuitionistic first-order logic, replac-
ing n-ary function symbols of the term language into unary function symbols.
Here again, the abstraction and substitution applications from rules init, ∃R, and
∀L must commute. This is more complex than before, because the abstraction
defined here will abstract terms as well.

Let μ be any endofunction on the set of terms satisfying μ(x) = x for all
variables x. Its homomorphic extension to formulas and contexts is given by the
following definition

μ(P (t)) = P (μ(t)) μ(�) = � μ(⊥) = ⊥
μ(A ∧B) = μ(A) ∧ μ(B) μ(A ∨B) = μ(A) ∨ μ(B) μ(A ⊃ B) = μ(A) ⊃ μ(B)

μ(∀x.A) = ∀x.μ(A) μ(∃x.A) = ∃x.μ(A)
μ(·) = · μ(Γ,A) = μ(Γ ), μ(A)

where μ must map arbitrary terms t to monadic terms μ(t), which refer only to
function symbols of arity 1. The intermediate logic 2 under the image of μ must
admit the following three rules of inference that we obtain from Figure 1. The
other inference rules of the intermediate logic 1 remain unchanged.

initμ

Γ, P (μ(t)) −→ P (μ(t))

Γ −→ [μ(t)/x]A
∃Rμ

Γ −→ ∃x.A

Γ, ∀x.A, [μ(t)/x]A −→ C
∀Lμ

Γ, ∀x.A −→ C

Theorem 2. Let μ be a function defined as above. The following properties are
then equivalent:

1. (Truthfulness) If Γ =⇒ A is provable, then so is μ(Γ ) −→ μ(A).
2. (Substitutivity on terms) For all terms t, t′:

μ([t/x]t′) = [μ(t)/x]μ(t′).

3. (Substitutivity on formulas) For all terms t and formulas A:

μ([t/x]A) = [μ(t)/x]μ(A)

Proof. (2)⇒(3) follows from a straightforward structural induction on A.
(1)⇒(2) Let t and t′ be given. The sequent

P (t), ∀x.P (x) ⊃ Q(t′) =⇒ Q([t/x]t′)

is easily seen to be derivable, as the following derivation shows:
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init
P (t) =⇒ P (t)

init
Q([t/x]t′) =⇒ Q([t/x]t′)

⊃L
P (t), P (t) ⊃ Q([t/x]t′) =⇒ Q([t/x]t′)

∀L
P (t), ∀x.P (x) ⊃ Q(t′) =⇒ Q([t/x]t′)

hence by assumption the sequent

μ(P (t), ∀x.P (x) ⊃ Q(t′)) −→ μ(Q([t/x]t′))

which is equal to

P (μ(t)), ∀x.P (x) ⊃ Q(μ(t′)) −→ Q(μ([t/x]t′))

is likewise derivable. It may be shown (e.g. by means of focusing[1,6]) that the
following must then be a proof (with occurrences of contraction elided)

initμ

P (μ(t)) −→ P (μ(s))
initμ

Q([μ(s)/x]μ(t′)) −→ Q(μ([t/x]t′))
⊃Lμ

P (μ(t)), P (μ(s)) ⊃ Q([μ(s)/x]μ(t′)) −→ Q(μ([t/x]t′))
∀Lμ

P (μ(t)), ∀x.P (x) ⊃ Q(μ(t′)) −→ Q(μ([t/x]t′))

for some term μ(s). Substituting the equality μ(t) = μ(s) from the left init rule
into the equality [μ(s)/x]μ(t′) = μ([t/x]t′) from the right init rule yields the
desired equality μ([t/x]t′) = [μ(t)/x]μ(t′).

(3)⇒(1) By structural induction on the derivation of Γ =⇒ A. All cases are
straightforward. The substitutivity property is used in the ∃R and ∀L cases.

D
Γ =⇒ [t/x]A

∃R
Γ =⇒ ∃x.A

Applying the induction hypothesis toD, we get a derivation ofμ(Γ ) −→ μ([t/x]A).
By assumption, this is equal to a derivation μ(Γ ) −→ [μ(t)/x]μ(A) to which we
may apply the ∃Rμ rule to get a derivation of μ(Γ ) −→ μ(∃x.A). The case for ∀L
is similar. �

Definition 1 (Monadic Terms). Monadic terms are built using the following
syntax:

m ::= x | c | f(m)

where, again, x represents a variable and c a constant.

A crucial part of the definition of our abstraction is the concept of monadic
subterm.

Definition 2 (Monadic Subterm). The judgmentm ≺ t (read:m is amonadic
subterm of t) is defined by the following inference rules:
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x ≺ x c ≺ c

m ≺ ti

fi(m) ≺ f(t1, . . . , tn)

where x is a variable, c is a constant and n ≥ 1.

Loosely speaking, a monadic term m is a monadic subterm of a term t, written
m ≺ t if m encodes a maximal path within the syntax tree of t, i.e. a directed
path from the root to a leaf. For example, the term f(g(a, b), h(c)) has three
monadic subterms: f1(g1(a)), f1(g2(b)) and f2(h1(c)).

We are particularly interested in a specific class of monadic subterms, those
given by the following definition:

Definition 3. A function μ is regular if

1. there exists a function σ : F → N such that σ(f) ≤ Σ(f) for all functions f .
2. For all functions f of arity n and terms t1, . . . , tn the following equation

holds

μ(f(t1, . . . , tn)) = fi(μ(ti))

where i = σ(f).

The following property is straightforward to prove:

Lemma 2. For any regular function μ and term t, we have μ(t) ≺ t.

Note that the monadic subterms under a regular function μ are much fewer than
compared to monadic subterms in general. For instance, the term f(f(a, b), c) has
only two regular monadic subterms: f1(f1(a)) and f2(c). The monadic subterm
f1(f2(b)) cannot be generated using a regular function. This might seem overly
restrictive, but as we shall see below, regular functions are the only ones that
are of interest when proving truthfulness.

The above lemma has a partial converse, as the following theorem shows:

Theorem 3. Let μ be an endofunction on the set of terms. The following prop-
erties are then equivalent:

1. For all terms t and t′

μ(t) ≺ t and μ([t/x]t′) = [μ(t)/x]μ(t′)

2. The function μ is regular.

Proof. (1)⇒(2) We will show that μ satisfies the defining equations of a regular
function. In particular, we show that for any function f of arity n and any terms
t1, . . . , tn, the following equality holds:

μ(f(t1, . . . , tn)) = fi(μ(ti))

for some value i that only depends on f .
Assume that f has arity n. Let x1, . . . , xn be freshly chosen variables that do

not appear in the terms t1, . . . , tn. Then



Truthful Monadic Abstractions 105

μ(f(x1, . . . , xn)) ≺ f(x1, . . . , xn)

hence μ(f(x1, . . . , xn)) must be of the form fi(xi) for some i. To see that i
cannot depend on the choice of variables x1, . . . , xn, we note that if we had
chosen instead the variables y1, . . . , yn, we would have the following string of
equations

μ(f(y1, . . . , yn)) = μ([y1/x1] · · · [yn/xn]f(x1, . . . , xn))
= [μ(y1)/x1] · · · [μ(yn)/xn]μ(f(x1, . . . , xn))
= [y1/x1] · · · [yn/xn]fi(xi)
= fi(yi)

where i was the index we had determined previously. Thus, the value of this i
can only depend on the function f , hence we may define a function σ : F → N

by σ(f) = i. Now, given the terms t1, . . . , tn, we have the following equalities

μ(f(t1, . . . , tn)) = μ([t1/x1] · · · [tn/xn]f(x1, . . . , xn))
= [μ(t1)/x1] · · · [μ(tn)/xn]μ(f(x1, . . . , xn))
= [μ(t1)/x1] · · · [μ(tn)/xn]fi(xi)
= fi(μ(ti))

where i = σ(f), hence μ satisfies the definition of a regular function.
(2)⇒(1) Assuming μ is regular, we now need to show that it satisfies the

substitution property

μ([t/x]t′) = [μ(t)/x]μ(t′)

for all terms t, t′. We show this by induction on the structure of t′. In the case
where x does not occur in t′, the result is immediate, as both sides become equal
to μ(t′). If t′ = x, then both sides equal μ(t). Now, assume t′ = f(t1, . . . , tn) and
that σ(f) = i. Then

μ([t/x]t′) = μ([t/x]f(t1, . . . , tn))

= μ(f([t/x]t1, . . . , [t/x]tn))

= fi(μ([t/x]ti))

= fi([μ(t)/x]μ(ti)) by the induction hypothesis

= [μ(t)/x]fi(μ(ti))

= [μ(t)/x]μ(f(t1, . . . , tn))

= [μ(t)/x]μ(t′).

This completes the proof. ��

With the above theorems and lemmas, we may now prove the main theorem:

Theorem 4. Let μ be any function satisfying μ(t) ≺ t for all terms t and let α
be defined as in Section 3.1. The following properties are then equivalent:
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1. α(Γ ) =⇒ α(A) implies μ(α(Γ )) −→ μ(α(A)) in the monadic fragment.
2. μ is regular.

Proof. If μ is regular, then the substitutivity property follows from Theorem 3,
and hence truthfulness by Theorem 2. That the derivation is in the monadic
fragment follows from the fact that the image of a regular function is a subset
of the set of monadic terms.

Conversely, if μ is truthful, then μ satisfies the substitutivity property by
Theorem 2, and is thus regular by Theorem 3. �

As a consequence of this theorem we get that, assuming the reasonable require-
ment that μ(t) ≺ t for all terms t, it is exactly the regular functions that induce
truthful abstractions.

Note that because we only need to consider regular functions, there is no need
to keep track of the indices on the abstracted predicates and functions, as these
can always be recovered using the σ function defined above.

3.3 From Intuitionistic to Classical Logic

The third abstraction mapping the intermediate logic 2 into the abstraction
logic is trivial. In fact, if monadic intuitionistic first-order logic were decidable,
we would already be done, but it is not [8]. Monadic classical logic, on the other
hand is. We chose therefore the obvious complete embedding of intuitionistic
logic into classical logic as the third and final abstraction. This abstraction is
obviously truthful.

4 Examples

First, we will consider the example given in the introduction. Recall that the
predicate D(x, y) was given by the following axioms

Γ = D(z, z), ∀x.∀y.D(x, y) ⊃ D(s(x), s(s(y)))

There are two abstractions of the sequent

Γ =⇒ ∃x.D(x, s(s(s(s(s(z))))))

corresponding to the choice of either π(D) = 1 or π(D) = 2. In the first case,
we get the following abstracted sequent

D1(z), ∀x.∀y.D1(x) ⊃ D1(s(x)) −→ ∃x.D1(x)

which is immediately provable by instantiating x by z. The second abstraction
is

D2(z), ∀x.∀y.D2(y) ⊃ D2(s(s(y))) −→ ∃x.D2(s(s(s(s(s(z))))))

and in this case, a counterexample is found immediately by Spass. It therefore
follows that the original sequent is not provable.
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As a second example, we consider the following: Let Γ be the following context:

N(z),

∀x.N(x) ⊃ N(s(x)),

∀x.N(x) ⊃ S(z, x, x),

∀x1, x2, x3.N(x1) ∧N(x2) ∧N(x3) ∧ S(x1, x2, x3) ⊃ S(s(x1), x2, s(x3)).

The two predicates N and S specify the Peano numerals and triples satisfying
x1 + x2 = x3 respectively.

A basic lemma about sums is that zero is a right identity for addition, i.e.
that the following sequent is provable

Γ =⇒ ∀x.N(x) ⊃ S(x, z, x)

In order to prove this sequent, we would need induction that is not available to
us in plain first-order logic. There are three different abstractions of the above
sequent, based on which argument of the predicate S is preserved. As N is
already a unary predicate, it is unchanged by these abstractions, hence we elide
it in the following:

∀x.N(x) ⊃ S(z), ∀x1, x2, x3.N(x1) ∧N(x2) ∧N(x3) ∧ S(x1) ⊃ S(s(x1))
−→ ∀x.N(x) ⊃ S(x)

∀x.N(x) ⊃ S(x), ∀x1, x2, x3.N(x1) ∧N(x2) ∧N(x3) ∧ S(x2) ⊃ S(x2)
−→ ∀x.N(x) ⊃ S(z)

∀x.N(x) ⊃ S(x), ∀x1, x2, x3.N(x1) ∧N(x2) ∧N(x3) ∧ S(x3) ⊃ S(s(x3))
−→ ∀x.N(x) ⊃ S(x)

Of these three abstracted sequents, the first sequent (and only this sequent) is
unprovable, hence the unabstracted sequent is not provable, as one would expect.

5 Experimental Results

To test our abstraction, we applied it to a selection of problems from the ILTP[10]
problem library. This is a rather coarse test, as it corresponds to only using the
abstraction to disprove the original goal, and not the subgoals that are encoun-
tered during proof search. We feel, however, that even this relatively limited test
shows the efficacy of this way of disproving sequents.

The abstraction was implemented as a transformation for the tptp2X tool,
which is part of the TPTP[12] problem library. By doing this, we were able
to leverage the pre-existing methods for parsing and printing problems in the
TPTP format.

We applied the abstraction to a selection of ILTP problems that were flagged
as Theorem, Non-Theorem or Unsolved. The resulting monadic problems were
then tested with the Spass 3.5 theorem prover running on a laptop with a
2.66GHz processor and 4GB memory. A time limit of 10 seconds was set for
the theorem prover. The results are summarized in Table 1.
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Table 1. Experimental results

Status Problems Abstractions Proved Disproved Timed out

Theorem 167 7706 167 0 0
Non-Theorem 56 110 50 6 0
Unsolved 78 14855 5 59 14

A problem is tallied in the Disproved column if at least one abstraction was
disproved, and in the Timeout column if there were attempts that timed out
and no attempts that found a disproof. By testing our implementation on prob-
lems that are known to be theorems, we have an empirical verification that our
implementation is indeed a truthful abstraction.

Table 2. Distribution of abstraction results

Problem Disproved Proved Timed out

KRS173 2 0 0
SWV016 0 288 0
SWV018 0 288 0
SYN322 2 0 0
SYN330 0 2 0
SYN344 1 1 0
SYN419 1022 0 2
SYN420 973 0 51
SYN421 997 0 27
SYN422 999 0 25
SYN423 379 0 645
SYN424 201 0 823
SYN425 963 0 61
SYN426 164 0 860
SYN427 244 0 780
SYN428 614 0 410
SYN429 753 0 271
SYN513 0 32 0
SYN514 32 0 0
SYN515 32 0 0
SYN516 32 0 0
SYN517 32 0 0
SYN518 3 24 5
SYN519 0 26 6
SYN520 0 22 10
SYN521 32 0 0
SYN540 8 24 0
SYN541 32 0 0
SYN544 181 32 43
SYN545 207 0 49
SYN546 178 0 78
SYN547 256 0 0
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To give an accurate view of the usefulness of the abstraction, we have only
included the results where we were able to test all abstractions of a given prob-
lem. This means that we have left out several problems from the NLP problem
set, for which the number of abstractions in some cases exceeded 100,000. This
should not be interpreted to mean that our implementation cannot be used for
these problems, but rather that we thought it more important to give a complete
set of results for the chosen problems. We also left out problems where there was
no conjecture to prove or disprove.

It may seem surprising that it was not possible to disprove 50 of the 56 non-
theorems tested. This is in part because 48 of these problems were already within
the monadic fragment. Also, most of these problems are provable in classical
logic, and can therefore not be disproved by our abstractions.

For each problem, finding a single abstraction without proof is enough to
disprove the entire problem. To give a better view of how the three possible out-
comes are distributed, we have collected a representative sample of the problems
from the Unsolved problem set in Table 2. This table shows for each problem
how many proof attempts resulted in the three possible outcomes.

6 Conclusion and Future Work

In this paper we have presented a family of truthful abstractions from intuition-
istic first-order logic to monadic classical first-order logic. We have characterized
the shape of a possible truthful abstractions and validated the usefulness of the
technique experimentally.

Although these abstractions were motivated using proof search in intuitionistic
logic, they apply equally to classical first-order logic, hence there might be some
benefit in applying these abstractions to proof search in classical first-order logic
as well.

One drawback of using the abstractions described in this paper is that a single
sequent may have a large number of possible abstractions. Thus, to disprove
a sequent it may be necessary to attempt disproofs of many more abstracted
sequents in the hope of finding a single disproof. Clearly this approach can be
parallelized in the trivial way of simply running all of these proof searches in
parallel, but there might be gains to be had from either detecting abstracted
sequents that are trivially true or combining several abstractions into a single
abstraction.

Related to our work is the work on the Scott system [5] that combines the
tableau method as model generation with automated theorem proving. The
tableau method not only detects unsatisfiability of the negated conjecture but
also generates models for it. This is similar to the use of model generating sys-
tems during refutation proofs. Thus, certain classes of false conjectures can be
detected by generating counter-models. However, the relationship between these
classes and the class characterized by the procedure presented in this paper is
unclear yet and is left for future work.

Our work can be seen as an application of Unsound Theorem Proving [7] to
intuitionistic first-order logic. In this paper we have only explored a small subset



110 T. Brock-Nannestad and C. Schürmann

of all the decidable fragments of first-order logic. There are many more such
fragments, and the overall methodology may apply to these fragments as well.

Another point for future work would be to test this approach more thor-
oughly on the ILTP[10] and TPTP[12] problem libraries to see what proportion
of unprovable problems may be refuted by using our decision procedure.

Finally, using the compositionality of truthful abstractions, it might be inter-
esting to extend this approach to “larger” source logic, for instance the meta-logic
of the Twelf theorem prover[9].
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Chad E. Brown

Saarland University, Saarbrücken, Germany

Abstract. Satallax is an automatic higher-order theorem prover that
generates propositional clauses encoding (ground) tableau rules and uses
MiniSat to test for unsatisfiability. We describe the implementation, fo-
cusing on flags that control search and examples that illustrate how the
search proceeds.

Keywords: higher-order logic, simple type theory, higher-order theorem
proving.

1 Introduction

Satallax is an automatic theorem prover for classical higher-order logic with ex-
tensionality and choice. The search proceeds by generating propositional clauses
that simulate tableau rules. Once the set of propositional clauses is unsatisfi-
able, the original higher-order problem is solved. An abstract description of the
search procedure is given in [6]. The corresponding tableau calculus is proven
sound and complete relative to Henkin models in [1], and the search procedure
is proven sound and complete in [6].

In this system description we discuss the implementation of the search pro-
cedure. A number of flags can be used to guide search. We discuss the most
important of these flags and give example problems from TPTP v5.3.0 [10] to
illustrate how these flags affect the behavior of Satallax. (From now on, we use
TPTP to refer to TPTP v5.3.0.)

Satallax won the THF division of the CASC-23 competition at CADE-23 in
2011 [11]. Out of 300 problems with a 5 minute time limit, Satallax 2.1 solved 246.
LEO-II 1.2.8 [3] came in second, solving 208 problems. Among the 300 problems,
there were 15 problems that only Satallax could solve. Most of these 15 problems
were related to a choice operator. Since Satallax is the only system that directly
supports reasoning with choice operators, it clearly has an advantage on such
problems. By contrast, there were 18 problems LEO could solve but no other
system could. Many of these involved first-order equational reasoning (e.g., group
theory problems).

The first versions of Satallax (1.0-1.4) were coded in Steel-Bank Common
Lisp during 2009-2010. Starting with version 2.0 in 2010, Satallax has been
implemented in Objective Caml with the exception of some code implementing
a foreign function interface to MiniSat functions. MiniSat [8] is implemented
in C++. The latest version of Satallax is Satallax 2.3 (approximately 13,000
lines Objective Caml code and 100 lines of C++) which uses MiniSat 2.2.0
(approximately 2,000 lines of C++). Satallax is available at satallax.com.

B. Gramlich, D. Miller, and U. Sattler (Eds.): IJCAR 2012, LNAI 7364, pp. 111–117, 2012.
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2 Preliminaries

We will assume familiarity with simple type theory and only briefly review to
make the notation clear. A more detailed presentation can be found in [1]. Simple
types σ, τ are either base types (o, ι, α, β) or function types στ (for functions
from σ to τ). The type o is the type of propositions. Terms (s, t) are either
variables (x, y, z, . . .), logical constants (⊥, →, ∀σ, =σ and εσ), applications
st or λ-abstractions λx.s. Variables have a corresponding type and we only
consider well-typed terms. A term of type o is called a formula. We write sxt
for the capture-avoiding substitution of t for x in s.

We use notation ∀xσ.s or ∀x.s (where x has type σ) for ∀σ(λx.s). We use
infix notation s → t and s =σ t (or s = t) for (→ s)t and (=σ s)t, respectively.
We write ¬s for s → ⊥. We write stu for (st)u except ¬st means ¬(st). Since
the THF problems in the TPTP problem library make use of logical connectives
such as ∨ and ∧, we also use notation s∨ t for ¬s→ t, s∧ t for ¬(s→ ¬t), s↔ t
for s =o t, ∃x.s for ¬∀x.¬s and ∃!x.s for ∃x.s∧∀y.sxy → x = y. The scope of the
λ, ∀, ∃ and ∃! binders is as far to the right as is consistent with parentheses. We
also use the usual notation for quantifying over several variables. For example,
∀xy.s means ∀x.∀y.s and ∃xy.s means ∃x.∃y.s.

A β-redex is of the form (λx.s)t and this redex reduces to sxt . An η-redex is of
the form (λx.sx) where x is not free in s and this redex reduces to s.We also reduce
terms ¬¬s to s. All typed terms have a normal form. Satallax normalizes eagerly.

A branch A is a finite set of normal formulas. Given a theorem proving prob-
lem, we take all the axioms of the problem and combine them with the negation
of the conjecture (if a conjecture is given) to form a branch A. The goal is then
to prove A is (Henkin-)unsatisfiable.

3 Basic Search Procedure and Implementation

We briefly describe the link between higher-order formulas and propositional
literals. The general technique of using a propositional abstraction is standard
and is used by SMT solvers (e.g., see [7]). Let Atom be a set of propositional
atoms. A literal is an atom a or a negated atom a. Let a be a. Let *−+ be a
function from formulas to propositional literals such that *¬s+ is *s+. (We assume
if *s+ = *t+, then s and t are equivalent up to renaming and normalization.) A
clause is a finite set of literals. We write a clause {l1, . . . , ln} as l1 � · · · � ln.
(We use � instead of ∨ to distinguish the propositional clause level from the
higher-order formula level.)

A quasi-state Σ is determined by sets of passive and active formulas, sets of
passive and active terms (to be used as instantiations) and a set of propositional
clauses. An active formula or term is one that must still be processed, while a
passive formula or term is one that has already been processed and can now
only contribute when processing a new active formula or term.1 A state is a

1 A reviewer pointed out that in some of the literature on superposition-based theorem
proving, the terms “active” and “passive” are used in the opposite way. We keep the
current terminology to be consistent with [6].



Satallax: An Automatic Higher-Order Prover 113

quasi-state satisfying a finite number of conditions that can be found in [6]. The
idea of the conditions can be easily summarized as follows: For every (instance
of) a tableau rule that can be formed using passive formulas and passive terms,
there are corresponding propositional clauses in the state. Also, every literal l
in a clause is either *s+ for some active or passive formula s or is *s+ for some
passive formula s.

Given a branch A to refute, we can start from any initial state for A. A state
is initial for A if for every formula s in A, s is either active or passive in the
state and the unit clause *s+ is a clause in the state.

On an abstract level, a state is transformed into a successor state by processing
an active formula (making the formula passive), by processing an active term
(making the term passive), or by the generation of a new active term (to use as
an instantiation). The successor state may have new active formulas, new active
terms and new clauses. In reality, the situation is a bit more complicated. First,
there must be an enumeration scheme that creates new active terms for higher-
order quantifiers (if the original problem contains higher-order quantifiers). Also,
there are two tableau rules with more than one principal formula: mating and
confrontation.

We describe the mating rule. Suppose we are processing an active formula
ps1 · · · sn where p is a variable. In order to process ps1 · · · sn we should, for each
passive formula ¬pt1 · · · tn (a mate), make each disequation si �= ti an active
formula in the new state and add a clause

*ps1 · · · sn+ � *pt1 · · · tn+ � *s1 = t1+ � · · · � *sn = tn+.

The way the implementation actually handles this case is to create a command
for each pair of mates. When the command is executed, the disequations are
added as active formulas and the corresponding clause is added to the new
state. The confrontation rule is similar to the mating rule, but operates on an
equation s =α t and a disequation u �=α v at a base type α (other than o).

The particular behavior of the search depends on 33 boolean flags and 79
integer flags. We will describe a few of these flags in Section 4 and give examples
illustrating how they affect search.

Active and passive terms of a state are used as instantiations for quantifiers.
In the implementation, the initial state always starts with two passive terms ⊥
and ¬⊥ which act as instantiations for type o. New active terms s and t of a base
type α (other than o) appear during the search when a disequation s �=α t is
processed. If no active term of a base type α appears, then eventually a default
element must be inserted as an active term. This default element will either be
a new variable of type α, the term εα(λx.⊥), or some term of type α that has
appeared during the search already. For the sake of completeness, new active
terms of function types must be enumerated during the search. There are two
different enumeration processes for such terms. Under some flag settings other
active terms are inserted into the state. Since some logical constants (e.g., =σ)
depend on a type σ, there is also an enumeration process for generating types.

A command is one of the following:
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1. Process a formula s. Unless s is already passive (meaning it has already
been processed), make s passive and add new active formulas, active terms,
proposition clauses, and commands.

2. Process a term tσ as an instantiation. Unless t is already passive, make t
passive and for each passive formula ∀σs add the normal form u of st as a
new active formula, add the command of processing u, and add the clause
*∀σs+ � *u+.

3. Apply an instance of the mating rule.
4. Apply an instance of the confrontation rule.
5. Create a default element of a base type α.
6. Work on enumerating a new type. Once a type σ has been generated by

the type enumeration process, we can imitate (in the sense of higher-order
unification) logical constants =σ, ∀σ and εσ when enumerating instantiation
terms.

7. Work on enumerating a term of a given type σ with local variables x1, . . . , xn.
8. Given a term tσ1···σnα, work on enumerating a term of type α of the form

ts1 · · · sn with local variables x1, . . . , xn.
9. Use iterative deepening to enumerate all closed terms of a type up to a

certain depth. This is an alternative to the previous enumeration commands
which we will not discuss further.

10. Filter out a passive formula s if the set of clauses implies *s+. We will not
discuss filtering further.

A collection of commands is put into a priority queue. The purpose of many
of the integer flags is to determine the priority of new commands as they are
generated. Search proceeds by taking one of the highest priority commands and
processing it. The search ends successfully when the set of propositional clauses
is propositionally unsatisfiable.

Example 1. We discuss the simple problem SYO357ˆ5 from the TPTP in detail
to illustrate the search procedure. The source for this problem is [2]. The con-
jecture is (∀Pαo.(a∨¬a)∧Pu → (b∨¬b)∧Pv) → ∀Qαo.Qu→ Qv. Let s1 be the
negation of this conjecture. We start with an initial state with a single active
formula s1 and a single clause *s1+. We process this formula, making it passive,
adding two new active formulas s2: ∀Pαo.(a∨¬a)∧ Pu→ (b∨¬b) ∧Pv and s3:
¬∀Qαo.Qu→ Qv and new clauses *s1+�*s2+ and *s1+�*s3+. We process s2, but
since there are no passive terms of type αo this adds no new active formulas or
clauses. Since this is the first time a universal quantifier over type αo has been
encountered, we add the command for enumerating a term of type αo. We pro-
cess s3, using Q as a fresh variable, adding the active formula s4: ¬(Qu→ Qv)
and clause *s3+ � *s4+. We process s4 adding active formulas Qu and ¬Qv and
clauses *s4+ � *Qu+ and *s4+ � *Qv+. At this point, one thing Satallax will do is
to process Qu and then ¬Qv which adds the command for mating these two for-
mulas. This line of actions does not contribute to the solution. Instead, we return
to the command for enumerating a term of type αo. The command is executed
by choosing a fresh variable x of type α and adding a command for enumerat-
ing a term s of type o with x free. We execute this new command by finding
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all possible heads for a term of the form λx.−. In the language of higher-order
unification, these heads are either the result of a projection or of an imitation.
No projection is possible (because α is not o). Possible imitations are Qαo and
logical constants of the form εσ1···σno. The instantiation we want has Q at the
head. One new command is to enumerate a term of type o with Q at the head
and with x (possibly) free. To do this we only need to enumerate a term of type
α with x free (to use as the argument of Q). We obtain such a term by projecting
the local variable x and obtain the closed term λx.Qx. In normal form, the term
is Q. We add this as a new active term Q and immediately process this Q. We
use this term Q as an instantiation for the passive universally quantified formula
s2 giving the new active formula s5: (a ∨ ¬a) ∧ Qu → (b ∨ ¬b) ∧ Qv and new
clause *s2+ � *s5+. The rest of the search is straightforward. We process s5 and
then the formulas that arise from continuing to process the resulting formulas.
This yields the following clauses which (combined with the clauses above) are
propositionally unsatisfiable.

*s5+ � *(a ∨ ¬a) ∧Qu+ � *(b ∨ ¬b) ∧Qv+
*(a ∨ ¬a) ∧Qu+ � *a ∨ ¬a+ � *Qu+
*a ∨ ¬a+ � *a+
*a ∨ ¬a+ � *a+
*(b ∨ ¬b) ∧Qv+ � *b ∨ ¬b+
*(b ∨ ¬b) ∧Qv+ � *Qv+

4 Flags

We now consider a few of the most important flags that affect search.
Some flags affect what happens before the search begins. If the boolean flag

Leibeq To Primeq is true, then subterms of the form ∀Pσo.P s → Pt or
∀P.¬Ps → ¬Pt (where P is free in neither s nor t) are rewritten to s =σ t.
Also, subterms of the forms ∀Rσσo.(∀x.Rxx)→ Rst or ∀Rσσo.¬Rst→ ¬∀x.Rxx
(where R is free in neither s nor t) are rewritten to s = t. This is often a good
idea because dealing with equalities is usually easier than dealing with higher-
order quantifiers. Two particular examples from the TPTP in which this is good
idea are SEV288ˆ5 (λxα.λyα.∀qα.qx → qy) = (λx.λy.x = y) and SEV121ˆ5
(λxι.λy.x = y) = (λx.λy.∀pιιo.(∀z.pzz)→ pxy). In both cases, the problem be-
comes trivial after rewriting the quantified formulas into equations. An example
in which this is a bad idea is SYO357ˆ5 (Example 1) because the conjecture
becomes (∀Pαo.(a ∨ ¬a) ∧ Pu → (b ∨ ¬b) ∧ Pv) → u = v. The instantiation
needed for P is (λzα.u = z) which is more complicated than the instantiation Q
used in Example 1.

Another flag that controls preprocessing is Split Global Disjunctions. If
this flag is true, then the initial branch is split into several branches each of
which is refuted independently.

Example 2. The formula (∀xy.x = y → (φx ↔ ψx)) → ((∃!x.φx) ↔ ∃!x.ψx) is
the conjecture of SEU550ˆ2 from the TPTP. This can be split into two indepen-
dent branches to refute, each of which is refuted in the same way.
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An example for which setting Split Global Disjunctions to true is a bad
idea is SYO181ˆ5 (a propositional encoding of McCarthy’s Mutilated Checker-
board problem [9]) because the preprocessing would split it into over 2271 inde-
pendent subgoals. On the other hand, if Split Global Disjunctions is false,
then SYO181ˆ5 is easy to solve.

If the flag Initial Subterms As Instantiations is true, then we seed the
initial state with active terms for each subterm of the initial branch. If the flag
Instantiate With Func Diseqn Sides is true, then each time a functional
disequation s �=στ t is processed the terms s and t are added as active terms.

One of the most successful additions to the basic search procedure is the use
of higher-order clauses and pattern unification to find instantiations. If the flag
Enable Pattern Clauses is set to true, then processing universally quantified
formulas may generate higher-order clauses with meta-variables. For example,
an assumption ∀xy.x ⊆ y → y ⊆ x → x =ι y will generate a clause of the
form ?X �⊆?Y |?Y �⊆?X |?X =ι?Y . Afterwards, whenever a ground term s �=ι t is
processed, the propositional clause

*∀xy.x ⊆ y → y ⊆ x→ x = y+ � *s ⊆ t+ � *t ⊆ s+ � *s = t+

is added and s �⊆ t and t �⊆ s are added as active formulas. An example is
SEU506ˆ2 in the TPTP.

If the boolean flagTreat Conjecture As Special is true, then the conjec-
ture (and subformulas of the conjecture) are processed before the other formulas.
The integer flag Axiom Delay determines how long the other formulas are de-
layed. The integer flag Relevance Delay delays formulas longer if they do not
have variables in common with the conjecture.

Each time a new propositional clause is sent to MiniSat, it will compute a
satisfying assignment (if the set of clauses is still satisfiable). If the integer flag
Not In Prop Model Delay is non-zero, then Satallax will use the current
propositional satisfying assignment to direct the search. In particular, Satallax
will delay processing active formulas until the corresponding propositional literal
is true in the current satisfying assignment.2

There are many more flags we will not discuss here. There are 279 predefined
modes (collections of flag settings) in Satallax 2.3. Given a five minute time-
out, the default strategy schedule (sequence of modes with a timeout) contains
37 modes. The TPTP (v5.3.0) contains 2924 THF (higher-order) problems. Of
these, 343 are known to be satisfiable. Of the remaining 2581 THF problems,
the strategy schedule can prove 1817 (70%) – including the examples above.

5 Conclusion and Future Work

In terms of CASC, Satallax has already proven to be a successful prover. How-
ever, there is much room for improvement. One possibility would be to integrate

2 The idea of using the satisfying assignment to direct the search was suggested by
Koen Claessen at CADE-23.
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Satallax with an SMT solver [7,4]. Another possibility would be to solve for set
variables using the techniques described in [5]. Also, integrating Satallax with
an interactive proof assistant (e.g., Coq) would provide new ground upon which
to judge its effectiveness.

Acknowledgements. Thanks to Gert Smolka for his support.
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Abstract. The use of interpolants in verification is gaining more and
more importance. Since theories used in applications are usually ob-
tained as (disjoint) combinations of simpler theories, it is important
to modularly re-use interpolation algorithms for the component theo-
ries. We show that a sufficient and necessary condition to do this for
quantifier-free interpolation is that the component theories have the
‘strong (sub-)amalgamation’ property. Then, we provide an equivalent
syntactic characterization, identify a sufficient condition, and design a
combined quantifier-free interpolation algorithm handling both convex
and non-convex theories, that subsumes and extends most existing work
on combined interpolation.

1 Introduction

Algorithms for computing interpolants are more and more used in verification,
e.g., in the abstraction-refinement phase of software model checking [16]. Of
particular importance in practice are those algorithms that are capable of com-
puting quantifier-free interpolants in presence of some background theory. Since
theories commonly used in verification are obtained as combinations of simpler
theories, methods to modularly combine available quantifier-free interpolation
algorithms are desirable. This paper studies the modularity of quantifier-free
interpolation.

Our starting point is the well-known fact [1] that quantifier-free interpola-
tion (for universal theories) is equivalent to the model-theoretic property of
amalgamability. Intuitively, a theory has the amalgamation property if any two
structuresM1,M2 in its class of models sharing a common sub-model M0 can
be regarded as sub-structures of a larger model M, called the amalgamated
model. Unfortunately, this property is not sufficient to derive a modularity re-
sult for quantifier-free interpolation. As shown in this paper, a stronger notion
is needed, called strong amalgamability [19], that has been thoroughly analyzed
in universal algebra and category theory [21,28]. A theory has the strong amal-
gamation property if in the amalgamated modelM, elements from the supports
of M1,M2 not belonging to the support of M0 cannot be identified. An exam-
ple of an amalgamable but not strongly amalgamable theory is the theory of
fields: let M0 be a real field and M1,M2 be two copies of the complex num-
bers, the imaginary unit in M1 must be identified with the imaginary unit of

B. Gramlich, D. Miller, and U. Sattler (Eds.): IJCAR 2012, LNAI 7364, pp. 118–133, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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M2 (or with its opposite) in any amalgamating field M since the polynomial
x2+1 cannot have more than two roots (more examples will be discussed below,
many examples are also supplied in the catalogue of [21]). We show that strong
amalgamability is precisely what is needed for the modularity of quantifier-free
interpolation, in the following sense (here, for simplicity, we assume that theo-
ries are universal although in the paper we generalize to arbitrary ones): (a) if
T1 and T2 are signature disjoint, both stably infinite and strongly amalgamable,
then T1∪T2 is also strongly amalgamable and hence quantifier-free interpolating
and (b) a theory T is strongly amalgamable iff the disjoint union of T with the
theory EUF of equality with uninterpreted symbols has quantifier-free interpo-
lation (Section 3). The first two requirements of (a) are those for the correctness
of the Nelson-Oppen method [26] whose importance for combined satisfiability
problems is well-known.

Since the proof of (a) is non-constructive, the result does not provide an al-
gorithm to compute quantifier-free interpolants in combinations of theories. To
overcome this problem, we reformulate the notion of equality interpolating the-
ory T in terms of the capability of computing some terms that are equal to the
variables occurring in disjunctions of equalities entailed (modulo T ) by pairs
of quantifier-free formulae and show that equality interpolation is equivalent to
strong amalgamation (Section 4). To put equality interpolation to productive
work, we show that universal theories admitting elimination of quantifiers are
equality interpolating (Section 4.1). This implies that the theories of recursively
defined data structures [27], Integer Difference Logic, Unit-Two-Variable-Per-
Inequality, and Integer Linear Arithmetic with division-by-n [5] are all equality
interpolating. Our notion of equality interpolation is a strict generalization of the
one in [32] so that all the theories that are equality interpolating in the sense
of [32] are also so according to our definition, e.g., the theory of LISP struc-
tures [26] and Linear Arithmetic over the Reals (Section 4.2). Finally, we de-
scribe a combination algorithm for the generation of quantifier-free interpolants
from finite sets of quantifier-free formulae in unions of signature disjoint, sta-
bly infinite, and equality interpolating theories (Section 5). The algorithm uses
as sub-modules the interpolation algorithms of the component theories and is
based on a sequence of syntactic manipulations organized in groups of syntactic
transformations modelled after a non-deterministic version of the Nelson-Oppen
combination schema (see, e.g., [31]). For proofs and additional information on
related topics, see the Appendixes of the Technical Report [8].

2 Formal Preliminaries

We assume the usual syntactic and semantic notions of first-order logic (see,
e.g., [12]). The equality symbol “=” is included in all signatures considered below.
For clarity, we shall use “≡” in the meta-theory to express the syntactic identity
between two symbols or two strings of symbols. Notations like E(x) means that
the expression (term, literal, formula, etc.) E contains free variables only from
the tuple x. A ‘tuple of variables’ is a list of variables without repetitions and a
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‘tuple of terms’ is a list of terms (possibly with repetitions). Finally, whenever we
use a notation like E(x, y) we implicitly assume not only that both the x and the
y are pairwise distinct, but also that x and y are disjoint. A formula is universal
(existential) iff it is obtained from a quantifier-free formula by prefixing it with
a string of universal (existential, resp.) quantifiers.

Theories, Elimination of Quantifiers, and Interpolation. A theory T is a
pair (Σ,AxT ), where Σ is a signature and AxT is a set of Σ-sentences, called
the axioms of T (we shall sometimes write directly T for AxT ). The models of T
are those Σ-structures in which all the sentences in AxT are true. A Σ-formula
φ is T -satisfiable if there exists a modelM of T such that φ is true inM under
a suitable assignment a to the free variables of φ (in symbols, (M, a) |= φ); it
is T -valid (in symbols, T � ϕ) if its negation is T -unsatisfiable or, equivalently,
ϕ is provable from the axioms of T in a complete calculus for first-order logic.
A theory T = (Σ,AxT ) is universal iff there is a theory T ′ = (Σ,AxT ′) such
that all sentences in AxT ′ are universal and the sets of T -valid and T ′-valid
sentences coincide. A formula ϕ1 T -entails a formula ϕ2 if ϕ1 → ϕ2 is T -valid
(in symbols, ϕ1 �T ϕ2 or simply ϕ1 � ϕ2 when T is clear from the context). The
satisfiability modulo the theory T (SMT (T )) problem amounts to establishing
the T -satisfiability of quantifier-free Σ-formulae.

A theory T admits quantifier-elimination iff for every formula φ(x) there is a
quantifier-free formula φ′(x) such that T � φ↔ φ′. A theory T admits quantifier-
free interpolation (or, equivalently, has quantifier-free interpolants) iff for every
pair of quantifier-free formulae φ, ψ such that ψ∧φ is T -unsatisfiable, there exists
a quantifier-free formula θ, called an interpolant, such that: (i) ψ T -entails θ, (ii)
θ ∧ φ is T -unsatisfiable, and (iii) only the variables occurring in both ψ and φ
occur in θ. A theory admitting quantifier elimination also admits quantifier-free
interpolation. A more general notion of quantifier-free interpolation property,
involving also free function symbols, is analyzed in an Appendix of the extended
version [8].

Embeddings, Sub-structures, and Combinations of Theories. The
support of a structure M is denoted with |M|. An embedding is a homo-
morphism that preserves and reflects relations and operations (see, e.g., [10]).
Formally, a Σ-embedding (or, simply, an embedding) between two Σ-structu-
res M and N is any mapping μ : |M| −→ |N| satisfying the following three
conditions: (a) it is a injective function; (b) it is an algebraic homomorphism,
that is for every n-ary function symbol f and for every a1, . . . , an ∈ |M|,
we have fN (μ(a1), . . . , μ(an)) = μ(fM(a1, . . . , an)); (c) it preserves and re-
flects interpreted predicates, i.e. for every n-ary predicate symbol P , we have
(a1, . . . , an) ∈ PM iff (μ(a1), . . . , μ(an)) ∈ PN . If |M| ⊆ |N | and the embed-
ding μ :M−→ N is just the identity inclusion |M| ⊆ |N |, we say that M is a
substructure of N or that N is a superstructure of M. As it is well-known, the
truth of a universal (resp. existential) sentence is preserved through substruc-
tures (resp. superstructures).
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A theory T is stably infinite iff every T -satisfiable quantifier-free formula (from
the signature of T ) is satisfiable in an infinite model of T . By compactness, it
is possible to show that T is stably infinite iff every model of T embeds into an
infinite one (see [14]). A theory T is convex iff for every conjunction of literals
δ, if δ �T

∨n
i=1 xi = yi then δ �T xi = yi holds for some i ∈ {1, ..., n}.

Let Ti be a stably-infinite theory over the signature Σi such that the SMT (Ti)
problem is decidable for i = 1, 2 and Σ1 and Σ2 are disjoint (i.e. the only shared
symbol is equality). Under these assumptions, the Nelson-Oppen combination
method [26] tells us that the SMT problem for the combination T1 ∪ T2 of the
theories T1 and T2 (i.e. the union of their axioms) is decidable.

3 Strong Amalgamation and Quantifier-Free
Interpolation

We first generalize the notions of amalgamability and strong amalgamability to
arbitrary theories.

Definition 1. A theory T has the sub-amalgamation property iff whenever we
are given modelsM1 andM2 of T and a common substructure A of them, there
exists a further model M of T endowed with embeddings μ1 : M1 −→ M and
μ2 :M2 −→M whose restrictions to |A| coincide.1

A theory T has the strong sub-amalgamation property if the embeddings μ1, μ2

satisfy the following additional condition: if for some m1,m2 we have μ1(m1) =
μ2(m2), then there exists an element a in |A| such that m1 = a = m2.

If the theory T is universal, any substructure of a model of T is also a model of
T and we can assume that the substructure A in the definition above is also a
model of T . In this sense, Definition 1 introduces generalizations of the standard
notions of amalgamability and strong amalgamability for universal theories (see,
e.g., [21] for a survey). The result of [1] relating universal theories and quantifier-
free interpolation can be easily extended.

Theorem 1. A theory T has the sub-amalgamation property iff it has quanti-
fier-free interpolants.

A theory admitting quantifier elimination has the sub-amalgamation property:
this follows, e.g., from Theorem 1 above. On the other hand, quantifier elimina-
tion is not sufficient to guarantee the strong sub-amalgamation property. In fact,
from Theorem 3 below and the counterexample given in [4], it follows that Pres-
burger arithmetic does not have the strong sub-amalgamation property, even if
we add congruences modulo n to the language. However, in Section 4, we shall
see that it is sufficient to enrich the signature of Presburger Arithmetic with
(integer) division-by-n (for every n ≥ 1) to have strong amalgamability.

1 For the results of this paper to be correct, the notion of structure (and of course that
of substructure) should encompass the case of structures with empty domains. Read-
ers feeling uncomfortable with empty domains can assume that signatures always
contain an individual constant.
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Examples. For any signature Σ, let EUF(Σ) be the pure equality theory over
Σ. It is easy to see that EUF(Σ) is universal and has the strong amalgama-
tion property by building a model M of EUF(Σ) from two models M1 and
M2 sharing a substructure M0 as follows. Without loss of generality, assume
that |M0| = |M1| ∩ |M2|; let |M| be |M1| ∪ |M2| and arbitrarily extend the
interpretation of the function and predicate symbols to make them total on |M|.

Let us now consider two variants AX ext and AX diff of the theory of arrays
considered in [7,9]. The signatures ofAX ext and AX diff contain the sort symbols
ARRAY, ELEM, and INDEX, and the function symbols rd : ARRAY× INDEX −→ ELEM

and wr : ARRAY×INDEX×ELEM −→ ARRAY. The signature of AX diff also contains
the function symbol diff : ARRAY× ARRAY −→ INDEX. The set AX ext of axioms
contains the following three sentences:

∀y, i, j, e. i �= j ⇒ rd(wr(y, i, e), j) = rd(y, j), ∀y, i, e. rd(wr(y, i, e), i) = e,

∀x, y. x �= y ⇒ (∃i. rd(x, i) �= rd(y, i))

whereas the set of axioms for AX diff is obtained from that of AX ext by replacing
the third axiom with its Skolemization:

∀x, y. x �= y ⇒ rd(x, diff(x, y)) �= rd(y, diff(x, y)) .

In [9], it is shown that AX diff has the strong sub-amalgamation property while
AX ext does not. However AX ext (which is not universal) enjoys the following
property (this is the standard notion of amalgamability from the literature):
given two models M1 and M2 of AX ext sharing a substructure M0 which is
also a model of AX ext, there is a modelM of AX ext endowed with embeddings
from M1,M2 agreeing on the support of M0.

The application of Theorem 1 to EUF(Σ), AX diff, and AX ext allows us
to derive in a uniform way results about quantifier-free interpolation that are
available in the literature: that EUF(Σ) (see, e.g., [13, 24]) and AX diff [7, 9]
have quantifier-free interpolants, and that AX ext does not [20].

3.1 Modularity of Quantifier-Free Interpolation

Given the importance of combining theories in SMT solving, the next step is to
establish whether sub-amalgamation is a modular property. Unfortunately, this
is not the case since the combination of two theories admitting quantifier-free
interpolation may not admit quantifier-free interpolation. For example, the union
of the theory EUF(Σ) and Presburger arithmetic does not admit quantifier-
free interpolation [4]. Fortunately, strong sub-amalgamation is modular when
combining stably infinite theories.

Theorem 2. Let T1 and T2 be two stably infinite theories over disjoint signa-
tures Σ1 and Σ2. If both T1 and T2 have the strong sub-amalgamation property,
then so does T1 ∪ T2.
Theorems 1 and 2 obviously imply that strong sub-amalgamation is sufficient
for the modularity of quantifier-free interpolation for stably infinite theories.
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Corollary 1. Let T1 and T2 be two stably infinite theories over disjoint signa-
tures Σ1 and Σ2. If both T1 and T2 have the strong sub-amalgamation property,
then T1 ∪ T2 admits quantifier-free interpolation.

We can also show that strong sub-amalgamation is necessary as explained by
the following result.

Theorem 3. Let T be a theory admitting quantifier-free interpolation and Σ
be a signature disjoint from the signature of T and containing at least a unary
predicate symbol. Then, T ∪ EUF(Σ) admits quantifier-free interpolation iff T
has the strong sub-amalgamation property.

Although Corollary 1 is already useful to establish whether combinations of the-
ories admit quantifier-free interpolants, proving the strong sub-amalgamability
property can be complex. In the next section, we study an alternative (“syn-
tactic”) characterization of strong sub-amalgamability that can be more easily
applied to commonly used theories.

4 Equality Interpolation and Strong Amalgamation

There is a tight relationship between the strong sub-amalgamation property
of a theory T and the fact that disjunctions of equalities among variables are
entailed by T . To state this precisely, we need to introduce some preliminary
notions. Given two finite tuples t ≡ t1, . . . , tn and v ≡ v1, . . . , vm of terms,

the notation t ∩ v �= ∅ stands for the formula
n∨

i=1

m∨
j=1

(ti = vj).

We use t1t2 to denote the juxtaposition of the two tuples t1 and t2 of terms. So,
for example, t1t2 ∩ v �= ∅ is equivalent to (t1 ∩ v �= ∅) ∨ (t2 ∩ v �= ∅).

Definition 2. A theory T is equality interpolating iff it has the quantifier-free
interpolation property and satisfies the following condition:

– for every quintuple x, y
1
, z1, y2, z2 of tuples of variables and pair of quantifier-

free formulae δ1(x, z1, y1) and δ2(x, z2, y2) such that

δ1(x, z1, y1) ∧ δ2(x, z2, y2) �T y
1
∩ y

2
�= ∅ (1)

there exists a tuple v(x) of terms such that

δ1(x, z1, y1) ∧ δ2(x, z2, y2) �T y
1
y
2
∩ v �= ∅ . (2)

We are now in the position to formally state the equivalence between strong
sub-amalgamation and equality interpolating property.

Theorem 4. A theory T has the strong sub-amalgamation property iff it is
equality interpolating.
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4.1 Equality Interpolation at Work

We now illustrate some interesting applications of Theorem 4 so that, by using
Corollary 1, we can establish when combinations of theories admit quantifier-
free interpolation. To ease the application of Theorem 4, we first study the rela-
tionship between quantifier-elimination and equality interpolation for universal
theories.

Theorem 5. A universal theory admitting quantifier elimination is equality in-
terpolating.

Interestingly, the proof of this theorem (see [8]) is constructive and shows how an
available quantifier elimination algorithm (for a universal theory) can be used
to find the terms v satisfying condition (2) of Definition 2; this is key to the
combined interpolation algorithm presented in Section 5 below.
Examples. The theory RDS of recursive data structures [27] consists of two
unary function symbols car and cdr and a binary function symbol cons, and it
is axiomatized by the following infinite set of sentences:

∀x, y.car(cons(x, y)) = x, ∀x, y.cdr(cons(x, y)) = y, (CCC)

∀x, y.cons(car(x), cdr(x)) = x, ∀x.x �= t(x)

where t is a term obtained by finitely many applications of car and cdr to the
variable x (e.g., car(x) �= x, cdr(cdr(x)) �= x, cdr(car(x)) �= x, and so on).
Clearly, RDS is universal; the fact that it admits elimination of quantifiers is
known since an old work by Mal’cev [17].

Following [12], we define the theory IDL of integer difference logic to be
the theory whose signature contains the constant symbol 0, the unary function
symbols succ and pred, and the binary predicate symbol <, and which is axiom-
atized by adding to the irreflexivity, transitivity and linearity axioms for < the
following set of sentences:

∀x.succ(pred(x)) = x, ∀x.pred(succ(x)) = x,
∀x, y.x < succ(y)↔ (x < y ∨ x = y), ∀x, y.pred(x) < y ↔ (x < y ∨ x = y).

IDL is universal and the fact that admits elimination of quantifiers can be
shown by adapting the procedure for a similar theory of natural numbers with
successor and ordering in [12]. The key observation is that the atoms of IDL are
equivalent to formulae of the form i �� fn(j) (for n ∈ Z, ��∈ {=, <}) where i, j
are variables or the constant 0, f0(j) is j, fk(j) abbreviates succ(succk−1(j))
when k > 0 or pred(predk−1(j)) when k < 0. (Usually, i �� fn(j) is written as
i− j �� n or as i �� j + n from which the name of “integer difference logic.”)

The theoryLAI ofLinearArithmetic over the Integers contains the binary pred-
icate symbol <, the constant symbols 0 and 1, the unary function symbol −, the
binary function symbol + and the unary function symbols div [n] (integer division
by n, for n > 1). The term x div [n] (which is new with respect to the language
of Presburger arithmetic) represents the unique q such that x = qn + r for some
r = 0, . . . , n−1.As axioms,we take a set of sentences such that all true sentences in
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the standardmodel of the integers canbe derived.This canbe achieved for instance
by adding to the axioms for totally orderedAbelian groups the following sentences
(below x rem[n] abbreviatesx−n(x div [n]), moreoverkt denotes the sum t+ · · ·+t
having k addends all equal to the term t and k stands for k1):

0 < 1, ∀y.¬(0 < y ∧ y < 1), and ∀x.x rem [n] = 0 ∨ · · · ∨ x rem[n] = n− 1 .

LAI can be seen as a variant of Presburger Arithmetic obtained by adding
the functions div [n] instead of the ‘congruence modulo n’ relations (for n =
1, 2, 3, ...), which are needed to have quantifier elimination (see, e.g., [12]). For
the application of Theorem 5, the problem with adding the ‘congruence modulo
n’ is that the resulting theory is not universal. Instead, LAI is universal and
the fact that admits elimination of quantifiers can be derived [8] by adapting
existing quantifier-elimination procedures (e.g., the one in [12]) and observing
that x is congruent to y modulo n can be defined as x rem[n] = y rem[n].

By Theorem 5, RDS, IDL, and LAI are equality interpolating. In [8], the
theory UT VPI of Unit-Two-Variable-Per-Inequality (see, e.g., [11]) is shown to
be also equality interpolating via Theorem 5.

4.2 A Comparison with the Notion of Equality Interpolation in [32]

We now show that the notion of equality interpolating theories proposed here
reduces to that of [32] when considering convex theories.

Proposition 1. A convex theory T admitting quantifier-free interpolation is
equality interpolating iff for every pair y1, y2 of variables and for every pair
of conjunctions of literals δ1(x, z1, y1), δ2(x, z2, y2) such that

δ1(x, z1, y1) ∧ δ2(x, z2, y2) �T y1 = y2 (3)

there exists a term v(x) such that

δ1(x, z1, y1) ∧ δ2(x, z2, y2) �T y1 = v ∧ y2 = v. (4)

The implication (3) ⇒ (4) is exactly the definition of equality interpolation
in [32]. In the following, a convex quantifier-free interpolating theory satisfying
(3) ⇒ (4) will be called YMc equality interpolating. By Proposition 1, an YMc
equality interpolating (convex) theory is also equality interpolating according to
Definition 2. For example, the theory LST of list structures [26] contains the
function symbols of RDS, a unary predicate symbol atom, and it is axiomatized
by the axioms of RDS labelled (CCC ) and the sentences:

∀x, y.¬atom(cons(x, y)), ∀x.¬atom(x)→ cons(car(x), cdr(x)) = x .

LST is a (universal) convex theory [26] that was shown to be YMc equality inter-
polating in [32]. By Proposition 1, we conclude that LST is equality interpolating
in the sense of Definition 2. In [32], also Linear Arithmetic over the Reals (LAR)
is shown to be YMc equality interpolating (the convexity of LAR is well-known
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from linear algebra). By Proposition 1, LAR is equality interpolating in the sense
of Definition 2. The same result can be obtained fromTheorem5 above by identify-
ing a set of universal axioms for the theory and showing that they admit quantifier
elimination. For the axioms to be universal, it is essential to includemultiplication
by rational coefficients in the signature of the theory, i.e. the unary function sym-
bols q ∗ for every q ∈ Q. If this is not the case, the theory is not sub-amalgamable
and thus not equality interpolating: to see this, consider the embedding of the sub-
structure Z into two copies of the reals. A direct counterexample to (3) ⇒ (4) of
Proposition 1 can be obtained by taking δi(x, yi) ≡ yi + yi = x for i = 1, 2 so that
v(x) ≡ 1

2 ∗ x in (4) and the function symbol 1
2 ∗ is required.

For non-convex theories, the notion of equality interpolation in this paper is
strictly more general than the one proposed in the extended version of [32]. Such
a notion, to be called YM equality interpolating below, requires quantifier-free
interpolation and the following condition:
− for every tuples x, z1, z2 of variables, further tuples y

1
= y11, . . . , y1n, y2 =

y21, . . . , y2n of variables, and pairs δ1(x, z1, y1), δ2(x, z2, y2) of conjunctions of
literals,

if δ1(x, z1, y1) ∧ δ2(x, z2, y2) �T
n∨

i=1

(y1i = y2i) holds,

then there exists a tuple v(x) = v1, . . . , vn of terms such that

δ1(x, z1, y1) ∧ δ2(x, z2, y2) �T
n∨

i=1

(y1i = vi ∧ vi = y2i).

We show that the notion of YM equality interpolation implies that of equality
interpolation proposed in this paper. Indeed, if a convex theory is YMc equality
interpolating, then it is also YM equality interpolating. Since EUF(Σ) is convex
and YMc equality interpolating (as shown in [32]), it is YM equality interpolat-
ing. By Theorems 3 and 4 (and the combination result of [32]), if a theory T is
YM equality interpolating, it is also equality interpolating in the sense of Defi-
nition 2. The converse does not hold, i.e. our notion is strictly weaker than YM
equality interpolation. To prove this, we define a (non-convex) theory Tcex that
has the strong sub-amalgamation property but is not YM equality interpolating.
Let the signature of Tcex contain three propositional letters p1, p2 and p3, three
constant symbols c1, c2, and c3, and a unary predicate Q. Tcex is axiomatized by
the following sentences: exactly one among p1, p2 and p3 holds, c1, c2, and c3 are
distinct, Q(x) holds for no more than one x, and pi → Q(ci) for i = 1, 2, 3. It
is easy to see that Tcex is stably infinite and has the strong sub-amalgamation
property (Tcex is non-convex since Q(x) ∧ y1 = c1 ∧ y2 = c2 ∧ y3 = c3 implies
the disjunction x = y1 ∨ x = y2 ∨ x = y3 without implying any single disjunct).
Now, notice that Q(x) ∧ Q(y) �Tcex x = y. According to the definition of the
YM equality interpolating property (see above), there should be a single ground
term v such that Q(x)∧Q(y) �Tcex x = v ∧ y = v. This cannot be the case since
we must choose among one of the three constants c1, c2, c3 to find such a term
v and none of these choices fits our purposes. Hence, Tcex is not YM equality
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interpolating although it has the strong sub-amalgamation property and hence
it is equality interpolating according to Definition 2.

To conclude the comparison with [32], since the notion of equality interpola-
tion of this paper is strictly weaker than that of YM equality interpolation, the
scope of applicability of our result about the modularity of theories admitting
quantifier-free interpolation (i.e. Corollary 1 above) is broader than the one in
the extended version of [32].

5 An Interpolation Algorithm for Combinations of
Theories

Although the notion of equality interpolation together with Corollary 1 allow
us to establish the quantifier-free interpolation property for all those theories
obtained by combining a theory axiomatizing a container data structure (such
as EUF , RDS, LST , or AX diff) with relevant fragments of Arithmetics (such
as LAR, IDL, UT VPI, or LAI), just knowing that quantifier-free interpolants
exist may not be sufficient. It would be desirable to compute interpolants for
combinations of theories by modularly reusing the available interpolation algo-
rithms for the component theories. This is the subject of this section.

To simplify the technical development, we work with ground formulae over
signatures expanded with free constants instead of quantifier free formulae as
done in the previous sections. We use the letters A,B, . . . to denote finite sets of
ground formulae; the logical reading of a set of formulae is the conjunction of its
elements. For a signature Σ and set A of formulae, ΣA denotes the signature Σ
expanded with the free constants occurring in A. Let A and B be two finite sets of
ground formulae in the signaturesΣA andΣB, respectively, andΣC := ΣA∩ΣB .
Given a term, a literal, or a formula ϕ we call it:

– AB-common iff it is defined over ΣC ;
– A-local (resp. B-local) if it is defined over ΣA (resp. ΣB);
– A-strict (resp. B-strict) iff it is A-local (resp. B-local) but not AB-common;
– AB-mixed if it contains symbols in both (ΣA \ΣC) and (ΣB \ΣC);
– AB-pure if it does not contain symbols in both (ΣA \ΣC) and (ΣB \ΣC).

(Sometimes in the literature about interpolation, “A-local” and “B-local” are
used to denote what we call here “A-strict” and “B-strict”).

5.1 Interpolating Metarules

Our combined interpolation method is based on the abstract framework intro-
duced in [7, 9] (to which, the interested reader is pointed for more details) and
used also in [6] that is based on ‘metarules.’ A metarule applies (bottom-up) to
a pair A,B of finite sets of ground formulae2 producing an equisatisfiable pair
of sets of formulae. Each metarule comes with a proviso for its applicability and
an instruction for the computation of the interpolant. As an example, consider
the metarule (Define0):

2 In [6, 7, 9], metarules manipulate pairs of finite sets of literals instead of ground
formulae; the difference is immaterial.
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Table 1. Interpolating Metarules (taken from [7,9]): each rule has a proviso Prov. and
an instruction Instr. for recursively computing the new interpolant φ′ from the old
one(s) φ, φ1, . . . , φk. Metarules are applied bottom-up and interpolants are computed
top-down. Notation φ(t/a) is used for substitution.

Close1 Close2 Propagate1 Propagate2

A | B

Prov.: A is unsat.
Instr.: φ′ ≡ ⊥.

A | B

Prov.: B is unsat.
Instr.: φ′ ≡ .

A | B ∪ {ψ}
A | B

Prov.: A � ψ and
ψ is AB-common.

Instr.: φ′ ≡ φ ∧ ψ.

A ∪ {ψ} | B
A | B

Prov.: B � ψ and
ψ is AB-common.

Instr.: φ′ ≡ ψ → φ.

Define0 Define1 Define2

A ∪ {a = t} | B ∪ {a = t}
A | B

Prov.: t is AB-common, a fresh.
Instr.: φ′ ≡ φ(t/a).

A ∪ {a = t} | B
A | B

Prov.: t is A-local and a is fresh.
Instr.: φ′ ≡ φ.

A | B ∪ {a = t}
A | B

Prov.: t is B-local and a is fresh.
Instr.: φ′ ≡ φ.

Disjunction1 Disjunction2

· · · A ∪ {ψk} | B · · ·
A | B

Prov.:
∨n

k=1 ψk is A-local and A �
∨n

k=1 ψk.
Instr.: φ′ ≡

∨n
k=1 φk.

· · · A | B ∪ {ψk} · · ·
A | B

Prov.:
∨n

k=1 ψk is B-local and B �
∨n

k=1 ψk.
Instr.: φ′ ≡

∧n
k=1 φk.

Redplus1 Redplus2 Redminus1 Redminus2

A ∪ {ψ} | B
A | B

Prov.: A � ψ and
ψ is A-local.

Instr.: φ′ ≡ φ.

A | B ∪ {ψ}
A | B

Prov.: B � ψ and
ψ is B-local.

Instr.: φ′ ≡ φ.

A | B
A ∪ {ψ} | B

Prov.: A � ψ and
ψ is A-local.

Instr.: φ′ ≡ φ.

A | B
A | B ∪ {ψ}

Prov.: B � ψ and
ψ is B-local.

Instr.: φ′ ≡ φ.

ConstElim1 ConstElim2 ConstElim0

A | B
A ∪ {a = t} | B

Prov.: a is A-strict and
does not occur in A, t.

Instr.: φ′ ≡ φ.

A | B
A | B ∪ {b = t}

Prov.: b is B-strict and
does not occur in B, t.

Instr.: φ′ ≡ φ.

A | B
A ∪ {c = t} | B ∪ {c = t}

Prov.: c, t are AB-common,
c does not occur in A,B, t.

Instr.: φ′ ≡ φ.

A ∪ {a = t} | B ∪ {a = t} Proviso: t is AB-common, a is fresh
A | B Instruction: φ′ ≡ φ(t/a).

It is not difficult to see that the A∪B is equisatisfiable to A∪B ∪{a = t} since
a is a fresh constant that has been introduced to re-name the AB-common term
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t according to the proviso of (Define0). The instruction attached to (Define0)
allows for the computation of the interpolant φ′ by eliminating the fresh constant
a from the recursively known interpolant φ.

The idea is to build an interpolatingmetarules refutation for a givenunsatisfiable
A0 ∪B0, i.e. a labeled tree having the following properties: (i) nodes are labeled by
pairs of finite sets of ground formulae; (ii) the root is labeled by A0, B0; (iii) the
leaves are labeled by a pair Ã, B̃ such that⊥ ∈ Ã∪B̃; (iv) each non-leaf node is the
conclusion of a metarule and its successors are the premises of that metarule (the
complete list ofmetarules is inTable 1).Once an interpolatingmetarules refutation
has been built, it is possible to recursively compute the interpolant by using (top-
down) the instructions attached to the metarules in the tree:

Proposition 2 ([7,9]). If there exists an interpolating metarules refutation for
A0, B0 then there is a quantifier-free interpolant for A0, B0 (i.e., there exists
a quantifier-free AB-common sentence φ such that A0 � φ and B0 ∧ φ � ⊥).
The interpolant φ is recursively computed by applying the relevant interpolating
instructions of the metarules.

The idea to design the combination algorithm is the following. We design trans-
formations instructions that can be non-deterministically applied to a pairA0, B0.
Each of the transformation instructions is justified by metarules, in the sense that
it is just a special sequence of applications of metarules. The instructions are
such that, whenever they are applied exhaustively to a pair such that A0 ∪B0 is
unsatisfiable, they produce a tree which is an interpolating metarules refutation
forA0, B0 from which an interpolant can be extracted according to Proposition 2.

5.2 A Quantifier-Free Interpolating Algorithm

Let Ti be a stably-infinite and equality interpolating theory over the signature
Σi such that the SMT (Ti) problem is decidable and Σ1 ∩Σ2 = ∅ (for i = 1, 2).
We assume the availability of algorithms for T1 and T2 that are able not only to
compute quantifier-free interpolants but also the tuples v of terms in Definition 2
for equality interpolation. Since the SMT (Ti) problem is decidable for i = 1, 2,
it is always possible to build an equality interpolating algorithm by enumeration;
in practice, better algorithms can be designed (see [32] for EUF , LST , LAR
and [8] for the possibility to use quantifier elimination to this aim).

LetΣ := Σ1∪Σ2, T := T1∪T2, andA0, B0 be a T -unsatisfiable pair of finite sets
of ground formulae over the signature ΣA0∪B0 . Like in the Nelson-Oppen combi-
nation method, we have a pre-processing step in which we purify A0 and B0 so as
to eliminate from them the literals which are neither Σ1- nor Σ2-literals. To do
this, it is sufficient to repeatedly apply the technique of “renaming terms by con-
stants” described below. Take a term t (occurring in a literal fromA0 or fromB0),
add the equality a = t for a fresh constant a and replace all the occurrences of t
by a. The transformation can be justified by the following sequence of metarules:
Define1, Define2, Redplus1, Redplus2, Redminus1, Redminus2. For example, in
the case of the renaming of some term t in A0, the metarule Define1 is used to
add the explicit definition a = t to A0, the metarule Redplus1 to add the formula
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φ(a/t) for each φ ∈ A0, and the metarule Redminus1 to remove from A0 all the
formulæ φ in which t occurs (except a = t).

Because of purification, from now on, we assume to manipulate pairs A,B of
sets of ground formulæ where literals built up of only Σ1- or of only Σ2-symbols
occur (besides free constants): this invariant will be in fact maintained during
the execution of our algorithm. Given such a pair A,B, we denote by A1 and A2

the subsets of ΣA
1 - and Σ

A
2 -formulae belonging to A; the sub-sets B1 and B2 of

B are defined similarly. Notice that it is false that A ≡ A1∪A2 and B ≡ B1∪B2,
since quantifier-free formulae can mix Σ1- and Σ2-symbols even if the literals
they are built from do not.

Before presenting our interpolation algorithm for the combination of theories,
we need to import a technique, called Term Sharing, from [7]. Suppose that A
contains a literal a = t, where the term t is AB-common and the free constant a
is A-strict (a symmetric technique applies to B instead of A). Then it is possible
to “make a AB-common” in the following way. First, introduce a fresh AB-
common constant c with the explicit definition c = t (to be inserted both in
A and in B, as justified by metarule (Define0)); then replace the literal a = t
by a = c and replace a by c everywhere else in A; finally, delete a = c too.
The result is a pair (A,B) where basically nothing has changed but a has been
renamed to an AB-common constant c (the transformation can be easily justified
by a suitable subset of the metarules). Intuitively, the reason why Term Sharing
works is because, in the end, the new constant will have to be replaced with the
AB-common term t, so the interpolant is not affected by the renaming of a to c.

An A-relevant atom is either an atomic formula occurring in A or it is an A-
local equality between free constants; an A-assignment is a Boolean assignment α
to relevant A-atoms satisfying A, seen as a set of propositional formulæ (relevant
B-atoms and B-assignments are defined similarly). Below, we use the notation
α to denote both the assignment α and the set of literals satisfied by α.

We are now in the position to present the collection of transformations that
should be applied non-deterministically and exhaustively to a pair of purified sets
of ground formulæ (all the transformations below can be justified by metarules,
the justification is straightforward and left to the reader). In the following, let
i ∈ {1, 2} and X ∈ {A,B}.

Terminatei: if Ai ∪Bi is Ti-unsatisfiable and ⊥ �∈ A∪B, use the interpolation
algorithm for Ti to find a ground AB-common θ such that Ai �Ti θ and
θ ∧Bi �Ti ⊥; then add θ and ⊥ to B.

DecideX : if there is no X-assignment α such that α ⊆ X , pick one of them (if
there are none, add ⊥ to X); then update X to X ∪ α.

Sharei: let a = a1, . . . , an be the tuple of the current A-strict free constants and
b = b1, . . . , bm be the tuple of the current B-strict free constants. Suppose
that Ai ∪ Bi is Ti-satisfiable, but Ai ∪ Bi ∪ {a ∩ b = ∅} is Ti-unsatisfiable.
Since Ti is equality interpolating, there must exist AB-common Σi-ground
terms v ≡ v1, . . . , vp such that

Ai ∪Bi �Ti (a ∩ v �= ∅) ∨ (b ∩ v �= ∅).
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Thus the union of Ai∪{a∩v = ∅} and of Bi∪{b∩v = ∅} is not Ti-satisfiable
and invoking the available interpolation algorithm for Ti, we can compute
a ground AB-common Σi-formula θ such that A �Ti θ ∨ a ∩ v �= ∅ and
θ ∧ B �Ti b ∩ v �= ∅. We choose among n ∗ p +m ∗ p alternatives in order
to non-deterministically update A,B. For the first n ∗ p alternatives, we add
some ai = vj (for 1 ≤ i ≤ n, 1 ≤ j ≤ p) to A. For the last m ∗ p alternatives,
we add θ to A and some {θ, bi = vj} to B (for 1 ≤ i ≤ m, 1 ≤ j ≤ p).
Term sharing is finally applied to the updated pair in order to decrease the
number of the A-strict or B-strict free constants.

Let CI(T1, T2) be the procedure that, once run on an unsatisfiable pair A0, B0,
first purifies it, then non-deterministically and exhaustively applies the transfor-
mation rules above, and finally extracts an interpolant by using the instructions
associated to the metarules.

Theorem 6. Let T1 and T2 be two signature disjoint, stably-infinite, and equal-
ity interpolating theories having decidable SMT problems. Then, CI(T1, T2) is a
quantifier-free interpolation algorithm for the combined theory T1 ∪ T2.

Algorithm CI(T1, T2) paves the way to reuse quantifier-free interpolation algo-
rithms for both conjunctions (see, e.g., [29]) or arbitrary Boolean combinations
of literals (see, e.g., [11]). In particular, the capability of reusing interpolation
algorithms that can efficiently handle the Boolean structure of formulae seems
to be key to enlarge the scope of applicability of verification methods based on
interpolants [23]. Indeed, one major issue to address to make CI(T1, T2) practi-
cally usable is to eliminate the non-determinism. We believe this is possible by
adapting the Delayed Theory Combination approach [3].

6 Conclusion and Related Work

The results of this paper cover several results for the quantifier-free interpolation
of combinations of theories that are known from the literature, e.g., EUF and
LST [32], EUF and LAR [11, 25, 29], EUF and LAI [5], LST with LAR [32],
and AX diff with IDL [6]. To the best of our knowledge, the quantifier-free
interpolation of the following combinations are new: (a) RDS with LAR, IDL,
UT VPI, LAI, and AX diff, (b) LST with IDL, UT VPI, LAI, and AX diff,
and (c) AX diff with LAR, UT VPI, and LAI.

In Section 4.2, we have extensively discussed the closely related work of [32],
where the authors illustrate a method to derive interpolants in a Nelson-Oppen
combination procedure, provided that the component theories satisfy certain hy-
potheses. The combinationmethod in [15] has been designed to be efficiently incor-
porated in state-of-the-art SMT solvers but is complete only for convex theories.
An interpolating theorem prover is described in [25], where a sequent-like calcu-
lus is used to derive interpolants from proofs in propositional logic, equality with
uninterpreted functions, linear rational arithmetic, and their combinations. The
“split” prover in [18] applies a sequent calculus for the synthesis of interpolants
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along the lines of that in [25] and is tuned for predicate abstraction. The “split”
prover can handle combinations of theories involving that of arrays without exten-
sionality and fragments of Linear Arithmetic. TheCSIsat [2] permits the compu-
tation of quantifier-free interpolants over a combination of EUF andLAR refining
the combination method in [32] as suggested in [29]. A version of MathSAT [11]
features interpolation capabilities for EUF ,LAR, IDL,UT VPI andEUF+LAR
by extending Delayed Theory Combination [3]. Theorem 6 is the key to combine
the strength of these tools and to widen the scope of applicability of available inter-
polation algorithms to richer combinations of theories. Methods [5, 20, 22, 23] for
the computation of quantified interpolants in the combination of the theory of ar-
rays andPresburgerArithmetic have been proposed.Ourwork focus on quantifier-
free interpolants by identifying suitable variants of the component theories (e.g.,
AX diff instead ofAX ext andLAI instead of PresburgerArithmetic). Orthogonal
to our approach is the work in [30] where interpolation algorithm are developed for
extensions of convex theories admitting quantifier-free interpolation.

The framework proposed in this paper allows us to give a uniform and coherent
view of many results available in the literature and we hope that it will be the
starting point for new developments.
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Abstract. The problem of SPARQL query containment is defined as de-
termining if the result of one query is included in the result of
another for any RDF graph. Query containment is important in many
areas, including information integration, query optimization, and reason-
ing about Entity-Relationship diagrams. We encode this problem into an
expressive logic called μ-calculus: where RDF graphs become transition
systems, queries and schema axioms become formulas. Thus, the con-
tainment problem is reduced to formula satisfiability test. Beyond the
logic’s expressive power, satisfiability solvers are available for it. Hence,
this study allows to exploit these advantages.

1 Introduction

SPARQL is a W3C recommended query language for RDF. The language is being
extended with different entailment regimes and regular path expressions1. The
semantics of SPARQL relies on the definition of basic graph pattern matching
that is built on top of RDF simple entailment [11]. However, it may be desir-
able to use SPARQL to query triples entailed from subclass, subproperty, range,
domain, and other relations which can be represented using RDF schema. The
SPARQL specification defines the results of queries based on RDF simple entail-
ment. The specification also presents a general parametrized definition of graph
pattern matching that can be expanded to other entailments beyond simple en-
tailment. Query answering under the RDFS entailment regime can be achieved
via: (1) materialization (computing the deductive closure of the queried graph)
[10], (2) rewriting the queries using the schema, and (3) hybrid (combining ma-
terialization and query rewriting). We use a technique based on the approaches
(1) and (2) to study the problem of SPARQL query containment under the RDFS

entailment regime.
Query containment is defined as determining if the result of one query is in-

cluded in the result of another one for any RDF graph. It has been a central point
of research due to its vital role in query optimization, information integration

1 SPARQL1.1, working draft http://www.w3.org/TR/sparql11-query/
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and reasoning about Entity-Relationship diagrams [14]. In [5], a double expo-
nential upper bound is proved for containment of union of conjunctive queries
(UCQs) under expressive description logic constraints. Beyond UCQs, contain-
ment of (two-way) regular path queries (2RPQs) have been studied extensively
[7,3]. These languages are used to query graph databases and containment has
been shown to be PSPACE-complete and EXPTIME-hard under the presence of
functionality constraints [7]. On the other hand, the containment of conjunctive
2RPQs is EXPSPACE-complete, this bound jumps to 2EXPTIME when considered
under expressive description logic (DL) constraints [6]. In fact, this problem has
already been implicitly addressed in [5] when DLR (DLs with n-ary relations)
constraints are used. More recently, Path SPARQL (PSPARQL [1]) query con-
tainment has been studied in [8] where a double exponential upper bound is
established. In this work, we consider the same approach as [8] and prove that
containment of PSPARQL queries under RDF schema axioms has a double expo-
nential upper bound. However, it is exponential if the query on the right hand
side has a tree structure (cf. for example, [5]). Further, paths are being included
in the new version of SPARQL (called SPARQL1.1), thus this work can be used
to test containment of path SPARQL queries under the RDFS entailment regime.

To study containment, we apply an approach which has already been success-
fully applied for XPath [9]. SPARQL is interpreted over graphs, hence we encode
it in a graph logic, specifically the alternation-free fragment of the μ-calculus [15]
with converse and nominals [18] interpreted over labeled transition systems. We
show that this logic is powerful enough to deal with query containment for union
of conjunctive SPARQL queries under the RDFS entailment regime. Furthermore,
this logic admits exponential time decision procedures that is implemented in
practice [18,19,9]. Hence, our approach opens a way to take advantage of these
implementations. We introduce a translation of RDF graphs into transition sys-
tems and SPARQL queries and RDF schema into μ-calculus formulae. Then, we
show how query containment in SPARQL under RDFS entailment can be reduced
to unsatisfiability in the μ-calculus.

In summary, the contribution of this work is fourfold: (1) we formulate the
problem of query containment under the RDFS entailment regime in three differ-
ent ways, (2) since paths are included in the new version of SPARQL, this work
can be used to determine containment of path queries (under RDF schema as
well), (3) we show how to extend the schema language to the description logic
SH (short for, role transitivity S and role hierarchy H), and (4) we prove a
double exponential upper bound for containment.

2 Preliminaries

This section introduces the foundations of RDF(S), SPARQL, and μ-calculus.

2.1 RDF(S)

RDF is a language used to express structured information on the Web as graphs.
We present a compact formalization of RDF [11]. Let U, B, and L be three
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disjoint infinite sets denoting the set of URIs (identifying a resource), blank
nodes (denoting an unidentified resource) and literals (a character string or some
other type of data) respectively. We abbreviate any union of these sets as for
instance, UBL = U ∪ B ∪ L. A triple of the form (s, p, o) ∈ UB × U × UBL is
called an RDF triple. s is the subject, p is the predicate, and o is the object of
the triple. Each triple can be thought of as an edge between the subject and the
object labelled by the predicate, hence a set of RDF triples is often referred to
as an RDF graph. RDF has a model theoretic semantics [11].

Example 1 (RDF Graph). Consider the following RDF graph (all identifiers cor-
respond to URIs and :b is a blank node):

G ={(john, childOf,mary), (childOf, sp, ancestor), ( :b, hasFather, john),

(ancestor,dom, P erson), (ancestor, range, P erson)}

RDF Schema (RDFS) may be considered as a simple ontology language express-
ing subsumption relations between classes or properties [11]. Technically, this is
an RDF vocabulary used for expressing axioms constraining the interpretation
of graphs. The RDFS vocabulary and its semantics are given in [11]. There, in-
ference rules (shown in Table 1) are given which allow to deduce or infer new
triples using the schema and RDF graph.

Table 1. RDFS inference Rules

Subclass (sc) Subproperty (sp) Typing (dom, range)

(a,sc, b) (b, sc, c)

(a,sc, c)
(1)

(a, sp, b) (b, sp, c)

(a, sp, c)
(3)

(a, dom, b) (x, a, y)

(x, type, b)
(5)

(a,sc, b) (x, type, a)

(x, type, b)
(2)

(a, sp, b) (x, a, y)

(x, b, y)
(4)

(a, range, b) (x, a, y)

(y, type, b)
(6)

Example 2. Using the inference rules, we can infer the triples {(john,type,Person),
(mary,type,Person), (john, ancestor,mary)}. Hence, the deductive closure of
graph G in Example 1 contains:

cl(G) = {(john, childOf,mary), (childOf, sp, ancestor), ( :b, hasFather, john),

(john, type, P erson), (mary,type, P erson), (john, ancestor,mary),

(ancestor,dom, P erson)}

2.2 SPARQL

SPARQL is a W3C recommended query language for RDF [17]. PSPARQL (Path
SPARQL) extends SPARQL with regular expression patterns [1]. The only dif-
ference between the syntax of SPARQL and PSPARQL is on triple patterns. In
this study, we refer to both SPARQL and PSPARQL queries as SPARQL un-
less explicitly stated. Triple patterns in PSPARQL contain regular expressions in
property positions instead of only URIs or variables as it is the case in SPARQL.
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Queries are formed based on the notion of query patterns defined inductively
from triple patterns: a tuple t ∈ UBV × e × UBLV, with V a set of variables
disjoint from UBL and e a regular expression pattern defined over U and V , is
called a triple pattern. Triple patterns grouped together using connectives AND

and UNION
2 form graph patterns (a.k.a query patterns). A set of triple patterns

is called basic graph pattern.

Definition 1. A SPARQL query pattern q is inductively defined as follows:

q = t ∈ UBV × e×UBLV | q1 AND q2 | q1 UNION q2

e = uri | x | e � e′ | e · e′ | e+ | e∗

Definition 2. A SPARQL SELECT query is defined as q(−→w ) where −→w is a tuple
of variables in V that are called distinguished variables, and q is a query pattern.

Example 3 (SPARQL queries). Consider the following queries q(?x) and q′(?x)–
refer to Table 1 for vocabulary terms– on the graph of Example 1 and 2:

SELECT ?x WHERE { ?x type Person . }

SELECT ?x WHERE {{ ?x ?p ?y . ?p sp*.dom.sc* Person . }

UNION {?y ?p ?x . ?p sp*.range.sc* Person . } }

Definition 3 (SPARQL under RDFS entailment semantics). Given an
RDF graph G and a basic graph pattern P , a partial mapping function ρ is a
solution for G and P under RDFS-entailment, ρ ∈ �P �G, if:
– the domain of ρ is exactly the set of variable in P , i.e., dom(ρ) = V (P ),
– terms in the range of ρ occur in G,
– If P ′, obtained from P by replacing blank nodes with either URIs, blank

nodes, or RDF literals is such that: the RDF graph sk(ρ(P ′)) is RDFS-
entailed by sk(G). The function sk(.) replaces blank nodes with fresh URIs
(URIs that are neither in the queried graph nor in the query).

Since SPARQL’s entailment regimes only change the evaluation of basic graph pat-
terns, the evaluation of query patterns can be defined in the standard way [17,16].
The evaluation of query patterns over an RDF graph G is defined inductively:

�q1 AND q2�G = �q1�G � �q2�G
�q1 UNION q2�G = �q1�G ∪ �q2�G �q(−→w )�G = π−→w (�q�G)

The projection operator π−→w selects only those part of the mappings relevant to
variables in −→w . For detailed discussions we refer the reader to [10,1].

Example 4. The answers to query q and q′ (under simple entailment semantics)
of Example 3 on graphs G of Example 1 and cl(G) of Example 2 are: �q�G = ∅
but �q�cl(G) = {john,mary} and �q′�G = {john,mary}. Thus, �q�cl(G) = �q′�G.
Clearly, �q�G ⊆ �q′�G. Note also that, q when evaluated over G under the RDFS

entailment is equivalent to q′ evaluated under simple entailment semantics.

2 We do not consider OPTIONAL and FILTER query patterns as containment over
full SPARQL (equally expressive as relational algebra [2]) is undecidable.
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Beyond these particular examples, the goal of query containment is to determine
whether this holds for any graph.

Definition 4 (Containment). Given an RDFS schema S and queries q and
q′ with the same arity, q is contained in q′ under the RDFS entailment regime,
denoted q  S

rdfs q
′, iff for any graph G satisfying the schema S, �q�G ⊆ �q′�G.

The evaluation of SPARQL queries (also under the RDFS entailment regime) is
proved to be PSPACE-complete. However, the evaluation problem is NP-complete
for the fragment containing only AND and UNION query patterns [16,1,10].

To determine containment, SPARQL queries are encoded as μ-calculus formu-
las, next we present a brief introductory about this logic.

2.3 μ-Calculus

The modal μ-calculus [15] is an expressive logic which adds recursive features to
modal logic using fixpoint operators. The syntax of the μ-calculus is composed
of countable sets of atomic propositions AP , a set of nominals Nom, a set of
variables Var, a set of programs Prog for navigating in graphs. A μ-calculus
formula, ϕ, can be defined inductively as follows:

ϕ ::= � | ⊥ | p | X | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | 〈a〉ϕ | [a]ϕ | μXϕ | νXϕ

where p ∈ AP,X ∈ V ar and a ∈ Prog is either an atomic program or its
converse ā. The greatest and least fixpoint operators (ν and μ), respectively
introduce general and finite recursion in graphs [15].

The semantics of the μ-calculus is given over a transition system,K = (S,R, L)
where S is a non-empty set of nodes, R : Prog → 2S×S is the transition func-
tion, and L : AP → 2S assigns a set of nodes to each atomic proposition or
nominal where it holds, such that L(p) is a singleton for each nominal p. For
converse programs, R can be extended as R(ā) = {(s′, s) | (s, s′) ∈ R(a)}. Be-
sides, a valuation function V : Var→ 2S is used to assign a set of nodes to each
variable. For a valuation V , variable X , and a set of nodes S′ ⊆ S, V [X/S′]
is the valuation that is obtained from V by assigning S′ to X . The semantics
of a formula, in terms of a transition system K (a.k.a. Kripke structure) and
a valuation function, is represented by �ϕ�KV . The semantics of basic μ-calculus
formulae is defined as follows:

�p�KV = L(p), p ∈ AP ∪Nom, L(p) is singleton for p ∈ Nom

�X�KV = V (X), X ∈ V ar �¬ϕ�KV = S\�ϕ�KV ���KV = S

�ϕ ∧ ψ�KV = �ϕ�KV ∩ �ψ�KV , �ϕ ∨ ψ�KV = �ϕ�KV ∪ �ψ�KV

�〈a〉ϕ�KV = {s ∈ S|∃s′ ∈ S.(s, s′) ∈ R(a) ∧ s′ ∈ �ϕ�KV }
�[a]ϕ�KV = {s ∈ S|∀s′ ∈ S.(s, s′) ∈ R(a) ⇒ s′ ∈ �ϕ�KV }

�μXϕ�KV =
⋂

{S′ ⊆ S|�ϕ�KV [X/S′] ⊆ S′}

�νXϕ�KV =
⋃

{S′ ⊆ S|S′ ⊆ �ϕ�KV [X/S′]}
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3 RDF Graphs as Transition Systems

μ-calculus formulas are interpreted over labeled transition systems. Thus, we
propose an encoding of an RDF graph as a transition system in which nodes
correspond to RDF entities and RDF triples. Edges relate entities to the triples
they occur in. Different edges are used for distinguishing the functions (subject,
object, predicate). Expressing predicates as nodes, instead of atomic programs,
makes it possible to deal with full RDF expressiveness in which a predicate may
also be the subject or object of a statement.

Definition 5 (Transition system associated to an RDF graph [8]). Given
an RDF graph, G ⊆ UB × U × UBL, the transition system associated to G,
σ(G) = (S,R, L) over AP = UBL ∪ {s′, s′′}, is such that:

– S = S′ ∪ S′′ with S′ and S′′ the smallest sets such that ∀u ∈ UG, ∃nu ∈ S′,
∀b ∈ BG, ∃nb ∈ S′, and ∀t ∈ G, ∃nt ∈ S′′,

– ∀t = (s, p, o) ∈ G, 〈ns, nt〉 ∈ R(s), 〈nt, np〉 ∈ R(p), and 〈nt, no〉 ∈ R(o),
– L : AP → 2S; ∀u ∈ UG, L(u) = {nu}, ∀b ∈ BG, L(b) = S′, L(s′) = S′,
∀l ∈ LG, L(l) = {nl} and L(s′′) = S′′,

– ∀nt, nt′ ∈ S′′, 〈nt, nt′〉 ∈ R(d).

The program d is introduced to render each triple accessible to the others and
thus facilitate the encoding of queries. The function σ associates what we call a
restricted transition system to any RDF graph. Formally, we say that a transition
system K is a restricted transition system iff there exists an RDF graph G such
that K = σ(G).

A restricted transition system is thus a bipartite graph composed of two sets
of nodes: S′, those corresponding to RDF entities, and S′′, those corresponding
to RDF triples. For example, Figure 1 shows the restricted transition system
associated with the graph of Example 1. When checking for query containment,
we consider the following restrictions: (i) the set of programs is fixed: Prog =
{s, p, o, d, s̄, p̄, ō, d̄}, and (ii) a model must be a restricted transition system. The
latter constraint can be expressed in the μ-calculus as follows:

Proposition 1 (RDF restriction on transition systems [8]). A formula ϕ
is satisfied by some restricted transition system if and only if ϕ∧ϕr is satisfiable
by some transition system, i.e. ∃Kr�ϕ�Kr �= ∅ ⇐⇒ ∃K�ϕ ∧ ϕr�K �= ∅, where:
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Fig. 1. Transition system encoding the RDF graph of Example 1. Nodes in S′′ are black
anonymous nodes; nodes in S′ are the other nodes (d-transitions are not displayed).
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ϕr = νX.θ ∧ κ ∧ (¬〈d〉� ∨ 〈d〉X)

in which θ = 〈s̄〉s′∧〈p〉s′∧〈o〉s′∧¬〈s〉�∧¬〈p̄〉�∧¬〈ō〉� and κ = [s̄]ξ∧ [p]ξ∧ [o]ξ
with

ξ = (¬〈s̄〉� ∧ ¬〈o〉� ∧ ¬〈p〉� ∧ ¬〈d〉� ∧ ¬〈d̄〉� ∧ ¬〈s〉s′ ∧ ¬〈ō〉s′ ∧ ¬〈p̄〉s′).

The formula ϕr ensures that θ and κ hold in every node reachable by a d edge, i.e.
in every s′′ node. The formula θ forces each s′′ node to have a subject, predicate
and object. The formula κ navigates from a s′′ node to every reachable s′ node,
and forces the latter not to be directly connected to other subject, predicate or
object nodes.

If a μ-calculus formula ψ appears under the scope of a least μ or greatest ν
fixed point operator over all the programs {s, p, o, d, s̄, p̄, ō, d̄} as, μX.ψ∨〈s〉X ∨
〈p〉X∨· · · or νX.ψ∧[s]X∧[p]X∧· · · then, for the sake of legibility, we denote the
recursion components of the respective formulae as mu(X) for the μ recursion
part and nu(X) for the ν recursion part.

4 Encoding SPARQL Queries

In this section, we show how to encode queries as μ-calculus formulas. Then,
in the next section, we use this encoding to test query containment under the
RDFS entailment regime. Before discussing the encoding procedure, we briefly
assess the issue of blank nodes. Blank nodes are existential variables that denote
the existence of unnamed resources. Their definition matches the definition of
non-distinguished variables in a query. Thus, blank nodes in the queries can
be considered as non-distinguished variables. As a result, every occurrence of a
blank node in the query is replaced by a fresh variable.

Queries are translated into μ-calculus formulas. The principle of the trans-
lation is that each triple pattern is associated with a sub-formula stating the
existence of the triple somewhere in the graph. Hence, they are quantified by
μ (least fixed point) so as to put them out of the context of a state. In this
translation, variables are replaced by nominals which will be satisfied when they
are at the corresponding position in such triple relations. A function called A
is used to encode queries inductively on the structure of query patterns. AND

and UNION are translated into boolean connectives ∧ and ∨, respectively. When
encoding q  q′, we call q left-hand side query and q′ right-hand side query.
Cyclic dependencies among the non-distinguished variables in the query on the
right-hand side create problems in the encoding process: because variables in
cycles cannot be simply encoded using atomic propositions (APs) or �. As APs
can be true in several nodes in the transition system (resulting in the loss of
connectedness). Thus, we provide separate encodings for q and q′.

Encoding left-hand side query: to encode the left-hand side query, one pro-
ceeds by encoding the distinguished or non-distinguished variables and constants
using nominals. Basically, the variables and constants are frozen (i.e., equivalent
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to obtaining a canonical instance of the query). Afterwards, a recursive function
A is used to inductively construct a formula. Regular expression patterns that
appear in the query are encoded using the function R. It takes two arguments
(the predicate which is a regular expression pattern and the object of a triple).

A
(
(x, e, z)

)
= μX.

(
〈s̄〉x ∧R(e, z)

)
∨mu(X)

A(q1 AND q2) = A(q1) ∧ A(q2) A(q1 UNION q2) = A(q1) ∨ A(q2)
R(uri, y) = 〈p〉uri ∧ 〈o〉y R(x, y) = 〈p〉x ∧ 〈o〉y
R(e � e′, y) = (R(e, y) ∨R(e′, y)) R(e · e′, y) = R(e, 〈s〉R(e′, y))

R(e+, y) = μX.R(e, y) ∨R(e, 〈s〉X) R(e∗, y) = R(e+, y) ∨ 〈s̄〉y

In order to encode the right-hand side query, we need the notion of cyclic queries.

Definition 6 (Cyclic Query). A SPARQL query is referred to as cyclic if a
transition graph induced from the query patterns is cyclic. The transition graph3

is constructed in the same way as done in Definition 5.

Example 5. Consider q(x) = (x, a · e, y) AND (y, b, z) AND (z, c∗, r) AND (r, d, y)
which is cyclic, as shown graphically,

x y

a · e

z

b

r

c∗d

Encoding right-hand side query: the distinguished variables and constants
are encoded as nominals whereas the non-distinguished variables are encoded as:

– if a non-distinguished variable appears only once, then it is encoded as �.
– if a non-distinguished variable appears multiple times, then one performs

the subsequent steps:

1. for each ti ∈ q, t(ti) = ni, i.e., introduce a nominal for each triple,
2. for each z ∈ ti = (xi, ei, yi) ∈ q, a set of mappings containing formula

assignments are generated as:

mi ={z "→ ψ |

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ψ = ϕ(s, ei) if subject(z) ∧ ei �∈ var(q)
ψ = 〈s〉t(ti) if subject(z) ∧ ei ∈ var(q)
ψ = ϕ(o, ei) if object(z) ∧ ei �∈ var(q) }
ψ = 〈ō〉t(ti) if object(z) ∧ ei ∈ var(q)
ψ = 〈p̄〉t(ti) if predicate(z) ∧ ei ∈ var(q)

3 The transition graph is similar to the tuple-graph used in [5] to detect dependency
among variables.
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s and o denote subject and object of a triple and ϕ is defined as:

ϕ(s, a) = 〈s〉〈p〉a ϕ(o, a) = 〈ō〉〈p〉a
ϕ(s, a · b) = ϕ(s, a) ϕ(o, a.b) = ϕ(o, b)

ϕ(s, a � b) =
(
ϕ(s, a) ∨ ϕ(s, b)

)
ϕ(o, a � b) =

(
ϕ(o, a) ∨ ϕ(o, b)

)
ϕ(s, a+) = ϕ(s, a) ϕ(o, a+) = ϕ(o, a)

ϕ(s, a∗) = ϕ(s, a) ϕ(o, a∗) = ϕ(o, a)

Note that there is an exponential number of mi’s in terms of the number
of non-distinguished variables. More precisely, there are at most O(kn)
mappings, where n is the number of triples in which non-distinguished
variables appear and k is the number of non-distinguished variables.

– finally function A works inductively on the query structure using m to gen-
erate the formula. As for the left-hand side query, R is used to produce the
encodings of regular expressions.

A(q,m) =

|m|∨
i=1

A(q,mi) d(m,x) =

⎧⎪⎨⎪⎩
ψ if (x "→ ψ) ∈ m
� if unique(x)

x otherwise

A
(
(x, e, z),m

)
= μX.

(
〈s̄〉d(m,x) ∧R(d(m, e), d(m, e))

)
∨mu(X)

A(q1 AND q2,m) = A(q1,m) ∧ A(q2,m)

A(q1 UNION q2,m) = A(q1,m) ∨ A(q2,m)

Example 6 (Encoding queries). Consider the encoding of q  q′, where

q(x, z) = (x, (c � d) · (a � b), z) q′(x, z) = (x, (c � d), y) AND (y, a � b, z)

– The encoding of q is obtained by freezing the query and recursively con-
structing the formula using A.

A(q) = μX.〈s̄〉x ∧R
(
(c � d) · (a � b), z

)
∨mu(X)

= μX.〈s̄〉x ∧ (〈p〉c ∨ 〈p〉d) ∧ 〈o〉〈s〉((〈p〉a ∨ 〈p〉b) ∧ 〈o〉z) ∨mu(X)

– The encoding of q′ is as follows:
• the constants and distinguished variables are encoded as nominals,
• y ∈ var(q′) is encoded as ϕ(o, (c � d)), since y is an object of the triple
(x, (c � d), y). Hence, m1 = {y "→ (〈ō〉〈p〉c∨〈ō〉〈p〉d)}. On the other hand,
y can also be encoded as ϕ(s, (a � b)), since y is a subject of the triple
(y, a � b, z). Thus, we get m2 = {y "→ (〈s〉〈p〉a ∨ 〈s〉〈p〉b)}.

• finally, we useA to encode q′ recursively,A(q′,m) = A(q′,m1)∨A(q′,m2)

=
(
μX.〈s̄〉x ∧ (〈p〉c ∨ 〈p〉d) ∧ 〈o〉(〈ō〉〈p〉c ∨ 〈ō〉〈p〉d) ∨mu(X)

∧ μY.〈s̄〉(〈ō〉〈p〉c ∨ 〈ō〉〈p〉d) ∧ (〈p〉a ∨ 〈p〉b) ∧ 〈o〉z ∨mu(Y )
)
∨(

μX.〈s̄〉x ∧ (〈p〉c ∨ 〈p〉d) ∧ 〈o〉(〈s〉〈p〉a ∨ 〈s〉〈p〉b) ∨mu(X)

∧ μY.〈s̄〉(〈s〉〈p〉a ∨ 〈s〉〈p〉b) ∧ (〈p〉a ∨ 〈p〉b) ∧ 〈o〉z ∨mu(Y )
)
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Example 7 (Containment test). We show containment of the following queries:
select all descendants and ancestors (q) whose names are “john” and (q′) who
share the same name.
q(x, y) = (x, name, “john”) AND (x, ancestor∗, z) AND (z, name, “john”)
q′(x, y) = (x, name, y) AND (x, ancestor∗, z) AND (z, name, y)

We proceed by first obtaining their encodings. Consider the encoding of q  q′,
we encode triple patterns using θ and m = {y "→ 〈ō〉name}.

A(q) =
(
μX.θ(x, name, “john”) ∨mu(X)

)
∧(

μX.θ(x, ancestor∗, z) ∨mu(X)
)
∧(

μX.θ(z, name, “john”) ∨mu(X)
)

¬A(q′,m) =
(
νX.¬θ(x, name, 〈ō〉name) ∧ nu(X)

)
∨(

νX.¬θ(x, ancestor∗, z) ∧ nu(X)
)
∨(

νX.¬θ(z, name, 〈ō〉name) ∧ nu(X)
)

The formula A(q) ∧ ¬A(q′,m) is unsatisfiable because A(q) demands its model
to satisfy the encoding of each triple pattern somewhere in the transition sys-
tem. On the contrary, the formula ¬A(q′,m) requests this model to satisfy the
negation of the encoding of the triples in the entire transition system. Hence,
this leads to a contradiction and no such model exists for the formula. Therefore,
q  q′. On the other hand, it can be verified similarly to arrive at q′ � q.

5 Query Containment under RDFS Entailment

In the following, we propose three approaches to determine query containment
under the RDFS entailment regime: encoding the RDFS semantics, query rewrit-
ing, and encoding the schema approaches.

5.1 Encoding the RDFS Semantics Approach

When queries are evaluated under the RDFS entailment regime, the queried
graph is materialized or saturated using RDFS inference rules (or simply rules)
and the schema. Henceforth, implicit or inferred triples are considered when
computing the result of the query. Since no specific graphs are considered when
dealing with containment, we encode schema and rules. In addition, blank nodes
that appear in the schema graph are skolemized, i.e., replaced by fresh constants
that do not appear neither in the queries nor schema.

Definition 7. The encoding of an RDF schema graph S = {t1, · · · , tn} is pro-
duced by encoding each schema triple ti = (x, y, z) ∈ S such that:

ΦS =
n∧

i=1∧ti∈S

(
μX.(〈s̄〉x ∧ 〈p〉y ∧ 〈o〉z) ∨mu(X)

)
x, y, and z are atomic propositions corresponding to triple elements.
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Definition 8 (Encoding inference rules). The μ-calculus encoding of RDFS

inference rules of Table 1 is the disjunction of formulas (1) to (6) such that:

(1) νX.
(
θ(x, sc, θ(y, sc, z))⇒ θ(x, sc, z)

)
∧ nu(X)

(2) νX.
(
θ(x, type, θ(a, sc, b))⇒ θ(x, type, b)

)
∧ nu(X)

(3) νX.
(
θ(x, sp, θ(y, sp, z))⇒ θ(x, sp, z)

)
∧ nu(X)

(4) νX.
(
θ(x, θ(a, sp, b), y)⇒ θ(x, b, y)

)
∧ nu(X)

(5) νX.
(
θ(x, θ(a, dom, b), y)⇒ θ(x, type, b)

)
∧ nu(X)

(6) νX.
(
θ′(x, θ(a, range, b), y)⇒ θ(y, type, b)

)
∧ nu(X)

θ(x, y, z) = x ∧ 〈s〉(〈p〉y ∧ 〈o〉z) θ′(x, y, z) = z ∧ 〈ō〉
(
〈p〉(y ∧ 〈s̄〉x)

We denote this formula by ΦR.

So far, we have produced the encoding of SPARQL queries A(q) and A(q,m),
RDFS inference rules ΦR, and schema triples (axioms) ΦS . In the following, we
reduce query containment to unsatisfiability in μ-calculus and prove the correct-
ness of this reduction.

Lemma 1. Given an RDF schema S and a graph G, G |= S ⇔ ΦS is satisfiable.

Lemma 2. For any SPARQL query q, q is satisfiable iff A(q) and A(q,m) are
satisfiable.

Proof. (sketch) We prove for A(q,m), the proof for A(q) is immediate.
(⇒) a model obtained from an instance of q can be converted into a transition
system that satisfies A(q,m).
(⇐) any formula corresponding to a query encoding is satisfiable. However,
each satisfying model may not be a restricted transition system. Thus, we use
A(q,m) ∧ ϕr (Proposition 1), to guarantee that satisfying models are restricted
transition systems. As such, it can be shown that a model of the formulaA(q,m)∧
ϕr can be turned into a graph G that satisfies q.

For the sake of legibility, we denote ΦR∧ΦS∧A(q)∧¬A(q′,m)∧ϕr by Φ(S, q, q′).

Theorem 1 (Soundness and Completeness). Given SPARQL queries q and
q′ and a schema S, Φ(S, q, q′) is unsatisfiable if and only if q  S

rdfs q
′.

Proof. (⇒) we prove the contrapositive, q � S
rdfs q

′ ⇒ Φ(S, q, q′) is satisfiable.
Assume there exists a graph G that entails the schema graph S, also assume
that there exists a tuple −→a ∈ �q�G and −→a �∈ �q′�G. We construct a restricted
transition system K from G. Using Lemma 1, it is obvious that ΦS is satisfiable
in K. Besides, �ϕr�K �= ∅ (cf. Proposition 1). Now let us use −→a to instantiate
the distinguished variables in q and q′. Using the encodings of the instantiated
queries and from Lemma 2, one deduces that �A(q)�K �= ∅ and �A(q′,m)�K = ∅.
The later is not satisfiable in K because the nominals corresponding to the
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constants are not satisfied. Consequently, �¬A(q′,m)�K �= ∅ andA(q)∧¬A(q′ ,m)
is satisfiable. Therefore, we arrive at Φ(S, q, q′) is satisfiable.

(⇐) we show that if Φ(S, q, q′) is satisfiable, then q � rdfs q
′. Consider a re-

stricted transition system model K for Φ(S, q, q′). We construct an RDF graph
G from K. From Lemma 1, it follows that G |= S. Thus, it remains to verify that
�q�G �⊆ �q′�G. To do so, we start from the assumption, �A(q)∧¬A(q′,m)�K �= ∅.
Subsequently, �A(q)� �= ∅ and �A(q′,m)�K = ∅ because G contains all those
triples that satisfy q and not q′. Besides, if q′ contains a cycle, the constraints
expressed by ¬A(q′,m) are satisfied due to the ability, in a μ-calculus extended
with nominals and converse, to express a formula that is satisfied in cyclic mod-
els. Therefore, q � S

rdfs q
′.

5.2 Query Rewriting Approach

SPARQL query containment under RDFS entailment regime can be determined
by rewriting queries using the RDFS inference rules (shown in Table 1) and then
reducing the encoding of the rewriting to unsatisfiability test. The rewriting is
done using PSPARQL as explained in the following definition.

Definition 9 (SPARQL to PSPARQL). Given a SPARQL query q, a rewriting
function τ produces its PSPARQL equivalent as follows:

τ((s, sc, o)) = (s, sc+, o) τ((s, sp, o)) = (s, sp+, o)

τ((s, p, o)) = (s, x, o) AND (x, sp∗, p) such that p /∈ {sc, sp, type}
τ((s, type, o)) = (s, type.sc∗, o) UNION (s, x, y) AND (x, sp∗.dom.sc∗, o)

UNION (y, x, s) AND (x, sp∗.range.sc∗, o)

τ((s, x, o)) = (s, x, o) when x is a variable

τ(q1 AND q2) = τ(q1) AND τ(q2) τ(q1 UNION q2) = τ(q1) UNION τ(q2)

Definition 10 (Containment under RDFS entailment). Given an RDF

schema S, queries q and q′, and a rewriting function τ . q is contained in q′

under RDFS entailment, denoted q  S
rdfs q

′, if and only if τ(q)  S τ(q′).

Theorem 2 (Soundness and Completeness). Given an RDF schema S and
SPARQL queries q and q′, q  S

rdfs q′ ⇔ ΦS ∧ A(τ(q)) ∧ ¬A(τ(q′),m) ∧ ϕr

is unsatisfiable.

Proof. The proof of this theorem follows from that of Theorem 1.

5.3 Encoding the Schema Approach

In this approach, in order to determine query containment under the RDFS

entailment regime, we encode the schema triples (axioms) as formulae. As a
consequence, the encoding of the axioms constrains a model satisfying the for-
mula. We consider subclass, subproperty, domain, range, and transitivity (Tr(sc)
or Tr(sp)) schema axioms.
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Definition 11. Given a set of axioms s1, s2, ..., sn of a schema S, the μ-calculus
encoding of S is: η(S) = η(s1) ∧ η(s2) ∧ ... ∧ η(sn).
We use a function η to translate each si into an equivalent μ-calculus formula:

η((C1, sc, C2)) = νX. (C1 ⇒ C2) ∧ nu(X)

η((R1, sp, R2)) = νX. (R1 ⇒ R2) ∧ nu(X)

η((R, dom, C)) = νX.
(
〈s〉(〈p〉R ⇒ 〈p〉type ∧ 〈o〉C)

)
∧ nu(X)

η((R, range, C)) = νX.
(
〈ō〉〈p〉R⇒ 〈s〉(〈p〉type ∧ 〈o〉C)

)
∧ nu(X)

η(Tr(sc)) = νX.
(
θ(x, sc, θ(y, sc, z))⇒ θ(x, sc, z)

)
∧ nu(X)

η(Tr(sp)) = νX.
(
θ(x, sp, θ(y, sp, z))⇒ θ(x, sp, z)

)
∧ nu(X)

In the following, for legibility, we denote Φ(S, q, q′) = η(S)∧A(q)∧¬A(q′ ,m)∧ϕr .

Theorem 3 (Soundness and Completeness). Given queries q, q′, and a set
of RDF schema axioms S, q  S

rdfs q
′ if and only if Φ(S, q, q′) is unsatisfiable.

Proof. (sketch) Soundness: Φ(S, q, q′) unsatisifiable implies that q  S
rdfs q

′. We
show the contrapositive, if q � S

rdfs q
′, then Φ(S, q, q′) is satisfiable, holds. One

can verify that every model G of S in which there is at least one triple satisfying
q but not q′ can be turned into a transition system model for Φ(S, q, q′).
Completeness: Φ(S, q, q′) satisfiable implies q1 � S

rdfs q2. Assume that there ex-
ists a restricted transition system K that satisfies Φ(S, q, q′). This entails that,
�ϕr�K �= ∅ (cf. Proposition 1). Now, from K = (S,R, L) we need to construct
an RDF graph G that is model of S such that q � S

rdfs q
′ holds:

– for every RDFS concept C in the schema, {(s, type, C) | ∀s′, s′′ ∈ S ∧ t ∈
S′.(s′, t) ∈ R(s) ∧ (t, s′′) ∈ R(p) ∧ (t, s) ∈ R(o) ∧ s ∈ �C�K}.

– for each RDFS property P in the schema, {(s, P, s′) ∈ G | ∀t ∈ �P �K ∧ t′ ∈
S.(s, t′) ∈ R(s) ∧ (t′, t) ∈ R(p) ∧ (t′, s′) ∈ R(o)},

– add every schema axiom to G and for each triple ti ∈ q, add ti to G.

Since every RDF graph entails its schema graph, we obtain that G is a model
of S. Thus, it remains to show that �q�G �⊆ �q′�G. From our assumption, one
anticipates �A(q)∧¬A(q′)�K �= ∅ which implies �A(q)�K �= ∅ and �A(q′,m)�K =
∅. Note here that, if a formula ϕ is satisfiable in a restricted transition system
K, then �ϕ�K = S. Further, it is holds that �q�G �= ∅ and �q′�G = ∅ because G
contains all those triples that satisfy q and not q′. Therefore, we get �q�G �⊆ �q′�G.
Since cycles in queries can be expressed by a formula in a μ-calculus extended
with nominals and inverse, the constraints expressed by ¬A(q′,m) are satisfied
in a transition system containing cycles.

5.4 Complexity

Due to duplication in the encoding of the right hand side query q′, the size of
|A(q′,m)| is exponential in terms of the non-distinguished variables that appear
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in cycles in the query. Thus, we obtain a 2EXPTIME upper bound for containment
independent of the approaches. That is, the complexity bound applies to all the
approaches. As pointed out in [5], the problem is solvable in EXPTIME if there
is no cycle in the query on the right hand side. In this case, this complexity is a
lower bound due to the complexity of satisfiability in μ-calculus.

Proposition 2. SPARQL query containment under the RDFS entailment can be
solved in a time of 2O(n), where n is the size of the encoding.

All the three approaches have the same complexity bound, the difference lies
on their extensibility. While encoding the RDFS semantics (§5.2) and query
rewriting (§5.1) approaches are tied to the schema language which makes it
harder for easy extension, the schema encoding approach (§5.3) can be extended
to use a more expressive schema language than RDFS. For instance, we can
extend the schema language to SH where a concept C can be a bottom concept
(�), an atomic concept A, or a complex concept ¬C or C ∩ D. A role r is an
atomic role. An SH TBox consists of concept inclusion, role inclusion and role
transitivity axioms [13]. Role inclusion and transitivity axioms can be encoded
in the same way as it is done in Definition 11. The encoding of concept inclusion
axioms is slightly different, thus, we extend η as follows:

η((C, sc, D)) = νX. (ω(C)⇒ ω(D)) ∧ nu(X)
ω(⊥) = ⊥ ω(A) = A ω(¬C) = ¬ω(C) ω(C �D) = ω(C) ∧ ω(D)

We can expand the proof of Theorem 1, to prove the correctness of this reduc-
tion. And thus, retaining the double exponential upper bound. Beyond this, we
can even extend SH to the fragments of SROIQ [12]. More specifically, the frag-
ments without number restrictions. The expressiveness of the schema language
is limited as such due to the expressive power of the logic used for the encoding:
μ-calculus with nominals and converse becomes undecidable when extended with
graded modalities [4].

6 Conclusion

In this work, we have presented a translation of RDF graphs into labeled transi-
tion systems over which μ-calculus formulas are interpreted. We also have pro-
vided functions to produce the encodings of queries, inference rules and schema
as formulas. Henceforth, query containment under RDFS entailment is reduced
to formula satisfiability test in the μ-calculus. We introduced three approaches
to achieve this, namely (1) encoding the RDFS semantics, (2) query rewriting,
and (3) encoding the schema. Unlike (1) and (2), the third approach can be
extended for a more expressive schema language as shown in §5.4, while main-
taining a double exponential upper bound complexity. The power of the logic
and our encoding allows for taking advantage of more expressive schema lan-
guage. For instance, a good candidate could be the description logic SROIQ
[12] underlying OWL 2.

In the future, we plan to investigate the optimality of the upper bound con-
sidering a more expressive schema language than RDF schema. Additionally, we
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plan to study containment of path queries with counting quantifiers (SPARQL 1.1

property hierarchies) using a fragment of μ-calculus called graded μ-calculus [4].
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Abstract. Wepresent a fully automatedmethod for the verification of an-
notated recursive programs with dynamic pointer structures. Assertions
are expressed in a dialect of dynamic logic extended with nominals and
tailored to heap structures, in which one can express complex reachabil-
ity properties. Verification conditions are generated using a novel calculus
for computing the strongest postcondition of statements manipulating the
heap, such as dynamic allocation and field-assignment. Further, we intro-
duce a new decidable tableaux-based method and its prototype implemen-
tation to automatically check these verification conditions.

1 Introduction

Programs with pointers give rise to so-called heap structures which store the
dynamically allocated program variables. A heap can be viewed as a labelled
transition system (or Kripke structure) where the transitions, labelled with field
names, between the states model the navigation structure.

In this paper we present a formal method for validating annotated recursive
programs with pointers. We consider programs for manipulating pointer struc-
tures, annotated with assertions in a dialect of propositional dynamic logic [8]
to describe the dynamically evolving heap structures. The modalities of this di-
alect contain regular expressions over the field names and tests on the program
variables. The program variables themselves are represented in the logic as a
certain kind of propositional variables, so-called nominals, which hold in exactly
one state. Assertions in this dialect are used to specify the pre- and postcondi-
tions of (recursive) procedures and invariants of while statements, and allow for
a succinct description of complex reachability properties of pointer structures.

In order to validate a recursive program annotated with assertions in our
dialect of propositional dynamic logic, we introduce a method for generating
verification conditions based on a new calculus which allows us to compute for
an arbitrary precondition (expressed in our dynamic logic with nominals) and
(field-)assignment (including dynamic allocation) the corresponding strongest
postcondition.
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Further, we present a new semantic tableaux method and its prototype im-
plementation for validating the computed verification conditions in terms of the
entailment relation of the logic. Given an annotated program we can thus fully
automate its validation.

Related work. Since the pioneering work of Morris [11], proving correctness of
programs with pointers has been and still is one of the main challenges in the
research area of program verification. Many approaches and corresponding logics
have been introduced of which separation logic [14] is one of the more recent and
popular ones. However, most of these logics are undecidable. For example, in [5]
it is proven that even the purely propositional fragment of separation logic is
undecidable. In [2] a decidable fragment of separation logic is introduced which
however is restricted to certain kinds of tree structures.

Since first-order logic cannot express basic properties of unbounded heaps
like reachability, most approaches also use a form of second-order logic (i.e, re-
cursively defined predicates). In recent papers like [17,10,4] restrictions of such
extensions of first-order logic are introduced to obtain decidability. In [10], de-
cidability is obtained by restricting to recursively defined models. As mentioned
in [10], the logic introduced in [4] (and its predecessor) “have very awkward syn-
tax that involve the domain being partially ordered with respect to sorts, and
the logics are heavily curtailed so that the decision procedure can move down
the sorted structures hierarchically and hence terminate”. In [17], which is a
generalization of [1], a decidable logic is introduced which does not allow nested
modalities, contrary to our logic which supports this by its very nature. Finally
in [13] and [9] reachability predicates are introduced, with the specific purpose
of reasoning about linked lists.

In contrast to the above approaches our starting point is an application of dy-
namic logic, which is one of the most fundamental logics introduced in computer
science for program verification. The decidability of this logic does not require
any (syntactic or semantic) restrictions. Further dynamic logic is particulary
tailored towards the specification of arbitrary complex reachability properties,
whereas the other approaches, based on first-order logic, by their nature focus
on structural properties.

In [16] it is shown how to express pre- and postconditions of low-level transfor-
mations of Kripke structures in variants of the modal μ-calculus. For the expres-
sion of (weakest) preconditions an undecidable variant is used which includes
inverse programs. However, the (strongest) postcondition is shown in [16] to be
expressible in a decidable variant which excludes inverse programs. In contrast,
in this paper we show how to express the strongest postcondition of assignments
(including field updates and dynamic allocation) of a high-level programming
language. We do so by applying the standard definition of the strongest postcon-
dition in our dialect of propositional dynamic logic extended with quantification
of propositional variables and field names. However, because of the restricted use
of these quantifiers we can in fact eliminate them in the generated verification
conditions and thus remain within the realm of decidability.
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In [15] a decidability procedure based on automata-theoretic techniques has
been introduced for a hybrid μ-calculus including converse programs, nominals
and a universal program. In this paper we introduce a tableaux method which
fully exploits the particular characteristics of our logic. More specifically, we
show that the absence of a converse program (and a universal program) and the
deterministic nature of the atomic programs (represented by the field names)
allows for a modular approach which first resolves the propositional connectives
and the modalities, then resolves the nominals and finally checks eventualities.
As a consequence the complexity of our dialect coincides with that of basic
propositional dynamic logic [8]. Further, we have implemented a prototype in
the rewriting logic of Maude1 [7].

Structure of the paper. In the next sectionwe introduce our dialect of propositional
dynamic logic with nominals for the description of heaps. In Section 3 we discuss
the syntax and the partial correctness semantics of annotated recursive programs.
In Section 4 we show how to specify strongest postconditions of assignments in
our dynamic logic. How to use these strongest postconditions in the generation
of verification conditions is described in Section 5. In Section 6 we introduce our
tableaux method, and in 7 we discuss the results of executing several examples on
our Maude prototype implementation. With Section 8 we conclude.

2 Heaps in Dynamic Logic

We assume an infinite set V of variables including a distinguished variable nil ∈ V
and ranged over by x, y, z, and an infinite set of fields F ranged over by f, g. We
use the set N of natural numbers to represent locations, ranged over by n,m. A
heap H is a pair 〈v, h〉 of a variable assignment v : V → N and a field assignment
h : F → (N → N) which is strict, i.e., h(f)(v(nil )) = v(nil) for all f ∈ F . We
writeH(x) for v(x), andH(f) for h(f). For a set of variables V ar and a set of fields
Fld we denote by RH(V ar, F ld) the set of reachable locations in H starting from
these variables over fields in Fld. For technical convenience we assume that for
every heapH ,RH(V, F ) is finite. We denote variable update byH [x := n], global
field update and store update by H [f := ρ] and ρ[n := m], respectively, where
ρ : N→ N, and, finally, a local field update by H [f := H(f)[n := m]]. We use the
standard notation and definition of simultaneous assignments and updates.

A brief discussion is in order. Heaps, as introduced above, have both an infinite
domain and an infinite range. The motivation for having an infinite number of
variables and fields is to simplify the introduction of logical variables in the
definition of strongest postconditions, described below. The reason we chose for
natural numbers to model “locations” is for an easy implementation of dynamic
allocation. Variable and field mappings are total functions. The requirement that
there is a variable nil ∈ V then allows to easily distinguish between variables
(or fields) which are “undefined”, and variables which are not.

1 The interested reader is referred to http://www.liacs.nl/~jrot/verify which con-
tains our implementation and the full version of this paper.

http://www.liacs.nl/~jrot/verify
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We introduce a logic for heap abstraction, based on propositional dynamic
logic. The basic modalities are the fields F , and V is the set of propositional
variables. The syntax of dynamic logic formulas is defined in a standard way as
follows:

ϕ ::= ⊥ | x | ϕ ∨ ϕ | ¬ϕ | 〈α〉ϕ α ::= f | α;α | α+ α | α∗ | x?

where x ranges over V , and f ranges over F . We define [α]ϕ = ¬〈α〉¬ϕ, and use
in addition to the above the standard connectives from propositional logic (∧,→
, . . .). The expressions α are called navigation expressions. We define satisfaction
of basic formulas ϕ in a standard way [3]: given a heap H together with a natural
number n we have

H,n �|= ⊥
H,n |= x iff H(x) = n

H, n |= φ1 ∨ φ2 iff H,n |= φ1 or H,n |= φ2

H,n |= ¬φ iff H,n �|= φ

H, n |= 〈α〉φ iff ∃m ∈ N such that (n,m) ∈ H(α) and H,m |= φ

where (the relation) H(α) is the extension of H(f) to arbitrary expressions α,
defined by structural induction in the standard manner. A variable or field z is
fresh in a formula ϕ if it does not occur in ϕ. We define Var(ϕ) as the set of all
variables which occur in ϕ, and Field(ϕ) as the set of all fields occuring in ϕ.

As a first attempt for a notion of validity we define in a standard way H |= ϕ
iff H,n |= ϕ for all n ∈ N. However this forces the semantics of formulas also to
take into account properties of garbage, i.e., unreachable parts of the heap; this
we can solve by redefining validity as H |= ϕ iff H,n |= ϕ for all n ∈ RH(V, F ).
Unfortunately, this notion of validity gives rise to a highly complicated check
of the corresponding entailment relation φ |= ψ: it requires the construction of
counterexample models in which φ is satisfied in every state, which is formalized
by the implication |= [(f1 + . . . + fk)

∗]φ → ψ, where f1, . . . , fk are the basic
modalities occuring in φ and ψ [8]. In order to make this process more tractable
we relativize this general notion of validity to the local view from the variables,
by the introduction of so-called rooted formulas, given by the following grammar:

Φ ::= @x.ϕ | Φ1 ∧ Φ2

Then for a formula Φ = @x1.ϕ1 ∧ . . . ∧@xn.ϕn and a heap H we define

H |= Φ iff ∀i ≤ n : H,H(xi) |= ϕi

Note that H(xi) represents the location referenced by xi. Now given the above Φ
and another rooted formula Ψ = @y1.ψ1∧ . . .∧@ym.ψm, checking the entailment
Φ |= Ψ reduces to the construction of a heap H such that H |= Φ and H |=
@yi.¬ψi for some i ≤ m.

Note that we thus have introduced a very restricted use of the binding operator
in hybrid logic [3]: we only allow top-level occurrences of this operator (e.g., it
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is not allowed to occur in the scope of any modal operator). Let us discuss
the main features of the logic with some examples. Determinism of fields in
heaps leads to the fact that the following entailment holds: @x.〈f〉y ∧ 〈f〉z |=
@y.z. Variables are nominals, i.e., true in exactly one world: @x.y |= @y.x. A
formula @x.〈(f + g)∗〉y states that y is reachable from x over fields f and g.
For example, the following entailment holds: @x.〈f∗〉y ∧ @y.〈g〉z |= @x.〈(f +
g)∗〉z but @x.〈f∗〉y ∧@y.〈g〉z |= @x.〈f∗〉z does not hold. Finally, as an example
of a linked data structure, some variable x being the head of a (non-circular)
linked list is succinctly modelled as @x.〈next∗〉nil . Compare this to the formula
@x.〈next∗〉¬nil ; heaps (with a finite number of reachable locations) which satisfy
that formula must have a loop somewhere, i.e., have x as the head of a linked list
with a loop. To specify that x is the head of a linked list which does not contain
y, we can write @x.[next∗](¬y)∧〈next∗〉nil . Finally to specify x has a path back
to itself (via pointers named prev) for every location reachable from x, we may
write @x.[(f1 + . . .+ fk)

∗]〈prev∗〉x, for some sequence of fields f1, . . . , fk.
We conclude this section with the definition of substitution used in the defi-

nition of strongest postconditions. Substitution of a variable z for x is denoted
Φ[z/x], and substitution of a field f for a navigation expression α as Φ[α/f ].
Both are defined by structural induction in the standard manner. Of particular
interest is the case of the @ operator:

(@y.ϕ)[z/x] = @(y[z/x]).(ϕ[z/x]) (@y.ϕ)[α/f ] = @y.(ϕ[α/f ])

The relation between substitution in formulas and allocation in heaps is formal-
ized in the following adaptation of the standard substitution lemma:

Lemma 1 (Substitution). Let H be a heap, Φ a formula, x, z variables, f a
field and α a navigation expression such that H(α) is a function H(α) : N→ N.
Then

H |= Φ[z/x] iff H [x := H(z)] |= Φ, and H |= Φ[α/f ] iff H [f := H(α)] |= Φ

Since we allow substitution of general navigation expressions for fields, in or-
der for the update H [f := H(α)] to be well-defined we require that H(α) is
deterministic.

3 Programs

In this section we introduce a simple Turing-complete imperative programming
language which supports recursion (without local variables), assignment of vari-
ables and update of fields, and dynamic allocation. The language is specifically
tailored to manipulate pointer structures, and does not support any other data.
Methods are annotated with pre- and postconditions, and while loops are anno-
tated with invariants, all of these expressed as rooted formulas.

In order to proceed we assume given finite sets VP ⊂ V and FP ⊂ F of program
variables and program fields respectively, such that nil ∈ VP . An annotated
recursive program is a collection

P = {{Φ1}p1 :: S1{Ψ1}, . . . , {Φn}pn :: Sn{Ψn}}
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of procedure declarations pi :: Si with pre- and postconditions Φi and Ψi respec-
tively, such that all variables and fields occuring in P are contained in VP and
FP . In a declaration pi :: Si the name of the procedure is given by pi, and Si

is a statement (the body of the procedure), of which the syntax is given by the
following grammar:

S ::= if B then S1 else S2 fi | (inv : Θ) while B do S od | p | S1;S2 | A | ε
A ::= x := y | x := y.f | x.f := y | x := new

B ::= x = y | x �= y

where x, y range over VP (x �= nil), f ranges over FP , Θ is a rooted formula,
p is procedure identifier and ε is the empty statement, which we include for
technical convenience. The expressions A are called assignments ; note that these
include dynamic allocation. More general operations on the heap can be encoded
using only these basic statements. For example, a statement x := y.fi1 . . . fik is
encoded as x := y.fi1 ;x := x.fi2 ;x := x.fi3 ; . . . ;x := x.fik . In fact, the operation
x := y is not strictly necessary in presence of the others, as it can be encoded as
z.f := y;x := z.f .

The operational semantics of this language is described bymeans of a transition
relation between configurations which are pairs 〈H,S〉 of a heap H and a state-
ment S. The semantics of assignments is described by the following transitions:

〈H,x := y〉 → 〈H [x := H(y)], ε〉 〈H,x := y.f〉 → 〈H [x := H(f)(y)], ε〉

Field update x.f := y affects aliases of x. We require that x is not aliased with
nil for a correct execution of such an update:

H(x) �= H(nil)

〈H,x.f := y〉 → 〈H [f := H(f)[H(x) := H(y)]], ε〉

Finally the transition of dynamic allocation is as follows:

〈H,x := new〉 → 〈H [x := n][f̄ := ρ̄], ε〉

where n ∈ N \ RH(VP \ {x}, FP ) denotes a location not reachable from other
program variables through navigation expressions over program fields, f̄ is the
sequence of program fields FP , and ρ̄ is the sequence such that for every i:
ρi = H(fi)[n := H(nil)]. The extension to sequential composition, if-then-else,
while loops and procedure calls is defined in a standard way.

Definition 1 (Partial correctness). Given a statement S, precondition Φ and
postcondition Ψ we define a correctness triple |= {Φ}S{Ψ} to be valid if for all
heaps H:

H |= Φ and 〈H,S〉 →∗ 〈H ′, ε〉 implies H ′ |= Ψ

A program P is correct, denoted |= P , if for every {Φ}p :: S{Ψ} ∈ P :
|= {Φ}S{Ψ}.
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Note that the standard rules of Hoare logic with respect to the program con-
structs hold for the above definition of partial correctness.

Example 1. We illustrate the introduced concepts with an annotated implemen-
tation of an insertion into a (non-circular) linked list:

{@x.〈next∗〉nil}y := new; y.next := x;x := y{@x.〈next∗〉nil}

Remember from Section 2 that a (non-circular) linked list with head x is rep-
resented succinctly by the formula @x.〈next∗〉nil . Note that according to this
annotation the property of non-circularity is preserved by the insertion of a new
element. On the other hand, the annotated program

{@x.〈next∗〉nil}y.next := x;x := y{@x.〈next∗〉nil}

is clearly incorrect because if y itself is already part of the list then its insertion
will introduce a circularity, as y sets the next field to point to x.

4 Strongest Postconditions of Assignments

In general, verification of annotated programs is based on the generation of
verification conditions. This can be done systematically by computing weakest
preconditions or strongest postconditions. It is worthwhile to observe that it
is unclear and highly problematic how to generate statically the weakest pre-
condition in our logic. For instance, suppose we want to compute the weakest
precondition of x := y.f with respect to the rooted formula @z.x. The standard
way to do so is to substitute y.f for x. However y.f is a programming language
construct, which does not have a counterpart in the logic. Through a semantic
analysis we might come up with @y.〈f〉z, but it is far from clear how to arrive
at an equivalent formula in a systematic way. Therefore, our approach is based
on computing strongest postconditions, which in contrast does allow a relatively
simple characterization based on substitution. However, the standard way of
expressing the strongest postconditions requires the introduction of existential
quantification to denote the old value of the updated variable, giving rise to an
undecidable logic. In our case the field update x.f := y would be particularly
problematic since it requires (second-order) existential quantification over fields.
Fortunately, in general (top-level) existential quantifiers can be eliminated in
the entailment relation. To show this we first extend our logic with top-level
existential quantification:

ΦE = ∃z.ΦE | ∃g.ΦE | Φ

where Φ is a rooted formula, z is a variable and g is a field. With FVar(ΦE) we
denote all variables not bound by a quantifier, and similarly with FField (ΦE)
all such fields. The semantics is defined as follows: H |= ∃z.Φ iff H [z := m] |= Φ,
for some m ∈ N, and H |= ∃g.Φ iff H [g := ρ] |= Φ, for some ρ : N→ N.

Now we have the following basic logical property of the entailment relation:
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Lemma 2. Let Φ and Ψ be formulas. For any z ∈ V \ FVar(Ψ):
∃z.Φ |= Ψ iff Φ |= Ψ . For any g ∈ F \ FField(Ψ): ∃g.Φ |= Ψ iff Φ |= Ψ .

For the purpose of generating verification conditions, described in the follow-
ing section, the above lemma justifies the introduction of fresh variables in the
strongest postcondition without existential quantification. The strongest post-
condition SP(x := y, Φ) of a variable assignment of the form x := y and a
formula Φ therefore is given by the formula

Φ[z/x] ∧@y[z/x].x

where z is a fresh variable, not occuring in Φ or VP . In the special case of an
assignment x := x, we should have that z equals x, which is indeed taken care of
by the substitution in @y[z/x].x. The strongest postcondition SP(x := y.f, Φ)
of a variable assignment x := y.f and a formula Φ is similar to the above update
x := y:

Φ[z/x] ∧@y[z/x].〈f〉x
where z is as again a fresh variable. The strongest postcondition SP(x.f := y, Φ)
of an assignment x.f := y and a formula Φ is given by the formula

Φ[((x?; g) + (¬x?; f))/f ] ∧@x.(¬nil ∧ 〈f〉y)

where g is a fresh field name not occuring in Φ or FP . Here g represents the old
value of f . The formula @x.¬nil is required in order to match the operational
semantics, which states that field update to an alias of nil is not allowed. For
example when Φ = @x.nil, the above strongest postcondition is a contradiction,
which is correct, since any execution of x.f := y on a heap satisfying Φ would
block according to the operational semantics. Finally the strongest postcondition
SP(x := new, Φ) of dynamic allocation x := new and a formula Φ is given by
the formula

Φ[z/x] ∧
∧

f∈FP

(@x.〈f〉nil) ∧
∧

v∈VP \{x}
(@v.[(f1 + . . .+ fk)

∗]¬x)

where {f1, . . . , fk} = FP . Intuitively the above formula states that x is unreach-
able from any other program variable after being allocated, and that its fields
are initialized to point to nil . We illustrate the above in terms of the insertion
into a linked list of Example 1.

Example 2. For notational convenience we assume that FP = {next} and VP =
{y, x, nil}. We first observe that SP (y := new,@x.〈next∗〉nil) equals

@x.〈next∗〉nil ∧@y.〈next〉nil ∧@x.[next∗]¬y ∧@nil.[next∗]¬y

Next we compute the strongest postcondition of the above formula for the as-
signment y.next := x:

@x.〈π∗〉nil ∧@y.〈π〉nil ∧@x.[π∗]¬y ∧@nil.[π∗]¬y ∧@y.(¬nil ∧ 〈next〉x)
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where π stands for (y?; f + ¬y?;next), for some new field name f . Finally, we
compute the strongest postcondition of this formula for the assignment x := y:

@w.〈π∗〉nil ∧@y.〈π〉nil ∧@w.[π∗]¬y∧@nil.[π∗]¬y ∧@y.(¬nil ∧ 〈next〉w)∧@y.x

In Section 7 we show that the prototype implementation of our semantic tableaux
method reports that the resulting strongest postcondition entails @x.〈next∗〉nil .
For now we give an informal argument as to why this is the case. To this end,
suppose the above strongest postcondition is true in some heap H . First note
that π agrees with next on every world where y does not hold. Thus since
@w.[π∗]¬y holds it follows by induction that @w.[next∗]¬y does, too; but then
from @w.〈π∗〉nil we may conclude @w.〈next∗〉nil , which again can be shown
inductively. So w is the head of a linked list; and since @y.〈next〉w holds y is,
too. Finally @y.x states that x and y are equal, and so @x.〈next∗〉nil as desired.

We conclude this section with the following theorem, stating that the above
strongest postconditions are sound and complete with respect to the operational
semantics:

Theorem 1. For every formula Φ: SP (A,Φ) |= Ψ iff |= {Φ}A{Ψ}, where A is
an assignment, Var(Ψ) ⊆ VP ∪ Var(Φ) and Field(Ψ) ⊆ FP ∪ Field(Φ).

Note that because we do not existentially quantify the introduced fresh variables
or field names we do not have the usual property |= {Φ}A{SP (A,Φ)}. However,
as argued above, these variables are in fact implicitly existentially quantified
in the entailment relation, i.e., in the verification conditions described in more
detail in the next section.

5 Generation of Verification Conditions

Given the syntactic descriptions of the strongest postconditions for assignments
we now turn to a method for generating verification conditions. Our method is
implemented in terms of a rewriting system in Maude; we give here a high-level
description. Procedure declarations of the form {Φ}p :: S{Ψ} are rewritten as
follows:

{Φ}p :: S{Ψ} ⇒ {Φ}S; ε{Ψ}
Here the empty statement ε allows for an easy treatment of sequential composi-
tion. For any assignment A, we simply compute the strongest postcondition as
given above:

{Φ}A;S{Ψ} ⇒ {SP (A,Φ)}S{Ψ}
On an if-then-else statement with condition B, we branch into two threads of
execution, one where B is true and one where it is not. Note that B is either
an equality or a disequality and thus not strictly a formula in our logic; with B̂
we denote a logical formula corresponding to the expression B, which is defined
simply as B̂ = @x.y in case B is of the form x = y, and @x.¬y, in case it is of
the form x �= y. This is formalized by the following rule:

{Φ}if B then S1 else S2 fi;S{Ψ} ⇒ {Φ ∧ B̂}S1;S{Ψ}, {Φ ∧ ¬̂B}S2;S{Ψ}
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A while loop is treated by proving that the current state entails the invariant,
that the invariant is preserved on execution of the body and by continuing after
the loop with the invariant and the negated loop condition:

Φ |= Θ

{Φ}(inv : Θ) while B do S od;S′{Ψ} ⇒ {Θ ∧ B̂}S{Θ}, {Θ ∧ ¬̂B}S′{Ψ}

On procedure call, we show that the current state entails the precondition of the
callee, and then continue with the callee’s postcondition.

{Φi}pi :: Si{Ψi} ∈ P Φ |= Φi

{Φ}pi;S{Ψ} ⇒ {Ψi}S{Ψ}

Finally we terminate succesfully when the current state entails the postcondition:

Φ |= Ψ

{Φ}ε{Ψ} ⇒ �

The above rules are combined into a relation ⇒ lifted to sets of triples of the
form {t1, . . . , tn}, where each ti is either of the form {Φ}Si{Ψ} or {Φ}pi :: Si{Ψ}.

Definition 2. Let ⇒∗ denote the transitive closure of ⇒. We define

� {Φ}S{Ψ} iff {{Φ}S{Ψ}} ⇒∗ {�}

For an annotated program P = {{Φ1}p1 :: S1{Ψ1}, . . . , {Φn}pn :: Sn{Ψn}} we
define � P iff {P} ⇒∗ {�}.

We proceed to discuss the correctness of the above approach. Unfortunately,
we can not generalize Theorem 1 to statements S as it is impossible to achieve
completeness. The reason for this is that given the combination of a decidable
logic for assertions and a Turing-complete programming language, there is no
complete Hoare-style axiom system [6]. We continue to show that our method
is sound. A technical difficulty is that for basic assignments |= {Φ}A{SP (A,Φ)}
does not hold, since SP (A,Φ) introduces a fresh variable or field. To overcome
this problem we first define an alternative version SPE of the strongest post-
conditions of assignments as follows. For any A of type x := y, x := y.f or
x := new:

SPE(A,Φ) = ∃z.SP (A,Φ)

where z is the fresh variable introduced in SP (S, Φ). Similarly we define

SPE(x.f := y, Φ) = ∃g.SP (S, Φ)

Now by Lemma 2 and Theorem 1 we have the following:

Corollary 1. For any formula Φ and assignment A: |= {Φ}A{SPE(A,Φ)}.

We are now ready to prove the correctness of the method:
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Theorem 2 (Soundness). For any program P : if � P , then |= P .

Proof. We prove that for any triple {Φ}S{Ψ} such that Var(Ψ) ⊆ VP and
Field(Ψ) ⊆ FP : {{Φ}S; ε{Ψ}} ⇒∗ {�} implies |= {Φ}S{Ψ} by induction on
the size of statements.

The base case, for the empty statement, follows directly from the definition
of correctness triples and the termination rule above.

Let S;S′ be a statement such that S is not a composition, {Φ}S;S′{Ψ} ⇒∗ �,
and suppose our claim holds for any statement smaller than S;S′. We treat the
case that S is an assignment and the case that S is an if-then-else statement.

– Suppose S is an assignment. Then {Φ}S;S′{Ψ} can only be rewritten by
above rule for action prefixing, so {{SP (S, Φ)}S′{Ψ}} ⇒∗ {�} and since S′

is smaller than S, by the induction hypothesis |= {SP (S, Φ)}S′{Ψ}. Since
Var(Ψ) ⊆ VP and Field(Ψ) ⊆ FP but the introduced existentially quantified
variable or field in SPE(S, Φ) is not in VP or FP respectively, it is easy to
show that |= {SPE(S, Φ)}S′{Ψ} holds – this is in fact a generalized version of
a standard rule in Hoare logic for the introduction of existential quantifiers.
Further by Corollary 1 we have |= {Φ}S{SPE(S, Φ)}. It follows that |=
{Φ}S;S′{Ψ} holds.

– Suppose S = if B then S1 else S2 fi for some S1, S2 and B. Then the if-
then-else rule is applied, so both {{Φ ∧ B̂}S1;S{Ψ}} ⇒∗ {�} and {{Φ ∧
¬̂B}S2;S{Ψ}} ⇒∗ {�}. By the induction hypothesis |= {Φ∧B̂}S1;S{Ψ} and
|= {Φ∧¬̂B}S2;S{Ψ} hold, and thus also |= {Φ}if B then S1 else S2 fi;S{Ψ}.

��

6 Deciding Entailment with Semantic Tableaux

In this section we sketch the main characteristics of our tableaux method for
deciding entailment between rooted formulas and its prototype implementation
in the rewriting logic engine of Maude. To check an entailment Φ |= Ψ we search
for a counterexample, that is, a heap which satisfies Φ but does not satisfy Ψ . In
our case, for a given Φ = @x1.ϕ1 ∧ . . .∧@xn.ϕn and Ψ = @y1.ψ1∧ . . .∧@ym.ψm

this means the construction of a heap H such that H |= Φ and H |= @yi.¬ψi for
some i ≤ m.

To this end we introduce in Maude the sorts World, Model, NewWorld and
Config. A term of sort World is constructed by the operation

op . : Nat Form →World

where Form denotes the sort of dynamic logic formulas. The sort of natural
numbers Nat is used to identify “worlds”, as we will call such terms in the
sequel. A heap is represented by a term of sort Model which is constructed by

op ; ; : Worlds Transitions Nat → Model

where Worlds denotes a sequence of terms of sort World, a term of sort Tran-
sitions denotes a set of labelled transitions between worlds represented by their
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natural numbers. For technical convenience Nat is used to represent a bound
on the number of worlds in the model. The standard (structural) tableaux rules
for propositional dynamic logic operate on the terms of the sort NewWorlds
constructed by

op [ , , , , ] : Nat Field Form Form Next → NewWorld

where

1. the first argument represents its originating world,
2. the second argument represents the transition from that world to this new

world “under construction”,
3. the third argument is a conjunction of formulas which are supposed to hold

in this new world but are still to be processed, whereas
4. the fourth argument represents a conjunction of formulas which are already

processed and therefore do hold; finally
5. the last argument Next is a set of formulas labelled by fields, indicating the

worlds supposed to originate from this one.

Finally a term of sort Config is constructed by

op ( | ) : NewWorlds Model → Config

where NewWorlds denotes a sequence of terms of sort NewWorld. A term of sort
Config thus represents a set of new worlds which are to be finalized and a term
of sort Model which contains finalized worlds.

For a proper treatment of the identification of nominals our tableaux method
operates on a list of configurations. For example, a disjunction ϕ∨ψ gives rise to
a split of the current configuration into two new configurations corresponding to
the two disjuncts ϕ and ψ, respectively. The entailment relation Φ |= Ψ (Φ and
Ψ as above) is therefore represented by a sequence of configurations C1, . . . , Cm

where each Ci consists of an empty model and a set of worlds under construction
representing the formulas:

x1 ∧ ϕ1, . . . , xn ∧ ϕn, yi ∧ ¬ψi

Our method distinguishes the following three (disjoint) sets of rewrite rules to
be applied to individual configurations.

1. First the standard (structural) tableaux rules for dynamic logic are applied
on the worlds under construction. A literal conjunct for example is simply
transferred to the set of processed formulas. As described above, a disjunction
splits the current configuration into two. A formula 〈α∗〉ϕ at this stage is
treated as a disjunction ϕ ∨ 〈α〉〈α∗〉ϕ. A formula 〈f〉ϕ is transferred both
to the processed formulas and to the set of next worlds. A formula [f ]ϕ is
treated similarly (note that f is deterministic). All other formulas are dealt
with by the usual reduction axioms of dynamic logic.

