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Abstract. The registrations of functions and images is a widely-studied problem
that has seen a variety of solutions in the recent years. Most of these solutions
are based on objective functions that fail to satisfy two most basic and desired
properties in registration: (1) invariance under identical warping: since the reg-
istration between two images is unchanged under identical domain warping, the
cost function evaluating registrations should also remain unchanged; (2) inverse
consistency: the optimal registration of image A to B should be the same as that
of image B to A. We present a novel registration approach that uses the L2 norm,
between certain vector fields derived from images, as an objective function for
registering images. This framework satisfies symmetry and invariance properties.
We demonstrate this framework using examples from different types of images
and compare performances with some recent methods.

1 Introduction

The problem of image registration is one of the most widely studied problems in medi-
cal image analysis. Given a set of observed images, the goal is to register points across
the domains of these images. This problem has many names: registration, matching,
correspondence, re-parameterization, warping, deformation, etc but the basic problem
is essentially the same – which pixel/voxel on an image matches which pixel/voxel on
the other image. Although this problem has been studied for almost two decades, there
continue to be some fundamental limitations in the popular solutions that make them
suboptimal, difficult to evaluate and limited in scope.

To explain this issue consider images on a domain D taking the form f � D � R
n. A

pairwise registration between any two images f1, f2 is defined as finding a mapping γ,
typically a diffeomorphism from D to itself, such that f1(s) and f2(γ(s)) are optimally
matched to each other (under a chosen criterion) for all s � D. Registration problems are
commonly posed as variational problems, with the most common form of an objective
function being

�
D

� f1(s) − f2 � γ(s)�2ds + λR(γ), γ � Γ , (1)

where �ċ� is the Euclidean norm,R is a regularization penalty on γ commonly involving
its first or second derivatives, Γ is a set of diffeomorphisms, and λ is a positive constant.
Several variations of this objective function have also been used, where the first term
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is replaced by mutual information [12], minimum description length [5], etc., and/or
the second term is replaced by the length of a geodesic in the warping space (as in the
LDDMM approach [3]). Another idea is to impose regularization externally using a
Gaussian smoothing (diffeomorphic demons [11]) of images. Some methods optimize
the objective function over a proper subset Γ0 ⊂ Γ (e.g. the set of volume-preserving
diffeos ), some on Γ, and some on larger group Γb that containsΓ (e.g. the one including
non-diffeomorphic mappings also).

Although the numerical techniques for optimization in Eqn. 1 have become quite
mature over the last ten years, these objective functions themselves have several funda-
mental shortcomings. We start with an important question: What should be the proper-
ties of an objective function for use in registering images? The answer to this question
is difficult since we may desire different results in different contexts. In fact, one can ar-
gue that we may never have a “perfect” objective function that matches human intuition
and vision. Still there is a basic set of properties that seems essential in a registration
framework; some of them have been discussed previously in [4,9] and others. In the
following let L( f1, f2 � γ) denote the objective function for matching f1 and f2 by opti-
mizing over γ (here γ is assumed to be applied to f2). The most important property that
we need in L is invariance to identical warping, defined as follows. For any f1, f2 � F ,
and γ � Γ, this invariance implies that L( f1, f2) = L( f1 � γ, f2 � γ). In case L is a proper
metric, then this property is nothing but action of Γ on F , where the action is given
by ( f , γ) � f � γ, by isometries. Also, assuming that Γ is a group, this property im-
plies that L( f1, f2 � γ) = L( f1 � γ−1, f2). Note that some papers that do not use the full
group Γ but some finite-dimensional subset (e.g. spline-based warping functions) will
not satisfy this property.

Why is this property important? Consider the two functions f1 and f2 shown in the
left panel of Fig. 1. Even though the two functions are different, their peaks and valleys
are nicely aligned. The middle panel shows an example of warping function γ and the
right panel shows the warped versions f1 � γ and f2 � γ. It is interesting to note that the
peaks and valleys in the warped functions are still aligned. Furthermore, the full corre-
spondence between the two functions is unchanged despite the warping. In fact, one can
show that an identical warping of any two functions keeps their registration unchanged
and, hence, any good objective function must have this invariance to identical warping.

