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Abstract. This paper presents a real-time collision avoidance method with 
simultaneous control of both translational and rotational motion with 
consideration of a robot width for an autonomous omni-directional mobile 
robot. In the method, to take into consideration the robot’s size, a wide robot is 
regarded as a capsule-shaped case not a circle. With the proposed method, the 
wide robot can decide the direction of translational motion to avoid obstacles 
safely. In addition, the robot can decide the direction of the rotational motion in 
real time according to the situation to perform smooth motion. As an example 
of design method of the proposed method, novel control method based on the 
fuzzy potential method is proposed. To verify its effectiveness, several 
experiments using a real robot are carried out. 

Keywords: Service Robot, Obstacle Avoidance, Omni-directional Platform, 
Fuzzy Potential Method. 

1  Introduction 

Various obstacle avoidance methods and their availabilities for mobile robots have 
described [1]-[8]. Most of these studies regard the robots as points or circles and 
discuss control methods of translational motion. In these studies, a non-circle robot is 
regarded as a circle robot with consideration of maximum size of the robot. The 
effectiveness of avoiding obstacles by this approach has been confirmed. However, 
depending on the shape of the robot, this approach reduces and wastes available free 
space and can decrease the possibility that the robot reaches the goal. If wide robots, 
which are horizontally long, are regarded as circles in accordance with conventional 
approaches, they may not be able to go between two objects due to the largest radius 
of the robot, even if they ought to be able to go through by using their shortest radius. 
This suggests the necessity of a suitable orientation angle at the moment of avoidance. 
Consequently, to enable wide robots to avoid obstacles safely and efficiently, it is 
necessary to control not only a translational motion but also a rotational motion. In 
our current research, a wide robot with omni-directional platforms shown in Fig.1 is 
developed. 
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Fig. 1. An autonomous robot for hospital use 

Several studies have focused on the orientation angle of the robot [9]; [10]. In these 
studies, by convolving the robot and the obstacle at every orientation and constructing 
the C-space, the suitable orientation angles of the robot for path planning are decided. 
However, these methods require an environmental map and the studies have not 
shown the effectiveness for avoidance of unknown obstacles by autonomous mobile 
robots. Therefore, to avoid unknown obstacles reactively with consideration of the 
orientation angle, wide robots need an algorithm that can decide the orientation angle 
and rotational velocity command in real time based on current obstacle information. 

This study proposes a control method of both translational and rotational motion 
with consideration of a robot width in order to achieve a smooth motion. With the 
proposed method, the orientation angle is controlled easily in real time. To verify the 
effectiveness of the proposed method, several simulations were carried out [11]. In 
this study, several experiments using our robot shown in Fig.1 are carried out. 

2  Simultaneous Translational and Rotational Motion Control 

2.1  Problem for Solution 

There are various non-circle robots. These are vertically long robots, or wide robots. 
These robots have two arms mounted on a torso with wheels so these robots can be 
used for mobility, manipulation, whole-body activities, and human-robot interaction 
[12]; [13]. For these wide robots, conventional obstacle avoidance methods are 
incompatible because they regard the robot as a point or a circle. We are developing a 
wide robot with a torso, two arms and a head shown in Fig.1. It not only moves 
indoors but also communicates and interacts with humans through gestures or speech. 
When the robot opens one or both of its arms slightly, as shown in Fig.2(b), it 
becomes increasingly difficult to apply conventional obstacle avoidance methods. If 
these wide robots are regarded as circles in accordance with conventional approaches, 
it may not be possible for them to go between two obstacles due to the largest radius 
of the robot, even if they ought to go through by using their shortest radius. In this 
study, a capsule-shaped case is introduced to make wide robots move smoothly and 
safely in an environment with obstacles. 
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(a) Situation A (b) Situation B 

Fig. 2. Two robots which are included in respective circles 

2.2   Design of Capsule-Shaped Case 

The capsule-shaped case is modeled by two circles and two lines tangent to the circles 
as shown in Fig.3. This closed contour is defined as ( )l φ  with the origin at the point 

