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Abstract. Understanding and quantifying the uncertainty involved when regis-
tering images is an important problem in medical imaging, where clinical de-
cisions are made based on the registered solution. This is especially important
in non-rigid registration where the higher degrees of freedom may provide un-
warranted confidence in the results, through over-fitting. The Bayesian approach,
which defines uncertainty as the posterior distribution on deformations, requires
a generative model of the image formation process where the fixed image is mod-
eled as a deformed version of the moving image plus a noise term. As per this
model, the likelihood term is equivalent to the sum-of-squared differences image
matching metric and is therefore valid only for same-mode image registration.
In this paper, we propose a general formalism to quantify Bayesian uncertainty
in the registration of multi-modal images through an extended probability model
that introduces and then marginalizes out a stochastic transfer function between
moving and fixed image intensities.

1 Introduction

1.1 Motivation

Registration is a fundamental tool for many bio-medical image analysis tasks such as
longitudinal and population studies, and image guided surgery. However, assuming the
physical validity of the deformation mechanism used in the registration procedure, imag-
ing noise and artifacts, such as distortion or bias-field, along with the highly variable
presentation of pathology affect the confidence in the optimal solution. This problem is
compounded by the high degrees of freedom afforded by non-rigid registration models
which introduces the possibility of over-fitting, for example, by through complex warps
of regions which have insufficient contrast to guide the registration. This can happen
primarily through the use of regularization, which is needed to condition the ill-posed
model inversion, but which introduces long range dependencies in the solution. And fi-
nally, there is the uncertainty in the specification of model hyper-parameters, such as the
mechanical properties of the underlying tissue or the statistics of imaging noise, all of
which degrade the validity, sufficiency and accuracy of the deformation obtained through
optimization. Therefore, quantifying and conveying the uncertainty in registration is ex-
tremely important, especially when clinical decisions are based on registration results.

In the Bayesian approach to non-rigid registration, the registration parameters are
random variables and optimization may be used to obtain their maximum a posteriori
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(MAP) estimates. More importantly, however, the Bayesian approach enables quantifi-
cation of uncertainty as the posterior distribution over deformations, via measures such as
variance, inter-quartile ranges, credibility intervals and entropy [2,9,5]. Here, the likeli-
hood function, corresponding to the data fidelity term, measures the alignment of the two
images under a transformation, while the prior corresponds to the regularization term pe-
nalizing implausible deformations. While different deformation and regularization com-
binations – such as freeform deformations with b-splines [9] or finite element (FE) meshes
with elastic deformation penalty [2,5] – have been used, the likelihood terms have allowed
for only same-modality image registration while assuming additive normal noise.

Specifically, denote the moving image as M : ΩM → IM and F : ΩF → IF, where
ΩM ⊆ R

3 and ΩF ⊆ R
3 are the spatial domain of the fixed and moving images respec-

tively, and IM = IF ⊆ R are their equal intensity ranges. The images F and M are treated
as random fields and the fixed image is assumed to be generated by applying a trans-
formation u to the moving image domain as per: F = M ◦ u + ε which also introduces
normal noise ε ∼ N (0, τε). Here, the transform u too is treated as a random variable
with a probability measure, given by the prior distribution. Additionally, the likelihood
is assumed to spatially iid.

Therefore, the log-posterior distribution of the transform is:

ln p (u | M,F) =−
∫
ΩF

|Fx −Mu[x]|2
2τε

dx− Ereg(u)

2τreg
+ const, (1)

where Ereg(u) is the regularization energy of the transformation. Here, the first term
is proportional to the log-likelihood term ln p(F,M|u) while the second is proportional
to the log-prior on the transformations ln p(u). The temperatures τε and τreg are model
hyper-parameters, where τε is related to the variance of the image noise, while τreg
controls the variance of the prior on transformations.

This model provides a principled basis for the interpretation of the posterior density
as uncertainty in parameter estimates, for setting priors on the model hyper-parameters
and as shown in [4], for eliminating the uncertainty due to HPs by marginalizing them
out.