2. The second phase consists of the merging of finalized worlds containing the
same nominal, and its propagation to the transitions to maintain the deter-
ministic nature of fields. Here strictness of nil is enforced by adding transi-
tions from nil to itself for every field occuring in some finalized world.
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3. The final phase consists of a star track, which checks if the eventualities of the
form 〈α∗〉ϕ are indeed validated. This phase is implemented by computing
α∗ using the given bound on the number of worlds.

Every configuration which passes through these three phases and the consistency
check on finalized worlds is a valid counterexample. Other configurations are
deleted. We denote by⇒T the consecutive application of the above sets of rewrite
rules. We have the following main theorem.

Theorem 3. Let Φ and Ψ be rooted formulas as defined above. Further let
C1, . . . , Cm be a corresponding sequence of configurations, also as defined above.
We have

Φ |= Ψ iff C1, . . . , Cm ⇒∗
T ε

where ⇒∗
T denotes the transitive closure of ⇒T and ε denotes the empty list.

The consecutive application of the above three (disjoint) sets of rewrite rules, i.e.,
(1) standard structural rules, (2) propagation of nominal identification and (3)
checking eventualites, yields a modular method which allows for a transparent
proof. Because of space limitations we only observe here that at the heart of the
above theorem lies the basic fact that the consecutive application of the above
sets of rewrite rules is indeed correct because of the deterministic interpretation
of the field names. For example, adding the converse operator on fields, i.e., f−1,
merging two worlds (because of a common nominal) would in general require a
renewed validation (and corresponding propagation) of a formula [f−1]φ of the
resulting world. On the other hand, a termination proof for our tableaux method
requires this consecutive application of the above rewrite rules. Intuitively, no rule
in the above first set of (structural) rewrite rules is applicable (to a term of sort
Config) when all terms of sort NewWorld have been processed, i.e., transformed
into terms of sort World. Distinguishing, in a configuration, between new worlds
and finalized worlds allows a simple check whether a processed new world already
appears as a final world in the model. In case the processed world already exists
we only need to possibly add a new transition (from the originating world to the
corresponding final world). Nominal identification at the first phase on finalized
worlds may lead to divergence. We illustrate this with an informal example.

Example 3. Suppose in a given configuration there exists a final world ϕ ∧ x
for some ϕ. Furthermore suppose there exists a world under construction in
which the formula [f∗]x is to be made true. Processing this formula leads to the
introduction of a final world in which x ∧ [f ][f∗]x is true (assuming that such a
world does not yet exist) and a new world orginating from this fresh final world
in which again [f∗]x is to be made true. Because of the nominal x occuring both
in ϕ ∧ x and x ∧ [f ][f∗]x these worlds can then be identified. As a consequence
the above scenario will repeat itself.

7 Example Runs of Prototype Implementation

In this section we provide the output resulting from running some of the intro-
duced examples on our Maude implementation of the tableaux method and the
automated verification. For example the following output
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rewrite in TABLO : ((x . < f * > y),y . < g > z) |= x . < (f + g) * > z .

rewrites: 1444 in 8ms cpu (10ms real) (168082 rewrites/second)

result DelimConfig: {empty}

tells us no counterexample could be found, and thus that the entailment on
the first line holds (in the implementation we write a rooted formula @x1.ϕ1 ∧
. . . ∧ @xn.ϕn as x1.ϕ1, . . . , xn.ϕn). In contrast, the following output shows the
generation of a counterexample:

rewrite in TABLO : ((x . < f * > y),y . < g > z) |= x . < f * > z .

rewrites: 312 in 0ms cpu (1ms real) (355353 rewrites/second)

result DelimConfig: {(true ; (0 . x & y & - z & (< g > z) & (< f * > y)

& ([f][f *]- z) & [f *]- z),(1 . - z & ([f][f *]- z) & [f *]- z),3 . z

; < f,0,1 >,< f,1,1 >,< g,0,3 > ; 4),(...)}

The above output represents a model with worlds 0 : x ∧ y ∧ . . ., 1.¬z ∧ . . . and
3.z and transitions f : 0 "→ 1, f : 1 "→ 1 and g : 0 "→ 3. In this model indeed
@x.〈f∗〉y holds (in world 0), and @y.〈g〉z holds since z is true in world 3, but
@x.〈f∗〉z does not hold in world 0, since it can not reach z through f -transitions.

As an example of the full implementation of the automated verification based
on generating verification conditions and proving them using the entailment
checker we try to verify first the following incorrect list insertion in Maude:

rewrite in VERIFY :

ver(m1 . x.< next* >nil . ((y..next) := x); x := y . x.< next* >nil) .

rewrites: 53413 in 91ms cpu (92ms real) (582050 rewrites/second)

result PConfig: (...) {(true ; (0 . x & y & - nil & x ’ & (...)

3 . nil & < ((y ; next ’) + (- y ; next)) * > nil ;

< next,0,0 >,< next’,0,3 > ; 7),(...)

This returns as a counterexample a model in which x points to a circular list;
in fact, x.next = x. Interesting to see is that next ′, the fresh field introduced to
represent next before the assignment y.next := x, does map world 0 to world 3
(in which nil holds); thus, we can see that y.next := x was exactly the statement
introducing the circularity. The corrected version is indeed verified, as expected:

rewrite in VERIFY :

ver(m1 . x.< next * > nil . (y := new[next | x y]) ; ((y .. f) := x) ;

x := y . x . < f * > nil) .

rewrites: 13378832 in 25262ms cpu (25270ms real) (529585 rewrites/second)

result PConfig: success

8 Conclusions and Future Work

We presented the first tool-supported formal method for the automated valida-
tion of recursive programs with pointers annotated with assertions in dynamic
logic. Future work of interest concerns the extension to recursive programs with
local variables. Such programs require the introduction of specific adaptation
rules [12] suited for automation. Further work concerns optimizations of the
prototype implementation and extensive testing on challenging case studies. Of
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particular interest in this context is the integration of an automated method
for the elimination of the implicitly existentially quantified fresh variables (and
field names) in the strongest postconditions using the tableaux method itself.
Such a method could possibly be applied to the automated generation of loop
invariants. Finally it would be interesting to investigate the integration of the
separating conjunction [14] in our logic. Unfortunately, reasoning with the frame
rule [14] would be very hard to automate.
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Abstract. When formally analyzing security protocols it is often im-
portant to express properties in terms of an adversary’s inability to dis-
tinguish two protocols. It has been shown that this problem amounts to
deciding the equivalence of two constraint systems, i.e., whether they
have the same set of solutions. In this paper we study this equivalence
problem when cryptographic primitives are modeled using a group equa-
tional theory, a special case of monoidal equational theories. The results
strongly rely on the isomorphism between group theories and rings. This
allows us to reduce the problem under study to the problem of solving
systems of equations over rings. We provide several new decidability and
complexity results, notably for equational theories which have applica-
tions in security protocols, such as exclusive or and Abelian groups which
may additionally admit a unary, homomorphic symbol.

1 Introduction

Automated verification methods used for the analysis of security protocols have
been shown extremely successful in the last years. They have for instance been
able to discover flaws in the Single Sign On Protocols used in Google Apps [5].
In 2001, J. Millen and V. Shmatikov [19] have shown that confidentiality prop-
erties can be encoded as satisfiability of a constraint system. This approach has
been widely studied and extended both in terms of the supported cryptographic
primitives and security properties (e.g. [11,7]).

Recently, many works have concentrated on indistinguishability properties,
which state that two slightly different protocols look the same to an adversary
who interacts with either one of the protocols. The notion of indistinguishability
can be modelled using equivalences from cryptographic calculi (e.g. [3,2]) and
are useful to model a variety of properties such as resistance to guessing attacks
in password based protocols [7] as well as anonymity like properties in vari-
ous applications [16,4]. More generally, indistinguishability allows one to model
security by the means of ideal systems, which are correct by construction [3].
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In 2005, M. Baudet has shown that the equivalence of traces can again be en-
coded using constraint systems: instead of deciding whether a constraint system
is satisfiable one needs to decide whether two constraint systems have the same
set of solutions. M. Baudet [7], and later Y. Chevalier and M. Rusinowitch [10],
have proven the equivalence of two constraint systems decidable when cryp-
tographic primitives are modelled by a subterm convergent equational theory.
Subsequently more practical procedures have been implemented in prototype
tools [8,22].

Our contributions. We continue the study of the problem of deciding the equiv-
alence of constraint systems used to model security protocols. In particular we
consider the case where cryptographic primitives are modelled using a group
theory. Group theories are a special case of monoidal theories which have been
extensively studied by F. Baader and W. Nutt [20,6] who have provided a com-
plete survey of unification in these theories. Group theories include theories for
exclusive or and Abelian groups. These theories are useful to model many secu-
rity protocols (see [13]), as well as for modeling low level properties of encryption
schemes and chaining modes.

More precisely we provide several new decidability and complexity results
for the equivalence of constraint systems. We consider exclusive or and Abelian
Groups which may also contain a unary homomorphic symbol. Our results rely
on an encoding of the problem in systems of equations on a ring associated to
the equational theory under study.

We may note that these equational theories have been previously studied for
deciding the satisfiability of constraint systems [17] and for the static equivalence
problem [12]. To the best of our knowledge these are however the first results to
decide equivalence of constraint systems for these theories, which in contrast to
static equivalence considers the presence of a fully active adversary. We also note
that studying group theories may seem very restricted since they do not con-
tain the equational theories for classical operators like encryption or signatures.
However, combination results for disjoint equational theories for the problems
of satisfiability of constraint systems [9] and static equivalence [12] have already
been developed and we are confident that similar results can be obtained for
equivalence properties.

Outline of the paper. In Section 2 we recall some basic notation and the central
notion of group theory. Then, in Section 3, we introduce the notion of constraint
systems and define the two problems we are interested in. The sections 4, 5,
and 6 are devoted to the study of the satisfiability and equivalence problems.
Our results are summarized in Section 6. Detailed proofs of our results can be
found in [15].

2 Preliminaries

2.1 Terms

A signature Σ consists of a finite set of function symbols, each with an arity.
A function symbol with arity 0 is a constant symbol. We assume that N is an
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infinite set of names and X an infinite set of variables. The concept of names
is borrowed from the applied pi calculus [2] and is used to model fresh, secret
values. Let A be a set of atoms which may consist of names and variables. We
denote by T (Σ,A) the set of terms over Σ ∪ A. We write n(t) (resp. v(t)) for
the set of names (resp. variables) that occur in the term t. A term is ground if it
does not contain any variable. A substitution σ is a mapping from a finite subset
of X called its domain and written dom(σ) to T (Σ,N ∪ X ). Substitutions are
extended to endomorphisms of T (Σ,X ) as usual. We use a postfix notation for
their application.

2.2 Group Theories

Equational theories are very useful for modeling the algebraic properties of the
cryptographic primitives. Given a signature Σ, an equational theory E is a set of
equations (i.e., a set of unordered pairs of terms in T (Σ,X )). Given two terms u
and v such that u, v ∈ T (Σ,N ∪ X ), we write u =E v if the equation u = v is
a consequence of E. In this paper, we are particularly interested in the class of
group theories, a special case of monoidal theories introduced by F. Baader [6]
andW. Nutt [20]. It captures many theories with AC properties, which are known
to be difficult to deal with.

Definition 1 (group theory). A theory E over Σ is called a group theory if
it satisfies the following properties:

1. The signature Σ contains a binary function symbol +, a unary symbol − and
a constant symbol 0. All other function symbols in Σ are unary.

2. The symbol + is associative-commutative with unit 0 and inverse −. This
means that the equations x+ (y+ z) = (x+ y) + z, x+ y = y+ x, x+0 = x
and x+ (−x) = 0 are in E.

3. Every unary function symbol h ∈ Σ is an endomorphism for + and 0, i.e.
h(x+ y) = h(x) + h(y) and h(0) = 0.

Note that a group theory on a given signatureΣ may contain arbitrary additional
equalities over Σ. The only requirement is, that at least the laws given above
hold. By abuse of notation we sometimes write t1 − t2 for t1 + (−t2).

Example 1. Suppose + is a binary function symbol and 0 a constant. Moreover
assume that the others symbols, i.e −, h, are unary symbols. The equational
theories below are group theories.

– The theory ACUN (exclusive or) over Σ = {+, 0} which consist of the axioms
for associativity (x+ y) + z = x+ (y + z) and commutativity x+ y = y + x
(AC), unit x+ 0 = x (U) and Nilpotency x+ x = 0 (N).1

– The theory AG (Abelian groups) over Σ = {+,−, 0} which is generated
by the axioms (AC), (U) and x + −(x) = 0 (Inv). Note that the equations
−(x+ y) = −(x) + −(y) and −0 = 0 are consequences of the others.

1 We here omit to explicit the inverse symbol − as it acts as the identity, i.e. −x = x.



Security Protocols, Constraint Systems, and Group Theories 167

– The theories ACUNh over Σ = {+, h, 0} and AGh over Σ = {+,−, h, 0}:
these theories correspond to the ones described above extended by the ho-
momorphism laws (h) for the symbol h, i.e., h(x + y) = h(x) + h(y) and
h(0) = 0.

Other examples of monoidal and group theories can be found in [20].

2.3 Group Theories Define Rings

Group theories have an algebraic structure which are rings.

Definition 2 (ring). A ring is a set R (called the universe of the ring) with
distinct elements 0 and 1 that is equipped with two binary operations + and ·
such that (R,+, 0) is an Abelian group, (R, ·, 1) is a monoid, and the following
identities hold for all α, β, γ ∈ R:

– (α+ β) · γ = α · γ + β · γ (right distributivity)
– α · (β + γ) = α · β + α · γ (left distributivity)

We call the binary operations + and · respectively the addition and the multi-
plication of the ring. The elements 0 and 1 are called respectively zero and unit.
The (additive) inverse of an element a ∈ R is denoted −a. A ring is commutative
if its multiplication is commutative.

It has been shown in [20] that for any group theory E there exists a corre-
sponding ring RE. We can rephrase the definition of RE as follows. Let a be a
name (a ∈ N ), the universe of RE is T (Σ, {a})/E, that is the set of equivalence
classes of terms built over Σ and a under equivalence by the equational axioms E.
The constant 0, the sum + and the additive inverse − of the ring are defined as
in the algebra T (Σ, {a})/E.

Given an element of the ring RE, and a term v, multiplication in the ring
is defined by u · v := u[a "→ v] where u[a "→ v] denotes the term u where
any occurrence of a has been replaced by v. It can be shown [20] that RE is
commutative if, and only if, E has commuting homomorphisms, i.e., h1(h2(x)) =E

h2(h1(x)) for any two homomorphisms h1 and h2. For instance, we have that:

– The ring RACUN consists of the two elements 0 and 1 and we have 0 + 1 =
1 + 0 = 1, 0 + 0 = 1 + 1 = 0, 0 · 0 = 1 · 0 = 0 · 1 = 0, and 1 · 1 = 1. Hence,
RACUN is isomorphic to the commutative ring (field) Z/2Z.

– The ring RAGh is isomorphic to Z[h] which is a commutative ring. Note that
there are two homomorphisms in the theory AGh, namely − and h and these
two homomorphisms commute: h(−x) = −(h(x)).

By abuse of notation, we often omit the · and we mix up the elements of isomor-
phomic rings. Thus, we will write 2v instead of (a+ a) · v, and (h+ h2)v instead
of (h(a) + h2(a)) · v.
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3 Constraint Systems

As mentioned in the introduction, constraint systems are quite common (see
e.g. [19,11,7]) to model the possible executions of a protocol once an interleaving
has been fixed. We recall here their formalism.

3.1 Definitions

Following the notations of [7], we consider a new set W of variables, called
parameters w1, w2, . . . and a new set X 2 of variables called second-order variables
X,Y, . . ., each variable with an arity, denoted ar(X). We call T (Σ,W ∪X 2) the
set of second-order terms and T (Σ,N ∪X ) the set of first-order terms, or simply
terms. Given a term t we denote by var1(t) (resp. var2(t)) the first-order (resp.
second-order) variables of t, i.e. var1(t) = v(t) ∩ X (resp. var2(t) = v(t) ∩ X 2).
We lift these notations to sets and sequences of terms as expected.

Definition 3. A constraint system is a triple (Φ;D; E) where:

– Φ is a sequence of the form {w1 � t1, . . . , w
 � t
} where ti are terms and
wi are parameters;

– D is a set of deducibility constraints of the form X �? x with ar (X) < �;
– E is a set of equalities of the form s =?

E s
′ where s, s′ are first-order terms.

In the followingwewill, by abuse of notation, confuse sequences {w1 � t1, . . . , w
 �
t
}with corresponding substitutions {w1 → t1, . . . , w
 → t
}.Wewill not formally
introduce a language for describing protocols and we only informally describe how
a constraint system is associated to an interleaving of a protocol.We refer to [19] for
a more detailed description. We simply suppose that protocols may perform three
kinds of action:

– A protocol may output terms. These terms correspond to the ti in Φ and rep-
resent the adversary’s knowledge after having executed part of the protocol.
We call the sequence of terms Φ the frame.

– A protocol may input terms which can be computed by the adversary. Each
input corresponds to a deducibility constraint X �? x ∈ D. The second-
order variable X of arity k has to be instantiated by a context over the
terms t1, . . . , tk. This models the computation, used by the adversary to
deduce the first-order term that will instantiate x.

– A protocol may perform tests on inputs to check that the terms match some
expected values. These tests are modelled by the equality constraints in E
and may as such contain the variables x which correspond to previously
received inputs.

Example 2. Consider the group theory AG and an interleaving of a protocol
described by the following sequence:

out(a).out(b).in(x1).out(c+ 2x1).in(x2).[x1 + x2 = c]
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where a, b, and c are names in N , out(t) models the output of term t, in(x) the
input of a term that will be bound to x and [t1 = t2] models the conditional which
tests that t1 and t2 are equal modulo AG, after having instantiated previous input
variables. This protocol yields the constraint system C = (Φ;D; E) where:

– Φ = {w1 � a, w2 � b, w3 � c+ 2x1},
– D = {X1 �? x1, X2 �? x2} with ar (X1) = 2 and ar(X2) = 3, and
– E = {x1 + x2 =?

E c}.

Indeed the three elements of the sequence Φ correspond to the three outputs
of the protocol. The two deduction constraints in D model that the adversary
needs to provide the inputs. Note that the first input occurs after two outputs.
Hence the adversary may refer to w1 and w2, but not w3. This is modelled by
setting ar(X1) = 2. As the second input occurs after three outputs we have that
ar(X2) = 3. Finally, E simply consists in the test performed by the protocol.

The size of a frame Φ = {w1 � t1, . . . , w
 � t
}, denoted |Φ|, is its length �. We
also assume the following conditions are satisfied on a constraint system:

1. for every x ∈ var1(C), there exists a unique X such that (X �? x) ∈ D, and
each variable X occurs at most once in D;

2. for every 1 ≤ k ≤ �, for every x ∈ var1(tk), there exists (X �? x) ∈ D such
that ar(X) < k.

These constraints are natural whenever the constraint system models an inter-
leaving of a protocol. Condition 1 simply states that each variable defines a
unique input. Condition 2 ensures a form of causality: whenever a term tk is
output it may only use variables that have been input before; the condition
ar(X) < k ensures that the adversary when computing the input to be used
for x only refers to terms in the frame that have been output before. This sec-
ond condition is often called origination property.

Given a frameΦ = {w1 � t1, . . . , wn � tn}, and a second-order term T with pa-
rameters in {w1, . . . , wn} and without second-order variable TΦ denotes the first-
order term obtained from T by replacing each wi by ti. We define the structure of
a constraint system C = (Φ;D; E) to be |Φ| and var2(D) with their arity.

Example 3. Note that the two additional conditions are fulfilled by the constraint
system C given in Example 2. In particular, we have that the variable x1 that
occurs in t3 has been introduced by the deducibility constraint X1 �? x1 and
ar(X1) = 2 < 3. Let C′ = (Φ′;D; E ′) where Φ′ = {w1 � a′, w2 � b′, w3 � c′+x1},
and E ′ = {x2 + 2x1 =?

E c
′}. We have that C′ is a constraint system that has the

same structure as C. Note that |Φ| = 3 = |Φ′| and var2(D) = {X1, X2}.

3.2 Satisfiability and Equivalence Problems

First, we have to define the notion of solution of a constraint system.

Definition 4. A pre-solution of a constraint system C = (Φ;D; E) is a substi-
tution θ such that:
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– dom(θ) = var2(C), and
– Xθ ∈ T (Σ, {w1, . . . , wk}) for any X ∈ dom(θ) with ar(X) = k.

The substitution λ with dom(λ) = var1(C) and such that xλ = (Xθ)(Φλ) for any
X �? x in D is called the first-order extension of θ for C.

Intuitively, in the preceding definition the substitution θ stores the computation
done by the adversary in order to compute the messages he sends (stored in λ)
during the execution. Note that, because of the definition of a constraint system,
once θ is fixed, its first-order extension is uniquely defined.

To obtain a solution we need to additionally ensure that the first-order exten-
sion λ of a pre-solution θ verifies the equality constraints in E .

Definition 5. Let C = (Φ;D; E) be a constraint system. A solution of C is a
pre-solution θ of C whose first-order extension λ satisfies the equalities, i.e. for
every (s =?

E s
′) ∈ E, we have that sλ =E s

′λ. In such a case, the substitution λ
is called the first-order solution of C associated to θ. The set of solutions of a
constraint system C is denoted SolE(C).

We now define the two problems we are interested in.

Definition 6. A constraint system C = (Φ;D; E) is satisfiable if SolE(C) �= ∅.

In the context of security protocols satisfiability of a constraint system corre-
sponds to the adversary’s ability to execute an interleaving of the protocol. This
generally corresponds to an attack. For instance confidentiality of some secret
term s can be encoded by adding an additional deducibility constraint Xs �? xs
together with an equality constraint xs =

?
E s (or equivalently adding a final input

in(xs) to the protocol and testing that the adversary is able to send the term s
by adding [xs = s]).

Definition 7. Let C1 = (Φ1;D1; E1) and C2 = (Φ2;D2; E2) be two constraint
systems having the same structure. We say that C1 is included in C2, denoted by
C1  C2, if SolE(C1) ⊆ SolE(C2). They are equivalent if C1  C2 and C2  C1, i.e.
SolE(C1) = SolE(C2).

Again, in the context of security protocols this problem corresponds to the ad-
versary’s inability to distinguish whether the protocol participants are executing
the interleaving modelled by C1 or C2. For the exact encoding we refer the reader
to [7].

Example 4. Consider the constraint systems C and C′ described in Example 2
and Example 3. The substitution θ = {X1 "→ w1 +w2, X2 "→ −3w1− 3w2 +w3}
is a pre-solution of both C and C′. The first-order extension of θ for C is the
substitution λ = {x1 "→ a+ b, x2 "→ −a− b+ c} whereas the first-order extension
of θ for C′ is the substitution λ′ = {x1 "→ a′ + b′, x2 "→ −2a′ − 2b′ + c′}. It
is easy to check that θ is actually a solution of both C and C′, and thus both
constraint systems are satisfiable. Actually, we have that C and C′ are equivalent,
i.e. SolAG(C) = SolAG(C′).
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In what follows, we consider decidability and complexity issues for the satisfia-
bility and equivalence problems for group theories. In particular, we proceed in
three main steps:

1. we reduce both problems to the case of simple constraint systems (where the
terms ti that occurs in the frame Φ are ground terms);

2. we show how to encode solutions of a (simple) constraint system in a system
of (linear) equations;

3. we conclude by showing how to solve such a system of equations.

4 Towards Simple Constraint Systems

The aim of this section is to show how we can transform constraint systems
in order to obtain simple constraint systems while preserving satisfiability and
inclusion. This transformation has been first introduced in [9] to simplify the
satisfiability problem for the exclusive or and Abelian group theories. We reuse
it in a more general setting. From now on, we consider a group equational theory
(see Definition 1).

Let C = (Φ;D; E) where Φ = {w1 � t1, . . . , w
 � t
}. Let τ = {w1 → w1 −
M1, · · · , w
 → w
 − M
} be a substitution with dom(τ) = {w1, · · · , w
}. We
say that the substitution τ is compatible with C iff M1, · · · ,M
 are second-
order terms that do not contain parameters and such that var2(Mi) ⊆ {X ∈
var2(C) | ar(X) < i}. We define the constraint system Cτ as (Φτ ;D; E) where:

– Φτ = {w1 � t′1, . . . , w
 � t′
}, and
– t′i = ti +Mi{X → x | X �? x ∈ D} for all 1 ≤ i ≤ �.

Notice that, if τ is compatible with C, the origination property is satisfied for Cτ ,
thus Cτ is a constraint system. Let θ be a pre-solution of C (or equivalently of Cτ ).
We denote by θτ the substitution (θ ◦ τ)m where m = #var2(C).

Example 5. Consider again the constraint systems C and C′ described in Ex-
ample 2 and Example 3. Let τ = {w1 → w1, w2 → w2, w3 → w3 − (−2X1)}.
We have that τ is a substitution compatible with C and C′. Then, following the
definition, we have that Cτ is (Φτ ;D; E) where Φτ = {w1 � a, w2 � b, w3 � c}
whereas C′τ is (Φ′

τ ;D; E ′) where Φ′
τ = {w1 � a′, w2 � b′, w3 � c′ − x1}

Consider the substitution θ = {X1 → w1 + w2, X2 → −3w1 − 3w2 + w3} as
defined in Example 4. We have that (θ ◦ τ) = {X1 → w1 + w2, X2 → −3w1 −
3w2 + w3 + 2X1}, thus θτ = (θ ◦ τ)2 = {X1 → w1 +w2, X2 → −w1 −w2 + w3}.

It follows that λ = {x1 → a+ b, x2 → −a− b+ c} (as defined in Example 4)
is also the first-order extension of θτ for Cτ , and thus θτ ∈ SolAG(Cτ ). Similarly,
we have that λ′ = {x1 → a′+ b′, x2 → −2a′− 2b′+ c′} (as defined in Example 4)
is also the first-order extension of θτ for C′τ , and thus θτ ∈ SolAG(C′τ ).

The fact that the messages computed by the attacker in both cases are the same
can be formally shown. This is the purpose of the following lemma that shows
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that the first-order extensions of θ for C and of θτ for Cτ coincide. Actually, the
changes made in the frame (Φ is transformed into Φτ ) are compensated by the
computations that are performed by the attacker (θ is transformed into θτ ). This
will be used later on for simplifying the two problems we are interested in.

Lemma 1. Let C = (Φ;D; E) be a constraint system defined as above and τ =
{w1 → w1 −M1, · · · , w
 → w
 −M
} be a substitution compatible with C. Let θ
be a pre-solution of C. Then, the first-order extension of θ for C is equal to the
first-order extension of θτ for Cτ .

Thanks to this lemma, we are able to establish the following proposition.

Proposition 1. Let C = (Φ;D; E) and C′ = (Φ′;D′; E ′) be two constraint sys-
tems having the same structure and such that |Φ| = |Φ′| = �. Let τ = {w1 →
w1 −M1, . . . , w
 → w
 −M
} be a substitution compatible with C (and C′). We
have that:

1. C satisfiable if, and only if, Cτ satisfiable;
2. C  C′ if, and only if, Cτ  C′τ .

Let C = (Φ;D; E) with Φ = {w1 � t1, . . . , w
 � t
}. We say that the constraint
system C is simple if the terms t1, . . . , t
 are ground. We observe that for any
constraint system there exists a substitution yielding a simple constraint system.
Indeed, for any frame Φ = {w1 � t1, . . . , w
 � t
} we have that for all 1 ≤ i ≤ �
there exist tni and tvi such that ti =E t

n
i +t

v
i , v(t

n
i ) = ∅ and n(tvi ) = ∅. Now let τC =

{w1 → w1 −M1, · · · , w
 → w
 −M
}, where Mi = −tvi {x→ X | X �? x ∈ D}
for all 1 ≤ i ≤ �. By construction the system CτC is simple.

Moreover, we say that constraint systems C and C′ are simplifiable if there exists
τ such that both Cτ and C′τ are simple. This class of constraint systems is motivated
by the fact that when checking real-or-random secrecy properties as those studied
in [7]we obtain systems that have this property.More preciselywhen encoding real-
or-random properties we obtain systems C = (Φ;D; E) and C′ = (Φ′;D′; E ′) such
that Φ = {w1 � t1, . . . , w
 � t
}, Φ′ = {w1 � t′1, . . . , w
 � t′
} and for some
1 ≤ k ≤ � we have that ti = t′i for i ≤ k and ti, t

′
i are ground when i > k. It

immediately follows that τC = τC′ and hence τC simplifies both systems.
Using Proposition 1, we can reduce:

1. the satisfiability problem of a general constraint systems to the satisfiability
problem of a simple constraint system; and

2. the inclusion problem between solutions of general constraint systems to the
inclusion problem between solutions of a simple constraint system and a gen-
eral one, respectively to the inclusion between solutions of simple constraint
systems in the case these constraint systems are simplifiable.

Below, we illustrate how Proposition 1 can be applied.

Example 6. Let C and C′ be the constraint systems defined in Example 2 and in
Example 3. We have that τC = τ where τ = {w1 → w1, w2 → w2, w3 → w3 −



Security Protocols, Constraint Systems, and Group Theories 173

(−2X1)} is the substitution as defined in Example 5. Relying on Proposition 1,
it follows that C  C′ if, and only if, Cτ  C′τ where Cτ and C′τ are defined in
Example 5. Thus, the equivalence problem between constraint systems C and C′
is reduced to the equivalence problem between a simple constraint system Cτ
and a general constraint system C′τ .

The purpose of the next section is to show how to decide this simplified problem
in a systematic way.

5 Encoding Solutions into Systems of Equations

The purpose of this section is to show how to construct systems of equations
that encode solutions of constraint systems.

5.1 General Constraint Systems

Consider a constraint system C = (Φ;D; E) where Φ = {w1 � t1, . . . , w
 � t
},
D = {X1 �? x1, . . . , Xm �? xm}, and E = {s1 =?

E s
′
1, . . . , sn =?

E s
′
n}.

Step 1. First, we encode second-order variables as sums of terms containing
unknown variables over RE. Actually, for all 1 ≤ i ≤ m, each second-order
variable Xi can be seen as a sum yi1t1+ · · ·+yiar(Xi)

tar(Xi), where y
i
1, · · · , yiar(Xi)

are unknowns over RE. Therefore every constraint system C = (Φ;D; E) (as
described above) can be brought in the following form:⎧⎪⎪⎨⎪⎪⎩

y11t1 + · · ·+ y1ar(X1)
tar(X1) = x1 s1 = s′1

· · · · · ·
ym1 t1 + · · ·+ ymar(Xm)tar(Xm) = xm sn = s′n

where for all 1 ≤ i ≤ m, 1 ≤ j ≤ ar(Xi), y
i
j are unknowns over RE, the terms

s1, s
′
1, . . . , sn, s

′
n are first-order terms that contain only variables x1, · · · , xm and

for all 1 ≤ i ≤ m, the terms t1, . . . , tar(Xi) are first-order terms that contain only
variables x1, . . . , xi−1.

Step 2. Our next goal is to remove variables x1, · · · , xm from the first-order
terms t1, · · · , tar(Xm). For each variable xi, we inductively construct a termE(xi):

E(x1) = y11t1 + · · ·+ y1ar(X1)
tar(X1)

E(xi) = (yi1t1 + · · ·+ yiar(Xi)
tar(Xi))[E(x1)/x1, · · · , E(xi−1)/xi−1] where i > 1.

Clearly, we have that, for all 1 ≤ i ≤ m, the term E(xi) is a term that does not
contain variables x1, . . . , xm.
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Step 3. Finally, we will show how a system of equations can be obtained. Given
the constraint system C, let S(C) denote its associated system of equations that
we construct. The variables of S(C) are {yij | 1 ≤ i ≤ m, 1 ≤ j ≤ ar(Xi)} and

each solution σ to S(C) encodes a second-order substitution {Xi "→ yi1w1+ · · ·+
yiar(Xi)

war(Xi) | 1 ≤ i ≤ n} which is a solution of C.
We take each equation si = s′i in E and we add a set of equations into the

system S(C). We assume that the equation si = s′i has the form a1x1 + · · · +
amxm = pi, where ai ∈ RE and pi is a ground first-order term. Notice that any
equation can be brought to this form by bringing factors that contain variables to
the left-hand side, and the other factors to the right-hand side. Next, we remove
the variables from the left-hand side by replacing them with the terms E(xi), for
all 1 ≤ i ≤ m. Thus, we now have the equation a1E(x1) + · · ·+ amE(xm) = pi.
We obtain an equation for each constant, by taking the corresponding coefficients
from the left-hand side and equalizing with the coefficients from the right-hand
side. Finally, we add this equation to S(C). We give below an example to illustrate
the construction.

Example 7. Consider the constraint system C′τ defined in Example 5. We have
that C′τ = (Φ′

τ ;D; E ′) where: Φ′
τ = {w1 � a′, w2 � b′, w3 � c′ − x1}, and

E ′ = {x2 + 2x1 =?
E c

′}.

Step 1. We rewrite the constraint system C′τ as{
y11a

′ + y12b
′ = x1 x2 + 2x1 = c′

y21a
′ + y22b

′ + y23(c
′ − x1) = x2

Step 2. We construct the terms E(x1) and E(x2):

E(x1) = y11a
′ + y12b

′ E(x2) = (y21a
′ + y22b

′ + y23(c
′ − x1))[E(x1)/x1]

= y21a
′ + y22b

′ + y23c
′ − y23y

1
1a

′ − y23y
1
2b

′

Step 3. We take the equation x2 + 2x1 =?
E c and, by replacing x2 with E(x2)

and x1 with E(x1), we obtain: a(y
2
1 − y23y11 +2y11)+ b(y22− y23y12 +2y12)+ cy23 = c.

Thus, we obtain the following system of equations S(C′τ ):

S(C′τ ) =
{
y21 − y23y

1
1 + 2y11 = 0; y22 − y23y

1
2 + 2y12 = 0; y23 = 1

}
Note that any integer solution over RE of the system of equations encodes
a solution of the constraint system. For instance, take y11 = 1, y12 = 1, y21 =
−1, y22 = −1, y23 = 1 which is a solution of S(C′τ ). This encodes the substitution
θ = {X1 → w1 + w2, X2 → −w1 − w2 + w3}, which is a solution of C′τ .

Proposition 2. Let C and C′ be two constraint systems having the same struc-
ture. Let S(C) and S(C′) be the systems of equations obtained from C and C′
using the construction described above. We have that:

1. C is satisfiable if, and only if, S(C) has a solution;
2. C  C′ if, and only if, the solutions of S(C) are also solutions of S(C′).
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5.2 Simple Constraint Systems

When the constraint system C is simple, then S(C) is a system of linear equations.

Lemma 2. Let C be a simple constraint system. The system S(C) is a system
of linear equations.

Indeed, in Step 2, substitutions are no longer needed since the terms t1, . . . , t
 do
not contain variables, i.e. we simply define E(xi) = (yi1t1 + · · ·+ yiar(Xi)

tar(Xi))
for 1 ≤ i ≤ m. The following example illustrates this fact.

Example 8. Consider the constraint system Cτ defined in Example 5. We have
that Cτ = (Φτ ;D; E) where Φτ = {w1 � a, w2 � b, w3 � c}, D = {X1 �?

x1, X2 �? x2}, and E = {x1 + x2 =?
E c}.

Step 1. Then, we bring this constraint system into the following form:{
y11a+ y12b = x1 x1 + x2 = c

y21a+ y22b+ y23c = x2

Step 2. It follows that: E(x1) = y11a+ y12b and E(x2) = y21a+ y22b+ y23c.

Step 3. Thus, taking equation x1 + x2 = c and replacing x1 with E(x1) and x2
with E(x2) we obtain a(y11 + y21) + b(y12 + y22) + cy23 = c. Therefore the obtained
system of linear equations S(Cτ ) is:

S(Cτ ) =
{
y11 + y21 = 0; y12 + y22 = 0; y23 = 1

}

6 Applications and Discussion

In this section we will show how to use the previous results to decide satisfiability
and equivalence of constraint systems for several equational theories of interest.
Relying on Propositions 1 and 2, as well as Lemma 2, we have that:

Theorem 1. Let E be a group theory and RE its associated ring.

– The satisfiability problem of a constraint system is reducible in polynomial
time to the problem of deciding whether a system of linear equation admits
a solution;

– The equivalence problem between constraint systems is reducible in polyno-
mial time to the problem of deciding whether the solutions of a system of
linear equations are included in the set of solutions of a system of equation.
Moreover, if the constraint systems are simplifiable, the latter system can
also be assumed to be linear.

Actually, several interesting group theories induce a ring for which those prob-
lems are decidable in PTIME. To prove this, we have shown that:
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Proposition 3. Let Slinear be a system of linear equations over Z/2Z (resp. Z,
Z[h], Z/2Z[h]) and S be a system of equations over Z/2Z (resp. Z, Z[h], Z/2Z[h])
such that both systems are built on the same set of variables. The problem of
deciding whether each solution of Slinear is a solution of S is decidable in PTIME.

Proof. (sketch) Roughly, in case Slinear is satisfiable (note that otherwise, the
inlusion problem is trivial), we first put it in solved form x1 = t1/d1, . . . , xn =
tn/dn where ti are terms that may contain some additional variables yj , and di
are elements in the ring under study. Then, we multiply each equation in S with
a factor that is computed from di and S and we replace in the resulting system
each xi with ti. Lastly, we check whether these equations are valid or not. If the
answer is yes, then this means that the solutions of Slinear are indeed solutions
of S. Otherwise, we can show that the inclusion does not hold. ��

Example 9. Consider the system of linear equations S(Cτ ) given in Example 8

S(Cτ ) =
{
y11 + y21 = 0; y12 + y22 = 0; y23 = 1

}
This system can be rewritten into a solved form as:

S(Cτ ) =
{
y11 = −y21 ; y12 = −y22; y23 = 1

}
Consider also the system of equations S(C′τ ) given in Example 7:

S(C′τ ) =
{
y21 − y23y

1
1 + 2y11 = 0; y22 − y23y

1
2 + 2y12 = 0; y23 = 1

}
It can be seen that the solutions of S(Cτ ) are also solutions of the equations of
S(C′τ ). Indeed, all the terms reduce when replacing y11 with −y21 , y12 with −y22
and y23 with 1, as indicated in the solved form of S(Cτ ). Thus, we can finally
conclude that Cτ  C′τ , and thus C  C′ where Cτ , C′τ are defined in Example 5
and C (resp. C′) are defined in Example 2 (resp. Example 3).

Decidability and complexity results are summarized in the table. A brief discus-
sion on each equational theory can be found below.

Theory E RE Satisfiability Equivalence

ACUN Z/2Z PTIME [9] PTIME (new)

AG Z PTIME [9] PTIME (new)

ACUNh Z/2Z[h] PTIME PTIME (new)

AGh Z[h] PTIME PTIME (new)

Theory ACUN (exclusive or). The ring corresponding to this equational
theory is the finite field Z/2Z. The satisfiability problem for the theory ACUN
has already been studied and shown to be decidable in PTIME [9].

However, the equivalence problem has only been studied in a very particu-
lar case, the so-called static equivalence problem [1]. Static equivalence models
indistinguishability of two frames, i.e. the adversary cannot interact with the
protocol. In our setting the problem of static equivalence of frames Φ and Φ′

can be rephrased as the equivalence between two particular constraint systems
(Φ;D; {x1 =?

E x2}) and (Φ′;D; {x1 =?
E x2}) where:
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– Φ and Φ′ are arbitrary frames of same size that only contain ground terms;
– D = {X1 �? x1;X2 �? x2} where ar (X1) = ar (X2) = |Φ|.

The static equivalence problem has been shown to be decidable in PTIME [12].
Here, relying on our reduction result (Theorem 1), we show that we can decide
the problem of equivalence of general constraint systems in PTIME as well.

Theory AG (Abelian groups). The ring associated to this equational theory
is the ring Z of all integers. There exist several algorithms to compute solutions
of linear equations over Z and to compute a base of the set of solutions (see for
instance [21]). Hence, we easily deduce that the satisfiability problem is decidable
in PTIME. This was already observed in [9]. Deciding inclusion of solutions of a
system of linear equations in solutions of a system of non-linear equations is more
tricky but we have shown that it can be done in PTIME (see Proposition 3).

Theories ACUNh and AGh. For the theory ACUNh (resp. AGh) the associated
ring is Z/2Z[h] (resp. Z[h]), i.e. the ring of polynomials in one indeterminate
over Z/2Z (resp. Z). The satisfiability problem for these equational theories has
already been studied in [18], but in a slightly different setting. The intruder
deduction problem for these theories has been studied in [14] and shown to
be decidable in PTIME. Similar to static equivalence the intruder deduction
problem considers a passive attacker which simply asks whether a term can be
deduced by an adversary from a frame. In our setting we rephrase this problem
whether a ground term t can be deduced from Φ as the satisfiability of the
particular constraint system (Φ;D; {x =?

E t}) where:

– Φ is an arbitrary frame that only contains ground terms,
– D = {X �? x} where ar(X) = |Φ|.

In [14] this problem is reduced to the problem of satisfiability of a system of
linear equations. Hence, the techniques for the problem of deciding secrecy for
a passive adversary are the same as for an active adversary and we immediately
obtain the same PTIME complexity as in [14]. However, results obtained on the
equivalence problem are new. We are able to use the same technique as for AG
to obtain decidability in PTIME. This generalizes and refines the decidability
result (without known complexity) for ACUNh and AGh in the particular case of
static equivalence [12].
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Abstract. Reachability and LTL model-checking problems for flat
counter systems are known to be decidable but whereas the reachability
problem can be shown in NP, the best known complexity upper bound
for the latter problem is made of a tower of several exponentials. Herein,
we show that the problem is only NP-complete even if LTL admits past-
time operators and arithmetical constraints on counters. Actually, the
NP upper bound is shown by adequately combining a new stuttering
theorem for Past LTL and the property of small integer solutions for
quantifier-free Presburger formulae. Other complexity results are proved,
for instance for restricted classes of flat counter systems.

1 Introduction

Flat counter systems. Counter systems are finite-state automata equipped with
program variables (counters) interpreted over non-negative integers. They are
used in many places like, broadcast protocols [9] and programs with pointers [12]
to quote a few examples. But, alongwith their large scope of usability, many
problems on general counter systems are known to be undecidable. Indeed, this
computational model can simulate Turing machines. Decidability of reachability
problems or model-checking problems based on temporal logics, can be regained
by considering subclasses of counter systems, see e.g. [14]. An important and
natural class of counter systems, in which various practical cases of infinite-state
systems (e.g. broadcast protocols [11]) can be modelled, are those with a flat
control graph, i.e, those where no control state occurs in more than one simple
cycle, see e.g. [1,5,11,20]. Decidability results on verifying safety and reachability
properties on flat counter systems have been obtained in [5,11,3]. However, so far,
such properties have been rarely considered in the framework of any formal spec-
ification language (see an exception in [4]). In [7], a class of Presburger counter
systems is identified for which the local model checking problem for Presburger-
CTL	 is shown decidable. These are Presburger counter systems defined over flat
control graphs with arcs labelled by adequate Presburger formulae. Even though
flatness is clearly a substantial restriction, it is shown in [20] that many classes
of counter systems with computable Presburger-definable reachability sets are
flattable, i.e. there exists a flat unfolding of the counter system with identical
reachability sets. Hence, the possibility of flattening a counter system is strongly
� Supported by ANR project REACHARD ANR-11-BS02-001.

B. Gramlich, D. Miller, and U. Sattler (Eds.): IJCAR 2012, LNAI 7364, pp. 179–193, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



180 S. Demri, A.K. Dhar, and A. Sangnier

related to semilinearity of its reachability set. Moreover, in [4] model-checking
relational counter systems over LTL formulae is shown decidable when restricted
to flat formulae (their translation into automata leads to flat structures).

Towards the complexity of temporal model-checking flat counter systems. In [7], it
is shown that CTL	 model-checking over the class of so-called admissible counter
systems is decidable by reduction into the satisfiability problem for Presburger
arithmetic, the decidable first-order theory of natural numbers with addition.
Obviously CTL	 properties are more expressive than reachability properties but
this has a cost. However, for the class of counter systems considered in this paper,
this provides a very rough complexity upper bound in 4ExpTime. Herein, our
goal is to revisit standard decidability results for subclasses of counter systems
obtained by translation into Presburger arithmetic in order to obtain optimal
complexity upper bounds.

Our contributions. In the paper, we establish several computational complexity
characterizations of model-checking problems restricted to flat counter systems
in the presence of a rich LTL-like specification language with arithmetical con-
straints and past-time operators. Not only we provide an optimal complexity
but also, we believe that our proof technique could be reused for further exten-
sions. Indeed, we combine three proof techniques: the general stuttering theo-
rem [17], the property of small integer solutions of equation systems [2] (this
latter technique is used since [24]) and the elimination of disjunctions in guards
(see Section 5.2). Let us be a bit more precise.

We extend the stuttering principle established in [17] for LTL (without past-
time operators) to Past LTL. The stuttering theorem from [17] for LTL without
past-time operators has been used to show that LTL model-checking over weak
Kripke structures is in NP [16] (weakness corresponds to flatness). It is worth
noting that another way to show a similar result would be to eliminate past-
time operators thanks to Gabbay’s Separation Theorem [13] (preserving initial
equivalence) but the temporal depth of formulae might increase at least expo-
nentially, which is a crucial parameter in our complexity analysis. We show that
the model-checking problem restricted to flat counter systems in the presence of
LTL with past-time operators is in NP (Theorem 17) by combining the above-
mentioned proof techniques. Apart from the use of the general stuttering theorem
(Theorem 3), we take advantage of the other properties stated for instance in
Lemma 12 (characterization of runs by quantifier-free Presburger formulae) and
Theorem 14 (elimination of disjunctions in guards preserving flatness). In the
paper, complexity results for fragments/subproblems are also considered. For
instance, we get a sharp lower bound since we establish that the model-checking
problem on path schemas (a fundamental structure in flat counter systems) with
only 2 loops is already NP-hard (see Lemma 11). A summary table can be found
in Section 6.

Omitted proofs can be found in [6].
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2 Flat Counter Systems and Its LTL Dialect

We write N [resp. Z] to denote the set of natural numbers [resp. integers] and
[i, j] to denote {k ∈ Z : i ≤ k and k ≤ j}. For v ∈ Zn, v[i] denotes the ith

element of v for every i ∈ [1, n]. For some n-ary tuple t, we write πj(t) to denote
the jth element of t (j ≤ n). In the sequel, integers are encoded with a binary
representation. For a finite alphabet Σ, Σ∗ represents the set of finite words over
Σ, Σ+ the set of finite non-empty words over Σ and Σω the set of ω-words over
Σ. For a finite word w = a1 . . . ak over Σ, we write len(w) to denote its length k.
For 0 ≤ i < len(w), w(i) represents the (i + 1)-th letter of the word, here ai+1.

2.1 Counter Systems

Let C = {x1, x2, . . .} be a countably infinite set of counters (variables interpreted
over non-negative integers) and AT = {p1, p2, . . .} be a countable infinite set
of propositional variables (abstract properties about program points). We write
Cn to denote {x1, x2, . . . , xn}. The set G(Cn) of guards (arithmetical constraints
on counters in Cn) is defined inductively as follows: t ::= a.x | t + t and
g ::= t ∼ b | g∧g | g∨g, where x ∈ Cn, a ∈ Z, b ∈ Z and ∼∈ {=,≤,≥, <, >}.
Such guards are closed under negations (but negation is not part of the logical
connectives) and the truth constants � and ⊥ can be easily defined too. Given
g ∈ G(Cn) and a vector v ∈ Nn, we say that v satisfies g, written v |= g, if the
formula obtained by replacing each xi by v[i] holds.

Definition 1 (Counter system). For n ≥ 1, a counter system S is a tuple
〈Q, Cn, Δ, l〉 where Q is a finite set of control states, l : Q → 2AT is a labelling
function and Δ ⊆ Q× G(Cn) × Zn ×Q is a finite set of edges labeled by guards
and updates of the counter values (transitions).

For δ = (q, g,u, q′) in Δ, we use the following notations source(δ) = q, target(δ) =
q′, guard(δ) = g and update(δ) = u. As usual, to a counter system S =
〈Q, Cn, Δ, l〉, we associate a labeled transition system TS(S) = 〈C,→〉 where
C = Q × Nn is the set of configurations and →⊆ C × Δ × C is the transi-
tion relation defined by: 〈〈q,v〉, δ, 〈q′,v′〉〉 ∈→ (also written (q,v) δ−→ (q′,v′)) iff
q = source(δ), q′ = target(δ), v |= guard(δ) and v′ = v + update(δ). In such
a transition system, the counter values are non-negative since C = Q × Nn.
We extend the transition relation → to finite words of transitions in Δ+ as
follows. For each w = δ1δ2 . . . δα ∈ Δ+, we have 〈q,v〉 w−→ 〈q′,v′〉 if there are
c0, c1, . . . , cα+1 ∈ C such that ci

δi−→ ci+1 for all i ∈ [0, α], c0 = (q,v) and
cα+1 = 〈q′,v′〉. We say that an ω-word w ∈ Δω is fireable in S from a configu-
ration c0 ∈ Q × Nn if for all finite prefixes w′ of w there exists a configuration
c ∈ Q × Nn such that c0

w′
−→ c. We write lab(c0) to denote the set of ω-words

(labels) which are fireable from c0 in S.
Given a configuration c0 ∈ Q×Nn, a run ρ starting from c0 in S is an infinite

path in the associated transition system TS(S) denoted as: ρ := c0
δ0−→ · · · δα−1−−−→

cα
δα−→ · · · where ci ∈ Q×Nn and δi ∈ Δ for all i ∈ N. Let lab(ρ) be the ω-word
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δ0δ1 . . . associated to the run ρ. Note that by definition we have lab(ρ) ∈ lab(c0).
When E is an ω-regular expression over the finite alphabet Δ and c0 is an initial
configuration, lab(E, c0) is defined as the set of labels of infinite runs ρ starting at
c0 such that lab(ρ) belongs to the language defined by E. So lab(E, c0) ⊆ lab(c0).

We say that a counter system is flat if every node in the underlying graph
belongs to at most one simple cycle (a cycle being simple if no edge is repeated
twice in it) [5]. In a flat counter system, simple cycles can be organized as a
DAG where two simple cycles are in the relation whenever there is path between
a node of the first cycle and a node of the second cycle. We denote by CFS the
class of flat counter systems.

q1

q2

q3

q4

q5

q6

On the left, we present the control graph of a flat
counter system (guards and updates are omitted). A
Kripke structure S is a tuple 〈Q, Δ, l〉 where Δ ⊆
Q×Q and l is labelling. It can be viewed as a degener-
ate form of counter systems without counters (in the
sequel, we take the freedom to see them as counter sys-
tems). All standard notions on counter systems natu-
rally apply to Kripke structures too (configuration,
run, flatness, etc.). In the sequel, we shall also in-
vestigate the complexity of model-checking problems
on flat Kripke structures (such a class is denoted by
KFS).

2.2 Linear Temporal Logic with Past and Arithmetical Constraints

Model-checking problem for Past LTL over finite state systems is known to be
PSpace-complete. In spite of this nice feature, a propositional variable p only
represents an abstract property about the current configuration of the system.
A more satisfactory solution is to include in the logical language the possibility
to express directly constraints between variables of the program, whence giving
up the standard abstraction made with propositional variables. We define below
a version of LTL dedicated to counter systems in which the atomic formulae are
linear constraints; this is analogous to the use of concrete domains in description
logics [21]. Note that capacity constraints from [8] are arithmetical constraints
different from those defined below. Formulae of PLTL[C] are defined from φ ::=
p | g | ¬φ | φ ∧ φ | φ ∨ φ | Xφ | φUφ | X−1φ | φSφ where p ∈ AT
and g ∈ G(Cn) for some n. We may use the standard abbreviations F, G, G−1 etc.
For instance, the formula GF(x1 +2 ≥ x2) states that infinitely often the value of
counter 1 plus 2 is greater than the value of counter 2. The past-time operators
S and X−1 do not add expressive power to the logic itself, but it is known that
it helps a lot to express properties succinctly, see e.g. [19,18]. The temporal
depth of φ, written td(φ), is defined as the maximal number of imbrications
of temporal operators in φ. Restriction of PLTL[C] to atomic formulae from
AT only is written PLTL[∅], standard version of LTL with past-time operators.
Models of PLTL[C] are essentially abstractions of runs from counter systems,
i.e. ω-sequences σ : N → 2AT × NC. Given a model σ and a position i ∈ N,



Taming Past LTL and Flat Counter Systems 183

the satisfaction relation |= for PLTL[C] is defined as follows (other cases can be
defined similarly, see e.g. [18]):

– σ, i |= p
def⇔ p ∈ π1(σ(i)), σ, i |= g

def⇔ vi |= g where vi[j]
def= π2(σ(i))(xj),

– σ, i |= Xφ
def⇔ σ, i + 1 |= φ,

– σ, i |= φ1Sφ2
def⇔ σ, j |= φ2 for some 0 ≤ j ≤ i s.t. σ, k |= φ1, ∀j < k ≤ i.

Given 〈Q, Cn, Δ, l〉 and a run ρ := 〈q0,v0〉
δ0−→ · · · δp−1−−−→ 〈qp,vp〉

δp−→ · · · ,
we consider the model σρ : N → 2AT × NC such that π1(σρ(i)) def= l(qi) and
π2(σρ(i))(xj)

def= vi[j] for all j ∈ [1, n] and all i ∈ N. Note that π2(σρ(i))(xj) is
arbitrary for j ∈ [1, n]. As expected, we extend the satisfaction relation to runs
so that ρ, i |= φ

def⇔ σρ, i |= φ whenever φ is built from counters in Cn.
Given a fragment L of PLTL[C] and a class C of counter systems, we write

MC(L, C) to denote the existential model checking problem: given S ∈ C, a con-
figuration c0 and φ ∈ L, does there exist ρ starting from c0 such that ρ, 0 |= φ?
In that case, we write S, c0 |= φ. It is known that for the full class of counter sys-
tems, the model-checking problem is undecidable, see e.g. [22]. Some restrictions,
such as flatness, can lead to decidability as shown in [7] but the decision proce-
dure there involves an exponential reduction to Presburger Arithmetic, whence
the high complexity.

Theorem 2. [7,16] MC(PLTL[C], CFS) can be solved in 4ExpTime. MC(PLTL
[∅],KFS) restricted to formulae with temporal operators U,X is NP-complete.

Our main goal is to characterize the complexity of MC(PLTL[C], CFS).

3 Stuttering Theorem for PLTL[∅]

Stuttering of finite words or single letters has been instrumental to show results
about the expressive power of PLTL[∅] fragments, see e.g. [23,17]; for instance,
PLTL[∅] restricted to the temporal operator U characterizes the class of formu-
lae defining classes of models invariant under stuttering. This is refined in [17]
for PLTL[∅] restricted to U and X, by taking into account not only the U-depth
but also the X-depth of formulae and by introducing a principle of stuttering
that involves both letter stuttering and word stuttering. In this section, we es-
tablish another substantial generalization that involves PLTL[∅] with past-time
temporal operators. Roughly speaking, we show that if σ1sMσ2, 0 |= φ where
σ1sMσ2 is a PLTL[∅] model (σ1, s being finite words), φ ∈ PLTL[∅], td(φ) ≤ N
and M ≥ 2N + 1, then σ1s2N+1σ2, 0 |= φ (and other related properties). This
extends a result without past-time operators [16]. Moreover, this turns out to
be a key property (Theorem 3) to establish the NP upper bound even in the
presence of counters. Note that Theorem 3 below is interesting for its own sake,
independently of our investigation on flat counter systems. By lack of space, we
state below the main definitions and result.

Given M, M ′, N ∈ N, we write M ≈N M ′ iff Min(M, N) = Min(M ′, N). Given
w = w1u

Mw2, w
′ = w1u

M ′
w2 ∈ Σω and i, i′ ∈ N, we define an equivalence
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relation 〈w, i〉 ≈N 〈w′, i′〉 (implicitly parameterized by w1, w2 and u) such that
〈w, i〉 ≈N 〈w′, i′〉 means that the number of copies of u before position i and the
number of copies of u before position i′ are related by ≈N and the same applies
for the number of copies after the positions. Moreover, if i and i′ occur in the
part where u is repeated, then they correspond to identical positions in u. More
formally, 〈w, i〉 ≈N 〈w′, i′〉 def⇔ M ≈2N M ′ and one of the conditions holds true:
(1) i, i′ < len(w1)+N · len(u) and i = i′, (2) i ≥ len(w1)+ (M −N) · len(u), i′ ≥
len(w1)+(M ′−N)·len(u) and (i−i′) = (M−M ′)·len(u), (3) len(w1)+N ·len(u) ≤
i < len(w1)+(M−N)·len(u), len(w1)+N ·len(u) ≤ i′ < len(w1)+(M ′−N)·len(u)
and |i− i′| = 0 mod len(u). We state our stuttering theorem for PLTL[∅] that
is tailored for our future needs.

Theorem 3 (Stuttering). Let σ = σ1sMσ2, σ
′ = σ1sM ′

σ2 ∈ (2AT)ω and i, i′ ∈
N such that N ≥ 2, M, M ′ ≥ 2N + 1 and 〈σ, i〉 ≈N 〈σ′, i′〉. Then, for every
PLTL[∅] formula φ with td(φ) ≤ N , we have σ, i |= φ iff σ′, i |= φ.

Proof. (sketch) The proof is by structural induction on the formula but first
we need to establish properties whose proofs can be found in [6]. Let w =
w1u

Mw2, w
′ = w1u

M ′
w2 ∈ Σω, i, i′ ∈ N and N ≥ 2 such that M, M ′ ≥ 2N + 1

and 〈w, i〉 ≈N 〈w′, i′〉. We can show the following properties:

(Claim 1) 〈w, i〉 ≈N−1 〈w′, i′〉 and w(i) = w′(i′).
(Claim 2) 〈w, i + 1〉 ≈N−1 〈w′, i′ + 1〉 and i, i′ > 0 implies 〈w, i − 1〉 ≈N−1

〈w′, i′ − 1〉.
(Claim 3) For all j ≥ i, there is j′ ≥ i′ such that 〈w, j〉 ≈N−1 〈w′, j′〉 and for

all k′ ∈ [i′, j′ − 1], there is k ∈ [i, j − 1] such that 〈w, k〉 ≈N−1 〈w′, k′〉.
(Claim 4) For all j ≤ i, there is j′ ≤ i′ such that 〈w, j〉 ≈N−1 〈w′, j′〉 and for

all k′ ∈ [j′ − 1, i′], there is k ∈ [j − 1, i] such that 〈w, k〉 ≈N−1 〈w′, k′〉.

By way of example, let us present the induction step for subformulae of the form
ψ1Uψ2. We show that σ, i |= ψ1Uψ2 implies σ′, i′ |= ψ1Uψ2. Suppose there is
j ≥ i such that σ, j |= ψ2 and for every k ∈ [i, j − 1], we have σ, k |= ψ1. There
is j′ ≥ i′ satisfying (Claim 3). Since td(ψ1), td(ψ2) ≤ N − 1, by (IH), we have
σ′, j′ |= ψ2. Moreover, for every k′ ∈ [i′, j′ − 1], there is k ∈ [i, j − 1] such that
〈w, k〉 ≈N−1 〈w′, k′〉 and by (IH), we have σ′, k′ |= ψ1 for every k′ ∈ [i′, j′ − 1].
Hence, σ′, i′ |= ψ1Uψ2. ��

An alternative proof consists in using Ehrenfeucht-Fraïssé games [10].

4 Fundamental Structures: Minimal Path Schemas

In this section, we introduce the notion of a fundamental structure for flat
counter systems, namely a path schema. Indeed, every flat counter system can be
decomposed into a finite set of minimal path schemas and there are only an expo-
nential number of them. So, all our nondeterministic algorithms on flat counter
systems have a preliminary step that first guesses a minimal path schema.
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4.1 Minimal Path Schemas

Let S = 〈Q, Cn, Δ, l〉 be a flat counter system. A path segment p of S is a finite
sequence of transitions from Δ such that target(p(i)) = source(p(i + 1)) for all
0 ≤ i < len(p) − 1. We write first(p) [resp. last(p)] to denote the first [resp.
last] control state of a path segment, in other words first(p) = source(p(0)) and
last(p) = target(p(len(p)− 1)). We also write effect(p) to denote the sum vector∑

0≤i<len(p) update(p(i)) representing the total effect of the updates along the
path segment. A path segment p is said to be simple if len(p) > 0 and for all
0 ≤ i, j < len(p), p(i) = p(j) implies i = j (no repetition of transitions). A
loop is a simple path segment p such that first(p) = last(p). A path schema
P is an ω-regular expression built over Δ such that its language represents an
overapproximation of the set of labels obtained from infinite runs following the
transitions of P . A path schema P is of the form p1l

+
1 p2l

+
2 . . . pklωk where (1) l1,

. . . , lk are loops and (2) p1l1p2l2 . . . pklk is a path segment.
We write len(P ) to denote len(p1l1p2l2 . . . pklk) and nbloops(P ) as its num-

ber k of loops. Let L(P ) denote the set of infinite words in Δω which be-
long to the language defined by P . Note that some elements of L(P ) may
not correspond to any run because of constraints on counter values. Given
w ∈ L(P ), we write iterP (w) to denote the unique tuple in (N \ {0})k−1 such
that w = p1l

iterP (w)[1]
1 p2l

iterP (w)[2]
2 . . . pklωk . So, for every i ∈ [1, k−1], iterP (w)[i]

is the number of times the loop li is taken. Then, for a configuration c0, the set
iterP (c0) is the set of vectors {iterP (w) ∈ (N\{0})k−1 | w ∈ lab(P, c0)}. Finally,
we say that a run ρ starting in a configuration c0 respects a path schema P if
lab(ρ) ∈ lab(P, c0) and for such a run, we write iterP (ρ) to denote iterP (lab(ρ)).
Note that by definition, if ρ respects P , then each loop li is visited at least once,
and the last one infinitely.

So far, a flat counter system may have an infinite set of path schemas. How-
ever, we can impose minimality conditions on path schemas without sacrifying
completeness. A path schema p1l

+
1 p2l

+
2 . . . pklωk is minimal whenever p1 · · · pk is

either the empty word or a simple non-loop segment, and l1, . . . , lk are loops
with disjoint sets of transitions.

Lemma 4. Given a flat counter system S = 〈Q, Cn, Δ, l〉, the total number of
minimal path schemas of S is finite and is smaller than card(Δ)(2×card(Δ)).

This is a simple consequence of the fact that in a minimal path schema, each
transition occurs at most twice. In Figure 1, we present a flat counter system
S with a unique counter and one of its minimal path schemas. Each transition
δi labelled by +i corresponds to a transition with the guard � and the update
value +i. The minimal path schema shown in Figure 1 corresponds to the ω-
regular expression δ1(δ2δ3)+δ4δ5(δ6δ5)ω. Note that in the representation of path
schemas, a state may occur several times, as it is the case for q3 (this cannot
occur in the representation of counter systems). Minimal path schemas play a
crucial role in the sequel. Indeed, given a path schema P , there is a minimal path
schema P ′ such that every run respecting P respects P ′ too. This can be easily
shown since whenever a maximal number of copies of a simple loop is identified
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Fig. 1. A flat counter system and one of its minimal path schemas

as a factor of p1l1 · · · pklk, this factor is replaced by the simple loop unless it is
already present in the path schema.

Finally, the conditions imposed on the structure of path schemas implies the
following corollary which states that the number of minimal path schemas for a
given flat counter system is at most exponential in the size of the system (see
similar statements in [20]).

Corollary 5. Given a flat counter system S and a configuration c0, there is a
finite set of minimal path schemas X of cardinality at most card(Δ)(2×card(Δ))

such that lab(c0) = lab(
⋃

P∈X P, c0).

4.2 Complexity Results

We write CPS [resp. KPS] to denote the class of path schemas from counter
systems [resp. the class of path schemas from Kripke structures]. As a preliminary
step, we consider the problem MC(PLTL[∅],KPS) that takes as inputs a path
schema P in KPS, and φ ∈ PLTL[∅] and asks whether there is a run respecting
P that satisfies φ. Let ρ and ρ′ be runs respecting P . For α ≥ 0, we write
ρ ≡α ρ′

def⇔ for every i ∈ [1, nbloops(P ) − 1], we have Min(iterP (ρ)[i], α) =
Min(iterP (ρ′)[i], α). We state below a result concerning the runs of flat counter
systems when respecting the same path schema.

Proposition 6. Let S be a flat counter system, P be a path schema, and φ ∈
PLTL[∅]. For all runs ρ and ρ′ respecting P such that ρ ≡2td(φ)+5 ρ′, we have
ρ, 0 |= φ iff ρ′, 0 |= φ.

This property can be proved by applying Theorem 3 repeatedly in order to get
rid of the unwanted iterations of the loops.

Our algorithm for MC(PLTL[∅],KPS) takes advantage of a result from [18]
for model-checking ultimately periodic models with formulae from Past LTL. An
ultimately periodic path is an infinite word in Δω of the form uvω were uv is a
path segment and consequently first(v) = last(v). According to [18], given an
ultimately periodic path w, and a formula φ ∈ PLTL[∅], the problem of checking
whether there exists a run ρ such that lab(ρ) = w and ρ, 0 |= φ is in PTime
(a tighter bound of NC can be obtained by combining results from [15] and
Theorem 3).

Lemma 7. MC(PLTL[∅],KPS) is in NP.

The proof is a consequence of Proposition 6 and [18]. Indeed, given φ ∈ PLTL[∅]
and P = p1l

+
1 p2l

+
2 . . . pklωk , first guess m ∈ [1, 2td(φ) + 5]k−1 and check whether
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ρ, 0 |= φ where ρ is the obvious ultimately periodic word such that lab(ρ) =
p1l

m[1]
1 p2l

m[2]
2 . . . pklωk . Since m is of polynomial size and ρ, 0 |= φ can be checked

in polynomial time by [18], we get the NP upper bound.
From [16], we have the lower bound for MC(PLTL[∅],KPS).

Lemma 8. [16] MC(PLTL[∅],KPS) is NP-hard even if restricted to X and F.

For a fixed n ∈ N, we write MC(PLTL[∅],KPS(n)) to denote the restriction of
MC(PLTL[∅],KPS) to path schemas with at most n loops. When n is fixed, the
number of ultimately periodic paths w in L(P ) such that each loop (except the
last one) is visited is at most 2td(φ)+5 times is bounded by (2td(φ)+5)n, which
is polynomial in the size of the input (because n is fixed).

Theorem 9. MC(PLTL[∅],KPS) is NP-complete.
Given a fixed n ∈ N, MC(PLTL[∅],KPS(n)) is in PTime.

Note that it can be proved that MC(PLTL[∅],KPS(n)) is in NC, hence giving a
tighter upper bound for the problem. This can be obtained by observing that we
can run the NC algorithm for model checking PLTL[∅] over ultimately periodic
paths parallelly on (2td(φ) + 5)n (polynomially many) different paths.

Now, we present how to solve MC(PLTL[∅],KFS) using Lemma 7. From
Lemma 4, we know that the number of minimal path schemas in a flat Kripke
structure S = 〈Q, Δ, l〉 is finite and the length of a minimal path schema is at
most 2 × card(Δ). Hence, for solving the model-checking problem for a state
q and a PLTL[∅] formula φ, a possible algorithm consists in choosing non-
deterministically a minimal path schema P starting at q and then apply the
algorithm used to establish Lemma 7. This new algorithm would be in NP. Fur-
thermore, thanks to Corollary 5, we know that if there exists a run ρ of S such
that ρ, 0 |= φ then there exists a minimal path schema P such that ρ respects
P . Consequently there is an algorithm in NP to solve MC(PLTL[∅],KFS).

Theorem 10. MC(PLTL[∅],KFS) is NP-complete.

NP-hardness can be established as a variant of the proof of Lemma 8.
Similarly, CPS(k) denotes the class of path schemas obtained from flat counter

systems with number of loops bounded by k.

Lemma 11. For k ≥ 2, MC(PLTL[C], CPS(k)) is NP-hard.

The proof by reduction from SAT and it is less straightforward than the proof
for Lemma 8 or the reduction presented in [16] when path schemas are involved.
Indeed, we cannot encode the nondeterminism in the structure itself and the
structure has only a constant number of loops. Actually, we cannot use a separate
loop for each counter; the reduction is done by encoding the nondeterminism
in the (possibly exponential) number of times a single loop is taken, and then
using its binary encoding as an assignment for the propositional variables. Hence,
the reduction uses in an essential way the counter values and the arithmetical
constraints in the formula. By contrast, MC(PLTL[C], CPS(1)) can be shown in
PTime.
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5 Model-Checking PLTL[C] over Flat Counter Systems

In this section, we provide a nondeterministic polynomial-time algorithm to solve
MC(PLTL[C], CFS) (see Algorithm 1). To do so, we combine Theorem 3 with
small solutions of constraint systems.

5.1 Characterizing Runs by System of Equations

In this section, we show how to build a system of equations from a path schema
P and a configuration c0 such that the system of equations encodes the set
of all runs respecting P from c0. This can be done for path schemas without
disjunctions in guards that satisfy an additional validity property. A path schema
P = p1l

+
1 p2l

+
2 . . . pklωk is valid whenever effect(lk)[i] ≥ 0 for every i ∈ [1, n] (see

Section 4 for the definition of effect(lk)) and if all the guards in transitions
in lk are conjunctions of atomic guards, then for each guard occurring in the
loop lk of the form

∑
i aixi ∼ b with ∼∈ {≤, <} [resp. with ∼∈ {=}, with

∼∈ {≥, >}] , we have
∑

i ai × effect(lk)[i] ≤ 0 [resp.
∑

i ai × effect(lk)[i] = 0,∑
i ai × effect(lk)[i] ≥ 0]. It is easy to check that these conditions are necessary

to visit the last loop lk infinitely. More specifically, if a path schema is not valid,
then no infinite run can respect it. Moreover, given a path schema, one can
decide in polynomial time whether it is valid.

Now, let us consider a (not necessarily minimal) valid path schema P =
p1l

+
1 p2l

+
2 . . . pklωk (k ≥ 1) obtained from a flat counter system S such that all the

guards on transitions are conjunctions of atomic guards of the form
∑

i aixi ∼ b
where ai ∈ Z, b ∈ Z and ∼∈ {=,≤,≥, <, >}. Hence, disjunctions are disallowed
in guards. The goal of this section (see Lemma 12 below) is to characterize the set
iterP (c0) ⊆ Nk−1 for some configuration c0 as the set of solutions of a constraint
system. For each loop li, we introduce a variable yi, whence the number of
variables of the system/formula is precisely k − 1. A constraint system E over
the set of variables {y1, . . . , yn} is a quantifier-free Presburger formula built over
{y1, . . . , yn} as a conjunction of atomic constraints of the form

∑
i aiyi ∼ b where

ai, b ∈ Z and ∼∈ {=,≤,≥, <, >}. Conjunctions of atomic counter constraints
and constraint systems are essentially the same objects but the distinction allows
to emphasize the different purposes: guard on counters in operational models and
symbolic representation of sets of tuples.
Lemma 12. Let S = 〈Q, Cn, Δ, l〉 be a flat counter system without disjunctions
in guards, P be a valid path schema and c0 be a configuration. One can compute
in polynomial time a constraint system E such that the set of solutions of E
is equal to iterP (c0), E has nbloops(P ) − 1 variables, E has at most len(P ) ×
2 × size(S)2 conjuncts and the greatest absolute value from constants in E is
bounded by n×nbloops(P )×K4× len(P )3 where K is the greatest absolute value
for constants occurring in S.

5.2 Elimination of Arithmetical Constraints and Disjunctions

As stated in Lemma 12, the procedure for characterizing infinite runs in a counter
system by a system of equations works only for a flat counter system with no
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disjunction in guards (convexity of guards is essential). In this section, we show
how to obtain such a system from a general flat counter system. Given a flat
counter system S = 〈Q, Cn, Δ, l〉, a configuration c0 = 〈q0, v0〉 and a minimal
path schema P starting from the configuration c0, we show that it is possible to
build a finite set YP of path schemas such that (1) each path schema in YP has
transitions without disjunctions in guards, (2) existence of a run ρ respecting P
is equivalent to the existence of a path schema in YP having a run similar to ρ
respecting it and (3) each path schema in YP is obtained from P by unfolding
loops so that the terms in each loop satisfy the same atomic guards. Note that
disjunctions could be easily eliminated at the cost of adding new transitions
between states but this type of transformation may easily destroy flatness. Hence,
the necessity to present a more sophisticated elimination procedure

We first introduce a few definitions. A (syntactic) resource R is a triple
〈X, T, B〉 such that X is a finite set of propositional variables, T is a finite
set of terms t appearing in some guards of the form t ∼ b (with b ∈ Z) and B
is a finite set of integers. We say that a resource R = 〈X, T, B〉 is coherent with
a counter system S [resp. with a path schema P ] if B contains all the constants
b occurring in guards of S [resp. of P ] of the form t ∼ b and T contains all the
terms t occurring in guards of S [resp. of P ] of the form t ∼ b. The resource
R is coherent with a formula φ ∈ PLTL[C], whenever the atomic formulae of φ
are either of the form p ∈ X or t ∼ b with t ∈ T and b ∈ B. In the sequel, we
assume that the considered resource is always coherent with S.

Assuming that B = {b1, . . . , bm} with b1 < · · · < bm, we write I to de-
note the finite set of intervals I = {(−∞, b1 − 1], [b1, b1], [b1 + 1, b2 − 1], [b2, b2],
· · · , [bm, bm], [bm +1,∞)}. Note that I contains exactly 2m+1 intervals. A term
map m is a map m : T → I that abstracts term values. A footprint is an ab-
straction of a model for PLTL[C] restricted to elements from the resource R: it
is of the form ft : N→ 2X × IT where I is the set of intervals built from B. The
satisfaction relation |= involving models or runs can be adapted to footprints as
follows (formulae and footprints are from the same resource):

– ft, i |=symb p
def⇔ p ∈ π1(ft(i)); ft, i |=symb t ≥ b

def⇔ π2(ft(i))(t) ⊆ [b, +∞),
– ft, i |=symb t ≤ b

def⇔ π2(ft(i))(t) ⊆ (−∞, +b],
– ft, i |=symb Xφ

def⇔ ft, i + 1 |=symb φ,
– ft, i |=symb φUψ

def⇔ ∃j ≥ i s.t. ft, j |=symb ψ and ∀j′ ∈ [i, j−1], ft, j′ |=symb φ.

We omit the other obvious clauses. |=symb is the satisfaction relation for Past
LTL when arithmetical constraints are understood as abstract propositions. Let
R = 〈X, T, B〉 be a resource and ρ = 〈q0, v0〉, 〈q1, v1〉 · · · be an infinite run of S.
The footprint of ρ with respect to R is the footprint ft(ρ) such that for i ≥ 0, we
have ft(ρ)(i) def= 〈l(qi) ∩X, mi〉 where for every term t =

∑
j ajxj ∈ T , we have∑

j ajvi[j] ∈mi(t). Note that
∑

j ajvi[j] belongs to a unique element of I since
I is a partition of Z. Hence, this definition makes sense. Lemma 13 below roughly
states that satisfaction of a formula on a run can be checked symbolically from
the footprint (this is useful for the correctness of forthcoming Algorithm 1).
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Lemma 13. Let φ be in PLTL[C], R = 〈X, T, B〉 be coherent with φ, ρ =
〈q0, v0〉, 〈q1, v1〉 · · · be an infinite run and i ≥ 0. (I) Then ρ, i |= φ iff ft(ρ), i |=symb

φ. (II) If ρ′ is an infinite run s.t. ft(ρ) = ft(ρ′), then ρ, i |= φ iff ρ′, i |= φ.

In [6] we explain in details how to build a set YP of path schemas without
disjunctions from a minimal path schema P , an initial configuration 〈q0, v0〉
and a resource R. The main idea of this construction consists in adding to the
control states of path schemas some information on the intervals to which be-
longs each term of T . In fact, in the transitions appearing in path schemas
of YP the states belong to Q′ = Q × IT . Before stating the properties of
YP , we introduce some notations. Given t =

∑
j ajxj ∈ T , u ∈ Zn and a

term map m, we write ψ(t,u, m(t)) to denote the formula below (b, b′ ∈ B):
ψ(t,u, (−∞, b]) def=

∑
j aj(xj +u(j)) ≤ b; ψ(t,u, [b, +∞)) def=

∑
j aj(xj +u(j)) ≥ b

and ψ(t,u, [b, b′]) = ((
∑

j aj(xj + u(j)) ≤ b′) ∧ ((
∑

j aj(xj + u(j)) ≥ b). We
write G	(T, B, U) to denote the set of guards of the form ψ(t,u, m(t)) where
t ∈ T , U is the finite set of updates from P and m : T → I. Each guard in
G	(T, B, U) is of linear size in the size of P . We denote Δ̃ the set of transitions
Q′× G	(T, B, U)×U ×Q′. Note that the transitions in Δ̃ do not contain guards
with disjunctions and Δ̃ is finite. We also define a function proj which associates
to w ∈ Δ̃ω the ω-sequence proj(w) : N → 2X × IT such that for all i ∈ N, if
w(i) = 〈〈q, m〉, g,u, 〈q′, m′〉〉 and l(q) ∩X = L then proj(w)(i) def= 〈L, m〉.

We show that it is possible to build a finite set YP of path schemas over Δ̃
such that if P ′ = p′1(l

′
1)

+p′2(l
′
2)

+ . . . p′k′(l′k′)ω is a path schema in YP and ρ is a
run 〈〈q0, m0〉, v0〉 −→ 〈〈q1, m1〉, v1〉 −→ 〈〈q2, m2〉, v2〉 · · · respecting P ′ we have
that proj(lab(ρ)) = ft(ρ). This point will be useful for Algorithm 1. The following
theorem lists the main properties of the set YP .

Theorem 14. Given a flat counter system S, a minimal path schema P , a
resource R = 〈X, T, B〉 coherent with P and a configuration 〈q0, v0〉, there is a
finite set of path schemas YP over Δ̃ satisfying (1)–(6) below.

1. No path schema in YP contains guards with disjunctions in it.
2. There exists a polynomial q	(·) such that for every P ′ ∈ YP , len(P ′) ≤

q	(len(P ) + card(T ) + card(B)).
3. Checking whether a path schema P ′ over Δ̃ belongs to YP can be done in

polynomial time in size(P ) + card(T ) + card(B).
4. For every run ρ respecting P and starting at 〈q0, v0〉, we can find a run ρ′

respecting some P ′ ∈ YP such that ρ |= φ iff ρ′ |= φ for every φ built over R.
5. For every run ρ′ respecting some P ′ ∈ YP with initial values v0, we can find

a run ρ respecting P such that ρ |= φ iff ρ′ |= φ for every φ built over R.
6. For every ultimately periodic word w · uω ∈ L(P ′), for every φ built over R

checking whether proj(w · uω), 0 |=symb φ can be done in polynomial time in
the size of w · u and in the size of φ.

5.3 Main Algorithm

In Algorithm 1 below, a polynomial p	(·) is used. We can define polynomial p	(·)
using the small solutions for constraint systems [2], see details in [6]. Note that
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Algorithm 1. The main algorithm in NP with inputs S, c0 = 〈q, v0〉, φ

1: guess a minimal path schema P of S
2: build a resource R = 〈X, T, B〉 coherent with P and φ
3: guess a valid schema P ′ = p1l

+
1 p2l

+
2 . . . pklωk such that len(P ′) ≤ q�(len(P ) +

card(T ) + card(B))
4: guess y ∈ [1, 2td(φ) + 5]k−1; guess y′ ∈ [1, 2p�(size(S)+size(c0)+size(φ))]k−1

5: check that P ′ belongs to YP

6: check that proj(p1l
y [1]
1 p2l

y[2]
2 . . . l

y [k−1]
k−1 pklωk ), 0 |=symb φ

7: build E over y1, . . . , yk−1 for P ′ with initial values v0 (obtained from Lemma 12)
8: for i = 1 → k − 1 do
9: if y[i] = 2td(φ) + 5 then ψi ← “yi ≥ 2td(φ) + 5” else ψi ← “yi = y[i]”

10: end for
11: check that y′ |= E ∧ ψ1 ∧ · · · ∧ ψk−1

y′ is a refinement of y (for all i, we have y′[i] ≈2td(φ)+5 y[i]) in which counter
values are taken into account.

Algorithm 1 starts by guessing a path schema P (line 1) and an unfolded
path schema P ′ = p1l

+
1 p2l

+
2 . . . pklωk (line 3) and check whether P ′ belongs to

YP (line 5). It remains to check whether there is a run ρ respecting P ′ such
that ρ |= φ. Suppose there is such a run ρ; let y be the unique tuple in
[1, 2td(φ) + 5]k−1 such that y ≈2td(φ)+5 iterP ′(ρ). By Proposition 6, we have
proj(p1l

y[1]
1 p2l

y[2]
2 . . . l

y[k−1]
k−1 pklωk ), 0 |=symb φ. Since the set of tuples of the form

iterP ′(ρ) is characterized by a system of equations, by the existence of small so-
lutions from [2], we can assume that iterP ′(ρ) contains only small values. Hence
line 4 guesses y and y′ (corresponding to iterP ′(ρ) with small values). Line 6 pre-
cisely checks proj(p1l

y[1]
1 p2l

y[2]
2 . . . l

y[k−1]
k−1 pklωk ), 0 |=symb φ whereas line 11 checks

whether y′ encodes a run respecting P ′ with y′ ≈2td(φ)+5 y.

Lemma 15. Algorithm 1 runs in nondeterministic polynomial time.

It remains to check that Algorithm 1 is correct.

Lemma 16. S, c0 |= φ iff Algorithm 1 on inputs S, c0, φ has an accepting run.

In the proof of Lemma 16, we take advantage of all our preliminary results.

Proof. By way of example, we show that if Algorithm 1 on inputs S, c0 = 〈q0, v0〉,
φ has an accepting computation, then S, c0 |= φ. This means that there are P ,
P ′, y, y′ that satisfy all the checks. Let w = p1l

y′[1]
1 · · · pk−1l

y′[k−1]
k−1 pklωk and ρ =

〈〈q0, m0〉, v0〉〈〈q1, m1〉, x1〉〈〈q2, m2〉, x2〉 · · · ∈ (Q′ ×Zn)ω be defined as follows:
for every i ≥ 0, qi

def= π1(source(w(i))), and for every i ≥ 1, we have xi
def= xi−1+

update(w(i)). By Lemma 12, since y′ |= E ∧ψ1∧· · ·∧ψk−1, ρ is a run respecting
P ′ starting at the configuration 〈〈q0, m0〉, v0〉. Since y′ |= ψ1∧· · ·∧ψk−1 and y |=
ψ1∧· · ·∧ψk−1, by Proposition 6, (�) proj(p1l

y[1]
1 p2l

y[2]
2 . . . l

y[k−1]
k−1 pklωk ), 0 |=symb φ,

iff (��) proj(p1l
y′[1]
1 p2l

y′[2]
2 . . . l

y′[k−1]
k−1 pklωk ), 0 |=symb φ. Algorithm 1 guarantees

that proj(p1l
y[1]
1 p2l

y[2]
2 . . . l

y[k−1]
k−1 pklωk ), 0 |=symb φ, whence we have (��). Since
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proj(p1l
y′[1]
1 p2l

y′[2]
2 . . . l

y′[k−1]
k−1 pklωk ) = ft(ρ), by Lemma 13, we deduce that ρ, 0 |=

φ. By Theorem 14(5), there is an infinite run ρ′, starting at the configuration
〈q0, v0〉 and respecting P , such that ρ′, 0 |= φ.

For the other direction, see [6]. ��
As a corollary, we can state the main result of the paper.

Theorem 17. MC(PLTL[C], CFS) is NP-complete.

6 Conclusion

We have investigated the computational complexity of the model-checking prob-
lem for flat counter systems with formulae from an enriched version of LTL. Our
main result is the NP-completeness of MC(PLTL[C], CFS), significantly improv-
ing the complexity upper bound from [7]. This also improves the results about
the effective semilinearity of the reachability relations for such flat counter sys-
tems from [5,11] and it extends the recent result on the NP-completeness of
model-checking flat Kripke structures with LTL from [16] by adding counters
and past-time operators. Our main results are presented above and compared to
the reachability problem.

Classes of Systems PLTL[∅] PLTL[C] Reachability
KPS NP-complete —– PTime

See [16] for X and U

CPS NP-complete NP-complete (Theo. 17) NP-complete
KPS(n) PTime (Theo. 9) —– PTime

CPS(n), n > 1 ?? NP-complete (Lem. 11) ??
CPS(1) PTime PTime PTime
KFS NP-complete —– PTime

See [16] for X and U

CFS NP-complete NP-complete (Theo. 17) NP-complete

As far as the proof technique is concerned, the NP upper bound is obtained
as a combination of a general stuttering property for LTL with past-time oper-
ators (a result extending what is done in [17] with past-time operators) and the
use of small integer solutions for quantifier-free Presburger formulae [2]. There
are several related problems which are not addressed in the paper. For instance,
the extension of the model-checking problem to full CTL	 is known to be decid-
able [7] but the characterization of its exact complexity is open.
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Abstract. We present a modification of the superposition calculus that
is meant to generate explanations why a set of clauses is satisfiable. This
process is related to abductive reasoning, and the explanations generated
are clauses constructed over so-called abductive constants. We prove the
correctness and completeness of the calculus in the presence of redun-
dancy elimination rules, and develop a sufficient condition guaranteeing
its termination; this sufficient condition is then used to prove that all
possible explanations can be generated in finite time for several classes
of clause sets, including many of interest to the SMT community. We
propose a procedure that generates a set of explanations that should be
useful to a human user and conclude by suggesting several extensions to
this novel approach.

1 Introduction

The verification of complex systems is generally based on proving the validity,
or, dually, the satisfiability of a logical formula. The standard practice consists in
translating the behavior of the system to be verified into a logical formula, and
proving that the negation of the formula is unsatisfiable. These formulas may
be domain-specific, so that it is only necessary to test the satisfiability of the
formula modulo some background theory, whence the name Satisfiability Modulo
Theories problems, or SMT problems. If the formula is actually satisfiable, this
means the system is not error-free, and any model can be viewed as a trace
that generates an error. The models of a satisfiable formula can therefore help
the designers of the system guess the origin of the errors and deduce how they
can be corrected. Yet, this still requires some work. Indeed, there are generally
many interpretations on different domains that satisfy the formula, and it is
necessary to further analyze these models to understand where the error(s) may
come from.

We present what is, to the best of our knowledge, a novel approach to this
debugging problem: we argue that rather than studying one model of a formula,
more valuable information can be extracted from the properties that hold in all
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Fig. 1. Insertion into array a of element b at position i and element c at position j

the models of the formula. For instance, consider the theory of arrays, which is
axiomatized as follows (as introduced by [13]):

∀x, z, v. select(store(x, z, v), z) - v, (1)

∀x, z, w, v. z - w ∨ select(store(x, z, v), w) - select(x,w). (2)

These axioms state that if element v is inserted into array x at position z,
then the resulting array contains v at position z, and the same elements as in x
elsewhere. Assume that to verify that the order in which elements are inserted
into a given array does not matter, the satisfiability of the following formula is
tested (see also Figure 1):

select(store(store(a, i, b), j, c), k) �- select(store(store(a, j, c), i, b), k).

This formula asserts that there is a position k that holds different values in
the array obtained from a by first inserting element b at position i and then
element c at position j, and in the array obtained from a by first inserting
element c at position j and then element b at position i. It turns out that this
formula is actually satisfiable, which in this case means that some hypotheses are
missing. State of the art SMT solvers such as Yices [16] can help find out what
hypotheses are missing by outputting a model of the formula. In this particular
case, Yices outputs (= b 1) (= c 3) (= i 2) (= k 2) (= j 2), and for this
simple example, such a model may be sufficient to quickly understand where
the error comes from. However, a simpler and more natural way to determine
what hypotheses are missing would be to have a tool that, when fed the formula
above, outputs i - j ∧ b �- c, stating that the formula can only be true when
elements b and c are distinct, and are inserted at the same position in a. This
information permits to know immediately what additional hypotheses must be
made for the formula to be unsatisfiable. In this example, there are two possible
hypotheses that can be added: i �- j or b - c.

In this paper, we investigate what information should be provided to the user
and how it can be obtained, by distinguishing a set of constants on which addi-
tional hypotheses are allowed to be made. These constants are called abducible
constants or simply abducibles, and the problem boils down to determining what
ground clauses containing only abducibles are logically entailed by the formula
under consideration, since the negation of any of these clauses can be viewed as
a set of additional hypotheses that make the formula unsatisfiable.
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Outline. This paper begins by summarizing all necessary background, and then
a calculus specially designed for abductive reasoning is defined. This calculus is
closely related to the superposition calculus SP , and we rely on completeness and
termination results for SP to prove similar results for the new calculus. We also
propose a method for generating clauses containing only abducible constants,
that can help a user quickly detect where an error comes from, and decide what
additional hypotheses should be added to fix the faulty formula.

Due to the space restrictions, several intermediate results and proofs are omit-
ted. A full version of this work containing all proofs is available in [8].

2 Preliminaries

The general framework of this paper is first-order logic with equality. Most of
the presentation in this section is standard, and we refer the reader to [14] for
details. Given a finite signature Σ and an integer i ≥ 0, Σi stands for the set of
function symbols in Σ of arity i. In particular, Σ0 denotes the set of constants in
Σ. We assume the standard definitions of terms, predicates, literals and clauses,
all of which are constructed over a set of variables X . Interpretations are defined
as usual, |= stands for logical entailment and ≡ stands for logical equivalence. We
also consider the standard definitions of positions in terms, predicates, literals
or clauses. A term, predicate, literal or clause containing no variable is ground.
As usual, clauses are assumed to be variable-disjoint. The symbol - stands for
unordered equality, �� is either - or �-. If L is a literal, then Lc denotes the

complementary literal of L, i.e., (t - s)c
def
= (t �- s) and (t �- s)c

def
= (t - s). A

literal is flat if it only contains constants or variables1, and a clause is flat if
it only contains flat literals. The letters l, r, s, u, v and t denote terms, w, x, y, z
variables, and all other lower-case letters denote constants or function symbols.

Definition 1. Given a ground clause C, we denote by ¬C the following set of

literals: ¬C def
= {Lc | L ∈ C}.

A substitution is a function mapping variables to terms. Given a substitution σ,
the set of variables x such that xσ �= x is called the domain of σ and denoted
by dom(σ). If σ is a substitution and V is a set of variables, then σ|V is the
substitution with domain dom(σ)∩V , that matches σ on this domain. As usual,
a substitution can be extended into a homomorphism on terms, atoms, literals
and clauses. The image of an expression E by a substitution σ will be denoted
by Eσ. If E is a set of expressions, then Eσ denotes the set {Eσ | E ∈ E}. The
composition of two substitutions σ and θ is denoted by σθ. A substitution σ
is more general than θ if there exists a substitution η such that θ = ση. The
substitution σ is a renaming if it is injective and ∀x ∈ dom(σ), xσ ∈ X ; and it
is a unifier of two terms t, s if tσ = sσ. Any unifiable pair of terms (t, s) has
a most general unifier, unique up to a renaming, and denoted by mgu(t, s). A
substitution σ is ground if xσ is ground, for every variable x in its domain.

1 Note that we depart from the terminology in [2,1], where flat positive literals can
contain a term of depth 1.
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Superposition
C ∨ l[u′] � r D ∨ u � t

(C ∨ D ∨ l[t] � r)σ
(i), (ii), (iii), (iv)

Paramodulation
C ∨ l[u′] �� r D ∨ u � t

(C ∨ D ∨ l[t] �� r)σ
(i), (ii), (iii), (iv)

Reflection
C ∨ u′ �� u

Cσ
(v)

Equational Factoring
C ∨ u � t ∨ u′ � t′

(C ∨ t �� t′ ∨ u � t′)σ
(i), (vi)

where the notation l[u′] means that u′ appears as a subterm in l, σ is the most general
unifier (mgu) of u and u′, u′ is not a variable in Superposition and Paramodulation,
and the following abbreviations hold:

(i): uσ �≺ tσ;
(ii): ∀L ∈ D : (u � t)σ �≺ Lσ;
(iii): l[u′]σ �≺ rσ;
(iv): ∀L ∈ C : (l[u′] 
� r)σ �≺ Lσ;
(v): ∀L ∈ C : (u′ � u)σ �≺ Lσ;
(vi): ∀L ∈ {u′ � t′} ∪ C : (u � t)σ �≺ Lσ.

Fig. 2. Inference rules of SP: the clause below the inference line is added to the clause
set containing the clauses above the inference line

A simplification ordering ≺ is an ordering that is stable under substitutions,
monotonic, and contains the subterm ordering: if s ≺ t, then c[s]σ ≺ c[t]σ for
any context c and substitution σ, and if s is a strict subterm of t then s ≺ t.
A complete simplification ordering, or CSO, is a simplification ordering that is
total on ground terms. Similarly to [7], in the sequel, we shall assume that any
CSO under consideration is good :

Definition 2. A CSO ≺ is good if for all ground compound terms t and con-
stants c, we have c ≺ t.

The superposition calculus, or SP (see, e.g., [14]), is a refutationally complete
rewrite-based inference system for first-order logic with equality. It consists of
the inference rules summarized in Fig. 2: each rule contains premises which are
above the inference line, and generates a conclusion, which is below the inference
line. If a clause D is generated from premises C,C′, then we write C,C′ � D.
The superposition calculus is based on a CSO on terms, which is extended to
literals and clauses in a standard way (see, e.g., [3]), and we may write SP≺ and
�≺ to specify the ordering. A ground clause C is ≺-redundant in S, or simply
redundant, if there exists a set of ground clauses S′ such that S′ |= C, and for
every D ∈ S′, D is an instance of a clause in S and D ≺ C. A non-ground clause
C is ≺-redundant in S if all its instances are ≺-redundant in S. In particular,
every strictly subsumed clause and every tautological clause is redundant. A set
of clauses S is saturated if every clause C /∈ S generated from premises in S is



198 M. Echenim and N. Peltier

redundant in S. A saturated set of clauses that does not contain � is satisfiable
[14]. In practice, it is necessary to use a decidable approximation of this notion
of redundancy: for example, a clause is redundant if it can be reduced by some
demodulation steps to either a tautology or to a subsumed clause.

In the sequel, it will be necessary to forbid the occurrence of clauses containing
maximal literals of the form x - t, where x �. t:

Definition 3. A clause is variable-eligible w.r.t. ≺ if it contains a maximal
literal of the form x - t, where x �. t. A set of clauses is variable-inactive (see
[1]) if no non-redundant clause generated from S is variable-eligible.

For technical reasons we have chosen to present a slightly relaxed version of the
superposition calculus, in which the standard strict maximality conditions have
been replaced by non-strict maximality conditions. For instance in Condition
(i), uσ �. tσ is replaced by uσ �≺ tσ: it is not forbidden for u and t to be
identical in Paramodulation and Superposition inferences. It is clear that the
clauses generated in the case where there is an equality actually turn out to be
redundant.

3 A Calculus for Handling Abducible Constants

As explained in the Introduction, the aim of this paper is to start with a formula
F and a set of axioms A, and generate a formula H which logically entails F
modulo A, i.e., such that H,A |= F (where H ∧ A is satisfiable). As usual in
abductive reasoning (see for instance [9]), we actually consider the contrapositive:
since H,A |= F is equivalent to ¬F,A |= ¬H , the original problem can be
solved by generating logical consequences of the formula ¬F ∧ A. For the sake
of simplicity, the formula ¬F is added to the axioms which are assumed to be
in clausal form, and we have the following definition:

Definition 4. A clause C is an implicate of a set of clauses S iff S |= C.

It is clear that after H is generated, one must verify that it is satisfiable modulo
A. For instance, if a is some constant, then an explanation such as a - 0∧a - 1
or even 0 - 1 does not provide any information since it contradicts the axioms
of Presburger arithmetic. Testing this satisfiability can be done using standard
decision procedures. There are many possible candidate sets of implicates, which
may be more or less informative. For instance, it is possible to take C ∈ S, but
this is obviously of no use. Thus it is necessary to provide additional information
in order to restrict the class of formulas that are searched for. In (propositional)
abductive reasoning, this is usually done by considering clauses built on a given
set of literals: the abducible literals. A more natural possibility in the context
of this paper is to consider clauses built on a given set of ground terms. We
may assume with no loss of generality that each of these terms is replaced by a
constant symbol, by applying the usual flattening operation, see, e.g., [2,7]. For
example, the term select(store(a, i, b), j) may be replaced by a new constant d,
along with the axioms: d - select(d′, j) ∧ d′ - store(a, i, b)). We thus consider
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a distinguished set of constants A ⊆ Σ0, called the set of abducible constants,
and restrict ourselves to explanations that are conjunctions of literals built upon
abducible constants. This is formalized with the following definition of an A-
implicate:

Definition 5. Let S be a set of clauses. A clause C is an A-implicate of S iff
every term occurring in C is also in A and S |= C.

As in propositional abductive reasoning, the set A must be provided by the user.
Given a set of clauses S containing both the axioms A and the clauses corre-
sponding to the conjunctive normal form of ¬F , we investigate how to generate
the set of flat ground clauses C built on A, that are logical consequences of S.
Since SP is only refutationally complete, this cannot be done directly using this
calculus (except in some very particular cases, see for instance [15]). For exam-
ple, it is clear that f(a) �- f(b) |= a �- b, but a �- b cannot be generated from the
antecedent clause. In principle, it is possible to enumerate all possible clauses
C built on A and then use the superposition calculus to check whether S ∪ ¬C
is unsatisfiable, however, this yields a very inefficient procedure. An alternate
method consists in replacing the superposition calculus by a less restrictive cal-
culus, such as the Resolution calculus [11] together with the equality axioms.
For instance in the previous case, the clause f(a) �- f(b) and the substitutivity
axiom x �- y ∨ f(x) - f(y) permit to generate by the Resolution rule: a �- b.
However, again, this calculus is not efficient, and in particular all the termina-
tion properties of the superposition calculus on many interesting subclasses of
first-order logic [4,2,1] are lost. In this section, we provide a variant of the super-
position calculus which is able to directly generate, from a set of clauses S, a set
of logical consequences of S that are built on a given set of constant symbols A.
The calculus is thus parameterized both by the term ordering ≺ and by the set of
abducible constants A. We shall show that the calculus is complete, in the sense
that if S |= C and if C is an A-implicate of S, then C is a logical consequence
of other clauses built on A that are generated from S. We will also prove that
the calculus terminates on many classes of interest in the SMT community.

We will thus consider clauses of a particular form and a slight variation of
the superposition calculus in order to be able to reason on abducible constants.
The principle behind this calculus is similar to that of [5] for the combination
of hierarchic theories, with the difference that in this framework, abducible con-
stants can potentially interact with other terms, whereas in the framework of [5],
such an interaction is prevented by sortedness. In both settings however, a same
abstraction principle is used to delay the reasoning on the objects of interest (in
this case, the abducible constants).

From now on we assume that the set of variables X is of the form X = V�VA.
The elements in V are ordinary variables and the elements in VA are called
abducible variables, and they will serve as placeholders for abducible constants
in terms and clauses. In the sequel, when we mention standard terms, literals or
clauses, we assume that all the variables they contain are in V .
Definition 6. An A-literal is a literal of the form t �� s, where t, s ∈ VA ∪ A.
An A-clause is a disjunction of A-literals. Given a clause C, we denote by Δ(C)
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the disjunction of A-literals in C and by Δ(C) the disjunction of non-A-literals
in C. We define VarA(C)

def
= Var(C) ∩ VA.

A first step towards reasoning on abducible constants will consist in extracting
them from the terms in which they occur, and replacing them by abducible
variables. Then, to ensure that such a property is preserved by inferences, every
substitution mapping an abducible variable to anything other than an abducible
variable will be discarded. More formally:

Definition 7. A term is abstracted if it contains no abducible constant. A lit-
eral t �� s is abstracted if t and s are both abstracted. A clause is abstracted if
all non-abstracted literals in C are A-literals.

If t is an abstracted term, then not every instance of t is also abstracted. We
define a condition on substitutions that guarantees such a stability result.

Definition 8. A substitution σ is A-compliant if for all x ∈ dom(σ), xσ is
abstracted, and for all x ∈ dom(σ) ∩ VA, xσ ∈ VA. Two abstracted terms are
A-unifiable if they are unifiable and admit an A-compliant mgu.

In the sequel, every time abstracted terms are A-unifiable, we will assume the
corresponding mgu is A-compliant.

Definition 9. Let <A be a total ordering on A and a0 denote the smallest
abducible in A. Given a term t, we denote by t↓A the term obtained by replacing
every abducible constant occurring in t by a0. The term t is A-reduced if t↓A = t.
The previous notation and this definition extend to literals, clauses and sets of
clauses.

Example 1. Let C = f(b, c) - g(d)∨x �- b∨f(a, b) �- f(c, d), where A = {a, b, c}
and a ≺ b ≺ c. Then C↓A = f(a, a) - g(d) ∨ x �- a ∨ f(a, a) �- f(a, d), and this
clause is an A-reduced clause.

It is clear that if all abducible constants are replaced by abducible variables
in a standard clause, then the resulting abstracted clause is not equivalent to
the former one. However, equivalence can be regained by adding so-called VA-
constraint literals to the resulting abstracted clause.

Definition 10. A VA-constraint literal is a literal of the form x �- a, where
x ∈ VA and a ∈ A. For all clauses C, we denote by Γ (C) the disjunction of VA-
constraint literals in C. A VA-constraint clause is a disjunction of VA-constraint
literals. Given a VA-constraint clause A =

∨k
i=1 xi �- ai, the substitution

associated to A is denoted by νA and defined as follows: dom(νA) = {x1, . . . , xk},
and for all x ∈ dom(νA), xνA = min<A {ai | i ∈ [1, k] ∧ xi = x}.

For readability, if B is a clause then we will write νB instead of νΓ (B). If S
is a set of abstracted clauses, then Sν is the set Sν = {CνC | C ∈ S}.

Example 2. Assume A = {a, b, c}, where a <A b <A c, and let A = x �- a ∨ x �-
c ∨ y �- b ∨ z �- a ∨ y �- c. Then νA = {x "→ a, y "→ b, z "→ a}.
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Note that by definition, C ≡ CνC and S ≡ Sν . As mentioned earlier, abducible
variables are meant to be placeholders for abducible constants. In general, it
will be necessary to keep some information permitting to know what abducible
constants an abducible variable could be replaced by. Such a requirement is
satisfied by imposing that every abducible variable occurs in at least one VA-
constraint literal, which intuitively specifies its value.

Definition 11. A clause C is VA-stable if VarA(C) ⊆ VarA(Γ (C)). A set of
clauses is VA-stable if every clause it contains is VA-stable.

Given a set of standard clauses, it is easy to construct an equivalent set of ab-
stracted and VA-stable clauses. It suffices to replace every abducible a occurring
in a non-A-literal by a fresh variable x ∈ VA, and to add the literal x �- a to the
clause. For instance, if A = {a, b} then the clause a - b ∨ a - c ∨ f(b, d, x) �-
g(b, y) is replaced by x1 �- a ∨ x2 �- b ∨ x3 �- b ∨ a - b ∨ x1 - c ∨ f(x2, d, x) �-
g(x3, y).

Definition of the calculus. We introduce a calculus for generating A-
implicates. It is a modified version of the superposition calculus, and consists of
inference rules that are meant to be applied to abstracted clauses. In particular,
it is based on orderings that are suitable for abstracted terms, literals and clauses:
the order between two terms t and s should not depend on the abducible con-
stants occurring in t and s, and maximal terms and literals in abstracted clauses
should be related to maximal terms and literals in standard clauses, in a sense
that will be made precise later. We thus define particular orderings for standard
clauses, from which we define suitable orderings for abstracted clauses.

Definition 12. We consider a good CSO ≺ such that2:

1. for all a, b ∈ A, a ≺ b if and only if a <A b;
2. for all a ∈ A and for all non-variable terms t �∈ A, a ≺ t;
3. for all ground terms t, s not in A, if t ≺ s then t↓A . s↓A, and if t↓A ≺ s↓A

then t ≺ s.

We let γ0 denote the ground substitution of domain VA such that for all x ∈ VA,
xγ0 = a0. Given abstracted terms t, s, we define ≺A as follows: t ≺A s iff
tγ0 ≺ sγ0. This definition extends to literals and clauses in a standard way. A
term is A-maximal if it is maximal for ≺A; this definition also extends to literals
and clauses.

Definition 13. We denote by SPA the calculus such that for all clause sets
S, we have S �A D if S �≺A D and the mgu involved in the SP-inference is
A-compliant.

By construction, SP and SPA coincide on ground A-clauses. We define a partic-
ular notion of redundancy for abstracted clauses, that is related to redundancy

2 It is not difficult to see that there exist orderings fulfilling these properties (see [8]).
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for standard clauses. The main difference with the standard definition is that
the redundancy test is performed modulo the substitution νC that replaces the
abstracted variables in C by the abducible constants they denote.

Definition 14. Consider a set of abstracted clauses S and an abstracted clause
C such that Var(C) ⊆ VA. The clause C is A-redundant in S if:

– C is an A-clause, νC �= id and CνC either occurs or is A-redundant in S,
– or there exists a set of ground clauses S′ such that S′ |= C, every D ∈ S′ is

an instance of a clause in Sν and D ≺ CνC .

If C is an abstracted clause such that Var(C) �⊆ VA, then C is A-redundant in
S if for all ground substitutions σ with a domain in V, Cσ is A-redundant in S.
The set S is A-saturated if every clause C /∈ S generated by an SPA-inference
with premises in S is A-redundant in S.

This notion of redundancy permits to add the standard contraction rules of
the superposition calculus to SPA (subsumption, simplification, elimination of
tautologies, etc). The following contraction inference rule is also added to SPA:

A-reduction :
C

CνC
if C is an A-clause and νC �= id.

After any application of the A-reduction rule, the premise becomes A-redundant
and can be deleted.

Theorem 1. If S is a variable-inactive (w.r.t. ≺A) set of abstracted clauses
that are VA-stable, then every non-redundant clause generated from S by SPA is
abstracted and VA-stable. Also, if one of the premises of a binary SPA-inference
is an A-clause, then the other premise is also an A-clause.

The variable-inactive condition, which ensures that all generated clauses are
variable-eligible, prevents non-abstracted clauses from being generated from ab-
stracted ones. For example, if S contains the unit clauses {a - b, x - y} with
{a, b} ∈ A and {x, y} ∈ V , then S �A y - b, and the latter is not abstracted.
In what follows, we will prove completeness and termination results for SPA.
The completeness result guarantees that SPA generates the required information
about existing abducibles for any abstracted set of clauses, while the termination
result relies on termination results for SP , and will be used to verify without
any additional effort that our technique can be used as a decision procedure for
reasoning about abducibles in SMT problems with several theories of interest.

4 Completeness of the Calculus

This section is devoted to showing that if S is an unsatisfiable set of abstracted
clauses that is A-saturated, then � ∈ S (due to space restrictions, we only
provide a sketch of the proof, see [8] for details). Note that this result does not
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follow from the refutational completeness of the superposition calculus: indeed,
the ordering ≺A is not a simplification ordering (it is not stable by substitution),
and all inferences in which non-A-compliant unifiers are involved are ignored.
However, the proof is based on the refutational completeness of SP , and requires
determining relationships between SP-inferences and SPA-inferences.

Let S be a VA-stable and A-saturated set of clauses, with no variable-eligible
clause. We will show that S is satisfiable by constructing a set of standard clauses
whose satisfiability will entail that of S. The set we construct will be saturated
under SP≺-inferences, and it will not contain the empty clause; we will conclude
that it must be satisfiable, and hence that so must S.

Let T be the set of A-clauses in S. Since S is VA-stable and A-saturated by
hypothesis, T can only contain ground A-clauses, because if a non-ground clause
occurs in T then A-reduction applies. Since SP and SPA coincide on ground
A-clauses, T must also be saturated under SP≺-inferences and cannot contain
�; this set is therefore satisfiable. We consider a fixed interpretation I that is a
model of T .

Definition 15. We define the ground set UI =
{
a - b | a, b ∈ A, aI = bI

}
∪{

a �- b | a, b ∈ A, aI �= bI
}
. We inductively define the notion of an I-reduction:

– For all a ∈ A, a‖I = min≺
{
b ∈ A | bI = aI

}
.

– f(t1, . . . , tn)‖I = f(t1‖I , . . . , tn‖I).

This definition extends to standard literals and clauses.

The I-reduction procedure is used to define a set whose satisfiability entails that
of S, and that turns out to be saturated:

Definition 16. Let SI = UI ∪
{
Δ(C‖I) | C ∈ Sν ∧ UI |= ¬Δ(C)

}
.

Proposition 1. If SI is satisfiable then so is Sν , and therefore so is S.

Lemma 1. SI is saturated for SP≺.

Since SI is saturated for the standard superposition calculus SP≺ and contains
no occurrence of the empty clause, we deduce that it is satisfiable.

Theorem 2. Let S be a set of abstracted clauses that is VA-stable and contains
no variable-eligible clause. If S is A-saturated and does not contain the empty
clause, then S is satisfiable.

This theorem proves the refutational completeness of SPA together with con-
traction rules that eliminate A-redundant clauses, for those sets of abstracted
clauses S whose saturation is guaranteed to meet the requirements of the the-
orem. The first two requirements are not restrictive: the abstraction of a set of
standard clauses described right before Section 3 produces a set of abstracted
and VA-stable clauses, and the saturation of this set is guaranteed to only con-
tain abstracted and VA-stable clauses by Theorem 1. The fact that S contains
no variable-eligible clause cannot be imposed that easily, but such a condition is
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guaranteed if S is variable-inactive, which is the case for many classes of clause
sets of interest [2,1].

Note that this completeness result is not – by itself – sufficient for our purpose,
since our goal is not merely to test the satisfiability of clause sets but rather to
generate flat consequences they logically entail. The next section shows how the
calculus SPA can be employed to reach this goal.

5 A Generation of Explanations

We return to the problem of explaining why a set of clauses is satisfiable, and
show how SPA can be used to generate explanations relating abducibles to one
another. Given a satisfiable set of clauses S′, we denote by IA(S

′) the set of all

A-implicates of S′: IA(S
′)

def
= {C an A-clause | C is ground and S′ |= C}.

It is clear that all the information about abducible constants that is entailed by
S′ is contained in IA(

′S). However this set can be very large and it contains a lot
of non-pertinent information, for example all logical tautologies, or all instances
of the equality axioms. It therefore does not seem reasonable to return this entire
set to a user. Another solution could be to return a subset T ⊆ IA(S

′) such
that T � IA(S

′), but again, such a set might be large and contain unnecessary
information.

The solution we choose is to return a minimal subset T ′ ⊆ IA(S
′) satisfying

the following property: for all C ∈ IA(S
′) that is not a tautology, there exists

a clause C′ ∈ T ′ such that C′ |= C. The clauses in T ′ are the prime implicates
of S′. The notion of prime implicates plays a central rôle in many applications
of computer science and artificial intelligence, and several approaches have been
proposed for computing the prime implicates of a given propositional formula
(see, e.g., [10]). Some extensions to first-order logic have also been considered,
such as, e.g., [12]. In what follows, we define an algorithm that computes prime
implicates for sets of flat equational clauses.

It turns out that SPA cannot be used to determine the set T ′. For instance,
if S′ = {a - b, c �- d}, then the clause a �- c ∨ b �- d must be in IA(S

′). Since
it is subsumed by no clause in IA(S

′) but itself, it must also be in T ′, but no
SPA-inference rule (or SP-inference rule for that matter) can be applied to S′

to generate such a clause. In the sequel, we will show how, starting with a set of
A-clauses that logically entails IA(S

′), it is possible to generate a set T ′ using
the Resolution calculus, denoted by R (we refer the reader to [11] for details on
the Resolution calculus). From now on, S′ denotes a satisfiable set of standard
clauses, and S is a set of abstracted clauses such that Sν = S′. Thus, S and S′

are equivalent. The first step towards this construction is the definition of a set
of A-clauses that logically entails IA(S

′). The (finite) set of all A-clauses in the
saturated set generated from S using SPA will satisfy this requirement.

Definition 17. We denote by T∞ the set of A-clauses in the A-saturated set
generated from S by SPA.

The key result that makes the generation of A-implicates possible is that all the
A-clauses that are entailed by S are actually logical consequences of T∞:
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Explain(S′,A) =
S := Abstract(S′)
S := SPA-saturation(S)
T∞ := {C ∈ S | C is an A-clause}
return R-saturation(T∞ ∪EqA)

Fig. 3. Generation of a set of explanations

Proposition 2. T∞ |= IA(S
′).

Let Eq be the set of axioms stating that - is an equivalence relation3: Eq =
{x - x, x �- y ∨ y - x, x �- y ∨ y �- z ∨ x - z}, and let EqA be the set consist-
ing of all instantiations of the axioms in Eq by the elements in A. The result we
show is that the R-closure of the set T∞∪EqA satisfies the requirements for the
set of A-clauses that is searched for.

Theorem 3. Let T = T∞ ∪EqA, and let C be a non-tautological ground clause
in IA(S). Then there is a derivation from T of a clause C′ such that C′ |= C.

To summarize, given a set of clauses S′ that is satisfiable and a set of abducible
constants A, the simple algorithm in pseudo-code described in Figure 3 returns
a set of clauses constructed over A that can be viewed as explanations why S′

is satisfiable. Note that R-saturation can be performed on the fly: it is clear
that it is not necessary to wait until SPA-saturation(S) is computed to start
generating the clauses in R-saturation(T∞ ∪ EqA). Thus even in case of non-
termination, all the prime implicates can eventually be generated. After the set
R-saturation(T∞ ∪ EqA) is computed, it is possible to remove from this set
all the clauses that can be inferred from other prime implicates. This solution
yields a more compact representation. However, this is possible only in case of
termination, since the deleted clauses may be involved in the generation of other
prime implicates. A termination result for SPA will be presented in the following
section. By putting all the previous results together, we obtain the following
theorem, stating the soundness and completeness of the procedure Explain.

Theorem 4. Let S be a set of clauses. Every clause C ∈ Explain(S′,A) is an
A-implicate of S, and for every A-implicate C of S that is not a tautology, there
exists a clause C′ ∈ Explain(S′,A) such that C′ |= C.

Example 3. We return to the problem mentioned in the Introduction. After flat-
tening, we get the following set of clauses:

1 select(store(x, z, v), z) - v 4 d2 - store(d1, j, c)
2 z - w ∨ select(store(x, z, v), w) - select(x,w) 5 d3 - store(a, j, c)
3 d1 - store(a, i, b) 6 d4 - store(d3, i, b)
7 select(d2, k) �- select(d4, k)

3 There will be no need to consider the congruence axiom, since all the clauses in T∞
only contain constants.
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Assume that A = {i, j, b, c}. Then Clauses 3, 4, 5, 6 are abstracted as follows:

3′ x′ �- i ∨ y′ �- b ∨ d1 - store(a, x′, y′)
4′ x′′ �- j ∨ y′′ �- c ∨ d2 - store(d1, x

′′, y′′)
5′ x′′ �- j ∨ y′′ �- c ∨ d3 - store(a, x′′, y′′)
6′ x′ �- i ∨ y′ �- b ∨ d4 - store(d3, x

′, y′)

SPA generates the following clauses4:

8 x′ �- i ∨ w - x′ ∨ select(d1, w) - select(a, w) (3′,2)
9 x′′ �- j ∨ w - x′′ ∨ select(d2, w) - select(d1, w) (4′,2)
10 x′′ �- j ∨ w - x′′ ∨ select(d3, w) - select(a, w) (5′,2)
11 x′ �- i ∨ w - x′ ∨ select(d4, w) - select(d3, w) (6′,2)
12 x′ �- i ∨ y′ �- b ∨ select(d1, x

′) - y′ (3′,1)
13 x′′ �- j ∨ y′′ �- c ∨ select(d2, x

′′) - y′′ (4′,1)
14 x′′ �- j ∨ y′′ �- c ∨ select(d3, x

′′) - y′′ (5′,1)
16 x′ �- i ∨ y′ �- b ∨ select(d4, x

′) - y′ (6′,1)
17 x′ �- i ∨ k - x′ ∨ select(d2, k) �- select(d3, k) (11, 7)
18 x′ �- i ∨ k - x′ ∨ x′′ �- j ∨ k - x′′ ∨ select(d2, k) �- select(a, k) (10, 17)
19 x′ �- i ∨ k - x′ ∨ x′′ �- j ∨ k - x′′ ∨ select(d1, k) �- select(a, k) (9, 18)
20 x′ �- i ∨ x′′ �- j ∨ k - x′ ∨ k - x′′ (8,19)
21 x′ �- i ∨ x′′ �- j ∨ k - x′ ∨ select(d2, k) �- select(d4, x

′′) (20,7)
22 x′ �- i ∨ x′′ �- j ∨ k - x′ ∨ x′′ - x′ ∨ select(d2, k) �- select(d3, x

′′) (11,21)
23 x′ �- i ∨ x′′ �- j ∨ y′′ �- c ∨ k - x′ ∨ x′′ - x′ ∨ select(d2, k) �- y′′ (14,22)
24 x′ �- i ∨ x′′ �- j ∨ y′′ �- c ∨ k - x′ ∨ x′′ - x′ ∨ select(d2, x

′′) �- y′′ (20,23)
25 x′ �- i ∨ x′′ �- j ∨ k - x′ ∨ x′′ - x′ (13,24)
26 x′ �- i ∨ x′′ �- j ∨ x′′ - x′ ∨ select(d2, k) �- select(d4, x

′) (25,7)
27 x′ �- i ∨ x′′ �- j ∨ y′ �- b ∨ x′′ - x′ ∨ select(d2, k) �- y′ (16,26)
28 x′ �- i ∨ x′′ �- j ∨ y′ �- b ∨ x′′ - x′ ∨ select(d2, x

′) �- y′ (25,27)
29 x′ �- i ∨ x′′ �- j ∨ y′ �- b ∨ x′′ - x′ ∨ select(d1, x

′) �- y′ (9,28)
30 i - j (12,29)
31 x′ �- i ∨ x′′ �- j ∨ x′ �- x′′ ∨ k - x′ (20)
33 x′ �- i ∨ x′′ �- j ∨ x′ �- x′′ ∨ select(d2, k) �- select(d4, x

′) (31,7)
34 x′ �- i ∨ x′′ �- j ∨ x′ �- x′′ ∨ y′ �- b ∨ select(d2, k) �- y′ (16,34)
35 x′ �- i ∨ x′′ �- j ∨ x′ �- x′′ ∨ y′ �- b ∨ select(d2, x

′) �- y′ (31,34)
36 i �- j ∨ b �- c (13,35)

By Resolution, from 30 and 36, we get c �- b, which subsumes 36. We obtain the
A-implicates {i - j, b �- c}, yielding the explanation i �- j ∨ b - c.

6 A Termination Result for SPA

We now prove a result that relates the termination of SP on a set of standard
clauses S to the termination of SPA on an abstracted version of S. This shows
that many existing results about the termination of the superposition calculus
for subclasses of first-order logic carry over to SPA. We relate standard and

4 For readability we simply drop irrelevant disequations, i.e. x �� a ∨ C is replaced by
C if x does not occur in C and x �� a∨x′ �� a∨C is replaced by x �� a∨C{x′ �→ x}.
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abstracted terms by defining a so-called relation of A-relaxation. This relation
will be used afterwards to relate the forms of the clauses generated by SP-
inferences and those generated by SPA-inferences in a more precise manner.

Definition 18. The relation of A-relaxation relates an abstracted term t to a
standard one t′ and is defined as follows: t�A t′ if and only if tγ0 = t′↓A.

Given an abstracted clause C and a standard clause C′, we write C �A C′ if
and only if Δ(Cγ0) = Δ(C′

↓A). This relation is extended to sets of clauses in a
straightforward manner.

Example 4. Assume A = {a, b}, let C = x �- a∨a - b∨f(x, x, d) - g(y)∨g(y) -
d and C′ = a �- b ∨ f(a, b, d) - g(b) ∨ g(a) - d. Then C �A C′.

We define a notion of redundancy that is meant to hold no matter what abducible
constants occur in the clause under consideration.

Definition 19. An A-reduced clause C′ is p-redundant in an A-reduced set of
clauses S′ if for all sets of abstracted clauses S such that (Sν)↓A ≡ S′ and for
every abstracted clause D such that (DνD)↓A ≡ C′, clause D is A-redundant in
S. An A-reduced set of clauses S′ is p-saturated if every clause generated with
premises in S′ either occurs in S′ or is p-redundant in S′.

This notion permits to eliminate clauses that are redundant in the usual sense
and do not contain any abducible constant. Notice, however, that p-redundant
clauses can possibly contain abducible constants. For example if A = {a, b} and
S′ = {f(c) �- f(d)}, then C′ = g(a, c) - h(a)∨f(c) �- f(d) is p-redundant in S′.

Theorem 5. Let S′ be a set of A-reduced clauses, and let T be the p-saturated
set of clauses generated from S′. If T is finite and S is a set of abstracted clauses
that is VA-stable, variable-inactive and such that S �A S′, then the set of non-
redundant clauses generated from S is finite.

Theorem 5 guarantees that SPA (and thus Explain) terminates on several
classes of clause sets, in particular for clause sets related to SMT problems. The
authors of [2] and [1] prove that sets of the form T ∪ U , where T is a theory
and U a set of ground unit clauses, generate finite saturated sets. This result
is extended to clause sets of the form T ∪ U ′, where U ′ is an arbitrary set of
ground clauses, in [6]. An inspection of the finiteness results of [2,1,6] shows
that they hold not only for saturated sets but also for p-saturated sets, since
the redundant clauses that are deleted are actually p-redundant: they do not
contain any constant at all. Thus, SPA terminates for clause sets of the form
T ∪ U ′, where U ′ is the abstraction of a set of ground clauses, and T is the
axiomatization of any of the following theories: records, integer offsets, possibly
empty lists, arrays...

7 Discussion

We have presented a calculus that permits to reason on the relations involving
abducible constants, that are logical consequences of a satisfiable set of clauses.
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These relations can be viewed as explanations of why the set is satisfiable, since
any of their negations, when added to the original clause set, renders the latter
unsatisfiable. We proved a completeness result for the calculus, along with a
sufficient condition guaranteeing its termination on classes of clause sets, among
which SMT problems in several theories of interest. To the best of our knowledge,
this approach is novel and there are many interesting directions to explore. One
first direction is to investigate what set of clauses can be considered as a good
set of explanations, and determine what a good trade-off might be between a
small set of explanations that may hide too many details, and a large set of
explanations that may carry too much unnecessary information. Another line of
work that is currently under investigation is the search for a more efficient way
to compute explanations from the generated A-clauses. Indeed, the saturation
with the Resolution calculus in the presence of the equality axioms is not entirely
satisfactory as far as efficiency is concerned, and it would be interesting to see
how the calculus SPA can be enhanced to directly produce the required set of
explanations. As far as other extensions are concerned, we plan to investigate how
to extend these results to abducible terms and not only abducible constants, by
allowing the occurrence of function symbols in A. This would allow the derivation
of non-ground explanations. Another possibility is to consider mixed literals,
containing both abducible and non-abducible symbols. It would then be possible
to generate explanations of the form a - 0 without having to declare 0 as an
abducible constant. We also plan on devising a calculus capable of efficiently
generating explanations with abducibles interpreted in a particular theory, such
as, e.g., arithmetic.
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Abstract. We propose a word level, bounded model checking (BMC) algorithm
based on translation into the effectively propositional fragment (EPR) of
first-order logic. This approach to BMC allows for succinct representation of
unrolled transition systems and facilitates reasoning at a higher level of abstrac-
tion. We show that the proposed approach can be scaled to industrial hardware
model checking problems involving memories and bit-vectors. Another contribu-
tion of this work is in generating challenging benchmarks for first-order theorem
provers based on the proposed encoding of real-life hardware verification prob-
lems into EPR. We report experimental results for these problems for several
provers known to be strong in EPR problem solving. A number of these bench-
marks have already been released to the TPTP library.

1 Introduction

SAT-based Bounded Model Checking (BMC) [4] is currently the most widespread for-
mal verification method in the hardware industry used for bug finding. Despite the rapid
development of SMT [21] and first-order Theorem Proving (TP) [26] techniques for
model-checking at word level, their positive impact has been mainly seen on software
verification. So far, hardware verification has benefited far less from word-level verifica-
tion, and applying SMT and TP techniques to hardware verification remains a difficult
challenge to the verification community. This is mainly due to the fact that most of the
hardware descriptions are written at very low-level, e.g., without explicit usage of arith-
metic operations. Nevertheless, there are natural word-level components in hardware
designs, in particular memories and bit-vectors, which are challenging for the bit-level
verification due to the size of their bit-level representations. Efficient reasoning, at word
level, with bit-vectors and arrays is an active research area [28,8,1,14,24,6,7].

This paper focuses on an encoding of the BMC problem with memories and bit-
vectors into first-order logic (FOL) and in particular into the Effectively PRopositional
(EPR) fragment. The EPR fragment, also called the Bernays-Schönfinkel-Ramsey frag-
ment, consists of first-order formulas with no occurrences of function symbols other
than constants and which when written in prenex normal form have the quantifier pre-
fix ∃∗∀∗. Skolemization applied to EPR formulas can introduce only constant function
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symbols, this can be used to show decidability of the EPR fragment. There are a number
of efficient solvers [3,10,19,25] for this fragment as demonstrated at the annual CASC
TP competition [27]. Several important verification problems have been encoded into
EPR [23,17,13,2], benefiting from succinct representations possible in this fragment.
Solvers are becoming increasingly scalable to industrial size problems and therefore it
is promising to develop efficient encodings of Model Checking (MC) [9] into EPR.

The first encoding of BMC into EPR was proposed in [23], covering entire linear
temporal logic. The transition relation and the initial and final states are specified there
via Boolean constraints, and when encoding the unrolled transition relation, the state
variables are treated as predicates over states (or over time). This enables a succinct
representation of the unrolled system. The main contribution of that paper is theoretical,
and no experimental results comparing the method with SAT-based BMC were reported.

Another, completely orthogonal, way to encode the MC problem into EPR was stud-
ied in [17,13]. These works explore encodings of hardware MC problems at word level
into EPR. In particular in the so-called relational encoding approach, bit-vectors are
modeled as unary predicates over bits (or bit-indexes), addresses are modeled as terms,
and memories are modeled as binary predicates over addresses and bits. Appropriate
axiomatization of bits and bit-ranges allows for a sound and complete encoding of
hardware MC problems with bit-vector and memory operations into EPR. These papers
report initial results of experimental evaluation of EPR-based first-order verification
compared with SMT-based verification on equivalence checking problems at Intel.

In this paper we present an encoding scheme which allows us to retain the strengths
of both previous approaches. An ad-hoc combination of the previous two approaches
would yield an encoding which in most cases will generate problems outside of the
EPR fragment. One of the main issues here is that memory addresses on the one hand
occur as arguments in memory predicates and therefore should be treated as terms, and
on the other hand addresses depend on the state of the transition system and therefore
are functions of state. Presence of non-constant functions in the encoding brings the
resulting specification of the transition system outside EPR. Even very small non-EPR
problems originating from toy model-checking examples are very hard for the strongest
theorem provers. Among the main contributions of this paper are techniques allowing
one to keep the translated verification problems within the EPR fragment. In particular,
i) we introduce address unrolling to eliminate address functions and ii) we use inlin-
ing to eliminate definitions which after Skolemization result in non-EPR formulas. We
evaluate our EPR-based encoding on model checking problems obtained from indus-
trial hardware designs used at Intel. We show that in many cases EPR-based BMC can
reach higher unrolling bounds than traditional SAT-based BMC.

The rest of the paper is structured as follows. In the next section we present a generic
translation scheme that, given a specification of transition relation, initial state con-
straints and final state constraints in first-order logic, produces a description of the un-
rolled system up to a bound k that faithfully models transition paths of length k from
the initial to the final states. While FOL is closed under the translation, EPR is not. The
encoding that we describe below in Section 3 can be seen as a result of this translation
applied to the specification of hardware at word level in EPR as described in [13].
This encoding brings the specification of unrolled system outside the EPR fragment.
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Therefore, in Section 4 we describe basic transformations allowing the resulting un-
rolled system to be formalized within EPR. A number of further optimizations that help
generating CNFs that are much simpler to solve are described in Section 5. We remark
on incremental solving in Section 6. Experimental results are reported in Section 7.
Conclusions appear in Section 8.

2 Translation

Let Σ be a signature consisting of constants, function and predicate symbols. We con-
sider constants as function symbols of arity 0. We assume Σ is partitioned into Σc, Σs

and Σs′ where Σc consists of symbols whose interpretation does not depend on a state,
Σs consists of current-state symbols andΣs′ consists of next-state symbols. We assume
that for every current-state symbol p in Σs there is a corresponding next-state symbol
p′ in Σs′ with the same arity as p and vice versa.

A transition system can be symbolically represented by three closed FOL formu-
las in , trans , and fin , respectively expressing facts about initial states, encoding the
transition relation and expressing facts about final states. We assume that in and fin
are formulas in Σc ∪ Σs and trans is a formula in Σ. In order to adapt such a rep-
resentation for bounded model checking in the EPR fragment we define the following
transformation on formulas. First, we replace each current-state and next-state function
or predicate symbol p of arity n in Σs and Σs′ , respectively, with a transient symbol of
arity n+1, which has an extra argument for representing transitions over states. Let Σt

be the signature consisting of all transient symbols corresponding to symbols in Σs and
by Σ the signature Σc ∪Σt.

Let S,S’ be two fresh variables. Let us define a translation T of Σ terms to Σ terms
and Σ formulas to Σ formulas by induction as follows. Let r1, . . . , rn denote terms,
let ti = T (ri) for all i = 1, . . . , n, and let r, t denote the sequences r1, . . . , rn and
t1, . . . , tn, respectively. Then:

– For any n-ary function or predicate symbol p define:

T (p(r)) def
=

⎧⎨
⎩
p(t), if p ∈ Σc;
pt(S, t), if p ∈ Σs;
pt(S’, t), if p ∈ Σs′ .

– T (F1 ∧ F2)
def
= T (F1) ∧ T (F2), and similarly for other connectives in place of ∧.

– T (∀xF )
def
= ∀x T (F ) and similarly for ∃ in place of ∀. Recall, we assume that the

variables S,S’ are fresh, this implies that S,S’ are distinct from x.

For every closed formula F , the only free variables of T (F ) are S and S’. Moreover,
if F uses no next-state symbols, as it is the case for the formulas in and fin , then
T (F ) does not contain S’. Let us denote the formulas T (in), T (trans) and T (fin)
respectively as In(S), Trans(S,S’) and Fin(S), parametrized by their free variables.

Let n be a non-negative integer. We define the n-step unrolling of the transition
system as follows. Take new constants s0, . . . , sn and a new binary predicate next . The
n-step unrolling of the transition system is defined as the set of formulas
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In(s0);Fin(sn); ∀S,S’(next(S,S’)→ Trans(S,S’));
next(s0, s1); next(s1, s2); . . .next(sn−1, sn).

Theorem 1. There exists an n-step computation of the transition system leading from
a state satisfying in to a state satisfying fin if and only if the n-step unrolling of the
transition system is satisfiable.

Note that the n-step unrolling of the system contains only one copy of the transition
relation Trans . This explains the name we have chosen for our encoding of BMC into
FOL: BMC1. It stands for BMC with one copy of the transition relation. Unlike in SAT-
based BMC [4], there is no need to create a new copy of the transition relation for each
unrolling bound.

Unfortunately, this translation is not EPR preserving if the original system con-
tains constants, which become transient functions of states after the translation. Such
transient functions are essential in memory specifications representing, e.g., addresses
which change during transitions. In later sections we show how to restore the EPR rep-
resentation.

3 Encoding Hardware Specifications into FOL

Let us show how to encode a hardware verification problem into EPR, using a simple
yet realistic word-level hardware design shown in Fig. 1. This example contains typical
word-level components: a memory, bit-vectors and addresses.

The memory mem has 32 rows and 64 columns, each cell containing one bit. When
both the write enable signal wren and the clock signal clock are true, bits 0 to 63
(written as [63 : 0] in hardware notation) of the bit-vector wrdata[63 : 0] are written
into mem at the address given in the bit-vector wraddr[5 : 0]. In order to prevent read
and write from happening simultaneously, only if clock is false and the read enable
signal rden is true, the value of the memory at address rdaddr[5 : 0] is read into the
bit-vector rddata[63 : 0].

The circuit also contains a cache line in the 64 bit bit-vectorcacheline[63 : 0], the
component sel that compares two bit-vectors bit-wise and a multiplexing device mux
which selects one of its inputs depending on the output value of sel. The final output of
the circuit is either the bit-wise negated bit-vector rddata[63 : 0] if wraddr[63 : 0]
and rdaddr[63 : 0] are equal, or the bit-vector cacheline[63 : 0] otherwise.

3.1 Encoding of Bit-Vectors and Memories

With any bit-vector we associate a binary predicate. For example, atom wrdata(S,B)
denotes the Boolean value of bit B in the write data vector wrdata in state S. Similarly,
with a memory mem we associate a ternary predicate mem, where an atom mem(S,A,B)
denotes the Boolean value of mem in row A and column B, in state S.

In our encoding, there are bit-vectors that in addition to this predicate representation
also require a functional representation, we call them functional bit-vectors. There are
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Fig. 1. Running example: a word-level hardware design

two main sources of such bit-vectors. The first consists of bit-vectors representing
addresses which are used as arguments in memory predicates. The second consists of
bit-vectors that are used in comparisons such as in the sel component in our run-
ning example in Fig. 1. With a functional bit-vector, in addition to associating a bi-
nary predicate over states and bit-indexes, we associate a function over states. We
represent the value of an address addr in state S by the term addrFunc(S). Thus
the value of mem at address addr and bit (column) B is represented by the atom
mem(S,addrFunc(S),B). We use similar notation for functional bit-vectors which
are not addresses.

We often need to refer to particular bits of a bit-vector. We use the constant bitIndi

to denote the i-th bit. Similarly, we use the constant sj to denote the j-th state. Thus,
the atom mem(s0,addrFunc(s0),bitInd5) represents the value of bit 5 at row
addrFunc(s0) in memory mem in state s0.

The reader may have noticed that bit-vector width and memory dimension informa-
tion is not directly encoded. For example, a predicate representing a bit-vector of width
64 does not carry the width information. This loss of information is recovered, if neces-
sary, when specifying bit-vector operations, which will be explained below. Similarly,
the functions associated with addresses and other functional bit-vectors do not carry the
width information of the corresponding bit-vector.

For addresses, the only information we need is whether they are equal. For two ad-
dresses wraddr and rdaddr, we can axiomatize this using:

wraddrFunc(S) = rdaddrFunc(S) ↔
(wraddr(S,bitInd5) ↔ rdaddr(S,bitInd5) ∧ . . .∧
wraddr(S,bitInd0) ↔ rdaddr(S,bitInd0)).

(1)

We assume that free variables are implicitly universally quantified.
By using the predicate lessk, which defines bit-indexes in the range of [0, k − 1],

the above formulas can be written more concisely, without referring explicitly to all of
the bits 5 to 0, as follows:

wraddrFunc(S) = rdaddrFunc(S) ↔
∀B(less6(B) → (wraddr(S,B) ↔ rdaddr(S,B))).

(2)

We axiomatize the lessk predicates explicitly as in [13]:

lessk(x) ↔ (x = bitInd0 ∨ . . . ∨ x = bitIndk−1). (3)
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In addition we need axioms stating that all bit-indexes are different:

bitIndi �= bitIndj for 1 ≤ i < j ≤ n,where n is the size of the bit-index domain. (4)

In practical hardware examples the domain size of bit-indexes is in order of thousands
and therefore adding such axioms can be a bottleneck. Fortunately, the number of dif-
ferent lessk predicates is usually not very big compared to the number of bit-indexes.
Since equality over bit-indexes occurs only in formulas such as (3) we can replace ax-
ioms (4) by axioms:

lessk(bitIndj) // if j < k
¬lessk(bitIndj) // otherwise,

(5)

where lessk occurs in the problem instance.
In our encoding we also frequently use predicates of the form range[m,k] which

defines bit-indexes in the range [m, k]. The range predicates can be defined either using
less predicates (lessk(B) ∧ ¬lessm(B))↔ range[m,k−1](B) or explicitly:

range[m,k](x) ↔ (x = bitIndm ∨ . . . ∨ x = bitIndk). (6)

Explicit representation of range predicates has several advantages: i) we can replace
lessk predicates using range[0,k−1] predicates, ii) in our encoding, after such re-
placement all non-ground occurrences of the range predicates will be negative, iii) based
on ii), instead of having both positive and negative axioms for range[0,k−1] as we have
for lessk in (5), it is sufficient to introduce positive axioms: range[m,k](bitIndj)
form ≤ j ≤ k. Wlog we can assume that range predicates do not overlap: we can factor
out intersections by introducing corresponding range predicates. This can enable further
higher level reasoning at the interval level. Another way of representing ranges is using
integer arithmetic. Experiments with these representations are presented in Section 7.1.

In general, we may need to refer to constant addresses as well, say row 0 specified as
bit-vector b000000 (using 6 bits). This constant address is represented in our encoding
using a term, denoted by t000000. Note that since a constant address does not depend
on the state of the hardware, we do not need to treat it as a function on states – it is a
constant. We can define when wraddrFunc(S) and t000000 refer to the same row by

wraddrFunc(S) = t000000 ↔
(wraddr(S,bitInd5) ↔ false ∧ . . . ∧ wraddr(S,bitInd0) ↔ false).

(7)

Thus, by mem(s0, t000000,bitInd5), we can refer to the value of bit 5 in row 0 of
mem, in state s0. In Section 4.1 we consider different approaches for defining equality
over functional address.

3.2 Encoding of Bit-Vector Operations

In our running example bit-vectors wraddr and rdaddr are compared by sel, and
therefore we treat them as functional bit-vectors. We define sel as follows:

sel(S) ↔ wraddrFunc(S) = rdaddrFunc(S), (8)

which in predicate representation can be rewritten as:

sel(S) ↔ ∀B(less6(B) → (wraddr(S,B) ↔ rdaddr(S,B))). (9)

Similarly, the logic of outp can then be defined as follows:
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sel(S) → ∀B(less64(B) → (outp(S,B) ↔ ¬rddata(S,B)))
¬sel(S) → ∀B(less64(B) → (outp(S,B) ↔ cacheline(S,B))).

(10)

3.3 Encoding of the Transition Relation

To express the next state functions, we use S to denote the current state and S’ to
denote the next state. The predicate next(S,S’) denotes the transition relation, and
its axiomatization is described next on our running example (Fig. 1). Recall that in
our design, write is enabled when wren ∧ clock holds, and read is enabled when
rden ∧ ¬clock holds. The transition relation for the write and read operations are
therefore written as follows:

∀S, S’(next(S,S’) → // write is enabled
∀A((clock(S’) ∧ wren(S’) ∧ A = wraddrFunc(S’)) →

∀B(range[0,63](B) → (mem(S’,A,B) ↔ wrdata(S’,B)))));

∀S, S’(next(S,S’) → // write is disabled
∀A(¬(clock(S’) ∧ wren(S’) ∧ A = wraddrFunc(S’)) →

∀B(range[0,63](B) → (mem(S’,A,B) ↔ mem(S,A,B)))));

∀S, S’(next(S,S’) → // read is enabled
∀A((¬clock(S’) ∧ rden(S’) ∧ A = rdaddrFunc(S’)) →

∀B(range[0,63](B) → (rddata(S’,B) ↔ mem(S’, A,B)))));

∀S, S’(next(S,S’) → // read is disabled
(¬(¬clock(S’) ∧ rden(S’)) →

∀B(range[0,63](B) → (rddata(S’,B) ↔ rddata(S,B))))).

(11)

Note that in the formulas above, we have assumed that the cells in the memory mem and
the read data rddata are modeled as latches rather than flip-flops. We assume that the
next-state value of a latch is updated by the next-state value of its input if the next-state
value of its enable logic is true. For flip-flops, the next-state value is updated by the
current-state value of the input data, when the current-state value of the enable logic is
true.

3.4 Encoding of Initial and Final State Constraints

If in the initial state s0 the memory mem is reset (with 0 in each cell), we write this
condition as follows:

∀A,B(less64(B) → ¬mem(s0,A,B)). (12)

If memory cells are initialized with different values, we write the initial state constraints
for it bit-wise. For example, the next formula states that the value of mem in row 0 and
column 5 is 0.

¬mem(s0, t000000, bitInd5). (13)

Initial state values for bit-vectors are specified similarly.
Suppose an assertion prop that we want to verify states that the values of outp and

cacheline coincide. We write prop as:

prop(S) ↔ ∀B(less64(B) → (outp(S,B) ↔ cacheline(S,B))). (14)

and in order to show correctness of the design we try to refute the negated conjecture

∃S ¬prop(S). (15)
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3.5 Encoding the BMC Problem

Finally, having the encoding for transition relation, initial and final state constraints, we
encode the BMC problem as it is presented in Section 2. The issue we are left with is
restoring the EPR encoding which we consider in the next section.

To summarize our word-level encoding, note that, unlike the word-level encoding
scheme to EPR in [13], and similar to the bit-level encoding in [23], the unrolling bound
is explicitly represented. There is no need for unrolling in the sense of BMC [4] in order
to refer to a bit-vector or a memory at a desired bound. For this reason, our encoding
has a higher potential for abstraction (i.e., removing irrelevant parts of the assertion
formula before passing it to a solver engine), and we can use both the initial and final
state constraints to simplify the assertion formula with constant propagation and other
advanced pre- or in-processing techniques. Sequential ATPG [16] also avoids unrolling
via backward time-frame expansion, however, it cannot efficiently use the initial state
constraints to simplify the assertion formula. Thus we can combine the strengths of
forward and backward reachability analysis in one algorithm. Another advantage of our
approach is that, thanks to explicit treatment of time, we can infer invariant properties
of the system by pure first-order reasoning without using any form of induction, in the
spirit of [20]. A new approach that avoids explicit unrolling for incremental SAT-based
MC is proposed in [5]; it is unclear at present how this approach relates to ours.

4 Back to EPR

There are two important problems to be solved in order to obtain an EPR encoding
of BMC1: one is with functional bit-vectors which in BMC1 are functions of states,
and the other is with naming of subformulas that result in non-EPR after clausification.
The two subsections describe a way out – back to EPR: We solve the first problem
during the encoding, by proposing a smart way to deal with addresses; functional bit-
vectors occurring in bit-vector comparison can be treated similarly. We solve the second
problem as part of the pre-processing of the entire problem instance and by improving
the clausification (this requires the global view of the entire problem instance).

4.1 Unrolling Addresses

Since non-constant addresses become unary functions in our encoding, the BMC1 prob-
lem instances for hardware designs with bit-vectors and memories are outside of the
EPR fragment. In order to recover an EPR encoding we apply the following trans-
formation. Consider a non-constant address addr, which is transformed into a unary
function addrFunc(S), denoting the value of addr in state S. We introduce new
constants addr0, . . . ,addrn where n is the unrolling bound, and a binary predicate
Assocaddr(x, y). We add axioms

Assocaddr(s0,addr0) ∧ . . . ∧ Assocaddr(sn,addrn),

which associate each constant addri with the state si for 0 ≤ i ≤ n. We also transform
each formula φ[addr(x)] into a formula

∀y(Assocaddr(x, y) → φ[y]).
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Consider bit-vectors of a fixed length, say k > 0. We introduce a binary predicate
Val(x, y) which defines values of functional bit-vectors, e.g., the value of Val(b, i) rep-
resents the value of the bit-vector b at the index i. We use a unary predicate Ak(x) to
represent the set of all functional bit-vectors of length k used in the hardware model.
We define equality between two functional bit-vectors of length k as follows.

