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Abstract. Study of hidden oscillations and hidden chaotic attractors (basin of
attraction of which does not contain neighborhoods of equilibria) requires the
development of special analytical-numerical methods. Development and applica-
tion of such methods for localization of hidden chaotic attractors in dynamical
model of Chua’s circuit are demonstrated in this work.
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1 Introduction

The classical attractors of Lorenz [1], Rossler [2], Chua [3], Chen [4], and other widely-
known attractors are those excited from unstable equilibria. From computational point
of view this allows one to use standard numerical method, in which after transient pro-
cess a trajectory, started from a point of unstable manifold in the neighborhood of equi-
librium, reaches an attractor and identifies it.

However there are attractors of another type: hidden attractors, a basin of attraction
of which does not contain neighborhoods of equilibria [5]. Here equilibria are not “con-
nected” with attractor and creation of numerical procedure of integration of trajectories
for the passage from equilibrium to attractor is impossible because the neighbourhood
of equilibrium does not belong to such attractor. The simplest examples of systems
with such hidden attractors are hidden oscillations in counterexamples to widely-known
Aizerman’s and Kalman’s conjectures on absolute stability (see, e.g., [8,10]). Similar
computational problems arise in investigation of semi-stable and nested limit cycles in
16th Hilbert problem (see, e.g., [11,12,13]).

In 2010, for the first time, a chaotic hidden attractor was computed by the authors in
generalized Chua’s circuit (which can be used for hidden chaotic communication [17])
and then one was discovered in classical Chua’s circuit.

Further a special analytical-numerical algorithm for localization of hidden attractors
is considered.
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Fig. 1. Classical Chua’s circuit

Chua’s circuit (see Fig. 1) can be described by differential equations in dimensionless
coordinates:

ẋ = α(y − x)− αf(x),

ẏ = x− y + z,

ż = −(βy + γz).

(1)

Here the function

f(x) = m1x+ (m0 −m1)sat(x) =

= m1x+
1

2
(m0 −m1)(|x + 1| − |x− 1|) (2)

characterizes a nonlinear element, of the system, called Chua’s diode; α, β, γ,m0,m1

are parameters of the system. In this system it was discovered the strange attractors
[14,15] called then Chua’s attractors. All known classical Chua’s attractors are the at-
tractors that are excited from unstable equilibria and this makes it possible to compute
such attractors with relative easy (see, e.g., attractors gallery in [16]).

The applied in this work algorithm shows the possibility of existence of hidden at-
tractor in system (1). Note that L. Chua himself, analyzing in the work [3] different
cases of attractor existence in Chua’s circuit, does not admit the existence of such hid-
den attractor.

2 Analytical-Numerical Method for Hidden Attractors
Localization

For numerical location of hidden oscillations it is turns out to be effective methods
based on homotopy where a sequence of similar systems is consider such that initial
data for numerical localization of periodic solution (starting periodic solution) in the
first starting system can be obtained analytically and then transformation of this starting
periodic solution in the transition from one system to another is followed numerically.

Consider a system
dx

dt
= Px+ψ(x),x ∈ R

n, (3)

where P is a constant n × n-matrix, ψ(x) is a continuous vector-function, and
ψ(0) = 0.
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Define a matrix K in such a way that the matrix

P0 = P+K (4)

has a pair of purely imaginary eigenvalues±iω0 (ω0 > 0) and the rest of its eigenvalues
have negative real parts. We assume that such K exists. Rewrite system (3) as

dx

dt
= P0x+ϕ(x), (5)

where ϕ(x) = ψ(x) −Kx.
Introduce a finite sequence of functions ϕ0(x),ϕ1(x), ...,ϕm(x) such that the

graphs of neighboring functions ϕj(x) and ϕj+1(x) slightly differ from one another,
the functionϕ0(x) is small, andϕm(x) = ϕ(x). Using a smallness of functionϕ0(x),
we can apply and mathematically strictly justify [6,7,8,9,10] the method of harmonic
linearization (describing function method) for the system

dx

dt
= P0x+ϕ0(x), (6)

and determine a stable nontrivial periodic solution x0(t). For the localization of at-
tractor of original system (5), we shall follow numerically the transformation of this
periodic solution (a starting oscillating attractor — an attractor, not including equilib-
ria, denoted further by A0) with increasing j. Here two cases are possible: all the points
of A0 are in an attraction domain of attractor A1, being an oscillating attractor of the
system

dx

dt
= P0x+ϕj(x) (7)

with j = 1, or in the change from system (6) to system (7) with j = 1 it is observed
a loss of stability bifurcation and the vanishing of A0. In the first case the solution
x1(t) can be determined numerically by starting a trajectory of system (7) with j = 1
from the initial point x0(0). If in the process of computation the solution x1(t) has
not fallen to an equilibrium and it is not increased indefinitely (here a sufficiently large
computational interval [0, T ] should always be considered), then this solution reaches
an attractor A1. Then it is possible to proceed to system (7) with j = 2 and to perform
a similar procedure of computation of A2, by starting a trajectory of system (7) with
j = 2 from the initial point x1(T ) and computing the trajectory x2(t).

