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Abstract. Dynamic Contrast Enhanced Magnetic Resonance Imaging
(DCE-MRI) of the kidney provides important information for the diag-
nosis of renal dysfunction. To this end, a time series of image volumes
is acquired after injection of a contrast agent. The interpretation and
pharmacokinetic analysis of the time series data is highly sensitive to
motion artifacts. Registration of these data is a challenging task as con-
trast uptake adds new image features and gives rise to intensity changes
over time within the kidneys.

This paper presents a new registration pipeline for a time series of
3D DCE-MRI. The pipeline combines state-of-art modules such as a
weighted and robust least squares type distance measure, a regularization
that is based on hyperelasticity and thus ensures diffeomorphic transfor-
mations and enables the incorporation of local rigidity constraints on
the kidneys. We provide results that indicate the necessity of these con-
straints and illustrate the superiority of the proposed pipeline as com-
pared to other approaches.

Keywords: DCE-MRI, Motion Correction, Constrained Image Regis-
tration, Local Rigidity, Hyperelastic Registration.

1 Introduction

Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) of the
kidney provides in vivo information about the Glomerular Filtration Rate (GFR).
The GFR is an important measure of renal function and useful in the diagnosis
of chronic kidney diseases. To this end, a small dose of contrast agent, gadolin-
ium, is administered and a time series of three dimensional images is acquired.
Although the images are partly acquired during breath hold the time series can
be affected by inconsistencies between the respiratory phases at the instance of
recording. Even small displacements can affect the voxelwise pharmacokinetic
analysis yielding incorrect estimates of the GFR [8] and thus limit the usability
of DCE-MRI. In particular, when looking at the update rate in the cortex of the
kidneys, this is an important issue.
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Registration of DCE-MRI time series is a challenging task since intensity
changes in the region of interest take place due to uptake of bolus, but also from
geometrical changes due to inconsistent breath hold, free breathing after breath
hold, patient movements and physiological pulsations. New features may appear
during wash in and disappear during the wash out phase, which can mislead
unimodal distance measures.

DCE-MRI registration is an important challenge and has thus drawn much
attention. Melbourne et al. [7] proposed a nonlinear registration scheme based
on repeated registrations of the data to a reference time series generated by
a Principal Component Analysis (PCA). The reference volumes preserve long
term contrast uptake but show less motion. Their approach is based on the as-
sumption that the displacements between acquisitions is periodically or random.
Alternatively the impact of intensity variations on nonlinear registration schemes
can be suppressed by multi-modal distance measures such as mutual information
[13,14] or normalized gradient fields [4,6]. Under the assumption that uptake of
contrast agent is limited to the kidneys the registration problem is essentially
uni-modal in large parts of the image. This assumption is also supported by
our analysis of the results for kidney data from Haukeland University Hospi-
tal, Bergen, Norway. Another option to gain robustness against uptake-induced
intensity modulations is to limit the flexibility of the transformation model. A
direct comparison between nonlinear and rigid transformation models on the en-
tire image and limited to rectangular regions around the kidneys was performed
in [11]. The results suggest that rigidity is useful to describe the motion of the
kidneys, however, improper to model the overall respiratory motion [11].

In this paper, we propose a novel nonlinear registration pipeline with local
rigidity constraints on the kidneys [12,5]. Thereby we ensure that the relevant
contrast variations related to blood clearance are preserved in the registered
time series. Further the robustness of the registration against intensity changes
related to contrast uptake is improved. Our comparison with an unconstrained
approach demonstrates the improvement that can be gained by integrating the
local rigidity constraints. In contrast to [11], a globally smooth and nonlinear
transformation is estimated and the registration is driven by a very robust uni
modal distance measure. Smooth transitions between the constrained and un-
constrained regions are provided by a novel hyperelastic regularizer [2]. This
remarkable regularizer prohibits tissue folding and thus it is guaranteed to com-
pute a diffeomorphic transformation independent of the choice of regularization
parameters.

First promising results on clinical data are presented and suggest that local
rigidity is a useful option to reduce the degradation of DCE-MRI due to motion
artifacts.

