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Abstract. Bias in image registration has to be accounted for when per-
forming morphometric studies. The presence of bias can lead to unreal-
istic power estimates and can have an adverse effect in group separation
studies. Most image registration algorithms are formulated in an asym-
metric fashion and the solution is biased towards the transformation
direction. The popular free-form deformation algorithm has been shown
to be a robust and accurate method for medical image registration. How-
ever, it suffers from the lack of symmetry which could potentially bias
the result. This work presents a symmetric and inverse-consistent variant
of the free form deformation.

We first assess the proposed framework in the context of segmentation-
propagation. We also applied it to longitudinal images to assess regional
volume change. In both evaluations, the symmetric algorithm outper-
formed a non-symmetric formulation of the free-form deformation.

1 Introduction

Non-rigid image registration is a key component of many medical image analysis
pipelines. Typically, when performing registration, a floating image is warped
into the space of a reference image and the established spatial correspondences
can be used to quantify changes through morphometric studies. Tensor-based
morphometry, for example, is used to assess differences between different
population whereas the Jacobian integration technique [1] aims at quantifying
intra-patient longitudinal changes in specific regions of interest. Symmetry in
registration is a desired property. Results should be the same when registration
is performed from the first image to the second or from the second to the first
image. In order to remove bias from the direction of registration, algorithms
such as Symmetric Normalization (SyN) [2] from the Advanced Normalization
Tools (ANTs1) package or the demons-based approaches by Tao et al. [3] or
Vercauteren et al. [4] have been proposed. Bias in registration directionality
has recently received a lot of attention and shown to generate unrealistic power
estimates [5,6,7].

1 http://picsl.upenn.edu/ANTS
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The Free-Form Deformation (FFD) algorithm [8] is a well-known and estab-
lished method which has been found to perform well for inter-subject regis-
tration [9]. It has also been shown to be reliable for longitudinal intra-subject
registration [1]. In the last decade, various improvements have been made to
the original implementation in order to, for example, ensure one-to-one mapping
between the registered scans using either soft constraints on the transformation
Jacobian determinants [10] or using hard constraints in the form of boundary
conditions [11,12]. The FFD approach is however lacking in symmetry, possibly
causing bias towards the registration direction.

Feng et al. [13] presented work based on the FFD algorithm where they con-
currently optimised a forward and backward transformation in order to minimise
the sum of squared differences and a term based on the inverse consistency er-
ror [14]. Their implementation however could not be used for morphometric
studies as they were only dealing with 2D images and they did not use any reg-
ularisation in order to enforce one-to-one correspondences. The proposed work
expands the framework in order to obtain a symmetric inverse-consistent reg-
istration algorithm. Based on the FFD, we concurrently optimised the forward
and backward transformations and penalised both transformations to ensure
a one-to-one mapping and generate inverse-consistent and symmetric warping.
The normalised mutual information (NMI) is used as a measure of similarity
making the algorithm suitable for multi-modal registration.

We assessed our implementation using two datasets. The first part of the val-
idation is based on segmentation-propagation where segmentations were propa-
gated from one subject to another and were compared to manual segmentations
that were performed on the same subject. The method was also validated by
comparing brain atrophy measurement evaluated in several regions of interest.

2 Method

2.1 Classical Free-Form Deformation Approach

The FFD algorithm is a parametric approach for non-rigid registration of medical
images [8]. The transformation T is parameterised by a regular lattice of control
points {µ} and a cubic B-Spline approximation scheme. The normalised mutual
information (NMI) is used to assess the alignment between a reference image R
and a floating image F after transformation F (T). Maximising the NMI aims at
maximising the amount of information that one image has about the other. In
order to favor a smooth transformation, one or several penalty terms are added to
the objective function. The bending energy (BE) is commonly used but one can
also use other penalty terms, for example those based on the divergence of the
transformation [15] or on the Jacobian determinant at every voxel position [10],
the latter enabling an unfolded and invertible deformation.

2.2 Symmetric Transformation Model

A typical approach is to seek a transformation defined in the space of the refer-
ence image that warps the floating image to the reference image space. In order
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to ensure symmetry, we propose to optimise two transformations: TFw and TBw

where TFw is the forward transformation that maps the space of the reference
image to the space of the floating image and TBw maps the space of the floating
image to the space of the reference image. This joint optimisation should reduce
directionality bias and increase capture range by using bi-directional gradient in
the optimisation procedure.

