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Abstract. Non-rigid mutual information (MI) based image registration is prone
to converge to local optima due to Parzen or histogram based density estima-
tion used in conjunction with estimation of a high dimensional deformation field.
We describe an approach for non-rigid registration that uses the log-likelihood of
the target image given the deformed template as a similarity metric, wherein the
distribution is modeled using a Gaussian mixture model (GMM). Using GMMs
reduces the density estimation step to that of estimating the parameters of the
GMM, thus being more computationally efficient and requiring fewer number of
samples for accurate estimation. We compare the performance of our approach
(GMM-Cond) with that of MI with Parzen density estimation (Parzen-MI), on
inter-subject and inter-modality (CT to MR) mouse images. Mouse image regis-
tration is challenging because of the presence of a rigid skeleton within non-rigid
soft tissue, and due to major shape and posture variability in inter-subject regis-
tration. The results show that GMM-Cond has higher registration accuracy than
Parzen-MI in terms of sum of squared difference in intensity and dice coefficients
of overall and skeletal overlap. The GMM-Cond approach is a general approach
that can be considered a semi-parametric approximation to MI based registration,
and can be used an alternative to MI for high dimensional non-rigid registration.

1 Introduction

Longitudinal and inter-subject imaging studies are often performed to study changes in
anatomy and function in a subject over a period of time, or across populations. Non-
rigid registration is required to normalize anatomical changes such as posture variability
in longitudinal studies or anatomical variability across populations in inter-subject stud-
ies. Several non-rigid registration algorithms have been developed, a review of which
can be found in [7].

Mutual information (MI) measures the amount of information shared between two
random variables and can be used as a similarity metric in image registration. It has been
successfully applied to multi-modality rigid registration [21] and some approaches to
non-rigid registration using MI have also been proposed in [5], [15]. However, MI is a
non-convex function of the registration parameters and the registration could converge
to an inaccurate local optimum. The problem of converging to local optima is exacer-
bated in the non-rigid registration case because of the increased dimensionality of the
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deformation field compared to the rigid case. Additionally, MI between the reference
image (target) and the image to be registered (template) is a function of the joint den-
sity of their intensities, which is unknown. Typically a non-parametric approach such
as Parzen windowing is used to estimate the entire joint density from the images [14].
This approach requires appropriate choice of the Parzen window width, which is usu-
ally taken as a design parameter and kept fixed over the entire sample. This has the
drawback that for long-tailed distributions the density estimate tends to be noisy at the
tails, and increasing the window width to deal with this might lead to oversmoothing
the details in the distribution [4]. The former scenario would result in a cost function
that has more local optima, while the latter could lead to inaccurate registration results.
The non-parametric approach also requires a large number of samples to accurately
estimate the distribution.

Maximizing MI is closely related to maximizing the joint probability of the target
and template images, or the conditional probability of the target given the template
image [6], [8], [13]. An interpretation of MI as a special case of maximum likelihood
estimation is given in [13]. In [6] a maximum a posteriori (MAP) framework for non-
rigid registration is used wherein a Parzen-like conditional density estimate is computed
and used as the likelihood term. In [23] multinomial joint intensity distributions were
used in a MAP framework for registration and a relationship with joint entropy was
derived for the uniformative prior case. In [8] a registered training set was used to model
the joint intensity distribution using Parzen density estimation and Gaussian mixture
models (GMMs), and the estimated distribution was used to perform rigid registration
of a test set. Approximating the joint density using multiple Gaussians was described
in [18] as an approach to increasing the robustness of a joint entropy based regularizer
for limited angle transmission tomography image reconstruction.