2 Locally Rigid Registration Scheme

Given a time series of three dimensional images I1, ..., IT on a domainΩ ⊂ R3 our
goal is to eliminate the motion between the individual time points. To this end, we
aim to register all image volumes to an assigned reference image – in the following
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R := I1. For ease of presentation, we limit the description to one subproblem, i.e.
the registration of one arbitrary time frame T ∈ {I2, ..., IT } to R.

Since displacements due to respiratory motion on the entire thorax are non-
linear, we choose a non-parametric model for the mapping y : Ω → R3 [9].

In our application difficulties arise due to uptake related intensity variations
within the kidneys. The goal is to preserve this essential piece of information, but
nevertheless eliminate the displacement between the frames in the time series.
As our analysis of the data indicates, the DCE-MRI registration problem is
essentially unimodal outside the kidney regions. Therefore we choose a simple
and robust weighted SSD distance measure

D(T ,R) :=
1

2

∫
Ω

(T (x)−R(x))2 v(x) dx. (1)

The weighting function v : Ω → R+ is used to reduce the influence of regions
with varying signal intensities, see Sec. 3 for details.

2.1 Locally Rigid Image Registration

To avoid misregistrations due to uptake induced contrast variations we aim to
limit the flexibility of the transformation within the kidneys by adding rigidity
constraints as motivated by [11].

Our notation and implementation follows [5]. Let M1,M2 ⊂ Ω denote the
regions of the kidneys in the reference image R. The idea is to restrict the
nonlinear transformation y to be locally rigid on M1 and M2. This motivates
the formulation of the constrained registration problem [5]

min
y,w

1

2

∫
Ω

(T (y(x))−R)2 | det∇y(x)| v(x) dx + S[y] (2)

subject to y(x) = Q(x)f(wi) ∀x ∈ Mi, i = 1, 2.

Note the appearance of | det∇y(x)| due to a change of the coordinate system and
the transformation rule; see [5] for details. As for the constraints, Q(x) describes
a model for a linear transformation, w1 and w2 are the six parameters of the
rigid transformations for the two kidney regions and f is the embedding of the
rigid space into the space of affine linear transformations; see [5] for details. The
regularization S is discussed in the next subsection.

2.2 Hyperelastic Regularization

To allow for large transformations and to enforce invertibility we choose a hy-
perelastic regularizer [2]

Shyper(y) = αlS length(y) + αaSarea(y) + αvSvolume(y). (3)

This regularizer controls the changes in length, area and volume induced by
the transformation y. Due to the growth behavior and since infinite energy is
required to annihilate a volume element, Shyper guarantees the invertibility of
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(a) time point 1 (0 sec) (b) time point 7 (≈15 sec) (c) time point 12 (≈46 sec)

Fig. 1. Illustration of the motion problem in DCE-MRI. We exemplarily visualize
three time points in coronal views. The semi automatic segmentation of the kidney
obtained for the first image volume is represented by a white contour in (a) – (c). The
appearance of new structures due to uptake of the contrast agent can for example be
seen by comparing (a) to (b). The motion problem due to free breathing is observable
for instance by comparing a) to (c).

the transformation even for large displacements and thus enforces diffeomor-
phic transformations. Moreover, the transformation field is very smooth and the
hyperelastic regularizer is therefore especially attractive in combination with
rigidity constraints to control volume changes in the neighborhood of the kidney
cortices.

2.3 Numerical Implementation

The constrained registration algorithm is implemented using the publicly avail-
able toolbox FAIR in Matlab [9]. Important routines such as image interpolation,
distance measures and hyperelastic regularizer are re-used. The problem is at-
tacked in a multi-level strategy on a coarse-to-fine hierarchy of discretizations.
Each discrete optimization problem is solved using a Newton-SQP optimizer [10].
The linear system is solved using a preconditioned minimum residual method [1]
where the preconditioner is a slightly modified version of [3].