2.3 Objective Function

In order to ensure inverse-consistency, as in Christensen [14], we used a penalty
term based on the inverse-consistency error PIC :

PIC =
∑

x∀R
‖TFw(TBw(x))‖2 +

∑

x∀F
‖TBw(TFw(x))‖2 (1)

A PIC value of zero leads to the following equalities:

TFw ≈ T−1
Bw and TBw ≈ T−1

Fw

The computation of the measure of similarity, NMISym, also takes advantage of
the forward and backward transformation:

NMISym =
H(R) +H(F (TFw))

H(R,F (TFw))
+

H(R(TBw)) +H(F )

H(R(TBw), F ))
, (2)

where H(.) and H(., .) denote marginal and joint entropies respectively. En-
tropies are computed from two joint histograms filled using a Parzen windows
approach [16]. The window we used here is a cubic B-Spline kernel.

In order to promote smoothness and to enforce topology conservation we used
two other symmetric penalty terms based first on the BE:

PBE =
∑

x∀R
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and second on the determinant of the Jacobian matrices of the transformation:

PJac =
∑

x∀R
log(|Jac(TFw(x))|)2 +

∑

x∀F
log(|Jac(TBw(x))|)2 (4)

Note that the penalty term based on the inverse-consistency error does not guar-
antee folding-free transformations as the inverse-consistency error is minimised
but not null.
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The final objective function O(R,F ;µFw,µBw) to optimise is thus:

O(R,F ;µFw,µBw) = (1− α− β − γ)×NMISym (5)

+ α× PBE + β × PJac + γ × PIC ,

where {µFw} and {µBw} correspond to the control point positions that define
the transformation TFw and TBw respectively and (α+ β + γ < 1)

2.4 Optimisation

In order to optimise the objective function value, we used a conjugate gradient
ascent approach. It requires the computation of the gradient of O according to
each set of control points:

∂O(R,F ;µFw,µBw)

∂µFw
and

∂O(R,F ;µFw,µBw)

∂µBw
.

We refer the reader to [17] for an efficient computation of the NMI and BE deriva-
tives and to [18] for the analytical derivative of the Jacobian-based penalty term.
The derivatives of the inverse-consistency error penalty term are computed using
a voxel-to-node approach where we first compute the derivative of each term at
each voxel position and then concatenate the information at each control point
position. We perform these computations by first computing four displacement
fields through composition:

– D1R(x) = x−TFw(TBw(x)) where x ∈ R

– D2R(x) = x−TBw(TFw(x)) where x ∈ R

– D1F (x) = x−TFw(TBw(x)) where x ∈ F

– D2F (x) = x−TBw(TFw(x)) where x ∈ F

The residual displacement images D1R and D2R are then convolved by a cubic
B-Spline kernel in order to reproduce the cubic B-Spline parametrisation of the
TFw and the residual displacement images D1F and D2F are convolved by a
kernel that reproduce the cubic B-Spline parametrisation of the TBw. Using
linear interpolation we then extract the gradient information at each control
point position {µFw} inD1R andD2R and at each control point position {µBw}
in D1F and D2F

2.5 Implementation

The proposed algorithm has been implemented as part of the NiftyReg package,
BSD licence, and can be downloaded from: http://sourceforge.net/projects/
niftyreg/. Most symmetric registration implementations require the resampling

http://sourceforge.net/projects/
niftyreg/
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using a rigid or affine transformation of one image into the space of the other.
This enables both images to have the same resolution making the computations
easier. It could however bias the registration as different results are obtained de-
pending to which image is interpolated. In the proposed implementation, both
transformations TFw and TBw are defined in the original spaces of the input
images and thus no prior resampling is required.

3 Evaluation

3.1 Segmentation Propagation

In order to evaluate the proposed algorithm, we first performed the
cross-registration of 40 T1-weighted images from the LPBA40 database2. As
in Klein et al. [9], we quantify the overlap between manually segmented regions
of interest and segmentation propagated through registration. This experiment
enables direct comparison to the 14 registration algorithms that have been eval-
uated by Klein et al. [9]. The LPBA40 database consists of 40 MRI and their
associated brain parcellation into 56 regions of interest. LPBA40 images have
been acquired using a 1.5T GE scanner and were used to generate a probabilistic
atlas of the human cortical structures [19].