PO . 
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where iφ  is clockwise from the back direction of the robot. 
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In the proposed method, LC , RC ,and aC  are decided in a way that makes wide 

robot shape fall within the capsule-shaped case. 
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Fig. 3. Capsule-shaped case 

 

Fig. 4. Concept of fuzzy potential method using both translational and rotational motion  
with an omni-direction platform 

2.3  Controller Design 

Figure 4 shows a concept of the fuzzy potential method (FPM) that takes into 
consideration both translational and rotational motion. In the conventional FPM [14], 
a command velocity vector that takes into consideration element actions is decided. 
Element actions are represented as potential membership functions (PMFs), and then 
they are integrated by means of fuzzy inference. The horizontal axis of PMF is 
directions which are from π−  to π  radians measured clockwise from the front 
direction of the robot. The vertical axis of PMF is the grade for the direction. The 
grade, direction, and configured maximum and minimum speeds, are used to calculate 
the command velocity vector. 

 

Fig. 5. Wide robot and obstacle 
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In this research, in addition to conventional approach the PMFs for translational 
and rotational motion are designed respectively based not only on environmental 
information but also the robot's condition. Environmental information and the robot's 
condition are treated separately and divided into a translation problem and a rotational 
problem. Then the PMFs of each problem are independently integrated using fuzzy 
inference. Finally, translational and rotational velocity commands, which are 
calculated by defuzzification of mixed PMFs, are realized by an omni-directional 
drive system. 
 

 

Fig. 6. Example of PMF for an obstacle 

2.4  PMF for Translational Motion 

2.4.1  PMF for Obstacles 
To enable a wide robot to avoid obstacles safely and efficiently in real time, a 

concave shaped PMF ( 1,2, , )t
oj j nμ =   shown in Fig.6, which takes into 

consideration the capsule case, is generated. This PMF is specified by depth and 
width, which are calculated based on the geometrical relation between an obstacle and 
the robot as shown in Fig.5. By generating a PMF based on the variables Lϕ , Rϕ , 

Lϕ′ , Rϕ′ , a  and ,r oϕ  in Fig.6, it can choose a safe direction. 
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As a measure to decide how far the robot should depart from the obstacle, a  is 
defined as the depth of the concave PMF. 
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where , (r , r )r o x y=r  is the current position vector of the obstacle relative to the robot. 

If the current obstacle position is inside a circle with radius α  from the robot 
position, a PMF for obstacle avoidance is generated. D  is decided to ensure a safe 
distance. 
 

 .a o sD C r d= + +  (9) 
 

aC  is the minimum size of the capsule case, or  and sd  denote respectively the 

radius of the obstacle and the safe distance. ,r oϕ  is the angle of the direction to the 

obstacle relative to the robot. 
 

, arctan(r / r )  .r o y xϕ =  (10)
 

For safe avoidance, the PMF t
ojμ  is generated for all the obstacles that the robot has 

detected. Then, they are all integrated by calculating the logical product t
oμ . 
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By deciding the depth and the base width of the concave PMF t
oμ  is generated. 

2.4.2  PMF for a Goal 

To head to the goal, a triangular PMF t
gμ  is generated, as shown in Fig.7. t

gμ  is 

specified by ag , bg ,and ,r gϕ . As a measure to decide how close to the goal the 

robot should go, ag  is defined as the height of the triangular PMF. As a measure to 

decide how much the robot can back away from obstacles, bg  is defined. t
gμ   

 

 

Fig. 7. Example of PMF for a goal 

 
Fig. 8. Example of mixed PMF for translational motion 
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reaches the maximum value as  at an angle of the goal direction relative to the 

front direction of the robot . 
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where ,r dr  is an absolute value of the position vector of the goal relative to the 

robot. ε  and η  are constants. If ,r dr  is below ε , ag  is defined. The robot can 

decelerate and stop stably. 