2.4 Test Data

A 1.5 Tesla MR-scanner (Avanto, Siemens) is used to acquire DCE-MRI data
from a healthy volunteer. A breath-hold T1-weighted 3D single Gradient Re-
call Echo (GRE) pulse sequence was used to acquire signal-intensity time curves
after administration of a small dose (2 ml) of gadolinium contrast media intra-
venously. The acquisition parameters for the examination was: Slice-thickness
3 mm, Repetition Time 3.3, Echo Time 1.79, Flip Angle 9, Acquisition Matrix
256× 128, Parallel factor 2, Time resolution is 2.5 sec in the breath hold phase
(first 11 time frames) and 30 sec in the free breathing phase. The voxel size is
1.48× 1.48× 3 mm.

The kidney segmentation in the first image volume R = I1 that was delivered
with the data was obtained using a semi-automatic segmentation using temporal
curve information [6]. A training mask for each desired phase was given initially
by the user, representative for the tissue classes to be found. Thus, a large set of
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(a) initial data (b) motion corrected

Fig. 2. 3D Motion correction results are visualized exemplarily for one coronal slice.
The slice is shown at the first and last time point before (a) and after locally rigid
registration (b). The time course is visualized by two planes. It is apparent, that the
proposed scheme reduces motion artifacts as can be observed for example in the end
of the breath hold at timepoint 11.

T -dimensional tissue vectors were obtained, where T is the number of time points.
The algorithmuses theMahalanobis distance between such temporal curve shapes
to classify each voxel in spacewithKNNnearest-neighbor classification.Eachvoxel
is assigned to the most abundant class within theK nearest neighbors in the train-
ing set. After classification, the voxel is assigned to the training set, and the algo-
rithm runs iteratively until no voxels are changing class.

3 Results

We apply the proposed registration pipeline to the clinical data set consisting
of 20 DCE-MRI image volumes. The template images I2, .., I20 are sequentially
registered to the reference image I1 by solving the constrained registration prob-
lem (2). The distance measure (1) is weighted with arbitrarily chosen factors
v(x) = 0.05 within the kidneys and v(x) = 1 elsewhere. For all 3D registration
problems we use hand-picked regularization parameters, αl = 300, αa = 30, αv =
300, see (3).

The average reduction of the weighted distance measure D (1) over all 19
registration problems is 48%. For all transformations the Jacobian determinant
det∇y is in the interval [0.43, 1.49] and hence, as guaranteed by our regulariza-
tion scheme, all mappings are diffeomorphic.
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(a) template I7 (b) reference I1 (c) D(I7, I1) = 100%

(d) ylr - locally rigid (e) det(∇ylr) ∈ [0.67, 1.35] (f) D(I1(ylr), I1) = 61.2%

(g) yu - unconstrained (h) det(∇yu) ∈ [0.64, 1.82] (i) D(I7(yu), I1) = 65.6%

Fig. 3. Results of the 3D registration of the time points with most extreme variations
in contrast uptake (I1 and I7) are visualized in one coronal slice. The template image
I7 (a) is registered to the reference image I1 (b). The solutions of the registration with
and without local rigidity constraints, ylr and yu, are visualized in (d) and (g). Both
transformations are smooth and diffeomorphic indicated by the Jacobian determinants
being positive and finite (e) and (h). However, (h) also shows volumetric changes in the
kidney regions which can be avoided using the constrained approach (e). A comparable
reduction of the distance is achieved by both transformations, compare the absolute
weighted distance images with identical colormap (c),(f) and (i).

Fig. 2 illustrates the considerable reduction of motion artifacts due to in-
consistencies between the respiratory phases and free breathing as well as the
improvement that can be gained using the proposed pipeline. The impact of the
registration pipeline is illustrated exemplarily for one coronal slice. The time
courses before and after locally rigid registration are visualized by two orthogo-
nal planes in time dimension.

