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Abstract. Nonrigid image registration algorithms commonly employ multireso-
lution strategies, both for the image and the transformation model. Usually a 
hierarchical approach is chosen: the algorithm starts on a level with reduced 
complexity, e.g. a smoothed and downsampled version of the input images, and 
with a limited number of degrees of freedom for the transformation. Gradually 
the level of complexity is increased until the original, non-smoothed images are 
used, and the transformation model has the highest degrees of freedom. In this 
study, we define two alternative approaches in which low- and high-resolution 
levels are considered simultaneously. An extensive experimental comparison 
study is performed, evaluating all possible combinations of multiresolution 
schemes for image data and transformation model. Publicly available CT lung 
data, with annotated landmarks, are used to quantify registration accuracy. It is 
shown that simultaneous multiresolution strategies can lead to more accurate 
registration. 

Keywords: Nonrigid Registration, Multiresolution, Hierarchical, Transforma-
tion, Scale Space. 

1 Introduction 

Nonrigid registration can be regarded as a large scale numerical optimization  
problem, which finds the optimal parameters for a selected transformation model to 
recover the deformation between images [1, 2, 3]. In practical registration tasks, local 
minima often exist in the optimization space. How to avoid these local traps, and 
reach the “correct” minimum, is a major challenge for registration algorithms. To 
tackle this issue, multiresolution strategies have become popular. Lester and Arridge 
[4] provided a comprehensive review on multiresolution strategies. They classified 
the multiresolution strategies into three groups: increasing data complexity, increasing 
warp complexity, and increasing model complexity. In most existing implementations 
of nonrigid registration algorithms, one or more of these multiresolution strategies are 
incorporated. Rueckert et al. [5] adopted both increasing data and warp complexities 
to implement a coarse-to-fine registration with free-form deformations (FFD).  
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For registration of lung data, Yin et al. [6] applied transformation models at two le-
vels to one image resolution level. Gholipour et al. [7] presented several multiresolu-
tion approaches that can be used in brain data. Recently, Risser et al. [8] proposed a 
multiresolution strategy for large deformation diffeomorphic metric mapping. Besides 
the above mentioned works, hierarchical strategies have been widely used in many 
other registration tasks [9,10,11,12,13,14].  

Most current multiresolution approaches adopt a step-by-step approach: the fine-
scale registration will not be executed until all of the coarser registrations have been 
carried out. For example, a common strategy for FFD registration with B-splines is to 
combine the coarsest B-spline grid with the most blurred image at the beginning of 
optimization. After the optimization on this combination is complete, a denser B-
spline grid and higher resolution image are used for further optimization. So, in these 
methods both transformation and data complexities are increased hierarchically. 

Different from these hierarchical methods, several simultaneous multiresolution 
approaches were also presented previously. Stralen and Pluim [15] proposed a simul-
taneous multiresolution registration approach using a directed acyclic graph (DAG) 
and dynamic programming (DP). First, they constructed a DAG based on control 
points at different resolution levels. The DAG cost was defined as the sum of image 
dissimilarity at multiple scales and the difference between control point displacements 
in adjacent resolution levels. Then, they applied DP to find the optimum control point 
displacements. Somayajula et al. [16] also proposed a simultaneous multiresolution 
method for nonrigid registration. They defined corresponding scale-space feature 
vectors from multiresolution stacks of fixed and moving images at each voxel. Then, 
they used mutual information to align these feature vectors. In this way, different 
resolution levels were registered simultaneously, because the elements of each feature 
vector contained information from different resolution levels.  

In this paper, we define three multiresolution concepts, named Hierarchical (H), 
Simultaneous (S) and Hierarchically Simultaneous (HS) respectively. These strategies 
can be implemented both for image data (D) and transformation model (T): 

• Image data 

─ DH = start with most blurred image, then less blurred image, and so on, until 
original image resolution; 

─ DS = use the entire scale stack of different resolutions at once; 
─ DHS = start with blurred image, then use blurred and less-blurred, and so on, 

until the entire scale stack is used. 