There is another important property that is termed inverse consistency ([4,2]). This
property implies that the optimal registration between two functions remains the same
even if they are treated in the reverse order. That is, if γ� � arg minγ�Γ L( f1, f2 � γ),
then γ�−1

� arg minγ�Γ L( f2, f1 � γ). It can be shown that if we have invariance to iden-
tical warping and an additional symmetry condition (L( f1, f2) = L( f2, f1)), then we
have inverse consistency. The symmetry condition is usually satisfied by most objective
functions but the invariance condition is the one that many of them fail to meet. Without
the invariance to identical warping, we will not have inverse consistency in general. So,
once again that the property turns out to be paramount in registration.

We note that many of the popular objective functions ([10,12,5,11,3,9]) do not satisfy
these two basic properties.

There is an additional property of interest. A majority of post-matching analyses
compare registered images, and apply statistical techniques such as PCA for model-
ing and analysis. The question is: What should be the metric for this post-registration
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� fi − f j� = 0.7566 γ � fi � γ − f j � γ� = 0.6263

Fig. 1. An identical deformation of domains preserves the registration of functions

analyses? In many current systems, one performs registration using an objective func-
tion and then chooses a separate metric to perform analysis. Ideally, one would like
a framework so that it can align, compare, average, and model multiple images in a
unified framework that leads to efficient algorithms and consistent estimators. The ob-
jective function presented in this paper not only satisfies the invariance and the inverse
consistency properties listed above but also forms an extrinsic metric on the quotient
space for image comparison. Therefore, we have called our framework a metric-based
method for registration and comparison of images.

2 Proposed Framework

In this section we lay out the framework for joint image registration and comparison
under an objective function which induces an extrinsic distance. This method applies
to mathematical objects whose range space has dimension at least as much as that of
their domain, for f � D � R

n, where n 
 m,m = dim(D). In case of 2D images, this
means that pixels have at least two coordinates which is the case for colored images, or
multimodal images. To register gray-scale images, we have a way to get away from this
constraint, which will be discussed in Chap. 4.

Let F = � f � D � R
n
� f � C�(D), � f � = 1 and Γ = �γ � D � D �γ � Diff(D),

where � ċ � denotes the standard L2 norm and Diff(D) is the diffeomorphism group
on D. The action of Γ on F is defined as follows.

Definition 1. For an f � F , define the right action F � Γ � F by ( f , γ) = f � γ.

Note that for any two f1, f2 � F , and a γ � Γ, we usually have � f1− f2� � � f1 �γ− f2 �γ�
and invariance consition is not satisfied. Thus, we do not work with the images directly.
Instead, we will use a novel mathematical representation of images, called a q-map, that
has been motivated by recent work in shape analysis of surfaces [7]. Here we adapt it
for analyzing images.

Definition 2. For an f � F , define a mapping Q � F � L
2 such that Q( f )(s) =

�

a(s) f (s),∀s � D where a(s) is the multiplication factor of f at s given by �J f (s)�area.

For any n � m matrix A (n 
 m), �A�area is defined as �A�area =

�

�B:B is m � m submatrix of A �B�
2

and where �B� denotes determinant of B.

For any f � F , we will refer to q = Q( f ) as its q-map. Assuming the original set of
images to be smooth, the set of all q-maps is a subset of L2. The corresponding action
of Γ on L2 is given as follows.
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Definition 3. Define the right action L2
� Γ � L

2 by (q, γ) =
�

Jγ(q � γ), where Jγ
denotes the Jacobian of γ.

Note that, for an image f , Q( f � γ) = (Q( f ), γ). We define [q] = �(q, γ)�γ � Γ to
be the set (or an orbit) of all warpings of a q-map. Since all elements of [q] can be
obtained using warpings of the same image (and then forming the q-map), we deem
them equivalent from the perspective of registration. One would like a registration cost
function that equals zero when evaluated on any two elements of an orbit. Let L2

�Γ be
the (quotient) set of all such orbits. The most important property of this mathematical
representation is the following.