∀x, y [Ak(x) ∧Ak(y) →
(x = y ↔ ∀B(range[0,k−1](B) → (Val(x,B) ↔ Val(y,B))))].

(16)

We thus replace address equality axioms like (1) and (7) discussed earlier by (16). After
Skolemizing (16) and some simplifications we obtain:

∀x, y [Ak(x) ∧Ak(y) →
(x = y ∨ (range[0,k−1](df k(x, y)) ∧ (Val(x, df k(x, y)) ↔ ¬Val(y,df k(x, y)))))].

(17)

Informally, this formula states that if two bit-vectors are different then the Skolem func-
tion df k(x, y) gives an index, within the range [0, k−1], witnessing the difference. Un-
fortunately, (17) is outside of the EPR class. In order to get back to an EPR encoding,
we represent the function df k using a new predicate Df k as follows.

∀x, y [Df k(x, y, 0) ∨ . . . ∨Df k(x, y, k − 1)]. (18)

∀x, y,B [Ak(x) ∧Ak(y) ∧Df k(x, y,B) →
(x = y ∨ (Val(x,B) ↔ ¬Val(y,B))))]. (19)

In addition, for each constant c of length k representing an address, such as addresses
addri discussed above, or Skolem constants representing addresses, we need an axiom
Ak(c). In the many-sorted setting the formulas can be simplified assuming we have a
sort for all bit-vectors of length k.

Another approach to eliminating the function df k is to introduce for each pair of
address constants ai, aj , an index constant di,j which witnesses the difference of ai
and aj if they are different in the interpretation. We axiomatize this as follows. Let
a0, . . . , am be the list of all address constants of length k occurring in our problem,
including the Skolem constants. Then define the following set of axioms, where 0 ≤
i < j ≤ m:

ai = aj ∨ (range[0,k−1](dij) ∧ (Val(ai, dij) ↔ ¬Val(aj , dij))). (20)

This alternative encoding can be used when we have a relatively small number of bit-
vector constants but of a large bit-vector size.

As an example, the next-state axiom for the write operation (11) will be:

∀S, S’(next(S,S’) → // write is enabled
(∀y(Assocwraddr(S’, y) →
(∀A((clock(S’) ∧ wren(S’) ∧ A = y) →
(∀B(range[0,63](B) → (mem(S’,A,B) ↔ wrdata(S’,B))))))))).

(21)

Constant addresses which are non-transient, are represented as constants rather than
functions of states, thus associated address constants for them are not introduced.
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4.2 Pre-processing and Clausification

Consider the defining axiom (14) for the propertyprop. If we apply the standard clausi-
fication algorithm to (14) then we obtain a non-EPR formula due to the negative occur-
rence of the universal quantifier in the ‘←’ direction of the outer equivalence. Our first
observation comes from a well-known idea used in the optimized CNF transformation:
if the defined predicate occurs only positively in the rest of the formula then we can re-
place the outer equivalence in the definition with ‘→’ implication. The new simplified
axiom can now be safely transformed into an EPR formula. Unfortunately, this is not
always the case in the verification examples we have tried. On the other hand such nega-
tive occurrences are usually limited. For example, assume that prop occurs negatively
only in a negated conjecture (15). Our next idea is to inline the definition of prop into
such negative occurrences of prop, i.e., replace prop by its definition. After inlining
(14) into (15) we obtain:

∃S(∃B(less64(B) ∧ ¬(outp(S,B) ↔ cacheline(S,B)))). (22)

Let us note that after inlining we have i) obtained an equivalent formula and ii) elimi-
nated one negative occurrence of the defined predicate. In this way we can remove all
negative occurrences of the defined predicate. We can see that Skolemization applied
to the new formula (22) produces an EPR formula. Likewise, since we removed all
negative occurrences of prop we can now simplify the definition of prop as above,
which after Skolemization also becomes an EPR formula. It is still possible (albeit in-
frequent in practice) that inlining fails to restore EPR clausification or results in a large
increase in the formula size. In these cases we can apply techniques as in Section 4.1
to the Skolem functions, restoring EPR. For further EPR-restoring pre-processing and
clausification techniques we refer to [15]. Inlining and EPR-restoring pre-processing is
implemented in Vampire’s clausifier. 1

5 Other Optimizations in the Encoding

Writing Next-state Formulas for All States. Hardware is driven into its initial state (or
states) after applying a reset sequence. Therefore the initial state is such that, for each
latch, if its enable is true, its input and output have the same value. We use this assump-
tion to simplify the next-state functions for latches in this case (i.e., when the latch is
updated). For example, instead of the next-state axioms (21) for the write operation
(which is a latch vector) we write

∀S(∀y(Assocwraddr(S, y) → // write is enabled
(∀A((clock(S) ∧ wren(S) ∧ A = y) →
(∀B(range[0,63](B) → (mem(S,A,B) ↔ wrdata(S,B)))))))).

The latter formula is much easier for theorem provers: it can be applied to any state
constant, no need to (constructively) derive that it is a next-state for some other state.

When a latch retains its previous value, we still need to refer to both current and next
states in the next-state function. A similar optimization is made for memories whose
cells are implemented as latches. However, this optimization does not apply to flip-flops
and memories whose cells are implemented as flip-flops.

1 Available at http://www.vprover.org/

http://www.vprover.org/
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Abstracting Bit-Vector Widths. Consider a subformula quantified over a bit-index vari-
able within a range, say

∀B(range[0,63](B) → (bv1(S,B) ↔ ¬bv2(S,B))). (23)

Let us call such a subformula a range subformula, of range [63 : 0]. Such subformulas
might also contain free occurrences of address variables.

If a range subformula occurs positively and the full ranges of all involved bit-vectors
coincide with the range of the formula, then we transform the subformula into a simpler
one, by omitting the relevant range of B. For example, positive occurrences of subfor-
mula (23) will be transformed into:

∀B(bv1(S,B) ↔ ¬bv2(S,B)). (24)

The latter formula is easier for theorem provers, since in order to use it in the inference
one does not need to know the range of B.

Adding Sorts. Sorts (types) are now supported in the TPTP standard for FOL prob-
lems. We work with three sorts: addresses, states, and bit-indexes. This simplifies the
encoding, makes solving faster, and improves the representation of models (counter-
examples) since constants of different sorts are not mixed any more in the models.

6 Incremental Bounds

Given the BMC1 encoding of a transition system it is desirable to search for falsifying
paths incrementally, bound after bound, avoiding repeated computations. We have im-
plemented such an incremental algorithm in our instantiation-based automated reason-
ing system iProver [19]. In a nutshell, iProver generates instances of the first-order input
clauses in a smart way in an attempt to approximate a ground model. The ground rea-
soning is delegated to a solver for propositional satisfiability, currently MiniSAT [11].

iProver supports incrementality based on propositional unit assumptions as follows.
We can add and retract propositional unit assumptions without repeating calculations
which were not based on these assumptions. For each bound k we introduce a proposi-
tional variable pk and use unit assumptions to activate and deactivate bound dependent
axioms. For example, consider a bound k and bound dependent axioms for reachable
states:

RState(s0) ∧ · · · ∧ RState(sk). (25)

pk → ∀x(RState(x) → x = s0 ∨ . . . ∨ x = sk). (26)

Then we can add the unit assumption pk which activates the state axiom (26) above.
Optionally, we can also add axioms ¬p0, . . . ,¬pk−1 which would be used by the SAT
solver to ignore all state axioms for the previous bounds 1, . . . , k − 1. The only other
bound dependent axioms are those defining the next predicate (see Section 2) and un-
rolling of addresses (see Section 4.1). Let us note that specifications of the transition
relation and initial/final state constraints are independent from the unrolling bounds and
remain unchanged.
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7 Benchmarks and Experimental Results

To evaluate our encoding we have generated two sets of benchmarks in TPTP format,
where the first is already available as part of the TPTP library and the second is about
to be released. We use iProver and Z3 in our experiments since these solvers performed
best on the first set of examples (the results of other solvers are available as part of the
TPTP library). Z3 has a dedicated EPR algorithm [25] and is also among the best on
quantified SMT problems with arithmetic, while iProver has won the EPR division in
several recent CASC competitions [27].

The first set of benchmarks was generated from a simple finite-state machine model
called “Robot” and has been released as part of the TPTP library v5.3.0. The unrolling
bounds were chosen so that the problem instances fit the required level of complexity
for the competition, that is, each problem can be solved by at least one prover within the
timeout. In the TPTP library the problems have been named HWV039 to HWV047 and
are available in up to four variants in four forms each: as first-order formulas (FOF),
in clausal normal form (CNF), as typed first-order formulas (TFF) and as typed first-
order formulas with interpreted arithmetic symbols (TFA). In the last form, we treated
bit-indexes as integers and modeled less and range predicates with the < predicate.

The second set of benchmarks originate from real-life hardware verification prob-
lems on Intel designs containing memories. We are in the process of releasing scrambled
versions of these benchmarks into the TPTP library. For the evaluation in this paper we
focus on the real-life benchmark problems which are challenging due to a large number
of word-level components.

7.1 Comparison of Encodings of Bit-Ranges

We evaluated three different encodings of bit-ranges on the second set of industrial
BMC problems. In the first two encodings ranges are modeled with the range[m,k]

and lessk predicates as described in Section 3.1. In the third encoding ranges are
straightforwardly modeled using integer arithmetic.

We ran Z3 and iProver on problems unrolled to several bounds, on Intel Xeon Quad
Core machines with 12 GB of memory with 20000s timeout. iProver accepts only CNF
format with sorts and therefore for iProver the problems were clausified by Vampire;
for Z3 we used problems in the original non-clausified sorted TFF and TFA formats.

Let us discuss experimental results shown in Table 1. The first and fourth problems
can be solved by iProver and not by Z3; on the third and fifth problems, while iProver
succeeded on some bounds, Z3 can reach higher bounds. We can observe that on higher
unrolling bounds i) the performance of Z3 on the range[m,k] encoding is considerably
better than on the lessk encoding, ii) the range encoding is on a par with the arith-
metic encoding. The arithmetic encoding is better on smaller bounds. iProver performs
similarly on range[m,k] and lessk encodings, with range[m,k] encoding reaching
higher bounds on one problem. To conclude, the results suggest that the range encoding
is a reasonable alternative to the arithmetic encoding and for future work we investigate
ways of combining iProver and SMT solvers for better reasoning with ranges.
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Table 1. Different encodings of bit-indexes and bit-ranges

Problem (bound)
Z3 iProver

lessk range[m,k] arithmetic lessk range[m,k]

BPB (bound 2) — — — 42s 41s
BPB (bound 4) — — — 634s 669s
DCC (bound 2) 78s 56s 29s 55s 79s
DCC (bound 4) 1204s 636s 157s 266s 238s
DCC (bound 6) 8540s 3396s 3512s — 1407s
PMS (bound 2) 44s 1266s 9s 161s 163s
PMS (bound 4) 638s 149s 188s 1295s 1298s
PMS (bound 6) 2898s 5730s 4564s — —
PMS (bound 8) 12303s 3062s — — —
ROB (bound 2) — — — 250s 282s
SCD (bound 2) 167s 119s 178s 15s 15s
SCD (bound 4) 434s 316s 346s 276s 277s
SCD (bound 6) 886s 548s 699s 635s 635s
SCD (bound 8) 2037s 1017s 1497s — —

7.2 Comparison with SAT-Based BMC

In Table 2, we compare incremental SAT-based BMC [12] (column incBMC) with EPR-
based incremental BMC1 (column incBMC1), on the second set of Intel benchmarks.
The column #memories reports the number of memories in the cone of the property
and their collective size in terms of number of memory cells (bits). Similarly, columns
#BVs give the number of transient and constant bit-vectors, respectively (including bit-
vectors of size 1), and their collective size in terms of bits. These two columns show how
“word-level” the cone of the property really is, and the cone size. Columns incBMC and
incBMC1 report the maximal bound reached by the respective algorithms within 10000
seconds time limit and unrolling bound limit 50.

We used Intel’s SAT-based model checker to perform experiments with incremental
BMC [18]. It has a state-of-the-art implementation of incremental BMC, and its SAT
solver is especially tuned on problem instances originating from formal verification
problems on Intel designs. In [18], it is shown that Intel SAT-based BMC tool is on a
par with a leading academic model checking tool ABC [22].

Table 2. Comparing SAT-based incremental BMC with EPR-based BMC1

Problem # Memories # Transient BVs # Const. BVs incBMC incBMC1
PMS1 8 (46080 bits) 1486 (6109 bits) 3 (47 bits) 2 10
SCD1 2 (16384 bits) 556 (1923 bits) 5 (45 bits) 4 12
SCD2 2 (16384 bits) 80 (756 bits) 3 (10 bits) 4 14
BPB2 4 (10240 bits) 550 (4955 bits) 6 (42 bits) 50 11
DCI1 32 (9216 bits) 3625 (6496 bits) 3 (9 bits) 6 4
DCC2 4 (8960 bits) 426 (1844 bits) 2 (2 bits) 8 11
DCC1 4 (8960 bits) 1827 (5294 bits) 5 (106 bits) 7 8
ROB2 2 (4704 bits) 255 (3479 bits) 26 (129 bits) 50 8
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Experimental results show that although on smaller memories SAT-based BMC is
faster, when memory sizes increase, the advantage of EPR-based BMC1 becomes evi-
dent (rows in Table 2 are ordered in decreasing memory size). These results show that
EPR-based model checking is a promising alternative to SAT-based model checking at
word-level, scalable to industrial hardware designs. We refer to [13] for a comparison
with SMT solvers supporting bit-vectors and arrays on unrolled BMC instances.

8 Conclusions and Future Work

In this paper we presented an encoding of bounded model checking at word level into
the EPR fragment of first-order logic. The EPR-based encoding allows us to i) represent
memories and bit-vectors at word-level and ii) succinctly specify the transition relation
and state constraints, independently from the unrolling bound. Due to the presence of
memories and bit-vectors, a naive encoding of the BMC problem into first-order logic
would result in problems outside of the EPR fragment. We show how to restore the EPR
encoding by introducing two methods: i) address unrolling and ii) definition inlining.

Another contribution of this work is in generating challenging benchmarks for first-
order theorem provers based on real-life hardware designs used at Intel. We hope this
will encourage further research into EPR-based model checking and EPR decision pro-
cedures. We have evaluated our encoding on these benchmarks using general purpose
theorem provers iProver and Z3 which are not optimized for such problems. Our ex-
perimental results show that already at this stage our approach is scalable to industrial
verification problems and on large memories can reach higher unrolling bounds com-
pared to optimized SAT-based BMC.

There are many directions for future work, and we mention only few of them here.
First, we intend to develop an abstraction-refinement approach to EPR-based model
checking by providing the EPR solver with some bit-vector related information (e,g.,
the bit-vector width) via attributes. Second, we intend to investigate further incremen-
tal solving in the EPR-based BMC1 and how derived information on lower bounds
can be exploited for reasoning on higher bounds. Finally, we believe that EPR-based
BMC1 can be extended to efficiently work with arithmetic operations at word level, by
building-in efficient arithmetic reasoning in the EPR decision procedures.
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Abstract. We introduce a technique to prove non-termination of term
rewrite systems automatically. Our technique improves over previous ap-
proaches substantially, as it can also detect non-looping non-termination.

1 Introduction

Approaches to prove termination of term rewrite systems (TRSs) have been
studied for decades and there exist several techniques to prove termination of
programs via a translation to TRSs. In contrast, techniques to disprove termina-
tion of TRSs have received much less attention, although this is highly relevant
to detect bugs during program development. To prove non-termination of a TRS,
one has to provide a finite description of an infinite rewrite sequence.

The most common way for this is to find a loop, i.e., a finite rewrite sequence
s →+

R C[sμ] for some term s, context C, and substitution μ. Indeed, any loop
gives rise to an infinite rewrite sequence s →n

R C[sμ] →n
R C[Cμ[sμ2]] →n

R . . .
for some n > 0. While this is a very intuitive way to prove non-termination, it
cannot capture non-periodic infinite rewrite sequences.

while (gt(x,y)){
x = dbl(x);

y = y + 1; }

For instance, consider the imperative program fragment
on the side which does not terminate if x > y and x > 0.
However, if gt (greater than) and dbl (double) are user-
defined, then the number of evaluation steps needed for
gt and dbl increases in each loop iteration. Hence, this is
a non-periodic form of non-termination.

The following TRS R corresponds to the imperative program fragment above.

f(tt, x, y)→ f(gt(x, y), dbl(x), s(y)) dbl(x)→ times(s(s(0)), x)
gt(s(x), 0)→ tt times(x, 0)→ 0

gt(0, y)→ ff times(x, s(y))→ plus(times(x, y), x)
gt(s(x), s(y))→ gt(x, y) plus(x, 0)→ x

plus(x, s(y))→ plus(s(x), y)

This TRS is non-terminating, but not looping. For n > m, we have

f(tt, sn(0), sm(0)) →R f(gt(sn(0), sm(0)), dbl(sn(0)), sm+1(0)) →m+1
R

f(tt, dbl(sn(0)), sm+1(0)) →R f(tt, times(s(s(0)), sn(0)), sm+1(0)) →4·n
R

f(tt, s2·n(times(s(s(0)), 0)), sm+1(0)) →R f(tt, s2·n(0), sm+1(0)) →R ...

� Supported by the DFG grant GI 274/5-3.

B. Gramlich, D. Miller, and U. Sattler (Eds.): IJCAR 2012, LNAI 7364, pp. 225–240, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Since the number of steps required to evaluate gt and dbl increases in every
iteration, this is a non-periodic sequence that cannot be represented as a loop.

While interesting classes of non-looping TRSs were identified in earlier papers
(e.g., [3,14]), up to now virtually all methods to prove non-termination of TRSs
automatically were restricted to loops (e.g., [4,5,11,13,15,16]).1 A notable excep-
tion is a technique and tool for non-termination of non-looping string rewrite
systems (SRSs) in [10]. To represent rewrite sequences, this approach uses rules
between string patterns of the form u vnw. Here, u, v, w are strings and n can be
instantiated by any natural number. We will extend this idea in order to prove
non-termination of (possibly non-looping) term rewrite systems automatically.

To detect loops, one can start with a rule and repeatedly narrow it using other
rules, until it has the form of a loop. To handle non-looping TRSs as well, we
generate pattern rules which represent a whole set of rewrite sequences and also
allow narrowing with pattern rules. In this way, one can create more and more
pattern rules until one obtains a pattern rule that is obviously non-terminating.
In Sect. 2, we define pattern rules formally and introduce a set of inference
rules to derive pattern rules from a TRS automatically. Sect. 2 also contains a
criterion to detect pattern rules that are obviously non-terminating. In Sect. 3
we present a strategy for the application of our inference rules. We implemented
our contributions in the automated termination tool AProVE [6] and in Sect. 4,
we present an experimental evaluation of our technique.

2 Pattern Rules

To represent rewrite sequences, we extend the idea of [10] from SRSs to TRSs
and define pattern terms and pattern rules which are parameterized over N.

A pattern term describes a set of terms.2 Formally, a pattern term is a map-
ping from natural numbers to terms which are constructed from a base term,
a pumping substitution that is applied multiple times to the base term, and a
closing substitution that is applied once to “close” the term. For example, to
represent gt(s2(x), s(0)), gt(s3(x), s2(0)), gt(s4(x), s3(0)), . . . , we use the pattern
term n "→ gt(s(x), s(y)) [x/s(x), y/s(y)]n [x/s(x), y/0], where gt(s(x), s(y)) is the
base term, [x/s(x), y/s(y)] is the pumping substitution, and [x/s(x), y/0] is the

closing substitution. For n = 0 this pattern term evaluates to gt(s
2
(x), s(0)), for

n = 1 to gt(s
3
(x), s

2
(0)), etc. In the following, T (Σ,V) denotes the set of terms

over the underlying signature Σ and the infinite set of variables V .

1 Similarly, most existing automated approaches for non-termination of programs also
just detect loops. For Java Bytecode, we recently presented an approach that can
also prove non-periodic non-termination, provided that there are no sub-loops and
that non-termination is due to operations on integers [2]. However, this approach is
not suitable for TRSs where one treats terms instead of integers and where sub-loops
(i.e., recursively defined auxiliary functions like gt and times) are common.

2 In contrast to tree automata, pattern terms can also describe non-regular sets.
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Definition 1 (Pattern Terms and Rules). A function N → T (Σ,V) is a
pattern term if it is a mapping n "→ tσnμ where t ∈ T (Σ,V) and σ, μ are
substitutions. For readability, we omit “n "→” if it is clear that we refer to a
pattern term. For a pattern term p = tσnμ, its base term is base(p) = t, its
pumping substitution is σ, and its closing substitution is μ. We also say that σ, μ
are its pattern substitutions. Its domain variables are dv(p) = dom(σ)∪dom(μ).

If p, q are pattern terms, then p ↪→ q is a pattern rule. A pattern rule p ↪→ q
is correct w.r.t. a TRS R if p(n)→+

R q(n) holds for all n ∈ N.

As an example, consider the pattern rule

gt(s(x), s(y)) [x/s(x), y/s(y)]n [x/s(x), y/0] ↪→ tt ∅n ∅, (1)

where ∅ denotes the empty (identical) substitution. This pattern rule is correct

w.r.t. the TRS R in Sect. 1, since gt(sn+2(x), sn+1(0))→+
R tt holds for all n ∈ N.

Thus, a pattern rule describes a set of rewrite sequences of arbitrary length.
In the following, we present 9 inference rules to derive correct pattern rules

from a TRS automatically. As soon as one finds a correct pattern rule that is
obviously non-terminating, one has proved non-termination of the original TRS.

The inference rules have the form p1↪→q1 ... pk↪→qk
p↪→q . In Thm. 7 we will prove

their soundness, i.e., if all the pattern rules p1 ↪→ q1, . . . , pk ↪→ qk are correct
w.r.t. a TRS R, then the pattern rule p ↪→ q is also correct w.r.t. R.

The inference rules in Sect. 2.1 create initial pattern rules from a TRS. Sect.
2.2 shows how to modify the pattern terms in a pattern rule without changing
the represented set of terms. Sect. 2.3 introduces inference rules in order to
instantiate pattern rules and to combine them by narrowing. Finally, Sect. 2.4
shows how to detect whether a pattern rule directly leads to non-termination.

2.1 Creating Pattern Rules

(I) Pattern Rule from TRS

�∅n∅ ↪→ r∅n ∅
if �→ r ∈ R

The first inference rule converts rules from
the TRS to equivalent pattern rules by simply
using the identity ∅ as pattern substitution.
Since a pattern term �∅n∅ just represents
the (ordinary) term �, this inference rule is
clearly sound. So by applying (I) to the recursive gt-rule from Sect. 1, we obtain
the pattern rule

gt(s(x), s(y)) ∅n ∅ ↪→ gt(x, y) ∅n ∅. (2)

(II) Pattern Creation 1

s∅n ∅ ↪→ t∅n∅

s σn ∅ ↪→ t θn ∅
if sθ = tσ, and
θ commutes with σ

The next inference rule generates
pattern rules that represent the re-
peated application of a rewrite se-
quence at the same position. Here,
we say that two substitutions θ and
σ commute iff xθσ = xσθ holds for all variables x ∈ V . When applying (II) to
Rule (2), we have s = gt(s(x), s(y)) and t = gt(x, y). By choosing θ = ∅ and
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σ = [x/s(x), y/s(y)], we obtain sθ = tσ. Moreover since θ is the identical substi-
tution, θ and σ obviously commute. Hence, by (II) we obtain the following new
pattern rule which describes how (2) can be applied repeatedly on terms of the
form gt(sn(x), sn(y)).

gt(s(x), s(y)) [x/s(x), y/s(y)]n ∅ ↪→ gt(x, y) ∅n ∅ (3)

To see why commutation of θ and σ is needed for the soundness of Rule (II),
consider s = f(x, a) and t = f(b, x) for a TRS R′ = {s→ t}. Then for θ = [x/b]
and σ = [x/a] we have sθ = tσ. But θ and σ do not commute and sσ =
f(a, a) �→+

R′ f(b, b) = tθ. Thus, s σn ∅ ↪→ t θn ∅ is not correct w.r.t. R′.
To automate the application of inference rule (II), one has to find substitu-

tions θ and σ that satisfy the conditions for its applicability. In our implemen-
tation, we use a sufficient criterion which proved useful in our experiments: We
first apply unification to find the most general substitutions θ and σ such that
sθ = tσ. Then we check whether θ and σ commute. More precisely, to find θ
and σ with sθ = tσ, we use a variable renaming ρ which renames all variables in
V(s) to fresh ones. If there exists τ = mgu(sρ, t), then we set θ = (ρ τ ρ−1)|V(s)

and σ = (τρ−1)|V(t). Now we have sθ = sρ τ ρ−1 = t τ ρ−1 = tσ and thus,
it remains to check whether θ commutes with σ. So in our example, we use
a renaming ρ with xρ = x′ and yρ = y′. The mgu of sρ = gt(s(x′), s(y′)) and
t = gt(x, y) is τ = [x/s(x′), y/s(y′)]. Hence, we obtain xθ = xρ τ ρ−1 = x, yθ = y,
xσ = x τ ρ−1 = s(x), and yσ = y τ ρ−1 = s(y). Here, θ and σ obviously commute.

(III) Pattern Creation 2

s∅n∅ ↪→ t∅n ∅

s σn ∅ ↪→ t[z]π (σ ∪ [z/t[z]π])
n [z/t|π]

if π ∈ Pos(t),
s = t|π σ,
and z ∈ V is fresh

The next infer-
ence rule generates
pattern rules to re-
present rewrite se-
quences where the
context around the
redex increases in each iteration. For instance, the times-rule of Sect. 1
can be applied repeatedly to rewrite terms of the form times(x, sn(y)) to
plus(plus(. . . plus(times(x, y), x), . . . , x), x). But since these rewrite steps (except
for the first) occur below the root, instead of (II) we need Rule (III). As usual,
t[z]π results from replacing the subterm at position π by z. Moreover, σ∪[z/t[z]π]
is the extension of the substitution σ which maps the fresh variable z to t[z]π.

Rule (III) can easily be automated, since one only has to check whether some
subterm3 of t matches s. For example, regard the pattern rule times(x, s(y))∅n∅
↪→ plus(times(x, y), x)∅n ∅ resulting from the times-rule. Here, s = times(x, s(y))
and t = plus(times(x, y), x). For the subterm t|π = times(x, y) at position π = 1
we have s = t|π σ with σ = [y/s(y)]. Hence, by (III) we obtain the pattern rule

times(x, s(y)) [y/s(y)]n ∅ ↪→ plus(z, x) [y/s(y), z/plus(z, x)]n [z/times(x, y)]. (4)

3 In the automation, we restrict Rule (III) to non-variable subterms t|π in order to
obtain pattern rules with “small” terms in the ranges of the pumping substitutions.
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Note that if π is the root position, then inference rule (III) is the special case
of inference rule (II) where θ is the identity. In this case, both inference rules
create a pattern rule equivalent to s σn ∅ ↪→ t∅n∅.

2.2 Using Equivalence of Pattern Terms

As mentioned in the introduction, a common technique to prove that a TRS is
looping is to construct loops via repeated narrowing operations. Narrowing is
similar to rewriting, but uses unification instead of matching.

For instance, to narrow the right-hand side of the recursive rule gt(s(x), s(y))
→ gt(x, y) with the rule gt(s(x), 0) → tt, one could first instantiate the re-
cursive rule using the substitution [x/s(x), y/0], which yields gt(s(s(x)), s(0))→
gt(s(x), 0). Now its right-hand side can be rewritten by the non-recursive gt-rule,
which results in the new rule gt(s(s(x)), s(0))→ tt.

Our goal is to extend this concept to pattern rules. However, the problem
is that the pattern terms in the rules may have different pattern substitutions.
Thus, to narrow the right-hand side of a pattern rule p ↪→ q with another pattern
rule p′ ↪→ q′, we first transform the rules such that the pattern substitutions in
all four terms p, q, p′, q′ are the same. Then p ↪→ q and p′ ↪→ q′ have the form
s σn μ ↪→ t σn μ and u σn μ ↪→ v σn μ, respectively (i.e., the same pattern
substitutions σ and μ are used on both sides of both pattern rules). To achieve
that, it is often useful to modify the pattern terms in the rules appropriately
without changing the set of terms represented by the pattern terms.

Definition 2 (Equivalent Pattern Terms). We say that two pattern terms
p and p′ are equivalent iff p(n) = p′(n) holds for all n ∈ N.

(IV) Equivalence

p ↪→ q

p′ ↪→ q′
if p is equivalent to p′

and q is equivalent to q′

Based on Def. 2, we immediately obtain infer-
ence rule (IV) that allows us to replace pat-
tern terms by equivalent other pattern terms.
To apply rule (IV) automatically, in Lemmas
4, 6, and 9 we will present three criteria for
equivalence of pattern terms.

The first criterion allows us to rename the domain variables in the pattern
substitutions. For example, in the pattern term gt(s(x), s(y)) [x/s(x), y/s(y)]n ∅
one can rename its domain variables x and y to x′ and y′. This results in the
pattern term gt(s(x′), s(y′)) [x′/s(x′), y′/s(y′)]n [x′/x, y′/y] which is equivalent,
since for every n, both pattern terms represent gt(sn(x), sn(y)).

Definition 3 (Domain Renamings). For any substitution σ, let range(σ) =
{xσ | x ∈ dom(σ)} and V(σ) = dom(σ) ∪ V(range(σ)). Let ρ be a variable
renaming on dom(ρ), i.e., range(ρ) ⊆ V and ρ is injective on dom(ρ). This
allows us to define ρ−1 as ρ−1(y) = x if there is some x ∈ dom(ρ) with xρ = y
and as ρ−1(y) = y, otherwise. Note that xρρ−1 = x holds for all x ∈ dom(ρ) and
also for all x /∈ range(ρ). For any pattern term p = tσnμ, we define its variables
as V(p) = V(t) ∪ V(σ) ∪ V(μ). We say that a variable renaming ρ is a domain
renaming for a pattern term p if dom(ρ) ⊆ dv(p) and range(ρ) ∩ V(p) = ∅. For



230 F. Emmes, T. Enger, and J. Giesl

a pattern term p = tσnμ, we define the result of renaming p by ρ as pρ = t′ σ′n μ′

where t′ = tρ, σ′ = [xρ/sρ | x/s ∈ σ ], and μ′ = [xρ/s | x/s ∈ μ ] ρ−1.

To illustrate Def. 3, consider ρ = [x/x′, y/y′]. This is indeed a variable renaming
on dom(ρ) = {x, y} and we have ρ−1 = [x′/x, y′/y]. Moreover, we regard the
pattern term p = gt(s(x), s(y)) [x/s(x), y/s(y)]n ∅. Thus, its base term is t =
gt(s(x), s(y)), and it has the pattern substitutions σ = [x/s(x), y/s(y)] and μ =
∅. Hence, ρ is a domain renaming for p since dom(ρ) ⊆ dv(p) = {x, y} and since
range(ρ) = {x′, y′} is disjoint from V(p) = V(t)∪V(σ)∪V(μ) = {x, y}. Thus, the
result of renaming p by ρ is pρ = gt(s(x′), s(y′)) [x′/s(x′), y′/s(y′)]n [x′/x, y′/y].
Lemma 4 gives the first criterion for obtaining equivalent pattern terms (in order
to apply inference rule (IV) automatically).

Lemma 4 (Equivalence by Domain Renaming). Let p be a pattern term
and let ρ be a domain renaming for p. Then p is equivalent to pρ.

Proof. Let p = t σn μ, σ′ = [xρ/sρ | x/s ∈ σ ], and μ′ = [xρ/s | x/s ∈ μ ] ρ−1.
We first show the following conjecture:

xσρ = x ρ σ′ for all x ∈ V(p) (5)

For (5), let x ∈ V(p). If x ∈ dom(σ), then x ρ σ′ = xσ ρ by the definition of σ′.
If x /∈ dom(σ), then xρ /∈ dom(σ′). Thus, x ρ σ′ = xρ = xσ ρ, which proves (5).

Moreover, we show the following conjecture:

xμ = x ρμ′ for all x ∈ V(p) (6)

For (6), let x ∈ V(p). If x ∈ dom(μ), then x ρμ′ = xμ ρ−1 by the definition of μ′.
Since V(xμ) ⊆ V(p), we have range(ρ)∩V(xμ) = ∅. Thus, x ρμ′ = xμ ρ−1 = xμ.

Otherwise, if x /∈ dom(μ), then xμ = x and x ρμ′ = x ρ ρ−1 = x. This
concludes the proof of Conjecture (6).

Now we show the lemma. We have p(n) = t σn μ. By (6), this is equal to
t σn ρ μ′. Using Conjecture (5) n times, we get t σn ρ μ′ = t ρ σ′n μ′ = pρ(n). ��

Thus, we can apply inference rule (IV) (using Lemma 4 with the domain re-
naming ρ = [x/x′, y/y′]) to obtain the following pattern rule from Rule (3).

gt(s(x′), s(y′)) [x′/s(x′), y′/s(y′)]n [x′/x, y′/y] ↪→ gt(x, y) ∅n ∅ (7)

Recall that to perform narrowing of pattern rules, we would like to have the
same pattern substitutions on both sides of the rule. So the above domain rena-
ming has the advantage that the variables x′, y′ used for “pumping” are now dif-
ferent from the variables x, y occurring in the final term. This allows us to add
the pattern substitutions also on the right-hand side of the rule, since they only
concern variables x′, y′ that are not relevant in the right-hand side up to now.

Definition 5 (Relevant Variables). For a pattern term p = tσnμ, we define
its relevant variables as rv(p) = V({t, tσ, tσ2, . . .}), i.e., rv(p) is the smallest set
such that V(t) ⊆ rv(p) and such that V(xσ) ⊆ rv(p) holds for all x ∈ rv(p).
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So the relevant variables of the pattern term gt(x, y) ∅n ∅ are x and y. In
contrast, a pattern term gt(x, y) [x/s(x′), y′/s(y′)]n ∅ would have the relevant
variables x, x′, and y. Lemma 6 states that one can modify pattern substitutions
as long as this only concerns variables that are not relevant in the pattern term.

Lemma 6 (Equivalence by Irrelevant Pattern Substitutions). Let p =
t σn μ be a pattern term and let σ′ and μ′ be substitutions such that xσ = xσ′

and xμ = xμ′ holds for all x ∈ rv(p). Then p is equivalent to t σ′n μ′.

Proof. We prove tσn = tσ′n by induction on n. For n = 0 this is trivial. For n >
0, the induction hypothesis implies tσn−1 = tσ′n−1, and since V(tσn−1) ⊆ rv(p),
we also obtain tσn = tσ′n. Finally, V(tσn) ⊆ rv(p) implies tσnμ = tσ′nμ′. ��

Hence, since x′, y′ are not relevant in the pattern term gt(x, y) ∅n ∅, we can
add the pattern substitutions from the left-hand side of Rule (7) also on its
right-hand side. Thus, by applying (IV) (using Lemma 6) to (7), we obtain

gt(s(x′), s(y′)) [x′/s(x′), y′/s(y′)]n [x′/x, y′/y] (8)

↪→ gt(x, y) [x′/s(x′), y′/s(y′)]n [x′/x, y′/y].

Recall that our goal was to narrow the recursive gt-rule (resp. (8)) with the
non-recursive gt-rule gt(s(x), 0) → tt. As a first step towards this goal, we now
made the pattern substitutions on both sides of (8) equal.

2.3 Modifying Pattern Rules by Instantiation and Narrowing

(V) Instantiation

s σn
s μs ↪→ t σn

t μt

(sρ) (σs)
n
ρ (μs)ρ ↪→ (tρ) (σt)

n
ρ (μt)ρ

if V(ρ) ∩ (dom(σs) ∪ dom(μs)
∪ dom(σt) ∪ dom(μt)) = ∅

For the de-
sired narrow-
ing, we have
to instantiate
the recursive
pattern rule (8) such that the base term of its right-hand side contains the
left-hand side of the rule gt(s(x), 0)→ tt. To this end, we use inference rule (V).
For any two substitutions σ and ρ, let σρ result from the composition of σ and
ρ, but restricted to the domain of σ. Thus, σρ = [x/sρ | x/s ∈ σ].

Hence, we now apply inference rule (V) on the pattern rule (8) using ρ =
[x/s(x), y/0]. The domain variables of (8) are x′ and y′. Thus, due to the domain
renaming in Sect. 2.2 they are disjoint from V(ρ) = {x, y}. In the resulting pat-
tern rule, the base terms are instantiated with ρ and the new pattern substitu-
tions result from composing the previous pattern substitutions with ρ (restricted
to the domains of the previous substitutions). So for σ = [x′/s(x′), y′/s(y′)] we
have σρ = σ and for μ = [x′/x, y′/y], we obtain μρ = [x′/s(x), y′/0]. This yields

gt(s(x′), s(y′)) [x′/s(x′), y′/s(y′)]n [x′/s(x), y′/0] (9)

↪→ gt(s(x), 0) [x′/s(x′), y′/s(y′)]n [x′/s(x), y′/0]

For the narrowing, the original rule gt(s(x), 0) → tt of the TRS can be trans-
formed to a pattern rule gt(s(x), 0) ∅n ∅ ↪→ tt ∅n ∅ by (I). Afterwards, one
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can add the pattern substitutions of (9) by Rule (IV) using Lemma 6, since
x′, y′ are not relevant in the pattern rule:

gt(s(x), 0) [x′/s(x′), y′/s(y′)]n [x′/s(x), y′/0] (10)

↪→ tt [x′/s(x′), y′/s(y′)]n [x′/s(x), y′/0]

Now all pattern terms in (9) and (10) have the same pattern substitutions.

(VI) Narrowing

s σn μ ↪→ t σn μ u σn μ ↪→ v σn μ

s σn μ ↪→ t[v]π σ
n μ

if t|π = u

Hence, we can apply the
narrowing rule (VI) which
rewrites the right-hand side
of one pattern rule with an-
other pattern rule, if the
pattern substitutions of all pattern terms coincide.

In our example, s σn μ ↪→ t σn μ is the pattern rule (9) and u σn μ ↪→ v σn μ
is the pattern rule (10). Thus, we have t = gt(s(x), 0) = u and we obtain the
following new pattern rule (which corresponds to Rule (1) in the introduction).

gt(s(x′), s(y′)) [x′/s(x′), y′/s(y′)]n [x′/s(x), y′/0] (11)

↪→ tt [x′/s(x′), y′/s(y′)]n [x′/s(x), y′/0]

In general, to make the narrowing rule (VI) applicable for two rules s σn
s μs ↪→

t σn
t μt and u σn

u μu ↪→ v σn
v μv, one should first instantiate the base terms t, u

such that t contains u. Then one should try to make the substitutions σs, σt, σu, σv
equal and finally, one should try to make μs, μt, μu, μv identical.

To illustrate that, let us try to narrow the pattern rule f(tt, x, y)∅n∅ ↪→
f(gt(x, y), dbl(x), s(y))∅n ∅ resulting from the f-rule with the above pattern rule
(11) for gt. To let the base term gt(s(x′), s(y′)) of (11)’s left-hand side occur in the
right-hand side of f’s pattern rule, we instantiate the latter with the substitution
[x/s(x′), y/s(y′)]. Thus, inference rule (V) yields

f(tt, s(x′), s(y′))∅n∅ ↪→ f(gt(s(x′), s(y′)), dbl(s(x′)), s
2
(y′))∅n ∅. (12)

(VII) Instantiating σ

s σn
s μs ↪→ t σn

t μt

s (σsρ)
n μs ↪→ t (σtρ)

n μt

if ρ commutes with
σs, μs, σt, and μt

Now we try to replace the
current pumping substitu-
tion σ of Rule (12) by the
one of (11). To this end,
we use inference rule (VII)
which allows us to instantiate pumping substitutions.

So in our example, we apply inference rule (VII) to the pattern rule (12)
using the substitution ρ = [x′/s(x′), y′/s(y′)]. Since the pattern substitutions of
(12) are just ∅, ρ trivially commutes with them. Hence, we obtain

f(tt, s(x′), s(y′)) [x′/s(x′), y′/s(y′)]n ∅ (13)

↪→ f(gt(s(x′), s(y′)), dbl(s(x′)), s
2
(y′)) [x′/s(x′), y′/s(y′)]n ∅.

Note that (VII) differs from the previous instantiation rule (V) which does not
add new variables to the domains of the pattern substitutions (i.e., with (V) we
would not have been able to modify the pattern substitutions of (12)).
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(VIII) Instantiating μ

s σn
s μs ↪→ t σn

t μt

s σn
s (μsρ) ↪→ t σn

t (μtρ)

To make also the closing substitutions of the f-rule
(13) and the gt-rule (11) identical, we use inference
rule (VIII) which allows arbitrary instantiations of
pattern rules (i.e., in contrast to (V) and (VII),
here we impose no conditions on ρ).

Applying inference rule (VIII) to Rule (13) with ρ = [x′/s(x), y′/0] yields

f(tt, s(x′), s(y′)) [x′/s(x′), y′/s(y′)]n [x′/s(x), y′/0] (14)

↪→ f(gt(s(x′), s(y′)), dbl(s(x′)), s
2
(y′)) [x′/s(x′), y′/s(y′)]n [x′/s(x), y′/0].

By (VI), now one can narrow (14) with the gt-rule (11) which yields

f(tt, s(x′), s(y′)) [x′/s(x′), y′/s(y′)]n [x′/s(x), y′/0] (15)

↪→ f(tt, dbl(s(x′)), s
2
(y′)) [x′/s(x′), y′/s(y′)]n [x′/s(x), y′/0].

(IX) Rewriting

p ↪→ t σn μ

p ↪→ t′ σ′n μ′
if t →∗

R t′, ∀x ∈ V : xσ →∗
R xσ′,

and ∀x ∈ V : xμ→∗
R xμ′

So to narrow a pattern rule
with another one, we re-
quire identical pattern sub-
stitutions. Moreover, we only
allow narrowing of the base
term (i.e., the narrowing rule
(VI) does not modify terms in the ranges of the pattern substitutions). In con-
trast, rewriting with ordinary rules is also allowed in the pattern substitutions
and moreover, here the two pattern terms in the pattern rule may also have
different pattern substitutions.

While no rewriting is possible for the terms in the ranges of the pattern
substitutions of (15), one can rewrite the base term using the dbl-rule:

f(tt, s(x′), s(y′)) [x′/s(x′), y′/s(y′)]n [x′/s(x), y′/0] (16)

↪→ f(tt, times(s
2
(0), s(x′)), s

2
(y′)) [x′/s(x′), y′/s(y′)]n [x′/s(x), y′/0]

To continue our example further, we now want to narrow the above f-rule (16)
with the pattern rule (4) for times. To make the narrowing rule (VI) applicable,
the base term of (4)’s left-hand side must occur in (16) and all four pattern terms
in the rules must have the same pattern substitutions. Thus, one first has to
transform the pattern rules by the equivalence rule (IV) (using Lemmas 4 and
6) and instantiations (using (V), (VII), and (VIII)). After the narrowing, one
can simplify the resulting pattern rule by rewriting (Rule (IX)) and by removing
irrelevant parts of substitutions (Rule (IV) using Lemma 6), which yields

f(tt, s(x′), s(y′)) [x′/s(x′), y′/s(y′)]n [x′/s(x), y′/0] (17)

↪→ f(tt, s
2
(z), s

2
(y′)) [y′/s(y′), z/s2(z)]n [y′/0, z/times(s

2
(0), s(x))].

The following theorem shows that all our inference rules are sound.

Theorem 7 (Soundness of Inference Rules). For all inference rules (I) -
(IX) of the form p1↪→q1 ... pk↪→qk

p↪→q , if all pattern rules p1 ↪→ q1, . . . , pk ↪→ qk
are correct w.r.t. a TRS R, then the pattern rule p ↪→ q is also correct w.r.t. R.
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Proof. Soundness of Rule (I) is trivial. Soundness of Rule (II) is proved by
induction on n. For n = 0, we have s σ0 = s→+

R t = t θ0, since s∅n∅ ↪→ t∅n∅
is correct w.r.t. R. For n > 0, we obtain s σn →+

R t θn−1 σ by the induction
hypothesis. Since θ and σ commute, we have t θn−1 σ = tσ θn−1 = s θn →+

R t θn.
Soundness of Rule (III) is also proved by induction on n. For n = 0, we have

s σ0 = s→+
R t = t[z]π [z/t|π] = t[z]π (σ ∪ [z/t[z]π])

0 [z/t|π]. For n > 0, we obtain

s σn = s σn−1 σ
→+

R t[z]π (σ ∪ [z/t[z]π])
n−1 [z/t|π]σ by induction hypothesis

= t[z]π (σ ∪ [z/t[z]π])
n−1 (σ ∪ [z/t|πσ]) since z /∈ dom(σ)

= t[z]π (σ ∪ [z/t[z]π])
n−1 (σ ∪ [z/s])

→+
R t[z]π (σ ∪ [z/t[z]π])

n−1 (σ ∪ [z/t])
= t[z]π (σ ∪ [z/t[z]π])

n−1 (σ ∪ [z/t[z]π]) [z/t|π] since z /∈ range(σ)
= t[z]π (σ ∪ [z/t[z]π])

n [z/t|π]

Rule (IV) is trivially sound. For Rule (V), note that correctness of s σn
s μs

↪→ t σn
t μt also implies correctness of s σn

s (μsρ) ↪→ t σn
t (μtρ). But we have

s σn
s (μs ρ) = s σn

s ρ μsρ since V(ρ) ∩ dom(μs) = ∅
= (sρ) (σs)

n
ρ (μs)ρ since V(ρ) ∩ dom(σs) = ∅.

Similarly, t σn
t (μt ρ) = (tρ) (σt)

n
ρ (μt)ρ, which implies soundness of Rule (V).

Soundness of Rule (VI) is trivial. For soundness of Rule (VII), correctness
of s σn

s μs ↪→ t σn
t μt also implies correctness of s σn

s (μs ρ
n) ↪→ t σn

t (μt ρ
n). As

ρ commutes with σs, μs, σt, μt, this is equivalent to s (σs ρ)
n μs ↪→ t (σt ρ)

n μt.
Soundness of Rules (VIII) and (IX) is again straightforward. ��

2.4 Detecting Non-termination

Thm. 8 introduces a criterion to detect pattern rules that directly lead to non-
termination. Hence, whenever we have inferred a new pattern rule that satisfies
this criterion, we can conclude non-termination of our TRS.

For a pattern rule s σn μ ↪→ t σn
t μt, we check whether the pattern substitu-

tions of the right-hand side are specializations of the pattern substitutions of the
left-hand side. More precisely, there must be an m ∈ N such that σt = σm σ′ and
μt = μμ′ for some σ′ and μ′, where σ′ commutes with σ and μ. Then one only has
to check whether there is a b ∈ N such that s σb is equal to some subterm of t.

Theorem 8 (Detecting Non-termination). Let s σn μ ↪→ t σn
t μt be correct

w.r.t. a TRS R and let there be an m ∈ N such that σt = σm σ′ and μt = μμ′

for some substitutions σ′ and μ′, where σ′ commutes with both σ and μ. If there
is a π ∈ Pos(t) and some b ∈ N such that s σb = t|π, then R is non-terminating.

Proof. We show that for all n ∈ N, the term s σn μ rewrites to a term containing
an instance of s σm·n+bμ. By repeating these rewrite steps on this subterm, we
obtain an infinite rewrite sequence. Here, � denotes the superterm relation.
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s σn μ→+
R t σn

t μt since s σn μ ↪→ t σn
t μt is correct

� t|π σn
t μt

= s σb σn
t μt

= s σb (σm σ′)n (μμ′)
= s σm·n+b μσ′n μ′ since σ′ commutes with both σ and μ ��

To apply Thm. 8 to the pattern rule (17) obtained in our example, we have to
transform the rule such that the pattern substitutions on the right-hand side
become specializations of the pattern substitutions on the left-hand side. Thus,
we use a domain renaming for the right-hand side to rename the variable z to
x′ (using Rule (IV) with Lemma 4). Moreover, we would like to get rid of the clo-
sing substitution [x′/s(x)] on the left-hand side. To this end, we first apply [x/x′]
to the whole pattern rule (using inference rule (VIII)) and remove irrelevant
parts of the pattern substitutions (Rule (IV) with Lemma 6), which yields

f(tt, s(x′), s(y′)) [x′/s(x′), y′/s(y′)]n [x′/s(x′), y′/0] (18)

↪→ f(tt, s
2
(x′), s

2
(y′)) [x′/s2(x′), y′/s(y′)]n [x′/times(s

2
(0), s(x′)), y′/0].

Now the closing substitution [x′/s(x′)] on the left-hand side of the rule can be
moved from the closing substitution to the base term. This is stated by the
following lemma, which can be used in addition to Lemmas 4 and 6 in order to
transform pattern terms to equivalent other pattern terms in inference rule (IV).

Lemma 9 (Equivalence by Simplifying μ). Let p = t σn μ be a pattern term
and let μ = μ1 μ2 where μ1 commutes with σ. Then p is equivalent to (t μ1)σ

n μ2.

Proof. For any n, t σn μ = t σn μ1μ2 = tμ1 σ
n μ2, as μ1 commutes with σ. ��

The closing substitution μ of (18)’s left-hand side has the form μ = μ1 μ2 for
μ1 = [x′/s(x′)] and μ2 = [y′/0]. Since μ1 commutes with σ = [x′/s(x′), y′/s(y′)],
by inference rule (IV) and Lemma 9, we can replace the left-hand side of (18)

by the equivalent pattern term f(tt, s2(x′), s(y′)) [x′/s(x′), y′/s(y′)]n [y′/0].

Moreover, by rewriting times(s
2
(0), s(x′)) on the right-hand side using Rule

(IX), the right-hand side is transformed to f(tt, s
2
(x′), s

2
(y′)) [x′/s2(x′), y′/s(y′)]n

[x′/s2(times(s2(0), x′)), y′/0]. So now its closing substitution μ′ has the form

μ′ = μ′
1 μ

′
2 for μ′

1 = [x′/s(x′)] and μ′
2 = [x′/s(times(s

2
(0), x′)), y′/0]. Since μ′

1

commutes with the pumping substitution σ′ = [x′/s2(x′), y′/s(y′)], by applying
inference rule (IV) and Lemma 9 also on the right-hand side, we get

f(tt, s
2
(x′), s(y′)) [x′/s(x′), y′/s(y′)]n [y′/0] (19)

↪→ f(tt, s3(x′), s
2
(y′)) [x′/s2(x′), y′/s(y′)]n [x′/s(times(s2(0), x′)), y′/0].

The resulting rule (19) satisfies the conditions of Thm. 8, i.e., one can directly
detect its non-termination. It has the form s σn μ ↪→ t σn

t μt with



236 F. Emmes, T. Enger, and J. Giesl

σ = [x′/s(x′), y′/s(y′)] and μ = [y′/0], where σt = σ σ′ for σ′ = [x′/s(x′)]

and μt = μμ′ for μ′ = [x′/s(times(s
2
(0), x′))]. Clearly σ′ commutes with σ and

μ and moreover, sσ = t. Thus, non-termination of the TRS in Sect. 1 is proved.
Note that with our inference rules and the criterion of Thm. 8, one can also

prove non-termination of any looping TRS R. The reason is that then there is
also a loop s →+

R C[sμ] where the first rewrite step is on the root position. By
translating the rules of the TRS to pattern rules (Rule (I)) and by perform-
ing instantiation (Rule (V)) followed by narrowing or rewriting (Rule (VI) or
(IX)) repeatedly, we can also obtain a corresponding pattern rule s∅n∅ ↪→
C[sμ]∅n ∅. To detect its non-termination by Thm. 8, we replace the closing
substitution ∅ by μ (using Rule (VIII)) which yields s∅n μ ↪→ C[sμ]∅n μ. Sim-
plifying the closing substitution on the left-hand side (Rule (IV) with Lemma
9) yields (sμ)∅n ∅ ↪→ C[sμ]∅n μ. Since the closing substitution μ on the right-
hand side is a specialization of the closing substitution ∅ on the left-hand side
and since sμ is equal to a subterm of C[sμ], Thm. 8 now detects non-termination.

3 A Strategy to Prove Non-termination Automatically

The inference rules in Sect. 2 constitute a powerful calculus to prove non-termi-
nation. We now present a strategy for their automated application which turned
out to be successful in our implementation in the tool AProVE, cf. Sect. 4.

The strategy first transforms all rules of the TRS4 into pattern rules using
Rule (I) and if possible, one uses Rules (II) and (III) afterwards to obtain
pattern rules with non-empty pattern substitutions. Then for every pattern rule
p ↪→ q, one repeatedly tries to rewrite its right-hand side (Rule (IX)) or to
narrow it with every pattern rule p′ ↪→ q′ (see below). Whenever a new pattern
rule is obtained, one checks whether it satisfies the non-termination criterion of
Thm. 8.5 In this case, the procedure stops and non-termination has been proved.

Before trying to narrow p ↪→ q with p′ ↪→ q′ at some π ∈ Pos(base(q)),
to avoid conflicting instantiations of variables, one uses domain renamings to
ensure that dv(p), dv(q), dv(p′), and dv(q′) are pairwise disjoint (Rule (IV) with
Lemma 4). Moreover, pattern rules are made variable-disjoint (using Rule (V)).
Then the strategy proceeds by the following steps to make the narrowing rule
(VI) applicable. After presenting the strategy, we illustrate it by an example.

1. Make base(q)|π equal to base(p′): If base(q)|π and base(p′) do not unify, then

abort with failure. If base(q)|π = base(p′), then go to Step 2. Otherwise, let
θ = mgu(base(q)|π , base(p′)), let x ∈ dom(θ), and let s = θ(x). W.l.o.g. we
assume x ∈ V(p′) (the case where x ∈ V(q) works analogously).

4 It is preferable to check non-termination within the dependency pair framework
[5,7,8]. In this way, one can automatically decompose the TRS into parts where
termination can easily be proved and into parts which can potentially cause non-
termination.

5 To this end, one tries to transform the pattern rule using Rules (IV) and (VIII)
such that the pattern substitutions on the right-hand sides become specializations
of the corresponding pattern substitutions on the left-hand sides.
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(a) If x /∈ dv(p′) and s /∈ dv(p′), then let s′ result from s by renaming all
variables from dv(p′) occurring in s by pairwise different fresh variables.
Instantiate p′ ↪→ q′ with ρ = [x/s′] (Rule (V)) and go back to Step 1.

(b) If x /∈ dv(p′) and s ∈ dv(p′), then use Rule (VII) to add x to the domain
of p′’s pumping substitution, such that it operates on x as it operates
on s. To make Rule (VII) applicable, some pre-processing with Rules
(VIII) and (IV) may be required. Then go back to Step 1 (resp. to case
(c)). The case where x ∈ dv(p′) and s ∈ V(p′) \ dv(p′) is analogous.

(c) If both x, s ∈ dv(p′) and [x/s] commutes with p′’s pumping substitution,
then apply (VIII) on p′ ↪→ q′ such that p′’s closing substitution gets the
form [x/s]μ for some μ. Then, move [x/s] from p′’s closing substitution
to p′’s base term with Rule (IV) (using Lemma 9) and go to Step 1.

(d) If x ∈ dv(p′) and s ∈ V \ V(p′), then apply Rule (IV) (using Lemma 4)
with the domain renaming [x/s] on p′ ↪→ q′ and go back to Step 1.

(e) Otherwise, abort with failure.

2. Make the pumping substitutions of p, q, p′, and q′ equal (without changing
base(q), base(p′)): resolve all conflicts using Rules (VII) and (IV).

3. Make the closing substitutions of p, q, p′, q′ equal (without changing pump-
ing substitutions or base(q), base(p′)): resolve conflicts by (VIII) and (IV).

4. Apply narrowing according to Rule (VI).

To illustrate the strategy, consider the TRS with the plus-rules of Sect. 1 and

f(tt, x) → f(isNat(x), plus(x, x)), isNat(0) → tt, isNat(s(y)) → isNat(y).

After creating pattern rules for f, isNat, and plus, we narrow the recursive isNat-
and plus-rules with the non-recursive ones. For plus, this results in

plus(x, s(y′)) [y′/s(y′)]n [y′/0] ↪→ s(x′) [x′/s(x′)]n [x′/x]. (20)

Moreover, we use the resulting isNat-rule to narrow the f-rule, which yields

f(tt, s(y)) [y/s(y)]n [y/0] ↪→ f(tt, plus(s(y), s(y))) [y/s(y)]n [y/0]. (21)

Now our goal is to narrow the f-rule (21) with the plus-rule (20). We begin with
Step 1 in the strategy. The mgu of plus(s(y), s(y)) (in (21)’s right-hand side q)
and plus(x, s(y′)) (in (20)’s left-hand side p′) is θ = [y′/y, x/s(y)]. Let us first
regard the variable y′. Since y′ ∈ dv(p′) and y ∈ V \ V(p′), we are in Case (d).
Thus, we apply the domain renaming [y′/y] to (20) (with Rule (IV)) and obtain

plus(x, s(y)) [y/s(y)]n [y/0] ↪→ s(x′) [x′/s(x′)]n [x′/x]. (22)

Now θ = mgu(plus(s(y), s(y)), plus(x, s(y))) = [x/s(y)]. Since x is no domain vari-
able of (22)’s left-hand side and s(y) /∈ V , we are in Case (a). Thus, we apply
(V) with ρ = [x/s(z)] for a fresh z ∈ V . After simplification with (IV), we get

plus(s(z), s(y)) [y/s(y)]n [y/0] ↪→ s(x′) [x′/s(x′)]n [x′/s(z)]. (23)
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Now θ = mgu(plus(s(y), s(y)), plus(s(z), s(y))) = [z/y]. Since z is no domain vari-
able of (23)’s left-hand side, but y is, we are in Case (b). Hence, our goal is to
extend the pumping substitution [y/s(y)] to operate on z as on y (i.e., we want
to add [z/s(z)]). To make Rule (VII) applicable, we have to remove the closing
substitution [x′/s(z)] on (23)’s right-hand side which does not commute with
[z/s(z)]. To this end, we instantiate (23)’s closing substitutions with [z/x′] (Rule
(VIII)) and simplify both sides of (23) using Rule (IV) with Lemmas 9 and 6.

plus(s(x′), s(y)) [y/s(y)]n [y/0] ↪→ s2(x′) [x′/s(x′)]n ∅ (24)

Now θ = mgu(plus(s(y), s(y)), plus(s(x′), s(y))) = [x′/y] for the non-domain vari-
able x′ and the domain variable y. Thus, we can proceed according to Case (b)
and add [x′/s(x′)] to the pumping substitutions of (24) using Rule (VII).

plus(s(x′), s(y)) [x′/s(x′), y/s(y)]n [y/0] ↪→ s2(x′) [x′/s2(x′)]n ∅ (25)

We still have θ = mgu(plus(s(y), s(y)), plus(s(x′), s(y))) = [x′/y]. But now both
x′, y are domain variables of (25)’s left-hand side, i.e., we are in Case (c). Indeed,
now [x′/y] commutes with the pumping substitution [x′/s(x′), y/s(y)]. So we
instantiate the closing substitutions of (25) with ρ = [x′/0] (Rule (VIII)). Then
the closing substitution [y/0, x′/0] of (25)’s left-hand side has the form [x′/y][y/0]
and hence, Rule (IV) with Lemma 9 yields

plus(s(y), s(y)) [x′/s(x′), y/s(y)]n [y/0] ↪→ s2(x′) [x′/s2(x′)]n [x′/0]. (26)

Thus, now the term plus(s(y), s(y)) from the right-hand side of (21) also occurs on
the left-hand side of (26), i.e., Step 1 is finished. In Step 2 of the strategy, we have
to make the pumping substitutions of (21) and (26) equal. By Rule (IV) with
Lemma 6 we first remove the irrelevant substitution [x′/s(x′)] from the left-hand
side of (26) and then extend the pumping substitutions by new irrelevant parts
such that they all become [x′/s2(x′), y/s(y)]. Similarly, in Step 3 of the strategy,
all closing substitutions are extended to [x′/0, y/0] by Rule (IV) with Lemma 6.
Now narrowing the f- with the plus-rule (by Rule (VI)) and subsequent removal
of irrelevant substitutions (by Rule (IV) with Lemma 6) yields

f(tt, s(y)) [y/s(y)]n [y/0] ↪→ f(tt, s
2
(x′)) [x′/s2(x′)]n [x′/0]. (27)

Hence, we now have to check whether (27) leads to non-termination due to Thm.
8. As in Footnote 5, to this end we apply a domain renaming [x′/y] to (27)’s
right-hand side in order to turn the pattern substitutions on the right-hand side
into a specialization of the pattern substitutions on the left-hand side.

f(tt, s(y)) [y/s(y)]n [y/0] ↪→ f(tt, s
2
(y)) [y/s2(y)]n [y/0]. (28)

Rule (28) satisfies the criterion of Thm. 8. If σ is the pumping substitution
[y/s(y)] of (28)’s left-hand side, then (28)’s right-hand side has the pumping
substitution σ σ. Moreover, if s resp. t are the base terms of the two sides, then
sσ = t. Thus, non-termination of the original (non-looping) TRS is proved.
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4 Evaluation and Conclusion

We introduced a new technique to prove non-termination of possibly non-looping
TRSs automatically. To this end, we adapted an idea of [10] from string to term
rewriting and introduced pattern rules which represent a whole class of rewrite
sequences. Afterwards, we presented 9 inference rules to deduce new pattern
rules, a strategy for the application of these rules, and a criterion to detect non-
terminating pattern rules. In this way, one can now repeatedly generate pattern
rules until one obtains a rule which is detected to be non-terminating.

We implemented our contributions in the tool AProVE [6] and compared the
new version AProVE-NL (for non-loop) with the previous version AProVE ’11 and
3 other powerful tools for non-termination of TRSs (NTI [11], TTT2 [9], VMTL

TPDB nl
N R N R

AProVE-NL 232 6.6 44 5.2
AProVE ’11 228 6.6 0 60.0
NTI 214 7.3 0 60.0
TTT2 194 2.5 0 10.4
VMTL 95 16.5 0 42.8

[12]). We ran the tools on the 1438 TRSs of the
Termination Problem Data Base (TPDB) used
in the annual International Termination Compe-
tition.6 In the table, we consider those 241 TRSs
of the TPDB where at least one tool proved non-
termination. Moreover, we also tested the tools
on 58 typical non-looping non-terminating TRSs
obtained from actual programs and other sources
(“nl”). We used a time-out of 1 minute for each
example. “N” indicates how often Non-termination was proved and “R” gives
the average Runtime in seconds for each example. Thus, AProVE-NL could solve
75.9 % of the non-looping examples without compromising its power on looping
examples, whereas the other tools cannot handle non-looping non-termination.
To access our implementation via a web interface and for further details on our
experiments, we refer to [1].

Future work will be concerned with (i) improving our strategy for applying in-
ference rules and with (ii) extending the notion of pattern rules. To motivate (i),

N R

KFL 147 6.2
AProVE-NL 120 19.0
Matchbox 111 22.0
AProVE ’11 97 31.1
nonloop 95 26.3
NTI 67 37.1
TTT2 24 51.4
VMTL 0 56.8

we compared AProVE-NL with the tools Knocked for Loops
(KFL) [15], Matchbox [13], and nonloop [10] for non-termi-
nation of string rewriting on the 1316 SRSs of the TPDB.
The table regards those 156 SRSs where at least one tool
proved non-termination. Only AProVE-NL and nonloop
handle non-looping non-terminating SRSs, and AProVE-
NL succeeds whenever nonloop succeeds. However, some
looping SRSs are found by other tools, but not by our
current strategy which mainly focuses on term rewriting.

For (ii), while our approach is “complete” for loop-
ing TRSs, there are TRSs whose non-termination
cannot be proved with our inference rules. An example is the TRS
with rules for isNat, double, and f(tt, tt, x, s(y)) → f(isNat(x), isNat(y),
s(x), double(s(y))). Here, one needs the rule f(tt, tt, x, s(y)) [x/s(x)]n [y/s(y)]m

[x/0, y/0] ↪→ f(tt, tt, s(x), s(s(y))) [x/s(x)]
n
[y/s(s(y))]

m
[x/0, y/0] with two pa-

rameters n and m, which goes beyond our current notion of pattern rules.

6 See http://termination-portal.org/wiki/Termination_Competition

http://termination-portal.org/wiki/Termination_Competition
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Abstract. This paper presents new results on the decidability of in-
ductive validity of conjectures. For these results, a class of term rewrite
systems (TRSs) with built-in linear integer arithmetic is introduced and
it is shown how these TRSs can be used in the context of inductive theo-
rem proving. The proof method developed for inductive theorem proving
couples (implicit) inductive reasoning with a decision procedure for the
theory of linear integer arithmetic with (free) constructors. The effec-
tiveness of the new decidability results on a large class of conjectures is
demonstrated by an evaluation of the prototype implementation Sail2.

1 Introduction

Reasoning about the partial correctness of programs often requires proofs by
induction, in particular for reasoning about recursive functions. There are two
commonly used paradigms for inductive theorem proving: explicit induction and
implicit induction. In explicit induction (see, e.g., [8,21,10]), an induction scheme
is computed for each conjecture, and the subsequent reasoning is based on this
induction scheme. Here, an induction scheme explicitly gives the base cases and
the step cases. In implicit induction (see, e.g., [17,18,23,6,22]), the induction
scheme is not constructed a priori but implicitly during the proof attempt.

Implicit induction is typically based on term rewriting. While ordinary term
rewrite systems (TRSs) are a well-understood formalism for modelling algo-
rithms, they lack in expressivity since they don’t support built-in data structures
such as integers. In the first part of this paper, an expressive class of TRSs (called
Z-TRSs) with built-in linear integer arithmetic is introduced. The semantics of
integers can be utilized in the form of linear integer arithmetic constraints (LIA-
constraints). Next, an inductive proof method for Z-TRSs is developed. This
method couples implicit induction with a decision procedure for the theory of
linear integer arithmetic with the (free) constructors of the Z-TRS.

While inductive proof methods can be automated, they do not provide a
decision procedure since proof attempts may diverge, fail, or need intermediate
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lemmas. In program verification, a decision procedure that can be used as a
“black box” is preferable since an interactive use of inductive reasoning methods
is typically only possible by trained experts. The goal of the second part of this
paper is to derive conditions on Z-TRSs and conjectures under which the proof
method can be used as a decision procedure, i.e., will always produce a proof
or disproof. These conditions are based on properties of the rewrite rules in a
Z-TRS that can be pre-computed during parsing. As we show experimentally
in this paper, checking whether a conjecture satisfies the conditions is easily
possible and requires much less time than attempting a proof or disproof.

Work on identifying conditions under which (explicit) inductive theorem prov-
ing provides a decision procedure was initiated in [20,15,16]. These previous
papers impose strong restrictions on both the TRSs and the conjectures. The
functions defined by the TRS have to be given in such a way that any function
f may only make recursive calls to the function f itself. Often, it is necessary
to allow calls to other auxiliary functions or even mutually recursive definitions.
Both of these possibilities are supported in this paper. All of [20,15,16] impose
the restriction that the conjectures contain a subterm of the form f(x1, . . . , xn)
for a defined function f and pairwise distinct variables x1, . . . , xn. This term is
then chosen for the construction of the induction scheme. In this paper, much
like in [13], this restriction is relaxed by making it possible to base the induction
proof on a subterm where the arguments are not necessarily pairwise distinct
variables. The result in this paper are however much more general than [13] since
that paper did not yet consider Z-TRSs. As a result, many conjectures which
could not be handled previously can now be decided.

The integration of decision procedures for the theory of linear arithmetic on
natural numbers or integers into inductive reasoning has been previously con-
sidered in [9,19,3], with the main focus on contextual rewriting which integrates
rewriting with decision procedures. The proof method developed in this paper
is in general incomparable to these methods, though, since instead of the more
complex contextual rewriting without constraints, regular constrained rewriting
is employed. This gives rise to an elegant and intuitive proof method. Inductive
theorem proving for TRSs with constraints has been investigated in [7]. That
method, however, does not support LIA-constraints and is thus incomparable
to the method presented below. Another method for inductive theorem prov-
ing with constrained TRSs has been presented in [24], but that paper is only
available in Japanese, making it impossible for us to compare the methods.

All proofs missing from this paper can be found in the full version [14].

2 Z-TRSs

This section introduces Z-TRSs, a class of constrained TRSs that contains linear
integer arithmetic as the built-in constraint theory. This class of TRSs can be
seen as a simplified special case of the constrained equational rewrite systems
(CERSs) from [12]. We assume familiarity with the notions and concepts from
(many-sorted) term rewriting and refer to [4] for details.
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For Z-TRSs, built-in integers are modeled using the function symbols FLIA =
{0 : → int, 1 : → int, − : int → int, + : int× int→ int} where we use a
simplified notation for terms built using + and −. Recall that Z is an Abelian
group with unit 0 that is generated using the element 1. Integers thus satisfy the
following properties ELIA:

x+ y ≈ y + x x+ (y + z) ≈ (x+ y) + z
x+ 0 ≈ x x+ (−x) ≈ 0

An atomic LIA-constraint has the form t1 P t2 for a predicate symbol P ∈ {>
, ≥, -} and terms t1, t2 ∈ T (FLIA,V) (where V is a set of variables). The set
of LIA-constraints is the closure of the set of atomic LIA-constraints under �
(truth), ¬, and ∧. The Boolean connectives ∨, ⇒, and ⇔ can be defined as
usual. Also, LIA-constraints have the expected semantics. The main interest is
in LIA-satisfiability and LIA-validity. Both of these properties are decidable.

For Z-TRSs, FLIA is extended by a signature F of function symbols. In the
following, terms denote members of T (F ∪ FLIA,V) unless otherwise noted. A
sequence t1, . . . , tn of terms is also denoted by t∗.

Definition 1 (Z-Free Terms). A term t is Z-free iff it does not contain any
occurrences of function symbols from FLIA.

Definition 2 (Z-TRSs, Defined Symbols, Constructors). A Z-rule is a
rewrite rule of the form l → r�ϕ� where l and r are terms with sort(l) = sort(r)
such that l is Z-free and ϕ is a LIA-constraint. If ϕ = �, then l → r can be
written instead of l → r�ϕ�. A Z-TRS is a finite set of Z-rules. The set of
defined symbols is D(R) = {f | f = root(l) for some l → r�ϕ� ∈ R}. The
set R(f) = {l → r�ϕ� ∈ R | root(l) = f} are the rules defining f . The set
C(R) = F −D(R) denotes the constructors of R.

It is assumed in the following that C(R) does not contain any function symbol
with resulting sort int, i.e., no new constructors for Z are added. This is a
natural assumption and not a restriction. The assumption that l is Z-free is not
severe in practice since an occurrence of a term t ∈ T (FLIA,V) in the left-hand
side can be replaced by a fresh variable xt if xt - t is added to the constraint.

Example 3. The following rules determine whether x is a divisor of y:

divides(x, y) → divides(−x, y) �x < 0 ∧ y ≥ 0� (1)
divides(x, y) → divides(x,−y) �x ≥ 0 ∧ y < 0� (2)
divides(x, y) → divides(−x,−y) �x < 0 ∧ y < 0� (3)
divides(x, y) → true �x ≥ 0 ∧ y � 0� (4)
divides(x, y) → false �x � 0 ∧ y > 0� (5)
divides(x, y) → false �x > 0 ∧ y > 0 ∧ x > y� (6)
divides(x, y) → divides(x, y − x) �x > 0 ∧ y > 0 ∧ y ≥ x� (7)

Then D(R) = {divides} and C(R) = {true, false}. ♦
The restriction that left-hand sides of rules are Z-free allows for a simple defini-
tion of the rewrite relation of a Z-TRS since LIA can be disregarded for matching.
Notice that the matching substitution needs to be restricted in order to make
sure that validity of the instantiated LIA-constraint can be decided.
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Definition 4 (Z-Based Substitutions, Rewrite Relation of a Z-TRS).
Let R be a Z-TRS and let s be a term. Then s→R,Z t iff there exist a constrained
rewrite rule l → r�ϕ� ∈ R, a position p ∈ Pos(s), and a Z-based substitution
σ such that (1) s|p = lσ, (2) ϕσ is LIA-valid, and (3) t = s[rσ]p. Here, a
substitution σ is Z-based iff σ(x) ∈ T (FLIA,V) for all variables x of sort int.

Example 5. Using the Z-TRS from Exa. 3, divides(2,−6) →R,Z divides(2, 6)
→R,Z divides(2, 4) →R,Z divides(2, 2) →R,Z divides(2, 0) →R,Z true using the
rewrite rules (2), (7) (three times), and (4). ♦

Z-TRSs that are to be used for inductive theorem proving need to satisfy certain
properties. The first property is termination, i.e., well-foundedness of →R,Z.
While this is in general undecidable, the methods for proving termination of
CERSs developed in [12] are applicable since Z-TRSs are a restricted kind of
CERSs. These methods are based on the dependency pair approach and have
been implemented in the termination tool AProVE.

The defined functions of a Z-TRS need to be total, i.e., result in a constructor
ground term when applied to constructor ground terms as their arguments.

Definition 6 (Constructor Ground Terms, Quasi-Reductivity). A Z-
TRS R is quasi-reductive iff every ground term of the form f(t∗) with f ∈
D(R) and constructor ground terms t∗ is reducible by →R,Z. Here, a constructor
ground term is a term from T (C(R)∪FLIA). Furthermore, a constructor ground
substitution is a substitution that maps all variables to constructor ground terms.

The final property required of a Z-TRS is confluence.

Definition 7 (Confluence). A Z-TRS R is confluent iff ←∗
R,Z ◦ →∗

R,Z ⊆
→∗

R,Z ◦ ←∗
R,Z.

Checking whether a Z-TRS is quasi-reductive and confluent is a hard problem in
general. Thus, a restricted class of Z-TRSs is considered in the following. For this
class, checking for quasi-reductivity is easily possible. Furthermore, Z-TRSs from
this class will always be confluent. It is required that the rules are left-linear,
constructor-based, and “disjoint” in the sense that at most one rule is applicable
to each position in any term. Notice that two rules might have identical left-hand
sides as long as the conjunction of their LIA-constraints is unsatisfiable.

Definition 8 (Orthogonal Z-TRSs). A Z-TRS R is orthogonal iff

1. For all l→ r�ϕ� ∈ R, l is linear and of the form f(l∗) with l∗ ∈ T (C(R),V).
2. For any two rules l1 → r1�ϕ1�, l2 → r2�ϕ2�, either l1 = l2 or l1, l2 are not

unifiable after their variables have been renamed apart.
3. For any two non-identical rules l1 → r1�ϕ1�, l2 → r2�ϕ2� with l1 = l2, the

constraint ϕ1 ∧ ϕ2 is LIA-unsatisfiable.
4. Whenever l1 → r1�ϕ1�, . . . , ln → rn�ϕn� are all rules with identical left-hand

sides, then the constraint ϕ1 ∨ . . . ∨ ϕn is LIA-valid.

Example 9. The Z-TRS from Exa. 3 is orthogonal. ♦
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Using this definition, quasi-reductivity of orthogonal Z-TRSs can be reduced to
quasi-reductivity of ordinary TRSs. Furthermore, orthogonal Z-TRSs are always
confluent, regardless of whether they are terminating or not.

Theorem 10. Let R be an orthogonal Z-TRS. Then it is decidable whether R
is quasi-reductive. Furthermore, R is confluent.

3 Inductive Theorem Proving with Z-TRSs

In the following, it is assumed thatR is a terminating quasi-reductive orthogonal
Z-TRS, which implies that R is confluent. The atomic conjectures in inductive
theorem proving are equalities between terms. In this paper, a generalized form
of these atomic conjectures is used that also incorporates a LIA-constraint.

Definition 11 (Atomic Conjectures). An atomic conjecture has the form
s ≡ t�ϕ� where s and t are terms with sort(s) = sort(t) and ϕ is a LIA-constraint.
If ϕ = �, then s ≡ t can be written instead of s ≡ t�ϕ�. An atomic conjecture
s ≡ t�ϕ� is an inductive theorem iff sσ ↔∗

R∪ELIA,Z
tσ for all constructor ground

substitutions σ such that ϕσ is LIA-valid. A set of atomic conjectures is an
inductive theorem iff all of its elements are inductive theorems.

The inductive theorem proving method for Z-TRSs is based on Reddy’s term
rewriting induction [23]. The presentation follows [2]. The main idea of this
method is to expand subterms of atomic conjectures using narrowing.

Definition 12 (Expd). A Z-free term t is basic iff t = f(t∗) where f ∈ D(R)
and t∗ ∈ T (C(R),V). For an atomic conjecture s ≡ t�ϕ� and a basic term u such
that s = C[u], the set Expdu(s, t, ϕ) is defined as

Expdu(s, t, ϕ) = {C[r]σ ≡ tσ�ϕσ ∧ ψσ� | l → r�ψ� ∈ R, σ = mgu(u, l) exists,
and ϕσ ∧ ψσ is LIA-satisfiable }

Here, it has been assumed that the variables of l → r�ψ� have been renamed to
be disjoint from the variables of s ≡ t�ϕ�.
Example 13. Consider the atomic conjecture divides(x, x) ≡ true in the context
of the Z-TRS from Exa. 3. For s = divides(x, x), t = true, u = s, and ϕ = �,
Expdu(s, t, ϕ) = {divides(−x,−x) ≡ true �x < 0 ∧ x < 0�, true ≡ true �x ≥
0 ∧ x - 0�, divides(x, x− x) ≡ true �x > 0 ∧ x > 0 ∧ x ≥ x�}. ♦

The inductive proof method for Z-TRSs is formulated using the inference system
I given in Fig. 1. Here, s ≡̇ t�ϕ� denotes one of s ≡ t�ϕ� and t ≡ s�ϕ� and “�”
denotes a disjoint union. The inference rules operate on tuples 〈E,H〉, where E
consists of atomic conjectures that are to be proven and H consists of atomic
conjectures that have been oriented as rewrite rules. Instances of these rules
constitute the hypotheses in a proof by induction. The goal of an inductive proof
is to obtain a tuple of the form 〈∅, H〉 starting from the tuple 〈E, ∅〉. If none
of the inference rules is applicable to 〈E′, H ′〉 where E′ �= ∅, then the inductive
proof fails. Finally, an inductive proof may also diverge or end in ⊥.
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Expand
〈E � {s ≡̇ t�ϕ�}, H〉

〈E ∪ Expdu(s, t, ϕ), H ∪ {s → t�ϕ�}〉

if R∪H ∪ {s → t�ϕ�}
terminates, u is basic,
and s is Z-free

Simplify
〈E � {s ≡̇ t�ϕ�}, H〉
〈E ∪ {s′ ≡̇ t�ϕ�}, H〉

if s�ϕ� →R∪H,Z s
′�ϕ�

Case-Simplify
〈E � {s ≡̇ t�ϕ�}, H〉

〈E ∪ {s′ ≡̇ t�ϕ′� | s′�ϕ′� ∈ Casep(s,ϕ)}, H〉

Delete
〈E � {s ≡̇ t�ϕ�}, H〉

〈E, H〉
if s ↔∗

ELIA,Z
t or ϕ is LIA-unsatisfiable

Theory�
〈E � {s ≡̇ t�ϕ�}, H〉

〈E, H〉
if s, t do not contain symbols from D(R)
and ϕ ⇒ s � t is LIAC-valid

Theory⊥
〈E � {s ≡̇ t�ϕ�}, H〉

⊥
if s, t do not contain symbols from D(R)
and ϕ ⇒ s � t is not LIAC-valid

Fig. 1. The inference system I

The inference rule Expand uses Def. 12 to expand a basic subterm of an atomic
conjecture. Then, this atomic conjecture is oriented as a rewrite rule and added
to the set H of hypotheses. Notice that this addition is only allowed if the Z-TRS
consisting of R∪H and this newly obtained rule is terminating. This restriction
is needed in order to obtain a sound inductive proof method.

The rule Simplify uses simplification with R and the hypotheses in H . For
this, the constraint of the atomic conjecture is taken into account by considering
the following rewrite relation. It only differs from Def. 4 in the second condition.

Definition 14 (Rewrite Relation of a Z-TRS on Constrained Terms).
Let R be a Z-TRS, let s be a term, and let ψ be a LIA-constraint. Then s�ψ� →R,Z

t�ψ� iff there exist a constrained rewrite rule l → r�ϕ� ∈ R, a position p ∈
Pos(s), and a Z-based substitution σ such that (1) s|p = lσ, (2) ψ ⇒ ϕσ is
LIA-valid, and (3) t = s[rσ]p.

The inference rule Case-Simplify combines a case split with simplification using
R (but not using H). It makes use of the following definition which refines the
constraint in a case distinction in order to make a rewrite rule applicable.

Definition 15 (Case). For a term s, a LIA-constraint ϕ, and a position p ∈
Pos(s), the set Casep(s, ϕ) is defined as

Casep(s, ϕ) = {s[riσi]p�ϕ ∧ ψiσi� | li → ri�ψi� ∈ R, s|p = liσi,
and ϕ ∧ ψiσi is LIA-satisfiable }

The construction is only performed if all σi are Z-based.

The rule Delete removes trivial atomic conjectures, and the rules Theory and
Theory⊥ apply to atomic conjectures that do not contain any defined symbols and
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make use of a decision procedure for the theory LIAC that combines the linear
theory of integers with the (free) constructors from C(R). LIAC-validity and
LIAC-satisfiability are decidable and decision procedures have been implemented,
for instance in the SMT-solver CVC3 [5].

The following lemma and theorem state properties of I, where 〈E,H〉 �I
〈E′, H ′〉 denotes application of one of the inference rules.

Lemma 16. 1. If 〈En, Hn〉 �I 〈En+1, Hn+1〉 using a rule other than Theory⊥,
then ↔∗

R∪En∪Hn∪ELIA,Z
= ↔∗

R∪En+1∪Hn+1∪ELIA,Z
on ground terms.

2. If 〈E, ∅〉 �∗I 〈∅, H〉 using inference rules other than Theory⊥, then →H,Z ⊆
→R,Z ◦ →∗

R∪H,Z ◦ ↔∗
ELIA,Z

◦ ←∗
R∪H,Z on ground terms.

Theorem 17. If 〈E, ∅〉 �∗I 〈∅, H〉, then E is an inductive theorem.

Proof. By Lem. 16.1, ↔∗
R∪E∪ELIA,Z

= ↔∗
R∪H∪ELIA,Z

on ground terms. Thus, it
suffices to show that ↔∗

R∪H∪ELIA,Z
= ↔∗

R∪ELIA,Z
on ground terms. For this, the

following principle is used:

Assume that the following conditions are satisfied:
1. →R∪H,Z is terminating on ground terms.
2. →H,Z ⊆ →R,Z ◦ →∗

R∪H,Z ◦ ↔∗
ELIA,Z

◦ ←∗
R∪H,Z on ground terms.

Then ↔∗
R∪ELIA,Z

= ↔∗
R∪H∪ELIA,Z

on ground terms.

This principle is quite similar to an abstract principle due to Koike and Toyama
as reported in [2] but differs from that principle by incorporating ELIA.

With this principle, the statement of the theorem can be shown. The first
condition follows from the assumption on R and from the condition of the in-
ference rule Expand. The second condition is the property from Lem. 16.2. ��
Example 18. This example considers the definition of divides from Exa. 3 and
adds the following rules defining gcd:

gcd(x, y) → gcd(−x, y) �x < 0 ∧ y ≥ 0�
gcd(x, y) → gcd(x,−y) �x ≥ 0 ∧ y < 0�
gcd(x, y) → gcd(−x,−y) �x < 0 ∧ y < 0�
gcd(x, y) → y �x � 0 ∧ y ≥ 0�
gcd(x, y) → x �x > 0 ∧ y � 0�
gcd(x, y) → gcd(x− y, y) �x > 0 ∧ y > 0 ∧ x ≥ y�
gcd(x, y) → gcd(x, y − x) �x > 0 ∧ y > 0 ∧ y > x�

Then, the conjectures

divides(x, x) ≡ true divides(x, y) ≡ true �x � −y�
divides(x, y) ≡ true �x � 1� gcd(x, x) ≡ x �x ≥ 0�

gcd(x, x) ≡ −x �x ≤ 0� gcd(x, y) ≡ 1 �y � 1�

can be proved fully automatically using the inference system I. ♦
The inference system I cannot only be used in order to prove inductive theorems
but also in order to disprove conjectures.

Theorem 19. If 〈E, ∅〉 �∗I ⊥, then E is not an inductive theorem.

Example 20. For the function gcd from Exa. 18, the conjecture gcd(x, x) ≡ x can
be disproved fully automatically using the inference system I (since gcd(x, x) ≡
−x if x is negative). ♦



248 S. Falke and D. Kapur

4 Inductive Theorem Proving as a Decision Procedure

In this section, we derive conditions on Z-TRSs and conjectures under which
the inference system I can be used as a decision procedure, i.e., will always
produce a proof or disproof of a conjecture if a suitable strategy on the use
of the inference rules is employed. These conditions are based on properties of
the rewrite rules in a Z-TRS that can be pre-computed during parsing. Thus,
checking whether a conjecture satisfies the conditions under which I provides a
decision procedure is easily possible and requires much less time than attempting
a proof or disproof. Much of the material presented in this section has appeared
in preliminary form in [13]. The use of Z-TRSs and constrained rewriting is a
significant generalization, however, since [13] was based on ordinary rewriting
and did not support the combination of integers with (free) constructors (but
was restricted to either natural numbers or (free) constructors).

In order to simplify notation and presentation, this section is restricted to
the case where all function symbols are at most binary (the general case is
discussed in [14]). We say that a binary function symbol f is equal-sorted iff
both arguments of f have the same sort.

4.1 Simple Decidable Conjectures

For the purpose of this section, a simple class of function definitions is considered.
In its simplest form, functions may only make recursive calls to themselves.
Furthermore, nesting of recursive calls is not permitted. This is captured by the
following definition (related to the definition of T -based functions in [20,16]).

Definition 21 (LIAC-Based Functions). A function g ∈ D(R) is LIAC-based
iff all right-hand sides of rules in R(g) have the form C[g(r∗1), . . . , g(r

∗
m)] for a

context C over C(R)∪FLIA such that r∗k ∈ T (C(R)∪FLIA,V) for all 1 ≤ k ≤ m.

In order to ensure that a non-linear hypothesis is applicable to all recursive calls
of a LIAC-based functions after application of the Expand rule, it needs to be
ensured that the corresponding arguments of the recursive calls are “equal”.
This needs to be required only under the assumption that these arguments are
equal in the left-hand side of the rule since Expand does otherwise not create
any new atomic conjectures to which the hypothesis needs to be applied. This
property depends only on the rules in R(g) and is independent of the conjecture.

Definition 22 (ImpEq). Let g be equal-sorted LIAC-based. Then g ∈ ImpEq iff
for all g(l∗) → C[g(r∗1), . . . , g(r

∗
m)]�ϕ� ∈ R(g) for which ϕ ∧ l1 - l2 is LIAC-

satisfiable, the terms rk,1, rk,2 are Z-free for all 1 ≤ k ≤ m and ϕ ∧ l1 - l2 ⇒∧m
k=1 rk,1 - rk,2 is LIAC-valid.

Hence, if a term of the form g(l∗)σ is simplified using the rule g(l∗)→ C[g(r∗1),
. . . , g(r∗m)]�ϕ� and g ∈ ImpEq, then rk,1σ = rk,2σ for all 1 ≤ k ≤ m whenever
l1σ = l2σ. The set ImpEq can easily be computed from the rules defining g with
the help of a decision procedure for LIAC.
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Example 23. The following orthogonal Z-TRS determines whether a list is point-
wise bigger than another list of the same length:

ptwise(nil, nil) → true
ptwise(nil, cons(y, ys)) → false
ptwise(cons(x, xs), nil) → false

ptwise(cons(x, xs), cons(y, ys)) → ptwise(xs, ys) �x ≥ y�
ptwise(cons(x, xs), cons(y, ys)) → false �y > x�

Then ptwise ∈ ImpEq. To see this, notice that the implications from Def. 22
are trivially true for the first, second, third, and fifth rules since these rules
do not contain any recursive calls. For the fourth rule, the LIAC-validity of the
LIAC-constraint x ≥ y ∧ cons(x, xs) - cons(y, ys)⇒ xs - ys is easily shown. ♦

The definition of ImpEq requires that the argument are equal in all recursive calls
in all rules. Using rewriting with constraints, this requirement can be relaxed so
that more function definitions satisfy it. For recursive calls that can already be
simplified to a term not containing the defined symbol, the ImpEq requirement
does not need to be satisfied since the inductive hypothesis does not need to be
applied to this recursive call.

Example 24. Consider the function divides from Exa. 3 again. Then, the ImpEq
requirement is satisfied for the first through sixth rules. For the final rule, the
ImpEq requirement is not satisfied since x > 0∧y > 0∧y ≥ x∧x - y ⇒ x - y−x
is not LIAC-valid. However, the atomic conjecture divides(x, x − x) ≡ true �x >
0∧ x > 0∧ x ≥ x� generated in a proof attempt of divides(x, x) ≡ true simplifies
using →R,Z to true ≡ true �x > 0 ∧ x > 0 ∧ x ≥ x� using the rewrite rule
divides(x, y) → true �x ≥ 0 ∧ y - 0�. Thus, the inductive hypothesis does not
need to be applied for this obligation. ♦

In order to be as general as possible, we consider simplification using the inference
rule Case-Simplify (since Case-Simplify subsumes Simplify for rewriting using R).
The effect of repeated applications of Case-Simplify is captured by the following
definition.

Definition 25 (Simplification Trees). Let s be a term and let ϕ be a LIA-
constraint. A simplification tree for s�ϕ� is a non-empty tree whose nodes are
labelled with terms and LIA-constraints and whose root is labelled with s�ϕ� such
that for every internal node labelled with t�ψ�, the node has one child for every
t′�ψ′� ∈ Casep(t, ψ) and this child is labelled with t′�ψ′�.
Using simplification trees, the set ImpEq can be relaxed as follows.

Definition 26 (ImpEq ′). Let g be equal-sorted LIAC-based. Then g ∈ ImpEq ′
iff for all rules g(l∗) → C[g(r∗1), . . . , g(r

∗
m)]�ϕ� ∈ R(g) and all 1 ≤ k ≤ m,

either (1) ϕ ∧ l1 - l2 is LIAC-unsatisfiable, or (2) rk,1, rk,2 are Z-free and ϕ ∧
l1 - l2 ⇒ rk,1 - rk,2 is LIAC-valid, or (3) there exists a simplification tree for
g(r∗k)�ϕ ∧ θ� such that all leaves in this tree have labels of the form t�ψ� for a
term t ∈ T (C(R) ∪ FLIA,V) and a LIA-constraint ψ, where θ = l1 - l2 if the
arguments of g have sort int and θ = � otherwise.
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Example 27. Continuing Exa. 24, divides(x, y−x) �x > 0∧y > 0∧y ≥ x∧x - y�
— true �x > 0∧y > 0∧y ≥ x∧x - y∧x ≥ 0∧y−x - 0� is a simplification tree
for divides(x, y − x)�x > 0 ∧ y > 0 ∧ y ≥ x ∧ x - y� that satisfies the conditions
from case 2 in Def. 26. Thus, divides ∈ ImpEq ′. Similarly, gcd ∈ ImpEq ′. ♦

Notice that ImpEq ′ strictly subsumes ImpEq and remains easily computable.
The first version of decidable conjectures is now given as follows. Only a simple
form of basic terms is allowed, but non-linearity is possible.

Definition 28 (Simple Conjectures). A simple conjecture is an atomic con-
jecture of the form g(x∗) ≡ t such that the following conditions are satisfied: (1)
R ∪ {g(x∗) → t} is terminating, (2) g is LIAC-based, (3) x∗ consists of vari-
ables and t ∈ T (C(R) ∪ FLIA,V) and (4) if g is equal-sorted and x1 = x2, then
g ∈ ImpEq ′.

Example 29. For the Z-TRS from Exa. 23, the conjecture ptwise(xs, xs) ≡ true
is simple. For the Z-TRS from Exa. 18, the conjectures divides(x, x) ≡ true and
gcd(x, x) ≡ x from Exa. 20 are simple. ♦

Theorem 30. Using the strategy Expand ·Case-Simplify∗ · Simplify∗ · (Theory ∪
Theory⊥)

∗, where Simplify uses only hypotheses from H, it is decidable whether
a simple conjecture is an inductive theorem.

Proof. Let g(x∗) ≡ t be a simple conjecture and consider a rewrite rule g(l∗)→
C[g(r∗1), . . . , g(r

∗
m)]�ϕ� ∈ R(g). Provided g(x∗) and g(l∗) are unifiable and ϕσ is

LIA-satisfiable for σ = mgu(g(x∗), g(l∗)), application of Expand to g(x∗) ≡ t pro-
duces (amongst others) Cσ[g(r∗1)σ, . . . , g(r

∗
m)σ] ≡ tσ�ϕσ�. After the application

of Expand, the set H of hypotheses consists of the oriented conjecture g(x∗)→ t.
Now, if g is equal-sorted and x1 = x2, then g ∈ ImpEq ′. Thus, since x1 = x2

implies l1σ = l2σ, the definition of ImpEq ′ yields, for all 1 ≤ k ≤ m, that either
rk,1σ = rk,2σ or there exists a simplification tree for g(r∗k)�ϕ∧ l1 - l2� such that
all leaves have labels of the form t�ψ� for a t ∈ T (C(R) ∪ FLIA,V) and a LIA-
constraint ψ. Hence, Case-Simplify and/or Simplify using g(x∗)→ t ∈ H can be
applied to Cσ[g(r∗1)σ, . . . , g(r

∗
m)σ] ≡ tσ�ϕσ� to obtain Cσ[q1, . . . , qm] ≡ tσ�ψ�,

where qi is either from T (C(R) ∪ FLIA,V) or qi = tτi with τi = {x∗ "→ r∗i σ}.
Now, either Theory or Theory⊥ can be applied. ��

The concept of LIAC-based functions is quite restrictive since a LIAC-based func-
tion may only make recursive calls to itself and not to any other function. The
next definition considers a set of function symbols that may make recursive calls
to each other (these are essentially the jointly T -based functions from [13]).

Definition 31 (LIAC-Based Functions–Version 2). A set of functions G =
{g1, . . . , gn} ⊆ D(R) is LIAC-based iff all right-hand sides of rules in R(G) have
the form C[gk1(r

∗
1), . . . , gkm(r∗m)] for some context C over C(R)∪FLIA such that

r∗i ∈ T (C(R) ∪ FLIA,V) and gki ∈ G for all 1 ≤ i ≤ m.

Example 32. This example computes the pointwise average of two lists (stopping
as soon as either list is empty) and uses the auxiliary function avg:
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avg(x, y) → avg(y, x) �x > y�
avg(x, y) → x �y ≥ x ∧ y − x ≤ 1�
avg(x, y) → avg(x+ 1, y − 1) �y ≥ x ∧ y − x > 1�

avglist(xs, nil) → nil
avglist(nil, cons(y, ys)) → nil

avglist(cons(x, xs), cons(y, ys)) → cons(avg(x, y), avglist(xs, ys))

Then avglist is not LIAC-based, but the set {avg, avglist} is LIAC-based. ♦
In order to ensure that non-linear hypotheses are still applicable, the definition
of ImpEq and ImpEq ′ needs to be adapted as well. For this, the idea is to collect
a subset of a LIAC-based set of functions such that recursive calls to one of these
functions have equal arguments or can be rewritten to terms from T (C(R) ∪
FLIA,V) if all members of the subset have equal arguments.

Definition 33 (ImpEq ′–Version 2). Let G = {g1, . . . , gn} be a LIAC-based
set of functions. Then 〈g, Γ〉 ∈ ImpEq ′ for an equal-sorted g ∈ G iff Γ ⊆ G
such that all members of Γ are equal-sorted and for all rewrite rules gk(l

∗) →
C[gk1(r

∗
1), . . . , gkm(r∗m)]�ϕ� ∈ R(G) and all 1 ≤ i ≤ m with gki = g, either (1)

ϕ ∧ θ is LIAC-unsatisfiable where θ = l1 - l2 if gk ∈ Γ and θ = � if gk �∈ Γ , or
(2) ri,1, ri,2 are Z-free and ϕ ∧ θ ⇒ ri,1 - ri,2 is LIAC-valid where θ = l1 - l2
if gk ∈ Γ and θ = � if gk �∈ Γ , or (3) there exists a simplification tree for
g(r∗i )�ϕ ∧ θ� such that all leaves in this tree have labels of the form t�ψ� for a
term t ∈ T (C(R) ∪ FLIA,V) and a LIA-constraint ψ, where θ = l1 - l2 if the
arguments of gk have sort int and gk ∈ Γ , and θ = � otherwise.

Simple conjectures immediately generalize to LIAC-based sets G of functions.
Now, an atomic conjecture for each member of the set G needs to the proved.

Definition 34 (Simple Conjectures–Version 2). A simple conjecture is a
set of the form {g1(x∗1) ≡ t1, . . . , gn(x

∗
n) ≡ tn} such that the following conditions

are satisfied: (1) R ∪ {g1(x∗1) → t1, . . . , gn(x
∗
n) → tn} is terminating, (2) G =

{g1, . . . , gn} is LIAC-based, (3) x∗i consists of variables and ti ∈ T (C(R)∪FLIA,V)
for all 1 ≤ i ≤ n, and (4) if gk is equal-sorted and xk,1 = xk,2, then there exists
an 〈gk, Γ〉 ∈ ImpEq ′ such that xk′,1 = xk′,2 for all gk′ ∈ Γ .

Example 35. For the Z-TRS from Exa. 32, {avg(x, x) ≡ x, avglist(xs, xs) ≡
xs} is a simple conjecture. To see this, notice that both 〈avg, {avg, avglist}〉 ∈
ImpEq ′ and 〈avglist, {avglist}〉 ∈ ImpEq ′ due to the LIAC-validity of cons(x, xs) -
cons(y, ys)⇒ xs - ys and cons(x, xs) - cons(y, ys)⇒ x - y. ♦
Theorem 36. Using the strategy Expand∗ ·Case-Simplify∗ ·Simplify∗ · (Theory∪
Theory⊥)

∗, where Expand is applied once to each member of the set and Simplify
uses only H, it is decidable whether a simple conjecture is an inductive theorem.

4.2 Decidable Conjectures with Nesting

One restriction of the simple decidable conjectures from Sect. 4.1 is that nesting
of defined function symbols is not permitted. This restriction was imposed in
order to ensure that the inductive hypotheses are always applicable, resulting in
an atomic conjecture whose validity can be decided using Theory or Theory⊥.
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For atomic conjectures with nested defined function symbols, this is not always
the case since Expand might introduce contexts from the right-hand sides of rules
around the recursive calls. This context must be removed before the inductive
hypotheses can be applied. This observation leads to the concept of compatibility,
meaning that the Z-TRS can handle the contexts introduced in right-hand sides
of rules. The presentation in this section is influenced by the presentation in [16],
which presents similar results for ordinary TRSs. In contrast to [16], the notion
of compatibility is more complex and powerful in this paper since it is based on
the inference rule Case-Simplify, i.e., it uses simplification trees. This makes the
notion of compatibility more general, see Exa. 38 below.

Definition 37 (Compatibility). Let g be LIAC-based, let 1 ≤ j ≤ arity(g), and

let f be LIAC-based. Then g is compatible with f on argument j iff the jth argu-

ment of g has the same sort as f and for all rules f(l∗)→ C[f(r∗1), . . . , f(r
∗
n)]�ϕ�

there is a simplification tree for g(x1, . . . , xj−1, C[z1, . . . , zn], xj+1, . . . , xm)�ϕ�
such that all leaves in this tree have labels of the form

D[g(x1, . . . , xj−1, zi1 , xj+1, . . . , xm), . . . , g(x1, . . . , xj−1, zik , xj+1, . . . , xm)]�ϕ ∧ ψ�

for a LIA-constraint ψ, a context D over C(R)∪FLIA, and i1, . . . , ik ∈ {1, . . . , n}
such that zi �∈ V(D) for all 1 ≤ i ≤ n.

Example 38. Consider the Z-TRS consisting of the following rules:

zip(xs, nil) → pnil
zip(nil, cons(y, ys)) → pnil

zip(cons(x, xs), cons(y, ys)) → pcons(pair(x, y), zip(xs, ys))
maxpair(pnil) → nil

maxpair(pcons(pair(x, y), zs)) → cons(x,maxpair(zs)) �x ≥ y�
maxpair(pcons(pair(x, y), zs)) → cons(y,maxpair(zs)) �y > x�

Then maxpair is compatible with zip on argument 1. For the first two zip-rules,
C is pnil (a context without holes), and maxpair(pnil) — nil is a simplification
tree for maxpair(pnil). The leaf has the required form by letting D = nil. For the
third zip-rule, C is pcons(pair(x, y),�) and

maxpair(pcons(pair(x, y), z1))

cons(y,maxpair(z1)) �y > x�cons(x,maxpair(z1)) �x ≥ y�

is a simplification tree for maxpair(pcons(pair(x, y), z1)). Both leaves have the
required form by letting D = cons(x,�) or D = cons(y,�), respectively.

Notice that the use of simplification trees is essential, i.e., maxpair is not
compatible with zip on argument 1 using compatibility as in [16] since the term
maxpair(pcons(pair(x, y), z1)) cannot be simplified without a case split. ♦
The concept of compatibility can be extended to arbitrarily deep nestings of
functions, resulting in compatibility sequences.

Definition 39 (Compatibility Sequences). The sequence 〈f1, . . . , fd〉 where
f1, . . . , fd−1, fd are LIAC-based is a compatibility sequence on argument
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positions 〈j1, . . . , jd−1〉 iff fi is compatible with fi+1 on argument ji for all 1 ≤
i ≤ d− 1. A term s has this compatibility sequence iff

s = f1(p
∗
1, f2(p

∗
2, . . . fd−1(p

∗
d−1, fd(x

∗), q∗d−1) . . . , q
∗
2), q

∗
1)

such that the variables in x∗ do not occur elsewhere in s, the p∗i and q∗i are from
T (C(R) ∪ FLIA,V), and fi(p∗i , fi+1(. . .), q

∗
i )|ji = fi+1(. . .) for all 1 ≤ i ≤ d− 1.

Nested conjectures generalize simple conjectures as introduced in Sect. 4.1 by
allowing nested defined functions on the left-hand side.

Definition 40 (Nested Conjectures). A nested conjecture is an atomic con-
jecture of the form D[g(x∗)] ≡ t such that the following conditions are satisfied:
(1) R∪{D[g(x∗)]→ t} is terminating, (2) D[g(x∗)] has a compatibility sequence,
(3) x∗ consists of variables and t ∈ T (C(R)∪FLIA,V), and (4) if g is equal-sorted
and x1 = x2, then g ∈ ImpEq.

Example 41. Continuing Example 38, the termmaxpair(zip(xs, xs)) has the com-
patibility sequence 〈maxpair, zip〉 on arguments 〈1〉. Also, zip ∈ ImpEq. Thus,
maxpair(zip(xs, xs)) ≡ xs is a nested conjecture. ♦

Theorem 42. Using the strategy Expand ·Case-Simplify∗ · Simplify∗ · (Theory ∪
Theory⊥)

∗, where Simplify uses only hypotheses from H, it is decidable whether
a nested conjecture is an inductive theorem.

Of course, the concept of nested conjectures can be extended from LIAC-based
functions to LIAC-based sets of functions, similarly to how this was done for
simple conjectures in Sect. 4.1 (see [14] for details).

5 Implementation and Evaluation

The inductive proof method based on the inference system I has been imple-
mented in the prototype Sail2, the successor of Sail [13]. Functions for checking
whether a conjecture is simple or nested have been implemented in Sail2 as
well. In order to perform these checks as efficiently as possible, the following are
pre-computed while parsing the Z-TRS:

1. ImpEq and ImpEq ′ (using a decision procedure for LIAC-validity).
2. Information on the compatibility between function symbols.

In order to check for termination of R ∪ H as needed in the side condition of
Expand, the implementation of the methods for proving termination of CERSs
developed in [12] in the termination tool AProVE is used. For validity and satis-
fiability checking of LIA- and LIAC-constraints, the external tools Yices [11] (for
LIA-constraints) and CVC3 [5] (for LIAC-constraints) are used.

The implementation has been tested on 57 examples. This collection contains
conjectures which can be shown to be decidable using the results from Sect. 4
and conjectures where this is not the case. The time spent for checking whether
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a conjecture is decidable as well as the time needed for (dis-)proving it have been
recorded. Recall that a proof attempt requires calls to AProVE in order to prove
termination and to SMT-solvers in order to determine validity and satisfiability
of constraints. The following table contains average times, the detailed results
can be found at http://baldur.iti.kit.edu/~falke/sail2/.

Checking Time SMT Time
Termination Time

Other Time Total Time
within AProVE

0.019 msec 16.451 msec 102.934 msec 0.554 msec 119.957 msec

As is immediate by inspection, the most time-consuming part (over 90% of
the total time) is the termination check using AProVE. In contrast, checking
whether a conjecture is a member of the class of decidable conjectures is orders
of magnitude faster than proving or disproving it (i.e., SMT time + other time).

6 Conclusions

We have presented new results on the decidability of validity for a class of con-
jectures that requires inductive reasoning. An implementation in the prototype
Sail2 has been successfully evaluated on a large collection of examples. This eval-
uation confirms that checking whether the inductive validity of a conjecture is
decidable is indeed much faster than attempting to prove or disprove it.

The new decidability results reported in this paper were obtained using Z-
TRSs for which an inductive proof method based on implicit induction coupled
with a decision procedure for the theory LIAC is given. The development of this
proof method is a contribution in itself, independent of the decidability results
about inductive validity. The inductive proof method not only makes it possible
to prove inductive conjectures but also allows disproving false conjectures.

There are several independent directions for future work. We are interested in
developing an inductive proofmethod formore general classes of CERSs as defined
in [12]. In contrast toZ-TRSs, these CERSs also support (non-free) collection data
structures such as sets ormultisets and thus provide anevenmore expressive kind of
term rewrite systems. In addition, we are planning to identify classes of conjectures
with constraints and classes of conjectures containing nested function symbols on
both sides whose inductive validity can be decided. This may require techniques
similar to [15,16]whichautomatically generate suitable generalization lemmas that
are needed for deciding validity. Finally, Reddy’s term rewriting induction [23] has
recently been extended in order to support non-orientable atomic conjectures that
cannot be turned into terminating rewrite rules [1], andwe are interested in adding
these capabilities to our proof method for Z-TRSs.
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Abstract. Combination of theories underlies the design of satisfiability
modulo theories (SMT) solvers. The Nelson-Oppen framework can be
used to build a decision procedure for the combination of two disjoint
decidable stably infinite theories.

We here study combinations involving an arbitrary first-order theory.
Decidability is lost, but refutational completeness is preserved. We con-
sider two cases and provide complete (semi-)algorithms for them. First,
we show that it is possible under minor technical conditions to combine
a decidable (not necessarily stably infinite) theory and a disjoint finitely
axiomatized theory, obtaining a refutationally complete procedure. Sec-
ond, we provide a refutationally complete procedure for the union of two
disjoint finitely axiomatized theories, that uses the assumed procedures
for the underlying theories without modifying them.

1 Introduction

The problem of combining decidable first-order theories has been widely stud-
ied (e.g., [9,10,13]). The fundamental result due to Nelson and Oppen yields a
decision procedure for the satisfiability (or dually, validity) problem concerning
quantifier-free formulas in the union of the languages of two decidable theories,
provided these theories are disjoint (i.e., they only share the equality symbol)
and stably infinite (i.e., every satisfiable set of literals has an infinite model). This
result, and its extensions, underly the design of automated reasoners known as
SMT (Satisfiability Modulo Theories [2]) solvers.

The problem of combining theories for which there exist refutationally com-
plete semi-decision procedures for the validity (unsatisfiability) problem has
received less attention. In this paper, we will show that the fundamental re-
sults about combinations of disjoint decidable theories extend naturally to semi-
decidable theories, and that refutationally complete procedures for such theories
can be combined to yield a refutationally complete procedure for their union.

From a theoretical point of view, our observation may appear trivial. In par-
ticular, consider two theories presented by finitely many first-order axioms: com-
plete first-order theorem provers provide semi-decision procedures for them. A
refutationally complete procedure for the union of these theories is simply ob-
tained by running the same prover on the union of the axioms. We believe
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however that combining theories à la Nelson-Oppen is still valuable in the two
scenarios in Sections 5 and 6. Specialized efficient decision procedures exist for
some theories of high practical relevance such as arithmetic fragments, uninter-
preted symbols or arrays. In Section 5 we consider the combination of a decidable
theory with a disjoint finitely axiomatized theory (without further restriction on
cardinalities or on the form of this theory). Using these results, the usual lan-
guage of SMT solvers can be extended with symbols defined by finitely axiom-
atized theories, preserving refutational completeness. In Section 6 we consider
combining two disjoint finitely axiomatized theories. Here the interest lies in the
fact that the refutationally complete procedures for the theories in the combi-
nation share very little information; the procedure is essentially parallel.

There has already been work on extending automated first-order theorem
provers in order to accommodate interpreted symbols from decidable theories,
such as fragments of arithmetic, for which an encoding by first-order axioms
does not yield a decision procedure [1,3]. Bonacina et al. [5] give a calculus
for a refutationally complete combination of superposition and SMT solvers.
Instantiation-based frameworks (see [2] for more information) also have inter-
esting completeness results. In [8], a complete instantiation procedure is given,
even for some cases where theories are not disjoint. Compared to this approach,
ours handles a less expressive fragment, but allows working in standard models.
Also, our approach imposes no restrictions on the first-order theory and is in-
dependent of the actual presentation of the underlying theories or the nature of
the semi-decision procedures. It uses the underlying semi-decision procedures as
“black boxes” for the combination, in the spirit of the Nelson-Oppen approach.

Our results rely on two main restrictions inherited from Nelson-Oppen. First,
we consider unsatisfiability of quantifier-free formulas, and second, those formu-
las are studied in the union of disjoint theories. Both restrictions appear crucial,
specifically for theories that are not finitely axiomatized. Consider combining
Presburger arithmetic (which is decidable) with a first-order and finitely axiom-
atizable but non-disjoint theory defining multiplication in terms of addition.
One would expect the result to be non-linear arithmetic on naturals. Because
of the unsolvability of Hilbert’s tenth problem, there exists no refutationally
complete decision procedure for this fragment. Consider also the disjoint union
of Presburger arithmetic and the empty theory for uninterpreted symbols (both
decidable); considering quantified formulas on the union of the languages, it is
easy to define multiplication and hence to encode the Hilbert’s tenth problem:
there cannot be a refutationally complete decision procedure (on the standard
model) for arbitrary quantified formulas in the union of these theories. We ad-
ditionally assume as a reasonable simplification hypothesis that the theories are
either decidable or are finitely axiomatized.

Outline. Section 2 fixes basic notations and introduces a pseudo-code language.
Sections 3 and 4 present elementary results on combining theories, including
the simple case of combining refutationally complete procedures for disjoint sta-
bly infinite theories. Lifting the restriction on cardinalities, Section 5 considers
combinations of a decidable theory with a disjoint, finitely axiomatized theory.
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Finally, we propose in section 6 an algorithm to combine two disjoint finitely
axiomatized theories. The results in this paper can of course be used modularly
to build complex combinations, involving several decidable theories and several
finitely axiomatized theories.

2 Notations

A first-order language L = 〈V ,F ,P〉 consists of an enumerable set V of variables
and enumerable sets F and P of function and predicate symbols, associated with
their arities. Nullary function symbols are called constant symbols.

Terms and formulas over the language L are defined in the usual way. An
atomic formula is either an equality statement (t = t′) where t and t′ are terms,
or a predicate symbol applied to the corresponding number of terms. Formulas
are built from atomic formulas using Boolean connectives (¬, ∧, ∨, ⇒, ≡) and
quantifiers (∀, ∃). A literal is an atomic formula or the negation of an atomic
formula. A formula with no free variables is closed.

An interpretation I for a first-order language L provides a non-empty do-
main D, a total function I[f ] : Dr → D of appropriate arity for every function
symbol f , a predicate I[p] : Dr → {�,⊥} of appropriate arity for every predi-
cate symbol p, and an element I[x] ∈ D for every variable x. By extension, an
interpretation defines a value in D for every term, and a truth value for every for-
mula. The cardinality of an interpretation is the cardinality of its domain. The
notation Ix1/d1,...,xn/dn

where x1, . . . , xn are different variables (or constants)
denotes the interpretation that agrees with I, except that it associates di ∈ D
to the variable (resp. constant) xi, for 1 ≤ i ≤ n. A model of a formula (resp., a
set of formulas) is an interpretation in which the formula (resp., every formula
in the set) evaluates to true. A formula is satisfiable if it has a model, and it is
unsatisfiable otherwise.

Given an interpretation I for a first-order language L = 〈V ,F ,P〉, the restric-
tion I ′ of I to L′ = 〈V ′,F ′,P ′〉 with V ′ ⊆ V , F ′ ⊆ F , P ′ ⊆ P , is the unique
interpretation for L′ similar to I, i.e. I ′ and I have the same domain and assign
the same value to symbols in V ′, F ′ and P ′.

A theory T in a first-order language is a set of interpretations such that,
for every interpretation I ∈ T , every variable x of the language, and every
element d of the domain, Ix/d ∈ T . A theory may also be defined by a set
of closed formulas, in which case it is the set of all the models of the set of
formulas. A finite theory or a finitely axiomatized theory is the set of models
of a finite set of closed formulas. A constant a is uninterpreted in a theory if
for every interpretation I ∈ T , and every element d of the domain, Ia/d ∈ T .
The spectrum of a theory T , denoted spectrum(T ), is the set of all (finite or
infinite) cardinalities of the interpretations in T . A theory is satisfiable if it is a
non-empty set of interpretations; it is unsatisfiable otherwise.

Two theories T1 and T2 in languages L1 = 〈V1,F1,P1〉 and L2 = 〈V2,F2,P2〉
respectively are disjoint if P1 ∩ P2 = ∅ and if F1 ∩ F2 only contains constants
that are uninterpreted in both T1 and T2. The union T1 ∪ T2 of two theories T1
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and T2 (respectively in languages L1 = 〈V1,F1,P1〉 and L2 = 〈V2,F2,P2〉) is
the largest set of interpretations for language L = 〈V1 ∪ V2,F1 ∪ F2,P1 ∪ P2〉
such that for every I ∈ T1 ∪ T2, I restricted to L1 (L2) belongs to T1 (resp.,
T2). Notice that the union of two theories defined by sets C1 and C2 of closed
formulas is exactly the theory defined by the union C1 ∪ C2.

A T -model of a formula G is an interpretation in T which is a model of G. A
formula G is T -satisfiable if it has a T -model, and it is T -unsatisfiable otherwise.
A decidable theory T is a theory such that the T -satisfiability problem for finite
sets of ground literals in the language of T is decidable.

A refutationally complete procedure for T is a (semi-)algorithm for the T -
unsatisfiability problem that will always terminate on an unsatisfiable formula
by stating that it is unsatisfiable. Given a satisfiable formula, it may either
terminate by stating that it is satisfiable or continue running forever. Thus, a
refutationally complete procedure is a decision procedure if and only if it always
terminates. A refutationally complete theory T is a theory such that there exists
a refutationally complete procedure for the T -unsatisfiability problem for sets
of ground literals in the language of T .

A theory is stably infinite if every T -satisfiable set of literals has an infinite
model of cardinality ℵ0.1

For convenience, we define the notation card≥(n) that denotes a set of literals
satisfiable only on models of cardinality at least n (where n is a natural number).
Such a cardinality constraint can be enforced by augmenting the set of literals
by the set of disequalities {ai �= aj | 1 ≤ i < j ≤ n} for fresh constants ai.

Pseudocode

We will describe our algorithms using pseudocode. Beyond familiar constructs
whose semantics is well known, we use the construct execute in parallel, which
spawns several child processes, explicitly identified using the process keyword.
These processes can execute truly in parallel, or be subject to any fair interleav-
ing. The execute in parallel construct and all its child processes terminate as
soon as some child process terminates. Similarly, if child processes are spawned
inside a function, any return e instruction executed by a child processes will
terminate all child processes and make the function return the result e. In our
applications, we never have to consider race conditions such as two sibling pro-
cesses potentially returning different values.

For synchronization, processes can use the instruction wait C, where C is
a Boolean expression. This instruction blocks the process while C is false, and
allows the process to resume as soon as C becomes true.2 In particular, we use

1 Traditionally, a theory is said to be stably infinite if every T -satisfiable set of literals
has an infinite model. In fact, a set of first-order formulas in a countable language
(i.e. with a enumerable set of variables, functions, and predicates) has a model with
cardinality ℵ0 if it has an infinite model, thanks to the Löwenheim-Skolem theorem.

2 In our algorithms, we only use synchronization expressions C that never become
false after being true, hence the underlying implementation of the wait mechanism
is unimportant.
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the wait instruction as syntactic sugar for wait false in order to definitely
block processes. However, we assume that the execute in parallel construct
and all its child process terminate if all child processes are waiting. Controlling
concurrent accesses to shared variables will be explicitly specified when required.

3 Combining Models

In the following, we will restrict our attention to the (un)satisfiability of finite
sets of literals. Recall that the T -satisfiability of quantifier-free formulas can
be reduced to a series of T -satisfiability checks for finite sets of literals [2]. For
example, and disregarding efficient techniques used in SMT solvers, a quantifier-
free formula G is satisfiable if and only if the set of literals corresponding to one
of the cubes (i.e. one of the conjunctions of literals) in the disjunctive normal
form (DNF) of G is satisfiable.

Assume that T is the union of two disjoint theories T1 and T2, respectively in
languages L1 and L2. By introducing new uninterpreted constants, it is possible
to purify any finite set of literals L into a T -equisatisfiable set of literals L1∪L2

where each Li is a set of literals in language Li (see e.g. [10]).

Definition 1. An arrangement A for a set of constant symbols S is a maximal
satisfiable set of equalities and inequalities a = b or a �= b, with a, b ∈ S.

That is, an arrangement A for S cannot be consistently extended with any
equality or disequality over S which is not already a consequence ofA. Obviously,
there exist only finitely many arrangements for a finite set of constants.

The following theorem (see also [11,12,7]) underlies the completeness proof of
combinations of decision procedures. It is also the cornerstone of the results for
combining refutationally complete decision procedures.

Theorem 2. Consider disjoint theories T1 and T2, and finite sets of literals L1

and L2, respectively in languages L1 and L2. L1 ∪L2 is T1 ∪T2-satisfiable if and
only if there exist an arrangement A of constants shared in L1 and L2, a (finite
or infinite) cardinality κ, and models M1 and M2 of cardinality κ, such that
M1 is a T1-model of A ∪ L1 and M2 is a T2-model of A∪ L2.

Intuitively, if a set of literals is satisfiable in the combination of theories, a model
of this set defines in a straightforward way an arrangement and two models with
the same cardinality for the two sets of literals. The converse is also true: from
models of the set of literals augmented with the arrangement, it is possible to
build a model for the union, since both models agree on the cardinality and
on the interpretation of the shared constants (thanks to the arrangement). The
cardinality condition is essential to be able to map elements in the domains of
the individual models into a unique domain.

Corollary 3. Consider disjoint theories T1 and T2, and finite sets of literals L1

and L2, respectively in languages L1 and L2. L1 ∪L2 is T1 ∪T2-satisfiable if and
only if there exists an arrangement A of constants shared in L1 and L2 such that
the spectra of T1 ∪ L1 ∪ A and T2 ∪ L2 ∪ A have a non-empty intersection.
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Function check sat(L1, L2)

1 foreach arrangement A of shared constants of L1 and L2 do
2 if check sat arrangement(A, L1, L2) = sat then
3 return sat;

4 return unsat;

Function check sat arrangement(A, L1, L2)

1 if A∪ L1 is T1-unsatisfiable then
2 return unsat;

3 if A∪ L2 is T2-unsatisfiable then
4 return unsat;

5 if spectrum(T1 ∪A ∪ L1) ∩ spectrum(T2 ∪A ∪ L2) = ∅ then
6 return unsat;

7 return sat;

Algorithm 1. Combination of decidable theories: a generic algorithm

For combining decision procedures, the cardinality or spectrum requirements of
the above theorems are usually fulfilled by assuming properties of the theories
in the combination. In the classical combination scheme, the theories are sup-
posed to be stably infinite: if A ∪ Li has a Ti-model, it also has a Ti-model of
infinite cardinality (more precisely, of cardinality ℵ0), and thus the cardinality
requirement is trivially fulfilled.

Theorem 2 and Corollary 3 do not require decision procedures to exist, and
also apply to refutationally complete theories.

4 Combinations: Decidable Theories and Beyond

Consider two decidable disjoint theories T1 and T2 in languages L1 and L2, such
that, given sets of literals L1 and L2 (in L1 and L2 respectively), it is computable
whether spectrum(T1∪L1)∩spectrum(T2∪L2) is empty or not. Algorithm 1 is the
generic combination algorithm for T1∪T2, based on a straightforward application
of the theorem in the previous section. Notice that the code at lines 1–4 in
function check sat arrangement is not required because of the spectrum test at
lines 5–6: the combined theory is unsatisfiable if the intersection of the spectra
is empty. In case of stably infinite theories however, the spectrum condition
at line 5 is guaranteed to be false, and thus lines 5 and 6 are not necessary;
without these lines, the algorithm corresponds to the Nelson-Oppen combination
framework [9,10]. If the theories are not stably infinite, there exist many specific
results (e.g. [12,7]) for which it is possible to compute the condition at line 5.

Assume now that the theories in the combination are refutationally complete
but not decidable. For the combination procedure to be refutationally complete,
it is necessary and sufficient that check sat arrangement(A, L1, L2) terminates
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Function check sat arrangement(A, L1, L2)

1 execute in parallel
2 process
3 if A∪ L1 is T1-unsatisfiable then
4 return unsat;

5 wait;

6 process
7 if A∪ L2 is T2-unsatisfiable then
8 return unsat;

9 wait;

10 return sat;

Algorithm 2. Nelson-Oppen for refutationally complete procedures.

if A ∪ L1 ∪ L2 is T1 ∪ T2-unsatisfiable. Otherwise one could not guarantee that
a call to check sat(A ∪ L1, A ∪ L2) would return. The following algorithms for
refutationally complete procedures are all based on the above check sat func-
tion, but differ in the check sat arrangement function. In the following, we say
that a function check sat arrangement is a refutationally complete procedure
for a theory, if function check sat together with the considered function yields a
refutationally complete procedure for a theory.

The Nelson-Oppen schema traditionally gets rid of the spectrum condition in
Algorithm 1 by considering only stably infinite theories. As a first step, we also
restrict attention to stably infinite theories. Thus the intersection of the spectra
is empty only if one of T1 ∪ A ∪ L1 or T2 ∪ A ∪ L2 is unsatisfiable.

In the case of refutationally complete theories, the sequentiality of Algorithm 1
may cause a completeness problem. Indeed it may happen that A ∪ L1 is T1-
satisfiable and the test at line 1 in function check sat arrangement never termi-
nates; A ∪ L2 would never be checked for unsatisfiability. This behavior breaks
completeness. A natural way to circumvent this problem is to run the unsatisfi-
ability tests in parallel, as in Algorithm 2.

Theorem 4. Assume T1 and T2 are stably infinite and disjoint theories with
refutationally complete procedures for finite sets of literals. Algorithm 2 yields a
refutationally complete procedure for T1 ∪ T2 for finite sets L1 ∪ L2 of literals,
where L1 and L2 are respectively literals in the language of T1 and T2. If T1 and
T2 are furthermore decidable, Algorithm 2 is a decision procedure.

Proof. The proof is similar to that for the Nelson-Oppen combination framework
for disjoint stably infinite decidable theories. First notice that soundness is a
direct consequence of Theorem 2: whenever the algorithm terminates, it provides
the right answer. We only need to ensure termination in the unsatisfiable case.

The algorithm terminates for T1 ∪ T2-unsatisfiable sets of literals. The finite
sets of L1 and L2 only share a finite set of constants S. There exist only a finite
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number of arrangements A1, . . .An of S, and these can be checked in sequence
for unsatisfiability. If every call to function check sat arrangement(A, L1, L2)
terminates when A ∪ L1 ∪ L2 is T1 ∪ T2-unsatisfiable, then the algorithm is a
refutationally complete procedure for T1 ∪ T2.

A call to check sat arrangement(A, L1, L2) does not terminate for some A∪
L1 ∪ L2 only if A ∪ L1 is T1-satisfiable and A ∪ L2 is T2-satisfiable. In that
case, there exist a T1-model M1 of A ∪ L1 and a T2-model M2 of A ∪ L2.
The cardinality of the models can be assumed to be ℵ0. Thus, according to
Theorem 2, A ∪ L1 ∪ L2 is T1 ∪ T2-satisfiable. ��

As a concrete example, consider Presburger arithmetic – which is decidable
and has only models of infinite cardinality – and a finite set of first-order formu-
las with only infinite models (e.g. including axioms for dense order), for which
refutationally complete procedures exist (any complete first-order logic prover
is a suitable procedure). The above theorem yields a refutationally complete
procedure for quantifier-free formulas in the union of the languages.

The above theorem imposes two major constraints, one on the cardinalities,
the other on the disjointness. For decision procedures, relaxing the cardinality
constraints is possible using asymmetric combinations, where one theory in the
combination has strong properties that allow to relax the cardinality property
on the other one. We investigate this solution in the next section.

5 Combining a Decidable and an Arbitrary Theory

The restriction to stably infinite theories has proved to be useful in the decidable
case: the Nelson-Oppen framework is simple and efficient, and several important
decidable theories are indeed stably infinite. Still, being stably infinite is a strong
constraint (e.g., the theory ∀x . x = a∨x = b is not stably infinite), and there is no
general procedure to check whether a theory is stably infinite. In practice, most
theories (and all theories actually implemented in SMT solvers) furthermore
have other spectral properties that allow for less restrictive combinations.

When theories are not stably infinite, the spectrum condition of lines 5-6 in
Algorithm 1 becomes important. Indeed, even if both T1∪A∪L1 and T2∪A∪L2

are satisfiable, L1 ∪ L2 may still be T1 ∪ T2-unsatisfiable because the spectra of
the models are disjoint. However, the condition is not directly implementable in
general. In this section, we consider the case of a decidable theory for which the
spectrum is computable. It can then be translated into suitable constraints for
the procedure for the (refutationally complete) theory T2.

Lemma 5. Assume T is a finitely axiomatized theory. There exists a refuta-
tionally complete procedure for T restricted to models of cardinalities belonging
to a given set of the following nature:

1. one or all infinite cardinalities;
2. a finite set of finite cardinalities;
3. all cardinalities larger than a fixed finite cardinality;
4. the complement of a finite set of finite cardinalities.
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Function check sat arrangement(A, L1, L2)

1 if A∪ L1 is T1-unsatisfiable then
2 return unsat;

3 if spectrum(T1 ∪A ∪ L1) ∩ spectrum(T2 ∪A ∪ L2) = ∅ then
4 return unsat;

5 return sat;

Algorithm 3. Combination of a decidable theory with a refutationally
complete theory.

It is a decision procedure for the second case.

Proof. It suffices to show that the T -unsatisfiability of a finite set of literals with
the given cardinality constraints can be reduced to checking the unsatisfiability
for another finitely axiomatized theory T ′. The theory T ′ would simply be the
union of T , the set of literals, and a formula encoding the restriction on the
cardinality.

It is easy to restrict the unsatisfiability check to infinite cardinalities, e.g. by
adding a formula of the form

∀x¬R(x, x) ∧ ∀x∃y
(
R(x, y) ∧ ∀z

(
R(y, z)⇒ R(x, z)

))
to the set, where R is a fresh relation symbol. To restrict the unsatisfiability
check to a given finite cardinality n, it suffices to add a constraint of the form∧

1≤i<j≤n

ai �= aj ∧ ∀x
∨

1≤i≤n

x = ai

where the ai are fresh constants. In fact, checking the satisfiability of a finitely
axiomatized theory with a given finite cardinality is trivially a decidable problem
since there are essentially finitely many interpretations for a finite language with
a given finite domain. For a finite set of finite cardinalities, it suffices to take
the disjunction of constraints for each finite cardinality in the set. Again, this
constitutes a finite set of decidable problems, which is therefore itself decidable.

The third case is simply handled by adding a constraint card≥(n). The com-
plement of a finite set of finite cardinalities is the union of a finite set of finite
cardinalities and all cardinalities larger than a finite cardinality. A suitable con-
straint for the final case is thus the disjunction of a constraint for the third case
and a constraint for the second case. ��

Theorem 6. Assume T2 is a finitely axiomatized theory, and T1 is a decidable
theory for which the spectrum is computable and falls in the cases referred in
Lemma 5. Then T1 ∪ T2 is refutationally complete, and Algorithm 3 yields a
refutationally complete procedure for it. The procedure is decidable in the second
case. It is also decidable in the two last cases if T2 is decidable.
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Proof. By the previous lemma, the test at line 3 is implementable by an unsatisfi-
ability procedure that terminates whenever T1∪T2∪A∪L1∪L2 is unsatisfiable.
Furthermore, the test at line 3 is guaranteed to terminate if the spectrum of
T1 ∪ A ∪ L1 is a finite set of finite cardinalities. Finally, in the two last cases,
checking that spectrum(T2 ∪A∪ L2) has a non-empty intersection with a given
co-finite set can be reduced to checking the satisfiability of a finite collection of
sets of literals T2 ∪A∪L2 ∪C where C is a set of literals encoding a constraint
on cardinality; this is decidable if the satisfiability problem for sets of literals in
T2 is decidable. ��

The above conditions on the spectrum of the decidable theories appear reason-
able: the decidable theories considered in combinations of theories usually fall in
one of the categories of the theorem. Gentle theories [6] have a spectrum which
is computable and either a finite set of finite cardinalities or a co-finite set of
cardinalities. Shiny theories [12] have a computable spectrum that falls into case
(3). Linear arithmetic on integers or reals obviously belongs to the first category.

6 Parallel Refutation of a Union of Disjoint Theories

In the previous section, we concentrated on combining a decidable theory with
another for which a refutationally complete decision procedure exists. In this
section, we study the combination of two refutationally complete theories, drop-
ping the cardinality requirement imposed in Section 4. In the context of SMT, it
seems fairly natural to restrict our study to theories that can be represented by
a finite number of first-order axioms. These theories not only have well-known
refutationally complete procedures in the form of complete theorem provers for
first-order logic, but it is also decidable if they have a model of a given finite
cardinality. Another property of finitely axiomatized theories that we will use
is the Skolem-Löwenheim Theorem: such theories have either a finite number of
finite models, or they have models for all infinite cardinalities.

Algorithm 4 presents a refutationally complete procedure for the combination
of two disjoint first-order theories. It basically interleaves or parallelizes the
run of both a refutationally complete procedure and a finite model finder for
a set of literals, for T1 and T2. The task of the finite model finder is to check
if the set of literals is satisfiable on a model in the theory with a given finite
cardinality. Very schematically, the finite model finders and the refutationally
complete procedures may not terminate in caseA∪L1 and A∪L2 are respectively
T1- and T2-satisfiable and have no finite model. In such a case they must have
infinite models; thanks to the Löwenheim-Skolem theorems one can ensure that
the spectra have a non-empty intersection and so A∪T1∪T2 must be satisfiable.

The difficulties come from the facts that:

– it is necessary to stop and restart the unsatisfiability checker whenever a
model is found for some cardinality. The unsatisfiability checker may run
forever in that case, and it may be required to check if the set is unsatisfiable
for larger cardinalities.
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Function check sat arrangement(A, L1, L2)

1 k1 := 1;S1 := ∅;
2 k2 := 1;S2 := ∅;
3 execute in parallel
4 process
5 for ever do
6 k′1 := k1;
7 execute in parallel
8 process
9 while ¬find model(k1, T1,A∪ L1) do

10 k1 := k1 + 1;

11 process
12 if A ∪ L1 ∪ card≥(k′1) is T1-unsatisfiable then
13 wait k2 ≥ k′1;
14 return unsat;

15 wait;

16 S1 := S1 ∪ {k1};
17 if k1 ∈ S2 then
18 return sat;

19 k1 := k1 + 1;

20 process
21 for ever do
22 k′2 := k2;
23 execute in parallel
24 process
25 while ¬find model(k2, T2,A∪ L2) do
26 k2 := k2 + 1;

27 process
28 if A ∪ L2 ∪ card≥(k′2) is T1-unsatisfiable then
29 wait k1 ≥ k′2;
30 return unsat;

31 wait;

32 S2 := S2 ∪ {k2};
33 if k2 ∈ S1 then
34 return sat;

35 k2 := k2 + 1;

Algorithm 4. Combination of two finitely axiomatized theories.
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– for completeness, it is however necessary to eventually leave the unsatisfia-
bility checker run undisturbed for ever longer periods;

– if one theory is found not to have models with cardinality greater than k,
it is necessary, before returning the answer “unsatisfiable”, to wait for the
other procedure to check all interpretations of cardinality up to k.

The finite model finder is called at lines 9 and 25; find model(k1, T1,A ∪ L1)
returns true if and only if A ∪ L1 has a T1-model of cardinality k1. A call to
the finite model finder should eventually terminate. It is not required for the
unsatisfiability checks at lines 12 and 28 to return, in case the considered formulas
are satisfiable.

The shared variables are k1, k2, S1 and S2. The value of k2 read by the process
for T1 does not have to be up to date. It is however mandatory for the correctness
of the algorithm that the age of the value (i.e. the difference between the current
time and the last time for which k2 had this value for the process for T2) stays
bounded. The symmetric requirement exists for k1. We assume that there is a
critical section wrapping the reading and writing of S1 and S2, and that both
processes have the same view of those variables. The order of lines 16 and 17–
18 and of lines 32 and 33–34 matters. A completeness bug would result from
switching those lines.

Theorem 7. Assume T1 and T2 are two disjoint finitely axiomatized theories,
then Algorithm 4 yields a refutationally complete procedure for T1 ∪ T2.

Proof. In the following, the process for T1 denotes lines 5 to 19, and the process
for T2 denotes lines 21 to 35.

It is useful to show that the following invariant properties hold throughout
the execution of the algorithm after the initialization at lines 1-2:

1. I1 : S1∩{k | k ≥ k1} = ∅, at all times except when process for T1 is executing
instructions at lines 16-19

2. I2 : S2∩{k | k ≥ k2} = ∅, at all times except when process for T2 is executing
instructions at lines 32-35

3. I3 : S1 ∩ {1, . . . , k1 − 1} = spectrum(T1 ∪ A ∪ L1) ∩ {1, . . . , k1 − 1}
4. I4 : S2 ∩ {1, . . . , k2 − 1} = spectrum(T2 ∪ A ∪ L2) ∩ {1, . . . , k2 − 1}
5. I5 : S1 ∩S2 = ∅, at all times except when process for T1 (or T2) is executing

instructions at lines 16-18 (resp. instructions at lines 32-34)

Note that all the above invariants are established by the initialization.
The first two invariants I1 and I2 are fairly easy to prove. To prove I1 notice

that every addition (of k1) to S1 is done at line 16, and immediately followed
(otherwise the function terminates) at line 19 by incrementing k1. Symmetrically
for I2.

For invariant I3, it is sufficient to show that, if the property is true before
executing line 10, it is true after, and if it is true before executing line 19, it
is true after. Adding k1 to S1 (at line 16) cannot modify the truth status of
I1 since S1 ∩ {1, . . . , k1 − 1} does not change. At line 10, k1 is incremented
only if A ∪ L1 does not have any T1-models with k1 elements, i.e. only if k1 /∈
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spectrum(T1 ∪ A ∪ L1); thanks to I1, k1 /∈ S1. And incrementing k1 at line 19
is only done if the loop at lines 9-10 terminates, that is, if a T1-model with
cardinality k1 is found for A ∪ L1. Symmetrically for I4.

To show that I5 is true, it is sufficient to consider the group of lines 16–18 and
32–34, where S1 and S2 are modified. Assume I5 holds before executing lines at
16–18, and assume the process for T2 is not running the section between lines 32
and 34. While adding k1 to S1, if k1 also belongs to S2, the function will return
at line 18. The argument is similar for modifications of S2. Notice however that
it is necessary to guarantee that the values of S1 and S2 read by the processes
for T2 and T1 respectively are up to date. Otherwise, the algorithm may “miss”
the check of some cardinality.

As a consequence of invariants I3 and I4, and thanks to Corollary 3, the
algorithm terminates by returning sat only if A ∪ L1 ∪ L2 is indeed T1 ∪ T2-
satisfiable (with a model of finite cardinality).

As a consequence of invariants I3, I4 and I5, it can be deduced at line 14
that the spectra are disjoint. If the algorithm returns unsat at line 14, then
A ∪ L1 ∪ L2 is indeed T1 ∪ T2-unsatisfiable. The discussion is symmetric for
line 30. Thus the algorithm is sound: a returned answer is always correct. It
remains to show that the algorithm is complete, that is, it eventually terminates
if T1 ∪ T2 ∪A ∪ L1 ∪ L2 is unsatisfiable.

We prove termination by contradiction, and assume the function never termi-
nates, although the spectra for T1 ∪A ∪L1 and T2 ∪A∪ L2 are disjoint. Remem-
ber the Löwenheim-SkolemTheorem that states that a finitely axiomatized theory
with (a) an infinite spectrum has models of all infinite cardinalities; (b) an infinite
model has models for every infinite cardinality. Thus, if spectrum(T1∪A∪L1) and
spectrum(T2 ∪A∪L2) are disjoint, at least one of those sets must be a finite set of
finite cardinalities. Assume without loss of generality that spectrum(T1 ∪A∪L1)
is finite. Then, there exists some k (assume k is the smallest integer) such that
spectrum(T1 ∪A∪L1)∩ {k′ | k′ ≥ k} = ∅, that is, such thatA∪L1 ∪ card≥(k) is
T1-unsatisfiable.

Notice that if T1 ∪ A ∪ L1 has a model of finite cardinality k − 1 then k1
will eventually reach k (provided the finite model finder at line 9 is terminat-
ing). After that, the process for T1 will let the finite model finder run forever
searching for non-existent models of cardinality greater than or equal to k, while
in the meantime, the refutationally complete procedure at line 12 for the T1-
unsatisfiability of A∪L1∪ card≥(k′1) will run undisturbed (that is, will never be
killed) for the amount of time necessary for it to terminate. The process for T1
will eventually reach line 13. If spectrum(T2 ∪A∪L2) is infinite, k2 will grow to
infinity and will eventually be greater than k′1. The waiting process for T1 will
eventually be leaving the waiting state and return unsat.

Notice (symmetrically as before) that if T2 ∪ A ∪ L2 has a model of finite
cardinality then k2 will eventually reach and overstep this cardinality (provided
the finite model finder at line 26 is terminating). If spectrum(T2 ∪ A ∪ L2) is
finite, and if its maximal element is greater or equal than the value k′1 reached
by process T1 on the waiting state, the waiting process for T1 will eventually be
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leaving the waiting state and return unsat. The case where its maximal element
is strictly smaller than value k′1−1 does not need to be considered, by symmetry.

Let us consider finally the degenerated case for which both spectra have the
same maximal value, and thus k′1 = k′2, and suppose that both processes are
waiting, at instruction 13 and 29 respectively. k′1 and k′2 must then both be
strictly greater than 1. This cannot happen: spectrum(T1∪A∪L1) should contain
k′1−1 and spectrum(T2∪A∪L2) should contain k′2−1, i.e. k′1−1, which contradicts
invariant I5. ��

Algorithm 4 eventually terminates if A ∪ L1 ∪ L2 is T1 ∪ T2-unsatisfiable, or if
A∪L1∪L2 is T1∪T2-satisfiable in a finite model. It is both a complete refutation
procedure and a finite model finder.

7 Conclusion

We studied two cases of refutationally complete combination of disjoint the-
ories. In the first case, we considered combining a decidable theory with an
arbitrary finitely axiomatized theory. In the second, we provided an algorithm
to combine two finitely axiomatized theories. Both these algorithms are not yet
efficiently implemented and would require further techniques and heuristics to
be turned into useful solvers. Just as in the case of decidable theories, it is not
realistic to consider every arrangement separately: techniques developed for the
combination of decision procedures — e.g. cooperation by equality exchange,
or delayed theory combination (see e.g. [2]) — will have to be transposed, but
will require further research since it can not be expected that the components in
the combinations will eventually terminate. Similarly, the negotiation of suitable
cardinalities will require specific methods and heuristics.

Bonacina et al. [4] show that, in the case of decidable and universal finitely
axiomatized theories, it is possible (and sufficient for some combinations) to ex-
tract cardinality constraints from the saturation of a superposition solver. We
here considered refutationally complete procedures as black boxes, but, among
the potential heuristics to make the approach work in practice, one could con-
sider extracting cardinality hints from the saturation provers, to improve the
cardinality negotiation in Algorithm 4.

In [14], tableaux are used to combine in a refutationally complete way two
theories sharing a dense order. In this case, the difficulty of the combination does
not lie in the agreement on cardinalities (since both theories can only have infinite
models), but in the non-disjoint signature containing this order predicate. As an
extension of the present work, it would be interesting to find practical ways to
combine loosely connected rather than disjoint theories, such as theories sharing
a few unary predicates.
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Abstract. Regular algebras axiomatise the equational theory of reg-
ular expressions. We use Isabelle/HOL’s automated theorem provers
and counterexample generators to study the regular algebras of Boffa,
Conway, Kozen and Salomaa, formalise their soundness and complete-
ness (relative to a deep result by Krob) and engineer their hierarchy.
Proofs range from fully automatic axiomatic and inductive calculations
to integrated higher-order reasoning with numbers, sets and monoid
submorphisms. In combination with Isabelle’s simplifiers and structur-
ing mechanisms, automated deduction provides powerful support to the
working mathematician beyond first-order reasoning.

1 Introduction

Regular languages, regular expressions and finite automata belong to the foun-
dations of computing. Regular algebras are the mathematical structures that
underly these formalisms. Originally proposed for axiomatising the equational
theory of regular expressions, they have since found wide applications in various
fields of computing.

Work on regular algebras has spanned decades. Salomaa gave two axiom sys-
tems, proved completeness of the first and conjectured it of the second [12].
Conway, in his influential monograph, conjectured completeness of several alter-
native axiomatisations [6]. Krob gave a long and intricate completeness proof
of Conway’s so-called classical axioms extended by a system of monoid identi-
ties [10]. Boffa proved completeness of two particularly simple algebras relative
to Krob’s result [3,4]. Relative to Boffa’s algebras, Krob, in turn, verified some
of Conway’s remaining conjectures. Kozen proved completeness of a simplified
algebra of Conway [8], which under the name Kleene algebra has been widely
studied and applied since. Boffa, in turn, showed completeness of a simplified
version of Kleene algebra.