In this paper we describe an approach for non-rigid registration that uses the log-
likelihood of the target image given the deformed template as a similarity metric for
non-rigid registration, wherein the distribution is modeled using a GMM. Gaussian dis-
tributions are commonly used in image segmentation to represent the distribution of
intensities corresponding to a particular tissue type in MR or CT images [2], [12],[16].
In [2], [12] a unified MAP framework was described for brain segmentation, artifact
correction, and non-linear registration with spatial prior maps obtained from a proba-
bilistic atlas. We focus on registration and use GMMs to model the joint intensity distri-
bution of the two MR/CT images to be registered, since their distributions are typically
characterized by localized blobs. Using GMMs reduces the density estimation step to
that of estimating the parameters of the GMM, which consist of the mean, covariance,
and weight of each Gaussian. For images that have a few distinct regions of intensity
such as mouse CT images, the number of parameters to be estimated is small and can
be robustly estimated from fewer samples compared to the non-parametric approach.
Our approach of using the log-likelihood of the target given the template in conjunction
with a GMM can be viewed as a semi-parametric alternative to MI based registration
when dealing with the high dimensional non-rigid registration case.

We compare the performance of our conditional likelihood metric with GMM param-
eterization, with that of MI with non-parametric density estimation. We will henceforth
refer to these methods as the GMM-Cond and the Parzen-MI methods respectively.
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We evaluate these methods using mouse CT and MR images. Registration of mice and
other small animals is challenging because of the presence of rigid skeleton within
non-rigid soft tissue. Additionally, inter-subject whole body mouse images may have
considerable shape and postural differences. Registration approaches specific to small
animal registration were described in [3], [10], [11], [17], [19], and [22]. Specifically,
in [17] and [22] MI was used as a similarity metric for intra-modality mouse CT reg-
istration. We evaluate the GMM-Cond approach on inter-modality, inter-subject mouse
registration.

2 Methods and Results

Let the target and template images be I1 and I2, and their intensity at position x be
i1(x) and i2(x) respectively. Let the transformation that maps the template to the target
be T (x) = x−u(x), where u is the displacement field. The deformed template is then
represented by Iu2 , whose intensities are given by i2(x−u(x)). We define the similarity
metric Du(I1, I2) between the target and deformed template as the log likelihood of the
target given the deformed template. Assuming that the voxel intensities in I1 and I2 are
independent identically distributed random variables with joint density p(i1, i2), the
similarity metric is given by,

Du(I1, I2) = log p(I1|Iu2 ) =
∑

x

log
p(i1(x), i2(x− u(x)))

p(i2(x− u(x)))
. (1)

We assume a Gaussian mixture model for the joint density p(i1, i2). Let the number
of components of the Gaussian mixture model be K , the mixing proportions be πk,
and g(i1, i2|mk, Σk) be a Gaussian with mean mk and covariance Σk, where k =
1, 2, · · · ,K . Let the unknown deterministic GMM parameters for each component k
be represented as θk = (πk,mk, Σk), and let Θ = [θ1, θ2, · · · , θK ] be the vector of all
unknown parameters. Then, the joint density is given by

p(i1, i2|Θ) =

K∑

k=1

πkg(i1, i2|mk, Σk), (2)

where πk > 0 and
∑K

k=1 πk = 1.
We use the Laplacian of the displacement field as a regularizing term to penalize

deformations that are not smooth. We parameterize the displacement field using the dis-
crete cosine transform (DCT) basis. The DCT bases are eigenfunctions of the discrete
Laplacian, so using the DCT representation of the displacement field in conjunction
with Laplacian regularization simplifies the regularization term to a diagonal matrix
[1]. Let βi(x), i = 1, 2, · · · , Nb, represent the DCT coefficients that parameterize the
deformation field and let γi, i = 1, 2, · · · , Nb be the corresponding eigen values of the
discrete Laplacian matrix L. Then the norm ||Lu(x)||2 =

∑Nb

i=1 γi
2βi

2. The objective
function is then given by,

max
u,Θ

∑

x

log p(i1(x)|i2(x− u(x)), Θ) − μ

Nb∑

i=1

γi
2βi

2, (3)
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where μ is a hyperparameter that controls the weight on the regularizing term.
To simplify the problem, we replace the combined optimization with respect to the

deformation field and GMM parameters with an iterative two step procedure. Here,
the GMM parameters are first estimated from the target and deformed template images
through maximum likelihood estimation, and the deformation field is then computed
given the estimated GMM parameters. The two step optimization is given by

Θ̂(ûm) = argmax
Θ

∑

x

log p(i1(x), i2(x− ûm(x))|Θ) (4)

ûm+1 = argmax
u

∑

x

log p(i1(x)|i2(x− u(x)), Θ̂(ûm))− μ

Nb∑

i=1

γi
2βi

2, (5)

where ûm represents the estimated deformation field at overall optimization iteration
m. The estimation of GMM parameters is described in the next section. The estimation
of the deformation field in Equation 5 given the GMM parameters is performed using
conjugate gradient (CG) optimization with Armijo line search.