Proposition 1. The re-parametrization group Γ acts on L2 by isometries under the L2

norm, i.e. ∀q1,q2 � L
2,∀γ � Γ, �(q1, γ) − (q2, γ)� = �q1 − q2�.

Upon a close inspection, this proposition is exactly the same as the property of invari-
ance to identical warping in Sect. 1. In view of this isometry, the L2 norm between the
q-maps is a proper measure of the registration between any two images since it remains
the same if the registration is unchanged. This leads to a quantity that will serve as both
the registration objective function and an extrinsic distance between registered images.

Definition 4. Define an objective function between any two images f1 and f2, repre-
sented by their q-maps q1 and q2, as L( f1, f2;γ) � �q1 − (q2, γ)�.

The registration is then solved by minimizing the objective function:

γ� = arg inf
γ�Γ

L( f1, f2;γ) . (2)

The objective function L introduced as above satisfies the properties of invariance to
identical warping and inverse consistency. Therefore, we are able to compare images
with the value of objective function at the optimal γ, which gives a solution to regis-
tering two images. We point out that there are some unresolved mathematical issues
concerning to existence of a unique global solution for γ�, especially its existence in-
side Γ rather than being on its boundary. We leave this for a future discussion and focus
on a numerical approach that estimates γ�.

3 Implementation

3.1 Gradient Method for Optimization Over Γ

The optimization problem over Γ stated in Eqn. 2 forms the crux of our registration
framework and we will use a gradient descent method to solve it. Since Γ is a group,
we use the gradient to solve for the incremental warping γ, on top of the previous
cumulative warping γ0, as follows. (In this way the required gradient is an element of
Tγid(Γ) and one needs to understand only that space.) We define a cost function with
respect to γ as E [γ] = �q1 − φ(γ)�

2, where q̃2 = (q2, γ0) and φ � Γ � [q2] is defined
to be φ(γ) = (q̃2, γ). Given a unit vector b � Tγid(Γ), the directional derivative of E
at γid in the direction of b is �q1 − φ(γid), φ�(b)�b, where φ� is the differential of φ at
γid. It has an explicit form which is the same as that derived for parameterized surfaces
in [7]. In order to compute the gradient of E and to update γ0 we need to specify an
orthonormal basis for Tγid(Γ).



280 Q. Xie et al.

3.2 Basis on Tγid(Γ)

In this paper, we investigate registration of 2D images with domain as D = [0,1]2 but
the framework applied to other domains as well. In this case Γ contains all bound-
ary preserving diffeomorphisms on [0,1]2. The tangent space of Γ at identity γid is
Tγid(Γ) = �b � [0,1]2

� [0,1]2
� b is a smooth tangent vector field on [0,1]2

�.
We begin by constructing an orthonormal basis for L2

([0,1],R) and then extend it to
the 2D case. It is known that B1D

L2 = �
�

2 sin(2πnt)�n �= 1���
�

2 cos(2πnt)�n �= 1��
�1 forms an orthonormal basis for L2

([0,1],R) under the L2 metric.
We seek an orthonormal basis for L2

([0,1],R) under the Palais metric due to some
nice properties of this Riemannian metric ([8]). The Palais metric is defined as � f ,g� =
f (0)g(0) + �

1
0 f ′(t)g′(t)dt for f ,g � L

2
([0,1],R). Under this metric an orthonormal

basis of L2
([0,1],R) can be defined as B1D

Pal = �
sin(2πnt)
�

2πn
�n �= 1 �� cos(2πnt)−1

�
2πn

�n �= 1 �

�t��1. It is important to note that the set B̃1D
Pal = �

sin(2πnt)
�

2πn
�n �= 1 �� cos(2πnt)−1

�
2πn

�n �= 1 

provides an orthonormal basis of functions that vanish at t � �0,1. The subspace of
functions that vanish at t � �0,1 has codimension two (due to the two imposed con-
ditions). This means that in order to define a full orthonormal basis of L2

([0,1],R),
we must add two additional elements that give linearly independent pairs of values at
t � �0,1. We will refer to the additional elements as B̊1D