Within the programme of enhancing mathematics by theorem provers, regular
algebras yield an interesting test case: they include pure first-order as well as
higher-order structures axiomatised by inductive families of identities and with
elements generated by finite monoids via submorphisms. Proofs include equa-
tional calculations and integrated higher-order reasoning about algebra, num-
bers, sets (of lists), infinite suprema and functions. Our main motivation is the
following question: How far can first-order automated theorem provers support
the working mathematician in such a heterogeneous environment?
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Fig. 1. Fine structure of regular algebra

Automated theorem proving alone, is of course too limited for our study. It
is only possible due to Isabelle/HOL’s [11] recent integration of first-order proof
and counterexample search technology into a higher-order interactive theorem
proving environment (cf. [2] for an overview). In a nutshell, Isabelle’s Sledgeham-
mer tool delegates proof goals to external automated theorem provers (ATPs)
and satisfiability modulo theories (SMT) solvers. A relevance filter gathers hy-
potheses for the external tools. Their proof outputs are reconstructed within
Isabelle to increase trustworthiness. ATP in Isabelle is complemented by the
Nitpick and Quickcheck counterexample search tools. This integration supports
a very natural new style of computer enhanced mathematics. Traditionally, work
with Isabelle was driven by its simplifiers and direct applications of theorems
from its libraries. Now, paper and pencil proofs can be typed directly into Is-
abelle’s proof scripting language and verified step by step by an ATP system
using the hypotheses it gathers. With this approach, an Isabelle repository for
Kleene and relation algebras with more than 2000 facts has already been im-
plemented1. But the fine structure of regular algebras with their higher-order
features has not yet been considered. Our main contributions are as follows:

We implement the algebras of Boffa, Conway (without monoid identities),
Kozen and Salomaa as abstract type classes in Isabelle and develop a library of
regular identities and auxiliary concepts for Boffa’s algebras.

We use Isabelle’s locale mechanism in combination with Nitpick to capture
meta-theorems that relate these algebras. We reconstruct known completeness
results for regular algebras and add some new ones: equipollence (mutual de-
ducibility) of Boffa’s algebras, and of some of Conway’s algebras and Kleene al-
gebras, a simple completeness proof for Salomaa’s first algebra, a gap in Boffa’s
completeness proof for his second one, and proofs that various subclasses are
proper. The main relationships are shown in Figure 1. Nodes represent equipol-
lent algebras; arrows the implication preorder. All completeness proofs are rela-
tive to Krob’s result; they are based on implications between axiom systems.

1 http://www.dcs.shef.ac.uk/~georg/isa

http://www.dcs.shef.ac.uk/~georg/isa
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We establish soundness of regular algebras relative to regular languages.
Soundness of Salomaa’s algebra and Kleene algebra is automatically propagated
down the hierarchy by Isabelle’s sublocale mechanism.

We reconstruct Boffa’s completeness result relative to Conway’s classical ax-
ioms with monoid identities. This requires an alternative implementation of
Boffa’s algebras with explicit carrier sets and additional theory infrastructure.
In this case, the sublocale mechanism propagates completeness up the hierarchy.

Most subclass and equipollence proofs are fully automatic. This demonstrates
the impressive power of ATP in algebraic reasoning. Automating more complex
results requires specific elimination rules for higher-order structure and an inter-
play with Isabelle’s simplifier. As soon as supporting libraries were developed, all
proofs could be implemented at least at textbook-level granularity in a natural
mathematical style. Some formalisation tasks, in particular the construction of
infinite counterexamples, are deliberately left open to demonstrate not only the
potential, but also the limitations of our lightweight ATP-based approach.

This paper can only highlight some main features of our work. The com-
plete Isabelle implementation can be accessed through our repository. We must
also assume familiarity with the basics of Isabelle. We refer to the excellent on-
line documentation, in particular the locale tutorial [1] and the references given
therein, for further information. The paper itself has been processed by Isabelle’s
document preparation system, including the verification of its technical results.
The following numbers underpin the success of ATP in analysing regular al-
gebra: our implementation contains 303 proof goals. 242 were fully automatic
(apart perhaps from calling an induction or case analysis tactic); 35 were fully
automatic after invoking a simplifier; 26 required moderate user interaction.

2 Dioids, Powers and Finite Sums

All regular algebras can be based on dioids or idempotent semirings. Implemen-
tations of these structures and a library of facts can be found in the repository.

Formally, a semiring is a structure (S,+, ·, 0, 1) where (S,+, 0) is a commuta-
tive monoid, (S, ·, 1) is a monoid, and the distributivity laws x·(y+z) = x·y+x·z
and (x + y) · z = x · z + y · z, and annihilation laws x · 0 = 0 and 0 · x = 0
hold. A semiring is idempotent—a dioid—if x + x = x. In this case the reduct
(S,+) forms a semilattice, and can be endowed with the usual semilattice order
x ≤ y ↔ x + y = y. The least element of this order is 0 and the operations of
addition and multiplication are isotone. An important concept in semiring the-
ory is duality with respect to opposition. It is based on the opposite multiplica-
tion x ◦ y = y · x. We have implemented this duality in Isabelle and shown that
(S,+, ◦, 0, 1) is a dioid whenever (S,+, ·, 0, 1) is. Duals of theorems in dioids are
available for free in Isabelle. This also yields automatic completeness proofs for the
duals of all structures in this paper (e.g. the righthanded algebras in Figure 1).

For most of the development in this paper, implementing algebras by ax-
iomatic type classes is sufficient. Consequently, their carrier sets are left implicit.
This is common mathematical practice, beneficial to automation, but insufficient
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for more advanced mathematics (cf. Section 9). Some axiomatisations of regular
algebras require powers and finite sums. Powers can be defined recursively.

primrec power :: ′a ⇒ nat ⇒ ′a (-- [101,50] 100)
where x0 = 1
| xSuc n = x ·xn

We have developed a basic library for powers. Typical facts are xn · x = x · xn
or y · x ≤ y → y · xn ≤ y. Apart from induction, proofs are mostly automatic.
The following example illustrates the style of reasoning.

Lemma power-add : xm·xn = xm+n

Proof (induct m)
case 0 show ?case by (metis add-0-left mult-onel power .simps(1))
case (Suc m) show ?case by (smt Suc add-Suc mult-assoc power .simps(2))

qed

Isabelle’s induction tactic is called to generate proof obligations for the base
case and the induction step. Sledgehammer is then called on both cases. The
first case is discharged by Metis, an internally verified ATP system. The second
one uses SMT proof reconstruction. The proof uses the clauses in the definition
of power, induction hypothesis Suc and facts about dioids and numbers. All have
been gathered by the relevance filter.

Next we define a function that sums up powers: xnm =
∑n+m

i=m xi. Avoiding
Isabelle’s library function setsum yields better control over proof automation,
but ultimately, an integration with existing Isabelle libraries is desirable (cf. [7]).

primrec powsum :: ′a ⇒ nat ⇒ nat ⇒ ′a (--
- [101,50,50] 100)

where xn
0 = xn

| xnSuc m = xn
m+xn+Suc m

Again we have proved a number of basic facts by ATP, often by induction, and
sometimes calling Isabelle’s simplifier before Sledgehammer.

3 Conway’s Classical Axioms

Regular algebras are dioids expanded by the regular operation ∗. We implement
Conway’s classical axioms (p.25 in his monograph) using Isabelle’s axiomatic
type classes; hence again without explicit carrier sets.

Class regalg-base = dioid-one-zero + star-op + plus-ord +
assumes C11: (x+y)∗ = (x∗·y)∗·x∗

and C12: (x ·y)∗ = 1+x ·(y ·x)∗·y

Class conway = regalg-base +
assumes C13: (x∗)∗ = x∗

Class conway-classical = conway +
assumes C14: x∗ = (xn+1)∗·x0n
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The class regalg-base is reused for Boffa’s first axiomatisation. In class conway,
axiom schema C14—also called powerstar axiom—has been removed from the
classical axioms, since it is not needed for most of our results.

Conway himself uses semirings instead of dioids. He shows that x + x = x
can be derived from that basis; hence both variants are equipollent. We use
dioids for the sake of uniformity across the paper. Conway has shown that the
classical axioms are incomplete with respect to (the equational theory of) regular
languages (p. 118). He has also analysed the role of axiom C13 (p. 104). We could
easily automate his analysis with Nitpick: a 3-element counterexample shows
irredundancy of C13 in the semiring setting; in its absence, x+x = x (3-element
counterexample) and x∗ · x∗ = x∗ (5-element counterexample) could be refuted.
In the dioid setting, however, we could neither prove nor refute x∗ · x∗ = x∗

automatically in the absence of C13 within Isabelle’s default time limits. In the
presence of powerstar, Nitpick uniformly failed. In fact, Conway constructs an
infinite model of a semiring in which the classical axioms except C13 hold and
in which C13 fails (p.104). We have not attemtped to formalise his model.

4 Boffa’s Axioms

Boffa [3,4] presented two axiom systems for regular algebra. His first axioma-
tisation adds a very simple quasi-identity to Conway’s classical axioms. In his
second paper he shows that some of Conway’s axioms—including powerstar—
are redundant. He also shows that his second axiomatisation implies the first.
We can base the first axiomatisation on regalg-base.

Class boffa-1 = regalg-base +
assumes R: x ·x = x → x∗ = 1+x

Class boffa-2 = dioid-one-zero + star-op +
assumes B1: 1+x ≤ x∗

and B2: x∗·x∗ = x∗

and B3: 1+x ≤ y ∧ y ·y = y → x∗ ≤ y

Boffa algebras are closed under duality since all axioms are self-dual.
We first show that boffa-1 and boffa-2 are equipollent (boffa-1 = boffa-2). Boffa

has already shown that boffa-2 ⊆ boffa-1—the first is a subclass of the second—
whereas the converse inclusion is new. Following Boffa, we then relate Boffa’s
algebras with Conway’s classical axioms. In Isabelle, subclass relationships can
be captured by subclass or sublocale proofs. We use sublocales simply because
the associated syntax leads to more readable statements. In general, an under-
standing of Isabelle’s subclass and locale mechanisms is not needed to grasp the
mathematical statements in this paper.

Sublocale boffa-1 ⊆ boffa-2

Isabelle dictates the proof obligations: all boffa-2 axioms must be derived from
boffa-1. In fact, only B1-B3 need to be verified. Isabelle recognises that both
algebras extend the class dioid-one-zero. All proof obligations were discharged
by ATP. All theorems for boffa-2 are now automatically available for boffa-1.
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Proving the converse sublocale relationship is more involved. A direct au-
tomated proof was impossible within Isabelle’s time limits. First, we therefore
verified all regular identities that have been proved for Kleene algebras in the
repository in the weaker context of boffa-2. These 46 facts include well known
identities such as 1 ≤ x∗, x ≤ x∗, x∗ · x∗ = x∗, x∗∗ = x∗, 1∗ = 1, 0∗ = 1,
1+x ·x∗ = x∗, (x ·y)∗ ·x = x · (x ·y)∗, and (x+y)∗ = x∗ · (y ·x∗)∗. 41 proofs were
automatic; for the remaining ones, paper and pencil proofs could be translated.
Consider the following proof of C12 as an example.

Proof −
have ∀ x y . 1+x ·(y ·x)∗·y = (1+x ·(y ·x)∗·y)·(1+x ·(y ·x)∗·y) — by smt
hence ∀ x y . (x ·y)∗ ≤ 1+x ·(y ·x)∗·y — by metis
hence 1+x ·(y ·x)∗·y ≤ 1+x ·y+x ·y ·(x ·y)∗·(x ·y) — by smt
hence 1+x ·(y ·x)∗·y ≤ (x ·y)∗ — by smt ...
thus ?thesis — by metis ...

qed

The remaining half of boffa-1 = boffa-2 is then fully automatic.

Sublocale boffa-2 ⊆ boffa-1

All regular identities are now available also in boffa-1.
Deriving Conway’s classical axioms from Boffa’s algebras again requires some

preparation. We need a few general lemmas about the interaction of the star
with (sums of) powers, for instance, that xn ≤ x∗, xk · (xn)∗ = (xn)∗ · xk and
xk0 · (xn)∗ = (xn)∗ · xk0 for k ≤ n, and xnm ≤ x∗. Most of them are automatic
up to induction. Finally, to derive powerstar from B3, it suffices to prove the
following two facts.

Lemma conway-powerstar1: (xn+1)∗·x0n·(xn+1)∗·x0n = (xn+1)∗·x0n

Lemma conway-powerstar2: 1+x ≤ (xn+1)∗·x0n

Their proofs require a case analysis on n. While the n = 0 cases are automatic,
those for n �= 0 translate paper and pencil proofs. powerstar can then be derived
automatically in two steps (≤ and ≥), and the desired sublocale statement is
automatic as well.

Theorem powerstar : x∗ = (xn+1)∗·x0n

Sublocale boffa-2 ⊆ conway-classical

All theorems of Boffa’s algebras are now available for Conway’s classical axioms.
The subclass relationship is strict. Boffa has shown that his algebras are

complete (relative to Krob’s result, cf. Section 9); Conway has shown that
his classical axioms are not (p. 118). This implies that R cannot be derived
in conway-classical. We have tried unsuccessfully to test this fact with Sledge-
hammer and Nitpick. This is not surprising because Conway’s counterexample
is constructed inductively. Again we have not further attempted to formalise
Conway’s proof.
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5 Conway’s Conjectures

Conway presents several extensions of his classical axioms and conjectures their
completeness (p. 103). Boffa has verified one of them, Krob the remaining ones
relative to boffa-1 (p. 329f). All completeness results are relative to Krob’s com-
pleteness proofs of Conway’s classical axioms with monoid indentities. Following
Boffa, these axioms are derived from Boffa’s algebras in Section 9, which shows
that Boffa’s algebras are complete as well. The (relative) completeness results
in this section are obtained by deriving Boffa’s axioms. We automatically re-
construct Boffa and Krob’s results in the weaker setting of conway without
powerstar by deriving the axioms of boffa-1 from them. We also establish new
equipollence results for Conway’s variants. Conway considers dual lefthanded
and righthanded variants as well as their combinations. Here we only present
the lefthanded ones. Their duals and all dual statements can be found in the
repository.

Class conway-p0 = conway +
assumes P0: x ·y = y ·z → x∗·y = y ·z∗

Class conway-p1l = conway +
assumes P1l : x ·y ≤ y ·z → x∗·y ≤ y ·z∗

Class conway-p2l = conway +
assumes P2l : x = y ·x → x = y∗·x

Class conway-p3l = conway +
assumes P3l : x ·y ≤ y → x∗·y ≤ y

The rule P3l and its dual will reappear in Kozen’s axiomatisation.
We establish two results. First, we show that conway-p2l is complete. Second,

we prove that all lefthanded variants are equipollent, hence complete as well.
The following result is automatic:

Sublocale conway-p2l ⊆ boffa-1

The question whether conway-p2l = boffa-1 remains open. We could neither
prove nor refute the remaining inclusion within Isabelle’s default time limits,
despite the fact that all our regular identities are available in Boffa’s algebras.

The regular identities can now be used in conway-p2l to prove equipollence
of Conway’s variants in a completely automatic fashion. As usual, the sublocale
mechanism takes care of metalogical aspects such as theorem propagation.

Sublocale conway-p2l ⊆ conway-p3l

Sublocale conway-p3l ⊆ conway-p1l

Sublocale conway-p1l ⊆ conway-p2l

Finally we show for i = 1, 2, 3 that the combination of conway-pil and conway-pir
is equipollent to conway-p0. Here we only present the result for i = 2.
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Class conway-p2 = conway-p2l + conway-p2r

Sublocale conway-p0 ⊆ conway-p2

Sublocale conway-p2 ⊆ conway-p0

6 Kozen’s Kleene Algebras

Kozen’s Kleene algebras are essentially conway-p3 with C11-C13 replaced by
a simpler axiom. Kozen gave an elementary completeness proof for his variant
based on Conway’s trick of encoding finite automata in terms of a matrix regular
algebra over a regular algebra. This proof has recently been formalised in the
proof assistant Coq [5]. Boffa proved completeness for left Kleene algebras, where
axiom P3r is absent, relative to boffa-2 (it seems that Kozen’s proof does not
go through in this weaker context).

We reconstruct Boffa’s completeness result and prove new results that estab-
lish equipollence of Kleene algebras and Conway’s variants. Finally, we reproduce
well known equipollence results between two variants of Kleene algebra intro-
duced by Kozen. As usual, we stick to the left. Dual classes and statements can
be found in the repository.

Class kozen-base-l = dioid-one-zero + star-op +
assumes star-unfoldl ′: 1+x ·x∗ ≤ x∗

Class kozen-1l = kozen-base-l +
assumes star-inductl : x ·y ≤ y → x∗·y ≤ y

Class kozen-2l = kozen-base-l +
assumes star-inductl-var : z+x ·y ≤ y → x∗·z ≤ y

Class kozen = kozen-1l + kozen-1r

Conceptually, completeness of kozen-1l (and its dual) follows from the equipol-
lence results below. Technically, however, the corresponding sublocale proof is
particularly simple and automatic; it also brings the regular identities into the
scope of kozen-1l for equipollence proofs.

Sublocale kozen-1l ⊆ boffa-2

Sublocale kozen-1l ⊆ conway-p2l

Sublocale conway-p2l ⊆ kozen-1l

Sublocale kozen ⊆ conway-p0

Sublocale conway-p0 ⊆ kozen

All proofs are fully automatic. They show that conway-pil = kozen-1l and
conway-pi = kozen. Finally, we establish equipollence of Kozen’s variants.
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Sublocale kozen-1l ⊆ kozen-2l

Sublocale kozen-2l ⊆ kozen-1l

Once more we were unsuccessful in testing whether Kozen’s algebras are equipol-
lent to Boffa’s within Isabelle’s default time limits.

7 Salomaa’s Axioms

Salomaa’s axioms are based on dioids without 1, since in the presence of the
Kleene star, 1 can be defined as 0∗. Boffa has observed that idempotency is
redundant in this setting. As before we base Salomaa’s axiomatisation on dioids
to keep the development simple and uniform.

Salomaa presents two axiom systems, proves completeness for the first and
conjectures that property for the second one. His completeness proof uses an
algebraic abstraction of Arden’s well known rule for solving linear equations
over regular languages (axiom salomaa). Since a precondition of Arden’s rule
is the absence of the empty word property—some language must not contain
the empty word—Salomaa inductively defines the negation of property ewp for
regular algebra terms (or regular expressions). Due to this, one of his axioms is
not defined for first-order variables, but for substitution instances of terms.

To circumvent this complication we define ewp abstractly with respect to a
property that holds in the case of regular languages, as we show in the next sec-
tion. This property suffices for our completeness proof. It can safely be replaced
by stronger (inductive) properties that imply it.

Class salomaa-ewp = dioid-one-zero + star-op +
fixes ewp :: ′a ⇒ bool
assumes S11: (1+x)∗ = x∗

and S12: x∗ = 1+x∗·x
and ewp-form : ewp x ↔ (∃ y . x = 1+y ∧ ¬ ewp y)

Class salomaa = salomaa-ewp +
assumes salomaa : (¬ ewp y) ∧ x = x ·y+z → x = z ·y∗

Class salomaa-conj = salomaa-ewp +
assumes salomaa-small : (¬ ewp y) ∧ x = x ·y+1 → x = y∗

Property ewp-form states that the empty word can be isolated from every lan-
guage that contains it. We can easily reconstruct the following relationship [3].

Sublocale salomaa ⊆ salomaa-conj

salomaa = salomaa-conj could be refuted by a 3-element counterexample. We
have not tested whether this would still hold for stronger variants of ewp.

Boffa has presented a completeness proof of salomaa-conj relative to boffa-1.
We provide a new direct completeness proof of salomaa relative to kozen-1r and
briefly argue why Boffa’s proof contains a gap.

Proving star-inductr-var from salomaa yields completeness automatically.
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Lemma kozen-induct : y ·x+z ≤ y → z ·x∗ ≤ y
Proof (cases ewp x)
case False thus ?thesis — one step by metis

next
case True thus ?thesis — several steps by metis and smt, using ewp-form

qed

Sublocale salomaa ⊆ kozen-2r

The proof of kozen-induct illustrates the fact that reasoning with Salomaa’s
axioms typically requires case analyses on ewp and the trick of using ewp-form
to reduce the negative case to one where salomaa can again be applied.

Such a case analysis is needed in the completeness proof of salomaa-conj, but
omitted by Boffa [3]. We have attempted a complete case analysis for C11 but
failed with manual proofs based on Boffa’s paper as well as with automated and
interactive attempts. Also, Nitpick could not find a counterexample. As far as
we can tell, completeness of salomaa-conj therefore remains open.

8 Soundness

We now prove soundness of Salomaa’s axioms and Kleene algebras, which in
this context means that the regular languages form models of these axioms.
By our sublocale relationships this implies soundness of all the other regular
algebras investigated (cf. Figure 1). The main step is proving Arden’s lemma (i.e.
axiom salomaa) at the language level, for which we could have reused a previous
formalisation in Isabelle [9]. Access to the algebraic level, however, significantly
simplifies this previous development. Only a few non-automatic non-algebraic
proofs are needed.

As usual in Isabelle, words are represented as lists; @ denotes word concate-
nation. To enhance automation we introduce elimination rules for higher-order
concepts. They can be used for simplification before calling Sledgehammer.

type-synonym ′a lan = ′a list set

Definition l-prod :: ′a lan ⇒ ′a lan ⇒ ′a lan (infixr · 75)
where X ·Y = {v@w | v w . v∈X ∧ w∈Y }

Lemma l-prod-elim: w∈X ·Y ↔ (∃ u v . w = u@v ∧ u∈X ∧ v∈Y )

We can directly show by an interpretation statement that regular languages form
dioids (though that might not be immediately evident from Isabelle’s syntax).

Interpretation dioid-one-zero (op ∪) l-prod (op ⊆) (op ⊂) {[]} {}

We can now use the function power from dioid-one-zero to define the Kleene
star of a language as usual (powsum would only yield finite sums). We also define
the empty word property in the obvious way.

Definition star :: ′a lan ⇒ ′a lan (-∗ [101] 100)
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where X ∗ = (
⋃

n. X n)

Definition l-ewp X ↔ {[]} ⊆ X

Lemma star-elim: x∈X ∗ ↔ (∃ k . x∈X k)

To show that regular languages form Kleene algebras, only two continuity prop-
erties are needed. Both are automatic after calling Isabelle’s simplifier.

Lemma star-contl : X ·Y ∗ = (
⋃

n. X ·Y n)

Lemma star-contr : X ∗·Y = (
⋃

n. X n·Y )

Interpretation kozen (op ∪) l-prod (op ⊆) (op ⊂) {[]} {} star

Only the verification of the unfold rules required a few interactions. All reg-
ular identities are now available for regular languages and can be used in the
remaining step; the derivation of Arden’s rule, which verifies axiom salomaa.

In fact, only an inequality remains to be shown since one half of the proof
is already covered by axiom star-inductr-var of Kleene algebra. Part of this
inequality can be captured at the abstract algebraic level as well.

Lemma (in boffa-1) arden-aux : y ≤ y ·x+z → y ≤ y ·xSuc n+z ·x∗

Its proof translates an inductive paper and pencil argument. It now suffices
to show that—under the conditions of axiom salomaa interpreted in regular
languages— the term Y · XSuc n vanishes. Following the textbook proofs of
Arden’s lemma, this is the case since the length of minimal words in Y · Xn

grows proportionally to n, hence all words in Y die out in Y ·Xn for n sufficiently
large. We formalise this using two elementary facts about lower bounds of word
lengths in languages.

Lemma prod-lb: (∀w∈X . m≤|w | ) → (∀w∈Y . n≤|w | ) → (∀w∈X ·Y . m+n≤|w | )

Lemma power-lb: (∀w∈X . k≤|w | ) → (∀w . w∈X Suc n → n∗k≤|w | )

Lemma word-suicide: ¬ l-ewp X → Y �= {} → (∀w∈Y . ∃n. w /∈Y ·X Suc n)

Only power-lb requires induction and some user interaction in the induction
step. The proof of word-suicide is calculational with 3 intermediate steps. To-
gether with arden-aux it is used in the following soundness result, which now is
completely automatic.

Interpretation salomaa op ∪ l-prod op ⊆ op ⊂ {[]} {} star l-ewp

9 Relative Completeness

Krob has proved completeness of Conway’s classical axioms extended by the
following rule: If xi · xj ≤ xi◦j and (xi,i)

∗ = xi,i hold for all i, j ∈ I, then
(
∑
xi)

∗ =
∑
xi (p. 116 of Conway’s monograph). In this definition, I is a finite

monoid,
∑

indicates summation over I and xi,j =
∑

ik=j xk. The discussion
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of this schematic rule—which has been called monoid identities by Krob—and
of Krob’s proof requires group theory beyond the scope of this paper; a short
sketch can be found in Conway’s monograph.

Perhaps surprisingly, Boffa has shown that the monoid identities are deriv-
able from boffa-1 by purely elementary reasoning. Relative to Krob’s result, this
establishes completeness of boffa-1 (hence of all algebras in Figure 1).

We now reconstruct Boffa’s proof in Isabelle. While his original proof covers
just a few lines, a certain amount of theory infrastructure must be developed
in Isabelle beforehand. First, abstract axiomatic reasoning—as in the previous
sections—is no longer sufficient; an axiomatisation of Boffa’s algebras based on
carrier sets is needed. Second, finite sums need to be implemented for algebras
with carrier sets since they are not available in Isabelle’s standard library. Third,
elements of Boffa’s algebras must be modelled as functions from a finite monoid
into a Boffa algebra in order to capture indexing.

Algebras with explicit carrier sets can be found in the Isabelle library, however,
the associated syntax is not well documented and some constructions used in this
section may therefore remain somewhat obscure. We have implemented dioids
along these lines and proved some essential properties.

locale dioid = weak-partial-order D for D (structure) +
assumes add-closed : [[x∈carrier D ; y∈carrier D ]] ⇒ x+y∈carrier D
— and further closure conditions
and mult-assoc: [[x∈carrier D ; y∈carrier D ; z∈carrier D ]] ⇒ x ·(y ·z) = (x ·y)·z
— and the remaining dioid axioms

Algebraic structures are now parametrised with respect to their carrier set, and
closure conditions for all operations must be added. ATP systems must check
these additional conditions, which involve some simple set expressions. At the
level of dioids, however, this has little impact on their performance.

The most natural way of defining finite sums over dioids with carrier sets
would be using a fold function, as does Isabelle’s setsum operator without car-
riers. For automated theorem proving, however, it turns out to be much simpler
to define this (partial) recursive function by locale extension.

locale dioid-finsup = dioid D for D (structure) +
assumes finsup-closed : [[finite A; A ⊆ carrier D ]] ⇒ ΣA∈carrier D
and finsup-empty : Σ{} = 0
and finsup-insert : [[A ⊆ carrier D ; finite A; x∈carrier D ]] ⇒ Σ(insert x A) = x+ΣA

We have developed a basic library for sums, in particular for their interaction
with the dioid operations. Typical examples are

∑
A ≤ y ↔ ∀x ∈ A.x ≤ y,∑

(A ∪ B) = (
∑
A) + (

∑
B), and (

∑
A) · (

∑
B) =

∑
{a · b | a ∈ A, b ∈ B},

whenever A and B are finite sets. Their proofs are the least automatic ones in
the paper, since side conditions on the elements and sets involved need to be
processed. All individual proof steps, however, could still be discharged auto-
matically, sometimes after simplifying. We expect that the degree of automation
can significantly be increased in a more thoroughly designed library.

Next we axiomatise boffa1 with carrier sets.

locale boffa1 = dioid-finsup B for B (structure) +
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assumes star-closed : x∈carrier B ⇒ x∗∈carrier B
and C11: [[x∈carrier B ; y∈carrier B ]] ⇒ (x+y)∗ = (x∗·y)∗·x∗

and C12: [[x∈carrier B ; y∈carrier B ]] ⇒ (x ·y)∗ = 1+x ·(y ·x)∗·y
and R: x∈carrier B ⇒ x ·x = x → x∗ = 1+x

We now link this algebra with the index monoid I. First, we define I—parametrised
by the carrier of the algebra—as an arbitrary set that is mapped by a function
x—again parametrised by the carrier—into the regular algebra. The record ′a
boffa provides the signature for the locale boffa1.

record ( ′a, ′b) boffa-gen = ′a boffa +
gen-set :: ′b set (I ı)
gen :: ′b ⇒ ′a (x ı-)

locale boffa-gen = boffa1 G for G (structure) +
assumes gen-closed : i∈I ⇒ x i∈carrier G

We can then impose the monoid structure and finiteness constraint on I.

record ( ′a, ′b) boffa-monoid = ( ′a, ′b) boffa-gen +
comp :: [ ′b, ′b] ⇒ ′b (infix ◦ı 80)
unit :: ′b (eı)

locale boffa-monoid = boffa-gen G for G (structure) +
assumes gen-finite: finite I
and comp-closed : [[i∈I ; j∈I ]] ⇒ i◦j∈I
and unit-closed : e∈I
and comp-assoc: [[i∈I ; j∈I ; k∈I ]] ⇒ i◦(j ◦k) = (i◦j )◦k
and unit-left : i∈I ⇒ e◦i = i
and unit-right : i∈I ⇒ i◦e = i

This infrastructure allows us to write down Conway’s monoid identities in Is-
abelle. Deriving them requires about 10 additional lemmas on the interaction
of the monoid and the regular algebra. To shorten expressions we write {xi}
instead of {xi | i ∈ I} and similarly {xi · xj} or {xi◦j} when indices range over
I. We have shown, for instance, that the set {xi | i ∈ A} is a finite subset of
the carrier G of our algebra and that

∑
{xi | i ∈ A} ∈ G, for every A ⊆ I.

Another example is that {xi · xj} is a finite subset of G and the sum over this
set an element of G. Finally, we have shown that the image of the monoidal unit
e under x can be isolated from sums:

∑
{xi} = xe +

∑
{xi| i ∈ (I −{e})}. Most

corresponding proofs are fully automatic.
The final missing step is the implementation of the pair notation xi,j .

Definition mon-pair :: ( ′a, ′b, ′c) boffa-monoid-scheme ⇒ ′b ⇒ ′b ⇒ ′a (x ı-,-)
where xGi,j = ΣG{xGk | k . k∈IG ∧ i◦Gk = j }

For syntactic reasons, the index G refers to the underlying carrier set. The
following lemma corresponds to the first step in Boffa’s proof [3].

Lemma mon-pair-split : (∀ i∈I . ∀ j∈I . x i,j∗ = x i,j) ⇒ Σ{x i} = 1+Σ{x i}

Its proof translates Boffa’s reasoning more or less directly. The remaining two
lemmas formalise properties that have been left implicit in Boffa’s next steps.
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Lemma aux1: {x i◦j} = {x i}

Lemma aux2: (∀ i∈I . ∀ j∈I . x i·x j ≤ x i◦j) ⇒ Σ{x i·x j} ≤ Σ{x i◦j}

By Lemma aux1, summing over all elements i ◦ j of I means summing over all
elements i. Lemma aux2 helps to lift the assumption in Conway’s rule that x is
a submorphism to the level of suprema. Therefore, the map x from the monoid
I into the Boffa algebra B is “almost” an embedding.

Finally, these three lemmas allow us to feed Boffa’s remaining proof of Con-
way’s rule directly into Isabelle, verifying all his proof steps automatically.

Theorem mon-id : (∀ i∈I . ∀ j∈I . x i·x j ≤ x i◦j ∧ x i,j
∗ = x i,j) ⇒ (Σ{x i})∗ = Σ{x i}

Proof −
assume ∀ i∈I . ∀ j∈I . x i·x j ≤ x i◦j ∧ x i,j

∗ = x i,j
— preparatory steps on the assumption

have (Σ{x i})·(Σ{x i}) = (1+Σ{x i})·(1+Σ{x i}) — by smt
also have ... = 1+(Σ{x i})+(Σ{x i})·(Σ{x i}) — by smt
also have ... = 1+(Σ{x i}+Σ{x i·x j}) — by simplification
ultimately have (Σ{x i})·(Σ{x i}) = Σ{x i} — by smt
thus (Σ{x i})∗ = Σ{x i} — by smt, essentially R and mon-pair-split

qed

This last theorem establishes completeness of all regular algebras in our hierarchy
relative to Krob’s proof (cf. Figure 1). Formalising this result fully in Isabelle
would require linking our abstract implementations of algebras with the carrier
based ones. Unfortunately, to our knowledge, this is impossible. Alternatively,
we could have based the entire development on carrier sets. But that seems
mathematically rather unnatural and it hampers proof automation.

10 Conclusion

We have reconstructed the fine structure of regular algebras within Isabelle based
on the Sledgehammer tool for automated theorem proving and on automated
counterexample search. The main emphasis was on known completeness results,
yet some new findings clarify the overall picture in Figure 1.

As an exercise in computer enhanced mathematics, our study underlines the
impressive potential of integrated automated and interactive proof technology
for the working mathematician. Automation of axiomatic algebraic reasoning left
little to desire; that of moderately difficult higher-order and integrated reasoning
(e.g. by induction, with algebra, numbers or sets) was still reasonably high. The
most complex proofs could be translated directly and rather quickly from paper
and pencil proofs and automated step by step. The hardest work was certainly in
library design. Overall, formalising regular algebras in this new kind of integrated
environment seems reasonably lightweight and natural from a mathematician’s
point of view. Results that eminent scientists found worth publishing could be
reconstructed with relative ease and a high degree of automation.

We end with some remarks on proof technology. Isabelle proof reconstruction
often requires proof search. This remains a bottleneck. Standardised detailed
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ATP output would support fast microstep proof reconstruction even when proof
search takes time. Standardised type support for ATP seems desirable for het-
erogeneous mathematical reasoning. Sledgehammer calls five ATP systems and
the SMT solver Z3 (cf. [2]). Having them all is certainly a gain, but Z3 showed
definitely the most consistent performance. In Isabelle, the gap between abstract
and carrier-based structures inhibits smooth mathematical reasoning. A less rigid
proof scripting language could yield simpler and less verbose ATP-based proofs:
assumption contexts are managed by the relevance filter; hence detailed control
at command level—which determines the scripting syntax— seems unnecessary.

Acknowledgements. We are grateful to Geoff Sutcliffe and the München
Isabelle group for making ATP/SMT systems freely available over the Internet.
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Abstract. We introduce the notion of “δ-complete decision procedures”
for solving SMT problems over the real numbers, with the aim of handling
a wide range of nonlinear functions including transcendental functions
and solutions of Lipschitz-continuous ODEs. Given an SMT problem
ϕ and a positive rational number δ, a δ-complete decision procedure
determines either that ϕ is unsatisfiable, or that the “δ-weakening” of
ϕ is satisfiable. Here, the δ-weakening of ϕ is a variant of ϕ that allows
δ-bounded numerical perturbations on ϕ. We establish the existence and
complexity of δ-complete decision procedures for bounded SMT over reals
with functions mentioned above. We propose to use δ-completeness as
an ideal requirement for numerically-driven decision procedures. As a
concrete example, we formally analyze the DPLL〈ICP〉 framework, which
integrates Interval Constraint Propagation in DPLL(T), and establish
necessary and sufficient conditions for its δ-completeness. We discuss
practical applications of δ-complete decision procedures for correctness-
critical applications including formal verification and theorem proving.

1 Introduction

Given a first-order signature L and a structureM, the Satisfiability Modulo The-
ories (SMT) problem asks whether a quantifier-free L-formula is satisfiable over
M, or equivalently, whether an existential L-sentence is true in M. Solvers for
SMT problems have become the key enabling technology in formal verification
and related areas. SMT problems over the real numbers are of particular inter-
est, because of their importance in verification and design of hybrid systems,
as well as in theorem proving. While efficient algorithms [10] exist for decid-
ing SMT problems with only linear real arithmetic, practical problems normally
contain nonlinear polynomials, transcendental functions, and differential equa-
tions. Solving formulas with these functions is inherently intractable. Decision
algorithms [9] for formulas with nonlinear polynomials have very high complex-
ity [6]. When the sine function is involved, the SMT problem is undecidable, and
only partial algorithms can be developed [2,1].
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Recently much attention has been given to developing practical solvers that
incorporate scalable numerical computations. Examples of numerical algorithms
that have been exploited include optimization algorithms [4,28], interval-based
algorithms [13,11,12,17], Bernstein polynomials [26], and linearization algorithms
[14]. These solvers have shown promising results on various nonlinear bench-
marks in terms of scalability.

However, for correctness-critical problems, there is always the concern that
numerical errors can result in incorrect answers from numerically-driven solvers.
For example, safety problems for hybrid systems can not be decided by numeri-
cal methods [29]. The problem is compounded by, for instance, the difficulty in
understanding the effect of floating-point arithmetic in place of exact computa-
tion. There are two common ways of addressing these concerns. One is to use
exact versions of the numerical algorithms, replacing floating-point operations
by exact symbolic arithmetic [26]; the other is to use post-processing (validation)
procedures to ensure that only correct results are returned. Both options reduce
the full power of numerical algorithms and are usually hard to implement as
well. For instance, in the Flyspeck project [19] for the formal proof of the Kepler
conjecture, validating the numerical procedures used in the original proof turns
out to be the hardest computational part (and unfinished yet). In general, there
has been no framework for understanding the actual performance guarantees of
numerical algorithms in the context of decision problems.

In this paper we aim to fill this gap by formally establishing the applicability
of numerical algorithms in decision procedures, and the correctness guarantees
they can actually provide. We do this as follows.

First, we introduce “the δ-SMT problem” over the real numbers, to capture
what can in fact be correctly solved by numerically-driven procedures. Given an
SMT formula ϕ, and any positive rational number δ, the δ-SMT problem asks
for one of the following decisions:

– unsat: ϕ is unsatisfiable.
– δ-sat: The δ-weakening of ϕ is satisfiable.

Here, the δ-weakening of ϕ is defined as a numerical relaxation of the original
formula. For instance, the δ-weakening of x = 0 is |x| ≤ δ. Note that if a formula
is satisfiable, its δ-weakening is always satisfiable. Thus, when a formula is δ-sat,
either it is indeed satisfiable, or it is unsatisfiable but a δ-perturbation on its
numerical terms would make it satisfiable. The effect of this slight relaxation is
significant. In sharp contrast to the undecidability of SMT for any signature ex-
tending real arithmetic by sine, we show that the bounded δ-SMT problem for a
wide range of nonlinear functions is decidable. In fact, we show that the bounded
δ-SMT problem for the theory with exponentiation and trigonometric functions
is NP-complete, and PSPACE-complete for theories with Lipschitz-continuous
ODEs. We use techniques from computable analysis [31,5]. These results pro-
vide the theoretical basis for our analysis of numerically-driven procedures.

Next, if a decision algorithm can solve the δ-SMT problem correctly, we say
it is “δ-complete”. We propose to use δ-completeness as the ideal correctness re-
quirement on numerically-driven procedures, replacing the conventional notion
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of complete solvers (which can never be met in this context). This new notion
makes it worthwhile to formally analyze numerical methods for decision problems
and compare their strength, instead of viewing them as partial heuristics. As an
example, we study DPLL〈ICP〉, the integration of Interval Constraint Propaga-
tion (ICP) [20] in DPLL(T) [25]. It is a general solving framework for nonlinear
formulas and has shown promising results [13,17,12]. We obtain conditions that
are sufficient and necessary for the δ-completeness of DPLL〈ICP〉.

Further, we show the applicability of δ-complete procedures in correctness-
critical practical problems. In bounded model checking [7,8], using a δ-complete
solver we return one of the following answers: either a system is absolutely safe
up to some depth (unsat answers), or it would become unsafe under some δ-
bounded numerical perturbations (δ-sat answers). Since δ can be made very
small, in the latter case the algorithm is essentially detecting robustness problems
in the system: If a system would be unsafe under some small perturbations, it
can hardly be regarded as safe in practice. Similar guarantees can be given for
invariant validation and theorem proving. The conclusion is that, under suitable
interpretations, the answers of numerically-driven decision procedures can indeed
be relied on in correctness-critical applications, as long as they are δ-complete.

Related Work. Our goal is to provide a formal basis for the promising trend
of numerically-driven decision procedures [4,28,13,11,12,17,26,14]. Related at-
tempts can be seen in Ratschan’s work [30], in which he investigated the sta-
bility of first-order constraints under numerical perturbations. Our approach is,
instead, to take numerical perturbations as a given and study its implications in
practical applications. Results in this paper are related to our more theoretical
results [16] for arbitrarily-quantified sentences, where we do not analyze practical
procedures. A preliminary notion of δ-completeness was proposed by us earlier
in [17], in which only polynomials are considered.

The paper is organized as follows. In Section 2 and 3 we define the bounded
δ-SMT problem and establish its decidability and complexity. In Section 4 we
formally analyze DPLL〈ICP〉 and discuss applications in Section 5.

2 SMT with Type 2 Computable Functions

2.1 Basics of Computable Analysis

Real numbers can be encoded as infinite strings, and a computability theory of
real functions can be developed with oracle machines that perform operations
using oracles encoding real numbers. This is the approach developed in com-
putable analysis (Type 2 Computability) [31,23,5]. We briefly review results of
importance to us.

Throughout the paper || · || denotes || · ||∞ over Rn for various n.

Definition 2.1 (Names). A name of a ∈ R is any function γa : N→ Q satisfy-
ing that for every i ∈ N, |γa(i)−a| < 2−i. For a ∈ Rn, γa(i) = 〈γa1(i), ..., γan(i)〉.
Thus the name of a real number is a sequence of rational numbers converging
to it. For a ∈ Rn, we write Γ (a) = {γ : γ is a name of a}.
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A real function f is computable if there is an oracle Turing machine that can
take any argument x of f as an oracle, and output the value of f(x) up to an
arbitrary precision.

Definition 2.2 (Computable Functions). We say f :⊆ Rn → R is com-
putable if there exists an oracle Turing machine Mf , outputting rational num-
bers, such that

∀x ∈ dom(f) ∀γx ∈ Γ (x) ∀i ∈ N |Mγx

f (i)− f(x)| < 2−i.

In the definition, i specifies the desired error bound on the output of Mf with
respect to f(x). For any x ∈ dom(f), Mf has access to an oracle encoding the
name γx of x, and output a 2−i-approximation of f(x). In other words, the
sequence Mγx

f (1),Mγx

f (2), ... is a name of f(x). A key property of this notion
of computability is that computable functions over the reals are continuous [31].
Moreover, over any compact set D ⊆ Rn, computable functions are uniformly
continuous with a computable modulus of continuity defined as follows.

Definition 2.3 (Uniform Modulus of Continuity). Let f :⊆ Rn → R be a
function and D ⊆ dom(f) a compact set. The function mf : N → N is called a
uniform modulus of continuity of f on D, if

∀x,y ∈ D ∀i ∈ N ||x− y|| < 2−mf (i) → |f(x)− f(y)| < 2−i.

Proposition 2.1 ([31]). Let f :⊆ Rn → R be computable and D ⊆ dom(f) a
compact set. Then f has a computable uniform modulus of continuity over D.

Intuitively, if a function has a computable uniform modulus of continuity, then
fixing any desired error bound 2−i on the outputs, we can compute a global pre-
cision 2−mf (i) on the inputs from D such that using any 2−mf (i)-approximation
of any x ∈ D, f(x) can be computed within the error bound.

Most common continuous real functions are computable [31]: Addition, multi-
plication, absolute value, min, max, exp, sin and solutions of Lipschitz-continuous
ordinary differential equations are all computable functions. Compositions of
computable functions are computable.

Moreover, complexity of real functions can be defined over compact domains.

Definition 2.4 ([24]). Let D ⊆ Rn be compact. A real function f : D → R
is P-computable (PSPACE-computable), if it is computable by an oracle Turing

machine M
γ(x)
f (i) that halts in polynomial-time (polynomial-space) for every

i ∈ N and every x ∈ dom(f).

We say f is in Type 2 complexity class C if it is C-computable. f is C-complete
if it is C-computable and C-hard [23]. If f : D → R is C-computable, then it has
a C-computable modulus of continuity over D. Polynomials, exp, and sin are all
P-computable functions. A recent result [22] established that the complexity of
computing solutions of Lipschitz-continuous ODEs over compact domains is a
PSPACE-complete problem.
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2.2 Bounded SMT over RF
We now let F denote any finite collection of Type 2 computable functions. LF
denotes the first-order signature and RF is the standard structure 〈R,F〉. We
can then consider the SMT problem over RF , namely, satisfiability of quantifier-
free LF -formulas over RF . We consider formulas whose variables take values
from bounded intervals. Because of this, it is more convenient to directly write
the bounds on existential quantifiers and express bounded SMT problems as
Σ1-sentences with bounded quantifiers.

Definition 2.5 (Bounded Σ1-Sentences). A bounded Σ1-sentence in LF is

ϕ : ∃I1x1 · · · ∃Inxn.ψ(x1, ..., xn).
– For all i, Ii ⊆ R is a bounded (open or closed) interval with rational end-

points.
– Each bounded quantifier ∃Iixi.φ denotes ∃xi.(xi ∈ Ii ∧ φ).
– ψ(x1, ..., xn) is a quantifier-free LF -formula, i.e., a Boolean combination of

atomic formulas of the form f(x1, ..., xn) ◦ 0, where f is a composition of
functions in F and ◦ ∈ {<,≤, >,≥,=, �=}.

– We write dom(ϕ) = I1×· · ·×In, and require that all the functions occurring
in ψ(x) are defined everywhere over its closure dom(ϕ).

We can write a bounded Σ1-sentence as ∃Ix.ψ(x) for short.

Lemma 2.1 (Standard Form). Any bounded Σ1-sentence ϕ in LF is equiva-
lent over RF to a sentence of the following form:

∃I1x1 · · · ∃Inxn
m∧
i=1

(

ki∨
j=1

fij(x) = 0).

Proof. Assume that ϕ is originally ∃Ix
∧m

i=1(
∨ki

j=1 gij(x) ◦ 0), where ◦ ∈ {<,≤
, >,≥,=, �=}. We apply the following transformations:

1. (Eliminate �=) Substitute each atomic formula of the form gij �= 0 by
gij < 0 ∨ gij > 0.

2. (Eliminate ≤, <) Substitute gij ≤ 0 by −gij ≥ 0, and gij < 0 by −gij > 0.

Now the formula is rewritten to ∃Ix.
∧m

i=1(
∨ki

j=1 g
′
ij(x)◦0), where ◦ ∈ {>,≥,=}.

(g′ij = −gij if the inequality is reversed; otherwise g′ij = gij .)
3. (Eliminate ≥, >) Substitute g′ij ≥ 0 (or g′ij > 0) by g′ij − vij = 0, where

vij is a newly introduced variable, and add an innermost bounded existential
quantifier ∃vij ∈ Ivij , where Ivij = [0,mvij ] (Iv = (0,mvij ]). Here, mvij ∈ Q

is any value greater than the maximum of g′ij over dom(ϕ). Note that such

maximum of g′ij always exists over dom(ϕ), since g′ij is continuous on dom(ϕ),
which is a compact, and is computable [23].

The formula is now in the form ∃Ix∃Ivv.
∧m

i=1(
∨ki

j=1 fij(x,v) = 0), where
fij = g′ij−vij if vij has been introduced in the previous step; otherwise, fij = g′ij .
The new formula is in the standard form and equivalent to the original one. ��
Example 2.1. A standard form of ∃[−1,1]x∃[−1,1]y∃[−1,1]z (ez < x→ y < sin(x))
is ∃[−1,1]x∃[−1,1]y∃[−1,1]z∃[0,10]u∃(0,10]v (ez − x− u = 0) ∨ (sin(x) − y − v = 0).
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3 The Bounded δ-SMT Problem

The key for bridging numerical procedures and SMT problems is to introduce
syntactic perturbations on Σ1-sentences in LF .

Definition 3.1 (δ-Weakening and Perturbations). Let δ ∈ Q+ ∪ {0} be a
constant and ϕ be a Σ1-sentence in the standard form:

ϕ := ∃Ix.
m∧
i=1

(

ki∨
j=1

fij(x) = 0).

The δ-weakening of ϕ defined as:

ϕδ := ∃Ix.
m∧
i=1

(

ki∨
j=1

|fij(x)| ≤ δ).

Also, a δ-perturbation is a constant vector c = (c11, ..., cmkm), cij ∈ Q, satisfying
||c|| ≤ δ, such that the c-perturbed form of ϕ is given by:

ϕc := ∃Ix.
m∧
i=1

(

ki∨
j=1

fij(x) = cij).

Proposition 3.1. ϕδ is true iff there exists a δ-perturbation c such that ϕc is
true. In particular, c can be the zero vector, and thus ϕ→ ϕδ.

We now define the bounded δ-SMT problem. We follow the convention that SMT
solvers return sat/unsat, which is equivalent to the corresponding Σ1-sentence
being true/false.

Definition 3.2 (Bounded δ-SMT). Let F be a finite collection of Type 2 com-
putable functions. Let ϕ be a bounded Σ1-sentence in LF in standard form, and
δ ∈ Q+. The bounded δ-SMT problem asks for one of the following decisions:

– unsat : ϕ is false.
– δ-sat : ϕδ is true.

When the two cases overlap, either decision can be returned.

Our main theoretical claim is that the bounded δ-SMT problem is decidable
for δ ∈ Q+. This is essentially a special case of our more general results for
arbitrarily-quantified LF -sentences [16]. However, different from [16], here we
defined the standard forms of SMT problems to contain only equalities in the
matrix, on which the original proof does not work directly. Also, in [16] we relied
on results from computable analysis that are not needed here. We now give a
direct proof for the decidability of δ-SMT and analyze its complexity.

Theorem 3.1 (Decidability). Let F be a finite collection of Type 2 computable
functions, and δ ∈ Q+ be given. The bounded δ-SMT problem in LF is decidable.
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Proof. We describe a decision procedure which, given any bounded Σ1-sentence
ϕ in LF and δ ∈ Q+, decides either ϕ is false or ϕδ is true. Assume that ϕ is in
the form of Definition 3.1.

First, we need a uniform bound on all the variables so that a modulus of
continuity for each function can be computed. Suppose each xi is bounded by
Ii, whose closure is Ii = [li, ui]. We write

ϕ := ∃[0,1]x1 · · · ∃[0,1]xn
m∧
i=1

(

ki∨
j=1

fij
(
l1 + (u1 − l1)x1, ..., ln + (un − ln)xn

)
= 0).

From now on, gij = fij(l1 +(u1− l1)x1, ..., ln + (un− ln)xn). After the transfor-

mation, we have dom(ϕ) = [0, 1]× · · · × [0, 1], on which each gij is computable
and has a computable modulus of continuity mgij . We write ψ(x) to denote the
matrix of ϕ after the transformation.

Choose r ∈ N such that 2−r < δ/4. Then for each gij , we use mgij to obtain
eij = mgij (r). Choose e ∈ N such that e ≥ max(e11, ..., emkm) and write ε = 2−e.

We then have

∀x,y ∈ dom(ϕ) (||x− y|| < ε→ |gij(x)− gij(y)| < δ/4). (1)

We now consider a finite ε-net of dom(ϕ), i.e., a finite Sε ⊆ dom(ϕ), satisfying

∀x ∈ dom(ϕ) ∃a ∈ Sε ||x− a|| < ε. (2)

In fact, Sε can be explicitly defined as

Sε = {(a1, ..., an) : ai = k · ε, where k ∈ N, 0 ≤ k ≤ 2e}.

Next, we evaluate the matrix ψ(x) on each point in Sε, as follows. Let a ∈ Sε be
arbitrary. For each gij in ψ, we compute gij(a) up to an error bound of δ/8, and

write the result of the evaluation as gij(a)
δ/8

. Then |gij(a) − gij(a)
δ/8| < δ/8.

Note gij(a)
δ/8

is a rational number. We then define

ψ̂(x) :=
m∧
i=1

ki∨
j=1

|gij(x)
δ/8| < δ/2.

Then for each a, evaluating ψ̂(a) only involves comparison of rational numbers

and Boolean evaluation, and ψ̂(a) is either true or false. Now, by collecting the

value of ψ̂ on every point in Sε, we have the following two cases.
• Case 1: For some a ∈ Sε, ψ̂(a) is true. We show that ϕδ is true. Note that

ψ̂(a)⇒
m∧
i=1

ki∨
j=1

|gij(a)
δ/8| < δ/2⇒

m∧
i=1

ki∨
j=1

|gij(a)| < δ · 5/8.

We need to be careful about a, since it is an element in dom(ϕ), not dom(ϕ). If
a ∈ dom(ϕ), then ϕδ is true, witnessed by a. Otherwise, a ∈ ∂(dom(ϕ)). Then
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by continuity of gij , there exists a
′ ∈ dom(ϕ) such that

∧m
i=1

∨ki

j=1 |gij(a′)| < δ.

(Just let a small enough ball around a intersect dom(ϕ) at a′.) That means ϕδ

is also true in this case, witnessed by a′.
• Case 2: For every a ∈ Sε, ψ̂(a) is false. We show that ϕ is false. Note that

¬ψ̂(a)⇒
m∨
i=1

ki∧
j=1

|gij(a)
δ/8| ≥ δ/2⇒

m∨
i=1

ki∧
j=1

|gij(a)| ≥ δ · 3/8.

Now recall conditions (1) and (2). For an arbitrary x ∈ dom(ϕ), there exists
a ∈ Sε such that |gij(x) − gij(a)| < δ/4 for every gij . Consequently, we have

|gij(x)| ≥ δ · 3/8− δ/4 = δ/8. Thus, ∀x ∈ dom(ϕ),
∨m

i=1

∧ki

j=1 |gij(x)| > 0. This
means ¬ϕ is true, and ϕ is false.

In all, the procedure decides either that ϕδ is true, or that ϕ is false. ��

We now analyze the complexity of the δ-SMT problem. The decision procedure
given above essentially evaluates the formula on each sample point. Thus, us-
ing an oracle for evaluating the functions, we can construct a nondeterministic
Turing machine that randomly picks the sample points and decides the formula.
Most of the functions we are interested in (exp, sin, ODEs) are in Type 2 com-
plexity class P or PSPACE. In this case, the oracle only uses polynomial space on
the query tape (Proposition 3.2 below), and all the computations can be done
in polynomial-time. Thus, it should be clear that the δ-SMT problem is in NPC,
where C is the complexity of the computable functions in the formula.

Formally, to prove interesting complexity results, a technical restriction is that
we need to bound the number of function compositions in a formula, because
otherwise evaluating nested polynomial-time functions can be exponential in the
number of nesting. Formally we define:

Definition 3.3 (Uniformly Bounded Σ1-class). Let F be a finite set of Type
2 computable functions, and S a class of bounded Σ1-sentences in LF . Let l, u ∈
Q satisfy l ≤ u. We say S is uniformly (l, u,F)-bounded, if for all ϕ ∈ S of the

form ∃I1x1 · · · ∃Inxn
∧m

i=1

∨ki

j=1 fij(x) = 0 we have:

– ∀1 ≤ i ≤ n, Ii ⊆ [l, u].
– Each fij(x) is contained in F .

Proposition 3.2 ([23]). Let C be a Type 2 complexity class contained in
PSPACE. Then given any compact domain D, a C-computable function has a
uniform modulus of continuity over D given by a polynomial function.

The main complexity claim is as follows. We have sketched the intuition above
and a detailed proof is given in [15].

Theorem 3.2 (Complexity). Let F be a finite set of functions in Type 2
complexity class C, P ⊆ C ⊆ PSPACE. The δ-SMT problem for uniformly bounded
Σ1-classes in LF is in NPC.
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Corollary 3.1. Let F be a finite set of P-time computable real functions, such as
{+,×, exp, sin}. The uniformly-bounded δ-SMT problem for LF is NP-complete.

Corollary 3.2. Let F be a finite set of Lipschitz-continuous ODEs over compact
domains. Then the uniformly-bounded δ-SMT problem in LF is in PSPACE, and
there exists LF such that it is PSPACE-complete.

4 δ-Completeness of the DPLL〈ICP〉 Framework

We now give a formal analysis of the integration of ICP and DPLL(T) for solving
bounded δ-SMT with nonlinear functions. Our goal is to establish sufficient and
necessary conditions under which such an integration is δ-complete.

4.1 Interval Constraint Propagation

The method of Interval Constraint Propagation (ICP) [3] finds solutions of real
constraints using a “branch-and-prune” method, combining interval arithmetic
and constraint propagation. The idea is to use interval extensions of functions
to “prune” out sets of points that are not in the solution set, and “branch” on
intervals when such pruning can not be done, until a small enough box that may
contain a solution is found. A high-level description of the decision version of
ICP is given in Algorithm 1, and we give formal definitions below.

Definition 4.1 (Floating-Point Intervals and Hulls). Let F denote the fi-
nite set of all floating point numbers with symbols −∞ and +∞ under the con-
ventional order <. Let IF = {[a, b] ⊆ R : a, b ∈ F, a ≤ b} denote the set of
closed real intervals with floating-point endpoints, and BF =

⋃∞
n=1 IF

n the set of
boxes with these intervals. Let S ⊆ R be any set of real numbers, the hull of S
is written as Hull(S) =

⋂
{I ∈ IF : S ⊆ I}.

For I = [a, b] ∈ IF, we write |I| = |b− a| to denote its size.

Definition 4.2 (Interval Extension (cf. [3])). Let f :⊆ Rn → R be a real
function. An interval extension operator $(·) maps f to a function $f :⊆ BF →
IF, such that ∀B ∈ BF ∩ dom($f), {f(x) : x ∈ B} ⊆ $f(B).

Example 4.1. The natural extension of f = 2·(x+y)·z is given by $f = [2, 2]·(Ix+
Iy)·Iz , where the interval operations are defined as [a1, b1]+[a2, b2] = [a1+a2, b1+
b2] and [a1, b1] · [a2, b2] = [min(a1a2, a1b2, b1a2, b1b2),max(a1a2, a1b2, b1a2, b1b2)].

In Algorithm 1, Branch(B, i) is an operator that returns two smaller boxes B′ =
I1 × · · · × I ′i × · · · × In and B′′ = I1 × · · · × I ′′i × · · · × In, where Ii ⊆ I ′i ∪ I ′′i .
To ensure termination it is assumed that there exists some unifrom constant
0 < c < 1 such that in every branching operation, c · |Ii| ≤ |I ′i| and c · |Ii| ≤ |I ′′i |.

The key component of the algorithm is the Prune(B, f) operation. A simple
example of a pruning operation is as follows.



δ-Complete Decision Procedures for Satisfiability over the Reals 295

Algorithm 1. High-Level ICPε (decision version of Branch-and-Prune)

input : Constraints f1(x1, ..., xn) = 0, ..., fm(x1, ..., xn) = 0, initial box
B0 = I01 × · · · × I0n, box stack S = ∅, and precision ε ∈ Q+.

output: sat or unsat.

1 S.push(B0);
2 while S �= ∅ do
3 B ← S.pop() ;
4 while ∃1 ≤ i ≤ m,B �= Prune(B, fi) do
5 B ← Prune(B, fi) ;
6 end
7 if B �= ∅ then
8 if ∃1 ≤ i ≤ n, |Ii| ≥ ε then
9 {B′, B′′} ← Branch(B, i);

10 S.push({B′, B′′});
11 end
12 return sat;

13 end

14 end
15 return unsat;

Example 4.2. Consider x− y2 = 0 with initial intervals x ∈ [1, 2] and y ∈ [0, 4].
Let $f(Ix, Iy) = Ix − I2y be the natural interval extension of the left hand side.
Since we know 0 �∈ $f([1, 2], [2, 4]), we can contract the interval on y from [0, 4]
to [0, 2] in one pruning step.

In principle, any operation that contracts the intervals on variables can be seen
as pruning. However, for correctness we need several formal requirements on the
pruning operator in ICPε.

Notation 4.1 For any f : Rn → R, we write Zf = {a ∈ Rn : f(a) = 0}.
Definition 4.3 (Well-defined Pruning Operators). Let F be a collection
of real functions, and $ be an interval extension operator on F . A well-defined
(equality) pruning operator with respect to $ is a partial function Prune� :⊆
BF×F → BF, such that for all f ∈ F and B ∈ BF,

– (W1) Prune�(B, f) ⊆ B;
– (W2) If (Prune�(B, f)) �= ∅, then 0 ∈ $f(Prune�(B, f)).
– (W3) B ∩ Zf ⊆ Prune�(B, f);

When $ is clear, we simply write Prune. It specifies the following conditions. (W1)
requires contraction, so that the algorithm always makes progress: branching
always decreases the size of boxes, and pruning never increases them. (W2)
requires that the result of a pruning is always a reasonable box that may contain
a zero. Otherwise B should have been pruned out. (W3) ensures that the real
solutions are never discarded in pruning (called “completeness” in [3]). We use
Prune(B, f1, ..., fm) to denote the iterative application of Prune(·, fi) on B for
all 1 ≤ i ≤ m, until a fixed-point is reached. (Line 4-6 in Algorithm 1.)
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Proposition 4.1. For all i, Prune(B, f1, ..., fm) ⊆ Prune(B, fi).

Lemma 4.1. Algorithm 1 always terminates. If it returns sat then there exists
nonempty boxes B,B′ ⊆ B0, such that ||B|| < ε and B = Prune(B′, f1, ..., fm).
If it returns unsat then for every a ∈ B0, there exists B ⊆ B0 such that a ∈ B
and Prune(B, f1, ..., fm) = ∅.
Remark 4.1. It is important to see that in sat answers, B is a result of pruning
on some B′ instead of the output of a simple branching.

Theorem 4.2 (δ-Completeness of ICPε). Let δ ∈ Q+ be arbitrary. We can
find an ε ∈ Q+ such that the ICPε algorithm is δ-complete for conjunctive Σ1-
sentences in LF (where sat is interpreted as δ-sat) if and only if the pruning
operator in ICPε is well-defined.

Proof. We consider an arbitrary bounded existential LF -sentence containing
only conjunctions, written as ϕ : ∃Ix.

∧m
i=1 fi(x) = 0. Let B0 = I be the initial

bounding box.
Since all the functions in ϕ are computable over B0, each fi has a uniform

modulus of continuity over B0, which we write as mfi . Choose any k ∈ N such
that 2−k < δ. Then for any εi < mfi(k), we have

∀x,y ∈ B0, ||x− y|| < εi → |fi(x)− fi(y)| < δ. (3)

We now fix ε to be any positive rational number smaller than min(ε1, ..., εm).
By the previous lemma, we know ICPε terminates and returns either sat or

unsat. We now prove the two directions of the biconditional.
⇐: Suppose the pruning operator in ICPε is well-defined.
Suppose ICPε returns “δ-sat”, then by Lemma 4.1, there exist B,B′ ⊆ B0

such that B = Prune(B′, f1, ..., fm) and ||B|| < ε. Then by the (W2), we know
that 0 ∈ $fi(B) for every fi. Now, by the definition of ε, we know from (3)
that for every i, ∀a ∈ B, |fi(a) − 0| < δ. Namely, any a ∈ B is a witness for
ϕδ : ∃Ix |f(x)| < δ. Thus the δ-weakening of ϕ is true.

Suppose ICPε returns “unsat”. Suppose ϕ is in fact satisfiable. Then there is
a point a ∈ B0 such that ψ(a) is true. However, following Lemma 4.1, a ∈ B for
some B ⊆ B0 and Prune(B0, f1, ..., fm) = ∅. However, this contradicts condition
(W3) of the pruning operator.
⇒: We only need to show that without any one of the three conditions in

Definition 4.3, we can define a pruning operator that fails δ-completeness.
Without (W1), we define a pruning operator that always outputs intervals

bigger than ε (such as the initial intervals). Then the procedure never terminates.
Note that the other two conditions are trivially satisfied in this case (for any f
andB0 satisfying 0 ∈ $f(B0)). Without (W2), consider the function f(x) = x2+1
with x ∈ [−1, 1]. We can define a pruning operator such that Prune([−1, 1], f) =
[1, 1]. This operator satisfies the other two conditions. However, the returned
result [1, 1] fails δ-completeness for any δ smaller than 2, since f(1) = 2. Without
(W3), we simply prune any set to ∅ and always return unsat. This violates δ-
completeness, which requires that if unsat is returned the formula must be indeed
unsatisfiable. The other two conditions are also satisfied in this case. ��
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In practice, pruning operators are defined based on consistency conditions from
constraint propagation techniques. Many pruning operators are used in prac-
tice [3]. Following Theorem 4.2, we only need to prove their well-definedness to
ensure δ-completeness. For instance:

Definition 4.4 (Box-consistent Pruning [20]). We say πB : BF×F → BF
is box-consistent, if for all f ∈ F and B = I1 × · · · × In ⊆ dom(f), the i-th
interval of πB(B, f) is Ii ∩ Hull

(
{ai ∈ R : 0 ∈ $f(I1, ...,Hull({ai}), ..., In}

)
.

Proposition 4.2. The Box-consistent Pruning operator is well-defined.

4.2 Handling ODEs

In this section we expand our language to consider solutions of the initial value
problems (IVP) of Lipschitz-continuous ODEs. Let t0, T ∈ R and g : Rn → R
be a Lipschitz-continuous function, i.e., for all x1,x2 ∈ Rn, |g(x1) − g(x2)| ≤
c||x1 − x2|| for some constant c. Let t0, T ∈ R satisfy t0 ≤ T and y0 ∈ Rn. An
(autonomous) IVP problem is given by

dy

dt
= g(y(t)) and y(t0) = y0, where t ∈ [t0, T ].

where y : [t0, T ] → Rn is called the solution of the IVP. Consider y(t) as
(y1(t), ..., yn(t)), then each component yi : [t, T ] → R is a Type 2 computable
function, and can appear in some signature F . In fact, we can also regard y0

as an argument of yi and write yi(t0,y0). This does not change computabil-
ity properties of yi, since following the Picard-Lindelöf representation y(t) =∫ t

t0
g(y(s))ds + y0, yi(t) is only linearly dependent on y0.
In practice, with an ICP framework, we can exploit interval solvers for IVP

problems [27], for pruning intervals on variables that appear in constraints in-
volving ODEs. This direction has received much recent attention [12,11,18,21].

Consider the IVP problem defined above, with y0 contained in a box Bt0 ⊆
Rn. Let t0 ≤ t1 ≤ ... ≤ tm = T be a set of points in [t0, T ]. An interval-based
ODE solver returns a set of boxes Bt1 , ..., Btm such that

∀i ∈ {1, ...,m}, {y(t) : ti−1 ≤ t ≤ ti,y0 ∈ By0
} ⊆ Bti .

Now let yi : [t0, T ] × B0 → R be the i-th component of the solution y of an
IVP problem. Then interval-based ODE solvers compute interval extensions of
yi. Thus, pruning operators that respect the interval extension computed by
interval ODE solvers can be defined. It can be concluded from Theorem 4.2 that
ICPε is δ-complete for equalities involving ODEs, as long as the pruning operator
is well-defined. A simplest strategy is just to prune out any set of points outside
the interval extension:

Proposition 4.3 (Simple ODE-Pruning). Let yi = f(t,y0) be the i-th com-
ponent function of an IVP problem. Suppose $f is computed by an interval
ODE solver. Then the pruning operator Prune(Iyi , f) = Iyi ∩ $f(It, By0

) is well-
defined, where Iyi is an interval on yi and It is an interval on t.
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4.3 DPLL〈ICP〉
Now consider the integration of ICP into the framework of DPLL(T), so that
the full δ-SMT problem can be solved. Given a formula ϕ, a DPLL〈ICP〉 solver
uses SAT solvers to enumerate solutions to the Boolean abstraction ϕB of the
formula, and uses ICPε to decide the satisfiability of conjunctions of atomic
formulas. DPLL〈ICP〉 returns sat when ICPε returns sat to some conjunction of
theory atoms witnessing the satisfiability of ϕB, and returns unsat when ICPε

returns unsat on all the solutions to ϕB. Thus, it follows naturally that using a
δ-complete theory solver ICPε, DPLL〈ICP〉 is also δ-complete.

Corollary 4.1 (δ-Completeness of DPLL〈ICP〉). Let F be a set of real
functions. Then the pruning operators in ICPε are well-defined for F , if and
only if, DPLL〈ICP〉 using ICPε is δ-complete for bounded Σ1-sentences in LF .

In practice, correctness of numerical solvers is always a major concern. For com-
plete trustworthiness, it is important for numerically-driven decision procedures
to return certificates for their decisions δ-sat and sat. We outline methods for
producing certificates in DPLL〈ICP〉 in [15].

5 Applications

δ-Complete solvers return answers that allow one-sided, δ-bounded errors. The
framework allows us to easily understand the implications of such errors in prac-
tical problems. Indeed, δ-complete solvers can be directly used in the following
correctness-critical problems.

Bounded Model Checking and Invariant Validation. Let S = 〈X, Init,Trans〉
be a transition system over X , which can by continuous or hybrid. Then given
a subset U ⊆ X , the bounded model checking problem asks whether ϕn :=
∃x0, ...,xn(x0 ∧

∧n−1
i=0 Trans(xi,xi+1) ∧ xn ∈ U) is true. Here U denotes the

“unsafe” values of the system, and we say S is safe up to n if ϕn is false.
Thus, using a δ-complete solver for ϕn, we can determine the following: If ϕn

is unsat, then S is indeed safe up to n; on the other hand, if ϕn is δ-sat, then
either the system is unsafe, or it would be unsafe under a δ-perturbation, and a
counterexample is provided by the certificate for δ-sat. This δ can be set by the
user based on the intended tolerance of errors of the system. Thus, a δ-complete
solver can be directly used.

For invariant validation, a proposed invariant Inv can prove safety if the
sentence ϕ := ∀x,x′((Init(x) → Inv(x)) ∧ (Inv(x) ∧ Trans(x,x′) → Inv(x′)) ∧
Inv(x) → ¬(U(x))) is true. We then use a δ-complete solver on ¬ϕ, which is
existential. When unsat is returned, Inv is indeed an inductive invariant proving
safety. When δ-sat is returned, either Inv is not an inductive invariant, or under
a small numerical perturbation, Inv would violate the inductive conditions.

Theorem Proving. For theorem proving, one-sided errors are not directly useful
since no robustness problem is involved. We can still approach a statement ϕ
by making δ-decisions on ¬ϕ, and refine δ when needed. Starting from any δ,
whenever unsat is returned, ϕ is proved; when δ-sat, we can try a smaller δ. This
reflects the common practice in proving these statements.
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6 Conclusion

We introduced the notion of “δ-complete decision procedures” for solving SMT
problems the over real numbers. Our aim is to provide a general framework for
solving a wide range of nonlinear functions including transcendental functions
and solutions of Lipschitz-continuous ODEs. δ-Completeness serves as a replace-
ment of the conventional completeness requirement on exact solvers, which is
impossible to satisfy in this domain. We proved the existence of δ-complete
decision procedures for bounded SMT with Type 2 computable functions and
showed the complexity of the problem. We use δ-completeness as the standard
correctness requirement on numerically-driven decision procedures, and formally
analyzed the solving framework DPLL〈ICP〉. We proved sufficient and necessary
conditions for its δ-completeness. We believe our results serve as a foundation
for the development of scalable numerically-driven decision procedures and their
application in formal verification and theorem proving.
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Abstract. We give Binary Decision Diagram (BDD) based methods for
deciding validity and satisfiability of propositional Intuitionistic Logic
Int and Bi-intuitionistic Tense Logic BiKt. We handle intuitionistic im-
plication and bi-intuitionistic exclusion by treating them as modalities,
but the move to an intuitionistic basis requires careful analysis for han-
dling the reflexivity, transitivity and antisymmetry of the underlying
Kripke relation. BiKt requires a further extension to handle the inter-
actions between the intuitionistic and modal binary relations, and their
converses. We explain our methodology for using the Kripke semantics
of these logics to constrain the underlying least and greatest fixpoint ap-
proaches of the finite model construction. With some optimisations this
technique is competitive with the state of the art theorem provers for
Intuitionistic Logic using the ILTP benchmark and randomly generated
formulae.

1 Introduction

For many logics, we can decide the validity of a given formula ϕ0 by constructing
the set of all subsets of some closure cl(ϕ0), and checking whether these subsets
can support a (counter) model that makes ϕ0 false. If no such model exists, then
we can safely declare ϕ0 to be valid using this finite model property (fmp).

At first sight, this “fmp method” seems impractical since the first step re-
quires us to “construct” the set of all (exponentially many) subsets of cl(ϕ0),
thus giving a procedure whose worst case and best case complexity is always
of order O(2|cl(ϕ0)|). However, Pan et al. [12] and Marrero [9] have shown that
Binary Decision Diagrams (BDDs) can be used to represent the required subsets
efficiently, without actually “constructing” them explicitly for K and CTL.

We investigate the potential of this BDD-based method for Intuitionistic
Propositional Logic (Int) and its extensions Bi-Intuitionistic Logic (BiInt) and
Bi-Intuitionistic Tense Logic (BiKt). These logics introduce various complica-
tions over K and CTL: the logic Int has an intuitionistic rather than a classical
basis; the logic BiInt has an operator whose semantics uses the converse of the
Kripke binary relation; the logic BiKt has two binary relations R� and R♦ so
that � and ♦ are not De Morgan duals, has their converses to handle � and
� and has two further interaction conditions. A priori, it is not obvious how to

B. Gramlich, D. Miller, and U. Sattler (Eds.): IJCAR 2012, LNAI 7364, pp. 301–315, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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w �� ⊥ w � p iff ρ(w, p) = t
w � ϕ ∧ ψ iff w � ϕ and w � ψ w � ϕ ∨ ψ iff w � ϕ or w � ψ
w � ϕ → ψ iff ∀v $ w.v �� ϕ or v � ψ w � ϕ−< ψ iff ∃v % w.v � ϕ and v �� ψ
w � ♦ϕ iff ∃v.wR♦v and v � ϕ w � �ϕ iff ∃v.wR−1

� v and v � ϕ
w � �ϕ iff ∀z∀v.w % zR�v ⇒ v � ϕ w � �ϕ iff ∀z∀v.w % zR−1

♦ v ⇒ v � ϕ

Fig. 1. Kripke Semantics for BiKt in model M = (W,%, R�, R♦, ρ) and w ∈ W

handle all of these complications using the BDD method, and indeed, we find
that the least fixpoint approach for BDDs does not work for all of our logics.

We show how to adapt the BDD-method to Int, extend it to BiInt andBiKt,
and describe some useful optimisations. We also compare our implementation
with the state of the art theorem provers for Int (PITP [1] and Imogen [11]), and
DBiKt [15], the only theorem prover for BiKt that we are aware of.

Our results show that with the help of some optimisations, this method is
competitive with state-of-the-art theorem provers for Int, and still works well
for some of its tense extensions. Its biggest advantage is its versatility.

1.1 Related Work

Current state of the art theorem provers for Int are based on an optimised
tableau method [1] or a heuristically guided, focused, polarised, inverse method
[11]. Pointers to other theorem provers for Int can be found on the ILTP Bench-
mark website [16]: most of them are based upon tableaux or sequent calculi.

Various sequent calculi for BiInt exist [4, 6, 13, 14, 15]. Some of them al-
low backward proof-search, and some have been extended to handle BiKt [7].
However, we know of only one implementation for both of these logics [15].

Pan et al. [12] give a BDD-based algorithm for decidingK, the simplest propo-
sitional classical normal modal logic. They show how to handle a single binary
relation using BDDs, but do not need to consider multiple interacting “con-
verse” relations, nor further frame conditions like reflexivity, transitivity and
anti-symmetry, as we do. They also experiment with some potential optimi-
sations, some of which are not limited to K. We make use of some of these
optimisations, as well as describing some new optimisations appropriate for Int.

Marrero [9] gives a BDD-based algorithm for deciding computation tree logic
CTL, a propositional modal temporal logic with fixpoints. He provides a way
of handling the transitive closure of a discrete and serial relation by explicitly
calculating a least fixpoint, which he uses to deal with eventualities. For our
logics, the relation itself is required to be transitive, so we use a different method.

2 Syntax and Semantics of Bi-Intuitionistic Tense Logics

Formulae of BiKt [7] are defined from a set Prp of primitive propositions as:

ϕ ::= p ∈ Prp | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ϕ−< ϕ | ♦ϕ | �ϕ | �ϕ | �ϕ
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Models of BiKt are structuresM = (W, , R�, R♦, ρ) where W is a non-empty
set of worlds;  is a reflexive, transitive and antisymmetric binary relation on
W ; both R� and R♦ are binary relations on W satisfying the “zig-zag” frame
conditions (F1) and (F2) below; and ρ :W ×Prp "→ {t, f} is a valuation which
obeys the persistence property:

(F1): If x  y and xR♦z then ∃w.yR♦w and z  w
(F2): If xR�y and y  z then ∃w.x  w and wR�z

Persistence: If ρ(w, p) = t and w  v then ρ(v, p) = t.

Given M = (W, , R�, R♦, ρ) and w ∈ W , the semantics of BiKt are given in
Figure 1. We use → for intuitionistic implication while we use ⇒ for classical
implication in the meta-logic. We define intuitionistic negation ¬ϕ as ϕ → ⊥.
Note that � and ♦, and � and �, are not de Morgan duals via negation.

BiInt [18] is the {∧,∨,→,−< ,⊥}-fragment of BiKt and models of BiInt
thus do not need the R� and R♦ relations. Int is BiInt without −< -formulae.

A formula ϕ is L-valid if for all L-models M, and for all worlds w ∈ M we
haveM, w 	 ϕ. Dually, ϕ is L-satisfiable if there is some L-modelM with some
world w ∈ M such thatM, w 	 ϕ. A formula is L-falsifiable iff it is not L-valid.
We define global logical consequence for BiKt and fragments as follows where
M = (W, , R�, R♦, ρ) and Γ is a finite set of “global assumptions”:

Γ |= ϕ iff ∀M. (∀w ∈W.M, w 	 Γ )⇒ ∀w ∈ W.M, w 	 ϕ.

3 A BDD Perspective of the Finite Model Method

For each of our logics, our goal is to construct a finite model M = (Wf , .f ,
R�, R♦, ρ), as appropriate, similar to Pan et al., by constructing a sequence of

frames (W0,.0, R
0
�, R

0
♦), (W1,.1, R

1
�, R

1
♦), . . ., (Wf ,.f , R

f
�, R

f
♦) such that the

final frame gives a model which is “canonical” in two senses: if ϕ0 is satisfiable
(falsifiable) then some world of Wf satisfies (falsifies) ϕ0. Given such a finite
“canonical” model, we can decide whether a given ϕ0 is satisfiable or valid by
checking whether such worlds exist.

For a given formula ϕ0, and a closure cl(ϕ0) we first define a set of atoms
Atm ⊆ cl(ϕ0), as appropriate for the logic. Each subset of Atm is a classical
(bi-valent) valuation on these atoms, where membership means truth-hood. The
set of potentially good worlds W = 2Atm is thus an upper bound on each Wi

above, and the binary relation W ×W is an upper bound on each .i.
We next use the Kripke semantics to extract necessary constraints to construct

a relation .max ⊆ W × W that is maximal in that it throws out only the
edges which break these constraints. We then monotonically refine an initial
approximation W0 towards Wf , using the constructed .max relation to enforce
the correct modal interpretation of the elements of cl(ϕ0) in all the worlds. Once
Wf has been computed, the final step is to determine which, if any, worlds in
Wf satisfy and falsify ϕ0, giving the satisfiability and validity of ϕ0.
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3.1 A Better Basis for Wf

For our logics, cl(ϕ0) = sub(ϕ0), the set of all subformulae of ϕ0 including ϕ0.
The naive way to construct Wf is simply to use the set of all subsets of cl(ϕ0).
We instead use only the “sensible subsets” following Pan et al.’s “lean” repre-
sentation and Marrero’s choice of BDD variables. We represent each primitive
proposition and implication from cl(ϕ0) as an explicit BDD-variable, and com-
pute the “denotation” of an arbitrary formula from cl(ϕ0) as follows:

Atm = (Prp ∩ sub(ϕ0)) ∪ {ϕ→ ψ | ϕ→ ψ ∈ sub(ϕ0)}
W = 2Atm �⊥� = ∅ �a� = {w ∈ W | a ∈ w}
�φ ∧ ψ� = �φ� ∩ �ψ� �φ ∨ ψ� = �φ� ∪ �ψ�

Thus W is finite, w ∈ W corresponds to a classical binary valuation on our
BDD-variables, and for every ψ ∈ cl(ϕ0), the world w claims to satisfy ψ if
w ∈ �ψ�, and claims to falsify ψ if w ∈ �ψ�, where �ψ� =W \ �ψ�.

The set W is smaller than 2cl(ϕ0), and does not contains worlds which behave
inappropriately with respect to conjunction and disjunction. We are thus left
with worlds containing primitive propositions and implications. The semantics
of an intuitionistic implication refers to  . We therefore use an explicit repre-
sentation . of the  relation as a finite set of ordered pairs from W ×W .

3.2 Constructing the Maximal � Relation

Our eventual goal is to construct a Wf ⊆ W and a binary relation .f over
Wf which obeys all of the semantic restrictions of intuitionistic models. We now
show how to construct an over-approximation .max overW which is persistent,
transitive and anti-symmetric, and which also obeys one half of the semantics of
implication. These restrictions on the binary relation are not required for K or
CTL, and so are not considered by Pan et al. [12] and Marrero [9].

Persistence. For any particular primitive proposition p ∈ Atm, the persistence
condition can be expressed in terms of denotations as below:

∀w, v ∈ W . w ∈ �p� & w . v ⇒ v ∈ �p� (1)

Alternatively, dropping universal quantifiers, we can write it as either of:

w . v ⇒ w ∈ �p� or v ∈ �p� w ∈ �p� & v ∈ �p� ⇒ w �. v (2)

The constraint obtained from (2) is expressed in terms of set notation as:

. ⊆ (�p� ×W) ∪ (W × �p�) (�p�×W) ∩ (W × �p�) ⊆ �. (3)

That is, an upper bound on . is the set of ordered pairs from W ×W where
the first world is not in the denotation of p or the second is in the denotation of
p. Alternately, a pair of worlds from W ×W is forbidden from being in . if the
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first is in the denotation of p and the second is not. Taking the conjunction over
all p ∈ cl(ϕ0) gives our final over-approximation from persistence:

. ⊆
⋂

p∈Prp∩Atm

(�p� ×W) ∪ (W × �p�) (4)

Semantics of implication. Since  is transitive, if w  v then all successors
of v are successors of w as well: thus if M, w 	 φ → ψ, then M, v 	 φ → ψ
and implications persist across  . We mimic this by extending (4) from just the
primitive propositions to all atoms ψ in Atm:

. ⊆
⋂

ψ∈Atm

(�ψ� ×W) ∪ (W × �ψ�) (5)

For any particular implication φ → ψ, the “only if” part of the semantics of
implication can be expressed using denotations by dropping quantifiers as either:

w ∈ �φ→ ψ� & w . v ⇒ v ∈ �φ� ∪ �ψ� (6)

w . v ⇒ w ∈ �φ→ ψ� or v ∈ �φ� ∪ �ψ� (7)

Just as (1) became (4), constraint (7) becomes the following in terms of sets:

. ⊆
⋂

φ→ψ∈Atm

(�φ→ ψ�×W) ∪ (W × (�φ� ∪ �ψ�)) (8)

The conjunction of (5) and (8) gives .max, an upper bound on ., as:

.max = RHS(5) ∩RHS(8) (9)

Transitivity and Antisymmetry

Lemma 1 The relation .max is transitive: (.max ◦ .max) ⊆ .max.

Proof. For a contradiction, pick any (x, y) ∈ .max ◦ .max and suppose (x, y)
fails the persistence condition (5): thus for some ψ ∈ Atm, we have x ∈ �ψ�
and y ∈ �ψ�. By the definition of ◦ there must be some “midpoint” z such that
(x, z) ∈ .max and (z, y) ∈ .max. Since x .max z and x ∈ �ψ� we must have
z ∈ �ψ� by persistence of .max. Then z .max y gives y ∈ �ψ�: contradiction.

Suppose then that (x, y) fails condition (8): thus x ∈ �φ → ψ� and y ∈ �φ�
and y ∈ �ψ�. As before, the midpoint z ∈ �φ→ ψ�. By (8), if (z, y) ∈ .max then
y ∈ �φ� ∪ �ψ�, but this again contradicts our earlier assumption. Thus any pair
in .max ◦ .max must obey (9). So .max is transitively closed.

Lemma 2 If w .max v and v .max w then w = v: thus .max is antisymmetric.

Proof. Let x .max y and y .max x. Suppose they differ on some atom a. If a ∈ x,
then a ∈ y by persistence, and vice-versa. Thus x and y cannot be distinct.

The relation .max may not be reflexive since W may contain a w ∈ �φ →
ψ� ∩ �φ� ∩ �ψ�, meaning that (w,w) /∈ .max.
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3.3 Using �max to Construct Wf

We now have a set of “sensible” worldsW and an over-approximation.max of  
that is persistent, transitive and anti-symmetric (but not necessarily reflexive).
The structure (W ,.max) may still contain “bad” worlds that do not obey the
semantics: for example, a world w ∈ W with w ∈ �φ→ ψ� which lacks a v ∈
�φ� ∩ �ψ� with w .max v. We can refine this structure into a model in two
ways: by starting with W0 = W as the set of all “potentially good” worlds and
removing only “bad” worlds, or by starting withW0 = ∅ as the set of all “known
good” worlds and adding only “good” worlds. The greatest fixpoint of the first
way, and the least fixpoint of the second way gives the Wf we seek.

At each stage, .i is just the restriction of .max to Wi. These restrictions
maintain persistence and antisymmetry of .i because no new edges are added.
We maintain transitivity (x .i y & y .i z ⇒ x .i z) because each restriction
removes worlds rather than edges, thus the only way we can lose an existing
edge x .i z, is by removing x or z, whence we also lose x .i y or y .i z.

Regaining Reflexivity. The restriction of .max toW is reflexive if the formula
below left holds, so the maximal subset of W on which .max is reflexive is Refl :

∀w ∈ W. w .max w Refl = {w ∈ W | (w,w) ∈ .max}

Any w ∈ W such that w �∈ Refl is not permitted to be reflexive by our constraints
on .max, and thus must not appear in any model and so Wf ⊆ Refl .

Enforcing the Semantics of Implications. The remaining aspect of the se-
mantics to consider is the (contra-position of the) “if” component of implication:

w ∈ �φ→ ψ�⇒ ∃v ∈Wi. w . v & v ∈ �φ� ∩ �ψ� (10)

Given the current “potentially good” or “known good” worlds Wi, the potential
witnesses V φ→ψ

i that falsify a particular φ→ ψ ∈ Atm are found by:

V φ→ψ
i = Wi ∩ �φ� ∩ �ψ�.

From this, we can identify the worlds which can reach such a witness using the
.max pre-image of V φ→ψ

i , and complete the representation:

Wφ→ψ
i = �φ→ ψ� ∪ {x | ∃y ∈ V φ→ψ

i . (x, y) ∈ .max} (11)

The pre-image is found using existential quantification of BDDs, as described by
Pan et al. and Marrero. We now show how to find the set Wf using fixpoints.

The GFP Method. We start with W0 = W , as the set of all “potentially
good” worlds and prune bad worlds by computing the greatest fixpoint of:

Wi+1 = Wi ∩ Refl ∩
⋂

φ→ψ∈Atm

Wφ→ψ
i (12)
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Since Refl does not depend on Wi, we can instead just start with W0 = Refl .
Formula (12) is monotonic decreasing, and since W is finite, finding a fixpoint
by repeated iteration is guaranteed to terminate in exponential time.

The LFP Method. We start withW0 = ∅ and add only “good” worlds. Unlike
K, where the least- and greatest-fixpoint iterated formulae are essentially the
same, we must account for reflexivity at each iteration to handle the case where
x = y in (11). A solution to this is to explicitly allow for reflexivity:

W+ = �φ� ∪ �ψ� W−
i = (�φ� ∩ �ψ�) ∪ {x | ∃y ∈ V φ→ψ

i . (x, y) ∈ .max}

Wi+1 = Wi ∪
⋂

φ→ψ∈Atm

(�φ→ ψ� ∩W−
i ]) ∪ (�φ→ ψ� ∩W+) (13)

Here the formula for W+ captures the worlds that satisfy φ → ψ locally. The
formula for W−

i captures the worlds that falsify φ → ψ locally, or by having
some other successor which falsifies φ→ ψ.

In the first iteration, W0 = ∅, so V φ→ψ
0 = ∅ and W−

i = �φ� ∩ �ψ�. Thus
W1 =

⋂
φ→ψ∈Atm

(
�φ→ ψ� ∩ �φ� ∩ �ψ�

)
∪
(
�φ→ ψ� ∩ (�φ� ∪ �ψ�)

)
That is, W1 contains all worlds that satisfy/falsify all their implications locally.
Then, W2 will be the worlds which satisfy/falsify all their implications either
locally or in the worlds of W1, and so on. Since equation (13) is monotonically
increasing, and W is finite, this least fixpoint computation terminates.

Deciding Satisfiability, Falsifiability and Validity. OnceWf is constructed,
the model is Mf = (Wf ,.f , ρ) where, for all w ∈ Wf , we put ρ(w, p) = t iff
p ∈ w. We can lift this valuation to cl(ϕ0) by showing that Mf , w 	 ψ iff
w ∈ �ψ� for all ψ ∈ cl(ϕ0), giving us soundness.

For completeness, we have to show that the witness w0 which satisfies or
falsifies ϕ0 in some modelM is also represented inWf . Since the fmp guarantees
that only members of cl(ϕ0) are relevant, w0 is represented by w′

0 ∈ W as
the subset w′

0 = {ψ ∈ Atm | M, w0 	 ψ}. For the greatest fixpoint method,
w′

0 ∈W0 =W and we prove that after all refinements, it is in Wf . For the least
fixpoint method, W0 = ∅ so we prove that w′

0 is added to Wi, for some i > 0.

Theorem 3 ϕ0 is satisfiable iff �ϕ0�∩Wf �= ∅ and ϕ0 is valid iff �ϕ0�∩Wf = ∅.
Since we construct a representation of a model, we can relatively easily create a
concrete example model illustrating satisfiability or falsifiability. But we deduce
unsatisfiability and validity by the absence of certain worlds, so a convincing
proof or “reason” for unsatisfiability or validity is more difficult to produce.

Global Assumptions. The greatest fixpoint method can easily handle global
assumptions to decide whether Γ |= ϕ0 by using W0 = �Γ � instead of W0 =W ,
thus immediately considering only those worlds that satisfy Γ . For the least
fixpoint method, we must assert the global assumptions Γ at each iteration.
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3.4 Extension to Bi-Intuitionistic Logic BiInt

We now show that the greatest fixpoint BDD-method extends easily to handle
converse, but the least fixpoint one does not. Our outline follows the methodology
we set out for Int, but we no longer explicitly distinguish between ., .i and
.max. Strictly speaking, the same distinctions as for Int apply.

The denotation of −< -formulae uses the (converse of the) semantic binary
relation  , so as for →-formulae, we add all −< -formulae from cl(ϕ0) to Atm.

The semantics of −< are handled similarly to →. Transitivity of the under-
lying relation  means that if M, w 	 φ−< ψ and w  v then M, v 	 φ−< ψ,
so exclusions persist. Thus we demand that all atoms still persist across ..

The (contra-position of the) “if” component of the semantics of φ−< ψ is:

w ∈ �φ−< ψ� & w .−1 v ⇒ v ∈ �φ� ∪ �ψ� (14)

Equation (14) transforms to a constraint on .−1 and hence .:

.−1 ⊆ (�φ−< ψ�×W) ∪ (W × (�φ� ∪ �ψ�)) (15)

. ⊆ (W × �φ−< ψ�) ∪ ((�φ� ∪ �ψ�) ×W) (16)

The “only if” component of the semantics of exclusion is:

w ∈ �φ−< ψ� ⇒ ∃v. w .−1 v & v ∈ �φ� ∩ �ψ� (17)

We now have to modify the fixpoint formula. For greatest fixpoints, we first
calculate the witnesses V φ−< ψ

i to the existential of (17), as for implication earlier,

and then determine the worlds Wφ−< ψ
i which reach the witness via .−1:

V φ−< ψ
i =Wi ∩ �φ� ∩ �ψ� Wφ−< ψ

i = �φ−< ψ� ∪ {y | ∃x ∈ V φ−< ψ
i . (x, y) ∈ .}

The greatest fixpoint simply extends the one for Int with this new constraint:

Wi+1 = Wi ∩ Refl ∩
⋂

φ→ψ∈Atm

Wφ→ψ
i ∩

⋂
φ−< ψ∈Atm

Wφ−< ψ
i

On the other hand, it is not clear that there can be a least fixpoint approach
for BiInt. For example, the formula p∧ (((p→ ⊥)→ ⊥)−< p) is satisfiable, but
only in models containing a group of worlds which simultaneously require the
existence of each other. Such worlds lead to a non-well-founded ordering on the
inclusion of worlds in the least fixpoint, meaning that W0 = ∅ does not suffice.

3.5 Extension to Bi-Intuitionistic Tense Logic BiKt

Moving from BiInt to BiKt presents more of a challenge. In addition to the 4
new connectives �,♦,� and �, we must handle the two frame conditions (F1)
and (F2). These conditions are difficult to capture directly as they refer to both
the intuitionistic and modal relations and are existential in nature. However,
their purpose is to ensure that truth persists over  , and this is easier to use.
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Theorem 4 (Persistence of BiKt) For all BiKt models M, if M, w 	 ϕ
and w  v then M, v 	 ϕ.

The proof proceeds by induction on the size of ϕ and relies on (F1) and (F2)
for the persistence of ♦- and �-formulae. Thus (F1) and (F2) cause persistence.

Suppose now that we have a structure which fails (F1) or (F2), but in which
all formulae persist across  . We can soundly add the missing R� or R♦ edges,
without changing the satisfaction relation, to obtain a BiKt-model (which obeys
(F1) and (F2)) as encapsulated in the next theorem.

Theorem 5 By adding R♦ and R� edges, a structure M1 = (W, , R1
♦, R

1
�, ρ)

which is persistent can be converted to a structureMn = (W, , Rn
♦, R

n
�, ρ) which

satisfies (F1) and (F2), and such thatM1, w 	 ϕ iffMn, w 	 ϕ, for all w ∈W .

Thus, considering all persistent structures is sufficient. We must first extend Atm
by adding all formulae with a main connective from {�,♦,�,�} from cl(ϕ0).
We can then enforce persistence as for Int and BiInt via (5).

Having handled the frame conditions, we handle the semantics for ♦ and �
using Pan et al.’s methods for K. The ♦-formulae impose a restriction on R♦,
while the �-formulae impose a similar restriction on R−1

� , and hence upon R�:

R♦ ⊆ (�♦ψ� ×W) ∪ (W × �ψ�) (18)

R−1
� ⊆ (��ψ� ×W) ∪ (W × �ψ�) (19)

For the greatest fixpoint method, we also need:

W♦ψ
i = �♦ψ� ∪ {x | ∃y ∈ (Wi ∩ �ψ�) . (x, y) ∈ R♦}

The �- and �-formulae are more complicated to represent since R� and R♦
interact with .. The contra-positive of the “if” part of the semantics for � is:

w ∈ ��ψ� ⇒ ∃z. w . z & ∃v. zR�v & v ∈ �ψ�

This has two existentials, which can be handled by computing two pre-images
as follows. Let Z�ψ

i = {z | ∃y ∈ (Wi ∩ �ψ�) . (z, y) ∈ R�} and let

W�ψ
i = ��ψ� ∪ {x | ∃z ∈ (Wi ∩ Z�ψ

i ) . (x, z) ∈ .max}

For the “only if” component, the interactions of the relations are more trouble-
some. But since . is required to be reflexive, the following are essential:

wR�v ⇒ w ∈ ��ψ� ∨ v ∈ �ψ� (20)

vR♦w ⇒ w ∈ ��ψ� ∨ v ∈ �ψ� (21)

Additionally, because (5) enforces persistence, if u ∈ ��ψ�, then any w such that
u . w must also satisfy w ∈ ��ψ�. By induction this will force all .-successors
w of u to satisfy (20), and thus to satisfy the original semantics.
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The constraints on R� are thus (19) and (20):

R� ⊆ (��ψ� ×W) ∪ (W × �ψ�) (M, w 	 �ψ ⇒M, v 	 ψ)

R� ⊆ (W × ��ψ�) ∪ (�ψ�×W) (M, w 	 ψ ⇒M, v 	 �ψ)

Similarly, the constraints on R♦ are (18) and (21):

R♦ ⊆ (�♦ψ� ×W) ∪ (W × �ψ�) (M, v 	 ψ ⇒M, w 	 ♦ψ)
R♦ ⊆ (W × ��ψ�) ∪ (�ψ� ×W) (M, v 	 �ψ ⇒M, w 	 ψ)

To complete the decision procedure, the greatest fixpoint calculation is:

Wi+1 = Wi ∩ Refl ∩Wφ→ψ
i ∩Wφ−< ψ

i ∩W�ψ
i ∩W♦ψ

i ∩W�ψ
i ∩W�ψ

i

3.6 Optimisations

Variable ordering. The choice of variable ordering is critical when using ordered
BDDs. We chose the following ordering after minimal experimentation since
its preliminary results are encouraging. For each member of Atm whose main
connective is non-classical (i.e. implication, exclusion, diamond or box), we do
a pre-order traversal of the formation tree stopping at other members of Atm.
The first time any member of Atm is encountered, it is appended to the current
ordering. Pre-image computations require copying Atm, so the copy a′ of a
appears immediately after a in the ordering. Using an ordering which puts all
copies at the end of the ordering is particularly bad.

Since determining the best ordering is a difficult problem in itself, BDD pack-
ages allow us to dynamically reorder the BDD variables. There is a trade-off
between the quality of a reordering and the time taken to perform the re-
ordering, so the main question is when to use this feature. For the greatest-
fixpoint method, we provide an option which uses this feature once only to find
a good ordering after computing W0 using Refl and any global assumptions.

Normalisation. Another component of complexity is the number of BDD vari-
ables. We use techniques such as constant propagation (�∧ϕ = ϕ, ⊥ → ϕ = �,
etc.) to reduce formula size, and possibly reduce the number of atoms. We use
syntactic equality to check whether two formulae are equivalent when determin-
ing the set of atoms. Normalising wrt an arbitrary fixed ordering < on formulae
improves the efficiency of this equality check. For example, putting p < q col-
lapses {(p ∧ q)→ ⊥, (q ∧ p)→ ⊥} to {(p ∧ q)→ ⊥}, requiring fewer atoms.

Early Termination. If we only want to check satisfiability or validity, then early
termination is possible. In the greatest fixpoint approach, the setsWi are strictly
decreasing. If any Wi ⊆ �ϕ0� then Wf ⊆ �ϕ0�, so ϕ0 is valid, and if any Wi ∩
�ϕ0� = ∅ thenWf∩�ϕ0� = ∅, so ϕ0 is unsatisfiable. In the least fixpoint approach,
Wi is strictly increasing. If any Wi ∩ �ϕ0� �= ∅ then Wf ∩ �ϕ0� �= ∅, so ϕ0 is

satisfiable, and if any Wi ∩ �ϕ0� �= ∅ then Wf ∩ �ϕ0� �= ∅, so ϕ0 is not valid.



BDD-Based Automated Reasoning 311

Explicit representation of↔. Expanding bi-implications↔ into two implications
can lead to an exponential blowup in the size of the formula. We therefore gave
a direct semantics for ↔ and added it to the set of atoms.

Explicit global assumptions. When determining Int-validity of a formula ϕ0 =
(γ → ϕ), any counterexample must make γ true in all states reachable from
the root. The formula is valid iff all models where γ is true globally must make
ϕ true. Thus, in the greatest fixpoint approach, we can start with W0 = �γ�,
rather thanW0 =W . By translating top-level implications to global assumptions
in this manner, there are fewer atoms to consider, and the global assumptions
may restrict the search space resulting in fewer iterations before reaching the
fixpoint. This optimisation cannot be used for BiInt because −< allows us to
look “backwards” along  , so γ cannot be turned into a global assumption.

4 Experimental Results

We used the ILTP propositional benchmarks [17, 16] and randomly generated
formulae. All tests were performed on 32bit Ubuntu with a Core 2 Duo 3.0GHz
processor, 3 GB RAM and a timeout of 600 seconds for each problem instance.

Benchmarks. The ILTP benchmarks consists of several categories of struc-
tured intuitionistic formulae. Some are “uninteresting” since they are easy for
all provers. The remaining “interesting” benchmarks are split into 12 problem
sets with 20 instances each, parametrised by a size n, consisting of zero or more
axioms {γ0, · · · , γk} and a single conjecture C giving (γ0 ∧ · · · ∧ γk)→ C.

The random benchmarks are generated to have a fixed number of symbols
(treating ¬ϕ = ϕ→ ⊥ as only one additional symbol) and a maximum ratio of
distinct propositions to formula size. Formulae for Int use connectives ∧,∨,¬,→
and ↔ while formulae for BiKt add in connectives −< ,�,�,♦ and �. We used
1000 instances of each size from 10 through to 90 in steps of 5, which are available
here: http://users.cecs.anu.edu.au/~rpg/BDDBiKtProver/

Theorem provers. According to the ILTP benchmark [16], the two best provers
for propositional intuitionistic logic are PITP/PITPINV, and Imogen.

PITP and PITPINV [1] implement a signed tableau calculus to determine Int
validity. The tableau rules are divided into 6 categories based on the branching
factor and whether or not they are invertible. PITPINV attempts a non-invertible
branch of one category before the invertible branch, while PITP attempts the
invertible branch first. PITP and PITPINV are written in C++, and make use of
optimisations such as dynamic formula simplification.

Imogen [11] uses a focused polarised inverse method to determine Int validity.
Given a formula, Imogen performs a pre-processing step to assign polarities to
each subformula. It then makes use of focusing based on the polarities to generate
inference rules, and these rules are used (and extended) by the inverse method
in a saturation phase to attempt to construct a sequent proving the original

http://users.cecs.anu.edu.au/~rpg/BDDBiKtProver/
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formula. Imogen is written in ML, and uses heuristics when assigning polarities
to try to minimise the search space. When given 600 seconds, it tries one heuristic
for 2 seconds and then, if needed, tries an alternate heuristic for 598 seconds.

DBiKt [15] is the only theorem prover we are aware of for BiKt. It uses a
deep-inference nested sequent calculus for BiKt and is implemented in Java. It
has not been heavily optimised, but is intended as a proof of concept.

BDDBiKt is our Ocaml theorem prover using the Buddy [3] BDD library. It is
available here: http://users.cecs.anu.edu.au/~rpg/BDDBiKtProver/

Results. The numbers reported here for PITP differ from those on the ILTP
website for two reasons. The first is that we use different hardware. The second
is that formula SYN007+1.0014 expands to 4GB when converted to the input
format of PITP, which did not allow it to be converted in-memory in the initial
comparison. We instead write the formula to disk during the conversion, which
allows the conversion to finish and hence allows PITP to solve it.

Our numbers for PITPINV differ from the ILTP website because we discovered
a bug during the comparison on randomly generated formulae. The authors of
PITPINV corrected the bug, and this has impacted its performance.

We analysed the impact of the implemented optimisations by testing the fol-
lowing versions of our own implementation:

GFP: Greatest-fixpoint with early termination and explicit handling of ↔
Ga: GFP, with explicit global assumptions
Gn: GFP, with normalisation.
Gna: GFP with both explicit global assumptions and normalisation
Gnar: Gna with dynamic variable reordering.
LFP: Least-fixpoint with the same optimisations as GFP
Ln: LFP with normalisation.

In Figure 2, “sum” is the sum out of the 240 “interesting” problems shown
individually, while “total” is out of the whole 274 instance benchmark.

With all optimisations enabled, our BDD-method (Gnar) solved the second
highest number of instances on the ILTP benchmark. Unlike the other theo-
rem provers, when the BDD-method fails, it usually runs out of memory rather
than time. Experiments on the same hardware with a 64bit OS and 8GB RAM
showed that no instance caused Gnar to run out of memory and BDD times were
improved, but only one additional problem was solved by Gnar, while Imogen
performed notably slower. We now discuss the effects of each optimisation.

Explicit Assumptions. Converting top-level implications to explicit global as-
sumptions has the largest impact. All of the benchmark formulae with axioms
were helped by this optimisation, and some were trivialised by it.

Normalisation. Normalising the input formula was not as beneficial as ex-
plicit assumptions. In some cases it helps significantly: for example it rewrites
SYJ206 to �. In others it is detrimental because changing the formula struc-
ture changes our heuristically chosen BDD order into a worse one.

http://users.cecs.anu.edu.au/~rpg/BDDBiKtProver/
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GFP Gn Ga Gna Gnar LFP Ln Imogen PITP PITPINV Out of

SYJ201 6 6 20 20 20 6 6 20 20 20 20
SYJ202 12 10 12 10 8 12 10 8 10 10 20
SYJ203 17 18 20 20 20 18 19 20 20 20 20
SYJ204 17 19 20 20 20 18 20 20 20 20 20
SYJ205 14 14 14 19 19 12 12 20 20 11 20
SYJ206 15 20 15 20 20 19 20 20 20 20 20
SYJ207 6 6 20 20 20 7 7 20 7 8 20
SYJ208 7 7 9 10 8 9 9 19 20 20 20
SYJ209 17 18 20 20 20 18 19 20 10 10 20
SYJ210 17 18 20 20 20 19 20 20 20 20 20
SYJ211 6 6 9 8 15 9 9 20 20 9 20
SYJ212 13 20 13 20 20 18 20 20 20 20 20

sum of above 147 162 192 207 210 165 171 227 206 187 240
total over all 181 196 226 241 244 199 205 261 240 221 274

Fig. 2. Number of instances solved in the ILTP benchmark

Assumptions + Normalisation. Combining both optimisations works well
on the whole. For class SYJ205, the formula is a conjunction of two seman-
tically equivalent implications which are syntactically reordered. Normalisa-
tion combines the two implications into one, which is then converted into a
global assumption. No assumptions can be made explicit without normalisa-
tion, and normalisation alone only removes one implication from the closure.

Dynamic Variable Reordering. Adding dynamic variable ordering is a mixed
bag. In most cases its overhead is significant, while the benefits are small. For
SYJ211 this is reversed, with reordering taking little time but giving signifi-
cant improvement. We speculate that our relatively naive ordering performs
reasonably well on most of the benchmarks, possibly because of the preva-
lence of lexicographically ordered sequences of propositional variables, so in
general the dynamic ordering does not give a big benefit. However when the
initial ordering is bad, the dynamic ordering can assist.

GFP vs LFP. LFP performs similarly to GFP in many cases, although it is
not compatible with some of the helpful optimisations. The small differences
between LFP and GFP arise from their different fixpoint formulae. LFP
generally has fewer iterations, but each iteration is a more complex formula
than the one used by GFP and thus takes longer to compute.

The results of random Int tell a different story. Now Imogen performs consid-
erably worse than all other provers, failing to solve many cases. GFP scales
reasonably, but is still significantly worse than PITP. Gnar is consistently slower
than Gna, however at size 90 the non-reordering version runs out of memory
on 7 formulae, while the reordering version times out on only 5. It seems that
reordering may not help very often, but it makes the method more robust.

LFP does quite well, though not as well as PITP. The majority of the randomly
generated formulae are invalid, so LFP can terminate early. Since each iteration
is quite expensive, performing fewer iterations on the invalid formulae here gives
a large benefit. On the valid formulae, it performs worse than GFP.
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Fig. 3. Average time taken per random Int and BiKt instance with a timeout of 600s

The comparison with DBiKt for BiKt shows that each theorem prover can
handle some formulae that the other could not. For sizes up to 75, GFP solved
all instances, and did it faster than DBiKt. Past that point, DBiKt solved an
increasing number of problems that GFP could not solve due to time or memory
limits, and the time taken by GFP increased significantly above that of DBiKt.
In general, all but 5 or so of the randomly generated formulae were invalid, but
some of the few valid instances proved difficult for DBiKt and not GFP.

5 Conclusion and Further Work

Our optimised BDD-method Gnar for Int is competitive with the state-of-the-
art provers Imogen and PITP in the following sense: on the ILTP benchmarks, it
solves more problems than PITP but less problems than Imogen, and on randomly
generated formulae, it performs better than Imogen but worse than PITP.

Unlike the other methods, BDD-methods are “memory hungry” so adding
memory is likely to improve their relative performance. Indeed, moving from a
32bit OS to a 64bit OS gave a small improvement, but not as much as we hoped
since the bottleneck just moved from memory to time.

To some extent, our implementation is naive, and further optimisations from
the model checking community need to be investigated. In particular, we need
to ascertain whether the BDD method is relatively brittle to variable ordering
heuristics, or robust over many potential choices.

We are currently extending this method to handle all 15 basic modal logics
obtained by combinations of reflexivity, transitivity, seriality, euclideaness, and
symmetry, as well as to the modal mu-calculus. We are also extending the im-
plementation to generate explicit (counter) models. A characterisation of when
and how the method works would also be nice. Finally, can the BDD method be
extended to predicate logics, possibly using instantiation-based methods?

The biggest advantage of the BDD-method is the ease with which it extends
from Int to BiInt to BiKt compared to tableaux and inverse methods. For
example, handling a “converse” operator to give BiInt using tableaux requires
significant methodological extensions [2, 8]. Similarly, the inverse method has
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not been extended to handle “converse” as far as we know. McLaughlin and
Pfenning [10] have implemented an inverse method for intuitionistic modal log-
ics which do not require the complications of converse. We can handle these
intuitionistic modal logics using our BDD-method for BiKt by just dropping
−< , � and �, and replacing R� and R♦ with a single modal relation R.
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[7] Goré, R., Postniece, L., Tiu, A.: Cut-elimination and proof search for bi-
intuitionistic tense logic. In: Advances in Modal Logic, pp. 156–177 (2010)
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Abstract. In the regular model-checking framework, reachability anal-
ysis can be guided by temporal logic properties, for instance to achieve
the counter example guided abstraction refinement (CEGAR) objectives.
A way to perform this analysis is to translate a temporal logic formula
expressed on maximal rewriting words into a “rewrite proposition” – a
propositional formula whose atoms are language comparisons, and then
to generate semi-decision procedures based on (approximations of) the
rewrite proposition. This approach has recently been studied using a non-
automatic translation method. The extent to which such a translation
can be systematised needs to be investigated, as well as the applicability
of approximated methods wherever no exact translation can be effected.
This paper presents contributions to that effect: (1) we investigate suit-
able semantics for LTL on maximal rewriting words and their influence
on the feasibility of a translation, and (2) we propose a general scheme
providing exact results on a fragment of LTL corresponding mainly to
safety formulæ, and approximations on a larger fragment.

1 Introduction and Context

Term rewriting and rewriting logic have been intensively and successfully used for
solving equational problems in automated deduction, for programming language
definitions, for model transformations and generation of efficient interpreters
as well as for specification and verification in software engineering. In this last
context, system states are modelled by languages, while rewrite rules stand for
actions of the system; for instance procedure or method calls. This technique
has been successfully used to prove the security of cryptographic protocols [11]
and Java Bytecode programs [3]. When proving security, reachability analysis
over sets of terms can be guided by temporal logic properties, like e.g., in [7,6].

In [7], three specific Linear Temporal Logic (LTL) formulæ – chosen for their
relevance to model-checking [13], in particular with respect to Java MIDLets, in
the framework of the French ANR RAVAJ project – have been translated into
what we will call rewrite propositions, with respect to straightforward seman-
tics for LTL on finite words. For instance, given a rewrite system R, of which
� This author is supported by the project ANR 2010 BLAN 0202 02 FREC.
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X, Y ⊆ R are subsets, and an initial language Π , the LTL property �(X ⇒ •Y )
signifies that whenever an accessible term is rewritten by some rewrite rule in
X , then the resulting term can be rewritten by some rule in Y , and not by any
other rule. As shown in [7], that property is satisfied if and only if the following
rewrite proposition holds: [R \ Y ]

(
X (R∗(Π))

)
= ∅∧X (R∗(Π)) ⊆ Y −1(T (A)),

where R∗(Π) is the transitive-reflexive forward closure of Π by R, and T (A) is
the set of all trees. The point of translating satisfaction in terms of rewrite
propositions is that they present a more tractable intermediary form which
can itself be translated into automata-based (semi-)decision procedures. In-
deed, if the initial language Π is regular, then the literature is rife with con-
structive results concerning questions such as preservation of regularity under
a rewriting step, or under forward closure; that is to say, “under which con-
ditions on the rewrite system R is R(Π) (resp. R∗(Π)) still regular?”. And
when preserving regularity is not an option, one may fall back on more ex-
pressive classes of tree automata (TA) such as TAGED [10]. As an example of
both aspects, [7, Prop. 5] states that a language given by R−1(T (A)) can in
all generality be represented by a positive TAGED; furthermore, if R is left-
linear, then regularity is preserved. Such results can be combined with regular
approximation techniques; for instance, if A is a tree automaton, a procedure
Approx(A, R) in [4] yields another TA B such that Lang(B) ⊇ R∗(Lang(A)),
where Lang(A) is the language accepted by A. Put together, those tools provide
a framework for building decision and semi-decision procedures from rewrite
propositions. For instance, the proposition given above is semi-decided by the
conjunction of the procedures IsEmpty(OneStep(R \ Y, Approx(A, R)), X) and
Subset(OneStep(X, Approx(A, R)), Backward(Y )), where Lang(A) = Π and un-
der the additional constraint that Y must be left-linear. Note that this is almost
a straightforward reformulation of the original rewrite proposition.

To summarise the above, our approach to model-checking temporal prop-
erties of sequences of rewrite rules consists of two phases outlined in [7]: (1)
translation of a temporal logic formula expressed on maximal rewriting words
into a “rewrite proposition” – a propositional formula whose atoms are language
comparisons, and (2) translation of the rewrite proposition into a semi-decision
procedure. To make this approach useful for program verification, both steps
must be automated; neither is at present. The general question investigated in
the present paper is whether – and more specifically how and to what extent
– such a translation can be automated for arbitrary temporal properties. More
specifically, we focus solely on the first step, i.e. translation from temporal logic
to rewrite propositions. The second step is an entirely different problem, and is
out of the scope of this paper.

Related Work. In recent years, new results in rewriting logic have deeply
extended the spectrum of its applications [9,17,5,16], especially in relation with
temporal logic for rewriting [14,2]. Unlike [2], where LTL model checking is
performed over finite structures, our approach handles temporal formulæ over
infinite state systems. In this sense, it is close to [9]. However, in spite of its
simplicity for practical applications, it does not permit – in its current state,
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at least – to consider equational theories. Our viewpoint differs slightly from
other regular model-checking approaches such as Regular LTL [6] in that the
temporal property relates to sequences of actions as opposed to sequences of
states. It is however very similar to the method presented in [15], when reducing
the equational theory to the identity.

Organisation of the Paper. Section 2 presents the notions and notations in
use throughout this paper, including the choice of temporal semantics and a
precise statement of the problem at hand. Section 3[p320] deals with the main
contributions of the paper: the translation rules and the technical tools (signa-
tures, weak/strong intertwined semantics, etc) on which they depend.

2 Preliminaries and Problem Statement

The extended naturals are denoted by N

�

= N ∪ {+∞} and �n, m� denotes the
integer interval [n, m] ∩ Z, with the convention that �0, +∞� = N. For any
k ∈ N, Nk

�

= �k, +∞� and Nk
�

= Nk ∪ {+∞}. The powerset of S is written ℘(S).
Substitution is written f [v/X ], meaning “v replaces X in the expression f”.

2.1 Rewrite Words and Maximal Rewrite Words

A comprehensive survey on term rewriting can be found in [8]. Let T (A) be the
set of all terms on a ranked alphabet A, let R be a finite rewrite system, and
Π ⊆ T (A) any set of terms. A finite or infinite word on R is an element of

W

�

=
⋃

n∈N

(�1, n� → R
)

.

The length #w ∈ N of a word w is defined as Card (dom w). Note that the
empty function – of graph ∅×R = ∅ – is a word, which we call the empty word,
denoted by λ. Let w ∈ W be a word of domain �1, n�, for n ∈ N, and let m ∈ N1;
then the m-suffix of w is the word denoted by wm, such that

wm

�

=
∣
∣
∣∣
�1, n − m + 1� −→ R

k �−→ w(k + m − 1) .

Note that w1 = w, for any word w. The intuitive meaning that we attach to a
word w is a sequence of rewrite rules of R, called in succession – in other words,
it represents a “run” of the TRS R. Of course, there is nothing in the above
definition of words that guarantees that such a sequence is in any way feasible,
and such a notion only makes sense with respect to initial terms to be rewritten.
Thus we now define the maximal rewrite words of R, originating in Π :

R�Π�

�

=
{

w ∈ W
∣
∣
∣
∣

∃u0 ∈ Π : ∀k ∈ dom w, ∃uk ∈ T (A) : uk−1
w(k)−−−→ uk

∧ #w ∈ N ⇒ �ρ ∈ R : ∃v ∈ T (A) : u#w
ρ−→ v

}
.

Note the potential presence of the empty word in that set. Informally, a word w
is in R�Π� if and only if the rewrite rules w(1), . . . , w(n), . . . can be activated in
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succession, starting from a term u0 ∈ Π , and the word w is “maximal” in the
sense that it cannot be extended. That is to say, w ends only when no further
rewrite rule can be activated. Thus R�Π� captures the behaviours (or runs) of R,
starting from Π ; this notion corresponds to the full paths of the rewrite graph
described in [7].

2.2 Defining Temporal Semantics on Rewrite Words

Choice of LTL and Syntax. Before starting to think about translating tem-
poral logic formulæ on rewrite words, we need to define precisely the kind of
temporal formulæ under consideration, and their semantics. Given that prior
work in [7] was done on LTL, and that our aim is to generalise this work, LTL –
with subsets of R as atomic proposition – seems a reasonable choice. In practice
we shall use a slight variant with generalised weak and strong next operators;
the reasons for this choice will be discussed when the semantics are examined.
A formula ϕ ∈ LTL is generated by the following grammar:

ϕ := X | ¬ϕ | ϕ ∧ ϕ | •mϕ | ◦mϕ | ϕ U ϕ X ∈ ℘(R)
� | ⊥ | ϕ ∨ ϕ | ϕ ⇒ ϕ | ♦ϕ | �ϕ m ∈ N .

Note that the operators which appear on the first line are functionally complete;
the remaining operators are defined syntactically as: �

�

= R ∨ ¬R, ⊥

�

= ¬�,
ϕ ∨ ψ

�

= ¬(¬ϕ ∧ ¬ψ), ϕ ⇒ ψ

�

= ¬ϕ ∨ ψ, ♦ϕ

�

= � U ϕ and �ϕ

�

= ¬♦¬ϕ.

Choice of Semantics. In the literature, the semantics of LTL are defined
and well-understood for ω-words; however the words of R�Π� may be infinite
or finite, or even empty, which corresponds to the fact that, depending on its
input, a rewrite system may either not terminate, terminate after some rewrite
operations, or terminate immediately. Therefore we need semantics capable of
accommodating both ω-words and finite words, as well as the edge-case of the
empty word. In contrast to the classical case of ω-words, there are several ways
to define (two-valued) semantics for LTL on finite, maximal words. One such way
found in the literature is Finite-LTL (F-LTL) [13], which complements the long-
standing use of a “strong” next operator introduced in [12] by coining a “weak”
next variant. Figure 1[p320] presents our choice of semantics for this paper, which
is essentially F-LTL with generalised next operators and the added twist that
words may be infinite or empty. Note that •1 and ◦1 correspond exactly to the
classical strong and weak next operators, and that for m 
 1, •m (resp. ◦m) can
trivially be obtained by repeating •1 (resp. ◦1) m times. So the only non-trivial
difference here is the existence of •0 and ◦0; this will prove quite convenient
when we deal with the translation of �, using the following lemma.

Lemma 1 (Weak-Next & Always). Let ϕ ∈ LTL, w ∈ W , k ∈ N and i ∈ N1;
it holds that (1) (w, i) |= �ϕ iff (w, i) |=

∧∞
m=0 ◦mϕ and (2) (w, i) |= �ϕ iff

(w, i) |=
∧k−1

m=0(◦mϕ) ∧ ◦k �ϕ.

Before moving on, let us stress that the choice of semantics, or even the choice
of LTL for that matter, should by no means be considered as etched in stone;



320 P.-C. Héam, V. Hugot, and O. Kouchnarenko

(w, i) |= X iff i ∈ dom w and w(i) ∈ X
(w, i) |= ¬ϕ iff (w, i) |=/ ϕ
(w, i) |= (ϕ ∧ ψ) iff (w, i) |= ϕ and (w, i) |= ψ
(w, i) |= •mϕ iff i + m ∈ dom w and (w, i + m) |= ϕ
(w, i) |= ◦mϕ iff i + m /∈ dom w or (w, i + m) |= ϕ

(w, i) |= ϕ U ψ iff ∃j ∈ dom w : j � i ∧
{

(w, j) |= ψ ∧
∀k ∈ �i, j − 1� , (w, k) |= ϕ

For any w ∈ W, i ∈ N1, m ∈ N and X ∈ ℘(R).

Fig. 1. LTL Semantics on Maximal Rewrite Words

it is very much a variable of the general problem. However it will henceforth be
considered as data for the purposes of this paper.
TRS and LTL. Let ϕ be an LTL formula. We say that a word w satisfies/is a
model of ϕ (denoted by w |= ϕ) iff (w, 1) |= ϕ. Alternatively, we have (w, i) |= ϕ
iff wi |= ϕ. We say that the rewrite system R, with initial language Π , satisfies/is
a model of ϕ (denoted by R, Π |= ϕ) iff ∀w ∈ R�Π�, w |= ϕ.

2.3 Rewrite Propositions and Problem Statement

A rewrite proposition on R, from Π is a formula of propositional logic whose
atoms are language or rewrite systems comparisons. More specifically, a rewrite
proposition π is generated by the following grammar:

π := γ | γ ∧ γ | γ ∨ γ γ := � = ∅ | X ⊆ X | � ⊆ � X ∈ ℘(R) .
� := Π | T (A) | X(�) | X−1(�) | X∗(�)

Since the comparisons γ have obvious truth values, the interpretation of rewrite
propositions is trivial; thus we will not introduce any notation for it, and au-
tomatically confuse π with its truth value in the remainder of this paper. Note
that while other operators for propositional logic could be added, conjunction
and disjunction will be enough for our purposes.
Problem Statement. We have now done enough groundwork to state our
problem more formally. Given a rewrite system R, a temporal formula ϕ in LTL
(or some fragment of LTL), and an initial language Π ⊆ T (A), we search for an
algorithmic method of building a rewrite proposition π such that R, Π |= ϕ if and
only if π holds. We call such a method, as well as its result, an exact translation of
ϕ, and say that π translates ϕ. If π is only a sufficient (resp. necessary) condition,
then it is an under-approximated (resp. over-approximated) translation.

3 Building Translation Rules

3.1 Overview and Intuitions of the Translation

The Base Cases. Counterintuitively, ϕ = ¬X is actually a simpler case than ϕ =
X as far as the translation is concerned, so we will consider it first. Case 1: Nega-
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tive Literal. Suppose R, Π |= ¬X . Recalling the semantics in Fig. 1[p320], this
means that no term of Π can be rewritten by a rule in X . They may or may not be
rewritable by rules not in X , though. Consider now π1 ≡ X(Π) = ∅; it is easy to
become convinced that this is an exact translation. Case 2: Positive Literal.
Let ϕ = X . A first intuition would be that this is roughly the same case as before,
but with the complement of X wrt. R. So we write π2 ≡ [R \ X ](Π) = ∅. This,
however, is not strong enough. It translates the fact that only rules of X can rewrite
Π . But again, while X may in fact rewrite Π , there is nothing in π2 to enforce that.
Looking at the semantics, all possible words of R�Π� must have at least one move
(i.e. 1 ∈ dom w); this condition must be translated. It is equivalent to saying that
all terms of Π are rewritable, which is expressed by Π ⊆ R−1(T (A)). More specif-
ically, since we already impose that they are not rewritable by R \ X , we can even
write directly that they are rewritable by X , i.e. Π ⊆ X−1(T (A)). Putting those
two conditions together, we obtain π′

2 ≡ [R \ X ](Π) = ∅∧ Π ⊆ X−1(T (A)), and
this is an exact translation.

Of Strength and Weakness. Let us reflect on the previous cases for a minute;
the immediate intuition is that X is stronger than ¬X , in the sense that when-
ever we see X , we must write an additional clause – enforcing rewritability –
compared to ¬X . This actually depends on the context, as the next example
will show. Case 3: Always Negative. Let ϕ = �¬X . This means that nei-
ther the terms of Π nor their successors can be rewritten by X ; in other words
π3 ≡ X

(
R∗(Π)

)
= ∅. The translation is almost the same as for ¬X , the only

difference being the use of R∗(Π) (Π and successors) instead of just Π as in π1.
More formally, π3 ≡ π1[R∗(Π)/Π ]. Case 4: Always Positive. Seeing this,
one is tempted to infer that the same relationship that exists between the trans-
lations of ¬X and �¬X exists as well between those of X and �X . In the case
ϕ = �X , this would yield π4 ≡ π′

2[R∗(Π)/Π ] ≡ [R\X ]
(
R∗(Π)

)
= ∅∧R∗(Π) ⊆

X−1(T (A)). But clearly this translation is much too strong as its second part
implies that every term of Π can be rewritten by X , and so can all of the suc-
cessors; consequently, R�Π� must form an ω-language. Yet we have for instance
λ |= �X —note incidentally that λ |= �ψ holds vacuously for any ψ. In general,
under the semantics for �, words of any length, infinite, finite or nought, may
satisfy �X . Thus the correct translation was simply π′

4 ≡ [R\X ]
(
R∗(Π)

)
= ∅.

So, unlike Cases 1 and 2, X is not in any sense stronger than ¬X when behind
a �. This is an important point which we shall need to keep track of during the
translation; that necessary bookkeeping is the reason for the introduction of the
weak and strong intertwined semantics described in Section 3.2[p322].

Conjunction, Disjunction and Negation. Case 5: And & Or. It is pretty
clear that if π5 translates ϕ and π′

5 translates ψ, then π5 ∧ π′
5 translates ϕ ∧ ψ.

This holds thanks to the implicit universal quantifier, as we have (R, Π |= ϕ ∧
ψ) ⇐⇒ (R, Π |= ϕ) ∧ (R, Π |= ψ). Contrariwise, the same does not hold
for the disjunction, and we have no general solution1 to handle it. Given that

1 There are however special cases where disjunction can be translated exactly; see
rules (∨⇒

∧ )[p328] and (∨¬
⇒).
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one of the implications still holds, namely (R, Π |= ϕ ∨ ψ) ⇐= (R, Π |=
ϕ) ∨ (R, Π |= ψ), a crude under-approximation can still be given if all else fails:
π5 ∨π′

5 =⇒ R, Π |= ϕ∨ψ. Case 6: Negation. Although we have seen in Case
1 that a negative literal can easily be translated, negation cannot be handled in
all generality by our method. Note that, because of the universal quantification,
R, Π |=/ ϕ �= R, Π |= ¬ϕ; thus the fact that π6 translates ϕ does not a priori
imply that ¬π6 translates ¬ϕ. This is why we will assume in practice that input
formulæ are provided in Negative Normal Form, which is licit as the presence of
both weak and strong next operators enables any formula to be put in NNF.

Handling Material Implication. Case 7. We have just seen in Cases 5 and
6 that we can provide exact translations for neither negation nor disjunction.
Inasmuch as ϕ ⇒ ψ is defined as ¬ϕ ∨ ψ, must material implication be forgone
as well? An example involving an implication has been given in the introduc-
tion (page 316), so it would seem that a translation can be provided in at least
some cases. Let us take the simple example X ⇒ •Y . Assuming that any term
u ∈ Π is rewritten into some u′ by a rule in X , then u′ must be rewritable by
Y , and only by Y . The set of X-successors of Π being X(Π), those conditions
yield the translation π7 ≡ X(Π) ⊆ Y −1 (T (A)

)
∧ [R \ Y ]

(
X(Π)

)
= ∅. Note

that the way in which implication has been handled here is very different from
the approach taken for the other binary operators, which essentially consists in
splitting the formula around the operator and translating the two subparts sep-
arately. In contrast, the antecedent of the implication was “assumed”, whilst the
consequent was translated as usual. In fact, recalling that π′

2 translates X , and
thus π′′

2 ≡ π′
2[Y/X ] translates Y , we have π7 ≡ π′′

2 [X(Π)/Π ]. So, “assuming”
the antecedent consisted simply in changing our set of reachable terms —which
we will from now on call the past, hence the notation Π . This is not an isolated
observation; if π0 denotes the translation of �(X ⇒ •Y ) given in the intro-
duction, then π0 ≡ π7[R∗(X(Π))/X(Π)]. Thus “updating” the past is enough
of a tool to deal with some simple uses of � and implication. . . but consider
the following formula: •Y ⇒ X . In that case the antecedent lies in the future,
relatively to the consequent. Therefore, in order to deal with all cases, we need
some means of making assumptions about both past and future. This is the goal
of the signatures presented in Section 3.3[p323].

3.2 Weak and Strong Semantics for LTL

Restricting the Fragment. As mentioned in Cases 3 and 4 of the previous
section, we will in practice be restricted to working with formulæ provided in
Negative Normal Form. Furthermore, there are operators, such as ♦, for which we
think that no translation can be provided, because rewrite propositions are not
expressive enough —in particular, R∗(Π) hides all information regarding finite
or infinite traces. If this is the case, then none of the operators of the “Until”
family {♦, U, W, R, . . . } can be dealt with. Consequently, we are restricted to
the following fragment of LTL, which will be denoted by R-LTL:
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ϕ := X | ¬X | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ ⇒ ϕ | X ∈ ℘(R)
•m ϕ | ◦mϕ | �ϕ m ∈ N .

Bookkeeping. (cf. Sec. 3.1[p320], case 4) In order to address the question of
whether the translation of an atom X should be “strong” – enforce rewritability
– or “weak”, information is needed from the context. Namely, does the atom
appear in the direct scope of a �? We solve this by introducing intertwined weak
semantics – written |=w – and strong semantics – written |=s, given in Fig. 2. For
μ ∈ { w, s } the notations w |=μ ϕ and R, Π |=μ ϕ are defined in the same way
as for |=. How those semantics are used will become clearer in section 3.4[p328],
where the translation rules are given. The important point for now is that the
strong semantics are equivalent to the normal semantics of LTL on the fragment
R-LTL, which is shown by Lemma 3.

(w, i) |=μ � (w, i) |=/μ ⊥
(w, i) |=s X iff i ∈ dom w and w(i) ∈ X
(w, i) |=w X iff i /∈ dom w or w(i) ∈ X
(w, i) |=μ ¬X iff i /∈ dom w or w(i) /∈ X
(w, i) |=μ (ϕ ∨ ψ) iff (w, i) |=μ ϕ or (w, i) |=μ ψ
(w, i) |=μ (ϕ ∧ ψ) iff (w, i) |=μ ϕ and (w, i) |=μ ψ
(w, i) |=μ (ϕ ⇒ ψ) iff (w, i) |=s ϕ =⇒ (w, i) |=s ψ
(w, i) |=μ •mϕ iff i + m ∈ dom w and (w, i + m) |=s ϕ
(w, i) |=μ ◦mϕ iff i + m /∈ dom w or (w, i + m) |=w ϕ
(w, i) |=μ �ϕ iff ∀j ∈ dom w, j � i ⇒ (w, j) |=w ϕ

For any m ∈ N, μ ∈ { w, s }

Fig. 2. R-LTL Weak & Strong Semantics

Lemma 2 (Strong-Weak Domain-Equivalence). For all w, ϕ, i, it holds that i ∈
dom w =⇒ (w, i) |=s ϕ ⇔ (w, i) |=w ϕ.

Lemma 3 (Strong Semantics). For all words w ∈ W and all formulæ ϕ ∈ R-LTL,
we have ∀i ∈ N1, (w, i) |=s ϕ ⇐⇒ (w, i) |= ϕ.

3.3 Girdling the Future: Signatures

As discussed in Sec. 3.1[p320], Case 7, implication is handled by converting the
antecedent ϕ of a formula ϕ ⇒ ψ into “assumptions”. Concretely, this consists in
building a model of ϕ – called a signature of ϕ, written ξ(ϕ) – which can be ma-
nipulated during the translation. The variety of signatures defined hereafter han-
dles formulæ ϕ within the fragment A-LTL (A for antecedent), which is R-LTL
without ∨ or ⇒. This section covers the technical tools needed for building
signatures (Fig. 3[p326]) and understanding the translation rules (Sec. 3.4[p328]).
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Definitions. Signatures. A signature σ is an element of the space

Σ =
⋃

n∈N

[ (�1, n� ∪ {ω}
)

→ ℘(R)
]

× ℘(N) .

Core, Support, Domain, Cardinal. Let σ = (f, S); then the function f
is called the core of σ, denoted by ∂σ, and S is called its support, written
∇σ. The domain of σ is defined as dom σ

�

= dom f \ {ω}, and its cardinal is
#σ

�

= Card (dom σ). Special Notations, Empty Signature. A signature
σ = (f, S) will be written either compactly as σ = �f | S�, or in extenso as
	f(1), f(2), . . . , f(#σ) 
 f(ω) | S�. We denote by ε

�

= 	
R | N� the empty signa-
ture. Let k ∈ N1 ∪ {ω}, then we write

σ[k]

�

=
{

f(k) if k ∈ dom σ
f(ω) if k /∈ dom σ

.

Signature Product. Let σ and σ′ two signatures; then their product is an-
other signature defined as σ � σ′ �

= �g | ∇σ ∩ ∇σ′�, where

g

�

=
∣
∣∣
∣
dom ∂σ ∪ dom ∂σ′ −→ ℘(R)

k �−→ σ[k] ∩ σ′[k] .

Note that as a consequence, ∀k ∈ N1, (σ � σ′)[k] = σ[k] ∩ σ′[k]. (e.g. Let σ =
	X, Y 
Z | N2� and ρ = 	X ′ 
Z ′ | N3�; then σ�ρ = 	X ∩X ′, Y ∩Z ′ 
Z ∩Z ′ | N3�.)

Remark 4 (Summation Notation). The set of signatures Σ, equipped with the
signature-product �, forms a commutative monoid whose neutral element is ε.

Convergence. Let ρ = (σn)n∈N be an infinite sequence of signatures. It is
convergent if (1) the sequence (∇σn)n∈N converges towards a limit ∇σ∞, and
(2) for all k ∈ N1, the sequence (σn[k])n∈N converges towards a limit σ∞[k], and
(3) the sequence of limits (σ∞[k])k∈N1 itself converges towards a limit σ∞[∞].
We call this sequence the limit core. It is not directly in the form of a bona
fide signature core. However, its co-domain being ℘(R), which is finite, there
exists a rank N 
 0 such that for all k > N , σ∞[k] = σ∞[∞], and thus,
taking the smallest such N , we define 	σ∞[1] , . . . , σ∞[N ] 
 σ∞[∞] | ∇σ∞� to be
the limit of ρ, which we denote by lim ρ or limn→∞ σn, or more simply by σ∞.
Note that the core of the limit is equivalent to the limit core, in the intuitive
sense that they define the same constrained words. Otherwise ρ is divergent, and
its limit is left undefined. (e.g. The sequence (	R1, . . . Rn, X 
 R | �1, n��)n∈N,
with Ri = R ∀i, converges towards 	
X | N�. ) Infinite Products. Remark 4
legitimates the use of a Sigma-notation

⊗m
k=l σk for σl � σl+1 � · · · � σm, with

the usual properties. We define a notion of infinite product of signatures as well,
in the classical way: the infinite product

⊗∞
k=l σk converges if and only if the

associated sequence of partial products (
⊗n

k=l σk)n∈Nl
converges, and in that

case ∞⊗

k=l

σk

�

= lim
n→∞

n⊗

k=l

σk .
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Constrained Words. The words of R, originating in Π and constrained by
σ are defined by R�Π 
 σ�

�

=
{

w ∈ R�Π� ∣∣ #w ∈ ∇σ ∧ ∀k ∈ dom w, w(k) ∈
σ[k]

}
. (e.g. Let σ = 	X, Y 
 Z | N2�; then its core is the function ∂σ =

{ 1 �→ X, 2 �→ Y, ω �→ Z }, its domain is dom σ = �1, 2�, its support is ∇σ = N2,
its cardinal is #σ = 2, and we have σ[1] = X , σ[2] = Y , σ[3] = σ[4] = · · · =
σ[ω] = Z. Its constrained words are the maximal words of length at least 2,
whose first two letters are in X and Y , respectively, and whose other letters are
all in Z.) Lemma 5 serves in the base cases of signature-building, and Lem. 6
in the construction of ξ(ϕ ∧ ψ) and rule (⇒Σ)[p328];

Lemma 5 (No Constraints). We have R�Π 
 ε� = R�Π�.
Lemma 6 (Breaking Products). For any signatures σ, σ′ ∈ Σ, and any language
Π , we have (1) R�Π 
 σ � σ′� = R�Π 
 σ� ∩ R�Π 
 σ′�. Furthermore, this gen-
eralises to infinitary cases: (2) given a sequence (σn)n∈N such that the infinite
product

⊗∞
n=0 σn converges, it holds that R�Π 
⊗∞

n=0 σn� =
⋂∞

n=0
R�Π 
 σn�.

Arithmetic Overloading. We overload the operators + and − on the profile
℘(N) × N → ℘(N) such that, for any S ∈ ℘(N) and n ∈ N, we have S + n

�

=
{ k + n | k ∈ S } and S − n

�

= { k − n | k ∈ S } ∩ N. Shifts Left & Right.
Let m ∈ N; then we define the strong m-left shift of σ as σ � m

�

= 	∂σ(m +
1), . . . , ∂σ(#σ) 
 ∂σ(ω) | (∇σ − m) \ {0}� and the weak m-left shift of σ as σ �
m

�

=	∂σ(m+1), . . . , ∂σ(#σ)
∂σ(ω) | ∇σ−m�. Conversely, the strong m-right shift
of σ is σ  m

�
= 	R1, . . . , Rm, ∂σ(1), . . . , ∂σ(#σ) 
∂σ(ω) | (∇σ \ {0}) + m�, while

the weak m-right shift of σ is σ � m

�

= 	R1, . . . , Rm, ∂σ(1), . . . , ∂σ(#σ) 
 ∂σ(ω) |
�0, m� ∪ (∇σ + m)�, with R1 = R, . . . , Rm = R. Note that for all m ∈ N and all
k ∈ N1, (σ � m)[k] = σ[k + m], for all k � m, (σ  m)[k] = (σ � m)[k] = R and
for all k > m, (σ  m)[k] = (σ � m)[k] = σ[k − m]. (e.g. Let σ = 	X, Y 
 Z |
N2�; then σ � 1 = σ � 1 = 	Y 
 Z | N1�, σ  1 = 	R, X, Y 
 Z | N3�, and
σ � 1 = 	R, X, Y 
 Z | N \ {2}�. )

Lemma 7 justifies the fact that the computation of ξ(�ϕ) always yields a
useable signature; a closed form of the limit is given in the proof.

Lemma 7 (Automatic Convergences). Let (σn)n∈N be any sequence of signatures,
and (ρn)n∈N its associated sequence of partial products (

⊗n
i=0 σi)n∈N. Then

(ρn)n∈N satisfies convergence criteria (1) and (2). Furthermore, if σ is a given
signature and σi = σ  i or σi = σ � i, for any i ∈ N, then criterion (3) is
satisfied as well, and the infinite product

⊗∞
n=0 σn converges.

Proof. (1) For all n ∈ N, ∇ρn =
⋂n

i=0 ∇σi, thus it is clear that ∇ρn =
⋂n

i=0 ∇σi ⊇
⋂n+1

i=0 ∇σi = ∇ρn+1 or, in other words, (∇ρn)n∈N is a (trivial) contracting se-
quence of finite sets. Therefore it converges towards

⋂∞
i=0 ∇σi. (2) Let k ∈ N1;

we have

ρn[k] =

(
n⊗

i=0
σi

)

[k] =
n⋂

i=0
σi[k] ,

and thus ρn[k] =
⋂n

i=0 σi[k] ⊇
⋂n+1

i=0 σi[k] = ρn+1[k] and again, (ρn[k])n∈N is a
trivial contracting sequence of finite sets; therefore it converges towards a limit
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which we denote by ρ∞[k] =
⋂∞

i=0 σi[k]. (3) Suppose now that σi = σ � i
(resp. σi = σ  i, the computation will be unchanged), we have

ρ∞[k] =
∞⋂

i=0
σi[k] =

∞⋂

i=0
(σ � i)[k] =

(
k−1⋂

i=0
(σ � i)[k]

)

∩
( ∞⋂

i=k

(σ � i)[k]

)

=

(
k−1⋂

i=0
σ[k − i]

)

∩
( ∞⋂

i=k

R
)

=
k−1⋂

i=0
σ[k − i] =

k⋂

i=1
σ[i] .

Given that for all i > #σ, σ[i] = σ[ω], it follows that for all k > #σ, ρ∞[k] =⋂#σ+1
i=1 σ[i]. Thus (ρ∞[k])k∈N1 converges. This shows that the infinite product⊗∞
n=0 σn is convergent.

Building Signatures. Figure 3[p326] defines the function ξ(·) : A-LTL → Σ.
As Theorem 8 shows, the signature ξ(ϕ) essentially captures a model of ϕ.

ξ(�)
�

= ��R | N� = ε ξ(⊥)

�

= ��∅ | ∅�

ξ(X)
�

= �X � R | N1� ξ(¬X)

�

= �R \ X � R | N�

ξ(•mϕ)
�

= ξ(ϕ) � m ξ(◦mϕ)

�

= ξ(ϕ) 	 m

ξ(ϕ ∧ ψ)

�

= ξ(ϕ) � ξ(ψ) ξ(�ϕ)

�

=
∞⊗

m=0

[
ξ(ϕ) 	 m

]

Fig. 3. Building Signatures on A-LTL

Theorem 8 (Signatures). For any Π ⊆ T (A) and any ϕ ∈ A-LTL,

R�Π 
 ξ(ϕ)� =
{

w ∈ R�Π� ∣∣ w |= ϕ
}

.

3.4 The Translation Rules

Now that the main technical tools are in place, there remains to define what
is meant by “translation rule”, and to state the rules themselves. For any μ ∈
{ w, s }, ϕ ∈ LTL, Π ⊆ T (A), σ ∈ Σ, we define 〈Π 
 σ 	μ ϕ〉 as shorthand for
∀w ∈ R�Π 
 σ�, w |=μ ϕ. We call such a notation 〈Π 
 σ 	μ ϕ〉 a translation
block. A translation rule is of the form

� A P (σ, ϕ)
E

or ↑ A P (σ, ϕ)
E

or ?A ↑ P (σ, ϕ) � Q(σ, ϕ)
E

,

where A stands for some translation block 〈Π 
 σ 	μ ϕ〉, P, Q ∈ Σ×R-LTL → B
are predicates on signatures and formulæ, and E is a mixed translation/reach-
ability proposition. More precisely, E is generated by the grammar given in
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Sec. 2.3[p320], with the added production γ := Υ , where Υ is a translation block.
The �-rules (exact translations) are defined to hold iff P (σ, ϕ) =⇒ (A ⇔ E),
the ↑-rules (under-approximations) hold iff P (σ, ϕ) =⇒ (E ⇒ A), and the
?-rules hold iff P (σ, ϕ) =⇒ (E ⇒ A) and (P (σ, ϕ) ∧ Q(σ, ϕ)) =⇒ (A ⇔ E).
When omitted, P is assumed to be �.

Theorem 9 entails that any derivation (i.e. tree of rule applications with no
translation blocks left in the leaves) starting with 〈Π 
 ε 	s ϕ〉 yields an exact
translation of ϕ (if only exact rules are involved), or an under-approximation (if
some ↑-rules are used).

Theorem 9 (Translation Satisfaction). 〈Π 
 ε 	s ϕ〉 ⇐⇒ R, Π |= ϕ.