We exemplarily show more detailed results of the 3D registration for the im-
ages with the most extreme variations in contrast uptake (I1 and I7) in Fig. 3.
We also demonstrate the importance of local rigidity constrains for this appli-
cation by comparing the constrained with an unconstrained approach. In the
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Fig. 4. 3D Results of Principal Component Analysis before (top row) and after reg-
istration (bottom row) are visualized exemplarily for one coronal slice. Projections of
both datasets onto their first three principal components are shown. Artifacts due to
inconsistent breath hold and free breathing manifest in all three projections of the ini-
tial data as shadows in the spleen, liver and kidney regions. The proposed correction
scheme considerably reduced these artifacts, which manifests in reduced motion blur
of the principal components. Note the considerable reduction of artifacts by the pro-
posed registration approach as can be observed by reduced motion blur in the principal
components.

unconstrained setting the regularization of volumetric changes are reduced by
setting αv = 0.01. In both scenarios a comparable reduction in the difference im-
ages is achieved and essentially all structure outside the kidney regions vanishes,
supporting our assumption that the registration problem is uni-modal outside
the kidneys. Both transformations are very smooth and due to the hyperelastic
regularizer also diffeomorphic. However, as to be expected the unconstrained
registration introduces volumetric changes inside the kidneys to compensate the
different uptake levels while the constrained scheme does not. Note that the un-
derlying image differences relate to contrast uptake and not to tissue distortion.
Hence the results of the constrained approach are superior.

As another indicator of the effectiveness of our method, we perform a Princi-
pal Component Analysis (PCA) of the time series before and after registration;
see [7]. To this end, we remove the mean of each time point on the finest dis-
cretization level, compute the covariance matrices and their eigenvectors and
eigenvalues. The projections onto the three principal components are shown in
Fig. 4. The reduction of motion artifacts can be seen by comparing the respective
projections. Before correction the first principal component is motion-blurred
and contours of the spleen, liver and kidneys are shaded. Inconsistent respira-
tory phases and problems due to free breathing also manifest in the second and
third principal component. After registration the first principal component is less
blurred and the remaining projections describe the long term uptake behavior
within the kidneys.
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4 Discussion and Outlook

We present a novel image registration pipeline for Dynamic Contrast Enhanced
MRI (DCE-MRI) of kidneys. The new pipeline combines a robust, weighted
least squares based distance measure, a hyperelastic regularizer, and local rigid-
ity constraints. The basic idea is to partition the domain into regions of primarily
pharmacokinetic activities and remainder. In active regions tissue deformations
are restricted to be locally rigid and thus uptake-induced intensity changes that
are essential for pharmacokinetic analysis are preserved. The emphasis of the
weighted distance measure is on the remainder, where the registration problem
is approximately uni-modal. First promising results indicate that our pipeline
considerably reduces motion artifacts related to inconsistencies between respira-
tory phases at the instance of recording and free breathing.

It is well known that unconstrained registration approaches may lead to in-
correct changes of volume in kidneys. Synthetically generated reference images
sharing the long term uptake behavior have been used to resolve this issue [7].
However, the synthesis is based on certain assumptions on the motion such
as periodicity which can be questionable in acquisitions with breath hold and
free breathing phases. We present experiments demonstrating that our new con-
strained approach is capable to register kidney DCE-MRI without making as-
sumptions on the underlying motion.

Similar to [11] our findings suggest that local rigidity within the kidneys is
a useful assumption to eliminate motion artifacts in DCE-MRI data related to
respiration. Instead of computing separate rigid registrations of both kidneys as
in [11], our scheme uses only one global transformation. Even though only the
kidneys are of interest for the analysis of renal function, our experiments indicate
that adjacent anatomical structures provide additional and useful information.

Our approach focuses on eliminating motion artifacts due to inconsistencies
between respiratory phases at the instance of recording and free breathing. Fur-
ther reasons for displacement between time frames such as physiological pulsations
are not addressed. Obviously, our scheme is only indented for DCE-MRI of tissue
where the local rigidity assumption holds. For DCE-MRI of tissue with severe non-
rigid displacements our scheme may only serve as a rigid pre-registration step.

At present, the proposed scheme requires an initial segmentation of the kid-
neys in one reference image. In our case a semi automatic segmentation of the
first time point was already provided with the data. In future work we will also
investigate the integration of automatic kidney segmentations into our frame-
work. We are positive that our scheme is robust against segmentation errors
since the powerful hyperelastic regularization [2] gives a very smooth transition
from the constrained to the unconstrained region.
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