Proceeding this procedure and sequentially increasing j and computing xj(t) (being
a trajectory of system (7) with initial data xj−1(T )) we either arrive at the computation
of Am (being an attractor of system (7) with j = m, i.e. original system (5)), or, at a
certain step, observe a loss of stability bifurcation and the vanishing of attractor.

To determine the initial data x0(0) of starting periodic solution, system (6) with
nonlinearity ϕ0(x) can be transformed by linear nonsingular transformation S to the
form

ẏ1 = −ω0y2 + εϕ1(y1, y2,y3),

ẏ2 = ω0y1 + εϕ2(y1, y2,y3),

ẏ3 = A3y3 + εϕ3(y1, y2,y3)

(8)
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Here A3 is a constant (n− 2)× (n− 2) matrix, all eigenvalues of which have negative
real parts, ϕ3 is an (n− 2)-dimensional vector-function,ϕ1, ϕ2 are certain scalar func-
tions. Without loss of generality, it may be assumed that for the matrix A3 there exists
positive number α > 0 such that

x∗
3(A3 +A3

∗)x3 ≤ −2α|x3|2, ∀x3 ∈ R
n−2 (9)

Introduce the following describing function

Φ(a) =
2π/ω0∫

0

[

ϕ1 ((cosω0t)a, (sinω0t)a, 0) cosω0t+

+ϕ2 ((cosω0t)a, (sinω0t)a, 0) sinω0t

]

dt.

Theorem 1. [9] If it can be found a positive a0 such that

Φ(a0) = 0 (10)

and Φ′(a0) < 0 then there is a periodic solution in system (6) with the initial data
x0(0) = S(y1(0), y2(0),y3(0))

∗

y1(0) = a0 +O(ε), y2(0) = 0, y3(0) = On−2(ε). (11)

Here On−2(ε) is an (n− 2)-dimensional vector such that all its components are O(ε).

3 Localization of Hidden Attractor in Chua’s System

We now apply the above algorithm to analysis of Chua’s system with scalar nonlinearity.
For this purpose, rewrite Chua’s system (1) in the form (3)

dx

dt
= Px+ qψ(r∗x), x ∈ R

3. (12)

Here

P,q, r =

⎛

⎝
−α(m1 + 1) α 0

1 −1 1
0 −β −γ

⎞

⎠ ,

⎛

⎝
−α
0
0

⎞

⎠ ,

⎛

⎝
1
0
0

⎞

⎠ ,

ψ(σ) = (m0 −m1)sat(σ).

Introduce the coefficient k and small parameter ε, and represent system (12) as (6)

dx

dt
= P0x+ qεϕ(r∗x), (13)

where

P0 = P+ kqr∗ =

⎛

⎝
−α(m1 + 1 + k) α 0

1 −1 1
0 −β −γ

⎞

⎠ ,

λP0
1,2 = ±iω0, λ

P0
3 = −d,

ϕ(σ) = ψ(σ)− kσ = (m0 −m1)sat(σ) − kσ.
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In practice, to determine k and ω0 it is used the transfer functionW (p) of system (3):

WP0(p) = r∗(P− pI)−1q,

where p is a complex variable. Then ImW (iω0) = 0 and k is computed then by formula
k = −(ReW (iω0))

−1.
By nonsingular linear transformation x = Sy system (13) can be reduced to the form

dy

dt
= Ay + bεϕ(c∗y), (14)

where

A,b, c =

⎛

⎝
0 −ω0 0
ω0 0 0
0 0 −d

⎞

⎠ ,

⎛

⎝
b1
b2
1

⎞

⎠ ,

⎛

⎝
1
0
−h

⎞

⎠ .

Further, using the equality of transfer functions of systems (13) and (14), we obtain

WA(p) = r∗(P0 − pI)−1q.

This implies the following relations

k =
−α(m1 +m1γ + γ) + ω2

0 − γ − β

α(1 + γ)
,

d =
α+ ω2

0 − β + 1 + γ + γ2

1 + γ
,

h =
α(γ + β − (1 + γ)d+ d2)

ω2
0 + d2

,

b1 =
α(γ + β − ω2

0 − (1 + γ)d)

ω2
0 + d2

,

b2 =
α
(
(1 + γ − d)ω2

0 + (γ + β)d
)

ω0(ω2
0 + d2)

.