A few additional definitions and results about signatures are needed in order to
justify some translation rules: Remark 10 is needed by rule (� �)[p328]; Lem. 13 in-
tervenes in rules (•m)[p328] and (◦m); Lem. 11 and Cor. 12 in rule (•m); Rmk. 14
and Lem. 15 in rule (� ∗); Prp. 16[p328] justifies that rule (� �) eventually termi-
nates. Signature Iteration. Let Π ⊆ T (A) a language, and σ ∈ Σ a signature;
then for n ∈ Nwe let Πn

σ

�

=σ[n]
(
σ[n − 1] (· · · σ[1] (Π) · · ·)

)
be the n-iteration of the

signature σ. More formally, it is defined recursively such that Π0
σ

�

= Π and Πn+1
σ

�

=
σ[n + 1] (Πn

σ ). Length Rejector. For n ∈ N, the rewrite proposition Ψσ
Π(n)

is called the n-length rejector, and defined as Ψσ
Π(n)

�

= Πn
σ ⊆ σ[n + 1]−1 (T (A)).

Strengthening. If σ is a signature, then �σ

�

=�∂σ | ∇σ\{0} � is its strengthening.
Note that (σ � m) = �(σ � m), for all m.

Remark 10 (Strengthening of Always). Let Π ⊆ T (A), σ ∈ Σ, and ϕ ∈ R-LTL.
Then 〈Π 
 σ 	μ �ϕ〉 ⇐⇒ 〈Π 
 �σ 	μ �ϕ〉.

Lemma 11. Let σ be a signature and Π ⊆ T (A) a language; then for any n ∈ N,
the proposition Ψσ

Π(n) holds iff for all w ∈ R�Π 
 σ�, #w �= n.

Corollary 12 (Length Rejection). Let S ∈ ℘(N), σ a signature and Π a language;
the rewrite proposition

∧
n∈S∩∇σ Ψσ

Π(n) holds iff for all w ∈ R�Π 
 σ�, #w /∈ S.

Lemma 13 (Shifting Words). Let σ be a signature and Π ⊆ T (A) a language;
then R�Πm

σ 
 σ � m� =
{

wm+1 ∣∣ w ∈ R�Π 
 σ� ∧ #w 
 m
}

.

Remark 14 (Constrained Union). Let σ ∈ Σ, I ⊆ N, and for each i ∈ I, Πi ⊆
T (A). Then

⋃
i∈I

R�Πi 
 σ� = R�⋃i∈I Πi 
 σ�.
Stability. A signature σ ∈ Σ is called stable if σ � 1 = σ; this is equivalent
to the condition #σ = 0 and ∇σ ∈ {∅, {+∞} ,N,N }, and also to the condition
∀n ∈ N, σ � n = σ. High Point. The high point �σ of a signature σ is the
smallest h ∈ N such that σ � h is stable. Note that σ is stable if and only
if �σ = 0. Given the characterisation of stability given above, an alternative
definition of �σ would be the smallest h 
 #σ such that either Nh ⊆ ∇σ or
∇σ ∩ Nh = ∅. If no such h exists2, we take by convention �σ = +∞. Low
2 Consider a signature σ such that ∇σ is the set of odd numbers, or the set of prime

numbers, for instance. Such a signature cannot be stabilised. Fortunately, Proposi-
tion 16[p328] shows that such exotic cases are irrelevant to this paper.
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Point. The low point �σ of a signature σ is the smallest length authorised by
σ; more precisely, it is defined as �σ

�

= min ∇σ.

Lemma 15 (All Suffixes). Let σ be a stable signature, and Π ⊆ T (A) a language.
Then we have

{
w1+n

∣∣ n ∈ N, w ∈ R�Π 
 σ�, #w 
 n
}

= R�σ[ω]∗ (Π) 
 σ�.
Proposition 16 (Stability of ξ(·)). The signature of any formula ϕ ∈ A-LTL is
stabilisable; in other words, �ξ(ϕ) ∈ N, ∀ϕ ∈ A-LTL.

Theorem 17 (Translation). All the following translation rules hold.

� 〈Π 
 σ 	μ �〉
� (�) � 〈Π 
 σ 	μ ⊥〉

⊥ (⊥)

� 〈Π 
 σ 	μ X ∧ Y 〉
〈Π 
 σ 	μ X ∩ Y 〉 (∧X) � 〈Π 
 σ 	μ X ∨ Y 〉

〈Π 
 σ 	μ X ∪ Y 〉 (∨X)

� 〈Π 
 σ 	μ ϕ ∧ ψ〉
〈Π 
 σ 	μ ϕ〉 ∧ 〈Π 
 σ 	μ ψ〉 (∧)

� 〈Π 
 σ 	μ [ϕ ∨ ϕ′] ⇒ ψ〉
〈Π 
 σ 	μ ϕ ⇒ ψ〉 ∧ 〈Π 
 σ 	μ ϕ′ ⇒ ψ〉 (∨⇒∧ )

� 〈Π 
 σ 	μ ϕ ∨ ψ〉 ¬ϕ ∈ A-LTL
〈Π 
 σ 	μ ¬ϕ ⇒ ψ〉 (∨¬

⇒)

↑ 〈Π 
 σ 	μ ϕ ∨ ψ〉
〈Π 
 σ 	μ ϕ〉 ∨ 〈Π 
 σ 	μ ψ〉 (∨↑)

� 〈Π 
 σ 	μ ϕ ⇒ ψ〉
〈Π 
 σ � ξ(ϕ) 	s ψ〉 (⇒Σ)

� 〈Π 
 σ 	μ ◦mϕ〉
〈Πm

σ 
 σ � m 	w ϕ〉 (◦m)

� 〈Π 
 σ 	μ •mϕ〉
〈Π 
 σ 	μ ◦mϕ〉 ∧

∧

n∈�0,m�∩∇σ

Ψσ
Π(n)

(•m)

� 〈Π 
 σ 	μ �ϕ〉 σ is stable
〈
σ[ω]∗(Π) 
 �σ 	w ϕ

〉 (� ∗)

� 〈Π 
 σ 	μ �ϕ〉 �σ ∈ N1〈

Π 
 σ 	μ

�σ−1∧

k=0
◦kϕ

〉

∧
〈

Π�σ
σ 
 σ � �σ 	μ �ϕ

〉
(� �)

� 〈Π 
 σ 	μ ¬X〉
〈Π 
 σ 	w R \ X〉 (¬X)

Additionally, the following four rules are being explored as a possible coverage
of the difficult case of the atom X . While the main bodies of those rules encom-
pass all the necessary translations, adjusting their exact respective application
predicates is still ongoing work, which sets them apart from the proven formulæ
of Thm. 17.
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? 〈Π 
 σ 	w X〉 ↑ �σ � 1 � σ � 1 = ε
[
R \ (X ∩ σ[1])

]
(Π) = ∅

(Xw
��1)

?
〈Π 
 σ 	s X〉 ↑ �σ = 0 � σ � 1 = ε

〈Π 
 σ 	w X〉 ∧ Π ⊆
(
X ∩ σ[1]

)−1(T (A))
(Xs

�0)

? 〈Π 
 σ 	s X〉 ↑ �σ = 1 � σ � 1 = ε

〈Π 
 σ 	w X〉 (Xs
�1)

? 〈Π 
 σ 	μ X〉 ↑ �σ 
 2 � σ � �σ = ε

σ[�σ]
(

· · · σ[2]
( [

R \ (X ∩ σ[1])
]

(Π)
)

· · ·
)

= ∅

(Xμ
�2)

The general derivation algorithm consists in systematically applying the first
rule that matches, starting with the block 〈Π 
 ε 	s ϕ〉. Let it be noted that
not all of the given rules are strictly necessary. For instance (∨⇒

∧ ) corresponds
to a basic tautology of propositional logic, which rewrites the formula in a form
more amenable to translation. Similarly, rule (∨¬⇒) relies on a transformation of
the antecedent into A-LTL (which is not always possible, in which case the rule
does not apply). While their presence is not fundamental to the system, they
extend the number of translatable cases. There are doubtless many other such
simplifications not listed here – an obvious one being the commutation of (∨¬

⇒).
This sensitivity of the translation to transformations of the input formula makes
it difficult to give an exact characterisation of the supported fragment – it is not
simply R-LTL, restricted to A-LTL for antecedents. For instance, even though
♦ cannot be translated in general, its presence in the NNF of the input ϕ is
not enough in itself to assert that ϕ cannot be translated: if it appears in, say,
♦X ∨ψ, it can be handled using rule (∨¬

⇒). We intend to expand the translatable
fragment in future works; this will hopefully make it easier to characterise.

Example. Let us derive the translation of ϕ = �(X ⇒ •1Y ).

�
〈
Π 
 ε 	s �(X ⇒ •1Y )

〉
(� ∗)

�
〈
R∗(Π) 
 �ε 	w X ⇒ •1Y

〉
(⇒Σ)

�
〈
R∗(Π) 
 	X 
 R | N1� 	s •1Y

〉
(•m)

Ψ
�X�R|N1�
R∗(Π) (1) ∧ �

〈
R∗(Π) 
 	X 
 R | N1� 	s ◦1Y

〉
(◦m)

�
〈X(R∗(Π)) 
 	
R | N1� 	w Y 〉 (Xw

��1)
[R \ Y ] (X(R∗(Π))) = ∅

.

This yields the exact translation [R \ Y ] (X(R∗(Π))) = ∅∧Ψ
�X�R|N1�
R∗(Π) (1) which,

once expanded, yields [R \ Y ] (X(R∗(Π))) = ∅∧X(R∗(Π)) ⊆ R−1 (T (A)). This
is equivalent to [R \ Y ] (X(R∗(Π))) = ∅ ∧ X(R∗(Π)) ⊆ Y −1 (T (A)), which is
the expected exact translation.
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4 Conclusions and Perspectives

In the term rewriting framework, to perform reachability analysis guided by
properties of interest, the present paper addresses the question of a systematic
translation of linear temporal logic properties into rewrite propositions. More
precisely, we have investigated suitable semantics for LTL on maximal rewriting
words and their influence on the feasibility of a translation, and proposed a
framework providing exact translations on a fragment of LTL corresponding
mainly to safety formulæ, and approximations on a larger fragment.

As a future work, we intend to expand the fragment for which translations
and approximations can be provided, and study the feasibility of handling equa-
tional theories in the same framework. The present work being a part of a rewrite
approximation based analysis, the end goal is the integration of the paper’s pro-
posals into the verification chain dedicated to the automatic analysis of security-
/safety-critical applications.
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Abstract. We propose a method which allows us to develop tableaux
modulo theories using the principles of superdeduction, among which
the theory is used to enrich the deduction system with new deduction
rules. This method is presented in the framework of the Zenon automated
theorem prover, and is applied to the set theory of the B method. This
allows us to provide another prover to Atelier B, which can be used to
verify B proof rules in particular. We also propose some benchmarks,
in which this prover is able to automatically verify a part of the rules
coming from the database maintained by Siemens IC-MOL.

Keywords: Tableaux, Superdeduction, Zenon, Set Theory, B Method,
Proof Rules, Verification.

1 Introduction

In this paper, we propose to integrate superdeduction [3] (a variant of deduction
modulo) into the tableau method in order to reason modulo theories (see also [4]
for a similar approach). This integration is motivated by an experiment which is
managed by Siemens IC-MOL regarding the verification of B proof rules [5]. The B
method [1], or B for short, allows engineers to develop correct by design software
with high guarantees of confidence. A significant use of B by Siemens IC-MOL
has concerned the control system of the driverless metro line 14 in Paris. B is a
formal method based on set theory and theorem proving, and which relies on a
refinement-based development process. The Atelier B environment is a platform
that supports B and offers both automated and interactive provers. To ensure
the global correctness of formalized applications, the user must discharge proof
obligations. These proof obligations may be proved automatically, but otherwise,
they have to be handled manually either by using the interactive prover, or by
adding new proof rules that the automated prover can exploit. These new proof
rules can be seen as axioms and must be verified by other means.
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In [5], we develop an approach based on the use of the Zenon automated theo-
rem prover [2], which relies on classical first order logic with equality and applies
the tableau method. In this context, the choice of Zenon is strongly influenced
by its ability of producing checkable proof traces under the form of Coq proofs
in particular. The method used in this approach consists in first normalizing the
formulas to be proved, in order to obtain first order logic formulas containing
only the membership set operator, and then calling Zenon on these new formulas.
This experiment gives satisfactory results in the sense that it can prove a signifi-
cant part of the rules coming from the database maintained by Siemens IC-MOL.
However, this approach is not complete and suffers from efficiency issues due to
the preliminary normalization. To deal with these problems, the idea developed
in this paper is to integrate the B set theory into the Zenon proof search method
by means of superdeduction rules. This integration can be concretely achieved
thanks to the extension mechanism offered by Zenon, which allows us to extend
its core of deductive rules to match specific requirements.

The paper is organized as follows: in Section 2, we present the computation
of superdeduction rules from axioms in the framework of the tableau method
used by Zenon; we then introduce, in Section 3, the superdeduction rules corre-
sponding to the B set theory; finally, in Section 4, we describe the corresponding
implementation and provide some benchmarks concerning the verification of B
proof rules coming from the database maintained by Siemens IC-MOL.

2 From Axioms to Superdeduction Rules

Reasoning modulo a theory in a tableau method using superdeduction requires
to generate new deduction rules from some axioms of the theory. The axioms
which can be considered for superdeduction are of the form ∀x̄ (P ⇔ ϕ), where
P is atomic. This specific form of axiom allows us to introduce an orientation
of the axiom from P to ϕ, and we introduce the notion of proposition rewrite
rule (this notion appears in [3], from which we borrow the following notation and
definition). The notation R : P → ϕ is a proposition rewrite rule and denotes the
axiom ∀x̄ (P ⇔ ϕ), where R is the name of the rule, P an atomic proposition,
ϕ a proposition, and x̄ the free variables of P and ϕ.

As said in the introduction, one of our main objectives is to develop a proof
search procedure for the set theory of the B method using the Zenon automated
theorem prover [2]. In the following, we will thus consider the tableau method
used by Zenon as the framework in which superdeduction rules will be generated
from proposition rewrite rules.

The proof search rules of Zenon are described in detail in [2] and summarized
in Figure 1 (for the sake of simplification, we have omitted the relational, un-
folding, and extension rules), where ε is Hilbert’s operator, capital letters are
used for metavariables, and Rr and Rs are respectively reflexive and symmetric
relations. As hinted by the use of Hilbert’s operator, the δ-rules are handled by
means of ε-terms rather than using Skolemization. What we call here metavari-
ables are often named free variables in the tableau-related literature; they are
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Closure and Cut Rules

⊥ �⊥�
¬� �¬��

cut
P | ¬P

¬Rr(t, t) �r�
P ¬P ��

Rs(a, b) ¬Rs(b, a) �s�
Analytic Rules

¬¬P α¬¬
P

P ⇔ Q
β⇔¬P,¬Q | P, Q

¬(P ⇔ Q)
β¬⇔¬P, Q | P,¬Q

P ∧ Q
α∧

P, Q

¬(P ∨ Q)
α¬∨¬P,¬Q

¬(P ⇒ Q)
α¬⇒

P,¬Q

P ∨ Q
β∨

P | Q

¬(P ∧ Q)
β¬∧¬P | ¬Q

P ⇒ Q
β⇒¬P | Q

∃x P (x)
δ∃

P (ε(x).P (x))

¬∀x P (x)
δ¬∀¬P (ε(x).¬P (x))

γ-Rules

∀x P (x)
γ∀M

P (X)

∀x P (x)
γ∀inst

P (t)

¬∃x P (x)
γ¬∃M¬P (X)

¬∃x P (x)
γ¬∃inst¬P (t)

Fig. 1. Proof Search Rules of Zenon

not used as variables as they are never substituted. The proof search rules are
applied with the normal tableau method: starting from the negation of the goal,
apply the rules in a top-down fashion to build a tree. When all branches are
closed, the tree is closed, and this closed tree is a proof of the goal.

Let us now describe how the computation of superdeduction rules for Zenon
is performed from a given proposition rewrite rule.

Definition 1 (Computation of Superdeduction Rules). Let S be a set of
rules composed by the subset of the proof search rules of Zenon formed of the
closure rules, the analytic rules, as well as the γ∀M and γ¬∃M rules. Given a
proposition rewrite rule R : P → ϕ, two superdeduction rules (a positive one R
and a negative one ¬R) are generated.

To get the positive rule R (resp. the negative rule ¬R), initialize the procedure
with the formula ϕ (resp. ¬ϕ). Next, apply the rules of S until there is no open
leaf anymore on which they can be applied. Then, collect the premises and the
conclusion, and replace ϕ by P (resp. ¬ϕ by ¬P ) to obtain the positive rule R
(resp. the negative rule ¬R).

If the rule R (resp. ¬R) involves metavariables, an instantiation rule Rinst

(resp. ¬Rinst) is added, where one or several metavariables can be instantiated.
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Axioms

(x, y) ∈ a × b ⇔ x ∈ a ∧ y ∈ b a ∈ P(b) ⇔ ∀x (x ∈ a ⇒ x ∈ b)
x ∈ { y | P (y) } ⇔ P (x) a = b ⇔ ∀x (x ∈ a ⇔ x ∈ b)

Derived Constructs

a ∪ b � { x | x ∈ a ∨ x ∈ b } a ∩ b � { x | x ∈ a ∧ x ∈ b }
a − b � { x | x ∈ a ∧ x �∈ b } ∅ � BIG − BIG

{ e1, . . . , en } � { x | x = e1 } ∪ . . . ∪ { x | x = en }
Binary Relation Constructs: First Series

a−1 � { (y, x) | (x, y) ∈ a }
dom(a) � { x | ∃y (x, y) ∈ a } ran(a) � dom(a−1)

a; b � { (x, z) | ∃y ((x, y) ∈ a ∧ (y, z) ∈ b }
id(a) � { (x, y) | (x, y) ∈ a × a ∧ x = y }
a � b � id(a); b a � b � a; id(b)

Fig. 2. Axioms and Constructs of the B Set Theory

3 Superdeduction Rules for the B Set Theory

The B method [1] is based on a typed set theory, which consists of six axiom
schemes defining the basic operators and the extensional equality. The other
operators (∪, ∩, etc.) are defined using the previous basic ones. Figure 2 gathers
a part of the axioms and constructs of the B set theory, where BIG is an infinite
set. In this figure, we only consider the four first axioms of the B set theory, as
we do not need the two remaining axioms in the rules that we want to verify (see
Section 4). Due to space restrictions, we only present the main constructs, even
though we can deal with other constructs (like functions) in our superdeduction
system. Compared to [1], all type information has been removed from the axioms
and constructs thanks to the modularity between the type and proof systems.

To generate the superdeduction rules corresponding to the axioms and con-
structs defined in Figure 2, we use the algorithm described in Definition 1 of
Section 2, and we must therefore identify the proposition rewrite rules. On the
one hand, the axioms are of the form Pi ⇔ Qi, and the associated proposition
rewrite rules are Ri : Pi → Qi. On the other hand, the constructs are expressed
by the definitions Ei � Fi, where Ei and Fi are expressions, and the correspond-
ing proposition rewrite rules are Ri : x ∈ Ei → x ∈ Fi. The superdeduction
rules are then generated as described in Figure 3 (except the instantiation rules
associated with rules involving metavariables, due to space restrictions). The
computation of these superdeduction rules goes further than the one proposed
in Section 2, since given a proposition rewrite rule R : P → Q, we apply to
Q not only all the rules considered by Definition 1, but also the new generated
superdeduction rules (except the rules for the extensional equality, in order to
benefit from the dedicated rules of Zenon for equality) whenever applicable.
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Rules for Axioms

(x, y) ∈ a × b ×
x ∈ a, y ∈ b

a ∈ P(b)
P

X �∈ a | X ∈ b

x ∈ { y | P (y) } {|}
P (x)

(x, y) �∈ a × b ¬×
x �∈ a | y �∈ b

a �∈ P(b) ¬P
εx ∈ a, εx �∈ b

with εx = ε(x).¬(x ∈ a ⇒ x ∈ b)

x �∈ { y | P (y) } ¬{|}¬P (x)

a = b =
X �∈ a, X �∈ b | X ∈ a, X ∈ b

a �= b �=
εx �∈ a, εx ∈ b | εx ∈ a, εx �∈ b

with εx = ε(x).¬(x ∈ a ⇔ x ∈ b)

Rules for Derived Constructs

x ∈ a ∪ b ∪
x ∈ a | x ∈ b

x ∈ a ∩ b ∩
x ∈ a, x ∈ b

x ∈ a − b −
x ∈ a, x �∈ b

x �∈ a ∪ b ¬∪
x �∈ a, x �∈ b

x �∈ a ∩ b ¬∩
x �∈ a | x �∈ b

x �∈ a − b ¬−
x �∈ a | x ∈ b

x ∈ { e1, . . . , en } {}
x = e1 | . . . | x = e1

x �∈ { e1, . . . , en } ¬{}
x �= e1, . . . , x �= en

x ∈ ∅ ∅�

Rules for Binary Relation Constructs: First Series

(x, y) ∈ a−1

a−1

(y, x) ∈ a

x ∈ dom(a)
dom

(x, εy) ∈ a

with εy = ε(y).((x, y) ∈ a)

y ∈ ran(a)
ran

(εx, y) ∈ a

with εx = ε(x).((x, y) ∈ a)

(x, y) �∈ a−1

¬a−1

(y, x) �∈ a

x �∈ dom(a) ¬dom
(x, Y ) �∈ a

y �∈ ran(a) ¬ran
(X, y) �∈ a

(x, z) ∈ a; b
;

(x, εy) ∈ a, (εy , z) ∈ b

with εy = ε(y).((x, y) ∈ a ∧ (y, z) ∈ b)

(x, z) �∈ a; b ¬;
(x, Y ) �∈ a | (Y, z) �∈ b

(x, y) ∈ id(a)
idx = y, x ∈ a, y ∈ a

(x, y) ∈ a � b
�

(x, y) ∈ b, x ∈ a

(x, y) ∈ a � b
�

(x, y) ∈ a, y ∈ b

(x, y) �∈ id(a) ¬id
x �= y | x �∈ a | y �∈ a

(x, y) �∈ a � b ¬�
(x, y) �∈ b | x �∈ a

(x, y) �∈ a � b ¬�
(x, y) �∈ a | y �∈ b

Fig. 3. Superdeduction Rules for the B Set Theory
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Fig. 4. Proof Time and Proof Size Comparative Benchmarks

4 Implementation and Benchmarks

The extension of Zenon for the B set theory described in Section 3 has been
implemented thanks to the ability of Zenon to extend its core of deductive rules.
The motivation of this extension is to verify B proof rules of Atelier B, and in
particular rules coming from the database maintained by Siemens IC-MOL. Re-
garding benchmarks, we consider a selection of rules of this database consisting
of well-typed and well-defined rules, which involve the B set constructs handled
by our extension, i.e. all the constructs of the B-Book [1] until the override con-
struct. This represents 1,397 rules (over a total of 5,281 rules), and we propose
two benchmarks whose results are gathered in Figure 4.

The first benchmark aims to compare our extension of Zenon with the ap-
proach described in [5], where the set formulas must be preliminarily normalized
(in order to obtain first order logic formulas containing only the membership
set operator) before calling Zenon. Over the 1,397 selected rules, our extension
proves 1,340 rules (96%), while our initial approach proves 1,145 rules (82%).
The left-hand side graph of Figure 4 presents a comparison of both approaches
in terms of proof time (run on an Intel Core i5-2500K 3.30GHz/12GB computer)
for a subset of the 1,397 selected rules, where both approaches succeed in finding
a proof (the time measures include the compilation of Coq proofs generated by
Zenon), i.e. for 1,145 rules. In this figure, a point represents the result for a rule,
and the x/y-axes respectively correspond to the approach with pre-normalization
of the formulas and to our extension using superdeduction. On average, the su-
perdeduction proofs are obtained 67 times faster (the best ratio is 1,540).

We propose a second benchmark whose purpose is to compare our extension of
Zenon using superdeduction with another extension of Zenon for the B set theory,
where the proposition rewrite rules are not computed into superdeduction rules,
but just unfolded/folded (like in Prawitz’s approach). The comparison consists
in computing the number of proof nodes of each proof generated by Zenon. We
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consider a subset of 1,340 rules, for which both extensions succeed in finding
a proof. The results are summarized by the right-hand side graph of Figure 4,
where a point represents the result for a rule, and where the x/y-axes respectively
correspond to the extension without and with superdeduction. As can be seen,
the major part of proofs in the latter are on average 1.6 times shorter than the
former proofs (the best ratio is 6.25).

5 Conclusion

We have proposed a method which allows us to develop tableaux modulo theories
using superdeduction. This method has been presented in the framework of the
Zenon automated theorem prover, and applied to the set theory of the B method.
This has allowed us to provide another prover to Atelier B, which can be used
to verify B proof rules automatically. We have also proposed some benchmarks
using rules coming from the database maintained by Siemens IC-MOL. These
benchmarks have emphasized significant speed-ups both in terms of proof time
and proof size compared to previous and alternative approaches.

As future work, we first aim to generalize our approach of superdeduction for
Zenon and provide a generator of superdeduction rules from proposition rewrite
rules. This will allow us to generate automatically a superdeduction prover from
a theory, provided that a part of the axioms of this theory can be turned into
proposition rewrite rules. We also plan to extend our implementation realized for
verifying B proof rules in order to deal with a larger set of rules of the database
maintained by Siemens IC-MOL. Finally, we intend to study some properties of
this system for the B set theory, such as consistency and completeness.

Acknowledgement. Many thanks to G. Burel and O. Hermant for their de-
tailed comments on this paper, to G. Dowek for seminal discussions of this work,
and to D. Doligez for his help in the integration of superdeduction into Zenon.
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Solving Non-linear Arithmetic
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Abstract. We present a new algorithm for deciding satisfiability of non-
linear arithmetic constraints. The algorithm performs a Conflict-Driven
Clause Learning (CDCL)-style search for a feasible assignment, while
using projection operators adapted from cylindrical algebraic decompo-
sition to guide the search away from the conflicting states.

1 Introduction

From the early beginnings in Persian and Chinese mathematics until the present
day, polynomial constraints and the algorithmic ways of solving them have been
one of the driving forces in the development of mathematics. Though studied for
centuries due to the natural elegance they provide in modeling the real world,
from resolving simple taxation arguments to modeling planes and hybrid sys-
tems, we are still lacking a practical algorithm for solving a system of polynomial
constraints. Throughout the history of mathematics, many brilliant minds have
studied and algorithmically solved many of the related problems, such as root
finding and factorization of polynomials. But, it was not until Alfred Tarski [26]
showed that the theory of real closed fields admits elimination of quantifiers
that it became clear that a general decision procedure for solving polynomial
constraints was possible. Granted a wonderful theoretical result of landmark
importance, with its non-elementary complexity, Tarski’s procedure was unfor-
tunately totally impractical.

As one would expect, Tarski’s procedure consequently has been much im-
proved. Most notably, Collins [10] gave the first relatively effective method of
quantifier elimination by cylindrical algebraic decomposition (CAD). The CAD
procedure itself has gone through many revisions [8]. However, even with the
improvements and various heuristics, its doubly-exponential worst-case behavior
has remained as a serious impediment. The CAD algorithm works by decompos-
ing Rk into connected components such that, in each cell, all of the polynomials
from the problem are sign-invariant. To be able to perform such a particular
decomposition, CAD first performs a projection of the polynomials from the
initial problem. This projection includes many new polynomials, derived from
the initial ones, and these polynomials carry enough information to ensure that
the decomposition is indeed possible. Unfortunately, the size of these projec-
tion sets grows exponentially in the number of variables, causing the projection
phase, and its consequent impact on the search space, to be a key hurdle to CAD
scalability.

B. Gramlich, D. Miller, and U. Sattler (Eds.): IJCAR 2012, LNAI 7364, pp. 339–354, 2012.
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We propose a new decision procedure for the existential theory of the reals
that tries to alleviate the above problem. As in [16,20,17], the new procedure
performs a backtracking search for a model in R, where the backtracking is pow-
ered by a novel conflict resolution procedure. Our approach takes advantage of
the fact that each conflict encountered during the search is based on the cur-
rent assignment and generally involves only a few constraints, a conflicting core.
When in conflict, we project only the polynomials from the conflicting core and
explain the conflict in terms of the current model. This means that we use pro-
jection conservatively, only for the subsets of polynomials that are involved in
the conflict, and even then we reduce it further. As another advantage, the con-
flict resolution provides the usual benefits of a Conflict-Driven Clause Learning
(CDCL)-style [24] search engine, such as non-chronological backtracking and the
ability to ignore irrelevant parts of the search space. The projection operators
we use as part of the conflict resolution need not be CAD based and, in fact,
one can easily adapt projections based on other algorithms (e.g [19,3]).

Due to the lack of space and the volume of algorithms and concepts involved,
we concentrate on the details of the decision procedure in this paper and refer
the reader to the existing literature for further information [7,8,9].1

2 Preliminaries

As usual, we denote the ring of integers with Z, the field of rational numbers
with Q, and the field of real numbers as R. Unless stated otherwise, we assume
all polynomials take integer coefficients, i.e. a polynomial f ∈ Z[y, x] is of the
form

f(y, x) = am · xdm + am−1 · xdm−1 + · · ·+ a1 · xd1 + a0 ,

where 0 < d1 < · · · < dm, and the coefficients ai are in Z[y] with am �= 0. We
call x the top variable. The highest degree dm is the degree of the polynomial
f in variable x, and we denote it with deg(f, x). The set of coefficients of f is
denoted as coeff(f, x). We call am the leading coefficient in variable x, and denote
it with lc(f, x). If we exclude the first k terms of the polynomial f , we obtain
the polynomial Rk(f, x) = am−kx

dm−k + · · ·+ a0, called the k-th reductum of f .
We write R∗(f, x) for the set {R0(f, x), . . . ,Rm(f, x)} containing all reductums.
We denote the set of variables appearing in a polynomial f as vars(f) and call
the polynomial univariate if vars(f) = {x} for some variable x. Otherwise the
polynomial is multivariate, or a constant polynomial (if it contains no variables).
Given a set of polynomials A ⊂ Z[x1, . . . xn], we denote with Ak the subset of
polynomials in A that belong to Z[x1, . . . , xk], i.e. Ak = A ∩ Z[x1, . . . , xk].

1 The website http://cs.nyu.edu/~dejan/nonlinear/ contains a technical report,
our prototype nlsat, and experimental results. The technical report contains addi-
tional examples, proofs of all main theorems, additional references, and implemen-
tation details.

http://cs.nyu.edu/~dejan/nonlinear/
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A number α ∈ R is a root of the polynomial p ∈ Z[x] iff f(α) = 0. We call a
real number α ∈ R algebraic iff it is a root of a univariate polynomial f ∈ Z[x],
and we denote the field of all real algebraic numbers by Ralg. We can represent
any algebraic number α as (l, u)f , with l, u ∈ Q, where α is a root of a polynomial
f , and the only root in the interval (l, u).

Example 1. Consider the univariate polynomial f1 = 16x3 − 8x2 + x+ 16. This
polynomial has only one root, the irrational number α1 ≈ −0.840661 and we
can represent it as (−0.9,−0.8)f1.

Given a set of variables X = {x1, . . . , xn}, we call υ a variable assignment if it
maps each variable xk to a real algebraic number υ(xk), the value of xk under υ.
We overload υ, as usual, to obtain the value of a polynomial f ∈ Z[x1, . . . , xn]
under υ and write it as υ(f). We say that a polynomial f vanishes under υ
if υ(f) = 0. We can update the assignment υ to map a variable xk to the
value α, and we denote this as υ[xk "→ α]. Under a variable assignment υ
that interprets the variables y, some coefficients of a polynomial f(y, x) may
vanish. If ak is the first non-vanishing coefficient of f , i.e., υ(ak) �= 0, we
write R(f, x, υ) = akx

dk + · · · + a0 for the reductum of f with respect to υ
(the non-vanishing part). Given any sequence of polynomials f = (f1, . . . , fs)
and a variable assignment υ we define the vanishing signature of f as the se-
quence v-sig(f , υ) = (f1, . . . , fk), where k ≤ s is the minimal number such that
υ(fk) �= 0, or s if they all vanish. For the polynomial f(y, x) as above, we define
the vanishing coefficients signature as v-coeff(f, x, υ) = v-sig(am, . . . , a0, υ).

A basic polynomial constraint F is a constraint of the form f � 0 where f is
a polynomial and � ∈ {<,≤,=, �=,≥, >}. We denote the polynomial constraint
that represents the negation of a constraint F with ¬F .2 In order to identify the
polynomial f of the constraint F , and the variables of F , we write poly(F ) and
vars(F ), respectively. We normalize all constraints over constant polynomials to
the dedicated constants true and false with the usual semantics. We write υ(F )
to denote the evaluation of F under υ, which is the constraint υ(f)� 0. If f does
not evaluate to a constant under υ, then υ(F ) evaluates to a new polynomial
constraint F ′, where poly(F ′) can contain algebraic coefficients.

Borrowing from the extended Tarski language [4, Chapter 7], in addition to the
basic constraints, we will also be working with extended polynomial constraints.
An extended polynomial constraint F is of the form x �r root(f, k), where
�r ∈ {<r,≤r,=r, �=r,≥r, >r}, f is a polynomial in Z[y, z̃], with x �∈ vars(f), and
the natural number k ≤ deg(f, z̃) is the root index. Variable z̃ is a distinguished
free variable that cannot be used outside the root object. To be able to extract
the polynomial of the constraint, we define poly(F ) = f(y, x). Note that poly(F )
replaces z̃ with x. The semantics of the predicate �r under a variable assignment
υ is the following. If the polynomial υ(f) is univariate, and υ assigns x to α, the
(Boolean) value of the constraint can be determined as follows. If the univari-
ate polynomial υ(f) ∈ Ralg[z̃] has the roots β1 < · · · < βn, with k ≤ n, and α�βk

2 For example ¬(x2 + 1 > 0) ≡ x2 + 1 ≤ 0.
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holds, then the predicate evaluates to true. Otherwise it evaluates to false. We
denote the number of real roots of a univariate polynomial f as rootcount(f).
Naturally, if F is an extended polynomial constraint, so is the negation ¬F .3

A polynomial constraint is either a basic or an extended one. Given a set of
polynomial constraints F , we say that the variable assignment υ satisfies F if it
satisfies each constraint in F . If there is such a variable assignment, we say that
F is satisfiable, otherwise it is unsatisfiable. A clause of polynomial constraints
is a disjunction C = F1 ∨ . . . ∨ Fn of polynomial constraints. We use literals(C)
to denote the set {F1,¬F1, . . . , Fn,¬Fn}. We say that the clause C is satisfied
under the assignment υ if some polynomial constraint Fj ∈ C evaluates to true
under υ. Finally, a polynomial constraint problem is a set of clauses C, and it is
satisfiable if there is a variable assignment υ that satisfies all the clauses in C. If
the clauses of C contain the variables x1, . . . , xn then, for k ≤ n, we denote with
Ck the subset of the clauses that only contains variables x1, . . . , xk.

3 An Abstract Decision Procedure

We describe our procedure as an abstract transition system in the spirit of
Abstract DPLL [21]. The crucial difference between the system we present is that
we depart from viewing the Boolean search engine and the theory reasoning as
two separate entities that communicate only through existing literals. Instead, we
allow the model that the theory is trying to construct to be involved in the search
and in explaining the conflicts, while allowing new literals to be introduced so
as to support more complex conflict analyses. The transition system presented
here applies to non-linear arithmetic, but it can in general be applied to other
theories.

The states in the transition system are indexed pairs of the form 〈M, C〉n,
where M is a sequence (usually called a trail) of trail elements, and C is a set of
clauses. The index n denotes the current stage of the state. Trail elements can be
decided literals, propagated literals, or a variable assignment. A decided literal
is a polynomial constraint F that we assume to be true. On the other hand,
a propagated literal, denoted as E→F , marks a polynomial constraint F ∈ E
that is implied to be true in the current state by the clause E (the explana-
tion). In both cases, we say that the constraint F appears in M , and write
this as F ∈ M . We denote the set of polynomial constraints appearing in M
with constraints(M). We say M is non-redundant if no polynomial constraint
appears in M more than once. A trail variable assignment, written as x "→α, is
an assignment of a single variable to a value α ∈ Ralg. Given a trail M , con-
taining variable assignments xi1 "→α1, . . . , xik "→αk, in order, we can construct
an assignment υ[M ] = υ0[xi1 "→ α1] . . . [xik "→ αk], where υ0 is an empty
assignment that does not assign any variables.

3 Note that, for example, ¬(x <r root(f, k)) is not necessarily equivalent to x ≥r

root(f, k).



Solving Non-linear Arithmetic 343

We say that the sequence M is stage increasing when the sequence is of the
form

M = �N1, x1 "→α1, . . . , xk−1 "→αk−1, Nk, xk "→αk, . . . , xn−1 "→αn−1, Nn� ,

where, for each k ≤ n, the sequence Nk does not contain any variable assign-
ments, each constraint F ∈ constraints(Nk) contains the variable xk, and (op-
tionally) the variables x1, . . . , xk−1 (and z̃). In such a sequence M , we denote
with stage(M) = n the stage of the sequence. If F = constraints(M), we say that
M is feasible, when the set of univariate polynomial constraints υ[M ](F) has a
solution. We write feasible(M) to denote the feasible set of υ[M ](F). Given an
additional polynomial constraint F ∈ Z[x1, . . . , xn], we say that F is compatible
with the sequence M , when feasible(�M,F �) �= ∅ and denote this with a predi-
cate compatible(F,M). The technical report contains additional details on how
these procedures are implemented.

Our transition system will work over states that are well-formed. Intuitively,
in such a state, we commit to the variable assignment, but make sure that
the current stage is consistent on the Boolean level. With this in mind, given
a polynomial constraint F with vars(F ) ⊆ {x1, . . . , xn}, and a state M with
stage(M) = n, we define the state value of F in M as

value(F,M) =

⎧⎪⎪⎨⎪⎪⎩
υ[M ](F ) xn �∈ vars(F ) ,

true F ∈ constraints(M) ,

false ¬F ∈ constraints(M) ,

undef otherwise.

Naturally, we overload value to also evaluate clauses of polynomial constraints,
and sets of clauses, i.e. for a clause C we define value(C,M) to be true, if any
of the literals evaluates to true, false if all literals evaluate to false, and undef
otherwise.

Definition 1 (Well-Formed State). We say a state 〈M, C〉n is well-formed
when M is non-redundant, stage increasing with stage(M) = n, and all of the
following hold.

1. Clauses up to stage n are satisfied, i.e. we have that value(Cn−1,M) = true.
2. The state is consistent, i.e. feasible(M) �= ∅ and for each F ∈ constraints(M)

we have that that value(F,M) = true.
3. Propagated literals E→F are implied, i.e. for all literals F ′ �= F in E,

value(F ′,M) = false.

We are now ready to define the transition system. We separate the transition
rules into three groups: the search rules, the clause processing rules, and the
conflict analysis rules. The search rules are the main driver of the procedure,
with the responsibility for selecting clauses to process, creating the variable
assignment while lifting the stages, and detecting Boolean conflicts. The search
rules operate on well-formed states 〈M, C〉n. If the search rules select a clause
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C to process, we switch to a state 〈M, C〉n � C, where we can apply the set
of clause processing rules. The notation � C designates that we are performing
semantic reasoning in order to assign a value to a literal of C. If the search rules
detect that in the current state some clause C ∈ C is falsified, we switch to a
state 〈M, C〉n � C, where we can apply the conflict analysis rules. The notation
� C denotes that we are trying to produce a proof of why C is inconsistent in
the current state.

Finally, given a polynomial constraint problem C, with vars(C) = {x1, . . . , xn},
the overall goal of the procedure is, starting from an initial state 〈��, C〉1, and
applying the rules, to end up either in a state 〈υ, sat〉, indicating that the initial
set of clauses C is satisfiable where the assignment υ is the witness, or derive
unsat, which indicates that the set C unsatisfiable.

Search Rules. Fig 1 presents the set of search rules. The Select-Clause rule
selects one of the clauses of the current stage, whose state value is still unde-
termined, and transitions into the clause processing mode that will hopefully
satisfy the clause. The Conflict rule detects if there is a clause of the current
stage that is inconsistent in the current state, and transitions into the conflict
resolution mode that will explain the conflict and backtrack appropriately. On
the other hand, if all the clauses of the current stage are satisfied, we can either
transition to the next stage, using the Lift-Stage rule, or conclude that our
problem is satisfiable, using the Sat rule. Since at this point the current stage is
consistent, in addition to formally introducing the new stage, the Lift-Stage

rule selects a particular value for the current variable from the feasible set of
the current stage. Note that once we move to the next stage, all the clauses
of previous stages have values in the state, and can never be selected by the
Select-Clause or the Conflict rules. We conclude this set of rules with the
Forget rule that can be used to eliminate any learnt clause (a clause added
while analyzing conflicts) from the current set of clauses.

Clause Processing Rules. In this set of rules, presented in Fig 2, we are trying
to assign a currently unassigned literal of the given clause C, hoping to satisfy
the clause. When one of the clause processing rules is applied, we immediately
switch back to the search rules. As usual in a CDCL-style procedure, the sim-
plest way to satisfy the clause C is to perform the Boolean unit propagation,
if applicable, by using the B-Propagate rule. We restrict the application of
this rule so that adding the constraint to the state keeps it consistent, i.e., it
is compatible with the current set of constraints. If this is the case, we add the
constraint to the state together with the explanation (clause C itself). To allow
more complex propagations, the ones that are valid in R modulo the current
state, we provide the R-Propagate rule. This rule can propagate a constraint
from the clause, if assuming the negation would be incompatible with the current
state. The R-Propagate rule is equipped with an explanation function explain.
The explain function, given a polynomial constraint F , and the trail M , returns
the explanation clause E = explain(F,M) that is valid in R, and implies the
constraint F under the current assignment i.e., F ∈ E, and all literals in E but
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Select-Clause

〈M, C〉k −→ 〈M, C〉k 
 C if
C ∈ Ck

value(C,M) = undef

Conflict

〈M, C〉k −→ 〈M, C〉k 	 C if
C ∈ Ck

value(C,M) = false

Sat

〈M, C〉k −→ 〈υ[M ], sat〉 if xk �∈ vars(C)
Lift-Stage

〈M, C〉k −→ 〈�M,xk �→ α�, C〉k+1 if

xk ∈ vars(C)
α ∈ feasible(M)
value(Ck,M) = true

Forget

〈M, C〉k −→ 〈M, C \ {C}〉k if
C ∈ C
C is a learnt clause

Fig. 1. The search rules

F are false in the state. The clause E may contain new literals that do not occur
in C, as long as they evaluate to false in the state. To simplify the presentation,
in the R-Propagate rule, the explanation clause E is eagerly generated, but
in our actual implementation, we compute them only if they are needed during
conflict resolution. Finally, if we cannot deduce the value of an unassigned literal,
we can assume a value for such a literal using the Decide-Literal rule.

Conflict Analysis Rules. The conflict analysis rules start from an initial proper
state 〈M, C〉n � C, where C ∈ C is the conflicting clause. The conflict analysis is
a standard Boolean conflict analysis [24] with a model-based twist. As the rules
move the state backwards, the goal is to construct a new resolvent clause R,
that will explain the conflict and ensure progress in the search. This means that,
when we backtrack the sequence M just enough, the addition of R will ensure
progress in the search by eliminating the inconsistent part from the state, and
thus forcing the search rules to change some of the choices made. On the other
hand, if the conflict analysis backtracks the state all the way into an empty state,
this will be a signal that the original problem is unsatisfiable. Once the conflict
analysis backtracks enough and deduces the resolvent R, then we pass it to the
clause processing immediately.4

Termination. Our decision procedure consists of all three sets of rules described
above. Any derivation will proceed by switching amongst the three distinct
modes. Proving termination in the basic CDCL(T ) framework is usually a fairly
straightforward task, as the new explanation and conflict clauses always contain

4 This is crucial in order to ensure termination.
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Decide-Literal

〈M, C〉k 
 C −→ 〈�M,F1�, C〉k if

F1, F2 ∈ C
∀i : value(Fi,M) = undef
compatible(F1,M)

B-Propagate

〈M, C〉k 
 C −→ 〈�M,C→F �, C〉k if

C = F1 ∨ . . . ∨ Fm ∨ F
value(F,M) = undef
∀i : value(Fi,M) = false
compatible(F,M)

R-Propagate

〈M, C〉k 
 C −→ 〈�M,E→F �, C〉k if

F ∈ literals(C)
value(F,M) = undef
¬ compatible(¬F,M)
E = explain(F,M)

Fig. 2. The clause satisfaction rules

only literals from the finite set of literals in the initial set of constraints. In our
case, the main conundrum in proving termination is that we allow the expla-
nations to contain fresh constraints, which, if we are not careful, could lead to
non-termination. We therefore require the set of new constraints to be finite.
We call an explanation function explain a finite basis explanation function with
respect to a set of constraints C, when there is a finite set of polynomial con-
straints B such that for any derivation of the proof rules, the clauses returned by
applications of explain always contain only constraints from the basis B. Having
such an explanation function will therefore provide us with a termination argu-
ment, and we will provide one such explanation function for the theory of reals
in the next section.

Theorem 1. Given a set of polynomial constraints C, and assuming a finite
basis explanation function explain, any derivation starting from the initial state
〈��, C〉1 will terminate either in a state 〈υ, sat〉, where the assignment υ satisfies
the constraints C, or in the unsat state. In the later case, the set of constraints
C is unsatisfiable in R.

4 Producing Explanations

Given a polynomial constraint F with poly(F ) ∈ Z[y, x], and a trailM such that
¬F is not compatible with M , the procedure explain(F,M) returns an explana-
tion clause E that implies F in the current state. In principle, for any theory
that admits elimination of quantifiers, it is possible to construct an explanation
function explain. In this section, we describe how to produce an explain proce-
dure for theory of the reals based on cylindrical algebraic decomposition (CAD).
Before that, we first make a short interlude into the world of CAD.
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Resolve-Propagation

〈�M,E→F �,C〉k 	 C −→ 〈M, C〉k 	 R if
¬F ∈ C
R = resolve(C,E, F )


 resolve returns the standard Boolean resolvent

Resolve-Decision

〈�M,F �, C〉k 	 C −→ 〈M, C ∪ {C}〉k 
 C if ¬F ∈ C

Consume

〈�M,F �, C〉k 	 C −→ 〈M, C〉k 	 C if ¬F �∈ C

〈�M,E→F �,C〉k 	 C −→ 〈M, C〉k 	 C if ¬F �∈ C

Drop-Stage

〈�M,xk+1 �→α�, C〉k+1 	 C −→ 〈M, C〉k 	 C if value(C,M) = false

〈�M,xk+1 �→α�, C〉k+1 	 C −→ 〈M, C ∪ {C}〉k 
 C if value(C,M) = undef

Unsat

〈��, C〉1 	 C −→ unsat

Fig. 3. The conflict analysis rules

4.1 Cylindrical Algebraic Decomposition

A crucial role in the theory of CADs and in the construction of our explain
procedure is the property of delineability. Following the terminology used in
CAD, we say that a connected subset of Rk is a region. A set of polynomials
{f1, . . . fs} ⊂ Z[y, x], with y = (y1, . . . , yn), is said to be delineable in a region
S ⊆ Rn if for every fi (and fj) from the set, the following properties are invariant
for any α ∈ S:

1. the total number of complex roots of fi(α, x);
2. the number of distinct complex roots of fi(α, x);

3. the number of common complex roots of fi(α, x) and fj(α, x).

Example 2. Consider the polynomial f = x2+y2+z2−1, with zeros of f depicted
in Fig 4(a) together with two squiggly regions of R2. In the region S1 that does
not intersect the sphere, polynomial f is delineable, as the number of complex
(and real) roots of f(α, x) is 2 for any α in S1. In the region S2 that intersects
the sphere, f is not delineable, as the number of real roots of f varies from 0
(α’s outside the unit circle), 1 (on the circle), and 2 (inside the unit circle).

We will call a projection operator any map P that, given a variable x and set
of polynomials A ⊂ Z[y, x], transforms A into a set of polynomials P(A, x) ⊂
Z[y]. We call P(A, x) the projection of A under P with respect to variable x.
In his seminal paper [10], Collins introduced a projection operator which we
denote with Pc. In order to define the operator Pc, we first need to define some
“advanced” operations on polynomials, and we refer the reader to [18,3,6] for a
more detailed exposition.
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Let f, g ∈ Z[y, x] be two polynomials with n = min(deg(f, x), deg(g, x)). For
k = 0, . . . , n−1, we denote with Sk(f, g, x) the k-th subresultant of f and g. The
k-th subresultant is defined as the determinant of the k-th Sylvester-Habicht
matrix of f and g, and is a polynomial of degree ≤ k in x with coefficients in
Z[y]. The matrix in question is a particular matrix containing as elements the co-
efficients of f and g. Additionally, we denote with psck(f, g, x) the k-th principal
subresultant coefficient of f and g, which is the coefficient of xk in the polyno-
mial Sk(f, g, x), and define pscn(f, g, x) = 1. We denote the sequence of principal
subresultant coefficients as psc(f, g, x) = (psc0(f, g, x), . . . , pscn(f, g, x)).

Definition 2. Given a set of polynomials A = {f1, . . . , fm} ⊂ Z[y, x] the Collins
projector operator Pc(A, x) is defined as⋃

f∈A

coeff(f, x) ∪
⋃
f∈A

g∈R∗(f,x)

psc(g, g′x, x) ∪
⋃
i<j

gi∈R∗(fi,x)
gj∈R∗(fj ,x)

psc(gi, gj , x) .

Let A = {f1, . . . , fm} ⊂ Z[y] be a set of polynomials, where y = (y1, . . . , yn),
and S be a region of Rn. If for any assignment υ such that υ(y) = α ∈ S, the
polynomials in A have the same sign under υ, we say that A is sign-invariant
on S.

Theorem 2 (Theorem 4 in [10]). Given a finite set of polynomials A ⊂
Z[y, x], where y = (y1, . . . , yn), and let S be a region of Rn. If Pc(A) is sign
invariant on S, then A is delineable over S.

A sign assignment for a set of polynomials A is a mapping σ, from polynomials
in A to {−1, 0, 1}. Given a set of polynomials A ⊂ Z[y, x], we say a sign as-
signment σ is realizable with respect to some α in Rn, if there exists a β ∈ R
such that every f ∈ A takes the sign corresponding to its sign assignment, i.e.,
sgn(f(α, β)) = σ(f). The function sgn maps a real number to its sign {−1, 0, 1}.
We use signs(A,α) to denote the set of realizable sign assignments of A with
respect to α.

Lemma 1. If a set of polynomials A ⊂ Z[y, x] is delineable over a region S,
then signs(A,α) is invariant over S.

4.2 Projection-Based Explanations

Suppose that we need to produce an explanation for propagating a polynomial
constraint F , i.e. we are in a state such that ¬ compatible(¬F,M), with poly(F ) ∈
Z[y, x], where y = (y1, . . . , yn). To simplify the presentation, in the following,
we write υ for υ[M ]. The explanation procedure explain(F,M) consists of the
following steps.

IsolateCore: Find a minimal set F of literals inM such that υ(F∪{¬F}) does
not allow a solution for x. We call the set F ∪ {¬F} set a conflicting core.
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Project: Construct a region S of Rn where A = poly(F ∪ {F}) is delineable,
and υ(y) is in S. Note that, from Lemma 1, ¬F is incompatible with F for
any other α′ in S.

Explain: Define the region S using extended polynomial constraints, obtaining
a set of constraints E . Then, we define explain(F,M) ≡ (E ∧ F) =⇒ F .

We focus here on the second step of the procedure. To obtain the region S we
will use a projection operator which, with insights of Theorem 2, will ensure
delineability. Since our procedure requires a region S that contains the current
assignment υ(y) = α, we add the assignment υ as an additional argument to
the projection operator, and call such a projection operator model-based. Given
a variable assignment υ, we denote the vanishing signature of a principal subre-
sultant sequence as v-psc(f, g, x, υ) = v-sig(psc0(f, g, x), . . . , pscn(f, g, x), υ), and
define our model-based projection operator Pm(A, x, υ) as follows.

Definition 3. Given a set of polynomials A = {f1, . . . , fm} ⊂ Z[y, x] and a
variable assignment υ, the model-based Collins projector operator Pm(A, x, υ) is
defined as⋃
f∈A

v-coeff(f, x, υ) ∪
⋃
f∈A

g=R(f,x,υ)

v-psc(g, g′x, x, υ) ∪
⋃
i<j

gi=R(fi,x,υ)
gj=R(fj ,x,υ)

v-psc(gi, gj, x, υ) .

Example 3. Consider the variable assignment υ, with υ(x) = 0, and the set A
containing two polynomials f2 = x2 + y2 − 1 and f3 = −4xy − 4x+ y − 1. The
projection operator Pm maps the set A into Pm(A, y, υ)

{ (16x3 − 8x2 + x+ 16︸ ︷︷ ︸
f1

)x, −4x+ 1, 4(x+ 1)(x− 1), 2, 1 } , (1)

where f1 is the polynomial from Ex. 1. The zeros of f2 and f3 are depicted in
Fig. 4(b), together with a set of important points {−1, α1, 0,

1
4 , 1}, where α1 is the

algebraic number from Ex. 1. These points are exactly the roots of the projection
polynomials (1). It is easy to see that f2 and f3 are delineable in the intervals
defined by these points. But, considering a polynomial f4 = x3 + 2x2 + 3y2 − 5,
we can see that it is not delineable on the interval (1,+∞).

We will use the projection operator Pm to compute the required region S, and
show that A is delineable in S. First, we close the set of polynomials A ⊂
Z[y1, . . . , yn, x] under the application of a projection operator Pm. We compute
this closure by computing sets of polynomials Pn, . . . ,P1 iteratively, starting
from Pn = Pm(A, υ, x), and then for k = n, . . . , 2, compute the subsequent
ones as Pk−1 = Pm(Pk, yk, υ) ∪ (Pk ∩ Z[y1, . . . , yk−1]). Each set of polynomials
Pk ⊆ Z[y1, . . . , yk] is obtained by projecting the previous set Pk+1 and adding
all the polynomials from Pk+1 that do not involve the variable yk+1.

Now, we can build the region S inductively, in a bottom-up fashion, by con-
structing a sequence of regions Sk ⊂ Rk such that each Pk is sign invariant in
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Sk, and Pk+1 is delineable in Sk. Assume that Sk−1, and its defining constraints
Ek−1, have already been constructed. Now, consider the set of root objects

Rk =
{
root(f, i) | f ∈ Pk, 1 ≤ i ≤ rootcount(υ(f))

}
.

Under the assignment υ each of the root objects root(f, i) is defined and evaluates
to some value ωi

f ∈ Ralg. The values ωi
f partition the real line into maximal

intervals where the polynomials f ∈ Pk are sign invariant. We pick the one
interval that contains υ(yk) = αk and construct the defining constraints Ek of
the region Sk by selecting one of the appropriate cases

αk ∈ (ωi
f , ω

j
g) =⇒ Ek = Ek−1 ∪ { yk >r root(f, i), yk <r root(g, j) } ,

αk ∈ (−∞, ωi
f) =⇒ Ek = Ek−1 ∪ { yk <r root(f, i) } ,

αk ∈ (ωi
f ,+∞) =⇒ Ek = Ek−1 ∪ { yk >r root(f, i) } ,

αk = ωi
f =⇒ Ek = Ek−1 ∪ { yk =r root(f, i) } .

Finally, we guarantee that Pk+1 is delineable in Sk because polynomials in P∗ =
P1 ∪ . . . ∪ Pk are by construction sign invariant in Sk. Once we have computed
the regions S1, . . . , Sn, we can use the region S = Sn and the corresponding
constraints E = En to explain why ¬F is incompatible with F . Thus, we set
explain(F,M) ≡ (E ∧ F) =⇒ F .

Theorem 3. The explanation function explain(F,M) is a finite-basis explana-
tion function for the existential theory of real closed fields.

Example 4. Consider the polynomial f = x2 + y2 + z2 − 1, from Ex. 2, and the
constraint f < 0 corresponding to the interior of the sphere in Fig. 4(a). Under
an assignment υ with υ(x) = 3

4 and υ(y) = − 3
4 this constraint does not allow a

solution for z (it evaluates to z2 < − 1
8 ). In order to explain it, we can compute

the projection closure of A = {f}, using Pm, obtaining P3 = A and

P2 = { 4x2 + 4y2 − 4, 2, 1 } , P1 = { 256x2 − 256, 8, 4, 2, 1 } .

The sets of root objects under υ are then

R2 = { root(z̃2 +x2 − 1, 1), root(z̃2 +x2 − 1, 2) } ,

R1 = { root(z̃2−1, 1), root(z̃2−1, 2) } .

Since υ(x) = 3
4 = 0.75 and the root objects of R1 evaluate to −1 and 1, re-

spectively, the constraints corresponding to the region S1 are (x > −1) and

(x < 1). The root objects of R2 evaluate to −
√
7
4 ≈ −0.6614 and

√
7
4 ≈ 0.6614.

Since υ(y) = − 3
4 = −0.75, and we describe the region S2 with the additional

constraint (y < root(z̃2−x2−1, 1)). Using the constraints defining the region S2

we construct the explanation explain(f < 0, υ) as

(x ≤ −1) ∨ (x ≥ 1) ∨ ¬(y < root(z̃2−x2 − 1, 1)) ∨ (f ≥ 0) .

The explanation clause states that, in order to fix the conflict under υ, we must
change υ so as to exit the region −1 < x < 1 below (in y) the unit circle.
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Fig. 4. (a) The sphere corresponding to the roots of x2 + y2 + z2 − 1, and regions of
Ex 2 and Ex 4. (b) Solutions of f2 = x2 + y2 − 1 = 0, f3 = −4xy − 4x + y − 1 = 0,
and f4 = x3 + 2x2 + 3y2 − 5 = 0, with the solution set of {f2 < 0, f3 > 0, f4 < 0}
emphasized. The dashed lines represent the zeros of the projection set (1).

.
Isolating the conflicting core. Given a constraint F incompatible with a trailM ,
we can compute a minimal set of constraints F from M that is not compatible
with F by taking the constraints that that caused the inconsistency and then
refine it by trying to eliminate the constraints one by one.

Example 5. Consider the set of polynomial constraints C = {f2 < 0, f3 > 0, f4 <
0}, where the polynomials f2 and f3 are from Ex. 3. The roots of these polynomi-
als and the feasible region of C are depicted in Fig. 4(b). Assume the transition
is in the state 〈�x "→ 0, (f2 < 0), (f4 < 0), E→(f3 ≤ 0)�, C〉2, and we need to com-
pute the explanation E of the last propagation. Although the propagation was
based on the inconsistency of C underM , we can pick the subset {f2 < 0, f3 > 0}
to produce the explanation. It is a smaller set, but sufficient, as it is also inconsis-
tent with M . Doing so we reduce the number of polynomials we need to project,
which, in CAD settings, is always an improvement.

5 Related Work and Experimental Results

In addition to CAD, a number of other procedures have been developed and
implemented in working tools since the 1980s, including Weispfenning’s method
of virtual term substitution (VTS) [28] (as implemented in Reduce/Redlog),
and the Harrison-McLaughlin proof producing version of the Cohen-Hörmander
method [19]. Abstract Partial Cylindrical Algebraic Decomposition [22] com-
bines fast, sound but incomplete procedures with CAD. Tiwari [27] presents
an approach using Gröbner bases and sign conditions to produce unsatisfiabil-
ity witnesses for nonlinear constraints. Platzer, Quesel and Rümmer combine
Gröbner bases with semidefinite programming [23] for the real Nullstellensatz.



352 D. Jovanović and L. de Moura

In order to evaluate the new decision procedure we have implemented a new
solver nlsat, the implementation being a clean translation of the decision proce-
dure described in this paper. We compare the new solver to the following solvers
that have been reported to perform reasonably well on fragments of non-linear
arithmetic: the z3 3.2 [11], cvc3 2.4.1 [2], and MiniSmt 0.3 [29] SMT solvers;
the quantifier elimination based solvers Mathematica 8.0 [25], QEPCAD 1.65 [5],
Redlog-CAD and Redlog-VTS [12]; and the interval based iSAT [13] solver.5

We ran all the solvers on several sets of benchmarks, where each benchmark set
has particular characteristics that can be problematic for a non-linear solver. The
meti-tarskibenchmarks are proof obligations extracted from theMetiTarski project
[1], where the constraints are of high degree and the polynomials represent approxi-
mations of the elementary real functions being analyzed. The keymaera benchmark
set contains verification conditions from the Keymaera verification platform [23].
The zankl set of problems are the benchmarks from the QF NRA category of the
SMT-LIB library, with most problems originating from attempts to prove termi-
nation of term-rewrite systems [14]. We also have two crafted sets of benchmarks,
the hong benchmarks,which are a parametrizedgeneralizationof the problem from
[15], and the kissing problems that describe some classic kissing number problems,
both sets containing instances of increasing dimensions.

Table 1. Experimental results

meti-tarski (1006) keymaera (421) zankl (166) hong (20) kissing (45) all (1658)

solver solved time (s) solved time (s) solved time (s) solved time (s) solved time (s) solved time (s)

nlsat 1002 343 420 5 89 234 10 170 13 95 1534 849

Mathematica 1006 796 420 171 50 366 9 208 6 29 1491 1572

QEPCAD 991 2616 368 1331 21 38 6 43 4 5 1390 4036

Redlog-VTS 847 28640 419 78 42 490 6 3 10 275 1324 29488

Redlog-CAD 848 21706 363 730 21 173 6 2 4 0 1242 22613

z3 266 83 379 1216 21 0 1 0 0 0 667 1299

iSAT 203 122 291 16 21 24 20 822 0 0 535 986

cvc3 150 13 361 5 12 3 0 0 0 0 523 22

MiniSmt 40 697 35 0 46 1370 0 0 18 44 139 2112

All tests were conducted on an Intel Pentium E2220 2.4 GHz processor, with
individual runs limited to 2GB of memory and 900 seconds. The results of our
experimental evaluation are presented in Table 1. The rows are associated with
the individual solvers, and columns separate the problem sets. For each problem
set we write the number of problems that the solver managed to solve within
the time limit, and the cumulative time (rounded) for the solved problems.

The results are both revealing and encouraging. On this set of benchmarks, ex-
cept for nlsat and the quantifier elimination based solvers, all other solvers that
we’ve tried have a niche problem set where they perform well (or reasonably well),

5 We ran the solvers with default settings, using the Resolve command of Mathemat-
ica, the rlcad command for Redlog-CAD, and the rlqe for Redlog-VTS.
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whereas on others they perform poorly. The new nlsat solver, on the other hand, is
consistently one of the best solvers for each problem set, with impressive running
times, and, overall manages to solve the most problems, in much faster time.

6 Conclusion

We proposed a new procedure for solving systems of non-linear polynomial con-
straints. The new procedure performs a backtracking search for a model, where
the backtracking is powered by a novel conflict resolution procedure. In our ex-
periments, our first prototype was consistently one of the best solvers for each
problem set we tried, and, overall manages to solve the most problems, in much
faster time. We expect even better results after several missing optimizations in
the core algorithms are implemented. We see many possible improvements and
extensions to our procedure. We plan to design and experiment with different
explain procedures. One possible idea is to try explain procedures that are more
efficient, but do not guarantee termination. Heuristics for reordering variables
and selecting a value from the feasible set should also be tried. Integrating our
solver with a Simplex-based procedure is another promising possibility.
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25. Strzeboński, A.W.: Cylindrical algebraic decomposition using validated numerics.
Journal of Symbolic Computation 41(9), 1021–1038 (2006)

26. Tarski, A.: A decision method for elementary algebra and geometry. Technical
Report R-109, Rand Corporation (1951)

27. Tiwari, A.: An Algebraic Approach for the Unsatisfiability of Nonlinear Con-
straints. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 248–262. Springer,
Heidelberg (2005)

28. Weispfenning, V.: Quantifier elimination for real algebra - the quadratic case and
beyond. AAECC 8, 85–101 (1993)

29. Zankl, H., Middeldorp, A.: Satisfiability of Non-linear (Ir)rational Arithmetic. In:
Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 481–500.
Springer, Heidelberg (2010)



Inprocessing Rules�

Matti Järvisalo1, Marijn J.H. Heule2,3, and Armin Biere3

1 Department of Computer Science & HIIT, University of Helsinki, Finland
2 Department of Software Technology, Delft University of Technology, The Netherlands
3 Institute for Formal Models and Verification, Johannes Kepler University, Linz, Austria

Abstract. Decision procedures for Boolean satisfiability (SAT), especially mod-
ern conflict-driven clause learning (CDCL) solvers, act routinely as core solving
engines in various real-world applications. Preprocessing, i.e., applying formula
rewriting/simplification rules to the input formula before the actual search for
satisfiability, has become an essential part of the SAT solving tool chain. Further,
some of the strongest SAT solvers today add more reasoning to search by inter-
leaving formula simplification and CDCL search. Such inprocessing SAT solvers
witness the fact that implementing additional deduction rules in CDCL solvers
leverages the efficiency of state-of-the-art SAT solving further. In this paper we
establish formal underpinnings of inprocessing SAT solving via an abstract inpro-
cessing framework that covers a wide range of modern SAT solving techniques.

1 Introduction

Decision procedures for Boolean satisfiability (SAT), especially modern conflict-driven
clause learning (CDCL) [1,2] SAT solvers, act routinely as core solving engines in many
industrial and other real-world applications today. Formula simplification techniques
such as [3,4,5,6,7,8,9,10,11,12,13,14] applied before the actual satisfiability search,
i.e., in preprocessing, have proven integral in enabling efficient conjunctive normal
form (CNF) level Boolean satisfiability solving for real-world application domains, and
have become an essential part of the SAT solving tool chain. Taking things further,
some of the strongest SAT solvers today add more reasoning to search by interleaving
formula simplification and CDCL search. Such inprocessing SAT solvers, including the
successful state-of-the-art CDCL SAT solvers PRECOSAT [15], CRYPTOMINISAT [16],
and LINGELING [17], witness the fact that implementing additional deduction rules
within CDCL solvers leverages the efficiency of state-of-the-art SAT solving further.

To illustrate the usefulness of preprocessing and inprocessing in improving the
performance of current state-of-the-art SAT solvers, we modified the 2011 SAT Com-
petition version of the state-of-the-art SAT solver LINGELING that is based on the in-
processing CDCL solver paradigm. The resulting patch1 allows to either disable all
preprocessing or to just disable inprocessing during search. We have run the original
version and these two versions on the benchmarks from the application track—the most
important competition category from the industrial perspective—of the last two SAT
competitions organized in 2009 and 2011. The results are shown in Table 1.
� The 1st author is supported by Academy of Finland (grants 132812 and 251170), 2nd and 3rd

authors by Austrian Science Foundation (FWF) NFN Grant S11408-N23 (RiSE).
1 http://fmv.jku.at/lingeling/
lingeling-587f-disable-pre-and-inprocessing.patch
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Table 1. Results of running the original 2011 competition version 587f of LINGELING on the
application instances from 2009 and from 2011, then without inprocessing and in the last row
without any pre- nor inprocessing. The experiments were obtained on a cluster with Intel Core 2
Duo Quad Q9550 2.8-GHz processors, 8-GB main memory, running Ubuntu Linux. Memory
consumption was limited to 7 GB and run-time to 900 seconds. The single-threaded sequential
version of LINGELING was used with one solver instance per processor.

2009 2011
LINGELING solved SAT UNSAT time solved SAT UNSAT time

original version 587f 196 79 117 114256 164 78 86 144932
only preprocessing 184 72 112 119161 159 77 82 145218

no pre- nor inprocessing 170 68 102 138940 156 78 78 153434

The CNF preprocessor SATELITE introduced in [7] applied variable elimination,
one of the most effective simplification techniques in state-of-the-art SAT solvers. As
already shown in [7] preprocessing can also be extremely useful within incremental
SAT solving. This form of preprocessing, which is performed at each incremental call
to the SAT solver, can be considered as an early form of inprocessing. Fig. 1 confirms
this observation in the context of incremental SAT solving for bounded model checking.

However, developing and implementing sound inprocessing solvers in the presence
of a wide range of different simplification techniques (including variable elimination,
blocked clause elimination, distillation, equivalence reasoning) is highly non-trivial. It
requires in-depth understanding on how different techniques can be combined together
and interleaved with the CDCL algorithm in a satisfiability-preserving way. Moreover,
the fact that many simplification techniques only preserve satisfiability but not logical
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Fig. 1. Running the bounded model checker BLIMC, which is part of the LINGELING distribu-
tion with and without inprocessing on the single property benchmarks of the Hardware Model
Checking Competition 2011 up to bound 1000. With inprocessing 153975 bounds were reached,
while without inprocessing only 125436. The figure shows the maximum bound reached (suc-
cessfully checked) on the y-axis for each of the 465 benchmark (x-axis). Benchmarks are sorted
by the maximum bound. For completeness we also include a run in non-incremental mode, which
reaches only 49915 bounds. In this mode a new CNF is generated and checked for each bound
with a fresh SAT solver instance separately, but with both pre- and inprocessing enabled.
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equivalence poses additional challenges, since in many practical applications of SAT
solvers a solution is required for satisfiable formulas, not only the knowledge of the
satisfiability of the input formula. Hence, when designing inprocessing SAT solvers for
practical purposes, one also has to address the intricate task of solution reconstruction.

In this paper we propose an abstract framework that captures generally the deduction
mechanisms applied within inprocessing SAT solvers. The framework consists of four
generic and clean deduction rules. Importantly, the rules specify general conditions for
sound inprocessing SAT solving, against which specific inprocessing techniques can
be checked for correctness. The rules also capture solution reconstruction for a wide
range of simplification techniques that do not preserve logical equivalence: while solu-
tion reconstruction algorithms have been proposed previously for specific inprocessing
techniques [18,11], we show how a simple linear-time algorithm covers solution recon-
struction for a wide range of techniques.

Our abstract framework has similarities to the abstract DPLL(T ) framework [19]
and its extensions [20,21], and the proof strategies approach of [22], in describing de-
duction via transition systems. However, in addition to inprocessing as built-in feature,
our framework captures SAT solving on a more generic level than [19], not being re-
stricted to DPLL-style search procedures, and at the same time it gives a fine-grained
view of inprocessing SAT solving. We show how the rules of our framework can be in-
stantiated to obtain both known and novel inprocessing techniques. We give examples
of how the correctness of such specific techniques can be checked based on the generic
rules in our framework. Furthermore, we show that our rules in the general setting are
extremely powerful, even capturing Extended Resolution [23].

Arguing about correctness of combinations of different solving techniques in con-
crete SAT solver development is tremendously simplified by our framework. One ex-
ample is the interaction of learned clauses with variable elimination [7]. After variable
elimination is performed on the irredundant (original) clauses during inprocessing, the
question is what to do with learned clauses that still contain eliminated variables. While
current implementations simply forget (remove) such learned clauses, it follows easily
from our framework that it is sound to keep such learned clauses and use them subse-
quently for propagation. It is also easy to observe e.g. that one can (selectively) turn
eliminated or blocked clauses into learned clauses to preserve propagation power.

Another more intricate example from concrete SAT solver development occurs in
the context of blocked clauses [12]. An intermediate version of LINGELING contained a
simple algorithm for adding new redundant (learned) binary clauses, which are blocked,
but only w.r.t. irredundant (original) clauses, thus disregarding already learned clauses.
This would be convenient since focusing on irredundant clauses avoids having full oc-
currence lists for learned clauses. Further, marking the added clauses as redundant im-
plies that they would not have to be considered in consecutive variable eliminations, and
thus might enable to eliminate more variables without increasing the number of clauses.
However, we found examples that proved this approach to be incorrect. An attempt to
fix this problem was to include those added clauses in further blocked clause removal
and addition attempts, and only ignore them during variable elimination. This version
was kept in the code for some months without triggering any inconsistencies. However,
this is incorrect, and can be easily identified via our formal framework.



358 M. Järvisalo, M.J.H. Heule, and A. Biere

After preliminaries (Sect. 2), we review redundancy properties (Sect. 3) and their
extensions (Sect. 4) based on different clause elimination and addition procedures. The
abstract inprocessing rules are discussed in Sect. 5, followed by an instantiation of the
rules using a specific redundancy property and a related generic solution reconstruction
approach (Sect. 6). Based on this instantiation of the rules, we show how the rules
capture a wide range of modern SAT solving techniques and, via examples, how the
rules catch incorrect variations of these techniques (Sect. 7).

2 Preliminaries

For a Boolean variable x, there are two literals, the positive literal x and the negative
literal ¬x. A clause is a disjunction of literals and a CNF formula a conjunction of
clauses. A clause can be seen as a finite set of literals and a CNF formula as a finite
set of clauses. A truth assignment is a function τ that maps literals to {0, 1} under the
assumption τ(x) = v if and only if τ(¬x) = 1 − v. A clause C is satisfied by τ if
τ(l) = 1 for some literal l ∈ C. An assignment τ satisfies F if it satisfies every clause
in F ; such a τ is a model of F .

Two formulas are logically equivalent if they are satisfied by exactly the same set of
assignments, and satisfiability-equivalent if both formulas are satisfiable or both unsat-
isfiable. The length of a clause C is the number of literals in C. A unit clause has length
one, and a binary clause length two. The set of binary clauses in a CNF formula F is
denoted by F2. The resolution rule states that, given two clauses C1 = {l, a1, . . . , an}
and C2 = {¬l, b2, . . . , bm}, the clause C1 ⊗C2 = {a1, . . . , an, b1, . . . , bm}, called the
resolvent C1 ⊗l C2 (or simply C1 ⊗ C2 when clear from context) of C1 and C2, can
be inferred by resolving on the literal l. For a CNF formula F , let Fl denote the set of
clauses in F that contain the literal l. The resolution operator⊗l can be lifted to sets of
clauses by defining Fl ⊗l F¬l = {C ⊗l C

′ | C ∈ Fl, C
′ ∈ F¬l}.

3 Clause Elimination and Addition

Clause Elimination Procedures. [11] are an important family of CNF simplification
techniques which are to an extent orthogonal with resolution-based techniques [12].
Intuitively, clause elimination refers to removing from CNF formulas clauses that are
redundant (with respect to some specific redundancy property) in the sense that satisfi-
ability is preserved under removal.

Definition 1. Given a CNF formula F , a specific clause elimination procedure PE
removes clauses that have a specific property P from F until fixpoint. In other words,
PE on input F modifies F by repeating the following until fixpoint: if there is a clause
C ∈ F that has P , let F := F \ {C}.

Clause Addition Procedures, the dual of clause elimination procedures, add to (instead
of removing from) CNF formulas clauses that are redundant (with respect to some
specific redundancy property) in the sense that satisfiability is preserved under adding.
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Definition 2. Given a CNF formula F , a specific clause addition procedure PA adds
clauses that have a specific property P to F until fixpoint. In other words, PA on input
F modifies F by repeating the following until fixpoint: if there is a clause C that has
P , let F := F ∪ {C}.

While clause elimination procedures have been studied and exploited to a much broader
extent than clause addition, the latter has already proven important both from the theo-
retical and the practical perspectives, as we will discuss further in Sect. 7.

For establishing concrete instantiations of clause elimination and addition proce-
dures, redundancy properties on which such procedures are based on need to be defined.
We will now review various such properties, following [11].

3.1 Notions of Redundancy

A clause is a tautology if it contains both x and ¬x for some variable x. Given a CNF
formula F , a clause C1 ∈ F subsumes (another) clause C2 ∈ F in F if and only if
C1 ⊂ C2, and then C2 is subsumed by C1.

Given a CNF formula and a clause C ∈ F , (hidden literal addition) HLA(F,C)
is the unique clause resulting from repeating the following clause extension steps until
fixpoint: if there is a literal l0 ∈ C such that there is a clause (l0 ∨ l) ∈ F2 \ {C} for
some literal l, let C := C ∪ {¬l}.

For a clause C, (asymmetric literal addition) ALA(F,C) is the unique clause result-
ing from repeating the following until fixpoint: if l1, . . . , lk ∈ C and there is a clause
(l1 ∨ · · · ∨ lk ∨ l) ∈ F \ {C} for some literal l, let C := C ∪ {¬l}.

Given a CNF formula F and a clause C, a literal l ∈ C blocks C w.r.t. F if (i) for
each clause C ′ ∈ F with ¬l ∈ C′, the resolvent C ⊗l C

′ is a tautology, or (ii) ¬l ∈ C,
i.e.,C is itself a tautology. A clauseC is blocked w.r.t. F if there is a literal l that blocks
C w.r.t. F . For such an l, we say that C is blocked on l ∈ C w.r.t. F .

What follows is a list of properties based on which various clause elimination proce-
dures [11,12] can be defined.

S (subsumption) C is subsumed in F .

HS (hidden subsumption) HLA(F,C) is subsumed in F .

AS (asymmetric subsumption) ALA(F,C) is subsumed in F .

T (tautology) C is a tautology.

HT (hidden tautology) HLA(F,C) is a tautology.

AT (asymmetric tautology) ALA(F,C) is a tautology.

BC (blocked) C is blocked w.r.t. F .

HBC (hidden blocked) HLA(F,C) is blocked w.r.t. F .

ABC (asymmetric blocked) ALA(F,C) is blocked w.r.t. F .

As concrete examples, BC gives the clause elimination procedure blocked clause elim-
ination (BCE) [12], and HT hidden tautology elimination (HTE) [11].

A relevant question is how the above-listed properties are related to each other. Es-
pecially, if any C having property P also has property P ′, then we know that a clause
elimination procedure based on P ′ can remove at least the same clauses as a clause
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elimination procedure based on P (similarly for clause addition procedures). The re-
lationships between these properties (first analyzed as the relative effectiveness in the
special case of clause elimination procedures in [11]) are illustrated in Fig. 2. The prop-
erties prefixed with R are new and will be defined next.

RAS

RHS

RS

AS

HS

S

AT

HT

T BC

HBC

ABC

RT

RHT

RAT

preserve
logical equivalence

Fig. 2. Relationships between clause redundancy properties. An edge from P to P ′ means that
any clause that has property P ′ also has property P . A missing edge from P to P ′ means that
there are clauses with property P ′ that do not have property P . Clause elimination and addition
procedures based on the properties inside the preserve logical equivalence box preserve logical
equivalence under elimination and addition [11].

4 Extended Notions of Redundancy

Clause elimination procedures can be extended by using the resolution rule as a specific
kind of “look-ahead step” within the procedures. This turns a specific clause elimination
procedure PE based on property P into the clause elimination procedure RPE based
on a property RP . Analogously, a specific clause addition procedure PA based on
property P turns into the clause addition procedure RPA based on a property RP .

Definition 3. Given a CNF formula F and a clause C ∈ F , C has property RP iff
either (i) C has the property P , or (ii) there is a literal l ∈ C such that for each clause
C ′ ∈ F with ¬l ∈ C′, each resolvent in C ⊗l C

′ has P (in this case C has RP on l).

Example 1. Consider the formula F = (a ∨ b ∨ x) ∧ (¬x ∨ c ∨ d) ∧ (a ∨ b ∨ c). The
only resolvent of (a ∨ b ∨ x) on x is (a ∨ b ∨ c ∨ d) which is subsumed by (a ∨ b ∨ c).
Therefore (a ∨ b ∨ x) has property RS (resolution subsumption).

The intuition is that the “resolution look-ahead” step can reveal additional redundant
clauses, resulting in the hierarchy shown in Fig. 2. Notice that the property RT (resolu-
tion tautology) is the same as the property BC (blocked).

Proposition 1. For any CNF formula F and clause C that has RAT on l ∈ C w.r.t. F ,
F is satisfiability-equivalent to F ∪ {C}.
Proof. By definition, since C has RAT on l ∈ C w.r.t. F , all resolvents C ⊗l F¬l are
asymmetric tautologies w.r.t. F (and w.r.t. the larger F ∪ (C ⊗l F¬l) as well). Hence
F is logically equivalent to F ∪ (C ⊗l F¬l). Now consider a truth assignment τ that
satisfies F , but falsifies C. Since C is falsified by τ , and all C′ ∈ C ⊗l F¬l are satisfied
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by τ due to logical equivalence of F and F ∪ (C ⊗l F¬l), τ satisfies at least two literals
in each clause in F¬l (at least one more beside ¬l). Hence the truth assignment τ ′ that
is a copy of τ except for τ ′(l) = 1 satisfies F and C. �
Proposition 2. The set of clauses that have RAS is a proper subset of the set of clauses
that have RAT.

Proof. Assume a clause C has RAS on l ∈ C w.r.t. F . If C has AS, thenC has AT [11]
and hence also RAT. Otherwise, take any resolvent C′ ∈ C ⊗l F¬l. By definition, C′

has AS. Since clauses with AS are a proper subset of the clauses with AT, C has RAT
on l w.r.t. F . Moreover, let F := (a ∨ ¬b) ∧ (¬a ∨ b). Now (a ∨ ¬b) has RAT on a
w.r.t. F . However, (a ∨ ¬b) does not have RAS w.r.t. F . �
Proposition 3. The set of clauses that have ABC is a proper subset of the set of clauses
that have RAT.

Proof. Let C be clause that has ABC on l ∈ C w.r.t. F . W.l.o.g. assume C to be non-
tautological. By [11, Lemma 19], l ∈ C. Take the resolvent C ′ = C ⊗l C

′′ for any
C′′ ∈ F¬l. First, we show that ALA(F,C) ⊆ ALA(F,C′). C′ overlaps with C′′ in all
literals except ¬l. W.l.o.g. assume C′ �∈ F (otherwise C′ is subsumed by F and thus
also has AT w.r.t. F ). Therefore, by the definition of ALA, l ∈ ALA(F,C′). Hence
C ⊆ ALA(F,C′). Due to monotonicity of ALA under the assumption C′ �∈ F , we
have ALA(F,C) ⊆ ALA(F,C′). By definition of ABC, the clause ALA(F,C)⊗l C

′′

is a tautology, and hence there is an l′ ∈ ALA(F,C) \ {l} with ¬l′ ∈ C′′. Now,
l′ ∈ ALA(F,C′) since ALA(F,C) ⊆ ALA(F,C′), and ¬l′ ∈ ALA(F,C′) since
C′ = C ⊗l C

′′. Thus C′ has AT on l w.r.t. F , which implies that C has RAT w.r.t. F .
For proper containment, consider the formula F = (a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ x) ∧

(¬x ∨ c ∨ d) ∧ (¬a ∨ y ∨ z) ∧ (¬b ∨ y ∨ ¬z) ∧ (¬c ∨ ¬y ∨ z) ∧ (¬d ∨ ¬y ∨ ¬z). No
clause in F has ABC. Yet (a ∨ b ∨ x) has RAT on x w.r.t. F . �
Proposition 4. The set of clauses which have RHT is a proper subset of the set of
clauses that have RAT.

Proof. Assume C has RHT on l ∈ C w.r.t. F . If C has HT, then C has AT [11] and
hence also RAT. Otherwise, take any C′ ∈ C ⊗l F¬l. By definition, C′ has HT. Since
clauses with HT are a proper subset of the clauses with AT, C has RAT on l w.r.t. F .
Moreover, let F := (a ∨ b ∨ x) ∧ (¬x ∨ c) ∧ (a ∨ b ∨ c) ∧ (¬a) ∧ (¬b) ∧ (¬c). Now
(a ∨ b ∨ x) has RAT on x w.r.t. F , but (a ∨ b ∨ x) does not have RHT. �

5 Inprocessing as Deduction

We will now introduce generic rules for inprocessing CNF formulas. The rules describe
inprocessing as a transition system. States in the transition system are described by
tuples of the form ϕ [ ρ ]σ, where ϕ and ρ are CNF formulas, and σ is a sequence of
literal-clause pairs. For inprocessing a given CNF formulaF , the initial state is F [ ∅ ] 〈〉,
where ∅ denotes the empty CNF formula, and 〈〉 the empty sequence.

Generally, a state ϕ [ ρ ]σ has the following interpretation.

– ϕ is a CNF formula that consists of the set of irredundant clauses. Irredundant
means here that all clauses in ϕ are considered to be “hard” in the sense that, in
order to satisfy the input CNF formula F , all clauses in ϕ are to be satisfied.
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– ρ is a CNF formula that consists of redundant clauses. In contrast to the irredundant
clauses ϕ, these clauses can be removed from consideration.

– σ denotes a sequence of literal-clause pairs l:C with l ∈ C that are required for
solution reconstruction, as explained in detail in Sect. 6.1.

For some intuition on why we separate ϕ and ρ, note that learned clauses, i.e., clauses
added through conflict analysis in CDCL solvers, are maintained separately from the
clauses in the input formula, and can be forgotten (i.e., removed) since in pure CDCL
they are entailed by the input formula. However, in the more generic context of inpro-
cessing SAT solving captured by our framework, clauses in ρmay not be entailed by the
original formula F . This is discussed in detail in Sect. 7 using clause addition as an ex-
ample. In addition, for elimination techniques (such as BCE, variable elimination, and
their variants) only the clauses in ϕ need to be considered when checking redundancy.
Nevertheless, the clauses in ρ can be used for e.g. unit propagation.

5.1 Rules of Inprocessing

Our abstract framework for inprocessing SAT solving is based on four rules: LEARN,
FORGET, STRENGTHEN, and WEAKEN, presented in Fig. 3. These rules characterize
the set of legal next states ϕ′ [ ρ′ ]σ′ of a given current state ϕ [ ρ ]σ in the form

ϕ [ ρ ]σ

ϕ′ [ ρ′ ]σ′ .

Given a CNF formula F , a state ϕk [ ρk ]σk is reachable from the state F [ ∅ ] 〈〉 iff there
is a sequence 〈ϕ0 [ ρ0 ]σ0, . . . , ϕk [ ρk ]σk〉 such that (i) ϕ0 = F , ρ0 = ∅, and σ0 = 〈〉,
and (ii) for each i = 1, . . . , k, one of the rules in Fig. 3 allows the transition from
ϕi−1 [ ρi−1 ]σi−1 to ϕi [ ρi ]σi. This sequence is called a derivation of ϕk ∧ρk from F .

The inprocessing rules are correct in the sense that they preserve satisfiability, i.e.,
starting from the state F [ ∅ ] 〈〉, the following invariant holds for all i = 1, . . . , k:

Formulas ϕi and (ϕi ∧ ρi) are both satisfiability-equivalent to F .

The intuition behind these rules is as follows.

LEARN Allows for introducing (learning) a new clause C to the current redundant
formula ρ. In the generic setting, the precondition $ is that ϕ∧ ρ and ϕ ∧ ρ∧C are
satisfiability-equivalent.

FORGET Allows for forgetting a clause C from the current set of redundant clauses ρ.
STRENGTHEN Allows for strengthening ϕ by moving a clause C in the redundant for-

mula ρ ∧ C to ϕ.
WEAKEN Allows for weakening ϕ by moving a clause C in the current irredundant

formulaϕ∧C to ρ. In the generic setting, the precondition & is that ϕ and ϕ∧C are
satisfiability-equivalent. (The literal l is related to instantiations of the rule based
on specific redundancy properties, as further explained in Sect. 6 and Sect. 7.)

Notice that for unsatisfiable CNF formulas the generic precondition $ allows for learn-
ing the empty clause to ϕ in a single step. Similarly, for satisfiable CNF formulas the
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ϕ [ ρ ]σ

ϕ [ ρ ∧ C ]σ
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LEARN

ϕ [ ρ ∧ C ]σ

ϕ [ ρ ]σ

FORGET

ϕ [ ρ ∧ C ]σ

ϕ ∧ C [ ρ ]σ

STRENGTHEN

ϕ ∧ C [ ρ ]σ

ϕ [ ρ ∧ C ]σ, l:C
�

WEAKEN

Fig. 3. Inprocessing rules

generic precondition & allows for weakening ϕ by moving all clauses in ϕ to ρ. How-
ever, in practice mostly polynomial-time checkable redundancy properties are of inter-
est. Such properties are further discussed in Sect. 6 and Sect. 7.

Proposition 5. The inprocessing rules in Fig. 3 are sound and complete in that:

(i) If F is unsatisfiable, then there is a derivation of an unsatisfiable ϕk ∧ ρk, where
k ≥ 0, from F using the rules (completeness).

(ii) If there is a derivation of an unsatisfiable ϕk ∧ ρk, where k ≥ 0, from F using the
rules, then F is unsatisfiable (soundness).

Proof. (i) Since F is unsatisfiable, the LEARN rule can be used for learning the triv-
ially unsatisfiable empty clause. (ii) We observe the following for any i = 1, . . . , k. If
LEARN is applied to enter state ϕi [ ρi ]σi fromϕi−1 [ ρi−1 ]σi−1, by the precondition $,
ϕi−1 and ϕi ∧ ρi are satisfiability-equivalent. If STRENGTHEN or WEAKEN is applied,
we have ϕi−1 ∧ρi−1 = ϕi∧ρi. If FORGET is applied, we have ϕi−1 ∧ρi−1 |= ϕi∧ρi.
The claim then follows by induction on i = k, . . . , 1. �

One could question whether the precondition $ of LEARN, i.e., ϕ ∧ ρ and ϕ ∧ ρ ∧ C
are satisfiability-equivalent, could be weakened to “ϕ and ϕ ∧ C are satisfiability-
equivalent”. In other words, must the redundant clauses in ρ be taken into account for
LEARN? To observe that ρmust indeed be included in $, consider the CNF formula con-
sisting of the single clause (a). From the initial state a [∅] 〈〉 we obtain ∅ [a] 〈〉 through
WEAKEN. In case ρ were ignored in $, it would then be possible to apply LEARN and
derive ∅ [a∧¬a] 〈〉. However, this would violate the invariant of preserving satisfiability,
since a ∧ ¬a is unsatisfiable.

6 Instantiating the Rules Based on RAT

In contrast to the very generic preconditions $ and & under which the inprocessing
rules were defined in the previous section, in practical SAT solving redundant clauses
are learned and forgotten based on polynomial-time computable redundancy proper-
ties. In this section we give an instantiation of the inprocessing rules based on the
polynomial-time computable property RAT. RAT is of special interest to us since,
as will be shown in Sect. 7, known SAT solving techniques, including preprocessing,
inprocessing, clause learning, and resolution, can be captured even when restricting the
inprocessing rules using RAT. Moreover, under this property, a model of the original
formula can be reconstructed in linear-time based on any model of any derivable ϕk

using σk. This is important from the practical perspective due to the fact that in many
applications a satisfying assignment for the original input formula F is required.
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Preconditions Based on RAT. The preconditions of the inprocessing rules based on
the property RAT are the following for a given state ϕi [ ρi ]σi.

LEARN: $ is “C has RAT w.r.t. ϕi ∧ ρi”.

Notice that LEARN under this precondition does not preserve logical equivalence. For
example, consider the formula F = (a ∨ b). The LEARN rule can change (a ∨ b) [∅] 〈〉
into (a ∨ b) [C] 〈〉, with C = (¬a ∨ ¬b), since C has RAT on ¬a w.r.t. F . The truth
assignment τ = {a = 1, b = 1} satisfies F but does not satisfy F ∧ C.

WEAKEN: & is “C has RAT on l w.r.t. ϕi”.

Through weakening ϕi by moving a clause C ∈ ϕi to ρi+1, the new ϕi+1 may have
more models than ϕi, since RAT does not preserve logical equivalence.

6.1 Solution Reconstruction

When the WEAKEN rule is used for a transition from a state ϕi [ ρi ]σi to a state
ϕi+1 [ ρi+1 ]σi+1, the set of models of ϕi+1 can be a proper superset of the set of mod-
els of ϕi. For the practically relevant aspect of mapping any model of ϕi+1 back to a
model of ϕi, a literal pair l:C, where C is the clause moved from ϕi to ρi+1, is concate-
nated to the solution reconstruction stack σi+1. This is important when the redundancy
property used does not guarantee preserving logical equivalence. More concretely, this
is required if C has RAT but not e.g. AT.

For certain polynomial-time checkable redundancy properties, σ can be used for
mapping models back to models of the original formula in linear time, as explained
next. We describe a generic model reconstruction algorithm that can be applied in con-
junction with the inprocessing rules in case the preconditions $ and & of LEARN and
WEAKEN are restricted to RAT. In particular, for any CNF formula F and state ϕ [ ρ ]σ
that is reachable from F [ ∅ ] 〈〉 using the inprocessing rules, given a model τ of ϕ, the
reconstruction algorithm (Fig. 4) outputs a model of F solely based on σ and τ .

Reconstruction (literal-clause pair sequence σ, model τ of ϕ)
1 while σ is not empty do
2 remove the last literal-clause pair l:C from σ
3 if C is not satisfied by τ then τ := (τ \ {l = 0}) ∪ {l = 1}
4 return τ

Fig. 4. Pseudo-code of the model reconstruction algorithm

While the reconstruction algorithm may leave some variables unassigned in the out-
put assignment (model of F ), such variables can be arbitrarily assigned afterwards for
establishing a full model of F .

Example 2. Consider the state ϕi [ ρi ]σi with ϕi = (a ∨ b) ∧ (¬a ∨ ¬b), ρi = ∅
and σi = 〈〉. Apply WEAKEN to reach ϕi+1 [ ρi+1 ]σi+1, where ϕi+1 = (a ∨ b),
ρi+1 = (¬a ∨ ¬b), and σi+1 = 〈¬a:(¬a ∨ ¬b)〉. The assignment τ = {a = 1, b = 1}
satisfies ϕi+1 but not ϕi. The model reconstruction procedure will transform τ into
{a = 0, b = 1} which satisfies ϕi.
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Proposition 6. Given any CNF formula F , if a state ϕ [ ρ ]σ is derivable from F using
the inprocessing rules under preconditions based on RAT, then, given any model τ of
ϕ, Reconstruction(σi, τ) returns a model of F .

Proof. Follows from the proof of Proposition 1. Assume that l:C is the last element in
σi, τ is the current truth assignment, and that WEAKEN was applied to move C from
ϕi−1 to ρi based on the fact that C has RAT on l w.r.t. ϕi−1. By the proof of Proposi-
tion 1, there are at least two literals that are satisfied by τ in every clause containing ¬l
in ϕi−1 \ {C}. Hence, in case τ(l) = 0, we can flip this assignment to τ(l) = 1. �

Interestingly, due to the generality of the inprocessing rules—as explained in the next
section—this reconstruction algorithm covers model reconstruction for various simpli-
fication techniques that do not preserve logical equivalence, including specific recon-
struction algorithms proposed for different cause elimination techniques [18,11] and
variable elimination [18], and combinations thereof with other important techniques
such as equivalence reasoning [24,3].

7 Capturing SAT Solving Techniques with the Inprocessing Rules

In this section we show how various existing inference techniques—including both
known techniques and novel ideas—can be expressed as simple combinations of the
LEARN, FORGET, STRENGTHEN, and WEAKEN rules. One should notice, however,
that the inprocessing rules can be shown to naturally capture further inprocessing tech-
niques. However, due to the page limit we are unable to discuss further techniques
within this version of the paper. We also give examples of how incorrect variants of
these techniques can be detected.

Clause elimination procedures based on redundancy property P can be expressed as
deriving ϕ [ ρ ]σ from ϕ ∧ C [ ρ ]σ in a single step with the precondition that C has
the property P w.r.t. ϕ. One step of clause elimination is simulated by two application
steps of the inprocessing rules: 1. apply WEAKEN to move a redundant clause from
ϕ to ρ; 2. apply FORGET to remove C from ρ. As explained in Sect. 6, the generic
inprocessing rules can be instantiated using RAT as the redundancy property of the
preconditions $ and &. Since RAT covers all of the other clause redundancy properties
discussed in Sect. 3 and 4 (such as blocked clauses, hidden tautologies, etc; also recall
Fig. 2), it follows that all of the clause elimination procedures based on these properties
are captured by our inprocessing rules, even when restricting the precondition to RAT.

As an example of incorrect clause elimination, consider the idea of eliminating C if
it has the property P w.r.t. ϕ ∧ ρ (and not w.r.t. just ϕ), allowing weakening ϕ based
on ρ, i.e., also in case a clause in ρ subsumes C. This would allow using e.g. redundant
learned clauses in ρ, which can be forgotten later on, for weakening ϕ. To see that this
variant is incorrect consider ϕi [ ρi ]σi where ϕi = (a ∨ ¬b) ∧ (¬a ∨ b) ∧ (¬a ∨ ¬b) ∧
(a∨b∨c)∧ (a∨b∨¬c) and ρi = ∅. Note that ϕi is unsatisfiable. The clause (a∨b) has
AT w.r.t. ϕi, since ALA(ϕi, (a ∨ b)) contains all literals, and hence applying LEARN

gives ϕi+1 = ϕi and ρi+1 = (a∨b). Now, (a∨b) ∈ ρi+1 subsumes (a∨b∨c) ∈ ϕi+1,
and incorrectly applying WEAKEN would give ϕi+2 = ϕi+1 \ (a ∨ b ∨ c) and ρi+2 =
ρi+1∧(a∨b∨c). However,ϕi+2 is satisfiable, and the satisfiability-equivalence invariant
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is broken since ϕi+2 ∧ ρi+2 is unsatisfiable. As a consequence, it is not correct to use
the clauses in ρ to eliminate an irrredundant clause (such as hidden or asymmetric
tautologies, blocked clauses, etc.), unless the clauses, based on which the eliminated
clause is redundant, are added to ϕ or are already part of ϕ.

Pure Literal Elimination is an additional well-known clause elimination procedure:
deriveϕ [ ρ ]σ from ϕ∧C [ ρ ]σ given that C contains a pure literal l (such that ¬l does
not appear in ϕ). It is easy to observe that this rule is also covered by our inprocessing
rule: Any clause in ϕ that contains a pure literal l has RT (and thus RAT) on l w.r.t. ϕ.
Notice that due to the WEAKEN precondition, only the irredundant clauses ϕ need to
be considered, i.e., redundant (e.g., learned) clauses can still contain ¬l.

Clause addition procedures based on redundancy property P can be expressed as
deriving ϕ [ ρ ∧C ]σ from ϕ [ ρ ]σ in a single step with the precondition that C has the
property P w.r.t. ϕ ∧ ρ. One step of clause addition is simulated by applying LEARN

to add C to ρ. Similarly to clause elimination, the generic inprocessing rules can be
instantiated using RAT as the redundancy property of the precondition $. Again, since
RAT covers all of the other clause redundancy properties discussed in Sect. 3 and 4, it
follows that all of the clause addition procedures based on these properties are captured
by the generic inprocessing rules.

Notice that some clause addition procedures do not preserve logical equivalence (re-
call Fig. 2), and hence can restrict the set of models of ϕ ∧ ρ. For such procedures,
the inprocessing rules can be applied for checking correctness. As an example, con-
sider blocked clause addition (BCA): for adding a clause C to ρ, it is required that C is
blocked w.r.t. ϕ ∧ ρ. If C is only blocked w.r.t. ϕ, then BCA is not sound. Consider the
formulaϕ0 = (a∨¬b)∧(¬a∨b)∧(a∨c)∧(¬c∨b)∧(¬a∨¬c). Notice that (¬a∨¬c)
has RT (is blocked) on ¬c w.r.t. ϕ0. Hence (¬a∨¬c) can be moved from ϕ0 to be part
of ρ1 by applying the WEAKEN rule: ϕ1 = ϕ0 \ {(¬a∨¬c)}, ρ1 = ρ0 ∪ {(¬a∨¬c)},
and σ1 = σ0 ∪ {¬c:(¬a∨¬c)}. Now the clause (c∨¬b) is a RT on c w.r.t. ϕ1, but not
w.r.t. ϕ1 ∧ ρ1. Adding (c ∨ ¬b) to ρ to get ρ2 = ρ1 ∪ {(c ∨ ¬b)} and ϕ2 = ϕ1 makes
ϕ2 ∧ ρ2 unsatisfiable.

This brings us to an interesting observation of the framework. Continuing the above,
if (¬a ∨ ¬c) was removed (FORGET) after moving it to ρ (so ρ2 = ρ1 \ {(¬a ∨ ¬c)},
ϕ2 = ϕ1, and σ2 = σ1), then adding (c ∨ ¬b) to ρ via LEARN would be allowed
(ρ3 = ρ2 \ {(¬c ∨ ¬b)}, ϕ3 = ϕ2, and σ3 = σ2) since (c ∨ ¬b) has RT on c w.r.t.
ϕ3∧ρ3. Now ϕ3∧ρ3∧CNF(σ3) is unsatisfiable, where CNF(σ3) is the conjunction of
clauses in σ3. Yet this does not cause a problem. The reconstruction method ensures that
for every assignment satisfying ϕ a model of the original formula F can be constructed.
Thus it also holds for assignments that satisfy ϕ ∧ ρ. This illustrates that LEARN may
add clauses to ρ that are not entailed by the clauses in the original formula.

Clause Learning based on conflict graphs, which is central in modern CDCL solvers,
can be simulated by the inprocessing rules. Since any conflict clause based on a con-
flict graph is derivable by trivial resolution from the current clause database [25], the
inprocessing rules can simulate clause learning by simulating the steps of the resolution
derivation, as explained next.
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Resolution can also be simulated by the inprocessing rules in a straightforward way:
For anyϕ, (C∨D) is an AT w.r.t.ϕ∧(C∨x)∧(D∨¬x), and thus (C∨D) can be learned
by applying LEARN. This implies that all resolution-based simplification techniques
can also be simulated. An example is Hyper Binary Resolution (HBR) [3]: Given a
clause of the form (l ∨ l1 · · · ∨ lk) and k binary clauses of the form (l′ ∨ ¬li), where
1 ≤ i ≤ k, the hyper binary resolution rule allows to infer the hyper binary resolvent
(l ∨ l′) in one step. In essence, HBR simply encapsulates a sequence of specifically
related resolution steps into one step.

Variable Elimination (VE) can also be simulated by our inprocessing rules. When
applied in a bounded setting [7], VE is currently one of the most effective preprocessing
techniques applied in SAT solvers. Variable elimination as a general version of VE for
inprocessing can be characterized as the rule

ϕ ∧ ϕx ∧ ϕ¬x [ ρ ∧ ρx ∧ ρ¬x ]σ

ϕ ∧ ϕx ⊗x ϕ¬x [ ρ ]σ, x:ϕx,¬x:ϕ¬x
,

where Fl denotes the clauses in a CNF formula F that contain literal l, and Fl ⊗l F¬l

is the lifting of the resolution operator to sets of clauses. Essentially, VE eliminates a
variable x by producing all possible resolvents w.r.t. x, and removes at the same time
all clauses containing x. Although not discussed in earlier work, our characterization
takes into account the common practice that resolvents due to redundant clauses in ρ do
not need to be produced.

To see that our inprocessing rules simulate VE, first apply LEARN to add the resol-
vents ϕx ⊗ ϕ¬x to ρ (all resolvents have AT w.r.t. ϕ). Second, apply STRENGTHEN to
move the resolvents from ρ to ϕ. Now all clauses in ϕx have RS on x w.r.t. ϕ, and all
clauses in ϕ¬x have RS on ¬x w.r.t. ϕ, and hence WEAKEN can be applied for making
the clauses in ϕx and ϕ¬x redundant, after which they can be removed using FORGET.

Notice that two variants of VE are distinguished [7]. The first, VE by clause distri-
bution adds all the clauses of ϕx⊗ϕ¬x to ϕ. The second, VE by substitution adds only
a subset of ϕx⊗ϕ¬x to ϕ in a satisfiability-preserving way. As a consequence, the latter
variant may reduce the amount of unit propagations in the resulting formula compared
to the former. However, under the inprocessing rules, the clauses produced by clause
distribution but not by substitution can alternatively be added to ρ instead of ϕ, so that
these clauses can be used subsequently for unit propagation but can still be considered
redundant and thus be ignored in consecutive VE steps.

Partial Variable Elimination, as described below, is a novel variant of VE, which
can also be naturally expressed via our inprocessing rules. Given a variable x and two
subsets of clauses Sx ⊂ ϕx and S¬x ⊂ ϕ¬x, if there are non-empty Sx and S¬x such
that all resolvents of Sx ⊗ (ϕ¬x \ S¬x) and S¬x ⊗ (ϕx \ Sx) are tautologies, then we
can apply VE partially by replacing Sx ∧ S¬x in ϕ by Sx ⊗ S¬x. We refer to this as
Partial Variable Elimination (PVE). In practice, the VE rule is bounded by applying
it only when the number of clauses is not increased. It is actually possible that PVE
on x decreases the number of clauses, e.g., if |Sx| = 1 or |S¬x| = 1, while VE on
x would increase the number of clauses. The correctness of PVE is immediate by the
inprocessing rules, using a similar argument as in the case of VE.
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Extended Resolution can also be simulated. This shows that LEARN, although perhaps
not evident by its simple definition, is extremely powerful even when restricting the
precondition to RAT only.

For a given CNF formula F , the extension rule [23] allows for iteratively adding
definitions of the form x ≡ a ∧ b (i.e. the CNF formula (x ∨ ¬a ∨ ¬b) ∧ (¬x ∨ a) ∧
(¬x∨b)) to F , where x is a new variable and a, b are literals in the current formula. The
resulting formulaF ∧E then consists of the original formula F and the extensionE, the
conjunction of the clauses iteratively added to F using the extension rule. In Extended
Resolution [23] one can first apply the extension rule to add a conjunction of clauses
(an extension) E to a CNF formula F , before using the resolution rule to construct a
resolution proof of F ∧ E. This proof system is extremely powerful: surpassing the
power of Resolution, it can even polynomially simulate extended Frege systems.

However, it is easy to observe that the LEARN rule simulates the extension rule: the
clause (x∨¬a∨¬b) has RAT on x w.r.t. ϕ∧ ρ and can thus be added to ρ by applying
LEARN. The clauses (¬x∨a) and (¬x∨b) have RAT on ¬xw.r.t. ϕ∧(x∨¬a∨¬b)∧ρ.

From a practical perspective, it follows that our inprocessing framework captures
also the deduction applied in the recently proposed extensions of CDCL solvers that
apply the Extension rule in a restricted fashion [26,27].

Finally, we would like to point out that the inprocessing rules capture various addi-
tional techniques that have proven important in practice. While we are unable (due to the
page limit) to provide a more in-depth account of these techniques and how they are sim-
ulated by the inprocessing rules, such techniques include (as examples) self-subsumption
(which has proven important both when combined with variable elimination [7] and when
applied during search [28,29]), equivalence reasoning [24,3], including e.g. equivalent
literal substitution, and also more recent techniques that can be defined for removing and
adding literals from/to clauses (such as hidden literal elimination [13]).

8 Conclusion

Guaranteeing correctness of new inference techniques developed and implemented in
state-of-the-art SAT solvers is becoming increasingly non-trivial as complex combi-
nations of inference techniques are implemented within the solvers. We presented an
abstract framework that captures the inference of inprocessing SAT solvers via four
clean inference rules, providing a unified generic view to inprocessing, and furthermore
captures sound solution reconstruction in a unified way. In addition to providing an in-
depth understanding of the inferences underlying inprocessing solvers, we believe that
this framework opens up possibilities for developing novel inprocessing and learning
techniques that may lift the performance of SAT solvers even further.
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Abstract. We present a new version of the CEX versioning tool for on-
tologies. CEX detects logical differences between acyclic terminologies
in the lightweight description logic EL with role inclusions and domain
and range restrictions. Depending on the application, CEX outputs dif-
ferences between terminologies that capture derived concept inclusions,
answers to instance queries, and answers to conjunctive queries. Exper-
iments with versions of the NCI ontology are conducted to evaluate the
performance of CEX and compare the three types of differences.

Keywords: Description Logics, Ontology Versioning, Logical Difference.

1 Introduction

In life sciences, healthcare, and other knowledge intensive areas, large scale termi-
nologies are employed to provide a common vocabulary for a domain of interest
together with descriptions of the meaning of terms built from the vocabulary
and relationships between them. Two examples are the medical terminology
Snomed CT which contains more than 300000 term definitions [6] and the Na-
tional Cancer Institute ontology (NCI) consisting of more than 60 000 axioms [4].
Terminologies of this size and complexity cannot be developed and maintained
without adequate automated versioning support. As a consequence, the devel-
opment of ontology versioning tools and theoretical foundations for versioning
have become a popular and an important research problem [5, 7, 9, 14–16].

In this paper we give an update on the CEX versioning tool which is the only
purely logic-based tool for ontology versioning. The first version of CEX was
presented in [10] and was able to compute a logical difference between acyclic
EL terminologies that captures the different concept inclusions that follow from
the two terminologies. More precisely, for any two acyclic EL terminologies and
any signature Σ relevant for the comparison between the two terminologies, CEX
computed a finite representation of the different concept inclusions over Σ that
follow from one terminology but not the other. Recently, ontology based data
access has become a major application of ontologies in general, and of EL termi-
nologies in particular [12, 13, 17]. In this case, it is not sufficient to compare the
derived concept inclusions of terminologies, but answers to instance queries or
even conjunctive queries should be considered as well. Thus, we have extended
CEX so as to cover three distinct types of logical differences: differences w.r.t. con-
cept inclusions, answers to instance queries, and answers to conjunctive queries.
Moreover, CEX now admits role inclusions and range and domain restrictions,

B. Gramlich, D. Miller, and U. Sattler (Eds.): IJCAR 2012, LNAI 7364, pp. 371–377, 2012.
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and so acyclic ELHr terminologies rather than only acyclic EL terminologies
can be compared. The algorithms and theory behind CEX are presented in [11].
In contrast to the update presented here, the version of CEX discussed in [11]
cannot compute differences w.r.t. conjunctive queries. In this paper, we therefore
focus on experiments that show how moving from concept and instance queries
to conjunctive queries influences the performance of CEX and the number of
differences detected between distinct versions of NCI.

2 Preliminaries

An ELHr-terminology T is a finite set of role inclusions r  s and concept
inclusions and equations of the form A  C, A ≡ C, ran(r)  C, and ∃r.�  C
such that no concept name occurs more than once on the left-hand side, where
A is a concept name, r, s are role names, ran(r) refers to the range of the role
r and C,D are EL-concepts, that is, expressions of the form C := A | � | C �
D | ∃r.C. (Complete definitions can be found in [11], see also [1] where ELHr

was introduced.) T is acyclic if no defined concept is used (directly or indirectly)
in its definition. Instance data are represented by ABox assertions of the form
A(a) and r(a, b), where a, b are individual names, A is a concept name and r
is a role name. An ABox A is a non-empty finite set of ABox-assertions. The
semantics of ELHr can be given by interpreting terminologies and ABoxes as
first-order (FO) sentences where concepts are formulas with one free variable,
roles are binary predicates, and individual names are constants. For example, the
inclusion A  ∃rB can be interpreted as ∀x(A(x)⇒ ∃y(r(x, y)∧B(y))). We use
T |= ϕ, or (T ,A) |= ϕ, to denote that ϕ follows from T , or T ∪A, respectively, in
FO. An instance query α is of the form r(a, b) or C(a) with C an EL-concept. α
is atomic if it only contains one concept or role name. A conjunctive query (CQ)
is a FO-formula q(x) = ∃yψ(x,y), where ψ is constructed from atoms A(t) and
r(t, t′) using conjunction and t, t′ range over individual names and individual
variables from the sequences of variables x,y. q(x) is atomic if ψ only contains
one atom. A signature Σ is a finite set of concept and role names, and a Σ-
concept (Σ-query, etc.) is a concept (query, etc.) that only uses concept and role
names from Σ.

3 The CEX2.5 System

CEX2.51 takes as input two acyclic ELHr terminologies T1, T2 and a signature Σ
and analyses the following three types of logical difference:

– the Σ-concept difference between T1 and T2 is the set cDiffΣ(T1, T2) of all
Σ-role and Σ-concept inclusions α in ELHr such that T1 |= α and T2 �|= α;

– the Σ-instance difference between T1 and T2 is the set iDiffΣ(T1, T2) of pairs
of the form (A, α), where A is a Σ-ABox and α a Σ-instance query such
that (T1,A) |= α and (T2,A) �|= α; and

1 Available under an open-source license at
http://www.csc.liv.ac.uk/~michel/software/cex2/

http://www.csc.liv.ac.uk/~michel/software/cex2/
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– the Σ-query difference between T1 and T2 is the set qDiffΣ(T1, T2) of pairs
(A, q(a)), where A is a Σ-ABox, q(x) a Σ-CQ, and a a tuple of individual
names in A such that (T1,A) |= q(a) and (T2,A) �|= q(a).

If for one of these types of logical difference, the Σ-difference between Ti and Tj
is empty for {i, j} = {1, 2}, then the two terminologies can be regarded as
equivalent and replaced by each other in applications that use Σ-symbols only
and for which the considered type of difference is appropriate. Notice that, for
all three types of logical difference, if the Σ-difference between terminologies is
not empty, then it is infinite. We distinguish between two modes in which CEX
presents an approximation of this infinite Σ-difference to the user. First, it is
shown in [11] that within every member of the Σ-difference, one can find an
“elementary” difference which is either a role inclusion or

– for cDiffΣ(T1, T2): a concept inclusion C  D in which either C is a concept
name or an expression of the form ran(r) or ∃r.�; or D is a concept name;

– for iDiffΣ(T1, T2): a pair (A, α) in which either A is a singleton ABox or α
an atomic instance query;

– for qDiffΣ(T1, T2): a pair (A, α) in which either A is a singleton ABox or α
an atomic CQ.

We call C and A the left-hand side of such an elementary difference and D and
α its right-hand side. To abstract away from individuals/variables, the concept
or role name of the atomic (or singleton) left or right-hand side of such an
elementary difference is termed a Σ-difference witness. One can show that every
Σ-concept difference witness is a Σ-instance difference witness is a Σ-query
difference witness. Moreover, every left-hand side Σ-instance difference witness
is a left-hand side Σ-concept difference witness, and every right-hand side Σ-
query difference witness is a right-hand side Σ-instance difference witness.

Example 1. Consider the following terminologies T1 and T2

T1 : A ≡ ∃r.(A1 �B2) T2 : A  ∃r.(A1 �B2)

A2  B2 A2  B2

E  ∃s.F E  ∃r1.� � ∃r2.�
s  r1, s  r2

and signature Σ = {A,A1, A2, E, r, r1, r2}. Then
1) A is the only Σ-concept difference witness (and it is a right-hand side

witness): it is a Σ-concept difference witness since the inclusion ∃r.(A1�A2)  A
is an elementary difference (observe that T1 |= ∃r.(A1 � A2)  A but T2 �|=
∃r.(A1 � A2)  A). No other Σ-concept difference witness exists since one can
show that all elementary members of cDiffΣ(T1, T2) have A on its right-hand
side.

2) Similarly, A is the only Σ-instance difference witness (and it is again a
right-hand side witness): an elementary difference is given by the pair (A1, q1),
where A1 = {r(a, b), A1(b), A2(b)} and q1 = A(a). No elementary Σ-instance
difference without the atom A on its right-hand side exists.
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3) The Σ-query difference witnesses are given by A and E (and A is a right-
hand side witness while E is a left-hand side witness): in this case one can
show that all elementary Σ-query differences either have the query A(a) for
some a on the right-hand side or the ABox {E(a)} for some a on the left-hand
side. Examples of such differences are the two pairs (A1, q1), (A2, q2) where
(A1, q1) is as above, and A2 = {E(a)} and q2 = ∃x(r1(a, x) ∧ r2(a, x)). For the
same terminologies and Σ = {E,F}, one can see that there are neither con-
cept nor instance difference witnesses; however, as (T1, {E(a)}) |= ∃x.F (x) but
(T2, {E(a)}) �|= ∃x.F (x), there is a Σ-query difference between the terminologies
and E is its (left-hand side) witness.

Note that the set of Σ-difference witnesses is uniquely determined by T1, T2
and Σ and gives a rather abstract description of the Σ-difference. This set is
empty iff no Σ-difference exists and can be computed in polynomial time, for
all three types of queries [11]. In its basic mode, CEX2.5 computes the set of all
Σ-concept, instance and query witnesses and presents them (together with the
information whether they are left or right-hand side witnesses) to the user. For a
more detailed analysis of the Σ-difference between the two input terminologies T1
and T2, in its advanced mode CEX2.5 can also compute examples of elementary
members of cDiffΣ(T1, T2), iDiffΣ(T1, T2), and qDiffΣ(T1, T2) which illustrate why
certain concept names are concept, instance, or query difference witnesses.

4 Experimental Results

In [11], we have conducted a detailed experimental evaluation of the performance
of CEX2.5 in the concept and instance difference case. In this report we, therefore,
focus on the CQ case and (a) compare the performance of CEX2.5 for the CQ
case with its performance for the concept and instance case, and (b) compare
the number of difference witnesses detected in the CQ case with the number of
difference witnesses detected in the concept/instance case. The CEX2.5 system is
implemented in OCaml, and it uses the reasoner CB [8] internally as classification
engine. The experiments were conducted on PCs equipped with an Intel Core
i5-2500 CPU and 4 GiB of main memory.

First, CEX2.5 is used to compare 71 consecutive acyclic ELHr-versions of the
NCI Thesaurus.2 For any two consecutive versionsNCIn andNCIn+1 within the
considered range,we computed all instance andquery differencewitnesses together
with corresponding examples for T1 = NCIn+1 and T2 = NCIn on signatures
Σ = sig(NCIn)∩ sig(NCIn+1). The results are given in Table 1, where only those
comparisons are reproduced for which there are query difference witnesses which
are not instance difference witnesses. The first two columns give the NCI versions,
|qRhsΣ(·, ·)| is the number of right-hand side Σ-query difference witnesses (which
always coincides with the number |iRhsΣ(·, ·)| of right-hand side Σ-instance dif-
ference witnesses). |qLhsΣ(·, ·)| and |iLhsΣ(·, ·)| are the number of left-hand side

2 Full versions are available from http://evs.nci.nih.gov/ftp1/NCI_Thesaurus/.We
refer the reader to [5] for additional information on NCI versions and note that the
full versions contain inclusions that are not in acyclic ELHr.

http://evs.nci.nih.gov/ftp1/NCI_Thesaurus/
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Table 1. Detailed Results for Comparisons Between Consecutive ELHr-versions of
the NCI Thesaurus Leading to Additional Conjunctive Query Differences

|qRhsΣ(T1, T2)| = Time (s) Time (s)

T1 T2 |iRhsΣ(T1, T2)| |qLhsΣ(T1, T2)| |iLhsΣ(T1, T2)| (query) (instance)

03.12e 03.12a 49 1747 289 177.78 14.85

04.03n 04.02h 431 8277 5494 14.02 13.74

04.06i 04.05f 99 1147 1080 48.31 39.50

05.05d 05.03d 1007 2683 747 513.78 17.17

06.01c 05.12f 798 2066 2053 449.8 22.39

07.01d 06.12d 814 290 222 41.19 40.99

query and instance difference witnesses, respectively. One can see that in some
cases there are significantly more query difference witnesses than instance differ-
ence witnesses. In fact, one of the conclusions one can draw from this table is that
the instance difference between terminologies is not necessarily a good approxi-
mation of the query difference. Consequently, when terminologies are used to ac-
cess instance data using CQs, a comparison at the concept or instance level cannot
always replace an analysis tailored for CQs. Secondly, one can see that the time re-
quired to compute query witnesses can be significantly longer than the time nec-
essary for detecting instance witnesses; we will comment on the reasons below.

To analyse the impact of the size of signatures on the running time of CEX2.5
and on the number of difference witnesses, in our second experiment CEX2.5 is
used to compute concept, instance and query difference witnesses together with
corresponding examples for T1 = NCI06.12d and T2 = NCI07.01d on randomly-
generated signatures Σ ⊆ sig(T1) ∩ sig(T2). The signatures were composed of a
varying number of concept names and 60 randomly-selected roles. For each con-
sidered sample size of concept names we generated 10 random signatures. The
computation times and the number of difference witnesses that were detected
on average for each sample size are depicted in Fig. 1. First note that in the
concept and instance difference case the computation times on average never
differed by more than one second and the same number of difference witnesses
were computed. As in the previous experiment, on average there are significantly
more query difference witnesses than concept and instance difference witnesses.
Moreover, in contrast to the concept and instance difference case, the compu-
tation time in the query difference case increased with the number of concept
names present in the considered signatures. Less than 287 MiB of memory were
required in each of the comparisons involving NCI versions.

To evaluate the performance of CEX2.5 on very large terminologies, we compare
three consecutive versions of SnomedCT (January 2009, July 2009, and January
2010). We used CEX2.5 to compute instance and query difference witnesses with
and without examples on the shared signature between two consecutive versions.
All three versions of Snomed CT considered have the same role names which are,
therefore, also in the shared signature. In contrast to the experiments for NCI, in
this case the set of query difference witnesses turned out to coincide with the set of
instance difference witnesses and the computation times almost coincide: on aver-
age, 683 seconds for the instance witnesses and 672 seconds for the CQ witnesses.
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Fig. 1. Computation Time Required and Number of Difference Witnesses Detected
between two Consecutive NCI Versions on Random Signatures

The running time rose to 1028 seconds and, respectively, 1006 seconds when exam-
ples were additionally computed. On average 2.84 GiB and, respectively, 2.92 GiB
of memory were required for the computation.

Finally, in the experiments above, 687 813 examples of elementary differences
between terminologies were computed. The average length (i.e., the number of
occurrences of concept and role names) of an example was 5.98 with a maximal
length of 98. It follows that in most cases the examples generated by CEX2.5 are
sufficiently small to be analysed by a human user (note that, in theory, in the
worst case minimal examples are of exponential size [11]).

We close with a discussion as to why in the NCI experiments computing left-
hand sideΣ-query difference witnesses takes longer than computing left-hand side
Σ-instance difference witnesses (and why this is not the case for Snomed CT). To
check whether A ∈ Σ is such a witness for T1, T2 both algorithms check whether
there is a certain Σ-simulation between the minimal models IT1,{A(a)} and
IT2,{A(a)} for the knowledge bases (T1, {A(a)}) and (T2, {A(a)}) [11,12].The differ-
ence between the two cases is that for the instance differencewitnesses a “standard”
Σ-simulation between the node for a in IT1,{A(a)} and the node for a in IT2,{A(a)}
is sufficient, whereas for the query difference the simulation has to, in addition, re-
spect intersections between Σ-roles and has to be global (every node in IT1,{A(a)}
has to be simulated). The second condition is costly since it implies that one has to
consider all nodes of IT1,{A(a)} and find simulating nodes in IT2,{A(a)} rather than
consider nodes reachable from the node for a viaΣ-paths only. In general, it there-
fore appears to be unavoidable that computation times for CQ are longer than for
concept and instance queries. TheSnomedCT experiment is different: in this case
Σ contains all role names in both terminologies and so any simulation of the node
for a is a global simulation already.

We note that because of their importance in model checking and abstraction,
a large variety of highly optimized algorithms computing simulations between
Kripke models have been developed (e.g. [2,3]). In our implementation, however,
we do not first construct the (potentially very large) minimal models and then
check for Σ-simulation, but we check for Σ-simulation on-the-fly making heavy
use of the condition that T1 and T2 are acyclic terminologies.
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Abstract. In this paper, an overview of state-of-the-art techniques for
premise selection in large theory mathematics is provided, and new prem-
ise selection techniques are introduced. Several evaluation metrics are in-
troduced, compared and their appropriateness is discussed in the context
of automated reasoning in large theory mathematics. The methods are
evaluated on the MPTP2078 benchmark, a subset of the Mizar library,
and a 10% improvement is obtained over the best method so far.

1 Introduction: Formal Mathematics and Its AI Methods

In recent years, more and more mathematics is becoming available in a computer-
understandable form [12]. A number of large formalization projects are progress-
ing [11,13,15], formal mathematics is considered by influential mathematicians,1

and new approaches and proof assistants are discussed and developed by inter-
ested newcomers [3, 8, 22, 39].

As this happens, the users and developers of formal mathematics are increas-
ingly faced with the problem of searching for relevant formal knowledge, anal-
ogous to the search problems started since the early days of the Internet. Web
search has led to a large body of research of robust and scalable non-semantic
methods in fields like information retrieval, machine learning, and data min-
ing. On the other hand, formal mathematics has been traditionally focusing on
exhaustive and precise deductive search methods, typically used on small, care-
fully manually pre-arranged search space. In nutshell, the difference between the
former and the latter methods is that the former focus on heuristically finding
knowledge that could be most relevant for solving semantically underspecified
(typically natural language) queries, while the latter methods try to find a pre-
cise answer and a proof for a conjecture that is expressed with full semantic
precision. The former methods are largely inductive and data-driven [29]: the
“solutions” are unconfirmed suggestions derived from heuristics and previous
evidence, and essential parts of the algorithms are typically obtained by learn-
ing from large corpora. The latter methods have so far been largely deductive

� The authors were supported by the NWO projects “MathWiki a Web-based Collab-
orative Authoring Environment for Formal Proofs” and “Learning2Reason”.

1 http://gowers.wordpress.com/2008/07/28/

more-quasi-automatic-theorem-proving
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and theory-driven: the solutions are deduced in a logically correct way, and the
algorithms are to a large extent specified by their programmers without inducing
major parts of the programs from large datasets.

There are a number of interesting ways how existing deductive methods can
be improved in the presence of previous knowledge. Some of them are mentioned
below. An early research done by the Munich group [10] has already produced
a number of ideas and advanced implementations, like for example the pattern-
based proof guidance in E prover [26]. It seems that the recently appeared large
corpora of formal knowledge allow AI combinations of inductive and deductive
thinking (e.g., the MaLARea metasystem [37]) that can hardly be tried in other
AI domains that lack precise semantics and the notion of formal proof.

On the other hand, the first and lasting necessity obvious since 2003, when the
first large formal mathematical corpora became available to Automated Theo-
rem Provers (ATPs), has been good selection of relevant premises for a given new
conjecture. It has been shown that proper design and choice of knowledge se-
lection heuristics can change the overall success of large-theory ATP techniques
by tens of percents [1]. Such large improvements provide an incentive for further
research, evaluations, and benchmarks developing the field of knowledge-based
automated reasoning.

This paper develops this field in several ways. First, in Section 2 an overview
of state-of-the-art techniques for premise selection in large-theory mathematics
is provided, focusing on premise ranking. In Section 3 we present several relevant
machine learning metrics developed for feasible training and evaluation of rank-
ing algorithms. The premise selection methods are evaluated on the MPTP2078
benchmark in section 4, using the machine learning metrics as well as several
different ATPs. The learning and ATP evaluation methods are compared, and
the relevance of the machine learning metrics based on human-proof data is dis-
cussed, together with the performance of different methods and ATPs. Based
on the findings, use of ensemble methods for aggregating premise selectors is
proposed and initially tested in Section 5, and shown to further raise the overall
ATP performance by 10% in comparison to the best method so far. Section 6
concludes and proposes directions for further research.

2 Premise Selection Algorithms

2.1 Premise Selection Setting

The typical setting for the task of premise selection is a large developed library of
formally encoded mathematical knowledge, over which mathematicians attempt
to prove new lemmas and theorems [5, 32, 36]. The actual mathematical corpora
suitable forATP techniques are only a fraction of allmathematics (e.g. about 50000
lemmas and theorems in theMizar library) and started to appear only recently, but
they already provide a corpus on which different heuristic methods can be defined,
trained, and evaluated. Premise selection can be useful as a standalone service for
the formalizers (suggesting relevant lemmas), or in conjunctionwithATPmethods
that can attempt to find a proof from the relevant premises.
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2.2 Learning-Based Ranking Algorithms

Learning-based ranking algorithms have a training and a testing phase and typ-
ically represent the data as points in pre-selected feature spaces. In the training
phase the algorithm tries to fit one (or several) prediction functions to the data
it is given. The result of the training is the best fitting prediction function which
can then be used in the testing phase for evaluations.

In the typical setting presented above, the algorithms would train on all ex-
isting proofs in the library and be tested on the new theorem the mathematician
wants to prove. We compare three different algorithms.

SNoW: SNoW (Sparse Network of Winnows) [6] is an implementation of (among
others) the naive Bayes algorithm that has already been successfully used for
premise selection (see e.g. [1, 32, 33]).

Naive Bayes is a statistical learning method based on Bayes‘ theorem with
a strong (or naive) independence assumption. Given a new conjecture c and a
premise p, SNoW computes the probability of p being needed to prove c, based on
the previous use of p in proving conjectures that are similar to c. The similarity
is in our case typically expressed using symbols and terms of the formulas. The
independence assumption says that the (non-)occurrence of a symbol/term is
not related to the (non-)occurrence of every other symbol/term.

MOR-CG: MOR-CG (Multi-Output Ranking Conjugate Gradient) is a kernel-
based learning algorithm (see [29]) that is a new variation of our MOR algorithm
described in [1]. The difference between MOR and MOR-CG are that MOR-
CG uses a linear kernel instead of a Gaussian. Furthermore, MOR-CG uses
conjugate-gradient descent to speed up the time needed for training.

Kernel-based algorithms do not aim to model probabilities, but instead try to
minimize the expected loss of the prediction functions on the training data. For
each premise pMOR-CG tries to find a function Cp such that for each conjecture
c, Cp(c) = 1 iff p was used in the proof of c. Given a new conjecture c, we can
evaluate the learned prediction functions Cp on c. The higher the value Cp(c)
the more relevant p is to prove c.

BiLi: BiLi (Bi-Linear) is a new algorithm that is based on a bilinear model of
premise selection, similar to the work of Chu and Park [7]. Like MOR-CG, BiLi
aims to minimize the expected loss. The difference lies in the kind of prediction
functions they produce. In MOR-CG the prediction functions only take the fea-
tures2 of the conjecture into account. In BiLi, the prediction functions use the
features of both the conjectures and the premises.3 The bilinear model learns a
weight for each combination of a conjecture feature together with a premise fea-
ture. Together, this weighted combination determines whether or not a premise
is relevant to the conjecture.

2 In our experiments each feature indicates the presence or absence of a certain symbol
or term in a formula.

3 This makes BiLi a bit closer to methods like SInE that symbolically compare con-
jectures with premises.
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When the number of features becomes large, fitting a bilinear model becomes
computationally more challenging. Therefore, in BiLi the number of features is
first reduced to 100, using random projections [4]. To combat the noise intro-
duced by these random projections, this procedure is repeated 20 times, and the
averaged predictions are used for ranking the premises.

2.3 Other Algorithms Used in the Evaluation

SInE: The SInE (SUMO Inference Engine) is a heuristic state-of-the-art premise
selection algorithm by Kryštof Hoder [14], recently also implemented in the E
prover.4 The basic idea is to use global frequencies of symbols in a problem to
define their global generality, and build a relation linking each symbol S with
all formulas F in which S is has the lowest global generality among the symbols
of F . In common-sense ontologies, such formulas typically define the symbols
linked to them, which is the reason for calling this relation a D-relation. Premise
selection for a conjecture is then done by recursively following the D-relation,
starting with the conjecture’s symbols. For the experiments described here the
E implementation of SInE has been used, because it can be instructed to select
exactly N most relevant premises. This is compatible with the way how other
premise rankers are used here, and it allows to compare the premise rankings
produced by different algorithms for increasing values of N .5

Aprils: The Automated Prophesier of Relevance Incorporating Latent Seman-
tics (APRILS) [24] is a signature-based premise selection method that employs
Latent Semantic Analysis (LSA) [9] to define symbol and premise similarity. La-
tent semantics is a machine learning method that has been successfully used for
example in the Netflix Prize,6 and in web search. Its principle is to automati-
cally derive “semantic” equivalence classes of words (like car, vehicle, automo-
bile) from their co-occurrences in documents, and to work with such equivalence
classes instead of the original words. In APRILS, formulas define the symbol
co-occurrence, each formula is characterized as a vector over the symbols’ equiv-
alence classes, and the premise relevance is its dot product with the conjecture.

2.4 Techniques Not Included in the Evaluation

As a part of the overview, we also list important or interesting algorithms used
for ATP knowledge selection that for various reasons do not fit the evaluation
done here. Because of space contraints we refer readers to [34] for their discussion.

– The default premise selection heuristic used by the Isabelle/Sledgehammer
export [17]. This is an Isabelle-specific symbol-based technique similar to
SInE that would need to be evaluated on Isabelle data.

4 http://www.mpi-inf.mpg.de/departments/rg1/conferences/deduction10/

slides/stephan-schulz.pdf
5 The exact parameters used for producing the E-SInE rankings are at
https://raw.github.com/JUrban/MPTP2/master/MaLARea/script/filter1 .

6 http://www.netflixprize.com

http://www.mpi-inf.mpg.de/departments/rg1/conferences/deduction10/slides/stephan-schulz.pdf
http://www.mpi-inf.mpg.de/departments/rg1/conferences/deduction10/slides/stephan-schulz.pdf
https://raw.github.com/JUrban/MPTP2/master/MaLARea/script/filter1
http://www.netflixprize.com
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– Goal directed ATP calculi including the Conjecture Symbol Weight clause se-
lection heuristics in E prover [27] giving lower weights to symbols contained
in the conjecture, the Set of Support (SoS) strategy in resolution/super-
position provers, and tableau calculi like leanCoP [19] that are in practice
goal-oriented.

– Model-based premise selection, as done by Pudlák’s semantic axiom selection
system for large theories [21], by the SRASS metasystem [30], and in a
different setting by the MaLARea [37] metasystem.

– MaLARea [37] is a large-theory metasystem that loops between deductive
proof and model finding (using ATPs and finite model finders), and learning
premise-selection (currently using SNoW or MOR-CG) from the proofs and
models to attack the conjectures that still remain to be proved.

– Abstract proof trace guidance implemented in the E prover by Stephan
Schulz for his PhD [26]. Proofs are abstracted into clause patterns collected
into a common knowledge base, which is loaded when a new problem is
solved, and used for guiding clause selection. This is also similar to the hints
technique in Prover9 [16].

– The MaLeCoP system [38] where the clause relevance is learned from all
closed tableau branches, and the tableau extension steps are guided by a
trained machine learner that takes as input features a suitable encoding of
the literals on the current tableau branch.

3 Machine Learning Evaluation Metrics

Given a database of proofs, there are several possible ways to evaluate how
good a premise selection algorithm is without running an ATP. Such evaluation
metrics are used to estimate the best parameters (e.g. regularization, tolerance,
step size) of an algorithm. We want to use the evaluation metrics that are the
best indicators for the final ATP performance. The input for each metric is a
ranking of the premises for a conjecture together with the information which
premises where used to prove the conjecture (according to the training data).

Recall. Recall@n is a value between 0 and 1 and denotes the fraction of used
premises that are among the top n highest ranked premises.

Recall@n =
|{used premises} ∩ {n highest ranked premises}|

|{used premises}|

Recall@n is always less than Recall@(n+1). As n increases, Recall@n will even-
tually converge to 1. Our intuition is that the better the algorithm, the faster
its Recall@n converges to 1.

AUC. The AUC (Area under the ROC Curve) is the probability that, given a
randomly drawn used premise and a randomly drawn unused premise, the used
premise is ranked higher than the unused premise. Values closer to 1 show better
performance.
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Let x1, .., xn be the ranks of the used premises and y1, .., ym be the ranks of
the unused premises. Then, the AUC is defined as

AUC =

∑n
i

∑m
j 1xi>yj

mn

where 1xi>yj = 1 iff xi > yj and zero otherwise.

100%Recall. 100%Recall denotes the minimum n such that Recall@n = 1.

100%Recall = min{n | Recall@n = 1}

In other words 100%Recall tells us how many premises (starting from the highest
ranked one) we need to give to the ATP to ensure that all necessary premises
are included.

4 Evaluation

4.1 Evaluation Data

The premise selection methods are evaluated on the large (chainy) problems from
the MPTP2078 benchmark7 [1]. These are 2078 related large-theory problems
(conjectures) and 4494 formulas (conjectures and premises) in total, extracted
from the Mizar Mathematical Library (MML). The MPTP2078 benchmark was
developed to supersede the older and smaller MPTP Challenge benchmark (de-
veloped in 2006), while keeping the number of problems manageable for exper-
imenting. Larger evaluations are possible,8 but not convenient when testing a
large number of systems with many different settings. MPTP2078 seems suffi-
ciently large to test various hypotheses and find significant differences.

MPTP2078 also contains (in the smaller, bushy problems) for each conjecture
the information about the premises used in the MML proof. This can be used
to train and evaluate machine learning algorithms using a chronological order
emulating the growth of MML. For each conjecture, the algorithms are allowed
to train on all MML proofs that were done up to that conjecture.9 For each of
the 2078 problems, the algorithms predict a ranking of the premises.

4.2 Machine Learning Evaluation – Comparison of Predictions with
Known Proofs

We first compare the algorithms introduced in section 2 using the machine learn-
ing evaluation metrics introduced in section 3. All evaluations are based on the
training data, the human-written formal proofs from the MML. They do not
take the possibility of alternative proofs into account.10

7 Available at http://wiki.mizar.org/twiki/bin/view/Mizar/MpTP2078.
8 See [2,35] for recent evaluations spanning the whole MML.
9 This in particular means that the algorithms do not train on the data they were
asked to predict.

10 This could be improved in the future by adding alternative proofs, as discussed in
section 6.

http://wiki.mizar.org/twiki/bin/view/Mizar/MpTP2078
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Fig. 1. Recall comparison of the premise selection algorithms

Recall. Figure 1 compares the average Recall@n of MOR-CG, BiLi, SNoW,
SInE and Aprils for the top 200 premises over all 2078 problems. Higher values
denote better performance. The graph shows that MOR-CG performs best, and
Aprils worst. Note that here is a sharp distinction between the learning algo-
rithms, which use the MML proofs and eventually reach a very similar recall,
and the heuristic-based algorithms Aprils and SInE.

AUC. The average AUC of the premise selection algorithms is reported in
table 1. Higher values mean better performance, i.e. a higher chance that a used
premise is higher ranked than a unused premise. SNoW (97%) and BiLi (96%)
have the best AUC scores with MOR-CG taking the third spot with an AUC
of 88%. Aprils and SInE are considerably worse with 64% and 42% respectively.
The standard deviation is very low with around 2% for all algorithms.

Table 1. AUC comparison of the premise selection algorithms

Algorithm Avg. AUC Std.

SNoW 0.9713 0.0216

BiLi 0.9615 0.0215

MOR-CG 0.8806 0.0206

Aprils 0.6443 0.0176

SInE 0.4212 0.0142



Overview and Evaluation of Premise Selection Techniques 385

100%Recall. The comparison of the 100%Recall measure values can be seen
in figure 2. For the first 115 premises, MOR-CG is the best algorithm. From
then on, MOR-CG hardly increases and SNoW takes the lead. Eventually, BiLi
almost catches up with MOR-CG. Again we can see a big gap between the
performance of the learning and the heuristic algorithms with SInE and Aprils
not even reaching 400 problems with 100%Recall.
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Fig. 2. 100%Recall comparison of the premise selection algorithms

Discussion. In all three evaluation metrics there is a clear difference between
the performance of the learning-based algorithms SNoW, MOR-CG and BiLi and
the heuristic-based algorithms SInE and Aprils. If the machine-learning metrics
on the MML proofs are a good indicator for the ATP performance then there
should be a corresponding performance difference in the number of problems
solved. We investigate this in the following section.

4.3 ATP Evaluation

Vampire. In the first experiment we combined the rankings obtained from the
algorithms introduced in section 2 with version 0.6 of the ATP Vampire11 [23].
For each MPTP2078 problem (containing on average 1976.5 premises), we cre-
ated 20 new problems, containing the 10, 20, ..., 200 highest ranked premises. The
results can be seen in figure 3.

11 All ATPs are run with 5s time limit on an Intel Xeon E5520 2.27GHz server with
24GB RAM and 8MB CPU cache. Each problem is always assigned one CPU. We
use Vampire as our default ATP because of its good preformance in the CASC
competitions, and because of its good performance on MML reported in [35].



386 D. Kühlwein et al.

Fig. 3. Problems solved – Vampire

Apart from the first 10-premise batch and the three last batches, MOR-CG
always solves the highest number of problems with a maximum of 726 problems
with the top 70 premises. SNoW solves less problems in the beginning, but
catches up in the end. BiLi solves very few problems in the beginning, but gets
better as more premises are given and eventually is as good as SNoW and MOR-
CG. The surprising fact (given the machine learning performance) is that SInE
performs very well, on par with SNoW in the range of 60-100 premises. This
indicates that SInE finds proofs that are very different from the human proofs.
Furthermore, it is worth noting that most algorithms have their peak at around
70-80 premises. It seems that after that, the effect of increased premise recall is
beaten by the effect of the growing ATP search space.

E, SPASS and Z3. We also compared the top three algorithms, MOR-CG,
SNoW and SInE, with three other ATPs: E [27] (version 1.4), SPASS [40] (version
3.7) and Z3 [18] (version 3.2). The results can be seen in figure 4, 5, 6 respec-
tively. In all three experiments, MOR-CG gives the best results. Looking at the
number of problems solved by E we see that SNoW and SInE solve about the
same number of problems when more than 50 premises are given. In the SPASS
evaluation, SInE performs better than SNoW after the initial 60 premises. The
results for Z3 are clearer, with (apart from the first run with the top 10 premises)
MOR-CG always solving more problems than SNoW, and SNoW solving more
problems than SInE. It is worth noting that independent of the learning algo-
rithm, SPASS solves the fewest problems and Z3 the most, and that (at least
up to the limit of 200 premises used) Z3 is hardly affected by having too many
premises in the problems.
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Fig. 4. Problems solved – E

Fig. 5. Problems solved – SPASS

Discussion. The ATP evaluation shows that a goodML evaluation performance
does not necessarily imply a good ATP performance and vice versa. E.g. SInE
performs better than expected, and BiLi worse. A plausible explanation for this
is that the human-written proofs that are the basis of the learning algorithms
are not the best possible guidelines for ATP proofs, because there are a number
of good alternative proofs: the total number of problems proved with Vampire
by the union of all prediction methods is 1197, which is more (in 5s) than the
1105 problems that Vampire can prove in 10s when using only the premises
used exactly in the human-written proofs. One possible way how to test this
hypothesis (to a certain extent at least) would be to train the learning algorithms
on all the ATP proofs that are found, and test whether the ML evaluation
performance closer correlates with the ATP evaluation performance.
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Fig. 6. Problems solved – Z3

The most successful 10s combination, solving 939 problems, is to run Z3 with
the 130 best premises selected by MOR-CG, together with Vampire using the
70 best premises selected by SInE. It is also worth noting that when we consider
all provers and all methods, 1415 problems can be solved.

It seems the heuristic and the learning based premise selection methods give
rise to different proofs. In the next section, we try to exploit this by considering
combinations of ranking algorithms.

5 Combining Premise Rankers

There is clear evidence about alternative proofs being feasible from alternative
predictions. This should not be too surprising, because the premises are orga-
nized into a large derivation graph, and there are many explicit (and also quite
likely many yet-undiscovered) semantic dependencies among them.

The evaluated premise selection algorithms are based on different ideas of
similarity, relevance, and functional approximation spaces and norms in them.
This also means that they can be better or worse in capturing different aspects of
the premise selection problem (whose optimal solution is obviously undecidable
in general, and intractable even if we impose some finiteness limits).

An interesting machine learning technique to try in this setting is the combi-
nation of different predictors. There has been a large amount of machine learning
research in this area, done under different names. Ensembles is one of the most
frequent, a recent overview of ensemble based systems is given in [20], while for
example [28] deals with the specific task of aggregating rankers.

