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Abstract. To monitor tumor response to neoadjuvant chemotherapy, investiga-
tors have begun to employ quantitative physiological parameters available from 
dynamic contrast enhanced MRI (DCE-MRI). However, most studies track the 
changes in these parameters obtained from the tumor region of interest (ROI) or 
histograms, thereby discarding all spatial information on tumor heterogeneity. 
In this study, we applied a nonrigid registration to longitudinal DCE-MRI data 
and performed a voxel-by-voxel analysis to examine the ability of early changes 
in parameters at the voxel level to separate pathologic complete responders 
(pCR) from non-responders (NR). Twenty-two patients were examined using 
DCE-MRI pre-, post one cycle, and at the conclusion of all neoadjuvant chemo-
therapy. The fast exchange regime model (FXR) was applied to both the origi-
nal and registered DCE-MRI data to estimate tumor-related parameters. The  
results indicate that compared with the ROI analysis, the voxel-based analysis 
after longitudinal registration may improve the ability of DCE-MRI to separate 
complete responders from non-responders after one cycle of therapy when us-
ing the FXR model (p = 0.02). 
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1 Introduction 

Early investigations in monitoring tumor response to neoadjuvant chemotherapy  
focused on semi-quantitative analyses based on changes in morphology and/or ana-
tomical measures [1-7].  More recently, investigators have begun to employ the quan-
titative physiological parameters available from dynamic contrast enhanced MRI  
(DCE-MRI). For example, Ah-See et al [8] acquired DCE-MRI data on thirty-seven 
patients with primary breast cancer. Through calculating the changes in seven kinetic 
parameters, they reported the that change in the volume transfer constant (Ktrans)  
was the best predictor of pathologic nonresponse. In performing their analysis, the 
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investigators tracked the changes in parameters obtained from tumor ROI or histo-
gram data. While this approach is the current standard, it does discard all spatial in-
formation on tumor heterogeneity. Li et al presented [9] and validated [10] a method 
for the registration of breast MR images obtained at different time points throughout 
the course of neoadjuvant chemotherapy. In this study, we applied the approach to 
longitudinal pharmacokinetic parameters estimated by the fast exchange regime mod-
el (FXR) and performed a voxel-by-voxel analysis to examine the ability of early 
changes in parameters at the voxel level to separate pathologic complete responders 
(pCR) from non-responders (NR). The FXR model assumes that tissue is not homo-
geneous and water exchange between the vascular, extravascular intracellular space, 
and the extravascular extracellular spaces are not sufficiently fast. To the best of our 
knowledge, it is the first work to report the ability of the FXR model to predict breast 
cancer response and demonstrate the influence of tumor heterogeneity on the analysis 
of treatment response. 

2 Patients and Methods 

2.1 MRI Data Acquisition 

Twenty-two patients with Stage II/III breast cancer were enrolled in an IRB-approved 
clinical trial where serial breast MRI scans were acquired pre-therapy (t1) and after 
one cycle (t2), and at the completion of neoadjuvant chemotherapy (t3). Imaging was 
performed on a 3.0 T Achieva MR scanner (Philips Healthcare, Best, The Nether-
lands). The DCE-MRI acquisition employed a 3D spoiled gradient echo sequence 
with TR\TE\α =7.9ms\1.3ms\20o. The acquisition matrix was 192×192×20 over a 
sagittal (22 cm)2 field of view with a slice thickness of 5 mm. Each 20-slice set was 
collected in 16.5 seconds at 25 time points and 0.1 mmol/kg of Magnevist was in-
jected at 2 mL s-1 after the third dynamic scan. Responders (n=11) were defined as 
those patients who had a pathologic complete response at time of surgery. Non  
responders (n=11) were defined as patients with residual invasive cancer at the  
primary tumor site.  

2.2 Data Registration 

The purpose of the registration in this study is to align DCE-MRI data acquired at 
three time points: pre-, post-one cycle, post-all cycles of neoadjuvant chemotherapy. 
Since the DCE-MRI data at each imaging session consists of 25 dynamic scans, we 
apply the registration to the average of the post-contrast DCE-MRI data (i.e., the av-
erage of the 4th – 25th scans; this is done to increase the SNR of the data to yield a 
more accurate registration). First, the average DCE data pre- and post-one cycle of 
therapy are aligned to the data at the conclusion of all therapy by a rigid body regis-
tration algorithm [11], which searches the optimal rotation and translation parameters 
through maximizing the normalized mutual information (NMI). A nonrigid registra-
tion method [9] is then applied to refine the registration. This method extends the 
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adaptive bases algorithm (ABA) [12] through incorporating an additional term de-
signed to preserve the tumor volume during the registration process. The reason the 
tumor volume must be preserved is that compressing or expanding the tumor during 
the registration process could provide results that are misleading in regard to assess-
ing biological changes in the tumor (e.g., disease progression or response) that occur 
between imaging sessions. 

Both the ABA and the extended ABA algorithm with a tumor volume conserving 
constraint employ NMI as the similarity measure, and the deformation field is mod-
eled by a linear combination of radial basis functions. To constrain the tumor volume, 
we compute the Jacobian determinant over the tumor regions in the MR images: 

 ( )( )con T
T

f log J x dxα=  ,  (1) 

where ( )TJ x  is the Jacobian determinant on the tumor area and α is the parameter to 

control the weight of this constraint term, which is set to 0.15 – 0.3 based on empiri-
cal evidence. Hence the cost function is composed of the negative NMI term and the 
tumor volume constraint term: 

 ( )( )cost T
T

f NMI log J x dxα= − +  ,  (2) 

Through minimizing Eq. (2), the algorithm can optimally register the normal tissues 
while simultaneously minimizing tumor distortion. The generated transformation is 
applied to each dynamic scan to obtain the registered DCE-MRI data. 