1.2 Contribution

One of the main drawbacks, however, of this framework is that it restricts the image
similarity term to sum-of-squared differences (SSD) metric and is applicable to only
same-mode images. Here, we present an extension for multi-modal image registration
through a generalization of the SSD metric that accounts for arbitrary intensity trans-
formations. Specifically, we introduce a latent random process ηu[x](m) ∈ IF defined on
moving image intensities m ∈ IM which serves as a link function between the moving
image intensity range to that of the fixed image. The posterior density of the link process
is directly estimated from the data, and is marginalized out by means of the free-energy
equivalence. In this paper, non-parametric kernel density estimation is used, although
this framework supports any alternative parametric or non-parametric density estima-
tion method. The new registration model is evaluated on a synthetic T1-to-T2 MR image
registration problem with ground-truth. A clinical application (cryoablation) to register
pre-operative abdominal MR with an intra-procedural CT image is also demonstrated.
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1.3 Related Work

In addition to fixed (known) transfer functions, parametric and non-parametric
methods to estimate the intensity transformation from the data are commonly used in
multi-modal registration [7]. For example, Guimond et al. [3] learn a polynomial map-
ping between the intensities. Roche et al. [6] use the conditional expectation
E {m ∈ IM|f ∈ IF} as the intensity transformation as which leads to the correlation
ratio as the image-matching metric. These metrics use point-estimates of the transfer
function, in contrast to the full posterior as done here, thereby limiting their ability to
deal with non-stationary and noisy intensity mappings.

η M

u

ε

F

τrτr

Fig. 1. Proposed probability
model for multi-modal im-
age registration. Here, F and
M are the fixed and mov-
ing images respectively, ε is
white normal noise with vari-
ance τε, u are the trans-
formation parameters with
prior distribution variance
controlled by τreg, and η is
the link process that maps
moving image intensities to
fixed image intensities.

While image matching based on the joint-histogram
of intensities, such as mutual information, generalize to
a very wide class of intensity transformations, they do
not have an associated probabilistic model and therefore
cannot be used to compute a posterior. Zöllei et al. [10]
present an alternative probabilistic model for image reg-
istration using Dirichlet priors on the latent parameters of
joint multinomial models on discrete intensities. Marginal-
ization led to objective functions that approximate entropy
or likelihood formulations and only MAP estimates were
sought.

2 Method

2.1 Multi-modal Registration Model

The proposed Bayesian model for the multi-modal regis-
tration problem is as follows:

Fx = ηu[x]

(
Mu[x]

)
+ εx. (2)

In this model, the moving and fixed image M and F and
additive normal noise ε are all spatially iid random pro-
cesses, while the transformation parameters u have a prior distribution specified by the
regularization term. The link function η is a stochastic process defined on ΩF × IM,
with ηu[x] defined on the moving image intensity range IM, such that ηu[x]

(
Mu[x]

) ∈ IF

maps moving image intensity Mu[x] ∈ IM to a fixed image intensity. We assume η to
be iid in the space dimension (ΩF) and ηu[x] to be independent in the moving intensity
dimension (IM ). In the following discussion, define fu[x] � ηu[x](Mu[x]). Also, we will
drop explicit conditioning on u, F and M except when there is ambiguity.

Under the spatial iid assumptions of F andM, and approximating εx by its conditional
expectation E

{
εx | Mu[x]

}
= 0, the strong law of large numbers yields that the marginal

posterior density of the link process

p
(
ηu[x](Mu[x]) | u,F,M

)
= p

(
fu[x] | Mu[x]

) ≈ vol
{
[F = fu[x]] ∩ [M ◦ u = Mu[x]]

}
vol

{
[M ◦ u = Mu[x]]

} (3)
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We can marginalize out the latent process ηu[x] under its posterior using the free-energy
equivalence:

ln p(u | F,M) =

∫
p(η|u,F,M) ln p(u, η | F,M)dη −

∫
p(η|u,F,M) ln p(η|u,F,M)dη

=

∫
p(η|u,F,M) ln p(u, η | F,M)dη +H {η|u,F,M}, (4)

where H
{
ηu[x]|u,F,M

}
is the differential entropy of p(ηu[x]|u,F,M). In the case of the

model given in eqn. (2), the log-posterior of the deformations is:

ln p (u | F,M) =−
∫
ΩF

∫
IF

p
(
ηu[x](Mu[x])

) ∣∣Fx − ηu[x](Mu[x])
∣∣2

2τε
dηu[x](Mu[x])dx

+

∫
ΩF

H
{
ηu[x](Mu[x])

}
dx− Ereg(u)

2τreg
+ const.