As a final experiment that opens the premise selection field to the application
of advanced ranking-aggregation methods, we have performed an initial simple
evaluation of combining two very different premise ranking methods: MOR-CG
and SInE. The aggregation is done by simple weighted linear combination, i.e.,
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the final ranking is obtained via weighted linear combination of the predicted
individual rankings. We test a limited grid of weights, in the interval of [0, 1] with
a step value of 0.25, i.e., apart from the original MOR-CG and SInE rankings we
get three more weighted aggregate rankings as follows: 0.25 ∗CG+ 0.75 ∗ SInE,
0.5 ∗CG+0.5 ∗ SInE, and 0.75 ∗CG+0.25 ∗ SInE. The following Figure 7 shows
their ATP evaluation.
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Fig. 7. Combining CG and SInE: Problems solved

The machine learning evaluation (done as before against the data extracted
from the human proofs) is not surprising, and the graphs (which we omit due
to space constraints) look like linear combinations of the corresponding figures
for MOR-CG and SInE. The ATP evaluation (only Vampire was used) is a very
different case. For example the equally weighted combination of MOR-CG and
SInE solves over 604 problems when using only the top 20 ranked premises. The
corresponding values for standalone MOR-CG resp. SInE are 476, resp. 341, i.e.,
they are improved by 27%, resp. 77%. The equally weighted combination solves
797 when using the top 70 premises, which is a 10% improvement over the best
result of all methods (726 problems solved by MOR-CG when using the top
70 premises). Note that unlike the external combination mentioned above, this
is done only in 5 seconds, with only one ATP, one premise selector, and one
threshold.

6 Conclusion and Future Work

Heuristic and inductive methods seem indispensable for strong automated rea-
soning in large formal mathematics, and significant improvements can be achieved
by their proper design, use and combination with precise deductive methods.
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Knowing previous proofs and learning from them turns out to be important not
just to mathematicians, but also for automated reasoning in large theories.

The possibility of the ultimate semantic (ATP) evaluation of the proposed
premise rankings adds interesting “combined AI” aspects to the standard ma-
chine learning methods. Without expressive semantics the methods just try to
predict the human proofs as closely as possible. Proposing alternative (and some-
times simpler) proofs is discouraged by the standard machine learning evaluation
metrics. This produces interesting questions to AI researchers: given the explicit
derivation graph of a large theory, and the precise semantics allowing this graph
to grow further, what are good methods and metrics for (reasonably fast) train-
ing of premise selection methods? One pragmatic answer that we can give is to
develop a growing database of ATP and human proofs, and other results (like
counter-models), e.g., in a similar way as in the MaLARea metasystem, and use
this growing database for training instead of just the human proofs, testing (and
caching for further use) the ATP validity of new predictions on-demand.

We have evaluated practically all reasonably fast state-of-the-art premise se-
lection techniques, tried some new ones, and currently experiment with more.
This has produced a large amount of data on the most suitable (most orthogonal)
combinations of premise selection systems, numbers of premises used, ATPs used,
and ATP (currently E prover) strategies used. We further use machine learning
in the spirit of the E-MaLeS system to determine optimal (either parallel or
lower time-limit) combinations of these. These results are not included here due
to space constraints.12

There is a trade-off between the precision and speed of the methods, and an
interesting future work is to use fast methods as pre-selectors for more expensive
methods. This is related to the problems of automated clustering the large theo-
ries, that can also be useful by itself for organizing and searching the large formal
repositories. Clustering on a finer level is also one of the methods that could be
used to further improve premise selection. It is quite likely that there are clus-
ters of theorems that have the same logic power (their conjunctions are equal in
the Lindenbaum algebra), and about the same strength when used with ATPs
(the same conjecture can be proved from them in a similar number of steps). The
current premise selection methods will likely recommend all such equivalent sets,
which is blocking other (possibly necessary) premises, so heuristic identification
of such (nearly) equivalent sets seems important. Including more semantics (for
example evaluation in an evolving set of models as in MaLARea) in the learning
and selection process could be one way how to achieve this.

We would like to make our strongest methods useful to as many formal math-
ematicians as possible. Some of them (like SNoW) have been used for MML and
MPTP since 2003, but algorithms like MOR-CG and aggregated rankers are not
deployed yet. We also hope to evaluate and deploy the algorithms at least for
the Isabelle/Sledgehammer framework in near future.

12 The fact that Z3 solves largely orthogonal sets of problems to Vampire is probably
well known by now. Hence our focus on the differences between the premise selection
methods.
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Abstract. The full branching time logic CTL∗ is a well-known specification logic
for reactive systems. Its satisfiability and model checking problems are well un-
derstood. However, it is still lacking a satisfactory sound and complete axioma-
tisation. The only proof system known for CTL∗ is Reynolds’ which comes with
an intricate and long completeness proof and, most of all, uses rules that do not
possess the subformula property.

In this paper we consider a large fragment of CTL∗ which is characterised by
disallowing certain nestings of temporal operators inside universal path quanti-
fiers. This subsumes CTL+ for instance. We present infinite satisfiability games
for this fragment. Winning strategies for one of the players represent infinite
tree models for satisfiable formulas. These can be pruned into finite trees us-
ing fixpoint strengthening and some simple combinatorial machinery such that
the results represent proofs in a Hilbert-style axiom system for this fragment.
Completeness of this axiomatisation is a simple consequence of soundness of the
satisfiability games.

1 Introduction

Temporal logics originate from the philosophical tense logics [14] and are now impor-
tant specification languages in computer science where they are being used to abstractly
describe and verify the behaviour of reactive systems [11]. One of their most promi-
nent examples is the full branching-time temporal logic CTL∗ [2]. Its satisfiability and
model checking problem—i.e. the algorithmic nature of the logic—is well understood
by now [18,3]. This cannot necessarily be said about the proof-theoretic nature of CTL∗:
despite CTL∗’s long lifespan no clean and simple sound and complete axiomatisation
has been found for it so far.

Various axiomatisations for simpler temporal logics like LTL for instance have been
known for a long time, and others have been found since [7,5,10,9]. The same can be
said about CTL [1,13,9,8]. These two logics enjoy the property that their formulas are
modularly composed of a finite number of temporal operators and an axiomatisation can
describe the handling of each of them. In CTL∗ though, the arbitrary mixture and nesting
of path formulas leads to an essentially infinite number of temporal operators of which
formulas are composed. A proper axiomatisation would have to capture their nature in
a finite number of formula schemes. So far, the only successful attempt at presenting a
sound and complete axiomatisation is Reynolds’ [15]. However, it features an unsatis-
factory system because of a rather intricate and difficult completeness proof. Most of
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all though, it contains rules which do not have the subformula property, for instance the
rule (AA). The subformula property bounds the search space within a proof search.
In particular for this rule, there is no (obvious) upper bound on the possible premises
in terms of the conclusion because the rule introduces new atoms in its premise. The
problem of finding a simple axiomatisation for CTL∗ with a neat completeness proof is
therefore still open.

In this paper we make a step forward in this direction. We consider a large fragment
of CTL∗ by restricting the nesting of temporal operators under a universal path quanti-
fier. We call this fragment CTL�. Syntactically, it supersedes CTL and even CTL+, and
the satisfiability problem for CTL� is therefore already 2EXPTIME-complete [6] which
indicates that it is not an easy fragment. It also exceeds the expressive power of these
two logics; for instance, it it possible to express that a path satisfying some fairness
constraint exists.

Note that this fragment is not closed under complements in the sense that the nega-
tion of a formula with restrictions concerning universal path quantifiers has—in positive
normal form—restrictions on existential path quantifiers. This is not a major problem.
It simply means that one has to regard the context in which the logic is being used. We
consider CTL� in the context of satisfiability; in the context of validity one has the dual
restrictions on existential path quantifiers.

We present a calculus of infinite games characterising the satisfiability problem for
CTL�. We then employ combinatorial arguments and logical principles by which win-
ning strategies in these games, which are infinite trees, can be made finite and loop-free.
These are then used to derive a complete Hilbert-style axiomatisation for CTL�.

This is, as far as we know, the first attempt at approaching the CTL∗ axiomatisation
problem on the syntactic route “from below”. Other attempts are syntactic and “from
above” in the sense that they consider a superlogic, for instance CTL∗ with past op-
erators [16] which apparently makes things easier, or semantic in the sense that they
redefine the class of structures over which the logic is interpreted [17].

The rest of the paper is organised as follows. Section “Branching Time” introduces
the mentioned temporal logics; section “Playing Time” presents the satisfiability games;
in section “Pruning Time” we show how to transform infinite winning strategies into
finite ones; and section “Proving Time” presents the axiomatisation.

2 Branching Time

Transition Systems and Paths. A transition system is a tuple T = (S,−→ , L) where
S is a set of states, −→ ⊆ S × S a transition relation and L : P → 2S a function that
assigns to each q in some non-empty set P of atomic propositions the set of states L(q)
in which q holds. Here we assume the transition relation to be total: for all s ∈ S there
is a t ∈ S such that s −→ t. A path is an infinite sequence π = s0, s1, . . . ∈ Sω such
that si −→ si+1 for all i ∈ N. With πk we denote the k-th suffix of π, namely the path
sk, sk+1, . . ..

CTL∗. Formulas of the branching time temporal logic CTL∗ over P in positive normal
form are given by the following grammar.
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ϕ ::= q | ¬q | ϕ ∨ ϕ | ϕ ∧ ϕ | Eα | Aα
α ::= ϕ | α ∨ α | α ∧ α | Xα | αUα | αRα

where q ∈ P . The formulas q and ¬q are called literals. The constructors E and A are
called path quantifiers; X, U and R are called temporal operators. Formulas derived as
ϕ are called state formulas, those that are derived from α are called path formulas. The
latter only occur as genuine subformulas of the former, i.e. a CTL∗ formula is one that
is derived from ϕ in this grammar. Throughout this paper we will adopt the convention
that small letters of the end of Greek alphabet, like ϕ, ψ, denote state formulas and
small ones from the beginning, like α, β, denote path formulas. Note that every state
formula is also a path formula.

We also use the standard abbreviations from temporal logic: Fα := tt Uα and Gα :=
ff Rα where tt := q ∨ ¬q and ff := q ∧ ¬q for some q ∈ P .

The closure of a formula ϑ is the least set Cl(ϑ) that contains ϑ and satisfies the
following.

– If Qα ∈ Cl(ϑ) for some Q ∈ {E, A} then α ∈ Cl(ϑ).
– If α ∧ β ∈ Cl(ϑ) or α ∨ β ∈ Cl(ϑ) then {α, β} ⊆ Cl(ϑ).
– If Xψ ∈ Cl(ϑ) then ψ ∈ Cl(ϑ).
– If ϕ ◦ ψ ∈ Cl(ϑ) then {ψ, ϕ, X(ϕ ◦ ψ)} ⊆ Cl(ϑ), for all ◦ ∈ {U, R}.

Thus, the closure is essentially the set of all subformulas with the exception of the
fixpoint-operators which we also include with a prefixed X-operator. Note that the size
of the closure of some ϕ is linear in its syntactic length. We therefore use it as a measure
for the size of a formula: |ϕ| := |Cl(ϕ)|.

Formulas of CTL∗ are interpreted over states and paths of a transition system T =
(S,−→ , L), reflecting the two types of formulas.

T , s |= q iff q ∈ L(s)
T , s |= ¬q iff q �∈ L(s)
T , s |= ϕ ∨ ψ iff T , s |= ϕ or T , s |= ψ

T , s |= ϕ ∧ ψ iff T , s |= ϕ and T , s |= ψ

T , s |= Eα iff there is a path π = s, s′, . . . with T , π |= α

T , s |= Aα iff for all paths π = s, s′, . . . we have T , π |= α

T , π |= ϕ iff T , s |= ϕ when ϕ is a state formula and π = s, s′, . . .

T , π |= α ∨ β iff T , π |= α or T , π |= β

T , π |= α ∧ β iff T , π |= α and T , π |= β

T , π |= Xα iff T , π1 |= α

T , π |= αUβ iff there is a k ∈ N with T , πk |= β and for all j < k : T , πj |= α

T , π |= αRβ iff for all k ∈ N : T , πk |= β or there is j < k : T , πj |= α

Two (state) formulas are equivalent, written ϕ ≡ ψ, iff for all T and all states s we
have: T , s |= ϕ iff T , s |= ψ. A state formula ϕ is valid, written |= ϕ, iff T , s |= ϕ for
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any transition system T and any of its states s. Equally, a path formula α is valid, also
written |= α, if T , π |= α for any transition system T and any path π in it. Note that
|= α iff |= Aα.

Finally, we introduce the dual ¬ϑ of a formula ϑ as follows: q and ¬q are dual to
each other; the usual deMorgan law’s apply; path quantifiers are dual to each other as
in ¬Eα := A¬α and vice-versa; the next-operator is self-dual as in ¬Xϕ := X¬ϕ; and
the temporal fixpoint operators are dual to each other as in ¬(ϕUψ) := (¬ϕ)R(¬ψ) and
vice-versa. With negation around we can introduce implication α → β as ¬α ∨ β as
usual. The next section explains why we have introduced formulas in positive normal
form and avoided the use of negation as a first-class operators.

CTL�. The fragment CTL� is obtained from CTL∗ in positive normal form by disallow-
ing certain nestings of temporal operators inside a universal path quantifier: the argu-
ments to an until formula in there must be state formulas. Formally, the syntax of CTL�

formulas is given by the following grammar.

ϕ ::= q | ¬q | ϕ ∨ ϕ | ϕ ∧ ϕ | Eα | Aβ
α ::= ϕ | α ∨ α | α ∧ α | Xα | αUα | αRα
β ::= ϕ | β ∨ β | β ∧ β | Xβ | ϕUϕ | βRβ

All the concepts introduced above for CTL∗ like the closure and the semantics clearly
carry over to CTL� as well. However, note that the dual ¬ϑ of a CTL� formula ϑ need not
be a CTL� formula itself. A syntax for the dual of CTL� is obtained from the one above
by switching E and A. We set ¬CTL� := {ϕ | ¬ϕ ∈ CTL�} as a subset of CTL∗.

It is easy to see that many of the standard and simple types of properties like safety,
liveness, fairness, etc. are expressible in some form or the other in CTL�, for instance
through AG qsafe , AGEF qlive , AGF qfair . Also, it is possible to express a standard re-
quirement for schedulers, namely that all requests need to be served at a later point:
AG(qrequest → F qserve).

However, it is for example not possible to say that all paths that are fair w.r.t. some
predicate α satisfy some property β. This would be A(GFα → β) which would be
A(FG¬α∨β) in positive normal form and thus contain an R-formulas in an argument of
a U-formula inside a universal path quantifier.

A prominent example of a CTL∗ formula which essentially bears much of the diffi-
culty of finding a complete axiomatisation is the limit closure formula

ϕLC := q ∧ AG
(
q → EX(q U p)

)
→ EG(q U p) .

It is a valid CTL∗ formula, hence, its dual ¬ϕLC is unsatisfiable which is

q ∧ AG
(
¬q ∨ EX(q U p)

)
∧ AF(¬q R¬p)

in positive normal form. This is not a CTL� formula though because the last conjunct is
universally path quantified and contains a U-formula (of the abbreviated form F) which
itself contains an R-formula in one of its arguments.
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ϕ,ψ, Φ
(∧)

ϕ ∧ ψ,Φ

ϕi, Φ
(∨) ∃, i ∈ {0, 1}

ϕ0 ∨ ϕ1, Φ

ϕ, EΠ,Φ
(ESt)

E(ϕ,Π), Φ

E(α, β,Π), Φ
(E∧)

E(α ∧ β,Π), Φ
Φ(Ett)

E∅, Φ
E(β,Π), Φ | E(α, X(αUβ), Π), Φ

(EU) ∃
E(αUβ,Π), Φ

E(αi,Π), Φ
(E∨) ∃, i ∈ {0, 1}

E(α0 ∨ α1,Π), Φ

E(α, β,Π), Φ | E(β, X(αRβ), Π), Φ
(ER) ∃

E(αRβ,Π), Φ

A(α,Σ), A(β,Σ), Φ
(A∧)

A(α ∧ β,Σ), Φ

A(α, β,Σ), Φ
(A∨)

A(α ∨ β,Σ), Φ

ϕ, Φ | AΣ,Φ
(ASt) ∃

A(ϕ,Σ), Φ

ψ, Φ | ϕ, A(X(ϕUψ), Σ), Φ | AΣ,Φ
(AU) ∃, if Σ not U-pure

A(ϕUψ,Σ), Φ

ψj , Φ | {ϕi | i ∈ I}, A({X(ϕiUψi) | i ∈ I}), Φ
(A�U) ∃, j ∈ [n], I ⊆ [n]

A(ϕ1Uψ1, . . . , ϕnUψn), Φ

A(β,Σ), A(α, X(αRβ), Σ), Φ
(AR)

A(αRβ,Σ), Φ

AΣ1, . . . , AΣm
(X0)

AXΣ1, . . . , AXΣm, Λ

EΠi, AΣ1, . . . , AΣm
(X1) ∀, i ∈ [n]

EXΠ1, . . . , EXΠn, AXΣ1, . . . , AXΣm, Λ

Fig. 1. Rules for the CTL� satisfiability game

3 Playing Time

Configurations, Rules, Plays, and Winning Conditions. We present a game-theoretic
characterisation of the satisfiability problem for CTL�. The game G(ϑ) is played by two
players ∃ and ∀ who want to show that ϑ is satisfiable, resp. is unsatisfiable. We fix a
state formula ϑ ∈ CTL� for the rest of this section.

A block is an element of {E, A} × 2Cl(ϑ) written EΠ or AΣ. They represent the
state formulas E

∧
Π and A

∨
Σ. Conversely, we identify a state formula Qα with the

block Q{α} for Q ∈ {A, E}. A configuration is a set of state formulas and of blocks,
for instance ϕ1, . . . , ϕl, EΠ1, . . . , EΠn, AΣ1, . . . , Σm. The intended formula of such a
configuration is the conjunction of its elements.

A formula set Σ is called U-pure if it consists of formulas of the form ϕ1Uϕ2 only.
We write XΣ to denote the set {Xψ | ψ ∈ Σ} and equally for XΠ . A configuration Φ is
propositionally inconsistent if there is a proposition q s.t. {q,¬q} ⊆ Φ.

The game G(ϑ) starts in the initial configuration ϑ and proceeds according to the
rules presented in Fig. 1. We write [n] to denote {1, . . . , n}. There are a few important
comments to regard when reading the rules.

– They are to be read bottom-up, i.e. if the current configuration in a play is an in-
stance of the pattern below then the player annotated to the right of a rule chooses
one of the configurations on top to continue with. The respective player can choose
from the alternatives which are separated by “|”. Some rules are deterministic, i.e.
no player is making a choice. The configuration on the top of a rule is called premise
and that on the bottom conclusion.
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– Formulas denoted ϕ, ψ, ϕ1, . . . are state formulas according to the syntax of CTL∗;
formula denoted α, β, α1, . . . are path (and therefore possibly also state) formulas.
Λ always stands for a set of literals, Φ denotes an arbitrary set of blocks and state
formulas, and Σ and Π denote a set of path formulas.

– As we identify the state formula Eα with the block E{α}—for instance—the rules
(∧) and (∨) can generate blocks.

– Although configurations and blocks are sets in the main, they are written as lists.
However, a notation like A(α ∧ β,Σ), Φ implicitly states that α ∧ β /∈ Σ and
A(α ∧ β,Σ) /∈ Φ. Otherwise, a rule application could be repeated ad infinitum and
hinders progress.

Note that in certain configurations several rules may apply, even rules for both players
to perform choices. We therefore assume an arbitrary but fixed ordering on the rules
which determines uniquely the rule that applies to a configuration. The exact ordering
is irrelevant for the theory developed here.

In an application of a rule, the formula and the block which get transformed are
called principal formula and block, respectively. Examples are the formula α ∧ β and
the block A(α∧β,Σ) in the instance of the rule (A∧) as shown in Fig. 1. In the rule (A)U)
all formulas in the principal block are principal. The unaffected blocks and formulas are
called side formulas taking blocks for formulas. Continuing the example, these are the
formulas in Σ and in Φ.

A play is a possibly infinite sequence of configurations starting in the initial one
and resulting from successive rule applications. Note that in every play, the intended
formula of a configuration is in CTL�. Before we can define the winner of a play we
need a technical definition capturing the unfulfilledness of least fixed point constructs.

Definition 1. A component of a configuration C is a state formula in C, an A-block in
C or a single formula inside an E-block contained in C. Let Φ0, Φ1, . . . be an infinite
play. The rules induce a connection relation on components of adjacent configurations
in this play, obtained from the game rules in a straightforward way. A component C in
Φi is connected to a component C′ in Φi+1, written 〈Φi, C〉� 〈Φi+1, C

′〉, if either

– C is not principal and C = C′, or
– C is principal in this rule application and gets transformed into C′.

Example 2. To illustrate the second item consider an instance of the rule (ASt) as
shown Fig. 1 for ϕ = Eα. For the left alternative, Eα becomes part of the configu-
ration both as a state formula and as a block E{α}. Therefore, 〈·, A(Eα,Σ)〉 � 〈·, Eα〉
and, if α is a state formula, 〈·, A(Eα,Σ)〉 � 〈·, α〉 hold. For the other alternative, we
have 〈·, A(Eα,Σ)〉 � 〈·, AΣ〉. On the other hand, a U- and an R-formula can grow by
unfolding these fixed points. For example, the instance of the rule (EU) in Fig. 1 yields
〈·, αUβ〉� 〈·, X(αUβ)〉.

The following lemma is not hard to see. Note that only the unfolding rules for U- and
R-formulas create in some sense larger configurations, but they introduce an X-operator
which has to be dealt with before the respective formula can be unfolded again.

Lemma 3. Every infinite play contains infinitely many applications of rules (X0) or (X1).
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Definition 4. A thread in Φ0, Φ1, . . . is a sequenceC0, C1, . . . of components such that
〈Φi, Ci〉� 〈Φi+1, Ci+1〉 for all i ∈ N. It is called a bad thread if either

– there is a ϕUψ ∈ Cl(ϑ) s.t. Ci = ϕUψ for infinitely many i, or
– there is a block AΣ with Σ being U-pure, s.t. Ci = AΣ for infinitely many i.

In the first case we also speak of a bad E-thread, in the second case of a bad A-thread.

Hence, a play contains a bad thread if there is either a U-formula inside some E-
blocks that regenerates itself infinitely often via the unfolding in rule (EU), or there is
an A-block which contains no R-formula that regenerates itself in a similar way along
this play. Player ∀ wins a play π = Φ0, Φ1, . . . if

(∀-1) there is an n ∈ N s.t. Φn is propositionally inconsistent, or
(∀-2) there is an n ∈ N s.t. A∅ ∈ Φn, or
(∀-3) π contains a bad thread.

In all other cases, player ∃ wins the play.

Determinacy. An important game-theoretic concept is determinacy meaning that for
every game exactly one of the players has a winning strategy. The games presented
here are determined. The proof is relatively simple by appealing to known determinacy
results about games in general. We only need to identify the winning plays as being of
a certain type, namely being recognisable by a co-Büchi automaton.

Lemma 5. For a bad thread C0, C1, . . . in Φ0, Φ1, . . . either

– there is a k ∈ N and ϕUψ ∈ Cl(ϑ) s.t. Ci ∈ {ϕUψ, X(ϕUψ)} for all i ≥ k, or
– there is a k ∈ N and a U-pure set Σ ⊆ Cl(ϑ) s.t. Ci ∈ {AΣ, A(XΣ)} for all i ≥ k.

Proof. The case distinction follows Definition 4. For k we take one of the infinitely
many values i mentioned in that definition. Finally, the game rules entail the properties
along the corresponding suffix.

Theorem 6. The CTL� satisfiability games are determined, i.e. for every ϑ, either ∃ or
∀ has a winning strategy for the game G(ϑ).

Proof. Following Lemma 5 and 3, the winning conditions can be represented as a co-
Büchi condition and are therefore in the Borel hierarchy. The result then follows imme-
diately from Martin’s Theorem [12].

Soundness and Completeness. Due to lack of space we only sketch how one can
prove that the games correctly characterise satisfiability in CTL�. It is possible to do this
via explicit constructions of a model from a winning strategy for player ∃, etc. Instead,
we appeal to a very similar system that is known to correctly characterise satisfiability
for CTL∗ [4]. However, the syntactical restrictions of CTL∗ considered here supersede
the distinction between traces and threads as exploited in [4].

Theorem 7. Player ∃ has a winning strategy for the game G(ϑ) iff ϑ is satisfiable.
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The games here differ from the system in [4] in the rules for universally path quanti-
fied blocks and in the winning conditions. There, the rules are simply dual to the ones
for existentially path quantified blocks; in detail: rule (AU) and (A)U) here replace the
dual version of (EU). Furthermore, in the system for full CTL∗, a bad thread of A-blocks
must not contain any infinitely regenerating R-formula. In order to prove soundness and
completeness of the games for CTL� it suffices to see that the CTL� games essentially
behave like the CTL∗ games when applied to a CTL� formula. Now note that the defining
property of being a CTL� formula is having no genuine path formulas as arguments to
a U-formula inside an A-block. State formulas, though, get removed from A-blocks with
rule (ASt). This justifies rule (AU). Furthermore, if a sequence of connected A-blocks
through a play contains no regenerating R-formula then the set of formulas in those
blocks must eventually become U-pure because no U-formula in there can spawn off
anything that remains in this set. Then the unfolding of U-formulas in a U-pure set can
be synchronised which justifies rule (A)U). Finally, a bad thread in the sense of Def. 4 is
a bad trace in the system for CTL∗, and vice versa.

4 Pruning Time

By Thm. 6 and 7, ¬ϑ is a tautology iff player ∀ has a winning strategy in the game
G(ϑ). In the next section we will present an axiomatisation for CTL�, and in this section
we develop the necessary tools in order to prove completeness thereof. We consider ∀’s
winning strategy as a tree, namely the tree of all plays which conform to this strategy.
I.e. at every position in which player ∃ makes a choice or a deterministic rule applies
all successors are preserved in the tree. At position in which player ∀ makes a choice
only the choice prescribed by the strategy is preserved in the tree. Clearly, such a tree
is in general infinite. We turn it into a finite tree which essentially is a finite derivation
for ¬ϑ in the axiom system of the next section.

As this axiomatisation should also be sound it clearly does not suffice to truncate
the tree at arbitrary positions. Instead, the resulting finite tree should satisfy the fol-
lowing properties: (1) leaves should be unsatisfiable; and (2) unsatisfiability should be
preserved in the direction towards the root. This is enough to yield completeness since
it constructs a proof for an unsatisfiable ¬ϑ, i.e. a valid ϑ.

The principles used to achieve (1) and (2) are the following. At nodes which are
inconsistent or contain A∅, it suffices to simply truncated the tree. This is possible on
all plays that player ∀ wins with his winning conditions (∀-1) or (∀-2). The remaining
paths in the tree contain bad threads. We use the principle of fixpoint strengthening in
order to preserve satisfiability but disable infinite unfoldings of U-operators. In essence,
this principle forbids the unfolding of a (set of) U-formulas in a certain context for the
second time. Instead, the node becomes inconsistent and can be truncated as well.

An additional difficulty is the fact that this has to be done in the tree as a whole rather
than on each branch separately—even though bad threads are properties of branches.
Note that two branches with bad threads may have a common prefix but these threads
may differ on that prefix. This is basically handled by a scheduling mechanism which
strengthens least fixpoint formulas one-by-one.
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(EU)†
E(ϕUΠ∪Φψ,Π), Φ

E(β,Π), Φ | E(α, X(αUΓ β),Π), Φ
(EU)∗

E(αUΓβ,Π), Φ

E(ϕUψ,Π), Φ
(EU)�

E(ϕUΓψ,Π), Φ

E(β,Π), Φ | E(α, X(αUΠ∪Φβ),Π), Φ
(EU)	

E(αUβ,Π), Φ

(A�U)†
A(ϕ1UΦψ1, . . . , ϕnUΦψn), Φ

A(ϕ1Uψ1, . . . , ϕnUψn), Φ
(A�U)�

A(ϕ1UΓψ1, . . . , ϕnUΓψn), Φ

ψj , Φ | ϕ1, . . . , ϕn, A(X(ϕ1UΓψ1), . . . , X(ϕnUΓψn)), Φ
(A�U)∗ ∃ j ∈ [n]

A(ϕ1UΓψ1, . . . , ϕnUΓψn), Φ

ψj , Φ | ϕ1, . . . , ϕn, A(X(ϕ1UΦψ1), . . . , X(ϕnUΦψn)), Φ
(A�U)	 ∃ j ∈ [n]

A(ϕ1Uψ1, . . . , ϕnUψn), Φ

Fig. 2. Rules for annotated U-formulas in E-blocks

4.1 Annotations and Their Rules

For a set of formulas Γ ⊆ Cl(ϑ) define ϕUΓψ := (ϕ ∧ ¬
∧
Γ )U(ψ ∧ ¬

∧
Γ ). The set

Γ is called an annotation to the formula ϕUψ. Note that annotating formulas can take
us out of the CTL� fragment. This, however, is just an observation and has no negative
effect since its semantics is well-defined as a CTL∗-formula.

The annotation is used to remember a set of side formulas. Informally, once the
annotated formula occurs in a configuration with the same side formulas again, we like
to truncate the play right after this repetition.

On an infinite play the U-formulas are eventually handled by the rules (EU) and (A)U)
for I = [n] only. Both rules are extended to operate on annotated formulas, introducing
four new rules for each occurrence of U-formulas inside E- or A-quantifiers: one rule
to create an annotation, one to keep it through the usual unfolding, one to erase it for
following different branches with different bad threads, and one to terminate the play.
These new rules are shown in Fig. 2.

The annotation in rule (A)U)� is placed on all formulas in the block simultaneously.
None of the rules can change or remove the annotation of a formula in such a block
without affecting the other formulas. Hence, we actually annotate the whole block rather
than each formula. However, for simplicity we focus on the annotation of formulas.

Lemma 8. The conclusion in rule (EU)† is unsatisfiable, and for the rules (EU)�, (EU)∗

and (EU)� we have that if all premises are unsatisfiable then so is the conclusion.

Proof. We detail the proof for the most difficult rule only, that is for (EU)�. Assume that
there is a transition system T and a path π such that

T , π |= αUβ ∧
∧

Π ∧
∧

Φ. (1)

Let k ∈ N be such that T , πk |= β, and T , πi |= α ∧ ¬β for all i < k. Among all such
paths satisfying (1), we choose a path π with a minimal k-value. Suppose that none of
the premises is satisfiable. Thus, we have in particular
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T , π �|= (β ∨ (α ∧ X(αUΠ∪Φβ))) ∧
∧

Π ∧
∧

Φ.

Then there is a 0 < � ≤ k such that T , π
 �|= ¬
∧
(Π ∪ Φ). Additionally, (1) yields

T , π
 |= αUβ. Therefore, Eq. (1) holds for π
 instead of π. But the k-value of π
 is
k − � < k. Thus, this is a contradiction to the minimality of k.

Lemma 9. The conclusion in rule (A)U)† is unsatisfiable, and for the rules (A)U)�, (A)U)∗

and (A)U)� we have that if all premises are unsatisfiable then so is the conclusion.

Proof. Consider the rule (A)U)�. Assume that

ψj ∧
∧

Φ is unsatisfiable for all j ∈ [n], (2)

and that

T , s |= A
(∨

i∈[n] ϕiUψi

)
∧
∧
Φ (3)

holds for a transition system T and a state s in T .
For any such pair (T , s) satisfying (3) we associate a tree with unordered children.

The tree is the unwinding of T which begins at s and ends at a node t whenever there
is an i ∈ [n] such that T , t |= ψi and T , r |= ϕi for any node r along the path
from s, including, to t, excluding. Since an associated tree does not show any infinite
path—nevertheless the tree might be infinite—the strict subtree-order is well-founded
on associated trees.

Now, let T and s be such that they satisfy (3) and that their associated tree is a
minimal one w.r.t. the strict subtree-order among all associated trees which originate
from pairs which satisfy (3). By (2) the associated tree cannot consist of its root only.
For the sake of contradiction, assume that the pair of T and s does not model the right
premise of (A)U)�. Then there is a state r different from s, which corresponds to a node
in the associated tree, such that T , r �|= ¬

∧
Φ. However, the subtree at r is the associate

tree of T and r. But this situation contradicts the choice of T and s.
The argument for the other rules are simpler.

Remark 10. Although the rules in Fig. 2 are sound w.r.t. unsatisfiability they are not
invertible in general. Consider the rule (EU)�: the configuration E(pU{p}(p ∧ q)) is un-
satisfiable whereas E(pU(p ∧ q)) is satisfiable. Therefore, these rules are unsuitable for
an incorporation into the game defined in Sect. 3 in the first place.

4.2 Truncating Infinite Trees

The following constructions consider (labelled) trees. To simplify the presentation we
introduce some notations. For a tree T and nodes u, v in T we write u <T v iff u is
a proper ancestor of v, u ≤T v iff u <T v or u = v, T |v for the subtree located at v
such that v is the root of T |v, and u is a child of v (v is parent of u, resp.) iff v <T u
and v <T w <T u for no node w in T . A path in T is a (finite or infinite) sequence
such that any node in the sequence is a parent of the succeeding node if the latter exists.
A branch is a path with begins at the root. Since <T is well-founded—but not a linear
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order in general—, minT (V ) denotes the set of minimal nodes w.r.t. <T in a set V of
nodes.

For the remaining section assume that ¬ϑ is a tautology. Hence, player ∀ has a win-
ning strategy for the game G(ϑ), cf. Thm. 6 and 7. From now on, formulas and sets of
formulas are assumed to be in or subsets of Cl(ϑ).

Definition 11. We say that a tree T is a (ϑ-)tree which follows a set of rules R iff each
node is labelled with a configuration for ϑ, the root is labelled with ϑ, and for each node
v one of the following items holds.

– v is a leaf and the node is propositionally inconsistent or contains A∅.
– v has exactly one child, say w, such that v is the conclusion and w the premise of

the same instance of the rule (X0) or (X1).
– For a rule in R \ {(X0), (X1)} and for a principal block and formula(s), the set of

children is the set of possible successor configurations which player ∃ can choose
with this rule, principal block and formula(s). For instance, a node for the rule (A)U)
has exactly n+2n children if n is the number of U-formulas in the principal A-block:
The left hand of “|” admits n possibilities and the right hand 2n.

Note that in such a tree any inner node uniquely determines the rule which was used in
the justification for the second and the last item.

Lemma 12. There is a ϑ-tree which follows the rules in Fig. 1.

Proof. The winning strategy of player ∀ is taken for a tree. However, not all possible
moves of player ∃ need to be considered. For the last item in Def. 11 it suffices to
consider just one rule, principal block and formula(s) on ∃’s turn. Moreover, on every
branch the first node is changed into a leaf iff the node is propositionally inconsistent
or contains A∅. The obtained tree follows the said rules.

We fix such a tree and call it Tϑ. The label of a node v is written as �(v). We may take
the node for its label. As each branch in Tϑ forms a game in the sense of Sect. 3—at
least a prefix of a game for which the winner is already determined—, we may use the
game-theoretic notations for the tree as well. For instance, every infinite branch in Tϑ
contains a bad thread.

To handle repetitions in an infinite branch of Tϑ we set

Rep(ϑ) := {Σ | Σ ∈ 2Cl(ϑ) and Σ is U-pure}
∪ {ϕ | ϕ ∈ Cl(ϑ) and ϕ is a U-formula} × 2Cl(ϑ).

Definition 13. Let ρ ∈ Rep(ϑ). A node v in the tree Tϑ is a repeated node for ρ iff
there is a path v1, . . . , vK in Tϑ for some K > 1 such that v1 = v, �(v1) = �(vK) and
one of the following items holds.

– ρ ∈ 2Cl(ϑ), v is the conclusion of an instance of (A)U), Aρ is principal for that
application, and there is a sequenceΣ1, . . . , ΣK of sets of formulas such thatΣ1 =
ΣK = ρ and 〈�(vi), A(Σi)〉� 〈�(vi+1), A(Σi+1)〉 for all i ∈ [K − 1].
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– ρ = (ϕ,Π) for {ϕ}∪Π ⊆ Cl(ϑ), v is the conclusion of an instance of (EU), ϕ and
E(ϕ,Π) are principals for that instance, and there are a sequence ϕ1, . . . , ϕK of
formulas and a sequence Π1, . . . , ΠK of sets of formulas such that ϕ1 = ϕK = ϕ,
Π1 = ΠK = Π , and 〈�(vi), E(ϕi, Πi)〉 � 〈�(vi+1), E(ϕi+1, Πi+1)〉 for all i ∈
[K − 1].

A node vK is called repeating node for v and ρ.

Lemma 14. Let (vi)i∈N be an infinite branch in Tϑ. If the play (�(vi))i∈N contains a
bad thread then there is a ρ ∈ Rep(ϑ) such that for every i there are j−, j+ ∈ N with
i < j− < j+, vj− is a repeated node for ρ, and vj+ is their repeating node.

Proof. Let (Ci)i∈N be a bad thread in (�(vi))i∈N. Lem. 5 yields two possibilities. We
consider the first case only—the other is very similar. So, let k, ϕ, ψ as written in
that alternative. Let i ∈ N be given. At least one of the rules (X0) and (X1) is applied
infinitely often, cf. Lem. 3. Therefore and as only the rule (EU) can modify a U-formula,
the rule (EU) is also applied infinitely often with ϕUψ as principal formula. Because the
amount of different instances of the rule (EU) is finite, there are j− and j+ such that
max(k, i) < j− < j+, vj− is a repeated node for ϕUψ, and vj+ is their repeating node.
Indeed, (Ci+j−−1)i∈[j+−j−+1] is the ϕ-sequence as required in Def. 13. To this end,
the ith element sequence of the Π-sequence is the set of side formula in the E-block
which hosts Ci+j−−1.

The truncation of Tϑ to a finite tree is realized by the operation · ⇓ϑ ·. To this end, the
operation considers the elements of Rep(ϑ) in some order. So, let (Repi)i∈[|Rep(ϑ)|] be
an enumeration of Rep(ϑ).

Definition 15 (· ⇓ϑ ·). For a tree S and i ∈ N, the application S ⇓ϑ i returns a tree. If
S is finite or i > |Rep(ϑ)|, S ⇓ϑ i := S. Otherwise, let

V − := minS{v | v is a repeated node for Repi in S},
V +
v− := minS{v′ | v′ is a repeating node for v− and Repi in S}, and

V ⊥ := minS{v | v and v+ are ≤S-incomparable for all v− ∈ V − and v+ ∈ V +
v−}

where v− ∈ V −. For every v ∈ V ⊥ the operation replaces S|v by (S|v) ⇓ϑ (i + 1).
And for every v ∈ V − the operation annotates formulas and truncates subtree in Sv

depending on Repi. If Repi is a set of U-pure formulas S ⇓ϑ i does the following. By
definition, v is the conclusion of the rule (A)U) such that Repi is principal. The said
rule got replaced by an instance of the rule (A)U)�. As this rule annotates formulas the
operation proceeds away from the root as long as the current node is a proper ancestor of
an v′ ∈ V +

v . Along this traversal, the rules got adjusted to the annotation. In particular,
if the rule is (A)U) and the annotated formulas are principal, the rule got replaced by
(A)U)

∗. When the traversal reaches an v′ ∈ V +
v the node is replaced by the rule (A)U)

†.
And as soon as the current node is not an ancestor of any v′ ∈ V +

v , the operation
inserts the rule (A)U)� to got rid of the annotation and skips the remaining subtree. The
procedure for the other case—that is, Repi is a pair—is similar but replaces instances
of the rule (EU) by (EU)�, (EU)∗, (EU)� and (EU)†. Since the set V − is defined in terms
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of minS , the adjustments for the annotations do not interfere for different elements in
V −. This completes the description of · ⇓ϑ ·.

Theorem 16. Tϑ ⇓ϑ 1 is a finite ϑ-tree which follows the rules in Fig. 1 and 2.

Proof. Each call S ⇓ϑ i returns a tree such that its root and S’s root share the same
label. Therefore by construction, the tree Tϑ ⇓ϑ 1 follows the rules. If Rep(ϑ) = ∅ then
Tϑ ⇓ϑ 1 = Tϑ and by Lem. 14 the tree does not contain any bad thread. Since player ∀
wins G(ϑ), Tϑ must be finite. Now, suppose Rep(ϑ) �= ∅. For the sake of contradiction,
assume that Tϑ ⇓ϑ 1 is infinite. Since the tree is finitely branching, König’s Lemma
yields an infinite branch. The execution of Tϑ ⇓ϑ 1 leads to at most |Rep(ϑ)|+1 nested
invocations at a time. For each branch and each invocation the operation · ⇓ϑ · inserts
at most one node, namely the premise to the rule (A)U)

� or (EU)�. Therefore, Tϑ has an
infinite branch. For simplicity we shall neither count nor name these additional nodes—
hence the infinite branches in Tϑ and in Tϑ ⇓ϑ 1 are identically equal. By definition,
this branch contains a bad thread. Lem. 14 names a ρ ∈ Rep(ϑ). Let i be such that
Repi = ρ. Since the branch is infinite, there was an invocation Tϑ|v ⇓ϑ i such that
v lies on the infinite branch. Additionally, the same application of Lem. 14 yields two
nodes v− and v+ on the infinite branch such that v <Tϑ

v− <Tϑ
v+, v− is a repeated

node for ρ, and v+ is their repeating node. Among all such pairs (v−, v+) we minimize
v− and then v+. Therefore, in the invocation of Tϑ|v ⇓ϑ i we have that v− ∈ V −

and v+ ∈ V +
v− . The algorithm truncates the tree at v+. This is a contradiction to the

assumption that the infinite path in Tϑ passes v+.

5 Proving Time

We present a Hilbert-style axiomatisation of ¬CTL� and prove it to be sound and com-
plete. An axiomatisation is a set of axioms and a set of rules. The axioms and rules may
contain formula variables. A proof for some formula ϕ is a finite sequence ϕ0, . . . , ϕn

s.t. ϕ = ϕn and for all i = 0, . . . , n we have: ϕi is either an instance of an axiom or
follows from some ϕ0, . . . , ϕi−1 via an instantiation of one of the rules. We write � ϕ
to denote that ϕ is provable.

The axiomatisation is derived from the satisfiability game rules in Fig. 1 and the
amended rules in Fig. 2 in the following way. Take a rule in which player ∃ makes a
choice among premisses P1, . . . , Pn from a conclusionC. Then¬C should be provable
from¬P1, . . . , ¬Pn. The axioms and rules are presented in Fig. 3. All formula variables
α, β and γ range over arbitrary CTL∗-formula and ϕ, χ, and ψ over CTL∗-state formula.
The axiom (Ax-1) can be made finite using a textbook-like axiomatisation of propo-
sitional logic where path-quantified formulas are taken for propositions in the purely
propositional logic.

Using the previous sections, soundness and completeness of this axiomatisation is
relatively easy to establish.

Theorem 17 (Soundness). For all ϕ ∈ CTL∗: if � ϕ then |= ϕ.

Proof. By induction on the length of a proof. One easily establishes that all axioms are
valid and all the rules preserves validity. In particular, the rules (Ru-3) and (Ru-4) are
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(Ax-1) All substitution instances of propositional tautologies
(Ax-2) 	 E(α ∨ β) ↔ Eα ∨ Eβ (Ax-3) 	 E(ϕ ∧ α) ↔ ϕ ∧ Eα

(Ax-4) 	 αUβ ↔ β ∨ (α ∧ X(αUβ)) (Ax-5) 	 (α → β) → (Eα → Eβ)

(Ax-6) 	 X(α ∨ β) ↔ Xα ∨ Xβ (Ax-7) 	 Ett

(Ax-8) 	 EXtt (Ax-9) 	 EXEα ↔ EXα

(Ax-10) 	 (α ∧ γ)U(β ∧ γ) → αUβ (Ru-1) If 	 α → β and 	 α then 	 β

(Ru-2) If 	 Eα → Eβ then 	 EXα → EXβ

(Ru-3) If 	 A((γ ∨ β) ∧ (γ ∨ α ∨ X((α ∨ ¬γ)R(β ∨ ¬γ)))) then 	 A(γ ∨ (αRβ))

(Ru-4)

⎧⎪⎨
⎪⎩

If 	 χ → (
∧

j∈[n]

ψj ∧ (
∨

j∈[n]

ϕj ∨ E(
∧

j∈[n]

X((ϕj ∨ χ)R(ψj ∨ χ))))

then 	 χ → E(
∧

j∈[n]

ϕjRψj)

Fig. 3. Axioms and rules of the ¬CTL� axiomatisation

the negations of the rules (EU)� and (A)U)� in the main. Indeed, the proofs of Lem. 8
and 9 also hold for arbitrary formulas in CTL∗ as long as the configuration is a state
formula.

Lemma 18. – If Φ is propositionally inconsistent or contains A∅ then � ¬
∧
Φ.

– If Φ′ is a premise and Φ the conclusion of (X0) or (X1), then � ¬
∧
Φ′ implies

� ¬
∧
Φ.

– Let R be a rule in Fig. 1 or 2 apart from (X0) and (X1). For a fixed principal
block and fixed principal formula(s), let Φ1, . . .Φn be all possible premises to a
conclusion Φ for the rule R. If � ¬

∧
Φi for all i ∈ [n] then we have � ¬

∧
Φ.

Proof. The argument is mainly straightforward. For the rules of the satisfiability game it
suffices to show that the conclusion implies the disjunction of the premises. Exceptions
are (X0), (X1), (EU)� and (A)U)�. These rules can be proven sound by (Ru-2), (Ru-3)
and (Ru-4). In some cases it is necessary to move side formulas first into and later out
of the principal block.

Theorem 19 (Completeness). For all ϕ ∈ ¬CTL�: if |= ϕ then � ϕ.

Proof. Suppose |= ϕ, i.e. ¬ϕ is unsatisfiable. According to Thm. 7, player ∀ has a
winning strategy for the game G(¬ϕ). Thanks to Thm. 16 there is a ¬ϕ-tree T which
follows the rules of Fig. 1 and 2 and whose root is ¬ϕ. By induction on the tree we can
construct a proof for ϕ using Lemma 18.

Altogether, the axiomatisation is sound and complete for ¬CTL�, and hence also for its
fragments CTL and CTL+.

6 Conclusion

A task for further work is obviously to extend these techniques to even larger frag-
ments, let alone CTL∗ itself. It remains to be seen whether the syntactic restriction in
CTL�, namely the fact that U-formulas inside of A-quantifiers must have state formulas
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as arguments, can be relaxed. If these are path formulas to some extend then a con-
nected sequence of A-blocks which does not contain a regenerating R-formula need not
become U-pure eventually. The problem is then to find a logical principle which is sound
w.r.t. unsatisfiability and which allows one to strengthen such non-U-pure formula sets
in order to become unsatisfiable after too many unwindings.

Another problem in this context is the fact that Lemma 8 cannot be made to work for
universally path quantified formulas, i.e. by replacing each E in the corresponding rules
with A. The reader is invited to attempt to prove the resulting statement. The problem
essentially is that path formulas may hold somewhere in a path starting in a state but
not in other paths starting in the same state. This, however, is true for state formulas.
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Abstract. An algorithm for unification modulo one-sided distributivity
is an early result by Tiden and Arnborg [14]. Unfortunately the algorithm
presented in the paper, although correct, has recently been shown not
to be polynomial time bounded as claimed [11]. In addition, for some in-
stances, there exist most general unifiers that are exponentially large with
respect to the input size. In this paper we first present a new polynomial
time algorithm that solves the decision problem for a non-trivial subcase,
based on a typed theory, of unification modulo one-sided distributivity.
Next we present a new polynomial algorithm that solves the decision
problem for unification modulo one-sided distributivity. A construction,
employing string compression, is used to achieve the polynomial bound.

1 Introduction

Equational unification has long been a core component of automated deduction
and more recently has found application in symbolic cryptographic protocol anal-
ysis. In particular, the algorithm for unification modulo a one-sided distributivity
axiom

X × (Y + Z) = X × Y +X × Z

is an early result by Tiden and Arnborg [14]. More recently this theory has been
of interest in protocol analysis due to the fact that many cryptographic opera-
tors satisfy this property. Unfortunately the algorithm presented in the paper,
although correct, has recently been shown not to be polynomial time bounded
as claimed [11]. In addition, for some instances, there exists most general uni-
fiers (mgus) that are exponentially large with respect to the input size. In this
paper we examine the decision problem for one-sided distributivity. More for-
mally we consider the decision problem for elementary unification modulo this
theory, where the terms can only contain symbols in the signature of the theory
and variables. This is the theory considered by Tiden and Arnborg [14]. We first
present a new polynomial time algorithm which solves the decision problem for
a non-trivial subcase, based on a typed theory. This subcase happens to be suf-
ficient to express the negative complexity result in [11]. Next we present a new
polynomial algorithm which solves the decision problem for unification mod-
ulo one-sided distributivity. We employ string compression through the use of
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straight line programs, which allows us to achieve the polynomial bound. Some
pioneering work on using compression in unification has been done in [4] and
[7]. Due to space restrictions some proof details, figures, and a minor appendix
have been left out of this paper. For the interested reader these details can be
found in the technical report [9].

2 Preliminaries

We use the standard notation of equational unification [2] and term rewriting
systems [1]. Let X , Y , W and Z denote variables. A set of equations S is said
to be in standard form over a signature F if and only if every equation in S
is of the form X =? t where X is a variable and t, a term over F , is one of
the following: (a) a variable different from X , (b) a constant, or (c) a term of
depth 1 that contains no constants. We say S is in standard form if and only
if it is in standard form over the entire signature. It is not generally difficult to
decompose equations of a given problem into simpler standard forms.

A set of equations is said to be in dag-solved form (or d-solved form) if and
only if they can be arranged as a list X1 =? t1, . . . , Xn =? tn where (a) each
left-hand side Xi is a distinct variable, and (b) ∀ 1 ≤ i ≤ j ≤ n: Xi does not
occur in tj ([5]).

Definition 1. A straight-line program (SLP )1 is a context-free grammar, G =
(Σ,N, P ). Where Σ is the set of terminal symbols (these will correspond to a
set of “label” variables in this paper), N is a set of nonterminal symbols and
P as set of grammar productions. P contains only two types of productions:
Ni → a and Ni → NjNk with i > j, k, where Ni, Nj, Nk are nonterminals and
a is a terminal. The SLP generates exactly one string corresponding to the top
nonterminal.

The size of a SLP can be defined in several ways. We use the following definitions
from [6]. For any terminal, a, define the depth(a) = 0 and for any nonterminal
Ni

depth(Ni) = max {depth(Nji) + 1 | Ni → Nj1NJ2}

We can define the depth of the SLP as the depth of its top nonterminal. The
size of a SLP , S, is defined to be the number of productions and is denoted as
‖S‖. We denote the length of a string produced by a SLP S by |S|. Note that
the lengths are represented in binary.

3 Typed System and Single Homomorphism

We present a typed system interpretation of one-way distributive unification. We
begin with the simplest non-trivial subcase, the case of a single homomorphism.
This is non-trivial because the exponential complexity result in [11] holds in this

1 These are also known as Singleton Context-Free Grammars in [7].
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case as well. Consider a ‘type’ system based on two types τ1 and τ2. We let all
left multiplication variables be of type τ1 and all right variables of type τ2. Thus

× : τ1 ∗ τ2 → τ2,
+ : τ2 ∗ τ2 → τ2,

Therefore, if there is only a single variable of type τ1 in the input equations then
we can consider the multiplication operation as a homomorphism h over +. This
is the single homomorphism case, it restricts the number of valid terms from the
general case but it is sufficient for encoding the exponential example in [11] and
it yields a much simplified decision algorithm.

Definition 2. We define the following relations (X, Y and Z are variables):
X �h Y if X = h(Y ) X �l+ Y if X = Y + Z.
X �r+ Z if X = Y + Z X �a Z if X = Y + Z or X = Z + Y .

We denote the transitive closure of a relation R as R+. For a unification problem
S in standard form we construct the following two graphs (similar to the graphs
used in [14]).

Definition 3. A path labeled dependency graph (LD) is a directed graph such
that the nodes in the graph correspond to variables of type τ2. We form two kinds
of edges:
(i) Lateral edges, where for each equation of the form X =? T × Y , we have
an edge from node X to node Y labeled with a label variable, T of type τ1. In
the single homomorphism case T = h and the labels are numbers correspond-
ing to the number of homomorphisms. Thus, for single edges corresponding to a
single homomorphism the label is 1. For paths corresponding to multiple homo-
morphisms the label is m, where m is the number of homomorphisms.
(ii) Downward edges, where for each equation of the form X =? X1 + X2, we
have directed edges from node X to node X1 and from node X to node X2.

Definition 4. The path labeled propagation graph (LP) is a directed simple
graph. Its vertices are the equivalence classes of the symmetric, reflexive, and
transitive closure of the relation defined by �h on the LD graph for the same
system. Edges exist between equivalence classes [X ] and [Y ] if there exists vari-
ables U ∈ [X ] and V ∈ [Y ] such that U �a V .

These graphs, mainly the LD, will be the primary data structure and will be
processed in a similar fashion to the original algorithm [14] but using a modified
set of graph saturation rules. The LP graph is included due to a specific type of
non-unifiable (as was proven in [14]) system. An example of this is the following
set of equations. {X =? V + Y, X =? h(Y )}. It can be seen that this will
cause infinite application of rule (vii). This problem was solved in [14] by using
the propagation graph. This is due to the fact that this type of non-unifiable
systems will cause cycles in the propagation graph. Therefore, each time the
algorithm updates the LD graph it also updates the LP graph and checks for
cycles. Likewise, if cycles are found the algorithm terminates with failure. We
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now introduce a set of saturation/inference rules. Rule (0) acts on the system
S and rules (i) through (vii) act on the LD graph of S. Rule (0) is simple
variable replacement. Rules (i) - (iii) are cancellation rules that follow directly
from [14]. Rule (vi) is a failure rule that corresponds to occur-check type errors.
Rules (iv), (v), (vii) are path completion rules. Rule (vii) is the same path
propagation rule from the Tiden and Arnborg algorithm, justified by the axioms
of the system; see [14]. But, in rule (vii) we do not create the new variables W1

and W2 unless W has no children variables related along a �a edge. We denote
a path and its label π between nodes X and Y by X

π−→ Y . For the single
homomorphism case paths are simply the composition of many occurrences of
the homomorphism. Therefore, a path π is essentially hj for some j ∈ N and
the path length, |π|, is just j. During saturation we derive path constraints of
the form π1 =? π2 or π1≺?π2. For the single homomorphism case, because there
is just one homomorphism, π1 =? π2 is simply a check if the lengths are equal,
i.e., if |π1| = |π2|. For the prefix check π1≺?π2, in the single homomorphism
case we only need to check if the length of π1 is less then π2, i.e., |π1| < |π2|. It
is important to note that path lengths are kept in binary representation. This
compression is significant as it allows us to avoid exponential growth in the
path lengths. In addition to path constraints we will need to perform several
path computations , specifically we need to concatenate paths and compute path
suffixes . These operations can be accomplished, in the single homomorphism
case, by simple addition and subtraction.

(0)
S � {U =? V }

{U �→ V }(S) ∪ {U =? V }
if U occurs in S

(i)
X

η−→ Y, X
π−→ Z, |η| = |π|

X
π−→ Z, Y =? Z

(ii)
X

π−→ Y, Z
π−→ Y

X =? Z, Z
π−→ Y

(iii)
U =? U1 + U2, U =? U3 + U4,

U =? U1 + U2, U3 = U1, U4 = U2

(iv)
X

hj

−→ Y, X
hi

−→ Z, j < i

Y
hi−j

−→ Z, X
hi

−→ Z

(v)
X

hi

−→ Y, Y
hj

−→ Z

X
hi+j

−→ Z, Y
hj

−→ Z

(vi) S
FAIL

if LP or LD are cyclic

(vii)
U

η−→ W, U =? U1 + U2,

U
η−→ W, W =? W1 +W2, U1

η−→ W1, U2
η−→ W2

We will need to apply the rules in a specific order to ensure we maintain a poly-
nomial time bound. Let ∼h stand for the reflexive, symmetric and transitive
closure of �h. Thus ∼h defines a set of equivalence classes over a set of vari-
ables. Denote these classes as [Y ]h. We can note that the LP graph has exactly
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these classes as its nodes. We can define a strict partial ordering �h on the ∼h-
equivalence classes based on �a. That is, [X ]h �h [Y ]h if and only if there exist
K1 ∈ [X ]h and K2 ∈ [Y ]h such that K1 �a K2.

Given these rules the decision algorithm for the single homomorphism subcase
is presented in Algorithm 1. We next discuss the correctness and complexity of
Algorithm 1, most of these results will follow directly from [14].

Algorithm 1. Unification modulo a Single Homomorphism

(Input: A system of equations in standard form)
(1: Generate data structures) Generate the graphs, LD and LP.
(2: Clean up the system) Exhaustively apply the rules (0), (i), (ii), (iii) and (iv).
(3: Error checking) Apply graph cycle checking to the two graphs (i.e., rule (vi)).
If a cycle is found stop with failure.
(4: Process equivalence class) Select an equivalence class based on the strict
partial ordering �h. That is, we select the largest element of �h that has not yet
been processed. Thus, if we select the class [X]h then there does not exist a class
[Y ]h such that [Y ]h has not been processed and [Y ]h �

+
h [X]h. Clearly, if �h is not

a strict partial ordering then there is a cycle in the LP graph.

First we apply rule (v) — this is done by starting with the sink node of the path
and working back to the start node of the path. Once rule (v) has been exhaustively
applied we apply rule (vii) if applicable. (Note that after rule (v) the class will be a
one-level tree thus when rule (vii) is applied W must be the sink)
(5: Check if Complete) If no inference rules can be applied and no cycles exist,
then exit with success, else return to Step 2.

3.1 Correctness

Correctness of the inference rules can be assured due to the correctness proof of
the algorithm presented in [14] and the following lemmas.

Lemma 1. Soundness of rules (i) through (vii) are direct consequences of Lem-
mas (5) through (7) of [14] and variable replacement.

Proof. Rules (i) through (iv) and (vi) through (vii) follow from Lemmas (5)
through (7) of [14] and rule (v) follows from simple variable replacement.

It remains to be shown that if the algorithm terminates without failure then the
system is indeed unifiable.

Lemma 2. Given a system S in standard form if no failure errors occur the
Algorithm 1 transforms S, through its LD graph representation, into dag-solved
form.

We need now to show that if the system is not unifiable that the algorithm
correctly reports that as a failure. Directly from [14] we get the following two
results.
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Lemma 3. Cycles in the LP graph for a system S in standard form imply that
S is not unifiable.

Lemma 4. Cycles in the LD graph for a system S in standard form imply that
S is not unifiable.

Lemma 3 is due to the fact that a cycle in LP corresponds to a system requiring
an infinite unifier, see [14]. Lemma 4 corresponds to occur check type errors
(caught by rule (vi), graph cycle checking) and thus implies non-unifiability.

Theorem 1. Algorithm 1 is correct.

Proof. Follows from Lemma 1 to Lemma 4.

3.2 Complexity

First we get the following result from the cancellative nature of the rules (i)
through (iii).

Lemma 5. Given a LD graph rules (0)-(iii) can only be applied a polynomial
number of times with respect to the initial set of nodes in the graph.

In addition, we get the following clear result.

Lemma 6. Given a LD graph rule (iv) can only be applied a polynomial number
of times with respect to the initial set of nodes in the graph.

Lemma 7. Each equivalence class formed by closure along �h-related nodes has
a unique sink.

Lemma 8. Processing an equivalence class (Step 4) takes polynomial time with
respect to the number of variables in the class.

Proof. Applying (v) exhaustively starting from the sink is therefore bounded lin-
early by the number of nodes in the class. In addition, the number of applications
of (vii) is also bounded by the number of nodes in the class.

Lemma 9. The number of ∼h-equivalence classes for a system S in standard
form can never increase.

Proof. New variables created by rule (vii) don’t create new equivalence classes
as they are added to pre-existing classes.

Lemma 10. A maximum of 2 new nodes can be added to an equivalence class
from any equivalence class one level higher, by �h.

In addition by rule (vii) we get the following.

Lemma 11. During processing the number of lateral edges added to a ∼h-
equivalence class from a higher, by �h, ∼h-equivalence class cannot exceed the
number of nodes in the higher equivalence class.

Combining the above results we get the following.

Theorem 2. The running time of Algorithm 1 is polynomial with respect to the
initial set of equations.
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4 General Algorithm

We now consider the general problem, with no type system. As in the single ho-
momorphism case we interpret the equations of a unification problem as graphs.

Definition 5. we define the following additional relations:
X �r∗ Y if X = Z × Y X �m Y if X �l∗ Y or X �r∗ Y X �l∗ Z if X = Z × Y

We make the following additions/modifications to the LD graph.

Definition 6. Downward edges remain the same, we make the following modi-
fications to the lateral edges and add one additional type of edge.

(1) Lateral Edges, where for each equation of the form X =? Z × Y , we have
an edge from node X to node Y labeled with the top nonterminal of a SLP gen-
erating the label variable, Z. Label variables are kept as straight line programs,
where the terminals corresponds to the label variable. Each label variable, Z, is
given a unique single production SLP . Therefore, lateral edge and path labels
correspond to the top nonterminal of the SLP generating the label variables cor-
responding to those edges. We denote a path and its label, π, of one or more
lateral edges between nodes X and Y by X

π−→ Y . For the general case paths
are the composition of any number of the label variables. Therefore, a path π
is notation for a path Xi1 ·Xi2 · . . . ·Xim for some m ∈ N and is kept altogether
compressed as a SLP.

(2) Relation Edges, where for each node X in the graph such that there exists

a path X
π−→ Y and for each terminal/label variable Ki in the SLP π, we have

a single edge from X to the node Ki in the graph. These edges will only be used
for cycle checking and could even be generated just before the graph is checked
for cycles in the algorithm.

The initial LD graph will be built from an initial unification problem, S, in
standard form. That initial graph will not have any composite paths labeled by a
SLP with more then one production. The “composite” paths will be added later
by the algorithm. In addition, when constructing the LD graph each variable
X from the set of label variables is given a unique SLP . For example, a label
variable X would be given a SLP πX → X and all lateral edges formed by
an equation with X as the label variable would be labeled by πX . This implies
that different lateral edges can have the same edge label and improves efficiency.
Example, in the LD graph of Figure 1 the edges X → Y and L2 → L3 have
the same SLP label because they used the same label variable in the equations
X =? Z1 × Y and L2 =? Z1 × L3. The Relation edges are simply used to track
the relation between a node and the variables labeling a path from that node.
This information is needed as variables can both be label variables and nodes
in the graph. Let us consider an example LD graph for the following system of
equations (r denotes relation edges).

X =? X1+X2, X =? π1×Y , Y =? π2×L, L =? L1+L2, L1 =? π5×K, L2 =? π1×L3

where the SLP s are: π1 → Z1, π2 → Z2 and π5 → π3π4, π3 → π2π2, π4 → π1π1.
The corresponding LD graph is given in Figure 1.
We make the following modifications to the LP graph.
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Fig. 1. LD graph example

Definition 7. Vertices are now the equivalence classes of the symmetric, reflex-
ive, and transitive closure of the relation defined by �r∗ on the new LD graph.
Edges between equivalence classes are still based on the �a relation.

The LP graph is included due to a specific type of non-unifiable (as was proven
in [14]) system. This problem was solved in [14] by using the propagation graph,
which is equivalent to the LP graph. This is due to the fact that this type of
non-unifiable systems will cause cycles in the propagation graph. One conse-
quence of this new graph interpretation is that the label variable paths can grow
exponentially in length with respect to the initial set of label variables. This can
be seen using the same example used to prove the exponential result in [11]. If
the algorithm presented below (without compression) is applied to the system
in [11], we get label paths of exponential length. The growth is due to the path
string being copied and then doubled at each consecutive level. Although this
doubling of the string leads to the exponential growth it also requires the re-use
of the string and this suggests the use of string compression. Therefore, we keep
each of these paths compressed in the form of straight line programs or SLPs.

The algorithm will work by “saturating” the graphs. A set of transformation
rules is used to either convert the graph into a solved form or detect a cycle
in the graph. The first case implies unifiability and the second non-unifiability.
During saturation we derive path constraints of the form π1 =? π2 or π1≺?π2.
The constraint π1≺?π2, is a prefix check (i.e., whether the string produced by
the SLP π1 is a prefix of the string produced by the SLP π2) and π1 =? π2,
similarly, is an equality check. In addition to path constraints we will need to
perform several path computations: specifically we need to concatenate paths ,
compute path suffixes and find a single pair of mismatched terminals in two
unequal SLP produced strings, all without decompressing the SLPs.

4.1 Algorithm Presentation

We first present a set of inference rules for a system S in standard form that
act on the LD graph for S. The rules are applied to the graph LD and as that
graph is updated the LP is updated.
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(0)
S � {U =? V }

{U �→ V }(S) ∪ {U =? V }
if U occurs in S

(i)
U =? U1 + U2, U =? U3 + U4,

U =? U1 + U2, U3 = U1, U4 = U2

(ii)
X

π−→ Y, Z
η−→ Y η = π

X =? Z, X
π−→ Y

(iii)
X

η−→ Y, X
π−→ Z, η = π

Y =? Z, X
π−→ Z

(iv)
X

η−→ Y, X
π−→ Z, η ≺ π

Y
η−1 π−→ Z, X

π−→ Z

(v)
X

η−→ Y, X
π−→ Y, η �= π

η=? π

(vi)
X

η−→ Y, X
π−→ Z, η �≺ π

η≺? π
if |η| < |π|

(vii)
X

η−→ Y, X
π−→ Y, η = π

X
η−→ Y

(viii)
U

η−→ W, U =? U1 + U2, W =? W1 +W2

W =? W1 +W2, U1
η−→ W1, U2

η−→ W2, U
η−→ W

(ix)
U

η−→ W, U =? U1 + U2,

W =? W1 +W2, U1
η−→ W1, U2

η−→ W2, U
η−→ W

(x) S
FAIL

if LP or LD are cyclic

(xi)
X

π−→ Y, Y
η−→ Z

X
σ=(πη)−→ Z, Y

η−→ Z

Rule (0) is simply a variable replacement rule but it has a special action on
label variables: if a label variable is equated to a non-label variable then the
non-label variable is replaced by the label variable. This rule acts directly on the
system S by doing variable replacement whenever there is an equation between
two variables. Note, whenever a rule creates an equation of the form X =? Y ,
those two nodes in the graph are equated and rule (0) applies that equation
to the set S. Rules (i) through (xi) act on the LD graph. Rule (i) is due to
the cancellative nature of the + operator ([14]). Rules (ii), (iii) and (iv) are
due to the cancellative nature of × ([14]). Rules (v) and (vi) check the path
constraints and attempt to find label variables that have to be equated. These
rules and rules (iv) and (xi) are explained in more detail in Section 4.4. Rules
(ix) and (viii) directly correspond to the splitting rule of [14] and are a direct
consequence of the distributive axiom. These two versions are just modifications
to work in the modified graph setting. The difference between the two rules is
that rule (ix) creates new variables as rule (viii) does not. Rule (x) is a failure
rule, which roughly corresponds to detecting a cycle in the dependency graph
in the Tidén-Arnborg algorithm. Redundant edges are removed by rule (vii).
Finally, rule (xi) is a path completion rule, justified by the soundness of variable
replacement. This rule is also responsible for building the new SLPs, σ, with
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more then one production. More details on rule (xi) are given in Section 4.4.
Let ∼r stand for the reflexive, symmetric and transitive closure of �r∗ . Thus ∼r

defines a set of equivalence classes over a set of variables. Denote these classes
as [Y ]r. We can note that the LP graph has exactly these classes as its nodes.
We can define a strict partial ordering �r on the ∼r-equivalence classes based
on �a. That is, [X ]r �r [Y ]r if and only if there exist K1 ∈ [X ]r and K2 ∈ [Y ]r
such that K1 �a K2. We now give Algorithm 2 with the details.

Algorithm 2. One-sided Distributive Unification

(Input: A system of equations in standard form)
(1: Generate data structures) Generate the 2 graphs, LD and LP. Make a note
of the initial label variables in S; denote this set as V.
(2: Clean up the system) Exhaustively apply the following composite rule:
(0 + i+ ii+ iii+ vii)
(3: Error checking) Apply graph cycle checking to the graphs (i.e., rule (x)). If a
cycle is found stop with failure. If the graphs have no cycles and are in dag-solved
form, exit with success.
(4: Process equivalence class) Select an equivalence class based on the strict
partial ordering �r. That is, we select the largest element of �r that has not yet
been processed. Thus, if we select the class [X]r then there does not exist a class
[Y ]r such that [Y ]r has not been processed and [Y ]r �+

r [X]r.
Process the selected class using the following composite rule:
(v + vi)(iv)!(xi)!(viii)(ix)!

Rule (ix) is applied by starting with the sink node of the path and working back
to the start node of the path. In addition, if rule (v) or rule (vi) is applied label
variables will be equated therefore we goto step (5).
(5: Checking) If any of the variables in V are equated go back to Step 1 else go
back to Step 2. That is, if label variables are equated go back to step 1.

Let r1 and r2 denote inference rules. Then, r!1 indicates exhaustive application
of the rule r1. Therefore, the composite rule r!1r2 means to apply r1 until it cannot
be applied any more and then try to apply r2. Note that even if r1 cannot be
applied the rule r!1r2 can still be used if r2 can be applied. Thus r!1 does not
indicate that r1 must be applied but rather that if r1 can be applied we do so
exhaustively. r1 + r2 indicates choice: apply rule r1 or rule r2. Therefore, the
last composite rule implies that rule (ix) has the lowest priority and that rule
(viii) is only applied once in the processing of a single equivalence class.

We also keep and update SLP string length information as saturation of the
graph proceeds. As the lengths of the strings produced by any SLP grow or
decrease as a result of application of rules (i)-(xi), this information is updated
immediately by one of the following rules, i.e., an application of (xi) causes an
application of (d). Let l and m be string lengths (kept in binary representation).
The SLPs are built bottom up as are the strings they generate allowing us to
keep track of that information. The following set of rules explain how the string
length information is modified by the corresponding graph saturation rules. This
information is needed for some of the SLP algorithms.
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(d)
X

l−→ Y, Y
m−→ Z

X
l+m−→ Z

(e)
U

l−→ W, U =? U1 + U2, W =? W1 +W2

U1
l−→ W1, U2

l−→ W2

(f)
X

l−→ Y, X
m−→ Z, l < m

Y
m−l−→ Z

4.2 Label Variables

We need several results about the label variables and their interaction with the
new variables. Let V0 denote the set of initial label variables for a system S and
V the set of label variables at any point during the application of Algorithm 2
on S. Let Z denote the set of fresh variables created by rule (ix).

Lemma 12. During application of Algorithm 2, V ∩ Z = ∅.

Proof. By the definition it is not possible to apply rule (0) such that a newly
created variable is made a label variable.

Lemma 13. During application of Algorithm 2 on a system S in standard form,
|V| ≤ |V0|

Proof. This follows directly from rule (0) and Lemma 12.

Thus we can safely assume that there will never be an equation of the form
X =? Z × Y , where Z is new. But we could have a relation Z �l∗ X where X
is some pre-existing variable. This implies that there exists a variable K and an
equation of the form K =? L × Z. This leads to the observation (assuming the
modified variable replacement method) that we only need to apply rule (ix) to
the last variable in a path of �r∗-related variables.

4.3 Soundness and Completeness

We recall several results already proven by Tidén and Arnborg on one-sided
distributive unification.

Theorem 3. Tidén and Arnborg [14]

1. (Lemma 5) A set of equations {U =? X1◦X2, U =? T1◦T2} has precisely the
same solutions as the set of equations {U =? X1◦X2, X1 =? T1, X2 =? T2},
where ◦ is × or +.

2. (Lemma 6) Every unifier for the set of equations
{U =? V ×W, W =? W1 +W2, X =? V ×W1, Y =? V ×W2}
is a unifier for the set of equations {U =? V ×W, U =? X + Y }.

Lemma 14. Rules (0) through (ix) and rule (xi) are sound.
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Proof. Rule (xi) and rule (0) follows from the soundness of variable replacement.
Rule (i) follows from Theorem 3 part 1. Now consider rules (ii) and (iii), since π =
η, these rules follow from |π| applications of Theorem 3 part 1. The same holds
for rule (iv) except η is a prefix. Rules (v) and (vi) also follow from Theorem 3
part 1. Rule (vii) is simply removing duplicates. Finally, the soundness of rules
(ix) and (viii) follows from Theorem 3 part 2.

Lemma 15. If Algorithm 2 exits with success on a system S in standard form,
then S is unifiable.

Proof. The result follows from the fact that the set of inference rules transforms
S into a dag-solved form.

Lemma 16. If Algorithm 2 terminates with failure on a system S, then S is
not unifiable.

4.4 Graph and SLP Operations

The LD graph is updated by the algorithm as the inference rules operate on it.
The LP is built from the LD and thus can be updated after updating the LD
graph. We note that the LD and LP graphs can use standard cycle checking
algorithms.

Lemma 17. The LP and LD graphs for a system S in standard form can be
checked for cycles in polynomial time with respect to the size of S.

The SLPs are formed by first encoding the label variables as SLPs. Each unique
label variable get a unique SLP For example, when creating the LD graph for
two equations X =? Y ∗ Z and K =? Y ∗ L only one SLP is created, πY → Y ,
and two edges are labeled by that SLP , i.e., by the top nonterminal πY . Then,
larger/additional SLP s are formed, bottom up, by the inference rules (xi) and
(iv). In addition, we only keep a single copy of each unique SLP. This implies
we only keep the set of all productions. Then, when creating a new larger SLP
we need only create the new top production.
Rule (xi): Rule (xi) forms a new SLP by concatenating two existing SLPs.
Rule (ix) is applied by starting with the sink node of the path and working
back to the start node of the path. This simply ensures a minimal number
of applications of rule (xi). To concatenate two SLPs, I = (Σ,NI , PI) and
J = (Σ,NI , PJ ),

2 we create a new SLP , K = (Σ,NK , PK). Let πI and πJ be
the top nonterminals of I and J respectively. Then, NK = NI ∪NJ ∪ {πK} and
PK = PI ∪PJ ∪{πK → πIπJ}. This is a simplified version, with just two SLPs,
of the method presented in [7]. Therefore, the following result easily follows.

Lemma 18. Let I = (Σ,NI , PI) and J = (Σ,NI , PJ) be two SLPs. Then
there exists a SLP K = (Σ,NK , PK) that generates the concatenation of the
two strings generated by I and J such that ‖K‖ = |PI ∪PJ |+1 and depth(K) ≤
max(depth(I), depth(J)) + 1.

2 Because all the SLPs use the set of label variables as the set of terminals, Σ is the
same for all SLPs.
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Additional algorithms for doing concatenation can be found in [6, 13].
Rules (ii) and (iii): These two rules require that we can decide if two com-

pressed strings are equal, π1 =? π2. The area of fully compressed pattern match-
ing is an active area and there are many algorithms that will solve this problem,
in polynomial time with respect to the size of the SLP . We cite the following,
non-exhaustive, list of papers for excellent algorithms; [8, 10, 13, 12].

Rule (iv): We can partially order the nodes in each equivalence class based
on the lateral edges, i.e., based on the �r∗ relation. Rule (iv) is applied based
on this partial ordering, starting from the source nodes and working down to
the sinks. Therefore we do not apply rule (iv) to a node X if rule (iv) can be
applied to a node Y such that there is a lateral path from Y to X . Rule (iv)
requires that we can decide if one SLP π1 is a prefix of an SLP π2, π1 ≺? π2, in
polynomial time with respect to π2. This problem has been solved in [8]. We also
need to extract the suffix in compressed form, π3 = π1

−1π2. Because we build
the SLP s bottom up and keep the length information, a simple polynomial-time
recursive algorithm can accomplish this. We could also use the general method
for prefixes and suffixes developed in [7]. Therefore, we get the following result.

Lemma 19. Let I = (Σ,NI , PI) and J = (Σ,NI , PJ) be two SLPs such that
the string generated by J is a prefix of the string generated by I. Then, there
exists a SLP K = (Σ,NK , PK) that generates the suffix of the string generated
by I after removing the prefix string generated J such that ‖K‖ ≤ ‖I‖+depth(I)
and depth(K) ≤ depth(I).

Rules (v) and (vi): These rules essentially handle the situation where two la-
bel paths should be equal, or one a prefix of the other, but are found not to
be. We then need to check if they can be made equal. We accomplish this by
finding at least one pair, (X,Y ), of terminals (label variables) in the correspond-
ing SLP s such that these terminals form a mismatch, X �= Y . One pair will do
for each application of the rule because by the cancellative nature of × all mis-
matched pairs of terminals must be equated. In [3] a nice polynomial algorithm
for finding the first mismatch is developed. A mismatch can also be found using
the algorithms in [8, 10]. The way these rules work in Algorithm 1 is that if
in the LD graph one of the rules is satisfied a pair of label variables will be
found and equated (through the use of rule (0)). This will cause the set of label
variables, V , to be reduce and thus the number of label variables in the system
S to be reduced. The algorithm then returns to step 1 and rebuilds a new LD
graph from the newly modified system, S.

4.5 Complexity

Lemma 20. After processing any equivalence class, the number of sinks for that
class is at most one and every non-sink node in the class has exactly one outgoing
edge.

Proof. If there is no sink in the class, then this implies a cycle and thus a non-
unifiable system. In addition, there must be at least one source node. It can be
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seen that rules (ii), (iii), (iv), (v) and (vi) ensure that all the nodes in the class
have at most a single outgoing edge.

Lemma 21. The maximum number of new variables added to the system S is
equal to twice the number of equivalence classes.

Lemma 22. Let [X ]r be a ∼r-equivalence class. Assume there exist K ∼r-
equivalence classes one level above [X ]r by the �r ordering. Let us denote the K
classes as C1, C2, . . . , CK and assume that each class Ci contains ni variables,
such that NK =

∑K
i=1 ni. Then the total number of lateral edges added to [X ]r

by the K higher classes is ≤ 2 ∗NK.

Lemma 23. The maximum number of lateral edges added to any ∼r-equivalence
class of a simple system S is O(N+M), where N is the initial number of variables
in S and M is the number of equivalence classes.

Lemma 24. The number of ∼r equivalence classes never increases.

Proof. Rule (ix) is the only rule that creates new variables but these variables
are contained in pre-existing equivalence classes.

Lemma 25. The number of inference rule applications used during a single ap-
plication of step (2) of Algorithm 2 is polynomially bounded by the number of
edges in the LD-graph at the start of step (2).

Proof. Clearly rules (i) - (iii) and (vii) are bounded by the number of edges.

Lemma 26. The number of inference rule applications used to process a single
equivalence class (step (4) of Algorithm 2) is polynomially bounded with respect
to the number of lateral edges and nodes in that class.

Finally, we need to bound the size of the SLPs.

Lemma 27. The largest, in size, SLP constructed by Algorithm 2 on any unifica-
tion problem S is polynomially bounded by the initial number of lateral edges in S.

Theorem 4. The worst-case running time of Algorithm 2 is a polynomial in
the initial number of variables N and the initial number of LD graph edges L.

Proof-Sketch: Let us consider each step in Algorithm 2.
Step 1: By Lemma 23 and Lemma 21, building the graphs can be done in poly-
nomial time. Denote this polynomial as P1. Step 2: Combining Lemma 27 with
the cancellative rules, (i)-(iii), we get that Step (2) is bounded by a polynomial
in N and L. Denote this polynomial as P2. Step 3: By Lemma 17 cycle check-
ing the graphs is polynomially bounded by the size of the graphs. Denote this
polynomial as P3. Step 4: By Lemma 26, Lemma 27, Lemma 23 and Lemma 21,
the time to process each class is polynomially bounded in L and N . Denote
this polynomial as P4. Step 5: If M be the number of equivalence classes and
V the number of initial label variables, by Lemma 13, V does not increase and
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by Lemma 24, M does not increase. Therefore, we apply steps (2) through (5)
M times, once for each equivalence class. We can reset (applying step (1)) and
apply them again for each class but this only happens when we equate two la-
bel variables. Thus this cannot happen more than V times. Finally, we can see
that the running time of Algorithm 2 is bounded by the following polynomial:
P = V (P1 +M(P2 + P3 + P4)).

Acknowledgements. We wish to thank the referees for their comments and
suggestions.
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Abstract. A variable v reaches a variable w if there is a path from the memory
location bound to v to the one bound to w . This information is important for
improving the precision of other static analyses, such as side-effects, field initial-
ization, cyclicity and path-length, as well as of more complex analyses built upon
them, such as nullness and termination. We present a provably correct constraint-
based reachability analysis for Java bytecode. Our constraint is a graph whose
nodes are program points and whose arcs propagate reachability information ac-
cording to the semantics of bytecodes. The analysis has been implemented in the
Julia static analyzer. Experiments that we performed on non-trivial Java and An-
droid programs show a gain in precision due to a reachability information, whose
presence also reduces the cost of nullness and termination analyses.

1 Introduction

Static analysis of computer programs allows us to statically gather information about
their run-time behavior, making it possible to prove that these programs do not perform
illegal operations (such as division by zero or dereference of null), do not give rise
to erroneous executions (such as infinite loops) or do not divulge information (such as
security authorizations or GPS position) in an incorrect way.

Dynamic allocation of objects is heavily used in real life programs. These objects
are instantiated on demand, their number is not statically known and they can reference
other objects (through fields). Such references can be updated at run-time. In this paper
we present, formalize and implement a provably correct abstraction of the run-time, dy-
namically allocated memory, that we call reachability. We say that a variable v reaches
a variable w if w holds an object reachable from v , by following (different objects’)
fields from the object held in the location bound to v . For instance, after an assignment
v.next.next = w, we can state that v reaches w . Reachability is distinct from shar-
ing i.e., being able to reach a shared object. For instance, after the statement v.next
= w.next, we can state that v and w share. If v reaches w then v and w share, but
the converse might not hold. Hence reachability is more precise, i.e., it induces a finer,
more concrete abstraction of the computational states than sharing analysis. Our anal-
ysis is constraint-based: constraints are built from the syntax of the program and their
solution is a correct approximation of reachability. A companion paper [14] includes
full definitions and proofs.

B. Gramlich, D. Miller, and U. Sattler (Eds.): IJCAR 2012, LNAI 7364, pp. 423–438, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Reachability has been applied to several static analyses:

Side-Effects Analysis: Side-effects analysis tracks (among other things) which param-
eters p of a method might be affected by its execution in the sense that the method
might update a field of an object reachable from p. Namely, if the method performs
an assignment a.f=b, this affects p only if p reaches a. If we used sharing rather than
reachability information, that would lead to a loss of precision, since it might be the
case that p and a share but the assignment modifies an object unreachable from p.

Field Initialization Analysis: It is often the case that a field is initialized by all of the
constructors of its defining class before being read by these constructors. Spotting this
frequent situation is important for many analyses, including nullness [15,22]. Hence,
we want to know whether a field read operation a=expression.f inside a constructor
can actually read field f of the this object, being initialized by the constructor. This
happens only if this reaches expression. Again, sharing would be less precise here.

Cyclicity Analysis: An assignment a.f=bmight make a cyclical (i.e., point to a cycli-
cal data structure), but only if b reaches a. Originally, this analysis was built upon
sharing information [16], but analysis of reachable variables helps here.

Path-Length Analysis: Path-length is a data structure measure used in termination
analysis [23]. It is the maximum number of pointer dereferences that can be followed
from a program variable. An assignment a.f=b can only modify the path-length of
the program variables that share with a, according to the original definition of path-
length [23]. Reachability analysis improves this approximation, since the path-length
of a program variable v is actually modified only if v reaches a.

These analyses, among others, are implemented in our Julia tool
(http://www.juliasoft.com). They are building blocks of larger tools, such
as a nullness and a termination checker. The former spots where a program might
throw a null-pointer exception at run-time; the latter if method calls might diverge. A
tool performs its supporting analyses (the building blocks) in distinct threads, parallel
on multi-core hardware.

Our experiments show that reachability improves side-effects, field initialization and
nullness analysis of non-trivial Java and Android programs. However there is no im-
provement for cyclicity, path-length and termination analysis of the same programs, but
only of sample programs from the international termination competition. That is be-
cause termination often depends on loops over integer counters rather than on recursion
over data structures, as is the case in those samples (probably unusual and artificial).
An unexpected effect of reachability is, however, an increase in the speed of both tools.

Reachability analysis belongs to the group of pointer analyses, that support other
static analyses. Plenty of papers consider them: [9] surveys more than 75 papers. Dif-
ferent properties of pointers give rise to different kinds of pointer analyses: alias, shar-
ing, points-to and shape analyses. Possible (definitive) alias analysis discovers the pairs
of variables that might (must) point to the same memory location. If two variables are
alias, they are also reachable from each other, but the opposite might not hold. Shar-
ing analysis [21] determines whether two variables might ever reach the same object
at run-time. Reachability entails sharing, but the opposite, in general, does not hold.
Points-to analysis [20,10,11,17,8] computes the objects that a pointer variable might

http://www.juliasoft.com
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refer to at run-time. Usually, points-to analysis performs a conservative approximation
of the heap, which is then used to compute points-to information for the whole program.
In [20], points-to graphs are precise approximations of the run-time heap memory and
can be used to over-approximate the reachability information. Points-to information is
much more concrete than our reachability information. Shape analysis determines heap
shape invariants [18,19,3,7]. These analyses are quite concrete and capture aliasing
and points-to information, as well as other properties such as cyclicity or acyclicity.
These are often encoded as first-order logic formulae and theorem provers are used to
determine their validity. Reachability can, of course, be abstracted from these very pre-
cise approximations of the memory, but we wanted here an analysis that uses the most
abstract (i.e., the simplest) domain able to express reachability between variables.

There is also another notion of reachability [13], slightly different from ours. The
reachability predicate determines whether a memory location reaches another one, usu-
ally along one particular field of one particular data structure, while our definition of
reachable locations deals with arbitrary fields of arbitrary data structures. That pred-
icate is used in [6,1,4] for abstraction of programs, as one particular case of predicate
abstraction [2].

2 Operational Semantics

We present here a formal operational semantics of Java bytecode, inspired by the stan-
dard informal semantics [12]. The same semantics is used in [22], while [23] uses its
denotational form. Java bytecode is the form of instructions executed by the Java Vir-
tual Machine (JVM). Our formalization is at bytecode level for several reasons: there
is a small number of bytecode instructions, compared to varieties of source statements;
bytecode lacks complexities such as inner classes; our implementation of reachability
analysis is at bytecode level, bringing formalism, implementation and proofs closer.

For simplicity, we assume that the only primitive type is int and that reference types
are classes containing instance fields and instant methods only. Our implementation
handles all Java types and bytecodes, as well as classes with static fields and methods.
We analyze bytecode preprocessed into a control flow graph, i.e., a directed graph of

basic blocks, with no jumps inside the blocks. ins
rest

→
→

b1
· · ·
bm

denotes a block of code starting

at instruction ins, possibly followed by more bytecodes rest and linked to m subsequent
blocks b1, . . . , bm . Exception handlers start with a catch. A conditional, virtual method
call, or selection of an exception handler becomes a block with many subsequent blocks,
starting with a filtering bytecode such as exception_is K for exception handlers.

Example 1. Fig. 2 shows the basic blocks of the constructor in Fig. 1. There is a branch
at the call to the constructor of java.lang.Object, that might throw an exception (like
every call). If this happens, the exception is first caught and then re-thrown to the caller
of the constructor. Otherwise, the execution continues with 2 blocks storing the formal
parameters (locals 1 and 2) into the fields of this (local 0) and then returns. ��

Bytecodes operate on variables, which encompass both stack elements and local vari-
ables. A standard algorithm [12] infers their static types.
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public class Lis tStudent {
public Student head ;
public Lis tStudent t a i l ;

public Lis tStudent ( Student head ,
L i s tStudent t a i l ) {

this . head = head ;
this . t a i l = t a i l ;

}
}

Fig. 1. Our running example

load 0 ListStudent
call java.lang.Object.〈init〉() : void

load 0 ListStudent
load 1 Student

putfield ListStudent.head : Student

load 0 ListStudent
load 2 ListStudent

putfield ListStudent.tail : ListStudent

return void

catch
throw java.lang.Throwable

Fig. 2. Representation of the constructor from Fig. 1

Definition 1 (Classes). The set of classes K of a program is partially ordered w.r.t. the
subclass relation ≤: t≤ t′ if t (respectively t′) is a subclass (respectively superclass) of t′

(respectively t). Every class has at most one direct superclass and an arbitrary number
of direct subclasses. A type is an element of T= {int} ∪ K, ordered by the extension of
≤ with int ≤ int. A class κ ∈K has fields κ.f : t (field f of type t∈T defined in κ), where
κ and t are often omitted. We let F(κ) = {κ′.f : t′ | κ ≤ κ′} be the fields defined in κ or in
any of its superclasses. A class κ has methods κ.m(�t): t (method m, defined in κ, with
arguments of type�t, returning a value of type t ∈ T ∪ {void}), where κ,�t, and t are often
omitted. Constructors are methods named init that return void.

Definition 2 (Type environment). Let V be the set of variables from L = {l0, . . . , lm }
(local variables) and S = {s0, . . . , sn } (stack variables). A type environment is a function
τ : V→T. Its domain is written as dom(τ). The set of all type environments is T .

Definition 3 (State). A value is an element of Z ∪ L ∪ {null}, where L is an infinite
set of memory locations. A state over τ ∈T is a pair 〈〈l ‖ s〉, μ〉 where l is an array of
values for the local variables in dom(τ), s is a stack of values for the stack variables
in dom(τ), which grows leftwards, and μ is a memory, or heap, that binds locations
to objects. The empty stack is denoted by ε. We often use another representation for a
state: 〈ρ, μ〉, where an environment ρ maps each lk ∈L to its value l [k ] and each sk ∈S
to its value s[k ]. An object o has class o.κ (is an instance of o.κ) and has an internal
environment o.φ that maps every field κ′.f : t′ ∈ F(o.κ) into its value (o.φ)(κ′.f : t′). A
value v has type t in 〈ρ, μ〉 if: v ∈Z and t= int, or v =null and t ∈K, or v ∈L, t ∈K and
μ(v ).κ≤ t. In a state 〈ρ, μ〉 over τ, we require that ρ(v ) has type τ(v ) for any v ∈dom(τ)
and (o.φ)(κ′.f : t′) has type t′ for every o ∈ rng(μ) (range μ) and every κ′.f : t′ ∈F(o.κ).
The set of states is Ξ. We write Ξτ when we want to fix the type environment τ.

Example 2. Let τ = [l1 → ListStudent; l2 → int; l3 → Student; l4 → ListStudent] ∈ T and
consider the state σ= 〈ρ, μ〉 ∈ Στ shown in Fig. 3. The environment ρ maps variables l1,
l2, l3 and l4 to values �2, 2, �3 and �4, respectively; the memory μ maps locations �2 and
�4 to objects o2 and o4 of class ListStudent and location �3 to object o3 of class Student.
Objects are shown as boxes with a class tag and an internal environment mapping fields
to values. For instance, fields head and tail of o4 contain �3 and �2, respectively. ��
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l1μ ρ
l2 l3 l4

�1 2 �3 �4

ListStudent

o4
�4

head tail
Student

o3
�3

age
18

ListStudent

o2
�2

head tail
null

Student
age
18

o1
�1

Fig. 3. A JVM state σ = 〈ρ, μ〉

We assume that states are well-typed, i.e.,
variables hold values consistent with their
static types. Since the JVM supports excep-
tions, we distinguish between normal states
Ξ and exceptional states Ξ, which arise im-
mediately after bytecode instructions throw-
ing an exception and have a stack of height
1 containing a location bound to the thrown
exception. When we denote a state by σ, we
do not specify if it is normal or exceptional.

If we want to stress that, we write 〈〈l ‖ s〉, μ〉 or 〈〈l ‖ s〉, μ〉.
The semantics of an instruction ins is a partial map ins : Στ → Στ′ from initial to

final states. The number and type of local variables and stack elements at its start are
specified by τ. The formal semantics is given in [14]. We discuss it informally below.

Basic Instructions. const v pushes v ∈ Z on the top of the stack. Like any other
bytecode except catch, it is defined only when the JVM is in a normal state. The latter
starts the exceptional handlers from an exceptional state and is, therefore, undefined on
a normal state. dupt duplicates the top of the stack, of type t. loadk t pushes on the stack
the value of local variable number k , lk , which must exist and have type t. Conversely,
store k t pops the top of the stack of type t and writes it in local variable lk ; it might
potentially enlarge the set of local variables. In our formalization, conditional bytecodes
are used in complementary pairs (such as ifne t and ifeq t), at a conditional branch. For
instance, ifeq t checks whether the top of the stack, of type t, is 0 when t= int or null
when t∈K. Otherwise, its semantics is undefined.

Object-Manipulating Instructions. These bytecode instructions create or access ob-
jects in memory. new κ pushes on the stack a reference to a new object o of class κ,
whose fields are initialized to a default value: null for reference fields, and 0 for inte-
ger fields [12]. getfield κ.f : t reads the field κ.f : t of a receiver object r popped from the
stack, of type κ. putfield κ.f : t writes the top of the stack, of type t, inside field κ.f : t of
the object pointed to by the underlying value r , of type κ.

Exception-Handling Instructions. throw κ throws the top of the stack, of type κ ≤
Throwable. catch starts an exception handler: it takes an exceptional state and transforms
it into a normal state at the beginning of the handler. After catch, exception_isK selects
an appropriate handler depending on the run-time class of the exception.

Method Call and Return. We use an activation stack of states. Methods can be rede-
fined in object-oriented code, so a call instruction has the form call m1 . . .mk , enumer-
ating an over-approximation of the set of possible run-time targets [14].

3 Reachability

In this section we formalize our notion of reachability between two program variables.

Definition 4 (Locations reachable from a variable). Let τ ∈ T . The set of locations
reachable from a variable a ∈ dom(τ) in a state σ = 〈ρ, μ〉 ∈ Στ is Lσ(a) =

⋃
i≥0 Li

σ(a),
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L0
σ(l1) = {�2}

L1
σ(l1) = Lσ(l1) = {�1, �2}

L0
σ(l2) = Lσ(l2) = ∅

L0
σ(l3) = Lσ(l3) = {�3}

L0
σ(l4) = {�4}

L1
σ(l4) = {�2, �3, �4}

L2
σ(l4) = Lσ(l4) = {�1, �2, �3, �4}

T0(Object) = T(Object)
= {Object, Student, ListStudent}

T0(Student) = {Object, Student}
T1(Student) = T(Student)

= {int,Object, Student}
T0(ListStudent) = {ListStudent,Object}
T1(ListStudent) = {ListStudent,Object, Student}
T2(ListStudent) = T(ListStudent)

= {int, ListStudent,Object, Student}

Fig. 4. Example of computation of reachable locations and types

where Li
σ(a) are the locations reachable from a in at most i steps: Li

σ(a) = {ρ(a)} ∩ L
if i = 0, and Li

σ(a) = Li−1
σ (a) ∪

⋃
�∈Li−1

σ (a)(rng(μ(�).φ) ∩ L) if i > 0.

Definition 5 (Reachability between variables). Let τ ∈ T , σ = 〈ρ, μ〉 ∈ Στ and vari-
ables a, b ∈ dom(τ). We say that b is reachable from a in σ or, equivalently, that a
reaches b in σ, denoted as a�σb, iff ρ(b) ∈ Lσ(a).

We also introduce a notion of static reachability between types.

Definition 6 (Reachability between types). Let t ∈ T. The set of types compatible
with t is compatible(t) = {t′ | t ≤ t′ or t′ ≤ t}. The set of types reachable from t
is T(t) =

⋃
i≥0 Ti (t), where Ti (t) are the types reachable from t in at most i steps:

Ti (t) = compatible(t) if i = 0, and Ti (t) = Ti−1(t)∪
⋃
κ∈Ti−1(t)∩K, κ′ .f :t′∈F(κ) compatible(t′)

if i > 0. We say that t′ ∈ T is reachable from t if t′ ∈ T(t), and we denote it as t�t′.

Example 3. Consider σ ∈ Στ from Ex. 2. On the left of Fig. 4 we give, for each li ∈
dom(τ) and j ≥0, the set of reachable locations from li in σ in at most j steps until the
fixpoint is reached. Hence, l1�σl1, l1�σl2, l3�σl3, l4�σl1, l4�σl2, l4�σl3, l4�σl4.
Assume that class Student contains only one field, of type int. ListStudent and Student
are subclasses of Object. Fig. 4 reports on the right the types reachable from these three
classes: ListStudent�Student, Object�Student, Student�Object, Object�Student, etc.

��

Reachability between types can be used to conservatively approximate possible pairs of
variables that might reach each other.

Lemma 1. Let τ∈T , σ∈Στ and a, b ∈dom(τ). If a�σb, then τ(a)�τ(b).

Example 4. Since l4�σl3 (Ex. 3), by Lemma 1, also τ(l4)�τ(l3) holds. In fact, Ex. 3
shows that τ(l4)=ListStudent�Student=τ(l3). ��

4 Reachability Analysis

We define here an abstract interpretation of the concrete semantics of Section 2 w.r.t.
the property of reachability between variables (Definition 5). This will be an actual
algorithm for interprocedural, whole-program reachability analysis. We follow here the
abstract interpretation approach [5], that allows us to define a static analysis from the
formal specifications of the property of interest and the semantics of the language.
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The concrete semantics works over concrete states (Definition 3), that our abstract
interpretation abstracts into ordered pairs of variables.

Definition 7 (Concrete and Abstract Domain). Given a type environment τ ∈ T , we
define the concrete domain over τ as Cτ= 〈℘(Στ),⊆〉 and the abstract domain over τ as
the powerset of the set of ordered pairs of variables Aτ= 〈℘(dom(τ) × dom(τ)),⊆〉. For
every v ,w ∈dom(τ), we write v�w to denote the ordered pair 〈v ,w〉.

An abstract element R ∈ Aτ represents those concrete states whose reachability in-
formation is over-approximated by the pairs of variables in R (possible reachability).

Definition 8 (Concretization map). For every τ∈T , we define the concretization map
γτ : Aτ → Cτ as γτ=λR.{σ ∈ Στ | ∀a, b ∈ dom(τ).a�σb ⇒ a�b ∈ R}.

Both Cτ and Aτ are complete lattices. Moreover, we proved γτ co-additive, and therefore
it is the concretization map of a Galois connection [5] and Aτ is actually an abstract
domain, in the sense of abstract interpretation.

Our analysis is constraint-based: we build an abstract constraint graph from the
source code of a Java bytecode program. There is a node for each bytecode b in the
program, containing an element of Aτ, where τ is the static type information at the be-
ginning of b. An arc linking the nodes corresponding to two bytecodes b1 and b2 propa-
gates the reachability information from b1 to b2. Here, the exact meaning of propagates
depends on b1, since each bytecode has different effects on reachability.

Definition 9 (ACG). Let P be the program under analysis (i.e., a control flow graph of
basic blocks for each method or constructor). The abstract constraint graph (ACG) of
P is a directed graph 〈V ,E 〉 (nodes, arcs) where:

– V contains a node ins , for every bytecode instruction ins of P ;
– V contains nodes exit@m and exception@m for each method or constructor m in
P , and these nodes correspond to the normal and exceptional end of m;

– E contains directed (multi-)arcs with one or two sources and always one sink;
– for every arc in E , there is a propagation rule, i.e., a function over A, from the

reachability information at its source(s) to the reachability information at its sink.

The arcs in E are built from P as follows. We assume that τ and τ′ are the static
type information at and immediately after the execution of a bytecode ins, respectively.
Moreover, we assume that τ contains j stack elements and i local variables. In the
following we discuss different types of arcs.

Sequential Arcs. If ins is a bytecode in P , distinct from call, immediately followed by a
bytecode ins′, distinct from catch, then a simple arc is built from ins to ins′ , with one
of the propagation rules #1-#7 in Fig. 5.

Final Arcs. For each return t and throw κ occurring in a method or in a constructor
m of P , there are simple arcs from return t to exit@m and from throw κ to exception@m

respectively, with one of the propagation rules #8-#10 in Fig. 5.



430 Ð. Nikolić and F. Spoto

#1 dup t λR.R ∪R[sj−1 �→ sj ] ∪ {sj−1�sj , sj�sj−1 | sj−1�sj−1 ∈R}
#2 new κ λR.R ∪ {sj�sj }
#3 load k t λR.R ∪R[lk �→ sj ] ∪ {lk�sj , sj�lk | lk�lk ∈R}
#4 store k t λR.{(a�b)[sj−1 �→ lk ] | a�b ∈R ∧ a , b � lk }
#5 getfield f : t

λR.{a�b ∈R | a , b � sj−1} ∪ {sj−1�b ∈R | t�τ(b)} ∪
{a�sj−1 | a ∈dom(τ) ∧ τ(a)�t ∧ [a and sj−1 might share at getfield f : t]}

#6 putfield f : t
λR.{a�b ∈R | a , b � {sj−1, sj−2}} ∪

{a�b | a , b � {sj−1, sj−2} ∧ a�sj−2 ∈R ∧ sj−1�b ∈R}
#7 const v , catch, ifne t, ifeq t λR.{a�b ∈R | a , b ∈ dom(τ′)}
#8 return void λR.{a�b ∈R | a , b � {s0, . . . , sj−1}}
#9 return t λR.{(a�b)[sj−1 �→ s0] | a�b ∈R ∧ a , b � {s0, . . . , sj−2}}

#10 throw κ λR.{(a�b)[sj−1 �→ s0] | a�b ∈R ∧ a , b � {s0, . . . , sj−2}} ∪ {s0�s0}
#11 throw κ λR.{(a�b)[sj−1 �→ s0] | a�b ∈R ∧ a , b � {s0, . . . , sj−2}} ∪ {s0�s0}

#12 call m1 . . .mk

λR.{a�b ∈R | a , b � {s0, . . . , sj−1}} ∪ {s0�s0}
∪{a�s0 | a ∈ {l0, . . . , li−1} ∧ τ(a)�Throwable}
∪{s0�a | a ∈ {l0, . . . , li−1} ∧ Throwable�τ(a)}

#13 new κ, getfield f : t, putfield f : t λR.{a�b | a�b ∈R ∧ a , b � {s0, . . . , sj−1}} ∪ {s0�s0}
#14 call m1 . . .mk λR.

{
(a�b)

[
sj−π �→l0
...

sj−1 �→lπ−1

]∣∣∣∣∣ a�b ∈R ∧ a , b ∈ {sj−π, . . . , sj−1}
}

Fig. 5. Propagation rules of simple arcs

Exceptional Arcs. For each ins throwing an exception, immediately followed by a
catch, a arc is built from ins to catch , with one of the propagation rules #11 − #13
in Fig. 5.

Parameter Passing Arcs. For each insc =call m1 . . .mk to a method with π parameters
(including this), we build a simple arc from insc to the node corresponding to the first
bytecode of mw with the propagation rule #14 in Fig. 5, for each 1≤w ≤k .

Return Value Arcs. For each insc = call m1 . . .mk to a method with π parameters
(including this) returning a value of type t ∈ K and each subsequent bytecode ins′

distinct from catch, we build a multi-arc from insc and exit@mw (2 sources, in that
order) to ins′ with the propagation rule #15 defined in Fig. 6, for each 1≤w ≤k .

Side-Effects Arcs. For each insc = call m1 . . .mk to a method with π parameters (in-
cluding this) and each subsequent bytecode ins′ , we build a multi-arc from insc and
exit@mw (2 sources, in that order) to ins′ , where ins′ is not a catch, or from insc and
exception@mw (2 sources, in that order) to catch , for each 1 ≤w ≤ k . The propagation

rule #16 is given in Fig. 6, where max= j −π if ins′ is not a catch and max=0 otherwise.

The sequential arcs link an instruction to its immediate successors. For instance, the
arc #1, starting from a node corresponding to a dup t, states that the reachability ap-
proximation at that node can be found at its successor’s node as well (λR.R). On the
other hand, since sj , the new topmost stack element (new top), is an alias of sj−1, the
former topmost stack element (old top), it is clear that every variable reaching sj−1 (or,
respectively, that is reachable from sj−1) also reaches sj (respectively, is reachable from
sj ): λR.R ∪R[sj−1 → sj ]. For the same reason, we must assume that, if sj−1 reaches
itself (i.e., if the old top was not null) then, immediately after the dup t, sj might reach
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λR1.λR2.{sj−π�sj−π | s0�s0 ∈R2}

#15
∪

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a�sj−π

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1. a ∈ dom(τ′) \ {sj−π} ∧
2. τ′(a)�t ∧
3. ∃j − π ≤ p < j s.t. a might share with sp at call m1 . . .mk ∧
4. if a is definitely alias of sp at call m1 . . .mk and no store lp−j+π

occurs in mw , then lp−j+π�s0 ∈R2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∪

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
sj−π�b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1. b ∈ dom(τ′) \ {sj−π} ∧
2. t�τ′(b) ∧
3. ∃j − π ≤ p < j s.t. sp�b ∈R1 ∧
4. if b is definitely alias of sp at call m1 . . .mk and no store lp−j+π

occurs in mw , then s0�lp−j+π ∈R2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
λR1.λR2.

#16

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a�b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[a�b ∈R1 ∧ a , b ∈ {l0, . . . , li−1, s0, . . . , smax−1}] ∨⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1. a , b ∈ {l0, . . . , li−1, s0, . . . , smax−1} ∧
2. τ′(a)�τ′(b) ∧
3. ∃j − π ≤ pa < j s.t. a might share with spa at call m1 . . .mk ∧
4. ∃j − π ≤ pb < j s.t. pb�b ∈R1 ∧
5. if ∃j − π ≤ qa < j s.t. a is definitely alias of sqa at call m1 . . .mk and
5. if ∃j − π ≤ qb < j s.t. b is definitely alias of sqb at call m1 . . .mk and

no store lqa−j+π nor store lqb−j+π occurs in mi , then lqa−j+π�lqb−j+π ∈R2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Fig. 6. Propagation rules of mulit-arcs

sj−1 and vice versa, which leads to rule #1. Rule #5 is more interesting: getfield f : t
replaces the old top of the stack, sj−1, with the value of its field f . Hence all reachabil-
ity pairs that do not consider sj−1 are still valid after the execution of the getfield f : t:
λR.{a�b ∈ R | a , b � sj−1}. But we have to consider which variable b might be reached
from the field (sj−1�b) and which variable a might reach the field (a�sj−1). For b,
we observe that if the field reaches b, then also its containing object (i.e., the old top of
the stack) had to reach b before the getfield f : t (i.e., sj−1�b ∈ R); for better precision
we consider only those pairs of variables that satisfy type reachability requirement, i.e.,
t�τ(b). For a, we rely on a pessimistic (but conservative) assumption: every variable a
might reach the field after the getfieldf : t, as long as the field has a reference type such
that τ(a)�t and as long as a shares with the top of the stack before the instruction.
Rule #6 states that a reachability pair at a putfield f : t instruction remains valid just after
that instruction, provided that it did not deal with the topmost two values of the stack
sj−1 and sj−2, that disappear. Moreover, since this instruction writes sj−1 in a field of
sj−2, it might introduce reachability from a to b, when a reaches the receiver sj−2 and
the value sj−1 reaches b before the putfield f : t.

The final arcs feed nodes exit@m and exception@m for each method or constructor
m. The former contains all states at the end of a normal execution of m; the latter
contains those at the end of an exceptional execution of m. Hence exit@m is the sink
of an arc from every return t in m. The propagation rule states that the stack is emptied
at the end of execution of m (#8) or only one element survives, the return value (#9).
Similarly, exception@m is the sink node of every throwκ instruction that has no exception
handler in m (i.e., it has no successors in m). Rule #10 states that all stack elements,
but the topmost one sj−1, disappear. The latter is renamed into the exception object s0,
and is always non-null (thus, s0�s0). We observe that only a throw κ is allowed to
throw an exception to the caller since, in our representation of the code as basic blocks,
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all other instructions that might throw an exception are always linked to an exception
handler, possibly minimal (as the two putfield in Fig. 2).

The exceptional arcs link every instruction that might throw an exception to the
catch at the beginning of their exception handler(s). Rules #10 and #11 are identical,
but the latter is applied when throw κ has a successor. Rule #12 states a pessimistic
assumption about the exceptional states after a method call: the reachability pairs before
the call can survive as long as they do not deal with stack elements. The thrown object
s0 is non-null (thus, s0�s0) and conservatively assumed to reach and be reached from
every local variable a, as long as the static types allow it.

The parameter passing arcs connect each method call to the beginning of a method
mw that it might call. Rule #14 renames the actual parameters of mw , i.e., sj−π, . . . , sj−1,
into its formal parameters, i.e., l0, . . . , lπ−1.

There exists a return value multi-arc for each target mw of a call. Rule #15 con-
siders R1 and R2, approximations at the node corresponding to the call and at node
exit@mw . It builds the reachability pairs related to the returned value sj−π, in the caller.

Namely, sj−π reaches itself if the return value in the callee (held in the only stack ele-
ment s0 at its end) reaches itself. Moreover, a variable a of the caller might reach that
returned value (a�sj−1) if it exists after the call and it is not sj−π itself (condition 1); if
the static types allow it (condition 2); if a shares with at least one actual parameter sp
(condition 3); moreover, if a is a definite alias of the actual parameter sp whose corre-
sponding formal parameter lp−j+π is never re-assigned inside the callee mw , then it must
also be the case that lp−j+π reaches the returned value s0 (condition 4). Variables b that
might be reachable from the returned value sj−π are determined in a symmetrical way.
It is worth noting that the result of the call can reach a variable b only if b is reachable
from at least one actual parameter sp of the call at call-time (sp�b ∈ R1).

The side-effects multi-arcs enrich the reachability information already known at
call-time with some additional pairs of variables whose presence is due to the side-
effects of the call. Rule #16 adds a new pair a�b if it satisfies the following conditions:
a and b must exist after the call and must not be the returned value nor the exception
thrown by mw (condition 1); the static types of a and b must allow their reachability
(condition 2); moreover, a must share with at least one actual parameter of the call and
b must be reachable from at least one actual parameter of the call (conditions 3 and 4,
respectively); finally, if a and b are definite aliases of two actual parameters qa and qb of
the call whose corresponding formal parameters lqa−j+π and lqb−j+π are not re-assigned
inside mw , then lqa−j+π must reach lqb−j+π at the end of mw (condition 5).

Propagation rules #15 and #16 use possible sharing and definite aliasing between
program variables. If these data are missing, one can always assume the worst, least
precise hypothesis. In our experiments (Section 5) reachability analysis is performed
inside the nullness and termination tools of Julia, that already perform definite aliasing
and possible sharing analyses, so they have no additional cost. The precision of the
analysis would benefit from a possible inlining of frequently used methods, so that their
calling contexts are not merged into one. However, this is not implemented in Julia.
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Fig. 7. The ACG for the constructor in Fig. 2

An ACG is solved by finding a reachability approximation at each node, consistent
with the propagation rules of the arcs. Since these propagation rules are monotonic,
a minimal solution exists and can be computed through a fixpoint calculation. This
solution is the reachability analysis of the program, and has been proven sound [14].

Theorem 1 (Soundness). Let ins and σ ∈ Στ be a bytecode instruction and a state
reached by an execution of the main method of a program, and let Rins ∈ Aτ be the
reachability approximation computed by our analysis at ins . Then, σ ∈ γτ(Rins).

Example 5. Fig. 7 shows the ACG built for the constructor in Fig. 2. It also shows, in
grey, three nodes of a caller of this constructor (nodes A, B and C) and two nodes of
the callee of call java.lang.Object.〈init〉() : void, to exemplify the arcs related to
method call and return. Arcs are decorated with the number of their associated propa-
gation rule. Note that the graph for the whole program includes other nodes and arcs.
Suppose that at node A, which invokes the constructor, there are four stack elements
and four local variables and that we know, from previous static analyses, that a correct
possible sharing information is shareA = {〈s0, s1〉, 〈l3, s2〉, 〈l1, s3〉} (only these pairs
of variables might share), while a correct definite aliasing information is aliasA =
{〈s0, s1〉, 〈l3, s2〉} (those pairs of variables must be alias, but there might be others).
Moreover, suppose that this call occurs in a context with reachability information SA =

{l1�l1, l3�l3, l1�s3, l3�s2, s2�l3, s0�s0, s0�s1, s1�s0, s1�s1, s2�s2, s3�s3}.
The constructor stores the locations held in its parameters s2 and s3 into the fields head
and tail of the newly created object, whose location is, in turn, held in s0 and s1.
Moreover, s2 and l3 are definite aliases at node A, hence we expect that, after any non-
exceptional execution of the call (node B ), l3 is reachable from s0. Node A is linked
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to node 1 through an arc with propagation rule #14, whose application on SA gives an
approximation of the reachability information at node 1, S1 = {l0�l0, l1�l1, l2�l2}.
Similarly, we determine the approximations of the reachability information of the other
nodes. For instance, S2 = {l0�l0, l1�l1, l2�l2, l0�s0, s0�l0, s0�s0}, S3 =S1, etc. In
particular, S10= {l0�l0, l0�l1, l0�l2, l1�l1, l2�l2} and there is a side-effect arc from
nodes A and 10 to node B , whose propagation rule #16 applied to SA and S10 gives
SB = {l1�l1, l1�s0, l1�l3, l3�l3, s0�l3, s0�s0}. As expected, s0�l3∈SB . ��

5 Experiments

We have implemented our reachability analysis inside the Julia analyzer for Java and
Android (http://www.juliasoft.com). Our first aim was to evaluate the cost of the
reachability analysis itself and verify whether it actually improves the precision of side-
effects, field initialization and cyclicity, as hinted in Section 1. The second aim was
to verify if the extra reachability information improves the precision of the nullness
and termination checking tools available in Julia, that use side-effects, field initializa-
tion, cyclicity and path-length as (some of their) supporting analyses. We do not have
any measure of precision for path-length analysis, so we do not evaluate its improve-
ments directly but only as a component of the termination checking tool. To reach these
goals, we have analyzed some Java and Android programs, with reachability analy-
sis turned off and then on. Most of these samples are Android applications: Mileage,
OpenSudoku, Solitaire and TiltMazes1; ChimeTimer, Dazzle, OnWatch and Tricorder2;
TxWthr3. There are also some Java programs: JFlex is a lexical analyzers generator4;
Plume is a library by Michael D. Ernst5; Nti is a non-termination analyzer by Étienne
Payet6; Lisimplex is a numerical simplex implementation by Ricardo Gobbo7. The oth-
ers are sample programs taken from the Android 3.1 distribution by Google.

Fig. 8 reports time and precision of reachability analysis on a Linux quad-core Intel
Xeon machine running at 2.66GHz, with 8 gigabytes of RAM. Times are always below
41 seconds. Average precision is 45.07% which means that, given two variables v and
w of reference type at a given program point, in more than half of the cases the analysis
proves that v does not reach w . A smaller percentage, here, means better precision.
Fig. 8 shows that reachability analysis improves the precision of the side-effects analysis
and has positive effects on field initialization as well. Instead, cyclicity analysis seems
unaffected. Sharing analysis is always used in these experiments, both when we use
reachability information and when we do not compute it. Thus, this figure shows the
importance of having also reachability information instead of just sharing information.

Fig. 9 presents our experiments with the nullness and termination tools of Julia
and reports their runtime, including reachability analysis. In 8 cases over 24, the ex-
tra reachability information improves the precision of the nullness checking tool. But

1 http://f-droid.org/repository/browse/
2 http://moonblink.googlecode.com/svn/trunk/
3 http://typoweather.googlecode.com/svn/trunk/
4 http://jflex.de
5 http://code.google.com/p/plume-lib
6 http://personnel.univ-reunion.fr/epayet/Research/NTI/NTI.html
7 http://sourceforge.net/projects/lisimplex

http://www.juliasoft.com
http://f-droid.org/repository/browse/
http://moonblink.googlecode.com/svn/trunk/
http://typoweather.googlecode.com/svn/trunk/
http://jflex.de
http://code.google.com/p/plume-lib
http://personnel.univ-reunion.fr/epayet/Research/NTI/NTI.html
http://sourceforge.net/projects/lisimplex
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this never happens for termination, consistently with the fact that cyclicity is not im-
proved (Fig. 8). This is because the methods of the programs that we have analyzed
terminate since they perform loops over numerical counters or iterators. There is no
complex case of recursion over data structures dynamically allocated in memory (lists
or trees) where cyclicity would help. To investigate further the case of termination anal-
ysis, we have applied Julia to the set of (very tiny) programs used in the international
termination competition that is performed every year. Those programs, although small
and often unrealistic, are nevertheless interesting since the proof of their termination
often requires non-trivial arguments, also related to objects dynamically allocated in
memory. Over a total of 164 test programs, the reachability information allows Julia to
prove the termination of six more tests: LinkedList, List, ListDuplicate, PartitionList,
Test5 and Test6, by supporting a more precise cyclicity and path-length analysis.

For both nullness and termination checking, the presence of reachability analysis
actually reduces the total runtime of the tools. This is because reachability helps sub-
sequent analyses, in particular side-effects analysis, and prevents them from generat-
ing too much spurious information. For instance, side-effects analysis computes much
smaller sets of affected fields per method (Fig. 8, compare the 7th and the 8th columns).

6 Conclusion

We have introduced, formalized and implemented a provably sound (see [14] for proofs)
constraint-based reachability analysis for Java bytecode. Its implementation inside the
Julia static analyzer is able to scale to programs containing 100k lines of code. Our
experiments show that the reachability analysis improves the precision and efficiency
of the side-effects, field initialization and nullness analyses, already performed by Julia.

Our constraint-based approach has been used to develop aliasing and sharing anal-
yses of our tool (never published and with completely different propagation rules). We
plan to use it in the future to formalize and prove correct other static analyses as well.
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Abstract. We propose a new logic, called differential dynamic game
logic (dDGL), that adds several game constructs on top of differential
dynamic logic (dL) so that it can be used for hybrid games. The logic
dDGL is a conservative extension of dL, which we exploit for our imple-
mentation of dDGL in the theorem prover KeYmaera. We provide rules
for extending the dL sequent proof calculus to handle the dDGL con-
structs by identifying analogs to operators of dL. We have implemented
dDGL in an extension of KeYmaera and verified a case study in which
a robot satisfies a joint safety and liveness objective in a factory au-
tomation scenario, in which the factory may perform interfering actions
independently.

Keywords: differential dynamic logic, hybrid games, sequent calculus,
theorem proving, logics for hybrid systems, factory automation.

1 Introduction

One relevant question when analyzing complex physical systems is whether one
component is able to meet a given safety requirement no matter what its environ-
ment does. Consider an autonomous robot moving around in a robotic factory
environment. Global decision planning is infeasible, so the robot has limited
knowledge about what the other elements of the factory will decide to do. If
there is any probabilistic information about the decisions of agents, stochastic
system models can be used for verification [9]. Otherwise, the question can be
considered as a game between the component and its environment. The mathe-
matical model for interacting discrete control and continuous evolutions is called
hybrid system [8]. The game theoretic extension is called hybrid games.

Hybrid games [12,14,4,1,15] have two types of actions: discrete jumps, which
update the value of a variable instantaneously, and continuous evolutions along
solutions of differential equations. Time only passes for the latter action. Hence,
hybrid games are a natural extension of timed games [5], which only support
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clocks with differential equation x′ = 1 and only allow variables to be reset to 0
and not assigned arbitrarily. Fairly restricted classes of hybrid games have been
shown to be decidable (see e.g. [4,1,15]), but the general case is undecidable.
Tomlin et al. [14] study hybrid games for controller synthesis. They give a nu-
merical algorithm for computing controllable predecessors and thus checking if
there is a controller that drives the system into a safe state.

Our approach to hybrid games is based on logic and built on top of differential
dynamic logic (dL) [7,8], which is a dynamic logic [3] for hybrid systems instead
of the conventional discrete programs that dynamic logic has originally been
invented for. The logic dL has modal formulas [α]φ and 〈α〉φ for each hybrid
system α. The dL formula [α]φ expresses that all states reachable by following
hybrid system α satisfy φ and 〈α〉φ expresses that at least one state reachable
by α satisfies φ, where φ is an arbitrary dL formula. The logic dL is closed under
all operators of first-order logic and nesting of modalities.

With these operators, we can express simple games in dL [8]. For example,
when F is a hybrid system describing a factory and R a hybrid system describing
a robot, then a formula of the form [F ]〈R〉safe can be used to express that, for all
behaviors of a factory F , the robot R can choose at least one behavior ensuring
safety (represented by some dL formula safe). This is a simple game expressible
in dL, but it stops after one round of interactions by the factory player and the
robot player. In order to say that the robot is still safe if it reacts appropriately
after the factory changed its mind in response to the robot’s first choice, we can
use the formula [F ]〈R〉(safe ∧ [F ]〈R〉safe). We can do so for any given number of
rounds of interactions of F and R, but we typically want to say that the system
will be safe for any number of interactions of F and R, not just for 2.

In this paper, we propose a logic that can state those properties using several
game constructs on top of dL, including repetition operators (G)[∗] and (G)〈∗〉 to
say that game G repeats. The difference between both operators is which player
decides how often to repeat the game. They decide how often to repeat before
the game starts. For example, the dDGL formula ([F ]〈R〉)[∗]safe expresses that,
no matter how often the player responsible for (·)[∗] decides to repeat the game
[F ]〈R〉, the state resulting from those alternating choices by F and R is safe.

In order to prove such properties, we lift the induction principles of dL to
dDGL. A dDGL formula (G)[∗]φ behaves in some ways like the dL or dDGL formula
[α∗]φ (where α∗ is the hybrid system that repeats α). In both cases, we consider
all possible numbers of iterations, because we do not know how often it will be
repeated. The dDGL formula (G)〈∗〉φ has similarities to the dL formula 〈α∗〉φ,
since in both cases, we can choose some number of repetitions. Yet, G is a hybrid
game, whereas α is a hybrid system. Nevertheless, we show that the induction
principles of invariants and variants lift from dL to dDGL.

We prove that dDGL is a conservative extension of dL and, thus, our theorem
prover KeYmaera [11] for dL can be extended such that it can be used to prove
hybrid games expressible in dDGL. We develop a proof calculus for the specifics
of dDGL and implement it in KeYmaera. We develop and verify a case study in
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which a mobile robot satisfies a joint safety and liveness objective in a factory
automation scenario, in which the factory may perform interfering actions.

2 Hybrid Programs and dDGL

Syntax. We use the hybrid program (HP) notation for hybrid systems. We sketch
the syntax of these programs as defined in [7,8]. The syntax of HPs is shown
together with an informal semantics in Tab. 1. The basic terms (called θ in the
table) are either rational numbers, real-valued variables or arithmetic expressions
(with operators +,−, ·, /) built from those.

Discrete jumps are modeled by x := θ. Their effect is to assign the value of the
term θ to the variable x. Continuous evolutions, on the other hand, are modeled
by x′ = θ&χ. Here, the variables evolve along the solution of the differential
equation (x′ denotes the derivative of x w.r.t. to time), without leaving the
evolution domain characterized by the formula χ. If there is no evolution domain
restriction, i.e., χ ≡ true, we just write x′ = θ. Note that x′ = θ can be a system
of differential equations.

To test conditions on the program flow the test action ?χ is used. If the for-
mula χ holds in the current state, the action has no effect. Otherwise, it aborts
the program execution and the execution is discarded. The nondeterministic
choice α ∪ β expresses alternatives in the behavior of the hybrid system. The
sequential composition α;β expresses that β starts after α finishes. Nondetermin-
istic repetition α∗ says that HP α repeats an arbitrary number of times. These
operations can be combined to form any other classical control structure [8].

The assignment x := ∗ nondeterministically assigns a real value to x, thereby
expressing unbounded nondeterminism. This nondeterminism can be restricted
by combining basic programs. For instance, the idiom x := ∗; ?φ assigns any value
to x such that the formula φ holds.

Based on this program notation for the behavior of hybrid systems, we sep-
arately define hybrid games. The idea behind our notion of hybrid games is to
use operators somewhat similar to those of hybrid programs, but for games on
top of full hybrid systems. The particular hybrid games that we consider here
are two-player games produced by the following grammar (α is a HP):

G ::= [α] | 〈α〉 | (G1 ∩G2) | (G1 ∪G2) | (G1G2) | (G)[∗] | (G)〈∗〉

Table 1. Statements of hybrid programs (χ is a first-order formula, α, β are HPs)

Statement Effect

α; β sequential composition, performing first α and then β afterwards
α ∪ β nondeterministic choice, following either α or β
α∗ nondeterministic repetition, repeating α some n ≥ 0 times
x1 := θ1, .., xn := θn simultaneously assign θi to variables xi by a discrete assignment
x := ∗ nondeterministic assignment of an arbitrary real number to x(
x′
1 = θ1, . . . , continuous evolution of xi along the differential equation system

x′
n = θn &χ

)
x′
i = θi, restricted to evolution domain χ

?χ test if formula χ holds at current state, abort otherwise
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By G, we denote the set of all such hybrid games. The intuition behind these
games is as follows. The game is played by two players, which we call Verifier
and Falsifier who play by the following rules: In the game [α] Falsifier resolves
the nondeterminism whereas in the game 〈α〉 Verifier is allowed to do so. Observe
that our notion of hybrid games is built on top of full hybrid systems, that is,
every hybrid program α is, by way of [α] or 〈α〉, directly a hybrid game. The game
(G1G2) is the sequential composition of games, where game G2 is played right
after game G1 has finished. In a game (G1∩G2) Falsifier may decide whether the
game proceeds with G1 or with G2. In the game (G1∪G2) this choice is made by
Verifier. Repetitive game playing is possible using the iteration constructs (G)[∗]

and (G)〈∗〉, where, for the first one, Falsifier decides how many iterations are
played and, for the latter one, Verifier makes the choice. Note that the choice on
the number of iterations has to be made by advance notice. That is, the player
responsible for controlling the iteration decides how often G is repeated when
the game starts and announces it to the other player.

Winning conditions for the games are formulated in dDGL as postconditions
of games. A strategy for a player determines how to resolve the nondeterminism
under his control based on the result of the game played so far. The nondeter-
minisms inside a hybrid system are resolved by choosing which real values to
assign to x when executing x := ∗ statements, which branch to follow for choices
∪, the number of loop iterations, and how long to follow continuous flows.

The dDGL-formulas are first-order formulas over the reals extended by hybrid
games. They are defined by the following grammar (θi are terms, x is a variable,
∼ ∈ {<,≤,=,≥, >, �=}, φ and ψ are formulas, and G is a hybrid game):

φ ::= θ1 ∼ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | φ↔ ψ | ∀xφ | ∃xφ | G φ

A dDGL formula G φ is valid if Verifier has a strategy to ensure that φ holds
after playing the game G. Therefore, the goal of Verifier is to make φ true while
that of Falsifier is complementary, i.e., to make φ false. Note that the formula φ
itself might contain another game.

Consider the dDGL formula ([α])〈∗〉φ which expresses that there is a number
of repetitions n, such that the formula φ holds after n repetitions of α. Note that
this dDGL formulas is not equivalent to [α∗]φ, which would demand that it holds
for all possible numbers of executions of α. It is also not equivalent to 〈α∗〉φ as
this would give control to Verifier over the (possibly unbounded) nondeterminism
during the executions of α. A similar observation can be made for (〈α〉)[∗]φ
which says that the program α is always able to ensure φ by appropriate choices
of the nondeterminisms in α. Combining the repetition operator and the choice
operators we can express properties like (〈β〉 [α]∪[α] 〈β〉)[∗]φ. This formula means
that φ holds after any number of iterations (as Falsifier has control over the
number of iterations) while Verifier can control (by ∪) for each iteration if he
wants to move first according to β or Falsifier has to move first according to α.

Semantics. Next, we define the semantics of dDGL. For a set of variables V ,
denote by Sta(V ) the set of states, i.e., all mappings of type V → R. Let val(ν, θ)
denote the valuation of a term θ in a state ν.
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Definition 1 (Transitions of hybrid programs). The transition relation,
ρ(α), of a HP α, specifies which state ω is reachable from a state ν by operations
of the hybrid system α and is defined as follows

1. (ν, ω) ∈ ρ(x1 := θ1, . . . , xn := θn) iff ν[x1 "→ val(ν, θ1)] . . . [xn "→ val(ν, θn)]
equals state ω. Particularly, the value of other variables z �∈ {x1, . . . , xn}
remains constant, i.e., val(ν, z) = val(ω, z).

2. (ν, ω) ∈ ρ(x := ∗) iff state ω is identical to ν except for the value of x, which
can be any real number (could be identical to the previous valuation of x).

3. (ν, ω) ∈ ρ(x′1 = θ1, . . . , x
′
n = θn &χ) iff there is a continuous function f :

[0, r]→ Sta(V ) from f(0) = ν to f(r) = ω, which solves the system of
differential equations, i.e., for all i ∈ [1, n], val(f(ζ), xi) has a derivative of
value val(f(ζ), θi) at each time ζ ∈ (0, r). Other variables remain constant:
val(f(ζ), y) = val(ν, y) for y �= xi, for all i ∈ [1, n] and ζ ∈ [0, r]. And the
evolution domain χ is respected: val(f(ζ), χ) = true for each ζ ∈ [0, r].

4. ρ(?χ) = {(ν, ν) : ν |= χ} where ν |= χ is defined as in first-order logic.
5. ρ(α ∪ β) = ρ(α) ∪ ρ(β)
6. ρ(α;β) = ρ(α)◦ρ(β) = {(ν, ω) : (ν, z) ∈ ρ(α), (z, ω) ∈ ρ(β) for some state z}
7. (ν, ω) ∈ ρ(α∗) iff there are n ∈ N and ν=ν0, . . . , νn=ω with (νi, νi+1) ∈ ρ(α)

for all 0 ≤ i < n.

The semantics of formulas of dDGL is defined as follows.

Definition 2 (Interpretation of dDGL formulas). The interpretation |= of
a dDGL formula w.r.t. state ν uses the standard meaning of first-order logic:

1. ν |= θ1 ∼ θ2 iff val(ν, θ1) ∼ val(ν, θ2) for ∼ ∈ {=,≤, <,≥, >}
2. ν |= φ ∧ ψ iff ν |= φ and ν |= ψ, accordingly for ¬,∨,→,↔
3. ν |= ∀xφ iff ω |= φ for all ω that agree with ν except for the value of x
4. ν |= ∃xφ iff ω |= φ for some ω that agrees with ν except for the value of x

Statements about hybrid games G and programs α have the following semantics

5. ν |= [α]φ iff ω |= φ for all ω with (ν, ω) ∈ ρ(α),
6. ν |= 〈α〉φ iff ω |= φ for some ω with (ν, ω) ∈ ρ(α),
7. ν |= (G1 ∪G2)φ iff ν |= G1φ or ν |= G2φ,
8. ν |= (G1 ∩G2)φ iff ν |= G1φ and ν |= G2φ,
9. ν |= (G1G2)φ iff ν |= G1(G2φ),

10. ν |= (G)[∗]φ iff ν |= (Gn)φ holds for all n ∈ N,
11. ν |= (G)〈∗〉φ iff ν |= (Gn)φ holds for some n ∈ N,

where Gn denotes the n-times sequential composition of G and G0φ ≡ φ.
A formula φ is valid (denoted by |= φ) iff ν |= φ holds for all states ν ∈ Sta(V ).

These definitions are abstract. They do not refer to how games are played. There-
fore, we now provide a structural operational semantics for games, formally define
the notions of play and strategy, and then prove that the existence of a winning
strategy for Verifier coincides with the notion of satisfaction in Def. 2. For a game
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(F1)
(ν, ω) ∈ ρ(α)

[α]@ν → ∗@ω (F2)
ρ(α) = ∅

[α]@ν → �@ν
(F3)

G@ν → G′@ω

G ∩H@ν → G′@ω

(F4)
G ∩H@ν → G′@ω

H ∩G@ν → G′@ω
(F5)

n ∈ N

(G)[∗]@ν → Gn@ν

(V1)
(ν, ω) ∈ ρ(α)

〈α〉@ν → ∗@ω (V2)
ρ(α) = ∅

〈α〉@ν → ⊥@ν
(V3)

G@ν → G′@ω

G ∪H@ν → G′@ω

(V4)
G ∪H@ν → G′@ω

H ∪G@ν → G′@ω
(V5)

n ∈ N

(G)〈∗〉@ν → Gn@ν

(S1)
G@ν → ∗@ω

(G H)@ν → H@ω
(S2)

G@ν → ⊥@ω

(G H)@ν → ⊥@ω
(S3)

G@ν → �@ω

(G H)@ν → �@ω

Fig. 1. Structural Operational Semantics of Hybrid Games (Verifier can only control
V and S rules and Falsifier can only control F and S rules)

G and a state ν, we use G@ν to denote that the game is in the position where
starting from state ν the game will follow the transitions of G.

The operational semantics for the games is structured into three types of
actions: those controllable by Falsifier (prefixed with F), those controllable by
Verifier (prefixed with V), and those for modelling sequential composition (pre-
fixed with S). We add special games ∗, �, and ⊥ to denote the possible outcomes
of a game. In the latter two cases either of the players was unable to make an-
other move. The game terminates in ∗ after the players played all their actions.

Definition 3 (Structural Operational Semantics of Games). For a game
G its operational semantics [[G]] is given by the rules defined in Fig. 1. Here,
Gn denotes the n-times sequential composition of G. The semantics provides a
relation between game positions, i.e. [[G]] ⊆ G × Sta(V )× G × Sta(V ).

Following the rules of the structural operational semantics defines a transition
system that is possibly uncountably branching, due to the non-determinism in
hybrid programs, e.g. in choosing evolution times. Observe that each path is of
finite length, because the number of iterations is chosen non-deterministically
but a priori. Note this semantics does not yet define who decides which options
to follow. In particular, the structural operational semantics of ∩ and ∪ is still
the same and that of (·)[∗] and (·)〈∗〉 is still the same, but they will differ as soon
as we define which player gets to choose. The Verifier can choose V rules and
the Falsifier can choose F rules. The S rules are determined anyway.

To determine whether a strategy is compatible with a game, we define the
closure of games under a subgame relation. This closure gives the set of all game
positions (ignoring the state of system variables) that can occur in a play.

Definition 4 (Closure under Subgame). For a game G its closure under
subgame, cl(G), is defined inductively as:

– cl([α]) = {[α]} and cl(〈α〉) = {〈α〉}



Playing Hybrid Games with KeYmaera 445

– cl(G1G2) = {G1G2} ∪ cl(G1) ∪ cl(G2)
– cl(G1 ∪G2) = {G1 ∪G2} ∪ cl(G1) ∪ cl(G2)
– cl(G1 ∩G2) = {G1 ∩G2} ∪ cl(G1) ∪ cl(G2)
– cl((G)[∗]) = {(G)[∗]}∪

⋃
n∈N cl(G

n) and cl((G)〈∗〉) = {(G)〈∗〉}∪
⋃

n∈N cl(G
n)

Definition 5 (Strategy). A strategy s : G×Sta(V )→ (G∪{∗,�,⊥})×Sta(V )
is a mapping between game positions. A strategy s is called compatible with a
game G if its actions are allowed, i.e., ((g@ν)→ s(g@ν)) ∈ [[G]] for all g ∈ cl(G)
and for all ν ∈ Sta(V ).

Using this notion of strategy, we now formalize the rules of the game by deter-
mining which player gets to choose from the actions of the operational semantics.

Definition 6 (Play). Given a game G ∈ G, a state ν ∈ Sta(V ), and two com-
patible strategies (one for Falsifier f and one for Verifier v), a play pf,v(G@ν)
is defined by the following algorithm:

while G �∈ {∗,⊥,�} do
Match the form of G:

Case [α], G1 ∩G2, or (G1)
[∗] then G@ν := f(G@ν) // Falsifier chooses

Case 〈α〉,G1 ∪G2, or (G1)
〈∗〉 then G@ν := v(G@ν) // Verifier chooses

Case G1G2 then do
G@ν := pf,v(G1@ν) // play G1

If G = ∗ then G := G2 // if G1 terminated with ∗ move to G2

od
od // the result is G@ν with G ∈ {∗,⊥,�}
Definition 7 (Winning). Given a game G and a dDGL formula φ as winning
condition. For an initial state ν, the game G is won by Verifier iff G ends in a
position H@ω where either H = ∗ and ω |= φ, or H = �. Otherwise, Falsifier
wins (i.e. the game is zero-sum). For a dDGL-formula φ a strategy s is called
winning in a game G if, by applying this strategy, Falsifier (resp. Verifier) wins
every play of G regardless of which strategy Verifier (resp. Falsifier) follows.

Lemma 1. For a state ν, ν |= Gφ iff Verifier has a strategy in the game G with
winning condition φ started in position G@ν such that he wins the game.

The proof of Lemma 1 can be found in [13].

Corollary 1. The formula Gφ is valid iff Verifier has a winning strategy in the
game G for the winning condition φ.

A crucial point for the design of dDGL is that we want it to be conservative with
respect to differential dynamic logic in the sense that all dL formulas are dDGL
formulas and that any dL formula is valid in the semantics of dDGL if and only
it was valid in the original semantics for dL. This allows us to transfer soundness
results for proof calculus rules from dL to dDGL and extend our theorem prover
KeYmaera with additional proof rules for handling the extra dDGL constructs.

Theorem 1 (Conservative Extension). Differential dynamic game logic is
a conservative extension of differential dynamic logic (A proof is in [13]).



446 J.-D. Quesel and A. Platzer

3 Proof Rules for dDGL

In this section, we present a sound but incomplete proof calculus for dDGL. It
is incomplete, because hybrid systems are not semidecidable [8]. The calculus
symbolically executes the hybrid games and hybrid programs. Thereby the dDGL
calculus reduces properties of hybrid games to dL properties of hybrid programs,
which it, in turn, reduces to validity questions of formulas in first-order logic over
the reals like the dL proof calculus does [7].

Substitutions are defined only on first-order formulas. Therefore, state changes
performed by assignments and continuous evolutions are kept as a simultane-
ous assignment J of the form x1 := θ1, . . . , xn := θn. When the formula was
successfully transformed into a first-order one, these jump sets are applied as
substitutions. See [7,8] for more details on this matter. We denote by ∀Gφ the
universal closure of the formula φ w.r.t. the variables changed within the gameG.
The sequent Γ � Δ is an abbreviation for

∧
φ∈Γ φ →

∨
ψ∈Δ ψ. Proof rules are

applied from the desired conclusion (goal below bar) to the resulting premises
(above bar) that need to be proved instead.

Definition 8 (Rules [8]). Calculus rules are defined from the rule schemata
presented in Fig. 2 using the following definitions:

1. If
φ1 � ψ1 . . . φn � ψn

φ0 � ψ0

is an instance of a rule schema in Fig. 2, then

Γ, 〈J 〉φ1 � 〈J 〉ψ1, Δ . . . Γ, 〈J 〉φn � 〈J 〉ψn, Δ

Γ, 〈J 〉φ0 � 〈J 〉ψ0, Δ

can be applied as a proof rule, where Γ , Δ are arbitrary (possible empty)
finite sets of context formulas and J is a (possibly empty) discrete jump set.

2. Symmetric schemata
φ

ψ

can be applied on either side of the sequent as

Γ, 〈J 〉φ � Δ
Γ, 〈J 〉ψ � Δ or as

Γ � 〈J 〉φ,Δ
Γ � 〈J 〉ψ,Δ

Again they do not alter the context. Additionally, we use the abbreviation
〈[α]〉 if the rule is independent of the player controlling the action α.

3. The existential quantifier elimination rule applies to all goals containing vari-
able X at once: If φ1 � ψ1, . . . , φn � ψn is the list of all open goals (i.e., goals
that have not been proved yet) of the proof that contain the free variable X,
then the following instance can be applied as a proof rule:

� QE(∃X
∧

i(φi � ψi))

φ1 � ψ1 . . . φn � ψn
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(D1)
φ ∧ ψ

〈?φ〉ψ

(D2)
φ → ψ

[?φ]ψ

(D3)
〈[α]〉 〈[β]〉φ
〈[α;β]〉φ

(D4)
〈α〉φ ∨ 〈β〉φ
〈α ∪ β〉φ

(D5)
[α]φ ∧ [β] φ

[α ∪ β] φ

(D6)
φ ∨ 〈α;α∗〉φ

〈α∗〉φ

(D7)
φ ∧ [α;α∗]φ

[α∗]φ

(D8)
φθ1...θn
x1...xn

〈[x1 := θ1, . . . , xn := θn]〉φ

(D9)
∀t[x := t]φ

[x := ∗]φ

(D10)
∃t[x := t]φ

〈x := ∗〉φ

(D11)
∃ t ≥ 0 ∀ 0 ≤ t̃ ≤ t

〈
x := yv(t̃)

〉
χ → 〈x := yv(t)〉φ

〈x′ = θ&χ〉φ

(D12)
∀ t ≥ 0 ∀ 0 ≤ t̃ ≤ t

[
x := yv(t̃)

]
χ → [x := yv(t)]φ

[x′ = θ&χ]φ

(D13)
	 ∀[α](φ→ [α]φ)

φ 	 [α∗]φ
(D14)

	 ∀〈α〉∀n > 0(ϕ(n) → 〈α〉ϕ(n− 1))

∃nϕ(n) 	 〈α∗〉 ∃n(n ≤ 0 ∧ ϕ(n))

(D15)
	 φ(s(X1, . . . , Xn))

	 ∀xφ(x)

(D16)
φ(s(X1, . . . , Xn)) 	

∃xφ(x) 	

(D17)
	 φ(X)

	 ∃xφ(x)

(D18)
	 QE(∃X

∧
i(φi 	 ψi))

φ1 	 ψ1 . . . φn 	 ψn

(D19)
φ(X) 	
∀xφ(x) 	 (D20)

	 QE(∀Xφ(X) 	 ψ(X))

φ(s(X1, . . . , Xn)) 	 ψ(s(X1, . . . , Xn))

(G1)
G1φ ∨G2φ

(G1 ∪G2)φ

(G2)
G1φ ∧G2φ

(G1 ∩G2)φ

(G3)
G1(G2φ)

(G1G2)φ

(G4)
φ ∧G (G)[∗]φ

(G)[∗]φ

(G5)
φ ∨G (G)〈∗〉φ

(G)〈∗〉φ

(G6)
	 ∀G(φ → ψ)

Gφ 	 Gψ

(G7)
	 ∀G(φ → Gφ)

φ 	 (G)[∗]φ
(G8)

	 ∀G∀n > 0(ϕ(n) → G (ϕ(n− 1)))

∃nϕ(n) 	 (G)〈∗〉∃n(n ≤ 0 ∧ ϕ(n))

– t and t̃ are fresh logical variables, yv is the solution of the symbolic initial value problem
(ẋ = θ, x(0) = v).

– Logical variable n does neither occur in α nor G.
– φθ1...θn

x1...xn
denotes the formula where each xi is substituted by θi simultaneously. The assignment

in rule D8 must be admissible [8], otherwise it is added to the jump context 〈J 〉.
– X is a new logical variable.
– QE: quantifier elimination procedure (can only be applied to first-order formulas).
– For D18 φi � ψi are the only branches where X occurs as a free logical variable.

Fig. 2. Free-variable proof calculus for dDGL

Figure 2 shows a proof calculus for dDGL. Together with rules for dealing with
propositional logic (including a cut rule), the calculus rules D1-D20 form the
original proof calculus for dL [7,8]. To handle the new game constructs appear-
ing in dDGL the rules G1-G8 are used. The rules D1-D12 are equivalences for
transforming and decomposing hybrid programs. The rules D13 (resp. D14) allow
reasoning about loops using induction (resp. proving convergence).