We used a block-matching approach for affine registration in order to ini-
tialise every registration [20]. Each non-rigid registration was performed using
the proposed symmetric approach as well as using an asymmetric free-form de-
formation (FFD) implementation in NiftyReg. For every registration, we used a
control point spacing of 2.5 millimetres along each axis. This spacing was chosen
to replicate the image registration toolkit (IRTK3) parameters used in Klein et
al., as IRTK is also an FFD implementation. For the proposed approach, FFD-
SYM, we set the weights of α (PBE), β (PJac) and γ (PIC) in equation 5 to 1%,
1% and 10% respectively. The weights for FFD were set to 1% for α (PBE) and
β (PJac). Each registration was performed using a coarse-to-fine approach with
3 levels and the maximum number of iteration for each level was set to 1000.

Figure 1 presents the mean target overlap (TO) defined as:

TO =
1

N

∑

i∀k

GSk ∩ PSk
GSk

, (6)

where GSk and PSk are the gold standard segmentation and the propagated

segmentation, respectively, of the kth region of interest and N is the number of
regions of interest. The mean (std) target overlap values were 0.650 (0.022), 0.706
(0.025) and 0.714 (0.021) when performing the segmentation propagation using
the affine transformation, FFD and the proposed symmetric approach respec-
tively. The symmetric approach yielded significantly higher (p < 10−4) target
overlap values when compared to the non-symmetric free-form deformation.

2 http://www.loni.ucla.edu/Atlases/LPBA40
3 http://www.doc.ic.ac.uk/~dr/software/

http://www.loni.ucla.edu/Atlases/LPBA40
http://www.doc.ic.ac.uk/~dr/software/
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Fig. 1. Left-hand side: Segmentation propagation results. Target overlap are presented
after affine registration and two different non-rigid registration approaches, a non-
symmetric FFD implementation (FFD) and the proposed symmetric FFD scheme
(FFD-SYM).

Right-hand side: Image S01 from the LPBA40 database and its corresponding
parcelation.

3.2 Atrophy Measurement

The following experiments are based on a database that consists of T1-weighted
MRI scans of 32 subjectswithAlzheimer’s disease (confirmedwithhisto-pathology)
and 19 age-matched controls. We used three scans for each subject: two back-to-
back scans at baseline and one follow-up scan after a year. The data acquisition
was performed on a 1.5 T Signa Unit (GEMedical Systems, Milwaukee) with a in-
version recovery (IR)-prepared spoiled GRASS sequence: TE 6.4 ms, TI 650 ms,
TR 3000 ms, bandwidth 16 kHz, 256 × 256 × 128 matrix with a field of view of
240× 240× 186 mm. The first baseline scan and follow-up scan have four manual
segmented structures: full brain (white matter plus grey matter), ventricles and
left and right hippocampi.

Using the proposed symmetric approach and a non-symmetric FFD imple-
mentation, we registered every second baseline scan to its corresponding first
baseline scan. As previously, the registrations were initialised using a block-
matching technique for affine registration. In order to quantify the amount of
deformation, we computed the mean and standard deviation of the Jacobian
matrix determinants computed at every voxel position. The Jacobian determi-
nant has the advantage of being unbiased towards any residual error of the
initial global registration. The mean (std) in the full brain region of interest
for FFD and FFD-SYM were 0.997 (0.006) and 0.998 (0.002) respectively and
0.986 (0.018) and 0.996 (0.011) in the hippocampi regions. Under the assump-
tion that no changes should occur between same day scans, we observed smaller
deformations using the proposed symmetric approach when compared to a non-
symmetric approach, demonstrating the added value and robustness due to the
inverse-consistent constrain.