• Transformation model 

─ TH = start with coarsest B-spline grid, next level use finer B-spline grid, and so 
on, until the finest control point spacing; 

─ TS = optimize coarse and fine B-spline deformations simultaneously; 
─ THS = start with coarse B-spline, then add finer scale while still optimizing 

coarse scale, and so on, until all scales are being optimized simultaneously. 
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Combining these strategies gives 3 3×  possibilities, which we implemented and  
compared in an experiment on publicly available CT lung data with manually anno-
tated landmarks. In the following sections a detailed explanation of the proposed mul-
tiresolution strategies is given, followed by a description of the evaluation study. 

2 Method 

2.1 Multiresolution Strategies for Image Data 

The N-dimensional moving and fixed images can be denoted by ( )M x  and ( )F y , 

where , N∈x y  represent the image coordinates in M  and F , respectively. Mov-

ing and fixed images on resolution level s  can be generated by convolution of the 
original  images with a Gaussian kernel: 
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where ( )G ⋅  is the Gaussian kernel. sσ  is the variance of the Gaussian filter corres-

ponding to resolution level s  of the image. For a larger s , sσ  has a smaller value. 

Nonrigid image registration is a process which aligns moving image M  to fixed 
image F  using a nonrigid transformation model. Mathematically, registration is 
formulated as an optimization problem, in which the nonrigid transformation μ

T  is 

estimated by minimizing the difference diffC  between moving and fixed images: 

 ( )( )arg min ,diffC F M=  μT
μ

μ ,                          (2) 

where μ  represents the parameters of the transformation T . By making diffC  depen-

dent on the resolution level we can introduce a multiresolution scheme for the image 
data. Below, we define the objective functions that correspond to DH, DS, and DHS: 

DH: ( ) ( )( ), , ,p
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where [ ]1,p S∈  is the current resolution level of the registration, and S  denotes 

the number of resolution levels. Figure 1(a) provides an overview of these three mul-
tiresolution strategies, where 3S = . Note that the objective function for DS is actual-
ly independent of p, since all levels of the image scale stack are taken into account  
simultaneously. 
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2.2 Multiresolution Strategies for the Transformation 

A classic FFD transformation model based on B-splines [5] can be defined as follows: 
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where iy  is a control point of the B-spline grid, and I y  represents the set of control 

points within a compactly supported region of the B-spline at y . ic  is the B-spline 

coefficient vector corresponding to control point iy , and the parameter vector μ  is 

formed by the elements of all ic . ( )rβ ⋅  is the selected rth order multidimensional 

B-spline polynomial, and g  is the spacing between grid points. By making the defi-

nition of the transformation model dependent on the resolution level p , we can de-

fine a multiresolution scheme for the transformation complexity. Below, we define 
the transformation models that correspond to TH, TS, and THS, in which we also 
introduce a dependence on s , in order to couple the image scale to the transformation 
complexity: 
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where p  is the current resolution level of the registration. ( ),p sμT y  represents the 

transformation at registration level p  for a point ( ), sy  in the scale stack defined by 

(1). [1, ]l S∈  denotes the B-spline grid level. p
ic  and l

ic  are the B-spline coefficient 

vectors at levels p  and l , with corresponding grid spacing ( )g p  and ( )g l ; the 

grid spacing ( )g l  reduces with increasing l. Figure 1(b) provides an overview of 

these three multiresolution strategies for the transformation. With TH, the transforma-
tion is upsampled after each resolution (i.e., p

ic  are determined based on 1p
i

−c  such 

that ( )  ( )1, ,p ps s−=μ μ
T y T y  at the start of level p ) and only the currently finest level 

is being optimized, so μ  at level p  consists of the elements of p
ic . With TS, the 

transformation model is independent of p , and formed by a summation of multiple 

B-spline models with different grid spacings; the parameter vector μ  consists of all 

elements of l
ic , [1, ]l S∀ ∈ . With THS, the model is similar to TS, but the finer B-

spline models are only used in the later resolution levels; at resolution level p , the 

parameter vector μ  consists of all elements of l
ic , [1, ]l p∀ ∈ . 
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1p = 2p = 3p = 1p = 2p = 3p =