For handling first-order quantifiers, we use rules D15-D20 from dL [7]. They
perform Skolemization [8] to allow for removing the modalities within the for-
mulas using other rules. After the modalities are dealt with, the quantifiers are
reintroduced and quantifier elimination (QE) is performed.
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The rules G1 and G2 are equivalences to reason about the choice operations
on games. They are the game-equivalents of D5 and D4. Rule G3 transforms
sequential compositions such that they can be handled by the original rules of the
dL calculus. It takes the form of D3. The rules G4-G5 allow for unwinding of the
game loops. Rule G7 follows the pattern of D13, but allows induction over game
loops that are under Falsifier’s control. If Verifier can establish that a formula
φ holds after any run of game G that started in an arbitrary state satisfying φ,
then, by induction, φ holds for an arbitrary number of plays. Rule G8 follows the
pattern of D14 and can be used to show properties of game loops that are under
Verifier’s control. We can be sure that there is a number of iterations after which
the postcondition ϕ(n) holds for some n ≤ 0 if G can be controlled by Verifier
such that the state converges w.r.t. ϕ(n). Here, the existence of some n such that
ϕ(n) holds serves as an induction anchor. As for each play started in an arbitrary
state where n > 0 and ϕ(n) holds, Verifier can assure that after playing the game
G the formula ϕ(n − 1) holds, thus the game can be forced to eventually reach
a state where n ≤ 0 and ϕ(n) holds. Note that n must not occur in the game G
as otherwise it would be bound by the game instead of the quantifier prefix in
the postcondition and thus falsify our induction. Additionally, the generalization
rule G6 can be used to strengthen postconditions. This rule can, for example,
be used to add induction anchors and use cases to the rules G7 and G8.

The purpose of the calculus is to provide a framework for deriving valid dDGL
formulas syntactically. A calculus is sound iff all formulas derived by applying
the calculus rules are indeed valid.

Definition 9 (Soundness). A calculus rule φ1,...,φn

ψ1,...,ψn
is sound iff validity of the

premises φ1 ∧ · · · ∧ φn implies the validity of the conclusions ψ1 ∧ · · · ∧ ψn.

Theorem 2. The dDGL calculus rules presented in Fig. 2 are sound.

The soundness proofs for the rules D1-D20 in [8] are valid for dDGL as well,
because dDGL is a conservative extension of dL (see Theorem1).

The soundness of the rules G1 and G2 is obvious from the semantics of the
operators ∪ and ∩ on games. For the rule G3 the soundness follows directly from
the definition of the sequential composition. The soundness of the unwinding
rules G4 (resp. G5) is a direct consequence of the semantics of (G)[∗] (resp.
(G)〈∗〉). For proving soundness of rule G6 a similar pattern to that in [8] can be
applied. The game G can only change the variables that occur in G. Therefore,
if φ → ψ and Gφ holds independent of how the variables occurring in G are
evaluated, ψ also holds after playing G.

Soundness of the induction rule G7 and the convergence rule G8 can be shown
by induction over the number of executions of the loop, in analogy to the sound-
ness proofs for D13 and D14. The proof of Theorem2 can be found in [13].

4 Case Study: Robotic Factory Automation

To demonstrate the applicability of our approach we model a factory automation
scenario in which an autonomous robot moves in an automatic factory. For
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scalability reasons, central coordination and planning become infeasible, so the
factory is set up as a collection of autonomous agents pursuing goals that may
not be known globally. The robot has a secondary objective of reaching certain
target positions, but its primary objective is to stay safe, i.e., neither leave the
factory site nor bump into its surrounding wall, which could damage the robot.

ey

fy

xb(lx, ly) ex fx

(rx, ry)

(vx, vy)

Fig. 3. Sketch of the robotic factory automation site

Model. We model a robot
with position (x, y), ve-
locity v = (vx, vy), and
acceleration a = (ax, ay)
on a 2 dimensional rect-
angular factory ground
(Fig. 3). There are two
conveyor belts. One point-
ing in x-direction and one pointing in y-direction. The factory may independently
decide to activate the conveyor belts, in which case they increase the velocity
of the robot. The robot may decide to move in any direction. Therefore, it can
decelerate to try to compensate for this increased speed. The goal of the robot
is to avoid crashing into any wall and avoid other machines using the belt.

A sketch of the factory site is provided in Fig. 3. One conveyor belt is of
y-width ey between positions lx and ex and moves in x-direction if activated.
Between ex and fx there is a belt of y-width fy moving in y-direction. The shaded
region in Fig. 3 indicates a region that has to be cleared within ε time units
after the system was started, because other robotic elements of the factory may
occupy this space then and not watch out for our robot. For simplicity, the robot
is initially located at the lower left end (lx, ly) of the factory site. The conveyor
belt in x-direction has a maximal velocity of cx and that in y-direction of cy. The
conveyor belts accelerate very quickly, so we simply consider them to accelerate
instantaneously. Thus, upon activation, their effect is to increase the velocity
of the robot by a discrete assignment instantaneously if the robot is currently
located on the conveyor belt that got activated. The robot itself can accelerate
with any acceleration of absolute value at most A = 2 and that acceleration
can be applied in x-direction (acceleration ax) or y-direction (acceleration ay)
or both. The robot can activate a brake that will slow it down. The difference
between braking and just accelerating in the opposite direction is that braking
does not allow changes of the sign of the velocity but instead stops at velocity 0.

Specification. As the robot is a moving object and cannot come to a standstill
instantaneously, certain conditions have to be satisfied to allow safe operation.
Therefore, we assume the following conditions on the scenario. We require that
the point xb can be reached by accelerating for at most time ε, the x-belt moves
to the right (if activated), and after passing the belts there is enough space to
brake from the velocity we reach by accelerating for four cycles (each of duration
≤ ε) and possible extra velocity gained when a conveyor belt activates:

xb <
1

2
Aε2 ∧ cx > 0 ∧ (cx + 4Aε)2 ≤ 2A(rx − fx) (1)
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For the y-direction we assume

cy > 0 ∧ c2y ≤ 2A(ry − ly) , (2)

i.e., the y-belt moves upwards (if activated) and there is enough space for the
robot to compensate for the effects of the conveyor belt by braking long enough
without having to leave the factory ground.

Even though these constraints limit the possible scenarios, we haven proven
that a strategy for the robot exists such that it meets its objectives. Figure 4
shows the hybrid game describing the robotic factory scenario. The game is
structured as follows. First the environment, i.e., Falsifier, chooses a number of
iterations. In each iteration, the environment may choose to activate one of the
conveyor belts if the robot is on it. Afterwards, the robot (i.e. Verifier) chooses
his accelerations in x and y-direction. The clock ts is reset to measure the cycle
time (i.e. ts ≤ ε), then the robot chooses if it wants to brake or possibly to drive
backwards (w.r.t. to its current direction). The time for the continuous evolution
is then chosen by the environment within the cycle time constraint and possibly
the zero crossing of one of the velocities. Thus, accelerating for ε time units can
take many iterations of the loop as ε only provides an upper bound on the cycle
time. Further, note that for the braking case if the velocity in a direction is 0 then
that acceleration is set to 0 as well to avoid time deadlocks. Also the robot has
to ensure that his choices for the acceleration are compatible with the current
velocities: for a velocity v and an acceleration a, if the robot wants to brake, i.e.
reduce the velocity to zero, then the product va has to be non-positive.

The winning condition for the robot is to stay safe, i.e.,:

lx ≤ x ≤ rx ∧ ly ≤ y ≤ ry ∧ (t ≥ ε→ (x ≥ xb ∨ y ≥ ey))

The robot must stay within the rectangle of the points (lx, ly) and (rx, ry) but has
to leave the rectangle (lx, ly) and (xb, ey) after ε time units. The latter require-
ment models that uncooperative robotic elements might enter that region. Note
that the number of iterations is chosen when the game starts not when specifying
the system. Sensor and communication delays are not modelled explicitly here.
Since they are beyond control for the robot, the number of iterations and the
evolution durations are chosen by the factory environment. How long the robot
needs to work in the factory is also decided by the factory, so the robot needs to
guarantee safety for all times. However, whether the robot actually has a strat-
egy is quite subtle. Simple strategies like always accelerating, or always braking
are bound to fail and accelerating for exactly ε time units is not possible as the
environment determines the actual cycle time and might not allow changing the
acceleration at that exact point in time. The robot has to navigate the factory
very carefully, react to changes in the conveyor belt activation as needed, and
robustly adapt to the number of control loop repetitions and (possibly erratic)
cycle durations chosen by the factory environment.

Verification. We consider an instance of the case study that is parametric w.r.t.
ε, cx, cy, and xb, but we fix lx = ly = 0, rx = ry = 10, ex = 2, ey = 1, fx = 3,
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(
[ ?true ∪ (?(x < ex ∧ y < ey ∧ eff1 = 1); vx := vx + cx; eff1 := 0)

∪ (?(ex ≤ x ∧ y ≤ fy ∧ eff2 = 1); vy := vy + cy ; eff2 := 0) ]

〈ax := ∗; ?(−A ≤ ax ≤ A); ay := ∗; ?(−A ≤ ay ≤ A); ts := 0 〉(
[x′ = vx, y

′ = vy , v
′
x = ax, v

′
y = ay , t

′ = 1, t′s = 1&ts ≤ ε ]

∪(〈?axvx ≤ 0 ∧ ayvy ≤ 0; if vx = 0 then ax := 0 fi; if vy = 0 then ay := 0 fi〉

[x′ = vx, y
′ = vy , v

′
x = ax, v

′
y = ay, t

′ = 1, t′s = 1&ts ≤ ε ∧ axvx ≤ 0 ∧ ayvy ≤ 0])
))[∗]

Fig. 4. Description of game for robotic factory automation scenario (RF )

fy = 10. We have verified the following propositions using KeYmaera [11], to
which we added dDGL proof rules. To establish the desired property, we first
show that the robot can stay within the factory site whatever the factory does.

Proposition 1. The following dDGL formula is valid, i.e., there is a strategy
for Verifier in the game depicted in Fig. 4 that achieves the postcondition:

(x = y = 0 ∧ (1) ∧ (2))→ (RF )(lx ≤ x ≤ rx ∧ ly ≤ y ≤ ry)

When proving this property, we focus on the case where the robot is not driving
towards the lower left corner; see Fig. 3.

Again allowing for arbitrary movement in x-direction, we analyze, for a pro-
jection to the x-axis, a more complex postcondition, where the robot has to leave
the shaded region but stay inside the factory site.

Proposition 2. The following dDGL formula is valid, i.e., there is a strategy
for Verifier in the game in Fig. 4 projected to the x-axis (denoted RF |x) that
achieves the postcondition:

(x = y = 0 ∧ (1))→ (RF |x)(lx ≤ x ≤ rx ∧ (t ≥ ε→ (x ≥ xb)))

In the proof of Proposition2 we prove the following inductive invariant:

eff1 ∈ {0, 1} ∧ x ≥ lx ∧ vx ≥ 0 ∧ (t ≥ ε→ x ≥ xb) ∧ (vx + cxeff1)
2 ≤ 2A(rx − x)

∧
(
x < xb → t ≤ ε ∧

(
xb − x ≤ 1

2
Aε2 − 1

2
At2

∧ (eff1 = 1→ vx = At) ∧ (eff1 = 0→ vx = At+ cx)

∧ rx − x ≥ (vx + eff1cx)
2

2A
+A(2ε− t)2 + 2(2ε− t)(vx + eff1cx)

))
(3)

The invariant says that enough space remains to brake before reaching the right
end of the factory ground. Additionally, if the point xb has not yet been passed
then the time is not up and the distance to the right wall is bounded by the
space the robot can cover by accelerating ε time units and the distance it could
already have covered within the current runtime. Further, the distance to the far
right side is large enough to accelerate for another 2ε− t time units and brake
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afterwards without hitting the wall. The 2ε time units are necessary as Falsifier
chooses how long to evolve and the robot may accelerate for ε time units before
it can react again. Therefore, the robot may have to accelerate when clock t is
almost ε and then may not react again within the next ε time units.

The KeYmaera proof [13] for Proposition1 has 2471 proof steps on 742
branches, with 159 interactive steps. The proof for Proposition2 has 375079 proof
steps on 10641 branches (1673 interactive steps). The interactive steps provide
the invariant and simplify the resulting arithmetic. Note that Proposition1 is
significantly simpler than Proposition 2, because there is a simpler strategy that
ensures safety (Proposition1), whereas the dDGL formula in Proposition2 is only
valid when the robot follows a subtle strategy to leave the shaded region quickly
enough without picking up too much speed to get itself into trouble when con-
veyor belts decide to activate. Specifically, Proposition2 needs the much more
complicated invariant (3). Also, the a priori restriction (and thus strategy choice)
to the case where the robot is driving in the direction towards larger x and larger
y values reduces the proof for Proposition1 significantly.

As every strategy witnessing Proposition2 is compatible with some strategy
witnessing Proposition1, we claim that the robot meets its requirements.

5 Related Work

Our approach to hybrid games has some resemblance to Parikh’s propositional
game logic (GL) [6] for propositional games. But dDGL is a conservative extension
of dL [7] with hybrid programs as hybrid system models. We refer to [10] for an
identification of the fundamental commonalities and differences of GL versus
dL. Axiom K and Gödel’s generalization rule stop to hold for games [10], but
are used in KeYmaera, which had been designed for hybrid systems not games.
It is, thus, crucial that K and Gödel’s generalization are still sound for dDGL.
Unlike GL, dDGL has an advance notice semantics, i.e., the players announce the
number of repetitions of a loop when it starts.

Vladimerou et. al. [15] extended o-minimal hybrid games [1] to STORMED hy-
brid games and proved decidability of optimal reachability. These hybrid games
are based on STORMED hybrid systems, which require that all system actions
point towards a common direction. Unfortunately, neither STORMED hybrid
games nor their special case of o-minimal hybrid games are expressive enough
for our needs. Our factory automation scenario is not STORMED, e.g., because
some actions decrease the velocity (when the robot brakes) and some trajectories
increase it (when the conveyor belt activates).

Tomlin et. al. [14] present an algorithm to compute maximal controlled invari-
ants for hybrid games with continuous inputs. The class of games they consider
is more general than ours as they allow inputs to differential equations to be con-
trolled by both players, thereby added a differential game component. However,
the general class of games they consider is so large, the algorithm presented is
semi-decidable only for certain classes of systems, e.g., systems specified as timed
or linear hybrid automata, or o-minimal hybrid systems. They further present
numerical techniques to compute approximations of their reach set computation
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operators. However, these sometimes give unsound results. Additionally, it only
works for differentiable value functions. Extending these ideas, Gao et. al. [2]
present a different technique for the same approach. The drawback is that the
players can neither force discrete transitions to happen nor influence which lo-
cation is reached by a discrete transition.

In contrast to these automata-based approaches to hybrid games we do not
consider concurrent choices of actions. However, it is, for instance, possible to
model voting for the next evolution time, provided the players can announce
their choices in given orders. A precedence for player actions is often times
encoded into the semantics of hybrid game automata, e.g. controller actions have
precedence over environment actions in [15], whereas dDGL offers more flexibility
in modeling these syntactically for the particular needs of the application.

References

1. Bouyer, P., Brihaye, T., Chevalier, F.: O-minimal hybrid reachability games. Log-
ical Methods in Computer Science 6(1) (2009)

2. Gao, Y., Lygeros, J., Quincampoix, M.: On the Reachability Problem for Uncertain
Hybrid Systems. IEEE Transactions on Automatic Control 52(9) (September 2007)

3. Harel, D.: First-Order Dynamic Logic. LNCS, vol. 68. Springer, Heidelberg (1979)
4. Henzinger, T.A., Horowitz, B., Majumdar, R.: Rectangular Hybrid Games. In:

Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 320–335.
Springer, Heidelberg (1999)

5. Maler, O., Pnueli, A., Sifakis, J.: On the Synthesis of Discrete Controllers for Timed
Systems (An Extended Abstract). In: Mayr, E.W., Puech, C. (eds.) STACS 1995.
LNCS, vol. 900, pp. 229–242. Springer, Heidelberg (1995)

6. Parikh, R.: The logic of games and its applications. In: Annals of Discrete Mathe-
matics, pp. 111–140. Elsevier (1985)

7. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41(2),
143–189 (2008)

8. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex
Dynamics. Springer, Heidelberg (2010)

9. Platzer, A.: Stochastic Differential Dynamic Logic for Stochastic Hybrid Programs.
In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp.
446–460. Springer, Heidelberg (2011)

10. Platzer, A.: Differential game logic for hybrid games. Tech. Rep. CMU-CS-12-105,
School of Computer Science, Carnegie Mellon University, Pittsburgh (March 2012)

11. Platzer, A., Quesel, J.-D.: KeYmaera: A Hybrid Theorem Prover for Hybrid Sys-
tems (System Description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.)
IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008)

12. Quesel, J.-D., Fränzle, M., Damm,W.: Crossing the Bridge between Similar Games.
In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 160–
176. Springer, Heidelberg (2011)

13. Quesel, J.D., Platzer, A.: Playing Hybrid Games with KeYmaera. Tech. Rep. 84,
SFB/TR 14 AVACS (April 2012), http://www.avacs.org ISSN: 1860–9821

14. Tomlin, C., Lygeros, J., Sastry, S.: A Game Theoretic Approach to Controller
Design for Hybrid Systems. Proceedings of IEEE 88, 949–969 (2000)

15. Vladimerou, V., Prabhakar, P., Viswanathan, M., Dullerud, G.: Specifications for
decidable hybrid games. Theoretical Computer Science 412(48), 6770–6785 (2011)

http://www.avacs.org


The QMLTP Problem Library
for First-Order Modal Logics

Thomas Raths� and Jens Otten

Institut für Informatik, University of Potsdam
August-Bebel-Str. 89, 14482 Potsdam-Babelsberg, Germany

{traths,jeotten}@cs.uni-potsdam.de

Abstract. The Quantified Modal Logic Theorem Proving (QMLTP) library pro-
vides a platform for testing and evaluating automated theorem proving (ATP) sys-
tems for first-order modal logics. The main purpose of the library is to stimulate
the development of new modal ATP systems and to put their comparison onto a
firm basis. Version 1.1 of the QMLTP library includes 600 problems represented
in a standardized extended TPTP syntax. Status and difficulty rating for all prob-
lems were determined by running comprehensive tests with existing modal ATP
systems. In the presented version 1.1 of the library the modal logics K, D, T, S4
and S5 with constant, cumulative and varying domains are considered. Further-
more, a small number of problems for multi-modal logic are included as well.

1 Introduction

Problem libraries are essential tools when developing and testing automated theorem
proving (ATP) systems for various logics. Popular examples are the TPTP library [23]
for classical logic and the ILTP library [18] for intuitionistic logic. These libraries help
many developers to test and improve their ATP system and, hence, have stimulated the
development of more efficient ATP systems.

Modal logics extend classical logic with the modalities ”it is necessarily true that”
and ”it is possibly true that” represented by the unary operators � and �, respectively.
The (Kripke) semantics of modal logics is defined by a set of worlds constituting clas-
sical logic interpretations, and a binary accessibility relation on this set. �F or �F are
true in a world w, if F is true in all worlds accessible from w or some world accessible
from w, respectively. First-order or quantified modal logics extend propositional modal
logics by domains specifying sets of objects that are associated with each world, and
the standard universal and existential quantifiers [4, 10].

First-order modal logics allow a natural and compact knowledge representation. The
subtle combination of the modal operators and first-order logic enables specifications on
epistemic, dynamic and temporal aspects, and on infinite sets of objects. For this reason,
first-order modal logics have applications, e.g., in planning, natural language process-
ing, program verification, querying knowledge bases, and modeling communication. In
these applications, modalities are used to represent incomplete knowledge, programs,

� This work is partly funded by the German Science Foundation DFG under reference number
KR858/9-1.

B. Gramlich, D. Miller, and U. Sattler (Eds.): IJCAR 2012, LNAI 7364, pp. 454–461, 2012.
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or to contrast different sources of information. These applications would benefit from a
higher degree of automation. Consequently there is a real need for efficient ATP systems
for first-order modal logic whose development is still in its infancy.

The Quantified Modal Logic Theorem Proving (QMLTP) library provides a compre-
hensive set of standardized problems in first-order modal logic and, thus, constitutes a
basis for testing and evaluating the performance of ATP systems for modal logics. The
main purpose of the QMLTP library is to stimulate the development of new calculi and
ATP systems for first-order modal logics. It puts the testing and evaluation of ATP sys-
tems for first-order modal logics on a firm basis, makes meaningful system evaluations
and comparisons possible, and allows to measure practical progress in the field.

There already exist a few benchmark problems and methods for some propositional
modal logics, e.g. there are some scalable problem classes [1] and procedures that gen-
erate formulas randomly in a normal form [16]. For first-order modal logics, there are
only small collections of formulas available, e.g., a small set of formulas used for test-
ing the ATP system GQML-Prover [25]. Version 5.1.0 of the TPTP library also contains
some modal problems, mostly from textbooks, formulated in a typed higher-order lan-
guage. All these existing sets of problems are included in the QMLTP library.

This paper introduces release v1.1 of the QMLTP library. It describes how to ob-
tain and use the QMLTP library, provides details about the contents of the library, and
information about status, difficulty rating and syntax of the problems.

2 Obtaining and Using the Library

The QMLTP library is available online at http://www.iltp.de/qmltp/ . The main
file containing the modal problems is structured into three subdirectories:

Documents – contains papers, statistic files, and other documents.
Problems – contains a directory for each domain with problem files.
TPTP2X – contains the tptp2X tool and the format files.

There are a few important conditions that should be observed when presenting results
of modal ATP systems based on the QMLTP library; see [23]. The release number of
the QMLTP library and the version of the tested ATP system including all settings must
be documented. Each problem should be referred to by its unique name and no part of
the problems may be modified. No reordering of axioms, hypotheses and/or conjectures
is allowed. Only the syntax of problems may be changed, e.g., by using the tptp2X tool
(see Section 3.4). The header information (see Section 3.3) of each problem may not be
exploited by an ATP system.

It is a good practice to make at least the executable of an ATP system available
whenever performance results or statistics based on the QMLTP library are presented.
This makes the verification and validation of performance data possible.

3 Contents of the QMLTP Library

Figure 1 provides a summary of the contents of release v1.1 of the QMLTP library.
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Table 1. Overall statistics of the QMLTP library v1.1

Number of problem domains 11
Number of problems 600 (100%)
Number of first-order problems 421 ( 70%)
Number of propositional problems 179 ( 30%)
Number of uni-modal problems 580 (97%)
Number of multi-modal problems 20 (3%)

3.1 The QMLTP Domain Structure

The 600 problems of the library are divided into problem classes or domains. These
domains are APM, GAL, GLC, GNL, GSE, GSV, GSY, MML, NLP, SET, and SYM.1

1. APM – applications mixed.
10 problems from planning, querying databases, natural language processing and
communication, and software verification [5, 7, 8, 19, 21, 22].

2. GAL/GLC/GNL/GSE/GSV/GSY – Gödel’s embedding.
245 problems are generated by using Gödel’s embedding of intuitionistic logic into
the modal logic S4 [13]. The original problems are from the following domains
of the TPTP library: ALG (general algebra), LCL (logic calculi), NLP (natural lan-
guage processing), SET (set theory), SWV (software verification), SYN (syntactic).

3. MML – multi-modal logic.
20 problems in a multi-modal logic syntax from various textbooks and applications,
e.g., security protocols and dialog systems [8, 21, 22].

4. NLP/SET – classical logic.
80 problems from the NLP and SET domains of the TPTP library [23]; these allow
comparisons with classical ATP systems.

5. SYM – syntactic modal.
175 problems from various textbooks [9–12, 17, 20, 25] and 70 problems from the
TANCS-2000 system competition for modal ATP systems [14].

3.2 Modal Problem Status and Difficulty Rating

As already done in the TPTP library, each problem is assigned a status and a rating.
The rating determines the difficulty of a problem with respect to current state-of-

the-art ATP systems. It is the fraction of state-of-the-art systems which are not able to
solve a problem within a given time limit. For example a rating of 0.3 indicates that
30% of the state-of-the-art systems do not solve the problem; a problem with rating of
1.0 cannot be solved by any state-of-the-art system. A state-of-the-art system is an ATP
system whose set of solved problems is not subsumed by any other ATP system.

The status is either Theorem, Non-Theorem or Unsolved; see [18]. For problems
with status Theorem (i.e. valid) or Non-Theorem (i.e. invalid) at least one of the con-
sidered ATP systems has found a proof or counter model, respectively. Problems with

1 The domains MML, NLP, and SET were added in v1.1 of the QMLTP library.
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Table 2. QMLTP library v1.1: Status and rating summary for all uni-modal problems

——— Modal Status ——— ———— Modal Rating ————

Logic Domain
Condition Theorem Non-

Theorem Unsolved 0.00 0.01–0.49 0.50–0.99 1.00
∑

K varying 105 134 341 72 0 167 341 580
cumulative 136 204 240 54 42 244 240 580

constant 161 159 260 54 50 216 260 580
D varying 180 243 157 65 46 312 157 580

cumulative 200 257 123 53 74 330 123 580
constant 219 242 119 55 90 316 119 580

T varying 228 173 179 102 49 250 179 580
cumulative 255 158 167 73 94 246 167 580

constant 274 144 162 74 110 234 162 580
S4 varying 278 146 156 125 53 246 156 580

cumulative 342 120 118 91 106 265 118 580
constant 358 106 116 88 121 255 116 580

S5 varying 362 115 103 156 62 259 103 580
cumulative 441 64 75 109 179 217 75 580

constant 443 64 73 110 179 218 73 580

Unsolved status have not been solved by any ATP system. No inconsistencies between
the output of the ATP systems were found. The status is specified with respect to a
particular modal logic and a particular domain condition.

When determining the modal status, the standard semantics of first-order modal log-
ics are considered; see e.g. [10]. Term designation is assumed to be rigid, i.e., terms
denote the same object in each world, and terms are local, i.e., any ground term denotes
an existing object in every world. For release v1.1 of the QMLTP library all rating and
status information is with respect to the first-order modal logics K, D, T, S4, or S5 with
constant, cumulative or varying domain condition [10, 25].

To determine the modal rating and status of the problems, all existing ATP
systems for first-order modal logic were used. These are LEO-II 1.2.6-M1.0, Satal-
lax 2.2-M1.0, MleanSeP 1.2, MleanTAP 1.3, f2p-MSPASS 3.0 and MleanCoP 1.2. Not
all systems support all modal logics or domain conditions. LEO-II [3] and Satallax [6]
are ATP systems for typed higher-order logic. To deal with modal logic, both ATP
systems use an embedding of quantified modal logic into simple type theory [2].2 LEO-
II uses an extensional higher-order resolution calculus. Satallax employs a complete
ground tableau calculus for higher-order logic. MleanSeP and MleanTAP are compact
ATP systems for several first-order modal logics.3 MleanSeP is a compact implemen-
tation of the standard modal sequent calculi and performs an analytic proof search.
MleanTAP implements an analytic free-variable prefixed tableau calculus and uses an
additional prefix unification. f2p-MSPASS uses a non-clausal instance-based method

2 LEO-II and Satallax were used as these are the two higher-order ATP system that solved the
highest number of problems at CASC-23 and CASC-J5 [24].

3 Available at http://www.leancop.de/mleansep/ and
http://www.leancop.de/mleantap/
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Fig. 1. The theoremhood relationship between different modal logics and domain conditions

and the MSPASS 3.0 system for propositional modal logic. MleanCoP implements a
connection calculus for first-order modal logic extended by prefixes and a prefix unifica-
tion algorithm [15]. Table 2 shows statistics about the status and rating of the problems
in the QMLTP library for all uni-modal logics under consideration. The 20 problems
for multi-modal logic contain 14 theorems and 6 unsolved problems. Figure 1 shows
the theoremhood relationship, which is also reflected in Table 2.

3.3 Naming, Syntax and Presentation

Similar to the TPTP library, each problem is given an unambiguous name. The problem
name has the form DDD.NNN+V[.SSS].p consisting of the mnemonic DDD of its
domain, the number NNN of the problem, its version number V, and an optional param-
eter SSS indicating the size of the instance. For example SYM001+1.p is (the first
version of) the first problem in the domain SYM.

For the syntax of the problems the Prolog syntax of the TPTP library [23] is ex-
tended by the modal operators. The two Prolog atoms ”#box” and ”#dia” are used
for representing � and �, respectively. The formulas �F and �F are then represented
by ”#box:F” and ”#dia:F”, respectively (see Figure 2). For multi-modal logic the
modal operators �i and �i are represented by ”#box(i)” and ”#dia(i)”, respec-
tively, in which the index i is a Prolog atom. Furthermore, for multi-modal logic the
set_logic command of the new TPTP process instruction language is used to spec-
ify the semantics of the used modal operators. For example,
tpi(1,set_logic,modal([(a,[s4,constant]),(b,[d,constant])])).

determines the specific semantics of the multi-modal operators �a, �a, �b, and �b.
A header with useful information is added to the presentation of each problem. It

is adapted from the TPTP library and includes information about the file name, the
problem description, the modal status and the modal difficulty rating. An example file
of a first-order modal problem is shown in Figure 2.

3.4 Tools and Prover Database

The TPTP library provides the tptp2X tool for transforming and converting the syntax
of TPTP problem files. This tool can be used for the QMLTP library as well. Format files
for all existing modal ATP systems are included in the library. They are used together
with the tptp2X tool to convert the problems in the QMLTP library into the input syntax
of existing modal ATP systems. The prover database of the library provides informa-
tion about published modal ATP systems. For each system some basic information is
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%--------------------------------------------------------------------------
% File : SYM001+1 : QMLTP v1.1
% Domain : Syntactic (modal)
% Problem : Barcan scheme instance. (Ted Sider’s qml wwf 1)
% Version : Especial.
% English : if for all x necessarily f(x), then it is necessary that for
% all x f(x)
%
% Refs : [Sid09] T. Sider. Logic for Philosophy. Oxford, 2009.
% : [Brc46] [1] R. C. Barcan. A functional calculus of first
% order based on strict implication. Journal of Symbolic Logic
% 11:1-16, 1946.
% Source : [Sid09]
% Names : instance of the Barcan formula
%
% Status : varying cumulative constant
% K Non-Theorem Non-Theorem Theorem v1.1
% D Non-Theorem Non-Theorem Theorem v1.1
% T Non-Theorem Non-Theorem Theorem v1.1
% S4 Non-Theorem Non-Theorem Theorem v1.1
% S5 Non-Theorem Theorem Theorem v1.1
%
% Rating : varying cumulative constant
% K 0.50 0.75 0.25 v1.1
% D 0.75 0.83 0.17 v1.1
% T 0.50 0.67 0.17 v1.1
% S4 0.50 0.67 0.17 v1.1
% S5 0.50 0.20 0.20 v1.1
%
% term conditions for all terms: designation: rigid, extension: local
%
% Comments :
%--------------------------------------------------------------------------
qmf(con,conjecture,
(( ! [X] : (#box : ( f(X) ) ) ) => (#box : ( ! [X] : ( f(X) ) )))).
%--------------------------------------------------------------------------

Fig. 2. Problem file SYM001+1

provided, e.g., author, web page, short description, references, and test runs on two ex-
ample problems. A summary and a detailed list of the performance results of the modal
ATP system on the problems in the QMLTP library are included as well.

4 Conclusion

Extensive testing is an integral part of any software development. Logical problem li-
braries provide a platform for testing ATP systems. Hence, they are crucial for the
development of correct and efficient ATP systems. Despite the fact that modal logics
are considered as one of the most important non-classical logics, the implementation of
ATP systems for (first-order) modal logic is still in its infancy.

The QMLTP library provides a comprehensive set of problems for testing ATP sys-
tems for first-order modal logic. Version 1.1 includes 600 problems with almost 9.000
status and rating information. It will make meaningful systems evaluations and compar-
isons possible and help to ensure that published results reflect the actual performance of
an ATP system. Experiences with existing libraries have shown that they stimulate the
development of novel, more efficient calculi and implementations. The availability of
modal ATP systems that are sufficiently efficient will promote their employment within
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real applications. This will generate more modal problems from actual applications,
which in turn will be included in the QMLTP library (provided that they will be sub-
mitted). The few multi-modal problems in the current release have already stimulated
the implementation of the first ATP systems for first-order multi-modal logic. Future
versions of the library will include more problems for multi-modal logic.

Like other problem libraries the QMLTP library is an ongoing project. All interested
users are invited to submit new (first-order) modal problems and new modal ATP sys-
tems to the QMLTP library.

Acknowledgements. The authors would like to thank all people who have contributed
to the QMLTP library so far. In particular, Geoff Sutcliffe and Christoph Benzmüller
for many helpful discussions and suggestions.
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8. Fariñas del Cerro, L., Herzig, A., Longin, D., Rifi, O.: Belief Reconstruction in Cooperative
Dialogues. In: Giunchiglia, F. (ed.) AIMSA 1998. LNCS (LNAI), vol. 1480, pp. 254–266.
Springer, Heidelberg (1998)

9. Fitting, M.: Types, Tableaus, and Goedel’s God. Kluwer, Amsterdam (2002)
10. Fitting, M., Mendelsohn, R.L.: First-Order Modal Logic. Kluwer, Amsterdam (1998)
11. Forbes, G.: Modern Logic. A Text in Elementary Symbolic Logic. OUP, Oxford (1994)
12. Girle, R.: Modal Logics and Philosophy. Acumen Publ. (2000)
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Abstract. The diagram-based method to prove correctness of program
transformations includes the computation of (critical) overlappings be-
tween the analyzed program transformation and the (standard) reduction
rules which result in so-called forking diagrams. Such diagrams can be
seen as rewrite rules on reduction sequences which abstract away the ex-
pressions and allow additional expressive power, like transitive closures of
reductions. In this paper we clarify the meaning of forking diagrams using
interpretations as infinite term rewriting systems. We then show that the
termination problem of forking diagrams as rewrite rules can be encoded
into the termination problem for conditional integer term rewriting sys-
tems, which can be solved by automated termination provers. Since the
forking diagrams can be computed automatically, the results of this pa-
per are a big step towards a fully automatic prover for the correctness
of program transformations.

1 Introduction

This work is motivated from proving correctness of program transformations in
program calculi that model core languages of functional programming languages.
For instance, Haskell [13] is modeled by the calculus LR [21], Concurrent Haskell
[14] is modeled by the calculus CHF [19], and Alice ML1 is modeled by the
calculus λ(fut) [12,11]. A program transformation transforms one program into
another one. It is correct if the semantics of the program is unchanged, i.e. the
programs before and after the transformation are semantically equivalent. Cor-
rectness of program transformations plays an important role in several fields of
computer science: Optimizations applied while compiling programs are program
transformations and their correctness thus ensures correct compilation. For soft-
ware verification programs are transformed or simplified to show properties of
programs, of course these transformations must be correct. In code refactor-
ing programs are redesigned, but the semantics of the programs must not be
changed, i.e. the transformations must be correct.

As semantics (or equality) of programs we choose contextual equivalence
[10,15], since it is a natural notion of program equivalence which can directly

� This work was supported by the DFG under grant SCHM 986/9-1.
1 http://www.ps.uni-saarland.de/alice/

B. Gramlich, D. Miller, and U. Sattler (Eds.): IJCAR 2012, LNAI 7364, pp. 462–476, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.ps.uni-saarland.de/alice/


Correctness of Program Transformations as a Termination Problem 463

be defined on top of the operational semantics. Two programs are contextually
equivalent if their termination behavior is indistinguishable if they are used as
subprograms in any surrounding larger program (which are called the contexts,
denoted by C). For deterministic and expressive programming languages it is
sufficient to observe whether the program’s execution terminates successfully,
since there are enough contexts to discriminate obviously different programs.

Proving two expressions to be contextually equivalent starting from the def-
inition is inconvenient, since all program contexts must be considered. Several
methods and theoretical tools have been developed to ease the proofs, however,
depending on properties of the program calculus. In this paper we concentrate
on the so-called diagram-based method to prove correctness of program transfor-
mations, which was successfully used for several calculi, e.g., [7,9,11,21,18,19].
Diagram uses that are similar to ours also appear in [1]. Related work on dia-
gram methods is [22], who aim at meaning preservation and make a distinction
between standard reduction and transformation. Also [8] propose the use of di-
agrams to prove meaning preservation during compilation.

The diagram method, as we use it, is syntactic in nature, where the steps

can roughly be described as follows: Let
T
=⇒ be a program transformation, i.e. a

binary relation on expressions. First a set of overlappings between the standard

reduction of the calculus and the transformation
T
=⇒ is computed, resulting in a

so-called (finite) complete set of forking diagrams for
T
=⇒. The second task is to

show that for all expressions e1, e2, and contexts C such that C[e1]
T
=⇒ C[e2]: The

program C[e1] converges, if and only if, the program C[e2] converges. Starting
with a successful reduction sequence (evaluation) for C[e1] (or C[e2], resp.), we
construct a successful reduction sequence for C[e2] (C[e1], resp.) by an induction,
where the forking diagrams are used like a (non-deterministic) rewriting system
and the normal form is the desired evaluation.

Our current research goal is to automate the manual proofs in the diagram
method. We already proposed an extended unification algorithms which performs
the computation of the forking diagrams for the call-by-need lambda calculus
and for the above mentioned calculus LR [16,17]. We will show that the missing
part of the correctness proof, i.e. using the diagrams and induction, can be
performed by showing (innermost) termination of a term rewriting system that
can be constructed from the forking diagrams. The termination proof can then be
automated using termination provers like AProVE [5], TTT2 [6], and CiME [2].

In this paper we rigorously analyze the use of forking diagrams as rewriting
problems on reduction sequences. The goal is twofold: to encode the induction
proofs as a termination proof of TRSs and also to clarify the intermediate steps
thereby showing in a general way that the encoding method is sound. The fork-
ing diagrams are denoted by an expressive language, also permitting transitive
closure. They only speak about the arrows (perhaps labeled) of a reduction, and
completely abstract away the expressions. To show that the encoding is cor-
rect, we provide a link to the concrete reductions on expressions, which requires
two levels of abstractions. Finally, we will show that the termination problem
can be expressed (or encoded) by extended term rewriting systems, which are
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conditional integer term rewrite systems (ITRS) (see e.g., [4]). Since AProvE
can only show innermost termination of ITRS, our encodings are carefully de-
signed to require innermost termination only. We applied these encodings to the
diagrams of the calculus LR and the manually computed forking diagrams in
[21] and used AProVE to show termination (and thus correctness) of several
program transformations automatically.

Structure of the Paper. In Sect. 2 we introduce the notions of a program
calculus, contextual equivalence, and correct program transformations. In Sect. 3
we explain the diagram-based method, and introduce several abstractions for
those diagrams and the corresponding rewriting systems. Our main result is
obtained in Theorem 3.27 showing that correctness of program transformations
can be encoded as a termination problem. In Sect. 4 we apply our techniques
to transformations of the calculus LR and show the step-wise encoding of the
diagrams of two transformations into an integer term rewriting system for which
AProVE can automatically prove termination. Finally, we conclude in Sect. 5.

2 Calculi and Program Transformations

In this section we introduce the notion of a program calculus, contextual equiv-
alence, and correctness of program transformations.

Definition 2.1. A program calculus is a tuple (E , C, sr
=⇒,A,L) where E is the

set of expressions, C is the set of contexts, where C ∈ C is a function from E
into E, sr

=⇒ ⊆ E × E × L is a reduction relation, A ⊆ E is a set of answers,
and L is a finite set of labels. We assume that there is a context [·] ∈ C, such
that [e] = e for all e ∈ C, and that C is a monoid with [·] as unit, such that

(C1C2)[e] = C1[C2[e]]. We write
sr,l
==⇒ ⊆ sr

=⇒ for reductions with label l ∈ L.

The contexts C consist of all expressions of E where one subexpression is re-
placed by the context hole. The reduction

sr
=⇒ is a small step reduction as the

standard reduction of the calculus, where the labels distinguish different kinds
of reductions. We do not require that answers a ∈ A are

sr
=⇒-irreducible. The

converse relation is always written by reversing the arrows.

Example 2.2. The program calculus LR = (E , C, sr
=⇒,A,L) [21] is an extended

call-by-need lambda calculus where expressions E comprise abstractions, applica-
tions, data-constructors, case-expressions, letrec for recursive shared bindings,
and seq for strict evaluation. C is the set of contexts. The standard reduction
sr
=⇒ of LR is called normal order reduction denoted by

n
=⇒ and the answers are

so-called weak head normal forms. The set of labels L are the names of the
standard reductions, e.g. seq, lbeta, and llet.

The evaluation of a program expression e ∈ E is a sequence of standard reduction

steps to some answer a ∈ A, i.e. e sr,∗
==⇒ a, where

sr,∗
==⇒ denotes the reflexive-

transitive closure of
sr
=⇒. If such an evaluation exists, then we write e⇓ and say e

converges, otherwise we write e⇑ and say e diverges. The semantics of expressions
is given by contextual equivalence:



Correctness of Program Transformations as a Termination Problem 465

Definition 2.3. For a program calculus (E , C, sr
=⇒,A,L) contextual preorder ≤c

and contextual equivalence ∼c on expressions e, e′ ∈ E are defined as follows:

e ≤c e
′ ⇐⇒ ∀C ∈ C : C[e]⇓ =⇒ C[e′]⇓ and e ∼c e

′ ⇐⇒ e ≤c e
′ ∧ e′ ≤c e.

Definition 2.4. A program transformation
T
=⇒ ⊆ (E × E) is a binary relation

on expressions, and
T
=⇒ is called correct iff

T
=⇒ ⊆ ∼c

Definition 2.5. A relation R ⊆ E × E is called convergence-preserving iff
(e, e′) ∈ R ∧ e⇓ =⇒ e′⇓. If R and its inverse relation R− are convergence-
preserving then we say R is convergence-equivalent.

Often, the correctness proof for
T
=⇒ is done by applying the diagram method to

a modified transformation
T ′
=⇒, and then using theorems of the calculus.

Definition 2.6. A program transformation
T ′
=⇒ is CP-sufficient for a program

transformation
T
=⇒ iff convergence preservation of

T ′
=⇒ implies

T
=⇒ ⊆ ≤c.

For a transformation
T
=⇒, let

C(T )
===⇒ := {(C[e], C[e′]) | e T

=⇒ e′, C ∈ C}. Then the

transformation
C(T )
===⇒ is CP-sufficient for

T
=⇒. However, this still requires to inspect

all contexts C ∈ C for proving correctness of transformation
T
=⇒. In many calculi

a so-called context lemma holds (see e.g. [3,20]) which shows that the relation
R(T )
===⇒ := {(R[e], R[e′]) | e T

=⇒ e′, R ∈ R} is CP-sufficient for
T
=⇒, where R ⊂ C are

so-called reduction contexts. The following corollary describes the method for
proving correctness. It follows directly from Definitions 2.3 and 2.6.

Corollary 2.7. If
T ′
=⇒ is CP-sufficient for

T
=⇒,

T ′′
⇐== is CP-sufficient for

T⇐=, and
T ′
=⇒ and

T ′′
⇐== are both convergence-preserving, then

T
=⇒ is correct.

Proving convergence preservation of a transformation
T
=⇒ requires as a base case

to inspect what happens if an answer a ∈ A is transformed by
T
=⇒.

Definition 2.8. A program transformation
T
=⇒ is called answer-preserving

(weakly answer-preserving), if a ∈ A and a
T
=⇒ e imply e ∈ A (e⇓, respectively).

3 Proving Correctness of Program Transformations

Throughout this section we assume that a program calculus (E , C, sr
=⇒,A,L) is

given. In this section we explain our diagram-based method to prove convergence

preservation of a transformation
T
=⇒. For showing that e0⇓ is implied by e1

T
=⇒ e0

and e1⇓, we start with a sequence of reductions a
sr,ln⇐=== en

sr,ln−1⇐==== . . .
sr,l1⇐==

e1
T
=⇒ e0 where a ∈ A and rewrite this sequence resulting in a sequence a′

sr,l′m⇐===
e′m

sr,l′m−1⇐===== . . .
sr,l′0⇐== e0 (with a′ ∈ A) validating that e0⇓ holds. If this is possible

for all e1
T
=⇒ e0 then convergence preservation of

T
=⇒ is proven.
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Definition 3.1. Let { T1=⇒, . . . ,
Tk=⇒} be a set of program transformations. Then a

concrete reduction sequence (RS) is a string of elements in
sr⇐= ∪

⋃
1≤i≤k(

Ti=⇒
×{i}) ∪ {(a, a, id) | a ∈ A} with the restrictions that (a, a, id) can only be the
leftmost element, and that two subsequent elements (e1, e2, d)(e3, e4, d

′) are only

permitted if e2 = e3. We write e1
sr,l⇐== e2 for (e1, e2, l), e1

Ti=⇒ e2 for (e1, e2, i),
and a id a for (a, a, id). An RS is a converging concrete reduction sequence (cRS)
if its leftmost reduction is of the form a id a. Let cRS be the set of all cRSs.

We write RSs like reduction sequences, e.g. e1
sr,l⇐== e2 e2

T
=⇒ e3 is written as

e1
sr,l⇐== e2

T
=⇒ e3. A rewrite rule on RSs is a rule S1 � S2 where S1, S2 are RSs.

Definition 3.2. Let D be a set of rewrite rules on RSs. Then the pair (cRS,
D−⇀)

is a string rewrite system, called a concrete rewrite system on RSs (CRSRS).

3.1 Abstract Reduction Sequences

For reasoning we use abstract reduction sequences (ARS), which abstract away
concrete expressions, and where abstract symbols represent the reductions and
transformations, and a special constant A represents answers. To distinguish
concrete and abstract reductions we use solid lines on the abstract level (i.e.

sr−→
instead of

sr
=⇒), in contrast to doubly lined-arrows on the concrete level.

We also provide an interpretation of ARSs which maps them into concrete
sequences. Note that there may be ARSs without a corresponding RS. We define
two variants of abstract reduction sequences, those that must start with an
answer and a more general variant which may start with any expression.

Definition 3.3. An abstract reduction sequence (ARS) is a finite sequence
In . . . I1, and a converging ARS (cARS) is a finite sequence AIn . . . I1 where
A is a constant representing any answer, n ≥ 0. The symbol Ij may either be

the symbol
sr,l←−− with l ∈ L representing a (labeled) standard reduction, the sym-

bol
sr,x←−− where x is a variable,

sr,τ←−− with τ �∈ L where τ represents a union of

labels, or the symbol
Ti−→ representing transformation Ti. Any symbol can also be

extended by + representing the transitive closure of the corresponding reduction
or transformation. Symbols that have sr as a part are called sr-symbols, and
other symbols are called transformation-symbols.

An ARS or cARS that does not contain variables is called ground, and a
ground ARS or cARS is called simple if there is no occurrence of +. An ARS

or cARS that does not contain
sr,τ←−−-symbols is called τ-free.

Definition 3.4. Let S be a simple ARS (or S be a simple cARS, resp.) and
M ⊆ L be a set of labels. The interpretation w.r.t. M is the set IM (S) of RSs
(cRSs, resp.) defined recursively by the following cases, where S1, S2 are non-
empty sequences, ε denotes the empty sequence, and e1 �� e2 means a RS that
starts with expression e1 and ends with expression e2.
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IM (ε) := ∅ IM (A) := {a id a | a ∈ A}
IM (

sr,l←−−) := {e1
sr,l⇐== e2 | e2

sr,l
==⇒ e1} IM (

Ti−→) := {e1
Ti=⇒ e2 | e1

Ti=⇒ e2}
IM (

sr,τ←−−) := {e1
sr,l⇐== e2 | e2

sr,l
==⇒ e1, l ∈M}

IM (S1S2) := {e1 �� e2 ��′ e3 | e1 �� e2 ∈ IM (S1), e2 ��
′ e3 ∈ IM (S2)}

3.2 Rewriting by Forking and Answer Diagrams

ARSs are used in the so-called forking diagrams [7,21], which represent the over-
lappings of transformation steps with standard reductions on the abstract level.

General forking diagrams are a finite representation of all overlappings be-
tween a transformation step and a standard reduction step, and are suitable
for automated encoding. They may contain + for transitive closure and label-
variables. For clarifying their meaning we introduce simple forking diagrams
(without label-variables and transitive closures, but with τ).

Definition 3.5. A general forking diagram for a transformation
T
=⇒ is a rewrite

rule SL � SR where SL, SR are τ-free ARSs and:

– SL is of the form In . . . I1
T−→ with n ≥ 0 and all Ii are sr-symbols.

– SR is of the form Jm . . . J1I
′
m′ . . . I ′1 with m,m′ ≥ 0 where all Ji are

transformation-symbols and I ′i are sr-symbols.

A simple forking diagram SL � SR is defined like a forking diagram where
SL and SR are simple ARSs (which are not necessarily τ-free).

sr,ln←−−− . . .
sr,l1←−−− T−→ � T1−→ . . .

Tm′−−→ sr,l′m←−−− . . .
sr,l′1←−−− is a

forking diagram as shown to the right, where the left
hand side of the rule (the solid arrows) form a fork and
the right hand side (the dashed arrows) join the fork.

·

...

·

·

...

·. . .

sr, l1
��

sr, ln ��

T ��

sr, l′1
��
�
�

sr, l′m���
�

T1 ����� Tm′ �����

Example 3.6. The transformation
llet
==⇒ of the calculus LR (Example 2.2) is de-

fined by two rules, where Env is an environment of the form y1 = e1, . . . , yn = en:

letrec Env1 in (letrec Env2 in e)
llet
==⇒ letrec Env1,Env2 in e

letrecEnv1, y = (letrec Env2 in e′) in e
llet
==⇒ letrecEnv1,Env2, y = e′ in e

A (complete) set of general forking diagrams for the transformation
iS,llet
====⇒

(which is CP-sufficient for the transformation
llet
==⇒) consists of five diagrams:

1 · iS,llet ��

n,x

��

·
n,x

���
�
�

· iS,llet ����� ·

2 · iS,llet ��

n,x

��

·

n,x
���
�
�
�

·

3 · iS,llet ��

n,lll,+

��

·

n,lll,+���
�
�
�

·

4 · iS,llet ��

n,lll,+

��

·
n,lll,+

���
�
�

· iS,llet ����� ·

5 · iS,llet ��
n,x ��

·

n,x
��	
	
	
	

·
n,llet ��

·

Definition 3.7. Let D be a set of rewrite rules of the form SL � SR where
SL, SR are simple ARSs. Let cARS(D) be the set of simple cARSs that can be built

by the symbols occurring in D. Then the string rewriting system (cARS(D),
D−⇀)

is called a simple rewrite system on abstract reduction sequences (SRSARS).
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On the concrete level, the interpretation of a simple forking diagram is a set of
rewrite rules on (concrete) reduction sequences:

Definition 3.8. The interpretation IM (SL � SR) of a simple forking diagram
SL � SR w.r.t. a set of labels M ⊆ L is defined as

IM (SL � SR) := {e1 �� e2 � e1 ��
′ e2 | e1 �� e2 ∈ IM (SL), e1 ��

′ e2 ∈ IM (SR)}

We will also interpret general forking diagrams as sets of simple forking diagrams
(and thus also as rewrite rules on RSs using IM ). We first introduce the notion

of a variable interpretation which assigns concrete labels or τ to symbols
sr,x←−−

and the notion of an expansion which unfolds the symbols containing a + for
the transitive closure of a reduction or transformation.

Definition 3.9. A simple expansion Expk (where k ≥ 1) expands symbols as

follows: Expk(
Ti,+−−−→) =

Ti−→ . . .
Ti−→︸ ︷︷ ︸

k times

and Expk(
sr,l,+←−−−−) = sr,l←−− . . .

sr,l←−−︸ ︷︷ ︸
k times

where l ∈

L∪ {τ}, and Expk(I) = I otherwise. For a simple ARS (or cARS) S = In . . . I1
we define Expπ(S) := Expπ(1)(In) . . .Expπ(n)(I1) where π : IN → IN, and Expπ

denotes the expansion for π. For a set of labels M ⊆ L a variable interpretation

V¬M maps any
sr,x←−−-symbol to a symbol

sr,l←−− where l = V¬M (x) ∈ (L \M)∪{τ}.

General forking diagrams are interpreted as a set of simple forking diagrams:

Definition 3.10. For a general forking diagram SL � SR and M ⊆ L the
translation JM (SL � SR) is a set of simple forking diagrams JM (SL � SR) :={
Expπ(V¬M (SL)) � Expπ′(V¬M (SR))

V¬M is a variable interpretation for
M , Expπ and Expπ′ are expansions

}
We also use JM for sets of forking diagrams, where the resulting sets are joined.

Example 3.11. Let D be the third diagram from Example 3.6. For L =
{lll , llet , seq , . . .} and M = L \ {lll , llet} the translation JM (D) is

{ n,lll←−−− iS,llet−−−−→ � n,lll←−−−, n,lll←−−− n,lll←−−− iS,llet−−−−→ � n,lll←−−−, n,lll←−−− iS,llet−−−−→ � n,lll←−−− n,lll←−−−, . . .}.
If D is the second diagram from Example 3.6 then JM (D) = { n,lll←−−− iS,llet−−−−→ �
n,lll←−−−, n,llet←−−− iS,llet−−−−→� n,llet←−−−, n,τ←−− iS,llet−−−−→� n,τ←−−}.

With DF (
T
=⇒) we denote a set of forking diagrams for a transformation

T
=⇒.

Definition 3.12. A set of forking diagrams DF (
T
=⇒) for transformation

T
=⇒ is

called complete for a set of labels M ⊆ L, if any concrete reduction sequence of

the form a
sr,ln⇐=== en

sr,ln−1⇐==== . . .
sr,l1⇐== e1

T
=⇒ e0 where a ∈ A, n > 0, and li ∈ L is

rewritable by the CRSRS (cRS,
IM (JM (DF(

T
=⇒)))−−−−−−−−−−−−⇀).

In ARSs the label τ is used to represent standard reductions which are not

explicitly mentioned in the diagrams, i.e.
sr,τ←−− is interpreted as

⋃m
i=1

sr,li⇐== where
l1, . . . , lm are the labels of L that do not occur in the general forking diagram.
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Now that forking diagrams and their semantics are defined there are two

further tasks: (i) We have also to deal with reductions a
T
=⇒ . . ., and (ii) diagrams

may use several transformations
Ti=⇒ in SR. Thus for (i) we introduce answer

diagrams, and for (ii) we will join forking diagrams of a set of transformations.

Definition 3.13. An answer diagram for transformation
T
=⇒ is a rewrite rule

of the form A
T−→ � S where S is a τ-free cARS. A simple answer diagram is

defined analogously where τ-labels in S are allowed, but S is a simple cARS.
The interpretation of a simple answer diagram w.r.t. a set M ⊆ L is

IM (A
T−→� S) := {a1 �� e � a2 ��

′ e | a1 �� e ∈ IM (A
T−→), a2 ��

′ e ∈ IM (S)}
We extend IM to sets of simple answer diagrams joining the resulting sets.

For an answer diagram the set of simple answer diagrams w.r.t. a set of labels
M ⊆ L is computed by the function JM which is defined as follows:

JM (A
T−→� S) =

{
A

T−→� S′ S′ ∈ Expπ(V¬M (S)), Expπ is an expansion,
V¬M is a variable interpretation for M

}
We extend JM to sets of answer diagrams such that the resulting sets are joined.

A set of answer diagrams DA(
T
=⇒) for transformation

T
=⇒ is complete w.r.t.

a set of labels M iff the set IM (JM (DA(
T
=⇒))) contains a rewrite rule with left

hand side matching any possible cRS a id a
T
=⇒ e for a ∈ A and e ∈ E.

Note that for an answer-preserving transformation
T
=⇒ a complete set of answer

diagrams is {A T−→ � A} and for a weakly answer-preserving transformation
a complete set of answer diagrams can be constructed such that all answer

diagrams are of the form A
T−→� AIm . . . I1 where every Ij is an sr-symbol.

Definition 3.14. Let DA(
T1=⇒), . . . ,DA(

Tn=⇒) be sets of answer diagrams and

DF (
T1=⇒), . . . ,DF (

Tn=⇒) be sets of general forking diagrams. Let M be all labels
of L that do not occur in any of the diagrams. The union D of these sets of di-

agrams is called complete for transformations
T1=⇒, . . . ,

Tn=⇒ iff every set DA(
Ti=⇒)

is complete for
Ti=⇒ w.r.t. M , every set DF (

Ti=⇒) is complete for
Ti=⇒ w.r.t. M , and

the only transformations occurring in the diagrams are
T1−→, . . . ,

Tn−−→.

We write I(D) instead of IM (D) (I(J (D)) instead of IM (JM (D)), resp.) for a
complete set D, since the set M is fixed by the completeness definition.

3.3 Proving Convergence Preservation

Definition 3.15. A string rewriting system (O,−⇀) is leftmost terminating, iff
it is terminating w.r.t. the leftmost rewriting relation −⇀l:
S1In . . . I1S2 −⇀l S1SRS2 iff In . . . I1 −⇀ SR and S1In . . . I2 is −⇀-irreducible.
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Proposition 3.16. Let D =
⋃n

i=1 DA(
Ti=⇒) ∪

⋃n
i=1 DF (

Ti=⇒) be complete for
T1=⇒, . . . ,

Tn=⇒. If the SRSARS (cARS(J (D)),
J (D)−−−⇀) is (leftmost) terminating then

the CRSRS (cRS,
I(J (D))−−−−−⇀) is (leftmost) terminating.

Proof. For termination, the claim holds, since a nonterminating rewriting se-

quence for the CRSRS (cRS,
I(J (D))−−−−−⇀) can easily be transfered into a nontermi-

nating rewriting sequence of the SRSARS (cARS(J (D)),
J (D)−−−⇀). For leftmost

termination the claim also holds, since completeness of D implies that always
the leftmost transformation step is rewritten by the CRSRS, and there is a cor-
responding rewrite rule in J (D) which must be leftmost, since all left hand sides

of rules in J (D) are of the form
sr,ln←−−− . . .

sr,l1←−−− Tj−→.

Proposition 3.17. Let D =
⋃n

i=1 DA(
Ti=⇒) ∪

⋃n
i=1 DF (

Ti=⇒) be complete for
T1=⇒, . . . ,

Tn=⇒. Let the CRSRS (cRS,
I(J (D))−−−−−⇀) be terminating (leftmost terminat-

ing, resp.). Then the transformations
T1=⇒, . . . ,

Tn=⇒ are convergence-preserving.

Proof. Let e1
Ti=⇒ e0 where e1⇓. Let a id a

sr,ln⇐=== en
sr,ln−1⇐==== . . .

srl1⇐== e1 be a cRS

witnessing e1⇓. We compute a normal form of the cRS a id a
sr,ln⇐=== en

sr,ln−1⇐====
. . .

srl1⇐== e1
Ti=⇒ e0 using leftmost rewriting of the CRSRS (cRS,

I(J (D))−−−−−⇀). We only

have to argue that this normal form is of the form a′ id a′
sr,l′m⇐=== e′m . . .

sr,l′m⇐=== e0,
which implies e0⇓. The definition of forking and answer diagrams and the com-

pleteness conditions imply that any rewrite step
I(J (D))−−−−−⇀ transforms a cRS into a

cRS where the contained reductions are
sr,l⇐==-reductions and

Tj
=⇒-transformations.

Completeness of the diagrams ensures that the reduction sequence is modifiable

by
I(J (D))−−−−−⇀ as long as

Tj
=⇒-transformations are contained in the sequences. ��

In general the other direction does not hold, since the SRSARS may be nonter-
minating, while the CRSRS is terminating. Propositions 3.16 and 3.17 imply:

Theorem 3.18. Let D =
⋃n

i=1 DA(
Ti=⇒) ∪

⋃n
i=1 DF (

Ti=⇒) be complete for
T1=⇒, . . . ,

Tn=⇒, and let the SRSARS (cARS(J (D)),
J (D)−−−⇀) be (leftmost) terminat-

ing. Then the transformations
T1=⇒, . . . ,

Tn=⇒ are convergence-preserving.

3.4 A Rewriting System with Finitely Many Rules

A naive approach that encodes general diagrams with transitive closures adds

rules
T,+−−→ � T−→ T,+−−→ and

T,+−−→ � T−→ for any symbol
T,+−−→. However, this is

useless, since it it leads to nontermination. Hence, we provide another encoding
which is suitable for automation. It translates +-symbols as nondeterministic
rules using natural numbers to avoid nontermination. The translation is a little
bit complex, since it has to respect the leftmost rewriting and it treats +-symbols
in left hand sides and right hand sides differently.
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Definition 3.19. A (converging, resp.) abstract reduction sequence with nat-
ural numbers (NARS) (or cNARS, resp.) is a sequence In . . . I1 (AIn . . . I1,
resp.) where A represents any answer and each Ij is a symbol of the form
sr,l←−−, Ti−→, 〈w〉, 〈w, k〉, 〈w, k + 1〉 where l ∈ L ∪ {τ}, where w ∈ W for a set of
names W with W ∩ (L ∪ {τ}) = ∅, and k is either a natural number (k ∈ IN)
or a number variable, i.e. a variable that may only be instantiated by natural
numbers, and k is always a number variable. A NARS (cNARS, resp.) is called
ground iff it does not contain number variables.

Definition 3.20. A number substitution σ assigns a natural number to any
number variable. The extension of σ to NARS-symbols is the identity except for
the cases σ(〈w, k〉) = 〈w, σ(k)〉, σ(〈w, k + 1〉) = 〈w, k′〉, where k is a number
variable, and k′ = σ(k) + 1 ∈ IN.

We now define rewriting on ground cNARSs.

Definition 3.21. Let D be a set of rules of the form SL � SR where SL, SR are
NARSs. Let gcNARS(D) be the set of all ground cNARS that can be built by in-
stantiating the symbols occurring in D by any number substitution σ. The rewrit-

ing system (gcNARS(D),
D−⇀) is called an encoded rewriting system on abstract

reduction systems (ERSARS) where
D−⇀ is defined by: If S = S′S′

LS
′′, SL �

SR ∈ D, σ is a number substitution with σ(SL) = S′
L, then S

D−⇀ S′σ(SR)S
′′.

Definition 3.22. For a general forking or answer diagram SL � SR and
M ⊆ L the translation VM is a finite set of rewrite rules over ground ARSs:

VM (SL � SR) :=
⋃
{V¬M (SL) � V¬M (SR) | V¬M is a variable interpretation}

Given a set D =
⋃

i{Si,L � Si,R} of general forking and general answer dia-
grams and M ⊆ L the translation KM (D) is defined as follows:

First all (usual) variables are interpreted, resulting in the set D′ :=⋃
i{VM (Si,L � Si,R)}. For every rule SL � SR ∈ D′ the set KM (D) contains a

rule KL(SL)→ KR(SR) perhaps together with some further rules.

Construction of KL(SL): Let SL = In . . . I1
Ti−→ where Ij is either

sr,lj←−−−, or
sr,lj ,+←−−−−, or (for j = 1) Ij = A. Let Kj := 〈wj〉 if Ij =

sr,lj ,+←−−−− and Kj := Ij
otherwise, where wj ∈W are fresh names (chosen fresh for any new rule). Then

we set KL(SL) := Kn . . .K1
Ti−→. For any Ij which is of the form

sr,lj,+←−−−− we add

two so-called contraction rules:
sr,lj←−−− Kj−1 . . .K1

Ti−→� KjKj−1 . . .K1
Ti−→ and

sr,lj←−−− KjKj−1 . . .K1
Ti−→� KjKj−1 . . .K1

Ti−→.
Construction of KR(SR): Let SR = In . . . I1. If none of the Ij contains a +
then the translation is KR(SR) := In . . . I1. Otherwise there is at least one +.

Let Lj :=
Ti−→ if Ij =

Ti,+−−−→, Lj :=
sr,lj←−−− if Ij =

sr,lj,+←−−−− and Lj := Ij otherwise.
Let w′

j ∈ W (for j ∈ {1, . . . , n}) be fresh names. Let Ia be the rightmost Ij
that contains a +, then we set KR(SR) := 〈w′

a, k〉La−1 . . . L1 where k is a number

variable. For all Ij with Ij =
Ti,+−−−→ or Ij =

sr,lj ,+←−−−− we additionally add so-called
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expansion rules 〈w′
j , k + 1〉 � 〈w′

j , k〉Lj and 〈w′
j , 1〉 � Ln . . . Lj. If there exists

m > j where Im contains a +, then for the smallest such m we also add the
expansion rule 〈w′

j , k + 1〉� 〈w′
m, k〉Lm−1 . . . Lj.

For complete sets of diagrams, M is the set of labels that do not occur in any
of the diagrams. In this case we omit the index M in KM .

The symbols 〈wi〉 and 〈w′
j , k〉 together with the additional rules are used to

interpret the transitive closure symbols on the left and the right hand side of rules
in forking and answer diagrams. It is easy to verify that any rewriting sequence
using only the contraction rules must be finite, and also that any rewriting
sequence using only the expansions rules is also finite.

Example 3.23. Let D be the set consisting of the third diagram from Exam-
ple 3.6. For L = {lll , llet , seq, . . .},M = L \ {lll , llet} the translation KM (D) is:

{〈w〉 iS,llet−−−−→� 〈w′, k〉, n,lll←−−− iS,llet−−−−→� 〈w〉 iS,llet−−−−→,
n,lll←−−−〈w〉 iS,llet−−−−→� 〈w〉 iS,llet−−−−→,

〈w′, k + 1〉� 〈w′, k〉 n,lll←−−−, 〈w′, 1〉� n,lll←−−−}

Lemma 3.24. Let D =
⋃n

i=1 DA(
Ti=⇒) ∪

⋃n
i=1 DF (

Ti=⇒) be complete for
T1=⇒, . . . ,

Tn=⇒ and SL � SR ∈ J (D). Then SL
K(D),∗−−−−⇀l SR.

Proof. Since SL � SR ∈ J (D) there are expansions Expπ,Expπ′ and a
variable interpretation V¬M such that SL = Expπ(V¬M (S′

L)) and SR =

Expπ′(V¬M (S′
R)) where S′

L � S′
R ∈ D. Let S′

L = I ′n . . . I
′
1

Ti−→, i.e. SL =

Expπ(1)(V¬M (I ′n)) . . .Expπ(n)(V¬M (I ′1))
Ti−→. Let Kj := 〈wj〉 if V¬M (I ′j) con-

tains a + and Kj := V¬M (I ′j) otherwise. Using the contraction rules introduced

by K(D) we rewrite SL = Expπ(1)(V¬M (I ′n)) . . .Expπ(n)(V¬M (I ′1))
Ti−→ K(D),∗−−−−⇀l

Expπ(1)(V¬M (I ′n)) . . .K1
Ti−→ K(D),∗−−−−⇀l . . .

K(D),∗−−−−⇀l Kn . . .K1
Ti−→ = K(V¬M (S′

L)).

All these steps are leftmost, since the rightmost symbol
Ti−→ is always part of the

redex and always kept. Now we apply the rule K(V¬M (S′
L))

K(D)−−−⇀l K(V¬M (S′
R))

(which is again leftmost) and have to show that K(V¬M (S′
R)) can be rewritten

into SR by leftmost rewriting using
K(D)−−−⇀.

If SR does not contain a +-symbol, then this is obvious. Suppose that
SR contains at least one +-symbol. Let S′

R = J ′
m . . . J ′

1, i.e. SR =

Expπ′(1)(V¬M (J ′
m)) . . .Expπ′(m)(V¬M (J ′

1)) and let Lj =
Ti−→ if V¬M (J ′

j) =
Ti,+−−−→,

Lj =
sr,l←−− if V¬M (J ′

j) =
sr,l,+←−−−−, and Lj = V¬M (J ′

j) otherwise. Moreover let
us assume that J ′

ar
, . . . J ′

a1
are the symbols that contain a +, such that for

i, j ∈ {1, . . . , r} with i �= j we have ai < aj . Then SR = Qm . . . Q1 where
every Qj consists of kj repetitions of Lj , i.e. it is a string of the form Lj . . . Lj .
Let s :=

∑
i∈{a1,...,ak} ki. We choose this number s during the rewriting step

K(V¬M (S′
L))

K(D)−−−⇀l K(V¬M (S′
R)), and then iteratively build the string SR using

the expansion rules introduced by K(D): K(V¬M (S′
L))

K(D)−−−⇀l K(V¬M (S′
R)) =
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〈w′
a1
, s〉Qa1−1 . . . Q1

K(D),∗−−−−⇀l 〈w′
a2
, s − ka1〉Qa2−1 . . . Q1

K(D),∗−−−−⇀l . . .
K(D),∗−−−−⇀l

〈w′
ar
, kar 〉Qar−1 . . . Q1

K(D),∗−−−−⇀l Qm . . .Q1 = SR. All steps are leftmost, since
always the leftmost symbol is reduced (which is of the form 〈w′

j , s
′〉). ��

Proposition 3.25. Let D =
⋃n

i=1 DA(
Ti=⇒) ∪

⋃n
i=1 DF (

Ti=⇒) be complete for
T1=⇒, . . . ,

Tn=⇒. Then leftmost termination of the ERSARS (gcNARS(K(D)),
K(D)−−−⇀)

implies leftmost termination of the SRSARS (cARS(J (D)),
J (D)−−−⇀).

Proof. We show that a leftmost diverging rewriting sequence of the SRSARS
can be transformed to a leftmost diverging rewriting sequence of the ERSARS.

Assume there is a diverging reduction. We consider a single step S1SLS2
J (D)−−−⇀l

S1SRS2 from this diverging reduction. Then SL must be of the form I1 . . . In
Ti−→

where all Ik are sr-symbols or A. If S1 does not contain a transformation-symbol,

then Lemma 3.24 implies that S1SLS2
K(D),∗−−−−⇀l S1SRS2: The rewriting step must

be leftmost, since at the beginning a transformation step is required on the end
of the redex, and since the rewriting generates SR from right to left.

We now consider the case that S1 contains other transformation symbols,

w.l.o.g. let S1 = S3
Tj−→ S4 such that S4 does not contain transformation-

symbols. Then perhaps there are some leftmost rewriting steps possible inside

S3
Tj−→ using

K(D),∗−−−−⇀l: These can only be steps using the contraction rules.
Since contraction rules cannot remove the rightmost transformation-symbol in
the redex and since they are terminating, the following rewriting sequence is

possible S3
Tj−→ S4SLS2

K(D),∗−−−−⇀l S′
3

Tj−→ S4SLS2
K(D),∗−−−−⇀l S′

3

Tj−→ S4SRS2. Any

rewriting sequence of
K(D)−−−⇀l now cannot modify the prefix S′

3

Tj−→. Moreover, all

rewriting steps of
J (D)−−−⇀l starting with S3

Tj−→ S4SRS2 also do not modify the

prefix S3
Tj−→ and thus it does not make a difference if we replace S3 by S′

3. ��

Proposition 3.25 and Theorem 3.18 imply:

Theorem 3.26. Let D =
⋃n

i=1 DA(
Ti=⇒) ∪

⋃n
i=1 DF (

Ti=⇒) be complete for
T1=⇒, . . . ,

Tn=⇒. Then leftmost termination of the ERSARS (gcNARS(K(D)),
K(D)−−−⇀)

implies that all transformations
Ti=⇒ are convergence preserving.

Theorem 3.27. Let
T1=⇒ be CP-sufficient for

T
=⇒ and let

T ′
1⇐== be CP-sufficient

for
T⇐= and let D =

⋃n
i=1 DA(

Ti=⇒) ∪
⋃n

i=1 DF (
Ti=⇒) be complete for

T1=⇒, . . . ,
Tn=⇒,

D′ =
⋃m

i=1 DA(
T ′
i⇐==) ∪

⋃m
i=1 DF (

T ′
i⇐==) be complete for

T ′
1⇐==, . . . , T ′

m⇐==, such that

both ERSARSs (gcNARS(KM (D)),
KM(D)−−−−−⇀) and (gcNARS(KM (D′)),

KM (D′)−−−−−⇀)

are (leftmost) terminating. Then
T
=⇒ is a correct program transformation.

Proof. Theorem 3.26 shows that
T1=⇒ and

T ′
1⇐== are convergence preserving and

thus CP-sufficiency shows that
T
=⇒ is a correct program transformation.
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4 Encoding ARSs and Sets of Diagrams as ITRSs

For the automation of correctness proofs we left open how to check for left-
most termination of an ERSARS derived by complete sets of forking and answer
diagrams according to Theorems 3.27.

If the diagrams do not contain transitive closures, then the ERSARS is also
an SRSARS with finitely many rules. In this case the SRSARS can be encoded

as a term rewriting system: A step
Ti−→ is encoded as 1-ary function symbol ti ,

a step
sr,li←−−− is encoded as a 1-ary function symbol srli , and the answer token

A is encoded as a constant A. The string rewriting rules are translated into
term rewriting rules, where left and right hand sides are both encoded from

right to left, e.g. the rule
sr,l1←−−− T1−→ � T2−→ sr,l2←−−− is encoded as the term rewrit-

ing rule t1 (srl1 (X)) → srl2 (t1 (X)) where X is a variable. It is easy to verify
that leftmost termination of the SRSARS is implied by innermost termination
of the TRS. We illustrate this encoding by an example from [21] for the calculus

LR (see Example 2.2). We consider the transformation
seq
==⇒, which is used for

sequentialization, and reduces an expression seq e1 e2 to e2 if e1 is a value or

bound to a value. The complete set of general forking diagrams DF (
iS,seq
===⇒) for

the transformation
iS,seq
===⇒, which is CP-sufficient for the transformation

seq
==⇒, is:

1 · iS,seq ��

n,x

��

·
n,x

���
�
�

· iS,seq ����� ·

2 · iS,seq ��

n,x

��

·

n,x
���
�
�
�

·

3 · iS,seq ��
n,x ��

·

n,x
��	
	
	
	

·
n,seq ��

·

4 · iS,seq ��

n,cp

��

·
n,cp

���
�
�

· iS,seq ����� · iS,seq ����� ·

Since transformation
iS,seq
===⇒ is answer-preserving, the answer diagrams are

DA(
iS,seq
===⇒) = {A iS,seq−−−−→� A}. The encoding of the corresponding SRSARS

J (DF (
iS,seq
===⇒) ∪DA(

iS,seq
===⇒)) as a TRS is as follows, where X denotes a term-

variable, and all other symbols are function symbols.

1 iSseq(ntau(X))→ ntau(iSseq(X)) 3 iSseq(ntau(nseq(X)))→ ntau(X)
iSseq(nseq(X))→ nseq(iSseq(X)) iSseq(nseq(nseq(X)))→ nseq(X)
iSseq(ncp(X))→ ncp(iSseq(X)) iSseq(ncp(nseq(X)))→ ncp(X)

2 iSseq(ntau(X))→ ntau(X) 4 iSseq(ncp(X))
iSseq(nseq(X))→ nseq(X) → ncp(iSseq(iSseq(X)))
iSseq(ncp(X))→ ncp(X) Answer diagram: iSseq(A)→ A

For
iS,seq
===⇒, and also for its inverse

iS,seq⇐==== innermost termination of the encoded
complete diagram sets could be automatically shown via AProVE. Hence by
Theorem 3.18 we can conclude correctness of the transformation.

If transitive closures occur on right hand sides of the diagrams, then
an encoding into a usual TRS is not possible, since the corresponding rule
in the ERSARS introduces a free number variable (which is then used for
the expansion of the transitive closures). However, conditional integer term
rewriting systems (ITRSs) is a formalism that fits for encoding ERSARS,
since they allow free variables on right hand sides of rules which may only
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be instantiated by normal forms during rewriting. Also integers as well as
conditions including arithmetic operations, comparison of integers, and Boolean
connectives are already present in ITRSs (see e.g., [4]). Moreover, innermost
termination of ITRSs can also be treated by the automated termination prover
AProVE [5,4]. Since innermost termination of the encoded ITRSs then implies
leftmost termination of an ERSARS we can use AProVE to show correctness
of program transformations. The translation is as before, where the introduced
names wi in contraction rules are encoded as 1-ary function symbols, the
names w′

i in expansion rules are encoded as 2-ary function symbols, natural
numbers are represented by integers, and number variables are represented by
variables together with constraints. Example 3.6 shows a complete set of forking

diagrams for the transformation
iS,llet
====⇒, and Example 3.23 shows the encoding

of the third diagram as an ERSARS. An encoding of these rules as an ITRS
is as follows whereX,K are variables and all other symbols are function symbols:

iSllet(w(X))→ v(K,X) with K > 0
iSllet(w(nlll(X)))→ iSllet(w(X)) iSllet(nlll(X))→ iSllet(w(X))
v(K,X)→ nlll(v(K − 1, X)) if K > 1 v(1, X)→ nlll(X)

The first rule encodes the diagram, the other rules are contraction rules (using
the function symbol w), and expansion rules (using the function symbol v).
The first constraint K > 0 ensures that a positive integer is chosen, and
the constraint K > 1 ensures that K is a positive integer after rewriting.
Innermost termination of the ITRS-encoded complete sets of forking and answer

diagrams for
iS,llet
====⇒ and for

iS,llet⇐==== can be checked using AProVE. This implies
leftmost termination of the corresponding ERSARSs and thus by Theorem 3.27
correctness of the transformation llet is shown automatically.

We encoded complete sets of diagrams for several program transformations
from [21] and they could all be shown as innermost terminating using AProvE.
The encoded diagrams and the termination proofs can be found on our website2.

5 Conclusion

Future work is to connect the automated termination prover with the diagram
calculator of [16,17] and thus to complete the tool for automated correctness
proofs of program transformations. Another direction is to check more sets of
diagrams which may require more sophisticated encoding techniques.

Acknowledgments. We thank Carsten Fuhs for pointing us to ITRS and his
support on AProVE and the anonymous reviewers for their valuable comments.
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Abstract. Indexing is critical for the performance of first-order theorem
provers. We introduce fingerprint indexing, a non-perfect indexing tech-
nique that is based on short, constant length vectors of samples of term
positions (“fingerprints”) organized in a trie. Fingerprint indexing sup-
ports matching and unification as retrieval relations. The algorithms are
simple, the indices are small, and performance is very good in practice.

We demonstrate the performance of the index both in relative and
absolute terms using large-scale profiling.

1 Introduction

Saturating theorem provers like Vampire [3] and E [5] are among the most pow-
erful ATP systems for first-order logic. These systems work in a refutational
setting. The state of the proof search is represented by a set of clauses. It is ma-
nipulated using inference rules. The most important inferences (resolution and
paramodulation/superposition) and simplifications (rewriting and subsumption)
use two or more premises—usually a main premise and one or more additional
side premises. This requires the system to find potential inference partners for a
given clause in the potentially large set of clauses representing the search state.

The performance can be improved if inference partners are not found by se-
quential search, but via an index. An index, in this context, is a data structure
with associated algorithms that allows the efficient retrieval of terms or clauses
from the indexed set that are in a given retrieval relation with a query.

E has featured (perfect) discrimination tree indexing [2] for forward rewriting
since version 0.1. It added feature vector indexing [6] for subsumption in version
0.8. In this paper, we present fingerprint indexing, a new, non-perfect term in-
dexing technique that can be seen as a generalization of top symbol hashing. It
shares the basic structure of feature vector indexing (indexed objects are repre-
sented by finite-length vectors organized in a trie), and combines it with ideas
from coordinate and path indexing [7,2,1] (values in the index vectors represent
the occurrence of symbols at certain positions in terms). The index can be used
for retrieving candidate terms unifiable with a query term, matching a query
term, or being matched by a query term. The index data structure has very low
memory use, and all operations for maintenance and candidate retrieval are fast
in practice. Variants of fingerprint indexing have been incorporated into E for
backwards simplification and superposition, with generally positive results.

B. Gramlich, D. Miller, and U. Sattler (Eds.): IJCAR 2012, LNAI 7364, pp. 477–483, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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2 Background

We use standard terminology for first-order logic. A signature consists of a finite
set F of function symbols with associated arities. We write f |n to indicate that
f has arity n ∈ N0. We assume an enumerable set V of variables disjoint from
F , typically denoted by x, y, z, x0, . . ., or by upper-case X0,X1 if represented in
TPTP syntax. Terms, subterms, literals and clauses are defined as usual.

A substitution is a mapping σ : V → Term(F ,V ) with the property that
Dom(σ) = {x ∈ V | σ(x) �= x} is finite. It can be extended to terms, atoms,
literals and clauses. A matcher from a term s to another term t is a substitution
σ such that σ(s) ≡ t. A unifier of two terms s and t a substitution σ such that
σ(s) ≡ σ(t). If s and t are unifiable, a most general unifier (mgu) for them exists,
and is unique up to variable renaming.

A (potential) position in a term is a sequence p ∈ N∗ over natural numbers.
We use ε to denote the empty position. The set of positions in a term, pos(t) is
defined as follows: If t ≡ x ∈ V , then pos(t) = {ε}. Otherwise t ≡ f(t1, . . . , tn).
In this case pos (t) = {ε} ∪ {i.p | 1 ≤ i ≤ n, p ∈ pos(ti)}. The subterm of t
at position p ∈ pos(t) is defined recursively: if p = ε, then t|p = t. Otherwise,
p ≡ i.p′ and t ≡ f(t1, . . . , tn). In that case, tp = ti|p′ . The top symbol of x ∈ V
is top(x) = x and the top symbol of f(t1, . . . , tn) is top(f(t1, . . . , tn)) = f .

Positions can be extended to literals (selecting a term in a literal) and clauses
(selecting a term in a literal in a clause) easily if we assume an arbitrary, but
fixed ordering of terms in literals and literals in clauses.

Modern saturating calculi are instantiated with a term ordering. This order-
ing is lifted to literals and clauses. Generating inferences can be restricted to
(subterms of) maximal terms of maximal literals. Simplification allows the re-
placement of clauses with equivalent smaller clauses.

3 Fingerprint Indexing

We will now introduce fingerprints of terms, and show that the compatibility of
the respective fingerprints is a required condition for the existence of a unifier
(or matcher) between two terms. The basic idea is that the application of a
substitution never removes an existing position from a term, nor will it change
an existing function symbol in a term.

Consider a potential position p and a term t (as a running example, assume
t = g(f(x, a)). Then the following cases are possible:

1. p is a position in t and t|p is a variable (e.g. p = 1.1)
2. p is a position in t and t|p is a non-variable term (e.g. p = 1.2 or p = ε)
3. p is not a position in t, but there exists an instance σ(t) with p ∈ pos(σ(t))

(e.g. p = 1.1.1.2 with σ = {x "→ f(a, b))}
4. p is not a position in t or any of its instances (e.g. p = 2.1)

These four cases have different implications for unification. Two terms which,
at the same position, have different function symbols, cannot be unified. Stated
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positively, if we search for terms unifiable with a query term t, and top(t|p) = f ,
we only need to consider terms s where top(s|p) can potentially become f .

To formalize this, consider the following definition: Let F ′ = F � {A,B,N}
(the set of fingerprint feature values for F ). The general fingerprint feature func-
tion is a function gfpf : Term(F ,V )× N∗ → F ′ defined by:

gfpf(t, p) =

⎧⎪⎨⎪⎩
A if p ∈ pos(t), t|p ∈ V
top(t|p) if p ∈ pos(t), t|p /∈ V
B if p = q.r, q ∈ pos(t) and t|q ∈ V for some q
N otherwise

A fingerprint feature function is a function fpf : Term(F ,V ) → F ′ defined by
fpf(t) = gfpf(t, p) for a fixed p ∈ N∗.

Now assume two terms, s and t, and a fingerprint feature function fpf. Assume
u = fpf(s) and v = fpf(t). The values u and v are compatible for unification if
they are marked with a Y in the Unification table of Figure 1. They are com-
patible for matching from s onto t, if they are marked with a Y in the Matching
table in Figure 1. It is easy to show by case distinction that compatibility of the
fingerprint feature values is a necessary condition for unification or matching.

Unification

f1 f2 A B N

f1 Y N Y Y N

f2 N Y Y Y N

A Y Y Y Y N

B Y Y Y Y Y

N N N N Y Y

Matching

f1 f2 A B N

f1 Y N N N N

f2 N Y N N N

A Y Y Y N N

B Y Y Y Y Y

N N N N N Y

Fig. 1. Fingerprint feature compatibility for unification and matching (down onto
across). f1 and f2 are arbitrary but distinct.

Now assume n ∈ N. A fingerprint function is a function fp : Term(F ,V ) →
(F ′)n with the property that πi

n ◦ fp (the projection onto the ith element of the
result) is a fingerprint feature function for all i ∈ {1, . . . , n}. A fingerprint is the
result of the application of a fingerprint function to a term, i.e. a vector of n
elements over F ′. We will in the following assume a fixed fingerprint function fp.

Two fingerprints for s and t are unification-compatible (or compatible for
matching from s onto t) if they are component-wise so compatible.

Theorem 1. Assume an arbitrary fingerprint function fp. If fp(t1) and fp(t2)
are not unification compatible, then t1 and t2 are not unifiable. If fp(t1) and
fp(t2) are not compatible for matching t1 onto t2, then t1 does not match t2.

A fingerprint function defines an equivalence on Term(F ,V ), and we can use
the fingerprints to organize any set of terms into disjoint subsets, each sharing a
fingerprint. If we want to find terms in a given relation (unifiable or matchable)
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Fig. 2. Example fingerprint index

to a query term, we only need to consider terms from those subsets for which
the query relation holds on the fingerprints.

However, we do not need to linearly compare fingerprints to find unification
or matching candidates. A fingerprint index is a constant-depth trie over finger-
prints that associates the indexed term sets with the leaves of the trie.

As an example, consider F = {j|2, f |2, g|1, a|0, b|0, e|0} and fp : Term(F ,V )→
(F ′)3 defined by fp(t) = 〈gfpf(t, ε), gfpf(t, 1), gfpf(t, 2)〉.

Figure 2 shows a fingerprint index for fp. When we query the index for terms
unifiable with t = j(e, g(X))), we first compute fp(t) = 〈j, e, g〉. At each node in
the tree we follow all branches labeled with feature values unification-compatible
with the corresponding fingerprint value of the query. At the root, only the
branch labelled with j has to be considered. At the next node, branches e and A
are compatible. Finally, three leaves (marked in darker gray), with a total of 4
terms, are unification-compatible with the query. In this case, all 4 terms found
actually are unifiable with the query.

Even fairly short fingerprints are sufficient to achieve good performance of the
index. Computing these small fingerprints is computationally cheap, and so is
insertion and removal of fingerprints from the trie.

Since each term has a unique fingerprint, it is stored at exactly one leaf. To
find all retrieval candidates, we traverse the trie recursively, collecting candidates
from all leaves. Since all terms at a leaf are compatible with all fingerprints
leading to it, and since all terms are represented at most once in the index, we
only need to form the union of the candidate sets at all matching leaves. This
is a major advantage compared to coordinate indexing, where it is necessary
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to compute the intersection of candidate sets for each coordinate. The same
applies to path indexing, where e.g. Vampire goes to great lengths to optimize
this bottleneck [4]. Moreover, since each term has a single fingerprint and is
represented only once in the trie, there are at most as many fingerprints in an
index as there are indexed terms. Thus, memory consumption of the index scales
at worst linearly with the number of indexed terms.

4 Implementation

We have implemented fingerprint indexing in our theorem prover E to speed up
superposition and backwards rewriting. For this purpose, we have added three
global indices to E, called the backwards-rewriting index, the paramodulation-
from index, and the paramodulation-into index.

The backwards-rewriting index contains all (potentially rewritable) subterms
of processed clauses. Each term is associated with the set of all processed clauses
it occurs in. Given a new unit clause l-r, we find all rewritable clauses by finding
all leaves compatible with the fingerprint of l, try to match l onto each of the
terms t stored at the leaf, and, in the case of success, verify if σ(l) > σ(r). If and
only if this is the case, all clauses associated with the term are rewritable with
the new unit clause (and hence are removed from the set of processed clauses).
Note that in this implementation the (potentially expensive) ordering check only
has to be made once for every t, not once per occurrence of t.

For the paramodulation indices, we use a somewhat more complex structure.
The FP-Trie indexes sets of terms with the same fingerprint. For each term, we
store a set of clauses in which this term occurs (at a position potentially com-
patible with the superposition restrictions). Finally, with each of these clauses,
we store the positions in which the term occurs. The paramodulation-into index
is organized analogously.

5 Experimental Results

To measure the performance of fingerprint indexing, we performed a series
of experiments. All tests use problems from the set of 15386 untyped first-
order problems in the TPTP problem library [8], Version 5.2.0. The full test
data and the version of the prover used for the test runs are archived at
http://www.eprover.eu/E-eu/FPIndexing.html. All tests were run with a
time limit of 300 seconds on 2.4 GHz Intel Xeon CPUs under the Linux 2.6.18-
164.el5 SMP Kernel in 64 bit mode.

We have instrumented the prover by adding profiling code to measure the time
spent in parts of the program without the overhead of a standard profiler. For
quantitative analysis of the run times, we only use cases where the proof search
followed very similar lines for the indexed and non-indexed case (as evidenced
by clause counts). This resulted in 5824 problems used for comparison.

http://www.eprover.eu/E-eu/FPIndexing.html
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Table 1. CPU times for different parts of the proof process (in seconds)

Index Run time Sat time PM time PMI time MGU time BR time BRI time

NoIdx 16062.392 14078.300 8980.320 0.000 2545.080 2280.250 0.000
FP0 16644.127 14835.130 9904.120 26.380 4360.330 1846.280 41.440
FP0FP 9581.606 8211.010 3633.590 27.950 1322.530 1071.210 42.030
FP1 7006.758 6145.870 1816.100 25.710 450.760 379.570 40.150
FP2 6200.043 5556.330 1345.440 28.900 199.600 104.340 43.300
FP3D 6107.780 5463.240 1266.820 31.410 150.880 91.430 46.040
FP4M 6050.617 5423.820 1197.720 33.640 109.870 64.740 49.620
FP5M 6088.364 5455.180 1203.240 38.250 107.860 65.630 53.520
FP6M 6000.177 5385.810 1181.710 38.240 99.110 39.010 55.660
FP7 6022.196 5404.150 1179.250 41.880 95.880 38.400 57.610
FP8X2 6066.482 5429.390 1193.820 56.430 88.580 37.710 77.400
NPDT 6082.246 5434.760 1184.750 64.910 83.110 33.200 79.910

We include results for a number of different versions: NoIdx (no indexing),
FP0 (pseudo-fingerprint of lengths 0), FP0FP (pseudo-fingerprint emulating op-
timizations in the unindexed version), FP1 (sampling at ε, equivalent to top-
symbol hashing, FP2 (ε, 1), FP3D (ε, 1, 1.1), FP4M (ε, 1, 2, 1.1), FP5M (
ε, 1, 2, 3, 1.1), FP6M (ε, 1, 2, 3, 1.1, 1.2), FP7 (ε, 1, 2, 1.1, 1.2, 2.1, 2.2), FP8X2 (ε,
1, 2, 3, 4, 1.1, 1.2, 1.3, 2.1, 2.2, 2.3, 3.1, 3.2, 3.3, 1.1.1, 2.1.1), NPDT (non-perfect
discrimination trees).

Table 1 shows the result of the time measurements, summed over all 5824
problems. “Run time” is the total run time of the prover. “Sat time” is spent
in the main saturation loop, “PM time” is for paramodulation/superposition,
“PMI time” is for paramodulation index maintenance. “MGU time” is the time
for unification. “BR time” and “BRI time” are the times used for backwards-
rewriting and backward-rewrite index maintenance.

Comparing the unindexed version with the FP6M index, total run time de-
creases by more than 60%. The time spent for unification itself has been reduced
by a factor of about 25. The total time for unification-related code (i.e. index
maintenance and unification) amounts to less than 2.5% of the total run time.

Comparing the times for FP6M with the times for discrimination tree in-
dexing, we see that overall fingerprint indexing outperforms discrimination tree
indexing, if not by a large margin. Time for actual unification is slightly lower for
discrimination tree indexing, but index maintenance is slightly more expensive.

We see an even stronger improvement for backwards rewriting. The time for
the operation itself drops more than 58-fold. Time for index maintenance is of
the same order of magnitude. Taking index maintenance into account, the total
time for backward rewriting improved by a factor of about 25.

Figure 3(a) shows a scatter plot of run times for NoIdx and FP6M. Please
note the double logarithmic scale. For the vast majority of problems, the in-
dexed version is significantly, and often dramatically, faster, while there are no
problems for which the conventional version is more than marginally faster.
Figure 3(b) compares FP6M and discrimination tree indexing. For most prob-
lems, performance is nearly identical.
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Fig. 3. Scatter plots of run times (in seconds) for FP6M over (a) non-indexed and (b)
non-perfect discrimination tree implementations

6 Conclusion

In this paper, we have introduced fingerprint indexing, a lightweight indexing
technique that is easy to implement, has a small memory footprint, and shows
excellent performance in practice.

In the future, we will further investigate the influence of different fingerprint
functions, and evaluate if further gains can be made by automatically generating
a good fingerprint function based on the signature.

Acknowledgements. I thank the University of Miami’s Center for Computa-
tional Science HPC team for making their cluster available for the experimental
evaluation.
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Optimization in SMT with LA(Q) Cost Functions�
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Abstract. In the contexts of automated reasoning and formal verification, impor-
tant decision problems are effectively encoded into Satisfiability Modulo Theo-
ries (SMT). In the last decade efficient SMT solvers have been developed for
several theories of practical interest (e.g., linear arithmetic, arrays, bit-vectors).
Surprisingly, very little work has been done to extend SMT to deal with optimiza-
tion problems; in particular, we are not aware of any work on SMT solvers able
to produce solutions which minimize cost functions over arithmetical variables.
This is unfortunate, since some problems of interest require this functionality.

In this paper we start filling this gap. We present and discuss two general pro-
cedures for leveraging SMT to handle the minimization of LA(Q) cost functions,
combining SMT with standard minimization techniques. We have implemented
the procedures within the MathSAT SMT solver. Due to the absence of competi-
tors in AR and SMT domains, we have experimentally evaluated our implementa-
tion against state-of-the-art tools for the domain of linear generalized disjunctive
programming (LGDP), which is closest in spirit to our domain, on sets of prob-
lems which have been previously proposed as benchmarks for the latter tools. The
results show that our tool is very competitive with, and often outperforms, these
tools on these problems, clearly demonstrating the potential of the approach.

1 Introduction

In the contexts of automated reasoning (AR) and formal verification (FV), important
decision problems are effectively encoded into and solved as Satisfiability Modulo The-
ories (SMT) problems. In the last decade efficient SMT solvers have been developed,
that combine the power of modern conflict-driven clause-learning (CDCL) SAT solvers
with dedicated decision procedures (T -Solvers) for several first-order theories of prac-
tical interest like, e.g., those of linear arithmetic over the rationals (LA(Q)) or the
integers (LA(Z)), of arrays (AR), of bit-vectors (BV), and their combinations. (See
[11] for an overview.)

Many SMT-encodable problems of interest, however, may require also the capability
of finding models that are optimal wrt. some cost function over continuous arithmeti-
cal variables. 1 E.g., in (SMT-based) planning with resources [33] a plan for achieving
a certain goal must be found which not only fulfills some resource constraints (e.g.

� R. Sebastiani is supported by Semiconductor Research Corporation under GRC Custom Re-
search Project 2009-TJ-1880 WOLFLING and GRC Research Project 2012-TJ-2266 WOLF.

1 Although we refer to quantifier-free formulas, as it is frequent practice in SAT and SMT, with
a little abuse of terminology we often call “Boolean variables” the propositional atoms and we
call “variables” the Skolem constants xi in LA(Q)-atoms like, e.g., “3x1 − 2x2 + x3 ≤ 3”.

B. Gramlich, D. Miller, and U. Sattler (Eds.): IJCAR 2012, LNAI 7364, pp. 484–498, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Optimization in SMT with LA(Q) Cost Functions 485

on time, gasoline consumption, ...) but that also minimizes the usage of some such
resource; in SMT-based model checking with timed or hybrid systems (e.g. [9]) you
may want to find executions which minimize some parameter (e.g. elapsed time), or
which minimize/maximize the value of some constant parameter (e.g., a clock time-
out value) while fulfilling/violating some property (e.g., minimize the closure time
interval of a rail-crossing while preserving safety). This also involves, as particular
subcases, problems which are traditionally addressed as linear disjunctive program-
ming (LDP) [10] or linear generalized disjunctive programming (LGDP) [25,28], or as
SAT/SMT with Pseudo-Boolean (PB) constraints and Weighted Max-SAT/SMT prob-
lems [26,19,24,15,7]. Notice that the two latter problems can be easily encoded into
each other.

Surprisingly, very little work has been done to extend SMT to deal with optimization
problems [24,15,7]; in particular, to the best of our knowledge, all such works aim at
minimizing cost functions over Boolean variables (i.e., SMT with PB cost functions
or MAX-SMT), whilst we are not aware of any work on SMT solvers able to produce
solutions which minimize cost functions over arithmetical variables. Notice that the
former can be easily encoded into the latter, but not vice versa (see §2).

In this paper we start filling this gap. We present two general procedures for adding
to SMT(LA(Q) ∪ T ) the functionality of finding models minimizing some LA(Q)
cost variable —T being some (possibly empty) stably-infinite theory s.t. T and LA(Q)
are signature-disjoint. These two procedures combine standard SMT and minimization
techniques: the first, called offline, is much simpler to implement, since it uses an incre-
mental SMT solver as a black-box, whilst the second, called inline, is more sophisticate
and efficient, but it requires modifying the code of the SMT solver. (This distinction is
important, since the source code of most SMT solvers is not publicly available.)

We have implemented these procedures within the MATHSAT5 SMT solver [5]. Due
to the absence of competitors from AR and SMT domains, we have experimentally eval-
uated our implementation against state-of-the-art tools for the domain of LGDP, which
is closest in spirit to our domain, on sets of problems which have been previously pro-
posed as benchmarks for the latter tools. (Notice that LGDP is limited to plain LA(Q),
so that, e.g., it cannot handle combination of theories like LA(Q) ∪ T .) The results
show that our tool is very competitive with, and often outperforms, these tools on these
problems, clearly demonstrating the potential of the approach.

Related Work. The idea of optimization in SMT was first introduced by Nieuwenhuis
& Oliveras [24], who presented a very-general logical framework of “SMT with pro-
gressively stronger theories” (e.g., where the theory is progressively strengthened by
every new approximation of the minimum cost), and present implementations for Max-
SAT/SMT based on this framework. Cimatti et al. [15] introduced the notion of “Theory
of Costs” C to handle PB cost functions and constraints by an ad-hoc and independent
“C-solver” in the standard lazy SMT schema, and implemented a variant of MathSAT
tool able to handle SAT/SMT with PB constraints and to minimize PB cost functions.
The SMT solver YICES [7] also implements Max-SAT/SMT, but we are not aware of
any document describing the procedures used there.

Mixed Integer Linear Programming (MILP) is an extension of Linear Programming
(LP) involving both discrete and continuous variables. A large variety of techniques and
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tools for MILP are available, mostly based on efficient combinations of LP, branch-and-
bound search mechanism and cutting-plane methods (see e.g. [20]). SAT techniques
have also been incorporated into these procedures for MILP (see [8]).

Linear Disjunctive Programming (LDP) problems are LP problems where linear
constraints are connected by conjunctions and disjunctions [10]. Closest to our do-
main, Linear Generalized Disjunctive Programming (LGDP), is a generalization of
LDP which has been proposed in [25] as an alternative model to the MILP problem.
Unlike MILP, which is based entirely on algebraic equations and inequalities, the LGDP
model allows for combining algebraic and logical equations with Boolean propositions
through Boolean operations, providing a much more natural representation of discrete
decisions. Current approaches successfully address LGDP by reformulating and solving
it as a MILP problem [25,32,27,28]; these reformulations focus on efficiently encoding
disjunctions and logic propositions into MILP, so as to be fed to an efficient MILP
solver like CPLEX.

Content. The rest of the paper is organized as follows: in §2 we define the problem
addressed, and show how it generalizes many known optimization problems; in §3 we
present our novel procedures; in §4 we present an experimental evaluation; in §5 we
briefly conclude and highlight directions for future work.

2 Optimization in SMT(LA(Q) ∪ T )

We assume the reader is familiar with the main concepts of Boolean and first-order
logic. Let T be some stably infinite theory with equality s.t.LA(Q) and T are signature-
disjoint, as in [23]. (T can be itself a combination of theories.) We call an Optimization
Modulo LA(Q) ∪ T problem, OMT(LA(Q) ∪ T ), a pair 〈ϕ, cost〉 such that ϕ is a
SMT(LA(Q)∪ T ) formula and cost is a LA(Q) variable occurring in ϕ, representing
the cost to be minimized. The problem consists in finding a model M for ϕ (if any)
whose value of cost is minimum. We call an Optimization Modulo LA(Q) problem
(OMT(LA(Q))) an SMT(LA(Q) ∪ T ) problem where T is empty. If ϕ is in the form
ϕ′ ∧ (cost < c) [resp. ϕ′ ∧¬(cost < c)] for some value c ∈ Q, then we call c an upper
bound [resp. lower bound] for cost. If ub [resp lb ] is the minimum upper bound [resp.
the maximum lower bound] for ϕ, we also call the interval [lb, ub[ the range of cost.

These definitions capture many interesting optimizations problems. First, it is
straightforward to encode LP, LDP and LGDP into OMT(LA(Q)) (see [29] for details).

Pseudo-Boolean (PB) constraints (see [26]) in the form (
∑

i aiX
i ≤ b), s.t. X i are

Boolean atoms and ai constant values in Q, and cost functions cost =
∑

i aiX
i, are

encoded into OMT(LA(Q)) by rewriting each PB-term
∑

i aiX
i into the LA(Q)-term∑

i xi, x being an array of fresh LA(Q) variables, and by conjoining to ϕ the formula:∧
i((¬X i ∨ (xi = ai)) ∧ (X i ∨ (xi = 0))). (1)

Moreover, since Max-SAT (see [19]) [resp. Max-SMT (see [24,15,7])] can be encoded
into SAT [resp. SMT] with PB constraints (see e.g. [24,15]), then optimization prob-
lems for SAT with PB constraints and Max-SAT can be encoded into OMT(LA(Q)),
whilst those for SMT(T ) with PB constraints and Max-SMT can be encoded into
OMT(LA(Q) ∪ T ) (assuming T matches the definition above).
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We remark the deep difference between OMT(LA(Q))/OMT(LA(Q) ∪ T ) and the
problem of SAT/SMT with PB constraints and cost functions (or Max-SAT/SMT) ad-
dressed in [24,15]. With the latter problem, the cost is a deterministic consequence of
a truth assignment to the atoms of the formula, so that the search has only a Boolean
component, consisting in finding the cheapest truth assignment. With OMT(LA(Q))/
OMT(LA(Q) ∪ T ), instead, for every satisfying assignment μ it is also necessary to
find the minimum-cost LA(Q)-model for μ, so that the search has both a Boolean and
a LA(Q)-component.

3 Procedures for OMT(LA(Q)) and OMT(LA(Q) ∪ T )

It may be noticed that very naive OMT(LA(Q)) or OMT(LA(Q) ∪ T ) procedures
could be straightforwardly implemented by performing a sequence of calls to an SMT
solver on formulas like ϕ ∧ (cost ≥ li) ∧ (cost < ui), each time restricting the range
[li, ui[ according to a linear-search or binary-search schema. With the former schema,
however, the SMT solver would repeatedly generate the same LA(Q)-satisfiable truth
assignment, each time finding a cheaper model for it. With the latter schema the effi-
ciency should improve; however, an initial lower-bound should be necessarily required
as input (which is not the case, e.g., of the problems in §4.2.)

In this section we present more sophisticate procedures, based on the combination
of SMT and minimization techniques. We first present and discuss an offline schema
(§3.1) and an inline (§3.2) schema for an OMT(LA(Q)) procedure; then we show how
to extend them to the OMT(LA(Q) ∪ T ) case (§3.3).

In what follows we assume the reader is familiar with the basics about CDCL SAT
solvers and lazy SMT solvers. A detailed background section on that is available on the
extended version of this paper [29]; for a much more detailed description, we refer the
reader, e.g., to [22,11] respectively.

3.1 An Offline Schema for OMT(LA(Q))

The general schema for the offline OMT(LA(Q)) procedure is displayed in Algo-
rithm 1. It takes as input an instance of the OMT(LA(Q)) problem, plus optionally
values for lb and ub (which are implicitly considered to be−∞ and +∞ if not present),
and returns the modelM of minimum cost and its cost u (the value ub if ϕ is LA(Q)-
inconsistent). We represent ϕ as a set of clauses, which may be pushed or popped from
the input formula-stack of an incremental SMT solver.

First, the variables l, u (defining the current range) are initialized to lb and ub re-
spectively, the atom PIV to �, and M is initialized to be an empty model. Then the
procedure adds to ϕ the bound constraints, if present, which restrict the search within
the range [l, u[ (row 2). 2 The solution space is then explored iteratively (rows 3-26),
reducing at each loop the current range [l, u[ to explore, until the range is empty. Then
〈M, u〉 is returned —〈∅, ub〉 if there is no solution in [lb, ub[— M being the model of
minimum cost u. Each loop may work in either linear-search or binary-search mode,

2 Of course literals like ¬(cost < −∞) and (cost < +∞) are not added.
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Algorithm 1. Offline OMT(LA(Q)) Procedure based on Mixed Linear/Binary Search.
Require: 〈ϕ, cost, lb, ub〉 {ub can be +∞, lb can be −∞}
1: l ← lb; u ← ub;PIV ← �;M ← ∅
2: ϕ ← ϕ ∪ {¬(cost < l), (cost < u)}
3: while (l < u ) do
4: if (BinSearchMode()) then {Binary-search Mode}
5: pivot ← ComputePivot(l, u)
6: PIV ← (cost < pivot)
7: ϕ ← ϕ ∪ {PIV}
8: 〈res, μ〉 ← SMT.IncrementalSolve(ϕ)
9: η ← SMT.ExtractUnsatCore(ϕ)

10: else {Linear-search Mode}
11: 〈res, μ〉 ← SMT.IncrementalSolve(ϕ)
12: η ← ∅
13: end if
14: if (res = SAT) then
15: 〈M,u〉 ← Minimize(cost, μ)
16: ϕ ← ϕ ∪ {(cost < u)}
17: else {res = UNSAT }
18: if (PIV �∈ η) then
19: l ← u
20: else
21: l ← pivot
22: ϕ ← ϕ \ {PIV}
23: ϕ ← ϕ ∪ {¬PIV}
24: end if
25: end if
26: end while
27: return 〈M, u〉

driven by the heuristic BinSearchMode(). Notice that if u = +∞ or l = −∞, then
BinSearchMode() returns false.

In linear-search mode, steps 4-9 and 21-23 are not executed. First, an incremental
SMT(LA(Q)) solver is invoked on ϕ (row 11). (Notice that, given the incrementality
of the solver, every operation in the form “ϕ← ϕ ∪ {φi}” [resp. ϕ← ϕ \ {φi}] is im-
plemented as a “push” [resp. “pop”] operation on the stack representation of ϕ; it is also
very important to recall that during the SMT call ϕ is updated with the clauses which
are learned during the SMT search.) η is set to be empty, which forces condition 18 to
hold. If ϕ is LA(Q)-satisfiable, then it is returned res =SAT and a LA(Q)-satisfiable
truth assignment μ for ϕ. Thus Minimize is invoked on (the subset of LA(Q)-literals
of) μ, returning the model M for μ of minimum cost u (−∞ iff the problem in un-
bounded). The current solution u becomes the new upper bound, thus the LA(Q)-atom
(cost < u) is added to ϕ (row 16). Notice that if the problem is unbounded, then for
some μMinimize will return−∞, forcing condition 3 to be false and the whole process
to stop. If ϕ is LA(Q)-unsatisfiable, then no model in the current cost range [l, u[ can
be found; hence the flag l is set to u, forcing the end of the loop.
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In binary-search mode at the beginning of the loop (steps 4-9), the value pivot ∈
]l, u[ is computed by the heuristic function ComputePivot (in the simplest form, pivot
is (l+ u)/2), the (possibly new) atom PIV

def
= (cost < pivot) is pushed into the formula

stack, so that to temporarily restrict the cost range to [l, pivot[; then the incremental
SMT solver is invoked on ϕ, this time activating the feature SMT.ExtractUnsatCore,
which returns also the subset η of formulas in (the formula stack of) ϕ which caused
the unsatisfiability of ϕ. This exploits techniques similar to unsat-core extraction [21].
(In practice, it suffices to say if PIV ∈ η.) If ϕ is LA(Q)-satisfiable, then the procedure
behaves as in linear-search mode. If instead ϕ is LA(Q)-unsatisfiable, we look at η
and distinguish two subcases. If PIV does not occur in η, this means that ϕ \ {PIV}
is LA(Q)-inconsistent, i.e. there is no model in the whole cost range [l, u[. Then the
procedure behaves as in linear-search mode, forcing the end of the loop. Otherwise,
we can only conclude that there is no model in the cost range [l, pivot[, so that we still
need exploring the cost range [pivot, u[. Thus l is set to pivot, PIV is popped from ϕ
and its negation is pushed into ϕ. Then the search proceeds, investigating the cost range
[pivot, u[.

We notice an important fact: if BinSearchMode() always returned true, then Algo-
rithm 1 would not necessarily terminate. In fact, an SMT solver invoked on ϕ may
return a set η containing PIV even if ϕ \ PIV is LA(Q)-inconsistent. Thus, e.g., the
procedure might got stuck into a infinite loop, each time halving the cost range right-
bound (e.g., [−1, 0[, [−1/2, 0[, [−1/4, 0[,..). To cope with this fact, however, it suffices
that BinSearchMode() returns false infinitely often, forcing then a “linear-search” call
which finally detects the inconsistency. (In our implementation, we have empirically
experienced the best performance with one linear-search loop after every binary-search
one, because satisfiable calls are typically much cheaper than unsatisfiable ones.)

Under such hypothesis, it is straightforward to see the following facts: (i) Algo-
rithm 1 terminates, in both modes, because there are only a finite number of candidate
truth assignments μ to be enumerated, and steps 15-16 guarantee that the same assign-
ment μ will never be returned twice by the SMT solver; (ii) it returns a model of min-
imum cost, because it explores the whole search space of candidate truth assignments,
and for every suitable assignment μ Minimize finds the minimum-cost model for μ;
(iii) it requires polynomial space, under the assumption that the underlying CDCL SAT
solver adopts a polynomial-size clause discharging strategy (which is typically the case
of SMT solvers, including MATHSAT).

In a nutshell, Minimize is a simple extension of the simplex-based LA(Q)-Solver of
[16] which is invoked after one solution is found, minimizing it by standard Simplex
techniques. We recall that the algorithm in [16] can handle strict inequalities. Thus, if
the input problem contains strict inequalities, then Minimize temporarily treats them as
non-strict ones and finds the minimum-cost solution with standard Simplex techniques.
If such minimum-cost solution x of cost min lays only on non-strict inequalities, then
x is a solution; otherwise, for some δ > 0 and for every cost c ∈ ]min,min + δ] there
exists a solution of cost c. (If needed, such solution is computed using the techniques
for handling strict inequalities described in [16].) Thus the value min is returned, tagged
as a non-strict minimum, so that the constraint (cost ≤ min) rather than (cost < min)
is added to ϕ.
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Discussion. We remark a few facts about this procedure.
First, if Algorithm 1 is interrupted (e.g., by a timeout device), then u can be returned,

representing the best approximation of the minimum cost found so far.
Second, the incrementality of the SMT solver plays an essential role here, since at

every call SMT.IncrementalSolve resumes the status of the search of the end of the
previous call, only with tighter cost range constraints. (Notice that at each call here the
solver can reuse all previously-learned clauses.) To this extent, one can see the whole
process as only one SMT process, which is interrupted and resumed each time a new
model is found, in which cost range constraints are progressively tightened.

Third, we notice that in Algorithm 1 all the literals constraining the cost range
(i.e., ¬(cost < l), (cost < u)) are always added to ϕ as unit clauses; thus inside
SMT.IncrementalSolve these literals are immediately unit-propagated, becoming part
of each truth assignment μ from the very beginning of its construction. (We recall that
the SMT solver invokes incrementally LA(Q)-Solver also while building an assign-
ment μ (early pruning calls [11].)) As soon as novel LA(Q)-literals are added to μ
which prevent it from having a LA(Q)-model of cost in [l, u[, the LA(Q)-solver in-
voked on μ by early-pruning calls returns UNSAT and the LA(Q)-lemma ¬η describ-
ing the conflict η ⊆ μ, triggering theory-backjumping and -learning. To this extent,
SMT.IncrementalSolve implicitly plays a form of branch & bound: (i) decide a new
literal l and propagate the literals which derive from l (“branch”) and (ii) backtrack as
soon as the current branch can no more be expanded into models in the current cost
range (“bound”).

Fourth, in binary-search mode, the range-partition strategy may be even more aggres-
sive than that of standard binary search, because the minimum cost u returned in row 15
can be significantly smaller than pivot, so that the cost range is more than halved.

Finally, unlike with other domains (e.g., search in a sorted array) the binary-search
strategy here is not “obviously faster” than the linear-search one, because the unsat-
isfiable calls to SMT.IncrementalSolve are typically much more expensive than the
satisfiable ones, because they must explore the whole Boolean search space rather than
only a portion of it (although with a higher pruning power, due to the stronger con-
straint induced by the presence of pivot). Thus, we have a tradeoff between a typically
much-smaller number of calls plus a stronger pruning power in binary search versus an
average much smaller cost of the calls in linear search. To this extent, it is possible to
use dynamic/adaptive strategies for ComputePivot (see [30]).

3.2 An Inline Schema for OMT(LA(Q))

With the inline schema, the whole optimization procedure is pushed inside the SMT
solver by embedding the range-minimization loop inside the CDCL Boolean-search
loop of the standard lazy SMT schema. The SMT solver, which is thus called only
once, is modified as follows.

Initialization. The variables lb, ub, l, u,PIV, pivot,M are brought inside the SMT
solver, and are initialized as in Algorithm 1, steps 1-2.

Range Updating and Pivoting. Every time the search of the CDCL SAT solver gets
back to decision level 0, the range [l, u[ is updated s.t. u [resp. l ] is assigned the lowest
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[resp. highest] value ui [resp. li] such that the atom (cost < ui) [resp. ¬(cost < ui)] is
currently assigned at level 0. (If u ≤ l, or two literals l,¬l are both assigned at level 0,
then the procedure terminates, returning the current value of u.) Then BinSearchMode()
is invoked: if it returns true, then ComputePivot computes pivot ∈ ]l, u[, and the (pos-
sibly new) atom PIV

def
= (cost < pivot) is decided to be true (level 1) by the SAT solver.

This mimics steps 4-7 in Algorithm 1, temporarily restricting the cost range to [l, pivot[.

Decreasing the Upper Bound. When an assignment μ propositionally satisfying ϕ
is generated which is found LA(Q)-consistent by LA(Q)-Solver, μ is also fed to
Minimize, returning the minimum cost min of μ; then the unit clause (cost < min) is
learned and fed to the backjumping mechanism, which forces the SAT solver to back-
jump to level 0, then unit-propagating (cost < min). This case mirrors steps 14-16 in
Algorithm 1, permanently restricting the cost range to [l,min[. Minimize is embedded
within LA(Q)-Solver, so that it is called incrementally after it, without restarting its
search from scratch.

As a result of these modifications, we also have the following typical scenario.

Increasing the Lower Bound. In binary-search mode, when a conflict occurs s.t. the
conflict analysis of the SAT solver produces a conflict clause in the form¬PIV∨¬η′ s.t.
all literals in η′ are assigned true at level 0 (i.e., ϕ ∧ PIV is LA(Q)-inconsistent), then
the SAT solver backtracks to level 0, unit-propagating ¬PIV. This case mirrors steps
21-23 in Algorithm 1, permanently restricting the cost range to [pivot, u[.

Although the modified SMT solver mimics to some extent the behaviour of Algo-
rithm 1, the “control” of the range-restriction process is handled by the standard SMT
search. To this extent, notice that also other situations may allow for restricting the cost
range: e.g., if ϕ ∧ ¬(cost < l) ∧ (cost < u) |= (cost �� m) for some atom (cost �� m)
occurring in ϕ s.t. m ∈ [l, u[ and �� ∈ {≤, <,≥, >}, then the SMT solver may back-
jump to decision level 0 and propagate (cost �� m), further restricting the cost range.

The same considerations about the offline procedure in §3.1 hold for the inline ver-
sion. The efficiency of the inline procedure can be further improved as follows.

First, in binary-search mode, when a truth assignment μ with a novel minimum min

is found, not only (cost < min) but also PIV
def
= (cost < pivot) is learned as unit

clause. Although redundant from the logical perspective because min < pivot, the unit
clause PIV allows the SAT solver for reusing all the clauses in the form ¬PIV ∨ C
which have been learned when investigating the cost range [l, pivot[. (In Algorithm 1
this is done implicitly, since PIV is not popped from ϕ before step 16.) Moreover, the
LA(Q)-inconsistent assignment μ ∧ (cost < min) may be fed to LA(Q)-Solver and
the negation of the returned conflict ¬η ∨ ¬(cost < min) s.t. η ⊆ μ, can be learned,
which prevents the SAT solver from generating any assignment containing η.

Second, in binary-search mode, if theLA(Q)-Solver returns a conflict set η∪{PIV},
then it is further asked to find the maximum value max s.t. η ∪ {(cost < max)} is also
LA(Q)-inconsistent. (This is done with a simple modification of the algorithm in [16].)
If max ≥ u, then the clause C∗ def

= ¬η ∨ ¬(cost < u) is used do drive backjumping and
learning instead of C

def
= ¬η ∨ ¬PIV. Since (cost < u) is permanently assigned at level

0, the dependency of the conflict from PIV is removed. Eventually, instead of using C
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to drive backjumping to level 0 and propagating ¬PIV, the SMT solver may use C∗,
then forcing the procedure to stop.

3.3 Extensions to OMT(LA(Q) ∪ T )

The procedures of §3.1 and §3.2 extend to the OMT(LA(Q)∪T ) case straightforwardly
as follows. We assume that the underlying SMT solver handles LA(Q)∪T , and that ϕ
is a LA(Q) ∪ T formula (which for simplicity and wlog we assume to be pure [23]).

Algorithm 1 is modified as follows. First, SMT.IncrementalSolve in step 8 or 11 is
asked to return also a LA(Q) ∪ T -model M. Then Minimize is invoked on the pair
〈cost, μLA(Q) ∪ μei〉, s.t. μLA(Q) is the truth assignment over the LA(Q)-atoms in ϕ
returned by the solver, and μei is the set of equalities (xi = xj) and strict inequalities
(xi < xj) on the shared variables xi which are true in M. (The equalities and strict
inequalities obtained from the others by the transitivity of =, < can be omitted.)

The implementation of an inline OMT(LA(Q) ∪ T ) procedures comes nearly for
free if the SMT solver handles LA(Q) ∪ T -solving by Delayed Theory Combination
[13], with the strategy of case-splitting automatically disequalities ¬(xi = xj) into the
two inequalities (xi < xj) and (xj < xi), which is implemented in MATHSAT. If so
the solver enumerates truth assignments in the form μ′ def

= μLA(Q) ∪ μeid ∪ μT , where
(i) μ′ propositionally satisfies ϕ, (ii) μeid is a set of interface equalities (xi = xj) and
disequalities ¬(xi = xj), containing also one inequality in {(xi < xj), (xj < xi)} for
every ¬(xi = xj) ∈ μeid; then μ′

LA(Q)

def
= μLA(Q) ∪μei and μ′

T
def
= μT ∪μed are passed

to the LA(Q)-Solver and T -Solver respectively, μei and μed being obtained from μeid

by dropping the disequalities and inequalities respectively. 3

If this is the case, it suffices to apply Minimize to μ′
LA(Q), then learn (cost < min)

and use it for backjumping, as in §3.2.
For lack of space we omit here a detailed justification that the above procedures

compute OMT(LA(Q) ∪ T ), which is presented in the extended paper [29]. In short,
they correspond to apply the techniques of §3.1, §3.2 to look for minimum-cost T -
satisfiable and LA(Q)-satisfiable truth-assignments for the LA(Q) ∪ T formula ϕ′ def

=
ϕ ∧

∧
xi,xj∈Shared(ϕ)((xi = xj) ∨ (xi < xj) ∨ (xj < xi)), which is equivalent to ϕ,

each time passing to T -solver, LA(Q)-Solver and Minimize only the relevant literals.

4 Experimental Evaluation

We have implemented both the OMT(LA(Q)) procedures and the inline
OMT(LA(Q) ∪ T ) procedures of §3 on top of MATHSAT [5] (thus we refer to them
as OPT-MATHSAT). We consider four different configurations of OPT-MATHSAT,

3 In [13] μ′ def
= μLA(Q)∪μed∪μT , μed being a truth assignment over the interface equalities, and

as such a set of equalities and disequalities. However, since typically a SMT(LA(Q)) solver
handles disequalities ¬(xi = xj) by case-splitting them into (xi < xj) ∨ (xj < xi), the
assignment considers also one of the two strict inequalities, which is ignored by the T -Solver
and is passed to the LA(Q)-Solver instead of the corresponding disequality.
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depending on the approach (offline vs. inline, denoted by “-OF” and “-IN”) and the
search schema (linear vs. binary, denoted by “-LIN” and “-BIN”). 4

Due to the absence of competitors on OMT(LA(Q) ∪ T ), we evaluate the per-
formance of our four configurations of OPT-MATHSAT by comparing them against
GAMS v23.7.1 [14] on OMT(LA(Q)) problems. GAMS provides two reformulation
tools, LOGMIP v2.0 [4] and JAMS [3] (a new version of the EMP solver [2]), both
of them allow to reformulate LGDP models by using either big-M (BM) or convex-
hull (CH) methods [25,28]. We use CPLEX v12.2 [18] (through an OSI/CPLEX link) to
solve the reformulated MILP models. All the tools were executed using default options,
as indicated to us by the authors [31].

Notice that OPT-MATHSAT uses infinite precision arithmetic whilst, to the best of
our knowledge, the GAMS tools implement standard floating-point arithmetic.

All tests were executed on 2.66 GHz Xeon machines with 4GB RAM running Linux,
using a timeout of 600 seconds. The correctness of the minimum costs min found by
OPT-MATHSAT have been cross-checked by another SMT solver, YICES [7], by de-
tecting the inconsistency within the bounds of ϕ∧ (cost < min) and the consistency of
ϕ∧(cost = min) (if min is non-strict), or of ϕ∧(cost ≤ min) and ϕ∧(cost = min+ε)
(if min is strict), ε being some very small value. All tools agreed on the final results,
apart from tiny rounding errors, 5 and, much more importantly, from some noteworthy
exceptions on the smt-lib problems (see §4.2).

In order to make the experiments reproducible, the full-size plots, a Linux binary of
OPT-MATHSAT, the problems, and the results are available at [1].6

4.1 Comparison on LGDB Problems

We first performed our comparison over two distinct benchmarks, strip-packing and
zero-wait job-shop scheduling problems, which have been previously proposed as
benchmarks for LOGMIP and JAMS by their authors [32,27,28]. We have adopted
the encoding of the problems into LGDP given by the authors. 7

The Strip-Packing Problem. Given a set N of rectangles of different length Lj and
height Hj , j ∈ 1, .., N , and a strip of fixed width W but unlimited length, the strip-
packing problem aims at minimizing the length L of the filled part of the strip while
filling the strip with all rectangles, without any overlap and any rotation. We considered
the LGDP model provided by [27] and a corresponding OMT(LA(Q)) encoding.

We randomly generated benchmarks according to a fixed width W of the strip and
a fixed number of rectangles N . For each rectangle j ∈ N , length Lj and height Hj

4 Here “-LIN” means that BinSearchMode() always returns false, whilst “-BIN” denotes the
mixed linear-binary strategy described in §3.1 to ensure termination.

5 GAMS +CPLEX often gives some errors ≤ 10−5, which we believe are due to the printing
floating-point format: (e.g. “3.091250e+00”); notice that OPT-MATHSAT uses infinite-
precision arithmetic, returning values like, e.g. “7728125177/2500000000”.

6 We cannot distribute the GAMS tools since they are subject to licencing restrictions. See [14].
7 Examples are available at http://www.logmip.ceride.gov.ar/newer.html and

at http://www.gams.com/modlib/modlib.htm.

http://www.logmip.ceride.gov.ar/newer.html
http://www.gams.com/modlib/modlib.htm
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Procedure

Strip-packing
W =

√
N/2 W = 1

N = 9 N = 12 N = 15 N = 9 N = 12 N = 15
#s. time #s. time #s. time #s. time #s. time #s. time

OPT-MATHSAT-LIN-OF 100 51 100 600 93 7862 100 588 90 4555 18 1733
OPT-MATHSAT-LIN-IN 100 32 100 449 96 8057 100 578 91 4855 22 3216
OPT-MATHSAT-BIN-OF 100 48 100 641 90 8712 100 641 88 4385 19 2251
OPT-MATHSAT-BIN-IN 100 32 100 458 96 9706 100 554 92 5892 21 3257

JAMS(BM)+CPLEX 100 381 66 8631 12 1411 50 161 88 4344 46 5978
JAMS(CH)+CPLEX 98 3414 23 1011 0 0 50 887 62 7784 14 3034
LOGMIP(BM)+CPLEX 100 239 78 10266 12 1170 100 164 91 3850 51 6619
LOGMIP(CH)+CPLEX 100 3004 27 2481 1 437 100 2032 70 7406 17 3860
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Fig. 1. Table: results (# of solved instances, cumulative time in seconds for solved instances) for
OPT-MATHSAT and GAMS (using LOGMIP and JAMS) on 100 random instances each of the
strip-packing problem for N rectangles, where N = 9, 12, 15, and width W =

√
N/2, 1.

Scatter-plots: comparison of the best configuration of OPT-MATHSAT (OPT-MATHSAT-
LIN-IN) against LOGMIP(BM)+CPLEX (left), LOGMIP(CH)+CPLEX (center) and OPT-
MATHSAT-BIN-IN (right).

are selected in the interval ]0, 1] uniformly at random. The upper bound ub is computed
with the same heuristic used by [27], which sorts the rectangles in non-increasing order
of width and fills the strip by placing each rectangles in the bottom-left corner, and the
lower bound lb is set to zero. We generated 100 samples each for 9, 10 and 11 rectangles
and for two values of the width

√
N/2 and 18.

The table of Figure 1 shows the number of solved instances and their cumula-
tive execution time for different configurations of OPT-MATHSAT and GAMS on
the randomly-generated formulas. The scatter-plots of Figure 1 compare the best-
performing version of OPT-MATHSAT, OPT-MATHSAT-LIN-IN, against LOGMIP
with BM and CH reformulation (left and center respectively); the figure also com-
pares the two inline versions OPT-MATHSAT-LIN-IN and OPT-MATHSAT-BIN-IN
(right).

8 Notice that with W =
√
N/2 the filled strip looks approximatively like a square, whilst

W = 1 is the average of two 2 rectangles.
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Procedure
Job-shop

I = 9, J = 8 I = 10, J = 8 I = 11, J = 8
#s. time #s. time #s. time

OPT-MATHSAT-LIN-OF 97 360 97 1749 92 9287
OPT-MATHSAT-LIN-IN 97 314 97 1436 93 7232
OPT-MATHSAT-BIN-OF 97 619 97 3337 85 13286
OPT-MATHSAT-BIN-IN 97 412 97 1984 93 9166

JAMS(BM)+CPLEX 100 263 100 1068 100 4458
JAMS(CH)+CPLEX 83 22820 6 2533 0 0
LOGMIP(BM)+CPLEX 100 259 100 1066 100 4390
LOGMIP(CH)+CPLEX 86 23663 6 2541 0 0
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Fig. 2. Table: results (# of solved instances, cumulative time in seconds for solved instances)
for OPT-MATHSAT and GAMS on 100 random samples each of the job-shop problem, for
J = 8 stages and I = 9, 10, 11 jobs. Scatter-plots: comparison of the best configuration
of OPT-MATHSAT (OPT-MATHSAT-LIN-IN) against LOGMIP(BM)+CPLEX (left), LOG-
MIP(CH)+CPLEX (center) and OPT-MATHSAT-BIN-IN (right).

The Zero-Wait Jobshop Problem. Consider the scenario where there is a set I of jobs
which must be scheduled sequentially on a set J of consecutive stages with zero-wait
transfer between them. Each job i ∈ I has a start time si and a processing time tij in
the stage j ∈ Ji, Ji being the set of stages of job i. The goal of the zero-wait job-shop
scheduling problem is to minimize the makespan, that is the total length of the sched-
ule. In our experiments, we used the LGDP model used in [27] and a corresponding
OMT(LA(Q)) encoding.

We randomly generated benchmarks according to a fixed number of jobs I and a
fixed number of stages J . For each job i ∈ I , start time si and processing time tij of
every job are selected in the interval ]0, 1] uniformly at random. We consider a set of
100 samples each for 9, 10 and 11 jobs and 8 stages. We set no value for ub and lb = 0.

The table of Figure 2 shows the number of solved instances and their cumulative
execution time for different configurations of OPT-MATHSAT and GAMS on the
randomly-generated formulas. The scatter-plots of Figure 2 compare the best-performing
version of OPT-MATHSAT, OPT-MATHSAT-LIN-IN, against LOGMIP with BM and
CH reformulation (left and center respectively); the figure also compares the two inline
versions OPT-MATHSAT-LIN-IN and OPT-MATHSAT-BIN-IN (right).
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Fig. 3. Scatter-plots of the pairwise comparisons on the smt-lib LA(Q) satisfiable instances be-
tween OPT-MATHSAT-BIN-IN and the two versions of LOGMIP (up) and JAMS. (down).

Discussion. The results in Figures 1 and 2 suggest some considerations.
Comparing the different version of OPT-MATHSAT, overall the -LIN options seems

to perform a little better than and -BIN options (although gaps are not dramatic): in fact,
OPT-MATHSAT-LIN-OF performs most often a little better than OPT-MATHSAT-
BIN-OF, OPT-MATHSAT-BIN-IN performances are slightly better than to those of
OPT-MATHSAT-LIN-IN. We notice that the -IN options behave uniformly better than
the -OF options.

Comparing the different versions of the GAMS tools, we see that (i) on strip-packing
instances LOGMIP reformulations lead to better performance than JAMS reformula-
tions, (ii) on job-shop instances they produce substantially identical results. For both
reformulation tools, the “BM” versions uniformly outperform the “CH” ones.

Comparing the different versions of OPT-MATHSAT against all the GAMS tools,
we notice that (i) on strip-packing problems all versions of OPT-MATHSAT most often
outperform all GAMS tools, (ii) on job-shop problems OPT-MATHSAT outperforms
the “CH” versions whilst it is beaten by the “BM” ones.

4.2 Comparison on SMT-LIB Problems

We compare OPT-MATHSAT against GAMS also on the satisfiable LA(Q)-formulas
(QF LRA) in the SMT-LIB [6]. They are divided into six categories: sc, uart, sal,
TM, tta startup, and miplib. 9 Since we have no information on lower bounds

9 Notice that other SMT-LIB categories like spider benchmarks and clock synchro
do not contain satisfiable instances and are thus not reported here.
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on these problems, we use the linear-search version OPT-MATHSAT-LIN-IN. Since
we have no control on the origin of each problem and on the name and meaning of
the variables, we selected iteratively one variable at random as cost variable, dropping
it if the resulting minimum was −∞. This forced us to eliminate a few instances, in
particular all miplib ones.

We first noticed that some results for GAMS have some problem (see Table 1 in
[29]). Using the default options, on ≈ 60 samples over 193, both GAMS tools with
the CH option returned “unfeasible” (inconsistent), whilst the BM ones, when they did
not timeout, returned the same minimum values as OPT-MATHSAT. (We recall that
all OPT-MATHSAT results were cross-checked, and that the four GAMS tool were
fed with the same files.) Moreover, on four sal instances the two GAMS tools with
BM options returned a wrong minimum value “0”, with “CH” they returned “unfeasi-
ble”, whilst OPT-MATHSAT returned the minimum value “2”; by modifying a couple
of parameters from their default value, namely “eps” and “bigM Mvalue”, the re-
sults become unfeasible also with BM options. (We conjecture that these problems may
be caused, at least in part, by the fact that GAMS tools use floating-point rather than
infinite-precision arithmetic; nevertheless, this issue may deserve further investigation.)

After eliminating all flawed instances, the results appear as displayed in Figure 3.
OPT-MATHSAT solved all problems within the timeout, whilst GAMS did not solve
many samples. Moreover, with the exception of 3-4 samples, OPT-MATHSAT always
outperforms the GAMS tool, often by more than one order magnitude.

5 Conclusions and Future Work

This research opens the possibility for several interesting future directions. A short-
term goal is to improve the efficiency and applicability of OPT-MATHSAT: we plan to
(i) investigate and implement novel mixed linear/binary-search strategies and heuristics
(ii) extend the experimentation to novel sets of problems, possibly investigating ad-
hoc customizations. A middle-term goal is to extend the approach to LA(Z) or mixed
LA(Q) ∪ LA(Z), by exploiting the solvers which are already present in MATHSAT
[17]. A much longer-term goal is to investigate the feasibility of extending the technique
to deal with non-linear constraints, possibly using MINLP tools as T -Solver/Minimize.
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Abstract. We propose to describe computations using QFPAbit, a language of
quantifier-free linear arithmetic on unbounded integers with bitvector operations.
We describe an algorithm that, given a QFPAbit formula with input and output
variables denoting integers, generates an efficient function from a sequence of
inputs to a sequence of outputs, whenever such function on integers exists. The
starting point for our method is a polynomial-time translation mapping a QF-
PAbit formula into the sequential circuit that checks the correctness of the in-
put/output relation. From such a circuit, our synthesis algorithm produces solved
circuits from inputs to outputs that are no more than singly exponential in size of
the original formula. In addition to the general synthesis algorithm, we present
techniques that ensure that, for example, multiplication and division with large
constants do not lead to an exponential blowup, addressing a practical problem
with a previous approach that used the MONA tool to generate the specification
automata.

1 Introduction

Over the past decades, a number of decision procedures has been developed and in-
tegrated into satisfiability modulo theory (SMT) solvers. Among the primary uses of
this technology so far has been verification and error finding. Recently, researchers
started using this technology for software synthesis [11]. In the line of work on com-
plete functional synthesis, researchers proposed to generalize decision procedures for
infinite domains to synthesis procedures [7].

The basic idea is to describe fragments of code using formulas in a decidable logic.
Such a formula specifies a relation between inputs and outputs. A synthesis procedure
then compiles this formula into a program that maps inputs into outputs, and whose
behavior corresponds to invoking a decision procedure on that particular constraint. The
resulting program is guaranteed to satisfy the specification. Synthesis procedures have
been described for, e.g., parameterized Presburger arithmetic [7], using a constructive
version of quantifier elimination.

For domains such as integer arithmetic, automata-based methods can have a number
of advantages compared to quantifier elimination, including the ability to support op-
erations on unbounded bitvectors. Motivated by these observations, in related previous
work [4] researchers considered synthesis of specifications expressed in weak monadic
second-order logic of one successor (WS1S), which is equivalent to Presburger arith-
metic with bitwise logical operators. In contrast to automata-based approaches to reac-
tive synthesis [1, 2, 5, 8], this approach uses automata to encode relations on integers,
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which means that the causality restriction of Church’s synthesis problem does not ap-
ply. The synthesized function for this problem cannot always be given as a one-pass
finite-state transducer. The approach [4] synthesizes a two pass transducer, where the
first pass generates a sequence that abstracts the tree of possible executions, whereas
the second pass processes this sequence backwards to choose an acceptable sequence
of outputs. The previous implementation of this approach used the MONA tool [6] to
transform the given specification formula into an automaton accepting a sequence of
bits of combined input/output vectors. This implementation therefore suffered from the
explicit-state representation used by MONA. The most striking problem is multiplica-
tion by constants, where a subformula x = c ∗ y leads to circuits of size proportional to
c and thus exponential in the binary representation of c.

To overcome the difficulties with explicit-state representation used in the implemen-
tation of [4], in this paper we investigate an approach that directly uses circuit repre-
sentations for both specifications and implementations. To avoid the non-elementary
worst-case complexity [12] of transforming WS1S formulas to automata, we use as our
specification language quantifier-free Presburger arithmetic with bitvector operations
[9], denoted QFPAbit. We describe a polynomial-time transformation between sequen-
tial circuits and QFPAbit. We then present an algorithm for transforming sequential
circuit representations of input/output relations into systems of sequential circuits that
map inputs into outputs. The worst-case complexity of our translation is bounded by
a singly exponential function of the specification circuit size. Building on this general
result, we identify optimizations that exploit the structure of specifications to reduce
the potential for exponential explosion. Our prototype implementation confirms the
improved asymptotic behavior of this synthesis approach, and is available for down-
load from http://lara.epfl.ch/w/cisy. Additional details of our construc-
tions are available in the technical report [10].

2 Preliminaries

2.1 Quantifier-Free Presburger Arithmetic with Bit-Vector Logical Operators

Presburger Arithmetic with Bit-vector Logical Operators is the structure of integers
with addition and bit-vector logical operations acting on the binary two’s complement
representation of the integers. Let V be a finite set of variables. Let c ∈ Z, x ∈ V , and
% ranges over =, �=, <,≤, >,≥. The following is the grammar of QFPAbitterms and
formulas.

T := c | x | T + T | cT | ¬̄T | T ∧̄T | T ∨̄T
F := T % T | ¬F | F ∧ F | F ∨ F | F → F | F ↔ F

Variables range over the set of integers Z. The bitvector logical operators act on the
two’s complement encoding of numbers [9]:

〈xk, ...x0〉Z = −2kxk +Σk−1
i=0 2

ixi.

A property of this encoding is that replicating the most significant bit does not change
the value. This justifies our definition of the bit-vector operators because for any two

http://lara.epfl.ch/w/cisy
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numbers we can always find encodings that have the same length. By the two’s com-
plement encoding of a number, we mean its shortest possible encoding. Given a QF-
PAbit formula F over the set of variables V = {x1, ...xn}, we say that a valuation
val : V → Z satisfies F if F is true when each occurrence of a variable xi evaluates
to val(xi). We say that F is satisfiable if there exists a valuation that satisfies F . Note
that the identity −x = ¬̄ x+ 1 holds for all x.

We can use QFPAbit formulae to define languages over Σ = {0, 1}n. Let F be
a QFPAbit formula over the variables V = {x1, ...xn}. Let w ∈ Σ+ be a word of
length m. By w(j) denote the j-th letter of w, indexing from 0, so that the initial letter
is denoted w(0). Each w(j) is a vector of dimension n, let wi(j) denote the the i-
th coordinate of w(j). Define a valuation valw : V → Z by valw(xi) = 〈wi(m −
1), ...wi(0)〉Z. Thus, in the matrix whose columns are the letters of w, the i-th row
represents the encoding of valw(xi) with the most significant bit coming first. The
language defined by the formula is L(F ) = {w ∈ Σ+|valw satisfies F}.

2.2 Sequential Circuits

A combinational boolean circuit K is a pair (G, σ) where G is a finite directed acyclic
graph and σ : U → {AND,OR,NOT } is a labeling function such that U is the
set of vertices of G whose in-degree is greater than zero. We require that whenever
σ(x) = NOT then x has in-degree of one.

We call the vertices in U the gates. We denote the vertices of in-degree zero I and
call them inputs; we denote the vertices of out-degree zero O, and call them outputs.

Given a boolean valuation i : I → {true, false}, we define a valuation v on all
vertices of G as follows:

v(x) =

⎧⎪⎪⎨⎪⎪⎩
i(x), if x ∈ I
¬v(γ(x)), if x ∈ U ∧ σ(x) = NOT∧

y∈Γ (x) v(y), if x ∈ U ∧ σ(x) = AND∨
y∈Γ (x) v(y), if x ∈ U ∧ σ(x) = OR

where γ(x) denotes the single neighbor of x connected to it by an edge directed towards
x and Γ (x) denotes the set of all neighbors of x connected to it by edges directed
towards x. We call the values of v on O the output values of K for input i.

The values of the outputs of a combinational boolean circuit, defined above, depend
only on a single set of inputs and can be represented in a truth table. We next review
(clocked) sequential circuits, which are equivalent to deterministic finite automata but
compactly represent the set of states and the transition function.

A clocked sequential circuit (or SC, for short) is a tuple (K,M, store, load, init)
where

– K is a combinational boolean circuit with inputs and outputs I and O;
– M is a set of D-type flip-flops;
– store :M → O;
– load :M → I;
– init :M → {true, false}.
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The load and store functions describe how the data input of each flip-flop is connected
to a unique output of K and how the Q-output of each flip-flop is connected to a unique
input of K . Such a backward-connected output-input pair will be denoted as a state
variable. We call the inputs of K that are not in the image of load the input variables
and call the outputs of K that are not in the image of store the output variables.

The SC works in clock pulses. It takes as input a stream that for every clock pulse
contains values for all input variables, and produces as output a stream that for every
clock pulse contains values of all the output variables, computed by K . In every clock
pulse, K is provided with input values and it computes output values. The values for
K’s inputs corresponding to state variables are loaded from the flip-flops and the values
for its inputs corresponding to input variables are provided by the input stream. Some
of the values of K’s outputs are stored in the flip-flops for the use in the next clock
cycle, as determined by store.

The values stored in the flip-flops at the beginning of the first clock cycle are called
initial values of the state variables and they are given by init.

Notice that a circuit with n input variables and m output variables can be viewed as
a machine that, given a word from ({0, 1}n)+, produces a word of the same length in
({0, 1}m)+.

We can also use a SC to recognize a language.

Definition 1. Let C be a SC with one output variable o and n input variables. We say
that C accepts the word w ∈ {0, 1}n if the value of o in the last cycle is 1 when the
circuit is given w as input, one letter at each clock cycle.

The language of C is L(C) = {w ∈ {0, 1}n|C accepts w}.
Some of the standard finite state machine operations can be efficiently performed on
the sequential circuit representations. Given a SC C with input variables v1, ...vn, state
variables q1, ...qn and output o, and a SC C′ that uses the same input variables v1, ...vn
and has state variables q′1, ...q

′
n and output o′, we can construct a circuit ¬C by simply

appending a NOT gate at o and making the output of the NOT gate the output of ¬C.
Similarly, we can construct circuits C ∧ C′ and C ∨ C′ by connecting the outputs
of C and C′ to an appropriate logical gate, whose output will become the output of
the composite circuit. It can easily be seen that 1) L(¬C) = ({0, 1}n)+\L(C); 2)
L(C ∧ C′) = L(C) ∩ L(C′); 3) L(C ∨ C′) = L(C) ∪ L(C′).

3 Translations between QFPAbit and Sequential Circuits

This section establishes correspondence between QFPAbit and sequential circuits by
providing translations in both directions that maintain a close correspondence between
the accepted languages.

3.1 Reduction from QFPAbit to Sequential Circuits

Since we have already shown how to construct boolean combinations of sequential
acceptor circuits, it is enough to find a set of basic QFPAbit formulae out of which
all QFPAbit formulae can be built using logical connectives, and then show how these
basic formulae can be translated to SCs.
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Definition 2. Let w ∈ Σ+ with Σ = {0, 1}n as usually. Suppose

w =

⎛⎜⎝w1(0)
...

wn(0)

⎞⎟⎠
⎛⎜⎝w1(1)

...
wn(1)

⎞⎟⎠ · · ·
⎛⎜⎝w1(m)

...
wn(m)

⎞⎟⎠
Let S ⊆ {1, ...n} be non-empty. We define the projection of w onto the coordinates S to
be the string wS = wS(0)...wS(m), where wS(i) is the column vector (wj(i))j∈S ∈
{0, 1}|S|. For a language L ⊂ Σ+, we define the projection of L onto the coordinates
S to be the language LS = {wS |w ∈ L}. Note that LS is a language over the alphabet
{0, 1}|S|.