2.1 Estimation of Parameters of Gaussian Mixture Model

The maximum likelihood estimate of the GMM parameters Θ̂ in Equation 4 can be
obtained by the expectation maximization (EM) algorithm [9]. Let the data sample at
voxel j corresponding to the position xj be Su

j = [i1(xj), i2(xj − u(xj))]
T , where

j = 1, 2, · · · , N , and N is the number of voxels in each image. The component of the
GMM from which Sj arises is taken as the hidden variable in the EM algorithm. The
EM update equations are given in Equations 6 - 9.

τ ijk =
πi
kg(S

u
j ,m

i
k(u), Σ

i
k(u))∑K

h=1 π
i
h(u)g(S

u
j ,m

i
h(u), Σ

i
h(u))

(6)

πi+1
k (u) =

1

N

N∑

j=1

τ ijk (7)

mi+1
k (u) =

∑N
j=1 τ

i
jkS

u
j∑N

j=1 τ
i
jk

(8)

Σi+1
k (u) =

∑N
j=1 τ

i
jk(S

u
j −mi+1

k (u))(Su
j −mi+1

k (u))T

∑N
j=1 τ

i
jk

, (9)

where πi
k(u),m

i
k(u), and Σi

k(u) are the GMM parameter estimates at EM iteration
i and deformation field u. The objective function to be optimized in Equation 4 is a
non-convex function of Θ, so a good initial estimate is needed to converge to a global
optimum. We use the k-nearest neighbors algorithm [14] to identify cluster centers in
the joint histogram of the target and template images, and the number of samples that
fall into a particular cluster. The cluster centers and the proportion of samples in a



290 S. Somayajula, A.A. Joshi, and R.M. Leahy

cluster relative to the total number of samples were used as the initializations m0
k and

p0k respectively, and Σ0
k was assumed to be identity for all k. The number of clusters was

chosen to visually match the initial histogram of the two images. Assuming a reasonable
initial global alignment, the number of clusters was then kept constant throughout the
registration process.

Figure 1 shows the GMM estimate of the joint pdf of intensities of the target and
template images shown in Figure 2 (a) and (b). The joint histogram of the intensities of
these two images is shown in Figure 1 (a), and the pdf estimated using GMM is shown
in Figure 1 (b) with the component means overlaid. The number of components was
chosen to be K = 7 to match the joint histogram.

Fig. 1. Estimation of joint pdf of images in Fig. 2 (a) and (b) : (a) Joint histogram of images, (b)
GMM estimate (the component means shown with ’x’ marks)

2.2 Relation to Mutual Information

Let the random variables corresponding to the intensities of I1 and Iu2 be ζ1 and ζ2
respectively. Mutual information between ζ1 and ζ2 is defined as ,

D(ζ1, ζ2) =

∫
p(z1, z2) log

p(z1, z2)

p(z1)(z2)
dz1dz2 = E(log

p(z1, z2)

p(z1)p(z2)
). (10)

MI between two random variables can be interpreted as the reduction in uncertainty of
one random variable given the other. Using MI as a similarity metric for registration
aims to find a deformation that makes the joint density of the target and deformed
template images maximally clustered, thus implying that the uncertainty of one image
given the other is minimized [21].