 

Fig. 1. Multiresolution strategies of data and transformation: (a) Most blurred, less blurred and 
original images are marked in blue, orange and black, respectively. (b) Coarsest, finer and 
finest B-spline grid are marked in blue, orange and black, respectively. 

2.3 Combinations of Multiresolution Strategies 

Because there are three different multiresolution strategies for both data and transfor-
mation, we can construct 3 3×  combinations for multiresolution registration. Figure 
2 presents all possible combinations in which registration processes have three multi-
resolution levels. In these combinations, the traditional multiresolution strategy is the 
combination of TH and DH. We impose the restriction that transformation level l  
(corresponding to the B-spline model with grid spacing ( )g l ) can only be applied to 

the finer image resolutions [ , ]s l S∈ . According to this principle, the combination of 

TH and DHS becomes equivalent to the traditional multiresolution strategy TH-DH. 
In addition, TS-DH and TS-DHS are equivalent to THS-DH and THS-DHS,  
respectively.  

2.4 Implementation Details 

All experiments were performed with elastix [17], which is an open source package 
for registration. For diffC , we used the common mean squared difference measure. 

Image intensities at non-grid positions were obtained by trilinear interpolation. Third 
order ( 3r = ) B-splines were adopted for the transformation model. The adaptive 
stochastic gradient descent optimizer (ASGD) [18] was selected as optimization me-
thod. In each iteration of ASGD, a small, randomly selected, subset of samples from 
the entire image is used. Downsampling the image is not necessary because the com-
putation time is independent of the size of the image. To facilitate the optimization of 
combined B-spline levels of TS and THS, a diagonal preconditioning matrix B  was 
defined to scale the parameters corresponding to the different transformation levels: 
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Fig. 2. Different combinations of multiresolution strategies of data and transformation for mul-
tiresolution registration 

( )1k k k kα+ = + Bdμ μ μ ,                          (10) 

where k  is current iteration number. 1k +μ  and kμ  denote the new and current pa-

rameter vector, respectively. ( )kd μ  is the derivative of the cost function with re-

spect to μ . kα  is a scalar gain factor that determines the step size [18], and B  is a 

diagonal matrix diag( [b1,1 b1,1 b1,1 … bl,l bl,l bl,l ... bS,S bS,S bS,S] ) with ( )
,

S l
l lb ε − −= . 

Based on initial trial-and-error experiments on one of the datasets (c1, described be-
low), we set 4ε = . Here B  works as a preconditioning strategy [19], which can 
enhance the convergence rate. 

3 Experiments and Results 

3.1 Experimental Data and Settings 

To evaluate the performances of different multiresolution combinations, a set of lung 
data from DIR-lab [20] was used. Table 1 provides a description of these data.  

Since manually marked landmarks have been provided in these data, mean of tar-
get registration error (mTRE) [21] can be used to evaluate the registration accuracy: 

( )
1

1
mTRE ,

n
reg gold reg gold

i i
in =

= −p p p p ,                   (11) 

where regp  and goldp  represent the registered and ground truth landmarks. 300n =  

is the number of landmarks in all test cases.  
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Table 1. Description of experimental data 