2.3 Data Analysis 

The fast exchange regime model (FXR) is applied to both the original and serially 
registered DCE-MRI data to estimate the volume transfer constant (Ktrans, related to 
tumor perfusion and permeability), efflux rate constant (kep), extravascular  
extracellular volume fraction (ve), and the average intracellular water lifetime of a 
water molecule (τi).  

In order to perform quantitative DCE-MRI, the arterial input function (AIF) must 
be measured. Individual AIFs are detected by a semi-automatic AIF tracking algo-
rithm, the details of which can be found in reference [13]. Here we use a population-
averaged AIF which is calculated through averaging fifty individual AIFs. 

For each patient at each time point, a conservative ROI is manually drawn around 
the contrast enhanced tumor region; that is, the ROI encompasses the entire tumor as 
well as surrounding healthy appearing tissue. Given this set of voxels, eleven subsets 
of enhancing tumor voxels are constructed on the basis of their averaged post-contrast 
signal intensity increase over the average of the three pre-contrast time points. Each 
subset is defined for different percent enhancement thresholds ranging from 10% to 
110% in 10% increments. This allows us to establish an optimal “cut-off” point for 
selecting enhancing voxels to include in the analysis. 
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To evaluate the effectiveness of the longitudinal registration algorithm, both ROI 
and voxel-based analyses are performed. The ROI analysis is based on the unregis-
tered DCE-MRI data and three parameters are computed: the change of mean, me-
dian, and mean of the top 15% parameters. The voxel analysis is performed on the 
registered data and the same parameters are calculated on voxels showing an increase 
in the parameter from t1 to t2. A Wilcoxon rank sum test is then used to determine if 
there is a significant difference between the pCR and NR groups. 

3 Results 

Figure 1 shows the registered DCE-MRI data at three time points with the corres-
ponding Ktrans maps superimposed; the top row shows a representative patient achiev-
ing a pCR, while the bottom row is a NR. 

 

Fig. 1. The registered DCE-MRI data at three time points (columns) with the corresponding 
Ktrans superimposed; the top row shows a patient with pCR, while the bottom row is a NR. 

Figure 2 shows the p values obtained by both the ROI and voxel-based analyses at 
different enhancement thresholds. Before registration, only two ROI analyses are 
significant (the median Ktrans when the 20% and 30% enhancement rates used as the 
cut-off) at the p < 0.05 level (indicated by the solid black line in the figure). However, 
after the longitudinal registration, p values are significant when the enhancement rates 
ranging from the 20% to 70% are used, indicating the parameters estimated by the 
FXR model with registration can distinguish the differences between two groups.  
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Table 1 lists the p values of three ways of summarizing different pharmacokinetic 
parameters by the ROI and voxel-based analyses. The results indicate that the  
registration makes the change in mean Ktrans move from a not significant (p = 0.12 in 
the ROI analysis) to a significant difference (p = 0.02 in the voxel analysis). Similar 
conclusions can be made for the change in mean of the top 15% of Ktrans and kep. The 
other parameters studied in this effort, ve and τi, do not yield significant results in 
either analysis. 

 

Fig. 2. The p values of ktrans obtained by both the ROI and voxel-based analyses at different 
enhancement thresholds. Most p values in the voxel-based analysis are significant (< 0.05) 
when the enhancement rates ranging from the 20% to 70% are used, compared with two signif-
icant p values in the ROI analysis, indicating the longitudinal registration may improve the 
ability of DCE-MRI data to predict treatment response. 

Table 1. The table lists the p values of three ways of summarizing different pharmacokinetic 
parameters by the ROI and voxel-based analyses. The results after the voxel-based analysis, in 
general, lead to smaller p values, indicating the longitudinal registration may improve the 
ability of DCE-MRI data to separate pCR from NR patients. 

 Ktrans kep ve τi 
Analysis ROI Voxel ROI Voxel ROI Voxel ROI Voxel 

∆mean 0.12 0.02 0.04 0.04 0.12 0.39 0.69 0.26 

∆median 0.02 0.03 0.08 0.06 0.17 0.15 0.51 0.13 

∆mean of 
top15% 

0.15 0.02 0.07 0.04 0.74 0.13 0.51 0.13 
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4 Conclusions 

A nonrigid registration algorithm has been employed to retain the spatial information 
in DCE-MRI parameter maps obtained before and after neoadjuvant chemotherapy, 
thereby enabling a voxel-based analysis to be performed to predict response. The 
quantitative analysis demonstrates that Ktrans and kep can separate pCR from non-
responding patients after the parameters are aligned by this algorithm. Although ve 
and τi cannot lead to any significant results, the p values trend to smaller values after 
registration. The results indicate that the voxel-based analysis after longitudinal regis-
tration may improve the ability of DCE-MRI to separate pCR from non-responders 
after one cycle of therapy when using the FXR model. 

There are a number of limitations in the study. First, the population AIF was used 
to estimate the physiological parameters from DCE-MRI data. In practice, it is diffi-
cult to obtain a reliable AIF from each patient at each time point. Li et al.’s study [13] 
indicates that Ktrans and vp show a good agreement between the population AIF and 
individual AIF. Thus, the population AIF in this study may not be the main concern, 
although future work should investigate the role of individual AIFs in predicting 
treatment response. The temporal resolution of 16 s used in this study is also an 
important limitation. It is not optimal for AIF characterization; rather it represents a 
balance between temporal and spatial resolution and field of view coverage so we can 
perform longitudinal registration. A final limitation is that the number of patients is 
modest and we are currently working to expand the data set to explore the ability of 
the voxel-based analysis to predict treatment response. 
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