Now, under the spatial iid assumptions of the model, the integral

∫
ΩF

H
{
ηu[x](Mu[x])

}
dx =

∫
ΩF

∫
IF

p
(
fu[x] | Mu[x]

)
ln p

(
fu[x] | Mu[x]

)
dfu[x]dx

is equal to vol{ΩM}H{
fu[x] | mx

}
, where

H
{
fu[x] | mx

}
=

∫
IM

p
(
Mu[x]

) ∫
IF

p
(
fu[x] | Mu[x]

)
ln p

(
fu[x] | Mu[x]

)
dfu[x]dMu[x],

is the conditional entropy of the link-process posterior.
Putting it all together, the log-posterior of the deformation model becomes:

ln p (u | F,M) =− 1

2τε

∫
ΩF

∫
IF

p
(
fu[x] | Mu[x]

) ∣∣Fx − fu[x]

∣∣2 dfu[x]dx

+ vol{ΩF}H
{
fu[x] | Mu[x]

}− Ereg(u)

2τreg
+ const. (5)

It can be easily seen that this distribution satisfies an intensity transformation invariance,
i.e. p(u|F,M) = p(u|F, α(M)) where α : IM → R is a monotonic transfer function on
the moving image intensity range such that α′(m) 	= 0, at all m ∈ IM.

2.2 Estimating the Link Process Posterior

The marginal posterior p
(
fu[x] | Mu[x]

)
of the link process ηu[x](Mu[x]) (§ eqn. (3)), are

obtained in non-parametric form using kernel density estimation (KDE) [8]:

p
(
fu[x]| Mu[x]

)
=

∑N
i=1 k1(fu[x] − fi)k2(Mu[x] −mi)∑N

j=1 k2(Mu[x] −mj)
, (6)
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where k1 and k2 are two non-negative symmetric kernel functions that integrate to unity,
with scales h1 and h2 respectively. And, fi � F[xi] and mi � Mu[xi] are fixed and
moving image values sampled at locations xi, i = 1 . . . N .

Therefore,
∫
ΩF

∫
IF

p
(
fu[x]| Mu[x],u,F,M

) ∣∣Fx − fu[x]

∣∣2 dfu[x]dx

=

∫
ΩF

∑N
i=1 k2(Mu[x] −mi)

∣∣Fx − fi
∣∣2∑N

j=1 k2(Mu[x] −mj)
dx+ h2

1vol{ΩF},

and

∫
IM

H
{
fu[x]| m

}
p (m | u,F,M), dMu[x] = − 1

N

N∑
i=1

ln

∑N
j=1 k1(fi − fj)k2(mi −mj)∑N

j=1 k2(mi −mj)
.

As a result, the KDE version of log-posterior of the transformation model is:

ln p (u | F,M) =− 1

2τε

∫
ΩF

∑N
i=1 k2(Mu[x] −mi)

∣∣Fx − fi
∣∣2∑N

j=1 k2(Mu[x] −mj)
dx

− vol{ΩF}
N

N∑
i=1

ln

∑N
j=1 k1(fi − fj)k2(mi −mj)∑N

j=1 k2(mi −mj)
− Ereg(u)

2τreg
+ const.

(7)

3 Results

In this section, we show results registering both synthetic and clinical multi-modal im-
ages. A tetrahedral finite-element (FE) model together with a bio-mechanically plau-
sible elastic energy penalty on mesh deformations was used in the experiments. The
posterior distribution on deformations was characterized by the Metropolis-Hastings
(MH) Markov Chain Monte Carlo (MCMC) method described in [5].