For the next experiment we registered the first baseline scan of each patient
to the corresponding follow-up scan. We also registered the follow-up scan to
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the first baseline scan. For every registration we assessed the inverse-consistency
error and computed the volume change for every region of interest using the
integration of the Jacobian map over the regions of interest. We assessed the
symmetry of the transformation by comparing the forward transformation from
baseline to follow-up with the backward transformation from follow-up to base-
line and comparing the backward transformation from baseline to follow-up with
the forward transformation from follow-up to baseline. Table 1 presents the
inverse-consistency error defined as the euclidean distance between the composi-
tion of the forward and backward transformation to the identity transformation.

Table 1. Inverse consistency error. Presented values have been computed from all
longitudinal registrations using a non-symmetric (FFD) and a symmetric approach
(FFD-SYM).

IC error (in mm) Mean values over all subjects

mean(IC) std(IC) max(IC)

FFD
‖TFw(TBw(x))− Id‖ 0.6465 0.1012 0.8991
‖TBw(TFw(x))− Id‖ 0.6498 0.1030 0.9005

FFD-SYM
‖TFw(TBw(x))− Id‖ 0.0696 0.0063 0.0864
‖TBw(TFw(x))− Id‖ 0.0698 0.0063 0.0821

Due to order independent construction of the algorithm, no symmetric er-
ror was found up to numerical precision, using both single or double floating
precision. The proposed method is thus order independent, as for every regis-
tration, the forward transformation from follow-up to baseline and backward
transformation from baseline to follow-up are identical.

Figure 2 presents the volume changes from baseline to follow-up and follow-up
to baseline computed on three regions of interest relevant to Alzheimerś disease:
ventricles and hippocampi (left and right hippocampi have been merged into one
figure).

In order to assess the symmetry of the method, we performed a one-sample
t-test to compare the volume changes computed by registering follow-up to base-
line and baseline to follow-up. The confidence intervals and their ranges are
shown in table 2.

This confidence intervals show some degree of bias between the values obtained
using both the forward and backward Jacobian integrations for every approach.
It can however be noticed from the confidence interval that the bias is not only
lower but also has a variability range one order of magnitude smaller when
using the symmetric approach compared to the non-symmetric approach. Using
the proposed symmetric method, the reduced bias towards chosen directionality
and the reduced inverse-consistency error lead to an increase in registration
robustness, as seen by the reduced number of outliers. It thus results in more
realistic group separation estimates. Nonetheless, other sources of bias on both
the pre-processing pipeline such as differential bias field and on the manual
segmentations still require further investigation.
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Fig. 2. Regions of interest volume change. The plots presents the volume changes from
baseline to follow-up for three regions of interest: ventricles and both hippocampi. The
volume changes have been estimated using a non-symmetric (FFD) and a symmetric
(FFDS) registration approach and they have been estimated from the registration from
follow-up to baseline (FOR) and from baseline to follow-up (BCK). The red and blue
crosses correspond to volume change for Alzheimer’s disease (AD) patients and for
healthy control (CTL) respectively.

Table 2. Confidence intervals of the difference in longitudinal volume changes over
the regions of interest estimated through Jacobian integration using both forward and
backward transformations

Ventricles Hippocampi

FFD
95% CI [2.2730 11.6473] [0.6749 2.1020]
CI range 8.2743 1.4271

FFD-SYM
95% CI [-1.9593 -1.1673] [0.0547 0.3497]
CI range 0.7919 0.2950

4 Conclusion

We presented an extension of the work of Rueckert et al. [8] and Feng et al. [13]
in order to register images without bias towards directionality. Our transfor-
mations, forward and backward, are both parameterised using a uniform cubic
B-Spline and the normalised mutual information is used as a measure of similar-
ity. The proposed framework has been implemented using a open-source package
for registration and is thus available to download under a BSD licence

Using segmentation-propagation to evaluate the proposed method showed the
added value of symmetry and inverse-consistency as it leads to increased overlap.
We used longitudinal data in order to evaluate atrophy inmultiple regions of inter-
est. The proposed approach decreased bias towards the transformation direction
when estimating volume changes compared to a non-symmetric approach sharing
the same deformation model, regularisation and measure of similarity.

Future work will include a more extensive validation using larger cohort of pa-
tients. We also want to apply the proposed algorithm to tensor-based morphome-
try analysis to quantify the bias towards directionality as in Yushkevich et al. [21].
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On amore methodological point of view, we will expand the framework to account
for multiple time points (more than two) in a common registration framework.
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