(15)

System (13) can be reduced to the form (14) by the nonsingular linear transformation
x = Sy. Having solved the following matrix equations

A = S−1P0S, b = S−1q, c∗ = r∗S, (16)

one can obtain the transformation matrix

S =

⎛

⎝
s11 s12 s13
s21 s22 s23
s31 s32 s33

⎞

⎠ .

By (11), for small enough ε we determine initial data for the first step of multistage
localization procedure

x(0) = Sy(0) = S

⎛

⎝
a0
0
0

⎞

⎠ =

⎛

⎝
a0s11
a0s21
a0s31

⎞

⎠ .
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Fig. 2. Equilibrium, stable manifolds of saddles, and localization of hidden attractor

Returning to Chua’s system denotations, for determining the initial data of starting so-
lution of multistage procedure we have the following formulas

x(0) = a0, y(0) = a0(m1 + 1 + k),

z(0) = a0
α(m1 + k)− ω2

0

α
.

(17)

Consider system (13) with the parameters

α = 8.4562, β = 12.0732, γ = 0.0052,

m0 = −0.1768, m1 = −1.1468.
(18)

Note that for the considered values of parameters there are three equilibria in the system:
a locally stable zero equilibrium and two saddle equilibria.

Now we apply the above procedure of hidden attractors localization to Chua’s sys-
tem (12) with parameters (18). For this purpose, compute a starting frequency and a
coefficient of harmonic linearization. We have

ω0 = 2.0392, k = 0.2098 .

Then, compute solutions of system (13) with nonlinearity εϕ(x) = ε(ψ(x) − kx),
sequentially increasing ε from the value ε1 = 0.1 to ε10 = 1 with the step 0.1.

By (15) and (17) we obtain the initial data

x(0) = 9.4287, y(0) = 0.5945, z(0) = −13.4705

for the first step of multistage procedure for the construction of solutions. For the value
of parameter ε1 = 0.1, after transient process the computational procedure reaches the
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Fig. 3. Hidden attractor projections on (x, y), (x, z), and (y, z)

starting oscillation x1(t). Further, by the sequential transformation xj(t) with increas-
ing the parameter εj , using the numerical procedure, for original Chua’s system (12)
the set Ahidden is computed. This set is shown in Fig. 3.

The considered system has three stationary points: the stable zero point F0 and the
symmetric saddles S1 and S2. To zero equilibriumF0 correspond the eigenvaluesλF0

1 =
−7.9591 and λF0

2,3 = −0.0038 ± 3.2495i and to the saddles S1 and S2 correspond

the eigenvalues λS1,2

1 = 2.2189 and λS1,2

2,3 = −0.9915 ± 2.4066i. The behavior of
trajectories of system in a neighborhood of equilibria is shown in Fig. 3.

We remark that here positive Lyapunov exponent [18] corresponds to the computed
trajectories.

By the above and with provision for the remark on the existence, in system, of locally
stable zero equilibrium and two saddle equilibria (trajectories from the neighborhood
of these saddles tend to zero or to infinity), we arrive at the conclusion that in Ahidden

a hidden strange attractor is computed.
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Now let us consider localization of hidden oscillation in the Chua’s circuit with mod-
ified nonlinear characteristic — discontinuous nonlinearity sign(x) instead of sat(x).
For this we consider the system (12) with nonlinearity of special form

θi(x) = ψ(x) +
i

n

(
(m0 −m1)sign(x)− ψ(x)

)
, i = 1, . . . , n (19)

and apply the same numerical procedure to the new system with n = 10, increasing the
value of the parameter i from 1 up to 10. Projections of the solutions of the system (12)
with nonlinearity (19) on the plane (x, y) for i = 3, 5, 7, 10 are shown in Figs. 4–7
respectively.
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Fig. 4. Projection of the solutions of the modified Chua’s system on the plane (x, y) for i = 3.
Nonlinearity θi(x) and stability sectors.
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Fig. 5. Projection of the solutions of the modified Chua’s system on the plane (x, y) for i = 5.
Nonlinearity θi(x) and stability sectors.



Localization of Hidden Attractor in Chua’s Circuit 157

−10 −8 −6 −4 −2 0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
i=0.7

x

y

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

θ 
 (x
)

i
Fig. 6. Projection of the solutions of the modified Chua’s system on the plane (x, y) for i = 7.
Nonlinearity θi(x) and stability sectors.
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Fig. 7. Projection of the solutions of the modified Chua’s system on the plane (x, y) for i = 10.
Nonlinearity θi(x) and stability sectors.

4 Conclusions

In the present work the application of special analytical-numerical algorithm for hidden
attractor localization is discussed. The existence of such hidden attractors in classical
and modified Chua’s circuits is demonstrated.

It is also can be noted that to obtain existence of hidden attractor in Chua’s circuit
one can artificially modify [20,19,9] diode characteristics to stabilize zero stationary
point by inserting small stable zone around zero stationary point into nonlinearity.
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