3.1 Synthetic Data

From the BrainWeb[1] database, we acquired simulated T1 and T2 weighted MR im-
ages of the brain that are in perfect alignment. The images were resampled to a res-
olution of 2 × 2 × 4 mm and size 90×108×45 voxels, and were Gaussian smoothed
with 1mm variance. Normally distributed white noise of standard deviation of 0.02 was
added to the T1 weighted image which was treated as the fixed image in all the syn-
thetic experiments. Two synthetic moving images were created by applying the same
b-spline deformation field (maximum and average displacement of 10.1mm and 4.3mm
respectively) to (a) the T1 image; and (b) the T2 image, as shown in Fig. 2.
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(a) Fixed T1 (b) Deformed T1 (c) Deformed T2

Fig. 2. The three images used in the synthetic experiments. (a): The T1-weighted MR image. (b):
The deformed T1-weighted image. (c): The deformed T2-weighted image.

For registration, an FE-based deformation model was employed where the moving
image domain containing brain tissue was discretized with 104 tetrahedral elements and
44 FE vertices (giving 3×44 deformation parameters in 3D). The posterior distribution
on deformations was characterized by MH-MCMC sampling with a noise temperature
of τε = 0.04 and prior temperature of τreg = 200. The bandwidths h1 and h2 of the
kernels k1 and k2 were selected using cross-validation. A total of 800×103 samples
were generated for each MCMC chain, and with burn-in of 300×103 samples and a
thinning factor of 10, effectively giving 50×103 samples from the posterior distribution
in each chain.

The posterior mode (MAP), serving as a point estimate, and inter-quartile ranges
(IQR), serving as a measure of uncertainty, were computed from the MCMC samples
using kernel density estimation for each of the 3 × 44 components of the deformation
field. In Fig. 3(a), the error in the T1-T1 registration versus that in the T1-T2 registra-
tion (determined with respect to the ground truth deformations) of the MAP estimate
shown. For the T1-T1 experiment, the maximum and median absolute error was 1.6mm
and 0.37mm respectively, while for the T1-T2 experiment it was 1.6mm and 0.45mm.
Here, we can observe a strong linear relationship between the errors in the estimating
same deformation from two different modalities (r2 = 0.80). The T1-T1 registration
IQRs are plotted against the T1-T2 registration IQRs in Fig. 3(b). The IQRs are highly
correlated across modalities (r2 = 0.89), but the correlation diminishes at higher uncer-
tainties. For the T1-T1 case, the maximum and median IQRs were 0.67mm and 0.34mm
respectively, while for the T1-T2 case they were 0.76mm and 0.37mm. These results
imply that there is a slight but statistically insignificant decrease in registration accu-
racy and precision for multi-modal data (one-sided two-sample t-test, no effect for any
p < 0.26).

For all 3×44 deformation components, the KL-divergence between their posterior
distributions from the T1-T1 and T1-T2 cases is graphed in Fig. 4. It can be seen that the
posterior distributions over most components are very similar but with a few outliers.
Estimating the null distribution of KL-divergences by bootstrapping from the MCMC
chain of the T1-T1 registration case, the difference between the posterior distributions
of the T1-T1 and T1-T2 cases were not significant at any p < 0.31 (false discovery rate
corrected).
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Fig. 3. (a): Error in MAP estimates of the T1-T1 versus that from T1-T2 registration cases (with
respect to ground truth) plotted for each of the 3×44 vertex deformation components. (b): The
IQRs posterior distributions of each displacement component for the T1-T1 case versus the T1-T2
case.
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Fig. 4. (a): Histogram of the KL-divergences between the posterior distributions (per displace-
ment component) of the T1-T1 and T1-T2 registration cases. The median and maximum KL-
divergences were 0.2 and 1.1 respectively. (b) Cumulative distribution function (cdf) of the
posterior distribution corresponding to the displacement component with the maximum KL-
divergence. (c) Cdf of the posterior distribution corresponding to the displacement component
with the median KL-divergence.