Case ID Dimensions Voxelsize (mm) Landmarks Initial mTRE(voxel) 

c1 256 x 256 x 94 0.97 x 0.97 x 2.5 300 1.97 

c2 256 x 256 x 112 1.16 x 1.16 x 2.5 300 2.12 

c3 256 x 256 x 104 1.15 x 1.15 x 2.5 300 3.36 

c4 256 x 256 x 99 1.13 x 1.13 x 2.5 300 4.42 

c5 256 x 256 x 106 1.10 x 1.10 x 2.5 300 3.69 

We selected the image data at exhale as moving image, and the image data at in-
hale as fixed image. In all test cases, 4S =  resolution levels were used. The image 
scale stacks were generated using { }1,..., Sσ σ  = { }8, 4, 2,1  . For the transformation, 

the coarsest grid spacing ( )1g  was set to 64mm, isotropically. This value is a rea-

sonable choice because it is almost one fourth of the image size. In the experiments 
the finest grid spacing ( )g S  was set to 8mm, 10mm, 13mm, or 16mm. So the grid 

schedule for four transformation levels can be calculated as 

( ) ( ) ( ) ( )( ){ 2 3
1 , 1 ,g g S g g S  ( ) ( ) ( )( ) ( )}1 3

1 ,g S g g S g S . For example, the grid 

schedule for ( ) 8mmg S =  is { }64, 32,16, 8  . For each iteration of optimization, the 

number of random samples was set to 16000 for all combinations. Note that with the 
DS and DHS approaches these 16000 samples are spread over multiple levels of the 
image scale stack, whereas with DH all 16000 samples are placed in the current active 
level s p= .  The number of iterations was set to 2000 per resolution level. 

3.2 Comparison of Different Multiresolution Strategies 

The different multiresolution combinations are evaluated using five data pairs with 
four different finest grid spacings of the B-spline transformation. Figure 3 shows the 
registration results of all these combinations. As described in Section 2.3, TH-DHS, 
TS-DH and TS-DHS are actually equivalent to TH-DH, THS-DH and THS-DHS, 
respectively. So the results of TH-DH, THS-DH and THS-DHS are assigned to their 
equivalent combinations. In this way we can still make comparison among different 
multiresolution strategies of data and transformation in a general view. From Figure 
3, it can be seen that the differences in most test cases are small, and THS generates 
better results than TH and TS in most of test cases. In addition, DS generates higher 
accuracy than DH and DHS. The traditional TH-DH approach has relatively worse 
performance in most cases. Especially in data pair c4, TH-DH results in unsatisfacto-
ry results. As shown in Table 1, c4 has larger average landmarks displacements than 
the other four data. So this significant deterioration could be caused by too large de-
formation of data. 
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Fig. 3. Performance comparison of different multiresolution combinations. (a)-(e) are the re-
sults of lung data c1 to c5. The numbers represent the mTRE in voxels. 

To make a further comparison among these combinations, a ranking of the 9 me-
thods was made for each of the 5 4×  test cases. The average rank of each method 
over all 5 4×  test cases is presented in Figure 4. We can see that THS-DS has the 
best registration accuracy. The traditional TH-DH approach has the highest average 
rank number. It can also be noticed that the combinations with THS have lower rank 
than the other two multiresolution transformation strategies, when keeping the image 
resolution strategy the same. 

4 Conclusions and Future Work 

In this study different multiresolution strategies of data and transformation were com-
pared on a publicly available lung CT dataset. Most observed differences among these 
combinations were small, and perhaps not statistically significant in this small number 
of datasets. However, some patterns could be observed. In current test cases, THS 
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Fig. 4. Average rank of different multiresolution combinations in 20 test cases 

performed better than the other multiresolution strategies for the transformation. 
Compared to DH and DHS, the combinations using DS had better registration results 
in most cases. The rank analysis indicated that the combination of THS and DS is 
indeed the best choice in this application. These results suggest that 1) keeping the 
low-dimensional B-spline transformation active while going to finer control point is 
advantageous, and 2) the simultaneous use of image data from multiple scales helps to 
improve registration quality. A limitation of the current work, is that we evaluated the 
different techniques within the context of one application. In future work, we plan to 
repeat this comparative evaluation on different data.  
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