An alternative formulation can be obtained by approximating the expectation in
Equation 10 by a sample mean where the intensity at each voxel in the target and de-
formed template images constitutes the random sample. Hence we get

D̂(ζ1, ζ2) =
1

N

∑

x

log
p(i1(x), i2(x − u(x)))

p(i1(x))p(i2(x− u(x)))

=
1

N

∑

x

log
p(i1(x), i2(x− u(x)))

p(i2(x− u(x)))
− 1

N

∑

x

log p(i1(x)). (11)
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Since the target is fixed and independent of u(x), dropping the terms containing the
marginal density p(i1), we get the approximate MI based similarity metric as

D̂(ζ1, ζ2) =
1

N

∑

x

log
p(i1(x), i2(x− u(x)))

p(i2(x− u(x)))
. (12)

Thus, computing the deformation field that maximizes mutual information is approxi-
mately equivalent to maximizing the conditional density of the target given the template
image as defined in Equation 1. In [13] a similar relationship between maximum likeli-
hood and conditional entropy was derived. The pdf p(i1, i2) in Equation 12 is unknown,
and needs to be estimated. The pdf can be estimated using a non-parametric approach
such as Parzen windowing or a GMM based approach can be taken to parametrize the
pdf and estimate those parameters.

The Parzen window estimate of a pdf at random variable values z1, z2 is defined by
[14]

p(z1, z2) =
1

N

N∑

j=1

g(
z1 − i1(j)

σ
)g(

z2 − iu2 (j)

σ
), (13)

where g( z2σ ) is a Gaussian window of width σ, which is usually taken as a design pa-
rameter. Note that this can be considered as a Gaussian mixture model with as many
Gaussians as the number of samples (K = N ), with mean given by the sample mk =

[i1(k), i
u
2 (k)]

T , fixed standard deviation Σk =

[
σ2 0
0 σ2

]
, and equal weighting proba-

bilities πk = 1
N . However, we expect the GMM-Cond approach to have two advantages

over the Parzen-MI approach

1. The density estimation requires estimation of 6K GMM parameters that can be
robustly estimated from the given images for small K . In contrast, the Parzen-MI
approach computes the entire Nbin×Nbin pdf from the samples, where Nbin is the
number of bins at which the pdf is computed

2. Estimation of the displacement field may be more robust to trapping in local minima
because of the much lower dimensionality with which the joint density is parame-
terized.

We expect to gain computationally as well as in robustness from this reduction in di-
mensionality of the problem. However, if the joint density does not fit a GMM, the
number of mixture components might be large, approaching a Parzen window estimate.

2.3 Results

We perform validation studies of our method using multi-modality (CT and MR) inter-
subject mouse images. Mouse CT images typically consist of mainly soft tissue versus
bone contrast, and can be assumed to follow a GMM. Though mouse MR images have
a larger number of intensity levels than the CT, the number of components required
in the GMM is not prohibitively large. We consider two mice that were imaged using
both MR and CT (referred to as MR1 and CT1, MR2 and CT2) and two other mice
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that were imaged using only CT (referred to as CT3 and CT4). This gives 6 possi-
ble inter-modality, inter-subject registrations (CT1-MR2, CT3-MR2, CT4-MR2, CT2-
MR1,CT3-MR1, CT4-MR1). The MR images were obtained on a Biospec 7T system
at a resolution of 0.23 × 0.17 × 0.50 mm. The CT images corresponding to the MR
were acquired on a Siemens Inveon system and the others were obtained from a mi-
croCT system, at a resolution of 0.2 × 0.2 × 0.2 mm. We first perform a 12 parameter
affine registration of the CT images to the MR image using the AIR software [20]. We
downsampled the MR and affinely registered CT images to size 128× 128× 64 to re-
duce computation. The downsampled MR and affinely registered CT images were then
used as the target and template images respectively for non rigid registration. We com-
pare our semi-parametric GMM-Cond approach to non-parametric Parzen-MI approach
in the context of high-dimensional non-rigid registration, rather than comparing to ex-
isting registration algorithms that address mouse registration with application specific
constraints such as skeletal rigidity. The goal is to evaluate GMM-Cond as a general
framework for non-rigid inter-modality registration in small animal studies.