3.2 Clinical Data

In ablation therapy of liver tumors, the procedure is often planned on pre-operative MR
images which provide superior soft-tissue contrast while CT is used for intra-operative
guidance. Although registering the pre-operative MR with the intra-operative CT en-
ables real-time guidance of the ablation probe using the enhanced contrast provided by
MR, the uncertainty in the results can provide equally important information for the
decisions of the surgeon. Next, we demonstrate the quantification of this uncertainty
using a data-set obtained during such a procedure (§ Fig. 5). A T1-weighted MR im-
age (size: 512×512×96, spacing: 0.8× 0.8× 2.5 mm) was acquired pre-procedurally,
while a CT image (size: 512×512×41, spacing: 1.0 × 1.0 × 5.0 mm) was acquired
intra-procedurally. The MR image was sub-sampled by a factor of 2 in all dimensions,
while the CT image was subsampled by a factor of 2 in the x- and y-directions. Both
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(a) MRI (b) CT (c) Deformed MRI

(d) IQR (e) Checkerboard Before (f) Checkerboard After

Fig. 5. Registration of pre-operative abdominal MRI in (a) with the CT in (b) acquired prior to
insertion of cryo probe. (c): The registered MRI. (d): Spatial IQR along the z-direction. The
brightest spot in the image has IQR of 3.8mm, while darkest has IQR of 1.0mm. (e): Original
MR image checker-boarded with CT image. (f): Registered MR image checker-boarded with CT
image. Notice that the boundaries liver and spleen are well aligned after registration.

images were smoothed with a Gaussian filter of 2.0mm variance and intensities were
normalized between the [0, 1] interval. The anatomy in the MR image was fitted with an
FE-mesh consisting of 155 vertices and 512 tetrahedra. Starting from a manually deter-
mined rigid alignment of the images, 106 deformation samples were generated through
MH-MCMC, with a burn-in factor of 50% and a thinning factor of 10. The remaining
50× 103 samples were used to compute the posterior statistics.
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Fig. 6. Marginal probability distribution on displacements (in mm) along the z-direction for the
FE-node located in the zone with high uncertainty (IQR)
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Fig. 5 shows qualitative results from the alignment as well as corresponding uncer-
tainty estimates. It can be seen that that there is relatively high uncertainty in the center
of the slice in the abdominal aortal region. The marginal distribution over displace-
ments in the z-direction of one FE-node in this location of high uncertainty is shown
in Fig. 6. It can be observed that it has one distinct mode, but in addition has two two
other, smaller, modes.

4 Conclusion

In this paper, we have presented a principled approach to quantifying the uncertainty
associated with multi-modal image registration, based on a forward model of the im-
age generation process. This approach augments the standard Bayesian framework for
same-mode registration by introducing a stochastic link process that maps moving a
image intensity to the fixed image intensity range, and is associated with a probabil-
ity measure. This can capture a wider range of complex relationships than possible by
using a parametric or specific functional representation of the map, similar to the MI
metric. The framework furthermore marginalizes out the link-process using the free-
energy equivalence. Therefore, in contrast to MI, the fully specified Bayesian model
enables measuring the posterior over transformations, without dependencies on the in-
tensity transfer function.

The formulation presented here and by Roche et al. [6] are examples of kernel re-
gression. The main difference is that they use kernel regression to estimate the expected
value of the fixed image intensity given moving image intensity, while we use kernel
regression to estimate the expected difference between the observed and predicted fixed
image values. In a regression framework, this is equivalent to the difference between us-
ing only the squared bias of the estimator (i.e. of the intensity transformation) as in [6]
versus using the full mean squared error (MSE) as here, in the image similarity func-
tion. Moreover, marginalizing out the link process requires including the entropy of the
conditional distribution in the cost function.

The differentiability of the kernel used in eqn. (7) permits computation of gradients of
p (u | F,M). Therefore, we can perform direct MAP estimation of the registration param-
eters, without MCMC sampling in an expectation maximization framework. In the n-th
iteration of EM, the E-step computes the link-process posterior p

(
fu(n)[x] | Mu(n) [x]

)
,

while the M-step optimizes p (u | F,M) with respect to u.
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