Pal.
We will use Cartesian product of B̊1D

Pal (with elements b̊) and B̃
1D
Pal (with elements b̃)

to construct an orthonormal basis for [0,1]2. First, consider two parameters u � [0,1]
and v � [0,1] that define the domain [0,1]2. Begin by constructing an orthonormal
basis for functions on [0,1]2 that vanish at the boundaries using all possible products
of elements of B̃1D

Pal: B̃
2D
Pal = �b̃i(u)b̃ j(v),0�i, j�1

� �0, b̃i(u)b̃ j(v)�i, j�1
. In addition, we

need basis elements that are tangential to the boundaries. These can be formed using
the additional basis elements B̊1D

Pal. Define this set as: B̊2D
Pal = �b̃i(u)b̊ j(v),0�i�1; j=1,2

�

�0, b̊i(u)b̃ j(v)�i=1,2; j�1
. Then, the union B

2D
Pal = B̃

2D
Pal � B̊

2D
Pal provides a basis for Tγid(Γ)

under the Palais metric given by the inner product:

! f ,g" = � f (0,0),g(0,0)�Rn + � � �∇ f (u, v),∇g(u, v)�R2ndudv .

4 Experimental Results

In this section, we will present some experimental results for grayscale images and
multimodal images to demonstrate the use of the framework introduced in this paper.
However, in case of grayscale images, with n = 1, our method does not apply directly
since the dimension of range is less than the dimension of the domain. Instead, we ap-
ply it on gradient images g formed using g = ∇ f � [0,1]2

� R
2 and ∇ f = ( fu, fv)

for (u, v) � [0,1]2. Image gradients are a type of edge measure and are often used in
their own right as robust spatial features for image registration. We will use the gradi-
ent field as a feature to establish optimal registrations and compute distances between
gray-scale images. In other words, we register and compare two images by register-
ing their gradient images. One can obtain the original image from a gradient image
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using PDEs [1]. (Note that this idea of using gradients to form vector-valued images
will apply to volume images also, although we will restrict ourselves to 2D images for
simplicity of presentation.) In order to register two images, we can use the registered
gradients and get back to images ([1]). However, this approach may lead to changes in
image intensities by applying diffeomorphisms. An alternative is to consider gradients
as an image feature and directly use the optimal γ to register the images. This is the
method applied in this paper. We will compare our method to the diffeomorphic demons
method ([6]).

4.1 Synthetic Data

As a test to evaluate the framework we proposed, we first use it to register synthetic
grayscale image pairs. The images f1 and f2 are registered twice by first taking f1 as
the template image and estimating γ21 that optimally deforms f2. Similarly, f2 is used
as the template to get γ12. We show the two converged energies, �(q1, γ12) − q2� and
�q1 − (q2, γ21)�, associated with the the optimal γ12 and γ21 to verify the symmetry.

Experiment 1
�q1 − q2� = 2.6064, �q1 − (q2, γ21)� = 0.0441, �(q1, γ12) − q2� = 0.0427

f1 f2 � γ21 γ12 γ−1
21 γ12 � γ21 �J1�

 

 

0.8

1

1.2

1.4

f2 f1 � γ12 γ21 γ−1
12 γ21 � γ12 �J2�

 

 

0.8

1

1.2

1.4

Experiment 2
�q1 − q2� = 1.9924, �q1 − (q2, γ21)� = 1.2038, �(q1, γ12) − q2� = 1.2038

f1 f2 � γ21 γ12 γ−1
21 γ12 � γ21 �J1�

 

 

0.9

0.95

1

1.05

1.1

1.15

f2 f1 � γ12 γ21 γ−1
12 γ21 � γ12 �J2�

 

 

0.9

0.95

1

1.05

1.1

1.15

Fig. 2. Results of registration: synthetic images
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The cumulative diffeomorphisms γ21 � γ12 and γ12 � γ21 are also used to demonstrate
the symmetry of the proposed metric. In our method, γ12 and γ21 are expected to be
inverses of each other.