2.4.3  Calculation of a Translational Command Velocity Vector 
The proposed method uses fuzzy inference to calculate the command velocity vector. 

The PMFs t
oμ  and t

gμ  are integrated by fuzzy operation into a mixed PMF t
mixμ  as 

shown in Fig.8. t
mixμ  is an algebraic product of t

oμ  and t
gμ . 
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By defuzzifier, a velocity command vector is calculated as a traveling direction outϕ  
and an absolute value of the reference speed of the robot based on the mixed PMF

t
mixμ . outϕ  is decided as the direction that makes the PMF ( )t

mixμ ϕ  maximum. 

Based on outϕ , outv  is calculated as follows. 

 

Fig. 9. Example of mixed PMF for rotational motion 
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where ( )t
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.r r r
o e cμ μ μ= −  (16)

ag

,r gϕ

r
eμ

r
cμ

0

1

0 π− π

gr
ad

e

direction       [rad]ϕ

r
oμ

( )r
mix oriμ ϕ oriϕ

r
eμ

r
cμ

0

1

0 π− π

gr
ad

e

direction       [rad]ϕ

r
oμ

( )r
mix oriμ ϕ oriϕ



58 M. Takahashi et al. 

2.5  PMF for Rotational Motion 

2.5.1  PMF for Obstacles 
To enable a wide robot to decide the appropriate angle of the direction for obstacle 

avoidance in real time, PMF r
oμ  is generated. r

eμ  is generated based on the distance 
from the center of the robot to obstacles corresponding to all directions, as shown in 
Fig. 9. The relative distances are obtained with range sensors such as laser range 

finder, ultra sonic sensors or infrared sensors. r
cμ  is generated based on the capsule 

case.  
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The aim of the PMF r
oμ  is to search for an orientation angle of the robot that would 

maximize the distance between a point on capsule case and each obstacle by turning 
the front or back side of the robot. By using the capsule case, a PMF design can deal 
with the width of the robot for rotational motion.  

2.5.2  PMF for a Goal 
In order to turn the front of the robot toward the goal direction or the travelling 

direction if there is no obstacle to avoid, PMF for a goal is generated as r
gμ . This 

shape is decided in same way as t
gμ . 

2.5.3  Calculation of a Rotational Command Velocity 
For the rotational motion, like the translational motion, the rotational command 

velocity is derived. The PMFs r
eμ  and r

gμ  are integrated by fuzzy operation into a 

mixed PMF r
mixμ , as shown in Fig.9.  
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By defuzzifier, the command velocity is calculated as a rotational direction oriϕ  and 

an absolute value of the reference speed of the robot. oriϕ  is decided as the direction 

iϕ  that makes the following function ( )h ϕ  minimum.  
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where ζ  is the parameter to avoid choosing an uncertainty iϕ  caused by, for 

example, noise on the sensor data. On the basis of oriϕ , ω  is calculated. 
 

sgn( )a ori  .ω ω ϕ=  (20) 

where aω  is design variable. 
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2.6  Omni-Directional Platform 

An omni-directional platform was used for the autonomous mobile robot's motion. 
The command velocity vector was realized by four DC motors and omni wheels. 
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δ  is an angle of gradient for each wheel. R  is half the distance between two 

diagonal wheels. w
iv  is a command velocity of each -thi  wheel. 

Table 1. Parameters in experiments 

L 0.4 m ε 1.0 m D 0.9 m 
Ca 0.3 m ωmax 1.0 rad/s η 0.2 
CR 0.3 m W 1.0 m ar 1.0 m/s2 
ds 0.3 m CL 0.3 m ωmin 0.0 rad/s 
α 4.0 m ra 0.3 m   

 

  
   (a) Front         (b) Side         (c) Top 

Fig. 10. Laser sensor and an omni-directional 
platform on an autonomous mobile robot 

Fig. 11. Experimental situation 
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(a) Robot trajectory 

Fig. 15. Experimental result to
motion (method II) 
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