Fig. 2. Multi-modality inter-subject registration: Coronal view of (a) target MR image with out-
line of body and lungs, (b) template CT image affinely registered to MR, (c) Parzen-MI registered
image, and (d) GMM-Cond registered image. Images (b)-(d) are shown with target body and lung
outlines

For both methods, we used 15 × 15 × 15 DCT bases to represent the displacement
field. We choose the weight μ on the regularizing term such that the determinant of
the Jacobian of the displacement field is positive. For the Parzen-MI registration we
followed a hierarchical approach, first aligning the images that were smoothed with a
Gaussian of width 3 voxels, and used the displacement field thus obtained to initialize
the registration of the original images. We observed that directly aligning the original
images causes the algorithm to reach an inaccurate local minimum in a few iterations. A
Parzen window width of σ = 5 was used to compute the distribution at every iteration.
For the GMM-Cond approach, we used 5 overall iterations between the density estima-
tion and deformation field estimation. Each displacement field estimation involved 50
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iterations of the CG algorithm. Coronal view of the registered images for one dataset
along with the target and template images are shown in Figure 2. We used K = 7
components in the GMM for this dataset. The outline of the body and lungs of the tar-
get image was overlaid in green on all the images. We applied the displacement field
resulting from both registration algorithms to the higher resolution images for display
purposes. We quantify the performance of the registration through three measures:

1. Overall overlap: The target and template images can be segmented into mouse and
background regions. The overall overlap of the target and deformed template can
then be measured by computing the dice coefficients of the region labeled as mouse
in the two images.

2. Overlap of skeleton: The skeleton can be segmented in the target and template
images by thresholding. The dice coefficients of the skeleton in the target and de-
formed template images give a measure of overlap in the skeleton.

3. Mean squared difference (MSD) between intensities: The target MR image has a
corresponding CT image acquired with it. The normalized mean squared differ-
ence between intensities of the CT corresponding to the target, and the deformed
template images gives a measure of registration accuracy.

The average and standard deviation values of the three measures for the 6 inter-subject
CT to MR registrations are given in Table 1.

It can be seen from the images and the outline overlay that the GMM-Cond method
shows better overall shape and lung alignment compared to the MI-Parzen and AIR
methods. On average, the GMM-Cond method has higher dice coefficients for the skele-
ton as well as overall shape, and lower normalized MSD between intensities than the
MI-Parzen and AIR registration methods, indicating better alignment. It is promising
that the GMM-Cond shows improved performance for the inter-subject, multi-modality
registration considered, since these images have considerable difference in intensities,
overall shape, and skeletal structure.

Table 1. Quantitative measures of overlap

Mean ± SD of dice coefficients for overall overlap
Affine Parzen-MI GMM-Cond

0.84 ± 0.03 0.87 ± 0.04 0.91 ± 0.03
Mean ± SD of dice coefficients for overlap of skeleton
0.24 ± 0.07 0.31 ± 0.07 0.34 ± 0.04
Mean ± SD of squared difference between intensities

0.56 ± 0.07 0.50 ± 0.07 0.44 ± 0.11

3 Discussion

We used the conditional density of the target given the deformed template as a simi-
larity metric for non-rigid registration, wherein the conditional density is modeled as
a Gaussian mixture model. A DCT representation of the deformation field was used in
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conjunction with a Laplacian regularizing term to reduce computation. We compared
the performance of our approach with that of Parzen-MI based approach using multi-
modality MR/CT mouse images.

The GMM-Cond approach showed higher registration accuracy than the Parzen-MI
approach in terms of dice coefficients and mean squared difference between intensities
of the target and registered images. The GMM parametrization is not only computa-
tionally more efficient than the Parzen method, but also improves performance by re-
ducing the overall dimensionality of the estimation problem, and through more robust
and accurate density estimation. Additionally, the only design parameter that needs to
be chosen is the number of clusters in the GMM, which can be obtained from the initial
joint histogram.

The performance of the GMM-Cond method is promising as it performs better than
the Parzen MI approach for multi-modality whole body images with postural variations.
This indicates that this is a robust approach that can potentially be applied to multi-
modality non-rigid registration problems. It can be used as an alternative to MI based
registration when dealing with high dimensional deformation fields. The GMM-Cond
approach can be viewed as a general framework that can be used in conjunction with
other models for the deformation field, and with additional constraints specific to the
application (e.g., rigidity constraints for the skeleton in mouse images). It should be
noted however, that if the joint density of the images does not follow a GMM, a large
number of clusters would be required to fit the data, thus increasing the number of
parameters to be estimated and might not perform better than Parzen-MI in that case.
We expect this approach to be particularly useful in applications where the images have
a few distinct regions of intensity such as mouse CT images.
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