Every QFPAbit formula is a boolean combination of atomic formulae of the form
T1%T2 where T1 and T2 are terms and % ∈ {=, �=, <,≤, >,≥}. We will now show
how to transform any formula F into a new one where the atoms will be of a more
restricted form. The new formula will have more variables than F , but when projected
onto the variables occurring in F their languages will be the same. We apply the fol-
lowing sequence of transformations:

1. Replace all atomic relations by equalities and strict “less-than” inequalities using
the fact that T1 < T2 if and only if T1 + (−1)T2 < 0.

2. Remove all instances of multiplication by constants other than −1 and powers of
two by exploiting the fact that any term of the form cT is equal to a sum of terms
of the form 2kT corresponding to c’s two’s complement encoding.

3. Remove all instances of multiplication by −1 by replacing every sub-term of the
form (−1)T by ¬̄T + 1. This equivalence follows easily from the definition of the
two’s complement encoding.

4. Move all additions to separate conjuncts on the highest level of the formula by
replacing every occurence of T1 + T2 by a fresh variable s and adding conjuncts
s = x + y, x = T1 and y = T2 to the formula, where x and y are also fresh
variables.

5. Move all multiplications by a constant 2k, which are the only multiplications now
left in the formula, to conjuncts on the highest level of the formula by replacing
every occurence of 2kT by a fresh variable x and adding x = 2ky and y = T as
conjuncts to the formula, where y is another fresh variable.

6. Replace every additive occurrence of an integer constant c inside a larger term by a
fresh variable yc and add a conjunct yc = c to the formula.

Let us call the formula that we obtain G. It has size that is polynomial in the size of F
and and it consists only of atoms of the following five forms: (i) T < 0; (ii) T1 = T2;
(iii) y = c; (iv) x = 2kt; (v) s = x+ y, where x, y, s and t are variables, c is an integer
constant and T, T1, T2 are terms that contain exclusively variables and bit-vector logical
operators.

It is easy to construct SCs for atoms of each of these four forms. For details of these
constructions along with circuit diagrams, see our technical report [10]. The general
flavor of these circuits is that they compare streams of binary digits. The most com-
plicated case is (iv), where the circuit compares a binary stream to a version of itself
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shifted by a constant number of bits. Each of the sub-circuits for cases (i),(ii) and (v)
has only a constant number of state variables. In case (iii), the number of state variables
is proportional to the logarithm of the constant c and in case (iv) it is proportional to k.

Finally, we compose the partial specification circuits by boolean operations to find
a SC for G. The correctness of this synthesis procedure is expressed in the following
theorem.

Theorem 1. LetCF be the circuit obtained from a QFPAbit formula F using the above
synthesis procedure. Let V be the set of variables occuring in F . Then

L(CF )
V = L(F ).

Moreover, both the the number of gates of CF and the running time of the synthesis
procedure are polynomial in the number of symbols of F . The number of input variables
of C is the same as that of F and the number of C’s state variables is proportional to
the number of symbols of F .

3.2 Reduction from Sequential Circuits to QFPAbit

Let C be a sequential circuit with an underlying combinational circuit K = (G, σ), n
input variables {v1, ...vn},m state variables {q1, ...qm} and output variables {o1, ...ol}.
Let I : {q1, ...qm} → {0, 1} be the initial assignment of values to the state variables.
Let U be the set of all gates of K other than those corresponding to the output vari-
ables and state variables of C. We will pretend that the elements of U can be used
as identifiers for QFPAbit variables and construct a QFPAbit formula with variables
{v1, ...vn, q1, ...qm, o1, ...ol} ∪ U , such that for every satisfying assignment, the two’s
complement encodings of the values of the variables describes the evolution of the val-
ues of the corresponding variables and gates in a run of C. Although the QFPAbit
variables have the same names as the variables and gates of the circuit, it should be
clear from the context which ones do we mean.

We will refer to the values of the gates and inputs of the automaton in the k-th clock
cycle by q1(k), ...qm(k),v1(k), ...vn(k), o1(k)...ol(k) and x(k) for all x ∈ U . In the
cycle when the inputs are q1(i), ...qm(i), v1(i), ...vn(i), the values of all the gates in U
will be x(k), the output variables will be o1(i), ...ol(i) and the outputs corresponding
to state variables at that cycle will be denoted q1(i+1), ...qm(i+1), because they serve
as inputs for the next cycle. We start the numbering of clock cycles from 0.

We will be abusing notation slightly by writing σ(v)(x1 , ..., xk) for some gate v and
boolean values x1, ..., xk to mean the application of the boolean function represented
by σ(v) to x1, ..., xk. Then for all j ∈ {1, ...,m}, k ∈ {1, ..., l}, x ∈ U and all i ∈
{0, ..., N − 1} where N is the length of the input word, the run of C on that input word
is characterized by the following four equations:

qj(0) = I(qj) (1)

x(i) = σ(x)(Γ (x)(i)) (2)

ok(i) = σ(ok)(Γ (ok)(i)) (3)

qj(i+ 1) = σ(qj)(Γ (qj)(i)) (4)
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where, just like in our definition of a combinational circuit, Γ (v) denotes the part of the
neighborhood of a gate v connected to it with incoming edges, and Γ (v)(i) denotes a
vector of values of these nodes in clock cycle i.

We next build a QFPAbit formula for which every satisfying evaluation is such that
the reverse of the bit-sequences of the values it assigns to the variables conform to the
above conditions. Since C treats all numbers as starting with the most significant bit, in
our QFPAbit representation this will be reversed and hence x(0), qj(0) and ok(0) will
refer to the least significant bits of the encoding of the values of the variables.

For any gate v ofK , let σ̄v be the formula obtained by applying the bit-vector logical
operator corresponding to σ(v) to the variables in Γ (v). Then the following formula can
be used to describe the evolution of the digits of qj :

qj = 2σqj ∨̄I(qj)
The justification is as follows. Taking the bitwise disjunction of a number with 1 or 0
preserves all the digits except the least significant one, which is set to 1 or 0 respectively.
Multiplication by 2 induces a shift to the left of the two’s complement encoding of a
number. Hence the above formula establishes that every bit of qj is equal to the next bit
of σqj except for the first (least significant) one, which is equal to I(qj). This ensures
that equations (1) and (4) are satisfied.

Similarly, the formulas oj = σ̄oj and x = σ̄x assert that the reverse binary encodings
of oj and x, for some x ∈ U , correspond to their values in the run of C on the given
input as described by equations (3) and (2).

Since the most significant digit in a two’s complement encoding can be replicated
without changing the value of the represented number, QFPAbit formulas have the
property that the last letter of a word in a formula’s language can be repeated arbi-
trarily many times to obtain another word inside the language. In the underlying circuit,
this would translate to a “blindness” towards the repetition of the initial input letter,
which is a property that not all circuits have. In general we cannot find a formula whose
language contains exactly those words whose reverse encodes a run of the circuit.

The way to treat this problem is to construct a formula that contains a clause saying
“the variables are only simulating the circuit for a finite number of steps and then are
allowed to deviate”. That way we obtain a formula for which to every possible satisfying
evaluation corresponds a word describing the run of the circuit. However, each such
valuation will also represent an infinite number of longer incorrect descriptions of a run
of the circuit.

For succintness, let Δqj ≡ 2σ̄qj∨̄I(qj). Let y be a fresh variable and consider the
formula

FC ≡ 1 + ((y − 1)∨̄y) = 2y ∧ y > 1 ∧
[∧m

j=1(qj∧̄(y − 1)) = (Δqj ∧̄(y − 1))
]

∧
[∧l

j=1(oj ∧̄(y − 1)) = (σ̄oj ∧̄(y − 1))
]
∧
[∧

x∈U (x∧̄(y − 1)) = (σ̄x∧̄(y − 1))
]
.

The subformula 1 + ((y − 1)∨̄y) = 2y ∧ y > 1 asserts that y is a power of two, say
y = 2k, and that k is at least 1. Therefore the two’s complement encoding of (y − 1) is
〈0, ..., 0, 1, ..., 1〉Z with an arbitrary number of zeros and exactly k ones. So the clauses
of the form (T1∧̄(y− 1)) = (T2∧̄(y− 1)) assert that the k least significant digits of T1
and T2 are the same. The rest of the digits can be arbitrary.
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Theorem 2. For any given satisfying valuation of FC , y = 2k for some k. The first k
bits, presented in the reverse order, of the bit-sequences corresponding to two’s com-
plement encodings of q1, ...qm and o1...ol describe the evolution of the values of those
variables throughout the first k clock cycles of the run of C on the input word given
by the reverse two’s complement encodings of v1, ...vn, as specified by the equations
(1)-(4).

Now we show how this translates to acceptor circuits defining a language:

Theorem 3. Suppose C is a SC with one output o and let F ′
C ≡ FC ∧ o < 0. Then

L(F ′
C) �= ∅ if and only if L(C) �= ∅

Proof. The clause o < 0 is true if and only if the first digit of o is one. It follows
from the above discussion of FC that for every word w of length k providing encoding
of values for v1, ..., vn, there exist infinitely many satisfying evaluations for FC under
which y = 2k and the reverse encoding of the values of the variables describes the run
of C on the reverse of w. Now suppose that C accepts w. This happens if and only if in
the last, k-th, clock cycle the value of the output bit is one. But this is if and only if the
first digit of the value of o in F ′

C is one. Therefore the described evaluations satisfy F ′
C

if and only if C accepts w. This means that the language of C is non-empty if and only
if F ′

C is satisfiable.

To summarize, we have described polynomial-size translations between QFPAbit and
sequential circuits going both ways. For every QFPAbit formula we can construct a
sequential circuit recognizing the same language. For every sequential circuit we can
construct a QFPAbit formula that contains variables representing inputs, outputs and
state variables of the circuit, and it is satisfied only by valuations that assign these
variables values whose binary encoding in reverse describes an initial portion of the
evolution of the circuit’s variables during a run. If the circuit has only one output then
it is an acceptor circuit and in this case we can construct a QFPAbit formula which is
satisfiable if and only if the language of the SC is non-empty. Moreover, the formula
will accept a language such that for every word w in this language, an initial part of w
projected onto the input variables and reversed is a word in the language of the SC.

4 From Specification Circuits to Transducer Circuits

Given a specification written as a QFPAbit formula, we have shown how to build a
specification circuit of a size linear in the size of the formula. Provided that the vari-
ables of the formula, and thus the inputs of the automaton are partitioned into two
groups, ī and ō, interpreted as the inputs and the outputs of the synthesized function,
we will now show how to construct a set of circuits that will work as a transducer, i.e.
given a word from the “̄i-projection” of the language, produce an output word from the
“ō-projection” of the language such that together they satisfy the specification, if such
an output word exists. The structure of our algorithm is similar to the one presented in
[4]. Our use of the word “transducer” does not refer to the traditional notion of Finite
State Transducers, but to a more complicated machine with the following main features.
Our transducer reads the whole input twice. The first time from the beginning to the end
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to generate the exhaustive run of the projection of the specification circuit onto the in-
put variables, and the second time backwards, determining concrete states and output
letters within the exhaustive run. In the meantime it uses an amount of memory pro-
portional to the length of the input. This allows us to express functions for which it is
not possible to determine the output before reading the entire input, which is needed to
obtain complete synthesis for QFPAbit.

In contrast to [4], we will be using sequential circuits instead of automata. This more
concrete implementation allows us to perform an optimization that will ensure that the
presence of large integer constants in the formula does not necessarily cause a blow-up
in the size of the transducer proportional to the value of that constant, as was the case
with the previous approach. Moreover, even if a state-space expansion does occur, the
size of our circuits is guaranteed to be singly-exponential in the size of the specification
formula. No such bound on the size of the automata was provided in [4].

In Section 4.2 we study two more optimization techniques - how to exploit the cir-
cumstance when the specification formula is either a conjunction or a disjunction of
sub-formulas to build the transducer as a composition of smaller transducers.

Definition 3. Given a (non-)deterministic automaton A = (ΣV , Q, init, F, T ) over
variables V and a set I ⊂ V , the projection of A to I , denoted by AI , is the non-
deterministic automaton (ΣI , Q, init, F, TI) with TI = {(q, σI , q′) ∈ Q × ΣI ×
Q|∃σ ∈ ΣV .(q, σ, q

′) ∈ T ∧ σI = σI}.
Since it is natural to view a sequential circuit as a DFA, we also allow ourselves to talk
about projections of sequential circuits.

Definition 4. The exhaustive run ρ of an automaton A = (Σ,Q, init, F, T ) on a word
w ∈ Σ∗ is a sequence of sets of states S1, ...S|w|+1 such that (i) S1 = init and (ii) for
all 1 ≤ |w|, Si+1 = {q′ ∈ Q|∃q ∈ Si.(q, wi, q

′) ∈ T }.
Suppose the specification circuit is a sequential circuit C with input variables ī ∪ ō,
state variables q̄ and one output variable determining the acceptance. Here by each of
ī, ō and q̄ we actually mean vectors of variables wide n, l and m bits respectively. We
will also be using ī, ō and q̄ to denote the sets of individual variables comprising each
of the vectors.

We now partition the state variables as follows. We let s̄ be the largest set of state
variables such that the value of each of them in the (N +1)-st clock cycle depends only
on the values of ī and the state variables inside s̄ in the N -th clock cycle. In particular,
they do not depend on the values of ō. We denote all the other state variables as r̄ and
we will assume that r̄ is a vector of width m1 and s̄ is of width m2.

The set s̄ can be determined by exploring the graph of dependencies amongst the
variables of q̄ and ō. We can determine whether a formula ϕ(x), for example one defin-
ing the value of a qj in the next clock cycle, depends on a variable x, which it contains,
by using a SAT-solver to check whether the formula ϕ(true)↔ ϕ(false) is valid.

We will now describe the operation of our transducer, which consists of three circuits
that we call C′, φ and τ . Circuit φ is a combinational circuit and the other two are
sequential. Their roles are analogous to those of the deterministic automaton A′ and
functions φ and τ in [4]. Our specification circuit C fulfills the responsibility of the
specification automaton A used in [4].
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C′ performs two tasks. First, it runs the part of C that computes the sequence of
values of s̄ as C consumes ī. In parallel with this, C′ also simulates the exhaustive run
of the projection of C onto the input variables ī. So running C′ with the sequence of
values for ī as input will generate a sequence of values for s̄ together with a sequence
of sets of possible values for the rest of the state variables, which are r̄. We will store
this trace in a memory from which it can later be read in the reversed order.

This separation of sets s̄ and r̄ is one of the main improvements in our approach
over previous work. It takes advantage of the simple idea that when projecting a deter-
ministic automaton onto a subset of its input variables, it is possible that the transitions
within a subset of the states of the automaton remain deterministic even with the re-
stricted alphabet, and hence that part of the automaton does not need to go through an
exponential expansion due to the projection. This optimization applies in particular in
the case when the specification formula contains division of a term that is completely
determined by ī-variables by a power of 2. An intuitive explanation is the following.
The specification circuit for the formula x = 2kt verifies whether the encoding of x
is a copy of the encoding of t shifted to the left by k bits. Therefore it needs k state
variables to remember the past k bits of x. The values of these k state variables are
independent of t and hence if x is an ī-variable, which means that we are performing
division, then these k state variables will belong to s̄ and they will not participate in the
state-space explosion of C′. On the other hand, this optimization does not apply if x is
an ō-variable, i.e. when we are performing multiplication.

The purpose of φ is to find inside the last stored set of possible states for r̄ one which
is, combined with the last stored value of s̄, an accepting state of C.

Eventually, we run τ , which reconstructs a whole accepting run of C by tracing
backwards through the stored exhaustive run of its projection onto the input variable set
ī, using the accepting state determined by φ as a starting point. During this backward
run it constructs a sequence of ō letters that is the final output of the transducer.

4.1 Implementation of C′, φ and τ as Circuits

For C′, consider the circuit in the figure in Appendix A, which has state variables
R1, ...R2m1 and s̄, and no outputs.

Let C1 and C2 denote the sub-circuits of C for computing r̄ and s̄ respectively. In
the figure, we denote the corresponding combinational circuits behind these SCs by K1

and K2. We let Cī be the projection automaton obtained from C1 by projecting it onto
the ī-variables. The intended meaning of the state variables R1, ...R2m1 of C′ is that
Rk is set to true if and only if at that point the non-deterministic automatonCī could be
in the state number k. Since there are exactly 2m1 possible states of Cī, we can make
some arbitrary assignment of the possible states of Cī to the Rk’s. Initially, A′ is in a
state where all variables Rk are 0 except for one, corresponding to the initial state of
Cī. The initial value of s̄ is also determined by the given initial state of C.

The r̄i and ōj denoted in italics represent constant bit-vectors given as input to each
of the 2ml copies of C1. The indexes are assigned so that r̄j is the assignment of state
variables of Cī corresponding to the state which is represented by Rj . Hence each of
the C2-subcircuits produces an outcome r̄-state for a given combination of a previous
state and values for the ō-variables.
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Each of the AND-like-gates with an Rk inscription is understood to have negations
at an appropriate combination of its inputs, so that it returns true if and only if its input
r̄ represents the r̄-state corresponding to Rk and also the incoming signal from the state
variable Rj is true. This last condition has the effect of considering the output only of
those sub-circuits for which the input state r̄j is actually one of the possible states in
the exhausting run of Cī at the moment.

The last layer of ordinary OR-gates just has the effect that if any of the possible
combinations of an active previous state and an ō-letter produces the state corresponding
to Rk then Rk is set to one in the next cycle. The main idea of this circuit is that for
every state of C that is possible at the present clock cycle, it tries every possible ō-letter
to produce the set of all possible states in the next clock cycle.

Now assume that the sequence of states this circuit goes through while reading an
input word is saved in a memory from where it can readily be read in the reverse order.
Recall that φ is supposed to find an accepting state of C amongst the possible states
encoded in the last state of C′ - that is, in the combination of the “exhaustive state” of
Cī encoded byR1, ...R2m1 and the deterministic part of the state, s̄. A slight divergence
between deterministic automata used in [4] and our variant of sequential circuits is that
whether the circuit accepts depends not only on the current value of its state variables
but also on the value of all its inputs - the circuit accepts simply when it outputs a 1.
To account for this, our φ circuit has to choose both a state from amongst the states
possible in the penultimate clock cycle of the run of C′, and a suitable ō-letter, such
that the resulting state is accepting. If such state and ō-letter do not exist, the user is
notified that for the given sequence of values for the ī-variables there exists no satisfying
sequence of values for the ō-variables. The implementation of φ is a circuit very similar
to that for C′, also containing 2m1+l copies of K1. However, since it only needs to be
run for one clock cycle, it is a combinational circuit rather than a sequential one.

Finally, we use a very similar circuit for the function τ . In each clock cycle, it takes
as input a transition 〈S′, ī, S〉 of C′ and a state q̄ ∈ S and generates a state q̄′ ∈ S′ and
an output symbol ō such that there is a valid transition in C from q̄ to q̄′ while reading
the letter obtained by combining ī with ō. This is again implemented by guessing com-
binations of an appropriate ō-letter and r̄-state, so τ consists of 2m1+l copies of K1 and
some servicing circuitry. The output of τ and also the final output of the transducer is
the sequence of ō letters. Notice that it comes in the reverse order, respective to ī.

4.2 Constructing Transducer as a Composition of Transducers for Sub-formulas

Suppose that the specification formula F on its highest level is a disjunction of sub-
formulas ϕ1, ...ϕk. Then we can build a transducer for each of them separately and run
them in parallel. If for a given input any of the transducers finds an output satisfying
the sub-formula corresponding to that transducer, say ϕi, then this output can be taken
to be the global output. If ϕi mentions only a subset of the output variables then values
for the remaining ones can be picked arbitrarily.

If the specification formula, on the other hand, is a conjunction of sub-formulas, then
we also have to mind dependencies between the variables.
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Definition 5. We say that a QFPAbit formula ψ over variables V uniquely determines
a set of variables x̄ as a function of a set of variables ȳ, if for any partial valuation
valȳ : ȳ → Z that only assigns values to the variables of ȳ, the set of satisfying
valuations of ψ that extend val is non-empty and all of them give all the variables in ō
the same values.

If the specification formula F is a conjunction of sub-formulas ϕ1, ...ϕk, we can apply
the following reasoning. Suppose that there exists ō′ ⊆ ō such that some ϕj uniquely
determines the values of ō′ as a function of ī. Now suppose that val : ī ∪ ō → Z is a
satisfying valuation for F . Then, in particular, it is a satisfiing valuation for ϕj and it
assigns ō′ the same values as any satisfying valuation of ϕj that gives the ī’s the same
values as val.

This means that we can build an independent transducer for ϕj and use its output to
fix the values of ō′ in F , allowing us to build a smaller transducer for the rest of the
variables. Notice that the values that the transducer for ϕj computes for those variables
that have not been proven to be uniquely determined by īmust be ignored, because their
values need not be a part of a satisfying valuation for the rest of F .

In practice, we can use this fact to construct a sequence of transducers with increasing
number of ī variables and decreasing number of ō variables. We scan through the list of
conjuncts of F and whenever we find one, say ϕj , in which some subset of ō variables
is uniquely determined by the ī variables, we build a transducer for it, reclassify the
uniquely determined ō-variables to ī-variables in F and repeat the process, wiring the
appropriate outputs of the transducer for ϕj to become the inputs of the next transducer.
If it turns out that in a particular conjunct, all the occurring ō-variables are uniquely
determined, this whole conjunct can be removed from F .

Notice that for regularly occuring conjuncts of a standard form, like for example
equality assertions involving standard arithmetical operations, we will not have to in-
voke the general transducer-synthesis method described at the beginning of this section.
Instead, we can use potentially more efficient pre-computed circuits loaded from a li-
brary. This can, for example, be applied in the case when the conjunct asserts that an
ō-variable is a constant multiple of a term that is uniquely determined by the ī variables.

The length of the resulting sequence of transducers is at most quadratic in the num-
ber of ō variables, which can be seen by inspecting the running time of the trivial algo-
rithm that loops through the cojuncts in an arbitrary fixed order and halts when during
an iteration examining all the conjuncts it can not reclassify any new ō-variables to
ī-variables.

Obviously, this optimization is useful only if the specification formula F is in fact
a conjunction containing conjuncts that do have the property of uniquely determining
some of the ō-variables as a function of the ī variables. As discussed in Section 3.1,
before building the specification circuit we first pre-process the input formula, so that
the formula that is eventually used for building the circuit is

G ≡ F ′ ∧ ϕ1 ∧ ... ∧ ϕn

where each of the ϕi has one of the following forms: (i) x = 2kt; (ii) x = c; (iii)
s = x + y; (iv) T1 = T2, where x, y, t, s are variables, c is an integer constant and
T1, T2 are terms built out of variables and bit-vector logical operations. F ′ is a boolean
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combination of atoms of similar forms, but at the present time we do not have methods
for investigating variable dependencies in non-atomic formulas.

On the other hand, for each of the ϕj ’s we can exactly determine which ō-variables
are uniquely determined by the ī-variables. In case (i), if at least one of the variables
present is an ī-variable then the other is determied. In case (i), variable x is determined,
and in case (iii), if at least two of the variables are ī-variables then the last one is de-
termined. In case (iv), since T1 and T2 contain only variables and bit-vector logical
operations, the equality holds exactly if the propositional formulas corresponding to T1
and T2 evaluate to the same boolean value in every clock cycle. Therefore it is enough
to investigate which ō variables are uniquely determined by the ī variables in the propo-
sitional formula T̂1 ↔ T̂2, where T̂1 and T̂2 are propositional formulas obtained from
T1 and T2 by replacing the bit-vector logical operators by standard boolean operators
and treating the QFPAbit variables as propositional variables.

Example. We demonstrate the usefulness of this optimization technique on an example.
Let us forget for a moment that our language contains an out-of-the-box plus operator
and suppose we would like to synthesize a function for performing addition and out-
putting the sequence of carry bits at the same time. It can be specified in QFPAbit as
follows.

(s = x⊕̄y⊕̄c) ∧ (c = 2((x∧̄y)∨̄(x∧̄c)∨̄(y∧̄c)))

where x and y are designated as inputs and s and c are outputs representing the sum
and the sequence of carry bits respectively. Clearly, the right-hand conjunct determines
c uniquely, given values for x and y. Our prototype implementation is able to detect
this and builds a transducer which is a composition of two parts - one for the right-
hand conjunct, which computes the value of c given values for x and y, and one for the
left-hand conjunct that computes the value of s given values for x, y and c. Due to this
factorisation, the total number of gates in all the circuits involved is 7.2× smaller than
when we enforce the building of a single monolithic transducer for the whole formula.

To conclude the discussion of this optimization technique, let us look closer at how it
applies to those ϕj’s that are of form x = 2kt. Because of the way how these conjuncts
originate during the pre-processing of the specification formula, often both x and t are
output variables. If after inspecting some other conjuncts we manage to specify one of
them as an input variable, the other is immediately determined by it and we will be able
to remove this conjunct from the formula and construct an efficient transducer for it.
We can summarize this in the following lemma.

Lemma 1. Suppose that the original formula, before pre-processing, contains multi-
plication by a constant c in a context of the form T1[cT ] = T2 such that either all the
ō-variables occuring in T are uniquely determined by the ī-variables, or the ō-variables
of T occur nowhere else in T1 and T2 and the value of a fresh variable x is uniquely
determined in the formula T1[x] = T2. Then the total size of all the circuits of the trans-
ducer obtained by the procedure described in this section will be proportional to the
logarithm of c.
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5 Conclusion

We have presented a synthesis procedure that starts from QFPAbit description of an
input/output relation, generates a sequential circuit of a polynomial size, and then trans-
forms this circuit into a synthesized system of sequential circuits that maps a sequence
of inputs into a sequence of outputs.

The described synthesis procedure improves the previous work by two independent
optimizations. We have built a prototype implementation that allowed us to show on
examples that these techniques work and are important.
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Abstract. With this contribution we push the boundary of some known optimi-
sations such as caching to the very expressive Description Logic SROIQ. The
developed method is based on a sophisticated dependency management and a
precise unsatisfiability caching technique, which further enables better informed
tableau backtracking and more efficient pruning. Additionally, we optimise the
handling of cardinality restrictions, by introducing a strategy called pool-based
merging.

We empirically evaluate the proposed optimisations within the novel reason-
ing system Konclude and show that the proposed optimisations indeed result in
significant performance improvements.

1 Motivation

Tableau algorithms are dominantly used in sound and complete reasoning systems,
which are able to deal with ontologies specified in the OWL 2 DL ontology language
[16]. Such algorithms are usually specified in terms of Description Logics (DLs) [1],
which provide the formal basis for OWL, e.g., OWL 2 is based on the DL SROIQ [11].

To our knowledge, all competitive systems for reasoning with SROIQ knowledge
bases such as FaCT++ [19], HermiT,1 jFact,2 or Pellet [17] use a variant of the tableau
method – a refutation-based calculus that systematically tries to construct an abstraction
of a model for a given query by exhaustive application of so called tableau rules.

Due to the wide range of modelling constructs supported by expressive DLs, the
typically used tableau algorithms have a very high worst-case complexity. Developing
optimisations to nevertheless allow for highly efficient implementations is, therefore, a
long-standing research area in DLs (see, e.g., [13,20]). A very effective and widely im-
plemented optimisation technique is “caching”, where one caches, for a set of concepts,
whether they are known to be, or can safely be assumed to be, satisfiable or unsatisfi-
able [4]. If the set of concepts appears again in a model abstraction, then a cache-lookup
allows for skipping further applications of tableau rules. Caching even allows for im-
plementing worst-case optimal decision procedures forALC [6].

Unfortunately, with increasing expressivity some of the widely used optimisations
become unsound. For instance, naively caching the satisfiability status of interim

1 http://www.hermit-reasoner.com
2 http://jfact.sourceforge.net/
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c© Springer-Verlag Berlin Heidelberg 2012

http://www.hermit-reasoner.com
http://jfact.sourceforge.net/


Extended Caching, Backjumping and Merging 515

results easily causes unsoundness in the presence of inverse roles due to their possi-
ble interactions with universal restrictions [1, Chapter 9]. On the other hand, for fea-
tures such as cardinality restrictions there are nearly no optimisations yet. An attempt
to use algebraic methods [9,5], i.e., by combining a tableau calculus with a proce-
dure to solve systems of linear (in)equations, performs well, but requires significant
changes to the calculus and has not (yet) been extended to very expressive DLs such as
SROIQ.

Our contribution in this paper is two-fold. We push the boundary of known optimi-
sations, most notably caching, to the expressive DL SROIQ. The developed method is
based on a sophisticated dependency management and a precise unsatisfiability caching
technique, which further enables better informed tableau backtracking and more effi-
cient pruning (Section 3). In addition we optimise the handling of cardinality restric-
tions, by introducing a strategy called pool-based merging (Section 4). Our techniques
are grounded in the widely implemented tableau calculus for SROIQ [11], which
makes it easy to transfer our results into existing tableau implementations. The pre-
sented optimisations are implemented within a novel reasoning system, called Kon-
clude [15]. Our empirical evaluation shows that the proposed optimisations result in
significant performance improvements (Section 5).

2 Preliminaries

Model construction calculi, such as tableau, decide the consistency of a knowledge
base K by trying to construct an abstraction of a model for K , a so-called “completion
graph”. A completion graph G is a tuple (V, E,L, �̇), where each node x ∈ V represents
one or more individuals, and is labelled with a set of concepts,L(x), which the individ-
uals represented by x are instances of; each edge 〈x, y〉 represents one or more pairs of
individuals, and is labelled with a set of roles, L(〈x, y〉), which the pairs of individuals
represented by 〈x, y〉 are instances of. The relation �̇ records inequalities, which must
hold between nodes, e.g., due to at-least cardinality restrictions.

The algorithm works by initialising the graph with one node for each Abox indi-
vidual/nominal in the input KB, and using a set of expansion rules to syntactically
decompose concepts in node labels. Each such rule application can add new concepts
to node labels and/or new nodes and edges to the completion graph, thereby explicat-
ing the structure of a model. The rules are repeatedly applied until either the graph is
fully expanded (no more rules are applicable), in which case the graph can be used to
construct a model that is a witness to the consistency ofK , or an obvious contradiction
(called a clash) is discovered (e.g., both C and ¬C in a node label), proving that the
completion graph does not correspond to a model. The input knowledge baseK is con-
sistent if the rules (some of which are non-deterministic) can be applied such that they
build a fully expanded, clash free completion graph. A cycle detection technique called
blocking ensures the termination of the algorithm.
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2.1 Dependency Tracking

Dependency tracking keeps track of all dependencies that cause the existence of con-
cepts in node labels, roles in edge labels as well as accompanying constrains such as
inequalities that must hold between nodes. Dependencies are associated with so-called
facts, defined as follows:

Definition 1 (Fact). We say that G contains a concept fact C(x) if x ∈ V and C ∈ L(x),
G contains a role fact r(x, y) if 〈x, y〉 ∈ E and r ∈ L(〈x, y〉), and G contains an inequality
fact x �̇ y if x, y ∈ V and (x, y) ∈ �̇. We denote the set of all (concept, role, or inequality)
facts in G as FactsG.

Dependencies now relate facts in a completion graph to the facts that caused their exis-
tence. Additionally, we annotate these relations with a running index, called dependency
number, and a branching tag to track non-deterministic expansions:

Definition 2 (Dependency). Let d be a pair in FactsG × FactsG. A dependency is of
the form dn,b with n ∈ IN0 a dependency number and b ∈ IN0 a branching tag.

We inductively define the dependencies for G, written DepG. If G is an initial com-
pletion graph, then DepG = ∅. Let R be a tableau rule applicable to a completion
graph G with {c0, . . . , ck} a minimal set of facts in G that satisfy the preconditions of
R. If DepG = ∅, then nm = bm = 0, otherwise, let nm = max{n | dn,b ∈ DepG} and
bm = max{b | dn,b ∈ DepG}. If R is non-deterministic, then bR = 1 + bm, otherwise
bR = 0. Let G′ be the completion graph obtained from G by applying R and let c′0, . . . , c

′
�

be the newly added facts in G′, then

DepG′ = DepG ∪ {(c′j, ci)n,b | 0 ≤ i ≤ k, 0 ≤ j ≤ �, n = nm + 1 + ( j ∗ k) + i,
b = max{{bR} ∪ {b′ | (ci, c)n′,b′ ∈ DepG}}}.

The branching tag indicates which facts were added non-deterministically:

a0

x1

x2

L(a0) = {

L(x1) = {

L(x2) = {

(∃r.(A � (∃r.(∀r−.B)))) , (∀r.¬B) , (C � D) , C }

r }

(A � (∃r.(∀r−.B))) , ¬B , A , (∃r.(∀r−.B)) , B }

r }

(∀r−.B) }

L(〈a0, x1〉) = {

L(〈x1, x2〉) = {

b2,0

c3,0

f 6,0
g7,0

d4,0
e5,0

a1,1

h8,0

i9,0

j10,0

k11,0

Fig. 1. Tracked dependencies for all facts in the generated completion graph
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Definition 3 (Non-deterministic Dependency). For dn,b ∈ DepG with d = (c1, c2), let
Dd = {(c2, c3)n′ ,b′ | (c2, c3)n′ ,b′ ∈ DepG}. The dependency dn,b is a non-deterministic
dependency in G if b > 0 and either Dd = ∅ or max{b′ | (c, c′)n′,b′ ∈ Dd} < b.

Figure 1 illustrates a completion graph obtained in the course of testing the consistency
of a knowledge base with three concept assertions:

a0 : (∃r.(A � (∃r.(∀r−.B)))) a0 : (∀r.¬B) a0 : (C � D).

Thus, the completion graph is initialised with the node a0, which has the three con-
cepts in its label. Initially, the set of dependencies is empty. For the concepts and roles
added by the application of tableau rules, the dependencies are shown with dotted lines,
labelled with the dependency. The dependency number increases with every new de-
pendency. The branching tag is only non-zero for the non-deterministic addition of C to
the label of a0 in order to satisfy the disjunction (C � D). Note the presence of a clash
due to B and ¬B in the label of x1.

3 Extended Caching and Backtracking

In the following we introduce improvements to caching and backjumping by present-
ing a more informed dependency directed backtracking strategy that also allows for
extracting precise unsatisfiability cache entries.

3.1 Dependency Directed Backtracking

Dependency directed backtracking is an optimisation that can effectively prune irrele-
vant alternatives of non-deterministic branching decisions. If branching points are not
involved in clashes, it will not be necessary to compute any more alternatives of these
branching points, because the other alternatives cannot eliminate the cause of the clash.
To identify involved non-deterministic branching points, all facts in a completion graph
are labelled with information about the branching points they depend on. Thus, the
united information of all clashed facts can be used to identify involved branching points.
A typical realisation of dependency directed backtracking is backjumping [1,20], where
the dependent branching points are collected in the dependency sets for all facts.

3.2 Unsatisfiability Caching

Another widely used technique to increase the performance of a tableau implementation
is caching, which comes in two flavours: satisfiability and unsatisfiability caching. For
the former, one caches sets of concepts, e.g., from node labels, that are known to be
satisfiable. In contrast, for an unsatisfiability cache, we cache sets of concepts that are
unsatisfiable. For such a cached set, any superset is also unsatisfiable. Thus, one is
interested in caching a minimal, unsatisfiable set of concepts. Although the caching of
satisfiable and unsatisfiable sets of concepts is often considered together, we focus here
on the unsatisfiability caching problem since the two problems are quite different in
nature and already the required data structure for an efficient cache retrieval can differ
significantly.
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Definition 4 (Unsatisfiability Cache). Let K be a knowledge base, ConK the set of
(sub-)concepts that occur in K . An unsatisfiability cache UCK for K is a subset of
2ConK such that each cache entry S ∈ UCK is an unsatisfiable set of concepts. An un-
satisfiability retrieval for UCK and a completion graph G for K takes a set of concepts
S ⊆ ConK from a node label of G as input. If UCK contains a set S⊥ ⊆ S , then S⊥ is
returned; otherwise, the empty set is returned.

Deciding when we can safely create a cache entry rapidly becomes difficult with in-
creasing expressivity of the used DL. Already with blocking on tableau-based systems
for the DL ALC care has to be taken to not generate invalid cache entries [7]. There
are some approaches for caching with inverse roles [2,3,6], where possible propagations
over inverse roles from descendant nodes are taken into account. The difficulty increases
further in the presence of nominals and, to the best of our knowledge, the problem of
caching with inverses and nominals has not yet been addressed in the literature. In this
setting, it is difficult to determine, for a node x with a clash in its label, which nodes
(apart from x) are also labelled with unsatisfiable sets of concepts. Without nominals
and inverse roles, we can determine the ancestor y of x with the last non-deterministic
expansion and consider the labels of all nodes from x up to y as unsatisfiable. With
inverse roles, a non-deterministic rule application on a descendant node of x can be
involved in the creation of the clash, whereby the node labels that can be cached as
unsatisfiable become limited.

In order to demonstrate the difficulties with inverse roles, let us assume that the
example in Figure 1 is extended such that ((∀r−.B) � E) ∈ L(x2) and that (∀r−.B) ∈
L(x2) results from the non-deterministic expansion of the disjunction. For the resulting
clash in L(x1), it is not longer sufficient to consider only non-deterministic expansions
on ancestor nodes. The label of x2 cannot be cached because some facts (¬B) involved
in the clash are located on different nodes (x1). Furthermore, if trying the disjunct E also
leads to a clash, the disjunction ((∀r−.B) � E) in L(x2) is unsatisfiable in the context
of this completion graph. Nevertheless, a cache entry cannot be generated because (at
least) the first disjunct involves facts of an ancestor node. In order to also handle inverse
roles, it would, therefore, be necessary to remember all nodes or at least the minimum
node depth involved in the clashes of all alternatives. In the presence of nominals, it
further becomes necessary to precisely manage the exact causes of clashes, e.g., via
tracking the dependencies as presented in Section 2.1. If such a technique is missing,
often the only option is to deactivate caching completely [17,20].

Since node labels can have many concepts that are not involved in any clashes, the
precise extraction of a small set of concepts that are in this combination unsatisfiable
would yield better entries for the unsatisfiability cache. With an appropriate subset re-
trieval potentially more similar also unsatisfiable node labels can be found within the
cache. We call this technique precise caching. Although techniques to realise efficient
subset retrieval exist [10], unsatisfiability caches based on this idea are only imple-
mented in very few DL reasoners [8]. Furthermore, the often used backjumping only
allows the identification of all branching points involved in a clash, but there is no in-
formation about how the clash is exactly caused. As a result, only complete node labels
can be saved in the unsatisfiability cache. We refer to this often used form of caching
combined with only an equality cache retrieval as label caching.
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For precise caching, the selection of an as small as possible but still unsatisfiable
subset of a label as cache entry should be adjusted to the cache retrieval strategy, i.e.,
the strategy of when the cache is queried in the tableau algorithm. Going back to the
example in Figure 1, for the node x1 the set {¬B, (∃r.(∀r−.B))} could be inserted into the
cache as well as {¬B, (A� (∃r.(∀r−.B)))}. The number of cache entries should, however,
be kept small, because the performance of the retrieval decreases with an increasing
number of entries. Thus, the insertion of concepts for which the rule application is cheap
(e.g., concept conjunction) should be avoided. Concepts that require the application
of non-deterministic or generating rules are more suitable, because the extra effort of
querying the unsatisfiability cache before the rule application can be worth the effort.
Optimising cache retrievals for incremental changes further helps to efficiently handle
multiple retrievals for the same node with identical or slightly extended concept labels.

The creation of new unsatisfiability cache entries based on dependency tracking can
be done during backtracing, which is also coupled with the dependency directed back-
tracking as described next. Basically all facts involved in a clash are backtraced to
collect the facts that cause the clash within one node, whereby then an unsatisfiability
cache entry can be created.

3.3 Dependency Backtracing

The dependency tracking defined in Section 2.1 completely retains all necessary infor-
mation to exactly trace back the cause of the clash. Thus, this backtracing is qualified
to identify all involved non-deterministic branching points for the dependency directed
backtracking and also to identify small unsatisfiable sets of concepts that can be used
to create new unsatisfiability cache entries.

Algorithm 1 performs the backtracing of facts and their tracked dependencies in the
presence of inverse roles and nominals. If all facts and their dependencies are collected
on the same node while backtracing, an unsatisfiability cache entry with these facts can
be generated, assuming all facts are concept facts. As long as no nominal or Abox indi-
vidual occurs in the backtracing, the unsatisfiability cache entries can also be generated
while all concept facts have the same node depth. Thus, an important task of the back-
tracing algorithm is to hold as many facts as possible within the same node depth to
allow for the generation of many cache entries. To realise the backtracing, we introduce
the following data structure:

Definition 5 (Fact Dependency Node Tuple). A fact dependency node tuple for G is
a triple 〈c, dn,b, x〉 with c ∈ FactsG, dn,b ∈ DepG and x ∈ V. Abbreviatory we also write
〈C, dn,b, x〉 if c is the concept fact C(x).

If a clash is discovered in the completion graph, a set of fact dependency node tuples
is generated for the backtracing. Each tuple consists of a fact involved in the clash, an
associated dependency and the node where the clash occurred. The algorithm gets this
set T of tuples as input and incrementally traces the facts back from the node with the
clash to nodes with depth 0 (Abox individuals or root nodes).

In each loop round (line 3) some tuples of T are exchanged with tuples, whose facts
are the cause of the exchanged one. To identify which tuple has to be traced back first,
the current minimum node depth (line 4) and the maximum branching tag (line 5) are
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Algorithm 1. Backtracing Algorithm
Require: A set of fact dependency node tuples T obtained from clashes
1: procedure dependencyBacktracing(T )
2: pendingUnsatCaching ← f alse
3: loop
4: minD ←minimumNodeDepth(T )
5: maxB ←maximumBranchingTag(T )
6: A← {t ∈ T | nodeDepth(t)> minD ∧ hasDeterministicDependency(t)}
7: C ← ∅
8: if A � ∅ then
9: pendingUnsatCaching ← true

10: for all t ∈ A do
11: T ← (T \ t) ∪ getCauseTuplesByDependency(t)
12: end for
13: else
14: B← {t ∈ T | nodeDepth(t)> minD ∧ branchingTag(t)= maxB}
15: if B = ∅ then
16: if pendingUnsatCaching = true then
17: pendingUnsatCaching ←tryCreateUnsatCacheEntry(T )
18: end if
19: if hasNoDependency(t) for all t ∈ T then
20: pendingUnsatCaching ←tryCreateUnsatCacheEntry(T )
21: return
22: end if
23: C ← {t ∈ T | branchingTag(t)= maxB}
24: end if
25: t ←anyElement(B∪C)
26: if hasDeterministicDependency(t) then
27: T ← (T \ t) ∪ getCauseTuplesByDependency(t)
28: else
29: b←getNonDeterministicBranchingPoint(t)
30: if allAlternativesOfNonDetBranchingPointProcessed(b) then
31: T ← T ∪ loadTuplesFromNonDetBranchingPoint(b)
32: T ← (T \ t) ∪ getCauseTuplesByDependency(t)
33: T ←forceTuplesBeforeBranchingPoint(T,b)
34: pendingUnsatCaching ←tryCreateUnsatCacheEntry(T )
35: else
36: T ←forceTuplesBeforeBranchingPoint(T,b)
37: saveTuplesToNonDetBranchingPoint(T, b)
38: jumpBackTo(maxB)
39: return
40: end if
41: end if
42: end if
43: end loop
44: end procedure
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extracted from the tuples of T . All tuples, whose facts are located on a deeper node and
whose dependencies are deterministic, are collected in the set A. Such tuples will be
directly traced back until their facts reach the current minimum node depth (line 10-
12). If there are no more tuples on deeper nodes with deterministic dependencies, i.e.,
A = ∅, the remaining tuples from deeper nodes with non-deterministic dependencies
and the current branching tag are copied into B (line 14) in the next round. If B is not
empty, one of these tuples (line 25) and the corresponding non-deterministic branching
point (line 29) are processed. The backtracing is only continued, if all alternatives of the
branching point are computed as unsatisfiable. In this case, all tuples, saved from the
backtracing of other unsatisfiable alternatives, are added to T (line 31). Moreover, for c
the fact in t, t can be replaced with tuples for the fact on which c non-deterministically
depends (line 32).

For a possible unsatisfiability cache entry all remaining tuples, which also depend on
the non-deterministic branching point, have to be traced back until there are no tuples
with facts of some alternatives of this branching point left (line 33). An unsatisfiability
cache entry is only generated (line 34), if all facts in T are concept facts for the same
node or on the same node depth.

Unprocessed alternatives of a non-deterministic branching point have to be com-
puted before the backtracing can be continued. It is, therefore, ensured that tuples do
not consist of facts and dependencies from this alternative, which also allows for re-
leasing memory (line 36). The tuples are saved to the branching point (line 37) and the
algorithm jumps back to an unprocessed alternative (line 38).

If B is also empty, but there are still dependencies to previous facts, some tuples
based on the current branching tag have to remain on the current minimum node depth.
These tuples are collected in the set C (line 23) and are processed separately one per
loop round, similar to the tuples of B, because the minimum node depth or maximum
branching tag may change. The tuples of C can have deterministic dependencies, which
are processed like the tuples of A (line 27). If all tuples have no more dependencies to
previous facts, the algorithm terminates (line 21).

Besides the creation of unsatisfiability cache entries after non-deterministic depen-
dencies (line 34), cache entries may also be generated when switching from a deeper
node to the current minimum node depth in the backtracing (line 9 and 17) or when the
backtracing finishes (line 20). The function that tries to create new unsatisfiability cache
entries (line 17, 20, and 34) returns a Boolean flag that indicates whether the attempt
has failed, so that the attempt can be repeated later.

For an example, we consider the clash {¬B, B} in the completion graph of Figure 1.
The initial set of tuples for the backtracing is T1 (see Figure 2). Thus, the minimum node
depth for T1 is 1 and the maximum branching tag is 0. Because there are no tuples on a
deeper node, the sets A and B are empty for T1. Since all clashed facts are generated de-
terministically, the dependencies of the tuples have the current maximum branching tag
0 and are all collected into the set C. The backtracing continues with one tuple t from
C, say t = 〈B, k11,0, x1〉. The dependency k of t relates to the fact (∀r−.B)(x2), which is a
part of the cause and replaces the backtraced tuple t in T1. The resulting set T2 is used in
the next loop round. The minimum node depth and the maximum branching tag remain
unchanged, but the new tuple has a deeper node depth and is traced back with a higher
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T1 = {〈¬B,d4,0, x1〉, 〈¬B, e5,0, x1〉, 〈B, j10,0, x1〉, 〈B, k11,0, x1〉}
↓

T2 = {〈¬B,d4,0, x1〉, 〈¬B, e5,0, x1〉, 〈B, j10,0, x1〉, 〈(∀r−.B), i9,0, x2〉}
↓

T3 = {〈¬B,d4,0, x1〉, 〈¬B, e5,0, x1〉, 〈B, j10,0, x1〉, 〈(∃r.(∀r−.B)),g7,0, x1〉}
↓

T4 = {〈¬B,d4,0, x1〉, 〈¬B, e5,0, x1〉, 〈r(x1, x2), h8,0, x1〉, 〈(∃r.(∀r−.B)),g7,0, x1〉}
↓

T5 = {〈¬B,d4,0, x1〉, 〈¬B, e5,0, x1〉, 〈(∃r.(∀r−.B)),g7,0, x1〉}
↓

T6 = {〈¬B,d4,0, x1〉, 〈(∀r.¬B),−, a0〉, 〈(∃r.(∀r−.B)),g7,0, x1〉}
↓

T7 = {〈r(a0, x1), b2,0, x1〉, 〈(∀r.¬B),−, a0〉, 〈(A � (∃r.(∀r−.B))), c3,0, x1〉}
↓

T8 = {〈(∃r.(A � (∃r.(∀r−.B))))−,a0〉, 〈(∀r.¬B),−, a0〉}

Fig. 2. Backtracing sequence of tuples as triggered by the clash of Figure 1

priority to enable unsatisfiability caching again. Thus, 〈(∀r−.B), i9,0, x2〉 is added to the
set A and then replaced by its cause, leading to T3. Additionally, a pending creation
of an unsatisfiability cache entry is noted, which is attempted in the third loop round
since A and B are empty. The creation of a cache entry is, however, not yet sensible
and deferred since T3 still contains an atomic clash. Let t = 〈B, j10,0, x1〉 ∈ C be the
tuple from T3 that is traced back next. In the fourth round, the creation of a cache entry
is attempted again, but fails because not all facts are concepts facts. The backtracing
of 〈r(x1, x2), h8,0, x1〉 then leads to T5. In the following round an unsatisfiability cache
entry is successfully created for the set {¬B, (∃r.(∀r−.B))}. Assuming that now the tuple
〈¬B, e5,0, x1〉 is traced back, we obtain T6, which includes the node a0. Thus, the mini-
mum node depth changes from 1 to 0. Two more rounds are required until T8 is reached.
Since all remaining facts in T8 are concept assertions, no further backtracing is possible
and an additional cache entry is generated for the set {(∃r.(A� (∃r.(∀r−.B)))), (∀r.¬B)}.

If a tuple with a dependency to node a0 had been traced back first, it would have
been possible that the first unsatisfiability cache entry for the set {¬B, (∃r.(∀r−.B))}
was not generated. In general, it is not guaranteed that an unsatisfiability cache entry
is generated for the node where the clash is discovered if there is no non-deterministic
rule application and if the node is not a root node or an Abox individual. Furthermore,
if there are facts that are not concept facts, these can be backtraced with higher priority,
analogous to the elements of the set A, to make unsatisfiability cache entries possible
again. To reduce the repeated backtracing of identical tuples in different rounds, an
additional set can be used to store processed tuples for the alternative for which the
backtracing is performed.

The backtracing can also be performed over nominal and Abox individual nodes.
However, since Abox and absorbed nominal assertions such as {a} � C have no previous
dependencies, this can lead to a distributed backtracing stuck on different nodes. In this
case, no unsatisfiability cache entries are possible.

A less precise caching can lead to an adverse interaction with dependency directed
backtracking. Consider the example of Figure 3, where the satisfiability of the combina-
tion of the concepts (∃r.(∃s.(A�B))), ((C1�∀r.C)�(C2�∀r.C)), and ((D1�∀r.(∀s.¬A))�
(D2�∀r.(∀s.¬A))) is tested. Note that, in order to keep the figure readable, we no longer
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L(x0) = {(∃r.(∃s.(A� B))), ((C1 � ∀r.C) � (C2 � ∀r.C)),
((D1 � ∀r.(∀s.¬A)) � (D2 � ∀r.(∀s.¬A)))}

x0

x0
L(x0) ∪ {(C1 � ∀r.C)1} x0

x0 L(x0) ∪ {(D1 � ∀r.(∀s.¬A))2} x0
L(x0) ∪ {(D2�
∀r.(∀s.¬A))2}

x1 L(x1) = {(∃s.(A � B)),C1, (∀s.¬A)2} x1
a. entire label cached,

dependency set {1, 2}

b. concepts precisely cached,
dependency set {2}x2 L(x2) = {(A � B),A, B,¬A2}

clash {A,¬A}, dependency set {2}

�1 �1

�2 �2

r r

s backjumping

a. backjumping

b. backjumping

Fig. 3. More pruned alternatives due to dependency directed backtracking and precise caching
(b.) in contrast to label caching (a.)

show complete dependencies, but only the branching points for non-deterministic deci-
sions. First, the two disjunctions are processed. Assuming that the alternative with the
disjuncts (C1 � ∀r.C) and (D1 � ∀r.(∀s.¬A)) is considered first (shown on the left-hand
side of Figure 3), an r-successor x1 with label {(∃s.(A � B)),C1, (∀s.¬A)2} is gener-
ated. The branching points indicate which concepts depend on which non-deterministic
decision. For example, C is in L(x1) due to the disjunct (C1 � ∀r.C) of the first non-
deterministic branching decision (illustrated in Figure 3 with the superscript 1). In
the further generated s-successor x2 a clash is discovered. For the only involved non-
deterministic branching point 2, we have to compute the second alternative. Thus, an
identical r-successor x1 is generated again for which we can discover the unsatisfiability
with a cache retrieval. If the entire label of x1 was inserted to the cache, the dependent
branching points of all concepts in the newly generated node x1 would have to be con-
sidered for further dependency directed backtracking. Thus, the second alternative of
the first branching decision also has to be evaluated (c.f. Figure 3, a.). In contrast, if the
caching was more precise and only the combination of the concepts (∃s.(A � B)) and
(∀s.¬A) was inserted into the unsatisfiability cache, the cache retrieval for the label of
node x1 would return the inserted subset. Thus, only the dependencies associated to the
concepts of the subset could be used for further backjumping, whereby it would not be
necessary to evaluate the remaining alternatives (c.f. Figure 3, b.).

4 Optimised Merging

At-most cardinality restrictions require the non-deterministic merging of role neigh-
bours until the cardinality restriction is satisfied. Only for cardinalities of 1, merging
is deterministic. The usual merging approach [11], which can still be found in several
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available reasoner implementations, employs a ≤-rule that shrinks the number of role
neighbours by one with each rule application. Each such merging step gathers pairs of
potentially mergeable neighbouring nodes. For each merging pair a branch is gener-
ated in which the merging of the pair is executed. Without optimisations, this approach
leads to an inefficient implementation since for merging problems that require more
than one merging step, several identical merging combinations have to be evaluated
multiple times. Throughout this section, we consider the following example: a node
in the completion graph has four r-neighbours w, x, y and z, which have to be merged
into two nodes. The naive approach described above leads to eighteen non-deterministic
alternatives: in the first of two necessary merging steps there are

∑n−1
i=1 i, i.e., six pos-

sible merging pairs. A second merging step is required to reduce the remaining three
nodes to two. If the merging rule is applied again without any restrictions, each sec-
ond merging step generates three more non-deterministic alternatives. However, only
seven of these eighteen alternatives overall are really different. For example, the com-
bination wxy, z, where the nodes w, x and y have been merged, can be generated by
merge(merge(w, x), y), merge(merge(w, y), x) and merge(merge(x, y),w).

The problem is very similar to the syntactic branching search [1], where unsatisfi-
able concepts of non-disjoint branches might have to be evaluated multiple times. The
semantic branching technique is commonly used to avoid such redundant evaluations
and in the merging context an analogous approach can be very beneficial.

In order to apply this technique, all nodes of previously tested merging pairs are
set to be pairwise distinct. For example, when merging (w, x) in the first merging step
leads to a clash, w and x are set to be distinct because this combination has been tested
and should be avoided in future tests. In the second alternative, the nodes w and y
are merged, which leads to wy�̇x. As a result of the inequality, merge(merge(w, y), x)
is never tested in the second merging step (Figure 4). If also merging w and y fails,
a further inequality w�̇y is added. Finally, for the last two alternatives of the first
merging step the inequality constraints prevent further merging and show that these
alternatives are unsatisfiable. Summing up, with the inequalities the total number of
non-deterministic alternatives can be reduced to nine in this example. Unfortunately,
similarly sophisticated merging techniques can hardly be found in current reasoners.

w, x, y, z

wz, x, y
wz�̇x,wz�̇y

wy, x, z
wy�̇x

wx, y, z w, xy, z
w�̇xy,w�̇z

w, xz, y
w�̇xz,w�̇y

xz�̇y
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merge(w,
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Fig. 4. Non-deterministic merging alternatives with added inequality information
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−,−
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wx,− w, x

wx, ywxy,− wy, x w, xy

wx, yzwxz, y wyz, x wy, zx wz, xy w, xyz

merge(−,w)

merge(w, x) merge(−, x)

merge(−, y)merge(wx, y) merge(w, y) merge(x, y)

merge(y, z)merge(wx, z)
merge(wy, z)

merge(x, z)
merge(w, z)

merge(xy, z)

Fig. 5. Pool-based merging approach to avoid redundant evaluation of previous merging attempts

Apart from using the inequality information, the pool-based merging method that
we propose also prevents the redundant evaluation of previously computed merging at-
tempts. Furthermore it works very well in combination with dependency directed back-
tracking due to the thin and uniform branching tree.

Regarding the implementation of the pool-based merging method, the nodes that
have to be merged are managed in a queue. Each merging step takes the next node
from the queue and non-deterministically inserts this node into a so-called pool, where
the number of pools corresponds to the required cardinality. All pools are considered
as distinct and nodes within one pool are merged together. If there are several empty
pools, we will only generate one alternative, where the node is inserted in one of these
empty pools. If several empty pools were initialised with the same node, once again
redundant merging combinations would have to be evaluated. For the example, the gen-
erated merging combinations due to the pool based merging procedure are illustrated
in Figure 5. At the beginning, all nodes are in the queue and both pools are empty. In
the first merging step the node w is taken from the queue and inserted to the first empty
pool. In the second step the next node x is non-deterministically inserted into the first
pool together with the node w or into another empty pool. This process continues until
the cardinality restriction is satisfied. Note that z is not removed from the queue for
the alternative shown on the left-hand side since the cardinality is already satisfied. If
a clash occurs in an alternative, all relevant merging steps can be identified with the
dependency directed backtracking. Different insertion alternatives are, therefore, only
tested for nodes that are involved in the clashes. In the worst-case also the pool based
merging is systematically testing all possible combinations, but the different generation
of these alternatives prevents redundant evaluations. Other tableau expansions rules for
SROIQ, such as the choose- or the NN-rule, are not influenced by the merging method,
consequently also qualified cardinality restrictions are supported in combination with
the pool based merging.

5 Evaluation

Our Konclude reasoning system implements the enhanced optimisation techniques for
SROIQ described above. In the following, we first compare different caching methods.
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Furthermore, we benchmark our pool-based merging technique against the standard
pair-based approach that is used in most other systems. A comparison of Konclude
with other reasoners can be found in the accompanying technical report [18].

We evaluate dependency directed backtracking and unsatisfiability caching with the
help of concept satisfiability tests from the well-known DL 98 benchmark suite [12] and
spot tests regarding cardinality restrictions and merging first proposed in [14]. From
the DL 98 suite we selected satisfiable and unsatisfiable test cases (with _n resp. _p
postfixes) and omitted those for which unsatisfiability caching is irrelevant and tests
that were too easy to serve as meaningful and reproducible sample.

With respect to caching, we distinguish between precise caching and label caching
as described in Section 3.2. To recall, precise caching stores precise cache entries con-
sisting of only those backtraced sets of concepts that are explicitly known to cause
an unsatisfiability in combination with subset retrieval, while label caching stores and
returns only entire node labels.

Independent of the caching method, we distinguish between unfiltered and relevant
dependencies for further dependency backtracing after a cache hit. Unfiltered depen-
dency denotes the backtracing technique that uses all the concept facts and their depen-
dencies within a node label, for which the unsatisfiability has been found in the cache.
In contrast, relevant dependency uses only those facts and dependencies of a node label
for further backtracing that caused the unsatisfiability (as if the unsatisfiability would
be found without caching).

Konclude natively maintains relevant dependencies and implements precise unsat-
isfiability caching based on hash data structures [10] in order to efficiently facilitate
subset cache retrieval. Figure 6 shows the total number of processed non-deterministic
alternatives for five configurations of caching precision and dependency handling for a
selection of test cases solvable within one minute. Note that runtime is not a reasonable
basis of comparison since all configuration variants of Figure 6 have been implemented
(just for the purpose of evaluation) on top of the built-in and computationally more
costly precise caching approach. System profiling information, however, strongly in-
dicate that building and querying the precise unsatisfiability cache within Konclude is

Fig. 6. Log scale comparison of processed alternatives for different caching methods
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Fig. 7. Processed alternatives (on a logarithmic scale) for different merging methods

negligible in terms of execution time compared to the saved processing time for dis-
regarded alternatives. However, we have experienced an increase of memory usage by
a worst-case factor of two in case of dependency tracking in comparison to no depen-
dency handling.

Figure 6 reveals that, amongst the tested configurations, precise caching provides the
most effective pruning method. For some test cases it can reduce the number of non-
deterministic alternatives by two orders of magnitude in comparison to label caching
with unfiltered dependencies. Particularly the test cases k_path_n/p are practically solv-
able for Konclude only with precise caching at their largest available problem size
(#21). The difference between relevant and unfiltered dependencies is less significant
at least within our set of test cases.

Figure 7 compares pool-based with pair-based merging in terms of non-deterministic
alternatives that have to be processed in order to solve selected test cases from [14]. In
addition to the built-in pool-based merging we also added pair-based merging to our
Konclude system. The test cases 10c and 10d are variants of the original test case 10a
in terms of different problem sizes (10c) as well as more hidden contradictions nested
within disjunctions (10d). The pool-based approach introduced in Sec. 4 clearly domi-
nates the naive pair-based merging, especially when dealing with satisfiable problems
(1b and 2b) and expressive DLs. Note that the test cases 1b and 2b are only solvable
with pool-based merging within a one minute timeout. The required reasoning times
strongly correlate to the number of processed alternatives for all test cases of Figure 7.

6 Conclusions

We have presented a range of optimisation techniques that can be used in conjunction
with the very expressive DL SROIQ. The presented dependency management allows
for more informed backjumping, while also supporting the creation of precise cache
unsatisfiability entries. In particular the precise caching approach can reduce the num-
ber of tested non-deterministic branches by up to two orders of magnitude compared
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to standard caching techniques. Regarding cardinality constraints, the presented pool-
based merging technique also achieves a significant improvement and a number of test
cases can only be solved with this optimisation within an acceptable time limit. Both
techniques are well-suited for the integration into existing tableau implementations for
SROIQ and play well with other commonly implemented optimisation techniques.
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Abstract. This paper describes a tool for Knuth-Bendix completion.
In its interactive mode the user only has to select the orientation of
equations into rewrite rules; all other computations (including necessary
termination checks) are performed internally. Apart from the interactive
mode, the tool also provides a fully automatic mode. Moreover, the gen-
eration of (dis)proofs in equational logic is supported. Finally, the tool
outputs proofs in a certifiable format.

Keywords: term rewriting, completion, equational logic, automation.

1 Introduction

The Knuth-Bendix Completion Visualizer (KBCV) is an interactive/automatic
tool for Knuth-Bendix completion and equational logic proofs. This paper de-
scribes KBCV version 1.7, which features a command-line and a graphical user
interface as well as a Java-applet version. The tool is available under the GNU
Lesser General Public License 3 at

http://cl-informatik.uibk.ac.at/software/kbcv

Completion is a procedure which takes as input a finite set of equations E
(and nowadays optionally a reduction order >) and attempts to construct a
terminating and confluent term rewrite system (TRS) R which is equivalent
to E, i.e., their equational theories coincide. In case the completion procedure
succeeds, R represents a decision procedure for the word problem of E. Now two
terms are equivalent with respect to E if and only if they reduce to the same
normal form with respect to R.

The computation is done by generating a finite sequence of intermediate TRSs
which constitute approximations of the equational theory of E. Following Bach-
mair and Dershowitz [2] the completion procedure can be modeled as an inference
system like system C in Figure 1. The inference rules work on pairs (E,R) where
E is a finite set of equations and R is a finite set of rewrite rules. The goal is
to transform an initial pair (E,∅) into a pair (∅, R) such that R is terminat-
ing, confluent and equivalent to E. In our setting a completion procedure based
on these rules may succeed (find R after finitely many steps), loop, or fail. In
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DEDUCE
(E,R)

(E ∪ {s ≈ t}, R)
if s R← u →R t

COMPOSE
(E,R ∪ {s → t})
(E,R ∪ {s → u}) if t →R u

COLLAPSE
(E,R ∪ {s → t})
(E ∪ {u = t}, R)

if s
�→R u

ORIENT
(E ∪ {s .≈ t}, R)

(E,R ∪ {s → t}) if s > t

DELETE
(E ∪ {s ≈ s}, R)

(E,R)

SIMPLIFY
(E ∪ {s .≈ t}, R)

(E ∪ {u .≈ t}, R)
if s →R u

Fig. 1. Inference rules for completion with a fixed reduction order (C)

Figure 1 a reduction order > is provided as part of the input. We use s
�→R u

to express that s is reduced by a rule �→ r ∈ R such that � cannot be reduced
by another rule s→ t ∈ R. The notation s ·≈ t denotes either of s ≈ t and t ≈ s.

Writing (E,R) �C (E′, R′) to indicate that (E′, R′) is obtained from (E,R)
by one of the inference rules of system C we define a completion procedure:

Definition 1. A completion procedure is a program that accepts as input a
finite set of equations E0 (together with a reduction order >) and uses the in-
ference rules of Figure 1 to construct a sequence

(E0,∅) �C (E1, R1) �C (E2, R2) �C (E3, R3) �C · · ·

Such a sequence is called a run of the completion procedure on input E0 and >.
A finite run (E0,∅) �nC (∅, Rn) is successful if Rn is locally confluent.

The following result follows from [1, Theorem 7.2.8] specialized to finite runs.

Lemma 2. Let (E0,∅) �nC (∅, Rn) be a successful run of completion. Then Rn

is terminating, confluent, and equivalent to E0. ��

In the sequel we assume familiarity with term rewriting, equational logic, and
completion [1]. The remainder of this paper is organized as follows. In the next
section the main features of KBCV are presented before Section 3 addresses
implementation issues and experimental results. Section 4 concludes.

2 Features

KBCV offers two modes for completion, namely the Normal Mode (Section 2.1)
and the Expert Mode (Section 2.2). In the GUI the user can change the mode via
the menu entry View at any time. Irregardless of the chosen mode, termination
checks are performed automatically, following the recent approach from [11].
By default, an incremental LPO is constructed and maintained by the tool but
also external termination tools are supported (this option is not available in
the applet version). For convenience KBCV stores a history that allows to step
backwards (and forwards again) in interactive completion proofs. Apart from
completion proofs, the tool can generate proofs in equational logic (Section 2.3)
and produces output in a certifiable format.
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SIMPLIFY

DELETE ORIENT

COMPOSE

COLLAPSEDEDUCEE = ∅

complete failureto NF

new CPs

NO

YES

choose
s ≈ t

to NF

to NF

failed

Fig. 2. Flow chart for the efficient completion procedure

2.1 Normal Mode

In normal mode the user can switch between efficient and simple completion.
The efficient procedure executes all inference rules from Figure 1 in a fixed order,
while the simple procedure considers a subset only.

Efficient Completion. The efficient completion procedure (following Huet [4],
see Figure 2) takes a set of equations E as input and has three possible outcomes:
It may terminate successfully, it may loop indefinitely, or it may fail because an
equation could not be oriented into a rewrite rule.

While E �= ∅ the user chooses an equation s ≈ t from E. The terms in this
equation are simplified to normal form by using SIMPLIFY exhaustively. In the
next step the equation is deleted if it was trivial and if so the next iteration
of the loop starts. Otherwise (following the transition labeled NO) the user
suggests the orientation of the equation into a rule and ORIENT performs the
necessary termination check. Here the procedure might fail if the equation cannot
be oriented (in either direction) with the used termination technique. But if the
orientation succeeds the inferred rule is used to reduce the right-hand sides of
(other) rules to normal form (COMPOSE) while COLLAPSE rewrites the left-
hand sides of rules, which transforms rules into equations that go back to E. In
this way the set of rules in R is kept as small as possible at all times. Afterwards
DEDUCE is used to compute (all) critical pairs (between the new rule and the
old rules and between the new rule and itself). If still E �= ∅ the next iteration of
the loop begins and otherwise the procedure terminates successfully yielding the
terminating and confluent (complete) TRS R equivalent to the input system E.

Simple Completion. The simple procedure (following the basic completion
procedure [1, Figure 7.1]) makes no use of COMPOSE and COLLAPSE, which
means that the inference rule DEDUCE immediately follows ORIENT. Hence
although correct, this procedure is not particularly efficient.
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SIMPLIFY

DELETE E = ∅

complete

ORIENT

COMPOSE

COLLAPSEDEDUCE

to NF

new CPs

YES

choose
s ≈ t

to NF

to NF

Fig. 3. Flow chart for the automatic mode

2.2 Expert Mode

Inference System. In the expert mode the user can select the equations and
rewrite rules on which the desired inference rules from Figure 1 should be ap-
plied on. If no equations/rules are selected explicitly then all equations/rules are
considered. For efficiency reasons DEDUCE does only add critical pairs emerging
from overlaps that have not yet been considered. KBCV notifies the user if a
complete R equivalent to the input E is obtained.

Automatic Mode. At any stage of the process the user can press the button
Completion which triggers the automatic mode of KBCV where it applies the
inference rules according to the loop in Figure 3. Pressing the button again (dur-
ing the completion attempt) stops the automatic mode and shows the current
state (of the selected thread, see below). It is also possible to specify an upper
limit on the loops performed in Figure 3 (Settings → Automatic Completion).
This is especially useful to step through a completion proof with limit 1.

In Figure 3 the rules SIMPLIFY and DELETE operate on all equations and
are applied exhaustively. If E = ∅ then R is locally confluent (since the previous
DEDUCE considered all remaining critical pairs) and the procedure successfully
terminates. Note that in contrast to the completion procedure from Figure 2
the automatic mode postpones the choice of the equation s ≈ t. Hence KBCV
can choose an equation of minimal length after simplification (which is typically
beneficial for the course of completion) for the rule ORIENT. To maximize power,
KBCV executes two threads in parallel which have different behavior for ORIENT.
The first thread prefers to orient equations from left-to-right and if this is not
possible it tries a right-to-left orientation (the second thread behaves dually).
If this also fails another equation is selected in the next turn. (Note that it
is possible that some later equation can be oriented which then simplifies the
problematic equation such that it can be oriented or deleted.) A thread fails if
no equation in E can be oriented in the ORIENT step.
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2.3 Equational Logic and Certification

Since KBCV stores how rules have been deduced from equations [9], in command-
line mode the command showh lists how rules/equations have been derived and
allows to trace back the completion steps that gave rise to a rule/equation. The
same mechanism facilitates KBCV to automatically transform a join s→∗

R · ∗
R← t

with respect to the current system R (which need not be complete yet) into a
conversion with respect to the input system E, i.e., s↔∗

E t, and further into
equational proofs with respect to E (File → Equational Proof ).

If E could be completed into a TRS R, the recent work in [9] allows KBCV
to export proof certificates (File → Export Equational Proof and File → Export
Completion Proof ) in CPF, a certification proof format for rewriting.1 These
proof certificates can be certified by CeTA [10], i.e., checked by a trustable program
generated from the theorem prover Isabelle. Apart from the input system E and
the completed TRS R such a certificate must also contain a proof that E and R
are equivalent, e.g., by giving an explicit conversion �↔∗

E r for each �→ r ∈ R.

3 Implementation and Experiments

KBCV is implemented in Scala,2 an object-functional programming language
which compiles to Java Byte Code. For this reason KBCV is portable and runs
on Windows and Linux machines. We have developed a term library in Scala
(scala-termlib, available from KBCV’s homepage) of approximately 1700 lines
of code. KBCV builds upon this library and has an additional 4500 lines of code.

Besides the stand-alone version of KBCV there also is a Java-Applet version
available online. The stand-alone version has three different modes: The text
mode where one can interact with KBCV via the console, the graphic mode
using a graphical user interface implemented in java.swing, and the hybrid
mode where the text mode and the graphic mode are combined. In text mode
typing help yields a list of all available commands, whereas in graphic (hybrid)
mode or the Java-Applet you can select Help → User Manual to get a description
of the user interface.

The stand-alone version of KBCV is able to call third party termination check-
ers whereas the Java-Applet version is limited to the internal LPO for termina-
tion proofs.

As input KBCV supports the XML-format for TRSs3 and also a subset of the
older TRS-format.4 (Only one VAR and one RULES section are allowed in this
order. No theory or strategy annotations are supported.) In both cases rules are
interpreted as equations.

In addition KBCV supports another file format for the export and import of
command logs to save and load user specific settings of KBCV. This format lists
all executed commands within KBCV in a human readable form, like:

1 http://cl-informatik.uibk.ac.at/software/cpf
2 http://www.scala-lang.org/
3 http://www.termination-portal.org/wiki/XTC_Format_Specification
4 http://www.lri.fr/~marche/tpdb/format.html

http://cl-informatik.uibk.ac.at/software/cpf
http://www.scala-lang.org/
http://www.termination-portal.org/wiki/XTC_Format_Specification
http://www.lri.fr/~marche/tpdb/format.html
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Table 1. Experimental results on 115 systems

LPO termination tool
KBCV MKBTT MAXCOMP KBCV MKBTT Slothrop

completed 85 70 86 86 81 71

LS94 P1 � �
SK90 3.26 � �
Slothrop cge �
Slothrop equiv proof or �
WS06 proofreduction �

load ../examples/gene.trs

orient > 1

simplify

...

Saving the current command log is done via (File → Export Command Log) and
loading works alike (File → Load Command Log). Command logs saved in the
file .kbcvinit are loaded automatically on program startup.

Although the major attraction of KBCV clearly is its interactive mode, in the
sequel experimental results demonstrate that its automatic mode can compete
with state-of-the-art completion tools. To this end we extend [5, Table 1] with
data for KBCV (considering 115 problems from the distribution of MKBTT).5

Hence Table 16 compares KBCV with MKBTT [8], MAXCOMP [5], and Slo-
throp [11]. Within a time limit of 300 seconds, KBCV completes 85 systems
using its internal LPO and succeeds on an additional system when calling the
external termination tool TTT2 [6]. Slothrop [11] was the first tool to construct
reduction orders on the fly using external termination tools and obtains 71
completed systems. MKBTT [8] adopts this approach, but additionally features
multi-completion, i.e., considering multiple reduction orderings at the same time.
Finally, the strategy of MAXCOMP [5] is to handle all suitable candidate TRSs
(terminating and maximal) at once. MAXCOMP can complete 86 systems with
LPO but since the search for maximal TRSs is coupled with the search for the
reduction order this approach does not support external termination tools. All
tools together can complete 95 systems. The lower part of Table 1 shows those
systems which only one tool could complete within the given time limit. Here
KBCV completed two systems where all other tools failed.

All 86 completion proofs found by KBCV (Table 1) could be certified by
CeTA [10] (see Section 2.3). Since recently, MKBTT can also provide proof certi-
ficates but currently neither MAXCOMP nor Slothrop support them.

5 http://cl-informatik.uibk.ac.at/software/mkbtt
6 KBCV data available from http://cl-informatik.uibk.ac.at/software/kbcv/

experiments/12ijcar

http://cl-informatik.uibk.ac.at/software/mkbtt
http://cl-informatik.uibk.ac.at/software/kbcv/experiments/12ijcar
http://cl-informatik.uibk.ac.at/software/kbcv/experiments/12ijcar
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4 Conclusion

In this paper we have presented KBCV, a tool that supports interactive com-
pletion proofs. Hence it is of particular interest for students and users that are
exposed to the area of completion for the first time or want to follow a comple-
tion proof step by step. Its automatic mode can compete with modern comple-
tion tools (Slothrop, MKBTT, MAXCOMP) that use more advanced techniques
for completion (completion with external termination tools, multi-completion,
maximal-completion) but lack an interactive mode. Since KBCV records how
rules have been derived, it can produce certifiable output of completion proofs
and can construct (dis)proofs in equational logic.

Unfailing completion [3] is a variant of Knuth-Bendix completion, which sac-
rifices confluence for ground confluence. One possible direction for future work
would be to integrate unfailing completion into KBCV. Another issue is to gain
further efficiency by a smart design of the employed data structure [7].

Acknowledgments. We thank Christian Sternagel and the reviewers for help-
ful comments and suggestions concerning efficiency.
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Abstract. Labelled superposition (LPSup) is a new calculus for PLTL.
One of its distinguishing features, in comparison to other resolution-
based approaches, is its ability to construct partial models on the fly.
We use this observation to design a new decision procedure for the logic,
where the models are effectively used to guide the search. On a repre-
sentative set of benchmarks, our implementation is then shown to con-
siderably advance the state of the art.

1 Introduction

Labelled superposition (LPSup) is a new calculus for Propositional Linear Tem-
poral Logic (PLTL). In previous work [7] we have shown a saturation based
approach to deciding PLTL with LPSup. Here we instead rely on the ability of
LPSup to generate partial models on the fly and use a SAT solver to drive the
search and select inferences. This typically leads to a fast discovery of models,
but also drastically reduces the number of inferences that need to be performed
before an instance can be shown unsatisfiable.

Our method doesn’t work with PLTL formulas directly, but instead relies on
a certain normal form, which we review in Sect. 2. Algorithms for deciding PLTL
formulas are inherently complicated, because one needs to show the existence
of an infinite path through the world structure. Our algorithm is described in
two steps in Sect. 3. First we show how a certain modification of bounded model
checking can be turned into a complete method for the reachability tasks. This is
then used as a subroutine to decide whole PLTL. Although the ideas underlying
our algorithm rely on the theory of [7] that cannot be repeated here in full due to
lack of space, we provide the most important ideas to understand our approach.
In the final section 4, we compare LS4, an implementation of our algorithm, to
other existing PLTL-provers on a representative set of benchmarks. The results
clearly indicate that partial model guidance considerably improves the state of
the art of symbolic based approaches to PLTL satisfiability checking.
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2 Preliminaries

The language of propositional formulas and clauses over a given signature Σ =
{p, q, . . .} of propositional variables is defined in the usual way. By propositional
valuation, or simply a world, we mean a mapping W : Σ → {0, 1}. We write
W |= P if a propositional formula P is satisfied by W . The syntax of PLTL is
an extension of the propositional one by temporal operators �,♦,U, . . . We do
not detail the syntax here, due to lack of space, but will instead directly rely
on so called Separated Normal Form (SNF) to which any PLTL formula can
be translated by a satisfiability preserving transformation with at most linear
increase in size [6]. The semantics of PLTL is based on a discrete linear model
of time, where the structure of possible time points is isomorphic to N: An
interpretation is an infinite sequence (Wi)i∈N of worlds. In order to talk about
two neighboring worlds at once we introduce a primed copy of the basic signature:
Σ′ = {p′, q′, . . .}. Primes can also be applied to formulas and valuation with the
obvious meaning. Formulas over Σ ∪ Σ′ can be evaluated over the respective
joined valuation: When bothW1 andW2 are valuations overΣ, we write [W1,W2]
as a shorthand for the mapping W1 ∪ (W2)

′ : (Σ ∪Σ′)→ {0, 1}.
The input of our method is a refinement of SNF based on the results of [3]:

Definition 1. A PLTL-specification S is a quadruple (Σ, I, T,G) such that

– Σ is a finite propositional signature,

– I is a set of initial clauses Ci (over the signature Σ),

– T is a set of step clauses Ct ∨D′
t (over joined signature Σ ∪Σ′),

– G is a set of goal clauses Cg (over the signature Σ).1

An interpretation (Wi)i∈N is a model of S = (Σ, I, T,G) if

1. for every Ci ∈ I, W0 |= Ci,

2. for every i ∈ N and every Ct ∨D′
t ∈ T , [Wi,Wi+1] |= Ct ∨D′

t,

3. there is infinitely many indices j such that for every Cg ∈ G, Wj |= Cg.

A PLTL-specification S is satisfiable if it has a model.
Our algorithm for deciding satisfiability of PLTL-specifications to be described

next relies on incremental SAT solver technology as described in [5]. There each
call to the SAT solver is parameterized by a set of unit assumptions. It either
returns a model of all the clauses inserted to the solver that also satisfies the given
assumptions, or the UNSAT result along with a subset of the given assumptions
that were needed in the proof. Negation of literals from the returned subset can
be seen as a new conflict clause that has just been shown semantically entailed
by the clauses stored in the solver.

1 The specification stands for the PLTL formula (
∧
Ci)∧� (

∧
(Ct ∨©Dt))∧�♦ (

∧
Cg)

and can be understood as a symbolic representation of a Büchi automaton recogniz-
ing the set of all models of the original input formula.
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3 The Algorithm

In order to explain the basic mechanics of our algorithm we first focus on a
simpler problem of reaching a goal world only once. That is, given a specification
S = (Σ, I, T,G), we first try to establish whether there is a finite sequence of
worldsW0,W1, . . . ,Wk such thatW0 |= I,Wk |= G and [Wi,Wi+1] |= T for every
two neighboring worldsWi andWi+1. An algorithm for this problem known from
verification is called Bounded Model Checking (BMC) [2], where one looks for
such a sequence by successively trying increasing values of k (starting with k = 0)
and employs a SAT solver to answer the respective satisfiability queries2 until
a model for the sequence is found. We modify this approach in order to gain
more information from the individual runs with answer UNSAT and to be able
to ensure termination in the case of an overall unsatisfiable input.

The idea is to use multiple instances of the solver, as many as there is worlds
in the current sequence, and build the sequence progressively, from the beginning
towards the end. Each individual solver instance contains variables of the joined
signature (Σ∪Σ′) and thus represents two neighboring worlds. However, only the
primed part is actually used for SAT solving. As the search proceeds forward, the
world model constructed over Σ′-variables in the solver instance i is transformed
to a set of assumptions over the Σ-variables for the instance (i + 1). If a world
model cannot be completed in the instance (i + 1) due to inconsistency (the
current world sequence cannot be extended by one more step) the instance (i+1)
returns a conflict clause over its assumptions on Σ-variables, which is propagated
back and added to the solver instance i as a clause over Σ′. Thus the instance
i will now produce a different world model, a model which additionally satisfies
the added conflict clause. The whole situation is depicted in Fig. 1. We can
also see from there how the individual solver instances are initialized. The first
contains only the clauses from I (and doesn’t depend on assumptions), all the
other instances contain clauses from T , and the last instance, additionally, the
clauses from G.

One round of the algorithm (for a specific value of k) ends either by building
an overall sequence of worlds of length k + 1, which is a reason for termination
with result SAT, or by deriving an empty clause in the first solver instance.
Standard BMC would then simply increase k and continue searching for longer
sequences. We can do better than that. By analyzing the overall proof3 of the
empty clause, we may discover it doesn’t depend on (has not been derived with
the help of) I or G in which case we terminate and report overall UNSAT: the
same proof will also work for larger values of k. Even if the proof depends on
both I, G (and of course T ), we can still perform the following check: Define layer
j as the set of all clauses that depend on G and have been propagated to the
solver instance that lies j steps before the last one. Formally, we set layer 0 to be

2 For every fixed k the question becomes whether there exist a model over
⋃k

i=0Σ
(k)

of the formula I(0) ∧
∧k−1

i=0 T
(i) ∧G(k), where T (i) stands for T primed i times, etc.

3 Proof recording is not needed on the SAT solver side. The described analysis can be
implemented with the help of so called marker literals as explained, e.g., in [1].
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Fig. 1. The information exchanged between the individual solver instances. Completed
world model is passed forward as a set of variable assumptions for the next instance.
Failed run delivers a conflict clause over the variable assumptions so that the previous
instance can be updated and SAT checking may find a different model. The very first
solver instance doesn’t depend on assumptions. When the last instance reports SAT,
we have an overall model for the reachability task.

equal to G. Now, if there are indices j1 �= j2 such that layers j1 and j2 are equal,
we also terminate the algorithm with result UNSAT: we have just discovered a
layer repetition in the proof, which means we know how we would derive empty
clauses also in any of the rounds to come.4 Note that the case of repeating layers
is bound to occur, if not preceded by a different reason for termination, as there
are only finitely many different sets of clauses over Σ. This shows the overall
termination, and thus completeness, of our modification of BMC.

We now move to providing an algorithm for the general case, where a goal
world is required to be shown reachable infinitely many times. In that algorithm
we use the above described procedure as a basic building block. In fact, we call
the configuration of solver instances as the one in Fig. 1 a block. The algorithm
starts by building the first block exactly as described above. If this first step
doesn’t succeed in providing a sequence of worlds, leading from a world satisfying
I to a one satisfying G, we terminate with result UNSAT. Otherwise we continue
adding new blocks, but now the first solver instance of each new block no longer
contains the clauses from I and is instead connected via the model/assumptions
link described before to the world represented by the last solver instance of
the previous block. This way we continue producing a sequence of blocks, each
block being itself a sequence of solver instances (see Fig. 2), the whole thing
representing a partial (unfinished) overall model of the given specification. As
in the above procedure, each block grows from its initial length 1, and is only
extended when necessary and just by one solver instance at a time.

For termination, we perform the following model repetition check to recognize
a satisfiable specification. Each time a particular run of the SAT solver constructs

4 Intuitively, the proof can be ”cut” at the index j1, and the part between j1 and j2
inserted arbitrarily many times, thus giving rise to proofs of arbitrary length.
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I G G G

block 1 block 2 block 3 . . .

Fig. 2. The layout of blocks as the search proceeds forward. The copies of clauses form
T that occupy the positions of every pair of neighboring worlds are not depicted.

a new world model, i.e. a new world in the sequence, we scan all the worlds of
previous blocks, and if one of them is equal to the new one, we terminate and
report SAT. Note that only the worlds of previous blocks are eligible for the test,
because we need to ensure that at least one world satisfying the clauses from G
lies between the two repeating ones. The particular infinite sequence formally
required as a model of the specification in now easily seen to be represented by
the world sequence constructed so far, where the segment of worlds between the
repetition will be traversed infinitely often.

Recognizing unsatisfiable specifications is again based on proof analysis. Note
that now more than one block (or more precisely the set of goal clauses thereof)
may be involved in the derivation of the empty clause. Each time an empty clause
is derived, we extend the latest block involved in the proof by one additional
solver instance and discard any blocks further to the right of it (in the sense of
Fig. 2). Then we resume the search. As before each block maintains a sequence
of layers of clauses. This time layer j contains the clauses that depend on the
block’s own copy of G and have been propagated to a solver instance that lies
j steps before its last one. Detecting layer repetition for the first block incurs
termination with the result UNSAT as before. If we detect repetition in a block
which is not the first one, we perform a so called leap inference: A particular
repeating layer is selected (see [7] for the details) and its clauses are globally
added to the set G. Then the current block is discarded and the search continues
from the last solver instance of the previous block. By construction,5 this last
instance currently doesn’t provide a model for the strengthened set G, which is
a key observation for proving overall termination of the algorithm, because it
implies that the leap inference can only be applied finitely many times.

4 Experimental Evaluation

We implemented our algorithm in C++ with Minisat [5] version 2.2 as the
backend solver. Although a more efficient implementation with just one solver
instance (over an extended signature and special decision heuristic) seems pos-
sible, we really use multiple instances of the solver as described before, because
it allows us to use the solver in a blackbox manner. An additional abstraction

5 The intuition behind the leap inference is the following: We have just discovered that
none of the successor worlds of the lastly visited G-world is itself a G-world. Thus
the lastly visited G-world doesn’t have the vital property of lying on a loop in the
state space and may be safely discarded from consideration.
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layer over the solver has been developed that allows us to mark any clause by
a set of block indices it depends on in a form of marker literals [1]. That is
how we perform the proof analysis described in the previous section without an
actual need of true proof recording on the SAT solver side. The standard set

container is used to represent layers and a simple linear pass implements both
the model repetition check and the layer repetition check. We found out that
most of the overall running time is typically spent inside individual calls to Min-
isat and therefore didn’t attempt any further optimizations of the checks. As an
additional trick we adapted the variable and clause elimination preprocessing of
Minisat [4] to be also used on our inputs. This is done only once, before the ac-
tual algorithm starts. Special care needs to be taken, because of the dependency
between the variables in Σ and Σ′. Moreover, we still need to be able to separate
the clauses after elimination into sets I, T and G, which can be achieved by a
clever use of marker literals.

Table 1. Number of problems (SAT/UNSAT) solved by each prover – timelimit 60s

problem set # problems LS4 trp++ ‘satisfiable’ ‘model’

TRP-suite 22 2/20 2/19 2/13 2/13
HW-reach 465 38/55 3/30 0/0 0/0
HW-live 118 38/15 7/7 3/4 0/1

We compared our implementation6, which we call LS4, with clausal temporal
resolution prover trp++7 version 2.1 and two tableaux-based decision procedures
implemented in the PLTL module of the Logics Workbench8 Version 1.1, namely
the ‘satisfiable’ function and the ‘model’ function. All the tests were performed
on our servers with 3.16 GHz Xeon CPU, 16 GB RAM, running Debian 5.0. We
collected several benchmark sets from different sources. The TRP-suite consists
of 22 problems available on the web page of trp++7 in the TOY and FO subdirec-
tories. Further, we translated into PLTL the benchmarks from Hardware Model
Checking Competition (HWMCC) 20119. We obtained a set of 465 problems,
here denoted HW-reach, from the safety checking track, and 118 problems from
the liveness track, HW-live. Note that the competition examples are natively
described as circuits in the form of And-Inverter Graphs; these were translated
into clause form by standard techniques. The results from these benchmarks are
summarized in Table 1. For each prover we report the number of satisfiable and
unsatisfiable problems solved in 60 seconds. For a second test we generated for-
mulas from several scalable families6 and in Table 2 we report for each family
the maximal size a prover was able to solve in 60 seconds.

We can see that LS4 is the only system to solve all the problems in the TRP-
suite in the given time limit. It also by far outperforms the other systems on

6 http://www.mpi-inf.mpg.de/~suda/ls4.html
7 http://www.csc.liv.ac.uk/~konev/software/trp++/
8 http://www.lwb.unibe.ch/
9 http://fmv.jku.at/hwmcc11/

http://www.mpi-inf.mpg.de/~suda/ls4.html
http://www.csc.liv.ac.uk/~konev/software/trp++/
http://www.lwb.unibe.ch/
http://fmv.jku.at/hwmcc11/
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Table 2. Maximal formula size (from the range) solved in 60s by the provers.

formula family size range LS4 trp++ ‘satisfiable’ ‘model’

C1 1-100 100 100 3 100
C2 2-20 19 20 3 2
bincnt u 1-16 10 16 11 6
bincnt s 1-16 10 11 11 7
binflip u 2-10 10 5 6 3
binflip a 2-10 10 5 6 4

the problems coming from verification.10 The formula families let us see that
guidance by a partial model is not always an advantage. For example, on the
bincnt u family, LS4 has to construct an exponentially long path before it starts
deriving conflict clauses. Moreover, these need to be propagated back trough all
the worlds of the path before the final contradiction is reached. On the other
side, the binflip families are already more difficult for the saturation based prover
trp++. For example, on binflip u of size 5, trp++ generates 1494299 resolvents
before deriving the empty clause (in 3.67s), while LS4 needs only 1891 calls to
Minisat and derives 936 non-empty conflict clauses before reaching the same con-
clusion (and spends 0.01s on that). To sum up, our test results demonstrate that
LS4 considerably advances the state of the art in PLTL satisfiability checking.
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Abstract. Proof systems for logics with recursive definitions typically
impose a strict syntactic stratification on the body of a definition to en-
sure cut elimination and consistency of the logics, i.e., by forbidding any
negative occurrences of the predicate being defined. Often such a restric-
tion is too strong, as there are cases where such negative occurrences
do not lead to inconsistency. Several logical frameworks based on logics
of definitions have been used to mechanise reasoning about properties
of operational semantics and type systems. However, some of the uses
of these frameworks actually go beyond what is justified by their logical
foundations, as they admit definitions which are not strictly stratified,
e.g., in the formalisation of logical-relation type of arguments in typed
λ-calculi. We consider here a more general notion of stratification, which
allows one to admit some definitions that are not strictly stratified. We
outline a novel technique to prove consistency and a partial cut elimi-
nation result, showing that every derivation can be transformed into a
certain head normal form, by simulating its cut reductions in an infini-
tary proof system. We demonstrate this technique for a specific logic,
but it can be extended to other richer logics.

1 Introduction

Proof systems for logics with definitions or fixed points typically impose a syn-
tactic stratification condition on the body of a recursive definition to make sure
that its corresponding fixed point operator has a fixed point. Often such a re-
striction is too strong; for example, the logics of definitions in [9,4,20,12] all
impose a strict stratification where no negative occurrences of a recursive predi-
cate is allowed in the body of its definition. This strict stratification rules out the
obvious kinds of inconsistent definitions, such as one that defines an atom to be
its negation, e.g., p � p ⊃ ⊥. It is shown in [20] that admitting this definition of
p breaks cut-elimination and leads to inconsistency, when the contraction rule is
presence. However, this strict stratification also rules out some consistent defini-
tion, in the sense that it has a fixed point, such as odd (s X) � odd X ⊃ ⊥, where
s denotes the successor function on natural numbers. For a more interesting ex-
ample of a consistent but not strictly stratified definition, consider the definition
of a reducibility set, used in normalisation proofs for typed λ-calculi [22,8]:

red t (α→ β) � ∀s.red s α ⊃ red (t s) β

� Supported by the ARC Discovery Grant DP110103173.
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which says that a term t of type α → β is reducible iff for every reducible term
s of type α, (t s) is a reducible term of type β.

Several frameworks based on logics of definitions have been designed for the
task of specifying and reasoning about operational semantics [12,17,23,16,6,1].
The underlying logics for these frameworks all impose the strict stratification
on definitions. However, some of the more interesting applications of these
frameworks actually make use of non-strictly stratified definitions that are not
supported by their logical foundations, e.g., the formalisation of reducibility
proofs [7]; the definition of the satisfiability relations for a modal logic for pro-
cess calculi [15]; and encodings of object logics [19]. In this paper, we extend
the logical foundations so these uses can be justified formally. We show here how
this can be done for an extension of an intuitionistic logic called FOλΔN [12],
with a more general notion of stratification, which we call the logic LD. But the
methods shown here should be extendable to richer logics of definitions.

The stratification condition in FOλΔN is defined by first assigning a natural
number to each predicate symbol p, called its level, and denoted by lvl(p). One
then extends this definition of levels to formulas, requiring, among others, that
the level of an atomic formula is the same as the level of the predicate symbol in
the formula, and that the level of A ⊃ B is the maximum of lvl(A)+1 and lvl(B).
Then a definition H � B is stratified iff lvl(H) ≥ lvl(B). This immediately rules
out the definition p � p ⊃ ⊥ and the definition of odd above, as there can be
no level assignments to predicates that can stratify these definitions. Assuming
that all definitions are stratified this way, cut elimination can be proved [12],
using a reducibility argument adapted from normalisation proofs by Tait [22]
and Martin-Löf [11]. In the cut-elimination proof of FOλΔN, the role of stratifi-
cation is reflected in the definition of the reducibility sets, which are defined by
induction on the levels of formulas. In extending the cut elimination proof for
FOλΔN, the difficulty is really in showing that the definition of reducibility sets
is well-founded; once this is done, the technicality of the cut elimination proof
itself can draw on a variety of proofs done for similar systems [12,23,24,1].

We propose here an extension to the definition of stratification in FOλΔN

by using level assignments that take into account the arguments in atomic for-
mulas. One problem with this level assignment is that in general we cannot
compare the levels of non-ground formulas, e.g., odd x and odd y are not com-
parable without knowing the relation between x and y. Another complication is
that FOλΔN (and related logics) incorporates a case analysis rule on definitions
(called defL) that may instantiate eigenvariables in a sequent. A consequence
of this is that the notions of reducibility sets and levels of formulas have to be
stable under arbitrary substitutions. It seems technically challenging to define
a well-founded notion of reducibility using this extended stratification without
propagating the dependencies between variables throughout the cut-elimination
proofs, and complicating the already complicated proofs.

To avoid the complications with having to deal with variables in stratifi-
cation, we prove cut-elimination indirectly via a ground version of LD, called
LD∞, where no eigenvariables are present in the derivations. This is achieved by
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utilising Schütte’s ω-rule [21] for the introdution rule for ∀ on the right (and
dually, ∃ on the left). We then show, in Section 5, that cut reductions in LD
can be simulated by cut reductions in LD∞. This would normally entail that cut
reduction in LD terminates. However, due to a peculiar interaction between cut
reductions and the case analysis rule defL, one can only obtain a weaker result,
that cuts can always be pushed up over other rules, but may not be completely
eliminated. More specifically, we show that any applications of the cut rule can
be pushed up above the case analysis rule, resulting in a derivation in what we
call a head normal form. As we shall see in Section 5, the existence of a head nor-
mal form for every derivation entails a number of properties usually associated
with cut elimination: syntactic consistency (no proofs of ⊥), and the disjunction
and the existential properties. The full cut elimination result, however, holds for
a subset of LD defined by positive formulas and positive definitions (Section 6).

Despite the fact that we can prove only a limited form of cut-elimination, we
argue that, in terms of applications in reasoning about computational models,
we still retain much of the use of a full cut-elimination result. One of the most
important applications of cut-elimination in a proof-theory-based logical frame-
work is that it can be used as a tool to prove the adequacy of the encoding of
a computation model in logic. Adequacy here means a (meta) property that the
encoding captures its intended computational meaning. This is typically proved
by exploiting the structures of cut-free proofs and the fact that cut-free provabil-
ity is complete. In this sense, the existence of head normal form is not a strong
enough guarantee that the adequacy of the encodings can always be proved. For-
tunately, as we shall argue in Section 6, if one considers computational models
specified via Horn clauses, there is a natural embedding into positive definitions
in LD, for which we have full cut-elimination, so the usual adequacy proofs can
still be carried out. Many interesting examples fall within this class, e.g., all
examples done using a two-level approach to reasoning in Abella [5,7]. We shall
show a couple of examples of positive definitions in Section 3. One of them is an
embedding of classical logic, via Gentzen-Gödel’s translation and Kolmogorov’s
translation. We also prove formally the equivalence between the two inside LD.

Due to space constraints, some proofs are omitted, but they can be found in
the extended version of the paper.

2 The Logic LD

The logic LD is a small variant of the logic FOλΔN [12], with a modified notion
of stratification of recursive definitions. The core logic itself is an intuitionistic
first-order fragment of Church’s simple type theory. Formulas and terms in LD
are just simply typed λ-terms. We shall assume familiarity with simply typed
λ-calculus, and recall only the basic notions in the following. We assume a count-
able set of typed variables, ranged over by xτ , yτ , etc. We shall omit the type
index when the type information is not important or can be inferred from the
context of discussion. Terms are constructed from typed variables, λ-abstraction
and application. We consider only well-formed terms, typed using the usual typ-
ing rules for simply typed λ-calculus. A term t is ground if it contains no free
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∀L

Γ −→ B[y/x]

Γ −→ ∀τx.B
∀R

B[y/x], Γ −→ C

∃τx.B, Γ −→ C
∃L

Γ −→ B[t/x]

Γ −→ ∃τx.B
∃R

Fig. 1. Core inference rules of LD

Γ −→ Bθ
Γ −→ A

defR,dfn(A,H � B, id, θ)
{{Si}i∈I(H�B,θ,ρ)

| dfn(A,H � B, θ, ρ)}
Γ,A −→ C

defL

Γ −→ nat 0
natR

Γ −→ nat t
Γ −→ nat (s t)

natR
−→ I 0 I x −→ I (s x) Γ, I t −→ C

Γ, nat t −→ C
natL

Fig. 2. Introduction rules for recursive definitions and natural numbers

occurrences of variables. We write s =λ t when s and t are equal modulo βη
coversions. The set of free variables in t is denoted by fv(t).

A type is either a base type, or a function type α → β, where α and β are
types. We write t : τ to mean that the term t has type τ. The notion of a
type here is used only to enforce well-formedness of syntactic expressions; their
inhabitants are syntactic objects, i.e., λ-terms. So a function type such as α→ β
is not inhabited by functions in the semantic sense, but by syntactic expressions
(i.e., λ-abstractions). We assume that every base type has at least one constant
of that type; hence all types are inhabited. This assumption is important to
be able to simulate cut reductions of LD in its corresponding infinitary version
(see Section 5). Following Church’s notation, formulas are λ-terms of a base
type o. Logical connectives are constants of the appropriate types: ⊥ (false) and
� (true) of type o; ∧ (and), ∨ (or), ⊃ (implies) of type o → o → o; and ∃τ
(exists), and ∀ (for all), of type (τ → o) → o, where τ does not contain type
o. When writing down formulas, we follow the conventional notation, so rather
than writing ∧AB or ∀τ (λx.P ), we simply write A ∧B and ∀τx.P . We assume
a collection of typed predicate symbols, ranged over by p, q, r. Atomic formulas
are formulas of the form p)t where p is a predicate symbol. We use capital letters
to range over formulas, but reserve A to denote atomic formulas. A sequent is
an expression of the form Γ −→ C, where Γ is a multiset of formulas and C
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is a formula, and they are all in βη-normal form. We consider only variables of
“first-order” types, in the sense that their types do not contain o.

We assume the usual notion of capture-avoiding substitutions for λ-calculus.
Substitutions are ranged over by θ, ρ, etc. The domain of a substitution θ
is denoted by dom(θ), and its range denoted by ran(θ). We use the notation
[t1/x1, . . . , tn/xn] to enumerate substitutions. We assume that the range of ev-
ery substitution is normalised. A substitution θ is a ground substitution if its
range consists only of ground terms. We write tθ to denote the term resulting
from applying the mapping θ to t. The identity substitution is denoted by id.
Composition of substitutions, denoted by θ ◦ ρ, is defined as (θ ◦ ρ)(x) = (xρ)θ.
The restriction of a susbtitution θ to a set of variables V is denoted by θ|V .

The introduction rules for the standard logical connectives for LD are the
same as in FOλΔN. These are given in Figure 1. The rule mc (for ‘multi-cut’) is
a generalisation of the cut rule. The ∃L and ∀R rules have the usual side condition
that y is not free in the conclusions of the rules. In ∃R and ∀L, the term t has
type τ. As in FOλΔN, the core logic of LD is extended with a proof theoretic
notion of definitions [12], and a principle of induction for natural numbers.

Definition 1 (Recursive definitions). A definition clause in LD has the form
∀)x.[p )t � B] where fv()t) = {)x} and fv(B) ⊆ {)x}. The atomic formula p )t is
called the head of the definition clause, and B is called the body. The symbol �
is not a logical connective; it is used only as a notation to separate the head and
the body of a definition clause. A definition is a finite set of definition clauses.

We do not assume that every predicate symbol has a definition clause associated
with it. We shall allow some predicates to be undefined.

We assume that, in a definition clause ∀)x.H � B, the variables )x are not used
anywhere else in derivations or other definition clauses. We can think of )x as
reserve variables used only in definition clauses. So they never occur in the range
of any susbtitutions, but they can occur in the domain for specific cases as we
shall see later. Since we only have a finite number of clauses, this assumption is
harmless, as we always have enough variables to be used in derivations and ranges
of substitutions. With this convention, we shall often remove the quantifier )x
from the above definition clause, and simply write H � B.

For determinacy reasons, we shall restrict to definitions of the form ∀)x.H � B
where H is a higher-order pattern term [14,18], i.e., every occurrence of x in H
is applied to only distinct bound variables. This restriction is immaterial as one
can always rewrite any given definition to an equivalent pattern clause. That is,
if there is a non-pattern clause p)t u � B where )t are pattern terms and u is not,
then one redefines p as follows: p)t x � B∧(x = u) where x is a new variable, and
where the equality symbol is defined via the pattern definition ∀y.(y = y) � �.

We assume that each ground atomic formula A is assigned a natural number,
lvl(A), called its level. We require that lvl(p)t) = 0 when p is an undefined
predicate symbol or p = nat. When using LD, we need to be explicit about
how such a level assignment to ground atomic formulas can be defined. In the
following we generalise the notion of level to non-atomic ground formula. To
define the level of a quantified formula, we take the least upper bound of the
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levels of all its instances; thus the level in this case can be a (countable) ordinal.
The level of a non-atomic closed formula is defined recursively as follows:

– lvl(⊥) = lvl(�) = 0.
– lvl(A ∧B) = lvl(A ∨B) = max(lvl(A), lvl(B)).
– lvl(A ⊃ B) = max(lvl(A) + 1, lvl(B)).
– lvl(∃τx.B) = lvl(∀τx.B) = sup{lvl(B[t/x]) | t is a ground term of type τ}.

Definition 2 (Stratification of definitions). A definition clause ∀)x.[A � B]
is stratified if for every ground substitution θ = [)t/)x], we have lvl(Aθ) ≥ lvl(Bθ).

We shall assume from now on that all definition clauses are stratified.
The relation dfn(A,H � B, θ, ρ) holds whenever Aθ =λ Hρ and dom(ρ) =

fv(H). The latter is not neccessary, but it simplifies some proofs. Because of the
variable convention and the pattern restriction on definitions, we have:

Lemma 3. If dfn(A,H � B, δ, θ) and dfn(A,H � B, δ, ρ), then θ = ρ.

The introduction rules for a defined predicate are basically unfolding of its defi-
nitions (reading the rules bottom up). They are shown in Figure 2, i.e., the rules
defL and defR. Recall that we do not assume all predicates are defined, so if a
predicate is undefined, the introduction rules defL and defR are not applicable.

The right-introduction rule defR matches an atom with a definition clause.
The defL rule is the dual of defR: we consider all definition clause H � B and all
substitution θ and all substitution ρ such that dfn(A,H � B, θ, ρ). Each I(H �
B, θ, ρ) is a non-empty countable index set, and each Si, for i ∈ I(H � B, θ, ρ),
is an occurrence of the sequent Γθ,Bρ −→ Cθ. That is, for each (θ, ρ) such
that dfn(A,H � B, θ, ρ) holds, there could be more than one (possibly infinitely
many) occurrences of the sequent Γθ,Bρ −→ Cθ in the premises of defL. This is
a generalisation of defL in FOλΔN, where the set I(H � B, θ, ρ) is a singleton.
It is easy to see that the above defL and its FOλΔN version are interchangable
without affecting provability. The need for the more general version of defL is
purely technical; it allows one to account for all possible ways of instantiating a
derivation, so that cut reduction is stable under instantiations of eigenvariables.

For practical uses of the logic, it is enough to consider a finitary version of defL
using the notion of complete sets of unifiers (CSU) [10]. Instead of considering all
possible θ and ρ such that dfn(A,H � B, θ, ρ), one instead consider all unifiers
γ that are in the CSU of A and H. This version of defL using CSU is shown to
be equivalent to the version of defL that uses dfn in [12].

If the premise set of defL is empty, i.e., if A does not unify with the head of any
definition clause, then the conclusion is proved. For example, given a definition
such as p (s x) � p x, one can show that p 0 −→ ⊥ by an application of defL,
because p 0 cannot possibly be unified with p (s x).

We now extend LD with a predicate nat to encode the natural numbers. We
assume a given type nt with two constructors: 0 : nt (zero) and s : nt → nt
(successor function). The predicate nat has type nt → o, and its introduction
rules are given in Figure 2, i.e., the rules natR and natL. Note that the type nt
only enforces syntactic well-formedness of terms, e.g., one cannot form a term
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s (λ.0) of type nt. The semantic notion of a set of natural numbers is encoded
through the predicate nat, via its introduction rules. The rule natL embodies
the induction principle over natural numbers. The term I here is an inductive
invariant, which is a ground term of type nt → o, and x is a new variable not
appearing in the conclusion of the rule.

In terms of proof-theoretic strength, LD, like FOλΔN, is at least as expressive
as an intuitionistic version of Peano arithmetic (see [13] for a proof). As we do
not allow structural induction rules to apply to arbitrary definitions, the kind
of well-ordering that one can encode (using a definition) in LD and prove is
restricted to at most those isomorphic to natural numbers.

We say that a derivation Π is a premise derivation of another derivation Π ′

if Π occurs as the derivation of one of the premises of the last rule in Π ′. The
height of a derivation Π , denoted by ht(Π), is defined as:

ht(Π) = sup{ht(Π ′) | Π ′ is a premise derivation of Π}+ 1.

Saturated Derivations. An important property that is needed in
cut-elimination for LD is the stability of cut reduction under substitutions of
eigenvariables. We now define a subclass of LD derivations, called saturated
derivations, that satisfies this property. We then show that every LD derivation
can be saturated.

To ease presentation, we shall introduce some notation to denote derivations.
We shall abbreviate the following derivation

Π1

Δ1 −→ B1 · · ·
Πn

Δn −→ Bn

Π
B1, . . . , Bn, Γ −→ C

Δ1, . . . , Δn, Γ −→ C
mc

as mc(Π1, . . . , Πn, Π). Whenever we use such a notation, it is implicit that the
right-hand side of the end sequent of Πi is in the multiset of formulas in the left-
hand side of the end sequent of Π. We use the notation: defL({D(H � D, θ, ρ) |
dfn(A,H � D, θ, ρ)}) to denote a derivation ending with defL, with sets of
premise derivationsD(H � D, θ, ρ). Again, it is implicit that A is in the left-hand
side of the end sequent of the derivation. The notation defR(Π,H � B) denotes
a derivation ending with defR, with premise derivation Π , where the right-hand
side of the end sequent is matched against the definition clause H � B.

We identify derivations that differ only in the choice of eigenvariables that are
not free in the end sequents. It is easy to see that one can always apply renaming
to those variables to avoid clashes with variables in any given substitution θ. So
in the definition of an application of a substitution θ to Π , we shall assume that
eigenvariables that are not free in the end sequent are not affected by θ.

Definition 4. Let Π be a derivation in LD and let θ be a substitution. We
define a derivation Π [θ] in LD by induction on the height of Π as follows:

1. Suppose Π = defL({D(H � B, ρ, ρ′) | dfn(A,H � B, ρ, ρ′)}). Then Π [θ] =
defL({D(H � B, θ ◦ δ, δ′ | dfn(Aθ,H � B, δ, δ′)}). Note that dfn(Aθ,H �
B, δ, δ′) implies dfn(A,H � B, θ ◦ δ, δ′) so all derivations in the set D(H �
B, θ ◦ δ, δ′) are premise derivations of Π.
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2. If Π ends with any other rule with premise derivations {Πi}i∈I for some
index set I, then Π [θ] ends with the same rule with premise derivations
{Πi[θ]}i∈I .

Lemma 5. Π and Π [id] are the same derivation.

Lemma 6. (Π [θ])[ρ] and Π [θ ◦ ρ] are the same derivation.

Substitution does not increase the height of a derivation. It might yield a smaller
derivation because some branches in defL may be pruned.

Lemma 7. ht(Π [θ]) ≤ ht(Π).

Definition 8. A derivation Π in LD is saturated if the following hold:

– Suppose Π = defL({D(H � B, θ, ρ) | dfn(A,H � B, θ, ρ)}). Then Π is
saturated if whenever dfn(A,H � B, θ, ρ) and Ψ ∈ D(H � B, θ, ρ), then Ψ is
saturated and for every δ, Ψ [δ] ∈ D(H � B, θ ◦ δ, ρ′) where ρ′ = (ρ◦ δ)|fv(H).

– If Π ends with any other rule, then it is saturated iff its premise derivations
are all saturated.

Intuitively, a saturated derivation is a derivation in which all instances of defL
are closed under substitution, i.e., if Π is a premise derivation of an instance of
defL, then Π [θ] is also in the premise set of the same defL.

Lemma 9. If Π is saturated then Π [σ] is also saturated.

Lemma 10. If a sequent is derivable, then there exists a saturated derivation
of the same sequent.

Cut Reduction. We now define a set of reduction rules to eliminate applica-
tions of mc in LD derivations. The cut reduction rules for LD are minor vari-
ations of those in FOλΔN [12]. We show here the interesting cases where defL
is involved. Let Ξ = mc(Π1, . . . , Πn, Π) be the redex to reduce, where each Πi

ends with the sequent Δi −→ Bi and Π ends with B1, . . . , Bn, Γ −→ C.

– Case defR/defL: Suppose Π1 = defR(Π
′
1, H � D), where dfn(B1, H �

D, id, ρ), and Π ends with a defL applied to the cut formula B1, i.e.,

Π = defL({D(H ′ � D′, θ, σ) | dfn(B1, H
′ � D′, θ, σ)}).

For any Ψ ∈ D(B1, H � D, id, δ), the derivation mc(Π ′
1, Π2, . . . , Πn, Ψ) is

a reduct of Ξ. Note that there could be infinitely many reducts for Ξ, if
D(H � D, id, δ) is infinite.

– Case defL/◦L : Π ends with a left rule ◦L other than the rule cL acting on B1

and Π1 = defL({D(H � D, θ, ρ) | dfn(A,H � D, θ, ρ)}) for some A ∈ Δ1.
Let

D′(H � D, θ, ρ) = {mc(Ψ,Π2[θ], . . . , Πn[θ], Π [θ]) | Ψ ∈ D(H � D, θ, ρ)}.

Then Ξ reduces to defL({D′(H � D, θ, ρ) | dfn(A,H � D, θ, ρ)}).
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Given Lemma 9, it is not difficult to see that cut reduction preserves the property
of a being a saturated derivation.

Lemma 11. If Ξ is a saturated derivation in LD ending with mc, then every
reduct of Ξ is also saturated.

3 Examples

We consider a couple of simple examples of recursive definitions in LD. For more
advanced examples of non-strictly stratified definitions, but that still can be
made stratified according to Definition 2, see for example, strong normalisation
proofs for typed λ-calculi in Abella [5,7].1 All the proofs, except for the adequacy
theorem, have been formalised in the theorem prover Abella [5]. Abella is an
implementation of a richer logic, but the formalisation uses only inference rules
permitted by LD. The adequacy theorem can be proved by induction on the
structures of cut-free derivations in LD.

Odd numbers. Consider the following two mutually recursive definitions (the
mutual recursion is just to make the example slightly more interesting):

∀x.p (s x) � q x ⊃ ⊥ ∀y.q (s y) � p y ⊃ ⊥
and the standard definition of odd numbers:

odd (s 0) � � ∀x.odd (s (s x)) � odd x.

Notice that p 0 ⊃ ⊥ is provable, because p 0 cannot be unified with the head
p (s x) of the definition clause of p. The same observation leads to provability
of q 0 ⊃ ⊥, which in turn implies provability of p (s 0). Thus the ‘base case’ for
the definition of p (and likewise, q) is implicitly covered by the fact that failure
of unification of an atom on the left with its definitions turns it into a proof of
its negation. This is a unique feature of logics of definitions that separates them
from other fixed point logics. These clauses can be stratified by the following
level assignment: lvl(p t) = |t|, lvl(q t) = |t| and lvl(odd t) = 1, where |t| is the
size of the term t. We can prove in LD that these two definitions of odd numbers
coincide: ∀x.nat x ⊃ (p x ≡ odd x) where ≡ here stands for logical equivalence.

Encoding classical logic. Let us introduce a type o′ to denote object-logic for-
mulas. We consider here the propositional classical logic, where the connectives
are encoded as the following constants: ∧̂, ∨̂,⇒: o′ → o′ → o′ and ⊥̂ : o′. Atomic
object-logic formulas are encoded using the constant atm : ι→ o′ for some base
type ι. We shall need to do induction over the structures of formulas. As we
do not have induction rules for recursive definitions, this has to be done indi-
rectly by indexing the definition of object formulas with natural numbers, and
do induction on natural numbers instead.

fm (s I) (A∧̂B) � fm I A ∧ fm I B. fm I ⊥̂ � �.
fm (s I) (A∨̂B) � fm I A ∧ fm I B. fm I (atmX) � �.
fm (s I) (A⇒ B) � fm I A ∧ fm I B. form A � ∃I.nat I ∧ fm I A.

1 Strictly speaking, these examples on λ-calculi are outside LD, as they require the
∇-quantifier [23]. But the techniques shown here can be extended to include ∇.
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g (atm X) � ¬¬(atom X)

g ⊥̂ � ⊥.
g (A∧̂B) � g A ∧ g B.

g (A ⇒ B) � g A ⊃ g B.

g (A∨̂B) � ¬(¬(g A) ∧ ¬(g B)).

k (atm X) � ¬¬(atom X).

k ⊥̂ � ⊥.
k (A∧̂B) � ¬¬(k A ∧ k B).

k (A ⇒ B) � ¬¬(k A ⊃ k B).

k (A∨̂B) � ¬¬(k A ∨ k B).

Fig. 3. Gentzen-Gödel’s translation (left), and Kolmogorov’s translation (right)

There are at least two ways to encode classical logic into intuitionistic logic: one
via Gentzen-Gödel’s negative translation, and the other via Kolmogorov’s double
negation translation [25]. The definition clauses for both are given in Figure 3,
where we abbreviate F ⊃ ⊥ as ¬F. Note that atomic object level formulas are
interpreted in the meta-logic using an undefined predicate atom.

Both definitions can be stratified by letting lvl(g t) = lvl(k t) = |t|2 for every
ground object-level formula t. For example, in the last clause we have:

lvl(¬¬(k A ∨ k B)) = max(|A|2, |B|2) + 2 ≤ (|A|+ |B|+ 1)2 = lvl(A∨̂B).

Theorem 12 (Adequacy). F is valid classicaly iff (g F ) is provable in LD.

Theorem 13. The formula ∀F.form F ⊃ (g F ≡ k F ) is provable in LD.

4 A Ground Proof System with Recursive Definitions

We now define a ground version of LD, called LD∞, where no eigenvariables
occur in the derivations. This allows one to define a well-founded notion of
reducible derivations which is crucial to the cut-elimination proof of FOλΔN.
Head normalisation of LD can then be proved by simulating its cut reductions
in LD∞. We shall not detail the cut elimination proof for LD∞ here, as this is
straightforward once the notion of reducibility can be defined. We shall review in
this section the definitions of normalizability and reducibility as used in FOλΔN.
For more detailed explanations of these notions, the reader is referred to [11,12].

The rules of LD∞ are identical to LD, except for ∀R, ∃L and natL; these are
replaced with their infinitary versions, given below, where Tα is the (countable)
set of ground terms of type α.

{Γ −→ B[t/x]}t∈Tτ

Γ −→ ∀τx.B
∀R

{B[t/x], Γ −→ C}t∈Tτ

∃τx.B, Γ −→ C
∃L

−→ D 0 {D n −→ D (s n)}n∈Tnt D t, Γ −→ C

nat t, Γ −→ C
natL

The infinitary form of ∀R above is essentially Schütte’s ω-rule [21]. As the ∀R rule
is applicable to ∀ of type nt, strictly speaking there is no need for natL in LD∞,
as the ∀R-rule is powerful enough to capture the induction scheme. We keep the
rules to simplify the translation from LD to LD∞. The cut reduction rules for
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LD∞ are a straightforward adaptation of those for LD; they are identical except
for those involving the modified rules above. The definition of applications of
substitutions to a derivation in Definition 4 also applies to LD∞.

Definition 14. The set of normalizable derivations is the smallest set that sat-
isfies:

1. If a derivation Π ends with mc, then it is normalizable if for every θ, every
reduct of Π [θ] is normalizable.

2. If a derivation ends with any rule other than mc, then it is normalizable if
the premise derivations are normalizable.

It is obvious that normalizability implies cut-elimination.
In the definition of normalizability, in the case where a derivation ends with

mc, we require that all the reducts of all its instances are normalizable. This
is different from FOλΔN where only one of its reducts (for every instance) is
required to be normalizable. Thus our definition captures a notion strong nor-
malization with respect to ‘head’ reduction (as we always reduce lowest instances
of mc). Although McDowell and Miller’s proof is claimed for weak normaliza-
tion, the actual proof itself can be adapted for strong normalization without
much change; see for example, variants of their proofs in [23,24].

The level of a derivation Π is the level of the formula on the right-hand side of
the end sequent of Π. We define a family {Ri}i of reducible sets of derivations,
by (transfinite) induction on the levels of derivations. We say that a derivation
is reducible if it is in Ri where i is the level of the derivation.

Definition 15. The set Ri of reducible i-level derivations is the smallest set of
derivations of level i satisfying:

1. If Π ends with mc, then Π ∈ Ri if for every θ, every reduct of Π [θ] is in
Ri.

2. If Π ends with ⊃R:
Π ′

Γ,B −→ C

Γ −→ B ⊃ C
⊃R

, then it is in Ri if for every θ and

every j-level reducible derivation Ψ of Δ −→ B, where j = lvl(B), we have
mc(Ψ,Π ′[θ]) ∈ Rk where k = lvl(C).

3. If a derivation ends with ⊃L or natL, then it is in Ri if the right premise
derivation is in Ri and the other premises are normalizable.

4. If a derivation ends with any other rule, then it is in Ri if the premise
derivations are reducible.

As all definitions are stratified, it follows that the definition of reducibility above
is well-founded. It can be shown that that reducibility implies normalizability,
following the same proof as in FOλΔN [12]. The main cut-elimination proof
consists of showing that every derivation is reducible.

Theorem 16. Cut elimination holds for LD∞.

Corollary 17. The logic LD∞ is consistent, i.e., there is no proof of ⊥ in LD∞.
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5 Simulating Cut Reductions of LD in LD∞

To make use of the cut elimination result for LD∞ to prove partial cut elimination
of LD, we need to prove some certain commutation results between cut reduction,
substitution of eigenvariables in derivations and the translation from LD to LD∞.

Definition 18. Let Π be a derivation of a ground sequent Γ −→ C in LD. We
define a derivation �Π� of Γ −→ C in LD∞ by induction on ht(Π) as follows:

1. If Π is as shown below left, then �Π� is as shown below right:

Π ′
Γ −→ B

Γ −→ ∀αx.B
∀R

{ �Π ′[t/x]�
Γ −→ B[t/x]

}
t∈Tα

Γθ −→ ∀αx.B
∀R

2. Π ends with ∃L: this is dual to the previous case.

3. Π ends with natL:
Π0

−→ D 0
Πs

D x −→ D (s x)
Π ′

Γ,D u −→ C

Γ, nat u −→ C
natL

.

Then �Π� is

�Π0�
−→ D 0

{ �Πs[n/x]�
D n −→ D (s n)

}
n∈Tnt

�Π ′�
Γ,D u −→ C

Γ, nat u −→ C
natL .

4. If Π ends with any other rule, with premise derivations {Πi}i∈I for some
index set I, then �Π� ends with the same rule with premise derivations
{�Πi�}i∈I .

Given a saturated derivation Π of Γ −→ C in LD and a ground substitution θ,
we say that θ is a grounding substitution for Π if fv(Γ,C) ⊆ dom(θ).

Lemma 19. Let Ξ be a saturated derivation of Δ −→ C in LD ending with mc.
Let θ be a grounding substitution for Ξ. If Ξ reduces to Ξ ′ in LD then �Ξ[θ]�
reduces to �Ξ ′[θ]� in LD∞.

Proof. Suppose Ξ = mc(Π1, . . . , Πn, Π) and it reduces to Ξ ′ in LD. For most
cases of the cut reduction, it is straightforward to verify that �Ξ[θ]� reduces to
�Ξ ′[θ]� in LD∞. We show here one case involving the reduction rule defR/defL.

Suppose Π1 ends with defR with premise derivation Π ′
1, where dfn(B1, H �

D, id, ρ), and Π = defL({D(H ′ � D′, σ, δ) | dfn(B1, H
′ � D′, σ, δ)}). Suppose

Ξ ′ = mc(Π ′
1, Π2, . . . , Πn, Ψ) for some Ψ ∈ D(H � D, id, ρ). In this case,

Π [θ] = defL({D′(H ′ � D′, θ ◦ σ, δ) | dfn(B1θ,H
′ � D′, σ, δ)}).

Because Π is saturated, it follows that Ψ [θ] ∈ D(H � D, θ, ρ′) = D′(H �
D, id, ρ′). Then we have �Π1[θ]� = defR(�Π ′

1[θ]�, H � D) where dfn(Aθ,H �
D, id, ρ′). Moreover, the following is a reduct of �Ξ[θ]�:
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Ξ ′′ = mc(�Π ′
1[θ]�, �Π2[θ]�, . . . , �Πn[θ]�, �Ψ [θ]�)

because Ψ [θ] ∈ D′(H � D, id, ρ′). So we have

Ξ ′′ = mc(�Π ′
1[θ]�, �Π2[θ]�, . . . , �Πn[θ]�, �Ψ [θ]�)

= �mc(Π ′
1, Π2, . . . , Πn, Ψ)[θ]� = �Ξ ′[θ]�.

��

Definition 20. A derivation Π in LD is said to be in head normal form if every
instance of mc in Π appears above an instance of defL.

Head normalisation can be proved using Lemma 19; given an LD-derivation Π
ending with mc, we apply a grounding substitution, say θ (which must exist
because types are non-empty), to get �Π [θ]� and simulate any sequence of re-
ductions from Π with its image reductions in LD∞ from �Π [θ]�. Note that as
an instance of mc may be pushed up over a defL instance in LD, and because a
substitution may prune some branches of defL, not all premises ofΠ are retained
in Π [θ]. As a result, we are not able to conclude that all cut instances above
defL instances in Π are eliminable.

Theorem 21 (Head normalisation). Every derivation Π of a sequent in LD
can be transformed into a derivation Π ′, in head normal form, of the same
sequent.

Theorem 22 (Disjunction property). B ∨C is derivable in LD if and only
if either B is derivable or C is derivable in LD.

Theorem 23 (Existential property). ∃τx.B is derivable in LD if and only
if there exists a term t : τ such that B[t/x] is derivable in LD.

6 Cut-Elimination for a Positive Fragment of LD

Let Σ be a set of defined predicate symbols, with two subsets (not necessarily
distinct) Σ+ of positive predicates and Σ− of negative predicates, such that Σ =
Σ− ∪ Σ+. The sets of Σ-positive and Σ-negative formulas are defined via the
grammars below, respectively:

P ::= p)s | nat u | r )s | P ∧ P | P ∨ P | N ⊃ P | ∃x.P
N ::= q )t | r)t | N ∧N | N ∨N | P ⊃ N | ∀x.N

where p ∈ Σ+, q ∈ Σ− and r is any undefined predicate symbol. The set Σ is
closed if for every p ∈ Σ+ (resp. Σ−), and every definition clause p)t � B, B is a
Σ-positive formula (resp. Σ-negative formula). A formula B is a positive formula
(resp. negative formula) if there exists a closed Σ such that B is a Σ-positive
(resp. Σ-negative) formula. Note that a formula B can be both positive and
negative, e.g., when the formula and all definitions for the predicate symbols
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occuring in B are quantifier-free. A definition clause is positive if its body is a
positive formula. A sequent Γ −→ C is a positive sequent if every formula in Γ is
negative and C is positive. Obviously, any cut-free derivation of a ground positive
sequent does not use the introduction rules ∀R, ∃L or natL, which means that
provability for ground positive sequents in LD and LD∞ coincide. Therefore, for
the positive fragment, cut-elimination for LD∞ implies cut-elimination for LD.

Theorem 24. A ground positive sequent is derivable in LD if and only if it is
cut-free derivable in LD.

Positive formulas and positive definitions are already expressive enough to cap-
ture models of computations that can be encoded via logic programming. This
follows from the fact that Horn clauses in logic programming can be encoded as
positive definitions, and Horn goals can be encoded as positive formulas. That is,
every Horn clause ∀)x.B ⊃ H is encoded as the definition ∀)x.H � B. It is easy to
see that the defR rule simulates the backchaining rule in logic programming. So
in proving the adequacy result of an encoding of a computation model encoded
via Horn clauses, we can use the fact that cut-free proof search is complete.

7 Related and Future Work

There is a long series of works on logics of definitions, often extended with
induction/co-induction proof rules [9,4,20,12,17,23,6,1]. All these works enforce
a strict stratification that forbids negative occurrences of a recursive predicate
in its definition. A different approach to proving cut elimination in the presence
of non-strictly stratified definitions is recently being considered by Baelde and
Nadathur [2]. Instead of considering a recursive definition as defining a fixed
point, they view it as a rewrite rule (on propositions), and use the deduction
modulo framework [3] to prove cut elimination. However, their introduction rules
for atoms do not allow case analysis to be applied to recursive definitions.

On the application side, it would be interesting to use linear logic as the base
logic, so that one could do the kind of embedding of different object logics in the
meta logic as it is done in [19]. It would also be interesting to investigate whether
the techniques shown here can be adapted to a type theoretic setting. Finally,
it should be straightforward to extend the simulation technique as we show here
to establish head normalisation for extensions of LD with the ∇ quantifier, e.g.,
the logic G [6] with the more general stratification conditions we consider here.
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Abstract. We present Diabelli, a formal reasoning system that enables users to
construct so-called heterogeneous proofs that intermix sentential formulae with
diagrams.

1 Introduction

Despite the fact the people often prove theorems with a mixture of formal sentential
methods as well as the use of more informal representations such as diagrams, mecha-
nised reasoning tools still predominantly use sentential logic to construct proofs – dia-
grams have not yet made their way into traditional formal proof systems. In this paper,
we do just that: we present a novel heterogeneous theorem prover Diabelli that allows
users to seamlessly mix traditional logic with diagrams to construct completely formal
heterogeneous proofs – Fig. 1 shows an example of such a proof. In particular, Diabelli
connects a state-of-the-art sentential theorem prover Isabelle [1] with our new formal
diagrammatic theorem prover for spider diagrams called Speedith [2]. The interactive
user interface allows for displaying typical sentential proof steps as well as visual di-
agrammatic statements and inferences. The derived heterogeneous proof is certified to
be (logically) correct. Our heterogeneous framework is designed to allow reasonably
easy plugin of other external proof tools (sentential or diagrammatic), thus potentially
widening the domain of problems that can be tackled heterogeneously.

The motivation for our work is not to produce shorter and faster proofs, but to provide
a different perspective on formulae as well as to enable a flexible way of proving them.
The users can switch representation and type of proof steps at any point, which gives
them options and freedom in the way they construct the proof, tailored to their level
of expertise and their cognitive preference. The integration in Diabelli’s framework
benefits both: diagrammatic reasoners gain proof search automation and expressiveness
of sentential reasoners, while sentential reasoners gain access to another, diagrammatic
view of the formula and its proof which might provide a better insight into the problem.

2 Heterogeneous Reasoning Components
The kind of problems that can be tackled in our Diabelli heterogeneous framework de-
pends on the choice of sentential and diagrammatic reasoners, thus on the domains of
Isabelle and Speedith. Isabelle, as a general purpose theorem prover, covers numer-
ous different domains. Speedith’s domain is monadic first-order logic with equality
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Fig. 1. A heterogeneous proof of a statement with sentential steps (i), (v), (vi) and diagrammatic
steps (ii), (iii), (iv). (i) splits the lemma into a diagrammatic and a sentential sub-goal. (ii), (iii) and
(iv) prove the diagrammatic sub-goal. (v) discharges the goal (f) and proceeds to the sentential
goal in (c), which is discharged by auto in (vi) – a powerful proof tactic in Isabelle. All steps are
verified by Isabelle’s logical kernel.

(MFOLE). Thus, heterogeneously, in Diabelli system we can currently prove all the-
orems that contain subformulae of MFOLE provided they are expressed with spider
diagrams. Even though this domain is decidable, so potentially Isabelle alone could
sententially prove any theorem of MFOLE, our motivation lies elsewhere, namely in
heterogeneous proofs and in showing the feasibility of formal heterogeneous reasoning,
rather than in sentential proofs alone. Spider diagrams are a case study and a prototype
diagrammatic language for the Diabelli framework. When Diabelli is extended with
new theorem provers, the domain of problems covered will extend accordingly.

2.1 The Diagrammatic Reasoner

Spider Diagrams. The language of spider diagrams is used in Speedith, which consti-
tutes the diagrammatic reasoning part of our heterogeneous system. It is equivalent to
MFOLE, and is sound and complete (see [3] for details).

Spider diagrams are composed of contours, zones, spiders, shading, and logical
connectives. Contours are closed curves which represent sets and assert relationships
between them through relative spatial positioning. For example, the enclosure of one
contour in another denotes the subset and superset relations. Fig. 1(c) shows a diagram
containing two contours named with labels A and B. The set of all contour labels in a
diagram d is denoted by L(d).
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A zone is an area lying within some (or no) collection of contours and lying outside
the others. It denotes a set and is represented as a pair of finite, disjoint sets of contour
labels (in, out), such that in ∪ out = L(d). A zone (in, out) lies within contours in
and outside of contours out. The diagrams in Fig. 1(c) contains the zones (∅, {A,B}),
({A}, {B}), ({B}, {A}), and ({A,B}, ∅). The set of zones in a diagram is denoted by
Z(d). The zones in Z(d) can be shaded, denoted by ShZ(d). Shading indicates that the
zone’s only elements are the spiders, which places an upper bound on the cardinality of
the set.

Spiders are connected acyclic graphs whose nodes (feet) lie in a set of zones. A
spider asserts the existence of an element in the union of the zones where its feet reside.
The set of all spiders in a diagram d is denoted by S(d), and the function η : S(d) →
P(Z(d)) \ ∅ returns the habitat, that is, the set of zones in which a spider’s feet are
placed. The diagrams in Fig. 1(c) contains two spiders s1 and s2, with s1, for example,
having the habitat {({A}, {B}), ({B}, {A})}.

The diagrams considered so far are called unitary diagrams. Spider diagrams can be
negated with the ¬ operator, and joined with binary logical connectives ∧ (conjunc-
tion), ∨ (disjunction),⇒ (implication), and ⇔ (equivalence) into compound diagrams
(e.g., Fig. 1(b)). For a complete formal specification of the semantics of spider dia-
grams, see [2]. In Isabelle/HOL we formalise it with the sd sem interpretation function
(Sec. 3.1).

Diagrammatic Inference Rules. Spider diagrams are equipped with inference rules
[2,3] that are all proved to be sound, hence proofs derived by using them are guaranteed
to be correct. Step (iii) in Fig. 1 from diagrams in (d) to (e) shows an application of the
diagrammatic inference rule add feet (which adds feet to an existing spider to assert that
it could live in another region too). Speedith allows interactive application of this and a
number of additional inference rules (see [2] for complete specification).

Speedith’s Architecture. Speedith [2] is our implementation of an interactive dia-
grammatic theorem prover for spider diagrams. It has four main components:

1. abstract representation of spider-diagrammatic statements,
2. the reasoning kernel with proof infrastructure,
3. verification of diagrammatic proofs, including input and output system for import-

ing and exporting formulae in many different formats, and
4. visualisation of spider-diagrammatic statements.

The abstract representation of spider diagrams is used internally in Speedith to repre-
sent all spider-diagrammatic formulae (see [2] for details). Speedith can be used as a
standalone interactive proof assistant, but it can also be easily plugged into other sys-
tems via its extensible mechanism for import and export of spider diagrams. Currently,
spider diagrams can be exported to Isabelle/HOL formulae or a textual format native to
Speedith; and for import, MFOLE formulae need to be translated to Speedith’s native
textual format.

2.2 The Sentential Reasoner - Isabelle

For the sentential part of our heterogeneous reasoning framework, we chose Isabelle,
which is a general purpose interactive proof assistant. This choice was arbitrary, any
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other highly expressive and interactive theorem prover could be used. In particular, Di-
abelli requires the reasoner to provide a way to interactively enter proof goals and proof
steps. The reasoner should also be able to output its current proof goals and incorpo-
rate new proof steps from external tools. In the future we could add a requirement that
the reasoner should support storage of arbitrary data – this could be utilized when a
diagrammatic language is not translatable into a reasoner’s format.

3 Integration of Diagrammatic and Sentential Reasoners

The Diabelli framework integrates diagrammatic and sentential provers on two levels.
Firstly, it connects them via drivers that in case of Speedith and Isabelle contain a bidi-
rectional translation procedures and a formal definition of the semantics of diagrams –
this is presented next. Secondly, the interactive construction of heterogeneous proofs is
facilitated through Diabelli’s graphical user interface, which is presented in Sec. 4.

3.1 Interpretation of Spider Diagrams in Isabelle/HOL

To formally define the semantics of spider diagrams we specify a theory of spider di-
agrams in Isabelle/HOL. In particular, we provide a formalisation of the abstract rep-
resentation and its interpretation, which verifies that our encoding is faithful to the for-
malisation in [3]. The main part of this theory is the function sd sem (Def. 2) which
translates the abstract representation of spider diagrams to Isabelle/HOL formulae. The
function sd sem interprets a data structure SD (Def. 1), which closely matches the ab-
stract representation of spider diagrams.

Definition 1. The SD data structure captures the abstract representation of spider dia-
grams and is defined in Isabelle/HOL as:

datatype SD = NullSD
| CompoundSD {operator: bool =>...=> bool, args: sd list}
| UnitarySD {habitats: region list, sm_zones: zone set}

The unitary diagram contains a list of regions (spider habitats that η generates) and a
set of zones. Regions are sets of zones, zones are pairs of in- and out-contours, and
contours are native Isabelle/HOL sets. The data structure SD does not contain a list of
spider names S – they are generated by the interpretation function usd sem (see Def. 3).

Definition 2. The sd sem function takes as an argument a description of the spider
diagram and produces a FOL formula that corresponds to the meaning of the given
spider diagram. The function is defined in Isabelle/HOL as:

fun sd_sem (spider_diagram : SD) =
NullSD -> True

| CompoundSD operator args -> apply operator (map sd_sem args)
| UnitarySD habitats sm_zones -> usd_sem habitats sm_zones

The function sd sem formally specifies the semantics of spider diagrams. The null spi-
der diagram is interpreted as the logical truth constant. The compound spider diagrams
are interpreted as a composition of a number of spider diagrams with operator. The
interpretation of a unitary spider diagram is central to the specification and is defined
by the function usd sem in Def. 3.
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Definition 3. The usd sem function interprets a unitary spider diagram which is given
through a list of regions (i.e., habitats of all spiders) and a set of shaded zones. It produces
a FOL formula that describes the meaning of the unitary spider diagram:

fun usd_sem (habs: region list, sm_zones: zone set) =
for each h in habs

conjunct ∃s. s ∈
⋃

zone∈h sd_zone_sem zone
spiders ← spiders ∪ s

∧ distinct spiders
∧ ∀z ∈ sm_zones. sd_zone_sem z ⊆ spiders

where we use this shorthand: (for each x in [x1...xn] conjunct P(x)) ≡
P(x1)∧...∧ P(xn). We define sd zone sem as:

fun sd_zone_sem (in, out) = [
⋂

c∈in set_of c] \ [
⋃

c∈out set_of c]

where in and out are the sets of in- and out-contours of the given zone. For every habitat
h, usd sem introduces a fresh existentially quantified variable s (a spider) and asserts
that s lives in the region defined by h. Once all variables si are introduced, they are
declared distinct and shaded zones are interpreted as sets that may only contain spiders.

Here is an example of how sd sem interprets the spider diagram from Fig. 1(b):
(i) sd_sem CompoundSD{operator →,

[UnitarySD{[[(A,B),(B,A)],[(AB,∅)],{}},
UnitarySD{[[(A,B),(AB,∅)],[(B,A),(AB,∅)]],{}}]}

(ii) (usd_sem UnitarySD{[[(A,B),(B,A)],[(AB,∅)],{}}) →
(usd_sem UnitarySD{[[(A,B),(AB,∅)],[(B,A),(AB,∅)]],{}})

(iii) (∃s1.s1∈(sd_zone_sem(A,B) ∪ sd_zone_sem(B,A)) ∧
∃s2.s2∈ sd_zone_sem(AB,∅) ∧ distinct[s1,s2]) →
(∃s1.s1∈(sd_zone_sem(A,B) ∪ sd_zone_sem(AB,∅)) ∧
∃s2.s2∈(sd_zone_sem(B,A) ∪ sd_zone_sem(AB,∅)) ∧ distinct[s1,s2])

(iv) (∃s1.s1∈(A\B ∪ B\A) ∧ ∃s2.s2∈(A∩B) ∧ distinct[s1,s2]) →
(∃s1.s1∈(A\B ∪ A∩B) ∧ ∃s2.s2∈(B\A ∪ A∩B) ∧ distinct[s1,s2])

where step (i) is a call to the sd sem function, which applies the operator and calls
the function usd sem in step (ii). usd sem existentially quantifies variables with their
regions in step (iii). Lastly, in step (iv), sd zone sem interprets zones as sets, which
produces the final formula.

3.2 Translation of Isabelle/HOL to Spider Diagrams

Above, we showed how diagrams are translated to MFOLE expressions via sd sem
function. We now give a translation in the other direction: from MFOLE expressions in
Isabelle/HOL to spider diagrams.

An algorithm for conversion from MFOLE formulae to spider diagrams exists, but it
was shown to be intractable for practical applications [4]. Consequently, Diabelli cur-
rently translates formulae that are in a specific form, called SNF (spider normal form),
which is based on the sd sem function. Whilst SNF is a syntactic subset of MFOLE,
it is important to note that it is able to express any spider-diagrammatic formula. An
example of an SNF formula of a compound diagram was given in line (iv) of the trans-
lation example in Sec. 3.1 above.
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The translation procedure recursively descends into Isabelle’s formulae, which are
internally represented as trees, and returns the abstract representation of the correspond-
ing spider diagram by essentially reversing the sd sem function. A future goal is to
extend this translation with heuristics that would cover a wider range of formulae.

4 Architecture of Diabelli

The architecture of Diabelli heterogeneous framework with Isabelle and Speedith plu-
gins is illustrated in Fig. 2. Diabelli utilizes a plugin system of the I3P framework [5]

Fig. 2. The architecture of the Diabelli framework with Isabelle and Speedith

to connect the user interfaces of the sentential and diagrammatic provers. Fig. 3 shows
Diabelli’s graphical user interface. User commands are passed from I3P to Isabelle to

Fig. 3. A screenshot of a heterogeneous proof in Diabelli

execute them. The results are returned back to I3P, which displays them in a separate
result window. The commands are read from a user-edited theory file, which may con-
tain, for example, custom definitions, lemmas, and proof scripts. Diabelli’s users may
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instruct I3P step by step to issue the sentential commands to Isabelle or the diagram-
matic instructions to Speedith.

Diagrammatic instructions take the same textual form in the theory file as any other
Isabelle tactic (see the sd tac entries in Fig. 3). These instructions, however, are not
manually written by the user, but are generated by Diabelli through the user’s point-
and-click interactions with the diagram (note the Speedith sub-window in Fig. 3).

Diabelli automatically presents every translatable sentential sub-goal as a spider di-
agram in the Speedith window. If the user chooses to apply a diagrammatic inference
rule on (part of) it, then Speedith executes the rule and produces a transformed diagram,
which it passes back to Diabelli to replace the old sub-goal.

Diabelli currently connects only one general purpose theorem prover with a single
diagrammatic language and its logic. However, we designed the Diabelli framework
to be easily extended with new diagrammatic or sentential languages and logical sys-
tems by leveraging on the extensibility of the I3P framework that can manage multiple
provers at the same time. Formalising the requirements for Diabelli plugins remains
part of our future work.

5 General Observations

Diabelli is a novel heterogeneous reasoning framework that is a proof of concept for the
connection of more powerful provers. It demonstrates how sentential and diagrammatic
theorem provers can be integrated into a single heterogeneous framework. We show that
using these to interactively reason with mixed diagrammatic and sentential inference
steps is feasible and formally verifiable – this is breaking new ground in mechanised
reasoning. Diabelli provides an intuitive interface for people wanting to understand the
nature of proof. It more closely models how humans solve problems than existing state-
of-the-art proof tools, is adaptable and flexible to the needs of the user, and capitalises
on the advantages of each individual proof system integrated into Diabelli.

Applying either or both, diagrammatic and sentential proof steps is seamless. The
normal workflow of Isabelle is not modified by the diagrammatic subsystem, moreover,
the diagrammatic steps may be applied whenever a sentential formula can be translated
into the diagrammatic language.

Closest to Diabelli is the Openproof [6] framework which is the only other existing
system that facilitates the construction of heterogeneous reasoning systems. However,
it does not integrate existing reasoning systems, but rather provides a way of combining
different representations and logics.

Diabelli is implemented in SML and Java; its sources are available from
https://gitorious.org/speedith. With Diabelli, we can heterogeneously prove
all theorems that contain subformulae of MFOLE expressed with spider diagrams – this
is a significant range and depth of theorems.

Despite our focus on the language of spider diagrams, Diabelli introduces a way
to extend its scope to other domains. It is designed as a plugable system for seamless
integration of other diagrammatic and sentential theorem provers – we are currently de-
veloping drivers for other systems to demonstrate the scalability of the Diabelli frame-
work. A future direction is to establish a formal and concise specification of the plugin
interface required to add new systems that extend Diabelli’s problem domain.

https://gitorious.org/speedith
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