The results for registering two datasets are shown in Fig. 2. We show the original
images f1 and f2 with the warped images f2 �γ21 and f1 �γ12, that match with f1 and f2,
respectively. The diffeomorphisms, γ12 and γ21 learnt to register the images are also pre-
sented. By composing them in different orders, we expect the resulting diffeomorphisms
to be the identity map. In order to better visualize that the composed diffeomorphisms
are close to identity, their Jacobian maps are also given. If the compositions are the
exact identity map, the Jacobian images should be constant images with value 1. We
observe that the composed diffeomorphisms γ21 �γ12 and γ12 �γ21 are close to the iden-
tity map. Although there are cases when γ12 and γ21 are not exact inverses of each other,
the resulting distances are still approximately symmetric. Possible explanations include
errors due to numerical interpolation of grids or γ� being a local solution instead of a
global minimizer.

4.2 Image Registration

Next, we test our method on images of hand written numbers and 2D MR images of
the brain. The digit image data is used to demonstrate the performance of image regis-
tration. Figure 3 shows examples of matching three images for identical and different
digit(s). Each row contains the results for a single experiment. The original images to be
registered are shown in columns (a) and (d). The registration results obtained using our
method are presented in columns (b) and (e). Columns (c) and (f) are the corresponding
warped images using the demons method. For the experiments in Fig. 3, our registration
results are at least as good as those from the demons. For many of the experiemnts, our
method outperforms the other.

Ours Demons Ours Demons
(a) f1 (b) f2 � γ21 (c) f2 � γ21 (d) f2 (e) f1 � γ12 (f) f1 � γ12

Fig. 3. Three experiments for registering digits. Each row represents an experiment
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Experiment 1

Experiment 2

Fig. 4. Results for registering brain images. Column (a) contains two given images. The registered
images from our method and diffeomorphic demons are shown in columns (b) and (c), respec-
tively. Column (d) gives the image differences after registration using our method and column (e)
contains the image differences after registration using Demons.

Fig. 5. Results for registering brain images from two modalities. First two columns contain given
images, with the first row from T1 and the second from T2. The registered images are shown in
the third column. The last two columns give the image differences before and after registration.
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We also present two examples of brain MRI registration in Fig. 4. In each of the two
experiments, we show the original images, our warped images, and the image differ-
ences before and after registration to illustrate our method. At the same time, the reg-
istered images from using the demons are used for comparison. For these experiments,
our method provides a decent registration for the ventricular part and the boundary of
the brain; most lobes remain approximately the same. The demons does not provide
as good of a registration with respect to the ventricles and/or the boundaries. It also
sometimes generates mistakes near the lobes.

Figure 5 shows an example of registering a pair of brain images from two modalities.
Under our framework, the two modalities are registered simultaneously using the same
deformation.

4.3 Image Classification

The framework introduced in this paper defined a proper distance on the space of
q-maps of images. These distances can be used for pattern analysis of images, using
clustering or classification. The dataset used for classification purpose contains images
of digits from 0 through 9 and each digit has ten images. The distance matrices for L2

without warping, our method and demons are shown in Fig. 6 from (a) to (c). The L2

distance is automatically symmetric. We observe that the distance matrix is not symmet-
ric for demons. Our distance matrix is approximately symmetric. The boxplots in Fig.
6 (d) are used to assess the amount of asymmetry for the distance matrices. The boxes
represent the absolute values for all entries in $D − D

′

$ �D. These are the relative differ-
ences between diagonal entries and are supposed to be zero for a symmetric matrix. Our
method provides differences closer to zero and therefore more symmetric compared to
the demons method. As mentioned previously, the differences being not exactly zero
may be due to computational issues such as local minima. The leave-one-out nearest-
neighbor (LOO-NN) method is utilized to classify the digits based on distance matrices.
The classification rates are shown in Fig. 6.

0

0.2

0.4

0.6

0.8

1

1 2

(a) L2, 76% (b) Demons, 79% (c) Ours, 95% (d)

Fig. 6. Classification results

5 Discussion

We proposed a unified framework to register and compare images jointly. Our distance
provides a symmetric metric between image gradients and thus a good measure of reg-
istration without ambiguity. The forward and backward matching diffeomorphisms are
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inverses of each other when global solutions are reached. With this framework, our
method gives better results for registration, comparison and classification of images
compared to the demons method. Future work will involve studying mathematical prop-
erties such as injectivity of the Q map.
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